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Abstract

The aim of this study is to investigate how a pub-sub architecture can be

efficiently empowered with XML-based filtering capability in a distributed

environment. An XML based pub-sub system mainly focus on active, selec-

tive, asynchronous dissemination of timely, personalized and dynamic infor-

mation represented and modelled by XML. It supports improved filtering

flexibility and expressiveness as compared to its predecessor, the topic-based

and content-based pub-sub systems. In recent years, XML based pub-sub

shows increasing significance as the evolution of web 2.0 technologies and

the succeeding proliferation of social network services demand a better in-

formation dissemination paradigm that is suitable for information-driven

type of applications. However, many existing approaches in XML-based

pub-sub do not operate efficiently and do not scale well in a wide-area en-

vironment, such as the Internet. In addition, most of the studies require

dedicated infrastructure support and do not concern about fault-tolerance

of the system. In this thesis, we introduced a series of novel approaches

that contribute toward enabling an efficient distributed XML-based pub-

sub system design that scale up to operate in a wide-area and large-scale

environment. Our design possesses self-organizing capability for the overlay

infrastructure and supports fault-tolerance that matches the dynamism of

the underlying network. In our design, we combine the process of data filter-

ing with routing where we exploit the structure coverage relation between

XML representation of subscriptions and publications. Here, the subscrip-
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tions are forwarded selectively to only a few rendezvous nodes without the

need to flood subscriptions across the entire network. At the rendezvous

node, the incoming publications can be evaluated against subscriptions and

delivered to subscribers if matched. To achieve this, we applied a bloom

filter-based filtering approach that coalesced into the addressing scheme

for the Key-based Routing to provide a scalable, flexible and robust pub-

sub infrastructure. In addition, we developed a hypercube overlay as a

multicasting infrastructure for efficient dissemination of publications. We

further extended proposed architecture by developing a redundancy-based

fault-tolerance strategy to enhance the robustness of the system consid-

ering the dynamism of the underlying network environment. We validate

the efficiency and scalability of the proposed system through extensive ex-

periments. It shows that the proposed system is able to balance the load

among the peers and to prune out unmatched publication messages at the

early stages along the dissemination path. It also shows that the proposed

system scales well with increasing number of peers, subscriptions and pub-

lication events. We also evaluated the availability and effectiveness of the

fault-tolerant capability in the case of nodes churning. The evaluation re-

sult shows that proposed approach can work very well in a dynamic network

environment where nodes may join, leave and fail at times.

iv



Publications

Journal Papers

• Xiaochuan Yu and Alvin Toong Shoon Chan. Towards robust XML

dissemination in large-scale dynamic network environment. Submit-

ted to Journal of Computer and System Sciences, 2013.

Conference Papers

• Xiaochuan Yu and Alvin Toong Shoon Chan. Hope: A fault-tolerant

distributed Pub/Sub architecture for large-scale dynamic network en-

vironment. To appear in Proceedings of the 12th IEEE International

Conference on Ubiquitous Computing and Communications, IUCC

’13, July 2013.

• Xiaochuan Yu and Alvin Toong Shoon Chan. A hypercubic overlay

using bloom-filter based addressing for a non-dedicated distributed

tag-based pub/sub system. To appear in Proceedings of the 11th IEEE

International Symposium on Parallel and Distributed Processing with

v



Applications, ISPA ’13, July 2013.

• Xiaochuan Yu and Alvin Toong Shoon Chan. A hypercubic event-

dissemination overlay using structure-aware addressing for distributed

xml-based pub/sub system. In Proceedings of the 2012 IEEE 14th

International Conference on High Performance Computing and Com-

munication & 2012 IEEE 9th International Conference on Embedded

Software and Systems, HPCC ’12, June 2012, pages 179-186.

• Xiaochuan Yu and Alvin Toong Shoon Chan. A time/space efficient

xml filtering system for mobile environment. In Proceedings of the

2011 IEEE 12th International Conference on Mobile Data Manage-

ment - Volume 01, MDM ’11, June 2011, pages 184-193.

vi



Acknowledgements

I would like to express my heartfelt gratitude to my supervisor: Pro-

fessor Alvin Chan, a man with great patience, motivation, enthusiasm, self-

discipline and immense knowledge. It is all the inspirational, supportive,

and patient guidance he gave me that helps me move towards a qualified

PH.D and become an independent researcher.

I am also grateful to my parents, who cultivated my love of adventure,

explore and my passion in pursuing the truth, all of which finds a place in

this thesis.

Last but not least important, I would like to thank my uncle, who has

always been a role model for me. I would not have decided to pursue a

career in research if it were not for him.

vii



viii



Contents

Declaration i

Abstract iii

Publications v

Acknowledgements vii

Contents ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Shortcomings of Current Approaches . . . . . . . . . . . . . 4

ix



CONTENTS

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contributions in Event Matching . . . . . . . . . . . 7

1.3.2 Contributions in Event Routing . . . . . . . . . . . . 8

1.3.3 Contributions in Architectural Design . . . . . . . . . 9

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Organization of This Thesis . . . . . . . . . . . . . . . . . . 11

2 Background 15

2.1 Overview of the Event-based System . . . . . . . . . . . . . 15

2.2 Event Matching . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Conventional Event-Matching Schemes . . . . . . . . 20

2.2.2 Structure-based Matching . . . . . . . . . . . . . . . 24

2.3 Distributed Event Routing . . . . . . . . . . . . . . . . . . . 26

2.3.1 General Approach . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Event Dissemination Tree . . . . . . . . . . . . . . . 28

2.4 Key-based Routing Overlay . . . . . . . . . . . . . . . . . . 29

2.4.1 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Pastry and Tapestry . . . . . . . . . . . . . . . . . . 33

2.4.3 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Other KBR networks . . . . . . . . . . . . . . . . . . 36

x



CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Efficient Event Matching 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Bloom filter-based XML Filtering . . . . . . . . . . . . . . . 42

3.2.1 Data and Filter Model . . . . . . . . . . . . . . . . . 42

3.2.2 Architecture Overview . . . . . . . . . . . . . . . . . 44

3.2.3 Structure Model and Problem Formulation . . . . . . 46

3.2.4 Represent Structure Using a Bloom Filter . . . . . . 49

3.3 Performance Study . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Setup of the Experiments . . . . . . . . . . . . . . . 53

3.3.2 Time Efficiency . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Space Efficiency . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 False Positive Rate . . . . . . . . . . . . . . . . . . . 64

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Scalable Event Routing 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Key-based Routing for Pub-sub . . . . . . . . . . . . . . . . 78

xi



CONTENTS

4.3.1 Structure-aware Addressing in KBR . . . . . . . . . . 79

4.3.2 KBR-based Propagation Mechanism . . . . . . . . . 82

4.3.3 Matching Evaluations in the KBR-based Approach . 84

4.4 Hypercube Overlay . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Overview of a Hypercube . . . . . . . . . . . . . . . . 87

4.4.2 Message Propagation via Hypercube . . . . . . . . . 89

4.4.3 Multicasting via Hypercube . . . . . . . . . . . . . . 91

4.5 Exploiting Common-Paths . . . . . . . . . . . . . . . . . . . 95

4.6 Performance Study . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Setup of the Experiment . . . . . . . . . . . . . . . . 98

4.6.2 Evaluation of Overlay Performance . . . . . . . . . . 99

4.6.3 KBPP . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.4 KBSP . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Fault-Tolerance in Event Routing 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . 126

5.3 Hypercube-based Event Dissemination . . . . . . . . . . . . 129

xii



CONTENTS

5.4 Hypercube-to-KBR Mapping . . . . . . . . . . . . . . . . . . 131

5.5 Redundancy-based Fault-tolerance Strategy . . . . . . . . . 133

5.6 Performance Study . . . . . . . . . . . . . . . . . . . . . . . 136

5.6.1 Link Traffic . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.2 Publication Delivery . . . . . . . . . . . . . . . . . . 138

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Conclusion 143

6.1 Research Results . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Appendices 149

7.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 151

xiii



CONTENTS

xiv



List of Figures

1.1 Topics and Organization of This Thesis in Three Layers

Conforming Proposed Pub-Sub System Architecture . . . . . 12

2.1 General Architecture of a Pub-Sub System . . . . . . . . . . 17

2.2 General Architecture of an XML Filtering System . . . . . . 25

2.3 Chord Ring and Key Assignment . . . . . . . . . . . . . . . 34

2.4 An Example of CAN Zone-division in a 2-d Space . . . . . . 36

3.1 XML Document Tree . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Grammar of XPath Subset . . . . . . . . . . . . . . . . . . . 44

3.3 Architecture of Framework . . . . . . . . . . . . . . . . . . . 45

3.4 Graph Representation of Structure S . . . . . . . . . . . . . 47

3.5 A Piece of XML File and the Representation of Its Structure 48

3.6 Complicated Pattern . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Bloom Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xv



LIST OF FIGURES

3.8 Comparison: Number of Filters . . . . . . . . . . . . . . . . 56

3.9 Comparison: Filter Depth . . . . . . . . . . . . . . . . . . . 57

3.10 Average Matching Time: l . . . . . . . . . . . . . . . . . . . 58

3.11 Average Matching Time: k . . . . . . . . . . . . . . . . . . . 59

3.12 Preprocessing: l . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Preprocessing: k . . . . . . . . . . . . . . . . . . . . . . . . 61

3.14 Storage Space . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 Space Conservation Rate . . . . . . . . . . . . . . . . . . . . 63

3.16 False Positive Rate: l . . . . . . . . . . . . . . . . . . . . . . 65

3.17 False Positive Rate: k . . . . . . . . . . . . . . . . . . . . . 66

3.18 False Positive Rate: Number of Filter . . . . . . . . . . . . . 67

3.19 False Positive Rate: Filter Depth . . . . . . . . . . . . . . . 68

4.1 Structure-aware Addressing . . . . . . . . . . . . . . . . . . 81

4.2 Potential Subscription Keys Generated by Covering Relation 82

4.3 Four-dimensional Hypercube . . . . . . . . . . . . . . . . . . 87

4.4 Four-dimensional Ordered-hypercube . . . . . . . . . . . . . 88

4.5 Publication Dissemination over Hypercube . . . . . . . . . . 89

4.6 Multicasting-Tree Induced from a Hypercube . . . . . . . . . 93

4.7 Link Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xvi



LIST OF FIGURES

4.8 Link Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 Percentage Gain Using Hypercube Overlay . . . . . . . . . . 103

4.10 Total Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 MTL Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.12 Total Sent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.13 Total Received . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.14 Publication Coverage: Mean . . . . . . . . . . . . . . . . . . 109

4.15 Publication Coverage: Max . . . . . . . . . . . . . . . . . . 109

4.16 Requests per Second: Subscription . . . . . . . . . . . . . . 110

4.17 Requests per Second: Publication . . . . . . . . . . . . . . . 111

4.18 Communication Overhead of the Hypercube Overlay . . . . 112

4.19 Application-Generated Traffic: Incoming . . . . . . . . . . . 113

4.20 Application-Generated Traffic: Outgoing . . . . . . . . . . . 114

4.21 Maintenance Traffic: Incoming . . . . . . . . . . . . . . . . . 115

4.22 Maintenance Traffic: Outgoing . . . . . . . . . . . . . . . . . 115

4.23 Publication Multicasting Size . . . . . . . . . . . . . . . . . 116

4.24 Publication Multicasting Ratio . . . . . . . . . . . . . . . . 117

4.25 False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Three-layer Abstraction of the Proposed Architecture Design 126

xvii



LIST OF FIGURES

5.2 Link Traffic: Filter Length . . . . . . . . . . . . . . . . . . . 138

5.3 Link Traffic: Replication Factor . . . . . . . . . . . . . . . . 139

5.4 Total Number of Publications Received . . . . . . . . . . . . 140

5.5 Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xviii



List of Tables

3.1 Characteristic of DTDs . . . . . . . . . . . . . . . . . . . . . 54

4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . 106

xix



LIST OF TABLES

xx



Chapter 1

Introduction

The aim of this study is to investigate how a pub-sub architecture

can be efficiently empowered with XML-based filtering capability in a dis-

tributed environment. In this chapter, in section 1.1, we first describe the

motivation behind this research, followed in section 1.2 by a brief discus-

sion on the shortcomings of current approaches. Then, in section 1.3, we

provide a brief summary of our contribution. A brief introduction of the

methodology adopted in this research is presented in section 1.4. We end

this chapter by illustrating the organization of this thesis in section 1.5.

1.1 Motivation

As we enter the era of big data, the volume of information on the

Internet is exploding due to the increasing number of Internet users, mo-

bile devices, pervasive computing devices, and social networking activities.
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1.1. MOTIVATION

As Internet services continue to infiltrate into the social fabric of our ev-

eryday lives, the need to efficiently deliver personalized information on an

as-available basis is becoming increasingly important. In order to filter and

deliver relevant data from the massive amount of messages to interested

users or software components in a timely manner, architecting an efficient

information dissemination system is important, to say the least. The archi-

tecture should intrinsically support the efficient collection and integration of

the various kinds of data that are distributed among large sets of users and

application services, while providing the capacity to actively disseminate

personalized information on an as-available basis through a “push-based”

approach.

The traditional request-reply paradigm, which has been widely adopted

as the distributed computing paradigm of choice, is not able to address the

aforementioned requirements. This is because the request-reply approach

is inherently based on a “pull-based” approach, while selective information

dissemination requires a “push-based” communication strategy. In order

to achieve selective information delivery using a request-reply style of com-

munication, a client has to continuously poll the server for any updated

information. Although such a mode of operation works well in a local

area network environment with a limited number of clients and servers,

the scaling up of the system would lead to increasing performance penal-

ties. Clearly, the performance degradation becomes especially severe in a

wide-area network such as the Internet. For example, the well-known social

microblogging service Twitter [65] has suffered significant availability issues

from traffic overloads and hardware failures largely due to the inefficiency

of this polling mechanism [47, 6]. More importantly, as the Internet contin-
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CHAPTER 1. INTRODUCTION

ues to take root in services such as pervasive and social computing, among

many others, the need for a communication paradigm that supports the ef-

ficient dissemination of traffic in the form of many-to-many communication

is apparent. In such a communication environment, it is the norm rather

than the exception that a client often does not get to decide which end-point

server to connect to and receive messages from, as in a one-to-one request-

reply paradigm. In this thesis, we argue that there is a need to adopt a

publish-subscribe (pub-sub) communication paradigm that is robust enough

to be used across myriads of Internet services, while providing the capacity

for the system to scale-up to operate in an Internet-scale environment.

In pub-sub, users indicate their interests by submitting subscriptions

to the system. Published information (i.e., publications), when available,

is automatically propagated and delivered to the interested peers based on

subscriptions that they have submitted. Pub-sub provides a more intuitive

and efficient communication model by actively and selectively disseminating

information based on user’s interests through a “push-based” approach.

More importantly, it enables loose coupling between the data source and the

sink. In a dynamic environment where clients continuously join and leave,

while servers may fail at times, pub-sub can effectively handle exchanges

of data among a very large number of entities without requiring all of the

information sources and sinks to be present in the network at the same time.

This in turn enables the decoupling of application logic and communication,

which can ease the application design process considerably.
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1.2. SHORTCOMINGS OF CURRENT APPROACHES

1.2 Shortcomings of Current Approaches

The earliest pub-sub systems are mainly topic/channel-based [5, 44,

48]. This has subsequently led to the development of pub-sub systems

that support content-based matching schemes [2], which are more flexible

and expressive. The common adoption of XML as a standardized mark-up

language for data interchanges has stimulated significant research interest

in integrating and leveraging the expressiveness of XML data to effectively

operate within the pub-sub paradigm. This has led to the development of

XML-based pub-sub systems [45, 16, 58, 36, 22, 12, 34, 17, 37, 38, 9, 2].

In an XML-based pub-sub system, published events are represented in the

form of XML documents. The subscriptions in these systems are expressed

in a powerful filtering language such as XPath [66] or XQuery [67], which is

used to specify constraints over both structure (using path expressions) and

content (using value-based predicates). Compared to previous approaches,

XML-based pub-sub provides better expressiveness in filter expression, as

the structured XML representation can embed richer semantic information

in users’ subscriptions. It is also more flexible and exhibits scalability, as it

does not require predefined topics or attributes. However and significantly,

existing XML-based pub-sub systems suffer from a number of performance

issues when applied to large-scale networks such as the Internet, not to

mention the dynamic nature of such an environment. Among those issues,

the following are the most crucial:

Filter Efficiency. Most studies [16, 58, 36, 22, 12, 34] on XML-based

pub-sub have primarily focused on improving the semantic richness of filter

expression and enhancing filtering precision with a trade-off in computation

4



CHAPTER 1. INTRODUCTION

complexity. The overhead incurred in performing filtering to attain the de-

sirable level of precision often resulted in computational inefficiency. In a

distributed pub-sub system, filters are normally deployed at each broker in

the system. The filtering and matching process is triggered each time an

incoming message arrives at the broker. As a result, the filtering process

is triggered repeatedly on every broker along the paths traversed by each

publication. Hence, the computational load on each broker increases expo-

nentially as the system scales up. Consequently, if the filtering process is

not efficient enough, the brokers can easily become overloaded, leading to

potential system failure.

Robustness. Studies on distributed XML filtering systems normally

assume the use of a spanning tree based routing approach, which is widely

used in conventional topic or content-based pub-sub systems. Normally,

the tree is constructed by identifying subscriber nodes that share common

subscriptions and are in close proximity to each other, while minimizing the

messages transversal path to all the other subscribed nodes. The computa-

tion requirement for forming the tree dictates that the subscription among

the nodes does not change frequently, and those nodes do not constantly

enter or leave the subscription tree. As such, as the dynamism and the

changes in the network topology increase, the system will suffer from a se-

vere degradation in performance. Such an assumption is clearly invalidated

in Internet applications where it is normal for potential nodes to join, leave,

or fail, and subscription updates happen frequently.

Scalability. As mentioned, the spanning tree-based routing scheme is

used by many existing distributed pub-sub systems for the dissemination

5



1.2. SHORTCOMINGS OF CURRENT APPROACHES

of subscribed messages from publishers to subscribers. The scalability is

severely limited due to the high computational requirement of establishing

and maintaining the underlying tree structure and the flooding-alike propa-

gation of subscriptions. Thus far, all of the studies in this area have focused

only on applying XML-based pub-sub in a small network of brokers with a

small to medium number of nodes. As pervasive computing over the Inter-

net continues to grow, it is clear that future pub-sub systems must handle

a far larger number of published messages and subscriptions that operate

across a diverse number of applications. Therefore, it is not uncommon to

expect pub-sub systems to support thousands if not millions of users.

Level of integration. To date, the studies in this area have treated

the filtering and routing of publications separately. Hence, they have either

focused solely on filtering while assuming that the routing issue has already

been taken care of [16, 58, 36, 22, 12, 34], or have focused on the routing

problem using existing filtering schemes [17, 37, 38]. However, treating the

matching and routing processes separately can hardly lead to an optimal

solution, as these two processes are tightly bound to each other. The routing

scheme dictates the requirements of filtering scheme, while the filtering

scheme will have an impact on the performance of the routing at large.

Therefore, in a well-designed system, the filtering and routing processes

should synergistically complement, rather than limit, each other.

Autonomy. Most studies [16, 58, 36, 22, 12, 34, 17] have required

either a dedicated broker network or some dedicated hosts as part of the

management facility, to provide centralized coordination and topology man-

agement services. As a distributed system scales, especially when the sys-
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CHAPTER 1. INTRODUCTION

tem spans over multiple administrative domains, difficulties might be en-

countered with direct administrative control. The risk of a single point

failure occurring in a domain, which then propagates to other administra-

tive domains, eventually rendering the network inoperable, is inherent in a

system that requires a dedicated management facility. Hence, adopting a

self-organizing distributed architecture, which requires no dedicated brokers

or distinguished hosts, would be preferable with respect to reliability.

The outline of the above challenges and requirements have driven us to

investigate how we can efficiently empower pub-sub architecture with the

XML-based filtering capability in a distributed environment. In particular,

our core task is to develop an XML-filtering system that can be easily

deployed to a large collection of loosely maintained, heterogeneous and

non-dedicated machines spread throughout the Internet.

1.3 Contribution

The main contributions of our work are in two areas: the event match-

ing, and the event routing.

1.3.1 Contributions in Event Matching

The contributions with respect to event matching are:

• A scalable and flexible distributed XML dissemination ar-

chitecture. We took both event matching and event routing into

7



1.3. CONTRIBUTION

consideration, and carefully developed a distributed pub-sub system

suitable for the large-scale dissemination of XML data.

• The concept of separating parsing from the matching pro-

cess. We provide a novel architecture to relieve the computation

burden of parsing from the matching process. This will enable our

framework to be adapted in a computation-constrained environment

such as a mobile environment.

• Efficient structure representation by a bloom filter. We pro-

vide a way of representing information on the structure by using a

bloom filter, which originally only supported the representation of

non-structured data sets.

• Efficient matching method based on the representation of a

bloom filter. Using our method, the evaluation can be as simple as

a bit-vector comparison.

