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ABSTRACT  
 

The use of FRP jackets to strengthen RC columns has become popular in 

recent years due to the well-known phenomenon that lateral confinement 

can significantly enhance the strength and the deformation capacity of 

concrete. However, the related confinement mechanism of concrete, 

particularly when under non-uniform confinement, is still inadequately 

understood. This thesis is thus concerned with the development of a deeper 

understanding of the confinement mechanism of concrete in FRP-confined 

RC columns. 

 

This thesis first presents a series of axial compression tests on 

FRP-confined high strength concrete cylinders. These tests are an important 

supplement of the existing test data. Based on these tests, a stress-strain 

model applicable to both normal strength concrete and high strength 

concrete under active confinement is proposed. Moreover, an existing 

analysis-oriented stress-strain model for FRP-confined concrete is shown to 

be applicable to concretes of different strength grades. This 

analysis-oriented stress-strain model served as a basis of the subsequent 

studies on the numerical modelling of FRP-confined concrete and 

FRP-confined RC columns presented in the thesis. 

 

Attention is then shifted to the performance of plasticity models and 

plastic-damage models in predicting the stress-strain behaviour of confined 

concrete. In the plasticity models or the plasticity part of the plastic-damage 
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models, two techniques have been utilized to define the plastic deformation 

process: the scaling technique in which the hardening law is defined as a 

function of the confining pressure and the plastic volume strain technique in 

which the plastic volume strain serves as the hardening variable. While both 

techniques are shown to lead to accurate predictions for actively-confined 

concrete, they are shown to be incapable of providing accurate predictions 

for FRP-confined concrete. This is because both approaches cannot 

accurately simulate the lateral deformation process of FRP-confined 

concrete. In addition, the thesis also presents a study of the use of Bazant’s 

micro-plane model in predicting the behaviour of confined concrete; an 

improved version of the M4 model, referred to as the M4+ model, is 

presented for the numerical modelling of FRP-confined concrete. Several 

important parameters of the M4+ model were set to be 

confinement-dependent. The improved model provides accurate predictions 

for FRP-confined concrete. 

 

The next part of the thesis is on the development and application of 

advanced finite element models for FRP-confined non-circular columns. 

Two constitutive models, that is, Yu et al.’s plastic-damage model and the 

M4+ model, were employed in the finite element models to predict the 

behaviour of FRP-confined square and elliptical columns. Numerical results 

from the finite element model show favourable agreement with the 

experimental results.  

 

The final part of the thesis presents a three-dimensional finite element 
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model for FRP-confined RC columns based on Yu et al.’s plastic-damage 

model. For this finite element model, a local analysis-oriented stress-strain 

model is proposed for adoption to avoid the double counting of end restraint 

effects. This finite element model is shown to produce accurate predictions 

of the stress-strain behaviour of transverse steel-confined concrete columns 

and FRP-confined RC columns. 
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CHAPTER 1  

INTRODUCTION  

1.1 BACKGROUND 

Fibre-reinforced polymer (FRP) composites are composite materials which 

comprise fibres of high tensile strength (e.g. carbon, glass and aramid fibres) 

embedded in a resin matrix (e.g. vinylester or epoxy resin). These 

composite materials, compared to steel which is a widely used modern 

construction material, have many benefits including their high strength, 

light weight, corrosion resistance and tailorability of mechanical properties. 

For instance, CFRP composites can be ten times as strong as conventional 

structural steel but only a quarter as heavy as steel; in addition, unlike steel, 

they are non-corrosive. The high strength-to-weight ratio of FRP composites 

means that FRP composites are easy to handle on site, reducing labour costs 

and minimizing interruptions to existing services while their 

corrosion-resistant property leads to durable performance. Due to these 

advantages, FRP composites have a tremendous potential for engineering 

applications, especially as their prices fall down with the expansion of the 

production volume.  

 

FRP composites have been used in the aerospace industry for many years. 

They have become increasingly accepted over the past two decades by civil 

engineers as a new class of structural material as their superior material 

properties become increasingly noticed by civil engineers. Nowadays, 

various forms of FRP products are commercially available for civil 
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engineering applications, including bars, sheets, plates and shapes/profiles. 

These FRP products may be used in the retrofit of existing structures or to 

replace steel in the construction of new structures. In strengthening 

applications, FRP composites are commonly used as externally bonded 

reinforcement, but they may also be used as embedded reinforcement near 

the surface of structural members. 

 

When used in construction, FRP composites also have some disadvantages. 

First, FRP composites show poor performance in fire. Therefore, if they are 

required to be the main load-resisting material in indoor applications where 

fire resistance is an important issue, special care (e.g. appropriate fire 

insulation) needs to be exercised. Second, FRP composites are 

linear-elastic-brittle materials (i.e. they exhibit linear-elastic behaviour in 

tension up to brittle rupture failure), creating the issue of lack of ductility 

compared to steel. Third, FRP composites have low elastic 

modulus-to-strength ratios, so it is less than desirable to use them to bear 

compressive stresses directly or to offer the stiffness needed. For instance, 

when a GFRP plate is used to stiffen a reinforced concrete (RC) beam to 

reduce its deformation, a very thick GFRP plate may be required due to the 

small elastic modulus of the GFRP composite.  

 

One application of FRP composites where their advantages are fully utilized 

but their disadvantages are avoided or minimized involves the use of FRP 

composites to provide lateral confinement to concrete so that both the 

strength and ductility of the concrete under compression can be 
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substantially enhanced. This mechanism has been exploited in both the 

retrofit of existing structures and in the construction of new structures, but 

the former application has been much more common in practice so far. In 

this type of applications, all four advantages of FRP composites mentioned 

above (i.e. high strength, light weight, corrosion resistance and tailorability 

of properties) are utilized, and the last two disadvantages of FRP composites 

can be naturally overcome. In such FRP-confined RC columns, the fibres 

are oriented in the hoop or a near-hoop direction, so the FRP material is not 

used as the main component to carry axial loading; instead, the FRP is used 

for providing lateral confinement to the core concrete to increase its strength 

and ductility. The brittleness of the FRP composite failing in axial tension is 

thus not a significant issue. In addition, due to the substantial lateral 

deformation capacity of the concrete, the high strength of the FRP 

composite can be fully utilized despite its relatively small elastic modulus. 

For this type of structures, the poor fire performance of FRP is also not a 

serious problem as long as a proper design procedure is followed to ensure 

that the load-carrying capacity contributed by the FRP strengthening system 

is not required during a fire. Indeed, when FRP confinement is used to 

enhance seismic resistance, the coupled action of fire and earthquake 

generally does not need to be considered. 

1.2 STRENGTHENING OF RC COLUMNS WITH FRP COMPOSITES 

As discussed in the above section, FRP composites in the form of jackets or 

wraps have been extensively used to strengthen RC columns by providing 

lateral confinement. In such jackets/wraps, the fibres are typically oriented 
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entirely in the hoop direction, so the axial stiffness of the jacket can be 

ignored. FRP jackets for column strengthening can be categorized into 

wet-layup jackets and prefabricated (or preformed) jackets. Wet-layup 

jackets are jackets which are formed in-situ from fibre sheets or fabrics that 

are impregnated with a resin and wrapped continuously or discretely on the 

surface of existing concrete columns. These wet-layup jackets can easily 

follow the actual shape of the concrete column and are particularly suitable 

for the retrofit of existing columns. However, the process involves 

considerable site work and requires due attention to site quality control. By 

contrast, prefabricated jackets are made in factory using machines, so the 

product quality can be better controlled; however, the need to pre-order 

jackets of specific sizes creates difficulties and delays. Wet-layup jackets 

have been the dominant form of FRP jackets used to confine RC columns 

due to their flexibility in shape and ease for transportation. 

 

In the 1980s, FRP jackets were first applied to RC columns to provide 

additional confinement in Japan (Katsumata et al. 1987). Since then, various 

experimental and analytical studies have been conducted in this area. The 

fundamental mechanism underlying this strengthening technique is that the 

axial compressive strength and ultimate axial compressive strain of the 

concrete can be significantly increased through lateral confinement. This 

fundamental mechanism was first exploited for concrete under uniform 

confinement as is the case with circular columns. For FRP-confined circular 

RC columns, for which uniform confinement from the FRP jacket can be 

assumed, many stress-strain models for FRP-confined concrete have been 
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developed. These models have commonly been classified into two classes 

(Teng and Lam 2004): design-oriented stress-strain models and 

analysis-oriented stress-strain models. The best of these models can provide 

quite accurate quantitative predictions for the stress-strain behaviour of 

FRP-confined concrete in circular columns.  

 

The confinement mechanism for concrete in FRP-confined non-circular 

columns is much less understood as the concrete is under non-uniform 

confinement in such columns. A large amount of experimental and analytical 

work has been conducted on the behaviour of FRP-confined concrete in 

rectangular RC columns over the past decade, leading to various stress-strain 

models. No consensus on the reliability of these models, however, has been 

achieved, particularly with regard to their capability of predicting the 

behaviour of FRP-confined concrete in large/full-scale rectangular RC 

columns. There is therefore still a strong need for more work on the 

stress-strain response and the failure mechanism of this type of FRP-confined 

RC columns. Even less is known about FRP-confined concrete in other 

non-circular columns such as elliptical columns which may result from the 

shape modification of existing rectangular columns. 

 

Two approaches have been commonly used for developing analytical models 

for FRP-confined non-circular RC columns. These two approaches focus on 

modelling the behaviour of confined concrete, as it is the key and the most 

complex part in modelling the behaviour of the entire RC column.  
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In the first approach, the concept of “effective confinement” is utilized to 

estimate the amount of effective confining pressure acting on the concrete. 

This estimation is typically done by evaluating the stress in the confining 

material (e.g. the FRP jacket), the effectiveness of confinement over the 

cross-section, and other cross-sectional properties. The improvement in 

concrete strength is then explicitly determined by referring to experimental 

results for concrete at an equivalent uniform confining pressure. This approach, 

however, fails to capture the stress variation over the cross-section.  

 

In the second approach, a constitutive model for concrete is used in a finite 

element analysis to implicitly model the effect of confinement of concrete. 

The confinement mechanism is explicitly modelled in this approach with the 

confinement material (e.g. the FRP jacket) being explicitly represented in the 

finite element model. Interaction between the concrete and the confining 

material is properly accounted for and the effect of confinement variation over 

a non-circular section can be taken into account. Due to these reasons, the 

second approach (i.e. the finite element method) was the main approach 

adopted in the present research project to model the behaviour of 

FRP-confined concrete/RC columns.  

1.3 OBJECTIVES AND SCOPE 

The ability of the finite element method to predict the behaviour of 

FRP-confined RC columns depends mainly on the concrete constitutive 

model employed in the analysis. The primary aim of this thesis is thus to 

develop generic constitutive models which are capable of predicting the 
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behaviour of concrete when it is confined.  

 

Extensive constitutive models already exist for describing the mechanical 

behaviour of concrete. Depending on the theoretical frameworks employed, 

these models are referred to as nonlinear elasticity models (e.g. Elwi and 

Murray 1979), plasticity models (e.g. Imran and Pantazopoulou 2001), 

plastic-damage models (e.g. Lee and Fenves 1998), endochronic models 

(e.g. Bazant and Bhat 1976), and microplane models (e.g. Bazant et al. 

2000). These models have been used in finite element analyses to predict 

the complex behaviour of concrete under general states of stresses. Each 

constitutive model has its advantages and drawbacks, and is likely to work 

well only in particular types of applications. A more in-depth discussion of 

concrete constitutive models can be found in Chen and Han (2007). 

 

 

The primary aim of this research is to develop constitutive models capable 

of predicting the behaviour of concrete under varying levels of confinement. 

To achieve this aim, existing constitutive models which have an adequate 

potential in producing close predictions for the behaviour of actively- 

confined concrete are focused on in this thesis.  Accurate predictions of the 

behaviour of confined concrete require accurate predictions of the peak 

stress, the axial strain at peak stress, as well as the slope of the descending 

branch for actively-confined concrete or the slope of the ascending branch 

for FRP-confined concrete. Three types of constitutive models are examined 

in this thesis, including plasticity models, plastic-damage models and 
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microplane models. More detailed descriptions of these models can be 

found in the subsequent chapters of the thesis. 

 

Apart from a reliable constitutive model for the concrete, the determination 

of appropriate values for the parameters in the model is also crucially 

important. Two approaches of parameter identification are examined in this 

thesis. The first approach is based on the test results of confined concrete. 

This method is used to explain how the experimental results can be 

predicted using a given concrete constitutive model. The second approach is 

based on empirical models developed for confined concrete. This method 

can be used as a predictive method; that is, the values of some of the 

material parameters for a concrete constitutive model are derived from an 

empirical model which is capable of providing accurate predictions for 

confined concrete (mainly uniformly-confined concrete). Previous attempts 

of using the second approach can be found in Oh (2002), Yu et al. (2010a) 

and Yu et al.(2010b). 

 

What should also be mentioned is that concrete is a brittle material with 

distinctively different responses in tension and compression. The 

constitutive models used for description of the behaviour of these two parts, 

therefore, may be significantly different from each other. In this thesis, only 

constitutive models for concrete under compression are examined. 

Constitutive models for concrete under tension are mentioned only when the 

possibility of tension-softening of concrete arises. The thesis consists of 10 

chapters as detailed below. 
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In Chapter 2, a literature review of issues related to the work presented in 

this PhD thesis is presented. It starts with a brief review of existing 

stress-strain models for actively-confined concrete and FRP-confined 

concrete based on tests on small-scale specimens under concentric 

compression. Constitutive models developed for modelling confined 

concrete are then reviewed with reference to the theoretical frameworks 

adopted. Existing finite element studies on FRP-confined concrete/RC 

columns are also reviewed. Needs for the work presented in the subsequent 

chapters are identified. 

 

Chapter 3 presents an experimental study on the behaviour of FRP-confined 

high strength concrete (HSC). Experimental results for FRP-confined HSC 

were obtained to expand the existing test database. A unified stress-strain 

model for actively-confined concrete, applicable to both normal strength 

concrete and HSC, is proposed; a similarly unified FRP-confined concrete 

model (an analysis-oriented stress-strain model) is next presented. By 

comparing these two stress-strain models, it is shown that the path 

independence assumption commonly utilized in analysis-oriented 

stress-strain models is only partially justified. 

 

Chapters 4 and 5 examine plasticity-based concrete models, which can be 

categorized into two groups: plasticity models using the so-called scaling 

technique and plasticity models using the plastic volume strain as the 

hardening variable. The advantage and disadvantages of these models are 
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investigated by comparing their results with selected experimental results. 

 

Chapter 6 is concerned with the capability of plastic-damage models in 

modelling the behaviour of confined concrete. Those two techniques (i.e. 

the scaling technique and the novel hardening variable approach) used in the 

plasticity part of the plastic-damage models for improving their 

performance in prediction for confined concrete are also examined. 

 

Chapter 7 presents a so-called M4+ model based on the original M4 model 

(a microplane model) developed by Bazant et al.(2000). The drawbacks of 

the original M4 model reported in existing literature are remedied first and 

then some confinement sensitive features are incorporated into this model 

leading to so-called M4+ model. This M4+ model is capable of providing 

accurate predictions for confined concrete, including both actively-confined 

concrete and FRP-confined concrete. 

 

In Chapter 8, the ability of two constitutive models to predict the behaviour 

of FRP-confined square and elliptical columns subjected to monotonic axial 

loading is studied. These two constitutive models are the M4+ model 

presented in Chapter 7 and a refined version of the plastic-damage model 

proposed by Yu et al (2010b). The performance of these two models is 

assessed by comparing their predictions with experimental results. The 

confinement mechanism is investigated using results from finite element 

models based on these constitutive models. 
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In Chapter 9, a three-dimensional finite element model for FRP-confined 

circular concrete cylinders and RC columns based on Yu et al.’s (2010b) 

modified Concrete Damage Plasticity Model (CDPM) is presented. The 

finite element model is capable of modelling specimens with deformation 

non-uniformity in the axial direction. The effect of end restraint on the 

lateral-to-axial strain relationship of FRP-confined concrete is discussed, 

and a local analysis-oriented stress-strain model is proposed to eliminate 

this effect. This finite element model can also provide accurate predictions 

for FRP-confined RC columns. 

 

Finally, Chapter 10 presents a summary of the research results presented in 

the thesis and outlines future research needs on various aspects of 

FRP-confined concrete and RC columns. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter presents a review of existing knowledge related to confined 

concrete, with a special focus on studies that are related to FRP-confined 

concrete. As pointed out in Chapter 1, failure of reinforced concrete (RC) 

columns under axial loading involves cracking and substantial lateral 

dilatation. If this lateral deformation can be restrained through lateral 

confinement by hydraulic pressure, steel stirrups/spirals or FRP jackets, 

both the strength and ductility of the concrete/column can be substantially 

increased.  

 

Of the different methods of providing lateral confinement, the direct use of 

hydraulic pressure provides a lateral confining pressure which is 

independent of the lateral deformation of the RC column, and this type of 

confinement is referred to as active confinement. By contrast, the use of 

steel stirrups/spirals or FRP jackets provides a lateral confining pressure 

which is dependent on the lateral deformation of the RC column, and this 

type of confinement is referred to as passive confinement. Various 

theoretical formulations have been developed for predicting the behaviour 

of concrete (and/or RC columns) with different types of lateral confining 

devices, including active, passive or both. These formulations range from 

simple empirical models based on regression analysis of experimental 
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results (e.g. Mander et al. 1988; Lam and Teng 2003) to finite element 

procedures (e.g. Mirmiran et al. 2000; Ghazi et al. 2002) that implement 

advanced techniques and theories. 

 

Many of the existing theoretical formulations for confined concrete are 

capable of predicting complete axial stress-strain curves (e.g. Xie et al. 1995; 

Attard and Setunge 1996; Xiao and Wu 2000; Candappa et al. 2001; Lam 

and Teng 2003; Jiang and Teng 2007). Besides the axial stress-strain curves, 

the dilation behaviour of confined concrete, especially when 

passively-confined concrete is concerned, plays a very important role in the 

development of a confinement model; additionally, a number of attempts 

have been made to capture this aspect accurately. Experimental results for 

confined concrete, which contain information regarding the lateral dilation, 

have been collected to establish databases (e.g. Imran and Pantazopoulou 

1996; Candappa et al. 2001; Teng et al. 2007; Cui and Sheikh 2010) 

although the data of lateral dilation shows a relatively large scatter 

compared to those of concrete strength (Teng et al. 2007). Consequently, 

recent theoretical models (including empirical models and constitutive 

models) have placed more emphasis on the dilation properties of confined 

concrete (Candappa et al. 2001; Oh 2002; Teng et al. 2007; Yu et al. 2010a). 

 

The review of existing work in this chapter is divided into three parts. The 

first part describes experimental investigations into various parameters of 

confined concrete behaviour with particular attention to actively-confined 

concrete and FRP-confined concrete. In this part, experimental results for 
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actively-confined concrete and FRP-confined concrete are emphasized 

because they are used in the subsequent chapters to assess the capability of 

selected computational models. The second part covers empirical models 

proposed on the basis of experimental observations. The last part discusses 

computational models (primarily finite element models) based on various 

constitutive models. 

2.2 EXPERIMENTAL WORK 

Confined concrete has been an active research topic. A large amount of 

experimental work has been conducted by many researchers during the past 

few decades. Early research dates back to 1920’s. The pioneering work on 

confined concrete was conducted by Richart et al. (1928). In their research, 

concrete cylinders were confined by either uniform hydrostatic pressure or 

spiral steel reinforcement. This study created a fundamental framework for 

confined concrete research. Afterwards, Balmer and McHenry (1947) 

performed a number of tri-axial loading tests at high confining pressure 

levels. Different researchers, such as Gardner (1969), Mills and Zimmerman 

(1970), Cedolin et al. (1977), Gerstle (1981), Setunge et al. (1993), Xie et al. 

(1995), Attard and Setunge (1996), Imran and Pantazopoulou (1996), 

Rutland and Wang (1997), Ansari and Li (1998), Candappa et al. (2001), 

Sfer et al. (2002), Lu and Hsu (2006) and Tan and Sun (2006) have 

conducted numerous tests on actively-confined concrete. These studies have 

shown that insignificant difference exists between concrete with active 

confinement and that with passive confinement from closely-spaced circular 

steel spirals in terms of concrete strength gains due to lateral confinement. 
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Moreover, different researchers, such as Ahmad and Shah (1982), Sheikh 

and Uzumeri (1980), Scott et al. (1982), and Mander et al. (1988) have 

conducted numerous tests on stirrups/spirals-confined concrete. Extensive 

studies have also been conducted on FRP-confined concrete (e.g. Demers 

and Neale 1994; Watanabe et al. 1997; Matthys et al. 1999; Rochette and 

Labossiere 2000; Parvin and Wang 2001; Lam and Teng 2003; Lam and 

Teng 2004; Berthet et al. 2005; Lam et al. 2006; Li 2006; Jiang and Teng 

2007; Teng et al. 2007; Rousakis et al. 2007; Lee et al. 2008; Eid et al. 2009; 

Lee et al. 2010; and Silva 2011), with the emergence of FRP composites as 

a new class of confining materials. Generally speaking, for 

actively-confined and steel-confined concrete, there are sufficient 

experimental data for both normal strength concrete (NSC) and high 

strength concrete (HSC); however, test data for FRP-confined HSC are still 

limited despite the large number of tests on FRP-confined NSC. 

2.3 EMPIRICAL MODELS FOR CONCRETE IN CIRCULAR COLUMNS 

Various empirical models have been developed for predicting the behaviour 

of confined concrete. Empirical models for actively-confined concrete have 

commonly been derived from the regression of experimental results. The 

confinement behaviour provided by steel stirrups/spirals is similar to that of 

active confinement although it is a kind of passive confinement. A major 

difference between actively-confined concrete and steel-bar-confined 

concrete is that in the former case the concrete is under uniform 

confinement while in the latter case concrete is under non-uniform 

confinement in the axial direction. Therefore, an equivalent confining 



18 
 

pressure is widely used in the latter case to represent the effect of axial 

non-uniformity of confinement. Empirical models developed for 

actively-confined concrete can be used for predicting the behaviour of 

steel-bar-confined concrete, once an equivalent uniform confining pressure 

is defined. This is because steel (particularly mild steel) yields at small 

strains and the confining pressure provided by steel remains constant after 

yielding; this confinement condition is thus very similar to that of active 

confinement from hydraulic pressure. 

 

The behaviour of FRP-confined concrete, however, is significantly different 

from that of actively-confined concrete. In FRP-confined concrete, the 

confining pressure increases continuously as the axial deformation (and 

hence lateral dilation) increases. FRP-confined concrete with an adequate 

level of confinement (i.e. the FRP jacket is sufficiently strong) has a 

stress-strain curve that is monotonically ascending with a typical bilinear 

shape while the stress-strain curve of actively-confined concrete always has 

a softening branch. In the early stage of research, most of the empirical 

models developed for FRP-confined concrete were extensions of models 

previously developed for steel-confined concrete. These models fail to 

predict the behaviour of FRP-confined concrete accurately due to the 

difference in performance characteristics between steel-confined and 

FRP-confined concrete as mentioned above. 

 

Realizing the difference between steel-confined concrete and FRP-confined 

concrete, empirical models specific to FRP-confined concrete were later 
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developed. These empirical models can be divided into two types (Teng and 

Lam 2004). One type is referred to as design-oriented stress-strain models. 

Empirical models of the first type are directly derived from experimental 

results of FRP-confined concrete. The second type of empirical models for 

FRP-confined concrete is referred to as analysis-oriented stress-strain 

models. This type of models is based on empirical models for 

actively-confined concrete. Using the so-called path-independence 

assumption, the behaviour of FRP-confined concrete in a given stress state 

is taken to be the same as that of actively-confined concrete in the same 

stress state. The interaction between the FRP jacket and the concrete core is 

taken into account through an incremental process based on radial 

displacement compatibility and equilibrium. Analysis-oriented stress-strain 

models are thus more versatile than design-oriented stress-strain models and 

can be easily extended to concrete confined by materials other than FRP or 

steel; they are however generally limited to uniformly confined concrete. 

More detailed descriptions of analysis-oriented stress-strain models are 

given later in the chapter. 

 

Among various empirical models for confined concrete as mentioned above, 

only some typical empirical models are briefly reviewed in this section to 

keep the review reasonably concise; indeed, a more exhaustive review is not 

warranted given that the present thesis is primarily concerned with 

computational models for FRP-confined concrete. 

2.3.1 Ahmed and Shah’s (1982) Model 

An empirical model was proposed by Ahmed and Shah (1982) for 
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predicting the ascending and descending parts of the stress-strain curve for 

concrete confined by steel spirals and subjected to tri-axial stresses. This 

empirical model is based on the properties of the confining reinforcement 

and the constitutive relationship for plain concrete, and is applicable only to 

concrete in circular columns.  

 

In their study, the effectiveness of confinement was defined by the 

following equations: fୡୡᇱכ ൌ fୡ୭ᇱ ൅ Kଵሺσ୪ሻୣ୯       (2.1) εୡୡכ ൌ εୡ୭ ൅ Kଶሺσ୪ሻୣ୯       (2.2) 

where fୡ୭ᇱ  and fୡୡᇱכ are the strengths of unconfined concrete and confined 

concrete, respectively; ሺσ୪ሻୣ୯ is the equivalent confining pressure (i.e. the 

average confining pressure) at the strength of concrete due to the spirals; εୡ୭ and εୡୡכ  are axial strains corresponding to peak stresses of unconfined 

and confined concrete, respectively. Here, compressive stresses and strains 

in the concrete are considered to be positive. Kଵ and Kଶ are functions of 

the unconfined concrete strength fୡ୭ᇱ  and the equivalent confining pressure ሺσ୪ሻୣ୯. 

 

It was observed by these authors from experimental results that the 

effectiveness of confinement becomes negligible as the spacing of spirals 

becomes large. A pitch equal to 1.25 times the diameter of the confined 

concrete core was thus suggested by these authors as the upper boundary of 

the spacing of spirals to ensure a significant level of confinement. Based on 

this observation, and along with the equilibrium conditions between the 
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concrete core and the steel spirals, the following expression was derived to 

calculate ሺσ୪ሻୣ୯  

ሺσ୪ሻୣ୯ ൌ ஡౩୤౯ଶ ቆ1 െ ට S౩౦ଵ.ଶହୢౙౙቇ      (2.3) 

ρୱ ൌ ஠ୢ౩౦మୢౙౙS౩౦       (2.4) 

Here, dୱ୮ is the diameter of the steel spiral; dୡୡ is the diameter of the 

confined concrete core; Sୱ୮ is the pitch of the steel spirals and f୷ is the 

yield strength of the steel spirals. 

 

The two constants, Kଵ and Kଶ, are calculated as follows: 

 

Kଵ ൌ ଺.଺ଵሺ஢ౢሻ౛౧బ.బర୤ౙ౥ᇲ  (in ksi)     (2.5) 

Kଶ ൌ ଴.଴ସ଻ሺ஢ౢሻ౛౧బ.భమ୤ౙ౥ᇲభ.మ  (in ksi)     (2.6) 

εୡ୭ ൌ 0.001648 ൅ 0.000114fୡ୭ᇱ  (in ksi)    (2.7) θୱ ൌ 6.6128 ൅ 2.9137fୡ୭ᇱ െ 44.2315ሺσ୪ሻୣ୯ (in ksi)   (2.8) 

Here, θୱ represents the average value of the slope of the descending branch 

between the axial strain at peak stress and twice the axial strain at peak 

stress. Eq. (2.8) indicates that with an increase in the unconfined concrete 

strength, the slope of the descending region of the stress-strain curve 

becomes steeper. By contrast, with an increase in the equivalent confining 

pressure ሺσ୪ሻୣ୯, the slope of the descending region of the stress-strain curve 

becomes flatter. 

 

The stress-strain curves predicted by this empirical model were compared 
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with their own experimental results as well as those of Iyengar et al. (1970) 

and Burdette et al. (1971). Adequate agreement was shown between the 

analytical results and the experimental results. The comparison indicated 

that complete stress-strain curves of confined concrete can be predicted 

from the tri-axial stress-strain curves of plain concrete and tensile 

stress-strain curves of the confining material. However, the validity of the 

equation for a much larger experimental database is uncertain, as its axial 

strain at peak stress is not a dimensionless equation. 

2.3.2 Mander et al.’s (1988) Model 

In Mander et al.’s (1988) study, thirty-one nearly full-size RC columns with 

different arrangements of longitudinal and transverse steel reinforcements 

were tested under axial compression. These specimens had different shapes 

of cross section including, circular, square, and rectangular shapes. All 

circular columns were of 500 mm in diameter with a 25 mm cover to spirals 

and were 1500 mm in length. These columns were divided into two groups 

based on the arrangement of reinforcement. The first group had an identical 

amount of longitudinal steel reinforcement but different amounts and sizes 

of transverse steel reinforcement. By contrast, the second group had 

different amounts and sizes of longitudinal steel reinforcement but identical 

transverse steel reinforcement. Square columns with square and octagonal 

ties tested by Scott et al.(1982) were also included in the test database. 

Moreover, sixteen rectangular walls containing rectangular hoops with 

additional crossties were cast and tested. Each wall had a cross section of 

150 mmൈ700mm with an overall height of 1200 mm. In these tests, the 

amount and configuration of the transverse reinforcement were taken as the 
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principal variables.  

 

Based on these experimental results, an empirical model was developed to 

describe the stress-strain response of concrete under uni-axial compression 

and confined by transverse reinforcement. This model works for both 

circular and rectangular shaped transverse reinforcement. It considers the 

interaction between the concrete core and the steel spirals through arching 

action. The angle of arching action is assumed to be 45 degrees and the area 

of the confined zone is calculated from the areas enclosed by parabolic 

curves. For the concrete compressive strength, a five parameter failure 

surface defined by William and Warnke (1975) was adopted. The concrete 

peak stress under an equivalent confining pressure ሺσ୪ሻୣ୯ is determined by 

the following equation: 

 

fୡୡᇱכ ൌ fୡ୭ᇱ ቆെ1.254 ൅ 2.254ට1 ൅ ଻.ଽସሺ஢ౢሻ౛౧୤ౙ౥ᇲ െ 2 ሺ஢ౢሻ౛౧୤ౙ౥ᇲ ቇ   (2.9) 

 

The axial strain at peak stress εୡୡכ  of the confined concrete is empirically 

related to the peak stress increment factor through the following equation 

originally suggested by Richart et al.(1928): 

εୡୡכ ൌ εୡ୭ ቆ1 ൅ 5 ቀ୤ౙౙᇲכ୤ౙ౥ᇲ െ 1ቁቇ      (2.10) 

In this strain model, the stress-strain relationship suggested by Popovics 

(1973) is employed to describe the axial stress-strain response of confined 

concrete. At an axial strain εୡ, the axial compressive stress fୡ, is given by 

following equation: 
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fୡ ൌ ୤ౙౙᇲכ ୶୰୰ିଵି୶౨       (2.11) 

where,  

x=εୡ/εୡୡכ        (2.12) r ൌ EౙEౙିE౩౛ౙ       (2.13) Eୱୣୡ ൌ fୡୡᇱכ/εୡୡכ       (2.14) 

Here, Eୡ is the tangent modulus of the concrete. 

 

An energy method was utilized in this model so as to calculate the ultimate 

strain of the confined concrete. This approach assumes that the ultimate 

strain of the confined concrete core is reached when first hoop fracture 

occurs. The additional strain energy in the core concrete is assumed in this 

approach of being provided by the energy stored in the transverse 

reinforcement. When the energy accumulated in the concrete core exceeds 

the available energy of the transverse reinforcement, hoop fracture occurs 

and the section is taken to have reached its ultimate deformation. Mander et 

al.’s (1988) model achieved a large degree of success in predicting the 

stress-strain behaviour of steel-confined concrete and was thus modified by 

subsequent researchers for predicting the stress-strain behaviour of 

FRP-confined concrete. However, the direct application of this model to 

FRP-confined concrete is inappropriate and leads to inaccurate predictions 

as it is a model specific to steel-confined concrete. 

2.3.3 Attard and Setunge’s (1996) Model 

An empirical model was proposed in Attard and Setunge’s (1996) study for 

predicting the complete stress-strain curve of actively-confined and 
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uni-axially loaded circular concrete cylinders. This model is applicable to a 

wide range of concrete strengths ranging from 20 to 130 MPa in circular 

columns. The following nonlinear equation was developed for the peak 

stress of actively-confined concrete: 

୤ౙౙᇲכ୤ౙ౥ᇲ ൌ ቀ1 ൅ ஢ౢ୤౪ ቁ୩AS
       (2.15) 

Here, f୲ is the tensile strength of concrete which is approximately 0.9 times 

the split cylinder tensile strength fୱ୮, and the parameter kAS is related to fୡ୭ᇱ  as follows: kAS ൌ 1.25 ቀ1 ൅ 0.062 ஢ౢ୤ౙ౥ᇲ ቁ fୡ୭ᇱ ଴.ଶଵ    (2.16) 

From the experimental observations, silica fume was found to have a 

significant effect on the split cylinder tensile strength fୱ୮. Therefore, two 

equations were suggested for the determination of the split cylinder tensile 

strength fୱ୮ 

fୱ୮ ൌ ቊ0.32ሺfୡ୭′ ሻ଴.଺଻ MPa, no silica fume0.62ඥfୡ୭′  MPa, silica fume    (2.17) 

Eqs. (2.15) and (2.17) indicate that silica fume can influence the 

confinement effectiveness of actively-confined concrete.  

 

The following equation was developed to describe the relationship between 

the axial strain at peak stress and the confining pressure σ୪: 
εౙౙכ
εౙ౥ ൌ 1 ൅ ሺ17 െ 0.06fୡ୭′ ሻ ቀ σౢ୤ౙ౥′ ቁ     (2.18) 

 

Beyond the point of peak stress, a point of inflexion on the descending 

branch of the stress-strain curve is defined in this model to control the slope 
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of the descending branch. 

 

For concrete under uni-axial compression, the inflexion point on the 

descending branch is defined by the following approximate expressions: 

ε౟ౙ
εౙ౥ ൌ 2.5 െ 0.3lnሺfୡ୭′ ሻ MPa     (2.19) 

୤౟ౙ୤ౙ౥′ ൌ 1.47 െ 0.17lnሺfୡ୭′ ሻ MPa     (2.20) 

Here, f୧ୡ and ε୧ୡ are the axial stress and the axial strain at the inflexion 

point, respectively. 

 

For confined concrete, the inflexion point of the descending branch is 

defined by the following approximate expressions: 

୤౟୤ౙౙ′כ ൌ ౜౟ౙ౜ౙ౥′ ିଵ
ହ.଴଺ቆ σౢ౜ౙ౥′ ቇబ.ఱళାଵ ൅ 1      (2.21) 

ε౟
εౙౙכ ൌ ε౟ౙ

εౙ౥ିଶଵ.ଵଶቆ σౢ౜ౙ౥′ ቇబ.మలାଵ ൅ 2      (2.22) 

 

Furthermore, the axial stress fଶ୧ at εଶ୧ ൌ 2ε୧ is defined by the following 

equation which is similar to Eq. (2.21): 

୤మ౟୤ౙౙ′כ ൌ ౜మ౟ౙ౜ౙ౥′ ିଵ
଺.ଷହቆ σౢ౜ౙ౥′ ቇబ.లమାଵ      (2.23) 

where fଶ୧ୡ, being for the uni-axial case, can be estimated from 

୤మ౟ౙ୤ౙ౥′ ൌ 1.45 െ 0.25lnሺfୡ୭′ ሻ MPa     (2.24) 

 

The following non-dimensional mathematical expression suggested by 
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Sargin (1971) was employed for the stress-strain curve of confined 

concrete: y ൌ AAS୶ାBAS୶మଵାCAS୶ାDAS୶మ      (2.25) 

where y= ୤ౙ୤ౙౙ′כ . 

 

For the ascending branch, the four constants in Eq. (2.25) are given by AAS ൌ E౪౟εౙౙכ୤ౙౙ′כ                  (2.26) 

BAS ൌ ሺAASିଵሻమ
α౗ቆଵି౜౦ౢ౜ౙౙ′כ ቇ ൅ AASమ ሺଵିα౗ሻ

α౗మ౜౦ౢ౜ౙౙ′כ ቆଵି౜౦ౢ౜ౙౙ′כ ቇ െ 1     (2.27) 

CAS ൌ AAS െ 2     DAS ൌ BAS ൅ 1     (2.28) 

where f୮୪ ൌ 0.45fୡ୭′ , Eୡୡ is the secant modulus measured at a stress of f୮୪, E୲୧ is the initial tangent modulus for confined concrete, and αୟ ൌ E୲୧/Eୡୡ. 

 

For the descending, these four constant are given by AAS ൌ ቀεమ౟ିε౟
εౙౙכ ቁ ቂ εమ౟E౟୤ౙౙ′כ ି୤౟ െ ସε౟Eమ౟୤ౙౙ′כ ି୤మ౟ቃ      (2.29) 

BAS ൌ ሺε୧ െ εଶ୧ሻ ቂE୧ െ ସEమ౟୤ౙౙ′כ ି୤మ౟ቃ      (2.30) 

CAS ൌ AAS െ 2     DAS ൌ BAS ൅ 1     (2.31) 

where     E୧ ൌ ୤౟
ε౟  and  Eଶ୧ ൌ ୤మ౟

εమ౟         (2.32) 

The authors compared the predictions of this model with the their own 

experimental results and those of Richart et al. (1928). Adequate agreement 

was found in most cases except their experimental results for the specimens 

with no silica fume in the concrete mix and at a higher level of confinement. 
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This model has been employed in some subsequent analysis-oriented 

stress-strain models for FRP-confined concrete (e.g. Cui and Sheikh 2010) 

as the active confinement base model because of its high accuracy for 

actively-confined concrete. 

2.3.4 Candappa et al.’s (2001) Model 

A series of tests were conducted in Candappa et al.’s (2001) study to 

investigate the stress-strain behaviour and dilation characteristics of circular 

concrete cylinders subjected to tri-axial stresses. The cylinders were 98 mm 

in diameter and 200 mm in height. The concrete strength ranged from 41.1 

MPa to 103 MPa. Three lateral pressure values of 4 MPa, 8 MPa, and 12 

MPa were applied on the surface of these specimens using oil pressure in a 

tri-axial cell. Based on the experimental results, the concrete peak stress 

under a low lateral confining pressure σ୪ (i.e., σ୪ ൏ 0.2fୡ୭ᇱ ) was found to 

be well represented by the following equation: fୡୡᇱכ ൌ fୡ୭ᇱ ൅ 5.3σ୪      (2.33) 

The axial strain at peak stress of concrete, εୡୡכ , was found to have a linear 

relationship with the confinement ratio, as described by the equation below: 

கౙౙכகౙ౥ ൌ 1 ൅ 20 ቀ ஢ౢ୤ౙ౥ᇲ ቁ     (2.34) 

This equation indicates that the axial strain at a peak stress does not depend 

on the unconfined concrete strength. 

 

The secant Poisson’s ratio model implemented in Ottosen’s (1979) model 

was modified based on the experimental observations of concrete dilation 

characteristics. A so-called non-linearity index, which is defined by the axial 

stress ratio βI ൌ fୡ/fୡୡᇱכ, was related to the secant Poisson’s ratio µ஑ as 
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follows: 

µ஑ ൌ ۔ە
ۓ                                                    µ୧஑, βI ൑ βଵIµ୤஑ െ ሺµ୤஑ െ µ୧஑ሻඨ1 െ ቀஒIିஒభIଵିஒభI ቁଶ , βI ൐ βଵI    (2.35) 

where µ୧஑ and µ୤஑ are the initial and final values of the Poisson’s ratio. βଵI  

is the value taken by βI when the Poisson’s ratio begins to increase. In 

Ottosen’s (1979) model, βଵI  is taken as 0.8, and it shows adequate 

agreement with experimental results.  

 

With regard to µ୧஑, the following equation was suggested based on the curve 

fitting of the experimental results. µ୧஑ ൌ 8 ൈ 10ି଺ሺfୡ୭ᇱ ሻଶ ൅ 0.0002fୡ୭ᇱ ൅ 0.138    (2.36) 

Based on their experimental observations, the descending curves of µ஑~βI 
were approximately the same, regardless of the uniaxial strength of concrete 

and the level of lateral confinement. Hence, the following equation was 

developed for the non-linearity index for the descending portion: βDI ൌ െ0.5ሺµ஑ሻଶ ൅ 0.45µ஑ ൅ 0.9     (2.37) 

The results of this empirical model were compared with the authors’ 

experimental results and adequate agreement was obtained. The test data of 

concrete dilation characteristics were also employed in developing the 

lateral-to-axial strain relationship of the analysis-oriented stress-strain 

model proposed by Teng et al. (2007) 

2.3.5 Lam and Teng’s (2002) Model 

 
Lam and Teng (2002) reviewed an extensive database of FRP-confined 

circular concrete cylinders of about 200 test results. The parameters 
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examined include the unconfined concrete strength, specimen size, 

length-to-diameter ratio, and the tensile strength of FRP. Based on the large 

database, available equations for the compressive strength of FRP-confined 

concrete were assessed. A simple compressive strength model for design 

purposes was then proposed. 

  

In this model, the lateral confining pressure acting on the concrete core σ୪ 
is given by   σ୪ ൌ ଶ୤౜౨౦୲౜౨౦Dౙ౥౨        (2.38) 

Here, f୤୰୮ is the tensile strength of the FRP jacket determined from either 

flat coupon tests or ring splitting tests; t୤୰୮ is the thickness of the FRP 

jacket; and Dୡ୭୰ is the diameter of the concrete cylinder. 

 

A linear equation was proposed by Lam and Teng (2002) for the ultimate 

axial stress of FRP-confined concrete fୡ୳ as follows: fୡ୳ ൌ fୡ୭ᇱ ൅ 2σ୪      (2.39) 

This simple equation can be used in the design process for the estimation of 

the compressive strength of FRP-confined concrete. These authors found 

from Eq. (2.39) that the enhancement of concrete strength due to 

confinement does not depend on fୡ୭ᇱ , the specimen size, or the specimen 

length-to-diameter ratio.  

 

Although this model was simpler and more accurate than the previous 

compressive strength models for FRP-confined concrete at that time, it does 

suffer from the limitation that it can only predict the experimental results 
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accurately when ஢ౢ୤ౙ౥ᇲ ൏ 1. 

2.3.6 Lam and Teng’s (2003a) Model 

Lam and Teng (2003a) presented a design-oriented stress-strain model for 

FRP-confined concrete in circular cylinders/columns with the fibers in the 

FRP jacket being oriented only or predominantly in the hoop direction. This 

stress-strain model captures all the major features of the stress-strain 

behaviour of concrete confined with different types of FRP. This model 

included an FRP efficiency factor K୤୰୮ to consider the reduced tensile 

rupture strain of the FRP jacket in FRP-confined concrete cylinders; this 

was based on the experimental observation that the tensile strength of the 

FRP material obtained from flat coupon tests is generally not reached when 

the FRP jacket ruptures in an FRP-confined circular concrete cylinder. The 

FRP efficiency factor is defined as the ratio of the actual FRP hoop rupture 

strain ε୦,୰୳୮ determined from the tests of FRP-confined concrete cylinders 

to the FRP rupture strain obtained from flat coupon tests ε୤୰୮. That is K୤୰୮ ൌ ε୦,୰୳୮/ε୤୰୮      (2.40) 

 

In this model, the FRP efficiency factor K୤୰୮ is employed for calculating 

the so-called actual hoop rupture strain and the actual maximum confining 

pressure f୪,ୟ in the FRP-confined concrete. That is, f୪,ୟ ൌ ଶ୤౞,౜౨౦୲౜౨౦Dౙ౥౨ ൌ ଶE౜౨౦க౞,౜౨౦୲౜౨౦Dౙ౥౨     (2.41) 

Using the actual maximum confining pressure, the following linear equation 

was proposed for the ultimate axial stress of FRP-confined concrete fୡ୳: fୡ୳ ൌ fୡ୭ᇱ ൅ 3.3f୪,ୟ     (2.42) 
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For the ultimate axial strain, the following expression was proposed: 

கౙ౫கౙ౥ ൌ 1.75 ൅ 12 ୤ౢ,౗୤ౙ౥ᇲ ቀக౞,౨౫౦கౙ౥ ቁ଴.ସହ
    (2.43) 

Based on the experimental results of 52 CFRP-wrapped specimens, an 

average value 0.582 was suggested for the FRP efficiency factor K୤୰୮. As a 

result, Eq. (2.43) can be rewritten as  

கౙ౫கౙ౥ ൌ 1.75 ൅ 5.53 ୤ౢ,౗୤ౙ౥ᇲ ቀக౜౨౦கౙ౥ ቁ଴.ସହ
    (2.44) 

With this equation and the FRP efficiency factor, the user only needs to 

know the tensile strain ε୤୰୮  which is commonly provided by the 

manufacturer. 

 

The following stress-strain model was proposed for FRP-confined concrete: 

σୡ ൌ ൝Eୡεୡ െ ሺEౙିEమሻమସ୤ౙ౥ᇲ εୡଶ, 0 ൑ εୡ ൑ ε୲fୡ୭ᇱ ൅ Eଶεୡ, ε୲ ൑ εୡ ൑ εୡ୳    (2.45) 

where  ε୲ ൌ ଶ୤ౙ౥ᇲሺEౙିEమሻ       (2.46) 

and Eଶ ൌ ୤ౙ౫ି୤ౙ౥ᇲகౙ౫        (2.47) 

This model can only provide stress-strain curves for well-confined concrete 

with an ascending second branch. It was found by these authors that to 

obtain an ascending second branch for FRP-confined concrete cylinders, the 

actual confinement ratio ୤ౢ,౗୤ౙ౥ᇲ  should be not smaller than 0.07. 

 

This empirical model is a typical design-oriented stress-strain model for 
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FRP-confined concrete. This model was later extended to predict the 

stress-strain behaviour of FRP-confined concrete in rectangular columns as 

explained later in this chapter. 

2.3.7 Teng et al.’s (2007) Model 

Teng et al. (2007) presented an analysis-oriented stress-strain model for 

FRP-confined concrete in circular columns with the fibers in the FRP jacket 

being oriented only or predominantly in the hoop direction. An 

analysis-oriented stress-strain model is more versatile when compared to a 

design-oriented stress-strain model (e.g. Lam and Teng 2003a). It can 

predict either a typical bi-linear stress-strain curve for well-confined 

concrete or an ascending-descending stress-strain curve for weakly-confined 

concrete.  

 

As mentioned previously, an analysis-oriented stress-strain model is based 

on an active confinement model. The active confinement model describes 

the axial stress-strain relationship for concrete under a constant confining 

pressure. The so-called path independency assumption is adopted to relate 

the axial stress under active confinement to that under passive confinement. 

This assumption supposes that the axial stress and axial strain of concrete 

confined by an FRP jacket at a given lateral strain should be the same as 

those of the same concrete confined by a constant confining pressure equal 

to that supplied by the FRP jacket. To obtain the axial strain at a given 

lateral strain, a lateral-to-axial strain equation is adopted in the 

analysis-oriented stress-strain model. Teng et al. (2007) found that the 

relationship between the lateral strain and axial stain in concrete under 
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varying levels of lateral confinement can be represented by the following 

expression:   

׎ ቀିகౢகౙ౥ቁ ൌ ಍ౙ಍ౙ౥൬ଵା଼ ౜ౢ౜ౙ౥ᇲ ൰ ൌ A୲ ൜ቂ1 ൅ B୲ ቀିகౢகౙ౥ቁቃC౪ െ exp ቂെD୲ ቀିகౢகౙ౥ቁቃൠ  (2.48) 

In this equation, the constants A୲, B୲, C୲, and D୲ are 0.85, 0.75, 0.7 and 7, 

respectively. They were calibrated against test data for unconfined, actively 

confined and FRP confined concrete through a trial-and-error procedure. Eq. 

(2.48) indicates that the confining pressure has a significant effect on the 

lateral-to-axial strain relationship. 

 

With the lateral-to-axial strain equation clarified, Eq. (2.11) proposed by 

Popovic (1973) was adopted in the active confinement model for the 

description of axial stress-strain relationship. The concrete peak stress under 

a lateral confining pressure σ୪ is given by the following equation: fୡୡᇱכ ൌ fୡ୭ᇱ ൅ 3.5σ୪       (2.49) 

The equation for the axial strain at peak stress of concrete εୡୡכ  is given by 

கౙౙכகౙ౥ ൌ 1 ൅ 17.5 ቀ ஢ౢ୤ౙ౥ᇲ ቁ      (2.50) 

In a subsequent study by the same research group (Jiang and Teng 2007), Eq. 

