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ABSTRACT

The use of FRP jackets to strengthen RC columns has become popular in
recent years due to the well-known phenomenon that lateral confinement
can significantly enhance the strength and the deformation capacity of
concrete. However, the related confinement mechanism of concrete,
particularly when under non-uniform confinement, is still inadequately
understood. This thesis is thus concerned with the development of a deeper
understanding of the confinement mechanism of concrete in FRP-confined

RC columns.

This thesis first presents a series of axial compression tests on
FRP-confined high strength concrete cylinders. These tests are an important
supplement of the existing test data. Based on these tests, a stress-strain
model applicable to both normal strength concrete and high strength
concrete under active confinement is proposed. Moreover, an existing
analysis-oriented stress-strain model for FRP-confined concrete is shown to
be applicable to concretes of different strength grades. This
analysis-oriented stress-strain model served as a basis of the subsequent
studies on the numerical modelling of FRP-confined concrete and

FRP-confined RC columns presented in the thesis.

Attention is then shifted to the performance of plasticity models and
plastic-damage models in predicting the stress-strain behaviour of confined

concrete. In the plasticity models or the plasticity part of the plastic-damage
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models, two techniques have been utilized to define the plastic deformation
process: the scaling technique in which the hardening law is defined as a
function of the confining pressure and the plastic volume strain technique in
which the plastic volume strain serves as the hardening variable. While both
techniques are shown to lead to accurate predictions for actively-confined
concrete, they are shown to be incapable of providing accurate predictions
for FRP-confined concrete. This is because both approaches cannot
accurately simulate the lateral deformation process of FRP-confined
concrete. In addition, the thesis also presents a study of the use of Bazant’s
micro-plane model in predicting the behaviour of confined concrete; an
improved version of the M4 model, referred to as the M4" model, is
presented for the numerical modelling of FRP-confined concrete. Several
important parameters of the M4 model were set to be
confinement-dependent. The improved model provides accurate predictions

for FRP-confined concrete.

The next part of the thesis is on the development and application of
advanced finite element models for FRP-confined non-circular columns.
Two constitutive models, that is, Yu et al.’s plastic-damage model and the
M4" model, were employed in the finite element models to predict the
behaviour of FRP-confined square and elliptical columns. Numerical results
from the finite element model show favourable agreement with the

experimental results.

The final part of the thesis presents a three-dimensional finite element
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model for FRP-confined RC columns based on Yu et al.’s plastic-damage
model. For this finite element model, a local analysis-oriented stress-strain
model is proposed for adoption to avoid the double counting of end restraint
effects. This finite element model is shown to produce accurate predictions
of the stress-strain behaviour of transverse steel-confined concrete columns

and FRP-confined RC columns.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

Fibre-reinforced polymer (FRP) composites are composite materials which
comprise fibres of high tensile strength (e.g. carbon, glass and aramid fibres)
embedded in a resin matrix (e.g. vinylester or epoxy resin). These
composite materials, compared to steel which is a widely used modern
construction material, have many benefits including their high strength,
light weight, corrosion resistance and tailorability of mechanical properties.
For instance, CFRP composites can be ten times as strong as conventional
structural steel but only a quarter as heavy as steel; in addition, unlike steel,
they are non-corrosive. The high strength-to-weight ratio of FRP composites
means that FRP composites are easy to handle on site, reducing labour costs
and minimizing interruptions to existing services while their
corrosion-resistant property leads to durable performance. Due to these
advantages, FRP composites have a tremendous potential for engineering
applications, especially as their prices fall down with the expansion of the

production volume.

FRP composites have been used in the aerospace industry for many years.
They have become increasingly accepted over the past two decades by civil
engineers as a new class of structural material as their superior material
properties become increasingly noticed by civil engineers. Nowadays,

various forms of FRP products are commercially available for civil



engineering applications, including bars, sheets, plates and shapes/profiles.
These FRP products may be used in the retrofit of existing structures or to
replace steel in the construction of new structures. In strengthening
applications, FRP composites are commonly used as externally bonded
reinforcement, but they may also be used as embedded reinforcement near

the surface of structural members.

When used in construction, FRP composites also have some disadvantages.
First, FRP composites show poor performance in fire. Therefore, if they are
required to be the main load-resisting material in indoor applications where
fire resistance is an important issue, special care (e.g. appropriate fire
insulation) needs to be exercised. Second, FRP composites are
linear-elastic-brittle materials (i.e. they exhibit linear-elastic behaviour in
tension up to brittle rupture failure), creating the issue of lack of ductility
compared to steel. Third, FRP composites have low elastic
modulus-to-strength ratios, so it is less than desirable to use them to bear
compressive stresses directly or to offer the stiffness needed. For instance,
when a GFRP plate is used to stiffen a reinforced concrete (RC) beam to
reduce its deformation, a very thick GFRP plate may be required due to the

small elastic modulus of the GFRP composite.

One application of FRP composites where their advantages are fully utilized
but their disadvantages are avoided or minimized involves the use of FRP
composites to provide lateral confinement to concrete so that both the

strength and ductility of the concrete under compression can be



substantially enhanced. This mechanism has been exploited in both the
retrofit of existing structures and in the construction of new structures, but
the former application has been much more common in practice so far. In
this type of applications, all four advantages of FRP composites mentioned
above (i.e. high strength, light weight, corrosion resistance and tailorability
of properties) are utilized, and the last two disadvantages of FRP composites
can be naturally overcome. In such FRP-confined RC columns, the fibres
are oriented in the hoop or a near-hoop direction, so the FRP material is not
used as the main component to carry axial loading; instead, the FRP is used
for providing lateral confinement to the core concrete to increase its strength
and ductility. The brittleness of the FRP composite failing in axial tension is
thus not a significant issue. In addition, due to the substantial lateral
deformation capacity of the concrete, the high strength of the FRP
composite can be fully utilized despite its relatively small elastic modulus.
For this type of structures, the poor fire performance of FRP is also not a
serious problem as long as a proper design procedure is followed to ensure
that the load-carrying capacity contributed by the FRP strengthening system
is not required during a fire. Indeed, when FRP confinement is used to
enhance seismic resistance, the coupled action of fire and earthquake

generally does not need to be considered.

1.2 STRENGTHENING OF RC COLUMNS WITH FRP COMPOSITES

As discussed in the above section, FRP composites in the form of jackets or
wraps have been extensively used to strengthen RC columns by providing

lateral confinement. In such jackets/wraps, the fibres are typically oriented



entirely in the hoop direction, so the axial stiffness of the jacket can be
ignored. FRP jackets for column strengthening can be categorized into
wet-layup jackets and prefabricated (or preformed) jackets. Wet-layup
jackets are jackets which are formed in-situ from fibre sheets or fabrics that
are impregnated with a resin and wrapped continuously or discretely on the
surface of existing concrete columns. These wet-layup jackets can easily
follow the actual shape of the concrete column and are particularly suitable
for the retrofit of existing columns. However, the process involves
considerable site work and requires due attention to site quality control. By
contrast, prefabricated jackets are made in factory using machines, so the
product quality can be better controlled; however, the need to pre-order
jackets of specific sizes creates difficulties and delays. Wet-layup jackets
have been the dominant form of FRP jackets used to confine RC columns

due to their flexibility in shape and ease for transportation.

In the 1980s, FRP jackets were first applied to RC columns to provide

additional confinement in Japan (Katsumata et al. 1987). Since then, various
experimental and analytical studies have been conducted in this area. The
fundamental mechanism underlying this strengthening technique is that the
axial compressive strength and ultimate axial compressive strain of the
concrete can be significantly increased through lateral confinement. This
fundamental mechanism was first exploited for concrete under uniform
confinement as is the case with circular columns. For FRP-confined circular
RC columns, for which uniform confinement from the FRP jacket can be

assumed, many stress-strain models for FRP-confined concrete have been



developed. These models have commonly been classified into two classes
(Teng and Lam 2004): design-oriented stress-strain models and
analysis-oriented stress-strain models. The best of these models can provide
quite accurate quantitative predictions for the stress-strain behaviour of

FRP-confined concrete in circular columns.

The confinement mechanism for concrete in FRP-confined non-circular
columns is much less understood as the concrete is under non-uniform
confinement in such columns. A large amount of experimental and analytical
work has been conducted on the behaviour of FRP-confined concrete in
rectangular RC columns over the past decade, leading to various stress-strain
models. No consensus on the reliability of these models, however, has been
achieved, particularly with regard to their capability of predicting the
behaviour of FRP-confined concrete in large/full-scale rectangular RC
columns. There is therefore still a strong need for more work on the
stress-strain response and the failure mechanism of this type of FRP-confined
RC columns. Even less is known about FRP-confined concrete in other
non-circular columns such as elliptical columns which may result from the

shape modification of existing rectangular columns.

Two approaches have been commonly used for developing analytical models
for FRP-confined non-circular RC columns. These two approaches focus on
modelling the behaviour of confined concrete, as it is the key and the most

complex part in modelling the behaviour of the entire RC column.



In the first approach, the concept of “effective confinement” is utilized to
estimate the amount of effective confining pressure acting on the concrete.
This estimation is typically done by evaluating the stress in the confining
material (e.g. the FRP jacket), the effectiveness of confinement over the
cross-section, and other cross-sectional properties. The improvement in
concrete strength is then explicitly determined by referring to experimental
results for concrete at an equivalent uniform confining pressure. This approach,

however, fails to capture the stress variation over the cross-section.

In the second approach, a constitutive model for concrete is used in a finite
element analysis to implicitly model the effect of confinement of concrete.
The confinement mechanism is explicitly modelled in this approach with the
confinement material (e.g. the FRP jacket) being explicitly represented in the
finite element model. Interaction between the concrete and the confining
material is properly accounted for and the effect of confinement variation over
a non-circular section can be taken into account. Due to these reasons, the
second approach (i.e. the finite element method) was the main approach
adopted in the present research project to model the behaviour of

FRP-confined concrete/RC columns.

1.3 OBJECTIVES AND SCOPE

The ability of the finite element method to predict the behaviour of
FRP-confined RC columns depends mainly on the concrete constitutive
model employed in the analysis. The primary aim of this thesis is thus to

develop generic constitutive models which are capable of predicting the



behaviour of concrete when it is confined.

Extensive constitutive models already exist for describing the mechanical
behaviour of concrete. Depending on the theoretical frameworks employed,
these models are referred to as nonlinear elasticity models (e.g. Elwi and
Murray 1979), plasticity models (e.g. Imran and Pantazopoulou 2001),
plastic-damage models (e.g. Lee and Fenves 1998), endochronic models
(e.g. Bazant and Bhat 1976), and microplane models (e.g. Bazant et al.
2000). These models have been used in finite element analyses to predict
the complex behaviour of concrete under general states of stresses. Each
constitutive model has its advantages and drawbacks, and is likely to work
well only in particular types of applications. A more in-depth discussion of

concrete constitutive models can be found in Chen and Han (2007).

The primary aim of this research is to develop constitutive models capable
of predicting the behaviour of concrete under varying levels of confinement.
To achieve this aim, existing constitutive models which have an adequate
potential in producing close predictions for the behaviour of actively-
confined concrete are focused on in this thesis. Accurate predictions of the
behaviour of confined concrete require accurate predictions of the peak
stress, the axial strain at peak stress, as well as the slope of the descending
branch for actively-confined concrete or the slope of the ascending branch
for FRP-confined concrete. Three types of constitutive models are examined

in this thesis, including plasticity models, plastic-damage models and



microplane models. More detailed descriptions of these models can be

found in the subsequent chapters of the thesis.

Apart from a reliable constitutive model for the concrete, the determination
of appropriate values for the parameters in the model is also crucially
important. Two approaches of parameter identification are examined in this
thesis. The first approach is based on the test results of confined concrete.
This method is used to explain how the experimental results can be
predicted using a given concrete constitutive model. The second approach is
based on empirical models developed for confined concrete. This method
can be used as a predictive method; that is, the values of some of the
material parameters for a concrete constitutive model are derived from an
empirical model which is capable of providing accurate predictions for
confined concrete (mainly uniformly-confined concrete). Previous attempts
of using the second approach can be found in Oh (2002), Yu et al. (2010a)

and Yu et al.(2010Db).

What should also be mentioned is that concrete is a brittle material with
distinctively different responses in tension and compression. The
constitutive models used for description of the behaviour of these two parts,
therefore, may be significantly different from each other. In this thesis, only
constitutive models for concrete under compression are examined.
Constitutive models for concrete under tension are mentioned only when the
possibility of tension-softening of concrete arises. The thesis consists of 10

chapters as detailed below.



In Chapter 2, a literature review of issues related to the work presented in
this PhD thesis is presented. It starts with a brief review of existing
stress-strain models for actively-confined concrete and FRP-confined
concrete based on tests on small-scale specimens under concentric
compression. Constitutive models developed for modelling confined
concrete are then reviewed with reference to the theoretical frameworks
adopted. Existing finite element studies on FRP-confined concrete/RC
columns are also reviewed. Needs for the work presented in the subsequent

chapters are identified.

Chapter 3 presents an experimental study on the behaviour of FRP-confined
high strength concrete (HSC). Experimental results for FRP-confined HSC
were obtained to expand the existing test database. A unified stress-strain
model for actively-confined concrete, applicable to both normal strength
concrete and HSC, is proposed; a similarly unified FRP-confined concrete
model (an analysis-oriented stress-strain model) is next presented. By
comparing these two stress-strain models, it is shown that the path
independence assumption commonly utilized in analysis-oriented

stress-strain models is only partially justified.

Chapters 4 and 5 examine plasticity-based concrete models, which can be
categorized into two groups: plasticity models using the so-called scaling
technique and plasticity models using the plastic volume strain as the

hardening variable. The advantage and disadvantages of these models are



investigated by comparing their results with selected experimental results.

Chapter 6 is concerned with the capability of plastic-damage models in
modelling the behaviour of confined concrete. Those two techniques (i.e.
the scaling technique and the novel hardening variable approach) used in the
plasticity part of the plastic-damage models for improving their

performance in prediction for confined concrete are also examined.

Chapter 7 presents a so-called M4" model based on the original M4 model
(a microplane model) developed by Bazant et al.(2000). The drawbacks of
the original M4 model reported in existing literature are remedied first and
then some confinement sensitive features are incorporated into this model
leading to so-called M4 model. This M4 model is capable of providing
accurate predictions for confined concrete, including both actively-confined

concrete and FRP-confined concrete.

In Chapter 8, the ability of two constitutive models to predict the behaviour
of FRP-confined square and elliptical columns subjected to monotonic axial
loading is studied. These two constitutive models are the M4 model
presented in Chapter 7 and a refined version of the plastic-damage model
proposed by Yu et al (2010b). The performance of these two models is
assessed by comparing their predictions with experimental results. The
confinement mechanism is investigated using results from finite element

models based on these constitutive models.

10



In Chapter 9, a three-dimensional finite element model for FRP-confined
circular concrete cylinders and RC columns based on Yu et al.’s (2010b)
modified Concrete Damage Plasticity Model (CDPM) is presented. The
finite element model is capable of modelling specimens with deformation
non-uniformity in the axial direction. The effect of end restraint on the
lateral-to-axial strain relationship of FRP-confined concrete is discussed,
and a local analysis-oriented stress-strain model is proposed to eliminate
this effect. This finite element model can also provide accurate predictions

for FRP-confined RC columns.

Finally, Chapter 10 presents a summary of the research results presented in
the thesis and outlines future research needs on various aspects of

FRP-confined concrete and RC columns.
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CHAPTER 2
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents a review of existing knowledge related to confined
concrete, with a special focus on studies that are related to FRP-confined
concrete. As pointed out in Chapter 1, failure of reinforced concrete (RC)
columns under axial loading involves cracking and substantial lateral
dilatation. If this lateral deformation can be restrained through lateral
confinement by hydraulic pressure, steel stirrups/spirals or FRP jackets,
both the strength and ductility of the concrete/column can be substantially

increased.

Of the different methods of providing lateral confinement, the direct use of
hydraulic pressure provides a lateral confining pressure which is
independent of the lateral deformation of the RC column, and this type of
confinement is referred to as active confinement. By contrast, the use of
steel stirrups/spirals or FRP jackets provides a lateral confining pressure
which is dependent on the lateral deformation of the RC column, and this
type of confinement is referred to as passive confinement. Various
theoretical formulations have been developed for predicting the behaviour
of concrete (and/or RC columns) with different types of lateral confining
devices, including active, passive or both. These formulations range from

simple empirical models based on regression analysis of experimental

14



results (e.g. Mander et al. 1988; Lam and Teng 2003) to finite element
procedures (e.g. Mirmiran et al. 2000; Ghazi et al. 2002) that implement

advanced techniques and theories.

Many of the existing theoretical formulations for confined concrete are
capable of predicting complete axial stress-strain curves (e.g. Xie et al. 1995;
Attard and Setunge 1996; Xiao and Wu 2000; Candappa et al. 2001; Lam
and Teng 2003; Jiang and Teng 2007). Besides the axial stress-strain curves,
the dilation behaviour of confined concrete, especially when
passively-confined concrete is concerned, plays a very important role in the
development of a confinement model; additionally, a number of attempts
have been made to capture this aspect accurately. Experimental results for
confined concrete, which contain information regarding the lateral dilation,
have been collected to establish databases (e.g. Imran and Pantazopoulou
1996; Candappa et al. 2001; Teng et al. 2007; Cui and Sheikh 2010)
although the data of lateral dilation shows a relatively large scatter
compared to those of concrete strength (Teng et al. 2007). Consequently,
recent theoretical models (including empirical models and constitutive
models) have placed more emphasis on the dilation properties of confined

concrete (Candappa et al. 2001; Oh 2002; Teng et al. 2007; Yu et al. 2010a).

The review of existing work in this chapter is divided into three parts. The
first part describes experimental investigations into various parameters of
confined concrete behaviour with particular attention to actively-confined

concrete and FRP-confined concrete. In this part, experimental results for

15



actively-confined concrete and FRP-confined concrete are emphasized
because they are used in the subsequent chapters to assess the capability of
selected computational models. The second part covers empirical models
proposed on the basis of experimental observations. The last part discusses
computational models (primarily finite element models) based on various

constitutive models.

2.2 EXPERIMENTAL WORK

Confined concrete has been an active research topic. A large amount of
experimental work has been conducted by many researchers during the past
few decades. Early research dates back to 1920’s. The pioneering work on
confined concrete was conducted by Richart et al. (1928). In their research,
concrete cylinders were confined by either uniform hydrostatic pressure or
spiral steel reinforcement. This study created a fundamental framework for
confined concrete research. Afterwards, Balmer and McHenry (1947)
performed a number of tri-axial loading tests at high confining pressure
levels. Different researchers, such as Gardner (1969), Mills and Zimmerman
(1970), Cedolin et al. (1977), Gerstle (1981), Setunge et al. (1993), Xie et al.
(1995), Attard and Setunge (1996), Imran and Pantazopoulou (1996),
Rutland and Wang (1997), Ansari and Li (1998), Candappa et al. (2001),
Sfer et al. (2002), Lu and Hsu (2006) and Tan and Sun (2006) have
conducted numerous tests on actively-confined concrete. These studies have
shown that insignificant difference exists between concrete with active
confinement and that with passive confinement from closely-spaced circular

steel spirals in terms of concrete strength gains due to lateral confinement.
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Moreover, different researchers, such as Ahmad and Shah (1982), Sheikh
and Uzumeri (1980), Scott et al. (1982), and Mander et al. (1988) have
conducted numerous tests on stirrups/spirals-confined concrete. Extensive
studies have also been conducted on FRP-confined concrete (e.g. Demers
and Neale 1994; Watanabe et al. 1997; Matthys et al. 1999; Rochette and
Labossiere 2000; Parvin and Wang 2001; Lam and Teng 2003; Lam and
Teng 2004; Berthet et al. 2005; Lam et al. 2006; Li 2006; Jiang and Teng
2007; Teng et al. 2007; Rousakis et al. 2007; Lee et al. 2008; Eid et al. 2009;
Lee et al. 2010; and Silva 2011), with the emergence of FRP composites as
a new class of confining materials. Generally speaking, for
actively-confined and steel-confined concrete, there are sufficient
experimental data for both normal strength concrete (NSC) and high
strength concrete (HSC); however, test data for FRP-confined HSC are still

limited despite the large number of tests on FRP-confined NSC.

2.3 EMPIRICAL MODELS FOR CONCRETE IN CIRCULAR COLUMNS

Various empirical models have been developed for predicting the behaviour
of confined concrete. Empirical models for actively-confined concrete have
commonly been derived from the regression of experimental results. The
confinement behaviour provided by steel stirrups/spirals is similar to that of
active confinement although it is a kind of passive confinement. A major
difference between actively-confined concrete and steel-bar-confined
concrete is that in the former case the concrete is under uniform
confinement while in the latter case concrete is under non-uniform

confinement in the axial direction. Therefore, an equivalent confining
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pressure is widely used in the latter case to represent the effect of axial
non-uniformity of confinement. Empirical models developed for
actively-confined concrete can be used for predicting the behaviour of

steel-bar-confined concrete, once an equivalent uniform confining pressure

is defined. This is because steel (particularly mild steel) yields at small
strains and the confining pressure provided by steel remains constant after
yielding; this confinement condition is thus very similar to that of active

confinement from hydraulic pressure.

The behaviour of FRP-confined concrete, however, is significantly different
from that of actively-confined concrete. In FRP-confined concrete, the
confining pressure increases continuously as the axial deformation (and
hence lateral dilation) increases. FRP-confined concrete with an adequate
level of confinement (i.e. the FRP jacket is sufficiently strong) has a
stress-strain curve that is monotonically ascending with a typical bilinear
shape while the stress-strain curve of actively-confined concrete always has
a softening branch. In the early stage of research, most of the empirical
models developed for FRP-confined concrete were extensions of models
previously developed for steel-confined concrete. These models fail to
predict the behaviour of FRP-confined concrete accurately due to the
difference in performance characteristics between steel-confined and

FRP-confined concrete as mentioned above.

Realizing the difference between steel-confined concrete and FRP-confined

concrete, empirical models specific to FRP-confined concrete were later
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developed. These empirical models can be divided into two types (Teng and
Lam 2004). One type is referred to as design-oriented stress-strain models.
Empirical models of the first type are directly derived from experimental
results of FRP-confined concrete. The second type of empirical models for
FRP-confined concrete is referred to as analysis-oriented stress-strain
models. This type of models is based on empirical models for
actively-confined concrete. Using the so-called path-independence
assumption, the behaviour of FRP-confined concrete in a given stress state
is taken to be the same as that of actively-confined concrete in the same
stress state. The interaction between the FRP jacket and the concrete core is
taken into account through an incremental process based on radial
displacement compatibility and equilibrium. Analysis-oriented stress-strain
models are thus more versatile than design-oriented stress-strain models and
can be easily extended to concrete confined by materials other than FRP or
steel; they are however generally limited to uniformly confined concrete.
More detailed descriptions of analysis-oriented stress-strain models are

given later in the chapter.

Among various empirical models for confined concrete as mentioned above,
only some typical empirical models are briefly reviewed in this section to
keep the review reasonably concise; indeed, a more exhaustive review is not
warranted given that the present thesis is primarily concerned with

computational models for FRP-confined concrete.

2.3.1 Ahmed and Shah’s (1982) M odel
An empirical model was proposed by Ahmed and Shah (1982) for
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predicting the ascending and descending parts of the stress-strain curve for
concrete confined by steel spirals and subjected to tri-axial stresses. This
empirical model is based on the properties of the confining reinforcement
and the constitutive relationship for plain concrete, and is applicable only to

concrete in circular columns.

In their study, the effectiveness of confinement was defined by the
following equations:

fec = féo + K1(01)eq 2.1

Ece = £co + K2(0))eq (2.2)
where f/, and f(; are the strengths of unconfined concrete and confined
concrete, respectively; (01)eq is the equivalent confining pressure (i.e. the
average confining pressure) at the strength of concrete due to the spirals;
€co and €7, are axial strains corresponding to peak stresses of unconfined
and confined concrete, respectively. Here, compressive stresses and strains
in the concrete are considered to be positive. K; and K, are functions of

the unconfined concrete strength f;, and the equivalent confining pressure

(Gl)eq-

It was observed by these authors from experimental results that the
effectiveness of confinement becomes negligible as the spacing of spirals
becomes large. A pitch equal to 1.25 times the diameter of the confined
concrete core was thus suggested by these authors as the upper boundary of
the spacing of spirals to ensure a significant level of confinement. Based on

this observation, and along with the equilibrium conditions between the
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concrete core and the steel spirals, the following expression was derived to

calculate (01)eq

sf Ss
(Gl)eq = sz (1 - ’LZSZCC) (2.3)

_ mdsp
R
dccSsp

(2.4)

Here, dgp is the diameter of the steel spiral; d¢. is the diameter of the
confined concrete core; Sg, is the pitch of the steel spirals and f; is the

yield strength of the steel spirals.

The two constants, K; and K, are calculated as follows:

_ 6.61(cDad*

Ky = 25U (i ki) 2.5)
0.12

Ky = 2 oPe (in ksi) (2.6)

€.y = 0.001648 + 0.000114f, (in ksi) 2.7)

0, = 6.6128 + 2.9137f], — 44.2315(0))eq (in ksi) 2.8)

Here, 05 represents the average value of the slope of the descending branch
between the axial strain at peak stress and twice the axial strain at peak
stress. Eq. (2.8) indicates that with an increase in the unconfined concrete
strength, the slope of the descending region of the stress-strain curve
becomes steeper. By contrast, with an increase in the equivalent confining
pressure (0})eq» the slope of the descending region of the stress-strain curve

becomes flatter.

The stress-strain curves predicted by this empirical model were compared
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with their own experimental results as well as those of Iyengar et al. (1970)
and Burdette et al. (1971). Adequate agreement was shown between the
analytical results and the experimental results. The comparison indicated
that complete stress-strain curves of confined concrete can be predicted
from the tri-axial stress-strain curves of plain concrete and tensile
stress-strain curves of the confining material. However, the validity of the
equation for a much larger experimental database is uncertain, as its axial

strain at peak stress is not a dimensionless equation.

2.3.2 Mander et al.’s (1988) Model
In Mander et al.’s (1988) study, thirty-one nearly full-size RC columns with

different arrangements of longitudinal and transverse steel reinforcements
were tested under axial compression. These specimens had different shapes
of cross section including, circular, square, and rectangular shapes. All
circular columns were of 500 mm in diameter with a 25 mm cover to spirals
and were 1500 mm in length. These columns were divided into two groups
based on the arrangement of reinforcement. The first group had an identical
amount of longitudinal steel reinforcement but different amounts and sizes
of transverse steel reinforcement. By contrast, the second group had
different amounts and sizes of longitudinal steel reinforcement but identical
transverse steel reinforcement. Square columns with square and octagonal
ties tested by Scott et al.(1982) were also included in the test database.
Moreover, sixteen rectangular walls containing rectangular hoops with
additional crossties were cast and tested. Each wall had a cross section of
150 mmXx700mm with an overall height of 1200 mm. In these tests, the

amount and configuration of the transverse reinforcement were taken as the
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principal variables.

Based on these experimental results, an empirical model was developed to
describe the stress-strain response of concrete under uni-axial compression
and confined by transverse reinforcement. This model works for both
circular and rectangular shaped transverse reinforcement. It considers the
interaction between the concrete core and the steel spirals through arching
action. The angle of arching action is assumed to be 45 degrees and the area
of the confined zone is calculated from the areas enclosed by parabolic
curves. For the concrete compressive strength, a five parameter failure
surface defined by William and Warnke (1975) was adopted. The concrete

peak stress under an equivalent confining pressure (0})¢q is determined by

the following equation:

frr = 1 (—1.254 +2.254 |14 72 ea ("f‘,)eq> (2.9)

The axial strain at peak stress €. of the confined concrete is empirically
related to the peak stress increment factor through the following equation

originally suggested by Richart et al.(1928):

€50 = £oq (1 +5 (; - 1)) (2.10)

In this strain model, the stress-strain relationship suggested by Popovics
(1973) is employed to describe the axial stress-strain response of confined
concrete. At an axial strain €, the axial compressive stress f, is given by

following equation:
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3
fcexr

fe=—""— (2.11)
where,

X=€./€¢c (2.12)

r= % (2.13)

Esec = fec/ecc (2.14)

Here, E. is the tangent modulus of the concrete.

An energy method was utilized in this model so as to calculate the ultimate
strain of the confined concrete. This approach assumes that the ultimate
strain of the confined concrete core is reached when first hoop fracture
occurs. The additional strain energy in the core concrete is assumed in this
approach of being provided by the energy stored in the transverse
reinforcement. When the energy accumulated in the concrete core exceeds
the available energy of the transverse reinforcement, hoop fracture occurs
and the section is taken to have reached its ultimate deformation. Mander et
al.’s (1988) model achieved a large degree of success in predicting the
stress-strain behaviour of steel-confined concrete and was thus modified by
subsequent researchers for predicting the stress-strain behaviour of
FRP-confined concrete. However, the direct application of this model to
FRP-confined concrete is inappropriate and leads to inaccurate predictions

as it is a model specific to steel-confined concrete.

2.3.3 Attard and Setunge’'s (1996) M odel

An empirical model was proposed in Attard and Setunge’s (1996) study for

predicting the complete stress-strain curve of actively-confined and
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uni-axially loaded circular concrete cylinders. This model is applicable to a
wide range of concrete strengths ranging from 20 to 130 MPa in circular
columns. The following nonlinear equation was developed for the peak

stress of actively-confined concrete:

o (14 ﬂ)kAs (2.15)

feo fe
Here, f; is the tensile strength of concrete which is approximately 0.9 times

the split cylinder tensile strength fs,, and the parameter kug is related to

fl, as follows:

Kas = 1.25 (1 +0.062 5 ) ££,"*" (2.16)
From the experimental observations, silica fume was found to have a
significant effect on the split cylinder tensile strength fg,. Therefore, two

equations were suggested for the determination of the split cylinder tensile

strength fg,

0.32(f.,)%®” MPa, no silica fume
= 2.17)

0.62./f., MPa, silica fume
Egs. (2.15) and (2.17) indicate that silica fume can influence the

confinement effectiveness of actively-confined concrete.

The following equation was developed to describe the relationship between

the axial strain at peak stress and the confining pressure o;:

= 14 (17 - 0.06f) (;’—‘) (2.18)
Beyond the point of peak stress, a point of inflexion on the descending
branch of the stress-strain curve is defined in this model to control the slope
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of the descending branch.

For concrete under uni-axial compression, the inflexion point on the

descending branch is defined by the following approximate expressions:

— = 2.5 — 0.3In(f,,) MPa (2.19)
1€ = 147 — 0.17In(f;,) MPa (2.20)

Here, f;. and g;. are the axial stress and the axial strain at the inflexion

point, respectively.

For confined concrete, the inflexion point of the descending branch is

defined by the following approximate expressions:

f,

fi fi_z_l

f’_* =~ o057 + 1 (221)
ce 5.06<f‘,sl ) +1

e 42 (2.22)

Furthermore, the axial stress f,; at &,; = 2¢; is defined by the following

equation which is similar to Eq. (2.21):

faic_4
fzi f,
= —Z" 552 (2.23)
ce 6.35(5—1> +1

where f,;., being for the uni-axial case, can be estimated from

ftf— = 1.45 — 0.25In(f.,) MPa (2.24)

The following non-dimensional mathematical expression suggested by
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Sargin (1971) was employed for the stress-strain curve of confined

concrete:

y _ AAsX+BA5X2 (225)

- 1+Cpgx+Dpgx?

fc
*
cc

where y= o

For the ascending branch, the four constants in Eq. (2.25) are given by

g = it (2.26)
_1)2 2 -
SRS VR 22
aa<1—%1> 0‘%%1<1_%1>
féc fce fee
Cas =Aas—2 Dys=Bys+1 (2.28)

where f;) = 0.45f.,, E.c is the secant modulus measured at a stress of fols

E;i is the initial tangent modulus for confined concrete, and o, = Ej/Ec.

For the descending, these four constant are given by

_ (&2i¢&i) [ £2iEi _ 4siEaj
AAS B ( Ecc ) |:flc*c_fi IHc*c_fzi] (229)
4E,;
Bas = (& — €2i) [Ei - ﬁ] (2.30)
Cas =Aas =2 Dps=Bps+1 (2.31)
where
fi foi
Ei =- and E2i = — (232)

€j €2i
The authors compared the predictions of this model with the their own
experimental results and those of Richart et al. (1928). Adequate agreement

was found in most cases except their experimental results for the specimens

with no silica fume in the concrete mix and at a higher level of confinement.
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This model has been employed in some subsequent analysis-oriented
stress-strain models for FRP-confined concrete (e.g. Cui and Sheikh 2010)
as the active confinement base model because of its high accuracy for

actively-confined concrete.

2.3.4 Candappa et al.’s (2001) Model

A series of tests were conducted in Candappa et al.’s (2001) study to
investigate the stress-strain behaviour and dilation characteristics of circular
concrete cylinders subjected to tri-axial stresses. The cylinders were 98 mm
in diameter and 200 mm in height. The concrete strength ranged from 41.1
MPa to 103 MPa. Three lateral pressure values of 4 MPa, 8§ MPa, and 12
MPa were applied on the surface of these specimens using oil pressure in a
tri-axial cell. Based on the experimental results, the concrete peak stress
under a low lateral confining pressure o) (i.e., o7 < 0.2f’,) was found to
be well represented by the following equation:

fee = feo +5.30 (2.33)
The axial strain at peak stress of concrete, €., was found to have a linear

relationship with the confinement ratio, as described by the equation below:

fe - 1420 (ﬂ) (2.34)

€co feo
This equation indicates that the axial strain at a peak stress does not depend

on the unconfined concrete strength.

The secant Poisson’s ratio model implemented in Ottosen’s (1979) model
was modified based on the experimental observations of concrete dilation
characteristics. A so-called non-linearity index, which is defined by the axial

stress ratio B! = f./fl%, was related to the secant Poisson’s ratio p* as
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follows:

ui, B < Bi

ue = I_gIy2 (2.35)
uE = (uf = p) /1—(@_—;‘;) , B> B}

where p and pf are the initial and final values of the Poisson’s ratio. B}
is the value taken by B! when the Poisson’s ratio begins to increase. In
Ottosen’s (1979) model, B! is taken as 0.8, and it shows adequate

agreement with experimental results.

With regard to p{f, the following equation was suggested based on the curve
fitting of the experimental results.
u = 8 x 107°(f,)? + 0.0002f/, + 0.138 (2.36)
Based on their experimental observations, the descending curves of p*~!
were approximately the same, regardless of the uniaxial strength of concrete
and the level of lateral confinement. Hence, the following equation was
developed for the non-linearity index for the descending portion:
B, = —0.5(u%)?% + 0.45u“ + 0.9 (2.37)
The results of this empirical model were compared with the authors’
experimental results and adequate agreement was obtained. The test data of
concrete dilation characteristics were also employed in developing the
lateral-to-axial strain relationship of the analysis-oriented stress-strain

model proposed by Teng et al. (2007)
2.3.5Lam and Teng's (2002) M odel

Lam and Teng (2002) reviewed an extensive database of FRP-confined

circular concrete cylinders of about 200 test results. The parameters
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examined include the unconfined concrete strength, specimen size,
length-to-diameter ratio, and the tensile strength of FRP. Based on the large
database, available equations for the compressive strength of FRP-confined
concrete were assessed. A simple compressive strength model for design

purposes was then proposed.

In this model, the lateral confining pressure acting on the concrete core o

is given by

o = irptirp (2.38)

DCOI‘

Here, fr, is the tensile strength of the FRP jacket determined from either
flat coupon tests or ring splitting tests; tg., is the thickness of the FRP

jacket; and Do, is the diameter of the concrete cylinder.

A linear equation was proposed by Lam and Teng (2002) for the ultimate
axial stress of FRP-confined concrete f., as follows:

fou = foo + 209 (2.39)
This simple equation can be used in the design process for the estimation of
the compressive strength of FRP-confined concrete. These authors found
from Eq. (2.39) that the enhancement of concrete strength due to
confinement does not depend on f(,, the specimen size, or the specimen

length-to-diameter ratio.

Although this model was simpler and more accurate than the previous
compressive strength models for FRP-confined concrete at that time, it does

suffer from the limitation that it can only predict the experimental results
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accurately when fc,y—l <1
co

2.3.6 Lam and Teng's (2003a) M odel

Lam and Teng (2003a) presented a design-oriented stress-strain model for
FRP-confined concrete in circular cylinders/columns with the fibers in the
FRP jacket being oriented only or predominantly in the hoop direction. This
stress-strain model captures all the major features of the stress-strain
behaviour of concrete confined with different types of FRP. This model
included an FRP efficiency factor K¢, to consider the reduced tensile
rupture strain of the FRP jacket in FRP-confined concrete cylinders; this
was based on the experimental observation that the tensile strength of the
FRP material obtained from flat coupon tests is generally not reached when
the FRP jacket ruptures in an FRP-confined circular concrete cylinder. The
FRP efficiency factor is defined as the ratio of the actual FRP hoop rupture

strain €y ryp determined from the tests of FRP-confined concrete cylinders

to the FRP rupture strain obtained from flat coupon tests &g.,. That is

Kfrp = Sh,rup/sfrp (2.40)

In this model, the FRP efficiency factor Ky, is employed for calculating
the so-called actual hoop rupture strain and the actual maximum confining

pressure f), in the FRP-confined concrete. That is,

2fh frpts 2EfrpEn frpte
fi, = —hiwtip _ 2Bipehirplip 2.41)

DCOI‘ DCOI‘

Using the actual maximum confining pressure, the following linear equation
was proposed for the ultimate axial stress of FRP-confined concrete f.:
fou = féo +3.3f1, (2.42)
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For the ultimate axial strain, the following expression was proposed:

Eeu _ fia (Ehrup) 05
=1.75 + 12 (—ECO ) (2.43)

€co feo
Based on the experimental results of 52 CFRP-wrapped specimens, an

average value 0.582 was suggested for the FRP efficiency factor Kgp,. As a

result, Eq. (2.43) can be rewritten as

0.45
fou = 175 + 5,53 22 () (2.44)

€co feo
With this equation and the FRP efficiency factor, the user only needs to

know the tensile strain &g, which is commonly provided by the

manufacturer.

The following stress-strain model was proposed for FRP-confined concrete:

(Ec—E2)? 5
E.e. — €5, 0<e.<c¢
o.=1 ¢ a4, € c= (2.45)
fio + Exee, & < g < ggy
where
2f!
= €0 2.46
ft = E-Ey (2.46)
and
E, = _fs‘f (2.47)

This model can only provide stress-strain curves for well-confined concrete
with an ascending second branch. It was found by these authors that to

obtain an ascending second branch for FRP-confined concrete cylinders, the

. f
actual confinement ratio fi—a should be not smaller than 0.07.

co

This empirical model is a typical design-oriented stress-strain model for
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FRP-confined concrete. This model was later extended to predict the
stress-strain behaviour of FRP-confined concrete in rectangular columns as

explained later in this chapter.

2.3.7 Teng et al.’s (2007) Model

Teng et al. (2007) presented an analysis-oriented stress-strain model for
FRP-confined concrete in circular columns with the fibers in the FRP jacket
being oriented only or predominantly in the hoop direction. An
analysis-oriented stress-strain model is more versatile when compared to a
design-oriented stress-strain model (e.g. Lam and Teng 2003a). It can
predict either a typical bi-linear stress-strain curve for well-confined
concrete or an ascending-descending stress-strain curve for weakly-confined

concrete.

As mentioned previously, an analysis-oriented stress-strain model is based
on an active confinement model. The active confinement model describes
the axial stress-strain relationship for concrete under a constant confining
pressure. The so-called path independency assumption is adopted to relate
the axial stress under active confinement to that under passive confinement.
This assumption supposes that the axial stress and axial strain of concrete
confined by an FRP jacket at a given lateral strain should be the same as
those of the same concrete confined by a constant confining pressure equal
to that supplied by the FRP jacket. To obtain the axial strain at a given
lateral strain, a lateral-to-axial strain equation is adopted in the
analysis-oriented stress-strain model. Teng et al. (2007) found that the

relationship between the lateral strain and axial stain in concrete under
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varying levels of lateral confinement can be represented by the following

expression:

€c

0(2) = @ - At{[l + By (;—s‘)]ct ~ exp[-D, (;—81)]} (2.48)

co

In this equation, the constants A;, B;, C;, and D, are 0.85, 0.75, 0.7 and 7,
respectively. They were calibrated against test data for unconfined, actively
confined and FRP confined concrete through a trial-and-error procedure. Eq.
(2.48) indicates that the confining pressure has a significant effect on the

lateral-to-axial strain relationship.

With the lateral-to-axial strain equation clarified, Eq. (2.11) proposed by
Popovic (1973) was adopted in the active confinement model for the
description of axial stress-strain relationship. The concrete peak stress under
a lateral confining pressure o is given by the following equation:

fee = fio + 3.50) (2.49)

The equation for the axial strain at peak stress of concrete €;. is given by

fe — 14175 () (2.50)

€co co

In a subsequent study by the same research group (Jiang and Teng 2007), Eq.

(2.50) was revised to

fe = 14+17.5 (f‘,’—‘)l'2 (2.51)

€co co

This modification aimed to achieve more accurate predictions for

FRP-confined concrete with relatively weak confinement.

