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Abstract

With the advancement in mobile computing technology, the capture devices and storage

for video content become more and more mature and convenient. Live video identification

and transmission are two prevalent and fashionable topics in mobile multimedia comput-

ing area. The growth of online video content raises new opportunities for the processing

and delivery of the contents. Compared with traditional video applications, unprecedented

challenges are raised on mobile real time video identification and transmission. Massive

data are created on network every day, especially for the video uploading and download-

ing from mobile devices to the cloud. Moreover, limited resources in the mobile wireless

network, such as bandwidth and computation capacity, demand more efficient and effective

approaches of real time video identification and transmission. In the interests of achiev-

ing multimedia identification and transmission higher accuracy in real time under limited

resources, we proposed corresponding solutions to solve the two fundamental problems. Si-

multaneously, based on the proposed methodology, a mobile based multimedia computing

system is needed so as to embed complex multimedia computing process and realize it in

real time. This thesis consists of three parts. The first part focuses on video transmission

scheduling, which is to schedule and distributed the multimedia resources to all the users

according to the multimedia unique characters. The second part focuses on video-based

human action recognition, which is to exact the specific feature of the action and construct

a model for action recognition. In the third part, a Mobile Cloud Computing (MCC) sys-

tem is developed and supported by the above mentioned technologies, namely Real-time

mobile based Video Recognition (RVR) system. The system demonstrates the live video

transmission and identification can be processed in real time over wireless network with

high accuracy under scarce resources.
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Firstly, we study the problem of video transmission scheduling. We propose a newly video

delivery scheme, Utility Coordination Function (UCF), over 802.11 networks. Given the

limited wireless resources, supporting multi-user video streaming with good video Quality-

of-Service (QoS) is very challenging. The key difficulties involve providing good playback

quality while also satisfying the stringent video packet delay bounds, especially for transmit-

ting large amount of data under the limited resources such as bandwidth. The allocation

of wireless resources needs to be efficient and coordination of mobile video users should

have a distributed fashion. In this thesis we present a distributed framework for multi-user

video streaming over an ad-hoc 802.11 like wireless networks. The proposed algorithm is

based on a utility-driven mechanism that adjusts the video users’ sending rates according

to Application layer video buffer status. We propose multiple schemes towards different

levels of user requests, and deal the problem with scalable techniques. Simulation results

demonstrate that the proposed scheme is quite efficient on radio resource will have better

QoS than content blind Distributed Coordination Function (DCF) scheme. Besides, we also

prove that our proposed solution is robust against the possible variations in the network.

Secondly, we study the problem of video-based human action recognition. We propose a

spline approximation approach for video based action recognition to deal with large scale

database. Video action recognition is another active research topic in computer vision and

communication. Effective and fast processing approaches are highly demanded. Traditional

pattern recognition and machine learning techniques can solve problems for text and image

with satisfactory performance. However they become less helpful when processing large

amount of video data. Besides, some statistic models designed for some special video

processing applications, cannot handle the general video-based pattern recognition problem.

In this thesis, we have tackled these problems from several aspects including simplifying the

video representation and dimensionality reduction, improving spatio-temporal modeling,

and speed up the online matching issue. The proposed approach focused on merging the

current training trajectories into a much smaller but discriminative dataset to accelerate the

processing for matching. An extension is also considered by introducing the idea of graph

embedding; we polish the subspace learning with constructing an affinity matrix, to better

evaluate the similarity within the same class during the training session. Experimental

results demonstrate the proposed methods work effectively and efficiently.
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Thirdly, we proposed a Real-time mobile based Video Recognition (RVR) System over

Mobile Cloud Computing (MCC). The cloud computing and mobile computing technologies

lead to the newly emerging MCC paradigm. Three major approaches have been proposed

for mobile cloud applications: 1) extending the access to cloud services to mobile devices; 2)

enabling mobile devices to work collaboratively as cloud resource providers; 3) augmenting

the execution of mobile applications on portable devices using cloud resources. This part

focuses on the third approach in supporting mobile data stream applications by employing

the proposed transmission and recognition algorithms. More specifically, we apply the

optimized partitioning algorithms to the RVR system, which separates the computation

of a real time video application between the cloud and mobile devices and then achieves

maximum speed in processing the streaming data under predefined recognition accuracy.