(2.50) was revised to 

கౙౙכகౙ౥ ൌ 1 ൅ 17.5 ቀ ஢ౢ୤ౙ౥ᇲ ቁଵ.ଶ
     (2.51) 

This modification aimed to achieve more accurate predictions for 

FRP-confined concrete with relatively weak confinement. 

 

This analysis-oriented stress-strain model can provide accurate predictions 

for FRP-confined concrete at different confinement levels. It also has the 
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capability to provide accurate predictions for actively-confined concrete and 

steel-confined concrete. As the two analysis-oriented stress-strain models 

(Teng et al. 2007; Jiang and Teng 2007) were only verified using test data 

for FRP-confined normal strength concrete, their accuracy for FRP-confined 

high strength concrete is still uncertain. 

2.3.8 Cui and Sheikh’s (2010) Model 

Cui and Sheikh (2010) presented an analysis-oriented stress-strain model 

for FRP-confined concrete in circular columns with the aim of modelling 

concrete with a wide range of strength from 25 MPa to 112 MPa. This 

model was developed based on material properties, force equilibrium, and 

strain compatibility. A new active confinement model which is a modified 

version of Attard and Setunge (1996), was proposed in this 

analysis-oriented stress-strain model, in which the following equations 

defining the point of peak stress were developed to replace those in Attard 

and Setunge (1996): 

୤ౙౙᇲכ୤ౙ౥ᇲ ൌ ൞ቀ1 ൅ 10 ஢ౢ୤ౙ౥ᇲ ቁ଴.଺ , fୡ୭ᇱ ൏ ቀ1ܽܲܯ 60 ൅ 14 ஢ౢ୤ౙ౥ᇲ ቁ଴.ହ , fୡ୭ᇱ ൒ 60MPa     (2.52) 

and 

கౙౙכகౙ౥ ൌ 1 ൅ ൫70 െ 13lnሺfୡ୭ᇱ ሻ൯ ቀ ஢ౢ୤ౙ౥ᇲ ቁ     (2.53) 

Using a general formulation proposed by Imran and Pantazopoulou (1996), 

the following dilation model was proposed to determine the relationship 

between the volumetric strain ε୴ and the axial strain εୡ:  

ε୴ ൌ ሺ1 െ 2µ୭ሻ ൤ଶ஢ౢEౙ ൅ εୡ୴୭ ൬ கౙகౙ౬౥ െ bCS ቂۃகౙିகౙౢ౟ౣۄகౙ౬౥ିகౙౢ౟ౣቃୡCS൰൨   (2.54) 

Here, µ୭  is the Poisson’s ratio of concrete and εୡ୴୭ ൌ aCSεୡୡכ  is the 
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reference strain. Parameters aCS , bCS , and cCS  are material parameters 

calibrated from experimental results. In addition, bCS and cCS are found to 

be the main parameters controlling the effect of the confinement ratio on the 

shape of the axial-volumetric strain curve while aCS depends mainly on the 

unconfined concrete strength fୡ୭ᇱ . The McCauley bracket ۄ·ۃ is defined as ۃxۄ ൌ 0.5ሾx ൅ absሺxሻሿ. εୡ୪୧୫ is the axial strain corresponding to concrete 

cracking in the lateral direction. It can be determined as εୡ୪୧୫ ൌ ଵିµ౥µ౥Eౙ σ୪ െ கౙ౨µ౥        (2.55) 

Here, εୡ୰  can be determined from the splitting tensile strength fୡ୰  as 

proposed by Aroglu et al.(2006): εୡ୰ ൌ ୤ౙ౨Eౙ ൌ 0.387fୡ୭ᇱ଴.଺ଷ/Eୡ     (2.56) 

The following equations were suggested for parameters aCS, bCS, and cCS: 0.65 ൑ aCS ൌ ୤ౙ౥ᇲۃ୤ౙ౥ᇲ ିହ଴ۄାସ଴ െ 0.1 ൑ 1.1    (2.57) 

bCS ൌ 1 െ σ୪/fୡ୭ᇱ ൒ 0.7      (2.58) cCS ൌ ሺfୡ୭ᇱ െ σ୪ሻ/30 ൒ 2.0      (2.59) 

Eq. (2.58) indicates that for concrete with different strengths but similar 

confinement ratios, a similar bCS can be expected; whereas Eq. (2.59) 

indicates that parameter cCS  increases with the unconfined concrete 

strength but decreases with the lateral pressure. 

 

Although this model was developed for FRP-confined concrete, it can be 

also applied to steel hoops/spirals-confined concrete columns as long as the 

assumption of effectively-confined concrete area Aୣ is adopted. The same 

assumption as suggested by Sheikh and Uzumeri (1982) and adopted in 
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Mander et al.(1988) was used to determine the effectively-confined concrete 

area Aୣ: 

Aୣ ൌ ቐቀ1 െ ୱଶDౙ౥౨ቁଶ Aୡ, ሺfor circular hoopsሻቀ1 െ ୱଶDౙ౥౨ቁ Aୡ, ሺfor circular spiralsሻ     (2.60) 

where Aୡ is the total area surrounded by the concrete hoops/spirals, s is the 

clear spacing between steel hoops/spirals. 

 

This model was employed to predict the behaviour of actively-confined 

concrete and FRP-confined concrete. For actively-confined concrete, the 

model was capable of providing accurate predications; for FRP-confined 

normal strength concrete, the model was also capable of providing accurate 

predictions for the axial stress at a given axial strain but incapable of 

providing accurate predictions for the ultimate axial strain; for 

FRP-confined very high strength concrete (e.g. with a concrete strength up 

to 110.6 MPa), the model significantly underestimated the axial stress at an 

axial strain near the transition zone between the parabolic first portion and 

the linear second portion of the stress-strain curve. The model can be 

applied in predicting the stress-strain behaviour of FRP-confined concrete 

with discontinuous FRP jackets, when Eq. (5.60) is used to calculate the 

effectively-confined concrete area Aୣ.  

 

2.3.9 Lam and Teng’s (2003b) Model 

Lam and Teng (2003b) presented a simple design-oriented stress-strain 

model for FRP-confined concrete in rectangular columns. This model was 



38 
 

an extension of their design-oriented stress-strain model for concrete 

uniformly-confined by FRP jackets (Lam and Teng 2003a), and was verified 

with a database of experimental results collected by the authors. Compared 

to their design-oriented stress-strain model developed for concrete 

uniformly confined with FRP, the major difference lies in the equations used 

for the prediction of the ultimate axial stress and the ultimate axial strain. 

Experimental results have shown that the confinement of FRP jackets in 

rectangular columns is not as effective as that in circular columns. Therefore, 

two shape factors, kୱଵ and kୱଶ, were introduced by the authors to consider 

the effect of section shape on the ultimate axial stress and the ultimate axial 

strain, respectively. That is, the ultimate axial stress is given by fୡ୳ ൌ f′ୡ୭ ൅ kଵkୱଵf୪,ୟ       (2.61) 

while the ultimate axial strain is given by 

கౙ౫கౙ౥ ൌ 1.75 ൅ kଶkୱଶ ୤ౢ,౗୤ౙ౥′ ቀக౞,౨౫౦கౙ౥ ቁ଴.ସହ
    (2.62) 

Here, kଵ ൌ 3.3 and kଶ ൌ 12 as was proposed by Lam and Teng (2003a).  

 

For FRP-confined concrete in rectangular columns, the hoop stress and the 

hoop strain in the FRP jacket vary considerably around the periphery. 

Therefore, Eq. (2.38), which was proposed to calculate the confining 

pressure under uniform confinement, is not applicable to FRP-confined 

concrete in rectangular columns. To address this critical issue in developing 

the particular design-oriented stress-strain model, an equivalent circular 

column was defined, which has an assumed diameter Dୣ୯ . Using this 

assumed diameter Dୣ୯, Eq. (2.38) can thus be used for the calculation of 
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the equivalent confining pressure. The equivalent diameter Dୣ୯ is defined 

in this model as the diagonal length of the section (see Fig. 2.1). That is Dୣ୯ ൌ √hଶ ൅ bଶ       (2.63) 

where h is the length of the long side of the rectangle, and b is the length of 

the short side of the rectangle.  

 

The two shapes factors, kୱଵ and kୱଶ, are defined as follows: 

kୱଵ ൌ ቀୠ୦ቁଶ A౛Aౙ       (2.64) 

and 

kୱଶ ൌ ቀ୦ୠቁ଴.ହ A౛Aౙ            (2.65) 

 

The effective confinement area ratio Aୣ Aୡ⁄  is given by: 

A౛Aౙ ൌ 1 െ ౘ౞ሺ୦ିଶRౙሻమା౞ౘሺୠିଶRౙሻమଷAౝ      (2.66) 

Here, Rୡ is the radius of the rounded corners, and A୥ is the gross area of 

the column section with rounded corners, which is given by A୥ ൌ bh െ ሺ4 െ πሻRୡଶ     (2.67) 

This model is simple and can provide accurate predictions for the 

experimental results available at the time. The limitation of the model is that 

it can only be used to predict the stress-strain behaviour of FRP-confined 

concrete in rectangular columns. Moreover, this empirical model is not 

based on a rigorous understanding of the confinement mechanism in the 

rectangular section. Lack of rigorous understanding of the confinement 

mechanism is the common and fundamental drawback of empirical 
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stress-strain models of this type. 

2.3.10 Youssef et al.’s (2007) Model 

Youssef et al. (2007) presented a design-oriented stress-strain model for 

FRP-confined concrete in circular or rectangular columns. This model is 

also based on experimental results covering a wide range of confinement 

ratios. Experimental observations showed that the following factors have a 

significant effect on the stress-strain behaviour of FRP-confined concrete: 

unconfined concrete strength fୡ୭ᇱ , volume ratio of the FRP jacket ρ୨ , 

ultimate lateral strength of the FRP jacket f୨୳, and cross-sectional geometry. 

Such parameters were analyzed statistically based on experimental results, 

and equations were proposed to predict the effects of these parameters. 

 

In this model, the ultimate confining pressure f୪୳ for both circular and 

rectangular sections is defined by the confinement ratio ρ୨ (i.e. the jacket 

volume divided by the concrete volume). That is f୪୳ ൌ ଵଶ ρ୨f୨୳       (2.68) 

The following ultimate effective lateral confining pressure f୪୳ᇱ  is used to 

replace f୪୳ so as to obtain a unified model for FRP-confined concrete in 

both circular and rectangular sections. In this model, the ultimate effective 

lateral confining pressure is defined as: f୪୳ᇱ ൌ kୣf୪୳       (2.69) 

Here, kୣ is the confinement effectiveness coefficient, which is defined as 

kୣ ൌ ቐ                                   1, for circular section1 െ ౘ౞ሺ୦ିଶRౙሻమା౞ౘሺୠିଶRౙሻమଷAౝ , for rectangular section  (2.70) 
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The definition of parameters b, h, Rୡ and A୥ are the same as those in Lam 

and Teng’s (2003b) model. 

 

The stress-strain curve of FRP-confined concrete in this model is controlled 

by two characteristic points: the transition point and the ultimate point. To 

define the ultimate point, the compressive strength of FRP-confined 

concrete is given as 

୤ౙ౫୤ౙ౥ᇲ ൌ ۔ە
ۓ 1 ൅ 2.25 ቀ୤ౢ౫ᇲ୤ౙ౥ᇲ ቁହ/ସ , for circular section0.5 ൅ 1.225 ቀ୤ౢ౫ᇲ୤ౙ౥ᇲ ቁଷ/ହ , for rectangular section  (2.71) 

The ultimate axial strain of FRP-confined concrete is given as 

εୡ୳ ൌ
۔ۖۖەۖۖ
0.003368ۓ ൅ 0.2950 ቀ୤ౢ౫ᇲ୤ౙ౥ᇲ ቁ ൬ ୤ౠ౫E౜౨౦൰భమ , for circular section0.004325 ൅ 0.2625 ቀ୤ౢ౫ᇲ୤ౙ౥ᇲ ቁ ൬ ୤ౠ౫E౜౨౦൰భమ ,for rectangular section

   (2.72) 

 

For the transition point, the axial stress f୲୰ୟ୬ is defined as  

୤౪౨౗౤୤ౙ౥ᇲ ൌ ൞ 1 ൅ 3.0 ቀ஡ౠE౜౨౦಍౜౨౦,౪୤ౙ౥ᇲ ቁହ/ସ , for circular section1 ൅ 1.1350 ቀ஡ౠE౜౨౦಍౜౨౦,౪୤ౙ౥ᇲ ቁହ/ସ , for rectangular section (2.73) 

where ε୤୰୮,୲ is the strain of FRP at the transition point. Similarly, the axial 

strain ε୲୰ୟ୬ at the transition point is defined as 

ε୲୰ୟ୬ ൌ
ەۖۖ
۔ۖ
0.002748ۓۖ ൅ 0.1169 ቀ஡ౠE౜౨౦಍౜౨౦,౪୤ౙ౥ᇲ ቁలళ ൬ ୤ౠ౫E౜౨౦൰భమ ,  for circular section        0.002 ൅ 0.0775 ቀ஡ౠE౜౨౦಍౜౨౦,౪୤ౙ౥ᇲ ቁలళ ൬ ୤ౠ౫E౜౨౦൰భమ ,for rectangular section

    (2.74) 
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Once the transition point and the ultimate point are determined, the slope of 

the second branch Eଶ can be calculated by Eଶ ൌ ୤ౙ౫ି୤౪౨౗౤கౙ౫ିக౪౨౗౤      (2.75) 

 

The stress-strain relationship for FRP-confined concrete is defined by a 

two-region model to form a unified model. For FRP-confined concrete with 

an ascending second branch (i.e. Eଶ ൐ 0 ), the expression for the 

stress-strain relationship is 

fୡ ൌ ൝         Eୡεୡ ൤1 െ ଵ୬ ቀ1 െ EమEౙቁ ቀ கౙக౪౨౗౤ቁ୬ିଵ൨ ,       0 ൑ εୡ ൏ ε୳f୲୰ୟ୬ ൅ Eଶεୡ, ε୲୰ୟ୬ ൑ εୡ ൏ ε୳  (2.76) 

Here, n ൌ ሺEౙିEమሻக౪౨౗౤Eౙக౪౨౗౤ି୤౪౨౗౤. 

 

For FRP-confined concrete with a descending second branch (i.e. Eଶ ൏ 0), 

the expression for the stress-strain relationship is 

fୡ ൌ ൝         Eୡεୡ ൤1 െ ଵ୬ ቀ கౙக౪౨౗౤ቁ୬ିଵ൨ ,       0 ൑ εୡ ൏ ε୳f୲୰ୟ୬ ൅ Eଶεୡ, ε୲୰ୟ୬ ൑ εୡ ൏ ε୳   (2.77) 

Here, n ൌ Eౙக౪౨౗౤Eౙக౪౨౗౤ି୤౪౨౗౤. 

 

This model still falls into the category of design-oriented stress-strain 

models, although a more complex formulation was adopted. The common 

and fundamental drawback of empirical stress-strain models of this type still 

exists in this model. The lateral confining pressure is obtained using the 

confinement ratio ρ୨ and a reduced factor kୣ. However, this kୣ is still not 
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based on a rigorous understanding of the confinement mechanism. 

2.4 COMPUTATIONAL MODELS 

The finite element method has frequently been employed for predicting the 

experimental results of concrete columns/sections under complex stress 

states. This method is capable of capturing stress variations within the entire 

test specimen and predicting interactions between components (e.g. between 

the FRP jacket and the concrete core in an FRP-confined concrete column). 

Therefore, the finite element method provides a powerful tool to investigate 

the confinement mechanism of FRP-confined concrete. However, the 

success of a finite element computational model to a large extent depends 

on the use of an appropriate constitutive model for each component material. 

Various constitutive models for concrete under tri-axial stress states have 

been developed. Some of these models have been applied in predicting the 

response of confined concrete columns with some degree of success. The 

more significant of these constitutive models are reviewed below to reflect 

the development of constitutive models for confined concrete. 

2.4.1 Constitutive models in ABAQUS 

In general, constitutive models coded into commercially available software 

packages, such as ABAQUS, are most widely accessible to researchers. 

These models are also well maintained and possibly extendable. However, 

as commercially available software packages are for general-purpose finite 

element modelling, they may not have all the features required for a 

particular application of interest. 
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In ABAQUS, two commonly used constitutive models for concrete in 

tri-axial compression are available. One is the Extended Drucker-Prager 

(D-P) Model which employs a modified D-P type yield criterion (Drucker 

and Prager 1952). In order to describe the different confinement responses 

of biaxial compression and tri-axial compression (e.g. a cylindrical core 

sample is loaded axially to failure at constant confining pressure), the effect 

of the third deviatoric stress invariant is included in this model. This model 

also allows the user definition of strain hardening/softening and the 

adoption of a non-associated flow rule. The other model available in 

ABAQUS is the Concrete Damaged Plasticity Model (CDPM). It is a 

plastic-damage model combining isotropic damaged elasticity with isotropic 

tensile and compressive plasticity to describe the inelastic behaviour of 

concrete. This model adopts the yield criterion proposed by Lee and Fenves 

(1998) which reduces to the D-P type yield criterion for the special case of 

concrete under equal tri-axial compression. It also includes the effect of the 

third deviatoric stress invariant, with a large range of allowed shear strength 

ratio which covers normal experimental results of concrete. A scalar damage 

variable, which varies with the plastic deformation, is used in this model to 

reflect the degradation of elastic stiffness under loading. Moreover, strain 

hardening/softening can be defined by the user and a non-associated flow 

rule is utilized to describe the dilation characteristics of concrete. 

 

An equivalent plastic strain is taken as the only variable in the strain 

hardening/softening function in these two constitutive models. Due to the 

limitation of this type of hardening/softening rule, which is carefully 
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discussed in Chapters 4 and 5 of this thesis, these two constitutive models 

fail to capture the increased deformation capacity of concrete under tri-axial 

compression even for actively-confined concrete. 

2.4.2 Barros’ (2001) Model 

A constitutive model based on the theory of elasto-plasticity was presented 

by Barros (2001) for concrete under tri-axial compression. This model was 

developed for both the D-P type yield criterion and the Ottosen yield 

criterion (Ottosen 1977). The hardening/softening behaviour of concrete is 

modelled using the MC90 (CEB-FIP MC 1990) equation developed for 

uni-axial compression. The confinement effect is depicted through 

multiplying the hardening/softening modulus by a function of the 

intermediate principal stress. The numerical results obtained for the 

concrete cylinders tested by Iyengar et al.(1970) showed reasonable 

agreement with the experimental results. 

 

In Barros’ (2001) elasto-plastic model, the stress increment vector dો and 

the strain increment vector dઽ are related by the elasto-plastic material 

matrix ۲ୣ୮. That is dો ൌ ۲ୣ୮ dઽ      (2.78) 

where ۲ୣ୮ is defined as follows: 

۲ୣ୮ ൌ ۲ െ ܂ܕ܉ܕ܊۲ ܂ܕ܉۲  ା۶      (2.79)ܕ܊۲

Here, D is the elastic material matrix, ܕ܉ and ܕ܊ are the gradients of the 

yield and potential functions F and G respectively, H is the hardening 

parameter, and the superscript T indicates the transpose of vector and 
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matrix. ܕ܉ ൌ ୢFୢો       (2.80) 

ܕ܊ ൌ ୢGୢો      (2.81) 

If a non-associative flow rule is used, the yield and the potential functions F 

and G are different. The hardening parameter H is a function of the yield 

function. 

 

The following MC90 (CEB-FIP MC 1990) equation for uni-axial 

compression was used by Barros (2001) to model the hardening and 

softening behaviour: 

σC ൌ െ ൬ Eౙ಍ౙEౙభ಍ౙభିቀ ಍ౙ಍ౙభቁమ൰ଵାቀ EౙEౙభିଶቁ ಍ౙ಍ౙభ fୡ୭ᇱ      (2.82) 

where εୡଵ ൌ െ0.0022 is the strain at peak-stress fୡ୭ᇱ , Eୡଵ ൌ fୡ୭ᇱ /0.0022 

is the secant modulus of elasticity at peak stress, and εୡ is the total strain. 

 

The confinement effect is modeled by a change in the stress-strain curve in 

the softening zone. The slope ET in this zone is multiplied by a factor R 

that is a function of the intermediate principal stress σଶ: R ൌ e஧஢మ      (2.83) 

where χ was taken as 0.867. This type of approach is referred to as the 

scaling technique in the follow-up studies, and the approach adopted in this 

model can be seen as an earlier version of this technique. 

 

The model was applied by Barros (2001) for the analysis of the circular 

concrete cylinders tested by Iyengar et al. (1970). These cylinders had the 
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standard dimensions of 150 mm ൈ  300 mm with concrete strengths 

ranging from 25MPa to 34MPa, and were reinforced with spirals. The finite 

element computational model based on the proposed constitutive model 

predicted the strengths of the test cylinders with reasonable accuracy 

(Barros 2001). However, its predictions for the pre- and post peak behaviour 

deviated substantially from the experimental results. Barros (2001) 

suggested that using a non-associated flow rule could eliminate this 

discrepancy. However, this author only used an associated flow rule as 

using a non-associative flow rule causes convergence problems in their 

numerical analyses. 

 

In summary, Barros (2001) introduced a scaling technique in the 

hardening/softening rule of an elasto-plastic constitutive model for concrete. 

The proposed constitutive model is capable of providing accurate 

predictions for the peak stress of confined concrete and can also depict the 

change in slope of the softening branch of axial stress-strain curves due to 

the effect of confinement. However, an associated flow rule was adopted in 

the model due to the requirement of the numerical convergence; as a result, 

the stress-strain behaviour of steel spirals-confined concrete could not be 

accurately predicted. 

2.4.3 Johansson and Akesson’s (2002) Model 

Johansson and Akesson (2002) also proposed a concrete constitutive model 

based on the theory of elasto-plasticity to consider the effect of confinement 

on the compressive response of concrete. This model was developed based 
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on the D-P type yield criterion which was used with an associated flow rule 

for the description of the three-dimensional state of stresses and strains in 

concrete. A confinement-sensitive hardening/softening rule was introduced 

into the constitutive model, and this introduction was achieved by applying 

two adjustment functions to the strength and the plastic modulus. More 

accurate predictions can be expected from this constitutive model when 

compared to the constitutive model developed by Barros (2001), which only 

involves the scaling technique on the plastic modulus. A series of 

experiments on circular concrete cylinders subjected to active confinement 

were analyzed using this constitutive model. In addition, the model was 

used in predicting the response of concrete-filled steel tubes. The model was 

shown to be capable of providing accurate predictions for both 

actively-confined concrete and concrete-filled steel tubes. 

 

This model employs the D-P type yield surface, which is a linear function, 

as detailed below: Fሺσ, Kሻ ൌ q ൅ ptanαJA െ KJA     (2.84) 

q ൌ ටଶଷ ሺ܁:  ሻ     (2.85)܁

p ൌ െ ଵଷ ો: ܁ (2.86)      ۷ ൌ ો ൅ p۷      (2.87) 

where αJA  is the frictional angle adopted in this model, KJA  is the 

cohesion strength, ો is the stress tensor, and ۷ is the unit tensor. 
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As an associated flow rule is used, the expression for the plastic strain 

increments dઽ୮ can be written as dઽ୮ ൌ dλ பFபો       (2.88) 

The last component of the model is the hardening rule. It consists of two 

parts and can be written as dκ ൌ dλ பFபKJA ൌ dλ and KJA ൌ െ۶dλ    (2.89) 

where H is the same as that in Barros (2001). 

 

A confinement-sensitive hardening rule was employed to achieve accurate 

predictions for the confinement effect. Two adjustment functions fJA and gJA were adopted to scale the hardening rule. These two functions are 

defined as polynomials of arbitrary power, i.e. fJAሺσ୪ୟ୲ሻ ൌ ∑ a୧σ୪ୟ୲୧୬୧ୀ଴      (2.90) gJAሺσ୪ୟ୲ሻ ൌ ∑ b୧σ୪ୟ୲୧୬୧ୀ଴      (2.91) 

where σ୪ୟ୲ is the equivalent confining pressure which is taken as the mean 

value of the two smallest principal stresses if the mean value is positive 

(compressive); otherwise it is set to zero. σ୪ୟ୲ ൌ ஢భା஢మଶ ൒ 0      (2.92) 

The constants a୧ and b୧ in Eqs. (2.89) and (2.90) require to be calibrated 

from the corresponding test data. This requirement means that the effect of 

confinement varies with the characteristics of concrete. That is, the values 

of a୧  and b୧  vary from one set of experimental data to another. The 

function fJA is used to scale the strength KJA (concrete strength) according 

to the current confinement level while the function gJA is used to scale the 
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hardening parameter κ (concrete deformation). With these two adjustment 

functions, an appropriate KJA െ κ relationship can be achieved. Fig. 2.2 

illustrates the procedure of scaling. 

 

In summary, Johansson and Akesson (2002) introduced a scaling technique 

for the hardening rule of an elasto-plastic model for confined concrete. Two 

adjustment functions, fJA and gJA , were employed to scale the strength KJA and the hardening parameter κ respectively to achieve an accurate 

hardening rule under lateral confinement. In addition, an equivalent 

confining pressure σ୪ୟ୲  was adopted to consider effect of non-uniform 

confinement. This equivalent confining pressure σ୪ୟ୲  was taken as the 

mean value of the two smallest principal compressive stresses. This 

constitutive model employs a complete scaling technique (scaling both the 

strength and the slope) as compared with the constitutive model developed 

by Barros (2001). Therefore, a finite element computational model based on 

this constitutive model can provide accurate predictions for 

actively-confined concrete and concrete-filled steel tubes. However, the 

applicability of this constitutive model to FRP-confined concrete is 

questionable as the scaling technique was not verified using experimental 

results of FRP-confined concrete. 

2.4.4 Grassl et al.’s (2002) Model 

Grassl et al. (2002) proposed a constitutive model based on the theory of 

elasto-plasticity for the modelling of plain concrete in tri-axial compression. 

This model was based on the Menetrey and William yield criterion and a 

non-associated flow rule. A novel hardening law with the volumetric plastic 
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strain, ε୴୮ , employed as the hardening/softening parameter was employed. 

The novel hardening/softening rule is different from the classical strain 

hardening rule in which the length of the plastic strain (i.e. the equivalent 

plastic strain) is used as the hardening/softening parameter (e.g. the CDPM 

model provided in ABAQUS). 

 

As explained in the reviews of other models above, the classical 

elasto-plasticity theory uses the length of the plastic strain as the 

hardening/softening parameter but this approach fails to describe the 

increase of plastic deformation in the tri-axial compression stress state. 

Therefore, the scaling technique is required in such models to achieve a 

close representation of the deformation behaviour of confined concrete, 

which leads to undesirable complexity and empiricism (e.g. Barros 2001). 

 

In Grassl et al.’s (2002) model, the effect of confinement on deformation 

behaviour is depicted using a modified strain-hardening/softening parameter, 

the volumetric plastic strain ε୴୮. In combination with a flow rule in which a 

non-linear plastic potential is employed, the deformation capacity of 

concrete under tri-axial compression can be properly predicted with a 

simple hardening/softening rule. 

 

Three hypotheses were adopted in formulating this model to simplify the 

procedure of parameter calibration. The first hypothesis is that the peak 

stress in uni-axial compression, fୡ୭ᇱ , is reached when the volumetric strain, ε୴, is equal to zero. The second hypothesis is that the volumetric plastic 
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strain ε୴୮ at peak stress in a uni-axial stress state and that in a equal tri-axial 

stress state are identical, which means that ε୴ at peak stresses in equal 

tri-axial stresses is also always 0. The third hypothesis is that the inclination 

of the total plastic strain is identical to the gradient of the plastic potential 

within the same state of loading. These hypotheses have been used in 

subsequent studies on this type of constitutive models. 

 

The three-parameter yield surface proposed by Menetrey and William (1995) 

is used in this model. It can be expressed in the Haigh-Westergaard space as F ൌ ൫√1.5ρ൯ଶ ൅ q୦ሺκሻm ቂ஡଺ rሺθ, eሻ ൅ ஞଷቃ െ q୦ሺκሻqୱሺκሻ  (2.93) 

where m is defined as m ൌ 3 ୤ౙ౥ᇲమ ା୤౪మ୤ౙ౥ᇲ ୤౪ ୣୣାଵ      (2.94) 

and r is defined as rሺθ, eሻ ൌ ସ൫ଵିୣమ൯ୡ୭ୱమ஘ାሺଶୣିଵሻమଶሺଵିୣమሻୡ୭ୱ஘ାሺଶୣିଵሻሾସሺଵିୣమሻୡ୭ୱమ஘ାହୣమିସୣሿభ/మ  (2.95) 

Here, r controls the out-of-roundness of the deviatoric section and is 

determined by the eccentricity parameter e.  

 

In addition, ξ, ρ, θ  are three components of the Haigh-Westergaard 

coordinates; they are defined as 

ξ ൌ Iభ√ଷ୤ౙ౥ᇲ       (2.96) 

ρ ൌ ඥଶJమ୤ౙ౥ᇲ        (2.97) 

cos3θ ൌ ଷ√ଷଶ ଵ/ଷJయሺJమሻయ/మ    (2.98)                    

where Iଵ is the first stress invariant, while Jଶ and Jଷ are the second and 
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third stress invariants of deviatoric stresses. 

Equations for q୦ሺκሻ and qୱሺκሻ were not directly proposed by Grassl et al. 

(2002). They are the ascending and the descending parts of the parameter qሺκሻ, respectively. That is qሺκሻ ൌ q୦ሺκሻqୱሺκሻ =ሺσୡ/fୡ୭ᇱ ሻଶ    (2.99) 

A non-associated flow rule is employed in this model, which means that the 

form of the plastic potential differs from the form of the yield surface. The 

plastic potential G in this model is defined in the Haigh-Westergaard space 

as 

G ൌ െAG୰ ൬ ஡ඥ୯ሺசሻ൰ଶ െ BG୰ ஡ඥ୯ሺசሻ ൅ ஞඥ୯ሺசሻ   (2.100) 

Here, AG୰ and BG୰ are parameters determined from the axial strain stated 

in uni-axial and equal tri-axial compression. 

 

Numerical results obtained using this constitutive model were shown to 

compare well with experimental results for concrete under uni-axial and 

equal tri-axial compression (Grassl et al. 2002). In a subsequent paper 

(Grassl 2004), this constitutive model was employed to model the dilation 

characteristics of concrete in compression. The influence of the dilation 

characteristics of concrete on the behaviour of steel-confined and 

FRP-confined circular concrete cylinders was studied. The numerical results 

indicated that the constitutive model can generally capture the trend of both 

steel-confined concrete and CFRP-confined concrete. The limitation of the 

numerical results is that, for FRP-confined concrete cylinders, only results 

for one selected value of confinement stiffness was compared. Therefore, it 

is unsure whether this constitutive model can describe the true dilation 
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characteristics of FRP-confined concrete at different levels of confinement 

stiffness. 

2.4.5 Mirmiran et al.’s (2000) Model 

Mirmiran et al. (2000) utilized an elasto-plastic D-P type model in the 

nonlinear finite element modelling of FRP-confined concrete. The 

numerical results were compared with experimental results for circular and 

square specimens wrapped with 6, 10, and 12 plies of E-glass fibers. The 

predicted stress-strain curves compared favorably with the test results 

although the dilation of FRP-confined columns was not captured well. 

 

In this D-P type formulation, an equivalent stress σୣ is defined as 

σୣ ൌ 3βM୧σ୫ ൅ ቂଵଶ ቃଵ/ଶ܁ۻT܁
     (2.101) 

where σ୫ is the hydrostatic stress, S is the deviatoric stress vector and M 

is a 3 ൈ 3 matrix, βM୧ is a material constant and it can be related to the 

internal angle of friction ׎M. That is βM୧ ൌ ଶୱ୧୬׎M√ଷሺଷିୱ୧୬׎Mሻ     (2.102) 

Based on the definition of the equivalent stress, the yield function F can be 

expressed as: F ൌ σୣ െ σ୷      (2.103) 

where the yield parameter σ୷ is given by σ୷ ൌ ଺ୡMୱ୧୬׎M√ଷሺଷିୱ୧୬׎Mሻ      (2.104) 

In this study, a non-associated flow rule was employed and a zero dilation 

angle was suggested by the authors based on numerical results obtained 

from their sensitivity analysis. 
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The two remaining parameters, ׎M and cM, for the constitutive model 

were determined as functions of the unconfined concrete strength fୡ୭ᇱ  and 

the confinement effectiveness factor kଵM, respectively. The value of kଵM 

can be calculated from the formulae proposed by one of the following 

models: Richart et al. (1928), Mander et al. (1988), Samaan et al. (1998), or 

Rochette and Labossiere (2000).  

 

From the numerical results (Mirmiran et al. 2000), this D-P type model was 

found to predict linearly increasing volumetric compaction, which does not 

reflect the true volumetric behaviour of FRP-confined concrete. Moreover, 

the dilation ratio predicted by the computational model remained at a 

constant value close to 0.5 which is the incompressibility limit. This value 

also differs from the corresponding value obtained from experimental 

results. Generally speaking, the finite element computational model 

succeeded in predicting the overall axial stress-strain curve of FRP-confined 

concrete but failed to predict the experimental dilation characteristics. This 

contradiction has been discussed in detail by Yu et al.(2010a). Yu et al. 

(2010a) showed that in Mirmiran et al.’s (2000) finite element analysis, the 

lateral dilation of concrete at the beginning of the loading process was 

underestimated but the stress of confined concrete was overestimated due to 

the perfect elastio-plasticity assumption adopted in the constitutive model. 

These two factors counteract each other. Another point worth noting is that 

the post-peak region and the ultimate axial strain of FRP-confined square 

columns were significantly overestimated by the finite element model. This 
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overestimation further indicates that a simple D-P type plasticity model 

cannot provide accurate predictions for FRP-confined concrete. 

2.4.6 Liu and Foster’s (2000) Model 

A three-dimensional finite element computational model was presented by 

Liu and Foster (2000) for the analysis of concrete under uni-axial as well as 

tri-axial compression. An explicit microplane model proposed by Carol et al. 

(1992) was employed in the study. The parameter values of this constitutive 

model were obtained from a back analysis of circular concrete cylinders 

under various confining pressures. 

 

The concept of the microplane model was first put forward by Bazant 

(1983). Since its first appearance, the microplane approach has become 

progressively more popular for the description of the constitutive behaviour 

of concrete. The main idea behind the microplane model is relatively simple: 

it predicts the constitutive behaviour for a two- or three-dimensional 

continuum by relying on modelling the behaviour of a plane of generic 

orientation, which is then integrated over all possible directions in space. 

Based on this microplane concept, the constitutive model is formulated 

through the following three steps. First, the micro-level strains can be 

obtained from the macro-level strain tensor ε୧୨ using the assumption of 

kinematic constraints. Second, the volumetric, deviatoric and tangential 

micro-level stresses can be calculated from the corresponding micro-level 

strains by applying the constitutive equations defined at the micro-level. 

Third, the macro-level stress tensor can be calculated from micro-level 

stresses by applying the principal of virtual work. A more detailed 
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description of this type of model is given in Chapter 7. 

 

In the second step, it is assumed that the direction of a micro-level stress is 

the same as that of the corresponding micro-level strain. The corresponding 

micro-level material law used in Carol et al. (1992) is as follows: 

For the volumetric stress σ୴, 

σ୴ ൌ ቊE୴୭ε୴ሾሺ1 ൅ |ε୴|/aሻି୮ ൅ ሺ|ε୴|/bሻ୯ሿ, in compressionE୴୭ε୴eିሺ|க౬|/ୠሻ౦భ , in tension   (2.105) 

For the deviatoric stress σD, 

σD ൌ ቊED୭ εDeିሺ|கD|/ୟమሻ౦మ , in compressionED୭ εDeିሺ|கD|/ୟభሻ౦భ , in tension    (2.106) 

For the shear stress σT, σT ൌ τεT/γ      (2.107) τ ൌ ET୭γeିሺஓ/ୟయሻ౦య      (2.108) 

Here, E୴୭ is the initial modulus of elasticity; ε୴, εD and εT refer to the 

volumetric, deviatoric, and tangential micro-level strains, respectively; and γ is the length of the tangential strain vector εT. 

 

Following the three steps as mentioned above, the formulation of the 

incremental stress tensor dσ୧୨ is given by dો୧୨ ൌ ۳୧୨୩୪୲ୟ୬dઽ୩୪      (2.109) 

where ۳୧୨୩୪୲ୟ୬ is the tangential stiffness tensor and dઽ୩୪ is the incremental 

strain tensor.  

 

To calibrate these 10 empirical parameters [shown in Eqs. (2.105)-(2.108)], 
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five of them were fixed for all concrete strengths, while the other five 

parameters were calibrated for different concrete strengths and different 

values of the σଷ/σଵ ratio. Here, σଷ is the maximum principal stress while σଵ is the minimum principal stress; they correspond to the confinement 

pressure and the stress in the compressive loading direction for concrete 

under uniform confinement. 

  

Two square columns tested by Razvi and Saatcioglu (1996) were analyzed 

under axial compression. The columns were modeled using brick elements 

for the concrete and truss elements for the steel. The material model for 

concrete was the microplane model and that for steel was the 

elastic-perfectly plastic model. The effect of cover spalling was also taken 

into account. The numerical model considering the effect of cover spalling 

was found to be capable of reproducing the experimental results. 

Experimental results from a column tested by Sheikh and Uzumeri (1980) 

were also used for comparison with the numerical results. The analysis also 

simulated the phenomenon of cover spalling and steel yielding. The 

numerical results showed adequate agreement with the experimental results 

for the overall stress-strain behaviour, with only the initial stiffness of the 

column being slightly overestimated. 

 

As the predictions of the computational model were only compared with 

experimental results for steel-confined concrete columns and 

actively-confined concrete columns, the capability of the model in 

providing accurate predictions for concrete under other types of 
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confinement is still uncertain. Another drawback of the constitutive model 

(microplane model M2) is the spurious volumetric strain when dealing with 

elements under tensile loading, which was first noted by Jirasek (1993). 

2.4.7 Ghazi et al.’s (2002) Model 

In a study by Ghazi et al. (2002), the microplane model M4 (or referred to 

as M4 model) proposed by Bazant et al. (2000) was applied in modelling 

the behaviour of concrete under uni-axial and tri-axial compression. In this 

model, the finite-strain microplane model M4 was adopted in a total 

Lagrangian finite element formulation. Compared to the microplane model 

M2 used in Liu and Foster (2000), the spurious volumetric strain under 

tensile loading is generally eliminated in the M4 model. The M4 model was 

adjusted in this study for the particular case of concrete columns under low 

confinement. This modification focused on aspects of the post-peak regime 

and the increase of the peak stress of confined concrete. 

 

As discussed in Section 2.4.6, the microplane model relates the micro-level 

strains and stresses to the macro-level strain and stress tensors. Constitutive 

equations defined at the micro-level are used to calculate micro–level 

stresses from the corresponding micro-level strains. The macro-level stress 

tensor is then calculated by integrating the micro-level stresses over a unit 

semi-sphere. The formulation of the M4 model, and the corresponding 

formulation to calculate the stress tensor, will be discussed in detail in 

Chapter 7. 

 

The M4 model has a total of 21 parameters. Among them, cଵ to cଵ଻ are 
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fixed parameters whose values can remain unchanged for different concrete 

mixes. The other four parameters, Kଵ to Kସ, are adjustable parameters 

whose values should vary with the concrete mix. These four parameters 

control the values for the uni-axial concrete strength and the strain at peak 

stress etc. In other words, the concrete strength in M4 model is not an input 

parameter but an output result. 

 

To investigate the uni-axial compressive behaviour of concrete, the M4 

model was used by Ghazi et al. (2002) for the analysis of a circular concrete 

cylinder with a diameter of 100 mm and a height of 200 mm. The numerical 

results were compared with the empirical stress-strain curves obtained from 

the formulae of Attard and Setunge (1996). It was found that the results of 

the computational model differed significantly from those of the empirical 

model in the post-peak regime. 

 

For confined concrete, the results of M4 model were also compared with 

those of the empirical model by Attard and Setunge (1996). The peak stress 

obtained from M4 model was found to be smaller than that obtained from 

the empirical model. In addition, the post-peak response predicted by the 

computational model decays faster than the empirical curve obtained from 

the model of Attard and Setunge (1996). 

 

To address the discrepancies mentioned above, the following modifications 

were implemented into the M4 model. Parameter cଵ଴ was modified to be a 

function of the volumetric strain and the confinement ratio; whereas 
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parameters c଻ and Kଵ were made a function of the concrete strength. The 

computational model based on the modified constitutive model showed 

adequate agreement with the empirical model for actively-confined concrete. 

The modified model was also employed in the analysis of steel-confined 

concrete and provided accurate predictions. 

 

Similar to the model adopted in Liu and Foster (2000), the modified 

constitutive model proposed by Ghazi et al. (2002) was only compared with 

test data for steel-confined concrete and actively-confined concrete. 

Therefore, the capability of the model in providing accurate predictions for 

concrete under other types of confinement is uncertain. Moreover, other 

researchers (e.g. Tue et al. 2008) had found that the original M4 model has 

some drawbacks in terms of numerical computation. Therefore, it is 

necessary to eliminate these drawbacks before the M4 model can be further 

modified to provide accurate predictions for confined concrete. 

2.4.8 Montoya et al.’s (2006) Model 

Montoya et al. (2006) presented a constitutive model based on the Modified 

Compression Field Theory (MCFT) for modelling the behaviour of plain 

concrete in multi-axial compression. The MCFT was initially developed to 

analyze the behaviour of concrete under two-dimensional loading (Vecchio 

and Collins 1986). Later, this approach was extended to address 

three-dimensional problems (Selby and Vecchio 1993). This model can 

consider the effect of tensile stress, strength increment due to confinement, 

and a varying Poisson’s ratio.  
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The MCFT uses a special nonlinear elasticity methodology. Orthotropic 

elasticity is defined on the basis of the secant modulus. The concept of 

pre-strains is introduced to account for non-stress related strains. This 

concept is also used in calculating the dilation strain εୡ୭୧  in the following 

form: εୡ୭୧ ൌ െv୧୨ ୤ౙౠEౙౠ െ v୧୩ ୤ౙౡEౙౡ     (2.110) 

where i, j, and k are the principal directions, v୧୨ is the Poisson’s ratio in 

direction i when subjected to a stress fୡ୨ in direction j, and Eୡ୨ is the 

secant modulus of concrete in direction j. 

 

The varying Poisson’s ratio in this model is obtained from the 

lateral-to-axial relationship which is given as follows: 

εୡ୪ ൌ ቀ1.9 ൅ 24.2 ୤ౙౢ୤ౙ౥ᇲ ቁ ቀ கౙகౙౙቁଶ
    (2.111) 

where εୡ is the current axial strain, εୡୡ is the axial strain at peak stress, εୡ୪ is the current lateral strain, and fୡ୪ is the current lateral pressure. Figs. 

2.3 show that this equation significantly overestimates the lateral strain at a 

given axial strain for both actively-confined and FRP-confined concrete. 

What should also be noted is that in Figs. 2.3 the lateral strain is taken to be 

positive. 

 

The secant Poisson’s ratio v can be related to the initial Poisson’s ratio v୭ 

through v ൌ ቀ1.9 ൅ 24.2 ୤ౙౢ୤ౙ౥ᇲ ቁ ቀ கౙகౙౙమ ቁ ൅ v୭   (2.112) 

Eq. (2.112) is similar to Eq. (2.111). The lateral-to-axial relationships in 
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these two equations are both related to the current confining pressure.  

 

A four-parameter Ottosen-type failure criterion in the principal stress space 

is employed for considering the strength enhancement of confined concrete. 

The expression of this failure criterion is given by 

aOଵ Jమ୤ౙ౥ᇲమ ൅ λ୭ ඥJమ୤ౙ౥ᇲ ൅ bOଵ Iభ୤ౙ౥ᇲ െ 1 ൌ 0     (2.113) 

λ୭ ൌ kOଵ ൅ kOଶcos3θ      (2.114) 

The parameters, aOଵ, bOଵ, kOଵ and kOଶ, need to be defined for the failure 

criterion. 

 

To consider the enhancement of strain at peak stress for confined concrete, 

the following equation is employed:  

கౙౙகౙ౥ ൌ 1.0 ൅ kୡୡ ୤ౙౢ୤ౙ౥ᇲ       (2.115) 

where  kୡୡ ൌ 24.4 െ 0.116fୡ୭ᇱ      (2.116) 

Based on the peak stress and the axial strain at peak stress as defined above, 

an active confinement model becomes available for the description of the 

axial stress-strain relationship of concrete at a given lateral confining 

pressure, fୡ୪.  

 

A comparison of this model with an analysis-oriented stress-strain model 

such as Teng et al.’s (2007) model indicates that these two models have 

many things in common. Both of them employ an active-confinement base 

model and an equation to describe the lateral-to-axial relationship. 
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Therefore, the empirical model employed in the MCFT can also be used as 

an analysis-oriented stress-strain model. For concrete under uniform 

confinement, the MCFT can be seen as the numerical implementation of an 

analysis-oriented stress-strain model within the framework of nonlinear 

elasticity. The effect of non-uniform confinement on concrete can be 

properly considered by implementing the MCFT in a finite element model. 

The only limitation is that Eq. (2.112) needs to be used for the 

determination of the value of Poisson ratio corresponding to the current 

confining pressure, so the stress increment cannot be directly calculated 

from the strain increment. As a result, this method is not very convenient for 

implementation in a finite element model driven by strain or displacement 

increments. Moreover, as this model overestimates the lateral strain of 

FRP-confined concrete as Eq. (2.111) is regressed from a small database 

(Montoya 2003), its capability in providing accurate predictions for 

FRP-confined concrete is thus questionable.  

2.4.9 Yu et al.’s (2010b) Model 

In a recent study by Yu et al. (2010b), a modified plastic-damage model was 

proposed to model the behaviour of FRP-confined concrete in compression. 

The main characteristics of FRP-confined concrete are properly captured by 

this model in which concrete responds as an elastic-plastic material 

following a modified D-P type model. This constitutive model is defined 

within the theoretical framework of the Concrete Damaged Plasticity Model 

(CDPM) in the ABAQUS software. The modifications to the CDPM model 

were realized through the SDFV option provided by ABAQUS. The 

proposed modifications include three main aspects based on detailed 
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observations of concrete behaviour in laboratory tests. First, the third 

deviatoric stress invariant was included into the yield criterion as suggested 

for the original CDPM model. Second, a confinement-dependent 

hardening/softening rule was introduced to reflect the difference in 

stress-strain behaviour between unconfined concrete and actively-confined 

concrete. Third, a confinement-dependent non-associated flow rule was 

employed to consider the dilation behaviour of confined concrete, especially 

FRP-confined concrete. The analysis-oriented stress-strain model proposed 

by Teng et al. (2007) was employed to generate input data for the 

confinement-dependent hardening/softening rule and the 

confinement-stiffness-dependent flow rule. For uniform confinement, the 

constitutive model in this study can be seen as the numerical 

implementation of an analysis-oriented stress-strain model (Teng et al. 2007) 

within the framework of plastic-damage theory. 

 

The model proposed by Yu et al. (2010b) has been successfully 

implemented only as a finite element slice model containing a single layer 

of elements so that the axial non-uniformity in stress and strain was not 

taken into account. In this thesis, the implementation of Yu et al.’s (2010b) 

constitutive model in a three-dimensional computational model for 

FRP-confined concrete columns will be presented. Moreover, as the 

analysis-oriented stress-strain model itself was only verified for 

FRP-confined normal strength concrete, its accuracy for FRP-confined high 

strength concrete is uncertain. More details of Yu et al.’s (2012b) model can 

be found in Chapters 8 and 9. 
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2.5 CONCLUSIONS 

Many notable experimental and analytical studies on confined concrete have 

been reviewed in this chapter. This review indicates that the confinement 

mechanism of concrete columns under compressive loading has been under 

investigation for near a century; a large amount of experimental work has 

contributed to the current understanding of the behaviour of confined 

concrete and led to a large experimental database. It is now universally 

accepted that confinement of concrete in compression leads to significant 

increases in both strength and ductility. 