This analysis-oriented stress-strain model can provide accurate predictions

for FRP-confined concrete at different confinement levels. It also has the
34



capability to provide accurate predictions for actively-confined concrete and
steel-confined concrete. As the two analysis-oriented stress-strain models
(Teng et al. 2007; Jiang and Teng 2007) were only verified using test data
for FRP-confined normal strength concrete, their accuracy for FRP-confined

high strength concrete is still uncertain.

2.3.8 Cui and Sheikh’s (2010) M odel

Cui and Sheikh (2010) presented an analysis-oriented stress-strain model
for FRP-confined concrete in circular columns with the aim of modelling
concrete with a wide range of strength from 25 MPa to 112 MPa. This
model was developed based on material properties, force equilibrium, and
strain compatibility. A new active confinement model which is a modified
version of Attard and Setunge (1996), was proposed in this
analysis-oriented stress-strain model, in which the following equations

defining the point of peak stress were developed to replace those in Attard

and Setunge (1996):
0.6
o |(1+1024) 7, £, < 60 MPa
£ = “ 05 (2.52)
© | (1+143) ", £ = 60MPa
and
== 1+ (70 ~ 13In(f,)) (f"—l) (2.53)

Using a general formulation proposed by Imran and Pantazopoulou (1996),
the following dilation model was proposed to determine the relationship

between the volumetric strain €, and the axial strain €.:

_¢limyp€Cs
e= (- 2u) [2ree (S-bs [S5]7)] @y

€

Here, y, is the Poisson’s ratio of concrete and €!° = acger. is the

35



reference strain. Parameters acg, bcg, and ccg are material parameters
calibrated from experimental results. In addition, bcg and ccg are found to
be the main parameters controlling the effect of the confinement ratio on the
shape of the axial-volumetric strain curve while acg depends mainly on the
unconfined concrete strength f/,. The McCauley bracket (-) is defined as
(x) = 0.5[x + abs(x)]. €™ is the axial strain corresponding to concrete

cracking in the lateral direction. It can be determined as

lim 1-Uo Ecr
g =——0,—— 2.55
¢ HoEc ! Ho ( )

Here, €. can be determined from the splitting tensile strength f.,. as

proposed by Aroglu et al.(2006):

Eor = = = 0.387£3% /E, (2.56)

[o

The following equations were suggested for parameters acs, bcs, and ccs:

feo
0.65 < dcs = m— 01<11 (257)
bes = 1 — 01/fl, = 0.7 (2.58)
ccs = (flo — 01)/30 = 2.0 (2.59)

Eq. (2.58) indicates that for concrete with different strengths but similar
confinement ratios, a similar bgog can be expected; whereas Eq. (2.59)
indicates that parameter ccg increases with the unconfined concrete

strength but decreases with the lateral pressure.

Although this model was developed for FRP-confined concrete, it can be
also applied to steel hoops/spirals-confined concrete columns as long as the
assumption of effectively-confined concrete area A, is adopted. The same

assumption as suggested by Sheikh and Uzumeri (1982) and adopted in

36



Mander et al.(1988) was used to determine the effectively-confined concrete

area Ag:

2
(1 - ZDScor) A, (for circular hoops)

A, = (2.60)

(1 - ZDScor) A., (for circular spirals)

where A is the total area surrounded by the concrete hoops/spirals, s is the

clear spacing between steel hoops/spirals.

This model was employed to predict the behaviour of actively-confined
concrete and FRP-confined concrete. For actively-confined concrete, the
model was capable of providing accurate predications; for FRP-confined
normal strength concrete, the model was also capable of providing accurate
predictions for the axial stress at a given axial strain but incapable of
providing accurate predictions for the ultimate axial strain; for
FRP-confined very high strength concrete (e.g. with a concrete strength up
to 110.6 MPa), the model significantly underestimated the axial stress at an
axial strain near the transition zone between the parabolic first portion and
the linear second portion of the stress-strain curve. The model can be
applied in predicting the stress-strain behaviour of FRP-confined concrete
with discontinuous FRP jackets, when Eq. (5.60) is used to calculate the

effectively-confined concrete area A,.

2.3.9 Lam and Teng's (2003b) M odel

Lam and Teng (2003b) presented a simple design-oriented stress-strain

model for FRP-confined concrete in rectangular columns. This model was
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an extension of their design-oriented stress-strain model for concrete
uniformly-confined by FRP jackets (Lam and Teng 2003a), and was verified
with a database of experimental results collected by the authors. Compared
to their design-oriented stress-strain model developed for concrete
uniformly confined with FRP, the major difference lies in the equations used
for the prediction of the ultimate axial stress and the ultimate axial strain.
Experimental results have shown that the confinement of FRP jackets in
rectangular columns is not as effective as that in circular columns. Therefore,
two shape factors, kg; and kg,, were introduced by the authors to consider
the effect of section shape on the ultimate axial stress and the ultimate axial

strain, respectively. That is, the ultimate axial stress is given by
fou = feo + Kiksifia (2.61)

while the ultimate axial strain is given by

0.45
0 = 175 + Kokyp 22 (222 (2.62)
fCO

€co €co

Here, k; = 3.3 and k, = 12 as was proposed by Lam and Teng (2003a).

For FRP-confined concrete in rectangular columns, the hoop stress and the
hoop strain in the FRP jacket vary considerably around the periphery.
Therefore, Eq. (2.38), which was proposed to calculate the confining
pressure under uniform confinement, is not applicable to FRP-confined
concrete in rectangular columns. To address this critical issue in developing
the particular design-oriented stress-strain model, an equivalent circular

column was defined, which has an assumed diameter Dgq. Using this

assumed diameter D.q, Eq. (2.38) can thus be used for the calculation of

eq-
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the equivalent confining pressure. The equivalent diameter Dgq is defined
in this model as the diagonal length of the section (see Fig. 2.1). That is
Deq = Vh? + b2 (2.63)

where h is the length of the long side of the rectangle, and b is the length of

the short side of the rectangle.

The two shapes factors, kg; and Kg,, are defined as follows:

ke, = (E)Z‘Z— (2.64)
and
ke, = (%)05‘:— (2.65)

The effective confinement area ratio A./A. is given by:

b 2 h 2
& — 1 _ E(h_ZRC) +E(b_2RC)
Ac 3Ag

(2.66)

Here, R, is the radius of the rounded corners, and A, is the gross area of

the column section with rounded corners, which is given by

Ag; =bh — (4 — m)R? (2.67)
This model is simple and can provide accurate predictions for the
experimental results available at the time. The limitation of the model is that
it can only be used to predict the stress-strain behaviour of FRP-confined
concrete in rectangular columns. Moreover, this empirical model is not
based on a rigorous understanding of the confinement mechanism in the
rectangular section. Lack of rigorous understanding of the confinement

mechanism is the common and fundamental drawback of empirical
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stress-strain models of this type.

2.3.10 Youssef et al.’s (2007) Model

Youssef et al. (2007) presented a design-oriented stress-strain model for
FRP-confined concrete in circular or rectangular columns. This model is
also based on experimental results covering a wide range of confinement
ratios. Experimental observations showed that the following factors have a
significant effect on the stress-strain behaviour of FRP-confined concrete:

unconfined concrete strength f’,, volume ratio of the FRP jacket p;,
ultimate lateral strength of the FRP jacket fj,, and cross-sectional geometry.

Such parameters were analyzed statistically based on experimental results,

and equations were proposed to predict the effects of these parameters.

In this model, the ultimate confining pressure fj, for both circular and
rectangular sections is defined by the confinement ratio p; (i.e. the jacket
volume divided by the concrete volume). That is

flu = 2Py (2.68)
The following ultimate effective lateral confining pressure fj, is used to
replace fj, so as to obtain a unified model for FRP-confined concrete in
both circular and rectangular sections. In this model, the ultimate effective
lateral confining pressure is defined as:

fiu = Kefiu (2.69)
Here, k. is the confinement effectiveness coefficient, which is defined as

1, for circular section

b h
_ H(h—ZRC)Z +E(b_2RC)2
3Ag

ke = (2.70)

1 , for rectangular section
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The definition of parameters b, h, R. and A, are the same as those in Lam

and Teng’s (2003b) model.

The stress-strain curve of FRP-confined concrete in this model is controlled
by two characteristic points: the transition point and the ultimate point. To
define the ultimate point, the compressive strength of FRP-confined

concrete is given as

; (5/4
( 1+ 2.25 (f}—“) , for circular section
fcu fCO
a = o 3/5 (271)
0.5+ 1.225 (f}—“) , for rectangular section

The ultimate axial strain of FRP-confined concrete is given as

( , 2
0.003368 + 0.2950 (1) (fl_)z

fco/ \Efrp
£y = 1 for circular sec,tlon \ @2.72)
0.004325 + 0.2625 (fl_) (fl_)z

fCO Efrp
\ for rectangular section

For the transition point, the axial stress fi.,, is defined as

ijfrpsfrpt 5/4 . .
1+ 3.0 (—) , for circular section

f/
ftl;an — co (273)
feo PIEgrpEfrp,t 5/4 ;
1+ 1.1350 (%) , for rectangular section

where €q.p ¢ 1s the strain of FRP at the transition point. Similarly, the axial

strain €.,, atthe transition point is defined as

1

( 6 2
p]'Efrpsfrp,t 7 ( fju )
0.002748 + 0.1169 (—féo ) )
for circular section
Etran = 3 ) 1 (2.74)
ijfrpSfrp,t 7 ( fju )2
0.002 + 0.0775 (—feo ) )
\ for rectangular section
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Once the transition point and the ultimate point are determined, the slope of

the second branch E, can be calculated by

E, = feu=ftran (2.75)

€cu—¢&tran

The stress-strain relationship for FRP-confined concrete is defined by a
two-region model to form a unified model. For FRP-confined concrete with
an ascending second branch (i.e. E, > 0), the expression for the
stress-strain relationship is
£, = { Ecec [1 —(1- %) (s:_)n_l] Ose<ew (576
ftran + E2€c, Etran < € < &y

(Ec—E3)&tran

Here, n = .
c€tran—ftran

For FRP-confined concrete with a descending second branch (i.e. E, < 0),

the expression for the stress-strain relationship is

1 £c n-1
£, = { Ecec [1 - ;(stran) ] Ose<e 2.77)
1:tran + EZSC' €tran < € < €u

Ece
Here, n = ctran

c&tran—ftran

This model still falls into the category of design-oriented stress-strain
models, although a more complex formulation was adopted. The common
and fundamental drawback of empirical stress-strain models of this type still
exists in this model. The lateral confining pressure is obtained using the

confinement ratio p; and a reduced factor ke. However, this k is still not

4



based on a rigorous understanding of the confinement mechanism.

2.4 COMPUTATIONAL MODELS

The finite element method has frequently been employed for predicting the
experimental results of concrete columns/sections under complex stress
states. This method is capable of capturing stress variations within the entire
test specimen and predicting interactions between components (e.g. between
the FRP jacket and the concrete core in an FRP-confined concrete column).
Therefore, the finite element method provides a powerful tool to investigate
the confinement mechanism of FRP-confined concrete. However, the
success of a finite element computational model to a large extent depends
on the use of an appropriate constitutive model for each component material.
Various constitutive models for concrete under tri-axial stress states have
been developed. Some of these models have been applied in predicting the
response of confined concrete columns with some degree of success. The
more significant of these constitutive models are reviewed below to reflect

the development of constitutive models for confined concrete.

2.4.1 Constitutive modelsin ABAQUS

In general, constitutive models coded into commercially available software
packages, such as ABAQUS, are most widely accessible to researchers.
These models are also well maintained and possibly extendable. However,
as commercially available software packages are for general-purpose finite
element modelling, they may not have all the features required for a

particular application of interest.
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In ABAQUS, two commonly used constitutive models for concrete in
tri-axial compression are available. One is the Extended Drucker-Prager
(D-P) Model which employs a modified D-P type yield criterion (Drucker
and Prager 1952). In order to describe the different confinement responses
of biaxial compression and tri-axial compression (e.g. a cylindrical core
sample is loaded axially to failure at constant confining pressure), the effect
of the third deviatoric stress invariant is included in this model. This model
also allows the user definition of strain hardening/softening and the
adoption of a non-associated flow rule. The other model available in
ABAQUS is the Concrete Damaged Plasticity Model (CDPM). It is a
plastic-damage model combining isotropic damaged elasticity with isotropic
tensile and compressive plasticity to describe the inelastic behaviour of
concrete. This model adopts the yield criterion proposed by Lee and Fenves
(1998) which reduces to the D-P type yield criterion for the special case of
concrete under equal tri-axial compression. It also includes the effect of the
third deviatoric stress invariant, with a large range of allowed shear strength
ratio which covers normal experimental results of concrete. A scalar damage
variable, which varies with the plastic deformation, is used in this model to
reflect the degradation of elastic stiffness under loading. Moreover, strain
hardening/softening can be defined by the user and a non-associated flow

rule is utilized to describe the dilation characteristics of concrete.

An equivalent plastic strain is taken as the only variable in the strain
hardening/softening function in these two constitutive models. Due to the

limitation of this type of hardening/softening rule, which is carefully
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discussed in Chapters 4 and 5 of this thesis, these two constitutive models
fail to capture the increased deformation capacity of concrete under tri-axial

compression even for actively-confined concrete.

2.4.2 Barros (2001) Model

A constitutive model based on the theory of elasto-plasticity was presented
by Barros (2001) for concrete under tri-axial compression. This model was
developed for both the D-P type yield criterion and the Ottosen yield
criterion (Ottosen 1977). The hardening/softening behaviour of concrete is
modelled using the MC90 (CEB-FIP MC 1990) equation developed for
uni-axial compression. The confinement effect is depicted through
multiplying the hardening/softening modulus by a function of the
intermediate principal stress. The numerical results obtained for the
concrete cylinders tested by Iyengar et al.(1970) showed reasonable

agreement with the experimental results.

In Barros’ (2001) elasto-plastic model, the stress increment vector do and
the strain increment vector de are related by the elasto-plastic material
matrix Dgp. That is

do = D, de (2.78)
where Dy, is defined as follows:

T
D, =D - _DbmamD (2.79)

al Dby, +H
Here, D is the elastic material matrix, a, and b,, are the gradients of the
yield and potential functions F and G respectively, H is the hardening

parameter, and the superscript T indicates the transpose of vector and
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matrix.

_dr

ay = 5 (2.80)
dG
bm = (2.81)

If a non-associative flow rule is used, the yield and the potential functions F
and G are different. The hardening parameter H is a function of the yield

function.

The following MC90 (CEB-FIP MC 1990) equation for uni-axial
compression was used by Barros (2001) to model the hardening and

softening behaviour:

Ecec (&c 2
oc = _%f&, (2.82)

Ec1 £c1

where €., = —0.0022 is the strain at peak-stress f(,, E.; = f’,/0.0022

is the secant modulus of elasticity at peak stress, and €. is the total strain.

The confinement effect is modeled by a change in the stress-strain curve in
the softening zone. The slope Et in this zone is multiplied by a factor R
that is a function of the intermediate principal stress o,:

R = eX%2 (2.83)
where x was taken as 0.867. This type of approach is referred to as the
scaling technique in the follow-up studies, and the approach adopted in this

model can be seen as an earlier version of this technique.

The model was applied by Barros (2001) for the analysis of the circular

concrete cylinders tested by Iyengar et al. (1970). These cylinders had the
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standard dimensions of 150 mm X 300 mm with concrete strengths
ranging from 25MPa to 34MPa, and were reinforced with spirals. The finite
element computational model based on the proposed constitutive model
predicted the strengths of the test cylinders with reasonable accuracy
(Barros 2001). However, its predictions for the pre- and post peak behaviour
deviated substantially from the experimental results. Barros (2001)
suggested that using a non-associated flow rule could eliminate this
discrepancy. However, this author only used an associated flow rule as
using a non-associative flow rule causes convergence problems in their

numerical analyses.

In summary, Barros (2001) introduced a scaling technique in the
hardening/softening rule of an elasto-plastic constitutive model for concrete.
The proposed constitutive model is capable of providing accurate
predictions for the peak stress of confined concrete and can also depict the
change in slope of the softening branch of axial stress-strain curves due to
the effect of confinement. However, an associated flow rule was adopted in
the model due to the requirement of the numerical convergence; as a result,
the stress-strain behaviour of steel spirals-confined concrete could not be

accurately predicted.

2.4.3 Johansson and Akesson’s (2002) M odel
Johansson and Akesson (2002) also proposed a concrete constitutive model
based on the theory of elasto-plasticity to consider the effect of confinement

on the compressive response of concrete. This model was developed based
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on the D-P type yield criterion which was used with an associated flow rule
for the description of the three-dimensional state of stresses and strains in
concrete. A confinement-sensitive hardening/softening rule was introduced
into the constitutive model, and this introduction was achieved by applying
two adjustment functions to the strength and the plastic modulus. More
accurate predictions can be expected from this constitutive model when
compared to the constitutive model developed by Barros (2001), which only
involves the scaling technique on the plastic modulus. A series of
experiments on circular concrete cylinders subjected to active confinement
were analyzed using this constitutive model. In addition, the model was
used in predicting the response of concrete-filled steel tubes. The model was
shown to be capable of providing accurate predictions for both

actively-confined concrete and concrete-filled steel tubes.

This model employs the D-P type yield surface, which is a linear function,

as detailed below:

F(0,K) = q + ptanajy — Kja (2.84)
q=_[5(5:9) (2.85)
1
p=—:cl (2.86)
S=0+pl (2.87)

where o is the frictional angle adopted in this model, Kj, is the

cohesion strength, ¢ is the stress tensor, and I is the unit tensor.
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As an associated flow rule is used, the expression for the plastic strain

increments dg, can be written as
OF
deg, = dA% (2.88)
The last component of the model is the hardening rule. It consists of two
parts and can be written as

dx = dA-2= = d) and Kj, = —HdA (2.89)
6K]A

where H is the same as that in Barros (2001).

A confinement-sensitive hardening rule was employed to achieve accurate
predictions for the confinement effect. Two adjustment functions fj, and
gja were adopted to scale the hardening rule. These two functions are
defined as polynomials of arbitrary power, i.e.
fia(01ar) = X ai0lac (2.90)
81a(01a0) = ZiLo biola (2.91)
where 0}, is the equivalent confining pressure which is taken as the mean

value of the two smallest principal stresses if the mean value is positive

(compressive); otherwise it is set to zero.

01+0,

Olat = =0 (2.92)
The constants a; and b; in Egs. (2.89) and (2.90) require to be calibrated
from the corresponding test data. This requirement means that the effect of
confinement varies with the characteristics of concrete. That is, the values
of a; and b; vary from one set of experimental data to another. The

function fj, is used to scale the strength Kj, (concrete strength) according

to the current confinement level while the function g;, is used to scale the
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hardening parameter k (concrete deformation). With these two adjustment
functions, an appropriate Kjy — k relationship can be achieved. Fig. 2.2

illustrates the procedure of scaling.

In summary, Johansson and Akesson (2002) introduced a scaling technique
for the hardening rule of an elasto-plastic model for confined concrete. Two

adjustment functions, fj, and gj, , were employed to scale the strength
Kja and the hardening parameter k respectively to achieve an accurate

hardening rule under lateral confinement. In addition, an equivalent
confining pressure o), was adopted to consider effect of non-uniform
confinement. This equivalent confining pressure o),; was taken as the
mean value of the two smallest principal compressive stresses. This
constitutive model employs a complete scaling technique (scaling both the
strength and the slope) as compared with the constitutive model developed
by Barros (2001). Therefore, a finite element computational model based on
this constitutive model can provide accurate predictions for
actively-confined concrete and concrete-filled steel tubes. However, the
applicability of this constitutive model to FRP-confined concrete is
questionable as the scaling technique was not verified using experimental

results of FRP-confined concrete.

2.4.4 Grasd et al.’s (2002) M odel

Grassl et al. (2002) proposed a constitutive model based on the theory of
elasto-plasticity for the modelling of plain concrete in tri-axial compression.
This model was based on the Menetrey and William yield criterion and a

non-associated flow rule. A novel hardening law with the volumetric plastic
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strain, €b , employed as the hardening/softening parameter was employed.

The novel hardening/softening rule is different from the classical strain
hardening rule in which the length of the plastic strain (i.e. the equivalent
plastic strain) is used as the hardening/softening parameter (e.g. the CDPM

model provided in ABAQUS).

As explained in the reviews of other models above, the classical
elasto-plasticity theory uses the length of the plastic strain as the
hardening/softening parameter but this approach fails to describe the
increase of plastic deformation in the tri-axial compression stress state.
Therefore, the scaling technique is required in such models to achieve a
close representation of the deformation behaviour of confined concrete,

which leads to undesirable complexity and empiricism (e.g. Barros 2001).

In Grassl et al.’s (2002) model, the effect of confinement on deformation
behaviour is depicted using a modified strain-hardening/softening parameter,
the volumetric plastic strain €5. In combination with a flow rule in which a
non-linear plastic potential is employed, the deformation capacity of
concrete under tri-axial compression can be properly predicted with a

simple hardening/softening rule.

Three hypotheses were adopted in formulating this model to simplify the
procedure of parameter calibration. The first hypothesis is that the peak
stress in uni-axial compression, f¢,, is reached when the volumetric strain,

€y, 1s equal to zero. The second hypothesis is that the volumetric plastic
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strain €} at peak stress in a uni-axial stress state and that in a equal tri-axial

stress state are identical, which means that €, at peak stresses in equal
tri-axial stresses is also always 0. The third hypothesis is that the inclination
of the total plastic strain is identical to the gradient of the plastic potential
within the same state of loading. These hypotheses have been used in

subsequent studies on this type of constitutive models.

The three-parameter yield surface proposed by Menetrey and William (1995)

is used in this model. It can be expressed in the Haigh-Westergaard space as
2
F=(VI5p) +an(om[2r(8,e) + 3] — an(as() (293

where m is defined as

fl2+f2 e
—f::oft 1 (2.94)
and r is defined as
—pa2 2 —_1)2
r(0,e) = 4(1-e?)cos?0+(2e—1) (2.95)

2(1—e?)cosB+(2e—1)[4(1—e2)cos20+5e2—4e]1/2
Here, r controls the out-of-roundness of the deviatoric section and is

determined by the eccentricity parameter e.

In addition, & p,0 are three components of the Haigh-Westergaard

coordinates; they are defined as

|
&= Z (2.96)
p= fz(’f (2.97)
3v3 1/3]
cos30 =22 02/)3/32 (2.98)

where [; is the first stress invariant, while ], and J; are the second and
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third stress invariants of deviatoric stresses.
Equations for qy (k) and q¢(x) were not directly proposed by Grassl et al.
(2002). They are the ascending and the descending parts of the parameter
q(x), respectively. That is

q(1) = qn()qs() =(o/fé0)? (2.99)
A non-associated flow rule is employed in this model, which means that the
form of the plastic potential differs from the form of the yield surface. The
plastic potential G in this model is defined in the Haigh-Westergaard space

as

2
3
G=-A (L) _B. P _
Gr\JaGo 6r Jaco T 700

(2.100)

Here, Ag, and Bg, are parameters determined from the axial strain stated

in uni-axial and equal tri-axial compression.

Numerical results obtained using this constitutive model were shown to
compare well with experimental results for concrete under uni-axial and
equal tri-axial compression (Grassl et al. 2002). In a subsequent paper
(Grassl 2004), this constitutive model was employed to model the dilation
characteristics of concrete in compression. The influence of the dilation
characteristics of concrete on the behaviour of steel-confined and
FRP-confined circular concrete cylinders was studied. The numerical results
indicated that the constitutive model can generally capture the trend of both
steel-confined concrete and CFRP-confined concrete. The limitation of the
numerical results is that, for FRP-confined concrete cylinders, only results
for one selected value of confinement stiffness was compared. Therefore, it

is unsure whether this constitutive model can describe the true dilation
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characteristics of FRP-confined concrete at different levels of confinement

stiffness.

2.4.5Mirmiran et al.”s (2000) M odel

Mirmiran et al. (2000) utilized an elasto-plastic D-P type model in the
nonlinear finite element modelling of FRP-confined concrete. The
numerical results were compared with experimental results for circular and
square specimens wrapped with 6, 10, and 12 plies of E-glass fibers. The
predicted stress-strain curves compared favorably with the test results

although the dilation of FRP-confined columns was not captured well.

In this D-P type formulation, an equivalent stress o, is defined as
1/2
Oe = 3ByiOm + |5STMS| 2.101)
where o, is the hydrostatic stress, S is the deviatoric stress vector and M

is a 3 X 3 matrix, By; 1S a material constant and it can be related to the

internal angle of friction @y;. That is

B L 2sin@ym
Mi ™ 3(3=sindy)

(2.102)
Based on the definition of the equivalent stress, the yield function F can be
expressed as:

F=o0,-0y (2.103)

where the yield parameter oy, is given by

__ 6cysindy
Oy = Horsmos (2.104)

In this study, a non-associated flow rule was employed and a zero dilation
angle was suggested by the authors based on numerical results obtained

from their sensitivity analysis.
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The two remaining parameters, @y and cy, for the constitutive model
were determined as functions of the unconfined concrete strength f/, and
the confinement effectiveness factor kp, respectively. The value of kiy
can be calculated from the formulae proposed by one of the following
models: Richart et al. (1928), Mander et al. (1988), Samaan et al. (1998), or

Rochette and Labossiere (2000).

From the numerical results (Mirmiran et al. 2000), this D-P type model was
found to predict linearly increasing volumetric compaction, which does not
reflect the true volumetric behaviour of FRP-confined concrete. Moreover,
the dilation ratio predicted by the computational model remained at a
constant value close to 0.5 which is the incompressibility limit. This value
also differs from the corresponding value obtained from experimental
results. Generally speaking, the finite element computational model
succeeded in predicting the overall axial stress-strain curve of FRP-confined
concrete but failed to predict the experimental dilation characteristics. This
contradiction has been discussed in detail by Yu et al.(2010a). Yu et al.
(2010a) showed that in Mirmiran et al.’s (2000) finite element analysis, the
lateral dilation of concrete at the beginning of the loading process was
underestimated but the stress of confined concrete was overestimated due to
the perfect elastio-plasticity assumption adopted in the constitutive model.
These two factors counteract each other. Another point worth noting is that
the post-peak region and the ultimate axial strain of FRP-confined square

columns were significantly overestimated by the finite element model. This
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overestimation further indicates that a simple D-P type plasticity model

cannot provide accurate predictions for FRP-confined concrete.

2.4.6 Liu and Foster’s (2000) M odel

A three-dimensional finite element computational model was presented by
Liu and Foster (2000) for the analysis of concrete under uni-axial as well as
tri-axial compression. An explicit microplane model proposed by Carol et al.
(1992) was employed in the study. The parameter values of this constitutive
model were obtained from a back analysis of circular concrete cylinders

under various confining pressures.

The concept of the microplane model was first put forward by Bazant
(1983). Since its first appearance, the microplane approach has become
progressively more popular for the description of the constitutive behaviour
of concrete. The main idea behind the microplane model is relatively simple:
it predicts the constitutive behaviour for a two- or three-dimensional
continuum by relying on modelling the behaviour of a plane of generic
orientation, which is then integrated over all possible directions in space.
Based on this microplane concept, the constitutive model is formulated
through the following three steps. First, the micro-level strains can be
obtained from the macro-level strain tensor &; using the assumption of
kinematic constraints. Second, the volumetric, deviatoric and tangential
micro-level stresses can be calculated from the corresponding micro-level
strains by applying the constitutive equations defined at the micro-level.
Third, the macro-level stress tensor can be calculated from micro-level

stresses by applying the principal of virtual work. A more detailed
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description of this type of model is given in Chapter 7.

In the second step, it is assumed that the direction of a micro-level stress is
the same as that of the corresponding micro-level strain. The corresponding
micro-level material law used in Carol et al. (1992) is as follows:

For the volumetric stress oy,

_ (Evel[(1 + |eyl/2)7P + (|&y]/b)1], in compression 5105
Ov = E%¢, e~ (&vI/DP1 " in tension (2.105)
For the deviatoric stress op,
o = {EBEDe—(Isnl/az)pz, in compression (2.106)
P 7 |Egepe~(enl/av®t iy tension .
For the shear stress o,
or = ter/yY (2.107)
T = EQye~(¥/as)P (2.108)

Here, EJ is the initial modulus of elasticity; €,, €p and ep refer to the
volumetric, deviatoric, and tangential micro-level strains, respectively; and

y is the length of the tangential strain vector erg.

Following the three steps as mentioned above, the formulation of the

incremental stress tensor doj; is given by
doy = Ejildey (2.109)
tan

where Ejq is the tangential stiffness tensor and dgy is the incremental

strain tensor.

To calibrate these 10 empirical parameters [shown in Egs. (2.105)-(2.108)],

57



five of them were fixed for all concrete strengths, while the other five
parameters were calibrated for different concrete strengths and different
values of the 05/0; ratio. Here, o3 is the maximum principal stress while
0, 1s the minimum principal stress; they correspond to the confinement
pressure and the stress in the compressive loading direction for concrete

under uniform confinement.

Two square columns tested by Razvi and Saatcioglu (1996) were analyzed
under axial compression. The columns were modeled using brick elements
for the concrete and truss elements for the steel. The material model for
concrete was the microplane model and that for steel was the
elastic-perfectly plastic model. The effect of cover spalling was also taken
into account. The numerical model considering the effect of cover spalling
was found to be capable of reproducing the experimental results.
Experimental results from a column tested by Sheikh and Uzumeri (1980)
were also used for comparison with the numerical results. The analysis also
simulated the phenomenon of cover spalling and steel yielding. The
numerical results showed adequate agreement with the experimental results
for the overall stress-strain behaviour, with only the initial stiffness of the

column being slightly overestimated.

As the predictions of the computational model were only compared with
experimental results for steel-confined concrete columns and
actively-confined concrete columns, the capability of the model in

providing accurate predictions for concrete under other types of
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confinement is still uncertain. Another drawback of the constitutive model
(microplane model M2) is the spurious volumetric strain when dealing with

elements under tensile loading, which was first noted by Jirasek (1993).

2.4.7 Ghazi et al.’s (2002) M od€l
In a study by Ghazi et al. (2002), the microplane model M4 (or referred to

as M4 model) proposed by Bazant et al. (2000) was applied in modelling
the behaviour of concrete under uni-axial and tri-axial compression. In this
model, the finite-strain microplane model M4 was adopted in a total
Lagrangian finite element formulation. Compared to the microplane model
M2 used in Liu and Foster (2000), the spurious volumetric strain under
tensile loading is generally eliminated in the M4 model. The M4 model was
adjusted in this study for the particular case of concrete columns under low
confinement. This modification focused on aspects of the post-peak regime

and the increase of the peak stress of confined concrete.

As discussed in Section 2.4.6, the microplane model relates the micro-level
strains and stresses to the macro-level strain and stress tensors. Constitutive
equations defined at the micro-level are used to calculate micro—level
stresses from the corresponding micro-level strains. The macro-level stress
tensor is then calculated by integrating the micro-level stresses over a unit
semi-sphere. The formulation of the M4 model, and the corresponding
formulation to calculate the stress tensor, will be discussed in detail in

Chapter 7.

The M4 model has a total of 21 parameters. Among them, c; to c;; are
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fixed parameters whose values can remain unchanged for different concrete
mixes. The other four parameters, K; to K,, are adjustable parameters
whose values should vary with the concrete mix. These four parameters
control the values for the uni-axial concrete strength and the strain at peak
stress etc. In other words, the concrete strength in M4 model is not an input

parameter but an output result.

To investigate the uni-axial compressive behaviour of concrete, the M4
model was used by Ghazi et al. (2002) for the analysis of a circular concrete
cylinder with a diameter of 100 mm and a height of 200 mm. The numerical
results were compared with the empirical stress-strain curves obtained from
the formulae of Attard and Setunge (1996). It was found that the results of
the computational model differed significantly from those of the empirical

model in the post-peak regime.

For confined concrete, the results of M4 model were also compared with
those of the empirical model by Attard and Setunge (1996). The peak stress
obtained from M4 model was found to be smaller than that obtained from
the empirical model. In addition, the post-peak response predicted by the
computational model decays faster than the empirical curve obtained from

the model of Attard and Setunge (1996).

To address the discrepancies mentioned above, the following modifications
were implemented into the M4 model. Parameter c;, was modified to be a

function of the volumetric strain and the confinement ratio; whereas
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parameters c; and K; were made a function of the concrete strength. The
computational model based on the modified constitutive model showed
adequate agreement with the empirical model for actively-confined concrete.
The modified model was also employed in the analysis of steel-confined

concrete and provided accurate predictions.

Similar to the model adopted in Liu and Foster (2000), the modified
constitutive model proposed by Ghazi et al. (2002) was only compared with
test data for steel-confined concrete and actively-confined concrete.
Therefore, the capability of the model in providing accurate predictions for
concrete under other types of confinement is uncertain. Moreover, other
researchers (e.g. Tue et al. 2008) had found that the original M4 model has
some drawbacks in terms of numerical computation. Therefore, it is
necessary to eliminate these drawbacks before the M4 model can be further

modified to provide accurate predictions for confined concrete.

2.4.8 Montoya et al.’s (2006) M odel

Montoya et al. (2006) presented a constitutive model based on the Modified
Compression Field Theory (MCFT) for modelling the behaviour of plain
concrete in multi-axial compression. The MCFT was initially developed to
analyze the behaviour of concrete under two-dimensional loading (Vecchio
and Collins 1986). Later, this approach was extended to address
three-dimensional problems (Selby and Vecchio 1993). This model can
consider the effect of tensile stress, strength increment due to confinement,

and a varying Poisson’s ratio.
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The MCFT uses a special nonlinear elasticity methodology. Orthotropic
elasticity is defined on the basis of the secant modulus. The concept of
pre-strains is introduced to account for non-stress related strains. This
concept is also used in calculating the dilation strain €., in the following

form:
. f.; f
1 — <) ck
€0 — _Vij - - Vik T — (2110)
EC] Eck
where 1, j, and k are the principal directions, vj; is the Poisson’s ratio in

direction i when subjected to a stress f;; in direction j, and Eg is the

secant modulus of concrete in direction j.

The varying Poisson’s ratio in this model is obtained from the

lateral-to-axial relationship which is given as follows:

ea = (1.9 +242:%) (:'—)2 @2.111)

feo
where €. is the current axial strain, €., is the axial strain at peak stress,
€q 1s the current lateral strain, and f.; is the current lateral pressure. Figs.
2.3 show that this equation significantly overestimates the lateral strain at a
given axial strain for both actively-confined and FRP-confined concrete.
What should also be noted is that in Figs. 2.3 the lateral strain is taken to be

positive.

The secant Poisson’s ratio v can be related to the initial Poisson’s ratio v,

through

v=(19+242:2) () +v, 2.112)

7
feo/ \&€cc

Eq. (2.112) is similar to Eq. (2.111). The lateral-to-axial relationships in
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these two equations are both related to the current confining pressure.

A four-parameter Ottosen-type failure criterion in the principal stress space
is employed for considering the strength enhancement of confined concrete.

The expression of this failure criterion is given by
aOlfrz +)\o\t{r_+b01fr -1=0 (2113)

Ao = kg1 + kg,c0s36 (2.114)
The parameters, agy, bgy, Ko1 and kg, need to be defined for the failure

criterion.

To consider the enhancement of strain at peak stress for confined concrete,

the following equation is employed:

Fee — 10+kccf, (2.115)

€co

where

ke = 24.4 — 0.116f,, (2.116)
Based on the peak stress and the axial strain at peak stress as defined above,
an active confinement model becomes available for the description of the
axial stress-strain relationship of concrete at a given lateral confining

pressure, fg.

A comparison of this model with an analysis-oriented stress-strain model
such as Teng et al.’s (2007) model indicates that these two models have
many things in common. Both of them employ an active-confinement base

model and an equation to describe the lateral-to-axial relationship.
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Therefore, the empirical model employed in the MCFT can also be used as
an analysis-oriented stress-strain model. For concrete under uniform
confinement, the MCFT can be seen as the numerical implementation of an
analysis-oriented stress-strain model within the framework of nonlinear
elasticity. The effect of non-uniform confinement on concrete can be
properly considered by implementing the MCFT in a finite element model.
The only limitation is that Eq. (2.112) needs to be used for the
determination of the value of Poisson ratio corresponding to the current
confining pressure, so the stress increment cannot be directly calculated
from the strain increment. As a result, this method is not very convenient for
implementation in a finite element model driven by strain or displacement
increments. Moreover, as this model overestimates the lateral strain of
FRP-confined concrete as Eq. (2.111) is regressed from a small database
(Montoya 2003), its capability in providing accurate predictions for

FRP-confined concrete is thus questionable.

2.49Yu et al.’s (2010b) M odel
In a recent study by Yu et al. (2010b), a modified plastic-damage model was

proposed to model the behaviour of FRP-confined concrete in compression.
The main characteristics of FRP-confined concrete are properly captured by
this model in which concrete responds as an elastic-plastic material
following a modified D-P type model. This constitutive model is defined
within the theoretical framework of the Concrete Damaged Plasticity Model
(CDPM) in the ABAQUS software. The modifications to the CDPM model
were realized through the SDFV option provided by ABAQUS. The

proposed modifications include three main aspects based on detailed
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observations of concrete behaviour in laboratory tests. First, the third
deviatoric stress invariant was included into the yield criterion as suggested
for the original CDPM model. Second, a confinement-dependent
hardening/softening rule was introduced to reflect the difference in
stress-strain behaviour between unconfined concrete and actively-confined
concrete. Third, a confinement-dependent non-associated flow rule was
employed to consider the dilation behaviour of confined concrete, especially
FRP-confined concrete. The analysis-oriented stress-strain model proposed
by Teng et al. (2007) was employed to generate input data for the
confinement-dependent hardening/softening rule and the
confinement-stiffness-dependent flow rule. For uniform confinement, the
constitutive model in this study can be seen as the numerical
implementation of an analysis-oriented stress-strain model (Teng et al. 2007)

within the framework of plastic-damage theory.

The model proposed by Yu et al. (2010b) has been successfully
implemented only as a finite element slice model containing a single layer
of elements so that the axial non-uniformity in stress and strain was not
taken into account. In this thesis, the implementation of Yu et al.’s (2010b)
constitutive model in a three-dimensional computational model for
FRP-confined concrete columns will be presented. Moreover, as the
analysis-oriented stress-strain model itself was only verified for
FRP-confined normal strength concrete, its accuracy for FRP-confined high
strength concrete is uncertain. More details of Yu et al.’s (2012b) model can

be found in Chapters 8 and 9.
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2.5 CONCLUSIONS

Many notable experimental and analytical studies on confined concrete have
been reviewed in this chapter. This review indicates that the confinement
mechanism of concrete columns under compressive loading has been under
investigation for near a century; a large amount of experimental work has
contributed to the current understanding of the behaviour of confined
concrete and led to a large experimental database. It is now universally
accepted that confinement of concrete in compression leads to significant

increases in both strength and ductility.

Using FRP composites to provide lateral confinement to concrete columns
is a comparatively new technique. The behaviour of FRP-confined concrete
is different from that of steel-confined concrete due to the following reasons.
Steel has a yield plateau which is reached significantly before the failure
point of concrete is attained. The steel provides a constant lateral pressure
independent of the additional deformation of the concrete once it has
yielded. By contrast, FRP is a linear elastic material. Therefore, it provides a
monotonically increasing lateral pressure as the compressive load on the
concrete increases until the FRP jacket ruptures. At high axial compressive
strains, the axial stress-strain curve of steel-confined concrete exhibits a
descending branch while the stress of FRP-confined concrete always
increases with strain until rupture of the FRP jacket occurs, provided the

stiftness of the FRP jacket is above a threshold value.

A large number of attempts have been made to predict the behaviour of
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actively-confined concrete, steel-confined concrete, and FRP-confined
concrete. Extensive empirical models have been proposed to represent the
experimental results. These empirical models were developed for
actively-confined concrete and steel-confined model (e.g. Ahmad and Shah
1982; Attard and Setunge 1996; Candappa et al. 2001; Mander et al. 1988)
in the earlier stage. Empirical models developed for steel-confined concrete
are also applicable to actively-confined concrete as they show similar

performance after the yielding of steel.

It is now well established that empirical models developed for
steel-confined concrete cannot accurately predict the behaviour of
FRP-confined concrete. As a result, many empirical models have recently
been proposed specifically for FRP-confined concrete in circular columns
where the FRP confinement is uniform (e.g. Lam and Teng 2002; Lam and
Teng 2003a; Lam and Teng 2003b; Youssef et al. 2007). The majority of
these empirical models have been developed by the curve-fitting of
experimental results of FRP-confined concrete for design use (i.e.
design-oriented stress-strain models); these models are in closed-form
expressions. In contrast, a smaller number of empirical models have
adopted a more complex incremental form to explicitly account for
interactions between the confining material and the confined concrete core;
these models are referred to as analysis-oriented stress-strain models (Cui
and Sheikh 2010; Jiang and Teng 2007; Teng et al. 2007). Analysis-oriented
stress-strain models are more versatile and powerful as they are applicable

to concrete confined by different materials (e.g. steel and FRP) and to both
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active confinement and passive confinement.