We first involve a real time partition algorithm for MCC based live video recognition system.

Both numerical evaluation and real world experiment have been performed, and the results

show that the proposed system can achieve better performance in terms of throughput than

without employing the proposed algorithms.

Keywords: Video action recognition, machine learning, distance metric co-learning, spatio-

temporal modeling, video transmission, scheduling, mobile cloud computing, local indexing.
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Chapter 1

Introduction

With the development of the multimedia technology, especially those in online video reposi-

tories like Youtube and those captured from millions of surveillance cameras, are proposing

a very challenging to the real-world video understanding, analysis and delivery systems.

It is highly demanded that effective and efficient video scheduling and analysis technology

can be developed, such as in event detection, video action recognition and delivery. These

techniques requires not only the accurate and robust analysis result, but also efficiency in

computation and possibly real-time performance.

Video is composed by large amount of data due to the high resolution and thousands of

frames against time. Meanwhile, the consumption in watching video is quite easy. Both of

these result in a highly demand of technology in video transmission and delivery in various

networks. Such technology can be applied in both fixed and mobile network, wired and

wireless network.

Video content analysis is the capability of automatically analyzing video to detect and

determine temporal events not based on a single image. This technical capability is used in

a wide range of domains including entertainment, health-care, retail, automotive, transport,
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home automation, safety and security [11][90]. The algorithms can be implemented as

software on general purpose machines, or as hardware in specialized video processing units.

Video patterns are high-level semantic concepts that humans perceive when observing a

video sequence. Video content and event understanding attempts to offer solutions to the

problem of detecting the human perception of content with a computer perception. The

major challenge for content analysis and event understanding is how to effectively translate

low-level input into a semantically meaningful event description[51].

Real-time video-based pattern recognition is a kind of high level task in computer vision.

It relies on sufficient solutions to many lower level tasks such as denoising, edge detection,

optical flow estimation, object recognition and tracking. The maturity of many solutions

to these low-level problems has spurred additional interest in utilizing them for higher level

tasks such as video event understanding.

Another reason for the large amount of interest in video-based techniques is the promise of

intelligent systems outfitted with inexpensive cameras enabling such applications as active

intelligent surveillance, summarization and indexing of video data, and human computer

interaction. There are various applications around such area such as healthy care and kinetic

analysis.

The challenges in video delivery is in various aspects, with the scalable of video quality, it

is difficult to serve many users at the same time with a satisfactory result, especially when

there is only limited bandwidth.

The problem of video pattern recognition is also still challenging due to several reasons.

The noise brought by different scale, rotation and illumination will confuse the computer,

with uncertainty and large variance in the particular events. On the other hand, similarity
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in the appearance of different events also degrade the performance. Therefore, it is a crit-

ical problem in video pattern recognition on how to effectively separate the discriminative

information together with remove the noises which will result in misunderstanding. For

simplicity, we define two basic questions for video pattern recognition, how to efficiently

extract and preserve the discriminative features, and how to effectively classify the ex-

tracted features into the correct categories. We define the first class of question as video

representation, and the second question as modeling.

In this thesis, we address the challenges of video delivery from scheduling and tackle video

pattern recognition problem from both representation and modeling aspects. We propose a

utility-driven scheduling method and allocate the video resource in a more efficient way in

video delivery, and present trajectory representation in our pattern recognition solutions.

Dataset representation is highly emphasized in this thesis and real-time pattern recognition

can be achieved. Basically we are confronted with the following problems in the processing.

Firstly, we solve the video delivery problem by proposing the concept of utility. Instead

of allocating the video resource averagely, we also consider the different request in video

content. In the proposed method the resource is delivered according to the urgency of

request, which is represented in the format of utility. The global QoS is optimized by this

method and proved to be better than any other techniques, such as DCF in 802.11.

Secondly, we address the video pattern recognition problem. The video sequence is usually

composed of hundreds of frames, each of them is composed by millions of pixels. The data

amount is too large to achieve an efficient content understanding. On the other hand, it

is well-known that lots of redundancy exist in the video sequence. Therefore in the first

step we focused on is to reduce the redundancy in a single frame, in a single video clip, in

a single action class and even in the whole video dataset. In this thesis we propose curve

merging method, spline approximation techniques, graph embedding approaches to better
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represent the dataset with discrimination.