 

Using FRP composites to provide lateral confinement to concrete columns 

is a comparatively new technique. The behaviour of FRP-confined concrete 

is different from that of steel-confined concrete due to the following reasons. 

Steel has a yield plateau which is reached significantly before the failure 

point of concrete is attained. The steel provides a constant lateral pressure 

independent of the additional deformation of the concrete once it has 

yielded. By contrast, FRP is a linear elastic material. Therefore, it provides a 

monotonically increasing lateral pressure as the compressive load on the 

concrete increases until the FRP jacket ruptures. At high axial compressive 

strains, the axial stress-strain curve of steel-confined concrete exhibits a 

descending branch while the stress of FRP-confined concrete always 

increases with strain until rupture of the FRP jacket occurs, provided the 

stiffness of the FRP jacket is above a threshold value. 

 

A large number of attempts have been made to predict the behaviour of 
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actively-confined concrete, steel-confined concrete, and FRP-confined 

concrete. Extensive empirical models have been proposed to represent the 

experimental results. These empirical models were developed for 

actively-confined concrete and steel-confined model (e.g. Ahmad and Shah 

1982; Attard and Setunge 1996; Candappa et al. 2001; Mander et al. 1988) 

in the earlier stage. Empirical models developed for steel-confined concrete 

are also applicable to actively-confined concrete as they show similar 

performance after the yielding of steel.  

 

It is now well established that empirical models developed for 

steel-confined concrete cannot accurately predict the behaviour of 

FRP-confined concrete. As a result, many empirical models have recently 

been proposed specifically for FRP-confined concrete in circular columns 

where the FRP confinement is uniform (e.g. Lam and Teng 2002; Lam and 

Teng 2003a; Lam and Teng 2003b; Youssef et al. 2007). The majority of 

these empirical models have been developed by the curve-fitting of 

experimental results of FRP-confined concrete for design use (i.e. 

design-oriented stress-strain models); these models are in closed-form 

expressions. In contrast, a smaller number of empirical models have 

adopted a more complex incremental form to explicitly account for 

interactions between the confining material and the confined concrete core; 

these models are referred to as analysis-oriented stress-strain models (Cui 

and Sheikh 2010; Jiang and Teng 2007; Teng et al. 2007). Analysis-oriented 

stress-strain models are more versatile and powerful as they are applicable 

to concrete confined by different materials (e.g. steel and FRP) and to both 
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active confinement and passive confinement.  

 

In FRP-confined square, rectangular or other non-circular RC columns, the 

concrete around the perimeter is non-uniformly confined by the FRP jacket. 

That is, the degree of confinement of the concrete varies over the section, 

and the axial stress also varies over the section. This non-uniform 

confinement condition leads to a much more complicated problem than that 

of uniform FRP confinement. As a result, an analysis-oriented stress-strain 

model with explicit consideration of the jacket-concrete core interaction 

becomes much less desirable as both the axial stress and the confining 

pressure need to be empirically treated in an average sense. Therefore, there 

has been little effort so far on the development of analysis-oriented 

stress-strain models for FRP-confined concrete in non-circular sections. 

Instead, existing work on the stress-strain behaviour of FRP-confined 

concrete in rectangular (including square) columns has been focused on the 

development of empirical design-oriented stress-strain models (e.g. Lam 

and Teng 2003b; Youssef et al. 2007). These models have been extended 

from stress-strain models for FRP-confined concrete in circular columns. 

Such extensions involve modifications of the original ultimate condition 

equations to account for the effect of non-uniform confinement. The revised 

ultimate condition equations are generally formulated using the concepts of 

effective-confinement area and equivalent circular section. These concepts 

transform a rectangular section into an equivalent circular section explicitly 

(e.g. Lam and Teng 2003b) or implicitly (e.g. Youssef et al. 2007). With the 

modified ultimate condition equations, the stress-strain equations for 
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FRP-confined concrete in circular columns can be applied to predict the 

stress-strain behaviour of FRP-confined concrete in rectangular columns. 

 

The concepts of effective-confinement area and equivalent circular section, 

however, have a fundamental drawback that they cannot describe the 

stress/strain distribution within a rectangular section. Stress-strain models 

for FRP-confined concrete in rectangular columns are thus purely empirical 

models; that is, they are not based on a rigorous understanding of the 

confinement mechanism in a rectangular section. Instead, they have been 

based on empirical parameters to estimate the confinement effect and to 

provide a good fit to the available test data. Due to these reasons, the 

accuracy of a particular empirical stress-strain model based on one set of 

test data in predicting another set of test data can be highly uncertain. 

 

The finite element method has the potential in providing accurate 

predictions for non-uniformly confined concrete such as concrete in 

rectangular columns. In particular, finite element modelling offers a 

powerful tool to study the confinement mechanism of concrete under 

non-uniform confinement. The pre-requisite for an accurate finite element 

model for confined concrete columns is the availability of an accurate 

constitutive model for confined concrete. A number of constitutive models 

for confined concrete have been developed over the past three decades. The 

theory of plasticity has been used as the basis for most of these models. 

Other theories that have been explored include the MCFT and the 

microplane theory. For actively-confined concrete and steel-confined 
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concrete, several existing constitutive models (e.g. Ghazi et al. 2002; Grassl 

et al. 2002; Johansson and Akesson 2002; Liu and Foster 2000; Barros 2001) 

can already provide predictions of experimental results with acceptable 

accuracy. However, the accuracy of these models in predicting the 

stress-strain behaviour of FRP-confined concrete is still uncertain. The 

research work presented in Chapters 4 to 6 was thus conducted to address 

this issue.  

 

The constitutive models proposed by Montoya et al. (2006) and Yu et al. 

(2010b) can capture the major characteristic of the stress-strain behaviour of 

FRP-confined circular concrete columns. Both of these two models have 

their roots in their corresponding analysis-oriented stress-strain models, 

although the accuracy of the former model for FRP-confined circular 

concrete columns is still questionable. Another limitation of Montoya et 

al.’s (2006) constitutive model is that this model is not a true material 

constitutive model because its numerical implementation in a finite element 

model requires some modifications also at the element level. Yu et al.’s 

(2010b) model does not suffer from this limitation, but its numerical 

implementation has not considered the non-uniformity of confinement 

perpendicular to the slice plane. Moreover, their base analysis-oriented 

stress-strain model (i.e. Teng et al. 2007) has not been verified for 

FRP-confined high strength concrete, so its accuracy for FRP-confined 

high-strength concrete is uncertain. An experimental study on FRP-confined 

high strength concrete was conducted and is presented in Chapter 3 to 

address this particular issue. Furthermore, for FRP-confined rectangular 
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columns, the reliability of both models is still uncertain; the finite element 

modelling of FRP-confined concrete in non-circular columns is the main 

issue examined in Chapter 8 using finite element slice models. Finally, the 

effect of non-uniformity of confinement perpendicular to the slice plane is 

investigated in Chapter 9. 
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Figure 2.1 Lam and Teng’s model for FRP-confined concrete in rectangular 

columns 
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(a) Strength scaling; (b) hardening parameter scaling; (c) resulting scaling 

[after Johansson and Akesson (2002)] Figure 2.2 Illustration of the scaling technique 
 
 

 

(a) Specimens confined by one-ply FRP 
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(b) Specimens confined by two-ply FRP 

Figure 2.3 Lateral-to-axial strain curves of FRP-confined concrete 
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CHAPTER 3  

BEHAVIOUR AND MODELLING OF CONFINED 

HIGH STRENGTH CONCRETE 

3.1 INTRODUCTION 

From the literature review presented in Chapter 2, it is clear that although 

test results of FRP-confined normal strength concrete (NSC) can now be 

closely predicted by some of the existing empirical stress-strain models (e.g. 

Jiang and Teng 2007; Teng et al. 2007), much less is known about the 

behaviour of high strength concrete (HSC) confined with an FRP jacket due 

to the limited existing research (Berthet et al. 2005; Mandal et al. 2005; 

Almusallam 2006; Li 2006). Therefore, further work on FRP-confined HSC 

is needed. In particular, Yu et al.’s (2010) constitutive model for confined 

concrete relies on an accurate analysis-oriented stress-strain model as its 

input. The applicability of this constitutive model to HSC requires the 

development of an accurate analysis-oriented stress-strain model for HSC. 

 

HSC has found increasingly wide applications in structural engineering 

especially where reductions in structural self-weight and/or size are 

important (Holland 2005). The definition of HSC has evolved with time but 

in many recent studies (e.g. Attard and Setunge 1996; Wee et al. 1996; 

Candappa et al. 2001;), HSC has been defined as concrete with a cylinder 

compressive strength exceeding 50 MPa. This is also the definition adopted 

in the present chapter. It is widely accepted that HSC structural members 

generally behave differently from those of NSC (e.g. more brittle failure 
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processes), so direct application of theoretical models developed for NSC to 

HSC may lead to unsafe designs (Attard and Setunge 1996; Wee et al. 

1996).  

 

HSC can be further divided into two types according to whether mineral 

admixtures are used. Incorporating mineral admixtures is a widely accepted 

practice in making HSC and affects significantly its behaviour (Lam et al. 

1998). The most commonly used mineral admixture is silica fume. Setunge 

et al. (1993) found from tri-axial tests that silica fume had a significant 

effect on the behaviour of confined HSC. To address this difference, 

separate models are needed for these two types of confined HSC. For HSC 

with silica fume, the effect of this additional mineral admixture on 

confinement effectiveness is still difficult to quantify due to the limited and 

controversial nature of the existing test results (Xie et al. 1995; Attard and 

Setunge 1996; Ansari and Li 1998). This chapter is therefore primarily 

concerned with the behaviour and modelling of confined HSC without silica 

fume although the effect of silica fume is noted where appropriate. 

Hereafter in this chapter, “HSC” refers only to HSC without silica fume 

unless otherwise specified. The behaviour of HSC confined with a constant 

external pressure (active confinement) is first examined, followed by a 

study of the behaviour of HSC confined with FRP; the former is expected to 

serve as a basis for understanding and modelling the latter.  
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3.2 ACTIVELY-CONFINED HSC 

3.2.1 General  

Many experimental studies have been conducted on actively-confined HSC 

(Xie et al. 1995; Attard and Setunge 1996; Imram and Pantazopoulou 1996; 

Ansari and Li 1998; Candappa et al. 2001; Tan and Sun 2004; Lu and Hsu 

2006). Xie et al. (1995), Attard and Setunge (1996), Ansari and Li (1998) 

and Lu and Hsu (2006) have also proposed models specifically for 

actively-confined HSC (referred to as “active-confinement models for HSC” 

hereafter). Each of these models was, however, based on the originators’ 

own test data, so their wide applicability is uncertain. In addition, most of 

these models do not differentiate between HSC with and without silica fume. 

In this section, an accurate active-confinement model for HSC is presented 

on the basis of a large test database of actively-confined HSC assembled in 

the present study. 

 

The present database for actively-confined HSC contains all the test data 

from existing studies that meet the following criteria: (1) the concrete had 

an unconfined (cylinder compressive) strength higher than 50 MPa and did 

not include silica fume; (2) the concrete cylinder specimens had not been 

submerged in water to achieve a saturated condition prior to testing. 

Saturated specimens have been excluded as they are known to show 

obviously inferior performance (Imram and Pantazopoulou 1996) and are 

not commonly found in practice. The database includes the results of 51 

actively-confined concrete cylinder specimens from Attard and Setunge 

(1996), Imram and Pantazopoulou (1996), Candappa et al. (2001), and Tan 



87 
 

and Sun (2004), Lu and Hsu (2006). The unconfined concrete strength of 

the database ranges from 51.8 to 126 MPa, while the confinement ratio, 

which is defined as the ratio of the confining pressure to the unconfined 

concrete strength, ranges from 0.01 to 0.84. Further details of the database 

are given in Table 3.1. It should be noted that the test data of Tan and Sun 

(2004) were also used by Jiang and Teng (2007) as the unconfined concrete 

strength is very close to the lower bound of the strength range of HSC 

defined herein. 

It is well known that the performance of an active-confinement model 

depends on its accuracy in predicting: (a) the peak axial stress; (b) the axial 

strain at peak stress; and (c) the axial stress-strain equation. These three key 

components are examined in the following sub-sections based on the test 

database presented in Table 3.1. 

3.2.2 Peak Axial Stress 

The peak axial stress on the axial stress–strain curve of actively-confined 

concrete is the compressive strength of such concrete and the peak axial 

stress equation defines the failure surface of such concrete. The following 

simple equation was found from a regression analysis of the test results in 

Table 3.1 to provide accurate predictions for the peak axial stress *
ccf ′ :  

      ୤ౙౙᇲכ୤ౙ౥ᇲ ൌ 1 ൅ 3.34 ቀ ୤ౢ୤ౙ౥ᇲ ቁ଴.଻ଽ
     (3.1) 

As mentioned earlier, fୡ୭ᇱ  is the unconfined concrete strength, and f୪ is the 

constant active confining pressure. In addition, the ratio between the latter 

and the former is referred to as the confinement ratio. 

 
To identify any differences between HSC and NSC, the test data of 



88 
 

actively-confined NSC collected by Jiang and Teng (2007) are compared 

with the predictions of Eq. (3.1) in Figure 3.1a. It is interesting to find that 

Eq. (3.1) also provides accurate predictions for NSC. Through a regression 

analysis of all the test results shown in Figure 3.1a, the following unified 

equation accurate for both NSC and HSC was obtained: 

                                   

୤ౙౙᇲכ୤ౙ౥ᇲ ൌ 1 ൅ 3.24 ቀ ୤ౢ୤ౙ౥ᇲ ቁ଴.଼
      (3.2) 

It is obvious from Figure 3.1a that Eqs. (3.1)-(3.2) provide very similar 

predictions, indicating that any difference between NSC and HSC in the 

peak axial stress is closely represented by Eq. (3.2).  

 
The accuracy of Eqs. (3.1)-(3.2) is compared with that of corresponding 

equations of existing models (i.e. Attard and Setunge 1996; Candappa et al. 

2001; Lu and Hsu 2006; Jiang and Teng 2007) in Table 3.2, using the 

present test database for HSC and that of Jiang and Teng (2007) for NSC. 

The root mean square deviation (RMSD) is used to evaluate the 

performance of each equation. The RMSD is defined by:  

                   

( )2

1

n

i i
i

P E
RMSD

n
=

−
=

∑
                   (3.3) 

where iE  is the experimental value of * /cc cof f′ ′  , iP  is the predicted value 

of * /cc cof f′ ′ , and n is the number of data points. A smaller RMSD implies a 

more accurate equation. It is evident from Table 3.2 that Eqs. (3.1-3.2) are 

both superior to corresponding equations in existing models, including the 
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one used in Jiang and Teng’s (2007) model (i.e. 
*

1 3.5cc l

co co

f f
f f

′
= +

′ ′
). Figure 

3.1a shows that although the peak axial stress equation in Jiang and Teng’s 

(2007) model is generally accurate for NSC and was also previously 

calibrated with test data of FRP-confined NSC by Teng et al. (2007), it does 

slightly underestimate the test results of actively confined HSC, especially 

when the confinement ratio is relatively small. 

 

Test results of HSC with silica fume (Xie et al. 1995; Attard and Setunge 

1996; Ansari and Li 1998; Tan and Sun 2004) are compared with Eq. (3.2) 

in Figure 3.1b. It should be noted that Attard and Setunge (1996) and Tan 

and Sun (2004) tested both HSC with and HSC without silica fume and only 

the results of HSC with silica fume are shown in Figure 3.1b; those of HSC 

without silica fume are summarized in Table 3.1 and shown in Figure 3.1a. 

Figure 3.1b demonstrates that these test results are scattered significantly 

more widely around the curve defined by Eq. (3.2): the results of Ansari and 

Li (1998) fall considerably below the curve while almost all the results of 

Xie et al. (1995), Attard and Setunge (1996) and Tan and Sun (2004) lie 

above the curve. This larger scatter of the limited existing test results has 

also been noted by Ansari and Li (1998), but the reasons have not been 

properly explored. It is thus premature to draw any firm conclusions on the 

behaviour of confined HSC with silica fume before further research is 

conducted. 

3.2.3 Axial Strain at Peak Axial Stress 

A similar regression analysis of the test results of actively-confined HSC led 
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to the following simple equation for the axial strain at peak axial stress: 

கౙౙכகౙ౥ ൌ 1 ൅ 18.8 ቀ ୤ౢ୤ౙ౥ᇲ ቁଵ.ଵ
      (3.4) 

As mentioned earlier, εୡୡכ  is the axial strain at peak axial stress of concrete 

under a specific constant confining pressure, and εୡ୭ is the axial strain at 

peak axial stress of unconfined concrete. The above equation also predicts 

closely the test data of actively-confined NSC collected by Jiang and Teng 

(2007) (Figure 3.2a). A regression analysis of the test data of both confined 

HSC (Table 3.2) and confined NSC (Jiang and Teng 2007) led to the 

following unified equation for the axial strain at peak axial stress: 

 கౙౙכகౙ౥ ൌ 1 ൅ 17.4 ቀ ୤ౢ୤ౙ౥ᇲ ቁଵ.଴଺
      (3.5) 

 
As expected, Eqs. (3.4-3.5) lead to very similar predictions (Figure 3.2a). 

Their performance, assessed using the RMSD of * /cc coε ε , is shown to be 

considerably better than that of corresponding equations in existing models 

(see Table 3.2) including the one used in Jiang and Teng’s (2007) model (i.e. 

*
1.21 17.5( )

co

cc l

co

f
f

ε
ε

= +
′

). Nevertheless, the scatter in the test data of axial strains 

at peak stress is significantly larger than that of peak axial stresses.  

 
Test results of HSC with silica fume (Xie et al. 1995; Attard and Setunge 

1996; Ansari and Li 1998; Tan and Sun 2004) are compared with Eq. (3.5) 

in Figure 3.2b. It is obvious that a considerable scatter of the test results 

exists and most of the test results fall below the curve defined by Eq. (3.5). 

This observation suggests that with the presence of silica fume, the effect of 

confinement on the axial strain at peak axial stress is reduced; this 
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observation confirms the importance of differentiating HSC with silica fume 

from HSC without silica fume.     

3.2.4 Axial Stress-Strain Equation 

Most existing analysis-oriented stress-strain models employ the following 

axial stress-strain equation originally proposed by Popovics (1973) to 

describe the relationship between axial stress fc and axial strain cε  of 

confined concrete: 

                
( )

( )
*

* *1
c ccc

r
cc c cc

rf
f r

ε ε
ε ε

=
′ − +

      (3.6) 

where the constant r is defined by  

* *
c

c cc cc

Er
E f ε

=
′−

    (3.7) 

with cE  being the elastic modulus of concrete. The value of cE can be 

found from 4730c coE f ′= (in MPa) following ACI 318-95 (1999). This 

formula was used in making all predictions in the present study and was 

found to be accurate in most cases. 

 

Eq. (3.6) was originally proposed for NSC and some existing studies (e.g. 

Wee et al. 1996) have indicated that this equation may overestimate the 

post-peak stress-strain behaviour of HSC which appears to feature a steeper 

descending branch. By contrast, other researchers (e.g. Attard and Setunge 

1996) believed that this difference between NSC and HSC is insignificant 

especially when they are both subjected to confinement. The latter argument 

appears to be reasonable, so Eq. (3.6) is adopted for both NSC and HSC in 

the present study. The appropriateness of this approach is demonstrated in 

the comparisons shown in Figure 3.3. 
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3.2.5 Accuracy of the New Active-Confinement Model 

Eq. (3.6), together with Eqs. (3.2) & (3.5), forms a new active-confinement 

model applicable to both NSC and HSC. Figure 3.3 shows comparisons of 

the predictions of this model (identified as “Proposed Model”) and three 

series of axial stress-strain curves from the tests conducted by Candappa et 

al. (2001) on actively-confined concrete of three different unconfined 

strengths (ranging from 41.9 MPa to 103.3 MPa). The predictions of the 

active-confinement model used by Jiang and Teng (2007) are also shown in 

Figure 3.3 for comparison. It is clear that the curves predicted by the 

proposed model are in close agreement with the experimental curves. By 

contrast, Jiang and Teng’s (2007) model generally underestimates the 

experimental curves mainly because of its underestimation of the peak axial 

stress. The overall good performance of the new active-confinement model 

also supports the use of Eq. (3.6) as the axial stress-strain equation for HSC. 

The proposed model is thus a unified active-confinement model for both 

NSC and HSC.  

3.3 BEHAVIOUR OF FRP-CONFINED HSC 

3.3.1 General  

Existing research (Berthet et al. 2005; Mandal et al. 2005; Almusallam 2006; 

Li 2006) on the behaviour of FRP-confined HSC is limited. Of these 

existing studies, Berthet et al. (2005) and Mandal et al. (2005) tested only 

HSC with silica fume and showed that HSC with silica fume did not benefit 

significantly from FRP confinement. Almusallam (2006) and Li (2006) 

tested a few specimens of FRP-confined HSC without silica fume, but 
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unfortunately they did not report the experimental lateral-to-axial strain 

curves. In addition, in Li’s (2006) study, FRP tubes with a significant axial 

stiffness were employed, so the behaviour was complicated by the axial 

resistance and the biaxial stress state of the FRP tube. Existing test results 

are thus inadequate for understanding the behaviour of and the development 

of a stress-strain model for FRP-confined HSC. A new series of tests with 

appropriately detailed measurements were thus conducted as part of the 

present study. Details of these tests are described below. 

3.3.2 New Tests 

3.3.2.1 Specimens and instrumentation 

A total of twelve CFRP-confined circular concrete cylinders (without any 

mineral admixture) with a diameter of 152 mm and a height of 305 mm 

were prepared and tested. These cylinders were cast in two batches (batches 

1 and 2) with two different concrete mix ratios to produce two different 

concrete grades. Each batch included six specimens divided into three pairs 

which were confined with CFRP jackets (with hoop fibers only) of three 

different thicknesses (i.e. two identical specimens forming a pair were 

prepared for each CFRP jacket thickness). Details of all the specimens are 

summarized in Table 3.3. For each batch, three (for batch 1) or four (for 

batch 2) plain concrete cylinders were tested as control specimens to 

determine the average properties of the concrete. Both ends of the cylinders 

were capped with high-strength sulfur to ensure uniform loading. The CFRP 

jackets were formed via the wet lay-up process, with an overlapping zone 

spanning a circumferential distance of 150 mm. A 25 mm wide CFRP strip 
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was provided near each end of a CFRP-jacketed cylinder specimen to avoid 

unexpected failure there. 

 

For each control specimen, two axial strain gauges with a gauge length of 

120 mm and two hoop strain gauges with a gauge length of 60 mm were 

placed at 180o apart at the mid-height of the specimen to measure the strains 

in both directions. For each FRP-confined specimen, six hoop strain gauges 

and two axial strain gauges, both with a gauge length of 20 mm, were 

installed at the mid-height of the specimen. Of the six hoop strain gauges, 

one was placed within the overlapping zone and the other 5 strain gauges 

were distributed evenly outside the overlapping zone. In addition, axial 

strains were also measured using two linear variable displacement 

transducers (LVDTs) at 180o apart that covered the mid-height region of 120 

mm for both unconfined and confined specimens. All compression tests 

were carried out using an MTS machine with displacement control at a rate 

of 0.2mm/min. All test data, including the strains, loads, and displacements 

were recorded simultaneously by a data logger. 

3.3.2.2 Material properties 

Tensile tests of five FRP coupons were conducted following the ASTM 

standard (ASTM D3039 2000). The test results showed that the CFRP used 

in the study had an average tensile strength of 2737.7 MPa and an average 

elastic modulus frpE of 237.8 GPa, based on a nominal thickness of 0.34 mm 

per ply. The elastic modulus, compressive strength and compressive strain at 

peak axial stress of the concrete in batch 1, averaged from the four plain 
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concrete cylinder tests, were 39.9 GPa (ranging from 38.7 GPa to 41.4 GPa), 

70.8 MPa (ranging from 69.7 MPa to 71.4 MPa) and 0.0032 (ranging from 

0.0030 to 0.0033) respectively. The corresponding values in batch 2, 

averaged from the three plain concrete cylinder tests, were 46.4 GPa 

(ranging from 45.9 GPa to 47.1 GPa), 111.6 MPa (ranging from 110.9 MPa 

to 112.7 MPa) and 0.0034 (ranging from 0.0034 to 0.0035). These average 

values were used in making theoretical predictions for the tests reported 

later in the chapter. 

3.3.2.3 Test results 

All the FRP-confined specimens failed by the hoop tensile rupture of the 

FRP jacket with a sudden explosive noise, except one 5-ply specimen in 

batch 1 and two 5-ply specimens in batch 2.  The test of the 5-ply 

specimen in batch 1 was terminated at a load of 3000 kN due to an 

unexpected problem with the testing machine, while the tests of the two 

5-ply specimens in batch 2 were terminated at a load of 4000 kN which is 

close to the maximum capacity of the MTS machine. FRP rupture generally 

occurred outside the overlapping zone accompanied by a limited amount of 

delamination between the plies (Figure 3.4). The key test results, including 

the hoop rupture strain of the FRP jacket ruph ,ε , the ultimate axial strain cuε , 

the axial stress at ultimate axial strain cuf ′ , are summarized in Table 3.3. 

Figure 3.5 shows the normalized axial stress-strain curves and the 

normalized axial stress-lateral strain curves for all twelve FRP-confined 

specimens, where the lateral strain lε  is shown on the left and the axial 

strain cε is shown on the right. The axial strain was found from the readings 
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of the two LVDTs, and the lateral strain was averaged from the readings of 

the five hoop strain gauges outside the overlapping region. In Figures 

3.5-3.6, the axial stress is normalized by the unconfined concrete strength

cof ′  while the strains are normalized by the axial strain at peak axial stress 

of unconfined concrete coε .  

3.3.4 Stress Path Dependence  

It is widely accepted that the behaviour of confined NSC basically complies 

with the assumption of path independence, which assumes that the axial 

stress and axial strain of concrete confined with FRP at a given lateral strain 

are the same as those of the same concrete actively confined with a constant 

confining pressure equal to that supplied by the FRP jacket. This assumption 

has also been the basis of most analysis-oriented stress-strain models for 

FRP-confined NSC (Teng and Lam 2004). To explore the validity of this 

assumption for confined HSC, the axial stress-strain curves of FRP-confined 

HSC obtained from the new tests are compared with a series of axial 

stress-strain curves predicted based on this assumption by adopting the 

procedure normally used in existing analysis-oriented models such as that of 

Jiang and Teng (2007), except that the lateral-to-axial relationship used is 

that from the corresponding test. For two nominally identical specimens, 

only the results of one of them are shown in Figures 3.6 for better 

differentiation between different curves. These predicted curves are denoted 

by “new ultimate equations” to indicate that in making the predictions, Eqs. 

(3.2) & (3.5) were used. It is evident the stress-strain curves so predicted are 

significantly higher than their experimental counterparts. As the new 

active-confinement model (including the new ultimate equations) has been 
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verified using a large test database of both NSC and HSC, this comparison 

suggests that the assumption of path independence is incorrect for confined 

HSC. Instead, confinement appears to be less effective for FRP-confined 

(passively-confined) HSC than for actively-confined HSC. It may be noted 

that path dependence has also been reported by some previous researchers 

(e.g. Bazant and Tsubakl 1980).  Bazant and Tsubakl (1980) pointed out 

that the presence of a confining pressure in the early stage of axial loading 

(e.g. in the case of actively-confined concrete) tends to prevent the growth 

of micro-cracks. In FRP-confined concrete, the confining pressure becomes 

significant only when the concrete approaches its unconfined strength, and 

this different loading path may have a detrimental effect on concrete 

behaviour. 

 

It is also worth noting that although the behaviour of confined NSC 

basically complies with the path independence assumption, slight deviations 

from the assumption have been noted. For example, the active-confinement 

model used in Jiang and Teng (2007) was calibrated with test data of 

FRP-confined NSC. Indeed, Figure 3.1a shows that the strength equation for 

actively-confined concrete adopted by Jiang and Teng (2007) slightly 

underestimates the test results of actively-confined NSC, especially when 

the confinement ratio is relatively small. Noting also the fact (see Figures 

3.6) that the “new ultimate equations” curves in Figures 3.6 are closer to the 

experimental curves for specimens with a thicker FRP jacket than for those 

with a thinner FRP jacket, it may be concluded that the path independence 

assumption deviates from the actual behaviour observed in the tests more 
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significantly when the confining FRP jacket is softer and/or when the 

unconfined concrete strength is higher. Therefore, for HSC, the effect of 

path dependence is significant enough for it to be properly reflected in a 

stress-strain model. 

3.3.5 Dilation Properties 

Teng et al. (2007) found from the test data available to them that the 

normalized lateral-to-axial strain relationship (i.e. the lateral strain equation) 

of HSC can be considered to be similar to that of NSC. The lateral strain 

equation proposed by them based mainly on test data of confined NSC was 

also shown to provide reasonably accurate predictions of the test results of 

actively-confined HSC presented in Candappa et al. (2001). This 

relationship, defined below, was also adopted by Jiang and Teng (2007) after 

a critical review of existing models:  
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In Figures 3.7 and 3.8, the predictions of Eq. (3.8) are shown against the 

new test results of unconfined HSC and FRP-confined HSC respectively, to 

identify any differences in dilation properties between NSC and HSC.  

These comparisons show that while Eq. (3.8) provides close predictions for 

unconfined HSC, it is much less accurate for FRP-confined HSC (Figure 

3.8). The experimental curves are scattered quite widely around the 

prediction of Eq. (3.8), so a relationship between the results and the concrete 

strength cannot be identified. Indeed, the curves for a concrete compressive 

strength of 111.6 MPa are closer to Eq. (3.8) than those for a concrete 

compressive strength of 70.8 MPa although Eq. (3.8) was based mainly on 
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NSC test data. Therefore, it is not unreasonable to attribute the large scatter 

of test results to the inherent variability of concrete dilation properties, as 

discussed in Teng et al. (2007); given this consideration, the applicability of 

Eq. (3.8) to both NSC and HSC is confirmed. 

3.4 MODELLING OF FRP-CONFIEND HSC 

3.4.1 General 

Existing models for FRP-confined concrete mainly fall into two categories 

(Teng and Lam 2004; Jiang and Teng 2007): (1) design-oriented stress-strain 

models and (2) analysis-oriented stress-strain models. The published 

literature contains a small number of design-oriented stress-strain models 

for FRP-confined HSC (Berthet et al. 2005; Almusallam 2006; Li 2006), but 

each of these models was based on the limited test data available to its 

originator(s) and their wide applicability is uncertain. The development of a 

more reliable design-oriented stress-strain model calls for a much larger 

amount of data obtained from either numerous experiments and/or an 

accurate analysis-oriented model (e.g. Teng et al. 2009). Analysis-oriented 

stress-strain models consider the responses of the concrete and the FRP 

jacket as well as their interaction in an explicit manner and are more 

versatile and powerful than design-oriented stress-strain models (Teng et al. 

2007). Such models are applicable/easily extendable to actively-confined 

concrete and concrete confined by materials other than FRP. An accurate 

analysis-oriented stress-strain model can also be employed to generate data 

for the development of a design-oriented stress-strain model (Teng et al. 

2009). This chapter is thus concerned only with the development of an 
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analysis-oriented stress-strain model for FRP-confined HSC. 

 

Many analysis-oriented stress-strain models (e.g. Mirmiran and Shahawy 

1997; Spoelstra and Monti 1999; Fam and Rizkalla 2001; Chun and Park 

2002; Harries and Kharel 2002; Marques et al. 2004; Binici 2005; Jiang and 

Teng 2007; Teng et al. 2007) have been published for FRP-confined NSC. 

Among them, the recent model proposed by Jiang and Teng (2007) has been 

shown by its originators to be the most accurate; test results of 

FRP-confined NSC can now be closely predicted by this model (Jiang and 

Teng 2007). By contrast, to the best of the authors’ knowledge, 

analysis-oriented models proposed for and/or verified using test results of 

FRP-confined HSC are not available in the open literature, despite the 

increasingly wide application of HSC in practice.  

 

Most existing analysis-oriented stress-strain models for FRP-confined 

concrete are composed of the following three elements (Teng and Lam 2004; 

Jiang and Teng 2007): (i) an active-confinement base model, (ii) the lateral 

strain equation depicting the relationship between the axial strain and the 

lateral/hoop strain of the concrete (or hoop strain of the confining jacket), 

and (iii) a relationship between the lateral strain and the radial pressure 

supplied by the jacket. The third element can be easily defined for a linear 

elastic FRP jacket. It may be noted only the third element of an 

analysis-oriented stress-strain model for FRP-confined concrete needs to be 

modified if it is to be employed to predict concrete passively confined with 

another material. In the following sub-sections, these three elements for 
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HSC are examined in detail to arrive at an analysis-oriented stress-strain 

model for FRP-confined HSC. 

3.4.2 Active-Confinement Model as the Base Model 

As discussed earlier, the new active-confinement model, although having 

been verified using a large test database of both NSC and HSC, cannot 

provide accurate predictions of the present test results because of the 

dependence of the behaviour of confined HSC on its loading path. Therefore, 

a different active-confinement base model needs to be used to achieve close 

predictions for FRP-confined HSC. The active-confinement base model 

used in Jiang and Teng (2007), although slightly underestimating the 

stress-strain response of active-confined NSC (see Figures 3.1a and 3.3a), 

has been shown to work well for FRP-confined NSC. As the behaviour of 

actively-confined NSC is very similar to that of actively-confined HSC (see 

Figures 3.1 and 3.2), it is reasonable to expect that this active-confinement 

base model is likely to be also suitable for FRP-confined HSC. In Figure 3.6, 

a series of axial stress-strain curves denoted by “Jiang and Teng’s ultimate 

equations” are also shown for comparison with the experimental curves. 

These curves were produced in a similar way to the curves identified as 

“new ultimate equations” with the only difference being that Jiang and 

Teng’s (2007) active-confinement model was used here instead of the new 

active-confinement model as the base model. Figure 3.6 shows that the 

curves produced this way are very close to the experimental curves, 

indicating that Jiang and Teng’s (2007) active-confinement model is also 

appropriate for use in the prediction of FRP-confined HSC as the base 

model.  
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3.4.3 Lateral Strain Equation and Confining Pressure  

As discussed earlier, the present test results of FRP-confined HSC indicate 

that Eq. (3.8) is applicable to both NSC and HSC. The development of a 

more accurate lateral strain equation needs further research. Therefore, Eq. 

(3.8) is retained for the prediction of stress-strain curves of FRP-confined 

HSC although some errors arising from the use of Eq. (3.8) can be expected. 

 
Once the lateral strain is known, the confining pressure lf  on a circular 

column from an FRP jacket is given by the following simple relationship: 

frp h frp l
l

E t E t
f

R R
ε ε

= = −                      (3.9)                    

where frpE  is the elastic modulus of the FRP jacket in the hoop direction, 

hε  and t are the hoop strain and the thickness of the FRP jacket respectively, 

and R is the radius of the confined concrete core. 

3.4.4 Analysis-Oriented Stress-Strain Model 

The above discussions suggest that Jiang and Teng’s (2007) model can lead 

to reasonably close predictions of the stress-strain behaviour of 

FRP-confined HSC, with the underestimation of its active confinement base 

model of the stress-strain behaviour of actively-confined HSC being used to 

account for the detrimental effect of stress path dependence on 

FRP-confined HSC. 

 

The new test results are compared with the predictions from Jiang and 

Teng’s (2007) model in Figure 3.5. This comparison demonstrates that Jiang 

and Teng’s (2007) model generally performs well although some small 
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errors exist especially for specimens with an unconfined strength of 70.8 

MPa. These errors are due to the inaccuracy of the lateral-to-axial strain 

relationship (Figure 3.8), as discussed earlier. Further research is needed to 

improve the accuracy of this relationship when more test data become 

available. Jiang and Teng’s (2007) model is thus recommended as a model 

for predicting the stress-strain behaviour of both FRP-confined NSC and 

FRP-confined HSC. 

3.5 MODEL VERIFICATION USING INDEPENDENT TEST DATA 

3.5.1 HSC without Silica Fume 

Figure 3.9 shows comparisons between the predictions of Jiang and Teng’s 

(2007) model and the axial stress-strain curves from tests conducted by 

Almusallam (2006) on HSC cylinders (150 mm x 300 mm) with an 

unconfined concrete strength of 50.6 MPa (with coε = 0.0029) or 60.5 MPa 

(with coε = 0.0030). These cylinders were confined with a one-ply or a 

three-ply GFRP jacket, whose elastic modulus and tensile strength were 27 

GPa and 540 MPa respectively, based on a nominal thickness of 1.3 mm per 

ply. The experimental lateral strains at the rupture of the FRP jacket were 

used in making the predictions. The predictions are in reasonably close 

agreement with the test results.  

3.5.2 HSC with Silica Fume 

Figure 3.10 shows a comparison between the predictions of Jiang and 

Teng’s (2007) model and the axial stress-strain curves from tests conducted 

by Berthet (2005) on HSC with silica fume.  The HSC cylinders (70 mm × 

140 mm) tested by Berthet (2005) had an unconfined concrete strength of 
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113 MPa (with coε = 0.0023) and were confined with a two-ply or a five-ply 

CFRP jacket whose elastic modulus and tensile strength were 230 GPa and 

2,500 MPa respectively, based on a nominal thickness of 0.165 mm per ply. 

Again, the experimental lateral strains at the rupture of the FRP jacket were 

used in making the predictions. Figure 3.10 shows that Jiang and Teng’s 

(2007) model considerably overestimates the response, especially the 

ultimate axial strain of these specimens (see Figure 3.10). Once again, this 

comparison confirms that the presence of silica fume reduces the 

effectiveness of confinement and a different confinement model is needed 

for HSC with silica fume. 

 

Almusallam (2006) also tested HSC with silica fume but their specimens 

were shown to gain little strain enhancement from the confinement of FRP; 

Jiang and Teng’s (2007) model thus cannot provide correct predictions of 

these test results and the comparison is not shown here.  

 

It should be noted that predictions from Jiang and Teng’s (2007) model were 

obtained by assuming that the elastic modulus of unconfined concrete 

4730c coE f ′=  (ACI 318-95 1999). Although this equation provides 

accurate predictions for NSC and HSC without silica fume, it was found to 

underestimate the elastic modulus of HSC with silica fume based on the test 

results of Berthet (2005) and Almusallam (2006). If the experimental elastic 

modulus of unconfined concrete is used in the model, the predicted curves 

are further away from the experimental curves. This phenomenon reinforces 

the importance of differentiating HSC with silica fume from HSC without 
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silica fume. 

3.6 SUMMARY AND CONCLUSIONS 

This chapter has been primarily concerned with the behaviour and 

modelling of the stress-strain behaviour of confined HSC without silica 

fume. The behaviour of actively-confined HSC was first examined, leading 

to a unified active-confinement model applicable to both HSC and NSC. An 

experimental study on FRP-confined HSC was then presented and 

interpreted to examine its behaviour, which also forms the basis for the 

subsequent modelling work. It was shown that Jiang and Teng’s (2007) 

model, initially developed for FRP-confined NSC, is also accurate for 

FRP-confined HSC. While the focus of the work was on HSC without silica 

fume, the effect of incoprating silica fume into HSC on its stress-strain 

behaviour was also given appropriate attention. The results and discussions 

presented in the chapter also allow the following conclusions to be drawn 

on the behaviour and modelling of confined HSC without silica fume: 

 

(1) The new unified active-confinement model for actively-confined 

concrete is more accurate than all existing models for actively-confined 

HSC; 

(2) The lateral-to-axial strain relationship adopted in Jiang and Teng’s (2007) 

model, which was initially proposed in Teng et al. (2007), leads to 

acceptable predictions for FRP-confined HSC given the considerable 

variability in concrete dilation properties obtained from tests. Further 

studies on the dilatation properties of confined HSC are needed. 
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(3) The assumption of stress independence widely used in modelling the 

stress-strain behaviour of FRP-confined concrete can be a source of 

significant errors in predicting the behaviour of FRP-confined HSC, 

especially when the FRP jacket is relatively soft. 

 

The presence of silica fume in HSC was shown to significantly affect the 

behaviour of confined HSC. While existing test data suggest that silica fume 

can significantly reduce the effectiveness of confinement in terms of the 

enhancement of strain capacity, these data are insufficient to allow more 

elaborate conclusions to be drawn or a separate, reliable confinement model 

to be developed. Much more work is needed on the behaviour of confined 

HSC with silica fume. 
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(a) 

 
(b) 

Figure 3.1 Peak axial stress of actively-confined concrete 
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(a) 

(b) 
Figure 3.2 Axial strains at peak axial stress of actively-confined concrete 
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(c) 
Figure 3.3 Stress-strain curves of actively-confined concrete 

 
 

 
Figure 3.4 Typical failure modes of FRP-confined HSC specimens 
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(a) 

(b) 
Figure 3.5 Stress-strain curves of FRP-confined HSC 
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(a) 

 

(b) 
Figure 3.6 Performance of different active-confinement models 
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Figure 3.7 Lateral-to-axial strain curves of unconfined HSC 

 
 

 
Figure 3.8 Lateral-to-axial strain curves of FRP-confined HSC 
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Figure 3.10 Comparison of Jiang and Teng’s (2007) model with Berthet et 

al’s (2005) test results 
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Table 3.1 Test results of actively-confined HSC without silica fume 

No. Diameter 
(mm) 

Height
(mm)

/
cof  

(MPa)
coε  

(%) 
lf  

(MPa)

/*
ccf  

(MPa)

*
ccε  

(%) 
Imram and Pantazopoulou 
(1996)     

1 54 115 73.4 0.33 3.2 96.1 0.50
2 54 115 73.4 0.33 6.4 108.7 0.65
3 54 115 73.4 0.33 12.8 125.6 1.05
4 54 115 73.4 0.33 25.6 168.6 2.03
5 54 115 73.4 0.33 38.4 204.0 3.11
6 54 115 73.4 0.33 51.2 240.5 4.09

Attard and Setunge 
(1996)      

7 100 200 100.0 0.27 1.0 106.0 0.31
8 100 200 100.0 0.27 5.0 121.0 0.36
9 100 200 100.0 0.27 10.0 144.0 0.47
10 100 200 100.0 0.27 15.0 165.0 0.58
11 100 200 126.0 0.34 5.0 162.0 0.50
12 100 200 126.0 0.34 10.0 186.0 0.71
13 100 200 126.0 0.34 15.0 211.0 0.89
14 100 200 96.0 0.28 5.0 119.0 0.37
15 100 200 96.0 0.28 10.0 147.0 0.52
16 100 200 96.0 0.28 15.0 157.0 0.53
17 100 200 60.0 0.21 1.0 67.0 0.27
18 100 200 60.0 0.21 5.0 98.0 0.48
19 100 200 60.0 0.21 10.0 122.0 0.76
20 100 200 60.0 0.21 15.0 145.0 0.99

Candappa et al (2001)        
21 100 200 60.6 0.24 4.0 78.2 0.40
22 100 200 60.6 0.24 8.0 97.8 0.98
23 100 200 60.6 0.24 12.0 115.5 1.24
24 100 200 73.1 0.24 4.0 102.6 0.45
25 100 200 73.1 0.24 8.0 121.5 0.63
26 100 200 73.1 0.24 8.0 122.3 0.69
27 100 200 73.1 0.24 12.0 138.1 0.94
28 100 200 103.3 0.30 4.0 133.1 0.43
29 100 200 103.3 0.30 8.0 151.0 0.68
30 100 200 103.3 0.30 8.0 158.0 0.67
31 100 200 103.3 0.30 12.0 171.5 0.80
32 100 200 103.3 0.30 12.0 169.3 0.78

Lu and Hsu 
(2006)       

33 100 200 67.0 0.25 3.5 84.9 0.47
34 100 200 67.0 0.25 7.0 99.0 0.78
35 100 200 67.0 0.25 14.0 130.7 1.24
36 100 200 67.0 0.25 14.0 132.7 1.25
37 100 200 67.0 0.25 14.0 134.9 1.35
38 100 200 67.0 0.25 14.0 135.5 1.37
39 100 200 67.0 0.25 21.0 154.0 1.66
40 100 200 67.0 0.25 21.0 157.1 1.83
41 100 200 67.0 0.25 21.0 161.2 1.94
42 100 200 67.0 0.25 28.0 180.2 2.50
43 100 200 67.0 0.25 28.0 179.9 2.41
44 100 200 67.0 0.25 42.0 229.1 3.21
45 100 200 67.0 0.25 56.0 276.0 4.06
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Tan and Sun 
(2004) 

46 100 300 51.8 0.24 1.9 64.8 0.33
47 100 300 51.8 0.24 1.9 66.0 0.39
48 100 300 51.8 0.24 7.5 86.6 0.46
49 100 300 51.8 0.28 7.5 84.2 0.49
50 101 301 51.8 0.24 12.5 99.3 0.49
51 101 300 51.8 0.24 12.5 103.3 0.66
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Table 3.2 Performance of equations for peak stress point in different active-confinement models 

Source Axial stress equation 
RMSD
HSC 
only

RMSD
NSC 
and 
HSC 

Axial strain equation
RMSD
HSC 
only

RMSD
NSC 
and 
HSC

Present 
study 

0.79/*

/ /1 3.34cc l

co co

f f
f f

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 0.105 0.178

*
1.1

/1 18.8( )
co

cc l

co

f
f

ε
ε

= +  0.87 1.58 

Present 
study 

0.80/*

/ /1 3.24cc l

co co

f f
f f

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 0.111 0.173

*
1.06

/1 17.4( )
co

cc l

co

f
f

ε
ε

= +  0.89 1.55 

Attard 
and 

Setunge 
(1996) 

( )
/*

0.67/ /
1

0.288

k

cc l

co co

f f
f f

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

with

( ) 0.21/
/1.25 1 0.062 l

co
co

f
k f

f

−⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

0.119 0.235 ( )
*

/
/1 17 0.06

co

co

cc l

co

f
f

f
ε
ε

= + − 1.45 1.88 

Candappa 
et al. 

(2001) 
''

'*

3.51
co

l

co

co

f
f

f
f

+=  0.378 0.549
*

/1 20
co

cc l

co

f
f

ε
ε

= +  1.16 1.83 
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Lu and 
Hsu 

(2006) 
''

'*

0.41
co

l

co

co

f
f

f
f

+=  0.173 0.241
*

/1 19.21
co

cc l

co

f
f

ε
ε

= +  1.04 1.71 

Jiang and 
Teng 

(2007) 
''

'*

5.31
co

l

co

co

f
f

f
f

+=  0.213 0.234
*

1.2
/1 17.5( )

co

cc l

co

f
f

ε
ε

= +  1.06 1.67 
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Table 3.3 Test results of FRP-confined HSC 

Specimen t(mm) frpE
(GPa)

ruph ,ε
(%) 

/
cuf

(MPa) cuε (%)

70.8MPa 
1 ply-a 0.34 237.8 1.1 104.2 1.07
1 ply-b 0.34 237.8 1.21 110.3 1.43
3 ply-a 1.02 237.8 1.00 180.5 2.16
3 ply-b 1.02 237.8 0.90 197.7 2.33
5 ply-a 1.70 237.8 0.67 191.5 2.28
5 ply-b 1.70 237.8 0.52* 162.4 1.39

108Mpa 
2 ply-a 0.68 237.8 0.57 141.2 0.97
2 ply-b 0.68 237.8 0.58 134.0 0.75
3 ply-a 1.02 237.8 0.52 170.4 0.98
3 ply-b 1.02 237.8 0.60 176.6 1.12
5 ply-a 1.70 237.8 0.56* 217.3 1.56
5 ply-b 1.70 237.8 0.57* 217.1 1.60

 
                          *The test stopped without FRP rupture. 
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CHAPTER 4  

NEW D-P TYPE MODEL BASED ON THE SCALING 

TECHNIQUE  
 

4.1 INTRODUCTION 

The behaviour of concrete in multi-axial compression is characterized by 

inelastic deformation. Hence, it is reasonable to apply the theory of 

plasticity, which is based on the split of strains into elastic and plastic parts, 

for simulating the behaviour of concrete. The literature review given in 

Chapter 2 indicates that constitutive models for concrete based on the 

theory of plasticity represent one of the major approaches and have met 

with a substantial degree of success. 

 

Plasticity theories can be broadly divided into two groups: deformation and 

flow theories of plasticity (Chen and Han 2007). In the deformation theory 

of plasticity, the stress tensor is a function of the strain tensor alone. Such a 

constitutive structure is in general inappropriate for plastic deformation 

because when plastic deformation occurs, strains depend on both stresses 

and the stress history and are no longer only a function of stresses in a 

general sense. However, the deformation theory of plasticity has found 

useful applications in some special cases such as proportional or simple 
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loading. All the stress components under these two special loading 

conditions increase proportionally without elastic unloading ever occurring. 