In FRP-confined square, rectangular or other non-circular RC columns, the
concrete around the perimeter is non-uniformly confined by the FRP jacket.
That is, the degree of confinement of the concrete varies over the section,
and the axial stress also varies over the section. This non-uniform
confinement condition leads to a much more complicated problem than that
of uniform FRP confinement. As a result, an analysis-oriented stress-strain
model with explicit consideration of the jacket-concrete core interaction
becomes much less desirable as both the axial stress and the confining
pressure need to be empirically treated in an average sense. Therefore, there
has been little effort so far on the development of analysis-oriented
stress-strain models for FRP-confined concrete in non-circular sections.
Instead, existing work on the stress-strain behaviour of FRP-confined
concrete in rectangular (including square) columns has been focused on the
development of empirical design-oriented stress-strain models (e.g. Lam
and Teng 2003b; Youssef et al. 2007). These models have been extended
from stress-strain models for FRP-confined concrete in circular columns.
Such extensions involve modifications of the original ultimate condition
equations to account for the effect of non-uniform confinement. The revised
ultimate condition equations are generally formulated using the concepts of
effective-confinement area and equivalent circular section. These concepts
transform a rectangular section into an equivalent circular section explicitly
(e.g. Lam and Teng 2003b) or implicitly (e.g. Youssef et al. 2007). With the

modified ultimate condition equations, the stress-strain equations for
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FRP-confined concrete in circular columns can be applied to predict the

stress-strain behaviour of FRP-confined concrete in rectangular columns.

The concepts of effective-confinement area and equivalent circular section,
however, have a fundamental drawback that they cannot describe the
stress/strain distribution within a rectangular section. Stress-strain models
for FRP-confined concrete in rectangular columns are thus purely empirical
models; that is, they are not based on a rigorous understanding of the
confinement mechanism in a rectangular section. Instead, they have been
based on empirical parameters to estimate the confinement effect and to
provide a good fit to the available test data. Due to these reasons, the
accuracy of a particular empirical stress-strain model based on one set of

test data in predicting another set of test data can be highly uncertain.

The finite element method has the potential in providing accurate
predictions for non-uniformly confined concrete such as concrete in
rectangular columns. In particular, finite element modelling offers a
powerful tool to study the confinement mechanism of concrete under
non-uniform confinement. The pre-requisite for an accurate finite element
model for confined concrete columns is the availability of an accurate
constitutive model for confined concrete. A number of constitutive models
for confined concrete have been developed over the past three decades. The
theory of plasticity has been used as the basis for most of these models.
Other theories that have been explored include the MCFT and the

microplane theory. For actively-confined concrete and steel-confined
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concrete, several existing constitutive models (e.g. Ghazi et al. 2002; Grassl
et al. 2002; Johansson and Akesson 2002; Liu and Foster 2000; Barros 2001)
can already provide predictions of experimental results with acceptable
accuracy. However, the accuracy of these models in predicting the
stress-strain behaviour of FRP-confined concrete is still uncertain. The
research work presented in Chapters 4 to 6 was thus conducted to address

this issue.

The constitutive models proposed by Montoya et al. (2006) and Yu et al.
(2010b) can capture the major characteristic of the stress-strain behaviour of
FRP-confined circular concrete columns. Both of these two models have
their roots in their corresponding analysis-oriented stress-strain models,
although the accuracy of the former model for FRP-confined circular
concrete columns is still questionable. Another limitation of Montoya et
al.’s (2006) constitutive model is that this model is not a true material
constitutive model because its numerical implementation in a finite element
model requires some modifications also at the element level. Yu et al.’s
(2010b) model does not suffer from this limitation, but its numerical
implementation has not considered the non-uniformity of confinement
perpendicular to the slice plane. Moreover, their base analysis-oriented
stress-strain model (i.e. Teng et al. 2007) has not been verified for
FRP-confined high strength concrete, so its accuracy for FRP-confined
high-strength concrete is uncertain. An experimental study on FRP-confined
high strength concrete was conducted and is presented in Chapter 3 to

address this particular issue. Furthermore, for FRP-confined rectangular
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columns, the reliability of both models is still uncertain; the finite element
modelling of FRP-confined concrete in non-circular columns is the main
issue examined in Chapter 8 using finite element slice models. Finally, the
effect of non-uniformity of confinement perpendicular to the slice plane is

investigated in Chapter 9.
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(a) Strength scaling; (b) hardening parameter scaling; (c) resulting scaling

[after Johansson and Akesson (2002)]

Figure 2.2 Illustration of the scaling technique
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CHAPTER 3
BEHAVIOUR AND MODELLING OF CONFINED
HIGH STRENGTH CONCRETE

3.1 INTRODUCTION

From the literature review presented in Chapter 2, it is clear that although
test results of FRP-confined normal strength concrete (NSC) can now be
closely predicted by some of the existing empirical stress-strain models (e.g.
Jiang and Teng 2007; Teng et al. 2007), much less is known about the
behaviour of high strength concrete (HSC) confined with an FRP jacket due
to the limited existing research (Berthet et al. 2005; Mandal et al. 2005;
Almusallam 2006; Li 2006). Therefore, further work on FRP-confined HSC
is needed. In particular, Yu et al.’s (2010) constitutive model for confined
concrete relies on an accurate analysis-oriented stress-strain model as its
input. The applicability of this constitutive model to HSC requires the

development of an accurate analysis-oriented stress-strain model for HSC.

HSC has found increasingly wide applications in structural engineering
especially where reductions in structural self-weight and/or size are
important (Holland 2005). The definition of HSC has evolved with time but
in many recent studies (e.g. Attard and Setunge 1996; Wee et al. 1996;
Candappa et al. 2001;), HSC has been defined as concrete with a cylinder
compressive strength exceeding 50 MPa. This is also the definition adopted
in the present chapter. It is widely accepted that HSC structural members

generally behave differently from those of NSC (e.g. more brittle failure
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processes), so direct application of theoretical models developed for NSC to
HSC may lead to unsafe designs (Attard and Setunge 1996; Wee et al.

1996).

HSC can be further divided into two types according to whether mineral
admixtures are used. Incorporating mineral admixtures is a widely accepted
practice in making HSC and affects significantly its behaviour (Lam et al.
1998). The most commonly used mineral admixture is silica fume. Setunge
et al. (1993) found from tri-axial tests that silica fume had a significant
effect on the behaviour of confined HSC. To address this difference,
separate models are needed for these two types of confined HSC. For HSC
with silica fume, the effect of this additional mineral admixture on
confinement effectiveness is still difficult to quantify due to the limited and
controversial nature of the existing test results (Xie et al. 1995; Attard and
Setunge 1996; Ansari and Li 1998). This chapter is therefore primarily
concerned with the behaviour and modelling of confined HSC without silica
fume although the effect of silica fume is noted where appropriate.
Hereafter in this chapter, “HSC” refers only to HSC without silica fume
unless otherwise specified. The behaviour of HSC confined with a constant
external pressure (active confinement) is first examined, followed by a
study of the behaviour of HSC confined with FRP; the former is expected to

serve as a basis for understanding and modelling the latter.
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3.2 ACTIVELY-CONFINED HSC

3.2.1 General

Many experimental studies have been conducted on actively-confined HSC
(Xie et al. 1995; Attard and Setunge 1996; Imram and Pantazopoulou 1996;
Ansari and Li 1998; Candappa et al. 2001; Tan and Sun 2004; Lu and Hsu
20006). Xie et al. (1995), Attard and Setunge (1996), Ansari and Li (1998)
and Lu and Hsu (2006) have also proposed models specifically for
actively-confined HSC (referred to as “active-confinement models for HSC”
hereafter). Each of these models was, however, based on the originators’
own test data, so their wide applicability is uncertain. In addition, most of
these models do not differentiate between HSC with and without silica fume.
In this section, an accurate active-confinement model for HSC is presented
on the basis of a large test database of actively-confined HSC assembled in

the present study.

The present database for actively-confined HSC contains all the test data
from existing studies that meet the following criteria: (1) the concrete had
an unconfined (cylinder compressive) strength higher than 50 MPa and did
not include silica fume; (2) the concrete cylinder specimens had not been
submerged in water to achieve a saturated condition prior to testing.
Saturated specimens have been excluded as they are known to show
obviously inferior performance (Imram and Pantazopoulou 1996) and are
not commonly found in practice. The database includes the results of 51
actively-confined concrete cylinder specimens from Attard and Setunge

(1996), Imram and Pantazopoulou (1996), Candappa et al. (2001), and Tan
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and Sun (2004), Lu and Hsu (2006). The unconfined concrete strength of
the database ranges from 51.8 to 126 MPa, while the confinement ratio,
which is defined as the ratio of the confining pressure to the unconfined
concrete strength, ranges from 0.01 to 0.84. Further details of the database
are given in Table 3.1. It should be noted that the test data of Tan and Sun
(2004) were also used by Jiang and Teng (2007) as the unconfined concrete
strength is very close to the lower bound of the strength range of HSC
defined herein.

It is well known that the performance of an active-confinement model
depends on its accuracy in predicting: (a) the peak axial stress; (b) the axial
strain at peak stress; and (c) the axial stress-strain equation. These three key
components are examined in the following sub-sections based on the test

database presented in Table 3.1.

3.2.2 Peak Axial Stress

The peak axial stress on the axial stress—strain curve of actively-confined
concrete is the compressive strength of such concrete and the peak axial
stress equation defines the failure surface of such concrete. The following

simple equation was found from a regression analysis of the test results in

Table 3.1 to provide accurate predictions for the peak axial stress £, :

foe _ 14334 (1)0'79 (3.1)

feo fo
As mentioned earlier, f;, is the unconfined concrete strength, and f; is the
constant active confining pressure. In addition, the ratio between the latter

and the former is referred to as the confinement ratio.

To identify any differences between HSC and NSC, the test data of
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actively-confined NSC collected by Jiang and Teng (2007) are compared
with the predictions of Eq. (3.1) in Figure 3.1a. It is interesting to find that
Eq. (3.1) also provides accurate predictions for NSC. Through a regression
analysis of all the test results shown in Figure 3.1a, the following unified

equation accurate for both NSC and HSC was obtained:

E3
fCC

!
fCO

=1+3.24 (i)o'8 (3.2)

féo
It is obvious from Figure 3.1a that Eqs. (3.1)-(3.2) provide very similar
predictions, indicating that any difference between NSC and HSC in the

peak axial stress is closely represented by Eq. (3.2).

The accuracy of Egs. (3.1)-(3.2) is compared with that of corresponding
equations of existing models (i.e. Attard and Setunge 1996; Candappa et al.
2001; Lu and Hsu 2006; Jiang and Teng 2007) in Table 3.2, using the
present test database for HSC and that of Jiang and Teng (2007) for NSC.
The root mean square deviation (RMSD) is used to evaluate the

performance of each equation. The RMSD is defined by:

(3.3)

where E, isthe experimental value of f”/f/ , P is the predicted value

1

of 7/ f! ,and n is the number of data points. A smaller RMSD implies a

more accurate equation. It is evident from Table 3.2 that Egs. (3.1-3.2) are

both superior to corresponding equations in existing models, including the
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one used in Jiang and Teng’s (2007) model (i.e. f;f =1+43.5

co co

). Figure

3.1a shows that although the peak axial stress equation in Jiang and Teng’s
(2007) model is generally accurate for NSC and was also previously
calibrated with test data of FRP-confined NSC by Teng et al. (2007), it does
slightly underestimate the test results of actively confined HSC, especially

when the confinement ratio is relatively small.

Test results of HSC with silica fume (Xie et al. 1995; Attard and Setunge
1996; Ansari and Li 1998; Tan and Sun 2004) are compared with Eq. (3.2)
in Figure 3.1b. It should be noted that Attard and Setunge (1996) and Tan
and Sun (2004) tested both HSC with and HSC without silica fume and only
the results of HSC with silica fume are shown in Figure 3.1b; those of HSC
without silica fume are summarized in Table 3.1 and shown in Figure 3.1a.
Figure 3.1b demonstrates that these test results are scattered significantly
more widely around the curve defined by Eq. (3.2): the results of Ansari and
Li (1998) fall considerably below the curve while almost all the results of
Xie et al. (1995), Attard and Setunge (1996) and Tan and Sun (2004) lie
above the curve. This larger scatter of the limited existing test results has
also been noted by Ansari and Li (1998), but the reasons have not been
properly explored. It is thus premature to draw any firm conclusions on the
behaviour of confined HSC with silica fume before further research is

conducted.

3.2.3 Axial Strain at Peak Axial Stress

A similar regression analysis of the test results of actively-confined HSC led
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to the following simple equation for the axial strain at peak axial stress:

e = 14188 (i)l'1 (3.4)

£co feo
As mentioned earlier, €;. is the axial strain at peak axial stress of concrete
under a specific constant confining pressure, and €., is the axial strain at
peak axial stress of unconfined concrete. The above equation also predicts
closely the test data of actively-confined NSC collected by Jiang and Teng
(2007) (Figure 3.2a). A regression analysis of the test data of both confined
HSC (Table 3.2) and confined NSC (Jiang and Teng 2007) led to the

following unified equation for the axial strain at peak axial stress:

fe —1+17.4 (i)l'o6 (3.5)

7
€co feo

As expected, Egs. (3.4-3.5) lead to very similar predictions (Figure 3.2a).

Their performance, assessed using the RMSD of & /¢, is shown to be

co

considerably better than that of corresponding equations in existing models

(see Table 3.2) including the one used in Jiang and Teng’s (2007) model (i.e.

*

fa _y417 .S(fo)l'2 ). Nevertheless, the scatter in the test data of axial strains
£

co

at peak stress is significantly larger than that of peak axial stresses.

Test results of HSC with silica fume (Xie et al. 1995; Attard and Setunge
1996; Ansari and Li 1998; Tan and Sun 2004) are compared with Eq. (3.5)
in Figure 3.2b. It is obvious that a considerable scatter of the test results
exists and most of the test results fall below the curve defined by Eq. (3.5).
This observation suggests that with the presence of silica fume, the effect of

confinement on the axial strain at peak axial stress is reduced; this
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observation confirms the importance of differentiating HSC with silica fume

from HSC without silica fume.

3.2.4 Axial Stress-Strain Equation

Most existing analysis-oriented stress-strain models employ the following
axial stress-strain equation originally proposed by Popovics (1973) to

describe the relationship between axial stress f. and axial straine, of

confined concrete:

for=te(e/el)
where the constant 7 is defined by
E

r: C* *
EC _f;‘,C /€CC
with E, being the elastic modulus of concrete. The value of E_ can be

L) o

(3.7)

found from E =4730,/f (in MPa) following ACI 318-95 (1999). This

formula was used in making all predictions in the present study and was

found to be accurate in most cases.

Eq. (3.6) was originally proposed for NSC and some existing studies (e.g.
Wee et al. 1996) have indicated that this equation may overestimate the
post-peak stress-strain behaviour of HSC which appears to feature a steeper
descending branch. By contrast, other researchers (e.g. Attard and Setunge
1996) believed that this difference between NSC and HSC is insignificant
especially when they are both subjected to confinement. The latter argument
appears to be reasonable, so Eq. (3.6) is adopted for both NSC and HSC in
the present study. The appropriateness of this approach is demonstrated in

the comparisons shown in Figure 3.3.
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3.2.5 Accuracy of the New Active-Confinement Model

Eq. (3.6), together with Egs. (3.2) & (3.5), forms a new active-confinement
model applicable to both NSC and HSC. Figure 3.3 shows comparisons of
the predictions of this model (identified as “Proposed Model”) and three
series of axial stress-strain curves from the tests conducted by Candappa et
al. (2001) on actively-confined concrete of three different unconfined
strengths (ranging from 41.9 MPa to 103.3 MPa). The predictions of the
active-confinement model used by Jiang and Teng (2007) are also shown in
Figure 3.3 for comparison. It is clear that the curves predicted by the
proposed model are in close agreement with the experimental curves. By
contrast, Jiang and Teng’s (2007) model generally underestimates the
experimental curves mainly because of its underestimation of the peak axial
stress. The overall good performance of the new active-confinement model
also supports the use of Eq. (3.6) as the axial stress-strain equation for HSC.
The proposed model is thus a unified active-confinement model for both

NSC and HSC.

3.3 BEHAVIOUR OF FRP-CONFINED HSC

3.3.1 General
Existing research (Berthet ef al. 2005; Mandal ef al. 2005; Almusallam 2006;

Li 2006) on the behaviour of FRP-confined HSC is limited. Of these
existing studies, Berthet et al. (2005) and Mandal et al. (2005) tested only
HSC with silica fume and showed that HSC with silica fume did not benefit
significantly from FRP confinement. Almusallam (2006) and Li (2006)

tested a few specimens of FRP-confined HSC without silica fume, but
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unfortunately they did not report the experimental lateral-to-axial strain
curves. In addition, in Li’s (2006) study, FRP tubes with a significant axial
stiffness were employed, so the behaviour was complicated by the axial
resistance and the biaxial stress state of the FRP tube. Existing test results
are thus inadequate for understanding the behaviour of and the development
of a stress-strain model for FRP-confined HSC. A new series of tests with
appropriately detailed measurements were thus conducted as part of the

present study. Details of these tests are described below.

3.3.2 New Tests

3.3.2.1 Specimens and instrumentation

A total of twelve CFRP-confined circular concrete cylinders (without any
mineral admixture) with a diameter of 152 mm and a height of 305 mm
were prepared and tested. These cylinders were cast in two batches (batches
1 and 2) with two different concrete mix ratios to produce two different
concrete grades. Each batch included six specimens divided into three pairs
which were confined with CFRP jackets (with hoop fibers only) of three
different thicknesses (i.e. two identical specimens forming a pair were
prepared for each CFRP jacket thickness). Details of all the specimens are
summarized in Table 3.3. For each batch, three (for batch 1) or four (for
batch 2) plain concrete cylinders were tested as control specimens to
determine the average properties of the concrete. Both ends of the cylinders
were capped with high-strength sulfur to ensure uniform loading. The CFRP
jackets were formed via the wet lay-up process, with an overlapping zone

spanning a circumferential distance of 150 mm. A 25 mm wide CFRP strip
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was provided near each end of a CFRP-jacketed cylinder specimen to avoid

unexpected failure there.

For each control specimen, two axial strain gauges with a gauge length of
120 mm and two hoop strain gauges with a gauge length of 60 mm were
placed at 180° apart at the mid-height of the specimen to measure the strains
in both directions. For each FRP-confined specimen, six hoop strain gauges
and two axial strain gauges, both with a gauge length of 20 mm, were
installed at the mid-height of the specimen. Of the six hoop strain gauges,
one was placed within the overlapping zone and the other 5 strain gauges
were distributed evenly outside the overlapping zone. In addition, axial
strains were also measured using two linear variable displacement
transducers (LVDTs) at 180° apart that covered the mid-height region of 120
mm for both unconfined and confined specimens. All compression tests
were carried out using an MTS machine with displacement control at a rate
of 0.2mm/min. All test data, including the strains, loads, and displacements

were recorded simultaneously by a data logger.

3.3.2.2 Material properties

Tensile tests of five FRP coupons were conducted following the ASTM
standard (ASTM D3039 2000). The test results showed that the CFRP used
in the study had an average tensile strength of 2737.7 MPa and an average
elastic modulus £, of 237.8 GPa, based on a nominal thickness of 0.34 mm
per ply. The elastic modulus, compressive strength and compressive strain at

peak axial stress of the concrete in batch 1, averaged from the four plain
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concrete cylinder tests, were 39.9 GPa (ranging from 38.7 GPa to 41.4 GPa),
70.8 MPa (ranging from 69.7 MPa to 71.4 MPa) and 0.0032 (ranging from
0.0030 to 0.0033) respectively. The corresponding values in batch 2,
averaged from the three plain concrete cylinder tests, were 46.4 GPa
(ranging from 45.9 GPa to 47.1 GPa), 111.6 MPa (ranging from 110.9 MPa
to 112.7 MPa) and 0.0034 (ranging from 0.0034 to 0.0035). These average
values were used in making theoretical predictions for the tests reported

later in the chapter.

3.3.2.3 Test results

All the FRP-confined specimens failed by the hoop tensile rupture of the
FRP jacket with a sudden explosive noise, except one 5-ply specimen in
batch 1 and two 5-ply specimens in batch 2. The test of the 5-ply
specimen in batch 1 was terminated at a load of 3000 kN due to an
unexpected problem with the testing machine, while the tests of the two
5-ply specimens in batch 2 were terminated at a load of 4000 kN which is
close to the maximum capacity of the MTS machine. FRP rupture generally
occurred outside the overlapping zone accompanied by a limited amount of
delamination between the plies (Figure 3.4). The key test results, including

the hoop rupture strain of the FRP jacket ¢, , the ultimate axial straine,,

the axial stress at ultimate axial strain f, , are summarized in Table 3.3.

Figure 3.5 shows the normalized axial stress-strain curves and the
normalized axial stress-lateral strain curves for all twelve FRP-confined
specimens, where the lateral strain & is shown on the left and the axial

strain ¢, is shown on the right. The axial strain was found from the readings
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of the two LVDTs, and the lateral strain was averaged from the readings of
the five hoop strain gauges outside the overlapping region. In Figures
3.5-3.6, the axial stress is normalized by the unconfined concrete strength

/7 while the strains are normalized by the axial strain at peak axial stress

of unconfined concrete e, .

3.3.4 Stress Path Dependence

It is widely accepted that the behaviour of confined NSC basically complies
with the assumption of path independence, which assumes that the axial
stress and axial strain of concrete confined with FRP at a given lateral strain
are the same as those of the same concrete actively confined with a constant
confining pressure equal to that supplied by the FRP jacket. This assumption
has also been the basis of most analysis-oriented stress-strain models for
FRP-confined NSC (Teng and Lam 2004). To explore the validity of this
assumption for confined HSC, the axial stress-strain curves of FRP-confined
HSC obtained from the new tests are compared with a series of axial
stress-strain curves predicted based on this assumption by adopting the
procedure normally used in existing analysis-oriented models such as that of
Jiang and Teng (2007), except that the lateral-to-axial relationship used is
that from the corresponding test. For two nominally identical specimens,
only the results of one of them are shown in Figures 3.6 for better
differentiation between different curves. These predicted curves are denoted
by “new ultimate equations” to indicate that in making the predictions, Egs.
(3.2) & (3.5) were used. It is evident the stress-strain curves so predicted are
significantly higher than their experimental counterparts. As the new

active-confinement model (including the new ultimate equations) has been
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verified using a large test database of both NSC and HSC, this comparison
suggests that the assumption of path independence is incorrect for confined
HSC. Instead, confinement appears to be less effective for FRP-confined
(passively-confined) HSC than for actively-confined HSC. It may be noted
that path dependence has also been reported by some previous researchers
(e.g. Bazant and Tsubakl 1980). Bazant and Tsubakl (1980) pointed out
that the presence of a confining pressure in the early stage of axial loading
(e.g. in the case of actively-confined concrete) tends to prevent the growth
of micro-cracks. In FRP-confined concrete, the confining pressure becomes
significant only when the concrete approaches its unconfined strength, and
this different loading path may have a detrimental effect on concrete

behaviour.

It is also worth noting that although the behaviour of confined NSC
basically complies with the path independence assumption, slight deviations
from the assumption have been noted. For example, the active-confinement
model used in Jiang and Teng (2007) was calibrated with test data of
FRP-confined NSC. Indeed, Figure 3.1a shows that the strength equation for
actively-confined concrete adopted by Jiang and Teng (2007) slightly
underestimates the test results of actively-confined NSC, especially when
the confinement ratio is relatively small. Noting also the fact (see Figures
3.6) that the “new ultimate equations” curves in Figures 3.6 are closer to the
experimental curves for specimens with a thicker FRP jacket than for those
with a thinner FRP jacket, it may be concluded that the path independence

assumption deviates from the actual behaviour observed in the tests more
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significantly when the confining FRP jacket is softer and/or when the
unconfined concrete strength is higher. Therefore, for HSC, the effect of
path dependence is significant enough for it to be properly reflected in a

stress-strain model.

3.3.5Dilation Properties

Teng et al. (2007) found from the test data available to them that the
normalized lateral-to-axial strain relationship (i.e. the lateral strain equation)
of HSC can be considered to be similar to that of NSC. The lateral strain
equation proposed by them based mainly on test data of confined NSC was
also shown to provide reasonably accurate predictions of the test results of
actively-confined HSC presented in Candappa et al. (2001). This
relationship, defined below, was also adopted by Jiang and Teng (2007) after

a critical review of existing models:

q{—_«aj =& / (1 + sfcj = 0.85{{1 + 0.75[_—‘9'H .— exp{— 7[_—8'H} (3.8)
£, ) €&, S £, £,

In Figures 3.7 and 3.8, the predictions of Eq. (3.8) are shown against the
new test results of unconfined HSC and FRP-confined HSC respectively, to
identify any differences in dilation properties between NSC and HSC.
These comparisons show that while Eq. (3.8) provides close predictions for
unconfined HSC, it is much less accurate for FRP-confined HSC (Figure
3.8). The experimental curves are scattered quite widely around the
prediction of Eq. (3.8), so a relationship between the results and the concrete
strength cannot be identified. Indeed, the curves for a concrete compressive
strength of 111.6 MPa are closer to Eq. (3.8) than those for a concrete

compressive strength of 70.8 MPa although Eq. (3.8) was based mainly on
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NSC test data. Therefore, it is not unreasonable to attribute the large scatter
of test results to the inherent variability of concrete dilation properties, as
discussed in Teng et al. (2007); given this consideration, the applicability of

Eq. (3.8) to both NSC and HSC is confirmed.

3.4 MODELLING OF FRP-CONFIEND HSC

3.4.1 General

Existing models for FRP-confined concrete mainly fall into two categories
(Teng and Lam 2004; Jiang and Teng 2007): (1) design-oriented stress-strain
models and (2) analysis-oriented stress-strain models. The published
literature contains a small number of design-oriented stress-strain models
for FRP-confined HSC (Berthet et al. 2005; Almusallam 2006; Li 2006), but
each of these models was based on the limited test data available to its
originator(s) and their wide applicability is uncertain. The development of a
more reliable design-oriented stress-strain model calls for a much larger
amount of data obtained from either numerous experiments and/or an
accurate analysis-oriented model (e.g. Teng et al. 2009). Analysis-oriented
stress-strain models consider the responses of the concrete and the FRP
jacket as well as their interaction in an explicit manner and are more
versatile and powerful than design-oriented stress-strain models (Teng ef al.
2007). Such models are applicable/easily extendable to actively-confined
concrete and concrete confined by materials other than FRP. An accurate
analysis-oriented stress-strain model can also be employed to generate data
for the development of a design-oriented stress-strain model (Teng et al.

2009). This chapter is thus concerned only with the development of an
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analysis-oriented stress-strain model for FRP-confined HSC.

Many analysis-oriented stress-strain models (e.g. Mirmiran and Shahawy
1997; Spoelstra and Monti 1999; Fam and Rizkalla 2001; Chun and Park
2002; Harries and Kharel 2002; Marques et al. 2004; Binici 2005; Jiang and
Teng 2007; Teng et al. 2007) have been published for FRP-confined NSC.
Among them, the recent model proposed by Jiang and Teng (2007) has been
shown by its originators to be the most accurate; test results of
FRP-confined NSC can now be closely predicted by this model (Jiang and
Teng 2007). By contrast, to the best of the authors’ knowledge,
analysis-oriented models proposed for and/or verified using test results of
FRP-confined HSC are not available in the open literature, despite the

increasingly wide application of HSC in practice.

Most existing analysis-oriented stress-strain models for FRP-confined
concrete are composed of the following three elements (Teng and Lam 2004;
Jiang and Teng 2007): (i) an active-confinement base model, (ii) the lateral
strain equation depicting the relationship between the axial strain and the
lateral/hoop strain of the concrete (or hoop strain of the confining jacket),
and (ii1) a relationship between the lateral strain and the radial pressure
supplied by the jacket. The third element can be easily defined for a linear
elastic FRP jacket. It may be noted only the third element of an
analysis-oriented stress-strain model for FRP-confined concrete needs to be
modified if it is to be employed to predict concrete passively confined with

another material. In the following sub-sections, these three elements for
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HSC are examined in detail to arrive at an analysis-oriented stress-strain

model for FRP-confined HSC.

3.4.2 Active-Confinement Model asthe Base M odél

As discussed earlier, the new active-confinement model, although having
been verified using a large test database of both NSC and HSC, cannot
provide accurate predictions of the present test results because of the
dependence of the behaviour of confined HSC on its loading path. Therefore,
a different active-confinement base model needs to be used to achieve close
predictions for FRP-confined HSC. The active-confinement base model
used in Jiang and Teng (2007), although slightly underestimating the
stress-strain response of active-confined NSC (see Figures 3.1a and 3.3a),
has been shown to work well for FRP-confined NSC. As the behaviour of
actively-confined NSC is very similar to that of actively-confined HSC (see
Figures 3.1 and 3.2), it is reasonable to expect that this active-confinement
base model is likely to be also suitable for FRP-confined HSC. In Figure 3.6,
a series of axial stress-strain curves denoted by “Jiang and Teng’s ultimate
equations” are also shown for comparison with the experimental curves.
These curves were produced in a similar way to the curves identified as
“new ultimate equations” with the only difference being that Jiang and
Teng’s (2007) active-confinement model was used here instead of the new
active-confinement model as the base model. Figure 3.6 shows that the
curves produced this way are very close to the experimental curves,
indicating that Jiang and Teng’s (2007) active-confinement model is also
appropriate for use in the prediction of FRP-confined HSC as the base

model.
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3.4.3 Lateral Strain Equation and Confining Pressure

As discussed earlier, the present test results of FRP-confined HSC indicate
that Eq. (3.8) is applicable to both NSC and HSC. The development of a
more accurate lateral strain equation needs further research. Therefore, Eq.
(3.8) is retained for the prediction of stress-strain curves of FRP-confined

HSC although some errors arising from the use of Eq. (3.8) can be expected.

Once the lateral strain is known, the confining pressure f, on a circular

column from an FRP jacket is given by the following simple relationship:

E te te
— S "h Tl 39
f=—t = (3.9)

where E, is the elastic modulus of the FRP jacket in the hoop direction,
g, and ¢ are the hoop strain and the thickness of the FRP jacket respectively,

and R is the radius of the confined concrete core.

3.4.4 Analysis-Oriented Stress-Strain Model

The above discussions suggest that Jiang and Teng’s (2007) model can lead
to reasonably close predictions of the stress-strain behaviour of
FRP-confined HSC, with the underestimation of its active confinement base
model of the stress-strain behaviour of actively-confined HSC being used to
account for the detrimental effect of stress path dependence on

FRP-confined HSC.

The new test results are compared with the predictions from Jiang and
Teng’s (2007) model in Figure 3.5. This comparison demonstrates that Jiang
and Teng’s (2007) model generally performs well although some small
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errors exist especially for specimens with an unconfined strength of 70.8
MPa. These errors are due to the inaccuracy of the lateral-to-axial strain
relationship (Figure 3.8), as discussed earlier. Further research is needed to
improve the accuracy of this relationship when more test data become
available. Jiang and Teng’s (2007) model is thus recommended as a model
for predicting the stress-strain behaviour of both FRP-confined NSC and

FRP-confined HSC.

3.5 MODEL VERIFICATION USING INDEPENDENT TEST DATA

3.5.1 HSC without Silica Fume

Figure 3.9 shows comparisons between the predictions of Jiang and Teng’s
(2007) model and the axial stress-strain curves from tests conducted by
Almusallam (2006) on HSC cylinders (150 mm x 300 mm) with an

unconfined concrete strength of 50.6 MPa (with ¢, = 0.0029) or 60.5 MPa
(with £, = 0.0030). These cylinders were confined with a one-ply or a

three-ply GFRP jacket, whose elastic modulus and tensile strength were 27
GPa and 540 MPa respectively, based on a nominal thickness of 1.3 mm per
ply. The experimental lateral strains at the rupture of the FRP jacket were
used in making the predictions. The predictions are in reasonably close

agreement with the test results.

3.5.2 HSC with Silica Fume

Figure 3.10 shows a comparison between the predictions of Jiang and
Teng’s (2007) model and the axial stress-strain curves from tests conducted
by Berthet (2005) on HSC with silica fume. The HSC cylinders (70 mm X

140 mm) tested by Berthet (2005) had an unconfined concrete strength of
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113 MPa (with ¢,,=0.0023) and were confined with a two-ply or a five-ply

CFRP jacket whose elastic modulus and tensile strength were 230 GPa and
2,500 MPa respectively, based on a nominal thickness of 0.165 mm per ply.
Again, the experimental lateral strains at the rupture of the FRP jacket were
used in making the predictions. Figure 3.10 shows that Jiang and Teng’s
(2007) model considerably overestimates the response, especially the
ultimate axial strain of these specimens (see Figure 3.10). Once again, this
comparison confirms that the presence of silica fume reduces the
effectiveness of confinement and a different confinement model is needed

for HSC with silica fume.

Almusallam (2006) also tested HSC with silica fume but their specimens
were shown to gain little strain enhancement from the confinement of FRP;
Jiang and Teng’s (2007) model thus cannot provide correct predictions of

these test results and the comparison is not shown here.

It should be noted that predictions from Jiang and Teng’s (2007) model were

obtained by assuming that the elastic modulus of unconfined concrete

E, =4730,/f. (ACI 318-95 1999). Although this equation provides

accurate predictions for NSC and HSC without silica fume, it was found to
underestimate the elastic modulus of HSC with silica fume based on the test
results of Berthet (2005) and Almusallam (2006). If the experimental elastic
modulus of unconfined concrete is used in the model, the predicted curves
are further away from the experimental curves. This phenomenon reinforces

the importance of differentiating HSC with silica fume from HSC without
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silica fume.

3.6 SUMMARY AND CONCLUSIONS

This chapter has been primarily concerned with the behaviour and
modelling of the stress-strain behaviour of confined HSC without silica
fume. The behaviour of actively-confined HSC was first examined, leading
to a unified active-confinement model applicable to both HSC and NSC. An
experimental study on FRP-confined HSC was then presented and
interpreted to examine its behaviour, which also forms the basis for the
subsequent modelling work. It was shown that Jiang and Teng’s (2007)
model, initially developed for FRP-confined NSC, is also accurate for
FRP-confined HSC. While the focus of the work was on HSC without silica
fume, the effect of incoprating silica fume into HSC on its stress-strain
behaviour was also given appropriate attention. The results and discussions
presented in the chapter also allow the following conclusions to be drawn

on the behaviour and modelling of confined HSC without silica fume:

(1) The new unified active-confinement model for actively-confined
concrete is more accurate than all existing models for actively-confined
HSC;

(2) The lateral-to-axial strain relationship adopted in Jiang and Teng’s (2007)
model, which was initially proposed in Teng et al. (2007), leads to
acceptable predictions for FRP-confined HSC given the considerable
variability in concrete dilation properties obtained from tests. Further

studies on the dilatation properties of confined HSC are needed.
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(3) The assumption of stress independence widely used in modelling the
stress-strain behaviour of FRP-confined concrete can be a source of
significant errors in predicting the behaviour of FRP-confined HSC,

especially when the FRP jacket is relatively soft.

The presence of silica fume in HSC was shown to significantly affect the
behaviour of confined HSC. While existing test data suggest that silica fume
can significantly reduce the effectiveness of confinement in terms of the
enhancement of strain capacity, these data are insufficient to allow more
elaborate conclusions to be drawn or a separate, reliable confinement model
to be developed. Much more work is needed on the behaviour of confined

HSC with silica fume.
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Table 3.1 Test results of actively-confined HSC without silica fume

Diameter Height £, £, /i I £,
No.
(mm) (mm) (MPa) (%) (MPa) (MPa) (%)
Imram and  Pantazopoulou
(1996)
1 54 115 73.4 033 32 96.1 0.50
2 54 115 734 0.33 6.4 108.7 0.65
3 54 115 73.4 0.33 12.8 125.6 1.05
4 54 115 73.4 033 25.6 168.6 2.03
5 54 115 734 0.33 384 204.0 3.11
6 54 115 734 0.33 51.2 240.5 4.009
Attard and  Setunge
(1996)
7 100 200 100.0 0.27 1.0 106.0 0.31
b 100 200 100.0 0.27 5.0 121.0 0.36
9 100 200 100.0 0.27 10.0 144.0 0.47
10 100 200 100.0 0.27 15.0 165.0 0.58
11 100 200 126.0 0.34 5.0 162.0 0.50
12 100 200 126.0 0.34 10.0 186.0 0.71
13 100 200 126.0 0.34 15.0 211.0 0.89
14 100 200 96.0) 0.28 5.0 119.0 0.37
15 100 200 96.0 0.28 10.0 147.0 0.52
16 100 200 96.0 0.28 15.0 157.0 0.53
17 100 200 60.0 0.21 1.0 67.0 0.27
18 100 200 60.0 0.21 5.0 98.0 0.48
19 100 200 60.0 0.21 10.0 122.0 0.76
20 100 200 60.0 0.21 15.0 145.0 0.99
Candappa et al (2001)
21 100 200 60.6 0.24 4.0 78.2 0.40
22 100 200 60.6 0.24 R.0 97.8 0.98
23 100 200 60.6 0.24 12.0 115.5 1.24
24 100 200 731 0.24 4.0 102.6 0.45
25 100 200 731 0.24 R.0 121.5 0.63
26 100 200 731 0.24 8.0 122.3 0.69
27 100 200 731 0.24 12.0 138.1 0.94
28 100 200 103.3 0.30 4.0 133.1 0.43
29 100 200 103.3 0.30 8.0 151.0 0.68
30 100 200 103.3 0.30 8.0 158.0 0.67
31 100 200 103.3 0.30 12.0 171.5 0.80
32 100 200 103.3 0.30 12.0 169.3 0.78
Lu and Hsu
(2006)
33 100 200 67.0 0.25 3.5 4.9 0.47
34 100 200 67.0 0.25 7.0 99.0) 0.78
35 100 200 67.0 0.25 14.0 130.7 1.24
36 100 200 67.0 0.25 14.0 132.7 1.25
37 100 200 67.0 0.25 14.0 134.9 1.35
38 100 200 67.0 0.25 14.0 135.5 1.37
39 100 200 67.0 0.25 21.0 154.0 1.66
40 100 200 67.0 0.25 21.0 157.1 1.83
41 100 200 67.0 0.25 21.0 161.2 1.94
42 100 200 67.0 0.25 28.0 180.2 2.50
43 100 200 67.0 0.25 28.0 179.9 241
44 100 200 67.0 0.25 42.0 2291 3.21
45 100 200 67.0 0.25 56.0 276.0 4.06
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Tan and Sun

(2004)
46 100 300 51.8 0.24 1.9 64.8 0.33
47 100 300 51.8 0.24 1.9 66.0 0.39
48 100 300 51.8 0.24 7.5 86.6 0.46
49 100 300 51.8 0.28 7.5 84.2 0.49
50 101 301 51.8 0.24 12.5 993 0.49
51 101 300 S1.8 0.24 125 1033 0.66
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Table 3.2 Performance of equations for peak stress point in different active-confinement models

RMSD RI\%%D RMSD RI\%%D
Source Axial stress equation HSC and Axial strain equation HSC and
only HSC only HSC
Present fr Y Eue Ji i
= =14+334| L 0.105 0.178  —<=1+188¢0)"" 087 1.58
study S S €eo /.
Present fr £\ Eue Ji \1.06
© =1+3.24| =L 0.111 0.173 =1+174(=7)" 0.89 1.55
study S S €eo S,
k
/*
Attard ];j _{H—fl . 0.67} with R p
and — Jo 0.288(1,,) 0.119 0235 —<=1+(17-006/' )2 145 1.88
Setunge / o co J.
(1996) k=1.25|:1+0.062f—ﬁ}(ﬂ0) '
Candappa ” £
et al. ? =1+5.3J{—f 0.378 0.549 . =1+20;_§ 1.16 1.83
(2001) »




123

Lu and

*

. -
Hsu %=1+4.0;—€ 0.173  0.241 j‘=1+19-21;—’/ 1.04 171
(2006) “
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Table 3.3 Test results of FRP-confined HSC

£

i

. fip h,rup 0
Specimen #(mm) GPa) (%) (MPa) e, (%)
70.8MPa
1 ply-a 034 2378 1.1 1042 1.07
Iply-b 034 2378 121 1103 143
3ply-a 1.02 237.8 1.00 180.5 2.16
3ply-b 1.02 2378 090 197.7 2.33
S5ply-a 1.70 237.8 0.67 191.5 2.28
Sply-b 1.70 237.8 0.52* 1624 1.39
108Mpa
2ply-a 0.68 237.8 0.57 1412 0.97
2ply-b 0.68 237.8 0.58 1340 0.75
3ply-a 1.02 2378 0.52 1704 0.98
3ply-b 1.02 237.8 0.60 176.6 1.12
S5ply-a 1.70 237.8 0.56* 217.3 1.56
S5ply-b 1.70 237.8 0.57* 217.1 1.60

*The test stopped without FRP rupture.



CHAPTER 4
NEW D-PTYPE MODEL BASED ON THE SCALING
TECHNIQUE

4.1 INTRODUCTION

The behaviour of concrete in multi-axial compression is characterized by
inelastic deformation. Hence, it is reasonable to apply the theory of
plasticity, which is based on the split of strains into elastic and plastic parts,
for simulating the behaviour of concrete. The literature review given in
Chapter 2 indicates that constitutive models for concrete based on the
theory of plasticity represent one of the major approaches and have met

with a substantial degree of success.

Plasticity theories can be broadly divided into two groups: deformation and
flow theories of plasticity (Chen and Han 2007). In the deformation theory
of plasticity, the stress tensor is a function of the strain tensor alone. Such a
constitutive structure is in general inappropriate for plastic deformation
because when plastic deformation occurs, strains depend on both stresses
and the stress history and are no longer only a function of stresses in a
general sense. However, the deformation theory of plasticity has found

useful applications in some special cases such as proportional or simple
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loading. All the stress components under these two special loading
conditions increase proportionally without elastic unloading ever occurring.
Therefore, a one-to-one mapping can be found between the stress
components and the strain components. The theory has been particularly
successful in bifurcation studies and in the determination of necking and
buckling loads (Hutchinson 1974). For the constitutive modelling of
concrete, this theory was mainly employed in the period prior to the wide
use of the computer. As the deformation theory of plasticity is invalid for
non-proportional loading and has achieved only limited success under
cyclic loading (Chen and Han 2007), it has seldom been used in commercial

finite element (FE) software packages.