Finally, we focus on improving the time consumption in the video pattern recognition prob-

lem. The processing speed is a critical section in most online applications, it is highly related

with the user experience. In the thesis a detail of timing analysis is provided theoretically,

and some application demos are also included as example for real-time application.

The rest of this chapter is organized as follows, section 1.5 presents the unified research

framework. Section 1.6 summarizes the contributions of this thesis. Finally we give an

outline of the thesis in Section 1.7.

Subsequently, we present some related techniques in wireless video transmission and video

pattern recognition literature. For video transmission, we only discuss about the 802.11

protocol, while for the video pattern recognition, we present the related work in representa-

tion skills, spatio-temporal modeling and real-time processing approaches respectively. We

will briefly review the related works in section 1.1.

Representation refers to translating video sequences into intermediate units understandable

by spatio-temporal models. In section 1.2 we provide some representation approaches.

Spatio-temporal modeling is a critical section in the video pattern recognition problem.

Given input from the representation layer, the model should categorize the video sequence

into several pre-defined classes. Spatio-temporal modeling has already received a lot of

attention in the computer vision research community, and we will briefly introduce these

methods with our comprehensive understanding and analysis in section 1.3.

Real-time application is popular nowadays because of the development of mobile devices

and applications. Timing Analysis is also a critical section in most of the video pattern
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recognition approaches. We will present some popular techniques for fast processing in

section 1.4.

1.1 Video Delivery on Wireless Networks

IEEE 802.11 is a set of standards for implementing wireless local area network (WLAN)

computer communication in the 2.4, 3.6 and 5 GHz frequency bands. They are created and

maintained by the IEEE LAN/MAN Standards Committee (IEEE 802). The base version

of the standard was released in 1997 and has had subsequent amendments. These standards

provide the basis for wireless network products using the Wi-Fi brand.

802.11 divides each of the above-described bands into channels, analogous to the way radio

and TV broadcast bands are sub-divided. For example the 2.4000 - 2.4835 GHz band is

divided into 13 channels spaced 5 MHz apart, with channel 1 centered on 2.412 GHz and

channel 13 on 2.472 GHz. 802.11b was based on DSSS with a total channel width of 22

MHz and did not have steep skirts. Consequently only three channels do not overlap. Even

now, many devices are shipped with channels 1, 6 and 11 as preset options even though

with the newer 802.11g standard there are four non-overlapping channels - 1, 5, 9 and 13.

There are now four because the OFDM modulated 802.11g channels are 20 MHz wide.

Availability of channels is regulated by country, constrained in part by how each country

allocates radio spectrum to various services. At one extreme, Japan permits the use of all

14 channels for 802.11b, while other countries such as Spain initially allowed only channels

10 and 11, and France only allowed 10, 11, 12 and 13. They now allow channels 1 through

13.North America and some Central and South American countries allow only 1 through

11.
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In addition to specifying the channel centre frequency, 802.11 also specifies (in Clause 17)

a spectral mask defining the permitted power distribution across each channel. The mask

requires the signal be attenuated a minimum of 20 dB from its peak amplitude at 11 MHz

from the centre frequency, the point at which a channel is effectively 22 MHz wide.

1.2 Video Representation

Representation is the organization of low-level inputs into various primitives representing

the abstract content of the video data. It is motivated by providing an intermediate sum-

marization of the video content. Compared with modeling issues, representation is not

highlighted in the literature. However, every research work should consider how to present

the low-level features in an efficient way. This decision is the output of representation phase

and is an integral part of the video pattern recognition processing.

Researchers were interested in pixel-based representation in the past a few years. Pixel-

based representations utilizes abstraction schemes that rely on single or group of pixel fea-

tures such as texture and color moment. Motion history image [112] and gradient histogram

[9] are examples of pixel-based representation.

Intuitively video content can also be composed by a group of different objects. There-

fore object-based representation is becoming an alternative solution. Low-level input is

abstracted and object properties, such as speed, position and trajectory are used as rep-

resentation [25] [34] [71] [89]. Silhouettes are another popular object-based representation,

which is widely used for action recognition [7] [81].