1.3.2 Contributions in Event Routing

Our contributions in event routing are:

• An addressing scheme that is optimized for the event-matching

scheme. We utilized the natural convergence between the event-

matching scheme and the addressing scheme, thereby optimizing the

event-routing process. The address can reveal certain structural in-

formation that can later facilitate the event-routing process.

8
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• Robust and scalable routing scheme. We developed a robust and

scalable routing scheme for Internet applications. Specifically, we de-

veloped a hypercube overlay by exploiting the structure-awareness of

our addressing scheme. With this overlay, a multicast style of com-

munication can be established for efficient message propagation. Our

routing scheme can efficiently handle changes in topology caused by

joining/leaving or failure of nodes, and also has the intrinsic capability

to scale up to operate in an Internet-scale environment.

1.3.3 Contributions in Architectural Design

In our study, we have also made many contributions with regard to

research methodology and architectural design, the most prominent being

the following:

• A holistic approach to handling matching and routing. As

far as we know, this is the first work to take a holistic approach to

considering filtering and routing as two processes that may synergis-

tically complement one another to support efficient message dissem-

ination. In our approach, filtering is seamlessly coalesced into the

routing scheme and can be accomplished seamlessly and efficiently as

publications are propagated across the nodes.

• An extensible multilayer architecture. We proposed a multi-

layered event-dissemination architecture. With the multilayer design,

flexibility and adaptability can be largely guaranteed. Modifications

to support different levels of optimization and adaptation correspond-

9
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ing to specific layers are also ease to made.

1.4 Methodology

Our aim was to develop an XML-based pub-sub architecture suitable

for applications in large-scale networks, specifically the Internet-scale appli-

cations. For the sake of effectiveness and efficiency in the evaluation of the

proposed architecture through experiments, we adopted a simulation-based

approach, facilitated with analysis where appropriate. The reasons behind

this decision were manifold: i) Running large-scale experiments requires a

substantial amount of network infrastructure which is ideally deployed in

a controlled environment. ii) It would be difficult to run experiments on a

scale larger than 10 fully controlled computers, since adequate infrastruc-

ture would be hard to obtain during the process of this research study. iii)

Even if the infrastructure were available, technological faults independent

of the proposed algorithm could have potentially slowed down the process

of the research. Hence, it would be impractical to carry on real-world test,

given the limited period of time available to conduct the proposed research.

iv) The experiments, if implemented in an appropriate simulation environ-

ment, can be parallelized, which has been proven to be quite helpful by

our later experience. v) Many simulation frameworks can provide a near-

realistic environment which can easily lead to results as authentic as those

in testbed experiments. In addition, reproducing the results is easy compare

to real-world tests.

In our simulation, we mainly use OMNeT++ [62], an extensible, mod-

10
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ular, component-based C++ simulation library and framework, combined

with some analysis utilizing Matlab [61] when appropriate. Via detailed

simulations, we have evaluated system performance extensively in terms

of efficiency, scalability, overhead, and fault-tolerance capability in multi-

faceted experiment setups. Evaluating the algorithms in a real-world sce-

nario on platforms such as PlanetLab [63] would be an interesting next

step, even though it may have drawbacks as mentioned earlier.

1.5 Organization of This Thesis

The topics and the organization of this thesis are depicted in Figure

1.1.
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Event Matching Layer

Underlying Network

Structure Matching

Bloom Filter-Based Structure Representation

Structure-Aware Addressing

Key-based Overlay (KBR):
Chord, Pastry, Tapestry, etc.

Application Interface Layer

Generic Pub-sub Interface

Distributed Event Routing Layer

Chapter 2

Hypercube-to-KBR Mapping

Chapter 4

Hypercube Overlay 

Redundancy-based Fault-
tolerance Strategy

Chapter 5

Chapter 3

Chapter 2

Publish-Subscribe M
iddleware

Figure 1.1: Topics and Organization of This Thesis in Three Layers Con-
forming Proposed Pub-Sub System Architecture

In Chapter 2, we provide a brief introduction to publish-subscribe sys-

tem architecture and the key-based routing overlay, which forms the back-

ground of this thesis. After presenting the background, we divide our work

into two parts, one is the event matching, and the other is the event rout-

ing, conforming to two major functional layers of a generic pub-sub system
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architecture.

In Chapter 3, we focus on the event matching. First, a highly compact

bloom filter-based structure representation is introduced. Based on this

representation method, we proposed a highly efficient XML-based event-

matching scheme. An XML-filtering architecture is then proposed utilizing

proposed event-matching scheme. Proposed architecture consists of a pre-

processing component and a matching component. The former is used

for document parsing and bloom filter creation, while the latter provides

matching evaluation-related functions. One distinctive feature of this de-

sign is the separation of the parsing process and the matching process. This

is because based on our study, the time imposed on parsing is a dominant

factor of the total matching time cost. Therefore shifting the parsing pro-

cess to the preprocessing component can tremendously speed up the overall

matching in an XML-filtering system so as to relief the burden of parsing

from the filtering engine. After the illustration of proposed architecture, we

present the result of performance evaluation. Extensive experiments prove

that the matching time can be significantly reduced due to the separation

of matching and parsing. In addition, the space needed for structure index

is tremendously reduced, attributed to the bloom filter-based compact data

representation method.

In Chapter 4, we address the issues in distributed event routing. First,

we present a structure-aware addressing scheme, which fully exploits the

bloom filter-based structure representation proposed in Chapter 3. Using

the structure-aware addressing, we adapted key-based routing approach to

the event-dissemination architecture, and managed to inherit the advan-
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tages such as scalability and flexibility from the key-based routing overlay.

To further improve the efficiency of the event routing process, we developed

a hypercube overlay as a multicasting infrastructure for efficient dissemi-

nation of publications. Extensive experiment evaluation shows that the

proposed system is able to balance the load among the peers and prune out

unmatched publication messages at the early stages along the dissemination

path. More importantly, the proposed system scales well with increasing

number of peers, subscriptions and publication events.

In Chapter 5, we focus on the robustness of earlier presented event-

dissemination overlay. By introducing a novel hypercube-to-KBR mapping

algorithm, and a redundancy-based fault-tolerance strategy, we are able to

provide a robust large-scale event-dissemination architecture with effective

fault-tolerance capability. Our experiments reveals that proposed architec-

ture works well not only in a large-scale application, but also in a dynamic

environment where nodes may join, leave and fail at times.

In Chapter 6, we summarizes our research and presents our conclusions.

Furthermore, we discuss problems which remain open and sketch areas for

future work.

14



Chapter 2

Background

This chapter lays the foundation for an event-based system architec-

ture. First, we illustrate the basics of the event-based system, followed by

an introduction to event matching and event routing – two essential func-

tional layers of an event notification service. After that, we will provide a

brief overview of Key-based Routing technologies, on which the proposed

distributed event-routing scheme is established.

2.1 Overview of the Event-based System

The proliferation of applications in mobile and pervasive computing

has stimulated the evolution of communication paradigms. The traditional

tightly coupled request-reply style can no longer satisfy the undirected and

asynchronous communication requirements that new applications need. As

a result, a more loosely coupled communication paradigm is proposed to
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fulfill this requirement. This paradigm is called publish-subscribe (Pub-sub

for short, also known as the event-based system; hence in the rest of this

thesis, the terms pub-sub system and event-based system are used inter-

changeably). In a pub-sub system, the message producer is not supposed

to send the message to a specific message consumer. Rather, all messages

are forwarded to the interested consumers by their subscriptions. Each con-

sumer is required to express their interests using a certain machine-readable

form as subscription, and to disseminate them throughout the pub-sub sys-

tem as filters for the incoming messages. As a matter of fact, the addresses

of the consumers are not explicitly defined; thus, the producer is not aware

of the destination of the messages it has produced. Nor is the consumer

aware of the source of the messages. In this way, pub-sub provides a com-

munication method that decouples the message producer and consumer of

the message. The pub-sub system can be implemented in either a central-

ized way or a distributed way. The distributed implementation provides

good scalability and avoids the issue of a single point of failure, and thus

has attracted much attention. How to filter the messages as well as how

to disseminate the messages to the matched subscriber in a distributed

manner are two major focuses of research on distributed pub-sub system.

An abstraction of the general architecture of a pub-sub system is shown

in Figure 2.1. In a pub-sub system, subscribers are required to register their

interests (also known as profiles) in the system as subscriptions. Upon re-

ceiving a message, the system, which is normally implemented as middle-

ware, will filter the message according to the subscription and deliver the

message to the matched subscribers. The interaction among the publisher,

subscriber, and the pub-sub middle-ware can be realized by a set of op-
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Figure 2.1: General Architecture of a Pub-Sub System

erations through standard interfaces (such as publish() subscribe() and

unsubscribe()).

Normally, a pub-sub system consists of following components: 1) events

and notifications, 2) publishers and subscribers, 3) subscriptions, 4) event

notification service [41]. We briefly introduce each of these essential con-

stituents.

Events and Notifications. An Event is defined as: any happening of in-

terest that can be observed from within a computer [41]. In the scope

of our research into an event base system, we consider any detectable

arbitrary change in state as an event. A notification is defined as: a

datum that represents an event [41]. A notification is created by the

observer of the event and may simply indicate the plain occurrence

of the event, but often may carry additional information describing
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the circumstances of the event. For convenience of illustration, we

sometimes use the term publication in the remainder of this thesis to

refer to the notification. In some cases the “(publication) messages,”

is also used as the name of the notification. As these terminologies

are easy to distinguish by the context in which they appear, we will

make no further explanation at their single appearance.

Producers and Consumers. Producers and consumers are the abstrac-

tion of real software components, which provide or utilize notifica-

tions.

Producers (often referred to as publishers) publish event notifications.

The Producer’s implementation is said to be “self-focused” in the

sense that it observes only its own state [41]. The decision to publish a

change in state is entirely dependent on internal business logic running

on the producer.

Consumers (often referred to as subscribers) are the software compo-

nent that reacts to notifications delivered to them by the notification

service. In generic pub-sub architecture, a consumer can only submit

its interests to the system, and react to the information that it has

received.

Subscriptions. A subscription (also referred to as a filter) describes a set

of notifications that a consumer is interested in. Consumers register

their interest in receiving certain kinds of notifications by submitting

subscriptions to the notification service. The service evaluates the

subscriptions on behalf of the consumer and delivers those notifica-

tions that match one of the consumer’s subscriptions. [41]. In the
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remainder of this thesis, the term filter, subscription filter, or sub-

scription pattern may also be used to refer to subscription.

Event Notification Service. An event notification service, or notifica-

tion service for short, is the mediator in event-based system that

decouples producers from consumers. It is responsible for convey-

ing notifications, and it must deliver every published notification to

all consumers who have previously installed matching subscriptions.

[41].

An Event notification service commonly provides a publish-subscribe

interface, offering operations such as: publish(), subscribe(), unsub-

scribe(). The notification service gets a publication from a publisher

via the publication() operation and a subscription from a subscriber

via the subscribe() operation. On each node, upon receiving a publica-

tion, a matching evaluation will be carried out between the publication

that it has just received and the subscriptions that it has stored. If

there is a match, it will deliver the publication to the correspond-

ing subscriber utilizing the underlying event-routing mechanism. The

event notification service executes this matching evaluation on behalf

of subscriber and delivers matching publications on behalf of the pub-

lisher. In this way, it decouples the publisher and subscriber during

the event-dissemination process.

The implementation of an Event Notification Service can be either

centralized or distributed, based on the underlying network environ-

ment and application scenario. In this research we only focused on

distributed implementation.
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The event notification service is the core component of a pub-sub sys-

tem. Generally speaking, it can be decomposed into two functional layers:

event matching (also called event filtering) and event routing (also referred

to as event dispatching). Event matching is the process of matching an

event to the subscriptions based on an event-matching scheme. An event-

matching scheme is comprised of an event filter model, a data model, and a

matching evaluation algorithm that is used in the event matching process.

Event Routing handles the dispatching of the matched messages to corre-

sponding interested peers. We will briefly introduce event matching and

event routing in the following sections.

2.2 Event Matching

The event-matching process is dictated by the event-matching scheme.

The event-matching scheme defines a set of rules and algorithms that are

used for matching each publication against subscriptions. The event-matching

scheme consists of the event filter model, the data model, and the matching

evaluation algorithm used in the event-matching process.

2.2.1 Conventional Event-Matching Schemes

In conventional event-based systems, there are four kinds of event fil-

ter models: channels, subjects, types, and content. Based on the similar-

ity of the filter models, the conventional event-matching schemes can be

classified into two categories: topic-based (channel, subjects, types) and

content-based. Topic-based event matching is simple and straightforward:
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all of the information is grouped into several groups, based on predefined

topics. Hence, in general, the topic-based matching algorithm is simple to

implement, and efficient in systems that only cover small domains of inter-

ests, because, in this case, the system designer can easily define the term

of the interests with a few topics. However, the necessity of providing a

predefinition of the topic can seriously limit the flexibility and adaptabil-

ity of the system. To tackle this problem, the content-based approach is

proposed. The content-based approach makes it possible to choose filter-

ing criteria along multiple dimensions without requiring a predefinition of

topics [2]. The content-based matching algorithm evaluates a message by

analyzing the content of the message. In this way, it reduces the man-

agement overhead for predefining and managing the “type” of information

that is crucial to the topic-based approach. Interestingly, when analyzing

contents based on a certain metric such as name, or kind, the content-based

matching process will degenerate to the model of the topic-based approach.

Thus, the content-based approach can be treated as a more general form of

event matching. In implementation, the content-based approach generally

requires that the message be represented with a unified data model, such

as: a key-value pair (also called an attribute-value pair or tuple in some

studies). Based on the data model, a standard evaluation algorithm can

be applied to the content of the message to decide whether the message

matches the subscriptions. The content-based matching scheme introduced

extra difficulties, as the matching problem is more complex and there is no

known scalable solution [2].

There is a large amount of research in the area of event matching, from

earlier work focusing on the problem of matching in topic-based systems
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[5, 44, 48, 39] to later work focusing on content-based matching problems

[2, 18, 69, 31, 68]. As topic-based matching is straightforward and less flex-

ible than content-based matching, we would rather not discuss the subject

further here. Regarding content-based matching, there are two types of ap-

proaches: 1), the iterative approach. (e.g., Gryphon [28], Siena [9].); 2), the

decision tree-based approach. (e.g., the work in [69, 68, 52].) The iterative

approach simply consists of running an iterative matching algorithm that

counts the number of matches between each properties of an event and each

of the subscription predicates. Once a match is found, the algorithm will

increase the counter by one. Thus, after evaluating all of the properties in

the event, the algorithm can compare the number in the counter and the

number of predicates denoted in each of the subscriptions. If they are equal,

then there is a match between the event and the corresponding subscrip-

tion. Normally this kind of method is straightforward, and easy to imple-

ment. However, the disadvantage of using an iterative algorithm is that it

is not efficient if the process involves a large number of evaluations for each

subscription. In addition, this approach only considers the conjunction re-

lation between the predicates inside one subscription, while being incapable

of handling the disjunction relation between the predicates. In a decision

tree-based algorithm, the logical relation between predicates inside certain

subscription is represented by a tree-structure, e.g., a binary decision tree.

In the tree structure, each non-terminal node is a boolean function corre-

sponding to the predicate inside one subscription, while each edge defines

the matching result of the attached ancestor node (the one closer to the

root). The logical relation between these predicates, such as conjunction

and disjunction, can be represented by such a tree structure with a specific
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topology. The terminal node represents the final matching decision, nor-

mally either true or false. By going through certain path from the root to

the terminal node, a matching evaluation result will be reported. Besides

the efficiency in handling a large number predicates within subscriptions,

another advantage of the decision tree-based method is that it is capable

of handling both the conjunction and disjunction of the attributes. There

have been a few attempts to enhance the original decision-tree based ap-

proach: In [2], the authors proposed a tree-based data structure to contain

all constraints defined in all subscriptions. Based on this data structure,

an optimization method was used to decrease the redundancies produced

by the search trees. By doing a preprocessing beforehand, it can reduce

the time complexity to sub-linear. But, as the author has mentioned, this

approach is only efficient when the subscription is not likely to change fre-

quently, in order to keep the overhead introduced by the preprocessing of

subscriptions below a certain level. In [69, 68], the author proposed an

extended version of the Binary Decision Tree (BDD), which was named

“hierarchy colored OBDD graphs.” By introducing a hierarchical structure

and colored features to the original BDD graph, the normal predicate-based

matching can then be extended to two levels of matching processes: se-

mantic matching and composite matching. In work [53], an ontology-based

matching process is proposed to eliminate the semantic heterogeneity that

occurs in event matching. A commonly shared ontology is established be-

forehand and a structured representation x-tree [4] is adopted. Based on

the commonly shared ontology, the event and subscription of a standard

content-based system are converted into ones that are based on concepts.

A matching method is also proposed to test the constraints on concepts by
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going through the x-tree representation.

2.2.2 Structure-based Matching

Currently in the literature, the key-value pair is the most popular

data model for content-based matching schemes. For this reason, many

studies have defined content-based matching schemes as those that have

strictly adopted the key-value pair data model. With the growing popular-

ity of XML, the importance of structured data representation is gradually

becoming apparent. Attention is starting to shift from the conventional

content-based data model (i.e., the key-value pair) to the XML-based data

model. Even though technically speaking this new XML-based data model

and the corresponding event-matching process still fall under the scope

of the content-based matching scheme, many studies tend to treat it as

a new category in order to distinguish it from the conventional key-value

pair-based system. Hence, in this thesis, we follow this convention and

treat XML-based event matching as the third category, which we have

named structure-based matching. Unlike topic or content-based matching,

structure-based matching focuses on the structure that is embedded in-

side the data. Compared to its predecessor (the topic-based and content-

based model), the structure-based model can provide better expressiveness

and flexibility by using structured information representation (commonly

XML), and corresponding filter representation languages such as XQuery

[67] and XPath [66].

Structure-based matching is also referred to in some studies as XML

filtering. The goal of XML filtering is to realize the selective dissemina-

24



CHAPTER 2. BACKGROUND

XML Parser

Filter Parser

Filter 
Algorithm

Indexing and 
Storage

DataData

Subscriptions

parsed 
events

Filter Engine

Figure 2.2: General Architecture of an XML Filtering System

tion of XML documents based on the XML-based filter languages, such as

XQuery, XPath, and others. In spite of the difference in implementation,

most of the current XML filtering systems adopted a similar architecture,

as shown in Figure 2.2.

Refer to Figure 2.2, when incoming data (an XML document) arrives

at the pub-sub system, it will first be parsed by an XML parser, which

generates an abstracted structure that can be used by the corresponding

matching algorithm (e.g., an event-based parser like SAX will generate a

stream of events corresponding to element-tags, attributes, and values).

The parsed events will be fed into the filter engine and matched against
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subscriptions. The subscriptions also need to be parsed first and then stored

for the filter evaluation. If needed, an index will be created for subscription

filters to accelerate the matching process. After the matching evaluation,

a (logical) routing table, which includes a list of matched subscribers, will

be created. In the end, the document will be forwarded according to this

routing table.

2.3 Distributed Event Routing

The objective of event routing is to route the event notifications (publi-

cations) to the subscribers who are interested, based on the event matching

results. To achieve this, we need to solve two problems:

1. How to ensure that the matching publication and the subscription

congregate at least once on a common node?

2. How to deliver the publication to the corresponding subscriber once

a match has been found?

In this section, we first provide a summary of a general approach to event-

routing problems, namely publication propagation and subscription propaga-

tion, followed by an introduction to the event-distribution tree, which is the

supporting infrastructure for subscription propagation-based approaches.
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2.3.1 General Approach

There are mainly two ways to achieve event routing. First, the simplest

is publication propagation, in which the event notification (publication) is

simply forwarded to all existing consumers regardless of their subscription.

This is essentially a flooding process. It can be used in small-scale network,

but as the network scales up, it will become inefficient at some point, since

the transmission cost of the flooding process will grow exponentially as the

scale of the network grows. Thus, this method is not commonly adopted, so

we will not discuss it further. The other is subscription propagation, which

is commonly adopted in many studies on event-based systems. In this

method, the subscription is first propagated (installed) to all or a portion

of the brokers to establish a routing table at those brokers. A routing table

consists of routing entries. Each routing entry is a filter-destination pair,

where filter indicates the matching criterion, while destination indicates

where the publication should be forwarded to once a match has been found.

At each broker, the incoming matching publication will be forwarded to the

destination based on the routing table.

To further improve the performance of the above-mentioned subscrip-

tion propagation process, three optimization methods have been proposed,

namely: identity-based optimization, covering-based optimization and merge-

based optimization [41]. Identity-based optimization makes use of the simi-

larities between subscriptions. Based on those similarities, subscriptions are

grouped together to facilitate the event-dissemination process. Covering-

based optimization takes the coverage relation among subscriptions into

consideration and further prunes out the routing entries that have been
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already covered by the others. The merge-based approach finds the dis-

junction relation implicitly defined in the subscription filters and merges

those filters into a new combined routing entry at each broker. These op-

timizations can, in varying degrees, reduce the amount of storage required

for the routing table, and, at the same time, boost the routing look-up

efficiency.