By contrast, the flow theory of plasticity is a more robust approach for
simulating the behaviour of concrete as it does not suffer from the
aforementioned limitation of the deformation theory of plasticity. The flow
theory of plasticity is based on an incremental process and has the
advantage that the effect of loading paths can be easily taken into account.
Therefore, this theory is more versatile when used in the finite element
modelling of concrete structures. Due to these reasons, the discussions of
plasticity-based concrete constitutive models in this thesis are limited to

those based on the flow theory of plasticity.
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The flow theory of plasticity has three components: (a) the yield criterion,
(b) the flow rule, and (c) the hardening (or softening) rule. The yield
criterion (or yield function) for a multi-axial stress state is a generalization

of the concept of the uni—axial yield stress. It defines the boundary of the

elastic region, within which both unloading and reloading lead to elastic
strains only. The flow rule determines the relationship between stresses and
plastic strains under multi-axial loading, in which the direction of the
incremental plastic strain is defined by the plastic potential function. The
flow rule is referred to as an associated flow rule if the plastic potential
function is the same as the yield function; otherwise, it is referred to as a
non-associated flow rule. The hardening/softening rule defines the motion
and new position of the yield surface (commonly referred to as the loading
surface) in a stress coordinate system during plastic deformation. Two types
of hardening/softening state variables are commonly used in the
hardening/softening rule, which are the length of the plastic strain vector
and the plastic work. The hardening/softening state variables have
significant effects on the behaviour of confined concrete, which are

discussed in the subsequent sections.

Over the past three decades, a number of studies have been conducted on

these three components of plasticity models to improve their performance in

predicting the mechanical behaviour (mainly the stress-strain response) of
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confined concrete. Different yield functions have been presented to account
for the inherent pressure-sensitivity of the yield stress of a concrete material.
These yield criteria explored range from the simple Von Mises criterion
with only one parameter to the more complex five-parameter
William-Warnke yield function (Chen and Han 2007). Moreover, different
plastic potential functions have also been proposed to account for the
dilation characteristics of concrete in compression. More attention has
recently been paid to the hardening/softening rule with the aim being to
consider the effect of lateral confinement on the deformation of concrete.
Different from yield functions which are normally defined in the stress
space, the hardening/softening rule should be partially related to the
inelastic deformation of concrete as it is commonly based on
hardening/softening variables such as the equivalent plastic strain (Lubliner
et al. 1989) and the equivalent plastic work (Han and Chen 1985). These
two commonly used hardening/softening variables are both related to the
plastic deformation of concrete. Plasticity models using these variables have
succeeded in predicting the strength enhancement of concrete due to lateral
confinement. However, these models have also been found to be
unsuccessful in predicting the increased deformation capacity of concrete
under multi-axial compression (Ohtani and Chen 1989; Yu et al. 2010a; Yu
et al. 2010b). Therefore, two approaches have been suggested to address

this problem (Grassl et al. 2002) as explained below.
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The first approach can be referred to as the scaling approach (e.g. Barros
2001; Johansson and Akesson 2002). In the scaling approach, the
hardening/softening variable is the form of a scaled length of the plastic
strain vector associated with certain confinement characteristics of the
current stress state. Various scaling techniques have been developed based
on different confinement characteristics, including the hydrostatic pressure,
the intermediate principal stress, and the mean of the two major principal
stresses (Imran and Pantazopoulou 2001; Johansson and Akesson 2002;
Malvar et al. 1997; Barros 2001; Yu et al. 2010a). Hereafter, plasticity-based
models employing the scaling technique are referred to as scaled plasticity

models.

Novel hardening/softening variables have also been adopted to deal with
this issue apart from the use of a scaling technique. Recent studies (Grassl et
al. 2002; Papanikolaou and Kappos 2007) have led to the plastic volume
strain approach in which the plastic volumetric strain, €}, is used as the
hardening/softening variable. Grassl et al. (2002) have revealed that when
the plastic volumetric strain instead of the equivalent plastic strain or
equivalent plastic work is utilized as the hardening/softening variable, a

simple hardening/softening function is sufficient to provide reliable

predictions for the increased deformation capacity of confined concrete
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without using the scaling technique. The performance of this type of models

will be discussed separately in Chapter 5 for clarity of presentation.

The first approach is discussed in this chapter. To simplify the discussion
without loss of generality, a new D-P type model employing a scaling
technique based on the hydrostatic pressure is proposed for use in the
assessment process. Both the yield criterion and the flow rule in the
proposed model are relatively simple, so the effect of the
hardening/softening rule can be easily highlighted. The performance of this

model is examined in the following sections.

As discussed above, the scaling approach can be utilized to account for the
increased plastic deformation of concrete resulting from confinement. Yu et
al. (2010a) assessed the capability of plasticity models of this type. In their
study, D-P type models with scaled hardening variable-equivalent plastic
strain relationships based on the confining pressure were assessed using
experimental results for unconfined concrete, actively-confined concrete
and FRP-confined concrete. Three important conclusions were drawn based
on the assessment, which will be discussed in detail in Chapter 8. For this
reason, only plasticity models with the equivalent plastic strain scaled to the
hydrostatic pressure (Malvar et al. 1997; Wolf 2008) are discussed in this

chapter. A new D-P type plasticity model employing the scaling technique
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based on the hydrostatic pressure is proposed to illustrate the capability of
the scaling approach in providing accurate predictions of confined concrete.
This model is formulated by introducing modifications into an existing
model proposed by Wolf (2008) and is calibrated with test results of
actively-confined concrete. The model is then examined by comparing its
predictions with test results of FRP-confined concrete. The advantages and

limitations of this approach are also discussed.

It should be noted that the new model is a simplified version of that
proposed by Wolf (2008) by introducing significant simplifications
primarily in the yield criterion. For instance, the complex loading surface
employed in Wolf (2008) is replaced by a simple D-P type failure surface in
the new model. This replacement has an effect on the predicted strength
enhancement as a result of confinement. The failure surface employed in
Wolf’s (2008) model implies a nonlinear relationship between the strength
increment and the confining pressure, whereas the D-P type failure surface
employed in the new model implies a linear relationship. The accuracy of
this linear approximation is acceptable within a certain range of
confinement ratios. In addition, the influence of the Lode angle on the
failure surface is not considered in the new model. Therefore, the new
model is only expected to be capable of providing accurate predictions for

uniformly confined concrete. Uniform confinement is a specific case of
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confinement as is found in confined circular concrete columns and is a
simpler case than non-uniform confinement. If a constitutive model cannot
even predict the response of concrete under uniform confinement, it is
meaningless to examine its capacity for non-uniform confinement. With the
above modifications, the most complex part of the new model is the
hardening/softening rule, and most of the parameters requiring calibration
are associated with the hardening/softening rule. Therefore, attention can be

focused on this part to examine the capability of the scaling approach.

4.2 PROPOSED CONSTITUTIVE MODEL

4.2.1 L oading Surfaces
Following Malvar et al. (1997) and Wolf (2008), the backbone of the

proposed model consists of three distinct loading surfaces. These three
surfaces correspond to the yield, peak and residual stress states of the
concrete. They reduce to the yield, peak and residual stress states for
concrete under uni-axial compression as shown in Fig. 4.1. The current
loading surface located between two of these three surfaces can be
determined using a so-called damage parameter (Malvar et al. 1997; Wolf
2008). Equations defining these loading surfaces are assumed to have a D-P
type shape in the proposed model (see Figs. 4.2 & 4.3) so that the
differences between these equations are only due to the hardening/softening

parameter k,. Based on this simplification, the loading surface, f", can be
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expressed as
f* = tan 01, +/], — ky 4.1
where 0 is the frictional angle, I; is the first invariant of the stress tensor
which can be defined in the stress space as
[ =0y +o0y,+0, (4.2)
and ], is the second invariant of the deviatoric stress tensor which can be

defined as
_1 2 2 ) 5 X ,
]2 h g [(GX - Gy) + (Gy - GZ) + (GZ - GX) ] + TXY + TyZ + Tzx (43)
The parameter k,, is defined as

kn,yield + B(kn,peak - kn,yield) y < wpeak

k, =
kn,peak + B(kn,residual - kn,yield) V= \Ilpeak

(4.4)

where Ky yields Knpeak> Knpeak are the values of parameter k;, at the
points of initial yielding, peak stress and residual stress respectively. The

parameter defines the damage level when the failure surface (i.e.

peak
peak stress surface) is reached, and the parameter 3 is defined as a function

of the so-called damage parameter y (Wolf 2008):

b= () s (4.5)

‘Vpeak
Here, the parameter «, controls the rate at which the failure surface travels

from one loading surface to the next (Wolf 2008).
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The value for v is integrated along the loading path of the material in order
to obtain the current total damage level. The incremental damage dy is
defined as a scaled equivalent plastic strain increment deP with respect to

the hydrostatic pressure:

deP

dy = ———
(Z)'HI( 1

(4.6)
%)

The parameter @, defines the accumulation of damage at very low levels of
stress, and the parameters o, and y reflect the effect of confinement on the
damage accumulation of concrete. The effective plastic strain increment

deP is defined as

deP = /zdepda?- 4.7)
3 7 Y

In Eq. (4.6), the scaling technique is employed, in which the incremental
damage dy is defined as a scaled variable of the effective plastic strain
increment deP. The denominator of Eq. (4.6 ) is defined as a function of the

hydrostatic stress (I;) to scale the effective plastic strain increment deP.

4.2.2 Flow Rule

It has been demonstrated (e.g. Chan and Han 2007) that the use of an
associated flow rule for concrete results in unrealistic predictions for plastic
volume expansions which exceed those from tests. Hence, a non-associated

flow rule is employed in the present constitutive model. There are several
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different ways to define a non-associated flow rule. One typical approach is
to use a potential surface similar to the yield surface but with a dilation
angle 0, different from the frictional angle 6. Another approach is that
suggested by Han and Chen (1985) in which the flow rule is defined as a
combination of the associated flow rule and the Prandtl-Reuss flow rule
(Malvar et al. 1997; Wolf 2008) (i.e. the ], flow rule) which does not allow
for any plastic volume expansion. The latter approach is adopted in the
present model. The potential surface, G", is therefore defined as follows:

G" = Qtan01,+/], (4.8)
where Q is a parameter controlling the amount of plastic volume
expansion and lies between 0 and 1. In the extreme case when Q is equal
to 0, the J, flow rule, which is a non-associated flow rule for Eq. (4.1), is

utilized; when Q is equal to 1, the associated flow rule is applied.

4.3 CALIBRATION OF PARAMETERS

The proposed constitutive model was implemented in ABAQUS by writing
a user-defined material subroutine (UMAT). A total of eleven parameters are
used in the proposed constitutive model for the definition of the behaviour
of concrete. Four of these eleven parameters are basic to concrete and can
be directly determined from material properties of unconfined concrete.
These parameters include the unconfined concrete strength f.,, the axial

strain at unconfined concrete strength €.,, the elastic modulus of concrete
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E, and the Poisson ratio p. The remaining seven parameters need to be
identified from experimental results of actively-confined concrete. These

parameters are 0,0,Q, a,v,x and v The process for determining

peak*

these seven parameters is discussed below.

In the finite element modelling of actively-confined concrete under uniform
confinement, the concrete in a circular cylindrical specimen in a standard
equal tri-axial compression test can be modeled using a single cubic element.
This is because the stress state at any material point within such a uniformly
confined specimen is identical, and a single-element finite element model is
sufficient to reflect the stress-strain behaviour of the concrete. In the present
study, symmetry was exploited so that only one-eighth of a small cube was
included in the finite element model with symmetric boundary conditions
imposed on the three symmetry planes; these planes are perpendicular to
each other and the displacements perpendicular to each plane were set to be
zero. The use of symmetric conditions is not essential but makes it easier for
the application of loading. The same pressure was applied on the two lateral
surfaces to represent the hydrostatic confining pressure acting on the surface
of the concrete specimen; displacements were then imposed on the top
surface of the cubic element to simulate compressive loading. The finite

element model is illustrated in Fig. 4.4.
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As discussed earlier, the failure surface of the model is of the D-P type. The
value of parameter 6 can be determined from the confinement

effectiveness factor k; using equations developed in previous research (Yu

et al. 2010a):

ky—1

3k +2)

0 =tan™?! (4.9)

The least-squares method was utilized in the process of parameter

calibration to obtain the value of k; from test data.

The parameters @ and y control incremental damage dy (see Eq. 4.6) as
affected by confinement. Wolf (2008) suggested a constant value of 0.5 for
@, which is employed as the default value in the proposed model. For v,

Wolf (2008) adopted the following power law relationship:

fe = (ﬁ‘—;w)Y + by (4.10)

€co
where ay; and byy are constants used to fit the test data of axial strains at
peak stress €., and an estimated value of 1.720 was used for y. However,
it was found in the present study that this y value is less than optimal.
Therefore, this parameter together with four other parameters (i.e.

Q, o, K,v___ ), were identified via a simple trial-and-error procedure of

peak

fitting the experimental results of actively-confined concrete.

Using the above process of parameter calibration, the test results for
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actively-confined concrete reported by Candappa et al. (1999) were used for
the determination of the eleven material parameters; that is, these test results
were taken as the benchmark results. This set of tests was chosen because of
their consistent stress-strain curves and the large range of strain values
covered by these experiments. These test specimens had an unconfined
concrete strength of 41.9 MPa and were subjected to three different

confining pressures (4 MPa, 8 MPa and 12 MPa).

Axial stresses of Candappa et al.’s (1999) specimens are shown against their
axial strains and lateral strains in Figure 4.5. In this figure, compressive
stresses/strains are taken to be positive while tensile stresses/strains are
taken to be negative. Indeed, these definitions are adopted throughout this
thesis for concrete unless otherwise specified. Parameters f.,, €.o, E, and
p were obtained from the control specimens (unconfined concrete
specimens), and their values are shown in the same Fig. 4.5. Based on the
experimental peak stresses of confined specimens, k; was found to be 5.3.
Using Eq. (4.9), the value of 6 was found to be 0.3267. The other five
parameters except @, for which the default value of 0.5 was used, were
adjusted to fit the axial stress-strain curves and axial stress-lateral strain
curves; the deduced value are also given in Fig. 4.5. As interaction exists
among these five parameters, a trial-and-error process was employed to

determine these parameters. The predicted stress-strain curves using the
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values of parameters so identified are compared with the experimental
results in Fig. 4.5. The numerical results are seen to be in close agreement
with the experimental results. This agreement, achieved consistently for
three different confining pressures using a single set of parameters, indicates
that the proposed model can capture the major characteristic of concrete

under uniform active confinement.

4.4 COMPARISON WITH TEST RESULTS OF FRP-CONFINED

CONCRETE

Experimental results of FRP-confined circular concrete cylinders reported
by Lam and Teng (2004) are compared with the numerical results obtained
using the proposed constitutive model in this section. Similar to the case of
actively-confined concrete, the concrete in this case is also taken to be under
uniform confinement so that the one-element finite element model was still
applicable. The same symmetric conditions were also imposed on the three
symmetric planes as explained earlier. The two lateral surfaces, which were
subjected to hydrostatic pressure in the case of actively-confined concrete,
were tied to 4-node membrane elements, which were used to model the FRP
jacket. The difference between FRP confinement and active confinement is
that the confining pressure provided by the FRP jacket is related to the
lateral deformation of the concrete core. In the finite element model, the

FRP jacket was taken as a linear elastic material, which can thus provide a
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gradually increasing confining pressure. An equivalent thickness teq

calculated from the following equation was specified for the membrane
element to provide an in-plane stiffness that is identical to the confining

stiffness equal to that of the cylindrical jacket:
1
teq = z trrP (4.11)

Here, R is the radius of the concrete core and tggp is the original thickness

of the FRP jacket.

In the process of parameter calibration described above, test results for both
unconfined and actively-confined concrete were required for identifying the
values of all the unknown parameters. To investigate the predictive
capability of the proposed constitutive model, it is desirable to have a series
of tests that include unconfined concrete, actively-confined concrete and
passively-confined concrete. The first two types of experimental result can
be used to determine all the material parameters while the last type of
experimental results can be used to check the accuracy of the constitutive
model in providing predictions for FRP-confined concrete. This is because
the predictions for FRP-confined concrete in this case are independent of
the process of parameter calibration. To the best of the author’s knowledge,
the only series of tests which included all three types of experiments were
conducted by Cetisli and Naito (2009). In their experiments, confining

pressures which varied linearly with the lateral deformation were provided
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by a tri-axial cell to mimic FRP confinement. Unfortunately, their
experimental results of passively-confined concrete showed significantly
larger variations than those of FRP-confined concrete and are therefore
unsuitable for use as verification data for the proposed constitutive model.
For instance, Cetisli and Naito (2009) observed smaller ultimate axial
strains at larger confinement stiffnesses, which is contrary to experimental

observations of FRP-confined concrete [e.g. Lam and Teng (2004)].

Based on the above considerations, test results of FRP-confined concrete
were employed to assess the capability of the proposed constitutive model.
In the absence of objective tests (test series including actively-confined
concrete) to determine the values of the material parameters, these material
parameters were estimated by fitting the stress-strain curves (using
least-square method) generated by an empirical model developed for
actively-confined concrete. The analysis-oriented stress-strain model
developed by Jiang and Teng (2007) has been shown by the authors to
provide close predictions for FRP-confined concrete, so the
actively-confined concrete model employed as the base model in Jiang and
Teng (2007) model was adopted in the present study to identify the
parameters for the proposed constitutive model which are mainly related to
the behaviour of actively-confined concrete. Other parameters which are

mainly related to the dilation characteristics were determined by fitting the
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experimental results of FRP-confined concrete. Similar approaches of
parameter calibration were also adopted in identifying parameters for other

constitutive models considered in Chapters 5 & 6.

In the proposed constitutive model, the most significant parameter related to
the active-confinement model is the parameter 6. By adopting the value
of 3.5 for the confinement effectiveness factor as given in Teng et al.’s
(2007) model in Eq. (4.9), the value of 0 is found to be 0.2624. Other
parameters were then determined by fitting the axial strains at peak stress of
control specimens and the experimental stress-strain curves of
FRP-confined specimens using a trial-and-error process. From this point of
view, the assumption of path-independence is only partially fulfilled in the
process of parameter calibration for the current constitutive model as the
test results of FRP-confined concrete are employed in the determination of

some of the parameters (e.g. Q).

Fig. 4.6 shows the test results of all six FRP-confined concrete specimens
reported by Lam et al. (2006). These six specimens are used in the present
thesis as the benchmark specimens for FRP-confined circular concrete
cylinders; that is, unless otherwise specified, the test results of
FRP-confined concrete cylinders employed in comparisons with numerical

predictions are the results of these six specimens. The predicted stress-strain
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curves in Fig. 4.6 were obtained by using the proposed constitutive model
with calibrated parameters. In analysis, the finite element model was loaded
to the point at which the experimental hoop rupture strain of the FRP jacket
was reached. The comparisons show that the finite element results with the
same set of calibrated parameters provide close predictions for the
specimens with a confinement stiffness equal to 1086 MPa, but deviate
significantly from the experimental results for the specimens with a

confinement stiffness equal to 543 MPa. Here, the confinement stiffness is

ErrPtFRP

defined as , where Eggp is the elastic modulus of FRP. For the

latter specimens (Fig. 4.6a), the ultimate axial strain is significantly
overestimated. This overestimation indicates that the corresponding lateral
strain and hence the confining pressure at a given axial strain are
significantly underestimated. This comparison shows that the constitutive
model can only provide accurate prediction for specimens with specific
confinement stiffness, i.e. the proposed constitutive model cannot reflect the
effect of confinement stiffness on the stress-strain response of

passively-confined concrete.

4.5 CONCLUSIONS

This chapter has been concerned with the performance and capability of a
D-P type plasticity model based on the equivalent plastic strain scaling

approach. For the assessment purpose, a new simple D-P type plasticity
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model was proposed to highlight the effect of the strain hardening/softening

rule on predictions. From the performance study of the new D-P type model

presented in this chapter, a number of conclusions can be reached. These

conclusions are summarized as follows:

144

For actively-confined concrete, the proposed model can provide
accurate predictions for the stress-strain behaviour of concrete at
different confining pressures.

For FRP-confined concrete, the proposed model is not successful in
predicting the stress-strain behaviour of concrete unless the confining
stiffness happens to be at a specific level. The incorrect predictions are
due to the incapability of the proposed model in capturing the dilation
behaviour of FRP-confined concrete.

Although the scaling approach can correctly predict the increased
deformation capacity of actively-confined concrete, no simple method
exists for determining the values of the material parameters except for
the material parameter 6. As interaction exists among the material
parameters controlling the scaling function and the flow rule, they need
to be determined through a trial-and-error process. It is also complicated
to adjust these parameters to provide accurate predictions for

FRP-confined concrete under different confining stiffness.
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(a) FRP-confined concrete with a confining stiffness equal to 543 MPa
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CHAPTER 5
PLASTICITY MODEL CONTROLLED BY THE
PLASTIC VOLUMETRIC STRAIN

5.1 INTRODUCTION

The literature review given in Chapter 2 indicates that two approaches have
been suggested by researchers (e.g. Imran and Pantazopoulou 2001; Barros
2001; Grassl et al. 2002; Johansson and Akesson 2002) to improve the
capability of plasticity-based models in predicting the increased
deformation capacity of concrete due to confinement. The first approach (i.e.
the scaling approach) has been discussed in Chapter 4. In the present
chapter, the performance of a constitutive model based on the second

approach is discussed.

As mentioned in Section 4.1, Papanikolaou and Kappos’s (2007) model
employs the plastic volumetric strain, &), as the hardening/softening
variable and has the capability of providing accurate predictions for
actively-confined concrete with a simple process of parameter calibration.
In the present study, Papanikolaou and Kappos’s (2007) model was
implemented into ABAQUS as a UMAT subroutine. The parameters of the

constitutive model were calibrated from the experimental results reported by

Candappa et al. (1999) for actively-confined concrete and an empirical
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active confinement model (Teng et al. 2007). The predictions of
Papanikolaou and Kappos’s (2007) model for FRP-confined concrete were

then compared with test results.

5.2 PAPANIKOLAOU AND KAPPOS’ (2007) MODEL

5.2.1 Loading Surface
Papanikolaou and Kappos (2007) developed a plasticity model to study the

response of confined concrete. In this model, the loading surface is based on
the three-parameter failure criterion proposed by Menetrey and Willam
(1995), which is defined in the Haigh-Westergaard coordinates (&, p,0)

(these three coordinates have been defined in Chapter 2) as follows:

_ p 2 p &
fP(& p,0) = (,/3/2 h(K)f'co) +m (mr(e, e)+ «/§h(r<)fco) —c(k)(5.1)

where m is a cohesion parameter of the concrete which is given by

_ o (W)’ =% e
m=3 h(Ofeofy e+l (5-2)

and r(6,e) is an elliptic function used for the description of the

out-of-roundness of the deviatoric section

4(1—e?)cos?0+(2e-1)?
2(1—e?)cosh+(2e—1)[4(1—e2)cos20+5e2—4e]1/2

r(0,e) = (5.3)

In the above three equations, f; is the tensile strength of concrete, and e is
the eccentricity coefficient. Parameters h(kx) and c(x) are the hardening
and the softening functions of the hardening/softening rule used to

determine the instantaneous shape and location of the loading surface,

153



which are dependent on the value of the hardening/softening parameter(i).

The parameter x in this model is set equal to the plastic volumetric strain

eb as suggested by Grassl et al.(2002):

dk = de} = del + deb + de} (5.4)

where s}o(i=1-3) is the principal plastic strain in the ith direction.

Eq. (5.3) indicates that the value of r(6,e) is controlled by parameter e
which has a recommended value of 0.52 (Menetrey and Willam 1995)
calculated from a default equal biaxial concrete strength f,. = 1.14f,.
Moreover, Egs. (5.1) and (5.3) show that the effect of the Lode angle has
been considered in the loading surface. This feature is included mainly to
improve the capability of the loading surface to consider the difference
between uniform confinement and non-uniform confinement. For concrete
under uniform confinement, in which the Lode angle is equal to 7/3 (on the
compressive meridian), r(0,e) is equal to 1.0, which corresponds to the most
effective confinement effect. For concrete under equal bi-axial compression,
in which the Lode angle is equal to zero (on the tensile meridian and is a
typical non-uniform confinement case), r(6,e) is equal to 1/e, which
corresponds to the most ineffective confinement effect in the compression
zone. The loading surface thus has a non-circular shape in the deviatoric
plane (see Fig. 5.1). In addition, the effects of parameters h and c on the

tensile meridian and the compressive meridian of the loading surface are
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given in Figs. 5.2 and 5.3.

For the hardening parameter h(x), an elliptic-type function is adopted,

which was originally proposed by Cervenka et al. (1998):

h(x) = hy + (1 - ho)jl - ((gs,t — 85) /85,,[)2 , K< Ss,t (5.5)

1, x> 83 t
where hy is a constant that defines the onset of yielding and es,t is the

plastic volumetric strain at the uni-axial concrete strength. The following
function originally proposed by Van Gysel and Taerwe (1996) is adopted for

the softening parameter c(x) for uni-axial compression:

1, K< Sg,t
<) = (1/ (1+ (- 1)/(nz - 1))2)>' K> ey -
where:
n; = 85/85,t S
ng = (&0, +1,)/eh, G5

and t, is a constant which controls the slope of the softening function.

5.2.2 Failure Surface
Egs. (5.1) and (5.5-5.8) indicate that when the hardening/softening

p
v,t°

variable x is equal to &,., both the hardening parameter h(x) and the

softening parameter c(x) are equal to unity. The loading surface function
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described by Eq. (5.1) hence reaches its failure state and reduces to

(5 p,0) = ( 3/2%)2+m(\/_r,cor(6 e)+ﬂ )-1 (9

Eq. (5.9) is the three-parameter failure criterion originally proposed by
Menetrey and William (1995). If only uniform confinement is taken into

consideration, Eq. (5.9) further reduces to

fee _ 01 / i
T lrme (5.10)

where f; is the confining pressure, and f:. is the concrete strength under

confining pressure f; . Eq. (5.10) is in the form of the Hoek and Brown

failure criterion and can be used in the calibration of the parameter m.

5.2.3 Flow Rule

A non-associated flow rule is employed in Papanikolaou and Kappos’s
(2007) model. In the Haigh-Westergaard coordinates, the plastic potential

function is defined as follows:

g= A(wgt,co) e+ B -0 —cos30)| L+ 2 (51D)

where A, B and C are three parameters controlling the shape of the plastic
potential function in the stress space. Calibration of these parameters for the
flow rule is based on the assumption that both the incremental plastic strain
vector and the total plastic strain vector have identical inclinations for stress
states within the failure surface. The detailed procedure of parameter

calibration is explained below.
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5.3 CALIBRATION

The following steps were adopted in the process of parameter calibration:

a. Determine the value of parameter m to fit the peak stress of
actively-confined concrete f;. and calculate the value of artificial
concrete tensile strength f;;

b. Calculate the values of A, B, C which control the axial strain at peak
stress;

c. Adjust the value of aE,t to fit the dilation behaviour of

confined-concrete;

d. Adjust the value of t, to fit the slope of the axial stress-strain curves.

The detailed process of calibration for a selected set of experiments is as
follows. First, using the test data of peak stresses under different confining
pressures and considering Eq. (5.10), the value of m can be determined by
using the Least Squares Method. Then, the value of f; can be calculated
from Eq. (5.2) once the value of m is known. As this study is focused on the
compressive behaviour of confined concrete, an artificial f, value was
adopted to obtain the required value of m from a regression of experimental
results. Here, f; does not have a direct physical meaning, and it is just
employed to reflect the corresponding value of m. Actually, if m is directly

adopted as a parameter, it is unnecessary to calculate the value of f;.
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Therefore, f; is just retained as a parameter so that the model has the same
parameters as those suggested by Papanikolaou and Kappos (2007). After
the value of f; is determined, the values of A, B and C can be calculated
based on the assumption that the inclination of the total plastic strain is
equal to that of the incremental plastic strain (Grassl et al. 2002). This

assumption means that

’ d
Zf = —d—i (5.12)

where & and p' are the hydrostatic and deviatoric lengths of the total
plastic strain vector, respectively. The inclination ¥ (i.e. gradient) of the
plastic strain vector of the plastic potential surface on the compressive

meridian with respect to the deviatoric axis can be expressed as:

_ dE_, _ p n-1
W=—F=nA (r,—) +B (5.13)

Wi, and W, are the inclinations of the plastic strain vector, and p, and p,
are the deviatoric lengths of the stress vector under the states of uni-axial

compression and equal tri-axial compression, respectively. Substituting p,

and p, into Eq. (5.13) leads to

W, = nA (%)n_lJrB (5.14)
¥, = nA (E_Z)n—1+B (5.15)

Based on the previous assumption of identical inclinations, ¥ can also be

determined from the total plastic strain vector:
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o L -’
) -

P, P;.D (5.16)

&1 +82 +83

The plastic strains for the uni-axial stress state and the equal tri-axial stress
state can be calculated by the following steps described below. The axial
plastic strain component is equal to the axial total strain component minus
the elastic part. For the uni-axial stress state, the components of the

principal plastic strain vector are:

f'CO
€5 = € — = (5.17)

The lateral plastic strain is calculated as
& =) =2 (5.18)

For the equal tri-axial stress state, the components of the principal plastic

strain vector are:

e (5.19)
p _.Dp
e =g) =22 (5.20)

As mentioned earlier, gg. is the axial strain at peak stress for concrete in an
equal tri-axial stress state (i.e. active confinement). It was found by
Papanikolaou and Kappos (2007) that a linear relationship between the
confinement level (fl /fc*c)and the strain amplification (82C/8CO) can be

obtained as long as the parameter 7 is equal to 3.0. Using test data of axial

strains at peak stress under different confining pressures from the selected
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experimental results, a linear relationship was determined as follows:

5.21
€co feo ( )
where k, represents the confinement effectiveness factor for axial strains

at peak stress.

Substituting Egs. (5.17-5.21) into Eq. (5.16), the values of ¥;, and ¥, can
be obtained based on the assumption of the total plastic strain vector. The

values of A and B can then be calculated as

A= b K (5.22)
() -7))
fCO fCO
n-1
B=1, —nA (t?—) (5.23)

The coefficient C can be calibrated based on results of concrete under equal
biaxial stress-states. W3 and p, are the inclination of the plastic strain
vector and the deviatoric length of the stress vector at equal biaxial
compression, respectively. The inclination under equal biaxial compression,
W;, based on the incremental principal plastic strain vector can be

calculated as

W, = nA (f"c—i)n_lm (5.24)

The components of the total principal plastic strain vector under equal

biaxial compression are

e =€) =g, — focd7w) (5.25)
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e) =&y, — 2e; (5.26)
where f,. and g,. are the concrete strength and the corresponding axial
strain. The value of f,. can be calculated from Eq. (5.9) once the values of

m and e are determined. The value of g,. is assumed to have the same

amplification as the value of f;:

e _ fbe

=€ = ¢ (5.27)
By solving Eq. (5.24), the following value for coefficient C is derived:

C=W,—nA (fi_i)n_l (5.28)

In the above process of computation, the value of ag’t is required in Egs.
(5.18), (5.20) and (5.26) to calculate the plastic potential coefficients (i.e. A,
B and C). The initial value of es,t is assumed to be equal to f.,(1 — 2n)/E,
which means that the volumetric strain at peak stress under uni-axial
compression, equal biaxial compression and equal tri-axial compression are
all equal to zero. This value can be changed to fit the overall dilation
behaviour of the full-range stress-strain response of confined concrete. After
the values of A, B and C are determined, the value of t;, can be found by
fitting the slope of the post-peak stress-strain curve. A Matlab Program was
developed to calculate the values of A, B, and C based on the process
described above. The code of this program is given as Appendix Al of this

thesis.
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The present constitutive model was also implemented into ABAQUS by
writing a user-defined material subroutine (UMAT). Finite element models
using this constitutive model were then employed to predict the response of
confined concrete. Test results of actively-confined concrete reported by
Candappa et al. (1999) were once again used as benchmark results to verify

the validity of the constitutive model.

The values of various parameters were determined from Candappa et al.’s
(1999) test data as follows. First, from the test data of peak stresses under
different confining pressures, the value of m was found to be 12.95 using
the least squares method, and the value of f; was then calculated to be 3.3
MPa. Second, from the test data of axial strains at peak stress, the value of

k, was found to be 21.8. The value of ss,t was modified from the initial

value of 0.00082 to 0.0025 to fit the overall dilation behaviour of
confined-concrete. Finally, using Egs. (5.22), (5.23) and (5.28), the values
of A, B, and C were determined to be 4.776, -6.179, and -3.923, respectively.
The finite element predictions obtained with the present calibrated
constitutive model are compared with the test results in Fig. 5.4. The values
of the model parameters are also shown in the figures. These figures show
that the predicted stress-strain curves are in close agreement with the test

results.
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Finally, the present constitutive model was utilized to predict the response
of FRP-confined concrete as was done using the modified DP type model
presented earlier in Chapter 4. The same finite element model as described
in Section 4.3 for FRP-confined concrete was employed with the present
constitutive model replacing the D-P type plasticity model. The
active-confinement model used in Teng et al. (2007) was adopted to identify
values of parameters for the concrete constitutive model. Here, Teng et al.’s
(2007) model instead of Jiang and Teng’s (2007) model is used as it
employs a linear-form equation to predict the axial strain at the peak axial
stress of actively confined concrete. This linear-form equation can be
reproduced by the present constitutive model when its parameter n is equal
to 3. In Teng et al.’s (2007) model, the following equations were adopted for

the peak stress and the axial strain at peak stress:

ff— =1+ 3.52—0 (5.29)
SEC _ fl
Eeo 141750 (5.30)

Eq. (5.29) is in a form different from that of Eq. (5.10), so it cannot be
directly employed to determine the value of m. A least squares method was
adopted to determine the value of m which can satisfy the least squares
approximation between these two equations within certain range of
confinement levels. This range was selected as 0~0.25 which is a common

definition for the range of low confinement (Attard and Setunge 2002).
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Based on this additional assumption, the value of m for FRP-confined

concrete was determined to be 6.13 as shown in Fig. 5.5.

After the value of m was determined, Eq. (5.30) and the initial value of
f'eo(1 —2wW/E for es't were used to determine the values of A, B and C.

The test results of Lam et al. (2006) were selected as the benchmark results
for comparison. Two confinement stiffnesses, 543 MPa and 1086 MPa,
were once again considered in the comparison. Fig. 5.6b shows that for the
higher confinement stiffness, the finite element model provides close
predictions for stress-strain curves including both the axial stress-strain
curves and the axial stress-lateral strain curves. However, Fig. 5.6a shows
that for the lower confinement stiffness, the finite element model only
provides close predictions for the axial stress-lateral strain curve. The axial
strain can be observed from Fig. 5.6a of being overestimated so that the
axial stress- strain curve is still underestimated although the axial stress at a

given lateral strain is close to the test result.

To refine the predictions of the finite element model, the parameters which
control the dilation characteristics of the constitutive model need to be

modified to fit the experimental results more closely. As discussed earlier,

p

the most important parameter that controls the dilation characteristics is & .

This parameter needs to be revised from the initial assumed value to a new
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value so as to predict the test result of FRP-confined concrete with lower
confinement stiffness accurately. As Ss,t also influences the slope the
post-peak branch of the stress-strain curve, the parameter t,, also needs to
be revised to remedy the change induced by the revised value for ss,t. The
need for these possible revisions means that in the case of FRP confinement,
the values of Ss,t and t, can no longer be taken as constant for different

confinement stiffnesses; instead, their values need to vary with the
confinement stiffness. The behaviour of the finite element model with the
revised parameter values is shown in Fig. 5.7. This figure shows that once
lateral dilation was properly predicted, the constitutive model with revised

value of est provided comparatively more accurate predictions for

stress-strain curves of weakly-confined concrete than that with default value.
Although the ultimate state of the FRP-confined concrete was adequately
predicted, difference still existed between the predicted result and the
experimental results. This difference is reflected in the axial stress before
the ultimate axial strain. In this range, the lateral strain at a given axial
strain tends to be overestimated (see the left part of Fig. 5.7) resulting in an

overestimated axial stress. It can be expected that using a gradually

p

increased &,

can provide more accurate prediction. However, this

modification leads to a much more complex constitutive model and is not

the major concern in the present study.
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5.4 CONCLUSIONS

This chapter has been concerned with the performance of Papanikolaou and
Kappos’s (2007) model on actively confined concrete and FRP-confined
concrete. As Papanikolaou and Kappos’s (2007) model is a relatively new
constitutive model and is not available in existing commercial software, this
model was first implemented into ABAQUS as a UMAT subroutine. Then,
this UMAT subroutine was employed in finite element models for
simulating confined concrete. The results of these finite element models
were utilized for evaluating the performance of actively confined concrete

and FRP-confined concrete.

Twelve parameters are employed in this model for describing the behaviour
of concrete under confinement. Compared to the D-P type model based on
the scaling approach discussed in Chapter 4, this model uses a more
complex loading surface and a flow rule which can account for the effect of
the Lode angle on the confinement effect. A major advantage of this model
is that each parameter can be determined using a relatively simple process

which allows the role of each parameter to be properly considered.

This model can provide accurate predictions for the stress-strain behaviour

of actively-confined concrete under different confining pressures. For

p

FRP-confined concrete, the model with a constant value for e, is
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unsuccessful in predicting the stress-strain behaviour of concrete confined
with FRP jackets of different confining stiffnesses although the predictions
are accurate for a certain confining stiffness. For this model to provide close
predictions for FRP-confined concrete over a wide range of confining

stiffnesses, the value of aat needs to vary with the confining stiffness.

In summary, the discussions presented in Chapter 4 and this chapter show
that plasticity-based constitutive models for concrete that employ either the
scaling technique or the plastic volumetric strain approach can both provide
accurate predictions for actively-confined concrete, but improvements are
still needed before they can deliver accurate predictions for FRP-confined
concrete. It has been found that refinement of the hardening/softening rule

has an insignificant effect on the prediction of lateral deformation.

5.5 REFERENCES

Attard, M. M., and Setunge, S. (1996). "Stress-strain relationship of
confined and unconfined concrete." ACI Materials Journal, 93(5),

432-442.

Barros, M. H. F. (2001). "Elasto-plastic modelling of confined concrete
elements following MC90 equations." Engineering Structures, 23(4),
311-318.

Candappa, D. P., Setunge, S., and Sanjayan, J. G. (1999). "Stress versus

167



strain relationship of high strength concrete under high lateral
confinement." Cement and Concrete Research, 29(12), 1977-1982.

Cervenka, J., Cervenka, V., and Eligehausen, R. "Fracture-plastic material
model for concrete, application to analysis of powder actuated
anchors." Proceedings of the 3rd International Conference on
Fracture Mechanics of Concrete Structures-FRAMCOS 3, Gifu,
Japan, 1107-1116.

Grassl, P., Lundgren, K., and Gylltoft, K. (2002). "Concrete in compression:
a plasticity theory with a novel hardening law." [International
Journal of Solids and Structures, 39(20), 5205-5223.

Imran, 1., and Pantazopoulou, S. J. (2001). "Plasticity model for concrete
under  triaxial  compression."  Journal of  Engineering

Mechanics-ASCE, 127, 281.

Johansson, M., and Akesson, M. (2002). "Finite element study of
concrete-filled steel tubes using a new confinement-sensitive

concrete compression model." Nordic Concrete Research

-Publications, 27, 43-62.
Lam, L., Teng, J. G., Cheung, C. H., and Xiao, Y. (2006). "FRP-confined

concrete under axial cyclic compression." Cement & Concrete
Composites, 28(10), 949-958.
Menetrey, P, and Willam, K. J. (1995). "Triaxial failure criterion for

concrete and its generalization." ACI Structural Journal, 92(3),

168



311-318.

Papanikolaou, V. K., and Kappos, A. J. (2007). "Confinement-sensitive
plasticity constitutive model for concrete in triaxial compression."
International Journal of Solids and Structures, 44(21), 7021-7048.

Teng, J. G., Huang, Y. L., Lam, L., and Ye, L. P. (2007). "Theoretical model
for fiber-reinforced polymer-confined concrete." Journal of
Composites for Construction-ASCE, 11(2), 201-210.

Van Gysel, A., and Taerwe, L. (1996). "Analytical formulation of the
complete stress-strain curve for high strength concrete." Materials

and Structures, 29(9), 529-533.

169



Figure 5.1 Yield surfaces of Papanikolaou and Kappos (2007)’s model in
the deviatoric plane
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Figure 5.2 Effect of parameter k on the yield surfaces of Papanikolaou and

Kappos’s (2007) model
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Figure 5.3 Influence of parameter c on the yield surfaces of Papanikolaou
and Kappos’s (2007) model
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Figure 5.4 Comparison between finite element predictions and test results of
Candappa et al. (1999)
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Figure 5.5 Determination of m using the least squares approach
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model and test results of Lam et al. (2006)




CHAPTER 6
PLASTIC-DAMAGE MODELSFOR CONFINED
CONCRETE

6.1 INTRODUCTION

It has been concluded in Chapters 4 and 5 that a plasticity-based constitutive
model for concrete, employing either the scaling technique or a novel
hardening wvariable (e.g. the plastic volumetric strain) in the
hardening/softening rule (referred to as the hardening rule for brevity), leads
to accurate predictions of the behaviour of actively-confined concrete, but
fails to capture the lateral deformation characteristics and hence the

stress-strain behaviour of FRP-confined concrete.