Another group of representation can be categorized into concept-based. The idea is that

the daily video content is not composed by pixels, and can hardly described by a group
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of object. Instead, it should be described by some semantic concept. Scale Invariant

Feature Transform (SIFT) is firstly proposed in [59] and used as a definition of “word” as a

representation. It is widely applied in image processing and Spatio-temporal Interest Point

(STIP) is developed in [48] for video representation.

1.3 Spatio-temporal Modeling

As presented in the previous section, spatio-temporal modeling is the complementary prob-

lem to representation. The modeling phase targets on seeking formal ways to describe and

recognize specific video content in a particular domain given the choice of a representation

scheme. A particular spatio-temporal model is chosen based on both the capacity for rep-

resentation in a particular domain and the capacity for recognition of these content as they

appear in the video sequence input.

Spatio-temporal modeling methods can be categorized into many different ways. Most of

the research works propose novel modeling schemes to improve the performance. The model

can be either deterministic or probabilistic, either generative or discriminative. Depend on

different applications, the models also vary a lot.

However, such kind of division did not fully capture the diversity of event modeling ap-

proaches in the video pattern recognition literature. Therefore we further categories the

models into “state modal” and “semantic models”. Noted that such kind of category is not

meaning that ever model should be exclusively include into one class.

We defined the first class of these models as “state models” for the reason that they con-

centrate on specifying the state space of the model. Often, this state space is reduced or

factorized using semantic knowledge. This class of approaches includes finite-state machines
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(FSMs) and the set of probabilistic graphical model approaches. The existence (under some

structural assumptions) of efficient algorithms for the learning of parameters from training

as well as recognition motivates the choice of these models to model video patterns.

Higher level semantics include ordering information (including partial ordering), and com-

plex temporal, spatial, and logical relations. These properties become important when the

event domain includes high-level events, which are best expressed in qualitative terms and

natural language. To this end, a group of modeling formalisms that we defined as “se-

mantic models” have been proposed, which enable explicit specification of these complex

semantic properties. Among these are Petri nets (PNs) and grammar models as well as

constraint satisfaction and logic-based approaches. These models are usually fully specified

using domain knowledge and are not usually learned from training data.

An effective model will be definitely helpful to the pattern recognition. Besides such models,

machine learning methods will also affect the performance. We will present a review of such

methods in 4.1.

1.4 Real-time Online Applications

Basically, an approach for video pattern recognition in recognition accuracy is not neces-

sarily a practical method for an online application. Another issue we need to consider is

the timing complexity. Real-time performance is nowadays on highly demand, for various

online media processing, including both in video scheduling and pattern recognition.

In the previous section we discuss the video representation, spatio-temporal modeling and

machine learning method. In this section we will review some popular approaches and

present their timing analysis. The main advantage of the classifiers in this category is that
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they are well understood.

There are many examples of pattern-recognition methods for event recognition in the lit-

erature. Nearest neighbor based classifiers are widely used in [7] [9] [82] [112]. Support

vector machine (SVM) is applied in [16] [24] [75] [103] [73]. Boosting based method is

tested in [15] [49] [63] [68] [86] [76]. Corresponding timing analysis report is also given

in the literature.

1.5 The Unified Research Framework

In this thesis we target on solving the video delivery and pattern recognition problem. The

solution is composed by three different aspects: utility-driven resource allocation for video

delivery, video-based pattern recognition performance and timing analysis.

For the video delivery problem, we investigated the current problem and find out the bot-

tleneck for video transmission. To replace the DCF mechanism on resource allocation, we

proposed a utility based scheduling method. We present our proposed method in Chapter

2, and demonstrate the performance by comparing to DCF in 802.11.

For video action recognition problem, we propose a novel approach to improve the recog-

nition accuracy. The proposed approach is based on the statistical information in the

video clips. A few mathematical tools, including high-dimensional curve merging, spline

approximation and graph embedding are applied to provide a representative modeling of

the training clips. The proposed approach is proved in multiple dataset that the recognition

accuracy outperforms some other typical approaches in the literature.

For timing complexity, we extend our work by giving a detail time analysis of our proposed
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approach. We also give a demo for application to prove the correctness of our proposed

approach, together with the efficiency.