Therefore, a one-to-one mapping can be found between the stress 

components and the strain components. The theory has been particularly 

successful in bifurcation studies and in the determination of necking and 

buckling loads (Hutchinson 1974). For the constitutive modelling of 

concrete, this theory was mainly employed in the period prior to the wide 

use of the computer. As the deformation theory of plasticity is invalid for 

non-proportional loading and has achieved only limited success under 

cyclic loading (Chen and Han 2007), it has seldom been used in commercial 

finite element (FE) software packages.  

 

By contrast, the flow theory of plasticity is a more robust approach for 

simulating the behaviour of concrete as it does not suffer from the 

aforementioned limitation of the deformation theory of plasticity. The flow 

theory of plasticity is based on an incremental process and has the 

advantage that the effect of loading paths can be easily taken into account. 

Therefore, this theory is more versatile when used in the finite element 

modelling of concrete structures. Due to these reasons, the discussions of 

plasticity-based concrete constitutive models in this thesis are limited to 

those based on the flow theory of plasticity. 
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The flow theory of plasticity has three components: (a) the yield criterion, 

(b) the flow rule, and (c) the hardening (or softening) rule. The yield 

criterion (or yield function) for a multi-axial stress state is a generalization 

of the concept of the uni-axial yield stress. It defines the boundary of the 

elastic region, within which both unloading and reloading lead to elastic 

strains only. The flow rule determines the relationship between stresses and 

plastic strains under multi-axial loading, in which the direction of the 

incremental plastic strain is defined by the plastic potential function. The 

flow rule is referred to as an associated flow rule if the plastic potential 

function is the same as the yield function; otherwise, it is referred to as a 

non-associated flow rule. The hardening/softening rule defines the motion 

and new position of the yield surface (commonly referred to as the loading 

surface) in a stress coordinate system during plastic deformation. Two types 

of hardening/softening state variables are commonly used in the 

hardening/softening rule, which are the length of the plastic strain vector 

and the plastic work. The hardening/softening state variables have 

significant effects on the behaviour of confined concrete, which are 

discussed in the subsequent sections.  

 

Over the past three decades, a number of studies have been conducted on 

these three components of plasticity models to improve their performance in 

predicting the mechanical behaviour (mainly the stress-strain response) of 
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confined concrete. Different yield functions have been presented to account 

for the inherent pressure-sensitivity of the yield stress of a concrete material. 

These yield criteria explored range from the simple Von Mises criterion 

with only one parameter to the more complex five-parameter 

William-Warnke yield function (Chen and Han 2007). Moreover, different 

plastic potential functions have also been proposed to account for the 

dilation characteristics of concrete in compression. More attention has 

recently been paid to the hardening/softening rule with the aim being to 

consider the effect of lateral confinement on the deformation of concrete. 

Different from yield functions which are normally defined in the stress 

space, the hardening/softening rule should be partially related to the 

inelastic deformation of concrete as it is commonly based on 

hardening/softening variables such as the equivalent plastic strain (Lubliner 

et al. 1989) and the equivalent plastic work (Han and Chen 1985). These 

two commonly used hardening/softening variables are both related to the 

plastic deformation of concrete. Plasticity models using these variables have 

succeeded in predicting the strength enhancement of concrete due to lateral 

confinement. However, these models have also been found to be 

unsuccessful in predicting the increased deformation capacity of concrete 

under multi-axial compression (Ohtani and Chen 1989; Yu et al. 2010a; Yu 

et al. 2010b). Therefore, two approaches have been suggested to address 

this problem (Grassl et al. 2002) as explained below. 
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The first approach can be referred to as the scaling approach (e.g. Barros 

2001; Johansson and Akesson 2002). In the scaling approach, the 

hardening/softening variable is the form of a scaled length of the plastic 

strain vector associated with certain confinement characteristics of the 

current stress state. Various scaling techniques have been developed based 

on different confinement characteristics, including the hydrostatic pressure, 

the intermediate principal stress, and the mean of the two major principal 

stresses (Imran and Pantazopoulou 2001; Johansson and Akesson 2002; 

Malvar et al. 1997; Barros 2001; Yu et al. 2010a). Hereafter, plasticity-based 

models employing the scaling technique are referred to as scaled plasticity 

models.  

 

Novel hardening/softening variables have also been adopted to deal with 

this issue apart from the use of a scaling technique. Recent studies (Grassl et 

al. 2002; Papanikolaou and Kappos 2007) have led to the plastic volume 

strain approach in which the plastic volumetric strain, ε୴୮, is used as the 

hardening/softening variable. Grassl et al. (2002) have revealed that when 

the plastic volumetric strain instead of the equivalent plastic strain or 

equivalent plastic work is utilized as the hardening/softening variable, a 

simple hardening/softening function is sufficient to provide reliable 

predictions for the increased deformation capacity of confined concrete 
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without using the scaling technique. The performance of this type of models 

will be discussed separately in Chapter 5 for clarity of presentation. 

 

The first approach is discussed in this chapter. To simplify the discussion 

without loss of generality, a new D-P type model employing a scaling 

technique based on the hydrostatic pressure is proposed for use in the 

assessment process. Both the yield criterion and the flow rule in the 

proposed model are relatively simple, so the effect of the 

hardening/softening rule can be easily highlighted. The performance of this 

model is examined in the following sections. 

 

As discussed above, the scaling approach can be utilized to account for the 

increased plastic deformation of concrete resulting from confinement. Yu et 

al. (2010a) assessed the capability of plasticity models of this type. In their 

study, D-P type models with scaled hardening variable-equivalent plastic 

strain relationships based on the confining pressure were assessed using 

experimental results for unconfined concrete, actively-confined concrete 

and FRP-confined concrete. Three important conclusions were drawn based 

on the assessment, which will be discussed in detail in Chapter 8. For this 

reason, only plasticity models with the equivalent plastic strain scaled to the 

hydrostatic pressure (Malvar et al. 1997; Wolf 2008) are discussed in this 

chapter. A new D-P type plasticity model employing the scaling technique 
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based on the hydrostatic pressure is proposed to illustrate the capability of 

the scaling approach in providing accurate predictions of confined concrete. 

This model is formulated by introducing modifications into an existing 

model proposed by Wolf (2008) and is calibrated with test results of 

actively-confined concrete. The model is then examined by comparing its 

predictions with test results of FRP-confined concrete. The advantages and 

limitations of this approach are also discussed. 

 

It should be noted that the new model is a simplified version of that 

proposed by Wolf (2008) by introducing significant simplifications 

primarily in the yield criterion. For instance, the complex loading surface 

employed in Wolf (2008) is replaced by a simple D-P type failure surface in 

the new model. This replacement has an effect on the predicted strength 

enhancement as a result of confinement. The failure surface employed in 

Wolf’s (2008) model implies a nonlinear relationship between the strength 

increment and the confining pressure, whereas the D-P type failure surface 

employed in the new model implies a linear relationship. The accuracy of 

this linear approximation is acceptable within a certain range of 

confinement ratios. In addition, the influence of the Lode angle on the 

failure surface is not considered in the new model. Therefore, the new 

model is only expected to be capable of providing accurate predictions for 

uniformly confined concrete. Uniform confinement is a specific case of 
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confinement as is found in confined circular concrete columns and is a 

simpler case than non-uniform confinement. If a constitutive model cannot 

even predict the response of concrete under uniform confinement, it is 

meaningless to examine its capacity for non-uniform confinement. With the 

above modifications, the most complex part of the new model is the 

hardening/softening rule, and most of the parameters requiring calibration 

are associated with the hardening/softening rule. Therefore, attention can be 

focused on this part to examine the capability of the scaling approach. 

4.2 PROPOSED CONSTITUTIVE MODEL 

4.2.1 Loading Surfaces 

Following Malvar et al. (1997) and Wolf (2008), the backbone of the 

proposed model consists of three distinct loading surfaces. These three 

surfaces correspond to the yield, peak and residual stress states of the 

concrete. They reduce to the yield, peak and residual stress states for 

concrete under uni-axial compression as shown in Fig. 4.1. The current 

loading surface located between two of these three surfaces can be 

determined using a so-called damage parameter (Malvar et al. 1997; Wolf 

2008). Equations defining these loading surfaces are assumed to have a D-P 

type shape in the proposed model (see Figs. 4.2 & 4.3) so that the 

differences between these equations are only due to the hardening/softening 

parameter k୬. Based on this simplification, the loading surface, f ୬, can be 
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expressed as  f ୬ ൌ tan θ Iଵ+ඥJଶ െ k୬      (4.1) 

where θ is the frictional angle, Iଵ is the first invariant of the stress tensor 

which can be defined in the stress space as  Iଵ ൌ σ୶ ൅ σ୷ ൅ σ୸      (4.2) 

and Jଶ is the second invariant of the deviatoric stress tensor which can be 

defined as  Jଶ ൌ ଵ଺ ቂ൫σ୶ െ σ୷൯ଶ ൅ ൫σ୷ െ σ୸൯ଶ ൅ ሺσ୸ െ σ୶ሻଶቃ ൅ τ୶୷ଶ ൅ τ୷୸ଶ ൅ τ୸୶ଶ (4.3) 

The parameter k୬ is defined as 

k୬ ൌ ൝k୬,୷୧ୣ୪ୢ ൅ β൫k୬,୮ୣୟ୩ െ k୬,୷୧ୣ୪ୢ൯        ψ ൏ ψ୮ୣୟ୩k୬,୮ୣୟ୩ ൅ β൫k୬,୰ୣୱ୧ୢ୳ୟ୪ െ k୬,୷୧ୣ୪ୢ൯    ψ ൒ ψ୮ୣୟ୩    (4.4) 

 

where k୬,୷୧ୣ୪ୢ , k୬,୮ୣୟ୩ , k୬,୮ୣୟ୩  are the values of parameter k୬  at the 

points of initial yielding, peak stress and residual stress respectively. The 

parameter ψ୮ୣୟ୩ defines the damage level when the failure surface (i.e. 

peak stress surface) is reached, and the parameter β is defined as a function 

of the so-called damage parameter ψ (Wolf 2008):  

β ൌ ൬ ψ
ψ౦౛౗ౡ൰κ eଵିቆ ψ

ψ౦౛౗ౡቇκ
      (4.5) 

Here, the parameter κ, controls the rate at which the failure surface travels 

from one loading surface to the next (Wolf 2008). 
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The value for ψ is integrated along the loading path of the material in order 

to obtain the current total damage level. The incremental damage dψ is 

defined as a scaled equivalent plastic strain increment dε୮ with respect to 

the hydrostatic pressure: 

 dψ ൌ ୢε౦׎ାαቆ Iభ√య౜ౙ౥′ ቇγ       (4.6) 

The parameter ׎, defines the accumulation of damage at very low levels of 

stress, and the parameters α, and γ reflect the effect of confinement on the 

damage accumulation of concrete. The effective plastic strain increment dε୮ is defined as  

dε୮ ൌ ටଶଷ dε୧୨୮dε୧୨୮      (4.7) 

 

In Eq. (4.6), the scaling technique is employed, in which the incremental 

damage dψ is defined as a scaled variable of the effective plastic strain 

increment dε୮. The denominator of Eq. (4.6 ) is defined as a function of the 

hydrostatic stress (Iଵ) to scale the effective plastic strain increment dε୮. 

4.2.2 Flow Rule 

It has been demonstrated (e.g. Chan and Han 2007) that the use of an 

associated flow rule for concrete results in unrealistic predictions for plastic 

volume expansions which exceed those from tests. Hence, a non-associated 

flow rule is employed in the present constitutive model. There are several 
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different ways to define a non-associated flow rule. One typical approach is 

to use a potential surface similar to the yield surface but with a dilation 

angle θଵ different from the frictional angle θ. Another approach is that 

suggested by Han and Chen (1985) in which the flow rule is defined as a 

combination of the associated flow rule and the Prandtl-Reuss flow rule 

(Malvar et al. 1997; Wolf 2008) (i.e. the Jଶ flow rule) which does not allow 

for any plastic volume expansion. The latter approach is adopted in the 

present model. The potential surface, G୬, is therefore defined as follows:  G୬ ൌ Ωtan θ Iଵ+ඥJଶ      (4.8) 

where Ω  is a parameter controlling the amount of plastic volume 

expansion and lies between 0 and 1. In the extreme case when Ω is equal 

to 0, the Jଶ flow rule, which is a non-associated flow rule for Eq. (4.1), is 

utilized; when Ω is equal to 1, the associated flow rule is applied.  

4.3 CALIBRATION OF PARAMETERS  

The proposed constitutive model was implemented in ABAQUS by writing 

a user-defined material subroutine (UMAT). A total of eleven parameters are 

used in the proposed constitutive model for the definition of the behaviour 

of concrete. Four of these eleven parameters are basic to concrete and can 

be directly determined from material properties of unconfined concrete. 

These parameters include the unconfined concrete strength fୡ୭′ , the axial 

strain at unconfined concrete strength εୡ୭, the elastic modulus of concrete 
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E, and the Poisson ratio μ. The remaining seven parameters need to be 

identified from experimental results of actively-confined concrete. These 

parameters are θ, ,Ω,׎ α, γ, κ  and ψ୮ୣୟ୩ . The process for determining 

these seven parameters is discussed below. 

 

In the finite element modelling of actively-confined concrete under uniform 

confinement, the concrete in a circular cylindrical specimen in a standard 

equal tri-axial compression test can be modeled using a single cubic element. 

This is because the stress state at any material point within such a uniformly 

confined specimen is identical, and a single-element finite element model is 

sufficient to reflect the stress-strain behaviour of the concrete. In the present 

study, symmetry was exploited so that only one-eighth of a small cube was 

included in the finite element model with symmetric boundary conditions 

imposed on the three symmetry planes; these planes are perpendicular to 

each other and the displacements perpendicular to each plane were set to be 

zero. The use of symmetric conditions is not essential but makes it easier for 

the application of loading. The same pressure was applied on the two lateral 

surfaces to represent the hydrostatic confining pressure acting on the surface 

of the concrete specimen; displacements were then imposed on the top 

surface of the cubic element to simulate compressive loading. The finite 

element model is illustrated in Fig. 4.4.  
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As discussed earlier, the failure surface of the model is of the D-P type. The 

value of parameter θ  can be determined from the confinement 

effectiveness factor kଵ using equations developed in previous research (Yu 

et al. 2010a):  

θ ൌ tanିଵ ୩భିଵඥଷሺ୩భାଶሻ      (4.9) 

The least-squares method was utilized in the process of parameter 

calibration to obtain the value of kଵ from test data. 

 

The parameters ׎ and γ control incremental damage dψ (see Eq. 4.6) as 

affected by confinement. Wolf (2008) suggested a constant value of 0.5 for ׎, which is employed as the default value in the proposed model. For γ, 

Wolf (2008) adopted the following power law relationship: 

εౙౙ
εౙ౥ ൌ aW ቀ Iభ√ଷ୤ౙ౥′ ቁγ ൅ bW                   (4.10) 

where aW and bW are constants used to fit the test data of axial strains at 

peak stress εୡୡ, and an estimated value of 1.720 was used for γ. However, 

it was found in the present study that this γ value is less than optimal. 

Therefore, this parameter together with four other parameters (i.e. 

Ω, α, κ,ψ୮ୣୟ୩), were identified via a simple trial-and-error procedure of 

fitting the experimental results of actively-confined concrete. 

 

Using the above process of parameter calibration, the test results for 
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actively-confined concrete reported by Candappa et al. (1999) were used for 

the determination of the eleven material parameters; that is, these test results 

were taken as the benchmark results. This set of tests was chosen because of 

their consistent stress-strain curves and the large range of strain values 

covered by these experiments. These test specimens had an unconfined 

concrete strength of 41.9 MPa and were subjected to three different 

confining pressures (4 MPa, 8 MPa and 12 MPa).  

 

Axial stresses of Candappa et al.’s (1999) specimens are shown against their 

axial strains and lateral strains in Figure 4.5. In this figure, compressive 

stresses/strains are taken to be positive while tensile stresses/strains are 

taken to be negative. Indeed, these definitions are adopted throughout this 

thesis for concrete unless otherwise specified. Parameters fୡ୭′ , εୡ୭, E, and 

μ  were obtained from the control specimens (unconfined concrete 

specimens), and their values are shown in the same Fig. 4.5. Based on the 

experimental peak stresses of confined specimens, kଵ was found to be 5.3. 

Using Eq. (4.9), the value of θ was found to be 0.3267. The other five 

parameters except ׎, for which the default value of 0.5 was used, were 

adjusted to fit the axial stress-strain curves and axial stress-lateral strain 

curves; the deduced value are also given in Fig. 4.5. As interaction exists 

among these five parameters, a trial-and-error process was employed to 

determine these parameters. The predicted stress-strain curves using the 
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values of parameters so identified are compared with the experimental 

results in Fig. 4.5. The numerical results are seen to be in close agreement 

with the experimental results. This agreement, achieved consistently for 

three different confining pressures using a single set of parameters, indicates 

that the proposed model can capture the major characteristic of concrete 

under uniform active confinement.  

4.4 COMPARISON WITH TEST RESULTS OF FRP-CONFINED 

CONCRETE 

Experimental results of FRP-confined circular concrete cylinders reported 

by Lam and Teng (2004) are compared with the numerical results obtained 

using the proposed constitutive model in this section. Similar to the case of 

actively-confined concrete, the concrete in this case is also taken to be under 

uniform confinement so that the one-element finite element model was still 

applicable. The same symmetric conditions were also imposed on the three 

symmetric planes as explained earlier. The two lateral surfaces, which were 

subjected to hydrostatic pressure in the case of actively-confined concrete, 

were tied to 4-node membrane elements, which were used to model the FRP 

jacket. The difference between FRP confinement and active confinement is 

that the confining pressure provided by the FRP jacket is related to the 

lateral deformation of the concrete core. In the finite element model, the 

FRP jacket was taken as a linear elastic material, which can thus provide a 
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gradually increasing confining pressure. An equivalent thickness tୣ୯ 

calculated from the following equation was specified for the membrane 

element to provide an in-plane stiffness that is identical to the confining 

stiffness equal to that of the cylindrical jacket:  tୣ୯ ൌ ଵR tFRP       (4.11) 

Here, R is the radius of the concrete core and tFRP is the original thickness 

of the FRP jacket. 

 

In the process of parameter calibration described above, test results for both 

unconfined and actively-confined concrete were required for identifying the 

values of all the unknown parameters. To investigate the predictive 

capability of the proposed constitutive model, it is desirable to have a series 

of tests that include unconfined concrete, actively-confined concrete and 

passively-confined concrete. The first two types of experimental result can 

be used to determine all the material parameters while the last type of 

experimental results can be used to check the accuracy of the constitutive 

model in providing predictions for FRP-confined concrete. This is because 

the predictions for FRP-confined concrete in this case are independent of 

the process of parameter calibration. To the best of the author’s knowledge, 

the only series of tests which included all three types of experiments were 

conducted by Cetisli and Naito (2009). In their experiments, confining 

pressures which varied linearly with the lateral deformation were provided 
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by a tri-axial cell to mimic FRP confinement. Unfortunately, their 

experimental results of passively-confined concrete showed significantly 

larger variations than those of FRP-confined concrete and are therefore 

unsuitable for use as verification data for the proposed constitutive model. 

For instance, Cetisli and Naito (2009) observed smaller ultimate axial 

strains at larger confinement stiffnesses, which is contrary to experimental 

observations of FRP-confined concrete [e.g. Lam and Teng (2004)].  

 

Based on the above considerations, test results of FRP-confined concrete 

were employed to assess the capability of the proposed constitutive model. 

In the absence of objective tests (test series including actively-confined 

concrete) to determine the values of the material parameters, these material 

parameters were estimated by fitting the stress-strain curves (using 

least-square method) generated by an empirical model developed for 

actively-confined concrete. The analysis-oriented stress-strain model 

developed by Jiang and Teng (2007) has been shown by the authors to 

provide close predictions for FRP-confined concrete, so the 

actively-confined concrete model employed as the base model in Jiang and 

Teng (2007) model was adopted in the present study to identify the 

parameters for the proposed constitutive model which are mainly related to 

the behaviour of actively-confined concrete. Other parameters which are 

mainly related to the dilation characteristics were determined by fitting the 
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experimental results of FRP-confined concrete. Similar approaches of 

parameter calibration were also adopted in identifying parameters for other 

constitutive models considered in Chapters 5 & 6. 

 

In the proposed constitutive model, the most significant parameter related to 

the active-confinement model is the parameter θ.  By adopting the value 

of 3.5 for the confinement effectiveness factor as given in Teng et al.’s 

(2007) model in Eq. (4.9), the value of θ is found to be 0.2624. Other 

parameters were then determined by fitting the axial strains at peak stress of 

control specimens and the experimental stress-strain curves of 

FRP-confined specimens using a trial-and-error process. From this point of 

view, the assumption of path-independence is only partially fulfilled in the 

process of parameter calibration for the current constitutive model as the 

test results of FRP-confined concrete are employed in the determination of 

some of the parameters (e.g. Ω). 

 

Fig. 4.6 shows the test results of all six FRP-confined concrete specimens 

reported by Lam et al. (2006). These six specimens are used in the present 

thesis as the benchmark specimens for FRP-confined circular concrete 

cylinders; that is, unless otherwise specified, the test results of 

FRP-confined concrete cylinders employed in comparisons with numerical 

predictions are the results of these six specimens. The predicted stress-strain 
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curves in Fig. 4.6 were obtained by using the proposed constitutive model 

with calibrated parameters. In analysis, the finite element model was loaded 

to the point at which the experimental hoop rupture strain of the FRP jacket 

was reached. The comparisons show that the finite element results with the 

same set of calibrated parameters provide close predictions for the 

specimens with a confinement stiffness equal to 1086 MPa, but deviate 

significantly from the experimental results for the specimens with a 

confinement stiffness equal to 543 MPa. Here, the confinement stiffness is 

defined as EFRP୲FRPR , where EFRP is the elastic modulus of FRP. For the 

latter specimens (Fig. 4.6a), the ultimate axial strain is significantly 

overestimated. This overestimation indicates that the corresponding lateral 

strain and hence the confining pressure at a given axial strain are 

significantly underestimated. This comparison shows that the constitutive 

model can only provide accurate prediction for specimens with specific 

confinement stiffness, i.e. the proposed constitutive model cannot reflect the 

effect of confinement stiffness on the stress-strain response of 

passively-confined concrete. 

4.5 CONCLUSIONS 

This chapter has been concerned with the performance and capability of a 

D-P type plasticity model based on the equivalent plastic strain scaling 

approach. For the assessment purpose, a new simple D-P type plasticity 
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model was proposed to highlight the effect of the strain hardening/softening 

rule on predictions. From the performance study of the new D-P type model 

presented in this chapter, a number of conclusions can be reached. These 

conclusions are summarized as follows: 

 

• For actively-confined concrete, the proposed model can provide 

accurate predictions for the stress-strain behaviour of concrete at 

different confining pressures.  

• For FRP-confined concrete, the proposed model is not successful in 

predicting the stress-strain behaviour of concrete unless the confining 

stiffness happens to be at a specific level. The incorrect predictions are 

due to the incapability of the proposed model in capturing the dilation 

behaviour of FRP-confined concrete.  

• Although the scaling approach can correctly predict the increased 

deformation capacity of actively-confined concrete, no simple method 

exists for determining the values of the material parameters except for 

the material parameter θ. As interaction exists among the material 

parameters controlling the scaling function and the flow rule, they need 

to be determined through a trial-and-error process. It is also complicated 

to adjust these parameters to provide accurate predictions for 

FRP-confined concrete under different confining stiffness. 
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Figure 4.1 Loading surface locations for unconfined concrete 

 
 

 
Figure 4.2 Yield surfaces of the D-P type model in the deviatoric plane 

 
 
 
 
 
 



149 
 

 

Figure 4.3 Yield surfaces of the D-P type model in the Iଵ െ ඥJଶ plane 
 
 
 

 
Figure 4.4 Displacement boundary conditions for a cube element 
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Figure 4.5 Finite element predictions based on the new D-P type model 

versus test results of actively-confined concrete from Candappa et al.(1999) 
 

 

 
(a) FRP-confined concrete with a confining stiffness equal to 543 MPa 

 

0

20

40

60

80

100

120

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Test

FE model

Strain

A
xi

al
 st

re
ss

 (
M

Pa
)

f'co=41.9MPa
εco=0.0024
E=30.6GPa
μ=0.2

4MPa

8MPa

12MPa

θ=0.3388
Ф=0.5
Ω=0.5
α=15
γ=2.0
κ=0.5
ψpeak=0.00037

0

10

20

30

40

50

60

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Test

FE model

Strain

A
xi

al
 st

re
ss

 (M
Pa

)

f'co = 41.1 MPa                                                       
εco = 0.00256                                                                    
E = 29.5 GPa 
μ=0.2

Confining stiffness: 
543MPa

θ=0.2624
Ф=0.5
Ω=0.35
α=15
γ=2.2
κ=0.5
ψpeak=0.00035



151 
 

   
(b) FRP-confined concrete with a confining stiffness equal to 1086 MPa 

Figure 4.6 Finite element results based on the new D-P type model versus 
test results of FRP-confined concrete from Lam et al. (2006)  
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CHAPTER 5  

PLASTICITY MODEL CONTROLLED BY THE 

PLASTIC VOLUMETRIC STRAIN 

5.1 INTRODUCTION 

The literature review given in Chapter 2 indicates that two approaches have 

been suggested by researchers (e.g. Imran and Pantazopoulou 2001; Barros 

2001; Grassl et al. 2002; Johansson and Akesson 2002) to improve the 

capability of plasticity-based models in predicting the increased 

deformation capacity of concrete due to confinement. The first approach (i.e. 

the scaling approach) has been discussed in Chapter 4. In the present 

chapter, the performance of a constitutive model based on the second 

approach is discussed.  

 

As mentioned in Section 4.1, Papanikolaou and Kappos’s (2007) model 

employs the plastic volumetric strain, ε୴୮ , as the hardening/softening 

variable and has the capability of providing accurate predictions for 

actively-confined concrete with a simple process of parameter calibration. 

In the present study, Papanikolaou and Kappos’s (2007) model was 

implemented into ABAQUS as a UMAT subroutine. The parameters of the 

constitutive model were calibrated from the experimental results reported by 

Candappa et al. (1999) for actively-confined concrete and an empirical 
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active confinement model (Teng et al. 2007). The predictions of 

Papanikolaou and Kappos’s (2007) model for FRP-confined concrete were 

then compared with test results. 

5.2 PAPANIKOLAOU AND KAPPOS’ (2007) MODEL  

5.2.1 Loading Surface 

Papanikolaou and Kappos (2007) developed a plasticity model to study the 

response of confined concrete. In this model, the loading surface is based on 

the three-parameter failure criterion proposed by Menetrey and Willam 

(1995), which is defined in the Haigh-Westergaard coordinates ሺξ, ρ, θሻ 

(these three coordinates have been defined in Chapter 2) as follows: 

f ୮ሺξ, ρ, θሻ ൌ ቀඥ3/2 ρ୦ሺκሻ୤′ౙ౥ቁଶ ൅ ݉ ቀ ρ√଺୦ሺκሻ୤ౙ౥′ rሺθ, eሻ ൅ ξ√ଷ୦ሺκሻ୤ౙ౥′ ቁ െ cሺκሻ(5.1) 

where m is a cohesion parameter of the concrete which is given by 

݉ ൌ 3 ൫୦ሺκሻ୤ౙ౥′ ൯మିሺ୤౪ሻమ୦ሺκሻ୤ౙ౥′ ୤౪ ୣୣାଵ      (5.2) 

and rሺθ, eሻ  is an elliptic function used for the description of the 

out-of-roundness of the deviatoric section rሺθ, eሻ ൌ ସ൫ଵିୣమ൯ୡ୭ୱమθାሺଶୣିଵሻమଶሺଵିୣమሻୡ୭ୱθାሺଶୣିଵሻሾସሺଵିୣమሻୡ୭ୱమθାହୣమିସୣሿభ/మ   (5.3) 

In the above three equations, f୲ is the tensile strength of concrete, and e is 

the eccentricity coefficient. Parameters hሺκሻ and cሺκሻ are the hardening 

and the softening functions of the hardening/softening rule used to 

determine the instantaneous shape and location of the loading surface, 
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which are dependent on the value of the hardening/softening parameterሺκሻ. 

The parameter κ in this model is set equal to the plastic volumetric strain 

ε୴୮ as suggested by Grassl et al.(2002): dκ ൌ dε୴୮ ൌ dεଵ୮ ൅ dεଶ୮ ൅ dεଷ୮     (5.4) 

where ε୧୮(i=1-3) is the principal plastic strain in the ith direction. 

 

Eq. (5.3) indicates that the value of rሺθ, eሻ is controlled by parameter e 

which has a recommended value of 0.52 (Menetrey and Willam 1995) 

calculated from a default equal biaxial concrete strength fୠୡ′ ൌ 1.14fୡ୭′ . 

Moreover, Eqs. (5.1) and (5.3) show that the effect of the Lode angle has 

been considered in the loading surface. This feature is included mainly to 

improve the capability of the loading surface to consider the difference 

between uniform confinement and non-uniform confinement. For concrete 

under uniform confinement, in which the Lode angle is equal to π/3 (on the 

compressive meridian), r(θ,e) is equal to 1.0, which corresponds to the most 

effective confinement effect. For concrete under equal bi-axial compression, 

in which the Lode angle is equal to zero (on the tensile meridian and is a 

typical non-uniform confinement case), r(θ,e) is equal to 1/e, which 

corresponds to the most ineffective confinement effect in the compression 

zone. The loading surface thus has a non-circular shape in the deviatoric 

plane (see Fig. 5.1). In addition, the effects of parameters h and c on the 

tensile meridian and the compressive meridian of the loading surface are 
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given in Figs. 5.2 and 5.3. 

 

For the hardening parameter hሺκሻ, an elliptic-type function is adopted, 

which was originally proposed by Cervenka et al. (1998): 

hሺκሻ ൌ ۔ە
h଴ۓ ൅ ሺ1 െ h଴ሻඨ1 െ ൬ቀε୴,୲୮ െ ε୴୮ቁ /ε୴,୲୮ ൰ଶ , κ ൑ ε୴,୲୮

1, κ ൐ ୴,୲୮ߝ   (5.5) 

where h଴ is a constant that defines the onset of yielding and ε୴,୲୮  is the 

plastic volumetric strain at the uni-axial concrete strength. The following 

function originally proposed by Van Gysel and Taerwe (1996) is adopted for 

the softening parameter cሺκሻ for uni-axial compression: 

cሺκሻ ൌ ቐ 1, κ ൑ ε୴,୲୮൬1/ ቀ1 ൅ ൫ሺnଵ െ 1ሻ/ሺnଶ െ 1ሻ൯ଶቁ൰ , κ ൐ ୴,୲୮ߝ    (5.6) 

 
where: nଵ ൌ ε୴୮/ε୴,୲୮        (5.7) nଶ ൌ ൫ε୴,୲୮ ൅ t୮൯/ε୴,୲୮       (5.8) 

and t୮ is a constant which controls the slope of the softening function. 

5.2.2 Failure Surface 

Eqs. (5.1) and (5.5-5.8) indicate that when the hardening/softening 

variable κ is equal to ε୴,୲୮ , both the hardening parameter hሺκሻ and the 

softening parameter cሺκሻ are equal to unity. The loading surface function 
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described by Eq. (5.1) hence reaches its failure state and reduces to 

f ୮ሺξ, ρ, θሻ ൌ ቀඥ3/2 ρ୤ౙ౥′ ቁଶ ൅ m ቀ ρ√଺୤ౙ౥′ rሺθ, eሻ ൅ ξ√ଷ୤ౙ౥′ ቁ െ 1  (5.9) 

Eq. (5.9) is the three-parameter failure criterion originally proposed by 

Menetrey and William (1995). If only uniform confinement is taken into 

consideration, Eq. (5.9) further reduces to 

୤ౙౙכ୤ౙ౥′ ൌ ୤ౢ୤ౙ౥′ ൅ ට1 ൅ m ୤ౢ୤ౙ౥′      (5.10) 

where f୪  is the confining pressure, and fୡୡכ  is the concrete strength under 

confining pressure f୪ . Eq. (5.10) is in the form of the Hoek and Brown 

failure criterion and can be used in the calibration of the parameter m.  

5.2.3 Flow Rule 

A non-associated flow rule is employed in Papanikolaou and Kappos’s 

(2007) model. In the Haigh-Westergaard coordinates, the plastic potential 

function is defined as follows: g ൌ A ቀ ρ୩√ୡ୤ౙ౥′ ቁ୬ ൅ ቂC ൅ ଵଶ ሺB െ Cሻሺ1 െ cos3θሻቃ ρ୩√ୡ୤ౙ౥′ ൅ ξ୩√ୡ୤ౙ౥′  (5.11) 

where A, B and C are three parameters controlling the shape of the plastic 

potential function in the stress space. Calibration of these parameters for the 

flow rule is based on the assumption that both the incremental plastic strain 

vector and the total plastic strain vector have identical inclinations for stress 

states within the failure surface. The detailed procedure of parameter 

calibration is explained below.  
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5.3 CALIBRATION 

The following steps were adopted in the process of parameter calibration: 

a. Determine the value of parameter m to fit the peak stress of 

actively-confined concrete fୡୡכ  and calculate the value of artificial 

concrete tensile strength f୲; 
b. Calculate the values of A, B, C which control the axial strain at peak 

stress; 

c. Adjust the value of ε୴,୲୮  to fit the dilation behaviour of 

confined-concrete; 

d. Adjust the value of t୮ to fit the slope of the axial stress-strain curves. 

 

The detailed process of calibration for a selected set of experiments is as 

follows. First, using the test data of peak stresses under different confining 

pressures and considering Eq. (5.10), the value of m can be determined by 

using the Least Squares Method. Then, the value of f୲ can be calculated 

from Eq. (5.2) once the value of m is known. As this study is focused on the 

compressive behaviour of confined concrete, an artificial f୲  value was 

adopted to obtain the required value of m from a regression of experimental 

results. Here, f୲ does not have a direct physical meaning, and it is just 

employed to reflect the corresponding value of m. Actually, if m is directly 

adopted as a parameter, it is unnecessary to calculate the value of f୲. 
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Therefore, f୲ is just retained as a parameter so that the model has the same 

parameters as those suggested by Papanikolaou and Kappos (2007). After 

the value of f୲ is determined, the values of A, B and C can be calculated 

based on the assumption that the inclination of the total plastic strain is 

equal to that of the incremental plastic strain (Grassl et al. 2002). This 

assumption means that 

ρ′

ξ′
ൌ െ ୢξୢρ       (5.12) 

where ξ′ and ρ′ are the hydrostatic and deviatoric lengths of the total 

plastic strain vector, respectively. The inclination Ψ (i.e. gradient) of the 

plastic strain vector of the plastic potential surface on the compressive 

meridian with respect to the deviatoric axis can be expressed as: 

Ψ ൌ െ ୢξୢρ ൌ nA ቀ ρ୤ౙ౥′ ቁ୬ିଵ
+B     (5.13) 

Ψଵ, and Ψଶ are the inclinations of the plastic strain vector, and ρଵ and ρଶ 

are the deviatoric lengths of the stress vector under the states of uni-axial 

compression and equal tri-axial compression, respectively. Substituting ρଵ 

and ρଶ into Eq. (5.13) leads to 

Ψଵ ൌ nA ቀ ρభ୤ౙ౥′ ቁ୬ିଵ
+B      (5.14) 

Ψଶ ൌ nA ቀ ρమ୤ౙ౥′ ቁ୬ିଵ
+B      (5.15) 

Based on the previous assumption of identical inclinations, Ψ can also be 

determined from the total plastic strain vector: 
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Ψ ൌ ρ′

ξ′
ൌ ට൫εభ౦ିεమ౦൯మା൫εమ౦ିεయ౦൯మା൫εయ౦ିεభ౦൯మ

εభ౦ାεమ౦ାεయ౦     (5.16) 

 

The plastic strains for the uni-axial stress state and the equal tri-axial stress 

state can be calculated by the following steps described below. The axial 

plastic strain component is equal to the axial total strain component minus 

the elastic part. For the uni-axial stress state, the components of the 

principal plastic strain vector are: 

εଷ୮ ൌ εୡ୭ െ ୤ౙ౥′E        (5.17) 

The lateral plastic strain is calculated as 

εଵ୮ ൌ εଶ୮ ൌ ε౬,౪౦ ିεయ౦ଶ        (5.18) 

For the equal tri-axial stress state, the components of the principal plastic 

strain vector are: 

εଷ୮ ൌ εୡୡכ െ ቀ୤ౙౙכ ିଶμ୤ౢ ቁE       (5.19) 

εଵ୮ ൌ εଶ୮ ൌ ε౬,౪౦ ିεయ౦ଶ        (5.20) 

As mentioned earlier, εୡୡכ  is the axial strain at peak stress for concrete in an 

equal tri-axial stress state (i.e. active confinement). It was found by 

Papanikolaou and Kappos (2007) that a linear relationship between the 

confinement level ൫f୪ /fୡୡכ ൯and the strain amplification ൫εୡୡכ /εୡ୭൯ can be 

obtained as long as the parameter n is equal to 3.0. Using test data of axial 

strains at peak stress under different confining pressures from the selected 
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experimental results, a linear relationship was determined as follows: 

εౙౙכ
εౙ౥ ൌ 1 ൅ kଶ ୤ౢ୤ౙ౥כ        (5.21) 

where kଶ represents the confinement effectiveness factor for axial strains 

at peak stress. 

 

Substituting Eqs. (5.17-5.21) into Eq. (5.16), the values of Ψଵ, and Ψଶ can 

be obtained based on the assumption of the total plastic strain vector. The 

values of A and B can then be calculated as A ൌ ஏభିஏమ୬൭ቆ ρభ౜ౙ౥′ ቇ౤షభିቆ ρమ౜ౙ౥′ ቇ౤షభ൱     (5.22) 

B ൌ Ψଵ െ nA ቀ ρభ୤ౙ౥′ ቁ୬ିଵ
     (5.23) 

The coefficient C can be calibrated based on results of concrete under equal 

biaxial stress-states. Ψଷ and ρଷ are the inclination of the plastic strain 

vector and the deviatoric length of the stress vector at equal biaxial 

compression, respectively. The inclination under equal biaxial compression, Ψଷ , based on the incremental principal plastic strain vector can be 

calculated as 

Ψଷ ൌ nA ቀ ρయ୤ౙ౥′ ቁ୬ିଵ
+C      (5.24) 

The components of the total principal plastic strain vector under equal 

biaxial compression are 

εଷ୮ ൌ εଶ୮ ൌ εୠୡ െ ୤ౘౙሺଵିμሻE      (5.25) 
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εଵ୮ ൌ ε୴,୲୮ െ 2εଷ୮      (5.26) 

where fୠୡ and εୠୡ are the concrete strength and the corresponding axial 

strain. The value of fୠୡ can be calculated from Eq. (5.9) once the values of 

m and e are determined. The value of εୠୡ is assumed to have the same 

amplification as the value of fୠୡ: 

εౘౙ
εౙ౥ ൌ ୤ౘౙ୤ౙ౥′        (5.27) 

By solving Eq. (5.24), the following value for coefficient C is derived: 

C ൌ Ψଷ െ nA ቀ ρయ୤ౙ౥′ ቁ୬ିଵ
     (5.28) 

In the above process of computation, the value of ε୴,୲୮  is required in Eqs. 

(5.18), (5.20) and (5.26) to calculate the plastic potential coefficients (i.e. A, 

B and C). The initial value of ε୴,୲୮  is assumed to be equal to fୡ୭′ ሺ1 െ 2μሻ/E, 

which means that the volumetric strain at peak stress under uni-axial 

compression, equal biaxial compression and equal tri-axial compression are 

all equal to zero. This value can be changed to fit the overall dilation 

behaviour of the full-range stress-strain response of confined concrete. After 

the values of A, B and C are determined, the value of t୮ can be found by 

fitting the slope of the post-peak stress-strain curve. A Matlab Program was 

developed to calculate the values of A, B, and C based on the process 

described above. The code of this program is given as Appendix A1 of this 

thesis. 
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The present constitutive model was also implemented into ABAQUS by 

writing a user-defined material subroutine (UMAT). Finite element models 

using this constitutive model were then employed to predict the response of 

confined concrete. Test results of actively-confined concrete reported by 

Candappa et al. (1999) were once again used as benchmark results to verify 

the validity of the constitutive model.  

 

The values of various parameters were determined from Candappa et al.’s 

(1999) test data as follows. First, from the test data of peak stresses under 

different confining pressures, the value of m was found to be 12.95 using 

the least squares method, and the value of f୲ was then calculated to be 3.3 

MPa. Second, from the test data of axial strains at peak stress, the value of kଶ was found to be 21.8. The value of ε୴,୲୮  was modified from the initial 

value of 0.00082 to 0.0025 to fit the overall dilation behaviour of 

confined-concrete. Finally, using Eqs. (5.22), (5.23) and (5.28), the values 

of A, B, and C were determined to be 4.776, -6.179, and -3.923, respectively. 

The finite element predictions obtained with the present calibrated 

constitutive model are compared with the test results in Fig. 5.4. The values 

of the model parameters are also shown in the figures. These figures show 

that the predicted stress-strain curves are in close agreement with the test 

results. 
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Finally, the present constitutive model was utilized to predict the response 

of FRP-confined concrete as was done using the modified DP type model 

presented earlier in Chapter 4. The same finite element model as described 

in Section 4.3 for FRP-confined concrete was employed with the present 

constitutive model replacing the D-P type plasticity model. The 

active-confinement model used in Teng et al. (2007) was adopted to identify 

values of parameters for the concrete constitutive model. Here, Teng et al.’s 

(2007) model instead of Jiang and Teng’s (2007) model is used as it 

employs a linear-form equation to predict the axial strain at the peak axial 

stress of actively confined concrete. This linear-form equation can be 

reproduced by the present constitutive model when its parameter n is equal 

to 3. In Teng et al.’s (2007) model, the following equations were adopted for 

the peak stress and the axial strain at peak stress: 

୤ౙౙכ୤ౙ౥′ ൌ 1 ൅ 3.5 ୤ౢ୤ౙ౥′            (5.29) 

εౙౙכ
εౙ౥ ൌ 1 ൅ 17.5 ୤ౢ୤ౙ౥כ       (5.30) 

Eq. (5.29) is in a form different from that of Eq. (5.10), so it cannot be 

directly employed to determine the value of m. A least squares method was 

adopted to determine the value of m which can satisfy the least squares 

approximation between these two equations within certain range of 

confinement levels. This range was selected as 0~0.25 which is a common 

definition for the range of low confinement (Attard and Setunge 2002). 
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Based on this additional assumption, the value of m for FRP-confined 

concrete was determined to be 6.13 as shown in Fig. 5.5. 

 

After the value of m was determined, Eq. (5.30) and the initial value of f′ୡ୭ሺ1 െ 2μሻ/E for ε୴,୲୮  were used to determine the values of A, B and C. 

The test results of Lam et al. (2006) were selected as the benchmark results 

for comparison. Two confinement stiffnesses, 543 MPa and 1086 MPa, 

were once again considered in the comparison. Fig. 5.6b shows that for the 

higher confinement stiffness, the finite element model provides close 

predictions for stress-strain curves including both the axial stress-strain 

curves and the axial stress-lateral strain curves. However, Fig. 5.6a shows 

that for the lower confinement stiffness, the finite element model only 

provides close predictions for the axial stress-lateral strain curve. The axial 

strain can be observed from Fig. 5.6a of being overestimated so that the 

axial stress- strain curve is still underestimated although the axial stress at a 

given lateral strain is close to the test result.  

 

To refine the predictions of the finite element model, the parameters which 

control the dilation characteristics of the constitutive model need to be 

modified to fit the experimental results more closely. As discussed earlier, 

the most important parameter that controls the dilation characteristics is ε୴,୲୮ . 

This parameter needs to be revised from the initial assumed value to a new 
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value so as to predict the test result of FRP-confined concrete with lower 

confinement stiffness accurately. As ε୴,୲୮  also influences the slope the 

post-peak branch of the stress-strain curve, the parameter t୮ also needs to 

be revised to remedy the change induced by the revised value for ε୴,୲୮ . The 

need for these possible revisions means that in the case of FRP confinement, 

the values of ε୴,୲୮  and t୮ can no longer be taken as constant for different 

confinement stiffnesses; instead, their values need to vary with the 

confinement stiffness. The behaviour of the finite element model with the 

revised parameter values is shown in Fig. 5.7. This figure shows that once 

lateral dilation was properly predicted, the constitutive model with revised 

value of ε୴,୲୮  provided comparatively more accurate predictions for 

stress-strain curves of weakly-confined concrete than that with default value. 

Although the ultimate state of the FRP-confined concrete was adequately 

predicted, difference still existed between the predicted result and the 

experimental results. This difference is reflected in the axial stress before 

the ultimate axial strain. In this range, the lateral strain at a given axial 

strain tends to be overestimated (see the left part of Fig. 5.7) resulting in an 

overestimated axial stress. It can be expected that using a gradually 

increased ε୴,୲୮  can provide more accurate prediction. However, this 

modification leads to a much more complex constitutive model and is not 

the major concern in the present study.    
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5.4 CONCLUSIONS 

This chapter has been concerned with the performance of Papanikolaou and 

Kappos’s (2007) model on actively confined concrete and FRP-confined 

concrete. As Papanikolaou and Kappos’s (2007) model is a relatively new 

constitutive model and is not available in existing commercial software, this 

model was first implemented into ABAQUS as a UMAT subroutine. Then, 

this UMAT subroutine was employed in finite element models for 

simulating confined concrete. The results of these finite element models 

were utilized for evaluating the performance of actively confined concrete 

and FRP-confined concrete. 

  

Twelve parameters are employed in this model for describing the behaviour 

of concrete under confinement. Compared to the D-P type model based on 

the scaling approach discussed in Chapter 4, this model uses a more 

complex loading surface and a flow rule which can account for the effect of 

the Lode angle on the confinement effect. A major advantage of this model 

is that each parameter can be determined using a relatively simple process 

which allows the role of each parameter to be properly considered. 

  

This model can provide accurate predictions for the stress-strain behaviour 

of actively-confined concrete under different confining pressures. For 

FRP-confined concrete, the model with a constant value for ε୴,୲୮  is 
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unsuccessful in predicting the stress-strain behaviour of concrete confined 

with FRP jackets of different confining stiffnesses although the predictions 

are accurate for a certain confining stiffness. For this model to provide close 

predictions for FRP-confined concrete over a wide range of confining 

stiffnesses, the value of ε୴,୲୮  needs to vary with the confining stiffness. 

 

In summary, the discussions presented in Chapter 4 and this chapter show 

that plasticity-based constitutive models for concrete that employ either the 

scaling technique or the plastic volumetric strain approach can both provide 

accurate predictions for actively-confined concrete, but improvements are 

still needed before they can deliver accurate predictions for FRP-confined 

concrete. It has been found that refinement of the hardening/softening rule 

has an insignificant effect on the prediction of lateral deformation. 
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Figure 5.1 Yield surfaces of Papanikolaou and Kappos (2007)’s model in 

the deviatoric plane 
 

 

 
Figure 5.2 Effect of parameter k on the yield surfaces of Papanikolaou and 

Kappos’s (2007) model 
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Figure 5.3 Influence of parameter c on the yield surfaces of Papanikolaou 

and Kappos’s (2007) model 
 

 

  
Figure 5.4 Comparison between finite element predictions and test results of 

Candappa et al. (1999) 
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Figure 5.5 Determination of m using the least squares approach 

 
 

  
(a) FRP-confined concrete with confining stiffness equal to 543 MPa 
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(b) FRP-confined concrete with confining stiffness equal to 1086 MPa 

Figure 5.6 Comparison between finite element results and test results of 
Lam et al. (2006) 

 
 

  
Figure 5.7 Comparison between finite element results from the refined 

model and test results of Lam et al. (2006) 
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CHAPTER 6  

PLASTIC-DAMAGE MODELS FOR CONFINED 

CONCRETE 

6.1 INTRODUCTION 

It has been concluded in Chapters 4 and 5 that a plasticity-based constitutive 

model for concrete, employing either the scaling technique or a novel 

hardening variable (e.g. the plastic volumetric strain) in the 

hardening/softening rule (referred to as the hardening rule for brevity), leads 

to accurate predictions of the behaviour of actively-confined concrete, but 

fails to capture the lateral deformation characteristics and hence the 

stress-strain behaviour of FRP-confined concrete. 