2.3.2 Event Dissemination Tree

Subscription propagation normally relies on an event dissemination

tree (also, a pub-sub tree, PST). PST is a network overlay that connects all

of the brokers in a pub-sub system into a tree structure. This is normally

achieved in two ways: the spanning-tree-based approach and the key-based

routing approach.

Spanning Tree-based Approach. Normally, the tree is constructed by

identifying subscriber nodes that share common subscriptions and

that are in close proximity to each other, while minimizing the mes-

sages transversal path to all other subscribed nodes. The compu-

tation requirement for forming the tree dictates that the subscrip-

tion among the nodes does not change frequently and those nodes

do not constantly enter or leave the subscription tree. As such, as

the dynamism and the changes in the network topology increase, the

system will suffer from a severe degradation in performance. Such

an assumption is clearly invalidated in Internet applications where it

is normal for potential nodes to join, leave, or fail and subscription

updates happen frequently. This kind of approach utilizes the under-
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lying overlay network to inherently acquire several good properties

such as flexibility, robustness, and scalability.

Key-based Routing (KBR) Approach. A key-based routing structure

is adopted to provide a routing and look-up facility for the routing

of incoming publications. Both subscriptions and publications are

mapped to a few keys in a key-space based on an addressing scheme.

Based on their corresponding keys, the rendezvous point(s) can be

found for potential matching publications and subscriptions. Com-

pared to the spanning tree-based approach, the KBR approach has

many advantages.

• Robust. Many overlay approaches have robust failsafe mecha-

nisms to handle the failure of nodes.

• Incrementally deployable. The overlay approach scales well, even

without a centralized consensus infrastructure. Nodes can join

and leave willingly.

• Adaptable. The overlay approach can tolerate the dynamic

changes that happen in the underlay.

In the next section, we will introduce this KBR approach in detail.

2.4 Key-based Routing Overlay

Key-based Routing (KBR) is a common abstraction of the routing

mechanism widely adopted in structured P2P systems. A common imple-

mentation is the Distributed Hash Table (DHT). Thus, the terms KBR,
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DHT, and structured overlay are used interchangeably in many studies. In

a standard KBR network, nodes are organized into a structured overlay, and

each node is assigned a unique bit-array represented as a key from a large

key space. Each node with its assigned key is responsible for handling a

certain key space range. Likewise, the contents (also known as application-

specific objects) are mapped to the same key space by means defined by the

addressing scheme. For example, DHT uses the hashing results of the con-

tent objects as the key. Each node stores the contents (or the reference to

the original contents such as the URL) that have keys which are within the

key space range of the node. Hence, based on their hashed keys, the con-

tents are distributed throughout the whole network. KBR provides a basic

routing method so that, given an arbitrary key of an application-specific

object, we are able to locate this object within a limited number of hops.

KBR has many applications. One popular application area is the peer-

to-peer file sharing system; other fields such as content distribution and

distributed caching also exploit KBR. In distributed file/content sharing,

each file can be easily hashed into a key and assigned onto the node that

is hosting it. When a user is required to retrieve a file, the process is

reduced to a series of table look-ups of this key to locate the host node

of the file and download the file accordingly. Normally in data-storage-

oriented implementation, KBR provides a distributed hash-table function

(DHT). A key-value pair is stored in the DHT. Given a key, a client can

acquire the corresponding value by the simple look-up function offered by

this mechanism. The distributed architecture of KBR makes it possible

that a small part of the participants’ change will only causes a minimal

amount of disruption in the system. This guarantees good scalability and
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robustness.

A KBR system has four basic components: the key-space, key-space

partitioning, looking-up algorithm and underlying network. These compo-

nents are briefly introduced below.

Key-space This is a unified identifier space, which is used for the keys

and identifiers of the nodes for a KBR system. It is the foundation of

the whole system. A 160-bit key-space is adopted in common DHT

implementations.

Key-space Partitioning The partitioning of the key-space is mainly for

the purpose of storing the resources with their associated keys. Nor-

mally, the identifier of each node will act as the end point and separate

the whole continuous space into several segments.

Looking-up algorithm This is normally the enhancement of the linear

look-up algorithm for a basic ring structure. Techniques such as fin-

gering and a multi-level routing table might be used to achieve better

routing performances.

Underlying network This is the infrastructure network. Normally, nodes

are allowed to join/leave/fail at will in the underlying network.

Research on KBR has been stimulated by the growing popularity of

peer-to-peer file sharing systems. There are four prominent KBR imple-

mentations: Chord [57], CAN [50], Pastry [51], and Tapestry [77]. We will

provide a brief overview of those implementations in the following sections.
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2.4.1 Chord

Chord [57] is one widely used KBR solution. Like the most common

KBR overlay, Chord’s basic responsibility is to provide a key look-up mech-

anism. The key is represented with an m-bit array. The resource and the

address (normally the IP address of the node) are mapped to this key-space.

As a result, each node has an m-bit identifier. A node with the identifier

id is responsible for the key = id or the key that immediately precedes

id. That is, the node’s id is the successor of the key. The id/key space is

wrapped by 2m, i.e. the id after 216 − 1 is 0. The mapping from the ad-

dress/source to the id/key is achieved by the function of consistent hashing.

This consistent hashing guarantees that both keys and ids are uniformly

distributed and in the same identifier space. The uniform distribution of

keys/ids assured the robustness of the system in return.

Next, we briefly describe the looking-up algorithm in Chord: First, the

nodes are arranged into a ring structure by their ids. Each node has a suc-

cessor and a predecessor. There are normally “holes” in the ring, meaning

the actual successor/ predecessor connected to the node i might not be the

node i + 1/i − 1. Chord allows this case. To guarantee the robustness of

the system, each node will not only keep one successor/predecessor, but

also keep track of the k closest nodes, in case some of them leave/fail. This

ring structure establishes the basic routing functions, i.e., the message will

travel through the ring by the successor list stored at each node that is

traversed. Based on this basic routing scheme, the fingering table is used

to accelerate the routing/look-up process. The fingering table is a routing

table that includes the IP addresses of several of the nodes in the ring other
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than the successor of the current node. The chord proposes the following

rules to decide which nodes should be kept in node n’s fingering table:

(n+ 2k−1)mod 2m , 1 ≤ k ≤ m

With such a fingering table, the number of nodes that must be con-

tacted to find a successor in an N-node network is O(log N) [57]

Figure 2.3 shows the basic look-up process when the request for re-

source 13 is generated from node 1 and node 2 respectively, the line shows

the routing path from the request node to the destination nodes in the

above process.

2.4.2 Pastry and Tapestry

Pastry is a ring-structured KBR overlay similar to Chord. The nodes

are organized into a ring structure, and each node has a unique id in a

key-space. The resources are also mapped to the same key-space, and thus

can be correlated to each other as in Chord. However, there are some

differences between Pastry and Chord. In Pastry, a multi-level routing

table is proposed to accelerate the look-up procedure. The key is first

separated into different groups (called digits), with each group having b

bit, yielding a numerical system with base: 2b. Later a multi-level routing

table is established at every node, with level 0 representing a zero-digit

common prefix, level 1 a one-digit common prefix, and so on. The routing

table keeps the addresses of the closest known peers with the right digit at

each level, except for the digits of its own at that particular level. Then,
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in each routing step a node will forward the message to a node whose id

shares a prefix that is at least one digit (or b bits) longer than the prefix

shared with the present node’s id. If no such node is known, the message is

forwarded to a node whose id shares a prefix with the key that is as long as

that of the current node, and is numerically closer than the present node.

During this procedure, the routing table is looked up one level deeper after

each forwarding. Finally, the message will reach the leaf (the bottom level),

which is precisely the node that is responsible for the requested key.

For a network consisting of N nodes, Pastry can route to the numeri-

cally closest node to a given key in less than O(log2bN) steps under normal

operations (b is a configuration parameter with a typical value 4).

As Tapestry uses identical strategy, we will not describe it any further.

2.4.3 CAN

CAN [50] is another KBR-based overlay network. It is formed on a

multi-dimensional Cartesian coordinate space. In CAN, each node can have

its own distinctive zone within this space. When a key-value pair needs to

be stored, the key is deterministically mapped onto a point P in the total

space using a uniform hash function. The pair will then be stored at the

node that owns the zone that P lies in. When retrieving the pair, all we

need to do is to find the point P . If P is in the zone owned by the retrieving

nodes, then we can directly get the pair from the current node. If not, the

request must be routed to other zones to find the node where P belongs.

A coordinate-based routing mechanism is used to guarantee that the right
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node will eventually be found.

node B’s virtual coordinate zone
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7 joins

on the details of how this is done, but we use the same bootstrap
mechanism as YOID [4].
As in [4] we assume that a CAN has an associated DNS domain

name, and that this resolves to the IP address of one or more CAN
bootstrap nodes. A bootstrap node maintains a partial list of CAN
nodes it believes are currently in the system. Simple techniques to
keep this list reasonably current are described in [4].
To join a CAN, a new node looks up the CAN domain name in

DNS to retrieve a bootstrap node’s IP address. The bootstrap node
then supplies the IP addresses of several randomly chosen nodes
currently in the system.

Finding a Zone
The new node then randomly chooses a point in the space and
sends a JOIN request destined for point . This message is sent
into the CAN via any existing CAN node. Each CAN node then
uses the CAN routing mechanism to forward the message, until it
reaches the node in whose zone lies.
This current occupant node then splits its zone in half and assigns

one half to the new node. The split is done by assuming a certain
ordering of the dimensions in deciding along which dimension a
zone is to be split, so that zones can be re-merged when nodes leave.
For a 2-d space a zone would first be split along the X dimension,
then the Y and so on. The (key, value) pairs from the half zone to
be handed over are also transfered to the new node.

Joining the Routing
Having obtained its zone, the new node learns the IP addresses of
its coordinate neighbor set from the previous occupant. This set is
a subset of the previous occupant’s neighbors, plus that occupant
itself. Similarly, the previous occupant updates its neighbor set to
eliminate those nodes that are no longer neighbors. Finally, both
the new and old nodes’ neighbors must be informed of this realloca-
tion of space. Every node in the system sends an immediate update
message, followed by periodic refreshes, with its currently assigned
zone to all its neighbors. These soft-state style updates ensure that
all of their neighbors will quickly learn about the change and will
update their own neighbor sets accordingly. Figures 2 and 3 show
an example of a new node (node 7) joining a 2-dimensional CAN.
The addition of a new node affects only a small number of ex-

isting nodes in a very small locality of the coordinate space. The
number of neighbors a node maintains depends only on the dimen-
sionality of the coordinate space and is independent of the total

number of nodes in the system. Thus, node insertion affects only
O(number of dimensions) existing nodes, which is important for
CANs with huge numbers of nodes.

2.3 Node departure, recovery and CAN main-
tenance

When nodes leave a CAN, we need to ensure that the zones they
occupied are taken over by the remaining nodes. The normal pro-
cedure for doing this is for a node to explicitly hand over its zone
and the associated (key,value) database to one of its neighbors. If
the zone of one of the neighbors can be merged with the departing
node’s zone to produce a valid single zone, then this is done. If
not, then the zone is handed to the neighbor whose current zone is
smallest, and that node will then temporarily handle both zones.
The CAN also needs to be robust to node or network failures,

where one or more nodes simply become unreachable. This is han-
dled through an immediate takeover algorithm that ensures one of
the failed node’s neighbors takes over the zone. However in this
case the (key,value) pairs held by the departing node are lost until
the state is refreshed by the holders of the data4.
Under normal conditions a node sends periodic update messages

to each of its neighbors giving its zone coordinates and a list of its
neighbors and their zone coordinates. The prolonged absence of an
update message from a neighbor signals its failure.
Once a node has decided that its neighbor has died it initiates

the takeover mechanism and starts a takeover timer running. Each
neighbor of the failed node will do this independently, with the
timer initialized in proportion to the volume of the node’s own
zone. When the timer expires, a node sends a TAKEOVER message
conveying its own zone volume to all of the failed node’s neighbors.
On receipt of a TAKEOVER message, a node cancels its own

timer if the zone volume in the message is smaller that its own zone
volume, or it replies with its own TAKEOVERmessage. In this way,
a neighboring node is efficiently chosen that is still alive and has a
small zone volume5.
Under certain failure scenarios involving the simultaneous fail-

ure of multiple adjacent nodes, it is possible that a node detects

To prevent stale entries as well as to refresh lost entries, nodes
that insert (key,value) pairs into the CAN periodically refresh these
entries
Additional metrics such as load or the quality of connectivity can
also be taken into account, but in the interests of simplicity we
won’t discuss these further here.
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Figure 2.4: An Example of CAN Zone-division in a 2-d Space

The nodes can self-organize into an overlay network that represents

the virtual coordinate space with the help of a zone-splitting and a zone-

merging algorithm. For example, Figure 2.4 shows a demonstration of zone

division in 2-d space. When node D joins the overlay network, it will be

assigned a space by horizontally splitting E ’s zone. The routing is achieved

by the coordinate-based routing table, utilizing the immediate neighbors of

each node.

2.4.4 Other KBR networks

The above-mentioned KBR systems are the most fundamental ones.

There have been many other studies in this area. Kademlia [35] is another

famous KBR network that has several real applications. HIERAS [70] is a

multi-layered KBR-based P2P routing algorithm, which is built on a multi-
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ring based structure. In [40] the overlay is built on a tree of rings. Cyclone

[3] provides a way to cluster multiple different overlay networks together.

The work in [20] proposed an architecture that can be used to hierarchically

merge the existing overlay structures. It is implementation independent,

and thus can be used on top of networks such as Chord and Kademlia.

Since the design of KBR is not our major focus, we will not discuss them

any further.

2.5 Summary

In this chapter, we introduced background knowledge on event-based

systems.

The pub-sub is a communication paradigm for the selective dissemi-

nation of information based on the contents of the message. The strength

of event-based architecture is that neither the subscriptions nor the pub-

lished events are directed towards specific communication entities. The

event-based style of communication carries the potential for autonomous

and heterogeneous components to be easily integrated into complex sys-

tems that are easy to evolve and scale.

In general, a pub-sub system consists of the following components: 1)

events and notifications, 2) publishers and subscribers, 3) subscriptions, 4)

event notification service. Among those, the core is the event-notification

service. An event-notification service can be decomposed into two func-

tional layers: event matching and event routing. Event matching is the

process of matching evaluation between publications and subscriptions. In
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current literature, there are topic-based, content-based, and structure-based

event-matching schemes. Structure-based matching provides rich expres-

siveness and flexibility compare to its predecessors. Event routing mainly

handles the routing involved in the dissemination of event notifications. The

spanning tree-based approach and the KBR-based approach are two ma-

jor ways of achieving event routing. The KBR-based approach has much

potential, as it can bring scalability, robustness, and adaptability to the

system.

Overall, this chapter lays the foundation and defines the terminologies

and concepts upon which the later chapter is based.
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Chapter 3

Efficient Event Matching

3.1 Introduction

The exploding volume of information on the Internet has made it more

difficult to discover interesting information by human-initiated queries. With

this as the trigger, a new generation of applications has been developed

based on the philosophy of the selective dissemination of information. In

these applications, heterogeneous data is selectively and automatically dis-

seminated to a large number of interested users. This requires a new model

of communication that deviates from the traditional request-reply model.

Publish-subscribe has emerged as one such promising paradigm. It

provides loosely coupled and content-oriented communication through the

selective dissemination of information based on user subscriptions. It has

enabled a new concept of “pushing” the publication or alert messages to

interested users who have shown their interest by subscribing. Nowadays,
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some famous applications that follow this concept have utterly changed our

experience of using the Internet.

On another front, XML (Extensible Markup Language) has become the

de facto standard for representing and exchanging data over the Internet.

It has rich expressiveness, and provides standardized structures for data

representation. As a result, a large amount of information is represented by

XML, which calls for new XML-based data management and dissemination

techniques.

Motivated by the popularity and expressiveness of XML, there have

been attempts in recent studies [43, 34, 55, 54, 26, 16, 12] to encode the event

message in a pub-sub system using XML-based messages or documents, in

order to integrate and leverage the expressiveness of XML data with the

effectiveness of the Pub-sub paradigm. Other than topics or attribute-

value pairs in a conventional pub-sub system, the data can be published in

a structurally rich and expressive format based on standardized XML, in

which the subscriber’s interests can be described in a more precise manner

using semantically rich query languages such as XPath, among others.

Although many studies have been done on the XML-based pub-sub

system, most of the studies suffer from excessive overheads incurred in

matching time and the storage/memory space needed during the matching

process. This makes them unsuitable in mobile computing environment,

where computing resources are extremely scarce – In today’s mobile com-

puting platform, a large proportion of devices are compact hand-held de-

vices which has quite limited storage capability and computational power

due to the size and battery life constraint of those devices. Hence we ad-
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dress two issues:

1. The parsing and matching are tightly bound together, and cannot be

separated. As the parsing takes a tremendous amount of time, the

time efficiency is severely compromised.

2. The complex indexing and matching algorithms adopted by these

works impose the risk of memory (or storage) space overuse.

In this chapter, we address the above issues, and propose a novel XML

filtering method. Our method supports the separation of filtering and in-

dexing, which frees the matching process from the time-consuming parsing

job. The parsing can (but will not necessarily) happen at the client side

once the new messages (or filters) are generated. In this way, the originally

aggregated parsing job at the broker side will naturally be distributed to

the client side. Along the way, we proposed a novel method to represent

structure information using a bloom filter. This representation contains all

of the essential information extracted from original XML documents by the

parsing process, yet still keeps extremely compact. It has a fixed size and is

independent of the complexity of the XML documents or user profiles, thus

provides good scalability. Moreover, using this representation, the match-

ing process can be simplified to a bit-vector comparison. The only trade-off

is a false positive error; however, this can be easily controlled within an

allowable rate. Our contribution is mainly as follows:

• The concept of separating parsing from the matching process. We

provide a novel architecture to relieve the computation burden of
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parsing from the matching process. This will enable our framework

to be adapted in a computation-constrained environment such as a

mobile environment.

• Efficient structure representation by a bloom filter. We provide a way

of representing information on the structure by using a bloom filter,

which originally only supported the representation of non-structured

data sets.

• Efficient matching method based on the representation of a bloom fil-

ter. Using our method, the evaluation can be as simple as a bit-vector

comparison.

3.2 Bloom filter-based XML Filtering

In this section, we will present the main ideas of our bloom filter-

based XML filtering system. First, we briefly describe the data and filter

representation model in an XML filter system. After this, we provide an ar-

chitectural overview of the proposed framework. In the rest of this section,

we present proposed bloom filter based structure representation approach.

3.2.1 Data and Filter Model

Event notifications (publication) are represented in the form of XML

documents or document streams. They will be fed directly into the pub-

sub system. XML documents are normally modeled as ordered labeled trees

(Figure 3.1) in which the nodes represent elements or values, and the edges
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<root>
  <first>element</first>
  <second-element/>
  <third attr="value">element</third>
  ...
</root>

root

first second-
element third

element elementattr=value

...

element
value

attribute

Figure 3.1: XML Document Tree

represent a relationship (the parent-child relationship) between two nodes.

Values can only appear at the leaf nodes. Each element can have a list of

(attribute, value) pairs associated with it. In this work, as predicate testing

is not our concern, the attributes and values are treated in the same way

as the elements.

Like most state-of-the-art XML filtering systems, we chose XPath as a

filter representation language. The XPath language treats XML documents

as a tree of nodes (which represents the Elements), and provides a way of

retrieving parts of this tree. Normally, a query is an evaluation of an XPE,
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Figure 3.2: Grammar of XPath Subset

which yields an object whose type can be a node-set, a Boolean, a number,

or a string. However in the context of XML filtering, the returning results

would be the whole documents if a match has been found. The XPE pattern

can be naturally decomposed into a set of basic parent-child and ancestor-

descendant relationships between pairs of nodes. As we stated on the issue

of space/time efficiency, expressiveness is not our major concern. For ease

of illustration, we limit our XPath expressions to a subset of the standard

XPath. To be more specific, we only provide the un-nested twig pattern

without a predicate evaluation. Neither the ancestor-descendant relation

nor the wild card axis is supported. The grammar is defined in Figure 3.2.

3.2.2 Architecture Overview

The architecture of our proposed framework is shown in Figure 3.3.

The filtering engine is depicted in the grey box. It is the core component

of the system. The preprocessing module is comprised of a parser and a

bloom filter creator. It will be used to process the raw XML documents

and XPath filters before the filtering process. They can be embedded at

the client side. In this way the parsing processes are distributed over the

individual clients themselves, providing a naturally balanced distribution
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Figure 3.3: Architecture of Framework

of the computation throughout the system.

When a subscription/publication has been generated, it will be first

processed by a preprocessing module, which is comprised of an XPath/XML

parser and the bloom filter generator. A bloom filter is created after the pro-

cessing for each subscription/XML document. The bloom filter combined

with a subscriber identifier will be sent to the filtering engine, then indexed

and stored for the filtering process. As to the publication, the XML doc-

uments will be sent together with the corresponding bloom filters. Once a

document has arrived, its bloom filter will be used for the evaluation against

the subscription bloom filters stored previously. The subscription process

is a simple instruction to remove the record in the filter index, identical to

that in a conventional pub-sub system.
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The distinctive characteristic of our architecture is the separation of

the parsing process from the filtering process. Existing approaches require

that the parsed event stream be immediately used in the filter process.