1.6 Contributions

The contributions of this thesis can be divided into three different aspects on solving the

video transmission problem, pattern recognition problem, and real-time solution. The high-

lights are summarized as follows.

• We propose a utility-driven scheduling method to solve video transmission and delivery

problem. It is a general algorithm which can be applied on text, image, video and other

kind of data, with the consideration of request content of media. Motivated by the

benefits brought request urgencies, we present an algorithm based on the dynamic

utility of different users. The proposed content-aware solution is demonstrated to

provide better result than DCF mechanism in 802.11.

• We propose a novel approach for video pattern recognition problem. For video repre-

sentation, we propose a trajectory base representation scheme. The video similarity

is then converted to an evaluation equivalent to trajectory distance. The processing

is simple and fast, which can achieve a balance between performance and processing

time. Spatio-temporal modeling for video pattern recognition is the main contribution

of this section. We investigate both global and local modeling scheme in this work.

Multiple mathematical tools are utilized to solve the problem step by step. A curve

merging method is applied to reduce the size of dataset, and then a spline approxima-

tion is used to smooth the merged curve. Graph embedding is utilized to evaluate the

relationship between and within action classes. We demonstrate the effectiveness of

our proposed method by testing different action dataset and outperforming the classic
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approaches in the literature.

• Timing complexity is another issue we focused on during the video pattern recognition

problem. We carefully evaluate the time consumption in our proposed processing

method and find out the bottleneck. Then a few replacement method is proposed to

achieve a better offline processing. For online section, we simplify the matching and

finally achieve a real-time performance. The timing complexity is demonstrated by

demos.

1.7 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we solve the video transmission and delivery problem problem by propos-

ing a utility-driven scheduling method. Request content is considered during the

resource allocation and a balance between different users are found. The proposed

solution is demonstrated by experiment to be effective and performs better than DCF

mechanisms in 802.11.

• In Chapter 3, we propose a trajectory-based video representation scheme, and followed

by spatio-temporal modeling for video action recognition. We present two approaches

focused on temporal feature and spatial feature respectively. Maximum Likelihood

is used for decision. The numerical results from different dataset are competitive

with the ones in the literature, so that the robustness of the proposed method is also

guaranteed.

• In Chapter 4, we present a timing analysis which is extended from our proposed

method in Chapter 3. We target on implementing real-time performance for online
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applications. Demo is provided to prove the robustness and efficiency of our proposed

solution.

• In Chapter 5, we present conclusions and propose several potential future directions

of research arising from this work.
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Chapter 2

Literature Review

In section 2.1 we will briefly review the techniques video streaming and scheduling ap-

proaches which are widely applied in the literature. In section 2.2, we briefly review some

of the popular techniques in the video-based action recognition literature.

2.1 Existing Works about Video Transmission Scheduling

2.1.1 Wireless Video Communications

Multimedia transmission over wireless is becoming a key research field in video coding and

networking. For example, people have proposed various joint source and coding schemes

based on information theory to address the challenges in wireless communications. These

efforts have strongly influenced the H.264 video coding standard [38]. On the other hand,

there does not yet exist a unified framework of addressing the QoS problem of multimedia

communications in wireless networks [26].

Recent year results show that it is feasible to support high data-rates and satisfy low delay

constraints of multimedia over wireless network [62] [94]. For ad-hoc communications,
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however, research on video streaming is still at the beginning period, especially a cross-layer

optimization design. Recently people have stated to look at a cross-layer design approach

of video streaming over wireless ad-hoc networks.

Most recent research focused only on joint optimization. It is proposed in [62] to jointly

look at path diversity and video coding. In another cross-layer proposal [94], the source,

channel coding, and MAC layer retransmissions are jointly and optimally designed. Power

and flow are allocated through convex optimization in [100]. MAC layer scheduling combine

the above proposed in [98]. Much research still to be proposed along these directions to

identify and exploit optimization and cross-layer interactions in real-time video streaming

over ad-hoc wireless networks.

In the wireless video delivery system, a media server contains multiple video sequences with

multiple quality level provided by scalable video coding. In this work we assume that each

sequence is packetized into multiple packets, and each packet is independently decodable.

In some popular video encoding standards, such packet should represent some content. The

content can be either as large as an entire video frame or Group of Pictures (GoP), or as

small as a group of macroblocks, such as in H. 264. A header acts as a synchronization

marker for each packet to guarantee every packet is independently decodable. In such a

system, a packet scheduling problem emerges without a coordinator.