Elastic unloading is assumed in the theory of plasticity, which does not
reflect the elastic stiffness degradation of concrete observed in laboratory
experiments. In contrast, this stiffness degradation can be described using
the theory of damage mechanics. Moreover, concrete exhibits considerable
irreversible deformation which cannot be described by the theory of damage
mechanics alone. That is, either plasticity or damage alone, cannot achieve a
satisfactory description of the complex failure process of concrete which is
characterized by both stiffness degradation and irreversible deformation.

Consequently, plastic-damage models, which are based on a combination of
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the flow theory of plasticity and the theory of damage mechanics, have
emerged as a popular approach for the constitutive modelling of concrete.
The combination of plasticity theory and damage mechanics is believed to
be capable of closely representing most of the important features of concrete
failure. This chapter is therefore concerned with the constitutive modelling

of concrete using the plastic-damage (or damaged plasticity) approach.

While the inclusion of damage in a constitutive model is for the simulation
of the elastic stiffness reduction of concrete as deformation increases, it also
affects the hardening rule employed in the plasticity part of a
plastic-damage constitutive model. For instance, the softening behaviour of
concrete in some plastic-damage models (e.g. Grassl and Jirasek 2006) is
described as damage, so the hardening rule in the plasticity part only
describes the hardening behaviour of concrete. This process overcomes the
possible numerical difficulty which may be encountered when plasticity
model was employed for simulating the strain-softening behaviour of
concrete. Therefore, even if elastic stiffness reductions are not of major
concern, a plastic-damage model may provide an attractive alternative
approach for the modelling of concrete with strain-softening regime. This
chapter is concerned with the exploration of this possibility in the modelling

of confined concrete.
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In formulating the hardening rule of the plasticity part of a plastic-damage
model for confined concrete, the two techniques examined in Chapters 4 &
5 (i.e. the scaling technique and the plastic volumetric strain technique) are
still required to consider the increased ductility of concrete due to lateral
confinement. Otherwise, the ascending branch of the concrete response
which is controlled by the hardening rule of the plasticity part cannot be
properly predicted. Based on the above discussion, it can be concluded that
the contributions of these two parts (i.e. the hardening rule and the damage
variable) in plastic-damage models should be properly formulated to
accurately predict the increased deformation capacity of concrete under

lateral confinement.

Existing plastic-damage models are usually based on plasticity with
isotropic hardening enriched by either isotropic (scalar) (e.g. Lubliner et al.
1989) or anisotropic (vector) (Carol et al. 2001) damage. Compared to
isotropic damage, an anisotropic damage model for concrete is more
complex and is harder to combine with plasticity; in addition, its application
in structural analysis is also not straightforward. Moreover, there are
insufficient experimental data for verifying this type of damage models.
Due to these limitations of an anisotropic damage model, the isotropic
damage model has been widely used instead for combination with plasticity

to develop plastic-damage models following various approaches. In the
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present study, all considerations of concrete damage are limited to isotropic

damage.

Two approaches have been commonly employed in combining plasticity
with damage in the existing literature. The first approach comprises the
combination of plasticity based on nominal stresses with damage whose
evolution is defined by the total or plastic strain (Lubliner et al. 1989; Imran
and Pantazopoulou 2001). Here, the term “nominal stress” refers to a
macro-level stress and is defined as a force divided by the total area acted
upon by the force. The plasticity part in the second approach is based on
effective (undamaged) stresses and is combined with damage whose
evolution is also defined by the total strain or plastic strain . Here, the term
“effective stress” refers to an average micro-level stress in the undamaged
material between defects and is defined as a force divided by the

undamaged part of total area acted upon by the force.

Based on the so-called local uniqueness conditions, Grassl and Jirasek
(2006) assessed the performance of the two approaches mentioned above.
They found that the second approach is numerically more stable and
attractive for developing plastic-damage models (Grassl and Jirasek 2006).
When plasticity is defined based on effective stresses, the plasticity part and

the damage part of a plastic-damage model is uncoupled, and no further
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restriction on the specific form of the plastic part and the damage part is
required. However, if plasticity is defined based on nominal stresses, the
evolution of the damage variable requires a positive plastic modulus in the
plastic part to achieve local uniqueness. This restriction makes the approach
unsuitable for materials with softening behaviour. A more in-depth
discussion of the issue can be found in Grassl and Jirasek (2006). Due to
this advantage of the second approach, this chapter is only concerned with
plastic-damage models formulated in the effective stress space and based on

a scalar damage variable.

Two plastic-damage models representing two different approaches are
considered in this chapter, which is similar to the work presented in
Chapters 4 & 5. In the first model, the scaling technique is employed to
describe the behaviour of confined concrete; whereas in the second model,
the plastic volumetric strain technique is employed instead. The two
plastic-damage models examined in this chapter include: (a) the
plastic-damage model proposed by Grassl and Jirasek (2006) which is based
on the first approach; and (b) a new plastic-damage model formulated on
the basis of the framework of Papanikolaou and Kappos’s (2007) plasticity

model. Details of these two models are given in the following sections.
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6.2 GRASSL AND JIRASEK'’S (2006) MODEL

Grassl and Jirasek (2006) developed a plastic-damage model for concrete
based on their assessment of different types of plastic-damage models. The
plasticity part of the model is given in the effective stress space, and the
damage part of the model is driven by the scaled plastic volumetric strain.
The equations used to define the basic components of the plasticity and the

damage parts of this model are given in the subsequent sub-sections.

6.2.1 Components of the Plasticity M odel

The plasticity part of this model is defined by a pressure-sensitive yield
function, a non-associated flow rule, and a hardening rule based on the
scaling technique. In this model, the scaling law is referred to as the
ductility measure. The hardening law, which is an important feature of this

model, is given in detail below.

6.2.1.1Yidd surface

The yield function was modified from that proposed by Etse and Willam
(1994). Its expression, defined in the Haigh-Westergaard effective stress

space, is as follows:
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where oy, p,0 are the volumetric effective stress, the deviatoric effective
stress, and the Lode angle in the effective stress space, respectively. The
Gy,p,0 can be defined by Egs. (2.96-2.98) using the corresponding
effective stress components instead of the total stress components. The
parameter r is the same as that defined by Eq. (5.3) except that the
corresponding components defined in the total stress space in Eq. (5.3)
should be replaced by those defined in the effective stress space. The
parameter m is the same as that defined by Eq. (5.2). The parameter qy
controls the hardening rule of this model and is defined as a function of the
hardening variable k,. When the variable qy, is equal to one, the yield
function turns into the failure surface proposed by Menetrey and Willam
(1995); for uniform confinement, this equation can be further reduced to the

Hoek and Brown failure criterion. Thus, it is clear that the value of m can

be calibrated using the same approach as that suggested in Chapter 5.

6.2.1.2 Flow rule

A non-associated flow rule is adopted in Grassl and Jirasek’s (2006) model,

which means that the yield function and the plastic potential do not coincide.
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Therefore, the direction of the plastic flow is not normal to the yield surface,
which is important for the realistic modelling of the lateral deformation of
concrete under compression. As discussed in previous chapters (e.g.
Chapters 2 and 4), an associated flow rule tends to give unrealistically high
volumetric expansions in compression. Based on these considerations, the

plastic potential in the model is given as

gp(5v.p. ;%)

— — 2 —

p Oy 3p
=<[1- —+— | + |z
[ qh(Kp)] ( ,_6f’co Fco) 2 f'co

mﬁ mg((_SV)
+ q%’l(Kp) [\/8{:/ + f'CO
co

(6.2)
Eq. (6.2) does not depend on the Lode angle so as to increase the efficiency
of the implementation of the model. This feature partially limits the
capability of the flow rule for describing the response of concrete in
complex multi-axial compression. To properly reflect the plastic volumetric
expansion, the parameter mg which controls the ratio of the volumetric and
the deviatoric parts of the flow direction, is defined based on the volumetric

stress as follows:

_ , sy—f
mg(Gy) = AgByf coexp “f (63)

where A and By are parameters determined from lateral plastic
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deformations under the two conditions of uni-axial tension and compression.

They are given as follows:

Ag =+

e = F, (6.4)

N | B

— 1/3(1+ft/f’co)
Bg o lnAg_ln(ZDf_l)_ln(%+3)+ln(Df+1) (65)

Here, D¢ should be determined by fitting the results of uni-axial

compression.

6.2.1.3 Hardening law

The dimensionless variable qp controls the evolution of the yield surface,
and thereby the elastic range. q;, is defined as a function of the hardening

variable «, as follows:

p

— 2 _
an () = {Qho + (1 — gno)xp (k3 — 3K, +3), kp < 1 66)

1, Kp = 1
The scaling technique was adopted in the Grassl and Jirasek (2006) model
to capture the increase in ductility due to lateral confinement. The increment
of the hardening variable is defined as
dep _

dx, = cos?0 (6.7)

L NG

where X is a hardening ductility measure used to scale the plastic strain

increment de, [the definition dg, is the same as that used in Wolf (2008)],

a more complex xy, is defined as follows:
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Enexp(—Ry,(6y)/Fy) + Dy, Rp(Gy) <0

xp(Gy) = {Ah — (A, — Bp)exp(—Ry(G6y)/Cy), Ry(oy) =0

(6.8)

where Ay, By, Cy, and Dy, are calibrated using values of strain at peak
stress under uni-axial tension, uni-axial compression and equal tri-axial
compression, whereas E;, and Fy are given by the following equations to

ensure a smooth transition between the two parts of Eq. (6.8) at R, = 0:

Eh = Bh - Dh (69)
_ (Bh—Dp)Ch
Fp = —p o= (6.10)

6.2.2 Components of the Damage M odel

Isotropic scalar damage is employed to formulate the damage part of the
Grassl and Jirasek (2006) model. A salient feature of this damage model is
that damage is driven by the scaled volumetric plastic strain instead of the
total strain which is employed in a pure damage model. The individual
components of the damage model are presented in the following

sub-sections.

6.2.2.1 Loading function and equivalent strain

The damage loading function is based on the scaled volumetric plastic strain
which is defined as
0, Kp < 1

di=1 (6.11)
xs(Gv)’ Kp >1
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where Xg is a softening ductility measure defined as

1+ AR3(Gy), Rs(Gy) <1

6.12
1 —3A, + 4A/R; (Gy), Ry(Gy) =1 (6.12)

Xs (6V) = {

In the above equation, Ag is a parameter that controls the softening
response in uni-axial compression, and Ry is defined as ®/k. Here K is the
so-called "negative" volumetric plastic strain and is defined as
ﬁ=213=1(—d8p1) (6.13)
where dep; are the principal components of the plastic strain increments
and as mentioned earlier () denotes the McAuley bracket (positive-part
operator). Compressive strains are defined as negative in the Grassl and
Jirasek (2006) model. Eq. (6.13) indicates that only the contribution of

compressive plastic strains is considered in the definition of &.

6.2.2.2 Evolution law

To describe the evolution of damage, an exponential equation is employed
to relate the damage variable ®q4 to the internal variable €
0q =1 — exp(—£/¢gf) (6.14)

where & is a parameter that controls the slope of the softening curve.

6.2.3 Implementation in Finite Element Analysis

An existing finite element program named OOFEM and written by Patzak
(Patzak and Bittnar 2001) was adopted for use in the numerical analyses of

the present study. OOFEM 1is a free finite element code with an
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object-oriented architecture for solving mechanical, transport and fluid
mechanics problems. In OOFEM, the present constitutive model was not
directly provided. Instead, a non-local version of this model was offered.
The non-local version and the local version of a constitutive model require
different processes of parameter calibration. In the present study, only the
local version of the constitutive model is of interest. Therefore, the
non-local version in this program was revised to become a local version.
The process suggested in the subsequent sub-sections can then be used to

calibrate the parameters for the present constitutive.

The present constitutive model is the only model examined in this PhD
project which has been implemented in OOFEM; other constitutive models
examined in the project were implemented in ABAQUS. Using OOFEM,
the same finite element model as described in Chapter 4 were employed to
model the selected experiments except that the element types were replaced
by the same types of elements available in OOFEM. For instance, the C3D8§
element in ABAQUS to model the concrete was replaced by the LSPACE
element in OOFEM, and the T3D2 element in ABAQUS to model the

confining material was replaced by the TRUSS3D element in OOFEM.
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6.2.4 Parameter Calibration and Comparison with Test Results

6.2.4.1 General

A total of fifteen parameters are used in the Grassl and Jirasek (2006) model
to define the general response of concrete. These parameters can be divided
into four groups: the elastic properties, the hardening regime, the strength
envelope, and the softening regime. The elastic properties are defined by the
Young’s modulus E and Poisson’s ratio p, which can be obtained directly
from experimental results. The strength envelope of the Grassl and Jirasek
(2006) model in the effective stress space is defined by three parameters,
including the uni-axial tensile strength f,, the uni-axial compressive
strength f'.,, and the eccentricity parameter e. The hardening rule is
characterized by five independent parameters. Among these parameters,
Qno defines the initial value of the hardening variable, and Ay, By, Cy,
and Dy, define the hardening ductility measure. The softening regime is
characterized by & and Ag for the softening ductility measure.
Furthermore, both the hardening and softening regimes are affected by the

parameters of the flow rule, A; and By, which can be calculated from Egs.

(6.4) & (6.5).

6.2.4.2 Default values for some parameters

To determine all the fifteen parameters from experimental results is a huge
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task. Default values have thus been suggested by Grassl and Jirasek (2006)
to simplify the procedure of parameter calibration. qpo is defined as
Qho = fini/feo Where fi,; is the initial yield strength of concrete under
uniaxial compression. Usually, f,,; is set to be 0.3f., . Explicit
relationships between Ay, By, C,, and Dy, (which affect the hardening
ductility measure) and measurable material properties do not exist. Based
on the fitting of selected sets of experimental results (e.g. Kupfer et al. 1969;
Imran and Pantazopoulou 1996), Grassl and Jirasek (2006) suggested the
following default values for these three parameters: A, = 0.08, ,C, = 2,

and Dy = 1le — 6. Besides these three parameter, a linear relationship

pea

k ..
D under uni-axial

between By and the axial plastic strain at peak stress €
compression was provided:
B, = —2.29e5°™ + 0.00046 (6.15)

D¢ has a significant influence on the lateral-to-axial strain relationship for
both unconfined and confined concrete. Based on a long trial-and-error
process, a default value of 0.85 was suggested by these authors for Dy. &
and A control the softening regime of the stress-strain behaviour of
concrete. Their values should be determined from the fracture energy Gy
and from the softening part of the stress-strain curve under uni-axial
compression. The expressions for these two parameters are similar. Grassl
and Jirasek (2006) recommended a default value of 15 for Ag to simplify

the process of parameter calibration. Finally, Grassl and Jirasek (2006)
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proposed a default value of 0.525 for the eccentricity parameter e to achieve
an equal biaxial concrete strength close to Kupfer et al.’s (1969)
experimental results. The eccentricity parameter controls the shape of the

deviatoric section as discussed in the previous chapter.

6.2.4.3 Calibration of the remaining parameters

With the default parameter values detailed above, only the values of the
following parameters are unknown: E, p, f'.,, f;, and &. Among these
parameters, E, p, and f'., are material properties of unconfined concrete
and can be determined from standard tests. If the experimental value for p,
is unavailable, a default value of 0.2 may be adopted, which should lead
only to negligible errors in the finite element results. As illustrated in
Chapter 5, f, relates to m, e, and f;, as described by Eq. (6.2). If h(x) in
Eq. (5.2) is equal to 1, this equation can be rewritten as
fo-ft e

m=3=
choft e+1

(6.16)
The value of m can be determined from a selected set of test data using the

least squares method. The artificial f; value can then be calculated from Eq.

(6.16).

The parameter & is used to fit (using a trial-and-error process) the slope of

the softening part of the stress-strain curve under uni-axial compression. If

localization of failure occurs, this parameter should change with the element
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size. As only concrete under uniform confinement was modeled using a
single solid element in the present study, there was no such localization
failure. Therefore, the value of & in the present study did not need to vary

with the element size.

Test results for actively-confined concrete reported by Candappa et al.
(1999) were used to assess the stress-strain curves obtained from finite
element analysis using Grassl and Jirasek’s (2006) model with calibrated
parameters. The detailed process of calibration for this set of experiments is

described in the subsequent paragraphs.

As presented in Chapter 5, the value of m can be determined to be 12.95.
Based on this value of m, the value of f; can then be found to be 3.3 MPa.
For &g a value of 1.65e-4 was obtained from a trial-and-error process for
the descending branch of the stress-strain curves of confined concrete . For
the other parameters, their default values as suggested by Grassl and Jirasek
(2006) were adopted. The same finite element model as described in
Chapter 4 for actively-confined concrete was employed in the numerical
analysis. Fig. 6.2 shows that the predicted stress-strain responses using the
final calibrated parameters compare favorably with the test results. This
comparison indicates that the present constitutive model can provide close

predictions for actively-confined concrete.
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Grassl and Jirasek’s (2006) model was next utilized in predicting the
response of FRP-confined concrete. The same finite element model as
described in Section 4. 4 for FRP-confined circular concrete cylinders was
adopted, but the present concrete constitutive model was used to replace the
D-P type model. Eq. (5.29) was adopted to identify the value of m and then
to calculate the value of f; using Eq. (6.16). As the present constitutive
model has the same failure surface as that of Papanikolaou and Kappos’s
(2007) model, the same values for f; as those adopted in Papanikolaou and
Kappos’s (2007) model for FRP-confined concrete cylinders were obtained.
The values of E, p, and f',, were determined from the control cylinder
tests; these values are the same as those adopted in the D-P type model and
are shown in Fig. 6.2. To better fit the value of ¢.,, the value of B, was
adjusted from the default value of 0.003 to 0.00325. The value of & was
set to be 9.6e-4 to fit (using a trial-and-error process) the slope of the second
branch of stress-strain curves for FRP-confined concrete. All other
parameters retained their default values. The experimental stress-strain
curves are compared with the predicted curves in Figs. 6.3. The predicted
results are similar to the finite element results based on Papanikolaou and
Kappos’s (2007) concrete model. For the specimens with the confinement
stiffness equal to 1086 MPa, the finite element results are in close

agreement with the experimental results for both the axial stress-strain curve
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and the axial stress-lateral strain curve. For the specimens with the
confinement stiffness equal to 543 MPa, the finite element predictions differ
substantially from the experimental results for the axial stress-strain curves
although the two sets of results are in agreement for the axial stress-lateral
strain curves. This inconsistency indicates that the finite element model
cannot accurately capture the lateral-to-axial strain relationship for concrete

at different confinement stiffness levels.

The above discussion indicates a plastic-damage model with its hardening
part based on the scaling technique cannot provide accurate predictions for
the lateral-to-axial strain response of FRP-confined concrete. The inclusion
of isotropic damage in this type of plastic-damage model seems to have

little influence on the volumetric response of concrete.

6.3 PLASTIC-DAMAGE MODEL BASED ON PAPANIKOLAOU AND

KAPPOS’ (2007) PLASTICITY MODEL

6.3.1 General
As shown in Chapter 5, Papanikolaou and Kappos’s (2007) plasticity model

is capable of providing accurate predictions for actively-confined concrete,
and the values of its parameters can be determined via a simple and clear
process of parameter calibration. In the softening part of this constitutive

model, a plastic softening model is adopted. As explained earlier, for the
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description of the softening characteristics of concrete, a damage model has
advantages over a plasticity model. Therefore, in this section, a
plastic-damage model based on Papanikolaou and Kappos’s (2007)
plasticity model is presented. This plastic-damage model is referred to as
PDPK model in this thesis. The advantages of Papanikolaou and Kappos’s
(2007) plasticity model are retained in the proposed plastic-damage model.
For instance, the process of determining the values of A, B and C remains
the same. The equations used for the definition of this model are given in

the following sub-sections.

6.3.2 Components of the Plasticity M odel

The plasticity model includes a pressure-sensitive yield function, a
non-associated flow rule, and a hardening rule with a novel hardening

variable.

6.3.2.1 Loading surface

The loading function proposed by Papanikolaou and Kappos (2007) is given
by Eq. (5.1) which is applicable to both hardening and softening responses.
In the present model, only the hardening response of concrete is considered
in the plasticity part, while the softening part is accounted for by the

damage model.

By assigning a value of 1 to c(x) in Eq. (5.1), the yield function is
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obtained as follows:

2
p _ p P & _
fP(E p,0) = (,/ 3/2 YT t,CO) +m (—%h T r(0,e) + NI t,CO) 1 (6.17)

As previously discussed, a similar approach has previously been adopted by
Grassl and Jirasek (2006) and Yu et al (2010b). After the attainment of peak
stress, no strain-hardening/softening is defined in the plasticity part, and the
yield surface remains unchanged. For the hardening parameter h(x), an
elliptic-type function (i.e. Eq. 5.5) is still adopted. This elliptic-type
function is an important part to ensure that the condition used to determine

the values of A, B, and C is still satisfied.

6.3.3.2 Flow rule

For the definition of the flow rule, a constant value of 1 replaces c(x) in

Eq. (5.11) so that it becomes

g=A (k;’m)n +[c+2@B - 01 - cos30)] Tt (619)

The values of other parameters are determined in the same way as in
Papanikolaou and Kappos (2007). Egs. (5.5), (6.17) and (6.18) ensure that
the plasticity part of the PDPK model is the same as that of Papanikolaou
and Kappos’s (2007) model before the peak stress of confined concrete is
reached. Therefore, the values of A, B, and C can be determined using the

same approach as in Papanikolaou and Kappos’s (2007) model.
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6.3.4 Components of the Damage M odel

6.3.4.1 General

The isotropic scalar damage concept is once again adopted in the damage
part of the proposed model. In this new damage model, a new loading
function was employed for the definition of the damage evolution. A major
feature of this loading function is that it is driven by the plastic volumetric
strain. This feature is different from that of some pure damage models
which is usually driven by the total strain (e.g. Mazars and Pijaudier-Cabot

1989).

6.3.4.2 Evolution law

The evolution law of damage is applied in the proposed model to describe
the descending branch of the stress-strain behaviour of concrete. It is
assumed to have the same form as that used to describe the softening part of
the hardening rule adopted in Papanikolaou and Kappos’s (2007) plasticity
model. The following equation relates the damage variable wg to the
internal variable «:

0g =1-—c(x) (6.19)

where c(x) has the same form as that of Eq. (5.6).

A process similar to that suggested by Grassl and Jirasek (2006) was
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adopted to calculate stress components from corresponding strain
increments. More detailed information such as the evaluation of nominal
stresses from effective stresses based on the calculated value of the damage

variable can be found in Grassl and Jirasek (2006).

6.3.5 Calibration
Papanikolaou and Kappos’s (2007) model was implemented in ABAQUS

through a user-defined material subroutine (UMAT). The test results for
actively-confined concrete reported by Candappa et al. (1999) were again
used to verify the proposed constitutive model. The process of parameter
calibration for the PDPK model is the same as that of Papanikolaou and
Kappos’s (2007) model. The values previously determined for A, B, and C
for Papanikolaou and Kappos’s (2007) model were directly used in the
proposed model. Only the value of t, needed to be revised from 0.003 to
0.009 to fit the slope of the descending branch. The same finite element
model as described in Chapter 4 was still used except that the constitutive
model was replaced by the present constitutive model. The finite element
predictions based on the present model are compared with the test results in
Fig. 6.4; values of the model parameters are given in the figure. It can be
found that the predicted stress-strain curves compare favorably with the test
results. Indeed, the performance of the PDPK model is similar to that of

Papanikolaou and Kappos’s (2007) model.
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Finally, test results of FRP-confined concrete were used for assessing the
capability of the proposed constitutive model. Except for the value of t,,
the values for other parameters are the same as those previously determined
for Papanikolaou and Kappos’s (2007) model. The value of t, was
determined to fit the axial stress- strain and axial stress-lateral strain curves
of FRP-confined concrete with a confinement stiffness equal to 1086 MPa;
a value of 0.018 was found from this process. A comparison of the finite
element results with the experimental results for this confinement stiftness
is given in Fig. 6.5a. It is seen that the finite element results are accurate.

However, when this value for t, was used to provide predictions for

FRP-confined concrete with a confinement stiffness equal to 543 MPa, the
finite element predictions overestimate the experimental axial strains. The
performance of the PDPK model for FRP-confined concrete is also similar
to that of the original plasticity model proposed by Papanikolaou and
Kappos (2007). This phenomenon indicates that although different
approaches (softening plasticity and damage) were used for the description
of the softening behaviour of concrete, no significant difference is observed
from the predicted lateral deformation response. Therefore, it can be
concluded that as long as proper values for the model parameters are
employed, a plasticity model and a plastic-damage model provide similar
results for confined concrete under monotonic loading. It should be noted

that if unloading becomes important, only a plastic-damage model can
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predict stiffness degradation as the degree of damage increases.

6.3.6 Discussions

Based on the parameter calibration and the model assessment presented
above, it can be concluded that the PDPK model provides predictions which
are similar to those obtainable from Papanikolaou and Kappos’s (2007)
plasticity model. The values of all parameters except t, can be the same as
those in Papanikolaou and Kappos’s (2007) model; the value of t, should
be approximately three times its value in Papanikolaou and Kappos’s (2007)
model. According to existing studies such as Grassl and Jirasek (2006), the
proposed model is a more stable model than Papanikolaou and Kappos’s
(2007) model as it simulates stress reductions after the peak stress by
reductions in elastic constants instead of retractions of the yield surface in
the stress space (Yu et al. 2010). The plastic damage model does, however,
still suffer from the same incapability in modelling FRP-confined concrete
as the plasticity model is based on. This shortcoming may be overcome by

employing a more complex damage model such as a vector damage model

(e.g. Carol et al. 2001).

6.4 CONCLUSIONS

In this chapter, the performance of two types of plastic-damage models in
predicting the stress-strain response of plain concrete in uniaxial and equal

tri-axial compression has been examined. In both approaches, the yield
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surface is assumed to remain unchanged after the attainment of the peak
stress of concrete, the plasticity part is based on isotropic hardening
described in the effective stress space, and the damage part is driven by the

plastic volumetric strain or normalized plastic volumetric strain.

Comparisons between the finite element predictions and the experimental
results have been presented to assess the capability of these two approaches.
It seems that both approaches can provide accurate predictions for both
unconfined concrete and actively-confined concrete provided that properly
calibrated parameters are used. However, they both fail to provide accurate
predictions for FRP-confined concrete with different confinement
stiffnesses. This weakness is inherited from the plasticity model they are
based on and has not been overcome or alleviated by the use of an isotropic
damage model to describe the post-peak softening behaviour of concrete.
An anisotropic damage model may be necessary so that the predicted
lateral-to-axial strain relationship for confined concrete can be significantly

changed. This is beyond the scope of the present chapter.

Based on the assessment of the four types of concrete constitutive models as
presented in Chapters 4, 5 and 6, it may be concluded that both the scaling
technique and the use of a novel hardening variable only help in the

modelling of concrete under active confinement where the confining
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pressure is independent of lateral deformation. For FRP-confined concrete,
which is a typical form of passive confinement, the accurate prediction of
lateral deformation is an important issue, but improvement in the hardening
rule or inclusion of damage has insignificant effects on the predicted lateral
deformation. As the accurate prediction of lateral deformation of confined
concrete is the key to the accurate prediction of the behaviour of
passively-confined concrete, this aspect will be examined in detail in the

subsequent chapters.
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CHAPTER 7
MICROPLANE MODEL FOR CONFINED
CONCRETE

7.1 INTRODUCTION

Based on the discussions in the previous chapters, one important application
of FRP composites is as wraps or jackets for the confinement of reinforced
concrete (RC) columns for enhanced strength and ductility. To consider the
effect of confining stresses which act orthogonally to the direction of the main
compressive stresses, particularly when the stresses vary over the section (i.e.
non-uniform confinement), a three-dimensional (3-D) concrete constitutive
model is required. Many constitutive models have already been proposed for
concrete under multi-dimensional stress states (see Chapters 2, 4-6). Different
theoretical frameworks have been used in formulating these models, including
nonlinear elasticity models, plasticity models, plastic-damage models, and
endochronic models for concrete (Chen and Han 2007). Although, great
achievements have been made in the modelling of concrete by applying these
macroscopic constitutive models such as nonlinear elastic and elasto-plastic
models for both actively confined concrete (i.e. confined by a constant
confining pressure) and passively confined concrete (i.e. confined by an
increasing confining pressure as the concrete dilates)(Mirmiran et al. 2000;

Yeh and Chang 2007; Yu et al. 2010a; Yu et al. 2010b), there is still the need to
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develop better approaches for modelling the confinement mechanism of

concrete.

In recent years, the microplane model (Bazant et al. 2000) has attracted
increasing attention from researchers interested in modelling the stress-strain
behaviour of confined concrete due to its intrinsic advantages( Liu and Foster
2000; Ghazi et al. 2002; Baky et al. 2010). The microplane model is a general
3-D constitutive model which describes the complicated inelastic properties of
concrete based on one dimensional (1-D) stress-strain models defined on
planes at various orientations at a material point. On each of those micro
planes, the microstrains are obtained through the projection of the strain tensor
based on the concept of kinematic constraint. The micro stresses can be
calculated from the corresponding micro strains (using the previously defined
1-D stress-strain models), and finally the stress tensor is derived from these
micro stresses using the principle of virtual work. This process avoids the
direct description of the complex relationships between the stress tensor and
the strain tensor, at the expense of a larger amount of calculation. The major
advantage of the microplane model is its conceptual simplicity. Another salient
feature of this approach is that it relies on relationships at the microscopic
level instead of the macroscopic level. The so-called micro planes may be
imagined to represent damage planes or weak planes in the micro-structure of
concrete material. It is well-known that certain macroscopic phenomena of

concrete can be reasonably well interpreted using microscopic mechanisms.
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For instance, the shear dilation effects of concrete can be easily explained by
the difference between the magnitudes of the tensile and the compressive
deviatoric boundaries. Due the intrinsic advantages mentioned above, the
microplane model is a promising constitutive model for predicting the

mechanical response of concrete, especially its confinement mechanism.

Despite the advantages listed above, some drawbacks also exist in the original
microplane models such as model M4 (Bazant et al. 2000).These drawbacks
primarily exist in the computational aspects as summarized by Nemecek et al.
(2002) and Tue et al. (2008). Existing investigations on confined concrete
using microplane models (Liu and Foster 2000; Ghazi et al. 2002; Baky et al.
2010) are all based on their original versions without eliminating the
associated drawbacks. To achieve reliable predictions using microplane
models, it is necessary to eliminate these drawbacks from the analysis. The
aim of this chapter is to present a modified version of microplane model M4 to

whose associated drawbacks have been eliminated.

In the following sections, the concepts and corresponding equations for the
microplane model M4 are first briefly recalled for the completeness. This is
then followed by presenting the remedies for the M4 model. In the following

sections, the microplane model M4 is referred to as the M4 model for brevity.
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7.2 FORMULATION FOR THE M4 MICROPLANE MODEL

7.2.1 Formulations for Microplane Model Proposed by Bazant et al.

(2000)

Seven versions of the microplane model have been developed by Bazant and
his co-workers (Bazant and Caner 2005). These seven versions are named as
M1 through M7, with M7 being the latest version. The most frequently used
versions are M2 and M4 (Liu and Foster 2000; Ghazi et al. 2002; Di Luzio
2007; Baky et al. 2010) instead of the latest version M7. For confined concrete,
the M4 model is preferred as it has almost the same stress-strain behaviour
within the compression regime as that of the latter version (i.e. microplane

model M5) but has a relatively simple formulation.

As mentioned earlier, the formulation used in the microplane approach
describes the complicated inelastic properties of concrete through individual
micoplanes which can be at all possible orientations at a material point. The
kinematic constraint, which is a basic hypothesis of the microplane model, is
applied to determine the micro-strains from the macro-strain tensor. Based on
the kinematic constraint assumption, the micro-strains on a microplane are
projections of the macro strain tensor on that plane. As a result, the normal and
the shear strain components on each microplane according to the M4 model
are as follows(Bazant et al. 2000):

en = Njgij, em = Mgy, €L = Lygj; (7.1)
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Where ¢g;; is the macro-strain tensor, €y is the normal strain on a microplane,

and g, and gy are components of shear strains on the same microplane; m;
and 1; (i=1-3) are the two orthogonal unit coordinate vectors lying within the
microplane,and n; is the unit normal vector characterizing the orientation of
the microplane. Fig. 7.1 shows the definition of a microplane and its

corresponding micro-strain components.

The normal strain component can be further decomposed into a volumetric
strain €y and a deviatoric strain € within the small strain regime [for finite

strain, different equation was proposed (see Bazant et al. 1996)]; that is

(Bazant et al. 2000)

gy = Ekk (7.3)
and

gy (7.4)

The governing relationships between the micro-stresses and the micro-strains
are defined using incremental elastic relations and stress-strain boundaries that
cannot be exceeded. The incremental elastic relations within the boundaries
are given by (Bazant et al. 2000):

doy = Eydey, dop = Epdep, doy; = Erdey, doy, = Erdey, (7.5)

and
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E 5E

Ey = 1-21° Ep = 1+ (2+3v)’ Er

= VED (76)

where E is the initial modulus of elasticity of concrete; Ey, Ep and Et are
the volumetric, deviatoric and tangential muduli of elasticity, respectively; p
is the Poisson’s ratio and v is the ratio of the tangential modulus (modulus in
the tangential direction of the microplane) to the deviatoric modulus; oy and
op are the volumetric and deviatoric stress components on the microplane;
and o, and oy are components of shear stresses on the microplane. The

stress boundaries are given by the following equations(Bazant et al. 2000):

__&v
b —Ek1k3e( k1k4), oy, <0
ob = (7.7)
Evkicyi3 . >0
[1+(c1a/K)(ev—Kkqc13)2” YV =
Ek1C8
b 1+[(-ep—kqCgCo)/kqC7]2’ op <0
GD = Ek, c (78)
o op =0

1+[(—ep—Kk1C5C6)/K1C15C7]%’

b _ _ ({en—ciC2kq)
o} = Ekycrexp ( c3k1+<—c4(ov/Ev)>) (7.9)
b _ Erkikycip{-on+oy)
oT = ETk1Ky+C1o(—0oN+0Y) (7.10)
with
0o _ Etkicqyq
oN = 1+cq2(ey) (7.11)

In the above equations, GB, obD, GR, and 0%1 are the volumetric, deviatoric,

normal and shear stress boundaries, respectively. The parameters k; to k,
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and c;g are the adjustable parameters, used to define the concrete strength
and the general stress-strain behaviour. Parameter ¢; to cy, are the fixed or
weakly adjustable parameters which have already been calibrated by some
standard tests. Their values as recommended by Caner and Bazant(2000) and

their main roles are summarized in table 7.1.

After determining the micro-stresses on a microplane, the macroscopic stress
tensor is derived from the micro-stresses based on the principle of virtual work
for the surface Q0 of a unit hemisphere (due to the symmetry of the stress

tensor and the strain tensor)(Bazant et al. 2000):

3
O-i]' = O'Vsi]' + Efﬂ S;]? dQ (712)
Sij
S{]-) = 0Op (ninj - ?]) + GLLij + O-MMi]' (713)

2, sPda ~ 6 3nm_ winp (o5 (miny — ) + oLy + op?My) (7.14)
The integral of the micro-stresses over the unit hemisphere in Eq. (7.12) is
approximated by Gaussian integration in numerical calculations as shown in
Eq. (7.14). Integration formulas proposed by Bazant and Oh (1985) with the
number of microplanesN,, equal to 21 and 28 on the hemisphere are
commonly used. In these integration schemes, each microplane is identified by
its corresponding plane number mp with the orientations (n;) and the weights
(Wmp). After sweeping through all the microplanes (i.e. mp = 1, ...,Ny,), the

stress tensor oy can be calculated. The detailed values of the n;, wy,,, and
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N,, for a selected integration scheme can be found in the published literature

such as Bazant and Oh (1985).

7.2.2 Remediesfor the Computational Aspects of the M4 M odel

As mentioned earlier, drawbacks exist in the M4 model mainly in the
computational aspects; these drawbacks have been identified by previous
researchers ( Nemecek et al. 2002; Di Luzio 2007; Tue et al. 2008) during
numerical implementation and testing. These drawbacks compromise the
accuracy and reliability of the microplane model and need to be addressed
before the constitutive model can be used for providing accurate predictions
for the material behaviour of concrete. These deficiencies include: (1)
directional bias for micro shear stress, (2) strain increment magnitude
dependence of model, (3) integration scheme dependence; and (4) significant
loading direction dependence of the numerical results. These issues are

examined and the remedies are proposed in the remainder of this sub-section.

For the original M4 model (Bazant et al., 2000), two alternative algorithms

(namely Alt-I and Alt-IT) were developed to calculate the micro-shear stresses
in the orientations of the two orthogonal vectors, 1 and m, within the

microplane. Alt-1 calculates the shear stresses in the ] and ™ directions and

imposes on the two components the following stress boundaries: o) =

Sign(cf)min(|0¥|,|cf|) and GM=Sign(0§,[)min(|0$|,|0§,[|) . AT

calculates the resultant of the elastic shear stress as oS} = \/ (o7)? + (oy)?
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and determines the two shear stress components as oy, = min(o%, 0% —GeLR

T

e
. o . .
and oy = min(o}, o5} —er according to the boundary [min(o?, 0§})] and
T

e
the unit vector in the direction of the resultant (e.g. ;T’;;).
T

Compared to Alt-1I, Alt-I is a numerically more effective approach in terms of
computational efficiency; it can reduce the computational cost significantly
and up to about 50% (Cancer and Bazant 2000). For this reason, in numerical
implementations using the M4 microplane model such as ATENA, Alt-I is
frequently used. However, it has been revealed by Di Luzio (2007) that Alt-I
leads to predictions which are direction-dependent (Fig. 7.2): the predictions
are sensitive to the direction of the applied displacement. This direction bias is
due to the identical stress-strain relationship adopted for the two components

of the micro shear stresses and the non-symmetric distribution of the
directions of the | and T vectors due to the limitation of the integration
scheme. These non-symmetric distribution of the directions results from the
definitions of the direction vectors of 1 and . Within a given micro plane,
the direction of 1 and M can be defined arbitrarily so long as they are

perpendicular to each other. To eliminate this uncertainty, one of the direction

vectors such as m is chosen to be normal to the axes (i.e. X, Y, Z axis); other

direction vector 1 is thus obtained as the vector product, 1=m x n. To

g —_— — .
minimize the direction bias of 1 and m, m is often chosen to be normal to
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axis X, Y, or Z alternatively. However, in most integration schemes, the
number of integration point is not in multiples of three. Therefore, this
direction bias cannot be totally eliminated. Due to this direction bias, the
constitutive model becomes sensitive to the direction of the applied
displacement. Fig. 7.2a shows that the predicted stress-strains for the uni-axial
compression are different when displacements are applied in three selected
orthogonal direction (i.e. X, Y, Z axis) if Alt-I is adopted. This discrepancy
disappears if Alt-II is used (see Fig. 7.2b). Based on these observations, Alt-I1
was subsequently used in all numerical analyses of the present study instead of

Alt-I to eliminate this directional bias problem.

In addition to the use of Alt-II to remove the directional dependence of the M4
model for the case of loading in three arbitrary orthogonal directions, it has
also been revealed by Tue et al. (2008) that if the orientations of the
microplanes cannot be evenly distributed with respect to the three directions of
the X, Y, Z coordinates, more than 480 microplanes are required in the
integration scheme to eliminate the directional dependence of the M4 model
for all possible loading directions, leading to a highly costly process. In
practical applications, directional dependence can be partly remedied by the
use of a large number of finite elements, and as a result, the integration scheme
with 61 microplanes has been recommended by Tue et al. (2008) as an optimal

scheme.
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Furthermore, it has been shown by Nemecek et al. (2002) that the response of
the M4 model under uni-axial compression is dependent on the magnitudes of
strain increments. The Alt-Il algorithm predicts different stress-strain
responses for small and large strain increments after the point of peak stress
has been reached (Fig. 7.3). It is difficult to find a single critical strain
increment value which yields a stable response as this critical strain value
depends on the loading condition. This drawback can be eliminated by using a
revised algorithm for the evaluation of the micro volumetric stress. This
method, which was first proposed by Tue et al. (2008), involves an additional
step used to ensure the convergence of the micro volumetric stress o, within
the strain increment. In the original M4 model, o, is recalculated as the
average of the microplane normal stress; it is often different from that
calculated from the volumetric stress boundary. This difference is found to be
the main reason of the strain-increment-magnitude-dependency. A detailed
description of this algorithm can be found in Tue et al. (2008). This algorithm
is also employed in the M4 model presented in this chapter to eliminate the

possible dependence of predictions on the strain increment.