Thus, the parser is an essential part in the filtering engine. Consider that

the time used by the parse will completely dominate the entire evaluation

time [16]. This feature is especially important for enhancing the time effi-

ciency of the filtering. Because we shift this part of the job to preprocessing,

the preprocessing procedure takes care of the parsing and, in addition, han-

dles a part of the processing job (i.e., bloom filter creation), thus moving a

tremendous part of the computation out of the filtering engine. An interme-

diate representation of the original data (in the form of a bloom filter) will

be generated, which can fully represent the parsing result. It is extremely

compact in size and simple in evaluation. (It is essentially a bit-vector, so

the evaluation process can be as simple as a bit-vector comparison, and

thus can be carried out very quickly.)

3.2.3 Structure Model and Problem Formulation

Any structured data includes two parts: the data element and the

relation between the data elements. Let E be the space of the element,

and < be the space of the total relationship. We define a data element as

ei ∈ E. The relation Rm,n ∈ < denotes the relationship between em and en.

The structure S of the data entity D with element E = {e1, e2, ...en} can

be defined as: S = {Ri,k, Rm|ei, ek, em ∈ E}. We call S the structure of this

document, and R the relationship pair. For the sake of consistency, we do

allow a singe element relation, like Ri and define it as the element Ri = ei.
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E1

E2

E3

E4

R4,1
R1,3

R4,3

R2,4

S={E1,E2,E3,E4, R41,R42, R,13, R24}

Figure 3.4: Graph Representation of Structure S

Any relationship involving more than two elements can be transferred into

a set of relations on two elements. Thus, using relationship pairs would be

sufficient to represent the whole structure. The data entity D can therefore

be fully represented by its structure S.

The above-mentioned data representation can easily be depicted as a

labeled directed graph G(V,E), where the vertex V is the data element E,

and the edge is the relationship pair Ri,k (see Figure 3.4).

An XML document or an XPath expression can be formulated as a tree

structure and easily fitted into the aforementioned structure representation.

For simplicity, attributes are also treated in the same way as tag names,

which we call nodes. All of these nodes will form the universe of elements.

For XML documents, the relation represented by the edge between elements
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<xml> 
<device>
   <printer>    
         <color></color>  
         <postscript></postscript>
    </printer> 
     <scanner>
     </scanner>
     <camera>
          <digital>
               <HD></HD>
               <Infrared></Infrared>
          </digital> 
      </camera>
</device>
....

device

printer scanner camera

color postscript HD infrared

(e1)

(e2)

(e3)

(e4)

(e5)
(e6) (e7) (e8)

r1
r2

r3

r4 r5 r6 r7

Figure 3.5: A Piece of XML File and the Representation of Its Structure

is the parent-child relation. This relation can be denoted by the order of two

elements; thus, the relationship pair can actually be defined as an ordered

pair, e.g. Ra,b =< a → b >. Eventually, we can get the structure of the

XML document: S = {Ri,k, Rm|ei, ej, ek ∈ E}.

Figure 3.5 shows an example of an XML file being transformed into a

structure: S = {e1, ...e8, r1, ..., r7}.

Based on our previous definition and model, we can now formulate an

evaluation process in XML filtering as follows:

For a given target structure ST = {Ri,j|ei, ej ∈ ETarget} and a match-

ing pattern SP = {Ri,j|ei, ej ∈ EPattern}, we want to test whether SP ∈

ST .

We can find that using our model, the structure-matching problem can
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if it is  inside the set:

Figure 3.6: Complicated Pattern

be transformed into a partial matching problem (Figure 3.6 demonstrates

this process with a given twig pattern).

3.2.4 Represent Structure Using a Bloom Filter

One important component in our framework is bloom filter-based struc-

ture representation. Based on the aforementioned novel structural model,

the task at hand – the structure-based matching problem – can be natu-

rally transformed into a much-studied partial matching problem. Hence,

the novel data structure, such as a bloom filter, can be exploited. This

section presents details about this process of representing information on

the structure using a bloom filter.

The bloom filter was proposed by Burton H. Bloom in [7], and has

been widely introduced in many studies. The aim of a bloom filter is

to test a series of messages one-by-one for membership in a given set of

messages. To achieve this, a hashing code is provided with a novel method.

The new methods are intended to reduce the amount of space required to
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contain the hash-coded information from that associated with conventional

methods [7]. The effect of a reduction in space is accomplished by a trade-

off with an allowable error rate, more specifically, the false positive error

rate. Normally, in a case where the space that is needed is more critical

than the small risk of getting a false positive, a bloom filter is a good choice.

A bloom filter mainly provides two functions: One is that it provides

us a way of representing a set, in other words, indexing. Another function

is that it presents a way of partial matching.

Consider a set A = {a1, a2, ...ai, ...an} with n elements. First, we

allocate an m bits array. Initially, in this array all of the bits are set

to 0. We then select k independent hash functions h1(), h2(), ..., hk(). Each

of these hash functions is a consistent hash function that yields a result

from 1 to m. Now for each element ai ∈ A, the hash functions are applied

individually, and we will get a series of hashing values h1(ai), h2(ai)...hk(ai).

Using these values as the address of the bit in the bit array, we can set the

bit in question to 1 at the address h1,...,k(ai) (see Figure 3.7).

We now start a query B = {b1, b2, ..., bp} that has p elements. We want

to know if all of these elements in p are also in A. First, we apply the

same set of hash functions h1(), ...hk() onto each element bi ∈ B. We then

check the bit array at h1,...,k(bi) to see if it is 1. If all of the values that are

returned are 1, this means that there is a match between the query B and

the target set A; otherwise, if any 0s are returned, the test will fail. That

will mean that not every element in B is also in A.

We can see that the storage space needed for storing the bloom filter

is only the space needed for the m-bit array. However, this characteristic is
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Figure 3.7: Bloom Filter

acquired with a trade-off of a possible false positive error. This means that,

even if the test has passed, there is also a small chance that B may not be

the subset of A. Even so, we can estimate the false positive rate, and adjust

it under a certain allowable value. According to [42], this estimation can

be calculated by: P = (1− e−kn/m)k. n denotes the number of elements 1.

A brief analysis of this estimation is provided in Appendix A. In addition,

the hash function number k that minimizes P is found to be one of the two

integer values closest to (m/n)ln(2) [19].

Adding an element into the existing set is easy (when updating an

existing bit position, the bitwise OR operation can be used). But removing

an element from an existing set is impossible because the “1” bit may be

set by multiple elements. However, deletion is not required in our system

design.

A bloom filter has following properties:

1There exists some dispute on accuracy of this estimation, see [8]. More complex
methods [8, 14], is proposed to acquire better results.
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• The entire universe of the elements can be represented as a vector

with all of the bits set to 1.

• The conjunction and disjunction operations between two sets can be

easily implemented using a bitwise AND and OR operation

• The false positive error rate can be adjusted with a carefully selected

k and m.

A bloom filter is designed to handle a set of elements that only have

conjunction relations among them. Thus, structured information, which

has a more complex relation among elements, cannot be directly represented

by a bloom filter. Therefore, representing the structured information with

a bloom filter is one of our major contributions. In the previous section,

we have already shown a way of extracting the structure information from

the structured data, and converting it into a set of relationship pairs with

fine granularity. We can treat each relationship pair as an element in a

bloom filter, so that the whole document, which is represented by a set

of relationship pairs, can be represented by a bloom filter. Compared to

existing research in [30], our method has finer granularity in terms of rela-

tion representation because a more detailed part of the structure has been

extracted, carefully injected into the bloom filter, and is ready to be used

for matching. Our method is simple in terms of implementation, yet it is

precise enough to represent every detail of the relationship among elements

of structured data.

A false positive could be a problem in this case because of the false

positive results introduced by the bloom filter. However, we can easily
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control the rate of false positives by adjusting the length of the array as

well as the number of hash functions, so that the overall performance will

be optimized. After all, it is easy to deal with an affordable number of false

positive errors at the subscriber’s side.

3.3 Performance Study

In this part of the article, we first evaluate the time efficiency of our

framework under various operational conditions. Then, we study the perfor-

mance impact of the bloom filter length and the number of hash functions

used in the creation of the bloom filter, denoted by k. We also evaluate

the space efficiency by calculating the space conservation rate. Finally, we

study the false positive rate introduced by the bloom filter under different

parameters.

3.3.1 Setup of the Experiments

For our experiments, we acquire XML documents from the Niagara

project [13]. The total number of XML documents in the sample is 3,680,

conforming to nine distinctive DTDs (refer to Table 3.1 for more details).

These XML documents were extracted from several real case applications

across different domains. Therefore, the sample is representative enough

for a common applications scenario. We generate XPath expressions using

tools provided by the yF ilter [16]. We implement our algorithm mainly

in Matlab. For a comparison of performance with the yF ilter, which was

written in Java, we implement our matching procedure in Java and com-
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Table 3.1: Characteristic of DTDs

DTDs No. of Elements No. of Attributes
SigmodRecord.dtd 11 1
actors.dtd 9 0
bib.dtd 13 1
club.dtd 13 0
department.dtd 18 0
movies.dtd 12 0
personal.dtd 15 1
profile.dtd 18 0
quote.dtd 12 0

pile the matching algorithm into Java class files. These Java class files are

later imported into Matlab together with yF ilter’s original Java implemen-

tations. In this case, Matlab mainly acts as the container for the testing

environments, in order to control the system parameters and the collection

and processing of the results.

The time cost of filtering was measured by averaging the filtering time

of a given set of documents, while a document’s filtering time was calculated

by summing up the filtering cost of a given set of user filters. The average

filtering time is the average amount of time that it takes to perform an

evaluation between a single XML document and a single filter.

All of our experiments are performed on a 3.8GHz Core 2 Duo machine

with 2G of memory, running a 32 bit-Linux OS. The Matlab version is

R2009a in 32 bits. The Java version used to compile the Java code is

1.6.0 22. We used eclipse IDE to facilitate the construction and compilation

of our Java code.

Three groups of experiments are conducted: time efficiency, space effi-
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ciency, and the false positive rate. In the following sections, we will discuss

each of these experiments.

3.3.2 Time Efficiency

In this section, we analyze the time efficiency of our filtering method

(we will call it the bF ilter for ease of reference) in terms of matching time.

We first calculate the matching time and compare it to yF ilter. Then we

evaluate the average filtering time of our algorithm exclusively.

Varying Numbers of Filters First, we compare the filtering time of our

methods with the yF ilter by varying the number of filters. The number of

filters varied from 100 to 400. We randomly select 200 XML files from the

total XML data set as the input documents. We choose 256 as the length of

the bloom filter, and set the number of hash functions k to 1.1 We calculate

the matching time of both filtering methods. For a better understanding,

we also record the parsing time used by the yF ilter, and provide the time

used for matching by subtracting the parsing time from the total time.

The results are shown in Figure 3.8. As can be seen, our method

excels the yF ilter by almost two orders of magnitude in terms of matching

speed. However, after subtracting the parsing time used by the yF ilter,

the matching algorithm performs at almost the same level. This clearly

indicates that the parsing time is the predominant factor in the yF ilter’s

total matching time. Also worthy of note is that the commonality between

1 This parameter is decided by observing our test data, which generally include around
100 elements in total and an estimated false positive rate of under 0.2.
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Figure 3.8: Comparison: Number of Filters

filters can be possibly used to further improve the performance of filtering

system, which we will explore in a future work.

Varying the Filter Depth In this section, we compare the filtering time

of our methods with that of the yF ilter by varying the depth of the filter.

First, we define the depth of an XPath expression as the maximum depth

of the linear XPath that is decomposed from the XPath expression:

Depth(X) =
N

max
i
depth(LPi);

where LP is the linear path extracted from the XPath expression X by

decomposing X, and N is the total number of LPs that can be extracted

from X. We randomly choose 200 XML documents in the total XML
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Figure 3.9: Comparison: Filter Depth

data set. The XPEs are generated into several sets, each with 1000 XPEs.

For each set, we adjust the maximum length, yielding sets of XPEs with

different average depths. We calculate the matching time for both the

yF ilter and bF ilter, and evaluate the impact of the average XPE depths.

The results are shown in Figure 3.9. As the result shows, bF ilter’s filtering

time stays almost constant as the filter depth grows, while the yF ilter’s

is affected by the depth of the filter and shows a linearly increasing trend.

This is caused by increasing number of states in the NFA. Contrarily, the

matching of bF ilter is only a simple bit-vector comparison. Normally, it

only depends on the vector length. Since we use a fixed length bit-vector,

the matching time will not be affected by the complexity of the filter. This

is a major advantage of our matching method.
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Average Matching Time In this section, we focus on the bF ilter it-

self. We designed a set of experiments to study its behavior, especially the

impact of the bloom filter length l and the hash number k.

• Effect of bloom filter length In this test, we randomly choose

100 XML documents from the sample set and randomly generate 10

XPaths from each DTD as the filter. This will provide us with a total

of 9000 single matches. We then calculate the individual matching

times, and acquire the average matching time for each matching pro-

cess. By varying the length of the bloom filter from 4 to 1024, we

repeat the above experiment, and collect the statistical results on the

impact of the bloom-filter on the average matching time in Figure

3.10.

We observed a trend of an increase in matching time as the length
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of the bloom filter increased. This is simply because the number of

comparison processes between the bits increases as the total length

grows. However, even at the length of 1024, the average matching

speed is only 32µs, compared to the 24µs at the length of 4. This

increase in time is reasonable and acceptable.

• Effect of the hash number Identical to the above experiment, we

acquired the statistical result of the impact of the hash number on

the average matching time (see Figure 3.11).

The results show that the hash number had little impact on the

matching time. This is because the evaluation process is a bit-vector

comparison; thus, as long as the length of the bit-vector stays un-

changed, the matching time will not be affected.
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Preprocessing Time In this section we vary different parameters to

study the their impact on the preprocessing time. The preprocessing time

is calculated by averaging the processing time on 1000 randomly selected

XML files. We mainly evaluate the XML files in this section, as the XPath

is relatively small and simple to parse.

• Effect of bloom filter length The length of the bloom filter is

adjusted from 4 to 1024. The results are shown in Figure 3.12. We

can see that the length is not a key contributor to the preprocessing

time cost. This is because the hashing algorithm we adopted generates

hash arrays of a constant length, which may be reduced to the needed

length. Thus, no matter how long the bloom filter is, the computation

needed is the same.
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• Effect of hash number In this experiment, we adjust the hash func-

tion number k. The result is shown in Figure 3.13. It can be observed

that as the hash number increases, the time needed for preprocessing

increases linearly.

3.3.3 Space Efficiency

For XML documents, we calculate the total space needed to represent

all of our sample XML documents. As to user profile, a new metric – space

conservation rate – is used for evaluating space conservation by using bloom

filter representation instead of XPath expressions.
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Space for Representing All XML Documents The total space needed

to store our testing data sets is around 3GBytes. Figure 3.14 shows the

space needed for representing all of the data sets under a different false

positive rate estimation p. The false positive rate estimation is derived at

the optimized status, where k is selected automatically to guarantee an op-

timized result. According to the results, when p is 0.25, the bloom filters

only take up around 150KBytes of space. This is only about 5×10−5 times

the amount of space needed for XML documents.

Space Conservation Rate We define the space conservation rate as

follows:

R = (SpaceXPEs − Spacebloomfilter)/SpaceXPEs
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Figure 3.15: Space Conservation Rate

We randomly generate XPEs with the given DTDs. The filter length is

not limited, thus resulting in a filter length of between 1 to the maximum

length for each DTD supported. We vary the number of DTDs involved.

The length of the bloom filter is then estimated by the total number of

elements involved in DTDs, guaranteeing a false positive rate of 0.25, 0.5,

and 0.75, respectively. We present the results in Figure 3.15.

We can observe from the figure that as the DTDs involved increase,

the space conservation rate shows a decreasing trend under all of the false

positive rates. Also, smaller false positive rates lead to a faster decline in

the space conservation rate.

We can conclude that, when the scale of the system is moderate and the

allowable false positive rate is not so stringent, using a bloom filter-based

representation can largely conserve the space needed for storing user filters.
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In addition, we should be aware that for the XPEs we generated by our

sample DTDs, the average length for a single XPE is around 64Bytes with

UTF-8 character encoding. In the case of a longer tag name and deeper

XPE level, more space will be needed for XPEs, and the conservation rate

will increase even further.

3.3.4 False Positive Rate

According to [19], given a fixed bloom filter length m and the number

of elements n, a minimum false positive rate p can be achieved when the

number of hash functions k = (m/n)ln(2). Thus, the estimation of p can

be calculated given m and n.

In the following sections, we conduct a series of experiments to study

the impact of several important parameters of the system on its perfor-

mance, including the bloom filter length and the hash function number k

in terms of their impact on the false positive error rate. We also evaluate

impact of the number of filters and the filter depth, which are important

factors in real case situations, for they implicitly decide the number of ele-

ments n. We adjust each parameter under observation and repeat the test.

For each test, we use the same 100 XML files that have been randomly

selected from the sample set as the input documents, and the same set of

filters that are generated from nine distinct DTDs. The number of the fil-

ters is 900. For each test, we calculate the average false positive rate from

the filtering results. The total number of relationship pair is 93, which is

obtained by analyzing the XML documents and filters. In the filter number

and depth evaluation, the length of the bloom filter is 256 and k=1.
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Figure 3.16: False Positive Rate: l

Varying the Bloom Filter Length The bloom filter length is a major

parameter to control the false positive rate. Thus in this section we conduct

the experiments to study the impact of bloom filter length. We vary the

bloom filter length from 4 to 256. The hash function number k is set to 1.

Refer to Figure 3.16 for the results.

We can see that the actual false positive rate is well bounded within

the estimation.

Varying k In this section, we study the impact of the parameter of hash

function number k. The experiment is identical to the evaluation of the

length of the bloom filter, except that we adjust the hash function k from

1 to 4. The result is shown in Figure 3.17.

It is apparent that when k is no more than 2, we have the best results;
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Figure 3.17: False Positive Rate: k

after that, the false positive error will increase. Indeed, this also coincides

with the theoretical estimation.

Varying Numbers of Filters In this experiment, we will evaluate the

impact of the filter number on the false positive error rate. We vary the

number of filters from 100 to 900. The results are shown in Figure 3.18.

According to the result, the number of filters has little effect on the

false positive error rate. This is mainly because the number of filter is

almost independent of the total number of relationship pairs. This shows

that our method exhibits good stability and scalability.

Varying Filter Depths Here, we evaluate the impact of the depth of the

filter on the false positive error rate. The filter depth is adjusted by setting
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Figure 3.18: False Positive Rate: Number of Filter

the maximum filter depth parameter of the XPE generator. The average

filter depth is calculated under each test to provide more meaningful results.

Refer to Figure 3.19.

We can see that the false positive error rate increases as the depth of

the filter grows. This is because the growth in depth caused the increase

in the relationship pair number n, which will cause an increase in the false

positive rate. However, the trend of increase becomes less obvious as it

grows. We noticed that it never exceeds 0.1. This coincides with the

theoretical estimation of the false positive rate.
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Figure 3.19: False Positive Rate: Filter Depth

3.4 Related Work

In the current literature, there are two main groups of research on

the XML filtering algorithm: the Automaton-based method (also called the

Navigation-based method) and the Indexing-based method.

Automaton-based method A large proportion of existing studies is based

on the automaton, including: Non-deterministic Finite-state Automata

(NFA) [16, 54, 25, 36], and Deterministic Finite-state Automata (DFA)

[22, 23, 45]. With this method, an element in the twig pattern can be

represented by a transition of states in Finite-state Automata (FSA).

Hence, the parsing results of the incoming document can be used to

drive the state transition. Once the final state (also known as the

accepting state) is reached, a match will be reported. One major dis-
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advantage of the automaton-based method is that it requires parsing

to drive the change in state; thus, it is not easy to separate the parsing

from the filtering engine. Moreover, the number of states is dependent

on the total number of elements in XPath filters. As more distinctive

filters become involved in the system, the space/memory needed for

the increasing number of states will affect the space efficiency with

which we are concerned.

Indexing-based method Many studies have focused on building an effi-

cient indexing method for the incoming user profiles. In [12], an index

structure called XTrie is proposed to support the efficient filtering of

XML documents based on XPath expressions. By indexing sequences

of elements organized in a Trie structure, the filtering engine is able

to share the processing of the common part of the substring among

filters to reduce the number of unnecessary indexes and redundant

matches. However, the indexing structure needs to store all of the

elements in every XPath filter in a string format without any com-

pression. Space consumption will become an issue as the number of

distinctive filters increases. In the PRIX system [49], the user profiles

and incoming documents are transformed into a prüfer sequence, and

the matching can be taken as a test of two sets of sequences. Simi-

larly in [34, 33, 32] prüfer sequences are also used to express XPath

filters. As a prüfer sequence requires a copy of names of the original

elements, the same space-consumption issue exists as in XTrie. The

work in [58] resorts to a relational database to efficiently evaluate a

large number of subscriptions in a long-running system. Although us-

ing a database can shift the usage of memory to the external storage,
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in most mobile devices the external storage is as limited as the main

memory. Therefore, this shift is no help at all. In fact, the establish-

ment and maintenance overhead for a relational database will affect

the performance of the filter to some extent. In sum, as the above ap-

proaches concentrate on providing a feature-rich indexing structure,

they inevitably increase the space needed for the indexing structures

to fully operate and maintain the system. Moreover, when the filters

are updated frequently the maintenance overhead grows greatly.