The server has only one channel to deliver in each delivery cycle. In other words, the

server can only serve one of those multiple users each cycle. In this work we assume that

the wireless network is lossless and of enough bandwidth, in which there will not be any

retransmission. Besides, for simplicity, we assume each of the users being served are video

users. Users are requesting video with different content and watching is going on together

with delivery. Therefore, there is one packet delivery and only one user is served in each

delivery cycle, meanwhile every user consume their content which is delivery in previous

cycles. In this paper we propose a scheduling scheme which can maximize the global quality
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of video requested and strictly guarantee the fairness among users.

2.1.2 System Model and 802.11 DCF Algorithm Descriptions

The DCF is a distributed random access scheme based on the Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) protocol [5]. There are some important concepts in

the protocol, and we present them as follow. The basic mode in DCF is well-known as

the two-way handshaking. A transmission station first senses the channel for at least a

Distributed Inter Frame Space (DIFS) time. If there is no other node transmitting at this

time, the station will transmit the Request to Send (RTS) and wait for a Short Inter Frame

Space (SIFS) time. If the corresponding receiver station successfully receives a packet, it

will send out a Clear to Send (CTS) to the transmission station. This scheme is applicable

to elastic data transmission, including video content delivery.

Fig. 2.1: Data Transmission in 802.11 DCF

The delivery based on DCF is completed in the following way. In every delivery cycle,

each user needs to wait a random selected back-off time after DIFS, before attempting to

transmit. Each station competes to access to the medium by selecting a random number

from their own contention window (CW). The resource will be allocated to the user whose

random number is smallest among all the users, which is a totally random distribution.
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Noted that each user have a same contention window size, so in this situation, all the users

are treated with equally weight, and the allocation is completed randomly. In the long run

the delivery is in an average style, which will cause some problem in wireless video delivery

due to the different content requested.

Most recent research considers only some joint optimization. It is proposed to jointly look

at path diversity and video coding. Path diversity combined with video coding is proposed

in [62]. In another cross-layer proposal [94], the source, channel coding, and MAC layer

retransmissions are jointly and optimally designed. Many research works were proposed

along these directions to identify and exploit optimization and cross-layer interactions in

real-time video streaming over ad-hoc wireless networks.

Since the solutions above do not take the different content in video request into account,

every user will obtain same amount in the long-term resource allocation. Therefore, those

users with higher consumption rate, i.e., the requested video is a high bit-rate video, will

consume his/her content quickly. Then this user is very likely to freeze after some time.

After freezing, the DCF based delivery cannot support the request anymore and a video

sequence with lower quality level will be served in a scalable video coding system, which

will degrade the Quality-of-Experience. One way to resolve this issue is to allocate the

resource to the users based on their remaining playback time. This motives our utility

driven algorithm as follows.

2.2 Existing Works about Video-based Human Action Recog-
nition

As an important area in computer vision, the human action and activity recognition have

received much attention in recent years. A comprehensive review of this research topic has

been presented in a number of survey papers, e.g., [1] [20] [90]. In this section, we mainly
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focus on discussing the most critical processing in this special problem.

Pixel values can be directly obtained from an image or a video clip. So the optical flow

representation, which is based on the moving pixels, has been widely used as a simple

representation of the video by a lot of researchers [23] [40]. In this approach, the idea

is to directly use the optical flow to derive a video representation which can be used for

recognition. So motion detection and analysis from video compression work have also been

combined into this technique. For example, Motion Energy Image (MEI) [8] and Motion

History Image (MHI) [9] have been proposed to describe the motion information.

In general, a class of approaches for human action recognition analysis are based on the

modeling of the extracted features from the video sequences. The modeling and learning

of the extracted features is the critical part of the problem, in improving the accuracy

of the recognition. Some popular techniques include optical motion detection, 3-D vol-

ume representation, temporal modeling, Hidden Markov Model (HMM) training, Dynamic

Time Warping (DTW) and multi-view subspace learning. We offer a brief review of these

techniques in the following several paragraphs.