As mentioned above, the stress tensor oj; is derived through summation of

the micro-stresses over all spatial orientations. Only a finite number of
orientations can be used in the numerical process so that numerical Gaussian

integration schemes with 21, 28, 37 and 61 integration points (i.e. microplanes)
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are commonly used. Starting from the M2 version, it has been found that these
integration schemes cannot achieve convergence for the axial
stress-volumetric strain response (Badal and Leblond 2004). This drawback
also exists in the M4 model as has been described by Nemecek et al. (2002)
and Tue et al. (2008). For the M2 microplane model, it was found that at least
120 Guassian integration points are required to achieve a macroscopic
response independent of the integration scheme (Badal and Leblond 2004).
Fig. 7.4 shows that the axial stress-volumetric strain curves obtained from the
M4 model with different integration schemes but with the same values for the
material parameters. Although only integration schemes of up to 61 integration
points were proposed by by Bazant’s group, results from higher order
integration schemes (with 132 and 208 integration points) proposed by Heo
and Xu (1998) are also considered in the comparison. It can be found from Fig.
7.4 that although it is hard to achieve strict convergence of the axial
stress-volumetric strain relationship due to the localization of micro
stress-strain behaviour when a limited number of microplanes is used, the
response of the integration scheme with 61 points can be approximately taken
as the convergent result. Increasing the number of integration points further to
132 or even 208 only has a small effect on the far post-peak range of the
overall axial stress-volumetric strain curve; these three curves (corresponding
to 61, 132 and 208 integration points) are nearly identical for the majority of

the full range. In the subsequent analyses, the parameters of the M4 model
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were calibrated based on the integration scheme with 61 integration points.

The numerical tests presented in this chapter were conducted using an
in-house code based on Matlab, and all the revisions of the M4 model as
discussed above were implemented. In the present study, as the focus is on the
stress-strain behaviour of concrete under uniform confinement, only the
stress-strain behaviour of a single material point needs to be investigated due
to the uniformity of the stress and strain distributions within a specimen (e.g. a
circular concrete cylinder confined by an FRP jacket). Therefore, a driver of a
material subroutine is enough for the numerical analyses undertaken for this

chapter.

For concrete under active confinement, the confinement is simply a constant
confining pressure; for a circular concrete cylinder confined by an FRP jacket

(a typical case of passively confined concrete), the confinement can be
ted b tant confining stiffness (Kggit = —0 where E; and t
represented by a constant confining stiffness (Ksyife = — = where E;j and t;

are respectively the elastic modulus and the thickness of the FRP jacket); the
confining stiffness represents the rate of confinement increase at a material
point. For brevity, in the following descriptions, the term “FRP-confined
concrete” is used to refer to concrete in a circular solid concrete cylinder
confined with an FRP jacket unless otherwise specified. A salient feature of

the M4 model is that the calculation of a stress increment corresponding to a
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strain increment is generally explicit. Once the strain loading paths are given,
it is easy to calculate the corresponding stresses. However, some special strain
loading paths used in calibrating the parameters of the material model, such as
uni-axial compression and equal tri-axial compression etc. cannot be
represented by an explicit strain loading paths. For these purposes, an outer
iteration algorithm was adopted in the present study to obtain the required
strain loading paths for concrete under uni-axial compression, equal tri-axial
compression (i.e. concrete under active confinement), and axial compression

with FRP confinement. The procedure consists of the following 4 steps:

e Stepl: Consider the previous strain vector

gPre = {e!"® & 8™ 0 0 0} and the previous stress vector

oPe={c" o5b° o 0 0 o0}

e Step 2: Assume a strain vector increment
As® = {—Ae; Ag; Aggy 0 0 O)

e Step3: Using the modified microplane algorithm to calculate the
stress vector 6={01 Oz O3 (0 0 0} . If |o,+fj|<
85 &|os + fi] <&, oP'® = 0 & eP™® = eP™ + A and return to step

2; if not, go to step 4;
e Step 4 Ael=Ae"'+{0 fi—o, fi—03 0 0 O}/E and

return to step 3.
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Through this iterative algorithm, a strain increment in each loading step
satisfying the strain and the stress boundaries was found so that spurious
loading and unloading path does not appear in the overall strain loading path
(i.e. the strain increment is tried until a stress increment which satisfies the
stress boundary condition is achieved). The confining pressure f; varies with
the specified stress boundaries. For unconfined concrete, it equals to zero;
for actively confined concrete, it equals to the confining pressure; and for FRP
confined concrete, it equals to K * egre, in which K¢ 1s the confining

stiffness provided by the FRP jacket.

This chapter aims to clarify the effects of the parameters of the M4 model on
its performance in predicting the behaviour of both actively confined concrete
and FRP-confined concrete, and to identify the key characteristics that the M4
model need to possess in order to provide accurate predictions of experimental
results for confined concrete. A thorough assessment is presented of the M4
model including the previous modifications with the same coefficients for both
actively-confined concrete and FRP-confined concrete; further refinements to

achieve even closer predictions for experimental data are also presented.

7.3 IDENTIFICATION OF PARAMETERS OF THE M4 MODEL

As mentioned earlier, for the M4 model, seventeen of the parameters (c; — c17)

are weakly adjustable parameters whose values can be used to describe the
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intrinsic behaviour of the concrete material. The other five adjustable
parameters (k; — k, and c;g) as well as the initial modulus E are commonly
used to fit the experimental data. For any stress-strain curve, E controls its
vertical ~ scaling transformation, k; controls its radial scaling
transformation, c;g controls the slope of the post-peak range of the uni-axial
compressive stress-strain response, and k, — k, mainly influence the shape
of the stress-strain curve at very high levels of confinement. At a lower
confinement level, which covers the majority of cases encountered in civil

engineering applications, the roles of k, — k, are less important.

In the present study, kq, E, and c;5 were firstly assigned appropriate values
to fit the axial stress-strain curve of concrete under uni-axial compression.
Next, the axial stress-strain relationship of confined concrete predicted using
the values for k;, E, and c;g obtained from uni-axial compression was
examined to check the performance of the M4 model before refinement; this
examination is based on comparison between predictions using the M4 model
and those using an analysis-oriented stress-strain model proposed by Jiang and
Teng (2007). As mentioned earlier, this analysis-oriented stress-strain model
(an analytical model) was derived from a test database that includes
unconfined concrete, actively confined concrete and FRP-confined concrete;

as a result, and in general it can closely predict experimental results.
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Fig. 7.5 compares the results of the M4 model with those of the analytical
model for unconfined concrete, indicating that the M4 model can represent the
overall axial stress-strain behaviour of unconfined concrete quite well. In Fig.
7.6, the predictions of the M4 model are compared with those of the analytical
model for actively-confined concrete, indicating that the M4 model is not so
accurate for concrete under relatively low levels of confinement, which was
also noted by Ghazi et al. (2002). Ghazi et al. (2002) found that the M4 model
tends to underestimate the effect of confinement on concrete at low
confinement levels as the parameters of the M4 model were calibrated using
test data at very high confinement levels (i.e. with the confinement pressure
being close to 2 times of the concrete strength). When employed for low
confinement cases, some parameters require appropriate modifications to
better predict the peak stress and the post-peak response of confined concrete.
New formulas for parameters k;, c; and c;, were proposed as functions of
the confining pressure in Ghazi et al. (2002) to fit the results of their own
analytical model (an empirical model for the stress-strain behaviour of

actively-confined concrete).

In the present study, a similar approach to that of Ghazi et al. (2002) is
employed to improve the performance of the M4 model for confined concrete
including both actively-confined concrete and FRP-confined concrete. After a

significant number of trials, the following functions were determined for
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parameters k;and c;:

ky =k for - < 0.1 (7.13)

k, = k? <1 +l (fi - 0.1)>f0ré—10 > 0.1 (7.14)
¢, =50(1+28 fi) forfz—lo < 0.05 (7.15)

¢; = 50 (48 forg- > 0.05 (7.16)

where Kk{ is the initial value of k; and it is commonly obtained by fitting the

stress-strain curve of unconfined concrete.

Eqgs.(7.13)-(7.14) are different from the corresponding equations in Ghazi et al.
(2002) due to the following reasons. First, the algorithm of the M4 model used
in this chapter is different from that used in Ghazi et al. (2002) as has been
explained earlier (including revisions in the computational aspects). Secondly,
different analytical models have been adopted to calibrate the parameters of
the M4 model: in Ghazi et al. (2002), the calibration was based on the
analytical model proposed by Attard and Setunge (1996) for actively confined
concrete while in the present study, the calibration was based on an analytical
model proposed by Jiang and Teng (2007) which is accurate for both
actively-confined concrete and passively-confined concrete. In addition, the
analytical model adopted in Ghazi et al. (2002) for parameter calibration
includes a nonlinear equation for the peak stress, and as a result the coefficient

C1o 1s thus a variable related to the confining pressure, while in Jiang and
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Teng’s (2007) model, a linear equation is used for the peak stress and as a
result, c;o is a constant. The results of the modified M4 model and those of
the analytical model proposed by Jiang and Teng (2007) are compared in Fig.
7.7. This figure shows that the modified M4 model is in good agreement with
the analytical model proposed by Jiang and Teng (2007) for actively-confined

concrete.

The performance of the modified M4 model for passively confined concrete is
further examined in Fig. 7.8, where three confining stiffness values, being 600
MPa, 400MPa and 200 MP, are considered. This figure shows that the
modified M4 model results in good agreement with Jiang and Teng’s (2007)
analytical model at higher confinement stiffness levels (e.g. with the confining
stiffness equal to 600MPa) but underestimates the results of the analytical
model at smaller confinement stiffness levels (e.g. with the confining stiffness
equal to 400MPa or 200MPa). For a confining stiffness equal to 600MPa, the
modified M4 model can closely predict the lateral strains at corresponding
axial strains, Fig 7.9. When the confinement stiffness is equal to 400MPa or
200MPa, the modified model underestimates lateral strains significantly, Fig.
7.9. These results indicate that the modified M4 model, which provides
accurate predictions for actively confined concrete, tends to underestimate the
lateral dilation of FRP-confined concrete at relatively small confining stiffness

levels. As FRP-confined concrete is subjected to a passive confining pressure
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where the confinement is determined by the amount of lateral dilation of
concrete, the dilation characteristics of concrete have a strong influence on the
axial stress-strain response of FRP-confined concrete. Underestimations of
lateral strains lead to underestimations of passive confinement and
consequently inaccurate stress-strain responses even though the same model
can closely predict the behaviour of actively-confined concrete. The inelastic
volumetric dilation of FRP-confined concrete is thus of prime importance for
the accurate prediction of stress-strain behaviour of FRP-confined concrete.
The influences of the parameters of the M4 model on lateral strains and hence

volumetric expansions are examined below.

In the M4 model, the dilation characteristics of concrete under compression is
controlled by the normal or deviatoric boundary, mainly through the values of
Cs,Cg, and c;g. Three other parameters, namely c,,cq, and cq, also have
some effect on the dilation characteristics, but their effect on the overall
stress-strain behaviour is not so significant. Fig. 7.10 shows the effect of cg
on the axial stress-strain and the axial stress-lateral strain responses. It can be
observed that the lateral dilation and the overall axial stress-strain responses
are substantially affected by cs which has a recommended value of 2.5. If
this parameter is used to adjust the lateral strain behaviour, the previously
calibrated parameters such as k; or E need be re-adjusted for unconfined

concrete. This parameter is thus not suitable for fine-tuning the lateral
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behaviour of the M4 model. Similar issues exist with c;g as it has been

calibrated for the descending branch of unconfined concrete.

Fig. 7.11 shows the influence of cg on the axial stress-strain and axial
stress-lateral strain responses. It is shown that changing the value of cg from
the recommended value of 8 up to 16 or even 32 has negligible effect on axial
stress-strain response but significantly changes lateral strains after the peak
axial stress. Similarly, Fig. 7.12 shows that the axial stress-strain response of
FRP-confined concrete is insensitive to cg and the predicted axial
stress-strain curve is also close to the result of the analytical model. Due to
these reasons, cg is thus used to adjust the dilation characteristics for

FRP-confined concrete.

After a significant number of trials, the following functions were found to be

suitable to define cg:

cg =8(5.8— 0.56U0) for 4 < ST < 75 (7.17)
cg =8(2.56 — 0.1285UL)  forSHlt < 1 (7.18)
cg = 8(1.984 — 0.0811)  forSHf < 19 (7.19)

The performance of the final revised version of the M4 model for
FRP-confined concrete (referred to as the M4 model) is examined in Figs.

7.13-7.14. The model provides close predictions of both the stress-strain
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curves and the lateral-to-axial strain relationships predicted by Jiang and
Teng’s (2007) model. The success of this model confirms that an accurate
prediction of the dilation properties is essential in modelling the behaviour of

FRP-confined concrete or other passively-confined concrete.

In Fig. 7.15, the predictions of the M4  model are compared with the test
results taken from Jiang and Teng (2007). The unconfined concrete strengths
féo and the corresponding axial strains €., of the specimens as well as the
confining stiffness of by the FRP jacket are shown in the figure. A major
difference between the microplane model (including versions M1 to M7) and
other constitutive models such as nonlinearly elastic models and plasticity
models is that in the former f/, and &., are not input parameters but are
predicted by adjusting the values of k;, E, and c;g as described earlier. The
values of these three parameters used to fit the unconfined stress-strain curves
are also given in the figure. The values of other parameters can be found in
Table 7.1. Fig. 7.15 shows that the stress-strain curves predicted by the M4"
model are in excellent agreement with the test results, and the bilinear property
of FRP-confined concrete stress-strain curves can be properly captured by the

M4 " model.

When compared with the experimental results, the M4 model slightly

underestimates the axial stress at the initiation of the second branch (i.e. the
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transition point). This underestimation of axial stress may be still due to the
underestimation of the lateral strain. As can be seen from Fig. 7.14, although
the predicted axial strain-lateral strain response is close to that from the
analytical model overall, the lateral strain near the transition point is still
underestimated. A further refinement of the M4 model by relating cg to not
only the confining stiffness but also other variables such as the confining
pressure may be needed; such a further revision will however further increase
the complexity of the M4 model. The accuracy of the M4 model is deemed

to be acceptable for most practical applications.

7.4 CONCLUSIONS

The general behaviour of the M4 version of the microplane model (Bazant et
al. 2000) (i.e. the M4 model) for confined concrete has been assessed in this
chapter using both numerical results from an existing analytical model and
experimental results. This assessment has shown that in order to achieve
accurate prediction of the behaviour of FRP-confined and other passively
confined concrete, the M4 model needs to be modified to possess at least the
following two features: (a) the parameters which control the slope of the
descending branches such as k; and c; should be dependent on the
confining pressure; (b) the parameters which control the lateral dilation such
as cg should be dependent on the rate of confinement increment. Parameter

cg is recommended for achieving the second feature because its value has
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insignificant effect on the predictions for the unconfined concrete strength and
the corresponding axial strain. A modified M4 model possessing these two
features, referred to as the M4" model, has been presented in this chapter and
implemented into an in-house Matlab code. Comparisons between numerical
predictions obtained using the M4  model and test results have shown that the
M4 model can provide accurate predictions for both actively-confined
concrete and FRP-confined concrete. A step by step process of calibrating the
parameters of the M4 model to achieve such accurate predictions for the
stress-strain behaviour of FRP-confined concrete has also been explained in
the chapter. The M4 model is a predictive model with sufficient accuracy for
most practical applications. Further refinement of the M4 ‘model is possible to
improve its predictions for the lateral strain near the transition point of the
bi-linear stress-strain curve, but such refinement will come with additional

complexity which may not be worthwhile.
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Table 7.1 Parameters of the M4 model

Suggested Adopted

Parameter Discription of parameter
value value
Controls peak stress magnitude under uniaxial
o ) 0.62 0.62
(unconfined)tension
C, Controls roundness of peak in uniaxial tension 2.76 2.76
Controls steepness of postpeak descent in uniaxial
C3 i 4.00 4.00
tension
Cy Same as c; but for tensile volumetric strain 70 70

controls volumetric expansion in compressive

Cs o 2.5 2.5
uniaxial stress test

Controls roundness of peak of volumetric

Cs L . Lo 13 13
expansion in compressive uniaxial stress test

controls steepness of postpeak descent in Egs.

“ compressive uniaxial stress test >0 (7.15-7.16)
Controls peak magnitude in compressive uniaxial Egs.

8 stress test 8 (7.17-7.19)

Controls peak roundness in compressive uniaxial

Co 1.3 1.3
stress test

C1o Controls pressure effect in standard triaxial tests 0.73 0.73
Sets magnitude of initial cohesion in frictional
Ci1 0.2 0.2
response

Controls decrease of cohesion with increasing
Ciy ) o ) 7000 7000
volume expansion (frictional cohesion damage)
C13,C14 Control lateral contraction in uniaxial tension 0.2,0.5 0.2,0.5
Control effects of volumetric strain and
C15,C16 volumetric stress on unloading slope in 0.02,0.01 0.02,0.01
hydrostatic compression tests
Controls degree of damage manifested in

Cyi7 ) 0.4 0.4
unloading slopes

Cig Similar as ¢,
k, Scales all boundary ) )
o Adjustable  Adjustable
k, Affects friction boundary
ks, k, Affect volumetric boundary

*suggested value means parameter values suggested by Bazant et al., (2000). Adopted value

means parameter values adopted in this chapter.
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CHAPTER 8
EFFECT OF CROSS-SECTIONAL SHAPE ON
BEHAVIOUR OF FRP-CONFINED CONCRETE

8.1 INTRODUCTION

The literature review given in Chapter 2 indicates that a large number of
experiments have been conducted on circular concrete columns/cylinders
uniformly confined by an FRP jacket. Based on this extensive amount of
experimental data, many empirical and semi-empirical models have been
developed primarily for such uniformly confined concrete
columns/cylinders (see Chapter 2). By contrast, the vast majority of
columns in reinforced concrete buildings and other structures are of
non-circular sections (e.g. rectangular columns), and the amount of
available test data is considerably less than that for circular ones. It is also
well known that the degree of confinement varies over a non-circular
section, and the average degree of confinement in a non-circular section is
much less than that in a corresponding circular section (e.g. Lam and Teng
2003). Obviously, stress-strain models developed for confined concrete in

circular sections cannot be used for concrete in non-circular sections.

Several empirical and semi-empirical stress-strain models for FRP-confined

concrete in non-circular columns have been proposed (Harajli 2006; Lam
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and Teng 2003b) to predict the average axial stress- strain response of a
given cross-section. These models were generally extended from
stress-strain models originally developed for FRP-confined concrete in
circular columns. Factors related to confinement effectiveness in this type of
models are commonly employed to consider the efficiency of confinement
in non-circular sections. These factors account for the reduced effectiveness
of confinement in non-circular sections compared to their circular
counterparts and are generally determined by regression of available test
data and/or by assuming a certain confinement mechanism (e.g. the arching
action assumption). Hence, these models usually suffer from a common and
fundamental drawback that they are not based on a rigorous understanding
of the confinement mechanism in non-circular cross-sections. As a result,
the current understanding of the confinement mechanism of FRP-confined
non-circular sections, derived from experiments, is still very limited. To
improve our understanding of this type of confinement mechanism, the
finite element modelling offers a powerful tool as it can capture the
complex stress distribution over the whole cross-section. With a suitable
numerical model, it is possible to study the confinement mechanism in all

types of column sections.

A number of researchers have presented finite element models for

FRP-confined concrete in non-circular columns (e.g. Kiousis et al. 1994;
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Malvar et al. 2004; Doran et al. 2009 ). Chapter 2 and Chapters 4-7 have
indicated that most of the constitutive models for the concrete material
adopted in existing finite element studies can only explain certain specific
features of the behaviour of confined concrete and/or predict this behaviour
for some specific conditions (e.g. providing accurate predictions for a
certain confining stiffness). In the finite element analysis of concrete under
passive confinement (e.g. FRP-confined concrete), the concrete constitutive
model plays a fundamental role in accurately reproducing the mechanical
response of concrete members. Due to the limitation of existing constitutive
models, modelling the mechanical response of FRP-confined concrete in

non-circular columns subjected to axial loading is still a challenging issue.

It is well known that in a non-circular section the confining pressure
provided by the FRP jacket varies around the perimeter and the axial stress
in the concrete varies over the whole section. Therefore, the stress
distribution in a non-circular section is much more complex than that in a
circular section. As can be seen from Chapter 2 and Chapters 4-7, most
existing constitutive models of concrete cannot even provide accurate
predictions for FRP-confined concrete in circular columns, so their
capability in providing accurate predictions for FRP-confined concrete in
non-circular columns is questionable. As the performance of different types

of constitutive models of concrete in modelling circular FRP-confined
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concrete cylinders has been assessed or discussed in the previous chapters
(i.e. Chapters 2, 4-7), only those constitutive models which can provide
accurate predictions for FRP-confined concrete in circular columns are
examined in this chapter. It has also been mentioned in Chapter 2 that the
modified compression field theory has provided a potential framework to
capture the major characteristics of the stress-strain behaviour of concrete
under uniform confinement. However, it has also been pointed out that this
method is not very accurate for the stress-strain behaviour of FRP-confined
circular concrete columns as it overestimates the hoop strain of
FRP-confined concrete. Moreover, this method is not convenient for
implementation into a finite element model driven by strain or displacement
increments. As a result, this approach is also not included in the
comparisons given in the present chapter. Based on the above
considerations, only two constitutive models (i.e. the modified CDPM
model and the M4" model) were used in the finite element studies presented
in this chapter on the effects of cross-sectional shapes on confinement

effectiveness.

In practice, the rectangular section is commonly adopted in structural design
for columns. As a special case of FRP-confined rectangular columns,
FRP-confined square columns show superior performance in terms of

confinement effect than rectangular columns of other sectional aspect ratios.
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Therefore, most of the experiments on rectangular columns have been
conducted on square columns. In addition, since FRP confinement is much
less effective for rectangular sections than for circular sections, the
possibility of modifying a rectangular section into an elliptical section has
been explored. For these reasons, in the present study, test specimens with
square and elliptical sections were selected for investigation in the
numerical modelling work. Using the numerical results, the confinement
mechanism in these two typical non-circular sections (i.e. square and

elliptical sections) is examined.

To study the confinement effects in non-circular sections, the accuracy of
constitutive models employed in finite element analyses needs to be verified
first. Therefore, comparisons between test results and finite element
predictions obtained using the two constitutive models identified above are
first presented in this chapter for FRP-confined concrete in square and
elliptical columns. Axial stress-strain curves, axial stress-hoop strain curves,
and axial force-strain curves were generated using finite element analysis
for different concrete strengths and confinement levels. The cross-sections

and loading details are described in section 8.2.

As two alternative constitutive models were employed in the prediction of

the behaviour of confined concrete, their corresponding predictions for
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FRP-confined concrete in non-circular columns are separately assessed in
this chapter. The numerical results obtained from finite element analysis
using the modified CDPM model are presented in Section 8.3, and those
obtained from finite element analysis using the M4" model are given in
Section 8.4. Next, a performance comparison between these two
constitutive models in reflecting the effects of sectional shape is given in
Section 8.5. Finally, the predicted distribution of stresses in selected

sections is examined in Section 8.6.

The numerical results presented in this chapter can be used to highlight the
advantages and disadvantages of the different section shapes and the
capability of the two constitutive models in simulating the behaviour of
FRP-confined concrete. In the design of RC columns, designers need to
make many decisions. For each specific application, understanding the
effect of sectional shapes can help the designer to choose the most suitable
sectional shape that exhibits more optimal performance for a given

application.

8.2 DISCUSSION OF SECTIONS USED FOR PERFORMANCE

COMPARISON

8.2.1 Selection of Experimental Data

Experimental data for FRP-confined non-circular concrete columns have
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been collected to verify the numerical results and to examine the effects of
cross-sectional shapes. The experimental data include the axial stress-strain
curves, axial stress-hoop strain curves (for FRP-confined concrete in square
columns), and axial force-strain curves (for FRP-confined concrete in
elliptical columns). These experimental curves were chosen based on the
following criteria: a) the selected specimens showed good ductility and
deformability (i.e. a relatively large axial strain); b) the selected axial
stress-strain curves or axial force-strain curves have an ascending second
branch or a slowly descending second branch. These two criteria were
adopted due to the following considerations. First, if an FRP-confined
concrete column has only limited ductility, the second branch of the
stress-strain curve is generally very short, and the slope of the second
branch tends to show large variations. As the second branch slope is a key
indicator for assessing the deformation capacity of a concrete specimen
under hoop confinement, it is hard to assess the performance of a
constitutive model if test data for this slope show a large scatter. Second, the
parameters of those two constitutive models for use in finite element
analysis were both calibrated from Jiang and Teng’s (2007)
analysis-oriented stress-strain model which is more accurate for concrete
with sufficient confinement than that for concrete with insufficient
confinement despite that Jiang and Teng’s (2007) model is superior to its

earlier version proposed by Teng et al. (2007) in predicting the behaviour of
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FRP-confined concrete.

Based on the above two criteria, 21 specimens, including 12 square
specimens and 9 elliptical specimens, were collected for inclusion in the
database. The basic information of these specimens, including their
geometric and material parameters, is given in Tables 8.1-8.2; Table 8.1
summarizes the information of square specimens while Table 8.2
summarizes the information of elliptical specimens. What should be noted is
that these selected specimens are all small-scale specimens with dimensions
close to the commonly used standard cylinders. Therefore, the possible size

effect these 21 selected specimens need not to be considered.

Within these 21 specimens, the 12 square specimens were selected from the
published literatures (Masia et al. 2004; Hosotani et al. 1996; Wang 2008).
The major parameters controlling the confinement effect in FRP-confined
square columns are considered. Four square specimens were selected from
Masia et al. (2004). These specimens were divided into two groups,
depending on the dimensions of the cross-section. These four square
specimens had the same corner radius of 25 mm but two different section
sizes (section side lengths of 100 mm and 150 mm). The specimens with a
side length of 100 mm are named WS while the specimens with a side

length of 150 mm are named WL.
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In Hosotani et al.’s (1996) study on FRP-confined square columns, the
parameter varied was the elastic modulus of the confining material; normal

modulus CFRP (Eg., = 252GPa) and high modulus CFRP (E¢., = 439GPa)

were both used. The corner radius of these two specimens was both 38 mm,
and their side length was 200 mm. It should also be noted that these two
specimens were FRP-confined RC columns, which means they included
longitudinal steel bars and steel hoops. The confinement effect of the steel
hoops is negligible as large hoop spacing was used. It was found that when
the hoop spacing is larger than 1.25 times the centerline of the spiral, the
effect of steel hoops can be neglected (Binici 2005). Longitudinal bars also
have an insignificant effect on the confinement behaviour of concrete as
will be discussed in detail in Chapter 9. Therefore, in the present study, this
feature was neglected in the finite element models. In connection with this
assumption, the contribution of the longitudinal steel bars was removed
from the test results of Hosotani et al. (1996) to produce the experimental
axial stress-strain and axial stress-hoop strain curves for comparison with

the finite element predictions.

Eight square specimens were also selected from Wang (2008) for

comparison. The parameters varied in Wang’s (2008) study include the

unconfined concrete strength f'.,, the section corner radius r, and the
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thickness of the FRP jacket t;. Within these 8 specimens, the concrete

strength ranged from 30.7 MPa to 52.7 MPa; the corner radius ranged from
30 mm to 60 mm; the thickness of the FRP jacket ranged from 0.165 mm to
0.33 mm. In Wang’s (2008) test, for the FRP-confined concrete with
unconfined concrete strength equal to 30.7 MPa, all the specimens have
ascending second branches and they were also selected into the database;
for the FRP-confined specimens with unconfined concrete strength equal to
52.7 MPa, only two specimens with their corner radius equal to 60mm have
ascending second branches and they were selected into the database. The
names of these 8 specimens include three parts. The first three characters
represent the concrete cylinder strength. For instance, C30 means the
concrete cylinder compressive strength was about 30 MPa. The subsequent
three characters represent the section corner radius r. For instance, R30
means the section corner radius was 30mm. The last two characters
represent the thickness of the FRP jacket. For instance, P1 means the square

column was wrapped by a one-ply of FRP jacket.

Finally nine elliptical specimens recently tested at The Hong Kong
Polytechnic University were included into the test database (Stefano 2011).
The major parameters influencing the confinement effect in the
FRP-confined elliptical columns were considered in these tests. Three ratios

between the major axis length, a, and the minor axis length, b, ranging from
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1.3 to 2, were considered. The thickness of the FRP jacket was another
important parameter. Two different thicknesses, 0.171 mm and 0.342 mm,
were considered in this series of experiments. The concrete strength ranged
from 32.64 MPa to 35.92 MPa. These elliptical specimens are distinguished

by their batches and a/b ratios.

8.2.2 Overview of Finite Element Models

The main objective of the present study is to examine the effect of
cross-sectional shape through finite element modelling. Similar to that
suggested by Yu et al. (2010), the finite element models in this study
included only a horizontal slice of the specimens and consisted of a single
layer of 3D solid elements to represent the concrete. The effect of end
restraints will be discussed in Chapter 9 in detail. The finite element models
followed closely the geometry and the FRP jacket arrangement of these
short-column specimens, using 8-node solid elements for the concrete and
2-node elements (truss or beam elements) for the FRP jacket. Considering
the symmetry of the specimen under an idealized condition, only a quarter

of the horizontal slice is needed to be modeled.

Although two alternative constitutive models were used to model the
concrete material, it was found that the constitutive models have
insignificant influence on the convergence of the finite element mesh.

Therefore, in the finite element models used to obtain the results given in
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Sections 8.3 and 8.4, the same mesh was used for the same specimen
regardless of the constitutive model employed. Two typical finite element
meshes used to represent these non-circular cross-sections are illustrated in
Figs. 8.1-8.2, for square and elliptical shapes, respectively. It should also be
noted that in finite element analysis, the details of the corners of a square
section were modelled to consider its influence on the confinement effect.
In some earlier studies (e.g. Malvar et al. 2004; Koksal et al. 2008), the
features of the corner were neglected in their finite element analyses.
Therefore, their explanation of the confinement mechanism is questionable,
although their numerical models may still be able to provide accurate
predictions for the experimental stress-strain response. These important
features were properly captured in the present study, and the corner radius
was taken as an important parameter which has significant influence on the

confinement effect in a section.

In all the finite element models, the C3D8R solid element was used to
model the concrete. This type of solid element is available with either
ABAQUS implicit or explicit. A 2-node element was used in the hoop
direction to model the FRP jacket as a unidirectional material. In ABAQUS
implicit, membrane elements without compressive stiffness are also
available for modelling the FRP jacket; however, this option is unavailable

in ABAQUS explicit. As the same finite element mesh was intended for use
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with both ABAQUS implicit and ABAQUS explicit, a 2-node element was

thus the preferred choice.

Two types of 2-node elements are available with ABAQUS for the
modelling of the FRP jacket: the truss element and the beam element. For
FRP-confined square columns, the flat sides of the FRP jacket are subjected
to bending deformation. The use of the truss element in the finite element
model neglects the influence of this bending deformation. In most cases, as
the thickness of the FRP jacket is small, the effect of this bending
deformation is negligible. In order to clarify the effect of this bending
deformation, the beam element was first used in the finite element model to
examine the influence of bending deformation. The element B31 provided
by ABAQUS was used for this purpose. These beam elements were tied to
the solid elements to consider the interaction between the concrete and the
FRP jacket. Compared to the 8-node solid element, the beam element B31
has additional rotational degrees of freedom. These rotational degrees of
freedom need to be properly addressed, especially at the symmetry planes.
The actual thickness of the FRP jacket was used in defining the beam
elements. In this part of the study focused on the influence of bending
deformation of the FRP jacket, the concrete constitutive model was not the
major issue of concern, and the concrete material was modeled using the

modified CDPM model.
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Figs. 8.3-8.4 show the influence of jacket bending deformation for two
square specimens (C30R30P2 and C30R45P2) as revealed by numerical
simulations. In these two figures, three locations were selected for
comparison, which include a point at the center of one of the flat sides, one
of the points of intersection between the corner zone and the flat part, and
the point at the center of the corner. These three points can be seen as the
characteristic points for the deformed configuration. Fig. 8.5 shows the
shape of the deformed section for specimen C30R45P2. It can be observed
from this figure that the first point (i.e. one of the points at the center of a
flat side) experiences the largest outward curvature; the second point (i.e.
one of the points of intersection between the corner zone and the flat part) is
a point of contra-flexure for the bending deformation; the last point (i.e. the

point at the center of the corner) experiences the largest inward curvature.

At these three selected points, the magnitudes of the hoop strain on the inner
surface and the outer surface of the beam element are shown against the
axial strain in Figs. 8.3-8.4, where compressive axial strains and tensile
hoop strains are both shown as positive values. These two figures show that
the difference between the hoop strains on the inner and the outer surfaces
at these three points is negligible, which indicates that in these two
specimens the influence of the bending deformation is very small. Therefore,

it is unnecessary to use beam elements instead of truss elements in the finite
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element modelling of such columns. Using truss elements instead of beam
elements to model the FRP jacket has another advantage: the truss element
T3D2 has the same nodal degrees of freedom as those of the solid element
C3D8R. Therefore, when truss elements are tied to solid elements to
consider the interaction between the concrete and the FRP jacket, no
additional restraints need to be imposed on the truss elements. Therefore, in
the subsequent finite element analyses, the truss element T3D2 was used to
model the FRP jacket, and the hoop strain obtained from this element can be
taken as the average hoop strain obtained from the inner and the outer

surfaces of the FRP jacket.

To model the confinement effect provided by the FRP jacket, in the finite
element slice models with a single layer of solid elements, two layers of
truss elements were placed at the top and the bottom nodes of the solid
elements. Furthermore, the cross-sectional areas of these truss elements
were set to be the product of the height of the solid element (in the axial
direction) and half of the thickness of the FRP jacket. As the height of the
horizontal slice has no effect on the numerical results, a fixed value of 8 mm
was always used in the finite element analyses. Trial analyses were
conducted to find the optimal mesh for the discretization of the
cross-section. It was found that an element size of around 5 mm for the

solid elements was suitable for all the finite element models. The size of the
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truss elements was set to be compatible with the solid elements, so that the
distances between the adjacent nodes of the truss element and the solid

element are equal to zero.

As mentioned above, when truss elements were used to model the FRP
jacket, restraints needed only to be applied to the concrete core. Symmetry
boundary conditions were imposed on the corresponding symmetry planes
shown in Figs. 8.1-8.2. The displacements in the z-direction on the bottom
surface were all prevented. On the top surface, displacements were applied

in the z-direction to realize axial loading.

In this study, the FRP jacket in all the finite element models was modeled as
an elastic material. In both ABAQUS implicit and ABAQUS explicit, two

material parameters, namely the elastic modulus Eg., and Poisson’s ratio
W, are required to define an elastic material. The values of Eg, used in the

study are given in Table 8.1 or 8.2. For truss elements, the parameter i
does not have any influence on their confinement effect. Hence, in this study,
the value of the parameter pf was always set to be 0. In summary, the
choice of element types and material parameters for the FRP jacket ensured
that they were only modeled as a confining material with mechanical
resistance only in the hoop direction. When ABAQUS explicit was used, the

density of the FRP was set to be 1.85¢-5 g/mm’.
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8.3 FINITE ELEMENT RESULTS BASED ON THE MODIFIED CDPM

MODEL

8.3.1 Concrete Modd

As discussed in Chapter 2, a number of studies exist on the finite element
analysis of FRP-confined concrete. Among these studies, most of them have
been based on a Drucker-Prager (D-P) type plasticity model for the concrete
(Lan 1998; Mirmiran et al. 2000; Mahfouz et al. 2001; Karabinis and
Rousakis 2002; Oh 2002; Rousakis et al. 2007; Eid and Paultre 2007). A
recent review and comprehensive assessment of existing D-P type models
for FRP-confined concrete showed that none of them could properly capture
all the key features of FRP-confined concrete (Yu et al. 2010a). Therefore,
Yu et al. (2010b) developed a new plastic-damage model for FRP-confined
concrete, in which the deficiencies of the previous D-P type plasticity

models were eliminated.

In this part of the study, the modified CDPM model proposed by Yu et al.
(2010) was used to reproduce the stress-strain response of FRP-confined
concrete in non-circular columns. Unlike empirical and semi-empirical
models, the modified CDPM model is based on the plastic-damage theory
and provides a sound theoretical basis for modelling the confinement
mechanism. In Chapter 2, it has been pointed out that the behaviour of

FRP-confined circular concrete cylinders (i.e. uniform confinement) can be
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accurately predicted using this modified CDPM model. In the remainder of
this section, the capability of the modified CDPM model in predicting the
behaviour of FRP-confined concrete in non-circular sections (i.e. effect of
the cross-sectional shape) is examined. Before presenting the numerical
results, a short summary of the modified CDPM model and some necessary

refinements are introduced.

8.3.2Yu et al.” sModel and Refinements
Yu et al.’s (2010b) model was based on the knowledge of FRP-confined

concrete developed at The Hong Kong Polytechnic University (e.g Teng and
Lam 2004; Teng et al. 2007) and formulated within the theoretical
framework of the concrete damaged plasticity model (CDPM) provided in
ABAQUS. Similar to other plastic-damage models used for FRP-confined
concrete (Lubliner et al. 1989; Luccioni and Rougier 2005; Grassl and
Jirasek 2006), Yu et al.’s (2010b) model includes four components: the yield
criterion, the hardening rule, the flow rule, and the damage variable. These
four components are all confinement-dependent, which is the key feature of
this model. An analysis-oriented stress-strain model for FRP-confined
concrete (Teng et al. 2007) was used by them to derive input parameters for
the plastic damage model. The four components of Yu et al.’s (2010b) model

are described in detail in the subsequent sub-sections.
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8.3.2.1Yidd criterion and hardening rule

The yield function adopted in the CDPM model was first proposed by
Lubliner et al. (1989) and later modified by Lee and Fenves (1998) in terms

of the effective stress. The yield function is given by:

F= ﬁ(\/B_TZ - ATl + B(_Emin) - C<_6min>) - 6cn(§pl) (8-1)

with
A=-9— 0<A<05, (8.2)
201
flo
— =pl
B = ;tng;@ (1-A)—(1+A), (8.3)

_ 3(1-K)
T 2K-1

(8.4)

where I; is the first invariant of effective stresses, J, is the second
invariant of deviatoric effective stresses. Gy, 1s the minimum principal
effective stress, 6., and oy, are the effective compressive and tensile
cohesion stresses respectively, P! is the equivalent plastic strain, and K is
the strength ratio between equal biaxial compression and equal tri-axial
compression. As mentioned earlier, f'., is the uniaxial compressive strength
of concrete (unconfined concrete strength), f is the biaxial compressive
strength of concrete with f}/f;, =1.16 as the default value (Kupfer et al.

1969). In addition, the equivalent plastic strain increment is defined by the
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following equation:

~pl _ ~pl
deP’ = —dg_ ;. (8.5)
where Eﬁ:in is the minimum eigenvalues of the plastic strain €P.

Yu et al. (2010b) suggested that G, should depend not only on &P' but

also on the effective confining pressure o) given by:

_ 2(0'2+(1f::0)(0'3+(1f::0) ]
Oleff = 02+63+2an0 afco (8-6)

where o, and o3 are the two principal hoop stresses; and o is a constant
to be determined based on test results. It was suggested by Yu et al. (2010b)
that the best-fit value for a is 0.0039 based on experimental stress-strain
responses of concrete under bi-axial compression (Kupfer et al. 1969). This
value was adopted in the present study as a default value if not otherwise

specified. The hardening rule is thus defined as:
Ocp = Ecn( Epl' 0_l,eff) (8.7)

Yu et al. (2010b) determined that K = 0.725 based on the following
equation describing the failure surface of concrete under equal tri-axial

compression (Teng et al. 2007):
fee =f o +3.50 (8.8)

where f'%.is the peak stress of concrete under a uniform hoop confining
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pressure oj.

8.3.2.2 Flow rule and damage variable

In the CDPM model provided by ABAQUS, the flow rule is described by

the following expressions:

(8.9)

and

G = /(3 optany) +J, — I tany (8.10)
where dA is a non-negative scalar, o;j is the current stress vector, G is the

potential function (ABAQUS 2004), o, is the uniaxial tensile strength, 3
is referred to as the eccentricity which has a default value of 0.1, and ¢ is
the dilation angle which is constant in ABAQUS. Yu et al. (2010b)
suggested that the dilation angle should depend on the equivalent plastic

strain &P' and the equivalent confinement stiffness Keq as follows

U = Y(keq, &) (8.11)

where keq can be calculated from

keq = _Zol,eff/(sz + &3) (3.12)
with €, and &3 being the two principal hoop strains.

In addition, Yu et al. (2010b) proposed the following equation for the
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damage variable d which is also confinement-dependent:

1+C+2A
c———>—0

d=1-—_1A " (8.13)

! %
fec— 1—a Ol

where o is the axial stress of concrete on the descending branch. The two
newly defined parameters, the effective confining pressure o).¢ and the

equivalent confinement stiffness k.4, were implemented into ABAQUS as

eq

“user-defined solution dependent field variables”.

8.3.2.3 Implementation into ABAQUS

In the CDPM model provided in ABAQUS, 6., is independent of the

. . — <Dl
confinement characteristics and only a single G, - &5

¢ curve is required

for a given concrete, which can be obtained from the uniaxial compressive

stress-strain curve of concrete. In Yu et al.’s (2010b) model, as G, is a

pl

¢ curves, each

. ~pl . — ~
function of both &) and Oleff » @ family of G, - €
corresponding to a given value of o). , is required for a given concrete.