To the best of our knowledge, there is no research work identical to

ours in the literature. But we still list the two closest research works here

for reference. In [27], each XPE is translated into an ordered set of pred-

icates, where each predicate is an (attribute, operator, value)-triple, and

the relation between two adjacent tags is encoded in the predicate. The

predicate-based evaluation can be easily adopted. This is similar to our

structure-extraction approach. But one major difference is that, in our

approach, after we extract the structure out of the XML documents, we

proceed with an extra procedure; i.e., to represent the structure in a more

compact way (by a bloom filter), which is also optimized for evaluation. In

[21], the bloom filter is also used as an efficient data structure represent-

ing path queries. But the way that they handle structure information is

quite different. Briefly, each incoming document is parsed and turned into

a candidate path list that contains all of the possible subpaths. Each path

is treated as an element in a bloom filter. Thus, the bloom filter of the

candidate path can later be compared to the user profile to test whether

there is a match. Since retrieving all of the possible subpaths of an XML

document tree is a time-consuming job when the tree structure is complex,
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it cannot be well scaled. Moreover, only linear paths are supported; the

lack of support for the twig pattern would compromise the effectiveness of

the filtering system as a whole.

3.5 Summary

To essentially enhance the space/time efficiency of the filtering system,

the amount of time that is used for parsing needs to be reduced. More-

over, the matching algorithm should be as simple as possible to reduce the

complexity of the computation and memory usage, which is critically im-

portant for mobile devices with resources constraints. This has driven us

to propose a framework that separates parsing from the matching process,

in which the former incurs significantly high overheads. In addition, we

adopted a highly efficient method of representing structure, which is highly

compact and optimized for evaluation using a bloom filter. Judging from

the results of several evaluations carried out by extensive experiments, our

method shows excellent matching speed and compact storage size. It also

shows good stability and scalability because it is not affected by an increas-

ing number of documents/filters once the system parameter is fixed. Even

though it introduced a false positive error, the false positive error can be

bounded and adjusted to match the application’s requirements. Consider-

ing the significant speed-up and performance gain, our approach represents

a viable solution when time/space efficiency is paramount.
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Chapter 4

Scalable Event Routing

4.1 Introduction

XML-based structural data has been widely adopted in recent data-

oriented applications to provide semantically friendly representations of

data entities. The explosion in the volume of information and drastic in-

crease in the number of users involved in these applications have brought

radical challenges to data management and dissemination. Traditional

request-reply style searching techniques no longer suffice. Instead, pub-sub-

based selective dissemination has emerged as a better solution, providing

loosely coupled and content-oriented communication among parties. This

development has completely changed the user’s experience of data-centric

applications. Therefore, the natural move to integrate and synergize the

expressiveness of XML data with the effectiveness of the pub-sub paradigm

elevates studies on providing scalability and flexibility in content dissemi-
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nation over a ubiquitous and heterogeneous environment.

To date, attempts to disseminate XML through pub-sub have merely

focused on adapting an XML-based matching scheme to existing pub-sub

infrastructures, without considering the actual process of event routing and

delivering. However, event routing and delivering, which is an essential

component in a pub-sub system, is tightly bound to the event-matching

scheme. Thus, to develop a practical yet efficient pub-sub system we should

take both processes into consideration. Furthermore, conventional event

routing was not initially designed for a large set of distributed clients. What

is required is an utterly new design for the event routing process in a large-

scale distributed environment.

P2P-based overlay technology, specifically the key-based routing over-

lay (KBR), supports large-scale exchanges of data between distributed

clients. It is considered a standard protocol for distributed file sharing

and media streaming. Thus, we decided to adopt the techniques of KBR

overlay to our distributed XML dissemination system. Using such tech-

nology, we were able to design a robust, adaptable, yet easy-to-maintain

application layer network routing scheme. More importantly, we managed

to converge the event-matching scheme with the addressing scheme of the

overlay network and facilitate the event routing process, which exactly suits

our design purpose.

In our research, we found two essential elements that need to be con-

sider when designing a pub-sub system that utilizes the KBR overlay:

1. Addressing Scheme. We needed to find an appropriate addressing

scheme where each node can be easily reached by a unique address
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that is assigned. This addressing scheme should be one that can

be implemented in a distributed manner and also easily maintained.

More importantly, the process of addressing should enable certain

structural properties of the structured data to be embedded. In other

words, an address should be able to reflect the structural information

of certain XML data. We call this property structure-awareness.

2. Event Dissemination Topology. Based on the addressing scheme,

an efficient overlay topology should be provided to facilitate the pro-

cess of event dissemination. To be more specific, using the structural

information embedded in the addressing scheme, we need to find a

way to hierarchically organize nodes based on the structural similar-

ity of their subscription.

Baring these points in mind, we took a holistic design concept and devel-

oped a bloom filter-based matching scheme that coalesced into the address-

ing scheme. On the basis of this, we exploited the existing KBR overlay

design and came up with a hypercube-based overlay architecture, which is

optimized for efficient event dissemination under our addressing scheme.

Our contribution can be summarized as follow:

A scalable and flexible distributed XML dissemination system. We took

both event matching and event routing into consideration, and carefully

developed a distributed pub-sub system suitable for the large-scale dissem-

ination of XML data.

An addressing scheme that is optimized for the event-matching scheme.

We utilized the natural convergence between the event-matching scheme

and the addressing scheme, thereby optimizing the event-routing process.
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The address can reveal certain structural information that can later facili-

tate the event-routing process.

A robust, adaptable, yet easy-to-maintain application layer network

routing scheme. We developed a hypercube overlay by exploiting the structure-

awareness of our addressing scheme. With this overlay, a multicast style of

communication can be established for efficient message propagation.

An extensible multilayer architecture. With a multilayer design, it is

easy to make modifications to support different levels of optimization and

adaptation corresponding to specific layers.

A holistic approach towards an efficient pub-sub architecture design.

As far as we know, this is the first work to take a holistic approach in

considering filtering and routing as two processes that may synergistically

complement one another to support efficient message dissemination. In our

approach, filtering is seamlessly coalesced into the routing scheme and can

be accomplished seamlessly and efficiently as publications are propagated

across the nodes.

4.2 System Model

In a distributed XML-based pub-sub system, nodes will selectively par-

ticipate as publisher or subscriber or both. Since there is no dedicated bro-

ker to forward messages, nodes may also participate in message forwarding.

We use Pall to denote the total set of publishers, and Sall to indicate the to-

tal set of subscribers. Publishers generate publication messages in the form

of XML documents, denoted by pi|i ∈ Pall Subscribers submit their interests
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in the form of XPath Expressions (XPE) for short, denoted by sj|j ∈ Sall

A matching evaluation eval(sj, pi) is a boolean evaluation function that

yields true if pi matches sj, and false otherwise. If a publication matches a

certain set of subscriptions, the published message will be delivered to the

subscribers of those matching subscriptions. For a given publication pi, all

of the matching subscribers form a set, named a forwarding set, denoted

by FS(pi). Based on the above definition, we have:

FS(pi) = {j|eval(sj, pi) = True; j ∈ Sall}

Hence, given a publication pi, the major task of the pub-sub system is to

acquire the right forwarding set FS(pi) and deliver information to each

member of the forwarding set. To acquire FS(pi), we need to first have a

proper evaluation function: eval(sj, pi), then apply eval(sj, pi) to every

subscription candidate. In a distributed environment, this also implies

the following: In order to identify all of the members in the forwarding

set, we need to make sure that the matching publication and subscription

congregate at least once on a common node, which we term a rendezvous

point. This is necessary so that the evaluation can be carried out to perform

the match between the publications and subscriptions. In this connection,

we identified two basic problems that need to be addressed:

1. How can an efficient and effective matching evaluation be carried

out for XML-based structure matching (which we term a matching

problem in the remaining text)?

2. How can we effectively and (possibly) optimally align publications and

subscriptions to congregate at the right rendezvous point(s) while op-
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erating in a distributed environment (which we term a routing problem

in the remaining text)?

In addition, the issue of dissemination efficiency should be addressed. This

is particularly true for handling one-to-many message propagations in a

densely populated network of nodes. The first problem can be efficiently

solved by our event-matching scheme discussed in Chapter 3.2. In the fol-

lowing sections, we address the routing problem, and present our solutions.

4.3 Key-based Routing for Pub-sub

In this section, we address the routing problem, specifically, the chal-

lenge of ensuring that the publication and the subscription converge to

at least one rendezvous node. In conventional pub-sub systems, this is

done in two ways based on whether the publication or subscription is being

propagated. The former, which is essentially a flooding of publications, is

named publication propagation. The latter is named subscription propaga-

tion. Here, subscriptions, in the form of filtering tables, are propagated and

placed across the entire network of participating nodes. Publication and

subscription propagations are both inefficient when applied to large-scale

distributed systems due to their flooding nature. Generally, publications

are generated more frequently than subscriptions and publication messages

are significantly larger in size than subscriptions. For this reason, most

established systems use subscription propagation, which incurs less traffic

and lower processing overheads on the nodes. To further facilitate efficient

propagation, a spanning tree overlay on the network infrastructure is often
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established to provide the controlled multicasting of subscriptions to avoid

flooding. Although multicasting works well in terms of requiring the source

to send only a single copy of the subscription to multiple destinations, it

does not scale well to a large network of nodes that are sparsely distributed,

as in an Internet environment. Furthermore, in a pub-sub network that is

characterized by the frequent joining and leaving of nodes, frequent topolog-

ical changes will significantly increase the overhead involved in maintaining

the spanning tree. As such, it is necessary and important for us to de-

rive an architecture that works efficiently in a distributed Internet-scale

network. Importantly, such an architecture establishes a platform to effec-

tively assemble publications and subscriptions in a distributed environment

with acceptable communication and maintenance overhead. Additionally,

it serves as the underlying delivery platform for the efficient dissemination

of publication messages in a dynamically changing network environment.

4.3.1 Structure-aware Addressing in KBR

KBR is widely used in large-scale P2P systems for file sharing and

media streaming. This routing mechanism supports not only good scala-

bility and flexibility, but also poses intrinsic ability to tolerate topological

changes caused by the dynamic nature of the underlying network. However,

as mentioned, the KBR approach is essentially built around the concept of

distributed file sharing. More specifically, it provides a distributed mech-

anism to rapidly locate a node that is hosting a certain piece of data. As

such, it only support direct one-on-one mapping between the key and the

content. However, the challenge in pub-sub is that information is generated
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dynamically and it is necessary to selectively disseminate the same informa-

tion to multiple matching nodes. This is made more challenging when we

consider that subscriptions may change over time as nodes join and leave the

system. Hence, the “one-on-one” matching between query and content used

in file sharing no longer suffices. To be more specific, the publication needs

to be delivered to a group of users based on a coverage relation, i.e., the

publication is delivered to subscribers whose subscription is covered by the

publication. Unfortunately, with the direct hashing used in the traditional

KBR addressing scheme, the coverage relation between contents cannot be

reproduced using corresponding keys. Thus, the coverage-based publication

delivery cannot be achieved using this addressing scheme. To address this

problem, we introduce a novel structure-aware addressing method. With

our method, the structural information of XML documents is integrated

into the process of generating keys. This provides a necessary mechanism

to facilitate coverage-based publication delivery. Details of the operation

are given below.

We use an example to demonstrate the basic concept of structure-aware

addressing. In Figure 4.1, the upper part shows the abstracted twig patterns

in a tree-structure of an XML document: f1, f2, and f3 which have some

common branches, something that is termed as structural resemblance. The

corresponding bloom filter representation for each branch is shown in the

lower part of the figure. The doted line shows the individual mapping of

each element (a, b, ..., f ) and the associated paths to the position in the

bloom filter. As we can see, the structural resemblance is revealed by the

pattern of “1” bits (f2 shares the same bit pattern of 3rd and 5th bits with

f1, while f3 shares the bit pattern of 7th and 8th with f1). We call this
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1
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b c

d e f

0 1 0 1 0 1 1

f1

f2

f1:

0 0 1 0 1 0 0 0f2:

f3: 0 0 0 0 0 0 1 1

f3

Figure 4.1: Structure-aware Addressing

characteristic structure-awareness. This characteristic indicates that the

coverage relation between two tree-structures can be essentially identified

by the coverage relation between their corresponding bloom filters. Hence,

if a publication matches a subscription, the publication’s bloom filter should

also cover the subscription’s bloom filter.

Since a bloom filter is a bit array, we can establish a new addressing

scheme by directly using the bloom filter of the publication and subscrip-

tions as their key in KBR. We name this addressing method structure-aware

addressing. Using structure-aware addressing, given a publication key, all

potential matching subscription keys can be easily generated based on the

coverage relation between the keys. For example, given a publication with

key 1101, we can generate all potential subscription keys (covered by the

publication key) by simply setting each 1-bit in a publication key to wild-

card (either “1” or “0”), as shown in Figure 4.2. In this way, we can achieve
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a “one-to-many” mapping from the publication key to the subscription keys.

Since the key is equivalent to an address in KBR, the above one-to-many

mapping correlates the coverage relation between publication and subscrip-

tion to the coverage relation between their corresponding addresses (of their

hosts). Identically, given a subscription key, all potential publication keys

can be generated by treating the 0-bit as the wild card.

key: 1101Publication

Potential Subscribers:

key: 1000

key: 1001

key: 1100

key: 1101

key: 0000

key: 0001

key: 0100

key: 0101

generate

with

Figure 4.2: Potential Subscription Keys Generated by Covering Relation

4.3.2 KBR-based Propagation Mechanism

With structure-aware addressing we are able to establish a coverage-

based relation between publication and subscription. The next step is to

exploit this characteristic in the pub-sub context to establish a routing

method between publisher and subscriber, so that publications and sub-

scriptions can congregate and the matching publication can be efficiently

delivered to the corresponding subscribers. Similar to the approaches used

in publication and subscription propagation in typical spanning tree-based

pub-sub systems, two propagation mechanisms can be applied to the un-

derlying communication overlay, as described below.
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KBR-based Publication Propagation (KBPP) In this technique,

an arbitrary subscription sj generated by node j is forwarded to the node

that is in charge of sj’s key key(sj), We call the receiving node the Ren-

dezvous Node (RN for short) of sj, denoted as R(sj). A routing entry:

< sj, j > is created accordingly at R(sj). Given a publication pi, we send

pi to a set of potential matching subscription keys, denoted by S, generated

by the method described in Section 4.3.1. Assuming that sj was covered,

we have key(sj) ∈ S. Hence, pi will arrive at R(sj). In this way we can

guarantee that the publication and subscription will meet at the subscrip-

tion’s RN. When pi arrives at R(sj), the evaluation process eval(sj, pi) will

be carried out on pi and sj. If this evaluation passes, R(sj) will send pi

to subscriber j based on the routing table entry < sj, j > created earlier.

This process is repeated for all of the subscriptions of RN, from which the

publication is delivered to all matching subscribers. As we can see, the

KBPP is intuitive and simple to implement; however, it only works well in

a small-scale application. This is because the propagation of publications

is normally much more costly than the propagation of subscriptions (for-

warding a whole XML document vs. forwarding an XPath expression in

our case). With larger scale applications, the propagation would consume

an excessive amount of bandwidth.

KBR-based Subscription Propagation (KBSP) In this method,

once generated by node i, the publication pi will be forwarded to the node

that is in charge of publication’s key key(pi). We call the receiving node the

Rendezvous Node (RN ) of pi, denoted by R(pi). Given an arbitrary incom-

ing subscription sj, generated by j, we can propagate sj to each potential

publisher’s RN by utilizing structure-awareness features of the correspond-
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ing keys. We denote this set of nodes (the set of the potential publisher’s

RN ) as P. Assuming that sj was covered by pi, then we have key(pi) ∈ P .

When publication pi arrives at R(pi), the evaluation eval(sj, pi) will be

carried out. If passed, pi will be forwarded back to subscriber j using the

reverse path that has been recorded during subscription sj’s propagation.

Technically, KBSP works better when a subscription is stable (meaning

that, once sent, the subscription will change less frequently; thus the system

is able to reach a stable state). The publication could be highly dynamic,

since there is no requirement regarding publication behavior. Therefore,

KBSP can suit most of the typical pub-sub scenarios. In these scenarios,

filters are less frequently changed and updated compared to the incom-

ing publications. Compared to KBPP, KBSP has better scalability, as the

propagation of subscriptions is less costly.

4.3.3 Matching Evaluations in the KBR-based Ap-

proach

In the previous section, we presented two methods, namely KBPP and

KBSP, as two common routing methods for congregating of publications

and subscriptions at the corresponding RNs. In this section, we address

the design of matching evaluation eval(sj, pi), involved in both methods.

As mentioned previously, the proposed addressing scheme (i.e. structure-

aware addressing) provides the function of coarse-grained filtering by using

the bloom filter as the address (key) in KBR and propagating the sub-

scriptions or publications based on the coverage relation indicated by cor-

responding keys. This filtering capability functions mainly to reduce the
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number of nodes that need to be propagated. It essentially provides a mech-

anism to balance the loads across the entire network by dividing the nodes

into smaller groups that are categorized by the structural resemblance of

the pub-sub events that the individual RN is responsible for. Within each

group, we can execute a matching evaluation eval(sj, pi) at each RN, to pro-

vide a finer-grained filtering. In our design, the bloom filter-based matching

proposed in Chapter 3 is adopted to provide such a finer-grained matching

evaluation, a process that is discussed below.

For a given publication p or subscription s, we associate a bloom-filter

bl(p) or bl(s) to the original p or s. At RN, we can use eval(bl(s), bl(p)) to

do the matching evaluation instead of eval(s, p). Since eval(bl(s), bl(p)) can

be implemented using a simple bit-wise operation, this evaluation function

can be carried out very efficiently, which in return, can drastically reduce

the overhead caused by the matching evaluation.

It is important to note that the efficiency of the bloom filter is acquired

by trading off with the probability of false positive matching. However, one

can keep the false positive rate below a manageable threshold, by adjusting

the bloom filter parameters (primarily the length l of the bloom filter). The

adjustment of parameters and estimation of the false positive rate has been

well studied elsewhere [7, 14, 8]. Recall that in the proposed addressing

scheme, a bloom filter is created for each publication or subscription. Thus,

in the pub-sub process two bloom filters are generated for each publication

or subscription. Specifically, we used a shorter version of the bloom filter

as the address (key) and then a relatively longer version as the subscription

filter. Intuitively, we can optimize the bloom-filter generation process, so
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that it can generate two bloom-filters of different sizes in a single operation

using the same set of hashing functions. This is accomplished by deriving a

longer hash value and subsequently shortening it to a pre-defined size. With

this method, we can further improve the system performance by reducing

the computation overhead caused by the generation of bloom filters.

4.4 Hypercube Overlay

In this section, the issue of propagation efficiency is discussed. Com-

pared to the traditional KBR-based approach, both KBPP and KBSP have

a major advantage with regard to the propagation process: the propaga-

tion of publications (or subscriptions) only requires traversing through a

subset of the nodes, rather than flooding the whole network. However, this

propagation process may still become a performance bottleneck when han-

dled improperly, especially in a large-scale application. For example, the

straightforward solution of using unicast (sending to each candidate one by

one) could easily result in network congestion around busy nodes. Thus,

instead of using a unicast style propagation model, a multicast-like hierar-

chical dissemination structure may help alleviate heavy traffic conditions.

In our work, we propose a hypercube overlay to achieve a hierarchical orga-

nization of the nodes based on their coverage relation as indicated by their

keys. In our proposed architecture, nodes are organized into an ordered-

hypercube based on their keys. The covering relation between keys of differ-

ent nodes is maintained as a parent-child relation in an ordered-hypercube.

With the hypercube structure, given any node with key K, every node,

whose key is covered by K, can be reached by traversing through a sub-

86



CHAPTER 4. SCALABLE EVENT ROUTING

hypercube rooted at K. This traversal process can later be optimized into

a tree traversal process. In this way, the propagation can be achieved in a

multicast manner. Next, we discuss this process in detail.

4.4.1 Overview of a Hypercube

An n-dimensional hypercube hypercuben(V,E) has 2n nodes, where V

stands for the total set of nodes involved and E for the total set of edges.

Each node u ∈ V is represented by a unique n-bits bit array. We use

u[i], 0 ≤ i ≤ n− 1 to denote the ith bit of u (counting from the right). For

every two nodes u, v in V, there exists an (undirected) edge (u,v) in E if

and only if the hamming distance dhamming(u, v) = 1, i.e., u differs from v

by only one bit. A four-dimensional hypercube is shown in Figure 4.3, as

an example.