The appearance based feature representation is not robust with respect to background

changes such as scaling and rotation. Also, the failure on handling occlusions and cloth

changing limited the application on these methods. Space-time interest points and their

trajectories for action and activity analysis are quite popular in the recent literature [50]

[70]. The main strength of this representation is the robustness to occlusions, since there is

no need to detect or track the human body or hand. A dictionary can be constructed by

a bag-of-words approach and therefore the image or video can be represented as statistical

information of words.

Temporal properties have been proved to contribute a lot towards action classification.

Compared with traditional 3-D modeling, a 4-D (x, y, z, t) action feature model (AFM) was
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proposed for representation and recognition of action from arbitrary views [106]. Temporal

features are also highly emphasized in [93] for creating intelligent robot systems. By utilizing

Conditional Random Fields (CRF) and applying discrimination training, the algorithm is

proved to be effective.

Researchers also applied Hidden Markov Models and their variants for better analysis of

their temporal behavior [87]. The general methodology was to learn the appearance model

of the human body or hand and match it explicitly to images in a target video sequence

for action and gesture recognition [105]. This approach is highly dependent on the features

extracted from the video. Different representations also has different models. In [29], actions

in video clip are treated as 3-D shapes induced by silhouettes in the space-time volume and

properties of the solution for Poisson equation was utilized to extract the features such

as action dynamics, shape structure and orientation. The method is proved to be fast

and robust to partial occlusions and can be applied to low-quality videos. Similarly, in

[96] an exemplar-based Hidden Markov model (HMM) was proposed and this model took

advantage of dependencies between three dimensional exemplars. Furthermore, a template-

based method, named the Maximum Average Correlation Height (MACH), was proposed in

[77]. By capturing the intra-class variability, the single action class is simply and carefully

modeled after analyzing the response of the MACH filter.

Instead of building models for only one set of the features, there are some approaches

that focused on both temporal and spatial domains. A more comprehensive understanding

can be obtained during such a process. In [45], a spatio-temporal volume modeling based

solution is investigated and proved to be insensitive to image formation variations. In [99],

a new approach, which is composed of a 2-layer statistical field model, was proposed and

demonstrated to be robust to occlusions. Besides robustness, the structure was also more

flexible to image observations, which made the method robust to clutter as well. In [44]

Canonical Correlation Analysis (CCA) is used to measure the similarity of any two image

sets for robust object recognition. Correlation information is also considered to be helpful
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for recognition. After this, in [43], a method is also applied for hand gesture recognition

by combining feature selection and the Tensor Canonical Correlation Analysis (TCCA)

learning process. Tensor work has also been applied for gait recognition in [88], combined

with Gabor features contained in the gait sequence.
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Chapter 3

Utility-Driven Coordination
Function for Video Delivery over
Wireless Network

3.1 Overview

With the development of computationally powerful portable devices and wireless transmit-

ters, the demand of real-time multimedia communications and delivery is greatly increasing.

However, there are still many open challenging problems on providing satisfactory Quality-

of-Experience (QoE) for wireless users. One of these problems is multi-user video delivery

is more complicated over wireless channels, where the demand for better video quality and

real-time services is more difficult. It is demonstrated the Scalable Video Coding (SVC)

[79] is providing differentiated video services against wireless time-varying channel for single

user. Now a problem is emerging on how to balance the resource allocation under multi-user

case, as we discuss in this thesis.
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There are several existing approaches for solving similar problems. Some cellular systems

are designed to support voice and video data [17], however it cannot support most video

applications with high bit rate. The high rate video sources in current delivery approaches

are usually adapted through a variety of schemes, such as scalable video stream extraction

[72], transcoding [95] and summarization [53] before they can be accommodated by the

wireless channel.

The difference in video content segments results in different rate-distortion characteristics.

The application requests different video content to watch and consume different amount

of resource in the network. Furthermore, the video playback rate varies against time, due

to the different video content. Both of such differences should be taken into account for

optimizing the network resource.

The resource measurement in video delivery is discrete. In most applications, the resource

is consumed by frame of GoP, rather than bits. Many previous resource allocation schemes

for elastic data fail to work under such measurement. The delivery requirements is difficult

to be satisfied and a new scheduling solution, which is specially designed for video delivery,

is required. Motivated by the challenges above, several cross-layer scheduling schemes and

resource allocation methods are proposed in the literature. In [60], researchers targeted on

maximizing the throughput of the network while maintaining fairness across multiple users

[58].