_ ~pl . .
Such G,, - &b curves can be derived from an analysis-oriented

stress-strain model for FRP-confined concrete (e.g. Teng et al. 2007; Jiang
and Teng 2007). Such an analysis-oriented stress-strain model usually
includes an active confinement base model to describe the axial stress-strain
relationship of concrete under a constant hoop confining pressure (Teng and

Lam 2004).
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Similarly, a series of d-EEl curves for different values of o) ¢¢ is required
in Yu et al.’s (2010b) model, as d is also confinement-dependent. In

determining d, the post-peak yield surface is assumed to be the same as the

yield surface at peak stress determined from Eq. (8.1). The d - zﬁ’l curve
for a given state of stresses is determined by means of interpolation, based
on the value of oy calculated from the hoop strains (g, and &3)

determined in the previous step of analysis.

It should be noted that when the axial deformation of concrete in
compression is uniform over the cross-section, the equivalent plastic strain
gPlis equal to the plastic compressive strain of concrete SE (positive
according to the sign convention of this thesis). This is because that in this
specific case, one of the principal directions coincides with the axial
direction for both stresses and strains, and the other two principal directions
are always perpendicular to this axial direction. For this situation, a finite
element model containing only a horizontal slice of the concrete
specimen/column can be used in analysis, and &P' can be replaced by &’.
However, if the axial deformation is non-uniform, which may be due to
non-uniform confinement, load eccentricity or other factors, shear stresses

develop between adjacent horizontal slices. Consequently, the axial
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direction is not necessarily one of the principal directions. In such a more
general situation, a 3D finite element model of the entire concrete
specimen/column needs to be used in analysis, and P! is no longer equal

to 85.

In addition, it should also be mentioned if the axial deformation of concrete
in compression is uniform over the cross-section, €, < 0 and &3 < 0 hold,
and the equivalent confinement stiffness Koy given by Eq. (8.12) is always
positive, according to the sign convention adopted in this thesis as the
concrete experiences lateral expansion. However, if the axial deformation of
concrete in non-uniform over the cross-section, €, > 0 or €3 > 0 may
happen. This may lead to a negative value for k¢q and may cause

convergence problems in the finite element analysis.

For the present finite element models, the following assumptions were
added when implementing Yu et al.’s (2010b) plastic-damage model into
ABAQUS without compromising the generality of the model for practical

applications:

a) o, and o3 in Eq. (8.9) are the two smaller principal stresses while
€, and &3 used in the flow rule are the two smaller principal strains

(according to the sign convention of this thesis);
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b) o, (or o3) is ignored in calculating )¢ if it becomes negative
(i.e.0, <0 oroz < 0), as the effect of tensile stresses on confined

concrete is unclear; and

c) & +&3 <0.If & + g5 is found to be positive or zero, it is taken as

a very small negative value in determining the flow rule.

The purpose of these assumptions is to limit the revised part of the CDPM
model in the compressive zone. In addition, two material parameters, the
unconfined concrete strength f'., and the corresponding axial strain e,
are required to generate the input parameters for the CDPM model in
ABAQUS. For the specimens listed in Table 8.1, the reported strengths of
plain concrete cylinders/prisms were directly adopted, which means that the
size effect on the behaviour of these specimens was not considered as their
sizes were close to that of standard concrete cylinders. However, the size

effect on the behaviour of large concrete columns deserves attention.

8.3.3 Stress-Strain Curves

A finite element numerical study was conducted using the modified CDPM
as explained above to evaluate the capability and limitation of the modified
CDPM model in reproducing the response of FRP-confined concrete in
non-circular columns subjected to axial compression. The numerical
modelling procedure for all the columns followed that described above.
Average axial stress-strain curves and axial stress-hoop strain curves for

FRP-confined concrete in square sections are shown in Figs. 8.6-8.8. All
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numerical analyses were terminated at the rupture of the FRP jacket (failure
of the FRP jacket). The predicted axial stress-strain curves are compared
with the experimental curves in Fig. 8.6 for Masia et al.’s (2004) tests, in
Fig. 8.7 for Hosotani et al.’s (1997) tests, and in Figs. 8.8 for Wang’s (2008)

tests, respectively.

Fig. 8.6a shows the predicted and the experimental axial stress-strain and
axial stress-hoop strain responses for FRP-confined concrete in square
columns marked as WS and tested by Masia et al. (2004). This figure shows
that some variation exists within the experimental results. The numerical
results fall in-between the experimental results and correlate well with the
experimental results. Fig. 8.6b shows the predicted axial stress-strain and
axial stress-hoop strain responses of FRP-confined concrete in two square
columns named WL and tested by Masia et al. (2004). Although the
numerical results slightly underestimate the deformation capacity of these
two square columns, they still show adequate agreement with the
experimental curves including the stiffness of the second branch of the axial

stress-strain curve.

Fig. 8.7a shows the predicted and experimental axial stress-strain and axial

stress-hoop strain responses of FRP-confined concrete in a square column

named S-12 and tested by Hosotani et al. (1997), indicating excellent
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agreement between experimental and numerical results. The first ascending
branch of the experimental stress-strain curves is accurately predicted by the
numerical model. Although the numerical model seems to slightly
underestimate the axial stress near the transition point of the stress-strain
curves, the ultimate state of the experimental curves is properly predicted.
Fig. 8.7b shows a similar comparison for another column (column H-8);
close agreement is seen and the axial stress in the transition zone is more

closely predicted.

Fig. 8.8 shows comparisons between predicted and experimental
stress-strain curves for specimens tested by Wang (2008). These figures
indicate that in general the numerical model closely predicts the actual
behaviour of these specimens. Fig. 8.8a shows comparisons for specimens
C30R30P1 and C30R30P2. For specimen C30R30P2, close agreement is
observed. For specimen C30R30P1, the ultimate stress is properly captured
by the numerical model which however underestimates the deformation
capacity. Fig. 8.8b shows the numerical predictions versus test results for
specimens C30R45P1 and C30R45P2. For specimen C30R45P1, close
agreement is observed. For specimen C30R45P2, close agreement in the
shape of stress-strain curves is seen although the axial stress is slightly
underestimated. Fig. 8.8c shows comparisons for specimens C30R60P1 and

C30R60P2. For these two specimens, the predicted stress-strain curves are
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in close agreement with the experimental results. Fig. 8.8d shows
comparisons for specimens C50R60P1 and C50R60P2. For specimen
C50R60P1, close agreement between the numerical and the experimental
results is seen. For specimen C50R60P2, close agreement in the shape of
stress-strain curves is seen although the axial stress is slightly

underestimated.

As mentioned above, nine new elliptical specimens were selected for
simulation. These specimens were divided into three batches. Among the
different batches, the varied parameters were the unconfined concrete
strength and the thickness of the FRP jacket; within each batch, the varied
parameter was the a/b ratio. The variation of the a/b ratio was achieved
through changing the value of b. Therefore, as b is increased, the a/b ratio
becomes smaller while the cross-sectional area of the specimen becomes
larger. Axial force-strain curves for FRP-confined elliptical concrete
columns from both numerical analysis and experiments are shown in Fig.
8.9. The physical meaning of the axial force is similar to that of the average
axial stress. Compared to the axial stress-strain curves, the difference
between the axial force-strain curves for the same set of test results is more
significant. The difference is most significant for the elliptical columns
compared to the previous square columns. That is because for an elliptical

column with a smaller a/b ratio, it is under more effective confinement and
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has a larger cross-sectional area. Therefore, it can resist a much larger axial
force. Hence, for FRP-confined elliptical concrete columns, axial
force-strain curves are adopted for comparison instead of their

corresponding axial stress-strain curves.

For these elliptical specimens, the finite element analysis was terminated
when the reported ultimate experimental axial strain was reached. Some
observations can be made from the experimental and the numerical results.
All of these columns are predicted to have a bilinear axial force-strain curve,
which is similar to the behaviour of circular concrete cylinders with a
sufficient amount of FRP confinement. By contrast, the experimental results
for some columns with a large aspect ratio (i.e. a large a/b ratio) show a
descending post-peak branch although the descending trend is very mild.
For instance, specimens with their a/b ratio equal to 2 in batch III and batch
IV show a descending trend after their peak stress, but the specimen with
the same a/b ratio from batch II does not show such a descending branch.
The concrete strengths in these three batches are close, and the thickness of
the FRP jackets in Batch III and IV are twice that of batch II. Therefore, the
specimen of batch II should have a larger chance of displaying a descending
response, but the experimental results are to the contrary. This may be
attributed to the scatter of experimental results as the second branch is close

to being horizontal in all three cases. Although the overall axial force-strain
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curves of all the specimens are properly predicted by the finite element
models, the ultimate axial forces of these specimens are all slightly
overestimated. This trend of overestimation needs to be further examined

using more experimental results.

8.4 RESULTS OF FE MODELS BASED ON THE MICROPLANE MODEL

8.4.1 Implementation of the M4" Model in ABAQUS

As indicated in Chapter 7, the M4" model was implemented into the Matlab
software as an in-house code to predict the stress-strain behaviour of
concrete under uniform confinement. In that case, the M4" model was only
used as a material driver. A material driver is sufficient to describe the
mechanical response of concrete under uniform confinement, because the
stress state of the whole specimen can be represented by that of any material
point. In addition, the definitions of the confining pressure and the
confining stiffness for concrete under uniform confinement are clear. The
detailed explanations are as follows: 1) for concrete under uniform active
confinement, the confining pressure f; is a constant; 2) for concrete under
uniform passive confinement provided by a linear elastic material such as
FRP, the confining stiffness kg is @ constant. In addition, the confining

stresses over the cross-section are the same.

For concrete under non-uniform confinement (e.g. FRP-confined square
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columns), however, the definition of the confining pressure or the confining
stiftness becomes much less clear and different definitions have been
proposed by previous researchers. For the confining pressure, various
definitions were suggested by different researchers (e.g. Barros 2001;
Johansson and Akesson 2002; Oh 2002; Montoya et al. 2006; Yu et al.
2010b), and were commonly based on a principal stress or a combination of
two principal stresses. For instance, Oh (2002) used the smallest principal
stress (i.e. 03) as the confining pressure; Barros (2001) employed the
intermediate principal stress (i.e. 0,); Johansson and Akesson (2002) and
Montoya et al. (2006) used the mean value of the two smaller principal
stresses (i.e. (0, + 03)/2); Yu et al. (2010b) suggested a more complicated
definition of the confining pressure which has been discussed in Section
8.3.2.1 in detail. For the confining stiffness, the only definition is the one
proposed by Yu et al. (2010b). The expression of this confining stiffness has
been given in Eq. (8.10). Although there has been some research following
that of Yu et al. (2010b) (e.g. Jiang et al. 2011), no other definition exists as
much of the research has focused on FRP-confined circular concrete
cylinders (i.e. uniform confinement), and therefore it has not been necessary

to define a new expression for the confining stiffness.

In the present study, the effects of the above four types of definitions of

confining pressure on the predicted stress-strain responses of FRP-confined
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concrete under non-uniform confinement have been assessed through
comparison with test results. It has been found that the most suitable
definition for the confining pressure in the M4 model is the smallest
principal stress o3. The confining stiftness kg 1s defined as —o3/e5 in
the current model to be consistent with the definition for the confining
pressure. Here, €3 represents the third principal strain. To avoid any
numerical problems, if the K 1S smaller than a predefined value of 50, it

is set to be 50.

Besides the definitions of the confining pressure and the confining stiffness,
other difficulties also exist in implementing the microplane model into a
finite element model. Among these, the most challenging one is probably
the tangential stiffness matrix of the M4 model. In the early versions of the
microplane model, such as M1 and M2, smooth curves are employed to
define the relationships between micro stresses and micro strains, and their
corresponding tangential stiffness matrices can be obtained directly. Using
these explicit tangential stiffness matrices, the microplane model can be
employed in implicit finite element models with high efficiency. In other
words, nonlinear static analysis is more efficient when an explicit material
tangential stiffness matrix exists. However, due to certain insufficiencies
(Jirasek 1993) of these microplane models, the concept of smooth

micro-stress-strain relationships has been abandoned since the M3 model,

275



and formulations of stress—strain boundaries were used in the later
microplane models such as the M3 and the M4 models. Due to the
non-smooth micro-stress-micro-strain relationship introduced by the
stress-strain boundaries, an explicit tangential stiffness matrix cannot be
obtained. To address this problem, Caner and Bazant (2000) suggested
constructing the tangential stiffness matrix from its definition (i.e. defining
the component of the tangential stiffness as the ratio between a strain
increment and its induced stress increment). This is a computationally
intensive approach. To reduce the computational burden, Nemecek et al.
(2002) suggested using the initial elastic stiffness matrix instead of the
tangential stiffness matrix. This approach is still not very effective as a large
number of iterations are usually required. Moreover, this approach is prone
to convergence problems during the numerical calculation. Another way
which is easier is to use the M4 model in an explicit finite element model,

where the tangential stiffness matrix becomes unnecessary.

Static problems can be solved using explicit finite element methods as long
as an appropriate load time function is used to keep the inertia forces small.
It is much more effective to use an explicit analysis especially when the
constitutive model used is also formulated as explicit. Based on the above
discussion, the M4" model is thus implemented in ABAQUS using the

user-defined material subroutine (VUMT). Within this M4’ model, the
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definitions of the confining pressure and the confining stiftness explained in

this section are used.

The M4  model was then employed to simulate the behaviour of
FRP-confined concrete in non-circular columns. The M4" model is
considered to be more promising and conceptually more transparent than
other types of constitutive models such as plasticity-based models in
modelling the responses of concrete. It also provides a more fundamental
explanation of the behaviour of concrete with some reference to the material
microstructure. In Chapter 7, it has been demonstrated that the behaviour of
FRP-confined circular concrete cylinders can be accurately predicted using
the M4" model. As mentioned in that chapter, the parameters k;, c;, and
cg of the M4" model are dependent on the confining pressure and the
confining stiffness. Moreover, these parameters were calibrated based on a
material driver, in which the effects of end restraints were not taken into
account. Considering this specific situation, a horizontal slice of concrete
columns was also employed in the current finite element analysis. As the
current finite element model also neglected the effects of end restraints, it
thus has similar boundary conditions in the vertical direction as the previous
material driver. Therefore, the empirical equations developed for the
parameters k;, c,, and cg of the M4" model can be used in the finite

element analysis without any modification. Another advantage of the slice
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model is that it can avoid possible spurious localization at the structural

level.

In the modified CDPM model, f'., and &, are employed as input
material parameters. However, in the M4" model, three parameters E, k?,
and c;g are used as input material parameters instead of f'., and €.,. The
values of these three parameters are determined by fitting the axial
stress-strain curves of unconfined concrete. The detailed values of these
three parameters for each batch of concrete are summarized in Tables 8.3
and 8.4. Other parameters required by the M4"™ model were assigned their
default values as suggested in Chapter 7. As in Section 8.3, the effects of

size on the behaviour of confined concrete are still neglected here.

8.4.2 Stress-Strain Curves

The VUMAT was used in finite element analysis to model the mechanical
responses of FRP-confined concrete in non-circular columns subjected to
axial loading. As explained in Section 8.2, the finite element models
adopted the same finite element mesh and element types as those used in
Section 8.3, but were executed using ABAQUS explicit instead of

ABAQUS implicit.

To evaluate the capability of the M4 model in reproducing the mechanical

responses of FRP-confined concrete in non-circular columns, the predicted
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average axial stress-strain and axial stress-hoop strain curves along with the
corresponding experimental curves are shown in Figs. 8.10-8.12. The same
termination criterion as described in Section 8.3 was adopted. The predicted
axial stress-strain curves are compared with the experimental curves in Fig.
8.10 for Masia et al.’s (2004) tests, in Fig. 8.11 for Hosotani et al.’s (1997)

tests, and in Fig. 8.12 for Wang’s (2008) tests.

Fig. 8.10a shows the predicted and the experimental axial stress-strain and
axial stress-hoop strain responses of FRP-confined concrete in a square
columns marked as WS and tested by Masia et al. (2004). As can be seen,
there is a good agreement between the numerical and the experimental
results. In addition, the ultimate states of these specimens were also
accurately predicted. Fig. 8.10b shows the axial stress-strain and axial
stress-hoop strain responses of the specimens marked as WL, which were
also tested by Masia et al. (2004). Although the deformation capability of
these specimens is slightly overestimated, the numerical results correlate

remarkably well with the experimental results.

Figs. 8.11 show the predicted and the experimental axial stress-strain and
axial stress-hoop strain responses of FRP-confined concrete in square
columns as tested by Hosotani et al. (1997). As mentioned in Section 8.2,

these two specimens were confined with two different types of FRP jackets
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(Normal modulus and high modulus). These figures show that the finite
element model overestimates the ultimate stress of these two specimens, but
they predict the deformation capability of these specimens accurately. That
is, the finite element model tends to overestimate the stiffness of the second
branch of the axial stress-strain curves. The possible reason for this
overestimation is that the confining stiffness involved in these two
specimens are far beyond the scope of those used to calibrate the parameters
of the M4" model (i.e. k;, c; and cg). In these two specimens, the FRP
jacket is much thicker than other specimens selected from the database.
Moreover, for specimen H-8, the elastic modulus of the FRP jacket is much
larger than that of other specimens. Therefore, the confining stiffness
provided by the FRP jacket in these two specimens is much larger than
other specimens selected for comparison. Due to this reason, the finite
element models cannot provide accurate predictions for these two

specimens.

Fig. 8.12 shows the comparisons between the predicted and the
experimental stress-strain curves for the specimens tested by Wang (2008).
Unlike the numerical results obtained using the modified CDPM model,
which tend to slightly overestimate the axial stress, especially the ultimate
axial stress, the numerical results obtained using the M4" model tend to

slightly underestimate the axial stress. However, the extent of this
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underestimation is very small. Therefore, excellent agreement between the

experimental and the numerical results is still achieved for these specimens.

Axial force-strain curves for FRP-confined elliptical concrete columns from
both numerical analysis and experiments are shown in Figs. 8.13. The
following observations can be made from these figures: 1) the numerical
model can predict the overall behaviour of the experimental responses; 2)
unlike the numerical results obtained using the modified CDPM, where all
the elliptical specimens show bilinear axial force-strain curves, some of the
numerical results obtained using the M4" model show a descending branch
in axial force-strain curves for the specimens with larger values of the a/b
ratio. The variations obtained using these two different constitutive models

may be due to the fact that they are based on different theories.

8.5 COMPARISON WITH ANALYTICAL RESULTS FROM DIFFERENT

CONSTITUTIVE MODELS AND EMPIRICAL MODELS

As mentioned above, a number of empirical or semi-empirical models have
been proposed to predict the stress-strain behaviour of FRP-confined
concrete in non-circular columns. Two representative models among them
(i.e. Lam and Teng 2003; Wei and Wu 2012), were selected for comparison
with results from the finite element models. Lam and Teng’s (2003) model

was chosen because it is a simple but relatively accurate model, and Wei
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and Wu’s (2012) model was chosen as most of the experimental data used in
this chapter had already been used in building this model. The formulations

of these two empirical models are summarized below.

In Lam and Teng’s (2003) design-oriented stress-strain model, two shape
factors, kg; and kg,, were adopted to consider the impact of section
shapes. The equation of the ultimate axial stress is as follows:

fou = féo + KiKksifla (8.14)

For the ultimate axial strain, the following expression is used

0.45
S8 = 175 + Kok 22 (222) (8.15)

€co €co

Here, k; =3.3 and k, =12. In addition, the value of &, was
suggested to be 0.586¢; (Lam and Teng 2003). The definitions of other

parameters can be found in Chapter 2.

Wei and Wu (2012) proposed a unified stress-strain model for FRP-confined
concrete in both circular and rectangular columns. This empirical model is
the most updated one for FRP-confined concrete in non-circular columns.
Compared to Lam and Teng’s (2003) design-oriented stress-strain model,
more complex expressions are employed to consider the ultimate state of
the FRP-confined concrete in non-circular columns. In this model, the

equation of the ultimate axial stress is as follows:
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where f], is calculated by

2fppt 2Ejeqpt
f = et — 2ot (8.17)
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For a square column, bgq is the width of the column.

For the ultimate axial strain, the following expression is used:

Ecu £\075 (fs0 0-62< 2r )( h )‘0-3
=t =175+ 12 (- 20 0.36— + 0.64 8.18
&) @) (oseg .19

€co feo feo E
where f3, is the concrete strength of unconfined grade C30 concrete. In Eq.

(8.18), the following equation is adopted to calculate &,.

€., = 0.0009377/f!, (8.19).

In Sections 8.3 & 8.4, the axial stress-strain and axial stress-hoop strain
curves or axial force-strain curves obtained from finite element analysis
using the two different constitutive models are compared with the
experimental results separately. To further demonstrate the capability of
these two constitutive models, predictions for the ultimate state of the

concrete are compared in Tables 8.5 and 8.6.

In Table 8.5, the predictions are normalized by the corresponding

experimental results. Here, ‘theol’ represents the numerical results obtained
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using the modified CDPM model; ‘theo2’ represents the results obtained
using the M4" model; ‘theo3’ represents the results obtained from Lam and
Teng’s (2003b) design-oriented stress-strain model; ‘theo4’ represents the
results obtained from Wei and Wu’s (2012) design-oriented stress-strain
model. The same definitions for ‘theol’ and ‘theo2’ are also adopted in

Table 8.6.

The third and the fourth columns in Table 8.5 show the finite element results
obtained using the modified CDPM model; the fifth and the sixth columns
of this table show the finite element results obtained using the M4 model;
the seventh and the eighth columns of this table show the results obtained
from Wei and Wu’s (2012) design-oriented stress-strain model; the ninth
and the tenth columns of this table show the results obtained from Lam and
Teng’s (2003b) design-oriented stress-strain model. Two statistical
indicators, i.e. the average value and the standard deviation, were calculated
to assess the capability of these four approaches in predicting the ultimate

state.

The average values of the ultimate stress obtained from these four
approaches are 0.97, 1.1, 0.98, and 0.89, respectively. It seems that for the
ultimate strength, Wei and Wu’s (2012) design-oriented stress-strain model

and the modified CDPM model show better performance than the other two
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models. Within these two models, the results obtained from the modified
CDPM model shows a relatively small standard deviation equal to 0.08,
indicating that its prediction suffers a smaller variation compared to Wei and
Wu’s (2012) design-oriented stress-strain model (a standard deviation equal
to 0.11). Wei and Wu’s (2012) design-oriented stress-strain model shows
even better performance for the ultimate stress than the M4  model.
Generally, the accuracy of the empirical models strongly depends on the test
database employed in the process of regression analysis. As most of the
experimental data summarized in Table 8.1 except those of Hosotani et al.
(1997) have been used in the process of regression analysis in calibrating
Wei and Wu’s (2012) model, the high accuracy of Wei and Wu’s (2012)
design-oriented stress-strain model for these test data is to be expected. In
addition, although the numerical results obtained using the M4 model give
a slightly larger average value, they show the smallest standard deviation

among the results of all these four models.

The average values of the ultimate axial strain obtained from these four
models are 0.94, 1.1, 0.86, and 0.66, respectively. For the ultimate axial
strain, the modified CDPM model shows the best performance among these
four models. Its predicted average value is 0.94 which is very close to 1,
indicating a good agreement between the predicted values and the

experimental data. In addition, its predicted values possess the smallest
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standard deviation of 0.14, which means they are highly consistent.
Similarly, the ultimate axial strains obtained using the M4 model also show
better performance than the other two design-oriented stress-strain models.
In summary, for the ultimate axial strains, the constitutive models used in
finite element analyses demonstrate their advantages in providing more

accurate predictions.

Another thing that should be noted is that for both the ultimate stress and
the ultimate axial strain, the predicted results using the M4 model tend to
slightly overestimate the experimental results, while those obtained using
the other three models tend to underestimate the corresponding

experimental results.

Table 8.6 summarizes the predicted ultimate axial stress obtained using the
two different concrete constitutive models for FRP-confined concrete in
elliptical columns. The ultimate axial strain is not compared as the finite
element analysis for these elliptical specimens was terminated based on the
ultimate axial strain itself. The two design-oriented stress-strain models
discussed above are not directly applicable to elliptical specimens, and thus
they are also not included in the comparison. In Table 8.6, the first column
of data gives the numerical results obtained from the finite element analysis

based on the modified CDPM model. The upper boundary of the data is
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1.42; the lower boundary of the data is 1.02; the average value is 1.13 with a
standard deviation of 0.12. These statistics indicate that the numerical
results obtained by using the modified CDPM model tend to overestimate
the ultimate axial stress. Moreover, these data indicate that for specimens
with a large a/b ratio, the prediction error tends to be large. The second
column of data in this table gives the numerical results obtained using the
M4 " model. The upper boundary of the data is 1.24; the lower boundary of
the data is 0.82; the average value is 1.08 with a standard deviation of 0.16.
These statistics indicate that the numerical results obtained using the M4"
model also tend to slightly overestimate the ultimate axial stress. What is
different from the numerical results obtained by using the modified CDPM
model, in which the ultimate axial stresses for all 9 specimens are
overestimated, the predictions obtained by using the M4~ model do not
show this systematic error. Thus, although the scatter of the predictions
obtained using the M4" model is larger than that obtained using the
modified CDPM model, its average error (8%) is still smaller than that

obtained using the modified CDPM models (13%).

8.6 CONFINING STRESS DISTRIBUTION OVER THE WHOLE SECTION

The confining stress distribution over a non-circular section reflects the
confining effects of the FRP jacket in an intuitive way. It is physically

understood that a uniformly-distributed confining stress has a better
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confining effect than a non-uniformly distributed confining stress. For
instance, the confining effect in a circular section is better than that in a

square/rectangular section with an identical cross-sectional area.

The stress distribution over a non-circular section of interest can hardly be
obtained using an experimental approach. Therefore, in developing
empirical models, a simplified approach is generally employed to introduce
an assumed distribution (e.g. Mander et al. 1988, Lam and Teng 2003). This
assumption often includes two uniformly-distributed stress zones. In one of
these zones, the concrete is assumed to be under effective uniform
confinement, while in the other zone, the concrete is assumed to be under no
confinement. Due to the simple treatment of the stress zones, this
assumption can only be seen as a rough approximation of the actual stress
distribution. By contrast, the numerical results from finite element analysis
enable a detailed examination of the stress distribution at any stage of
loading. Therefore, in this section, the distribution of the stress over the
whole cross-sections of some selected specimens is examined to provide

some intuitive understanding.

Although similar numerical results were obtained using the two different

constitutive models in modelling the behaviour of FRP-confined concrete in

non-circular columns, in this section, only those obtained using the
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modified CDPM model are examined to reveal the stress distribution. That
is because for the numerical results obtained using the M4" model, their
predicted stress distributions lose symmetry at relatively large values of
axial deformation. To further illustrate this phenomenon, the axial stress
distributions of specimen C30R30P2 based on the numerical results
obtained using the M4" model are shown in Fig. 8.14. The distribution of
the axial stress at an early stage before reaching the strength of unconfined
concrete is shown in Fig. 8.14a. At this specific stage, the distribution of the
axial stress remains symmetric. However, it can be observed that the
distribution of the axial stress loses its symmetry to some extent at the
ultimate state when the rupture of the FRP jacket is achieved (see Fig.
8.14b). To check whether this loss of symmetry is due to the use of the
explicit finite element method, the M4 model was also implemented into
the implicit finite element models with a tangential stiffness matrix as
suggested by Caner and Bazant (2000). The same phenomenon still exists.
Therefore, a possible reason of this asymmetry of stress may be due to the
inherent characteristics of the M4 model. For an explicit material model,
with the increase of the calculation time, the errors of the constitutive model
may accumulate and thus the distribution of the axial stress may lose
symmetry, although the accumulated errors have an insignificant effect on

the overall average stress-strain behaviour.
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Figs. 8.15 and 8.16 show the contours of the axial stress over two selected
cross-sections, namely the sections of C30R30 and C30R45. In these two
figures, the contours correspond to the stress states where the failure of the
FRP jacket is achieved, which is of interest. The magnitude of the axial
stress is given in MPa. In addition, the gray areas in Figs. 8.15-8.16 indicate
the zones with the magnitude of the axial stress smaller than the
corresponding unconfined concrete strength fi, (i.e. non-effective

confinement zone).

From the axial stress contour plots, some basic characteristics of the stress
distribution can be observed. It seems that the distribution of the axial stress
shows the pattern of an arch shape. It is typical of stress distribution of a
square section that the highest axial stress occurs at the corners of the
section. In addition, along the diagonal direction, the magnitude of the axial
stress drops gradually, although the concrete within this zone (the zone
along the diagonal direction) is still effectively confined as the smallest
axial stress predicted is still larger than the unconfined concrete strength.
On the other hand, the constraint on both sides of the diagonal zone
becomes not so effective and the magnitude of the axial stress drops further.
Therefore, the weakest confinement zones appear in the middle of the sides.
As a result, the contour plot of the whole section shows an X-shape, which

is similar to what is commonly assumed for a square concrete column

290



confined by steel hoops (Mander et al. 1988).

Furthermore, it can also be observed from Figs. 8.15 and 8.16 that the
amount of FRP affects the stress distribution. With the increase of the
thickness of the FRP jacket, the ineffective confinement zones (gray zones
in the figures) become smaller, indicating an increased -effective
confinement zone. This factor has not been taken into consideration in the
arching action assumption. The neglect of the effect of the thickness of the
FRP jacket may be due to an implicit assumption adopted in the arching
assumption. In the arching assumption, the concrete is implicitly taken as an
elastic material, which means that increasing the thickness of the FRP
jackets does not introduce stress redistribution. By contrast, in the finite
element analysis, the concrete material experiences inelastic behaviour.
Therefore, the concrete displays a nonlinear performance and the change of

the thickness also affects the stress distribution.

What is more, the radius of the corner is another important factor which
affects the stress distribution. Figs. 8.15 and 8.16 show that the magnitude
of the axial stress is higher for the specimen with a larger corner radius. For
instance, for the specimen C30R45P2 which has a relatively large corner
radius of 45mm, no gray zones exist in the contour plot and the whole

section can be seen as effectively confined. Generally, the effects of this
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factor have been considered in the empirical model (e.g. Lam and Teng

2003).

To further illustrate the confining effect, the contours of the third principal
stress are selected to represent the confining pressure and are shown in Figs.
8.17-8.18 for the above four specimens. Similarly, the distribution of the
confining pressure also shows a clear pattern of an arch shape. Furthermore,
as can be seen from these figures, no tensile stress appears on any of the
sections, indicating that the whole section is under effective confinement. In
the low confining zone, the axial stress is smaller than the unconfined
concrete strength fl, because the axial strain at the failure stage is much
larger than €.,. Therefore, concrete experienced a long stress softening
process, although its peak stress is still larger than the unconfined concrete

strength f(,.

Similar to that of square sections, Fig. 8.19 shows the contours of the axial
stress over two elliptical cross-sections of batch II with two different a/b
ratios. It can be observed from these figures that the axial stress near the
vertex of the major axis of the ellipse is larger than that near the minor axis
of the ellipse. Moreover, along the major axis of the ellipse, there is a
significant gradient existing in the axial stress. With the increase of the a/b

ratio, the gradient of the axial stress becomes large, indicating an increased
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non-uniformity of the stress distribution. This observation may explain why

a larger a/b results in a less effective confinement effect.

8.7 CONCLUSIONS

This chapter has been concerned with the development of finite element
models for the analysis of FRP-confined non-circular concrete columns.
These finite element models can be employed to perform a large number of
numerical experiments for detailed examinations of the underlying
mechanism of confinement. Two constitutive models, i.e. the modified
CDPM model and the M4" model were employed to describe the behaviour
of concrete under confinement. These two constitutive models were selected
as their accuracy for FRP-confined circular concrete cylinders had already
been verified, and therefore they were considered to be more promising in
predicting the mechanical responses of FRP-confined concrete in

non-circular columns compared to other constitutive models.

The finite element models using the above two constitutive models were
verified by comparison with experimental results of FRP-confined concrete
in non-circular columns. The comparison showed that the finite element
models were capable of reproducing the axial stress-strain or axial
force-strain response of FRP-confined concrete in non-circular columns. In

addition, the high accuracy of these finite element models indicates that the
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finite element models can capture the major characteristics of the

experimental results.

Furthermore, the corner radius of the square section was properly
considered in the finite element model. In this way, it is possible to trace the
hoop strains at any place of the square section to determine the onset of
rupture of the FRP jacket. In addition, the presence of a corner radius has a
significant effect on the confinement effect. Therefore, this detail plays an

important role in the confinement mechanism.

For FRP-confined concrete in square columns, the numerical results were
also compared with results from existing empirical models. For the ultimate
stress, the empirical model developed by Wei and Wu (2012) has similar
accuracy as the finite element model using the modified CDPM model.
However, for the ultimate axial strain, the finite element models using the
two constitutive models both have better performance than the empirical

models.

The numerical results enabled a comprehensive examination of the
distribution of the axial stress and that of the confining pressure in the hoop
direction. It was found that both the corner radius and the thickness of the

FRP jacket have a significant effect on the stress distribution in the concrete.
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The effect of corner radius has already been widely accepted by researchers
and considered in some empirical models (e.g. Lam and Teng 2004). By
contrast, the effect of the thickness of the FRP jacket on the stress
distribution is not so intuitive. This effect exists because concrete is a
non-linear material and the thickness of the FRP jacket changes the stress

state of concrete at failure.
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Figure 8.1 Mesh details for specimens C30R30 from Wang (2008)
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Figure 8.2 Mesh details for Stefano’s (2011) Batch 11
elliptical specimens (a/b=1.3)
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Figure 8.5 Un-deformed section and deformed section of specimen
C30R45P2 from a CDPM finite element model
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Figure 8.9 Axial force-strain curves for Stefano’s (2011) elliptical
specimens (Based on the CDPM model)
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(a) Early stage

(b) Ultimate stage

Figure 8.14 Contours of axial stress over the cross-section of specimen

315

C30R30P2 (Based on the M4 model)
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Figure 8.15 Contours of axial stress over the cross-section of specimens
C30R30 (Based on the CDPM model)
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Figure 8.16 Contours of axial stress over the cross-section of specimens
C30R45 (Based on the CDPM model)
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(a) Batch II, a/b=1.3

(b) Batch 11, a/b=2
Figure 8.19 Contours of axial stress over the cross-sections of elliptical
specimens (Based on the CDPM model)



Masia et al. (2004)

Hosotani et al. (1997)
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Researchers

Wang (2008)

Specimen index Dimension,B*L, mm Corner radius r, mm

WS
WL
H-8
S-12
C30R30P1
C30R30P2
C30R45P1
C30R45P2
C30R60P1
C30R60P2
C50R60P1
C50R60P2

Table 8.1 Properties of FRP-confined square columns

100*300
150%450

200*600

150*300

25

30

30

45

60

B/r
4
6

6.7

33

2.5

{0, Mpa
27

38
323
30.7
31.8

52.7

€co
0.002

0.0021

0.0027

0.0027

0.0027

0.0027

Ej, Gpa
230

439
252

219

225.7

t,mm 5 (MPa)

0.26

0.68
0.67
0.165
0.33
0.165
0.33
0.165
0.33
0.165
0.33

&gip (%)
3500 L5
4433 1.76
3972 0.9
4364 1.99
3788 1.92
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Table 8.2 Properties of FRP-confined elliptical columns

Batch a/b
11 1.3
1.7

2

11 1.3
1.7

2

v 1.3
1.7

2

H, mm
398.8
400.6
398.9
398.5
399.7
399.5
397.9
399.4
399.2

a, mm
201
200.1
201.7
202.9
200.8
202.9
200.7
199.9
200.3

b, mm
154.7
120.8
101.9
156
120.2
102.1
155.4
120.9
101.9

{0, Mpa

32.64

35.69

35.92

€o

0.0027

0.0027

0.0029

Ej, Gpa tj, mm

0.171

242
0.342



323

Table 8.3 Properties of FRP-confined square columns and parameters for the M4 model

Researchers

Masia et al. (2004)

Hosotani et al. (1997)

Wang (2008)

Specimen index Dimension,B*L, mm Corner radius r, mm

WS
WL
H-8
S-12
C30R30P1
C30R30P2
C30R45P1
C30R45P2
C30R60P1
C30R60P2
C50R60P 1
C50R60P2

100*300
150%450

200*600

150*300

25

30

30

45

60

B/t

6.7

33

2.5

f'e0, Mpa

27
38
323
30.7
31.8

52.7

€co

0.002

0.0021

0.0027

0.0027

0.0027

0.0027

Ej, Gpa
230

439
252

230.5

tj, mm
0.26

0.68
0.67
0.165
0.33
0.165
0.33
0.165
0.33
0.165
0.33

ki

0.00015
0.000162
0.000192
0.000192
0.000192

0.000192

E, Gpa
243

31.7
22.6
21.5
223

37

0.2

0.2

0.2

0.2

0.2

0.2
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Batch
11

I

v

Table 8.4 Properties of FRP-confined elliptical columns and parameters for the M4 model

a/b
1.3
1.7
2
1.3
1.7
2
1.3
1.7
2

H, mm
398.8
400.6
398.9
398.5
399.7
399.5
397.9
399.4
399.2

a, mm
201
200.1
201.7
202.9
200.8
202.9
200.7
199.9
200.3

b, mm
154.7
120.8
101.9
156
120.2
102.1
155.4
120.9
101.9

f'co, Mpa

32.64

35.69

35.92

€co

0.0027

0.0027

0.0029

Ej, Gpa tj, mm k?

0.171 0.000145

242 0.000192
0.342
0.000206

E, Gpa

29

25.3

23.7

0.4

0.2

0.2



Table 8.5 Predictions from finite element models and empirical models for FRP-confined square columns

Researchers SpeCimen index fcu,theol/fcu,exp 8cu,theol/scu,exp fcu,theoZ/fcu,exp 8cu,theo2/'5‘:r:u,exp fcu,theoS/fcu,ex‘Scu,theOS/Scu,exp fcu,theo4/fcu,exp Scu,theo4/gcu,exp

WS-1 0.93 0.79 1.05 1.05 0.96 1.02 0.82 0.74

Masia et al. (2004 WS-2 0.87 0.91 1.13 0.96 1.05 1.27 0.88 0.88

WL-1 0.90 0.84 1.09 1.29 1.06 1.48 1.01 0.95

WL-2 0.89 0.84 1.08 1.24 0.97 1.68 0.90 1.02

. H-8 1.01 1.05 1.20 1.06 0.75 0.55 0.73 0.42
osotani et al. (199

S-12 1.02 1.06 1.22 1.10 0.81 0.43 0.80 0.30

C30R30P1 1.05 0.69 1.17 0.99 1.11 0.72 1.06 0.56

C30R30P2 0.98 0.91 1.16 1.19 1.02 0.65 0.92 0.56

C30R45P1 1.09 1.11 1.13 1.45 1.06 0.82 0.97 0.65

Wang (2008) C30R45P2 0.86 0.88 1.03 0.89 0.93 0.66 0.79 0.58

C30R60P1 1.09 1.15 1.12 1.37 1.02 0.69 0.89 0.56

C30R60P2 0.98 0.93 1.01 0.82 0.89 0.61 0.72 0.55

C50R60P1 0.97 0.85 0.98 0.90 1.12 0.80 1.04 0.78

C50R60P2 0.98 1.17 1.02 1.10 0.96 0.62 0.87 0.68

Average value 0.97 0.94 1.10 1.10 0.98 0.86 0.89 0.66

Standard deviation 0.08 0.14 0.07 0.18 0.11 0.37 0.11 0.20
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Table 8.6 Predictions from finite element models for FRP-confined elliptical column

Batch a/b fcu,theol/fcu,exp fcu,theoz/fcu,exp
1.3 1.07 1.13
I 1.7 1.08 1.19
2 1.08 0.83
1.3 1.16 1.17
III 1.7 1.08 1.24
2 1.42 1.04
1.3 1.02 1.03
v 1.7 1.04 1.24
2 1.19 0.82
Average value 1.13 1.08
Standard deviation 0.12 0.16
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CHAPTER 9

FINITE ELEMENT ANALY SIS OF FRP-CONFINED
CONCRETE COLUMNSUSING THE MODIFIED
CDPM MODEL FOR CONCRETE

9.1 INTRODUCTION

As discussed in Chapter 8, the plastic-damage model proposed by Yu et al.
(2010b) for FRP-confined concrete was further refined to make it applicable
to 3D finite element modelling. This refined model has been referred to as
the modified CDPM model in the previous chapter. An additional
assumption of uniform axial deformation was adopted in Yu et al. (2010b)
so that the finite element model only needs to include a horizontal slice of
the column represented by a single-layer of solid elements. Such a slice
model can closely represent the mid-height region of an FRP-confined
circular concrete cylinder. Having been successfully employed in the
nonlinear finite element analysis of hybrid FRP-concrete-steel double-skin
tubular columns (DSTCs) in Yu et al. (2010b), it can also be used to model
the responses of FRP-confined concrete in non-circular columns, so long as
the end restraints existing in the column can be neglected (see Chapter 8).
This slice model provides an efficient approach for modelling interactions
within the chosen transverse plane provided that axial non-uniformity is
un-important. However, it is impossible for the slice model to capture the
axial non-uniformity in both deformations and stresses. For instance, when
concrete is only confined by steel hoops, the slice model cannot be directly

applied.
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Therefore, Yu et al.’s model was first extended to the 3D case in the study
reported in this chapter. At the beginning of the study, particular attention
was paid to the effects of end restraints and a recalibration process was
adopted to eliminate their impact on the numerical results. After that, the
recalibrated model is used in finite element models to examine the effects of
internal and external passive confinement provided by both transverse steel
bars and FRP jackets. Finally, the finite element models were utilized to
check the assumption of arching action, which is commonly used in

concrete confined by transverse steel bars.