1111
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01100001

0011

0111

0101
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1110

Figure 4.3: Four-dimensional Hypercube
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We can obtain an ordered-hypercube by setting each edge e ∈ E, with

a direction. Let us set the weight (essentially hamming weight) for node v

as (n stands for the length of v):

W (v) =
n−1∑
i=0

v[i] (4.1)

Then, for any connected node u, v, the direction of their edge (u,v) is

u → v if and only if W (u) > W (v) (refer to Figure 4.4). We call u the

parent of v, and v a child of u. Given a node u, by selecting its children

and its children’s children, and so on (we call them u’s descendant), we can

get a sub-graph of hypercuben(V,E). It is observable that this sub-graph

is also an ordered-hypercube. Since u is the root of this sub-graph, we call

it the subhypercube rooted at u.
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Figure 4.4: Four-dimensional Ordered-hypercube
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4.4.2 Message Propagation via Hypercube

Recall that in KBR, each node is mapped to a bit-array as a key. Hence,

using the keys we can organize nodes into an ordered-hypercube. Since the

key is essentially a bloom filter, we inherit the terminology defined for

bloom filters (such as: cover, covered), on keys. We may notice that in a

hypercube, the key of a node will always cover the keys of its children node

and be covered by keys of its parent node. This characteristic can facilitate

the propagation process. For instance (refer to Figure 4.5), given a key of

a publication, e.g. 1101, at its RN:1101, (assume that the publication has

been already forwarded to its RN ), we can just forward the publication to

this node’s children {0101, 1001, 1100}. Upon receiving the message, its

children will repeat this process and pass the message to their children (e.g.

0101 will pass the message to 0100 and 0001). In this way, the publication

can be delivered to all of the covering keys incrementally.

1101

0101 1001 1100

PUB

PUB

PUB PUB

0100 0001 1000 0100

same node

PUB
PUB

PUB
PUB

PUB
PUB

Publication Root of Subhypercube

Child Nodes

Figure 4.5: Publication Dissemination over Hypercube
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Theorem 1. Given an arbitrary key of weight n as the root of a

subhypercube, we can reach any of its descendants within n step.

Lemma 1. Given a node a, and one of its descendants b in a hyper-

cube, if the hamming distance is: dhamming(a,b) = h we can always reach b

in h steps.

Proof of Lemma 1. From node a, we can always find a node c in

its immediate children list, so that dhamming(c,b) = h-1. Identically from

c we can find d in c’s immediate children so that dhamming(d,b) = h-2.

Repeat this until we find node b where dhamming(c,b) = h-h=0. This takes

h steps. Thus, Lemma 1 holds.

Proof of Theorem 1. Since the weight of this node is n, the furthest

descendant is an all-zero node (weight 0) in n’s subhypercube. The hamming

distance between these two nodes is n. Thus, according to lemma 1, from

the given node we only need to take n steps to reach the furthest node.

Therefor Theorem 1 holds.

Theorem 2. Given a node a of weight n along a certain propagation

path, node a only needs to send out at most n messages upon receiving a

forwarding request.

Proof of Theorem 2. Because messages are forwarded along the

same direction as edges in the ordered-hypercube, since a’s out-degree is

n, (a could only have n immediate children), a could at most send out n

messages. Thus, Theorem 2 holds.

Consider a network with N nodes. Assume each hop in propagation

takes the same amount of time. Theorem 1 indicates that the time used for
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propagation is affected only by the weight of the publication/subscription

key, bounded by d*log(N), with d denoting the delay per hop. Theorem 2

indicates that the forwarding count for each node during one propagation

event is only directly affected by the weight of the key, and bounded by

log(N).

4.4.3 Multicasting via Hypercube

The hypercube is not strictly a tree structure itself, thus multicasting

through a hypercube (from the root to each level of the descendant nodes)

is not optimal. This is because, unlike a tree structure, there are multiple

paths between two nodes. To achieve a better performance, we adopted

the method introduced in [56], which provides a viable way to induce a

tree structure from a subhypercube rooted at a given node. This process is

briefly explained below.

Given an n-dimensional ordered-hypercube Hypercuben(V,E), (using

the same definition as in Section 4.4.1) a spanning tree rooted at u, denoted

by SPT (u), can be established by iteratively selecting appropriate children

for each descendant v of u, v ∈ V , starting from u, based on the method

presented below.

Let p be the bit position (also called the dimension) satisfying v[p] ⊕

u[p] = 1 and v[i] ⊕ u[i] = 0, ∀i < p. We set p = n, if u = v. Let

Jv = {j|v[j] 6= 0, j < p}, (Jv = ∅, if p ≤ 0). Then the children of v can be

defined as:
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v[n− 1]...v[p]...v[j]...v[0],∀j ∈ Jv if p 6= n

v[n− 1]...v[j]...v[0],∀j ∈ Jv if p = n

(4.2)

It is also possible to acquire the spanning tree in question by choosing

the appropriate parent node for each v. The parent for node v is defined

as:

v[n− 1]...v[p+ 1]v[p]v[p− 1]...v[0] if p 6= n

∅ if p = n

(4.3)

Figure 4.6 demonstrates the above algorithm in a four-dimensional

subhypercube, rooted at node:1011 (shown on the left side). At the root,

we have Jv = {0, 1, 3}, so according to Figure 4.2, the 1st, 2nd and 4th bits

(counting from right) are reversed to 0 accordingly, yielding three children

for 1011 : 1010, 1001 and 0011. At node 0011, we have Jv = {0, 1}, so

we reverse the 1st and 2nd bits accordingly, yielding two children for 0011 :

0001 and 0010. Applying this algorithm to the rest of the nodes, we can

acquire a tree-structure, as shown on the right side of Figure 4.6.
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1011

1010 1001 0011

0010 1000 0001 0010

same node

1011

1010 1001 0011

1000 0001 0010

RN RN

Figure 4.6: Multicasting-Tree Induced from a Hypercube

This approach can be applied to the proposed pub-sub system to im-

prove on the propagation efficiency. Assume that a publication arrived

at node 1011 as its rendezvous node. Rather than performing redundant

forwarding through a subhypercube, the publication can be efficiently prop-

agated throughout the tree-structure induced from the subhypercube. No-

tice that the above example uses publication propagation as an example

to demonstrate the symmetric property of the hypercube (by reversing the

roles of 1-bit and 0-bit, we can get a reversed ordered-hypercube). A similar

procedure can be adopted for subscription propagation. The pseudo-code
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is shown in Algorithm 1.

Algorithm 1: Hypercube-induced Tree for Subscription Propagation

Data: mykey, fromkey, Msg

Result: send Msg to apropriate parent node, so that the forwarding

follows a hypercube induced tree structure

startGenerating = false;

foreach bit myKey.getBit(i) in myKey do

if fromKey.isUnspecified() then

// this means I am the root;

startGenerating= true;

end

else if myKey.getBit(i)!=fromKey.getBit(i) then
startGenerating= true;

end

if startGenerating then

if !mykey.getBit(i) then

tmpkey= mykey;

tmpkey.setBit(i,true);

send(Msg, tmpkey);//deliver Msg to the generated key;

end

end

end
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4.5 Exploiting Common-Paths

The basic KBSP model mentioned previously requires a publication

and its potential matching subscriptions to congregate at the publication’s

RN. After undergoing the matching evaluation, the publication will be for-

warded to the matched subscribers using the reverse path from which the

corresponding subscriptions came. This implies that each subscription, if

matched, will produce a corresponding publication delivery event. There-

fore, if several matched subscribers share the same path (or part of a paths)

to the publisher, multiple instances of publication deliveries will be trig-

gered. In other words, the publication will be delivered multiple times

along the shared path for each matching subscription. This is obviously re-

dundant and suboptimal. To address this problem, in the implementation,

we made some modifications to the basic approach in KBSP to exploit the

common paths of subscriptions during publication delivery. The details of

these modifications are discussed below.

During subscription propagation, we maintain a routing table at each

intermediate node that records all of the subscriptions that traversed the

node. This entry can be represented in the abstracted form: <filters,

Node>. The filters field stores the subscription filters, while the Node

field stores the address of the previous node through which this subscrip-

tion traversed. When node k receives a subscription sj from its directly

connected neighbor n, it will create a routing entry < sj, n >. When any

incoming publication pi arrives at k, it will be forwarded to n if it passes

the evaluation eval(sj, pi). In this way, the publication can be routed to the

matching subscriber hop-by-hop based on the evaluation result at each in-
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termediate node along the dissemination path. Fundamentally, the routing

table has two major functions:

1. By maintaining the address of the previous node through which each

subscription traversed, a reverse path to that of the forwarding of

the subscription can be established. This can avoid the overhead

imposed by source routing, in which routing information are recorded

and carried along by the messages.

2. With hop-by-hop filtering, a multicasting-style of disseminating pub-

lications is achieved by exploiting the common paths among matched

subscriptions. Using the new publication dissemination scheme, the

shared path for different subscriptions is exploited, so that publication

will only traverse once on the shared path for those subscriptions.

One drawback of this enhanced dissemination method is the overhead

imposed by storing such a routing table. However, since only directly con-

nected neighbors would produce a routing table entry, based on Theorem

2 the entry number in this routing table is bounded by Wk, where Wk de-

notes the weight of k ’s key. Considering that Wk will never exceed log(N),

where N is the number of nodes involved, the routing table is actually quite

small. Hence, the overhead of maintaining the routing table is acceptable.

Another drawback is the computation overhead caused by the matching

evaluation process at each intermediate node through which each publica-

tion traverses. However, since bloom filter-based matching is essentially a

bitwise operation between two bit-arrays, this overhead is indeed quite low.

It is important to note that the different subscription filters received by
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certain nodes can be aggregated. This would allow each node to maintain

only one aggregated filter for each of its children. Doing so can greatly re-

lieve the matching evaluation process, because a publication only needs to

be evaluated on one filter for each routing entry, instead of many. It can also

reduce the traffic generated during the propagation process, because suc-

ceeding filters that already have been covered by the aggregated one will no

longer be forwarded. This aggregation process can be done very efficiently,

as aggregating bloom filters equals to a bitwise OR operation among corre-

sponding bloom filters (essentially a bit-array). This aggregation operation

among bloom filters would impose extra false positive matching. However,

we can reduce this false positive rate by increasing the length of the bloom

filter, keeping it under a manageable threshold.

Under this modification, the end results of filtering in KBSP are es-

sentially achieved in two stages: In the first stage, the filtering is coalesced

into the addressing scheme. It filters out large numbers of irrelevant pub-

lications in a coarse-grained fashion. In the second stage, a finer-grained

filtering is carried out during publication propagation to further prune out

false deliveries at a low cost. Compared to subscription propagation in a

conventional spanning tree-based infrastructure, our proposed method does

not require flooding subscription filters throughout the whole network. In-

stead, we only need to install the filter in a small subset of nodes (members

of the subhypercube for a given publication). More importantly, the hy-

percube structure organizes nodes into a hierarchical structure so that the

propagation of subscription filters can be efficiently achieved in a multi-

cast manner. Our experiments, which are described in the next section,

demonstrate the effectiveness of the approach.
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4.6 Performance Study

In this section, we evaluate the performance of the proposed design

through extensive simulations. We first present some background informa-

tion on our experiments in section 4.6.1. Then, we present the results of

the network performance evaluations of the overlay architecture based on

metrics such as link stress, link stretch, and percentage gain (described in

section 4.6.2). Following that, we evaluate the efficiency of the two prop-

agation methods, namely KBPP (described in section 4.6.3) and KBSP

(described in section 4.6.4).

4.6.1 Setup of the Experiment

We used OMNeT++ [62] as our main simulation platform. OMNeT++

is an extensible, modular, component-based C++ simulation library and

framework, primarily for building network simulators [62]. In our experi-

ment setup, we make use of several extension frameworks available to ease

the development of the simulation as well as to extend the capabilities of

OMNeT++. The INET Framework [60] is an open-source communication

network simulation package for the OMNeT++ simulation environment.

The INET Framework contains models for several wired and wireless net-

working protocols, including UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP,

802.11, MPLS, OSPF, and many others [60]. OverSim [64] is an open-source

overlay and peer-to-peer network simulation framework for the OMNeT++

simulation environment. The simulator contains several models for struc-

tured (e.g., Chord, Kademlia, Pastry) and unstructured (e.g., GIA) P2P
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systems and overlay protocols [64]. These two frameworks were both used

in our simulation setup. We adopt Chord as our KBR in our experiments.

The sample dataset (XML documents) was acquired from the Niagara

project [13]. The total number of XML documents in the sample is 3,680,

conforming to nine distinctive DTDs (refer to Table 3.1 for more details).

These XML documents have been extracted from several real case appli-

cations across different domains. Therefore, the sample is representative

enough for a common applications scenario. We generate XPath expres-

sions using tools provided by the yFilter [16].

All of our experiments were performed on a 3.8GHz Core 2 Duo ma-

chine with 2G of memory, running on 32 bit-Linux OS. The version of OM-

NeT++ that we used was 4.0. The OverSim version was release–20101103.

The INET that we used was a patched version provided by OverSim.

4.6.2 Evaluation of Overlay Performance

In this section, we evaluate the performance of the overlay architecture.

The results from the experiments pertaining to the overlay multicasting per-

formance, such as link stress, link stretch, and percentage gain are analyzed

and presented in this section.

Link stress Link stress is defined as the number of identical packets car-

ried by a physical link. It is one of the standard network metrics to evalu-

ate an overlay performance. In this experiment, we continually initiate the

random-sized propagations of publication messages (with the expectation
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of the key saturation settings of 20%, 50%, and 75%) from randomly se-

lected peers for duration of 7200s. Subsequently, we recorded the link stress

on all existing physical links during the simulation. The saturation of the

key is defined as the proportion of 1-bits in a given key: W/L, where W

denotes the hamming weight of the given key and L denotes the length of

the given key. We group the value based on the saturation of publication

key. The results are shown in Figure 4.7. As is evident in Figure 4.7, there

is an increasing trend in the link stress as the number of nodes increases.

The increase in the number of average saturations of publications can also

cause an increase in link stress. This can be briefly explained as follows:

A larger hypercube implies more overlay paths. Each of those paths has

a certain number of overlapping physical links. Hence, more overlay paths

means that there is a higher chance of overlapping in physical links. Since

the increase in the number of nodes as well as in the saturation of publica-

tions could both lead to larger subhypercube sizes, they could both cause

an increase in link stress.
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Figure 4.7: Link Stress
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Link Stretch This metric is defined by the ratio of the delay between

two nodes along the overlay distribution topology to the delay of the direct

physical path. It is also called the relative delay penalty. Link stretch is

another standard overlay performance metric used to evaluate the overlay

performance. In this experiment (refer to Figure 4.8), we start a packet

transmission between a pair of randomly selected nodes, and measure the

delay in two cases: 1) where the transmission is carried out via the overlay

layer; 2) where the transmission is carried out via the UDP layer. The link

stretch can be calculated using the measurement results from these two

cases. We repeat this process 1000 times. The average value is recorded

and presented in Figure 4.8. For the purpose of comparison, we also present

the link stretch measurement of a generic P2P application that uses Chord

as its overlay. We can see from the figure that the link stretch is identical

in both cases. This is because the link stretch is mainly dictated by the

overlay implementation. Since we used Chord as the common overlay for

both, the link stretch should be more or less the same. The result also

shows an almost-flat trend. This indicates that the link stretch will not

deteriorate as the number of nodes grows.
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Figure 4.8: Link Stretch
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Percentage Gain using Hypercube Overlay This metric indicates

how efficient our multicast dissemination structure is compared to the uni-

cast transmission. The metric is defined as:

δ = 1− Lm/Lu (4.4)

where Lm is the total number of multicast links in the distribution tree and

Lu is the sum of all unicast hops. The variable δ represents the percentage

gain in multicast efficiency over unicast. As δ approaches zero, multicast

and unicast performances are identical with little to no savings in band-

width. As δ approaches one, all receivers share a single multicast path

resulting in the maximum possible bandwidth efficiency.

We compare our method with an application layer multicasting system

(which can be treated as a topic-based pub-sub) named Scribe [10]. In our

experiment, we initiate the random-sized propagations of subscription mes-

sages from randomly selected peers for a duration of 7200s. The expectation

of key saturation is set to 50%. The average number of multicasting nodes

in the Scribe is set to be equal to the average number of nodes involved

in each propagation event in the proposed system. In Figure 4.9, we can

observe that as the number of nodes increases, the percentage gain drops.

This is because as more nodes were involved, the traffic in the underly-

ing physical paths became dense (with more hops per dissemination path),

leading to more overlapping physical links along a dissemination path. The

increasing number of overlapping physical links would reduce the percent-

age gain, since Lm is increased. It should also be noted that both systems

produced almost identical results. This means that at least the same degree
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of efficiency can be attained using our approach in comparison to the simple

topic-based Scribe. Considering the fact that Scribe is merely a multicast-

ing protocol, which has neither XML filtering capacity nor coverage-based

propagation functionality, the performance of our proposed system is very

promising.
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Figure 4.9: Percentage Gain Using Hypercube Overlay

4.6.3 KBPP

In this section, we present two traffic-based evaluations by varying the

saturation of publication keys for KBPP. First, we evaluate the scalability

of KBPP, in terms of the overall traffic produced as the number of nodes

involved in each propagation event is increased (refer to Figure 4.10). Then,

we validate the benefit of using hypercube overlay in the propagation pro-

cess, by comparing the traffic on maximum-link traffic with and without the
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hypercube as shown in Figure 4.11. In these experiments, we used a fixed-

size network with a total of 2048 nodes. The average size of a publication

message is 4kB.

In Figure 4.10, the traffic is measured as the total number of bytes

traversed across each overlay hop. For comparison, we also included the

measurement of the flooding-based approach that has been widely used

in conventional spanning tree-based pub-sub systems. As shown in the fig-

ure, the traffic increases exponentially as saturation increases in hypercube-

based propagation, indicating poor scalability. This is primarily because

the increase in the saturation of publication key would directly cause the

size (depth) of the subhypercube for the publication to grow, leading to

more traffic being generated. However, compared to flooding, the perfor-

mance is still better even in the worst case in our test (at 60% saturation).
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Figure 4.10: Total Traffic

In Figure 4.11, the traffic is measured as Bytes traversed over the

maximum-traffic link (MTL for short). MTL denotes the link that bears

most of the traffic for each propagation process. MTL is normally where po-
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tential congestion occurs. We tested message dissemination through KBR

in two cases: one with the hypercube, and one without. The results show

that in the hypercube, the peak bandwidth on MTL increase exponentially

when the system scales. Without a hypercube, the traffic on MTL is several

orders of magnitude higher than in the case where a hypercube is adopted,

indicating a higher risk of congestion.
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Figure 4.11: MTL Traffic

4.6.4 KBSP

In this section, we present the performance evaluation result for KBSP.

By varying the length of the subscription filter, denoted by l in the following

paragraph, the system is evaluated in three cases: l=0 (no filtering), l=128,

and l=1024. The hash function number is set to 1 in both the l=128

and l=1024 setups. The testing configurations of all of the experiments

mentioned in this section conforms to the parameters listed in Table 4.1.
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Table 4.1: Simulation Parameters

Average XPE Length 3
Simulation Time 8200(s)
Publication Rate 0.1
Subscription Rate 0.1
Initial Phase Wait 1000(s)
Measurement Time 7200(s)

Publication Delivery To study publication delivery behavior, we con-

ducted two groups of experiments. In the first group, we measure the total

number of publications that have been sent and received. The result is

the accumulative value counted on all of the nodes involved during the

simulation measurement period.

In Figure 4.12 and 4.13, the results are collected from three experiment

scenarios, with subscription filters of different lengths, indicated in the leg-

end by l=0, l=128, and l=1024. For each setup, we vary the number of

participating nodes, and record the total number of both sent and received

messages. We observe a linearly increasing trend for both sent (refer to

Figure 4.12) and received (refer to Figure 4.13) messages as the number of

nodes increases for each scenario. This trend can be briefly explained as

follows: As the number of nodes increases, more nodes will begin to publish;

Hence, the number of publication messages will increase accordingly. At

the same time, as more nodes join, the number of subscribers will increase,

leading to an increase in the number of matching subscribers. Therefore,

the number of the messages received will also increase. It is also observable

that the number of the total messages sent is identical in all three cases

(l=0, l=128, and l=1024 ); refer to Figure 4.12. This is in accordance with

the fact that the number of publication messages is directly affected by the
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number of nodes. It is important to note that as the subscription filter

length l increases, the number of publication messages received by peers

will decrease (refer to Figure 4.13). This means that a longer subscription

filter can filter out more false publication messages.
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Figure 4.12: Total Sent

Next, we evaluated the publication coverage, which is defined as the

number of subscribers for each publication that have successfully received

the publication message. In other words, the metric indicates the num-

ber of successful deliveries of each publication. For each publication we

first recorded the number of subscribers that had received this publication.

Then, we calculated the average and maximum value of this metric. The

results are as shown in Figure 4.14 and Figure 4.15. The results are col-

lected under three scenarios, with different lengths of subscription filters,

indicated in the legend by l=0, l=128, and l=1024. For each scenario, the

mean (refer to Figure 4.14) and max (refer to Figure 4.15) values were

recorded, while varying the number of participating nodes. As we can see
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Figure 4.13: Total Received

from both Figure 4.14 and Figure 4.15, with the increase in the length

of the bloom filter of the subscription filter, the number of deliveries can

be drastically reduced. This means that false publishing can be reduced

by increasing the length of the subscription filter. This is because large

portions of the dissemination paths for unmatched publications (caused by

false positive errors) are pruned out by the subscription filter during the

dissemination of the publications. In the worst case (with l=0, and 4096

nodes participating) shown on Figure 4.15, a publication is received by at

most 200 nodes (around 4% of the total of 4096 nodes), which is still quite

reasonable.