 

Elastic unloading is assumed in the theory of plasticity, which does not 

reflect the elastic stiffness degradation of concrete observed in laboratory 

experiments. In contrast, this stiffness degradation can be described using 

the theory of damage mechanics. Moreover, concrete exhibits considerable 

irreversible deformation which cannot be described by the theory of damage 

mechanics alone. That is, either plasticity or damage alone, cannot achieve a 

satisfactory description of the complex failure process of concrete which is 

characterized by both stiffness degradation and irreversible deformation. 

Consequently, plastic-damage models, which are based on a combination of 
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the flow theory of plasticity and the theory of damage mechanics, have 

emerged as a popular approach for the constitutive modelling of concrete. 

The combination of plasticity theory and damage mechanics is believed to 

be capable of closely representing most of the important features of concrete 

failure. This chapter is therefore concerned with the constitutive modelling 

of concrete using the plastic-damage (or damaged plasticity) approach. 

 

While the inclusion of damage in a constitutive model is for the simulation 

of the elastic stiffness reduction of concrete as deformation increases, it also 

affects the hardening rule employed in the plasticity part of a 

plastic-damage constitutive model. For instance, the softening behaviour of 

concrete in some plastic-damage models (e.g. Grassl and Jirasek 2006) is 

described as damage, so the hardening rule in the plasticity part only 

describes the hardening behaviour of concrete. This process overcomes the 

possible numerical difficulty which may be encountered when plasticity 

model was employed for simulating the strain-softening behaviour of 

concrete. Therefore, even if elastic stiffness reductions are not of major 

concern, a plastic-damage model may provide an attractive alternative 

approach for the modelling of concrete with strain-softening regime. This 

chapter is concerned with the exploration of this possibility in the modelling 

of confined concrete. 
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In formulating the hardening rule of the plasticity part of a plastic-damage 

model for confined concrete, the two techniques examined in Chapters 4 & 

5 (i.e. the scaling technique and the plastic volumetric strain technique) are 

still required to consider the increased ductility of concrete due to lateral 

confinement. Otherwise, the ascending branch of the concrete response 

which is controlled by the hardening rule of the plasticity part cannot be 

properly predicted. Based on the above discussion, it can be concluded that 

the contributions of these two parts (i.e. the hardening rule and the damage 

variable) in plastic-damage models should be properly formulated to 

accurately predict the increased deformation capacity of concrete under 

lateral confinement. 

 

Existing plastic-damage models are usually based on plasticity with 

isotropic hardening enriched by either isotropic (scalar) (e.g. Lubliner et al. 

1989) or anisotropic (vector) (Carol et al. 2001) damage. Compared to 

isotropic damage, an anisotropic damage model for concrete is more 

complex and is harder to combine with plasticity; in addition, its application 

in structural analysis is also not straightforward. Moreover, there are 

insufficient experimental data for verifying this type of damage models. 

Due to these limitations of an anisotropic damage model, the isotropic 

damage model has been widely used instead for combination with plasticity 

to develop plastic-damage models following various approaches. In the 
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present study, all considerations of concrete damage are limited to isotropic 

damage. 

 

Two approaches have been commonly employed in combining plasticity 

with damage in the existing literature. The first approach comprises the 

combination of plasticity based on nominal stresses with damage whose 

evolution is defined by the total or plastic strain (Lubliner et al. 1989; Imran 

and Pantazopoulou 2001). Here, the term “nominal stress” refers to a 

macro-level stress and is defined as a force divided by the total area acted 

upon by the force. The plasticity part in the second approach is based on 

effective (undamaged) stresses and is combined with damage whose 

evolution is also defined by the total strain or plastic strain . Here, the term 

“effective stress” refers to an average micro-level stress in the undamaged 

material between defects and is defined as a force divided by the 

undamaged part of total area acted upon by the force.  

 

Based on the so-called local uniqueness conditions, Grassl and Jirasek 

(2006) assessed the performance of the two approaches mentioned above. 

They found that the second approach is numerically more stable and 

attractive for developing plastic-damage models (Grassl and Jirasek 2006). 

When plasticity is defined based on effective stresses, the plasticity part and 

the damage part of a plastic-damage model is uncoupled, and no further 
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restriction on the specific form of the plastic part and the damage part is 

required. However, if plasticity is defined based on nominal stresses, the 

evolution of the damage variable requires a positive plastic modulus in the 

plastic part to achieve local uniqueness. This restriction makes the approach 

unsuitable for materials with softening behaviour. A more in-depth 

discussion of the issue can be found in Grassl and Jirasek (2006). Due to 

this advantage of the second approach, this chapter is only concerned with 

plastic-damage models formulated in the effective stress space and based on 

a scalar damage variable. 

 

Two plastic-damage models representing two different approaches are 

considered in this chapter, which is similar to the work presented in 

Chapters 4 & 5. In the first model, the scaling technique is employed to 

describe the behaviour of confined concrete; whereas in the second model, 

the plastic volumetric strain technique is employed instead. The two 

plastic-damage models examined in this chapter include: (a) the 

plastic-damage model proposed by Grassl and Jirasek (2006) which is based 

on the first approach; and (b) a new plastic-damage model formulated on 

the basis of the framework of Papanikolaou and Kappos’s (2007) plasticity 

model. Details of these two models are given in the following sections. 
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6.2 GRASSL AND JIRASEK’S (2006) MODEL 

Grassl and Jirasek (2006) developed a plastic-damage model for concrete 

based on their assessment of different types of plastic-damage models. The 

plasticity part of the model is given in the effective stress space, and the 

damage part of the model is driven by the scaled plastic volumetric strain. 

The equations used to define the basic components of the plasticity and the 

damage parts of this model are given in the subsequent sub-sections. 

6.2.1 Components of the Plasticity Model 

 
The plasticity part of this model is defined by a pressure-sensitive yield 

function, a non-associated flow rule, and a hardening rule based on the 

scaling technique. In this model, the scaling law is referred to as the 

ductility measure. The hardening law, which is an important feature of this 

model, is given in detail below. 

6.2.1.1 Yield surface 

The yield function was modified from that proposed by Etse and Willam 

(1994). Its expression, defined in the Haigh-Westergaard effective stress 

space, is as follows: 
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f୮൫σഥV, ρത, θത; κ୮൯
ൌ ቐൣ1 െ q୦൫κ୮൯൧ ቆ ρത√6fԢୡ୭ ൅ σഥVfԢୡ୭ቇଶ ൅ ඨ32 ρതfԢୡ୭ቑଶ

൅ mq୦ଶ ൫κ୮൯ ቈ ρത√6fԢୡ୭ rሺcos θതሻ ൅ σഥVfԢୡ୭቉ െ q୦ଶ ൫κ୮൯ 

(6.1) 
where σഥV, ρത, θത are the volumetric effective stress, the deviatoric effective 

stress, and the Lode angle in the effective stress space, respectively. The σഥV, ρത, θത  can be defined by Eqs. (2.96-2.98) using the corresponding 

effective stress components instead of the total stress components. The 

parameter r is the same as that defined by Eq. (5.3) except that the 

corresponding components defined in the total stress space in Eq. (5.3) 

should be replaced by those defined in the effective stress space. The 

parameter ݉ is the same as that defined by Eq. (5.2). The parameter q୦ 

controls the hardening rule of this model and is defined as a function of the 

hardening variable κ୮. When the variable q୦ is equal to one, the yield 

function turns into the failure surface proposed by Menetrey and Willam 

(1995); for uniform confinement, this equation can be further reduced to the 

Hoek and Brown failure criterion. Thus, it is clear that the value of ݉ can 

be calibrated using the same approach as that suggested in Chapter 5. 

6.2.1.2 Flow rule 

A non-associated flow rule is adopted in Grassl and Jirasek’s (2006) model, 

which means that the yield function and the plastic potential do not coincide. 
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Therefore, the direction of the plastic flow is not normal to the yield surface, 

which is important for the realistic modelling of the lateral deformation of 

concrete under compression. As discussed in previous chapters (e.g. 

Chapters 2 and 4), an associated flow rule tends to give unrealistically high 

volumetric expansions in compression. Based on these considerations, the 

plastic potential in the model is given as 

 g୮൫σതV, ρത, θത; κ୮൯
ൌ ቐൣ1 െ q୦൫κ୮൯൧ ቆ ρത√6f′ୡ୭ ൅ σതVf′ୡ୭ቇଶ ൅ ඨ32 ρതf′ୡ୭ቑଶ

൅ q୦ଶ ൫κ୮൯ ቈ mρത√6f′ୡ୭ ൅ m୥ሺσതVሻf′ୡ୭ ቉ 

(6.2) 

Eq. (6.2) does not depend on the Lode angle so as to increase the efficiency 

of the implementation of the model. This feature partially limits the 

capability of the flow rule for describing the response of concrete in 

complex multi-axial compression. To properly reflect the plastic volumetric 

expansion, the parameter m୥ which controls the ratio of the volumetric and 

the deviatoric parts of the flow direction, is defined based on the volumetric 

stress as follows: m୥ሺσതVሻ ൌ A୥B୥f′ୡ୭exp σതVି୤౪/ଷBౝ୤ౙ౥′      (6.3) 

where A୥  and B୥  are parameters determined from lateral plastic 
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deformations under the two conditions of uni-axial tension and compression. 

They are given as follows: A୥ ൌ ଷ୤౪୤ౙ౥′ ൅ ୫ଶ         (6.4) 

B୥ ൌ ଵ/ଷሺଵା୤౪/୤′ౙ౥ሻ୪୬Aౝି୪୬ሺଶD౜ିଵሻି୪୬ቀ మౣ ାଷቁା୪୬ሺD౜ାଵሻ    (6.5) 

Here, D୤  should be determined by fitting the results of uni-axial 

compression. 

6.2.1.3 Hardening law 

The dimensionless variable q୦ controls the evolution of the yield surface, 

and thereby the elastic range. q୦ is defined as a function of the hardening 

variable κ୮ as follows: 

 

q୦൫κ୮൯ ൌ ቊq୦଴ ൅ ሺ1 െ q୦଴ሻκ୮൫κ୮ଶ െ 3κ୮ ൅ 3൯, κ୮ ൏ 11, κ୮ ൒ 1   (6.6) 

The scaling technique was adopted in the Grassl and Jirasek (2006) model 

to capture the increase in ductility due to lateral confinement. The increment 

of the hardening variable is defined as dκ୮ ൌ ୢε౦୶౞ሺσതVሻ cosଶθത      (6.7) 

where x୦ is a hardening ductility measure used to scale the plastic strain 

increment dε୮ [the definition dε୮ is the same as that used in Wolf (2008)], 

a more complex x୦ is defined as follows: 
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x୦ሺσതVሻ ൌ ൜               E୦expሺെR୦ሺσതVሻ/F୦ሻ ൅ D୦, R୦ሺσതVሻ ൏ 0A୦ െ ሺA୦ െ B୦ሻexpሺെR୦ሺσതVሻ/C୦ሻ, R୦ሺσതVሻ ൒ 0  (6.8) 

where A୦, B୦, C୦, and D୦ are calibrated using values of strain at peak 

stress under uni-axial tension, uni-axial compression and equal tri-axial 

compression, whereas E୦ and F୦ are given by the following equations to 

ensure a smooth transition between the two parts of Eq. (6.8) at R୦ ൌ 0: 

 E୦ ൌ B୦ െ D୦       (6.9) F୦ ൌ ሺB౞ିD౞ሻC౞A౞ିB౞        (6.10) 

6.2.2 Components of the Damage Model 

Isotropic scalar damage is employed to formulate the damage part of the 

Grassl and Jirasek (2006) model. A salient feature of this damage model is 

that damage is driven by the scaled volumetric plastic strain instead of the 

total strain which is employed in a pure damage model. The individual 

components of the damage model are presented in the following 

sub-sections. 

6.2.2.1 Loading function and equivalent strain 

The damage loading function is based on the scaled volumetric plastic strain 

which is defined as 

dε෤ ൌ ൝         0, κ୮ ൏ 1 ୢκ୶౩ሺσതVሻ , κ୮ ൐ 1     (6.11) 
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where xୱ is a softening ductility measure defined as 

xୱሺσതVሻ ൌ ቊ                    1 ൅ AୱRୱଶሺσതVሻ, RୱሺσതVሻ ൏ 11 െ 3Aୱ ൅ 4AୱඥRୱ ሺσതVሻ, RୱሺσതVሻ ൒ 1   (6.12) 

In the above equation, Aୱ  is a parameter that controls the softening 

response in uni-axial compression, and Rୱ is defined as κො/κ. Here κො is the 

so-called "negative" volumetric plastic strain and is defined as  

κො=∑ ଷIୀଵۄെdε୮Iۃ       (6.13) 

where dε୮I are the principal components of the plastic strain increments 

and as mentioned earlier ۄ·ۃ denotes the McAuley bracket (positive-part 

operator). Compressive strains are defined as negative in the Grassl and 

Jirasek (2006) model. Eq. (6.13) indicates that only the contribution of 

compressive plastic strains is considered in the definition of κො.  

6.2.2.2 Evolution law 

To describe the evolution of damage, an exponential equation is employed 

to relate the damage variable ωୢ to the internal variable ε෤ 

ωୢ ൌ 1 െ expሺെε෤/ε୤ሻ     (6.14) 

where ε୤ is a parameter that controls the slope of the softening curve. 

6.2.3 Implementation in Finite Element Analysis 

An existing finite element program named OOFEM and written by Patzak 

(Patzák and Bittnar 2001) was adopted for use in the numerical analyses of 

the present study. OOFEM is a free finite element code with an 
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object-oriented architecture for solving mechanical, transport and fluid 

mechanics problems. In OOFEM, the present constitutive model was not 

directly provided. Instead, a non-local version of this model was offered. 

The non-local version and the local version of a constitutive model require 

different processes of parameter calibration. In the present study, only the 

local version of the constitutive model is of interest. Therefore, the 

non-local version in this program was revised to become a local version. 

The process suggested in the subsequent sub-sections can then be used to 

calibrate the parameters for the present constitutive.  

 

The present constitutive model is the only model examined in this PhD 

project which has been implemented in OOFEM; other constitutive models 

examined in the project were implemented in ABAQUS. Using OOFEM, 

the same finite element model as described in Chapter 4 were employed to 

model the selected experiments except that the element types were replaced 

by the same types of elements available in OOFEM. For instance, the C3D8 

element in ABAQUS to model the concrete was replaced by the LSPACE 

element in OOFEM, and the T3D2 element in ABAQUS to model the 

confining material was replaced by the TRUSS3D element in OOFEM.  
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6.2.4 Parameter Calibration and Comparison with Test Results 

6.2.4.1 General  

A total of fifteen parameters are used in the Grassl and Jirasek (2006) model 

to define the general response of concrete. These parameters can be divided 

into four groups: the elastic properties, the hardening regime, the strength 

envelope, and the softening regime. The elastic properties are defined by the 

Young’s modulus E and Poisson’s ratio μ, which can be obtained directly 

from experimental results. The strength envelope of the Grassl and Jirasek 

(2006) model in the effective stress space is defined by three parameters, 

including the uni-axial tensile strength f୲ , the uni-axial compressive 

strength f′ୡ୭ , and the eccentricity parameter e.  The hardening rule is 

characterized by five independent parameters. Among these parameters, q୦଴ defines the initial value of the hardening variable, and A୦, B୦, C୦, 

and D୦ define the hardening ductility measure. The softening regime is 

characterized by ε୤  and Aୱ  for the softening ductility measure. 

Furthermore, both the hardening and softening regimes are affected by the 

parameters of the flow rule, A୥ and B୥, which can be calculated from Eqs. 

(6.4) & (6.5). 

 

6.2.4.2 Default values for some parameters 

To determine all the fifteen parameters from experimental results is a huge 
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task. Default values have thus been suggested by Grassl and Jirasek (2006) 

to simplify the procedure of parameter calibration. q୦଴  is defined as q୦଴ ൌ f୧୬୧/fୡ୭′  where f୧୬୧  is the initial yield strength of concrete under 

uniaxial compression. Usually, f୧୬୧  is set to be 0.3fୡ୭′ . Explicit 

relationships between A୦ , B୦ , C୦ , and D୦  (which affect the hardening 

ductility measure) and measurable material properties do not exist. Based 

on the fitting of selected sets of experimental results (e.g. Kupfer et al. 1969; 

Imran and Pantazopoulou 1996), Grassl and Jirasek (2006) suggested the 

following default values for these three parameters: A୦ ൌ 0.08, ,C୦ ൌ 2, 

and D୦ ൌ 1e െ 6 . Besides these three parameter, a linear relationship 

between B୦ and the axial plastic strain at peak stress ε୮୮ୣୟ୩under uni-axial 

compression was provided: B୦ ൌ െ2.29ε୮୮ୣୟ୩ ൅ 0.00046     (6.15) D୤ has a significant influence on the lateral-to-axial strain relationship for 

both unconfined and confined concrete. Based on a long trial-and-error 

process, a default value of 0.85 was suggested by these authors for D୤. ε୤ 
and Aୱ  control the softening regime of the stress-strain behaviour of 

concrete. Their values should be determined from the fracture energy G୤ 
and from the softening part of the stress-strain curve under uni-axial 

compression. The expressions for these two parameters are similar. Grassl 

and Jirasek (2006) recommended a default value of 15 for Aୱ to simplify 

the process of parameter calibration. Finally, Grassl and Jirasek (2006) 
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proposed a default value of 0.525 for the eccentricity parameter e to achieve 

an equal biaxial concrete strength close to Kupfer et al.’s (1969) 

experimental results. The eccentricity parameter controls the shape of the 

deviatoric section as discussed in the previous chapter. 

6.2.4.3 Calibration of the remaining parameters 

With the default parameter values detailed above, only the values of the 

following parameters are unknown: E, μ, f′ୡ୭, f୲, and ε୤. Among these 

parameters, E, μ, and f′ୡ୭ are material properties of unconfined concrete 

and can be determined from standard tests. If the experimental value for μ, 

is unavailable, a default value of 0.2 may be adopted, which should lead 

only to negligible errors in the finite element results. As illustrated in 

Chapter 5, f୲ relates to m, e, and fୡ୭′  as described by Eq. (6.2). If hሺκሻ in 

Eq. (5.2) is equal to 1, this equation can be rewritten as m ൌ 3 ୤ౙ౥′మ ି୤౪మ୤ౙ౥′ ୤౪ ୣୣାଵ      (6.16) 

The value of m can be determined from a selected set of test data using the 

least squares method. The artificial f୲ value can then be calculated from Eq. 

(6.16). 

 

The parameter ε୤ is used to fit (using a trial-and-error process) the slope of 

the softening part of the stress-strain curve under uni-axial compression. If 

localization of failure occurs, this parameter should change with the element 
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size. As only concrete under uniform confinement was modeled using a 

single solid element in the present study, there was no such localization 

failure. Therefore, the value of ε୤ in the present study did not need to vary 

with the element size. 

 

Test results for actively-confined concrete reported by Candappa et al. 

(1999) were used to assess the stress-strain curves obtained from finite 

element analysis using Grassl and Jirasek’s (2006) model with calibrated 

parameters. The detailed process of calibration for this set of experiments is 

described in the subsequent paragraphs. 

 

As presented in Chapter 5, the value of m can be determined to be 12.95. 

Based on this value of m, the value of f୲ can then be found to be 3.3 MPa. 

For ε୤, a value of 1.65e-4 was obtained from a trial-and-error process for 

the descending branch of the stress-strain curves of confined concrete . For 

the other parameters, their default values as suggested by Grassl and Jirasek 

(2006) were adopted. The same finite element model as described in 

Chapter 4 for actively-confined concrete was employed in the numerical 

analysis. Fig. 6.2 shows that the predicted stress-strain responses using the 

final calibrated parameters compare favorably with the test results. This 

comparison indicates that the present constitutive model can provide close 

predictions for actively-confined concrete. 
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Grassl and Jirasek’s (2006) model was next utilized in predicting the 

response of FRP-confined concrete. The same finite element model as 

described in Section 4. 4 for FRP-confined circular concrete cylinders was 

adopted, but the present concrete constitutive model was used to replace the 

D-P type model. Eq. (5.29) was adopted to identify the value of m and then 

to calculate the value of f୲ using Eq. (6.16). As the present constitutive 

model has the same failure surface as that of Papanikolaou and Kappos’s 

(2007) model, the same values for f୲ as those adopted in Papanikolaou and 

Kappos’s (2007) model for FRP-confined concrete cylinders were obtained. 

The values of E, μ, and f′ୡ୭ were determined from the control cylinder 

tests; these values are the same as those adopted in the D-P type model and 

are shown in Fig. 6.2. To better fit the value of εୡ୭, the value of B୦ was 

adjusted from the default value of 0.003 to 0.00325. The value of ε୤ was 

set to be 9.6e-4 to fit (using a trial-and-error process) the slope of the second 

branch of stress-strain curves for FRP-confined concrete. All other 

parameters retained their default values. The experimental stress-strain 

curves are compared with the predicted curves in Figs. 6.3. The predicted 

results are similar to the finite element results based on Papanikolaou and 

Kappos’s (2007) concrete model. For the specimens with the confinement 

stiffness equal to 1086 MPa, the finite element results are in close 

agreement with the experimental results for both the axial stress-strain curve 
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and the axial stress-lateral strain curve. For the specimens with the 

confinement stiffness equal to 543 MPa, the finite element predictions differ 

substantially from the experimental results for the axial stress-strain curves 

although the two sets of results are in agreement for the axial stress-lateral 

strain curves. This inconsistency indicates that the finite element model 

cannot accurately capture the lateral-to-axial strain relationship for concrete 

at different confinement stiffness levels. 

 

The above discussion indicates a plastic-damage model with its hardening 

part based on the scaling technique cannot provide accurate predictions for 

the lateral-to-axial strain response of FRP-confined concrete. The inclusion 

of isotropic damage in this type of plastic-damage model seems to have 

little influence on the volumetric response of concrete. 

6.3 PLASTIC-DAMAGE MODEL BASED ON PAPANIKOLAOU AND 

KAPPOS’ (2007) PLASTICITY MODEL 

6.3.1 General 

As shown in Chapter 5, Papanikolaou and Kappos’s (2007) plasticity model 

is capable of providing accurate predictions for actively-confined concrete, 

and the values of its parameters can be determined via a simple and clear 

process of parameter calibration. In the softening part of this constitutive 

model, a plastic softening model is adopted. As explained earlier, for the 
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description of the softening characteristics of concrete, a damage model has 

advantages over a plasticity model. Therefore, in this section, a 

plastic-damage model based on Papanikolaou and Kappos’s (2007) 

plasticity model is presented. This plastic-damage model is referred to as 

PDPK model in this thesis. The advantages of Papanikolaou and Kappos’s 

(2007) plasticity model are retained in the proposed plastic-damage model. 

For instance, the process of determining the values of A, B and C remains 

the same. The equations used for the definition of this model are given in 

the following sub-sections. 

6.3.2 Components of the Plasticity Model 

The plasticity model includes a pressure-sensitive yield function, a 

non-associated flow rule, and a hardening rule with a novel hardening 

variable. 

6.3.2.1 Loading surface 

The loading function proposed by Papanikolaou and Kappos (2007) is given 

by Eq. (5.1) which is applicable to both hardening and softening responses. 

In the present model, only the hardening response of concrete is considered 

in the plasticity part, while the softening part is accounted for by the 

damage model. 

 

By assigning a value of 1 to cሺκሻ in Eq. (5.1), the yield function is 
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obtained as follows: 

f ୮ሺξ, ρ, θሻ ൌ ቀඥ3/2 ρ୦ሺκሻ୤ౙ౥′ ቁଶ ൅ m ቀ ρ√଺୦ሺκሻ୤ౙ౥′ rሺθ, eሻ ൅ ξ√ଷ୦ሺκሻ୤ౙ౥′ ቁ െ 1  (6.17) 

 

As previously discussed, a similar approach has previously been adopted by 

Grassl and Jirasek (2006) and Yu et al (2010b). After the attainment of peak 

stress, no strain-hardening/softening is defined in the plasticity part, and the 

yield surface remains unchanged. For the hardening parameter hሺκሻ, an 

elliptic-type function (i.e. Eq. 5.5) is still adopted. This elliptic-type 

function is an important part to ensure that the condition used to determine 

the values of A, B, and C is still satisfied. 

6.3.3.2 Flow rule 

For the definition of the flow rule, a constant value of 1 replaces cሺκሻ in 

Eq. (5.11) so that it becomes  g ൌ A ቀ ρ୩୤ౙ౥′ ቁ୬ ൅ ቂC ൅ ଵଶ ሺB െ Cሻሺ1 െ cos3θሻቃ ρ୩୤ౙ౥′ ൅ ξ୩୤ౙ౥′   (6.18) 

The values of other parameters are determined in the same way as in 

Papanikolaou and Kappos (2007). Eqs. (5.5), (6.17) and (6.18) ensure that 

the plasticity part of the PDPK model is the same as that of Papanikolaou 

and Kappos’s (2007) model before the peak stress of confined concrete is 

reached. Therefore, the values of A, B, and C can be determined using the 

same approach as in Papanikolaou and Kappos’s (2007) model.  
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6.3.4 Components of the Damage Model 

6.3.4.1 General 

The isotropic scalar damage concept is once again adopted in the damage 

part of the proposed model. In this new damage model, a new loading 

function was employed for the definition of the damage evolution. A major 

feature of this loading function is that it is driven by the plastic volumetric 

strain. This feature is different from that of some pure damage models 

which is usually driven by the total strain (e.g. Mazars and Pijaudier-Cabot 

1989). 

6.3.4.2 Evolution law 

The evolution law of damage is applied in the proposed model to describe 

the descending branch of the stress-strain behaviour of concrete. It is 

assumed to have the same form as that used to describe the softening part of 

the hardening rule adopted in Papanikolaou and Kappos’s (2007) plasticity 

model. The following equation relates the damage variable ωୢ  to the 

internal variable κ: 

ωୢ ൌ 1 െ cሺκሻ      (6.19) 

where cሺκሻ has the same form as that of Eq. (5.6). 

 

A process similar to that suggested by Grassl and Jirasek (2006) was 
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adopted to calculate stress components from corresponding strain 

increments. More detailed information such as the evaluation of nominal 

stresses from effective stresses based on the calculated value of the damage 

variable can be found in Grassl and Jirasek (2006). 

6.3.5 Calibration 

Papanikolaou and Kappos’s (2007) model was implemented in ABAQUS 

through a user-defined material subroutine (UMAT). The test results for 

actively-confined concrete reported by Candappa et al. (1999) were again 

used to verify the proposed constitutive model. The process of parameter 

calibration for the PDPK model is the same as that of Papanikolaou and 

Kappos’s (2007) model. The values previously determined for A, B, and C 

for Papanikolaou and Kappos’s (2007) model were directly used in the 

proposed model. Only the value of t୮ needed to be revised from 0.003 to 

0.009 to fit the slope of the descending branch. The same finite element 

model as described in Chapter 4 was still used except that the constitutive 

model was replaced by the present constitutive model. The finite element 

predictions based on the present model are compared with the test results in 

Fig. 6.4; values of the model parameters are given in the figure. It can be 

found that the predicted stress-strain curves compare favorably with the test 

results. Indeed, the performance of the PDPK model is similar to that of 

Papanikolaou and Kappos’s (2007) model. 
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Finally, test results of FRP-confined concrete were used for assessing the 

capability of the proposed constitutive model. Except for the value of t୮, 

the values for other parameters are the same as those previously determined 

for Papanikolaou and Kappos’s (2007) model. The value of t୮  was 

determined to fit the axial stress- strain and axial stress-lateral strain curves 

of FRP-confined concrete with a confinement stiffness equal to 1086 MPa; 

a value of 0.018 was found from this process. A comparison of the finite 

element results with the experimental results for this confinement stiffness 

is given in Fig. 6.5a. It is seen that the finite element results are accurate. 

However, when this value for t୮  was used to provide predictions for 

FRP-confined concrete with a confinement stiffness equal to 543 MPa, the 

finite element predictions overestimate the experimental axial strains. The 

performance of the PDPK model for FRP-confined concrete is also similar 

to that of the original plasticity model proposed by Papanikolaou and 

Kappos (2007). This phenomenon indicates that although different 

approaches (softening plasticity and damage) were used for the description 

of the softening behaviour of concrete, no significant difference is observed 

from the predicted lateral deformation response. Therefore, it can be 

concluded that as long as proper values for the model parameters are 

employed, a plasticity model and a plastic-damage model provide similar 

results for confined concrete under monotonic loading. It should be noted 

that if unloading becomes important, only a plastic-damage model can 
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predict stiffness degradation as the degree of damage increases. 

6.3.6 Discussions 

Based on the parameter calibration and the model assessment presented 

above, it can be concluded that the PDPK model provides predictions which 

are similar to those obtainable from Papanikolaou and Kappos’s (2007) 

plasticity model. The values of all parameters except t୮ can be the same as 

those in Papanikolaou and Kappos’s (2007) model; the value of t୮ should 

be approximately three times its value in Papanikolaou and Kappos’s (2007) 

model. According to existing studies such as Grassl and Jirasek (2006), the 

proposed model is a more stable model than Papanikolaou and Kappos’s 

(2007) model as it simulates stress reductions after the peak stress by 

reductions in elastic constants instead of retractions of the yield surface in 

the stress space (Yu et al. 2010). The plastic damage model does, however, 

still suffer from the same incapability in modelling FRP-confined concrete 

as the plasticity model is based on. This shortcoming may be overcome by 

employing a more complex damage model such as a vector damage model 

(e.g. Carol et al. 2001). 

6.4 CONCLUSIONS 

In this chapter, the performance of two types of plastic-damage models in 

predicting the stress-strain response of plain concrete in uniaxial and equal 

tri-axial compression has been examined. In both approaches, the yield 
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surface is assumed to remain unchanged after the attainment of the peak 

stress of concrete, the plasticity part is based on isotropic hardening 

described in the effective stress space, and the damage part is driven by the 

plastic volumetric strain or normalized plastic volumetric strain.  

 

Comparisons between the finite element predictions and the experimental 

results have been presented to assess the capability of these two approaches. 

It seems that both approaches can provide accurate predictions for both 

unconfined concrete and actively-confined concrete provided that properly 

calibrated parameters are used. However, they both fail to provide accurate 

predictions for FRP-confined concrete with different confinement 

stiffnesses. This weakness is inherited from the plasticity model they are 

based on and has not been overcome or alleviated by the use of an isotropic 

damage model to describe the post-peak softening behaviour of concrete. 

An anisotropic damage model may be necessary so that the predicted 

lateral-to-axial strain relationship for confined concrete can be significantly 

changed. This is beyond the scope of the present chapter. 

 

Based on the assessment of the four types of concrete constitutive models as 

presented in Chapters 4, 5 and 6, it may be concluded that both the scaling 

technique and the use of a novel hardening variable only help in the 

modelling of concrete under active confinement where the confining 
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pressure is independent of lateral deformation. For FRP-confined concrete, 

which is a typical form of passive confinement, the accurate prediction of 

lateral deformation is an important issue, but improvement in the hardening 

rule or inclusion of damage has insignificant effects on the predicted lateral 

deformation. As the accurate prediction of lateral deformation of confined 

concrete is the key to the accurate prediction of the behaviour of 

passively-confined concrete, this aspect will be examined in detail in the 

subsequent chapters. 
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Figure 6.1 Yield surface of the constitutive model proposed by Grassl and 

Jirasek (2006) 
 

 
 

 
Figure 6.2 Comparison between finite element results based on Grassl and 
Jirasek’s (2006) model and test results from Candappa et al. (1999) for actively-confined concrete 
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(a) FRP-confined concrete with the confining stiffness equal to 1086 Mpa 

 

    
(b) FRP-confined concrete with the confining stiffness equal to 543 MPa 

Figure 6.3 Comparison between finite element results based on Grassl and 
Jirasek’s (2006) model and test results from Lam et al. (2006) for 

FRP-confined concrete 
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Figure 6.4 Comparison between finite element results based the PDPK 

model and test results from Candappa et al. (1999) for actively-confined 
concrete 
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(b) FRP-confined concrete with the confinement stiffness equal to 543 
MPa 

Figure 6.5 Comparison between finite element results based on the PDPK 
model and test results from Lam et al. (2006) for FRP-confined concrete 
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CHAPTER 7  

MICROPLANE MODEL FOR CONFINED 

CONCRETE 

7.1 INTRODUCTION 

Based on the discussions in the previous chapters, one important application 

of FRP composites is as wraps or jackets for the confinement of reinforced 

concrete (RC) columns for enhanced strength and ductility. To consider the 

effect of confining stresses which act orthogonally to the direction of the main 

compressive stresses, particularly when the stresses vary over the section (i.e. 

non-uniform confinement), a three-dimensional (3-D) concrete constitutive 

model is required. Many constitutive models have already been proposed for 

concrete under multi-dimensional stress states (see Chapters 2, 4-6). Different 

theoretical frameworks have been used in formulating these models, including 

nonlinear elasticity models, plasticity models, plastic-damage models, and 

endochronic models for concrete (Chen and Han 2007). Although, great 

achievements have been made in the modelling of concrete by applying these 

macroscopic constitutive models such as nonlinear elastic and elasto-plastic 

models for both actively confined concrete (i.e. confined by a constant 

confining pressure) and passively confined concrete (i.e. confined by an 

increasing confining pressure as the concrete dilates)(Mirmiran et al. 2000; 

Yeh and Chang 2007; Yu et al. 2010a; Yu et al. 2010b), there is still the need to 
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develop better approaches for modelling the confinement mechanism of 

concrete. 

 
In recent years, the microplane model (Bazant et al. 2000) has attracted 

increasing attention from researchers interested in modelling the stress-strain 

behaviour of confined concrete due to its intrinsic advantages( Liu and Foster 

2000; Ghazi et al. 2002; Baky et al. 2010). The microplane model is a general 

3-D constitutive model which describes the complicated inelastic properties of 

concrete based on one dimensional (1-D) stress-strain models defined on 

planes at various orientations at a material point. On each of those micro 

planes, the microstrains are obtained through the projection of the strain tensor 

based on the concept of kinematic constraint. The micro stresses can be 

calculated from the corresponding micro strains (using the previously defined 

1-D stress-strain models), and finally the stress tensor is derived from these 

micro stresses using the principle of virtual work. This process avoids the 

direct description of the complex relationships between the stress tensor and 

the strain tensor, at the expense of a larger amount of calculation. The major 

advantage of the microplane model is its conceptual simplicity. Another salient 

feature of this approach is that it relies on relationships at the microscopic 

level instead of the macroscopic level. The so-called micro planes may be 

imagined to represent damage planes or weak planes in the micro-structure of 

concrete material. It is well-known that certain macroscopic phenomena of 

concrete can be reasonably well interpreted using microscopic mechanisms. 
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For instance, the shear dilation effects of concrete can be easily explained by 

the difference between the magnitudes of the tensile and the compressive 

deviatoric boundaries. Due the intrinsic advantages mentioned above, the 

microplane model is a promising constitutive model for predicting the 

mechanical response of concrete, especially its confinement mechanism. 

 

Despite the advantages listed above, some drawbacks also exist in the original 

microplane models such as model M4 (Bazant et al. 2000).These drawbacks 

primarily exist in the computational aspects as summarized by Nemecek et al. 

(2002) and Tue et al. (2008). Existing investigations on confined concrete 

using microplane models (Liu and Foster 2000; Ghazi et al. 2002; Baky et al. 

2010) are all based on their original versions without eliminating the 

associated drawbacks. To achieve reliable predictions using microplane 

models, it is necessary to eliminate these drawbacks from the analysis. The 

aim of this chapter is to present a modified version of microplane model M4 to 

whose associated drawbacks have been eliminated. 

 

In the following sections, the concepts and corresponding equations for the 

microplane model M4 are first briefly recalled for the completeness. This is 

then followed by presenting the remedies for the M4 model. In the following 

sections, the microplane model M4 is referred to as the M4 model for brevity. 
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7.2 FORMULATION FOR THE M4 MICROPLANE MODEL 

7.2.1 Formulations for Microplane Model Proposed by Bazant et al. 

(2000) 

Seven versions of the microplane model have been developed by Bazant and 

his co-workers (Bazant and Caner 2005). These seven versions are named as 

M1 through M7, with M7 being the latest version. The most frequently used 

versions are M2 and M4 (Liu and Foster 2000; Ghazi et al. 2002; Di Luzio 

2007; Baky et al. 2010) instead of the latest version M7. For confined concrete, 

the M4 model is preferred as it has almost the same stress-strain behaviour 

within the compression regime as that of the latter version (i.e. microplane 

model M5) but has a relatively simple formulation.  

 

As mentioned earlier, the formulation used in the microplane approach 

describes the complicated inelastic properties of concrete through individual 

micoplanes which can be at all possible orientations at a material point. The 

kinematic constraint, which is a basic hypothesis of the microplane model, is 

applied to determine the micro-strains from the macro-strain tensor. Based on 

the kinematic constraint assumption, the micro-strains on a microplane are 

projections of the macro strain tensor on that plane. As a result, the normal and 

the shear strain components on each microplane according to the M4 model 

are as follows(Bazant et al. 2000):   εN ൌ N୧୨ε୧୨, εM ൌ M୧୨ε୧୨, εL ൌ L୧୨ε୧୨     (7.1) 
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N୧୨ ൌ n୧n୨, M୧୨ ൌ ୫౟୬ౠା୫ౠ୬౟ଶ , L୧୨ ൌ ୪౟୬ౠା୪ౠ୬౟ଶ     (7.2) 

Where ε୧୨ is the macro-strain tensor, εN is the normal strain on a microplane, 

and εL and εM are components of shear strains on the same microplane; m୧ 
and l୧ (i=1-3) are the two orthogonal unit coordinate vectors lying within the 

microplane,and n୧ is the unit normal vector characterizing the orientation of 

the microplane. Fig. 7.1 shows the definition of a microplane and its 

corresponding micro-strain components. 

 

The normal strain component can be further decomposed into a volumetric 

strain εV and a deviatoric strain εD within the small strain regime [for finite 

strain, different equation was proposed (see Bazant et al. 1996)]; that is 

(Bazant et al. 2000) εV ൌ ε୩୩       (7.3) 

and εD ൌ εN െ εV      (7.4) 

 

The governing relationships between the micro-stresses and the micro-strains 

are defined using incremental elastic relations and stress-strain boundaries that 

cannot be exceeded. The incremental elastic relations within the boundaries 

are given by (Bazant et al. 2000): dσV ൌ EVdεV, dσD ൌ EDdεD, dσM ൌ ETdεM, dσL ൌ ETdεL  (7.5) 

and 
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EV ൌ Eଵିଶµ, ED ൌ ହEሺଵାµሻሺଶାଷ୴ሻ, ET ൌ vED    (7.6) 

where E is the initial modulus of elasticity of concrete; EV, ED and ET are 

the volumetric, deviatoric and tangential muduli of elasticity, respectively; µ 

is the Poisson’s ratio and v is the ratio of the tangential modulus (modulus in 

the tangential direction of the microplane) to the deviatoric modulus; σV and σD are the volumetric and deviatoric stress components on the microplane; 

and σL and σM are components of shear stresses on the microplane. The 

stress boundaries are given by the following equations(Bazant et al. 2000): 

σ୴ୠ ൌ ቐ        െEkଵkଷeቀି ಍Vౡభౡరቁ, σ୴ ൏ 0E౬୩భୡభయሾଵାሺୡభర/୩భሻۃகVି୩భୡభయۄሿమ , σ୴ ൒ 0     (7.7) 

 

σDୠ ൌ ቐ E୩భୡఴଵାሾିۃகDି୩భୡఴୡవۄ/୩భୡళሿమ , σD ൏ 0E୩భୡఱଵାሾିۃகDି୩భୡఱୡలۄ/୩భୡభఴୡళሿమ , σD ൒ 0    (7.8) 

 σNୠ ൌ Ekଵcଵexp ቀെ  ቁ     (7.9)ۄୡరሺ஢V/E౬ሻିۃୡయ୩భାۄகNିୡభୡమ୩భۃ

σTୠ ൌ ET୩భ୩మୡభబିۃ஢Nା஢Nబ ஢Nା஢NబିۃET୩భ୩మାୡభబۄ  (7.10)     ۄ

with σN଴ ൌ ET୩భୡభభଵାୡభమۃகV(7.11)      ۄ 

In the above equations, σ୴ୠ, σDୠ , σNୠ , and σTୠ are the volumetric, deviatoric, 

normal and shear stress boundaries, respectively. The parameters kଵ to kସ 
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and cଵ଼ are the adjustable parameters, used to define the concrete strength 

and the general stress-strain behaviour. Parameter cଵ to cଵ଻ are the fixed or 

weakly adjustable parameters which have already been calibrated by some 

standard tests. Their values as recommended by Caner and Bazant(2000) and 

their main roles are summarized in table 7.1. 

 

After determining the micro-stresses on a microplane, the macroscopic stress 

tensor is derived from the micro-stresses based on the principle of virtual work 

for the surface Ω of a unit hemisphere (due to the symmetry of the stress 

tensor and the strain tensor)(Bazant et al. 2000): σ୧୨ ൌ σVδ୧୨ ൅ ଷଶ஠ ׬ s୧୨DΩ dΩ      (7.12) 

s୧୨D ൌ σD ቀn୧n୨ െ ஔ౟ౠଷ ቁ ൅ σLL୧୨ ൅ σMM୧୨     (7.13) 

ଷଶ஠ ׬ s୧୨DΩ dΩ ൎ 6 ∑ w୫୮ ቀσD୫୮ ቀn୧n୨ െ ஔ౟ౠଷ ቁ ൅ σL୫୮L୧୨ ൅ σM୫୮M୧୨ቁN୫ౣ୮ୀଵ  (7.14) 

The integral of the micro-stresses over the unit hemisphere in Eq. (7.12) is 

approximated by Gaussian integration in numerical calculations as shown in 

Eq. (7.14). Integration formulas proposed by Bazant and Oh (1985) with the 

number of microplanesN୫  equal to 21 and 28 on the hemisphere are 

commonly used. In these integration schemes, each microplane is identified by 

its corresponding plane number mp with the orientations (n୧) and the weights 

(w୫୮). After sweeping through all the microplanes (i.e. mp ൌ 1, … , N୫), the 

stress tensor σ୧୨ can be calculated. The detailed values of the n୧, w୫୮, and 
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N୫ for a selected integration scheme can be found in the published literature 

such as Bazant and Oh (1985). 

7.2.2 Remedies for the Computational Aspects of the M4 Model 

As mentioned earlier, drawbacks exist in the M4 model mainly in the 

computational aspects; these drawbacks have been identified by previous 

researchers ( Nemecek et al. 2002; Di Luzio 2007; Tue et al. 2008) during 

numerical implementation and testing. These drawbacks compromise the 

accuracy and reliability of the microplane model and need to be addressed 

before the constitutive model can be used for providing accurate predictions 

for the material behaviour of concrete. These deficiencies include: (1) 

directional bias for micro shear stress, (2) strain increment magnitude 

dependence of model, (3) integration scheme dependence; and (4) significant 

loading direction dependence of the numerical results. These issues are 

examined and the remedies are proposed in the remainder of this sub-section. 

 

For the original M4 model (Bazant et al., 2000), two alternative algorithms 

(namely Alt-I and Alt-II) were developed to calculate the micro-shear stresses 

in the orientations of the two orthogonal vectors, lԦ and mሬሬሬԦ , within the 

microplane. Alt-I calculates the shear stresses in the lԦ and mሬሬሬԦ directions and 

imposes on the two components the following stress boundaries: σL ൌSignሺσLୣሻmin൫หσTୠห, |σLୣ|൯ and σM ൌ SignሺσMୣሻmin൫หσTୠห, |σMୣ|൯ . Alt-II 

calculates the resultant of the elastic shear stress as σTୣR ൌ ඥሺσLୣሻଶ ൅ ሺσMୣሻଶ 
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and determines the two shear stress components as σL ൌ min൫σTୠ, σTୣR൯ ஢L౛஢T౛R 

and σM ൌ min൫σTୠ, σTୣR൯ ஢M౛஢T౛R according to the boundary [min൫σTୠ, σTୣR൯] and 

the unit vector in the direction of the resultant (e.g. ஢L౛஢T౛R). 

 

Compared to Alt-II, Alt-I is a numerically more effective approach in terms of 

computational efficiency; it can reduce the computational cost significantly 

and up to about 50% (Cancer and Bazant 2000). For this reason, in numerical 

implementations using the M4 microplane model such as ATENA, Alt-I is 

frequently used. However, it has been revealed by Di Luzio (2007) that Alt-I 

leads to predictions which are direction-dependent (Fig. 7.2): the predictions 

are sensitive to the direction of the applied displacement. This direction bias is 

due to the identical stress-strain relationship adopted for the two components 

of the micro shear stresses and the non-symmetric distribution of the 

directions of the lԦ and mሬሬሬԦ vectors due to the limitation of the integration 

scheme. These non-symmetric distribution of the directions results from the 

definitions of the direction vectors of  lԦ and mሬሬሬԦ. Within a given micro plane, 

the direction of lԦ and mሬሬሬԦ can be defined arbitrarily so long as they are 

perpendicular to each other. To eliminate this uncertainty, one of the direction 

vectors such as mሬሬሬԦ is chosen to be normal to the axes (i.e. X, Y, Z axis); other 

direction vector  lԦ is thus obtained as the vector product, lԦ=mሬሬሬԦ ൈ nሬԦ. To 

minimize the direction bias of lԦ and mሬሬሬԦ, mሬሬሬԦ is often chosen to be normal to 
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axis X, Y, or Z alternatively. However, in most integration schemes, the 

number of integration point is not in multiples of three. Therefore, this 

direction bias cannot be totally eliminated. Due to this direction bias, the 

constitutive model becomes sensitive to the direction of the applied 

displacement. Fig. 7.2a shows that the predicted stress-strains for the uni-axial 

compression are different when displacements are applied in three selected 

orthogonal direction (i.e. X, Y, Z axis) if Alt-I is adopted. This discrepancy 

disappears if Alt-II is used (see Fig. 7.2b). Based on these observations, Alt-II 

was subsequently used in all numerical analyses of the present study instead of 

Alt-I to eliminate this directional bias problem. 

 

In addition to the use of Alt-II to remove the directional dependence of the M4 

model for the case of loading in three arbitrary orthogonal directions, it has 

also been revealed by Tue et al. (2008) that if the orientations of the 

microplanes cannot be evenly distributed with respect to the three directions of 

the X, Y, Z coordinates, more than 480 microplanes are required in the 

integration scheme to eliminate the directional dependence of the M4 model 

for all possible loading directions, leading to a highly costly process. In 

practical applications, directional dependence can be partly remedied by the 

use of a large number of finite elements, and as a result, the integration scheme 

with 61 microplanes has been recommended by Tue et al. (2008) as an optimal 

scheme. 
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Furthermore, it has been shown by Nemecek et al. (2002) that the response of 

the M4 model under uni-axial compression is dependent on the magnitudes of 

strain increments. The Alt-II algorithm predicts different stress-strain 

responses for small and large strain increments after the point of peak stress 

has been reached (Fig. 7.3). It is difficult to find a single critical strain 

increment value which yields a stable response as this critical strain value 

depends on the loading condition. This drawback can be eliminated by using a 

revised algorithm for the evaluation of the micro volumetric stress. This 

method, which was first proposed by Tue et al. (2008), involves an additional 

step used to ensure the convergence of the micro volumetric stress σ୴ within 

the strain increment. In the original M4 model, σ୴ is recalculated as the 

average of the microplane normal stress; it is often different from that 

calculated from the volumetric stress boundary. This difference is found to be 

the main reason of the strain-increment-magnitude-dependency. A detailed 

description of this algorithm can be found in Tue et al. (2008). This algorithm 

is also employed in the M4 model presented in this chapter to eliminate the 

possible dependence of predictions on the strain increment. 