The present study was focused on the performance of a concrete constitutive
model in the finite element analysis of concrete columns. FRP and steel are
the other two materials which are commonly used in concrete columns.
Therefore, constitutive models for these two materials are also briefly
described here. In the finite element models presented below, the FRP jacket
is treated as a linear elastic material that fails when its rupture strain is
reached; the steel bar is considered as an elastic-perfectly-plastic material
and bar buckling is not considered. The material parameters for both
materials are given for each column specimen. Additionally, a perfect bond
is assumed between concrete and steel (or FRP) if not specifically

mentioned.
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9.2 ANALYSIS OF FRP-CONFINED CONCRETE CYLINDERS

9.2.1 Finite Element M odel

The finite element model was to simulate the behaviour of FRP-confined
concrete cylinders using ABAQUS. Circular concrete cylinders, each with a
diameter (D) of 150 mm and a length (L) of 300 mm, were considered. The
modified CDPM model as described in Chapter 8 was adopted as the
constitutive model for concrete in the finite element simulation. For FRP
jackets, only the confinement stiffness in the hoop direction was considered.
The Poisson’s ratio of the FRP jacket was set to be zero and this value was
always used in the numerical simulations of this study. These settings
ensured that the FRP jacket only functioned as a confining device in the

finite element model.

Based on the symmetry conditions of FRP-confined circular cylinders, an
axi-symmetric model was used and only half of the column height was
included in the finite element model. A 4-node axi-symmetric solid element
and a 2-node axi-symmetric membrane element were adopted for the
concrete and the FRP jacket respectively. Both the concrete and the FRP
jacket had elements’ size of about 6.25 mm, which was chosen on the basis
of a mesh convergence study. In all these finite element models, axial
displacements were uniformly imposed on the top surface of the concrete
cylinder until the maximum hoop strain in the FRP jacket reached its

rupture strain. (e.g. 0.9%)
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9.2.2 Effects of End Restraints

In standard compression tests of concrete specimens such as standard
cylinders or cubes, the horizontal displacements at the ends of the specimen
are restrained by the friction between the end surfaces and the loading
platens. It has been well established that the end restraints affect the failure
mode and load carrying capacity of the concrete specimen (Sangha and Dhir
1972), and the characteristic “shear cone failure” is a result of the end
restraints. As it is not realistic to completely eliminate the end restraints in
laboratory tests, it is generally recommended that the compressive strength
of concrete be obtained from tests with end restraints, and the axial
compressive strain of concrete in cylindrical tests be based on the average
shortening in the mid-height region within a gauge length no more than two
thirds the height of the specimen (ASTM 2010). This is also the normal

practice for the compression tests of FRP-confined concrete cylinders.

In this sub-section, the effects of end restraints are first discussed based on
numerical examples of typical FRP-confined concrete cylinders. It is
generally assumed for these numerical examples that, for concrete, its
unconfined strength f'., is 40 MPa and its axial strain at peak stress &, is
0.0025; for FRP jackets, its thickness tg.,, modulus of elasticity Eg, and
average hoop rupture strain &, are 0.34mm, 240GPa and 0.009,
respectively. The finite element model presented in Section 9.2.1 was
utilized for the simulation. To achieve more accurate predictions, input
parameters required by the modified CDPM model (Yu et al. 2010b) were

derived using Jiang and Teng’s (2007) analysis-oriented stress-strain model,
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which has been verified as a more accurate model for FRP-confined

concrete in circular cylinders.

Fig. 9.1 shows that without end restraints, the distributions of both axial
displacements and stresses are uniform; however, when the horizontal
displacements at the end are precluded by restraints, the distributions of
both axial displacements and axial stresses become highly non-uniform. Fig.
9.2 shows that without end restraints, the finite element model reproduced
the stress-strain curves predicted by Jiang and Teng’s (2007) model.
However, when horizontal restraints were added to the ends, the finite
element analysis predicted a lower axial stress than Jiang and Teng’s (2007)
model at the same hoop strain. In these figures, the axial stress is the
average axial stress over a horizontal cross-section, the hoop strain is that
obtained on the outer surface of the concrete cylinder at mid-height (i.e. the
plane of symmetry), and the axial strain is the axial displacement on the
outer surface of the concrete cylinder at a height of 60 mm divided by half

of the gauge length, which is equaled to 60 mm in this case.

Based on the information given in Figs 9.1 & 9.2, it is clear that end
restraints have a negative effect on the responses of FRP-confined concrete
in terms of the compressive strength and the strain capacity. This negative
effect arises because end restraints result in non-uniform confinement,
which was found to have insignificant effect in increasing the axial stress of

FRP-confined concrete. By contrast, end restraints prevent the
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FRP-confined cylinder from lateral expansion at the ends and lead to
non-uniform straining of the FRP jacket along the height. When the FRP
jacket reaches its hoop rupture strain at the mid-height, its hoop strain is still
much smaller away from the mid-height and is equaled to zero at the ends.
As a result of this non-uniform straining of the jacket, the FRP-confined
concrete reaches its ultimate axial stress earlier at a smaller value of axial

strain.

An important point to note is that, when an analysis-oriented stress-strain
model is used to derive the input parameters for finite element analysis, an
assumption is implied that this model represents the local behaviour of a
material point of concrete in the finite element model and the effects of end
restraints do not exist. However, as mentioned in section 9.2.1, if this
analysis-oriented stress-strain model (e.g. Jiang and Teng 2007) has been
calibrated using test results of FRP-confined circular concrete cylinders
with end restraints, this assumption is not valid (i.e. Jiang and Teng’s model
is not a local analysis-oriented model). Therefore, when such an
analysis-oriented stress-strain model is used to derive the input parameters,
the end effects are considered twice if end restraints are added to the finite
element model as a boundary condition. This explains why the finite
element model reproduces the responses predicted by Jiang and Teng’s
(2007) model when end restraints are not added, but does not do so when

they are (see Fig. 9.2).

9.2.3. Recalibration of Analysis-oriented Stress-strain M odel

To address this problem, a local analysis-oriented model is needed. The key
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components in the analysis-oriented stress-strain model of Teng et al. (2007)
or Jiang and Teng (2007) are the lateral strain equation describing the axial
strain-lateral strain relationship of concrete under varying lateral
confinement and the expressions defining the compressive strength and
corresponding axial strain of actively confined concrete. In order to remove
the effects of end restraints, these expressions have to be recalibrated. As it
is not realistic to recalibrate the expressions against test data free of the
effects of end restraints, the coefficients used in these expressions were
adjusted by a trial-and-error process. This process was executed until the
finite element model with end restraints could reproduce the predictions of
the original analysis-oriented stress-strain model (i.e. the one proposed by

Jiang and Teng 2007).

As a result of the recalibration, the lateral strain equation becomes

£c -] 0.7 —€] 0]
fe = 1.05 [1 +0.75 (—)] — exp [—7 (—)] x (1 + 8—) 9.1)
£co €co €co fco
where €. and g are the axial strain and lateral strain in the concrete, and
€co 18 the axial strain at the compressive strength of unconfined concrete.

On the other hand, the expressions for the compressive strength and

corresponding axial strain of actively confined concrete become
foe = f'eo + 40y (9.2)

This change in the confinement effectiveness coefficient also leads to the

following equation for the axial strain of concrete at f'g:

83—°=1+20(f’—1

€co co

) (9.3)
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where &g is the axial strain at the peak axial stress of concrete under a

lateral confining pressure oj.

The only difference between the original lateral strain equation proposed by
Teng et al. (2007) (also used in Jiang and Teng’s model) and Eq. (9.1) is that
a coefficient of 0.85 in the former is changed to 1.05 in the latter. Similarly,
Eq. (9.2) is slightly different from the original equation proposed by Teng et
al. (2007) (also used in Jiang and Teng’s model), and it is closer to the
equation of Richart et al. (1928) with a confinement effectiveness
coefficient of 4.1. The change of Eq. (9.3) from the equations used in Teng
et al. (2007) and Jiang and Teng (2007) is a result of the change in the
confinement effectiveness coefficient, following the approach of Richart et
al. (1929) who used a factor of five times the confinement effectiveness
coefficient in the equation for the axial strain at the peak stress. It seems that
the assumption of path-independency is still valid as the local
analysis-oriented stress-strain model can provide accurate predictions for
both actively-confined concrete and FRP-confined concrete. The effect of
end restraints is included in Jiang and Teng (2007) model. Therefore, an
active-confinement model which slightly underestimates the peak axial
stress and the corresponding axial strain is used to remedy the
underestimation caused by end restraints. This underestimation is excluded
from the local analysis-oriented stress-strain model, which leads to an
active-confinement model capable of providing close predictions for
actively-confined concrete. In addition, it is worth noting that Eq. (9.2)

results in a K value of 0.699 instead of the original value of 0.725 that was
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suggested by Yu et al. (2010b).

Egs. (9.1), (9.2) and (9.3), together with the stress-strain model of Popovics
(1973), form a new analysis-oriented stress-strain model which can be
considered as a local stress-strain model for confined concrete. Fig. 9.3
shows the performance of the finite element model with the input
parameters produced by this new local stress-strain model. It is clear that
with end restraints, the finite element model can very closely reproduce the
predictions of Jiang and Teng’s (2007) analysis-oriented stress-strain model
(Fig. 9.3). It is also evident that with end restraints the finite element model
predicts the test results reasonably closely. In Figs. 9.4a-b, 9.4c and 9.4d,
the concrete cylinders were wrapped with CFRP (Lam et al. 2006), GFRP
(Teng et al. 2007), and Aramid FRP (AFRP) (Dai et al. 2011), respectively.

Details of the specimens are provided in the figures.

9.3 SIMULATION OF FRP-JACKETED CIRCULAR RC COLUMNS

9.3.1 Test Columns

The tri-axial stress states in FRP-jacketed circular RC columns have been
studied by several researchers (e.g. Montoya et al. 2004; Eid and Paultre
2007; Rougier and Luccioni 2007; Karabinis et al. 2008; Doran et al. 2009)
using different constitutive models. Among these studies, Montoya et al.
(2004) utilized MCFT in a nonlinear finite element analysis; Rougier and
Luccioni (2007) used a plastic-damage model to describe the material
behaviour of concrete in their finite element models; and Eid and Paultre

(2007), Karabinis et al. (2008), Doran et al. (2009) adopted the DP type
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plasticity model for confined concrete. These existing studies have achieved
partial success in predicting the stress-strain behaviour of FRP- confined

RC columns but there is still room for improvement.

To verify the capacity of the plastic-damage model based on the local
analysis-oriented stress-strain model in representing the structural behaviour
of concrete columns under confinement provided by both FRP jackets and
transverse steel, test results from Eid et al. (2009) were chosen for
comparison with the numerical results based on the current concrete
constitutive model. In the experimental program, a total of 21 large-scale
reinforced concrete (RC) columns (303*1,200mm) were tested and
stress-strain curves of confined concrete were provided for ten of them.
These large-scale RC columns were designed to examine confinement
provided by transverse steel, FRP jackets, or both. Moreover, two types of
transverse steel, hoops and spirals, were adopted to examine their
corresponding confinement effects. Both ends of these specimens were
confined by additional thick steel jackets with a length of 300mm for each
to ensure that the failure of these specimens would occur in their mid-height
region. Most of these specimens (18 out of 21) were tested with load control,
and the remaining three specimens (C2MPOC, C2MP2C and C2MP4C)
were tested with displacement control. The diameters of all the longitudinal
bars are 16mm, and other detailed information of these specimens selected

for comparison can be found in Table 9.1.

337



To obtain stress-strain curves for the confined concrete, the axial forces
carried by the longitudinal steel bars were removed from the total load
carried by the whole column. For the 10 specimens with the test stress-strain
curves predicted, the axial loads carried by the longitudinal bars were
calculated based on the steel stress-strain curves obtained from their
corresponding tension tests. As the results of these tension tests were not
reported by the original authors, the following two steps were adopted in the
comparison. First, a specimen labeled ASNP2C was modeled using a 3D
finite element model, in which the concrete was modeled using 3D solid
elements, both the longitudinal and the transverse steel bars were modeled
using 3D truss elements, and the FRP jacket was modeled using 3D
membrane elements. As the stress-strain curves of the longitudinal bars of
this specimen were unknown, an elastic-perfectly-plastic model was utilized
in the finite element analysis to consider their contribution. The effect of the
end restraints for such a large-scale specimen was also considered in this
step. Then, based on the conclusions obtained from this step, axi-symmetric
models with half the steel spacing of the concrete columns were adopted for
the specimens to reduce the size of the finite element models, and their
stress-strain results for confined concrete were compared with experimental
results except for specimen C4NPOC. The results of this specimen were not
adopted for comparison due to the following two reasons. First, the axial
stress of the specimen C4NPOC is even higher than that of specimen
C4ANP4C which was strengthened with 4 layers of additional FRP jackets.
This abnormally high axial stress indicates a large variation existing in the

test results. Secondly, as this specimen was under load control, the
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descending branch of its stress-strain curves lacks stability and may not be
suitable for comparison with the numerical results. The detailed information
of the finite element model used for comparison is given in the following

sub-sections.

9.3.2 Finite Element Mod€

9.3.2.1 Three-dimensional finite element analysis for specimen ASNP2C

In the finite element model, due to symmetry in geometry and loading, only
1/24 of this specimen (top 1/12) was modeled using ABAQUS. The
concrete was modeled using 8-noded solid elements; the steel bars (both
longitudinal and transverse bars) were modeled using 2-noded truss
elements; the FRP jackets were modeled using 4-noded membrane elements.
The relative positions of the steel bars, FRP jackets and concrete are shown

in Fig. 9.5. The mesh of the concrete is also shown in the same figure.

For the plastic-damage model, the required material parameters f., and
€co are given in Table 9.1. For steel bars, the elastic modulus of all the
transverse steel bars is 200GPa (this value was used for all the steel bars in
the present study). The yield strength of the longitudinal steel bars fy;, is
423 MPa and the corresponding value of the transverse steel bars fy, is
602 MPa. For FRP, the elastic modulus Eg., of the FRP jacket is 78 GPa.

The values of these parameters are also summarized in Table 9.1.

Periodic symmetry conditions were imposed at two planes perpendicular to
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the circumferential direction. This boundary condition was achieved by
restraining the displacement components along the circumferential direction
of these two planes. In addition, the middle horizontal plane (i.e., the plane
of symmetry) was restrained in the vertical direction to consider the
symmetry condition of this plane. Furthermore, forced displacement
boundary conditions were imposed on the top plane to subject the column to
a compressive stress state. Similar to the case of FRP-confined circular
concrete cylinders, the effects of end restraints on the overall axial
force-strain performance of specimen ASNP2C were investigated. The axial
force-strain curves obtained from finite element analysis with or without
end restraints are given in Fig. 9.6, and these numerical results are
compared with the corresponding experimental results in the same figure. In
this figure, the axial strain is for a gauge length of 300mm and the hoop
strain is for the mid-height of the column, which are the same as the
experimental conditions. The curves obtained from finite element analysis
using different end restraint conditions are almost identical. The consistency
between these two cases suggests that for large-scale columns with a ratio
of L/D close to 4, the effects of end restraints on their axial force-strain
behaviour are negligible. Fig. 9.6 further indicates that although the finite
element results slightly underestimate the axial force, the axial force-strain
curves, obtained numerically, closely correlate with the experimental results.
The slight underestimation of the axial force may be due to the reason that
the finite element analysis neglects the possible strain-hardening part of
both the longitudinal and transverse steel bars. In addition, as the end

restraints only have negligible effects on the structural behaviour, periodic
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conditions of symmetry in the axial direction can also be applied and only
half a steel spacing of the concrete column needs to be modeled in finite

element analysis.

9.3.2.2 Axi-symmetric finite element analysis of FRP-confined RC

columns

Ten specimens were selected to verify the capacity of the finite element
model by comparing their experimental stress-strain curves with those
obtained in finite element analyses. Among these ten specimens, seven of
them were reinforced with steel spirals. In order to apply axi-symmetric
conditions to further reduce the size of the finite element model, steel spirals
were replaced by equivalent steel hoops with the same steel spacing.
Mander et al. (1988) suggested an equation to calculate the equivalent

cross-sectional area A.q for steel hoops. The equation is as follows:
Aeq = KgnAs (9.4)

where Ag is the cross-sectional area of the original steel spirals, and Kgy, is

the conversion factor given by:

Keh = —=- (9.5)

2ds

where s’ is the clear spacing between two spiral bars and dg is the
diameter of the spiral circle from centre to centre. The detailed definitions of

the two parameters are shown in Fig. 9.7.

Eq. (9.4) indicates that when the centre-to-centre diameter and the spacing

between steel bars provide the same, steel spirals are more effective
341



confinement than steel hoops. Fig. 9.8 shows the experimental stress-strain
curves for specimens C4NP2C and B4NP2C. The only difference between
these two specimens is the type of transverse steel used. The experimental
results show the same tendency as predicted by Eq. (9.4). That is, the
concrete confined by steel spirals has larger axial stress at a given axial or

lateral strain.

Taking into account the symmetric features of the finite element model as
discussed above, just as for specimen ASNP2C, an axi-symmetric plane
with half a steel spacing of the concrete column was modeled in ABAQUS.
The concrete is modeled using 4-noded solid elements; the transverse steel
bars and the FRP jacket were both modeled using 2-noded axi-symmetric
membrane elements. A typical example of the concrete mesh is shown in

Fig. 9.9 for specimens B4NP2C.

What should also be noted is that there is no axi-symmetric truss element in
ABAQUS, and thus transverse steel bars were modeled as membrane
elements. The geometric height of the steel membrane is considered to be
the same as the radius of the centre of the transverse original steel bar R,
and the thickness of the membrane element tiseq is determined based on
the principle of equivalent cross-sectional area shown in Eq. (9.6). As this
study was focused on examining the confinement effects of transverse steel
bars, Eq. (9.6) ensures that an identical lateral load is provided by the

equivalent steel membrane.
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A
tiseq = R_Z (9.6)

where Ay is half of the cross-sectional area of the transverse steel bar Aggq.

As for specimen ASNP2C, the material properties f., and €., of concrete,
the yield stress fyy, for the transverse steel and the elastic modulus Egp

for the FRP jacket are given in Table 9.1.

For these axi-symmetric models, the bottom surface of the axi-symmetric
plane was restrained in the vertical direction to reflect the symmetry
condition of this surface and axial displacements were applied on the top
surface of the finite element model to exert axial loadings. For
FRP-confined RC columns, axial displacements were uniformly imposed on
the top surface until the maximum hoop strain in the FRP jacket reached its

rupture strain.

Fig. 9.10 compares the stress-strain behaviour between the numerical results
obtained using the new plastic-damage model and available test results (Eid
et al. 2009). Both axial stress-strain curves and axial stress-lateral strain
curves are considered in the comparison. For the numerical results, the axial
stress was obtained by dividing the load carried by the concrete by the total
cross-sectional area; the axial strain is defined as the average values over the
whole height of the finite element model; and the hoop strains was obtained
from outer edge of the column where the lateral displacement is the largest.

Finite element analysis was terminated when the hoop strain reached the
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rupture strain of the FRP jacket that was observed in the experiment. Figs.
9.10a-h show that the overall predicted stress-strain responses are in good
agreement with the test results although the axial stresses of some
specimens were slightly underestimated. This underestimation is generally
smaller than that shown in Fig. 9.4 as the effects of longitudinal bars have
been removed and the majority of the underestimation have resulted from
neglecting the hardening effects of transverse steel bars. These figures
indicate finite element model developed in this study can provide close
predictions for FRP-confined RC columns. Moreover, the stress-strain
curves of concrete confined only by an FRP jacket are also plotted in these
figures to illustrate the rough contribution of steel bars. These curves are
marked as “FE w/o steel” in Fig. 9.10. Comparison between these two cases
(i.e. with or without the contribution of steel bars) shows that steel bars have
significant effects on both the strength and ductility of FRP-confined RC
columns. This comparison further verifies the capacity of the finite element
model to predict the behaviour of FRP-confined RC columns, although the
improved model itself was only recalibrated by FRP-confined concrete

cylinders.

9.3.2.3 Finite element analysis and analytical modelling of
steel-confined RC columns

For specimen C2MPOC, confinement is only provided by the transverse
steel bars. The distribution of confinement in this specimen is much more
uneven than that for an FRP-confined RC column. For FRP-confined RC

columns, lateral confinement exists all over the whole column due to the
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FRP jacket. For a concrete column confined only by transverse steel bars,
part of the column is under very weak lateral confinement as steel bars are
discontinuous in the axial direction. To model this uneven confinement
effect, two different approaches have been utilized by researchers. Besides
the finite element model, the “effective confinement” method (e.g. Mander
et al. 1988) has also been adopted to estimate the amount of lateral
confinement acting on the concrete. The partial confinement effect between
the upper transverse steel bar and the lower transverse steel bar is
considered through the arching action assumption which is generally
assumed to occur in the form of a parabola with an initial slope of 45°
starting from the edge of each transverse steel bar (Sheikh and Uzumeri
1980). The smallest cross-sectional area of effectively confined concrete
core A, is thus located at the mid-height of the gap between the two
transverse steel bars (Mander et al. 1988). In the studies of Mander et al.
(1988) and Saadatmanesh et al. (1994), except the ineffectively confined
concrete annulus with a radial thickness of a quarter of the clear spacing of
the lateral confinement (s'/4), the concrete core within the area A, is
assumed to be uniformly confined (also shown in Fig. 9.7). The area of the

effectively confined concrete core (A.) is given by

Ae=1(ds- 53)2 9.7)

Fig. 9.11 compares the axial stress-strain behaviour of specimen C2MPOC
obtained from the empirical model, the numerical model and the test results
(Eid et al. 2009). In this figure, analytical results using the “effective

confinement” approach are referred to as “empirical equation”; numerical
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results are referred to as “FE” and the test results are referred to as “test”,
respectively. It should be noted that, unlike an FRP-confined specimen, the
stress-strain curve for a concrete column without an FRP jacket is just based
on the core concrete as the arching action is taken into account using this
zone rather than the whole concrete column. Thus, only the concrete core
was considered in the finite element analysis. This finite element model is
similar to that of the axi-symmetric model developed for FRP-confined RC

columns except that the FRP jacket was not considered in the model.

Fig. 9.11 shows that the finite element results give smaller axial stresses
compared to both the test results and the empirical results. In the new
plastic-damage model used in the finite element model, two parameters, K
and «, control the confinement effectiveness of concrete under non-uniform
confinement. As mentioned earlier, K is a derived parameter calculated from
the strength ratio between the concretes under equal biaxial compression

and equal tri-axial compression. Therefore, when Eq. (9.2) is used, changing

. £ o
the value of K leads to changes in the value of the - ratio, but this ratio
f

co
has been assigned a fixed value of 1.16 in the yield function of the CDPM
model as adopted in the present study (see Eqs. 8.1 and 8.2). This ratio can
be obtained from a test range of 1.16 to 1.2. Changing this ratio within this
given range results in little difference. Therefore, it is better to keep K as a
constant rather than a variable. As the parameter « is a fitted value, it was

recalibrated to provide closer predictions of the test results and the obtained

stress-strain curves shown in the same figure are referred to as “FE-II". In
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this recalibrated finite element model, the value of o was varied from
0.039 to 0.1, and a closer prediction was achieved. Generally, there are two
options for using the new plastic-damage model in the finite element
analysis of steel-confined RC columns: (1) if the model is used for making
predictions, a should be taken as a constant and the default value 0.039
suggested by Yu et al. (2010b) should be used; (2) if the model is used to
explain experimental results, a can be recalibrated to fit the uncertain

confinement when the experimental results are not closely reproduced.

Although there are differences between the numerical results (including
both “FE” and “FE-II"") and the empirical results, the test results fall within
the range of these two types of results and have good agreement with both
of them. Similar to the finite element models the empirical model can give
close predictions of stress-strain curves. However, the empirical model
cannot explicitly consider the variations in the axial stress and the
confinement pressure over the whole section and over the height. To
investigate the confinement mechanism of transverse steel bars, the actual
stress distribution obtained from finite element analysis is illustrated in Figs.
9.12-9.14. Fig. 9.12 shows the distribution of the axial stress within the
concrete core when the peak axial stress is reached. This figure indicates
that within a section close to the transverse steel bars, the concrete stress
achieves its largest enhancement near the outer surface, and the effect of this
enhancement decreases along the height direction away from the steel bar.
This variation of the axial stress is similar to the assumption of the arching

action. What is different between the finite element results and the arching
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action assumption is that the arching action assumption is focused on the
axial stress distribution along the radial direction. With the arching action
assumption, the section at the height of the steel bar centre is assumed to be
uniformly stressed and is considered to be effectively confined, while the
finite element analysis predicts a large stress near the steel bar, a smaller
stress enhancement away from the steel bar, and finally a moderate stress
near the axis of axi-symmetry. It is a more reasonable distribution as the
finite element analysis takes into account the balance of axial forces along
the height direction, which is neglected in the arch action assumption. In
addition, the numerical results indicate that a non-uniform zone of stress is
mainly located near the outer surface of the concrete core, and within a
certain radius, there is a zone of uniformly distributed axial stress, which is
similar to the results of the elastic analysis conducted by Eid and Dancygier
(2006). Zones of uniformly distributed stress can also be observed in the
distribution of confining pressure. Fig. 9.13 shows that, for the confining
pressure, the largest value appears in the place adjacent to the steel bar on
the outer surface of the concrete core and the smallest one also appears on
the outer surface of the concrete core but always on the plane of symmetry
between the two steel bars. Unlike the confining pressure in the radial
direction, the largest confining pressure in the hoop direction appears in the
middle zone between the steel bar and the plane of symmetry. The different
distributions of the confining pressure result in a complicated axial stress
distribution near the outer surface of the concrete core. Figs. 9.13-9.14
indicate that, within a certain radius, there are zones of uniformly distributed

confining stresses, which result in the uniformly distributed axial stress
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within them. The existence of a uniformly confined concrete zone is an
important reason why the empirical approach using the arching shape
assumption can achieve good accuracy in predicting the steel bar-confined
concrete columns even though it overlooks the balance of axial forces. As
long as the radius predicted by the empirical approach is not too far from the
actual value of the radius of uniformly confined concrete, the results
predicted by the empirical approach can be accurate. To further illustrate the
stress distribution, Figs. 9.15-9.17 show the predicted stress distributions
along the radial direction at three selected sections/heights. Fig. 9.15 shows
the distribution of the axial stress; Fig. 9.16 shows the distribution of the
confining stress in the radial direction; and Fig. 9.17 shows the distribution
of the confining stress in the hoop direction. The locations of the three
selected sections are marked in Fig. 9.12. It is again obvious that a large
uniform zone exists away from outer edge. The width of this uniform zone
is about 2/3 of the column radius. Within this zone, all the three stress
components have insignificant variations. However, near the outer edge, the
rate of variation of stress is more significant due to the effect of the arching
action. The capability of predicting stress variations over the whole column

is one of the advantages of this 3D finite element model over a slice model.

9.4 CONCLUSIONS

Three-dimensional finite element models for FRP-confined circular concrete
cylinders and RC columns based on Yu et al.’s (2010b) plastic-damage
model have been presented in this chapter. These finite element models are

capable of modelling uneven deformation in the axial direction due to
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factors such as end restraints and discrete transverse steel bars. Numerical
results obtained from the finite element models have revealed that end
restraints lead to smaller axial strains at a given hoop strain. This reduction
effect necessitates a revised lateral-to-axial strain relationship and then leads
to a local analysis-oriented stress-strain model. This local analysis-oriented
stress-strain model is proposed for adoption to avoid the double counting of
end restraint. Consequently, the finite element model with the input
parameters produced by this local analysis-oriented stress-strain model can
very closely reproduce the predictions of the original analysis-oriented
stress-strain model proposed by Jiang and Teng (2007). Moreover, the finite
element model with the input parameters produced by this local
analysis-oriented stress-strain model was used to model the behaviour of
FRP-confined RC columns and transverse steel bar-confined concrete. Ten
large-scale RC columns were simulated using a finite element model with
the input parameters produced by this local analysis-oriented stress-strain
model. This finite element model is shown to produce accurate predictions
of the stress-strain behavior of FRP-confined RC columns and transverse
steel bar-confined concrete although the local analysis-oriented stress-strain
model was only calibrated using results of FRP-confined circular concrete
cylinder. In addition, it has been found that the assumption of
path-independency is still valid. Finally, the finite element model has been
compared with the empirical model for transverse steel-confined concrete. It
has been shown that the finite element analysis can describe the stress
distributions of concrete confined by transverse steel. With careful

verification, the finite element model is a useful tool for the exploration of

350



confinement mechanisms in various FRP-confined concrete columns in the

development of simple stress-strain models for design purposes.
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Table 9.1 Material properties of FRP-confined RC columns

specimen D c? feo €co FRP composite Transverse steel
No. (mm) (mm) (MPa)
(o e e B () (n?m>
(Mpa) (Mpa)
CANP4C 303 25 31.7 0.002 1.524 78000 0.0119 S 456 100 11.3
C2NP2C 303 25 31.7 0.002 0.762 78000 0.0059 S 456 65 11.3
C4ANP2C 303 25 31.7 0.002 0.762 78000 0.0062 S 456 100 11.3
C2N1P2N 253 0 36 0.002 0.762 78000 0.0084 S 456 65 11.3
A3NP2C 303 25 31.7 0.002 0.762 78000 0.0090 H 602 70 9.5
C2MP4C 303 25 50.8 0.0024 1.524 78000 0.0107 S 456 65 11.3
C2MP2C 303 25 50.8 0.0024 0.762 78000 0.0086 S 456 65 11.3
B4ANP2C 303 25 31.7 0.002 0.762 78000 0.0104 H 456 100 11.3
ASNP2C 303 25 29.4  0.002 0.762 78000 0.0044 H 456 150 11.3
C2MPOC 303 25 50.8 0.0024 0.0 - - S 456 65 11.3

2 Concrete cover, S: Spiral, H: Hoops,
D is diameter of the specimens, fy;, is the yield strength of steel bars, and @ is the diameter of the steel bar.



CHAPTER 10
CONCLUSIONSAND FUTURE WORK

10.1 INTRODUCTION

This thesis has presented a systematic study covering the testing and analysis
of FRP-confined concrete columns. In particular, this thesis has focused on the
constitutive behaviour of concrete under lateral confinement, aiming to
develop generic constitutive models which can accurately predict the
behaviour of concrete under non-uniform confinement. The work presented in
this thesis has been limited to the compression behaviour of concrete, which is

the relevant part directly influencing the confinement mechanism.

A series of axial compression tests on FRP-confined high strength concrete
cylinders have been presented in this thesis to complement the existing
experimental data and to gain an adequate understanding of the stress-strain
behaviour of FRP-confined high strength concrete. Similar to that of normal
strength concrete, the FRP jacket has been shown to significantly enhance the
performance of high strength concrete. These test results have provided not
only a direct insight into the mechanical behaviour of FRP-confined high

strength concrete but also a way for assessing theoretical models.

Theoretical modelling of actively-confined and FRP-confined concrete
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columns has the main focus of the present thesis. Finite element models using
different concrete constitutive models have been employed for simulating the
behaviour of confined concrete. These constitutive models were developed
based on different theories. The general performance of these constitutive
models was assessed. Based on this assessment, two potential constitutive
models, i.e. the M4~ model and the revised CDPM model, were utilized for
modelling FRP-confined concrete in non-circular sections. Based on the work
presented in this thesis, the corresponding conclusions have been drawn in the

following section.

10.2 CONCLUSIONS

Chapter 3 presented an experimental study on the behaviour of confined high
strength concrete. The behaviour of actively-confined high strength concrete
was first examined. A unified active-confinement model was found to be
applicable to both high strength concrete and normal strength concrete. After
that, an experimental study on FRP-confined high strength concrete was
presented. It was found that the analysis-oriented stress-strain model proposed
by Jiang and Teng (2007), initially developed for FRP-confined normal
strength concrete, can also provide accurate predictions for FRP-confined high
strength concrete. Comparing the empirical model for actively-confined
concrete with that for FRP-confined concrete indicated that the path

independence assumption commonly utilized in an analysis-oriented
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stress-strain model is just partially fulfilled for FRP-confined high strength

concrete.

Chapters 4 and 5 examined the use of typical plasticity-based concrete models
for predicting the behaviour of confined concrete. These concrete models were
categorized into two groups based on the techniques employed in the
hardening rule. The hardening variables used in these two techniques are the
scaled equivalent plastic strain and the plastic volume strain, respectively.
Plasticity-based concrete models based on these two techniques were
implemented with the ABAQUS software through UMAT; and they were used
for predicting the stress-strain response of plain concrete in both uni-axial and
equal tri-axial compression once the parameters have been determined through
calibration. These two models, with properly calibrated parameters, were
found to be capable of predicting both the stress-strain behaviour of
unconfined concrete and actively-confined concrete accurately. Further,
among these two types of models, Papanikolaou and Kappos’s (2007) model,
which belongs to the second type, provides the simplest process in calibrating
the material parameters. However, both these two models failed to predict the
lateral deformation of FRP-confined circular concrete cylinders accurately in a
general sense, although they may succeed within a certain confining stiffness
range. The failure of these two models in predicting the response of

FRP-confined circular concrete cylinders indicated that a modification of the
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hardening rule has an insignificant effect on the lateral deformation of

confined concrete.

Chapter 6 investigated the application of plastic-damage models in modelling
the behaviour of confined concrete. Similar to the plasticity-based concrete
models, two types of plastic-damage models were used for predicting the
stress-strain response of plain concrete in uni-axial and equal tri-axial
compression once the parameters have been calibrated. The techniques used in
Chapter 4 to improve their behaviour for confined concrete were also
employed in these two models separately. Additionally, isotropic damage
variables were utilized in these two models. For the response of confined
concrete, similar conclusions, as those given in Chapters 4 and 5, were drawn.
These two plastic-damage models were found to be capable of providing
accurate predictions for actively-confined concrete but incapable of capturing
the varied dilation characteristics of FRP-confined concrete under different
levels of confining stiffness. The damage variable was also found to have an
insignificant effect on the lateral deformation of confined concrete. This effect

is similar to that of the hardening rule.

In the work presented in Chapter 7, the Microplane model M4, proposed by
Bazant et al. (2000), was employed in investigating the response of

FRP-confined circular concrete cylinders. However, this M4 model was found
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to have some drawbacks in the computational aspects and was incapable of
accurately capturing the effect of confinement, especially on the ductility of
concrete. Proper modifications were thus made to the original M4 model to
eliminate its drawbacks in the computational aspects and to enhance its
prediction accuracy for confined concrete especially for FRP-confined
concrete, which resulted in the so-called M4" model. Some material
parameters such as k;, c;, and cg in this M4  model were set to be
confinement-dependent variables instead of constant values suggested in the
original M4 model. These parameters were chosen for modification here
because they had significant effects on the predicted confinement effect.
Finally, a comparison between the numerical predictions using the M4 model
and the experimental results were presented. This comparison showed
adequate agreement between the numerical predictions and the experimental
results. This comparison suggested that in modelling FRP-confined concrete,
the parameters controlling the dilation behaviour of the M4 model should be

properly addressed.

In the work presented in Chapter 8, two constitutive models, that is, Yu et al.’s
(2010b) plastic-damage model and the M4" model were employed in finite
element models for the analysis of the FRP-confined square and elliptical
columns subjected to axial compression. Numerical results from the finite
element analysis showed favourable agreement with the experimental results.
Furthermore, the above numerical results were compared with the results of
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two typical empirical models. This comparison focused on the ultimate state of
FRP-confined concrete in square columns. From this comparison, the
numerical results obtained using the modified CDPM model showed the best
performance among these four analytical models. In addition, the numerical
results obtained using the M4 " model also showed its relatively high accuracy
compared with the two empirical models. By virtue of numerical simulation,
the thickness of FRP jackets was demonstrated to have an effect on the stress
distribution of FRP-confined non-circular columns. This effect exists because
concrete is a typical non-linear material and the thickness of the FRP jacket

changes the stress state of concrete at failure.

Chapter 9 focused on three-dimensional finite element analysis of
FRP-confined circular concrete cylinders and RC columns based on Yu et al.’s
(2010b) plastic-damage model. Some fundamental issues associated with the
finite element analysis of FRP-confined circular concrete cylinders were
addressed. A local analysis-oriented stress-strain model was identified by
recalibrating the finite element results to reproduce the results of the original
analysis-oriented stress-strain model such as that of Jiang and Teng (2007). A
consistent definition of the mean axial strain in both experimental
measurement and finite element results was achieved and the reduction effect
on the axial strain due to end restraints considered in the finite element model
was eliminated by introducing this local analysis-oriented stress-strain model.

Based on this local analysis-oriented model, the assumption of
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path-independency was found to be valid. The finite element model was also
shown to have properly captured the stress-strain behaviour of steel
bar-confined concrete and FRP-confined RC columns, although the
analysis-oriented stress-strain model was only calibrated by results of
FRP-confined concrete. The finite element results were also found to be able
to describe the stress distribution in the concrete confined by transverse steel

and to reflect the confinement effect of transverse steel bars.

10.3 FUTURE WORK

The following issues need further research.

There is still a need to widen the database of test results for FRP-confined

concrete especially FRP-confined concrete in non-circular columns.

More data on the lateral-to-axial relationship is required. The present research
has found that the constitutive models which can provide accurate predictions
for FRP-confined concrete are sensitive to the lateral behaviour of concrete.
Additionally, measurements of hoop strains should be standardized. It has
been discussed that the lateral strains reported in the experimental results of
FRP-confined circular concrete cylinders are generally limited to the

maximum strain that could be measured.
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Constitutive models using the scaled equivalent plastic strain or the plastic
volume strain as the hardening variable have shown their advantages in
predicting the stress-strain behaviour of actively-confined concrete. Among
these constitutive models, Papanikolaou and Kappos’s (2007) model provides
a simple process for calibrating the material parameters. Modifications to this
constitutive model can be made in the future for providing accurate

predictions for FRP-confined concrete.

In this study, a scaling technique was actually employed in the M4" model to
provide accurate predictions for confined concrete. Due to the characteristics
of the microplane model, other approaches such as directly modifying the
stress boundary may be adopted to achieve similar results as that of the scaling

technique.

The modified CDPM model was implemented through the technique of
USDFLD (i.e. user subroutine to redefine field variables at a material point),
which is an explicit scheme. An implicit algorithm or an explicit algorithm

with error control can be developed for this model in the future work.

Another important issue that needs to be clarified is the size effect on the
stress-strain behaviour of FRP-confined concrete. In the numerical model, it
was assumed that the strength of plain concrete was that given by the
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researchers in their reports. In Chapter 8, most of the FRP-confined
non-circular concrete columns had sizes close to the standard cylinder.
Therefore, no significant size effect of these columns was observed. In
Chapter 9, the behaviour of large-scale FRP-confined circular columns was
found to be capable of being reasonably predicted by the finite element models.

Therefore, size effects are much more significant in non-circular columns.

Finally, the verified constitutive models in the present study can be used to
study the behaviour of short or slender FRP-confined RC columns under
eccentric loading. Eccentric loading is an important topic and some research
has been conducted on this topic (e.g. Binici and Mosalam 2007; Mosalam et
al. 2007; Talaat et al. 2008), but much more work, -especially
three-dimensional finite element analysis, is needed. This topic should be

investigated in the future.
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APPENDIX

COMPUTER PROGRAMME
A matlab programme is developed to calculate the values of A, B, and C for
Papanikolaou and Kappos's (2007) model.

fco=40;

E=30011;

nu=0.2;

epvp=fco/E*(1-2*nu);

ec0=0.0022;

e3p=eco-fco/E;

e3p=-e3p;

elp=(epvp-e3p)/2;

% elp,e3p

ft=2.906;

dlamda=1.376;

m=(fco”2-(dlamda*ft)"2)/(fco*dlamda*{t)
Fil=sqrt(2/3)*abs(e3p-elp)/((e3p+2*elp)/sqrt(3));

% x1=fzero('(x-1)"2+3%9.9%¥0.5198/1.5198*((x-1)/3-(x+2)/3)-1',2);
x1=fzero('(x-0.5)"2+3%*9.9%0.52/1.52*((x-0.5)/3-(x+1)/3)-1',2);
% x1=fzero('(x-1)"2+3%9.9%0.52/1.52*((x-1)/3-(x+2)/3)-1',2);
fce=x1*fco;

ecc=9.5%eco;  %%correspond to ecc=eco*(1+17.5*fl/fco)
% ecc=18%eco;

e3p=ecc-1/E*(fcc-2*nu*fco*0.5);

e3p=-e3p;

elp=(epvp-e3p)/2;

% elp,e3p

Fi2=sqrt(2/3)*abs(e3p-elp)/((e3p+2*elp)/sqrt(3));

n=3;

nol=sqrt(2/3)*fco;

no2=sqrt(2/3)*(fcc-fco*0.5);
A=(Fil-Fi2)/n/((no1/fco)"(n-1)-(no2/fco)(n-1));
B=Fil-n*A*(nol/fco)*(n-1);
x2=fzero('(x)"2+3%*9.9*0.52/1.52*((x)/3*1/0.52-(2*x)/3)-1',1.1);
fbe=x2*fco;

ebc=x2*eco;

e3p=ebc-fbc/E*(1-nu);

e3p=-e3p;

e2p=e3p;

elp=epvp-2*e3p;
Fi3=sqrt(2/3)*abs(e3p-elp)/((e3p*2+elp)/sqrt(3));
no3=sqrt(2/3)*(fbc);
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C=Fi3-n*A*(no3/fco)*(n-1);
A,B,C

384