Hypercube Layer Stress and Overhead At the hypercube layer, each

node is responsible for forwarding the incoming subscriptions and publica-

tions based on the matching evaluation. As mentioned earlier, the cost of

a matching operation is comparatively small due to the bitwise evaluation.

Hence, the stress is mainly dictated by the frequency of the forwarding
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Figure 4.14: Publication Coverage: Mean
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Figure 4.15: Publication Coverage: Max
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Figure 4.16: Requests per Second: Subscription

requests for incoming publications and subscriptions. Thus, it can be eval-

uated by measuring the frequency of incoming requests.

First, we evaluate the hypercube layer stress in terms of the frequency

of incoming subscription requests, varying the number of nodes in the sys-

tem. The average number of subscription requests received by each node is

shown in Figure 4.16. The results are identical in all three of the experiment

scenarios (with l=0, l=128, and l=1024, respectively). This outcome can

be briefly explained as follows: In subscription propagation, subscription

requests are propagated along the paths in a hypercube-induced tree struc-

ture. Since same hypercube structure is shared among all three scenarios,

the results in the three scenarios should follow the same pattern.

Next, we evaluate the hypercube layer stress in terms of the frequency

of incoming publication requests in the three scenarios (l=0, l=128, and

110



CHAPTER 4. SCALABLE EVENT ROUTING

16  64  256 1024 4096
0

50

100

150

Number of Nodes

R
eq

ue
st

s(
M

es
sa

ge
s/

Se
c)

 

 
l=1024
l=128
l=0

Figure 4.17: Requests per Second: Publication

l=1024), while varying the number of nodes in the system. The average

number of publication requests received by each node per second is shown

in Figure 4.17. According to the figure, as the number of nodes increases,

the frequency of publication requests increases in the initial phase (starting

from 16 nodes to the 1024 nodes setup). However, an observable but not

significant reduction was recorded at 4096-node setup. This convergence

property indicates good scalability of the system with respect to the hy-

percube overlay stress. It should be noted that, with the subscription filter

length l=1024, the number of publications handled by a single peer is re-

duced by as much as 98% (at the 1024 nodes setup) compared to the case

where no subscription filter is applied (l=0). This means that the hyper-

cube overlay stress can be reduced significantly by increasing the length of

the subscription filter.

Finally, we evaluate the overhead of the hypercube overlay. The storage

overhead is mainly incurred by the storage of the routing table structure,

which is comparatively small (6Kbits on average). The computation over-
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head is caused by the matching evaluation, which is essentially a bitwise

operation, and hence is negligible. Thus, the overall overhead is mainly

contributed by the communication overlay, which is defined as traffic ded-

icated for the routing table exchange. We vary the number of nodes, and

the results are shown in Figure 4.18. Notice that this overhead is below

the level of 2Bytes/Sec. This is only 13% of the KBR maintenance traffic

and 0.01% of the total traffic. This validates the claim that the proposed

hypercube-based approach incurs an insignificant amount of traffic over-

head.
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Figure 4.18: Communication Overhead of the Hypercube Overlay

Traffic In this section, we focus on the traffic generated on the KBR

layer. The overall traffic consists of application traffic and maintenance

traffic. We group the experiments into two categories, one for application-

generated traffic, and the other for maintenance traffic.

First, we evaluate the application-generated traffic. The experiments
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are conducted based on three scenarios: l=0, l=128 and l=1024. The in-

coming and outgoing traffic are shown in Figure 4.19 and in Figure 4.20,

respectively. It is observable that for the l=1024 scenario, as the num-

ber of participating nodes increases, both incoming and outgoing traffic

show an increasing trend until the number of nodes reaches 1024, then they

start to converge to a certain value (8KBytes/Sec for incoming traffic and

10KBytes/Sec for outgoing traffic). A similar trend can be observed for the

l=128 scenario. This property indicates the proposed system has good scal-

ability, which is largely attributed to the underlying load-balancing mecha-

nism provided by hypercube overlay. We may also notice that the increasing

length of the subscription filter can largely reduce the application-generated

traffic, especially for setups of 16, 64, and 256 nodes. This is because in-

creasing the length of the filter improves the precision of the filter, reducing

the number of false matchings.
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Figure 4.19: Application-Generated Traffic: Incoming

Next, we evaluate the maintenance traffic. Similar to the previous

experiment, we conduct the experiment based on three scenarios, using
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Figure 4.20: Application-Generated Traffic: Outgoing

subscription filters of different lengths. The incoming and outgoing main-

tenance traffic for KBR is presented in Figure 4.21 and Figure 4.22, respec-

tively. It is observable that in both figures, a similar amount of maintenance

traffic is generated in all three scenarios. This is because KBR mainte-

nance is independent of the upper layer implementation. Hence, varying

the length of the subscription filters will have no impact on KBR mainte-

nance. We may also notice that both incoming and outgoing traffic show a

mildly increasing trend (considering the x-axis as being in log scale) as the

number of nodes increases; however, the volume of maintenance traffic is

quite reasonable (below 20Bytes/Sec for both incoming and outgoing traffic

in our experiment).

Publication Multicasting Size The publication multicasting size is de-

fined as the number of overlay links in the multicasting tree produced by a

given publication. To calculate the publication multicasting size, we mon-

itored and calculated the total number of hops that publication messages
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Figure 4.21: Maintenance Traffic: Incoming
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Figure 4.22: Maintenance Traffic: Outgoing
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traversed during propagation for each publication event. As delivery of the

matching content is always guaranteed by the matching algorithm (only

false positives may occur, not false negatives), the smaller the publication

multicasting size for each publication, the better the efficiency that can be

obtained. In Figure 4.23, we evaluate the publication multicasting size in

three scenarios, in which we use subscription filters of different sizes, (la-

beled by l=0, l=128, and l=1024 in the figure). Notice that the result

captures the average size of all of the publication multicasting trees; thus,

it is possible for a value of below “1” to appear, which means that there

are many publications that are “0” in size. This is because a publication

can be filtered out at its initial hop, yielding a measurement value of “0”.
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Figure 4.23: Publication Multicasting Size

In Figure 4.23, we can see that as the number of nodes increases, the
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multicasting size increases. This is mainly caused by the increase in the size

of the hypercube for each publication as the number of nodes increases. It

is important to note that all of the measurement values at l=1024, are very

small (below 100), indicating that most of the publications can be filtered

out at early steps along their propagation paths.

To further study the impact of the length of the subscription filter to

the publication multicasting size, we calculated the ratio between multi-

casting size in the l=128 scenario and that in the l=0 scenario (labeled as

l=128), and also the ratio between the l=1024 and l=0 scenarios (labeled

as l=1024). The results are shown in Figure 4.24. It is easy to observe

that using a subscription filter can significantly reduce multicasting size by

several orders of magnitude.
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Figure 4.24: Publication Multicasting Ratio

False Positive Rate To test the false positive rate, we define two new

metrics: the absolute false positive rate and the relative false positive rate.

The absolute false positive rate is defined as:

fpabs = FalsePositiveCount/MessageReceived
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FalsePositiveCount is the number of false positives occurring for a

given peer, while MessageReceived captures the number of messages re-

ceived by the peer in the course of the experiment. The above definition

captures the absolute false positive rate experienced by a given node. How-

ever, since we will rule out more false matching subscribers as we increase

the length of the subscription filter, the total number of messages received

by a peer is expected to drop, leading to an increase in the absolute false

positive rate measurement. Hence, we defined another metric- the relative

false positive rate- as:

fprel = FalsePositiveCount/MessageReceivedbaseline

where MessageReceivedbaseline is the number of messages received by the

peer in question when l=0 (i.e. as without subscription filter).
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Figure 4.25: False Positive

In Figure 4.25, both absolute and relative false positive are recorded

for three application scenarios with subscription filters of different lengths
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(indicated by l=0, l=128, and l=1024), while varying the number of partic-

ipating nodes. As we can see in Figure 4.25, by using the subscription filter

the rate of relative false positives can be significantly reduced (both the

l=128 and l=1024 experiments yield a relative false positive rate of below

0.1). Increasing the size of the subscription filter could further reduce the

false positive rate to as low as 0.004.

4.7 Related Work

In summary, routing methods found in general pub-sub systems can

broadly be classified into two categories: the spanning tree-based approach

and the key-based approach.

Spanning Tree-based Approach. Many established pub-sub sys-

tem designs such as SIENA [9], Gryphon [2], and Elvin [52] have adopted

the spanning tree approach. Briefly, the aim of this approach is to build a

universally accessible spanning tree that connects all of the nodes (brokers).

A subscription is sent, aggregated, and stored at each intermediate node

along the upstream direction, while a publication is forwarded downstream

and filtered by the previously stored subscriptions at each intermediate

node. As a result, a multicast infrastructure is built. The spanning tree-

based approach achieves a decent performance on a small scale and a less

dynamic setup. However, the performance would degrade rapidly in a non-

dedicated network environment where nodes can join and leave freely. In

addition, the overhead imposed by maintaining the routing table (filtering

table) could severely limit the scalability of the system.
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KBR-based Approach. Some recent studies [46, 11, 10, 71, 59, 78,

1, 29, 24] have introduced the KBR approach that is widely adopted in

P2P file sharing systems. KBR-based overlay technology supports large-

scale exchanges of data between distributed clients. It is considered a

standard solution for distributed file sharing and media streaming. Com-

pared to the spanning tree-based method, KBR-based event delivery has

many advantages such as robustness, scalability, and adaptability. However,

these studies mostly focused on either a simple group-based pub-sub system

[46, 11, 10] or a simple content-based pub-sub system [71, 59, 78, 1, 29, 24].

In the former case, all messages (publications) are grouped into several

categories defined a priori and subscription is reduced to a matter of sim-

ply joining certain established group(s), while in the latter, a fixed filter-

dimension is required. In our case, however, the structure of arbitrarily

generated XML document is extremely volatile and cannot be defined at

design time. Thus, earlier works on fixed group-based categorization ap-

proaches and their corresponding addressing and routing schemes can no

longer be used.

Most of the work in XML-based pub-sub research has not addressed

the aspect of the routing and dissemination of messages to the destination

based on the end nodes’ subscriptions. Only a few studies [17, 38] have tar-

geted this issue. The work in [17] is an extension of the author’s previous

research work on yFilter [16]. It uses a conventional spanning tree-based

distributed broker network as the dissemination infrastructure. A major

drawback of this approach is that the spanning tree-based pub-sub requires

each broker along the dissemination path to run a matching evaluation algo-

rithm upon the arrival of an event. In yFilter, this evaluation process could
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be expensive in terms of CPU and memory usage, which will inadvertently

lead to inefficiency as the number of broker nodes increases. The research

work in [38] introduced a distributed NFA, which provides functionality

equivalent to that of an NFA in a centralized structure. Specifically, in this

approach, an NFA is decomposed into several segments, and each segment

is randomly distributed to a peer in the broker network. This approach

suffers from inefficiency, as it requires an XML stream to be transferred be-

tween different peers for possibly multiple times as they navigate through

the different NFA states until the final state is reached. This will impose a

large communication overhead. Besides, how the matched event is dissem-

inated to the interested parties has not been fully discussed, although, in

our opinion, this is a crucial aspect to consider when designing a practical

pub-sub system.

In our research work [74], we adapted the hypercube overlay approach

into the tag-based system, and acquired satisfied performance with respect

to the scalability and robustness. The rationale behind this adaptation is

that the tag-based system can be considered as a special case of a structure-

based system, hence the method proposed here can also be applied.

4.8 Summary

In this chapter, we proposed a series of novel approaches towards an

Internet-scale distributed XML-based event routing architecture. By us-

ing bloom filter-based structure-aware addressing, XML documents can be

organized by their structural resemblance and efficiently disseminated to
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subscribers through a hypercube overlay. Our method does not require

flooding-alike mechanism used in conventional pub-sub systems for sub-

scription propagation. Instead, only a small subset of nodes (members of

the subhypercube for a given publication) is needed to install the filter.

More importantly, the hypercube overlay organizes all of the nodes in-

volved into a hierarchical structure so that the propagation of subscription

filters can be efficiently achieved in a multicast manner. Extensive simu-

lation results, based on realistic sample data and a typical network topol-

ogy model, indicate that the proposed system scales well while achieving

acceptable overhead, traffic, and stress. The results also show that the pro-

posed architecture can balance the load over the entire network of nodes

by deploying each pub-sub event to a small subset of nodes grouped by

structure-resemblance based on their keys. The proposed system architec-

ture can achieve significant speed-up and performance gains with a trade-off

in a manageable false positive rate.
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Chapter 5

Fault-Tolerance in Event

Routing

5.1 Introduction

XML-based publish-subscribe is a promising data-centric communica-

tion paradigm for the active dissemination of structurally formatted infor-

mation on an as-available basis through a “push-based” approach, leverag-

ing the expressiveness of XML data with the effectiveness of the pub-sub

paradigm. It enables loose coupling between the data source and the sink.

In a dynamic environment where clients continuously join and leave, while

servers may fail at times, pub-sub is able to effectively handle exchanges

of data among a very large number of entities without requiring all of the

information sources and sinks to be present in the network at the same

time. This in turn enables the decoupling of application logic and commu-
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nication, which can considerably ease the application design process. In

such a system, publishers publish contents as publications in the form of

XML documents. Subscribers register their interests in future publications

through expressive subscriptions represented by powerful filtering languages

such as XPath or XQuery, which specify complex filtering criteria by using

a tree-structured model and twig pattern matching to evaluate the publi-

cations. Upon receiving a publication, the system evaluates the matching

of the event to the subscriptions, which can be essentially treated as filters,

and delivers the publication to the matched subscribers.

Studies on distributed XML filtering systems normally assume a span-

ning tree-based routing approach, which is widely used in conventional topic

or content-based pub-sub systems. Normally, the tree is constructed by

identifying subscriber nodes that share common subscriptions and are close

in proximity to each other, while minimizing the messages traversal path

to all other subscribed nodes. Using explicitly constructed spanning trees

for event delivery introduces nontrivial costs (e.g., bandwidth consump-

tion) in tree construction and maintenance, especially in dynamic systems

where nodes join or leave at will. It also introduces computation overhead

caused by iterative matching evaluations, which have severely limited the

scalability of the system.

Peer-to-Peer (P2P) solutions based on Key-based Routing (KBR) offer

efficient functionalities, such as: event routing flexibility, scalability, load

balancing, and fault tolerance. Many system architectures have been pro-

posed to exploit the advantages of KBR overlay, such as Scribe [10], Ferry

[78], and Meghdoot [24]. However those systems are essentially topic-based
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or content-based pub-sub systems; they do not directly support XML-based

pub-sub services. This motivated us to develop an XML-based pub-sub

framework that can fully exploit KBR, which has been discussed in pre-

vious chapters. In this chapter we address the robustness of the proposed

framework. Issues such as hypercube-to-KBR mapping and fault-tolerance

[75] [76] are discussed and solutions are proposed accordingly to enrich the

capability of the proposed framework. Our aim is to guarantee that the

proposed system will be able to survive not only in a large-scale applica-

tion, but also in a dynamic environment where nodes may join, leave and

fail at times. The main contribution of this part of the research can be

summarized as follows:

• We developed a robust yet scalable routing scheme for XML-based

pub-sub systems. Specifically, the scheme is able to efficiently handle

changes in topology caused by the joining/leaving or failure of nodes,

and is also equipped with the intrinsic capability to scale up to operate

in an Internet-scale environment.

• We proposed a hypercube-to-KBR mapping algorithm that can loosen

the restrictions on mapping that requires the key-space being fully

occupied by the nodes, hence strengthening the adaptability and ro-

bustness of the system.

• We proposed a redundancy backup strategy for subscription filters to

handle the random joining, leaving, and failing of the nodes, which

gives the proposed system an effective fault-tolerant capability.
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5.2 Architecture Overview

We follow the same system and data model described in Chapter 4. We

generalize our architecture into three layers, as shown in Figure 5.1. The

major difference from the base model illustrated in Chapter 4 is that the

hypercube layer now becomes a logically independent layer, separated from

the generic overlay layer. This modification in architectural abstraction

guarantees that the functions and properties can be fully exploited without

any compromise, such as automatic formation, self-healing topology main-

tenance provided by KBR . It lays a foundation for the proposed extension

of fault-tolerance to the original KBR-based pub-sub design.

KBR Overlay

Network Infrastructure

KBR nodes

Real nodes

Key1: 10010

Key1: 11011

Key1: 11110

Key1: 01010

IP: 123.4.5.6

IP: 192.168.0.1

IP: 10.0.0.2

Hypercube Overlay Hypercube nodes

Figure 5.1: Three-layer Abstraction of the Proposed Architecture Design
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In Figure 5.1, the top-most tier is the hypercube overlay layer, which

provides a high-level message dissemination function. It provides an effi-

cient multicasting infrastructure for the message propagation process re-

quired by distributed event routing. The middle layer is a generic KBR

overlay layer. The implementation of this layer could vary as long as the

common API mentioned in [15] is provided. This means that the pro-

posed architecture could be used in different KBR implementations. Hence,

adaptability and flexibility can be provided. The bottom layer is the ab-

straction of the actual network infrastructure. It could be a heterogeneous

local area network or a mesh network like the Internet. The adaptability

of the system is largely attributed to the overlay routing approach offered

by the KBR abstraction layer.

To the best of our knowledge, the proposed architecture is the first

solution that extensively exploits the KBR overlay to manage subscriptions

and disseminate events for XML-based pub-sub systems. It is also the first

to propose a loose mapping (from the hypercube to the structured KBR

overlay) algorithm that exploits the closest-node mapping characteristic

of KBR, leading to the development of a redundancy-based strategy for

fault-tolerance. By the deep exploiting of KBR in its design, the proposed

architecture has numerous advantages:

(i) The fault-tolerance and self-organizing nature of the KBR over-

lay, together with the proposed Hypercube-to-KBR mapping, makes the

proposed architecture resilient in the case of node failures.

(ii) It does not require the flooding-alike mechanism used in spanning

tree-based pub-sub systems for subscription propagation.
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(iii) The proposed matching evaluation scheme exhibits high efficiency

in terms of storage space and processing time.

(iv) The hypercube overlay organizes all of the nodes involved into a

hierarchical structure so that the propagation of the subscription filter can

be efficiently achieved in a multi-cast manner.

We implement this architecture design using OMNeT++, an exten-

sible, modular, component-based C++ simulation library and framework.

Via detailed simulations, we have evaluated the performance of the sys-

tem extensively in terms of traffic, overhead, and fault-tolerance capability.

The results of the extensive simulation shows that the proposed architecture

can deliver events to various numbers of subscribers under different network

sizes efficiently and in a timely manner with a moderate probability of the

random joining, leaving, and failing of the nodes. It works successfully in

4096 nodes system that has a node’s failure rate of 25% , with a replication

factor of 8 (which causes link traffic overhead of only 788Bytes/Sec).

The rest of this chapter is organized as follows: First, we briefly re-

view our hypercube-based event-dissemination approach. After that, we

discuss the hypercube-to-KBR mapping that enables the logical separa-

tion of the hypercube and the KBR overlay. Following that, we proposed

a redundancy-based strategy for fault-tolerance. Finally, we provide an

experimental evaluation.
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5.3 Hypercube-based Event Dissemination

Our previously proposed hypercube-based event dissemination approach

utilizes a hypercube overlay to achieve efficient subscription installation. A

publication can be delivered based on the reverse path embedded in the

routing tables derived from the subscriptions installed on each intermedi-

ate node. The core process in the proposed architecture is the subscription

installation process. The principle of subscription installation is to guar-

antee the congregation between potential matching publications and sub-

scriptions. In section 4.3.2, a subscription propagation method KBSP is

proposed for this subscription installation process, by exploiting key-based

routing mechanism. The KBR is modified to support a coverage-based

propagation utilizing a novel structure-aware addressing scheme to provide

an event-dissemination infrastructure for the pub-sub systems. A hyper-

cube overlay is then built on top of KBR to further improve the efficiency of

the subscription propagation process. A brief summary of those techniques

is presented in the following.

The normal KBR technique is built around the concept of distributed

file sharing. This approach provides direct one-on-one mapping between

the key and the content. However, it does not provide the capability for

coverage-based propagation that requires one-to-many message dissemina-

tion, which is essential for subscription installation. We modify the origi-

nal KBR technique by adopting a novel structure-aware addressing scheme,

as the addressing scheme for KBR. Using structure-aware addressing, the

content (XML) and filter (XPE) are mapped to the key that is essentially

their corresponding bloom filter. Coverage-based propagation can be then
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carried out, exploiting the coverage relation implicitly represented by the

bloom filter.

In structure-aware addressing, the bloom-filter of the publication and

subscription is used as the key to map the content/filter in information

space to the keys in key space, as opposed to the consistent hashing func-

tion used in conventional KBR. Recall that the coverage relation between

two tree-structures can be essentially identified by the coverage relation

between their corresponding bloom filters. Using this addressing method,

the structural coverage relation between two objects in information space

can be preserved in their keys in key space. For example, if a publication

matches a subscription, the publication’s bloom filter should also cover

the subscription’s bloom filter. This property can be further exploited to

provide coverage-based propagation for subscription installation, which is

briefly discussed in below.