 

As mentioned above, the stress tensor σ୧୨ is derived through summation of 

the micro-stresses over all spatial orientations. Only a finite number of 

orientations can be used in the numerical process so that numerical Gaussian 

integration schemes with 21, 28, 37 and 61 integration points (i.e. microplanes) 
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are commonly used. Starting from the M2 version, it has been found that these 

integration schemes cannot achieve convergence for the axial 

stress-volumetric strain response (Badal and Leblond 2004). This drawback 

also exists in the M4 model as has been described by Nemecek et al. (2002) 

and Tue et al. (2008). For the M2 microplane model, it was found that at least 

120 Guassian integration points are required to achieve a macroscopic 

response independent of the integration scheme (Badal and Leblond 2004). 

Fig. 7.4 shows that the axial stress-volumetric strain curves obtained from the 

M4 model with different integration schemes but with the same values for the 

material parameters. Although only integration schemes of up to 61 integration 

points were proposed by by Bazant’s group, results from higher order 

integration schemes (with 132 and 208 integration points) proposed by Heo 

and Xu (1998) are also considered in the comparison. It can be found from Fig. 

7.4 that although it is hard to achieve strict convergence of the axial 

stress-volumetric strain relationship due to the localization of micro 

stress-strain behaviour when a limited number of microplanes is used, the 

response of the integration scheme with 61 points can be approximately taken 

as the convergent result. Increasing the number of integration points further to 

132 or even 208 only has a small effect on the far post-peak range of the 

overall axial stress-volumetric strain curve; these three curves (corresponding 

to 61, 132 and 208 integration points) are nearly identical for the majority of 

the full range. In the subsequent analyses, the parameters of the M4 model 
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were calibrated based on the integration scheme with 61 integration points.  

 

The numerical tests presented in this chapter were conducted using an 

in-house code based on Matlab, and all the revisions of the M4 model as 

discussed above were implemented. In the present study, as the focus is on the 

stress-strain behaviour of concrete under uniform confinement, only the 

stress-strain behaviour of a single material point needs to be investigated due 

to the uniformity of the stress and strain distributions within a specimen (e.g. a 

circular concrete cylinder confined by an FRP jacket). Therefore, a driver of a 

material subroutine is enough for the numerical analyses undertaken for this 

chapter. 

 

For concrete under active confinement, the confinement is simply a constant 

confining pressure; for a circular concrete cylinder confined by an FRP jacket 

(a typical case of passively confined concrete), the confinement can be 

represented by a constant confining stiffness (kୱ୲୧୤୤ ൌ ଶEౠ୲ౠD  where E୨ and t୨ 
are respectively the elastic modulus and the thickness of the FRP jacket); the 

confining stiffness represents the rate of confinement increase at a material 

point. For brevity, in the following descriptions, the term “FRP-confined 

concrete” is used to refer to concrete in a circular solid concrete cylinder 

confined with an FRP jacket unless otherwise specified. A salient feature of 

the M4 model is that the calculation of a stress increment corresponding to a 
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strain increment is generally explicit. Once the strain loading paths are given, 

it is easy to calculate the corresponding stresses. However, some special strain 

loading paths used in calibrating the parameters of the material model, such as 

uni-axial compression and equal tri-axial compression etc. cannot be 

represented by an explicit strain loading paths. For these purposes, an outer 

iteration algorithm was adopted in the present study to obtain the required 

strain loading paths for concrete under uni-axial compression, equal tri-axial 

compression (i.e. concrete under active confinement), and axial compression 

with FRP confinement. The procedure consists of the following 4 steps: 

• Step1: Consider the previous strain vector ε୮୰ୣ ൌ ൛εଵ୮୰ୣ εଶ୮୰ୣ εଷ୮୰ୣ 0 0 0ൟ and the previous stress vector σ୮୰ୣ ൌ ൛σଵ୮୰ୣ σଶ୮୰ୣ σଷ୮୰ୣ 0 0 0ൟ 

• Step 2:  Assume a strain vector increment ∆ε଴ ൌ ሼെ∆εଵ ∆εଵ ∆εଵ 0 0 0ሽ; 

• Step3:  Using the modified microplane algorithm to calculate the 

stress vector  σ ൌ ሼσଵ σଶ σଷ 0 0 0ሽ . If |σଶ ൅ f୪| ൏ߜ & |σଷ ൅ f୪| ൏ ,ߜ σ୮୰ୣ ൌ σ & ε୮୰ୣ ൌ ε୮୰ୣ ൅ ∆ε଴  and return to step 

2; if not, go to step 4; 
• Step 4:  ∆ε୧ ൌ ∆ε୧ିଵ ൅ ሼ0 f୪ െ σଶ f୪ െ σଷ 0 0 0ሽ/E,  and 

return to step 3. 
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Through this iterative algorithm, a strain increment in each loading step 

satisfying the strain and the stress boundaries was found so that spurious 

loading and unloading path does not appear in the overall strain loading path 

(i.e. the strain increment is tried until a stress increment which satisfies the 

stress boundary condition is achieved). The confining pressure f୪ varies with 

the specified stress boundaries.  For unconfined concrete, it equals to zero; 

for actively confined concrete, it equals to the confining pressure; and for FRP 

confined concrete, it equals to kୱ୲୧୤୤ כ εଶ୮୰ୣ, in which kୱ୲୧୤୤ is the confining 

stiffness provided by the FRP jacket.  

 

This chapter aims to clarify the effects of the parameters of the M4 model on 

its performance in predicting the behaviour of both actively confined concrete 

and FRP-confined concrete, and to identify the key characteristics that the M4 

model need to possess in order to provide accurate predictions of experimental 

results for confined concrete. A thorough assessment is presented of the M4 

model including the previous modifications with the same coefficients for both 

actively-confined concrete and FRP-confined concrete; further refinements to 

achieve even closer predictions for experimental data are also presented. 

 

7.3 IDENTIFICATION OF PARAMETERS OF THE M4 MODEL 

As mentioned earlier, for the M4 model, seventeen of the parameters (cଵ െ cଵ଻) 

are weakly adjustable parameters whose values can be used to describe the 
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intrinsic behaviour of the concrete material. The other five adjustable 

parameters (kଵ െ kସ and cଵ଼) as well as the initial modulus E are commonly 

used to fit the experimental data. For any stress-strain curve, E controls its 

vertical scaling transformation, kଵ  controls its radial scaling 

transformation, cଵ଼ controls the slope of the post-peak range of the uni-axial 

compressive stress-strain response, and kଶ െ kସ mainly influence the shape 

of the stress-strain curve at very high levels of confinement. At a lower 

confinement level, which covers the majority of cases encountered in civil 

engineering applications, the roles of kଶ െ kସ are less important.  

 

In the present study, kଵ, E, and cଵ଼ were firstly assigned appropriate values 

to fit the axial stress-strain curve of concrete under uni-axial compression. 

Next, the axial stress-strain relationship of confined concrete predicted using 

the values for kଵ , E, and cଵ଼  obtained from uni-axial compression was 

examined to check the performance of the M4 model before refinement; this 

examination is based on comparison between predictions using the M4 model 

and those using an analysis-oriented stress-strain model proposed by Jiang and 

Teng (2007). As mentioned earlier, this analysis-oriented stress-strain model 

(an analytical model) was derived from a test database that includes 

unconfined concrete, actively confined concrete and FRP-confined concrete; 

as a result, and in general it can closely predict experimental results. 
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Fig. 7.5 compares the results of the M4 model with those of the analytical 

model for unconfined concrete, indicating that the M4 model can represent the 

overall axial stress-strain behaviour of unconfined concrete quite well. In Fig. 

7.6, the predictions of the M4 model are compared with those of the analytical 

model for actively-confined concrete, indicating that the M4 model is not so 

accurate for concrete under relatively low levels of confinement, which was 

also noted by Ghazi et al. (2002). Ghazi et al. (2002) found that the M4 model 

tends to underestimate the effect of confinement on concrete at low 

confinement levels as the parameters of the M4 model were calibrated using 

test data at very high confinement levels (i.e. with the confinement pressure 

being close to 2 times of the concrete strength). When employed for low 

confinement cases, some parameters require appropriate modifications to 

better predict the peak stress and the post-peak response of confined concrete. 

New formulas for parameters kଵ, c଻ and cଵ଴ were proposed as functions of 

the confining pressure in Ghazi et al. (2002) to fit the results of their own 

analytical model (an empirical model for the stress-strain behaviour of 

actively-confined concrete).  

 

In the present study, a similar approach to that of Ghazi et al. (2002) is 

employed to improve the performance of the M4 model for confined concrete 

including both actively-confined concrete and FRP-confined concrete. After a 

significant number of trials, the following functions were determined for 
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parameters kଵand c଻: kଵ ൌ kଵ଴ for ୤ౢ୤ౙ౥ᇲ ൑ 0.1      (7.13) 

kଵ ൌ kଵ଴ ቆ1 ൅ ଷହ ቀ ୤ౢ୤ౙ౥ᇲ െ 0.1ቁቇfor ୤ౢ୤ౙ౥ᇲ ൐ 0.1     (7.14) 

c଻ ൌ 50 ቀ1 ൅ 28 ୤ౢ୤ౙ౥ᇲ ቁ for ୤ౢ୤ౙ౥ᇲ ൑ 0.05     (7.15) 

c଻ ൌ 50 ቀ48 ୤ౢ୤ౙ౥ᇲ ቁ for ୤ౢ୤ౙ౥ᇲ ൐ 0.05     (7.16) 

where kଵ଴ is the initial value of kଵ and it is commonly obtained by fitting the 

stress-strain curve of unconfined concrete. 

 

Eqs.(7.13)-(7.14) are different from the corresponding equations in Ghazi et al. 

(2002) due to the following reasons. First, the algorithm of the M4 model used 

in this chapter is different from that used in Ghazi et al. (2002) as has been 

explained earlier (including revisions in the computational aspects). Secondly, 

different analytical models have been adopted to calibrate the parameters of 

the M4 model: in Ghazi et al. (2002), the calibration was based on the 

analytical model proposed by Attard and Setunge (1996) for actively confined 

concrete while in the present study, the calibration was based on an analytical 

model proposed by Jiang and Teng (2007) which is accurate for both 

actively-confined concrete and passively-confined concrete. In addition, the 

analytical model adopted in Ghazi et al. (2002) for parameter calibration 

includes a nonlinear equation for the peak stress, and as a result the coefficient cଵ଴ is thus a variable related to the confining pressure, while in Jiang and 



224 
 

Teng’s (2007) model, a linear equation is used for the peak stress and as a 

result, cଵ଴ is a constant. The results of the modified M4 model and those of 

the analytical model proposed by Jiang and Teng (2007) are compared in Fig. 

7.7. This figure shows that the modified M4 model is in good agreement with 

the analytical model proposed by Jiang and Teng (2007) for actively-confined 

concrete. 

 

The performance of the modified M4 model for passively confined concrete is 

further examined in Fig. 7.8, where three confining stiffness values, being 600 

MPa, 400MPa and 200 MP, are considered. This figure shows that the 

modified M4 model results in good agreement with Jiang and Teng’s (2007) 

analytical model at higher confinement stiffness levels (e.g. with the confining 

stiffness equal to 600MPa) but underestimates the results of the analytical 

model at smaller confinement stiffness levels (e.g. with the confining stiffness 

equal to 400MPa or 200MPa). For a confining stiffness equal to 600MPa, the 

modified M4 model can closely predict the lateral strains at corresponding 

axial strains, Fig 7.9. When the confinement stiffness is equal to 400MPa or 

200MPa, the modified model underestimates lateral strains significantly, Fig. 

7.9. These results indicate that the modified M4 model, which provides 

accurate predictions for actively confined concrete, tends to underestimate the 

lateral dilation of FRP-confined concrete at relatively small confining stiffness 

levels. As FRP-confined concrete is subjected to a passive confining pressure 
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where the confinement is determined by the amount of lateral dilation of 

concrete, the dilation characteristics of concrete have a strong influence on the 

axial stress-strain response of FRP-confined concrete. Underestimations of 

lateral strains lead to underestimations of passive confinement and 

consequently inaccurate stress-strain responses even though the same model 

can closely predict the behaviour of actively-confined concrete. The inelastic 

volumetric dilation of FRP-confined concrete is thus of prime importance for 

the accurate prediction of stress-strain behaviour of FRP-confined concrete. 

The influences of the parameters of the M4 model on lateral strains and hence 

volumetric expansions are examined below.  

 

In the M4 model, the dilation characteristics of concrete under compression is 

controlled by the normal or deviatoric boundary, mainly through the values of cହ, c଼, and cଵ଼. Three other parameters, namely cଶ, c଺, and cଽ, also have 

some effect on the dilation characteristics, but their effect on the overall 

stress-strain behaviour is not so significant. Fig. 7.10 shows the effect of cହ 

on the axial stress-strain and the axial stress-lateral strain responses. It can be 

observed that the lateral dilation and the overall axial stress-strain responses 

are substantially affected by cହ which has a recommended value of 2.5. If 

this parameter is used to adjust the lateral strain behaviour, the previously 

calibrated parameters such as kଵ or E need be re-adjusted for unconfined 

concrete. This parameter is thus not suitable for fine-tuning the lateral 
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behaviour of the M4 model. Similar issues exist with cଵ଼ as it has been 

calibrated for the descending branch of unconfined concrete.  

 

Fig. 7.11 shows the influence of c଼  on the axial stress-strain and axial 

stress-lateral strain responses. It is shown that changing the value of c଼ from 

the recommended value of 8 up to 16 or even 32 has negligible effect on axial 

stress-strain response but significantly changes lateral strains after the peak 

axial stress. Similarly, Fig. 7.12 shows that the axial stress-strain response of 

FRP-confined concrete is insensitive to c଼  and the predicted axial 

stress-strain curve is also close to the result of the analytical model. Due to 

these reasons, c଼  is thus used to adjust the dilation characteristics for 

FRP-confined concrete. 

 

After a significant number of trials, the following functions were found to be 

suitable to define c଼: c଼ ൌ 8 ቀ5.8 െ 0.56 ୩౩౪౟౜౜୤ౙ౥ᇲ ቁ for 4 ൑ ୩౩౪౟౜౜୤ౙ౥ᇲ ൑ 7.5   (7.17) 

c଼ ൌ 8 ቀ2.56 െ 0.128 ୩౩౪౟౜౜୤ౙ౥ᇲ ቁ for୩౩౪౟౜౜୤ౙ౥ᇲ ൑ 12    (7.18) 

c଼ ൌ 8 ቀ1.984 െ 0.08 ୩౩౪౟౜౜୤ౙ౥ᇲ ቁ for୩౩౪౟౜౜୤ౙ౥ᇲ ൑ 19    (7.19) 

The performance of the final revised version of the M4 model for 

FRP-confined concrete (referred to as the M4+ model) is examined in Figs. 

7.13-7.14. The model provides close predictions of both the stress-strain 
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curves and the lateral-to-axial strain relationships predicted by Jiang and 

Teng’s (2007) model. The success of this model confirms that an accurate 

prediction of the dilation properties is essential in modelling the behaviour of 

FRP-confined concrete or other passively-confined concrete.  

 

In Fig. 7.15, the predictions of the M4+ model are compared with the test 

results taken from Jiang and Teng (2007). The unconfined concrete strengths fୡ୭ᇱ  and the corresponding axial strains εୡ୭ of the specimens as well as the 

confining stiffness of by the FRP jacket are shown in the figure. A major 

difference between the microplane model (including versions M1 to M7) and 

other constitutive models such as nonlinearly elastic models and plasticity 

models is that in the former fୡ୭ᇱ  and εୡ୭ are not input parameters but are 

predicted by adjusting the values of kଵ, E, and cଵ଼ as described earlier. The 

values of these three parameters used to fit the unconfined stress-strain curves 

are also given in the figure. The values of other parameters can be found in 

Table 7.1. Fig. 7.15 shows that the stress-strain curves predicted by the M4+ 

model are in excellent agreement with the test results, and the bilinear property 

of FRP-confined concrete stress-strain curves can be properly captured by the 

M4+ model.  

 

When compared with the experimental results, the M4+ model slightly 

underestimates the axial stress at the initiation of the second branch (i.e. the 
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transition point). This underestimation of axial stress may be still due to the 

underestimation of the lateral strain. As can be seen from Fig. 7.14, although 

the predicted axial strain-lateral strain response is close to that from the 

analytical model overall, the lateral strain near the transition point is still 

underestimated. A further refinement of the M4 model by relating c଼ to not 

only the confining stiffness but also other variables such as the confining 

pressure may be needed; such a further revision will however further increase 

the complexity of the M4+ model. The accuracy of the M4+ model is deemed 

to be acceptable for most practical applications. 

7.4 CONCLUSIONS 

The general behaviour of the M4 version of the microplane model (Bazant et 

al. 2000) (i.e. the M4 model) for confined concrete has been assessed in this 

chapter using both numerical results from an existing analytical model and 

experimental results. This assessment has shown that in order to achieve 

accurate prediction of the behaviour of FRP-confined and other passively 

confined concrete, the M4 model needs to be modified to possess at least the 

following two features: (a) the parameters which control the slope of the 

descending branches such as kଵ  and c଻  should be dependent on the 

confining pressure; (b) the parameters which control the lateral dilation such 

as c଼ should be dependent on the rate of confinement increment. Parameter c଼ is recommended for achieving the second feature because its value has 
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insignificant effect on the predictions for the unconfined concrete strength and 

the corresponding axial strain. A modified M4 model possessing these two 

features, referred to as the M4+ model, has been presented in this chapter and 

implemented into an in-house Matlab code. Comparisons between numerical 

predictions obtained using the M4+ model and test results have shown that the 

M4+model can provide accurate predictions for both actively-confined 

concrete and FRP-confined concrete. A step by step process of calibrating the 

parameters of the M4 model to achieve such accurate predictions for the 

stress-strain behaviour of FRP-confined concrete has also been explained in 

the chapter. The M4+ model is a predictive model with sufficient accuracy for 

most practical applications. Further refinement of the M4+model is possible to 

improve its predictions for the lateral strain near the transition point of the 

bi-linear stress-strain curve, but such refinement will come with additional 

complexity which may not be worthwhile. 
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Figure 7.1 Stress and strain vectors on a typical microplane 
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(b) From Alt-II 

Figure 7.2 Stress-strain curves for uniaxial compression with displacements 
applied at different directions (three orthogonal directions such as X, Y, Z 

axes) 
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(b) Using the revised algorithm 
Figure 7.3 Effect of strain increment magnitude on predicted response 

 
 

 

Figure 7.4 Effect of integration scheme on volumetric response under 
uni-axial compression 
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Figure 7.5 The M4 model versus Jiang and Teng’s (2007) model for 
un-confined concrete 

 

 

Figure 7.6 The M4 model versus Jiang and Teng’s (2007) model for 
actively-confined concrete 
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Figure 7.7 The revised M4 model versus Jiang and Teng’s (2007) for 
actively-confined concrete 

 

 

 

Figure 7.8 The revised M4 model versus Jiang and Teng’s (2007) for 
FRP-confined concrete 
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Figure 7.9 Lateral-to-axial strain curves: the revised M4 model versus Jiang 
and Teng’s (2007) model for FRP-confined concrete 

 

 

 

Figure 7.10 Effect of cହ on the stress-strain behaviour of concrete predicted 
by the M4 model 

 

 

-0.030 

-0.025 

-0.020 

-0.015 

-0.010 

-0.005 

0.000 
0.000 0.005 0.010 0.015 0.020 0.025 

Revised M4 model

Analytical model

Axial strain
La

te
ra

l s
tr

ai
n

Confining stiffness:

600MPa

200MPa

400MPa

0

10

20

30

40

50

60

70

-0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 

c5=1.25

c5=2.5

c5=5

Strain

A
xi

al
 st

re
ss

 (M
Pa

)

(Lateral strain) (Axial strain)



239 
 

 

Figure 7.11 Effect of c଼ on the stress-strain behaviour of concrete predicted 
by the M4 model 

 

 

 

Figure 7.12 Axial stress-strain curves from the M4 model with different c଼ 
values versus predictions of Jiang and Teng’s (2007) model 
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Figure 7.13 Comparison of axial stress-strain curves between the M4+ model 
and Jiang and Teng’s (2007) for FRP-confined concrete 

 

 

 

Figure 7.14 Comparison of lateral-to-axial strain curves between the M4+ 
model and Jiang and Teng’s (2007) model for FRP-confined concrete 
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(a) fୡ୭ᇱ ൌ 35.9MPa 

 

 

(b) fୡ୭ᇱ ൌ 44.2MPa 
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(c) fୡ୭ᇱ ൌ 38.9MPa 

 

   

(d) fୡ୭ᇱ ൌ 41.1MPa Figure 7.15 Comparison of axial stress-strain curves between the M4+ model 
and test results 
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Table 7.1 Parameters of the M4 model 

Parameter Discription of parameter 
Suggested 

value 

Adopted 

value cଵ 
Controls peak stress magnitude under uniaxial 

(unconfined)tension 
0.62 0.62 cଶ Controls roundness of peak in uniaxial tension 2.76 2.76 cଷ 

Controls steepness of postpeak descent in uniaxial 

tension 
4.00 4.00 cସ Same as cଷ but for tensile volumetric strain 70 70 cହ 

controls volumetric expansion in compressive 

uniaxial stress test 
2.5 2.5 

c଺ 
Controls roundness of peak of volumetric 

expansion in compressive uniaxial stress test 
1.3 1.3 

c଻ 
controls steepness of postpeak descent in 

compressive uniaxial stress test 
50 

Eqs. 

(7.15-7.16) c଼ 
Controls peak magnitude in compressive uniaxial 

stress test 
8 

Eqs. 

(7.17-7.19) cଽ 
Controls peak roundness in compressive uniaxial 

stress test 
1.3 1.3 cଵ଴ Controls pressure effect in standard triaxial tests 0.73 0.73 cଵଵ 

Sets magnitude of initial cohesion in frictional 

response 
0.2 0.2 

cଵଶ 
Controls decrease of cohesion with increasing 

volume expansion (frictional cohesion damage) 
7000 7000 cଵଷ,cଵସ Control lateral contraction in uniaxial tension 0.2,0.5 0.2,0.5 

cଵହ,cଵ଺ 
Control effects of volumetric strain and 

volumetric stress on unloading slope in 

hydrostatic compression tests 

0.02,0.01 0.02,0.01 

cଵ଻ 
Controls degree of damage manifested in 

unloading slopes 
0.4 0.4 cଵ଼ Similar as c଻ 

Adjustable Adjustable 
kଵ Scales all boundary kଶ Affects friction boundary kଷ, kସ Affect volumetric boundary 

*suggested value means parameter values suggested by Bazant et al., (2000). Adopted value 

means parameter values adopted in this chapter. 
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CHAPTER 8  

EFFECT OF CROSS-SECTIONAL SHAPE ON 

BEHAVIOUR OF FRP-CONFINED CONCRETE 

8.1 INTRODUCTION 

The literature review given in Chapter 2 indicates that a large number of 

experiments have been conducted on circular concrete columns/cylinders 

uniformly confined by an FRP jacket. Based on this extensive amount of 

experimental data, many empirical and semi-empirical models have been 

developed primarily for such uniformly confined concrete 

columns/cylinders (see Chapter 2). By contrast, the vast majority of 

columns in reinforced concrete buildings and other structures are of 

non-circular sections (e.g. rectangular columns), and the amount of 

available test data is considerably less than that for circular ones. It is also 

well known that the degree of confinement varies over a non-circular 

section, and the average degree of confinement in a non-circular section is 

much less than that in a corresponding circular section (e.g. Lam and Teng 

2003). Obviously, stress-strain models developed for confined concrete in 

circular sections cannot be used for concrete in non-circular sections. 

  

Several empirical and semi-empirical stress-strain models for FRP-confined 

concrete in non-circular columns have been proposed (Harajli 2006; Lam 
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and Teng 2003b) to predict the average axial stress- strain response of a 

given cross-section. These models were generally extended from 

stress-strain models originally developed for FRP-confined concrete in 

circular columns. Factors related to confinement effectiveness in this type of 

models are commonly employed to consider the efficiency of confinement 

in non-circular sections. These factors account for the reduced effectiveness 

of confinement in non-circular sections compared to their circular 

counterparts and are generally determined by regression of available test 

data and/or by assuming a certain confinement mechanism (e.g. the arching 

action assumption). Hence, these models usually suffer from a common and 

fundamental drawback that they are not based on a rigorous understanding 

of the confinement mechanism in non-circular cross-sections. As a result, 

the current understanding of the confinement mechanism of FRP-confined 

non-circular sections, derived from experiments, is still very limited. To 

improve our understanding of this type of confinement mechanism, the 

finite element modelling offers a powerful tool as it can capture the 

complex stress distribution over the whole cross-section. With a suitable 

numerical model, it is possible to study the confinement mechanism in all 

types of column sections. 

 

A number of researchers have presented finite element models for 

FRP-confined concrete in non-circular columns (e.g. Kiousis et al. 1994; 
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Malvar et al. 2004; Doran et al. 2009 ). Chapter 2 and Chapters 4-7 have 

indicated that most of the constitutive models for the concrete material 

adopted in existing finite element studies can only explain certain specific 

features of the behaviour of confined concrete and/or predict this behaviour 

for some specific conditions (e.g. providing accurate predictions for a 

certain confining stiffness). In the finite element analysis of concrete under 

passive confinement (e.g. FRP-confined concrete), the concrete constitutive 

model plays a fundamental role in accurately reproducing the mechanical 

response of concrete members. Due to the limitation of existing constitutive 

models, modelling the mechanical response of FRP-confined concrete in 

non-circular columns subjected to axial loading is still a challenging issue.  

 

It is well known that in a non-circular section the confining pressure 

provided by the FRP jacket varies around the perimeter and the axial stress 

in the concrete varies over the whole section. Therefore, the stress 

distribution in a non-circular section is much more complex than that in a 

circular section. As can be seen from Chapter 2 and Chapters 4-7, most 

existing constitutive models of concrete cannot even provide accurate 

predictions for FRP-confined concrete in circular columns, so their 

capability in providing accurate predictions for FRP-confined concrete in 

non-circular columns is questionable. As the performance of different types 

of constitutive models of concrete in modelling circular FRP-confined 
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concrete cylinders has been assessed or discussed in the previous chapters 

(i.e. Chapters 2, 4-7), only those constitutive models which can provide 

accurate predictions for FRP-confined concrete in circular columns are 

examined in this chapter. It has also been mentioned in Chapter 2 that the 

modified compression field theory has provided a potential framework to 

capture the major characteristics of the stress-strain behaviour of concrete 

under uniform confinement. However, it has also been pointed out that this 

method is not very accurate for the stress-strain behaviour of FRP-confined 

circular concrete columns as it overestimates the hoop strain of 

FRP-confined concrete. Moreover, this method is not convenient for 

implementation into a finite element model driven by strain or displacement 

increments. As a result, this approach is also not included in the 

comparisons given in the present chapter. Based on the above 

considerations, only two constitutive models (i.e. the modified CDPM 

model and the M4+ model) were used in the finite element studies presented 

in this chapter on the effects of cross-sectional shapes on confinement 

effectiveness. 

  

In practice, the rectangular section is commonly adopted in structural design 

for columns. As a special case of FRP-confined rectangular columns, 

FRP-confined square columns show superior performance in terms of 

confinement effect than rectangular columns of other sectional aspect ratios. 



248 
 

Therefore, most of the experiments on rectangular columns have been 

conducted on square columns. In addition, since FRP confinement is much 

less effective for rectangular sections than for circular sections, the 

possibility of modifying a rectangular section into an elliptical section has 

been explored. For these reasons, in the present study, test specimens with 

square and elliptical sections were selected for investigation in the 

numerical modelling work. Using the numerical results, the confinement 

mechanism in these two typical non-circular sections (i.e. square and 

elliptical sections) is examined.  

 

To study the confinement effects in non-circular sections, the accuracy of 

constitutive models employed in finite element analyses needs to be verified 

first. Therefore, comparisons between test results and finite element 

predictions obtained using the two constitutive models identified above are 

first presented in this chapter for FRP-confined concrete in square and 

elliptical columns. Axial stress-strain curves, axial stress-hoop strain curves, 

and axial force-strain curves were generated using finite element analysis 

for different concrete strengths and confinement levels. The cross-sections 

and loading details are described in section 8.2. 

 

As two alternative constitutive models were employed in the prediction of 

the behaviour of confined concrete, their corresponding predictions for 
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FRP-confined concrete in non-circular columns are separately assessed in 

this chapter. The numerical results obtained from finite element analysis 

using the modified CDPM model are presented in Section 8.3, and those 

obtained from finite element analysis using the M4+ model are given in 

Section 8.4. Next, a performance comparison between these two 

constitutive models in reflecting the effects of sectional shape is given in 

Section 8.5. Finally, the predicted distribution of stresses in selected 

sections is examined in Section 8.6.  

 

The numerical results presented in this chapter can be used to highlight the 

advantages and disadvantages of the different section shapes and the 

capability of the two constitutive models in simulating the behaviour of 

FRP-confined concrete. In the design of RC columns, designers need to 

make many decisions. For each specific application, understanding the 

effect of sectional shapes can help the designer to choose the most suitable 

sectional shape that exhibits more optimal performance for a given 

application. 

8.2 DISCUSSION OF SECTIONS USED FOR PERFORMANCE 

COMPARISON 

8.2.1 Selection of Experimental Data 

Experimental data for FRP-confined non-circular concrete columns have 
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been collected to verify the numerical results and to examine the effects of 

cross-sectional shapes. The experimental data include the axial stress-strain 

curves, axial stress-hoop strain curves (for FRP-confined concrete in square 

columns), and axial force-strain curves (for FRP-confined concrete in 

elliptical columns). These experimental curves were chosen based on the 

following criteria: a) the selected specimens showed good ductility and 

deformability (i.e. a relatively large axial strain); b) the selected axial 

stress-strain curves or axial force-strain curves have an ascending second 

branch or a slowly descending second branch. These two criteria were 

adopted due to the following considerations. First, if an FRP-confined 

concrete column has only limited ductility, the second branch of the 

stress-strain curve is generally very short, and the slope of the second 

branch tends to show large variations. As the second branch slope is a key 

indicator for assessing the deformation capacity of a concrete specimen 

under hoop confinement, it is hard to assess the performance of a 

constitutive model if test data for this slope show a large scatter. Second, the 

parameters of those two constitutive models for use in finite element 

analysis were both calibrated from Jiang and Teng’s (2007) 

analysis-oriented stress-strain model which is more accurate for concrete 

with sufficient confinement than that for concrete with insufficient 

confinement despite that Jiang and Teng’s (2007) model is superior to its 

earlier version proposed by Teng et al. (2007) in predicting the behaviour of 
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FRP-confined concrete.  

 

Based on the above two criteria, 21 specimens, including 12 square 

specimens and 9 elliptical specimens, were collected for inclusion in the 

database. The basic information of these specimens, including their 

geometric and material parameters, is given in Tables 8.1-8.2; Table 8.1 

summarizes the information of square specimens while Table 8.2 

summarizes the information of elliptical specimens. What should be noted is 

that these selected specimens are all small-scale specimens with dimensions 

close to the commonly used standard cylinders. Therefore, the possible size 

effect these 21 selected specimens need not to be considered. 

 

Within these 21 specimens, the 12 square specimens were selected from the 

published literatures (Masia et al. 2004; Hosotani et al. 1996; Wang 2008). 

The major parameters controlling the confinement effect in FRP-confined 

square columns are considered. Four square specimens were selected from 

Masia et al. (2004). These specimens were divided into two groups, 

depending on the dimensions of the cross-section. These four square 

specimens had the same corner radius of 25 mm but two different section 

sizes (section side lengths of 100 mm and 150 mm). The specimens with a 

side length of 100 mm are named WS while the specimens with a side 

length of 150 mm are named WL.  
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In Hosotani et al.’s (1996) study on FRP-confined square columns, the 

parameter varied was the elastic modulus of the confining material; normal 

modulus CFRP (E୤୰୮ ൌ 252GPa) and high modulus CFRP (E୤୰୮ ൌ 439GPa) 

were both used. The corner radius of these two specimens was both 38 mm, 

and their side length was 200 mm. It should also be noted that these two 

specimens were FRP-confined RC columns, which means they included 

longitudinal steel bars and steel hoops. The confinement effect of the steel 

hoops is negligible as large hoop spacing was used. It was found that when 

the hoop spacing is larger than 1.25 times the centerline of the spiral, the 

effect of steel hoops can be neglected (Binici 2005). Longitudinal bars also 

have an insignificant effect on the confinement behaviour of concrete as 

will be discussed in detail in Chapter 9. Therefore, in the present study, this 

feature was neglected in the finite element models. In connection with this 

assumption, the contribution of the longitudinal steel bars was removed 

from the test results of Hosotani et al. (1996) to produce the experimental 

axial stress-strain and axial stress-hoop strain curves for comparison with 

the finite element predictions.   

 

Eight square specimens were also selected from Wang (2008) for 

comparison. The parameters varied in Wang’s (2008) study include the 

unconfined concrete strength fԢୡ୭ , the section corner radius r, and the 
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thickness of the FRP jacket t୨. Within these 8 specimens, the concrete 

strength ranged from 30.7 MPa to 52.7 MPa; the corner radius ranged from 

30 mm to 60 mm; the thickness of the FRP jacket ranged from 0.165 mm to 

0.33 mm. In Wang’s (2008) test, for the FRP-confined concrete with 

unconfined concrete strength equal to 30.7 MPa, all the specimens have 

ascending second branches and they were also selected into the database; 

for the FRP-confined specimens with unconfined concrete strength equal to 

52.7 MPa, only two specimens with their corner radius equal to 60mm have 

ascending second branches and they were selected into the database. The 

names of these 8 specimens include three parts. The first three characters 

represent the concrete cylinder strength. For instance, C30 means the 

concrete cylinder compressive strength was about 30 MPa. The subsequent 

three characters represent the section corner radius r. For instance, R30 

means the section corner radius was 30mm. The last two characters 

represent the thickness of the FRP jacket. For instance, P1 means the square 

column was wrapped by a one-ply of FRP jacket. 

 

Finally nine elliptical specimens recently tested at The Hong Kong 

Polytechnic University were included into the test database (Stefano 2011). 

The major parameters influencing the confinement effect in the 

FRP-confined elliptical columns were considered in these tests. Three ratios 

between the major axis length, a, and the minor axis length, b, ranging from 
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1.3 to 2, were considered. The thickness of the FRP jacket was another 

important parameter. Two different thicknesses, 0.171 mm and 0.342 mm, 

were considered in this series of experiments. The concrete strength ranged 

from 32.64 MPa to 35.92 MPa. These elliptical specimens are distinguished 

by their batches and a/b ratios. 

8.2.2 Overview of Finite Element Models 

The main objective of the present study is to examine the effect of 

cross-sectional shape through finite element modelling. Similar to that 

suggested by Yu et al. (2010), the finite element models in this study 

included only a horizontal slice of the specimens and consisted of a single 

layer of 3D solid elements to represent the concrete. The effect of end 

restraints will be discussed in Chapter 9 in detail. The finite element models 

followed closely the geometry and the FRP jacket arrangement of these 

short-column specimens, using 8-node solid elements for the concrete and 

2-node elements (truss or beam elements) for the FRP jacket. Considering 

the symmetry of the specimen under an idealized condition, only a quarter 

of the horizontal slice is needed to be modeled.  

 

Although two alternative constitutive models were used to model the 

concrete material, it was found that the constitutive models have 

insignificant influence on the convergence of the finite element mesh. 

Therefore, in the finite element models used to obtain the results given in 



255 
 

Sections 8.3 and 8.4, the same mesh was used for the same specimen 

regardless of the constitutive model employed. Two typical finite element 

meshes used to represent these non-circular cross-sections are illustrated in 

Figs. 8.1-8.2, for square and elliptical shapes, respectively. It should also be 

noted that in finite element analysis, the details of the corners of a square 

section were modelled to consider its influence on the confinement effect. 

In some earlier studies (e.g. Malvar et al. 2004; Koksal et al. 2008), the 

features of the corner were neglected in their finite element analyses. 

Therefore, their explanation of the confinement mechanism is questionable, 

although their numerical models may still be able to provide accurate 

predictions for the experimental stress-strain response. These important 

features were properly captured in the present study, and the corner radius 

was taken as an important parameter which has significant influence on the 

confinement effect in a section.  

 

In all the finite element models, the C3D8R solid element was used to 

model the concrete. This type of solid element is available with either 

ABAQUS implicit or explicit. A 2-node element was used in the hoop 

direction to model the FRP jacket as a unidirectional material. In ABAQUS 

implicit, membrane elements without compressive stiffness are also 

available for modelling the FRP jacket; however, this option is unavailable 

in ABAQUS explicit. As the same finite element mesh was intended for use 
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with both ABAQUS implicit and ABAQUS explicit, a 2-node element was 

thus the preferred choice. 

 

Two types of 2-node elements are available with ABAQUS for the 

modelling of the FRP jacket: the truss element and the beam element. For 

FRP-confined square columns, the flat sides of the FRP jacket are subjected 

to bending deformation. The use of the truss element in the finite element 

model neglects the influence of this bending deformation. In most cases, as 

the thickness of the FRP jacket is small, the effect of this bending 

deformation is negligible. In order to clarify the effect of this bending 

deformation, the beam element was first used in the finite element model to 

examine the influence of bending deformation. The element B31 provided 

by ABAQUS was used for this purpose. These beam elements were tied to 

the solid elements to consider the interaction between the concrete and the 

FRP jacket. Compared to the 8-node solid element, the beam element B31 

has additional rotational degrees of freedom. These rotational degrees of 

freedom need to be properly addressed, especially at the symmetry planes. 

The actual thickness of the FRP jacket was used in defining the beam 

elements. In this part of the study focused on the influence of bending 

deformation of the FRP jacket, the concrete constitutive model was not the 

major issue of concern, and the concrete material was modeled using the 

modified CDPM model. 
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Figs. 8.3-8.4 show the influence of jacket bending deformation for two 

square specimens (C30R30P2 and C30R45P2) as revealed by numerical 

simulations. In these two figures, three locations were selected for 

comparison, which include a point at the center of one of the flat sides, one 

of the points of intersection between the corner zone and the flat part, and 

the point at the center of the corner. These three points can be seen as the 

characteristic points for the deformed configuration. Fig. 8.5 shows the 

shape of the deformed section for specimen C30R45P2. It can be observed 

from this figure that the first point (i.e. one of the points at the center of a 

flat side) experiences the largest outward curvature; the second point (i.e. 

one of the points of intersection between the corner zone and the flat part) is 

a point of contra-flexure for the bending deformation; the last point (i.e. the 

point at the center of the corner) experiences the largest inward curvature. 

 

At these three selected points, the magnitudes of the hoop strain on the inner 

surface and the outer surface of the beam element are shown against the 

axial strain in Figs. 8.3-8.4, where compressive axial strains and tensile 

hoop strains are both shown as positive values. These two figures show that 

the difference between the hoop strains on the inner and the outer surfaces 

at these three points is negligible, which indicates that in these two 

specimens the influence of the bending deformation is very small. Therefore, 

it is unnecessary to use beam elements instead of truss elements in the finite 
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element modelling of such columns. Using truss elements instead of beam 

elements to model the FRP jacket has another advantage: the truss element 

T3D2 has the same nodal degrees of freedom as those of the solid element 

C3D8R. Therefore, when truss elements are tied to solid elements to 

consider the interaction between the concrete and the FRP jacket, no 

additional restraints need to be imposed on the truss elements. Therefore, in 

the subsequent finite element analyses, the truss element T3D2 was used to 

model the FRP jacket, and the hoop strain obtained from this element can be 

taken as the average hoop strain obtained from the inner and the outer 

surfaces of the FRP jacket. 

 

To model the confinement effect provided by the FRP jacket, in the finite 

element slice models with a single layer of solid elements, two layers of 

truss elements were placed at the top and the bottom nodes of the solid 

elements. Furthermore, the cross-sectional areas of these truss elements 

were set to be the product of the height of the solid element (in the axial 

direction) and half of the thickness of the FRP jacket. As the height of the 

horizontal slice has no effect on the numerical results, a fixed value of 8 mm 

was always used in the finite element analyses. Trial analyses were 

conducted to find the optimal mesh for the discretization of the 

cross-section. It was found that an element size of around 5 mm for the 

solid elements was suitable for all the finite element models. The size of the 
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truss elements was set to be compatible with the solid elements, so that the 

distances between the adjacent nodes of the truss element and the solid 

element are equal to zero. 

 

As mentioned above, when truss elements were used to model the FRP 

jacket, restraints needed only to be applied to the concrete core. Symmetry 

boundary conditions were imposed on the corresponding symmetry planes 

shown in Figs. 8.1-8.2. The displacements in the z-direction on the bottom 

surface were all prevented. On the top surface, displacements were applied 

in the z-direction to realize axial loading. 

 

In this study, the FRP jacket in all the finite element models was modeled as 

an elastic material. In both ABAQUS implicit and ABAQUS explicit, two 

material parameters, namely the elastic modulus E୤୰୮ and Poisson’s ratio µ୤, are required to define an elastic material. The values of E୤୰୮ used in the 

study are given in Table 8.1 or 8.2. For truss elements, the parameter µ୤ 
does not have any influence on their confinement effect. Hence, in this study, 

the value of the parameter µ୤ was always set to be 0. In summary, the 

choice of element types and material parameters for the FRP jacket ensured 

that they were only modeled as a confining material with mechanical 

resistance only in the hoop direction. When ABAQUS explicit was used, the 

density of the FRP was set to be 1.85e-5 g/mm3. 
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8.3 FINITE ELEMENT RESULTS BASED ON THE MODIFIED CDPM 

MODEL 

8.3.1 Concrete Model 

As discussed in Chapter 2, a number of studies exist on the finite element 

analysis of FRP-confined concrete. Among these studies, most of them have 

been based on a Drucker-Prager (D-P) type plasticity model for the concrete 

(Lan 1998; Mirmiran et al. 2000; Mahfouz et al. 2001; Karabinis and 

Rousakis 2002; Oh 2002; Rousakis et al. 2007; Eid and Paultre 2007). A 

recent review and comprehensive assessment of existing D-P type models 

for FRP-confined concrete showed that none of them could properly capture 

all the key features of FRP-confined concrete (Yu et al. 2010a). Therefore, 

Yu et al. (2010b) developed a new plastic-damage model for FRP-confined 

concrete, in which the deficiencies of the previous D-P type plasticity 

models were eliminated. 

 

In this part of the study, the modified CDPM model proposed by Yu et al. 

(2010) was used to reproduce the stress-strain response of FRP-confined 

concrete in non-circular columns. Unlike empirical and semi-empirical 

models, the modified CDPM model is based on the plastic-damage theory 

and provides a sound theoretical basis for modelling the confinement 

mechanism. In Chapter 2, it has been pointed out that the behaviour of 

FRP-confined circular concrete cylinders (i.e. uniform confinement) can be 
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accurately predicted using this modified CDPM model. In the remainder of 

this section, the capability of the modified CDPM model in predicting the 

behaviour of FRP-confined concrete in non-circular sections (i.e. effect of 

the cross-sectional shape) is examined. Before presenting the numerical 

results, a short summary of the modified CDPM model and some necessary 

refinements are introduced. 

8.3.2 Yu et al.’s Model and Refinements 

Yu et al.’s (2010b) model was based on the knowledge of FRP-confined 

concrete developed at The Hong Kong Polytechnic University (e.g Teng and 

Lam 2004; Teng et al. 2007) and formulated within the theoretical 

framework of the concrete damaged plasticity model (CDPM) provided in 

ABAQUS. Similar to other plastic-damage models used for FRP-confined 

concrete (Lubliner et al. 1989; Luccioni and Rougier 2005; Grassl and 

Jirasek 2006), Yu et al.’s (2010b) model includes four components: the yield 

criterion, the hardening rule, the flow rule, and the damage variable. These 

four components are all confinement-dependent, which is the key feature of 

this model. An analysis-oriented stress-strain model for FRP-confined 

concrete (Teng et al. 2007) was used by them to derive input parameters for 

the plastic damage model. The four components of Yu et al.’s (2010b) model 

are described in detail in the subsequent sub-sections. 
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8.3.2.1 Yield criterion and hardening rule 

The yield function adopted in the CDPM model was first proposed by 

Lubliner et al. (1989) and later modified by Lee and Fenves (1998) in terms 

of the effective stress. The yield function is given by:  

F ൌ ଵଵିA ቀඥ3Jҧଶ െ AIҧଵ ൅ Bۃെσഥ୫୧୬ۄ െ Cۃെσഥ୫୧୬ۄቁ െ σഥୡ୬(ε෤୮୪)  (8.1) 

with 

A ൌ ౜ౘᇲ౜ౙ౥ᇲ ିଵଶ ౜ౘᇲ౜ౙ౥ᇲ ିଵ; 0 ൑ A ൑ 0.5,      (8.2) 

B ൌ ஢ഥౙ౤൫க෤౦ౢ൯஢ഥ౪౤൫க෤౦ౢ൯ ሺ1 െ Aሻ െ ሺ1 ൅ Aሻ,     (8.3) 

C ൌ ଷሺଵିKሻଶKିଵ        (8.4) 

where Iҧଵ  is the first invariant of effective stresses, Jҧଶ  is the second 

invariant of  deviatoric effective stresses. σഥ୫୧୬ is the minimum principal 

effective stress, σഥୡ୬  and σഥ୲୬  are the effective compressive and tensile 

cohesion stresses respectively, ε෤୮୪ is the equivalent plastic strain, and K is 

the strength ratio between equal biaxial compression and equal tri-axial 

compression. As mentioned earlier, fԢୡ୭ is the uniaxial compressive strength 

of concrete (unconfined concrete strength), fୠᇱ  is the biaxial compressive 

strength of concrete with fୠᇱ /fୡ୭ᇱ  =1.16 as the default value (Kupfer et al. 

1969). In addition, the equivalent plastic strain increment is defined by the 
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following equation: 

݀ε෤୮୪ ൌ െdε෤୫୧୬୮୪                      (8.5) 

where ε෤୫୧୬୮୪  is the minimum eigenvalues of the plastic strain ε୮. 

 

Yu et al. (2010b) suggested that σഥୡ୬ should depend not only on ε෤୮୪ but 

also on the effective confining pressure σ୪,ୣ୤୤ given by: 

σ୪,ୣ୤୤ ൌ ଶ൫஢మାα୤ౙ౥ᇲ ൯൫஢యାα୤ౙ౥ᇲ ൯஢మା஢యାଶα୤ౙ౥ᇲ െ αfୡ୭ᇱ     (8.6) 

where σଶ and σଷ are the two principal hoop stresses; and α is a constant 

to be determined based on test results. It was suggested by Yu et al. (2010b) 

that the best-fit value for α is 0.0039 based on experimental stress-strain 

responses of concrete under bi-axial compression (Kupfer et al. 1969). This 

value was adopted in the present study as a default value if not otherwise 

specified. The hardening rule is thus defined as:   σഥୡ୬ ൌ σഥୡ୬൫ ε෤୮୪, σ୪,ୣ୤୤൯                   (8.7) 

Yu et al. (2010b) determined that K = 0.725 based on the following 

equation describing the failure surface of concrete under equal tri-axial 

compression (Teng et al. 2007):  

fԢୡୡכ ൌ fԢୡ୭ ൅ 3.5σ୪     (8.8) 

where fԢୡୡכ  is the peak stress of concrete under a uniform hoop confining 
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pressure σ୪.  

8.3.2.2 Flow rule and damage variable 

In the CDPM model provided by ABAQUS, the flow rule is described by 

the following expressions: 

 ݀ε୨୮ ൌ ߣ݀ డGడσౠ                        (8.9) 

and 

G ൌ ඥሺד σ୲୭tanψሻ ൅ Jҧଶ െ Iҧଵtanψ              (8.10) 

where ݀ߣ is a non-negative scalar, σ୨ is the current stress vector, G is the 

potential function (ABAQUS 2004), σ୲୭ is the uniaxial tensile strength, ד 

is referred to as the eccentricity which has a default value of 0.1, and ψ is 

the dilation angle which is constant in ABAQUS. Yu et al. (2010b) 

suggested that the dilation angle should depend on the equivalent plastic 

strain ε෤୮୪ and the equivalent confinement stiffness  kୣ୯ as follows 

ψ ൌ ψ൫kୣ୯, ε෤୮୪൯                     (8.11) 

where kୣ୯ can be calculated from   

kୣ୯ ൌ െ2σ୪,ୣ୤୤/ሺεଶ ൅ εଷሻ      (8.12) 

with εଶ and εଷ being the two principal hoop strains.  

In addition, Yu et al. (2010b) proposed the following equation for the 
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damage variable d which is also confinement-dependent:  

d ൌ 1 െ ஢ౙିభశCశమAభషA ஢ౢ୤ౙౙᇲכ ିభశCశమAభషA ஢ౢ      (8.13) 

where σୡ is the axial stress of concrete on the descending branch. The two 

newly defined parameters, the effective confining pressure σ୪,ୣ୤୤ and the 

equivalent confinement stiffness kୣ୯, were implemented into ABAQUS as 

“user-defined solution dependent field variables”. 

8.3.2.3 Implementation into ABAQUS  

In the CDPM model provided in ABAQUS, σഥୡ୬ is independent of the 

confinement characteristics and only a single σഥୡ୬ - ε෤ୡ୮୪  curve is required 

for a given concrete, which can be obtained from the uniaxial compressive 

stress-strain curve of concrete. In Yu et al.’s (2010b) model, as σഥୡ୬ is a 

function of both ε෤ୡ୮୪  and σ୪,ୣ୤୤ , a family of σഥୡ୬  - ε෤ୡ୮୪  curves, each 

corresponding to a given value of σ୪,ୣ୤୤ , is required for a given concrete.  

Such σഥୡ୬  - ε෤ୡ୮୪  curves can be derived from an analysis-oriented 

stress-strain model for FRP-confined concrete (e.g. Teng et al. 2007; Jiang 

and Teng 2007). Such an analysis-oriented stress-strain model usually 

includes an active confinement base model to describe the axial stress-strain 

relationship of concrete under a constant hoop confining pressure (Teng and 

Lam 2004). 
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Similarly, a series of d-ε෤ୡ୮୪ curves for different values of σ୪,ୣ୤୤ is required 

in Yu et al.’s (2010b) model, as d is also confinement-dependent. In 

determining d, the post-peak yield surface is assumed to be the same as the 

yield surface at peak stress determined from Eq. (8.1). The d - ε෤ୡ୮୪ curve 

for a given state of stresses is determined by means of interpolation, based 

on the value of σ୪,ୣ୤୤  calculated from the hoop strains ( εଶ  and εଷ ) 

determined in the previous step of analysis.  

 

It should be noted that when the axial deformation of concrete in 

compression is uniform over the cross-section, the equivalent plastic strain ε෤୮୪ is equal to the plastic compressive strain of concrete εୡ୮  (positive 

according to the sign convention of this thesis). This is because that in this 

specific case, one of the principal directions coincides with the axial 

direction for both stresses and strains, and the other two principal directions 

are always perpendicular to this axial direction. For this situation, a finite 

element model containing only a horizontal slice of the concrete 

specimen/column can be used in analysis, and ε෤୮୪ can be replaced by εୡ୮. 

However, if the axial deformation is non-uniform, which may be due to 

non-uniform confinement, load eccentricity or other factors, shear stresses 

develop between adjacent horizontal slices. Consequently, the axial 
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direction is not necessarily one of the principal directions. In such a more 

general situation, a 3D finite element model of the entire concrete 

specimen/column needs to be used in analysis, and ε෤୮୪ is no longer equal 

to εୡ୮.  

 

In addition, it should also be mentioned if the axial deformation of concrete 

in compression is uniform over the cross-section, εଶ ൏ 0 and εଷ ൏ 0 hold, 

and the equivalent confinement stiffness kୣ୯ given by Eq. (8.12) is always 

positive, according to the sign convention adopted in this thesis as the 

concrete experiences lateral expansion. However, if the axial deformation of 

concrete in non-uniform over the cross-section, εଶ ൐ 0 or εଷ ൐ 0 may 

happen. This may lead to a negative value for kୣ୯  and may cause 

convergence problems in the finite element analysis.          

 

For the present finite element models, the following assumptions were 

added when implementing Yu et al.’s (2010b) plastic-damage model into 

ABAQUS without compromising the generality of the model for practical 

applications:  

a) σଶ and σଷ in Eq. (8.9) are the two smaller principal stresses while 

εଶ and εଷ used in the flow rule are the two smaller principal strains 

(according to the sign convention of this thesis); 
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b) σଶ (or σଷ) is ignored in calculating σ୪,ୣ୤୤ if it becomes negative 

(i.e. σଶ ൏ 0 or σଷ ൏ 0), as the effect of tensile stresses on confined 

concrete is unclear; and 

c) εଶ ൅ εଷ ൏ 0. If εଶ ൅ εଷ is found to be positive or zero, it is taken as 

a very small negative value in determining the flow rule. 

The purpose of these assumptions is to limit the revised part of the CDPM 

model in the compressive zone. In addition, two material parameters, the 

unconfined concrete strength f′ୡ୭ and the corresponding axial strain εୡ୭, 

are required to generate the input parameters for the CDPM model in 

ABAQUS. For the specimens listed in Table 8.1, the reported strengths of 

plain concrete cylinders/prisms were directly adopted, which means that the 

size effect on the behaviour of these specimens was not considered as their 

sizes were close to that of standard concrete cylinders. However, the size 

effect on the behaviour of large concrete columns deserves attention. 

8.3.3 Stress-Strain Curves 

A finite element numerical study was conducted using the modified CDPM 

as explained above to evaluate the capability and limitation of the modified 

CDPM model in reproducing the response of FRP-confined concrete in 

non-circular columns subjected to axial compression. The numerical 

modelling procedure for all the columns followed that described above. 

Average axial stress-strain curves and axial stress-hoop strain curves for 

FRP-confined concrete in square sections are shown in Figs. 8.6-8.8. All 
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numerical analyses were terminated at the rupture of the FRP jacket (failure 

of the FRP jacket). The predicted axial stress-strain curves are compared 

with the experimental curves in Fig. 8.6 for Masia et al.’s (2004) tests, in 

Fig. 8.7 for Hosotani et al.’s (1997) tests, and in Figs. 8.8 for Wang’s (2008) 

tests, respectively. 

 

Fig. 8.6a shows the predicted and the experimental axial stress-strain and 

axial stress-hoop strain responses for FRP-confined concrete in square 

columns marked as WS and tested by Masia et al. (2004). This figure shows 

that some variation exists within the experimental results. The numerical 

results fall in-between the experimental results and correlate well with the 

experimental results. Fig. 8.6b shows the predicted axial stress-strain and 

axial stress-hoop strain responses of FRP-confined concrete in two square 

columns named WL and tested by Masia et al. (2004). Although the 

numerical results slightly underestimate the deformation capacity of these 

two square columns, they still show adequate agreement with the 

experimental curves including the stiffness of the second branch of the axial 

stress-strain curve. 

 

Fig. 8.7a shows the predicted and experimental axial stress-strain and axial 

stress-hoop strain responses of FRP-confined concrete in a square column 

named S-12 and tested by Hosotani et al. (1997), indicating excellent 
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agreement between experimental and numerical results. The first ascending 

branch of the experimental stress-strain curves is accurately predicted by the 

numerical model. Although the numerical model seems to slightly 

underestimate the axial stress near the transition point of the stress-strain 

curves, the ultimate state of the experimental curves is properly predicted. 

Fig. 8.7b shows a similar comparison for another column (column H-8); 

close agreement is seen and the axial stress in the transition zone is more 

closely predicted. 

 

Fig. 8.8 shows comparisons between predicted and experimental 

stress-strain curves for specimens tested by Wang (2008). These figures 

indicate that in general the numerical model closely predicts the actual 

behaviour of these specimens. Fig. 8.8a shows comparisons for specimens 

C30R30P1 and C30R30P2. For specimen C30R30P2, close agreement is 

observed. For specimen C30R30P1, the ultimate stress is properly captured 

by the numerical model which however underestimates the deformation 

capacity. Fig. 8.8b shows the numerical predictions versus test results for 

specimens C30R45P1 and C30R45P2. For specimen C30R45P1, close 

agreement is observed. For specimen C30R45P2, close agreement in the 

shape of stress-strain curves is seen although the axial stress is slightly 

underestimated. Fig. 8.8c shows comparisons for specimens C30R60P1 and 

C30R60P2. For these two specimens, the predicted stress-strain curves are 
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in close agreement with the experimental results. Fig. 8.8d shows 

comparisons for specimens C50R60P1 and C50R60P2. For specimen 

C50R60P1, close agreement between the numerical and the experimental 

results is seen. For specimen C50R60P2, close agreement in the shape of 

stress-strain curves is seen although the axial stress is slightly 

underestimated. 

 

As mentioned above, nine new elliptical specimens were selected for 

simulation. These specimens were divided into three batches. Among the 

different batches, the varied parameters were the unconfined concrete 

strength and the thickness of the FRP jacket; within each batch, the varied 

parameter was the a/b ratio. The variation of the a/b ratio was achieved 

through changing the value of b. Therefore, as b is increased, the a/b ratio 

becomes smaller while the cross-sectional area of the specimen becomes 

larger. Axial force-strain curves for FRP-confined elliptical concrete 

columns from both numerical analysis and experiments are shown in Fig. 

8.9. The physical meaning of the axial force is similar to that of the average 

axial stress. Compared to the axial stress-strain curves, the difference 

between the axial force-strain curves for the same set of test results is more 

significant. The difference is most significant for the elliptical columns 

compared to the previous square columns. That is because for an elliptical 

column with a smaller a/b ratio, it is under more effective confinement and 
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has a larger cross-sectional area. Therefore, it can resist a much larger axial 

force. Hence, for FRP-confined elliptical concrete columns, axial 

force-strain curves are adopted for comparison instead of their 

corresponding axial stress-strain curves. 

 

For these elliptical specimens, the finite element analysis was terminated 

when the reported ultimate experimental axial strain was reached. Some 

observations can be made from the experimental and the numerical results. 

All of these columns are predicted to have a bilinear axial force-strain curve, 

which is similar to the behaviour of circular concrete cylinders with a 

sufficient amount of FRP confinement. By contrast, the experimental results 

for some columns with a large aspect ratio (i.e. a large a/b ratio) show a 

descending post-peak branch although the descending trend is very mild. 

For instance, specimens with their a/b ratio equal to 2 in batch III and batch 

IV show a descending trend after their peak stress, but the specimen with 

the same a/b ratio from batch II does not show such a descending branch. 

The concrete strengths in these three batches are close, and the thickness of 

the FRP jackets in Batch III and IV are twice that of batch II. Therefore, the 

specimen of batch II should have a larger chance of displaying a descending 

response, but the experimental results are to the contrary. This may be 

attributed to the scatter of experimental results as the second branch is close 

to being horizontal in all three cases. Although the overall axial force-strain 
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curves of all the specimens are properly predicted by the finite element 

models, the ultimate axial forces of these specimens are all slightly 

overestimated. This trend of overestimation needs to be further examined 

using more experimental results. 

8.4 RESULTS OF FE MODELS BASED ON THE MICROPLANE MODEL 

8.4.1 Implementation of the M4+ Model in ABAQUS 

As indicated in Chapter 7, the M4+ model was implemented into the Matlab 

software as an in-house code to predict the stress-strain behaviour of 

concrete under uniform confinement. In that case, the M4+ model was only 

used as a material driver. A material driver is sufficient to describe the 

mechanical response of concrete under uniform confinement, because the 

stress state of the whole specimen can be represented by that of any material 

point. In addition, the definitions of the confining pressure and the 

confining stiffness for concrete under uniform confinement are clear. The 

detailed explanations are as follows: 1) for concrete under uniform active 

confinement, the confining pressure f୪ is a constant; 2) for concrete under 

uniform passive confinement provided by a linear elastic material such as 

FRP, the confining stiffness kୱ୲୧୤୤ is a constant. In addition, the confining 

stresses over the cross-section are the same.  

 

For concrete under non-uniform confinement (e.g. FRP-confined square 
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columns), however, the definition of the confining pressure or the confining 

stiffness becomes much less clear and different definitions have been 

proposed by previous researchers. For the confining pressure, various 

definitions were suggested by different researchers (e.g. Barros 2001; 

Johansson and Akesson 2002; Oh 2002; Montoya et al. 2006; Yu et al. 

2010b), and were commonly based on a principal stress or a combination of 

two principal stresses. For instance, Oh (2002) used the smallest principal 

stress (i.e. σଷ) as the confining pressure; Barros (2001) employed the 

intermediate principal stress (i.e. σଶ); Johansson and Akesson (2002) and 

Montoya et al. (2006) used the mean value of the two smaller principal 

stresses (i.e. ሺσଶ ൅ σଷሻ/2); Yu et al. (2010b) suggested a more complicated 

definition of the confining pressure which has been discussed in Section 

8.3.2.1 in detail. For the confining stiffness, the only definition is the one 

proposed by Yu et al. (2010b). The expression of this confining stiffness has 

been given in Eq. (8.10). Although there has been some research following 

that of Yu et al. (2010b) (e.g. Jiang et al. 2011), no other definition exists as 

much of the research has focused on FRP-confined circular concrete 

cylinders (i.e. uniform confinement), and therefore it has not been necessary 

to define a new expression for the confining stiffness. 

 

In the present study, the effects of the above four types of definitions of 

confining pressure on the predicted stress-strain responses of FRP-confined 
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concrete under non-uniform confinement have been assessed through 

comparison with test results. It has been found that the most suitable 

definition for the confining pressure in the M4+ model is the smallest 

principal stress σଷ. The confining stiffness kୱ୲୧୤୤ is defined as െσଷ/εଷ in 

the current model to be consistent with the definition for the confining 

pressure. Here, εଷ  represents the third principal strain. To avoid any 

numerical problems, if the kୱ୲୧୤୤ is smaller than a predefined value of 50, it 

is set to be 50. 

 

Besides the definitions of the confining pressure and the confining stiffness, 

other difficulties also exist in implementing the microplane model into a 

finite element model. Among these, the most challenging one is probably 

the tangential stiffness matrix of the M4 model. In the early versions of the 

microplane model, such as M1 and M2, smooth curves are employed to 

define the relationships between micro stresses and micro strains, and their 

corresponding tangential stiffness matrices can be obtained directly. Using 

these explicit tangential stiffness matrices, the microplane model can be 

employed in implicit finite element models with high efficiency. In other 

words, nonlinear static analysis is more efficient when an explicit material 

tangential stiffness matrix exists. However, due to certain insufficiencies 

(Jirasek 1993) of these microplane models, the concept of smooth 

micro-stress-strain relationships has been abandoned since the M3 model, 
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and formulations of stress–strain boundaries were used in the later 

microplane models such as the M3 and the M4 models. Due to the 

non-smooth micro-stress-micro-strain relationship introduced by the 

stress-strain boundaries, an explicit tangential stiffness matrix cannot be 

obtained. To address this problem, Caner and Bazant (2000) suggested 

constructing the tangential stiffness matrix from its definition (i.e. defining 

the component of the tangential stiffness as the ratio between a strain 

increment and its induced stress increment). This is a computationally 

intensive approach. To reduce the computational burden, Nemecek et al. 

(2002) suggested using the initial elastic stiffness matrix instead of the 

tangential stiffness matrix. This approach is still not very effective as a large 

number of iterations are usually required. Moreover, this approach is prone 

to convergence problems during the numerical calculation. Another way 

which is easier is to use the M4+ model in an explicit finite element model, 

where the tangential stiffness matrix becomes unnecessary.  

 

Static problems can be solved using explicit finite element methods as long 

as an appropriate load time function is used to keep the inertia forces small. 

It is much more effective to use an explicit analysis especially when the 

constitutive model used is also formulated as explicit. Based on the above 

discussion, the M4+ model is thus implemented in ABAQUS using the 

user-defined material subroutine (VUMT). Within this M4+ model, the 
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definitions of the confining pressure and the confining stiffness explained in 

this section are used. 

 

The M4+ model was then employed to simulate the behaviour of 

FRP-confined concrete in non-circular columns. The M4+ model is 

considered to be more promising and conceptually more transparent than 

other types of constitutive models such as plasticity-based models in 

modelling the responses of concrete. It also provides a more fundamental 

explanation of the behaviour of concrete with some reference to the material 

microstructure. In Chapter 7, it has been demonstrated that the behaviour of 

FRP-confined circular concrete cylinders can be accurately predicted using 

the M4+ model. As mentioned in that chapter, the parameters kଵ, c଻, and c଼ of the M4+ model are dependent on the confining pressure and the 

confining stiffness. Moreover, these parameters were calibrated based on a 

material driver, in which the effects of end restraints were not taken into 

account. Considering this specific situation, a horizontal slice of concrete 

columns was also employed in the current finite element analysis. As the 

current finite element model also neglected the effects of end restraints, it 

thus has similar boundary conditions in the vertical direction as the previous 

material driver. Therefore, the empirical equations developed for the 

parameters kଵ, c଻, and c଼ of the M4+ model can be used in the finite 

element analysis without any modification. Another advantage of the slice 
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model is that it can avoid possible spurious localization at the structural 

level.  

 

In the modified CDPM model,  fԢୡ୭  and εୡ୭  are employed as input 

material parameters. However, in the M4+ model, three parameters E, kଵ଴, 

and cଵ଼ are used as input material parameters instead of fԢୡ୭ and εୡ୭. The 

values of these three parameters are determined by fitting the axial 

stress-strain curves of unconfined concrete. The detailed values of these 

three parameters for each batch of concrete are summarized in Tables 8.3 

and 8.4. Other parameters required by the M4+ model were assigned their 

default values as suggested in Chapter 7. As in Section 8.3, the effects of 

size on the behaviour of confined concrete are still neglected here. 

8.4.2 Stress-Strain Curves 

The VUMAT was used in finite element analysis to model the mechanical 

responses of FRP-confined concrete in non-circular columns subjected to 

axial loading. As explained in Section 8.2, the finite element models 

adopted the same finite element mesh and element types as those used in 

Section 8.3, but were executed using ABAQUS explicit instead of 

ABAQUS implicit.  

 

To evaluate the capability of the M4+ model in reproducing the mechanical 

responses of FRP-confined concrete in non-circular columns, the predicted 
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average axial stress-strain and axial stress-hoop strain curves along with the 

corresponding experimental curves are shown in Figs. 8.10-8.12. The same 

termination criterion as described in Section 8.3 was adopted. The predicted 

axial stress-strain curves are compared with the experimental curves in Fig. 

8.10 for Masia et al.’s (2004) tests, in Fig. 8.11 for Hosotani et al.’s (1997) 

tests, and in Fig. 8.12 for Wang’s (2008) tests.  

 

Fig. 8.10a shows the predicted and the experimental axial stress-strain and 

axial stress-hoop strain responses of FRP-confined concrete in a square 

columns marked as WS and tested by Masia et al. (2004). As can be seen, 

there is a good agreement between the numerical and the experimental 

results. In addition, the ultimate states of these specimens were also 

accurately predicted. Fig. 8.10b shows the axial stress-strain and axial 

stress-hoop strain responses of the specimens marked as WL, which were 

also tested by Masia et al. (2004). Although the deformation capability of 

these specimens is slightly overestimated, the numerical results correlate 

remarkably well with the experimental results. 

 

Figs. 8.11 show the predicted and the experimental axial stress-strain and 

axial stress-hoop strain responses of FRP-confined concrete in square 

columns as tested by Hosotani et al. (1997). As mentioned in Section 8.2, 

these two specimens were confined with two different types of FRP jackets 
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(Normal modulus and high modulus). These figures show that the finite 

element model overestimates the ultimate stress of these two specimens, but 

they predict the deformation capability of these specimens accurately. That 

is, the finite element model tends to overestimate the stiffness of the second 

branch of the axial stress-strain curves. The possible reason for this 

overestimation is that the confining stiffness involved in these two 

specimens are far beyond the scope of those used to calibrate the parameters 

of the M4+ model (i.e. kଵ, c଻ and c଼).  In these two specimens, the FRP 

jacket is much thicker than other specimens selected from the database. 

Moreover, for specimen H-8, the elastic modulus of the FRP jacket is much 

larger than that of other specimens. Therefore, the confining stiffness 

provided by the FRP jacket in these two specimens is much larger than 

other specimens selected for comparison. Due to this reason, the finite 

element models cannot provide accurate predictions for these two 

specimens. 

 

Fig. 8.12 shows the comparisons between the predicted and the 

experimental stress-strain curves for the specimens tested by Wang (2008).  

Unlike the numerical results obtained using the modified CDPM model, 

which tend to slightly overestimate the axial stress, especially the ultimate 

axial stress, the numerical results obtained using the M4+ model tend to 

slightly underestimate the axial stress. However, the extent of this 
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underestimation is very small. Therefore, excellent agreement between the 

experimental and the numerical results is still achieved for these specimens. 

 

Axial force-strain curves for FRP-confined elliptical concrete columns from 

both numerical analysis and experiments are shown in Figs. 8.13. The 

following observations can be made from these figures: 1) the numerical 

model can predict the overall behaviour of the experimental responses; 2) 

unlike the numerical results obtained using the modified CDPM, where all 

the elliptical specimens show bilinear axial force-strain curves, some of the 

numerical results obtained using the M4+ model show a descending branch 

in axial force-strain curves for the specimens with larger values of the a/b 

ratio. The variations obtained using these two different constitutive models 

may be due to the fact that they are based on different theories.  

8.5 COMPARISON WITH ANALYTICAL RESULTS FROM DIFFERENT 

CONSTITUTIVE MODELS AND EMPIRICAL MODELS 

As mentioned above, a number of empirical or semi-empirical models have 

been proposed to predict the stress-strain behaviour of FRP-confined 

concrete in non-circular columns. Two representative models among them 

(i.e. Lam and Teng 2003; Wei and Wu 2012), were selected for comparison 

with results from the finite element models. Lam and Teng’s (2003) model 

was chosen because it is a simple but relatively accurate model, and Wei 
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and Wu’s (2012) model was chosen as most of the experimental data used in 

this chapter had already been used in building this model. The formulations 

of these two empirical models are summarized below. 

 

In Lam and Teng’s (2003) design-oriented stress-strain model, two shape 

factors, kୱଵ  and kୱଶ , were adopted to consider the impact of section 

shapes. The equation of the ultimate axial stress is as follows: fୡ୳ ൌ fୡ୭ᇱ ൅ kଵkୱଵf୪,ୟ     (8.14) 

For the ultimate axial strain, the following expression is used 

கౙ౫கౙ౥ ൌ 1.75 ൅ kଶkୱଶ ୤ౢ,౗୤ౙ౥ᇲ ቀக౞,౨౫౦கౙ౥ ቁ଴.ସହ
   (8.15) 

Here, kଵ ൌ 3.3  and kଶ ൌ 12 . In addition, the value of ε୦,୰୳୮  was 

suggested to be 0.586ε୨ (Lam and Teng 2003). The definitions of other 

parameters can be found in Chapter 2.  

 

Wei and Wu (2012) proposed a unified stress-strain model for FRP-confined 

concrete in both circular and rectangular columns. This empirical model is 

the most updated one for FRP-confined concrete in non-circular columns.  

Compared to Lam and Teng’s (2003) design-oriented stress-strain model, 

more complex expressions are employed to consider the ultimate state of 

the FRP-confined concrete in non-circular columns. In this model, the 

equation of the ultimate axial stress is as follows: 
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୤ౙ౫୤ౙ౥ᇲ ൌ 0.5 ൅ 2.7 ൬ ଶ୰ୠ౩౧൰଴.ସ ቀ ୤ౢ୤ౙ౥ᇲ ቁ଴.଻ଷ ൬ ୦ୠ౩౧൰ିଵ
    (8.16) 

where f୪, is calculated by  f୪ ൌ ଶ୤౜౨౦୲ୠ౩౧ ൌ ଶEౠக౜౨౦୲ୠ౩౧       (8.17) 

For a square column, bୱ୯ is the width of the column.  

 

For the ultimate axial strain, the following expression is used: 

கౙ౫கౙ౥ ൌ 1.75 ൅ 12 ቀ ୤ౢ୤ౙ౥ᇲ ቁ଴.଻ହ ቀ୤యబ୤ౙ౥ᇲ ቁ଴.଺ଶ ൬0.36 ଶ୰ୠ౩౧ ൅ 0.64൰ ൬ ୦ୠ౩౧൰ି଴.ଷ
 (8.18) 

where fଷ଴ is the concrete strength of unconfined grade C30 concrete. In Eq. 

(8.18), the following equation is adopted to calculate εୡ୭. εୡ୭ ൌ 0.000937ඥfୡ୭ᇱర       (8.19). 

 

In Sections 8.3 & 8.4, the axial stress-strain and axial stress-hoop strain 

curves or axial force-strain curves obtained from finite element analysis 

using the two different constitutive models are compared with the 

experimental results separately. To further demonstrate the capability of 

these two constitutive models, predictions for the ultimate state of the 

concrete are compared in Tables 8.5 and 8.6.  

 

In Table 8.5, the predictions are normalized by the corresponding 

experimental results. Here, ‘theo1’ represents the numerical results obtained 
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using the modified CDPM model; ‘theo2’ represents the results obtained 

using the M4+ model; ‘theo3’ represents the results obtained from Lam and 

Teng’s (2003b) design-oriented stress-strain model; ‘theo4’ represents the 

results obtained from Wei and Wu’s (2012) design-oriented stress-strain 

model. The same definitions for ‘theo1’ and ‘theo2’ are also adopted in 

Table 8.6. 

 

The third and the fourth columns in Table 8.5 show the finite element results 

obtained using the modified CDPM model; the fifth and the sixth columns 

of this table show the finite element results obtained using the M4+ model; 

the seventh and the eighth columns of this table show the results obtained 

from Wei and Wu’s (2012) design-oriented stress-strain model; the ninth 

and the tenth columns of this table show the results obtained from Lam and 

Teng’s (2003b) design-oriented stress-strain model. Two statistical 

indicators, i.e. the average value and the standard deviation, were calculated 

to assess the capability of these four approaches in predicting the ultimate 

state.  

 

The average values of the ultimate stress obtained from these four 

approaches are 0.97, 1.1, 0.98, and 0.89, respectively. It seems that for the 

ultimate strength, Wei and Wu’s (2012) design-oriented stress-strain model 

and the modified CDPM model show better performance than the other two 
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models. Within these two models, the results obtained from the modified 

CDPM model shows a relatively small standard deviation equal to 0.08, 

indicating that its prediction suffers a smaller variation compared to Wei and 

Wu’s (2012) design-oriented stress-strain model (a standard deviation equal 

to 0.11). Wei and Wu’s (2012) design-oriented stress-strain model shows 

even better performance for the ultimate stress than the M4+ model. 

Generally, the accuracy of the empirical models strongly depends on the test 

database employed in the process of regression analysis. As most of the 

experimental data summarized in Table 8.1 except those of Hosotani et al. 

(1997) have been used in the process of regression analysis in calibrating 

Wei and Wu’s (2012) model, the high accuracy of Wei and Wu’s (2012) 

design-oriented stress-strain model for these test data is to be expected. In 

addition, although the numerical results obtained using the M4+ model give 

a slightly larger average value, they show the smallest standard deviation 

among the results of all these four models. 

 

The average values of the ultimate axial strain obtained from these four 

models are 0.94, 1.1, 0.86, and 0.66, respectively. For the ultimate axial 

strain, the modified CDPM model shows the best performance among these 

four models. Its predicted average value is 0.94 which is very close to 1, 

indicating a good agreement between the predicted values and the 

experimental data.  In addition, its predicted values possess the smallest 
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standard deviation of 0.14, which means they are highly consistent. 

Similarly, the ultimate axial strains obtained using the M4+ model also show 

better performance than the other two design-oriented stress-strain models. 

In summary, for the ultimate axial strains, the constitutive models used in 

finite element analyses demonstrate their advantages in providing more 

accurate predictions. 

 

Another thing that should be noted is that for both the ultimate stress and 

the ultimate axial strain, the predicted results using the M4+ model tend to 

slightly overestimate the experimental results, while those obtained using 

the other three models tend to underestimate the corresponding 

experimental results. 

 

Table 8.6 summarizes the predicted ultimate axial stress obtained using the 

two different concrete constitutive models for FRP-confined concrete in 

elliptical columns. The ultimate axial strain is not compared as the finite 

element analysis for these elliptical specimens was terminated based on the 

ultimate axial strain itself. The two design-oriented stress-strain models 

discussed above are not directly applicable to elliptical specimens, and thus 

they are also not included in the comparison. In Table 8.6, the first column 

of data gives the numerical results obtained from the finite element analysis 

based on the modified CDPM model. The upper boundary of the data is 
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1.42; the lower boundary of the data is 1.02; the average value is 1.13 with a 

standard deviation of 0.12. These statistics indicate that the numerical 

results obtained by using the modified CDPM model tend to overestimate 

the ultimate axial stress. Moreover, these data indicate that for specimens 

with a large a/b ratio, the prediction error tends to be large. The second 

column of data in this table gives the numerical results obtained using the 

M4+ model. The upper boundary of the data is 1.24; the lower boundary of 

the data is 0.82; the average value is 1.08 with a standard deviation of 0.16. 

These statistics indicate that the numerical results obtained using the M4+ 

model also tend to slightly overestimate the ultimate axial stress. What is 

different from the numerical results obtained by using the modified CDPM 

model, in which the ultimate axial stresses for all 9 specimens are 

overestimated, the predictions obtained by using the M4+ model do not 

show this systematic error. Thus, although the scatter of the predictions 

obtained using the M4+ model is larger than that obtained using the 

modified CDPM model, its average error (8%) is still smaller than that 

obtained using the modified CDPM models (13%).  

8.6 CONFINING STRESS DISTRIBUTION OVER THE WHOLE SECTION 

The confining stress distribution over a non-circular section reflects the 

confining effects of the FRP jacket in an intuitive way. It is physically 

understood that a uniformly-distributed confining stress has a better 
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confining effect than a non-uniformly distributed confining stress. For 

instance, the confining effect in a circular section is better than that in a 

square/rectangular section with an identical cross-sectional area.  

 

The stress distribution over a non-circular section of interest can hardly be 

obtained using an experimental approach. Therefore, in developing 

empirical models, a simplified approach is generally employed to introduce 

an assumed distribution (e.g. Mander et al. 1988, Lam and Teng 2003). This 

assumption often includes two uniformly-distributed stress zones. In one of 

these zones, the concrete is assumed to be under effective uniform 

confinement, while in the other zone, the concrete is assumed to be under no 

confinement. Due to the simple treatment of the stress zones, this 

assumption can only be seen as a rough approximation of the actual stress 

distribution. By contrast, the numerical results from finite element analysis 

enable a detailed examination of the stress distribution at  any stage of 

loading. Therefore, in this section, the distribution of the stress over the 

whole cross-sections of some selected specimens is examined to provide 

some intuitive understanding. 

  

Although similar numerical results were obtained using the two different 

constitutive models in modelling the behaviour of FRP-confined concrete in 

non-circular columns, in this section, only those obtained using the 
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modified CDPM model are examined to reveal the stress distribution. That 

is because for the numerical results obtained using the M4+ model, their 

predicted stress distributions lose symmetry at relatively large values of 

axial deformation. To further illustrate this phenomenon, the axial stress 

distributions of specimen C30R30P2 based on the numerical results 

obtained using the M4+ model are shown in Fig. 8.14. The distribution of 

the axial stress at an early stage before reaching the strength of unconfined 

concrete is shown in Fig. 8.14a. At this specific stage, the distribution of the 

axial stress remains symmetric. However, it can be observed that the 

distribution of the axial stress loses its symmetry to some extent at the 

ultimate state when the rupture of the FRP jacket is achieved (see Fig. 

8.14b). To check whether this loss of symmetry is due to the use of the 

explicit finite element method, the M4+ model was also implemented into 

the implicit finite element models with a tangential stiffness matrix as 

suggested by Caner and Bazant (2000). The same phenomenon still exists. 

Therefore, a possible reason of this asymmetry of stress may be due to the 

inherent characteristics of the M4+ model. For an explicit material model, 

with the increase of the calculation time, the errors of the constitutive model 

may accumulate and thus the distribution of the axial stress may lose 

symmetry, although the accumulated errors have an insignificant effect on 

the overall average stress-strain behaviour.  
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Figs. 8.15 and 8.16 show the contours of the axial stress over two selected 

cross-sections, namely the sections of C30R30 and C30R45. In these two 

figures, the contours correspond to the stress states where the failure of the 

FRP jacket is achieved, which is of interest. The magnitude of the axial 

stress is given in MPa. In addition, the gray areas in Figs. 8.15-8.16 indicate 

the zones with the magnitude of the axial stress smaller than the 

corresponding unconfined concrete strength fୡ୭ᇱ  (i.e. non-effective 

confinement zone).  

 

From the axial stress contour plots, some basic characteristics of the stress 

distribution can be observed. It seems that the distribution of the axial stress 

shows the pattern of an arch shape. It is typical of stress distribution of a 

square section that the highest axial stress occurs at the corners of the 

section. In addition, along the diagonal direction, the magnitude of the axial 

stress drops gradually, although the concrete within this zone (the zone 

along the diagonal direction) is still effectively confined as the smallest 

axial stress predicted is still larger than the unconfined concrete strength. 

On the other hand, the constraint on both sides of the diagonal zone 

becomes not so effective and the magnitude of the axial stress drops further. 

Therefore, the weakest confinement zones appear in the middle of the sides. 

As a result, the contour plot of the whole section shows an X-shape, which 

is similar to what is commonly assumed for a square concrete column 
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confined by steel hoops (Mander et al. 1988).  

 

Furthermore, it can also be observed from Figs. 8.15 and 8.16 that the 

amount of FRP affects the stress distribution. With the increase of the 

thickness of the FRP jacket, the ineffective confinement zones (gray zones 

in the figures) become smaller, indicating an increased effective 

confinement zone. This factor has not been taken into consideration in the 

arching action assumption. The neglect of the effect of the thickness of the 

FRP jacket may be due to an implicit assumption adopted in the arching 

assumption. In the arching assumption, the concrete is implicitly taken as an 

elastic material, which means that increasing the thickness of the FRP 

jackets does not introduce stress redistribution. By contrast, in the finite 

element analysis, the concrete material experiences inelastic behaviour. 

Therefore, the concrete displays a nonlinear performance and the change of 

the thickness also affects the stress distribution.  

 

What is more, the radius of the corner is another important factor which 

affects the stress distribution. Figs. 8.15 and 8.16 show that the magnitude 

of the axial stress is higher for the specimen with a larger corner radius. For 

instance, for the specimen C30R45P2 which has a relatively large corner 

radius of 45mm, no gray zones exist in the contour plot and the whole 

section can be seen as effectively confined. Generally, the effects of this 
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factor have been considered in the empirical model (e.g. Lam and Teng 

2003).  

 

To further illustrate the confining effect, the contours of the third principal 

stress are selected to represent the confining pressure and are shown in Figs. 

8.17-8.18 for the above four specimens. Similarly, the distribution of the 

confining pressure also shows a clear pattern of an arch shape. Furthermore, 

as can be seen from these figures, no tensile stress appears on any of the 

sections, indicating that the whole section is under effective confinement. In 

the low confining zone, the axial stress is smaller than the unconfined 

concrete strength fୡ୭ᇱ  because the axial strain at the failure stage is much 

larger than εୡ୭. Therefore, concrete experienced a long stress softening 

process, although its peak stress is still larger than the unconfined concrete 

strength fୡ୭ᇱ . 

 

Similar to that of square sections, Fig. 8.19 shows the contours of the axial 

stress over two elliptical cross-sections of batch II with two different a/b 

ratios. It can be observed from these figures that the axial stress near the 

vertex of the major axis of the ellipse is larger than that near the minor axis 

of the ellipse. Moreover, along the major axis of the ellipse, there is a 

significant gradient existing in the axial stress. With the increase of the a/b 

ratio, the gradient of the axial stress becomes large, indicating an increased 
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non-uniformity of the stress distribution. This observation may explain why 

a larger a/b results in a less effective confinement effect. 

8.7 CONCLUSIONS 

This chapter has been concerned with the development of finite element 

models for the analysis of FRP-confined non-circular concrete columns. 

These finite element models can be employed to perform a large number of 

numerical experiments for detailed examinations of the underlying 

mechanism of confinement. Two constitutive models, i.e. the modified 

CDPM model and the M4+ model were employed to describe the behaviour 

of concrete under confinement. These two constitutive models were selected 

as their accuracy for FRP-confined circular concrete cylinders had already 

been verified, and therefore they were considered to be more promising in 

predicting the mechanical responses of FRP-confined concrete in 

non-circular columns compared to other constitutive models.  

 

The finite element models using the above two constitutive models were 

verified by comparison with experimental results of FRP-confined concrete 

in non-circular columns. The comparison showed that the finite element 

models were capable of reproducing the axial stress-strain or axial 

force-strain response of FRP-confined concrete in non-circular columns. In 

addition, the high accuracy of these finite element models indicates that the 
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finite element models can capture the major characteristics of the 

experimental results.  

 

Furthermore, the corner radius of the square section was properly 

considered in the finite element model. In this way, it is possible to trace the 

hoop strains at any place of the square section to determine the onset of 

rupture of the FRP jacket. In addition, the presence of a corner radius has a 

significant effect on the confinement effect. Therefore, this detail plays an 

important role in the confinement mechanism. 

 

For FRP-confined concrete in square columns, the numerical results were 

also compared with results from existing empirical models. For the ultimate 

stress, the empirical model developed by Wei and Wu (2012) has similar 

accuracy as the finite element model using the modified CDPM model. 

However, for the ultimate axial strain, the finite element models using the 

two constitutive models both have better performance than the empirical 

models.  

 

The numerical results enabled a comprehensive examination of the 

distribution of the axial stress and that of the confining pressure in the hoop 

direction. It was found that both the corner radius and the thickness of the 

FRP jacket have a significant effect on the stress distribution in the concrete. 
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The effect of corner radius has already been widely accepted by researchers 

and considered in some empirical models (e.g. Lam and Teng 2004). By 

contrast, the effect of the thickness of the FRP jacket on the stress 

distribution is not so intuitive. This effect exists because concrete is a 

non-linear material and the thickness of the FRP jacket changes the stress 

state of concrete at failure. 
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 (a) Plan view 
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(b) 3D view 

Figure 8.1 Mesh details for specimens C30R30 from Wang (2008) 
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(a) Plan view 
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(b) 3D view 

Figure 8.2 Mesh details for Stefano’s (2011) Batch II 
elliptical specimens (a/b=1.3) 
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Figure 8.3 Effect of bending deformation on the CDPM finite element 
results for specimen C30R30P2 

 
 

 

Figure 8.4 Effect of bending deformation on the CDPM finite element 
results for specimen C30R45P2 
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Figure 8.5 Un-deformed section and deformed section of specimen 

C30R45P2 from a CDPM finite element model 
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(a) Specimens WS 

 
(b) Specimens WL 

Figure 8.6 Axial stress-strain and axial stress-hoop strain curves for Masia 
et al.'s (2004) tests (Based on the CDPM model) 
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(a) Specimen S-12 

 
   (b) Specimen H-8 

Figure 8.7 Axial stress-strain and axial stress-hoop strain curves for 
Hosotani et al.'s(1997) tests (Based on the CDPM model) 
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(a) Specimens C30R30 

 

 
(b) Specimens C30R45 
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(c) Specimens C30R60 

 

 
   (d) Specimens C50R60 

Figure 8.8 Axial stress-strain and axial stress-hoop strain curves for Wang's 
(2008) tests (Based on the CDPM model) 
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(a) Batch II 

 

 
(b) Batch III 
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   (c) Batch IV 

Figure 8.9 Axial force-strain curves for Stefano’s (2011) elliptical 
specimens (Based on the CDPM model) 
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(a) Specimens WS 

 

 
   (b) Specimens WL 

Figure 8.10 Axial stress-strain and axial stress-hoop strain curves for Masia 
et al.'s(2004) tests (Based on the M4+ model) 
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(a) Specimen S-12 
 

 
   (b) Specimen H-8 

Figure 8.11 Axial stress-strain and axial stress-hoop strain curves for 
Hosotani et al.'s(1997) tests (Based on the M4+ model) 
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 (a) Specimens C30R30 

 

 
(b) Specimens C30R45 
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 (c) Specimens C30R60 

 

 
(d) Specimens C50R60 

Figure 8.12 Axial stress-strain and axial stress-hoop strain curves for 
Wang’s (2008) tests (Based on the M4+ model) 
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(a) Batch II 

 

 
(b) Batch III 
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   (c) Batch IV 

Figure 8.13 Axial force-strain curves for Stefano’s (2011) elliptical 
specimens (Based on the M4+ model) 
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(a) Early stage 
 

                          
(b) Ultimate stage 

Figure 8.14 Contours of axial stress over the cross-section of specimen 
C30R30P2 (Based on the M4+ model) 
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(a) 1-ply 

  
 

                           
(b) 2-ply 

Figure 8.15 Contours of axial stress over the cross-section of specimens 
C30R30 (Based on the CDPM model) 
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(a) 1-ply 

                           
(b) 2-ply 

Figure 8.16 Contours of axial stress over the cross-section of specimens 
C30R45 (Based on the CDPM model) 
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(a) 1-ply 
 

                     
(b) 2-ply 

Figure 8.17 Contours of confining stress over the cross-section of 
specimens C30R30 (Based on the CDPM model) 

                  
 
 
 
 
 
 
 
 
 
 
 
 



319 
 

 
 

 

 

 
(a) 1-ply 

 

                            
(b) 2-ply 

Figure 8.18 Contours of confining stress over the cross-section of 
specimens C30R45 (Based on the CDPM model) 
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(a) Batch II, a/b=1.3 
 
    

 

                     
(b) Batch II, a/b=2 

Figure 8.19 Contours of axial stress over the cross-sections of elliptical 
specimens (Based on the CDPM model) 
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Table 8.1 Properties of FRP-confined square columns 

Researchers Specimen index Dimension,B*L, mm Corner radius r, mm B/r f'co, Mpa εco Ej, Gpa tj, mm f frp  (MPa) ε frp (%)
WS 100*300 4
WL 150*450 6
H-8 439 0.68 4433 1.76
S-12 252 0.67 3972 0.9

C30R30P1 0.165
C30R30P2 0.33
C30R45P1 0.165
C30R45P2 0.33
C30R60P1 0.165
C30R60P2 0.33
C50R60P1 0.165
C50R60P2 0.33

Hosotani et al. (1997)

Masia et al. (2004) 25 27 0.002

30 5 32.3

230 0.26

200*600 30 6.7 38 0.0021

0.0027

2.5

Wang (2008)
30.7

31.8

52.7

45

60

3.3

0.0027

0.0027

0.0027

150*300

3788 1.92

219

225.7

3500 1.5

4364 1.99

 

 
 
 
 
 
 
 
 
 
 



322 
 

 
Table 8.2 Properties of FRP-confined elliptical columns 

Batch a/b H, mm a, mm b, mm f'co, Mpa εco Ej, Gpa tj, mm
II 1.3 398.8 201 154.7

1.7 400.6 200.1 120.8
2 398.9 201.7 101.9

III 1.3 398.5 202.9 156
1.7 399.7 200.8 120.2
2 399.5 202.9 102.1

IV 1.3 397.9 200.7 155.4
1.7 399.4 199.9 120.9
2 399.2 200.3 101.9

242

0.171

0.342

32.64

35.69

35.92

0.0027

0.0027

0.0029
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Table 8.3 Properties of FRP-confined square columns and parameters for the M4+ model 

Researchers Specimen index Dimension,B*L, mm Corner radius r, mm B/r f'co, Mpa εco Ej, Gpa tj, mm k10 E, Gpa c20

WS 100*300 4
WL 150*450 6
H-8 439 0.68
S-12 252 0.67

C30R30P1 0.165
C30R30P2 0.33
C30R45P1 0.165
C30R45P2 0.33
C30R60P1 0.165
C30R60P2 0.33
C50R60P1 0.165
C50R60P2 0.33

0.0027

2.5

Wang (2008)
30.7

31.8

52.7

230.5
45

60

3.3

200*600 30 6.7 38 0.0021

0.0027

0.0027

0.0027

150*300

30 5 32.3

Hosotani et al. (1997)

Masia et al. (2004) 25 27 0.002 230 0.26 0.00015 24.3 0.2

0.000192 22.6

0.000162 31.7 0.2

0.2

0.000192 37 0.2

0.000192 21.5 0.2

0.000192 22.3 0.2

 

 
 
 
 
 
 
 
 
 
 
 

kଵ଴ cଵ଼ 
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Table 8.4 Properties of FRP-confined elliptical columns and parameters for the M4+ model 

Batch a/b H, mm a, mm b, mm f'co, Mpa εco Ej, Gpa tj, mm k10 E, Gpa c20

II 1.3 398.8 201 154.7
1.7 400.6 200.1 120.8
2 398.9 201.7 101.9

III 1.3 398.5 202.9 156
1.7 399.7 200.8 120.2
2 399.5 202.9 102.1

IV 1.3 397.9 200.7 155.4
1.7 399.4 199.9 120.9
2 399.2 200.3 101.9

242

0.171

0.342

32.64

35.69

35.92

0.0027

0.0027

0.0029 0.000206 23.7 0.2

0.000145 29 0.4

0.000192 25.3 0.2

 

 
 
 
 
 
 
 
 
 
 
 
 

kଵ଴ cଵ଼ 
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Table 8.5 Predictions from finite element models and empirical models for FRP-confined square columns 

Researchers Specimen index fcu,theo1/fcu,exp εcu,theo1/εcu,exp fcu,theo2/fcu,exp εcu,theo2/εcu,exp fcu,theo3/fcu,expεcu,theo3/εcu,exp fcu,theo4/fcu,exp εcu,theo4/εcu,exp

WS-1 0.93 0.79 1.05 1.05 0.96 1.02 0.82 0.74
WS-2 0.87 0.91 1.13 0.96 1.05 1.27 0.88 0.88
WL-1 0.90 0.84 1.09 1.29 1.06 1.48 1.01 0.95
WL-2 0.89 0.84 1.08 1.24 0.97 1.68 0.90 1.02
H-8 1.01 1.05 1.20 1.06 0.75 0.55 0.73 0.42
S-12 1.02 1.06 1.22 1.10 0.81 0.43 0.80 0.30

C30R30P1 1.05 0.69 1.17 0.99 1.11 0.72 1.06 0.56
C30R30P2 0.98 0.91 1.16 1.19 1.02 0.65 0.92 0.56
C30R45P1 1.09 1.11 1.13 1.45 1.06 0.82 0.97 0.65
C30R45P2 0.86 0.88 1.03 0.89 0.93 0.66 0.79 0.58
C30R60P1 1.09 1.15 1.12 1.37 1.02 0.69 0.89 0.56
C30R60P2 0.98 0.93 1.01 0.82 0.89 0.61 0.72 0.55
C50R60P1 0.97 0.85 0.98 0.90 1.12 0.80 1.04 0.78
C50R60P2 0.98 1.17 1.02 1.10 0.96 0.62 0.87 0.68

0.97 0.94 1.10 1.10 0.98 0.86 0.89 0.66
0.08 0.14 0.07 0.18 0.11 0.37 0.11 0.20

Hosotani et al. (199

Wang (2008)

Masia et al. (2004)

Average value
Standard deviation  
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Table 8.6 Predictions from finite element models for FRP-confined elliptical column 

Batch a/b fcu,theo1/fcu,exp fcu,theo2/fcu,exp

1.3 1.07 1.13
1.7 1.08 1.19
2 1.08 0.83

1.3 1.16 1.17
1.7 1.08 1.24
2 1.42 1.04

1.3 1.02 1.03
1.7 1.04 1.24
2 1.19 0.82

1.13 1.08
0.12 0.16

II

III

IV

Average value

Standard deviation  
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CHAPTER 9  

FINITE ELEMENT ANALYSIS OF FRP-CONFINED 

CONCRETE COLUMNS USING THE MODIFIED 

CDPM MODEL FOR CONCRETE 

9.1 INTRODUCTION 

As discussed in Chapter 8, the plastic-damage model proposed by Yu et al. 

(2010b) for FRP-confined concrete was further refined to make it applicable 

to 3D finite element modelling. This refined model has been referred to as 

the modified CDPM model in the previous chapter. An additional 

assumption of uniform axial deformation was adopted in Yu et al. (2010b) 

so that the finite element model only needs to include a horizontal slice of 

the column represented by a single-layer of solid elements. Such a slice 

model can closely represent the mid-height region of an FRP-confined 

circular concrete cylinder. Having been successfully employed in the 

nonlinear finite element analysis of hybrid FRP-concrete-steel double-skin 

tubular columns (DSTCs) in Yu et al. (2010b), it can also be used to model 

the responses of FRP-confined concrete in non-circular columns, so long as 

the end restraints existing in the column can be neglected (see Chapter 8). 