Each key k is mapped to a real node N in the network in KBR. We call

the node N the host of key k. Using structure-aware addressing, given an

arbitrary subscription S whose key is s, we are able to find each key pi in

key space so that pi covers s based on the coverage relation defined by the

bloom filter. Therefore, we can treat pi’s host as a rendezvous node (RN

for short). In this way, we are able to guarantee that all of the potential

publications for S will eventually meet S, since the publication forwarded

to RN will always be a potential publication for S due to the coverage

relation between their corresponding bloom filters (keys).

The aforementioned subscription installation requires the propagation

of subscriptions to the corresponding rendezvous nodes (pi’s host). This
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process requires a large number of messages to be forwarded to multiple

destinations; hence, the multicasting style of propagation is preferred to

unicasting message delivery to minimize the utilization of bandwidth. Ac-

cording to section 4.4, nodes are organized into an ordered-hypercube based

on their keys. The covering relation between keys of different nodes is

maintained as a parent-child relation in an ordered-hypercube. With the

hypercube structure, given any node with key k, every node whose key is

covered by k can be reached by traversing through a subhypercube rooted

in k. This traversal process can later be optimized into a tree traversal

process (section 4.4.3). In this way, the propagation can be achieved in a

multicast manner.

5.4 Hypercube-to-KBR Mapping

As we have mentioned in Chapter 2.4, conventional KBR use consis-

tent hashing as the addressing scheme to achieve the mapping between

node/data and key. A flexible content mapping method is adopted to guar-

antee that the joining or leaving of certain nodes will cause only minimum

disruption. Specifically, the content is mapped to the node whose key is

closest to that of the content. By doing this, when a node n joins the

network, certain content that previously mapped to n’s successor now be-

come mapped to n. When the node leaves the networks, all of its mapped

contents are reassigned to n’s successor. No other changes in assignment of

keys to nodes need occur. Based on this feature, a replication strategy can

be deployed to enable fault-tolerance. In our basic system model mentioned

in Chapter 4, the hypercube topology implies that a key in hypercube has

131



5.4. HYPERCUBE-TO-KBR MAPPING

to be occupied by certain nodes to guarantee the completeness of the hy-

percube topology. Hence, a direct map between a key in hypercube and an

actual node, like the one adopted in conventional KBR, may render useless

all of the above-mentioned advantages of flexible content mapping, as the

content has to be mapped to the exact key in order to make use of the

hypercube overlay. However, we are able to adjust the mapping mechanism

between the hypercube key and the actual node to preserve the advantages

provided by consistent hashing, as explained briefly below.

First we introduce the concept of virtual node, which is a logical ab-

straction of a node entity. Each virtual node has a unique key identifier

chosen from the key space. The term physical node represents the real node

in the network. The key for the physical node is chosen by an algorithm

defined by KBR. The virtual node resides within the physical node, and

must do so to be able to function. A physical node is able to host multiple

virtual nodes if needed. Next, we map the hypercube to the virtual node

space using strict one-on-one mapping based on keys. After this mapping,

a complete hypercube will be established with each vertex representing a

virtual node. Lastly, we map the virtual nodes to a physical node, based

on the identical flexible mapping rule to that for content mapping in con-

ventional KBR - Each virtual node is mapped to the physical node whose

key is closest to the key of this virtual node. Hence, after these three steps,

the hypercube topology overlay is mapped to the KBR overlay without any

compromise in functionality.

In the implementation, we use a data-structure called a subscription

list to realize the above concept. For each node, we maintain one or a few
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subscription lists, with each list represents a subscription filter table for a

virtual node. In the message, all we need to do is to append a virtual key

field to tell the receiver from which virtual node the message has been sent.

When the message needs to be sent to a certain key k, it is guaranteed to

be sent to the virtual node that is responsible for k, even when the physical

node that has key k is missing (the virtual node in question will reside in the

physical node whose key is closest to k). Upon a change in topology (nodes

joining or leaving), all we need to do is to hand over the corresponding

subscription list to the node that is going to be responsible for it. It is

possible that the virtual nodes within one physical node will communicate

with each other. This can be treated as self-messaging. Self-messaging can

be further tuned to avoid the consumption of real bandwidth by handling

the messages internally on the object level in memory.

5.5 Redundancy-based Fault-tolerance Strat-

egy

In modern decentralized data-centric architecture, fault-tolerance is

a very important aspect of handling the dynamicity of the environment.

Fault-tolerance is normally achieved by backing up the data storage for

each node in KBR using appropriate replication strategies.

In the common abstraction of the KBR scheme [15], nodes are al-

lowed to join and leave the system at will, causing churning in the set of

nodes in the system. A structured topological overlay (such as a ring in

Chord) regularly runs maintenance algorithms that detect failures and re-

133



5.5. REDUNDANCY-BASED FAULT-TOLERANCE STRATEGY

pair routing tables, allowing requests for a key to be routed correctly to

their owner despite node churn. However, KBR can only provide fault-

tolerance in the routing level, while content-storage is not fault-tolerant.

When a node fails, the information (subscription list) that it carries be-

comes inaccessible, and must be recovered from elsewhere. This means

that to provide reliable subscription installation, a replication algorithm

must store and maintain backup copies of the subscription list. This must

be achieved in a cost-effective way without compromising the scalability

of the system and also must be implemented in a decentralized manner

without causing unbalanced loads. Based on these requirements we pro-

pose the following replication algorithm, which exploits the aforementioned

hypercube-to-KBR mapping scheme.

Replicas of a virtual node (referred to as an item for the sake of clarity)

are placed only on the r closest physical nodes of the node responsible

for that item’s key. Those nodes are named siblings, and r is known as

the replication factors. This placement is mainly due to two reasons: 1)

When a node becomes unavailable, according to KBR, its successor will

automatically become responsible for all the virtual nodes it hosts. Hence,

it is quite natural to send the replica to its successor. 2) When the node

and its successor both fail, it is necessary to have a replica placed on more

than one of the nodes closest to the hosting node, thus we use r replicas

at r closest nodes instead of only one. This will significantly reduce the

probability of losing virtual node information.

To maintain this placement policy in case of node churn, a replica-

maintenance protocol will be triggered under certain circumstances (dis-
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cussed later). It also prevents the number of replicas of any object from

either dropping too low or rising too high. This maintenance protocol can

be summarized as follows:

1. Upon being notified by the joining of a new predecessor, a node checks

the keys of the items (virtual nodes) that it is hosting to see if they

are storing any item for which they are no longer responsible, and

sending the found items to new host (the predecessor). Goto step 3.

2. Upon being notified by the leaving of the predecessor (also including

the failure of the predecessor), a node searches in its replica for the

items that its predecessor used to be responsible for and starts to host

them. Goto step 3.

3. The node send a replica of items it is currently hosting to r siblings

of the node.

4. Upon receiving a replica, a node synchronizes the replica that it kept

with the replica that it received from other nodes.

In our implementation, the replica is essentially a copy of the sub-

scription list. We added a flag active in the subscription data structure

to determine whether it is currently a working subscription list or just

a replica. Besides the above replica-maintenance, we utilized the periodic

maintenance event provided by the KBR. In this periodic maintenance pro-

cedure, a node checks if it is still the sibling (rth closest nodes) of each key

for replica, if not, it will delete the entry of the replica accordingly.

Replica-maintenance will be triggered in three circumstances:
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• Upon an update event notified by underlying KBR. The up-

date event, provided as a common API function for the KBR, will

be triggered if any changes have happened to the predecessor of the

node (joining or missing of the predecessor).

• Upon an incoming subscription installation update. Once the

subscription list is updated on a node, it needs to be forwarded to

all of the siblings of this node in order for them to keep an updated

version of its replica.

• Upon the receiving of a replica. The synchronization required in

the maintenance protocol needs to be conducted, once the node has

received a replica from another node.

Assume any node can fail with a probability of p. In a network of

n nodes, and a replication factor of r, with this replication policy, the

subscription will only be lost when all r sibling fail. Hence, the probability

of subscription loss can be estimated by:

pLoss(p, r, n) = 1− (1− pr)n/r (5.1)

5.6 Performance Study

In this section, we present the performance evaluation result of the

proposed system architecture. We used OMNeT++ [62] as our main simu-

lation platform. The INET Framework [60] and OverSim [64] were adopted

to facilitate the simulation design. We mainly used Chord as the KBR in
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our experiments, but the system can be easily ported to other KBR imple-

mentations, as long as common KBR APIs [15] are provided. A real-world

XML data set from [13] was used in our simulation, with 3,680 being the

total number of XML documents, conforming to nine distinctive DTDs (re-

fer to Table 3.1 for more details). The parameter of simulation setup can

be found in Table 4.1.

5.6.1 Link Traffic

In this section, we present the results of our evaluation on per-link

bandwidth consumption. In Figure 5.2 by varying the length of the sub-

scription filter, denoted by l in the following, the system was evaluated in

two cases: l=128, and l=1024. The hash function number for the bloom

filter was set to 1. It is observable that for both the l=128 and l=1024

scenarios, as the number of participating nodes increased, the link traffic

showed a tapering trend, indicating that the system has good scalability.

This is largely attributed to the underlying load balancing mechanism pro-

vided by the hypercube overlay. It can also be noticed that increasing the

length of the subscription filter can largely reduce the link traffic, especially

for setups of 16, 64, and, 256 nodes. This is because increasing the length

of the filter improves the precision of the filter so that more false matches

are eliminated. In Figure 5.3, we focused on the traffic caused by the repli-

cation mechanism. By setting the filter length l to 1024 and varying the

replication factor, we additionally record the total link traffic in three sce-

narios, where r= 1, r= 2 and r=8. The figure shows that the increase in

the number of replicas will only cause a mild increase in total link traffic -
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788Bytes/Sec in the worst case when r=8 at the 4096 node setup (compare

to r=1 case). This is crucial in a large-scale system, as when the system

scales the replication should not impose an excessive overhead, which could

potentially overload the system.
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Figure 5.2: Link Traffic: Filter Length

5.6.2 Publication Delivery

To study the behavior of publication delivery, we designed two exper-

iments: one focused the impact of filter length as the number of nodes

increases, the other focused on the effectiveness of the replication mecha-

nism when node failures occur.

First, we evaluated the impact of filter length. By varying the filter

length l, we recorded the total number of publications received by every

node involved in the system. The results are shown in the Figure 5.4.

It is important to note that as the subscription filter length l increases,
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Figure 5.3: Link Traffic: Replication Factor

the number of publication messages received by peers will decrease. This

means that a longer subscription filter can filter out more false publication

messages.

In Figure 5.5, to study the effectiveness of the proposed replication

method in handling node failures, we intentionally increased the probability

of failure for each node p (p=0, p=0.25, and p=0.5), and then recorded the

publication delivery rate in a 4096-node setup, which was calculated by:

DeliveryRatio = PubReceivedwith−node−failure/PubReceivedno−node−failure

(5.2)
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The drop in the delivery rate indicates that there will be some subscrip-

tion loss in the system. As a comparison, we provide a theoretic estimation
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based on equation 5.1. We can see in Figure 5.5 that, in line with the

theoretic estimation, the delivery ratio drops as the probability of node

failure increases. However, with a slight increase in r, this reduction can be

significantly reduced. It is important to note that by increasing the repli-

cation factor to 8, we can achieve a 100% delivery rate at a node failure

probability of 25%. Even when the nodes failure probability reaches 50%,

only 20% of publications will be lost. Considering that there will be only a

788Bytes/Sec overhead in terms of link traffic produced by replication with

r=8, this result is quite promising.

5.7 Related Work

In our previous research work [72] and [73], we introduced a series of

novel approaches that contribute toward enabling an efficient, distributed

XML-based pub-sub system design that scales up to operate in a wide-area

and large-scale environment. In these works, a bloom filter-based filter-

ing approach was coalesced into the addressing scheme for the Key-based

Routing to provide a scalable, flexible, and robust pub-sub infrastructure.

A hypercube overlay was later adopted as multicasting infrastructure for

the efficient dissemination of publications. With that design, the hypercube

overlay organizes all of the nodes involved into a hierarchical structure so

that the propagation of the subscription filter can be efficiently achieved in

a multi-cast manner. In this chapter of the thesis, we present our work in

extending the hypercube-based XML dissemination architecture to address

the impact of dynamicity of the system, by introducing a novel hypercube-

to-KBR mapping algorithm, and a redundancy-based fault-tolerance strat-
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egy towards a fault-tolerant system design. The result is a full-fledged

XML-based pub-sub system, which works well not only in a large-scale ap-

plication, but also in a dynamic environment where nodes may join, leave,

and fail randomly.

5.8 Summary

In this chapter, we specifically addressed the impact of the dynamicity

of distributed pub-sub systems. By introducing a novel hypercube-to-KBR

mapping algorithm, and a redundancy-based fault-tolerance strategy, we

are able to extend our previously proposed event routing architecture to a

robust pub/sub platform which aquires excellent fault-tolerance capability.

Extensive experiments revealed that the proposed architecture works well

not only in a large-scale application, but also in a dynamic environment

where nodes may join, leave and fail at times.
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Conclusion

Current XML-based pub-sub systems are either centralized or dis-

tributed. Centralized solutions, while simple, have an inherent scalability

problem as the number of events and subscriptions in the system increases.

It is also prone to the single point of failure. Hence, many studies have

proposed the use of distributed architecture, which implement publication

matching and delivery in a distributed manner.

Studies on distributed XML filtering systems normally assume a span-

ning tree-based routing approach, which is widely used in conventional topic

or content-based pub-sub systems. Normally, the tree is constructed by

identifying subscriber nodes that share common subscriptions and are close

in proximity to each other, while minimizing the messages traversal path to

all other subscribed nodes. Using explicitly constructed spanning trees for

event delivery introduces nontrivial costs (e.g., bandwidth consumption) in

tree construction and maintenance, especially in dynamic systems where

nodes join or leave at will. It also introduces computation overhead caused
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by iterative matching evaluations, which severely limits the scalability of

the system. Peer-to-Peer (P2P) solutions based on Key-based Routing

(KBR) offer efficient functionalities such as event routing flexibility, scala-

bility, load balancing, and fault tolerance. Many system architectures have

been proposed to exploit the advantages of KBR overlay, such as Scribe

[10], Ferry [78], and Meghdoot [24]. However, those systems are essentially

topic-based or content-based pub-sub systems, which do not directly sup-

port XML-based pub-sub services. This has motivated us to develop an

XML-based pub-sub framework that can fully exploit KBR.

6.1 Research Results

Based on our study, an event-based architecture in general has two

major function layers: event matching and event routing. Hence, in our

study, we incrementally propose various approaches to tackling different

issues with respect to event matching and event routing. This research

covers many aspects: from structure-based event representation and event

matching evaluations to structure-aware addressing and distributed event

routing. With our systematic research, we managed to develop an archi-

tectural framework that can efficiently handle XML-based structural docu-

ments in a fully distributed large-scale environment. We did so by adopting

a holistic approach to considering filtering and routing as two processes that

may synergistically complement one another to support efficient message

dissemination. The framework is essentially comprised of two core contri-

butions: the bloom filter-based XML filtering scheme and the KBR-based

distributed event-routing scheme. Both have been thoroughly evaluated
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through extensive simulation experiments.

Efficient Event Matching In the area of event matching, we adopted a

highly efficient method of representing structure – one that is highly

compact and optimized for evaluation using a bloom filter. Judging

from the results of several evaluations carried out by extensive ex-

periments, our method shows excellent matching speed and compact

storage size. It also shows good stability and scalability because it is

not affected by an increasing number of documents/filters once the

system parameter is fixed. Even though it introduces a false positive

error, the false positive error can be bounded and adjusted to match

the requirements of applications. Considering the significant speed-

up and performance gains, our approach represents a viable solution

when time/space efficiency is paramount.

Scalable Event Routing In the area of event routing, we first established

an Internet-scale distributed XML-based pub-sub architecture. By

using bloom filter-based structure-aware addressing, XML documents

can be organized by their structural resemblance and efficiently dis-

seminated to subscribers through hypercube overlay. The proposed

method does not require flooding-alike mechanism used in conven-

tional pub-sub systems for subscription propagation. Instead, only

a small subset of nodes (members of the subhypercube for a given

publication) is needed to install the filter. More importantly, the hy-

percube overlay organizes all of the nodes involved into a hierarchical

structure so that the propagation of the subscription filter can be

efficiently achieved in a multicast manner. Extensive simulation re-
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sults, based on realistic sample data and a typical network topology

model, indicate that the proposed system scales well while achieving

acceptable overhead, traffic, and stress. The results also show that

the proposed architecture can balance the load over the entire network

of nodes by deploying each pub-sub event to a small subset of nodes

grouped by structure-resemblance based on their keys. The proposed

system architecture can achieve significant speed-up and performance

gains with a trade-off of manageable false positive rate.

Fault-tolerance in Event Routing To further enhance proposed event-

dissemination architecture, we carried out a series of studies address-

ing the robustness of the architecture considering the dynamism of the

underlying network environment. By introducing a novel hypercube-

to-KBR mapping algorithm, and a redundancy-based backup strat-

egy, we are able to provide a robust publication dissemination archi-

tecture with fault-tolerance capability. Extensive experiments have

revealed that the proposed architecture works well not only in a large-

scale application, but also in a dynamic environment where nodes may

join, leave, and fail at times.

6.2 Future Works

Obviously, a number of issues have not been discussed in detail in this

thesis and should be the subject of further research.

• The general topic of caching and event histories in a distributed
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publish-subscribe notification service opens up a wide area of oppor-

tunities for research. Event caching can make use of the historical

messages at each intermediate broker, so that the new subscriptions

will be able to retrieve those historical messages. At the same time,

event caching enables the asynchronized communication to take place

between brokers and clients. For instance, when a subscriber is offline,

all new messages will be cached for it, and when it goes online, those

messages can be automatically delivered to it, as if the subscriber

had never gone offline. This caching mechanism further decouples

the communication parties, making the system more flexible and ro-

bust. However, in this research we have not yet covered this topic.

• Another important issue is predicate-based matching. XPath sup-

ports predicate matching based on the element value in a XML doc-

ument. Hence, the ranged query and linear path query can both be

adopted as the filter expression for an XML-based pub-sub system.

In this paper, for the sake of clarity, we focus on the structural as-

pect of an XML document, while ignoring the value-based predicate.

The focus on structural matching ignoring value-based predicates may

lead to inefficiency, since XPath expressions with only structural com-

ponent (ignoring values) will be less selective and more “unwanted”

XML documents may be selected.

• Real-world performance evaluations are another important area to

focus on in our future work. The simulation-oriented evaluation ap-

proach adopted in this research has provided us many significant re-

sults. The controlled environment that the simulation platform pro-

147



6.3. SUMMARY

vides is crucial for the initial stage of research, as it can not only speed

up the implementation of the prototype system, but also shortening

the evaluation cycle of experimentation tremendously. However, the

real-world test of proposed system design is irreplaceable when eval-

uating the effectiveness and efficiency of a system design in reality.

Since the proposed experiment evaluation is largely based on a simu-

lation platform, the immediate next step is to implement the proposed

architecture in a real-world test platform, such as PlanetLab [63].

6.3 Summary

In summary, this thesis presents several significant and novel approaches

for empowering publish-subscribe with XML-based filtering capability, lead-

ing to effective, efficient, and convenient ways of communicating and inter-

acting in large-scale pervasive computing environments. We analyzed the

shortcomings of existing approaches, and the implications and requirements

for large-scale distributed pub-sub applications. Subsequently, we showed

the importance of efficiency, scalability, robustness, autonomy, and level of

integration in a distributed XML-based pub-sub system design. The dis-

tributed publish-subscribe architecture presented in this thesis constitutes

a noteworthy platform for building pervasive and ubiquitous computing

systems. More importantly, it opens many new directions in research to-

wards integrating and synergizing the expressiveness of XML data with the

effectiveness of the pub-sub paradigm.

148



Chapter 7

Appendices

7.1 Appendix A

Estimation of False Positive Errors in Bloom Filter

Assume we have a target set A and a test set B.

The ideal hash function will produce a value that lies within the range

of the bit-vector length with uniform distribution. Hence, each bit position

will have the equal probability to be selected by a hash fucntion. Let p0 be

the probability that a bit is not set to 1 by a given hash function, we have:

p0 = 1− 1/m (7.1)

Then for k hash function, if it is still not set to 1, the probability will be

(p0)
k, and for all n elements, the probability that it is still not set will be

(p0)
nk. The probability that it is set to 1 will be 1− (p0)

nk.

149



7.1. APPENDIX A

Now assume an element b ∈ B, but b /∈ A. Each bit in k bit position

yielded by applying k hash functions on b are set to 1 with the probability

1 − (p0)
nk, given by previous analysis. Then for all k bit to be set to 1,

which will produce a false positive, we have probability of false positive P :

P = (1− (p0)
nk)k = (1− (1− 1/m)nk)k ≈ (1− e−kn/m)k (7.2)
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