This slice model provides an efficient approach for modelling interactions 

within the chosen transverse plane provided that axial non-uniformity is 

un-important. However, it is impossible for the slice model to capture the 

axial non-uniformity in both deformations and stresses. For instance, when 

concrete is only confined by steel hoops, the slice model cannot be directly 

applied. 
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Therefore, Yu et al.’s model was first extended to the 3D case in the study 

reported in this chapter. At the beginning of the study, particular attention 

was paid to the effects of end restraints and a recalibration process was 

adopted to eliminate their impact on the numerical results. After that, the 

recalibrated model is used in finite element models to examine the effects of 

internal and external passive confinement provided by both transverse steel 

bars and FRP jackets. Finally, the finite element models were utilized to 

check the assumption of arching action, which is commonly used in 

concrete confined by transverse steel bars.   

 

The present study was focused on the performance of a concrete constitutive 

model in the finite element analysis of concrete columns. FRP and steel are 

the other two materials which are commonly used in concrete columns. 

Therefore, constitutive models for these two materials are also briefly 

described here. In the finite element models presented below, the FRP jacket 

is treated as a linear elastic material that fails when its rupture strain is 

reached; the steel bar is considered as an elastic-perfectly-plastic material 

and bar buckling is not considered. The material parameters for both 

materials are given for each column specimen. Additionally, a perfect bond 

is assumed between concrete and steel (or FRP) if not specifically 

mentioned. 
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9.2 ANALYSIS OF FRP-CONFINED CONCRETE CYLINDERS  

9.2.1 Finite Element Model  

The finite element model was to simulate the behaviour of FRP-confined 

concrete cylinders using ABAQUS. Circular concrete cylinders, each with a 

diameter (D) of 150 mm and a length (L) of 300 mm, were considered. The 

modified CDPM model as described in Chapter 8 was adopted as the 

constitutive model for concrete in the finite element simulation. For FRP 

jackets, only the confinement stiffness in the hoop direction was considered. 

The Poisson’s ratio of the FRP jacket was set to be zero and this value was 

always used in the numerical simulations of this study. These settings 

ensured that the FRP jacket only functioned as a confining device in the 

finite element model. 

 

Based on the symmetry conditions of FRP-confined circular cylinders, an 

axi-symmetric model was used and only half of the column height was 

included in the finite element model. A 4-node axi-symmetric solid element 

and a 2-node axi-symmetric membrane element were adopted for the 

concrete and the FRP jacket respectively. Both the concrete and the FRP 

jacket had elements’ size of about 6.25 mm, which was chosen on the basis 

of a mesh convergence study. In all these finite element models, axial 

displacements were uniformly imposed on the top surface of the concrete 

cylinder until the maximum hoop strain in the FRP jacket reached its 

rupture strain. (e.g. 0.9%) 
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9.2.2 Effects of End Restraints 

In standard compression tests of concrete specimens such as standard 

cylinders or cubes, the horizontal displacements at the ends of the specimen 

are restrained by the friction between the end surfaces and the loading 

platens. It has been well established that the end restraints affect the failure 

mode and load carrying capacity of the concrete specimen (Sangha and Dhir 

1972), and the characteristic “shear cone failure” is a result of the end 

restraints. As it is not realistic to completely eliminate the end restraints in 

laboratory tests, it is generally recommended that the compressive strength 

of concrete be obtained from tests with end restraints, and the axial 

compressive strain of concrete in cylindrical tests be based on the average 

shortening in the mid-height region within a gauge length no more than two 

thirds the height of the specimen (ASTM 2010). This is also the normal 

practice for the compression tests of FRP-confined concrete cylinders.  

 

In this sub-section, the effects of end restraints are first discussed based on 

numerical examples of typical FRP-confined concrete cylinders. It is 

generally assumed for these numerical examples that, for concrete, its 

unconfined strength fԢୡ୭ is 40 MPa and its axial strain at peak stress εୡ୭ is 

0.0025; for FRP jackets, its thickness t୤୰୮, modulus of elasticity E୤୰୮ and 

average hoop rupture strain ε୦,୰୳୮  are 0.34mm, 240GPa and 0.009, 

respectively. The finite element model presented in Section 9.2.1 was 

utilized for the simulation. To achieve more accurate predictions, input 

parameters required by the modified CDPM model (Yu et al. 2010b) were 

derived using Jiang and Teng’s (2007) analysis-oriented stress-strain model, 
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which has been verified as a more accurate model for FRP-confined 

concrete in circular cylinders. 

 

Fig. 9.1 shows that without end restraints, the distributions of both axial 

displacements and stresses are uniform; however, when the horizontal 

displacements at the end are precluded by restraints, the distributions of 

both axial displacements and axial stresses become highly non-uniform. Fig. 

9.2 shows that without end restraints, the finite element model reproduced 

the stress-strain curves predicted by Jiang and Teng’s (2007) model. 

However, when horizontal restraints were added to the ends, the finite 

element analysis predicted a lower axial stress than Jiang and Teng’s (2007) 

model at the same hoop strain. In these figures, the axial stress is the 

average axial stress over a horizontal cross-section, the hoop strain is that 

obtained on the outer surface of the concrete cylinder at mid-height (i.e. the 

plane of symmetry), and the axial strain is the axial displacement on the 

outer surface of the concrete cylinder at a height of 60 mm divided by half 

of the gauge length, which is equaled to 60 mm in this case.  

 

Based on the information given in Figs 9.1 & 9.2, it is clear that end 

restraints have a negative effect on the responses of FRP-confined concrete 

in terms of the compressive strength and the strain capacity. This negative 

effect arises because end restraints result in non-uniform confinement, 

which was found to have insignificant effect in increasing the axial stress of 

FRP-confined concrete. By contrast, end restraints prevent the 
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FRP-confined cylinder from lateral expansion at the ends and lead to 

non-uniform straining of the FRP jacket along the height. When the FRP 

jacket reaches its hoop rupture strain at the mid-height, its hoop strain is still 

much smaller away from the mid-height and is equaled to zero at the ends. 

As a result of this non-uniform straining of the jacket, the FRP-confined 

concrete reaches its ultimate axial stress earlier at a smaller value of axial 

strain. 

 

An important point to note is that, when an analysis-oriented stress-strain 

model is used to derive the input parameters for finite element analysis, an 

assumption is implied that this model represents the local behaviour of a 

material point of concrete in the finite element model and the effects of end 

restraints do not exist. However, as mentioned in section 9.2.1, if this 

analysis-oriented stress-strain model (e.g. Jiang and Teng 2007) has been 

calibrated using test results of FRP-confined circular concrete cylinders 

with end restraints, this assumption is not valid (i.e. Jiang and Teng’s model 

is not a local analysis-oriented model). Therefore, when such an 

analysis-oriented stress-strain model is used to derive the input parameters, 

the end effects are considered twice if end restraints are added to the finite 

element model as a boundary condition. This explains why the finite 

element model reproduces the responses predicted by Jiang and Teng’s 

(2007) model when end restraints are not added, but does not do so when 

they are (see Fig. 9.2).  

9.2.3. Recalibration of Analysis-oriented Stress-strain Model 

To address this problem, a local analysis-oriented model is needed. The key 



334 
 

components in the analysis-oriented stress-strain model of Teng et al. (2007) 

or Jiang and Teng (2007) are the lateral strain equation describing the axial 

strain-lateral strain relationship of concrete under varying lateral 

confinement and the expressions defining the compressive strength and 

corresponding axial strain of actively confined concrete. In order to remove 

the effects of end restraints, these expressions have to be recalibrated. As it 

is not realistic to recalibrate the expressions against test data free of the 

effects of end restraints, the coefficients used in these expressions were 

adjusted by a trial-and-error process. This process was executed until the 

finite element model with end restraints could reproduce the predictions of 

the original analysis-oriented stress-strain model (i.e. the one proposed by 

Jiang and Teng 2007).   

 

As a result of the recalibration, the lateral strain equation becomes 

εౙ
εౙ౥ ൌ 1.05 ൜ቂ1 ൅ 0.75 ቀିεౢ

εౙ౥ቁቃ଴.଻ െ exp ቂെ7 ቀିεౢ
εౙ౥ቁቃൠ ൈ ൬1 ൅ 8 σౢ୤′ౙ౥൰     (9.1) 

where εୡ and ε୪  are the axial strain and lateral strain in the concrete, and 

εୡ୭ is the axial strain at the compressive strength of unconfined concrete. 

On the other hand, the expressions for the compressive strength and 

corresponding axial strain of actively confined concrete become   

f′ୡୡכ ൌ f′ୡ୭ ൅ 4σ୪        (9.2) 

This change in the confinement effectiveness coefficient also leads to the 

following equation for the axial strain of concrete at f′ୡୡכ :   

εౙౙכ
εౙ౥ ൌ 1 ൅ 20 ൬ σౢ୤′ౙ౥൰       (9.3) 
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where εୡୡכ  is the axial strain at the peak axial stress of concrete under a 

lateral confining pressure σ୪.  

 

The only difference between the original lateral strain equation proposed by 

Teng et al. (2007) (also used in Jiang and Teng’s model) and Eq. (9.1) is that 

a coefficient of 0.85 in the former is changed to 1.05 in the latter. Similarly, 

Eq. (9.2) is slightly different from the original equation proposed by Teng et 

al. (2007) (also used in Jiang and Teng’s model), and it is closer to the 

equation of Richart et al. (1928) with a confinement effectiveness 

coefficient of 4.1. The change of Eq. (9.3) from the equations used in Teng 

et al. (2007) and Jiang and Teng (2007) is a result of the change in the 

confinement effectiveness coefficient, following the approach of Richart et 

al. (1929) who used a factor of five times the confinement effectiveness 

coefficient in the equation for the axial strain at the peak stress. It seems that 

the assumption of path-independency is still valid as the local 

analysis-oriented stress-strain model can provide accurate predictions for 

both actively-confined concrete and FRP-confined concrete. The effect of 

end restraints is included in Jiang and Teng (2007) model. Therefore, an 

active-confinement model which slightly underestimates the peak axial 

stress and the corresponding axial strain is used to remedy the 

underestimation caused by end restraints. This underestimation is excluded 

from the local analysis-oriented stress-strain model, which leads to an 

active-confinement model capable of providing close predictions for 

actively-confined concrete. In addition, it is worth noting that Eq. (9.2) 

results in a K value of 0.699 instead of the original value of 0.725 that was 



336 
 

suggested by Yu et al. (2010b).  

 

Eqs. (9.1), (9.2) and (9.3), together with the stress-strain model of Popovics 

(1973), form a new analysis-oriented stress-strain model which can be 

considered as a local stress-strain model for confined concrete. Fig. 9.3 

shows the performance of the finite element model with the input 

parameters produced by this new local stress-strain model. It is clear that 

with end restraints, the finite element model can very closely reproduce the 

predictions of Jiang and Teng’s (2007) analysis-oriented stress-strain model 

(Fig. 9.3). It is also evident that with end restraints the finite element model 

predicts the test results reasonably closely. In Figs. 9.4a-b, 9.4c and 9.4d, 

the concrete cylinders were wrapped with CFRP (Lam et al. 2006), GFRP 

(Teng et al. 2007), and Aramid FRP (AFRP) (Dai et al. 2011), respectively. 

Details of the specimens are provided in the figures. 

9.3 SIMULATION OF FRP-JACKETED CIRCULAR RC COLUMNS  

9.3.1 Test Columns 

The tri-axial stress states in FRP-jacketed circular RC columns have been 

studied by several researchers (e.g. Montoya et al. 2004; Eid and Paultre 

2007; Rougier and Luccioni 2007; Karabinis et al. 2008; Doran et al. 2009) 

using different constitutive models. Among these studies, Montoya et al. 

(2004) utilized MCFT in a nonlinear finite element analysis; Rougier and 

Luccioni (2007) used a plastic-damage model to describe the material 

behaviour of concrete in their finite element models; and Eid and Paultre 

(2007), Karabinis et al. (2008), Doran et al. (2009) adopted the DP type 
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plasticity model for confined concrete. These existing studies have achieved 

partial success in predicting the stress-strain behaviour of FRP- confined 

RC columns but there is still room for improvement. 

 

To verify the capacity of the plastic-damage model based on the local 

analysis-oriented stress-strain model in representing the structural behaviour 

of concrete columns under confinement provided by both FRP jackets and 

transverse steel, test results from Eid et al. (2009) were chosen for 

comparison with the numerical results based on the current concrete 

constitutive model. In the experimental program, a total of 21 large-scale 

reinforced concrete (RC) columns (303*1,200mm) were tested and 

stress-strain curves of confined concrete were provided for ten of them. 

These large-scale RC columns were designed to examine confinement 

provided by transverse steel, FRP jackets, or both. Moreover, two types of 

transverse steel, hoops and spirals, were adopted to examine their 

corresponding confinement effects. Both ends of these specimens were 

confined by additional thick steel jackets with a length of 300mm for each 

to ensure that the failure of these specimens would occur in their mid-height 

region. Most of these specimens (18 out of 21) were tested with load control, 

and the remaining three specimens (C2MP0C, C2MP2C and C2MP4C) 

were tested with displacement control. The diameters of all the longitudinal 

bars are 16mm, and other detailed information of these specimens selected 

for comparison can be found in Table 9.1.  
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To obtain stress-strain curves for the confined concrete, the axial forces 

carried by the longitudinal steel bars were removed from the total load 

carried by the whole column. For the 10 specimens with the test stress-strain 

curves predicted, the axial loads carried by the longitudinal bars were 

calculated based on the steel stress-strain curves obtained from their 

corresponding tension tests. As the results of these tension tests were not 

reported by the original authors, the following two steps were adopted in the 

comparison. First, a specimen labeled A5NP2C was modeled using a 3D 

finite element model, in which the concrete was modeled using 3D solid 

elements, both the longitudinal and the transverse steel bars were modeled 

using 3D truss elements, and the FRP jacket was modeled using 3D 

membrane elements. As the stress-strain curves of the longitudinal bars of 

this specimen were unknown, an elastic-perfectly-plastic model was utilized 

in the finite element analysis to consider their contribution. The effect of the 

end restraints for such a large-scale specimen was also considered in this 

step. Then, based on the conclusions obtained from this step, axi-symmetric 

models with half the steel spacing of the concrete columns were adopted for 

the specimens to reduce the size of the finite element models, and their 

stress-strain results for confined concrete were compared with experimental 

results except for specimen C4NP0C. The results of this specimen were not 

adopted for comparison due to the following two reasons. First, the axial 

stress of the specimen C4NP0C is even higher than that of specimen 

C4NP4C which was strengthened with 4 layers of additional FRP jackets. 

This abnormally high axial stress indicates a large variation existing in the 

test results. Secondly, as this specimen was under load control, the 
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descending branch of its stress-strain curves lacks stability and may not be 

suitable for comparison with the numerical results. The detailed information 

of the finite element model used for comparison is given in the following 

sub-sections. 

9.3.2 Finite Element Model  

9.3.2.1 Three-dimensional finite element analysis for specimen A5NP2C 

In the finite element model, due to symmetry in geometry and loading, only 

1/24 of this specimen (top 1/12) was modeled using ABAQUS. The 

concrete was modeled using 8-noded solid elements; the steel bars (both 

longitudinal and transverse bars) were modeled using 2-noded truss 

elements; the FRP jackets were modeled using 4-noded membrane elements. 

The relative positions of the steel bars, FRP jackets and concrete are shown 

in Fig. 9.5. The mesh of the concrete is also shown in the same figure. 

 

For the plastic-damage model, the required material parameters fୡ୭ᇱ  and εୡ୭ are given in Table 9.1. For steel bars, the elastic modulus of all the 

transverse steel bars is 200GPa (this value was used for all the steel bars in 

the present study). The yield strength of the longitudinal steel bars f୷୪୦ is 

423 MPa and the corresponding value of the transverse steel bars f୷୦ is 

602 MPa. For FRP, the elastic modulus E୤୰୮ of the FRP jacket is 78 GPa. 

The values of these parameters are also summarized in Table 9.1. 

 

Periodic symmetry conditions were imposed at two planes perpendicular to 
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the circumferential direction. This boundary condition was achieved by 

restraining the displacement components along the circumferential direction 

of these two planes. In addition, the middle horizontal plane (i.e., the plane 

of symmetry) was restrained in the vertical direction to consider the 

symmetry condition of this plane. Furthermore, forced displacement 

boundary conditions were imposed on the top plane to subject the column to 

a compressive stress state. Similar to the case of FRP-confined circular 

concrete cylinders, the effects of end restraints on the overall axial 

force-strain performance of specimen A5NP2C were investigated. The axial 

force-strain curves obtained from finite element analysis with or without 

end restraints are given in Fig. 9.6, and these numerical results are 

compared with the corresponding experimental results in the same figure. In 

this figure, the axial strain is for a gauge length of 300mm and the hoop 

strain is for the mid-height of the column, which are the same as the 

experimental conditions. The curves obtained from finite element analysis 

using different end restraint conditions are almost identical. The consistency 

between these two cases suggests that for large-scale columns with a ratio 

of L/D close to 4, the effects of end restraints on their axial force-strain 

behaviour are negligible. Fig. 9.6 further indicates that although the finite 

element results slightly underestimate the axial force, the axial force-strain 

curves, obtained numerically, closely correlate with the experimental results. 

The slight underestimation of the axial force may be due to the reason that 

the finite element analysis neglects the possible strain-hardening part of 

both the longitudinal and transverse steel bars. In addition, as the end 

restraints only have negligible effects on the structural behaviour, periodic 
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conditions of symmetry in the axial direction can also be applied and only 

half a steel spacing of the concrete column needs to be modeled in finite 

element analysis. 

9.3.2.2 Axi-symmetric finite element analysis of FRP-confined RC 

columns 

Ten specimens were selected to verify the capacity of the finite element 

model by comparing their experimental stress-strain curves with those 

obtained in finite element analyses. Among these ten specimens, seven of 

them were reinforced with steel spirals. In order to apply axi-symmetric 

conditions to further reduce the size of the finite element model, steel spirals 

were replaced by equivalent steel hoops with the same steel spacing. 

Mander et al. (1988) suggested an equation to calculate the equivalent 

cross-sectional area Aୣ୯ for steel hoops. The equation is as follows:  

Aୣ୯ ൌ Kୱ୦Aୱ      (9.4) 

where Aୱ is the cross-sectional area of the original steel spirals, and Kୱ୦ is 

the conversion factor given by:  

Kୱ୦ ൌ ଵଵି ౩ᇲమౚ౩       (9.5) 

where sԢ  is the clear spacing between two spiral bars and dୱ  is the 

diameter of the spiral circle from centre to centre. The detailed definitions of 

the two parameters are shown in Fig. 9.7.  

 

Eq. (9.4) indicates that when the centre-to-centre diameter and the spacing 

between steel bars provide the same, steel spirals are more effective 
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confinement than steel hoops. Fig. 9.8 shows the experimental stress-strain 

curves for specimens C4NP2C and B4NP2C. The only difference between 

these two specimens is the type of transverse steel used. The experimental 

results show the same tendency as predicted by Eq. (9.4). That is, the 

concrete confined by steel spirals has larger axial stress at a given axial or 

lateral strain.  

 

Taking into account the symmetric features of the finite element model as 

discussed above, just as for specimen A5NP2C, an axi-symmetric plane 

with half a steel spacing of the concrete column was modeled in ABAQUS. 

The concrete is modeled using 4-noded solid elements; the transverse steel 

bars and the FRP jacket were both modeled using 2-noded axi-symmetric 

membrane elements. A typical example of the concrete mesh is shown in 

Fig. 9.9 for specimens B4NP2C.  

 

What should also be noted is that there is no axi-symmetric truss element in 

ABAQUS, and thus transverse steel bars were modeled as membrane 

elements. The geometric height of the steel membrane is considered to be 

the same as the radius of the centre of the transverse original steel bar R୲ୱ, 

and the thickness of the membrane element t୲ୱ,ୣ୯ is determined based on 

the principle of equivalent cross-sectional area shown in Eq. (9.6). As this 

study was focused on examining the confinement effects of transverse steel 

bars, Eq. (9.6) ensures that an identical lateral load is provided by the 

equivalent steel membrane. 
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t୲ୱ,ୣ୯ ൌ A౪౩R౪౩        (9.6) 

where A୲ୱ is half of the cross-sectional area of the transverse steel bar Aୣ୯. 

 

As for specimen A5NP2C, the material properties fୡ୭ᇱ  and εୡ୭ of concrete, 

the yield stress f୷୦ for the transverse steel and the elastic modulus E୤RP 

for the FRP jacket are given in Table 9.1.  

 

For these axi-symmetric models, the bottom surface of the axi-symmetric 

plane was restrained in the vertical direction to reflect the symmetry 

condition of this surface and axial displacements were applied on the top 

surface of the finite element model to exert axial loadings. For 

FRP-confined RC columns, axial displacements were uniformly imposed on 

the top surface until the maximum hoop strain in the FRP jacket reached its 

rupture strain. 

 

Fig. 9.10 compares the stress-strain behaviour between the numerical results 

obtained using the new plastic-damage model and available test results (Eid 

et al. 2009). Both axial stress-strain curves and axial stress-lateral strain 

curves are considered in the comparison. For the numerical results, the axial 

stress was obtained by dividing the load carried by the concrete by the total 

cross-sectional area; the axial strain is defined as the average values over the 

whole height of the finite element model; and the hoop strains was obtained 

from outer edge of the column where the lateral displacement is the largest. 

Finite element analysis was terminated when the hoop strain reached the 
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rupture strain of the FRP jacket that was observed in the experiment. Figs. 

9.10a-h show that the overall predicted stress-strain responses are in good 

agreement with the test results although the axial stresses of some 

specimens were slightly underestimated. This underestimation is generally 

smaller than that shown in Fig. 9.4 as the effects of longitudinal bars have 

been removed and the majority of the underestimation have resulted from 

neglecting the hardening effects of transverse steel bars. These figures 

indicate finite element model developed in this study can provide close 

predictions for FRP-confined RC columns. Moreover, the stress-strain 

curves of concrete confined only by an FRP jacket are also plotted in these 

figures to illustrate the rough contribution of steel bars. These curves are 

marked as “FE w/o steel” in Fig. 9.10. Comparison between these two cases 

(i.e. with or without the contribution of steel bars) shows that steel bars have 

significant effects on both the strength and ductility of FRP-confined RC 

columns. This comparison further verifies the capacity of the finite element 

model to predict the behaviour of FRP-confined RC columns, although the 

improved model itself was only recalibrated by FRP-confined concrete 

cylinders.  

9.3.2.3 Finite element analysis and analytical modelling of 

steel-confined RC columns 

For specimen C2MP0C, confinement is only provided by the transverse 

steel bars. The distribution of confinement in this specimen is much more 

uneven than that for an FRP-confined RC column. For FRP-confined RC 

columns, lateral confinement exists all over the whole column due to the 
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FRP jacket. For a concrete column confined only by transverse steel bars, 

part of the column is under very weak lateral confinement as steel bars are 

discontinuous in the axial direction. To model this uneven confinement 

effect, two different approaches have been utilized by researchers. Besides 

the finite element model, the “effective confinement” method (e.g. Mander 

et al. 1988) has also been adopted to estimate the amount of lateral 

confinement acting on the concrete. The partial confinement effect between 

the upper transverse steel bar and the lower transverse steel bar is 

considered through the arching action assumption which is generally 

assumed to occur in the form of a parabola with an initial slope of 45o 

starting from the edge of each transverse steel bar (Sheikh and Uzumeri 

1980). The smallest cross-sectional area of effectively confined concrete 

core Aୣ is thus located at the mid-height of the gap between the two 

transverse steel bars (Mander et al. 1988). In the studies of Mander et al. 

(1988) and Saadatmanesh et al. (1994), except the ineffectively confined 

concrete annulus with a radial thickness of a quarter of the clear spacing of 

the lateral confinement (s′/4), the concrete core within the area Aୣ is 

assumed to be uniformly confined (also shown in Fig. 9.7). The area of the 

effectively confined concrete core (Aୣ) is given by 

Aୣ ൌ ஠ସ ቀdୱ െ ୱᇱଶ ቁଶ
     (9.7) 

Fig. 9.11 compares the axial stress-strain behaviour of specimen C2MP0C 

obtained from the empirical model, the numerical model and the test results 

(Eid et al. 2009). In this figure, analytical results using the “effective 

confinement” approach are referred to as “empirical equation”; numerical 
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results are referred to as “FE” and the test results are referred to as “test”, 

respectively. It should be noted that, unlike an FRP-confined specimen, the 

stress-strain curve for a concrete column without an FRP jacket is just based 

on the core concrete as the arching action is taken into account using this 

zone rather than the whole concrete column. Thus, only the concrete core 

was considered in the finite element analysis. This finite element model is 

similar to that of the axi-symmetric model developed for FRP-confined RC 

columns except that the FRP jacket was not considered in the model. 

 

Fig. 9.11 shows that the finite element results give smaller axial stresses 

compared to both the test results and the empirical results. In the new 

plastic-damage model used in the finite element model, two parameters, K 

and α, control the confinement effectiveness of concrete under non-uniform 

confinement. As mentioned earlier, K is a derived parameter calculated from 

the strength ratio between the concretes under equal biaxial compression 

and equal tri-axial compression. Therefore, when Eq. (9.2) is used, changing 

the value of K leads to changes in the value of the 
୤ౘ′୤ౙ౥′

 ratio, but this ratio 

has been assigned a fixed value of 1.16 in the yield function of the CDPM 

model as adopted in the present study (see Eqs. 8.1 and 8.2). This ratio can 

be obtained from a test range of 1.16 to 1.2. Changing this ratio within this 

given range results in little difference. Therefore, it is better to keep K as a 

constant rather than a variable. As the parameter α is a fitted value, it was 

recalibrated to provide closer predictions of the test results and the obtained 

stress-strain curves shown in the same figure are referred to as “FE-II”. In 
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this recalibrated finite element model, the value of α was varied from 

0.039 to 0.1, and a closer prediction was achieved. Generally, there are two 

options for using the new plastic-damage model in the finite element 

analysis of steel-confined RC columns: (1) if the model is used for making 

predictions, α should be taken as a constant and the default value 0.039 

suggested by Yu et al. (2010b) should be used; (2) if the model is used to 

explain experimental results, α can be recalibrated to fit the uncertain 

confinement when the experimental results are not closely reproduced.  

 

Although there are differences between the numerical results (including 

both “FE” and “FE-II”) and the empirical results, the test results fall within 

the range of these two types of results and have good agreement with both 

of them. Similar to the finite element models the empirical model can give 

close predictions of stress-strain curves. However, the empirical model 

cannot explicitly consider the variations in the axial stress and the 

confinement pressure over the whole section and over the height. To 

investigate the confinement mechanism of transverse steel bars, the actual 

stress distribution obtained from finite element analysis is illustrated in Figs. 

9.12-9.14. Fig. 9.12 shows the distribution of the axial stress within the 

concrete core when the peak axial stress is reached. This figure indicates 

that within a section close to the transverse steel bars, the concrete stress 

achieves its largest enhancement near the outer surface, and the effect of this 

enhancement decreases along the height direction away from the steel bar. 

This variation of the axial stress is similar to the assumption of the arching 

action. What is different between the finite element results and the arching 
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action assumption is that the arching action assumption is focused on the 

axial stress distribution along the radial direction. With the arching action 

assumption, the section at the height of the steel bar centre is assumed to be 

uniformly stressed and is considered to be effectively confined, while the 

finite element analysis predicts a large stress near the steel bar, a smaller 

stress enhancement away from the steel bar, and finally a moderate stress 

near the axis of axi-symmetry. It is a more reasonable distribution as the 

finite element analysis takes into account the balance of axial forces along 

the height direction, which is neglected in the arch action assumption. In 

addition, the numerical results indicate that a non-uniform zone of stress is 

mainly located near the outer surface of the concrete core, and within a 

certain radius, there is a zone of uniformly distributed axial stress, which is 

similar to the results of the elastic analysis conducted by Eid and Dancygier 

(2006). Zones of uniformly distributed stress can also be observed in the 

distribution of confining pressure. Fig. 9.13 shows that, for the confining 

pressure, the largest value appears in the place adjacent to the steel bar on 

the outer surface of the concrete core and the smallest one also appears on 

the outer surface of the concrete core but always on the plane of symmetry 

between the two steel bars. Unlike the confining pressure in the radial 

direction, the largest confining pressure in the hoop direction appears in the 

middle zone between the steel bar and the plane of symmetry. The different 

distributions of the confining pressure result in a complicated axial stress 

distribution near the outer surface of the concrete core. Figs. 9.13-9.14 

indicate that, within a certain radius, there are zones of uniformly distributed 

confining stresses, which result in the uniformly distributed axial stress 
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within them. The existence of a uniformly confined concrete zone is an 

important reason why the empirical approach using the arching shape 

assumption can achieve good accuracy in predicting the steel bar-confined 

concrete columns even though it overlooks the balance of axial forces. As 

long as the radius predicted by the empirical approach is not too far from the 

actual value of the radius of uniformly confined concrete, the results 

predicted by the empirical approach can be accurate. To further illustrate the 

stress distribution, Figs. 9.15-9.17 show the predicted stress distributions 

along the radial direction at three selected sections/heights. Fig. 9.15 shows 

the distribution of the axial stress; Fig. 9.16 shows the distribution of the 

confining stress in the radial direction; and Fig. 9.17 shows the distribution 

of the confining stress in the hoop direction. The locations of the three 

selected sections are marked in Fig. 9.12. It is again obvious that a large 

uniform zone exists away from outer edge. The width of this uniform zone 

is about 2/3 of the column radius. Within this zone, all the three stress 

components have insignificant variations. However, near the outer edge, the 

rate of variation of stress is more significant due to the effect of the arching 

action. The capability of predicting stress variations over the whole column 

is one of the advantages of this 3D finite element model over a slice model. 

9.4 CONCLUSIONS 

Three-dimensional finite element models for FRP-confined circular concrete 

cylinders and RC columns based on Yu et al.’s (2010b) plastic-damage 

model have been presented in this chapter. These finite element models are 

capable of modelling uneven deformation in the axial direction due to 
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factors such as end restraints and discrete transverse steel bars. Numerical 

results obtained from the finite element models have revealed that end 

restraints lead to smaller axial strains at a given hoop strain. This reduction 

effect necessitates a revised lateral-to-axial strain relationship and then leads 

to a local analysis-oriented stress-strain model. This local analysis-oriented 

stress-strain model is proposed for adoption to avoid the double counting of 

end restraint. Consequently, the finite element model with the input 

parameters produced by this local analysis-oriented stress-strain model can 

very closely reproduce the predictions of the original analysis-oriented 

stress-strain model proposed by Jiang and Teng (2007). Moreover, the finite 

element model with the input parameters produced by this local 

analysis-oriented stress-strain model was used to model the behaviour of 

FRP-confined RC columns and transverse steel bar-confined concrete. Ten 

large-scale RC columns were simulated using a finite element model with 

the input parameters produced by this local analysis-oriented stress-strain 

model. This finite element model is shown to produce accurate predictions 

of the stress-strain behavior of FRP-confined RC columns and transverse 

steel bar-confined concrete although the local analysis-oriented stress-strain 

model was only calibrated using results of FRP-confined circular concrete 

cylinder. In addition, it has been found that the assumption of 

path-independency is still valid. Finally, the finite element model has been 

compared with the empirical model for transverse steel-confined concrete. It 

has been shown that the finite element analysis can describe the stress 

distributions of concrete confined by transverse steel. With careful 

verification, the finite element model is a useful tool for the exploration of 
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confinement mechanisms in various FRP-confined concrete columns in the 

development of simple stress-strain models for design purposes.  
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Figure 9.1 Distributions of axial displacements and axial stresses in 
FRP-confined circular concrete cylinders with and without end restraints 
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(a) Axial stress-strain curves 

 

 
(b) Lateral-to-axial strain curves 

Figure 9.2 Comparison between Jiang and Teng’s analysis-oriented 
stress-strain model and finite element simulation with input parameters 

derived from the same model 
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(a) Axial stress-strain curves 
 

   

(b) Lateral-to-axial strain curves 
Figure 9.3 Recalibration of the analysis-oriented stress-strain model 
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(a) Test data of CFRP-confined concrete from Lam et al. (2006) 

 

 
(b) Test data of CFRP-confined concrete from Lam et al. (2006) 
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(c) Test data of GFRP-confined concrete from Teng et al. (2007) 

 

 
 (d) Test data of AFRP-confined concrete from Dai et al. (2011) 

Figure 9.4 Comparison between test and finite element for the stress-strain 
behaviour for FRP-confined concrete cylinders 

 

0

10

20

30

40

50

60

70

80

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Test

FE

Strain

A
xi

al
 st

re
ss

 (M
Pa

)

f'co = 39.6 MPa                                                       
εco = 0.00263                                                                    
Efrp = 80.1 GPa 
D = 150 mm
L = 300 mm       

tfrp = 0.34 mm  

tfrp = 0.51mm  

(Lateral strain) (Axial strain)

0

20

40

60

80

100

-0.040 -0.020 0.000 0.020 0.040 0.060 

Test

FE

Strain

A
xi

al
 st

re
ss

 (M
Pa

)

1-ply

2-ply

f'co = 39.2 MPa                                                       
εco = 0.0028                                                                  
Efrp = 115 GPa 
D = 150 mm
L = 300 mm       

(Lateral strain) (Axial strain)



361 
 

  
 
 
 

 

 
Figure 9.6 Comparison between test and finite element for specimen 

A5NP2C  
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Figure 9.5 Finite element mesh of specimen A5NP2C and positions of 
steel bars 
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Figure 9.7 Illustration of clear spacing (s’) and arch action 
 
 

  

Figure 9.8 Test results showing the effects of different types of transverse 
steel bars 
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Figure 9.9 Axi-symmetric finite element model for specimen B4NP2C 
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(a) Specimen C4NP4C 

 

  
(b) Specimen C4NP2C 
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(c) Specimen C2N1P2N 

 

 
(d) Specimen C2MP4C 
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(e) Specimen C2MP2C 

 

 
(f) Specimen C2NP2C 
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(g) Specimen A3NP2C 

 

 
   (h) Specimen B4NP2C 

Figure 9.10 Comparison of stress-strain behaviour from the finite element 
results and test results of FRP-confined concrete columns 
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Figure 9.11 Comparison of stress-strain behaviour for the specimen 

C2MP0C confined by transverse steel bars 
 

 

Figure 9.12 Contours of axial stress in the specimen C2MP0C confined by 
transverse steel bars 
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Figure 9.13Contours of radial stress in the specimen C2MP0C confined by 
transverse steel bars 

 
 

 

Figure 9.14 Contours of hoop stress in the specimen C2MP0C confined by 
transverse steel bars 
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Figure 9.

Figure 9.
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Figure 9.17 Distribution of hoop stress in the specimen C2MP0C confined 

by transverse steel bars 
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Table 9.1 Material properties of FRP-confined RC columns 

specimen 
No. 

D 
(mm)

ca 
(mm)

f′ୡ୭ 

(MPa)

εୡ୭ 
 

FRP composite Transverse steel 

     
t 
(mm)

E୤୰୮ 

(Mpa) 

ε୦,୰୳୮
 

type
f୷୦ 

(Mpa)

s 
(mm)

 ׎
(mm)

C4NP4C 303 25 31.7 0.002 1.524 78000 0.0119 S 456 100 11.3
C2NP2C 303 25 31.7 0.002 0.762 78000 0.0059 S 456 65 11.3
C4NP2C 303 25 31.7 0.002 0.762 78000 0.0062 S 456 100 11.3
C2N1P2N 253 0 36 0.002 0.762 78000 0.0084 S 456 65 11.3
A3NP2C 303 25 31.7 0.002 0.762 78000 0.0090 H 602 70 9.5
C2MP4C 303 25 50.8 0.0024 1.524 78000 0.0107 S 456 65 11.3
C2MP2C 303 25 50.8 0.0024 0.762 78000 0.0086 S 456 65 11.3
B4NP2C 303 25 31.7 0.002 0.762 78000 0.0104 H 456 100 11.3
A5NP2C 303 25 29.4 0.002 0.762 78000 0.0044 H 456 150 11.3
C2MP0C 303 25 50.8 0.0024 0.0 --- --- S 456 65 11.3ୟ Concrete cover, S: Spiral, H: Hoops, 

D is diameter of the specimens, f୷୦ is the yield strength of steel bars, and ׎ is the diameter of the steel bar. 
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CHAPTER 10  

CONCLUSIONS AND FUTURE WORK 

10.1 INTRODUCTION 

This thesis has presented a systematic study covering the testing and analysis 

of FRP-confined concrete columns. In particular, this thesis has focused on the 

constitutive behaviour of concrete under lateral confinement, aiming to 

develop generic constitutive models which can accurately predict the 

behaviour of concrete under non-uniform confinement. The work presented in 

this thesis has been limited to the compression behaviour of concrete, which is 

the relevant part directly influencing the confinement mechanism. 

 

A series of axial compression tests on FRP-confined high strength concrete 

cylinders have been presented in this thesis to complement the existing 

experimental data and to gain an adequate understanding of the stress-strain 

behaviour of FRP-confined high strength concrete. Similar to that of normal 

strength concrete, the FRP jacket has been shown to significantly enhance the 

performance of high strength concrete. These test results have provided not 

only a direct insight into the mechanical behaviour of FRP-confined high 

strength concrete but also a way for assessing theoretical models. 

 

Theoretical modelling of actively-confined and FRP-confined concrete 
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columns has the main focus of the present thesis. Finite element models using 

different concrete constitutive models have been employed for simulating the 

behaviour of confined concrete. These constitutive models were developed 

based on different theories. The general performance of these constitutive 

models was assessed.  Based on this assessment, two potential constitutive 

models, i.e. the M4+ model and the revised CDPM model, were utilized for 

modelling FRP-confined concrete in non-circular sections. Based on the work 

presented in this thesis, the corresponding conclusions have been drawn in the 

following section. 

10.2 CONCLUSIONS 

Chapter 3 presented an experimental study on the behaviour of confined high 

strength concrete. The behaviour of actively-confined high strength concrete 

was first examined. A unified active-confinement model was found to be 

applicable to both high strength concrete and normal strength concrete. After 

that, an experimental study on FRP-confined high strength concrete was 

presented. It was found that the analysis-oriented stress-strain model proposed 

by Jiang and Teng (2007), initially developed for FRP-confined normal 

strength concrete, can also provide accurate predictions for FRP-confined high 

strength concrete. Comparing the empirical model for actively-confined 

concrete with that for FRP-confined concrete indicated that the path 

independence assumption commonly utilized in an analysis-oriented 
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stress-strain model is just partially fulfilled for FRP-confined high strength 

concrete. 

 

Chapters 4 and 5 examined the use of typical plasticity-based concrete models 

for predicting the behaviour of confined concrete. These concrete models were 

categorized into two groups based on the techniques employed in the 

hardening rule. The hardening variables used in these two techniques are the 

scaled equivalent plastic strain and the plastic volume strain, respectively. 

Plasticity-based concrete models based on these two techniques were 

implemented with the ABAQUS software through UMAT; and they were used 

for predicting the stress-strain response of plain concrete in both uni-axial and 

equal tri-axial compression once the parameters have been determined through 

calibration. These two models, with properly calibrated parameters, were 

found to be capable of predicting both the stress-strain behaviour of 

unconfined concrete and actively-confined concrete accurately. Further, 

among these two types of models, Papanikolaou and Kappos’s (2007) model, 

which belongs to the second type, provides the simplest process in calibrating 

the material parameters. However, both these two models failed to predict the 

lateral deformation of FRP-confined circular concrete cylinders accurately in a 

general sense, although they may succeed within a certain confining stiffness 

range. The failure of these two models in predicting the response of 

FRP-confined circular concrete cylinders indicated that a modification of the 
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hardening rule has an insignificant effect on the lateral deformation of 

confined concrete. 

 

Chapter 6 investigated the application of plastic-damage models in modelling 

the behaviour of confined concrete. Similar to the plasticity-based concrete 

models, two types of plastic-damage models were used for predicting the 

stress-strain response of plain concrete in uni-axial and equal tri-axial 

compression once the parameters have been calibrated. The techniques used in 

Chapter 4 to improve their behaviour for confined concrete were also 

employed in these two models separately. Additionally, isotropic damage 

variables were utilized in these two models. For the response of confined 

concrete, similar conclusions, as those given in Chapters 4 and 5, were drawn. 

These two plastic-damage models were found to be capable of providing 

accurate predictions for actively-confined concrete but incapable of capturing 

the varied dilation characteristics of FRP-confined concrete under different 

levels of confining stiffness. The damage variable was also found to have an 

insignificant effect on the lateral deformation of confined concrete. This effect 

is similar to that of the hardening rule. 

 

In the work presented in Chapter 7, the Microplane model M4, proposed by 

Bazant et al. (2000), was employed in investigating the response of 

FRP-confined circular concrete cylinders. However, this M4 model was found 
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to have some drawbacks in the computational aspects and was incapable of 

accurately capturing the effect of confinement, especially on the ductility of 

concrete. Proper modifications were thus made to the original M4 model to 

eliminate its drawbacks in the computational aspects and to enhance its 

prediction accuracy for confined concrete especially for FRP-confined 

concrete, which resulted in the so-called M4+ model. Some material 

parameters such as kଵ , c଻ , and c଼  in this M4+ model were set to be 

confinement-dependent variables instead of constant values suggested in the 

original M4 model. These parameters were chosen for modification here 

because they had significant effects on the predicted confinement effect. 

Finally, a comparison between the numerical predictions using the M4+ model 

and the experimental results were presented. This comparison showed 

adequate agreement between the numerical predictions and the experimental 

results. This comparison suggested that in modelling FRP-confined concrete, 

the parameters controlling the dilation behaviour of the M4 model should be 

properly addressed. 

 

In the work presented in Chapter 8, two constitutive models, that is, Yu et al.’s 

(2010b) plastic-damage model and the M4+ model were employed in finite 

element models for the analysis of the FRP-confined square and elliptical 

columns subjected to axial compression. Numerical results from the finite 

element analysis showed favourable agreement with the experimental results. 

Furthermore, the above numerical results were compared with the results of 
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two typical empirical models. This comparison focused on the ultimate state of 

FRP-confined concrete in square columns. From this comparison, the 

numerical results obtained using the modified CDPM model showed the best 

performance among these four analytical models. In addition, the numerical 

results obtained using the M4+ model also showed its relatively high accuracy 

compared with the two empirical models. By virtue of numerical simulation, 

the thickness of FRP jackets was demonstrated to have an effect on the stress 

distribution of FRP-confined non-circular columns. This effect exists because 

concrete is a typical non-linear material and the thickness of the FRP jacket 

changes the stress state of concrete at failure.  

 

Chapter 9 focused on three-dimensional finite element analysis of 

FRP-confined circular concrete cylinders and RC columns based on Yu et al.’s 

(2010b) plastic-damage model. Some fundamental issues associated with the 

finite element analysis of FRP-confined circular concrete cylinders were 

addressed. A local analysis-oriented stress-strain model was identified by 

recalibrating the finite element results to reproduce the results of the original 

analysis-oriented stress-strain model such as that of Jiang and Teng (2007). A 

consistent definition of the mean axial strain in both experimental 

measurement and finite element results was achieved and the reduction effect 

on the axial strain due to end restraints considered in the finite element model 

was eliminated by introducing this local analysis-oriented stress-strain model. 

Based on this local analysis-oriented model, the assumption of 
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path-independency was found to be valid. The finite element model was also 

shown to have properly captured the stress-strain behaviour of steel 

bar-confined concrete and FRP-confined RC columns, although the 

analysis-oriented stress-strain model was only calibrated by results of 

FRP-confined concrete. The finite element results were also found to be able 

to describe the stress distribution in the concrete confined by transverse steel 

and to reflect the confinement effect of transverse steel bars. 

 

10.3 FUTURE WORK 

The following issues need further research. 

 

There is still a need to widen the database of test results for FRP-confined 

concrete especially FRP-confined concrete in non-circular columns. 

 

More data on the lateral-to-axial relationship is required. The present research 

has found that the constitutive models which can provide accurate predictions 

for FRP-confined concrete are sensitive to the lateral behaviour of concrete. 

Additionally, measurements of hoop strains should be standardized. It has 

been discussed that the lateral strains reported in the experimental results of 

FRP-confined circular concrete cylinders are generally limited to the 

maximum strain that could be measured. 
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Constitutive models using the scaled equivalent plastic strain or the plastic 

volume strain as the hardening variable have shown their advantages in 

predicting the stress-strain behaviour of actively-confined concrete. Among 

these constitutive models, Papanikolaou and Kappos’s (2007) model provides 

a simple process for calibrating the material parameters. Modifications to this 

constitutive model can be made in the future for providing accurate 

predictions for FRP-confined concrete. 

 

In this study, a scaling technique was actually employed in the M4+ model to 

provide accurate predictions for confined concrete. Due to the characteristics 

of the microplane model, other approaches such as directly modifying the 

stress boundary may be adopted to achieve similar results as that of the scaling 

technique.  

 

The modified CDPM model was implemented through the technique of 

USDFLD (i.e. user subroutine to redefine field variables at a material point), 

which is an explicit scheme. An implicit algorithm or an explicit algorithm 

with error control can be developed for this model in the future work. 

 

Another important issue that needs to be clarified is the size effect on the 

stress-strain behaviour of FRP-confined concrete. In the numerical model, it 

was assumed that the strength of plain concrete was that given by the 
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researchers in their reports. In Chapter 8, most of the FRP-confined 

non-circular concrete columns had sizes close to the standard cylinder. 

Therefore, no significant size effect of these columns was observed.  In 

Chapter 9, the behaviour of large-scale FRP-confined circular columns was 

found to be capable of being reasonably predicted by the finite element models. 

Therefore, size effects are much more significant in non-circular columns. 

 

Finally, the verified constitutive models in the present study can be used to 

study the behaviour of short or slender FRP-confined RC columns under 

eccentric loading. Eccentric loading is an important topic and some research 

has been conducted on this topic (e.g. Binici and Mosalam 2007; Mosalam et 

al. 2007; Talaat et al. 2008), but much more work, especially 

three-dimensional finite element analysis, is needed. This topic should be 

investigated in the future. 
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APPENDIX 
COMPUTER PROGRAMME 
A matlab programme is developed to calculate the values of A, B, and C for 
Papanikolaou and Kappos's (2007) model. 
 
fco=40; 
E=30011; 
nu=0.2; 
epvp=fco/E*(1-2*nu); 
eco=0.0022; 
e3p=eco-fco/E; 
e3p=-e3p; 
e1p=(epvp-e3p)/2; 
% e1p,e3p 
ft=2.906; 
dlamda=1.376; 
m=(fco^2-(dlamda*ft)^2)/(fco*dlamda*ft) 
Fi1=sqrt(2/3)*abs(e3p-e1p)/((e3p+2*e1p)/sqrt(3)); 
% x1=fzero('(x-1)^2+3*9.9*0.5198/1.5198*((x-1)/3-(x+2)/3)-1',2); 
x1=fzero('(x-0.5)^2+3*9.9*0.52/1.52*((x-0.5)/3-(x+1)/3)-1',2); 
% x1=fzero('(x-1)^2+3*9.9*0.52/1.52*((x-1)/3-(x+2)/3)-1',2); 
fcc=x1*fco; 
ecc=9.5*eco;   %%correspond to ecc=eco*(1+17.5*fl/fco) 
% ecc=18*eco;  
e3p=ecc-1/E*(fcc-2*nu*fco*0.5); 
e3p=-e3p; 
e1p=(epvp-e3p)/2; 
% e1p,e3p 
Fi2=sqrt(2/3)*abs(e3p-e1p)/((e3p+2*e1p)/sqrt(3)); 
n=3; 
no1=sqrt(2/3)*fco; 
no2=sqrt(2/3)*(fcc-fco*0.5); 
A=(Fi1-Fi2)/n/((no1/fco)^(n-1)-(no2/fco)^(n-1)); 
B=Fi1-n*A*(no1/fco)^(n-1); 
x2=fzero('(x)^2+3*9.9*0.52/1.52*((x)/3*1/0.52-(2*x)/3)-1',1.1); 
fbc=x2*fco; 
ebc=x2*eco; 
e3p=ebc-fbc/E*(1-nu); 
e3p=-e3p; 
e2p=e3p; 
e1p=epvp-2*e3p; 
Fi3=sqrt(2/3)*abs(e3p-e1p)/((e3p*2+e1p)/sqrt(3)); 
no3=sqrt(2/3)*(fbc); 



384 
 

C=Fi3-n*A*(no3/fco)^(n-1); 
A,B,C 