The source content and channel model are jointly considered in determining the optimal

delivery in many works. A thorough review of existing approaches can be found in [42]. In

this work, we focus on downlink video delivery where the media server is located far away
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from the wireless base station. Due to the infeasibility of adaptive video encoding in the

channel, we assume the video is pre-encoded and packetized at the server side. Then the

delivery problem is coming to a packet scheduling problem for the streaming of pre-encoded

video. Researchers focused on the rate-distortion characteristics of video and provided many

solutions to optimize the transmission of a pre-encoded sequence of video packets.

in this thesis, we start by formulating the optimization problem that is dependent on video

user request for video delivery. We target on improving the QoE of user by providing

video with higher quality, under the constraints of the network. A content-aware scheduling

scheme is proposed for packet-based video transmission over wireless Ad-hoc networks. The

delivery scheduling scheme is performed at each transmission time slot based only on the

current playback status. We consider each of the user requests as different consumption rate,

and the urgency of each request is also evaluated by the rate and the amount of data which

can be played. We focused on the gradient-based scheduling scheme proposed in [2] and

introduce a content-aware utility function to describe the urgency of each request, which

will determine the delivery result. We apply our proposed method on different network

conditions and compare the proposed solution with DCF scheme, which is widely used.

In this chapter we propose the Utility Coordination Function (UCF) scheme to achieve a

better delivery performance, and in this work we further extend the UCF delivery method

into an adaptive solution. An adaptive mapping function is introduced to guarantee the

video content package will be delivered to most urgent user request. In this work we also

reformulate the delivery problem into an optimization problem in allocation, which make

our proposed delivery scheme have a consistent performance to the theory output.
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The remaining of this chapter is organized as follows. In section 3.2 we present our utility-

based model system and an approximation for implementation is proposed in section 3.3.

Linear and Adaptive projection from utility to buffer window size is presented in section

3.4, and collisions are analyzed in section 3.5. The experiment setup and result will be

presented in section 3.6 and also analyzed. Finally we will conclude our work in section

3.7 and propose some future ideas.

3.2 Utility-based System Model

Motivated by the observation above, we propose Utility Coordination Function (UCF)

scheme in this work. The user’s request is differentiated by converting the urgency of

user demand into different random window size. User with higher urgency will report its

corresponding random number from a smaller window size, therefore the chance of deliv-

ery is enhanced. However the proposed UCF scheme fails to achieve adaptation demand,

i.e., the performance is highly parameter dependent. The parameter was fixed so that the

performance will not be stable when the raw data rate is variant or there is user join and

departure. In this work we proposed an Enhanced Utility Coordination Function (EUCF),

which will automatically solve such problems.

3.2.1 Notations

In the online video playback case, the general scenario is shown in Fig.3.1, for the kth user

in the network. The playback statistics is presented in the bar. In a real-time multiple user

request video network, watching and downloading of video clip occurs simultaneously. We
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denote the current playback time as xk(t), and the content until yk(t) is prepared for play.

Under such assumption, at time t, there are still τk(t) = xk(t) − yk(t) to watch, if there

downloading is terminated immediately. The concept of buffer time, which represents how

much content is still left in the current playback, is defined to describe the urgency of the

user request.
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Fig. 3.1: Four video user buffer status

Denote the buffer time in the video player for user k at time t as Bk(t), and for video

content delivery we assume the distribution as a discrete process, i.e., each time the server

distribute a given amount of data R0 , in a time interval 4(t) to one user. Therefore

each user have their respective delivery probability, and a probability metric is introduced

to describe the delivery possibility, denoted as {p1, p2, ..., pk}. In fact, the server will only

deliver the content to only one user. Therefore the numbers probability of distributed metric

should be mutual exclusive, i.e., one of them is one with the others zero.
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For the users in the network, they are requesting and watching various video clips. We

assume each user has different data consumption rate, denoted as {R1, R2, , Rk}.

This problem is to minimize the variance of Buffer time metric {B(1, t), B(2, t), , B(k, t)},

which guarantee the fairness between users with different data rate. In this work we denote

the mean value and variance of Buffer time metric as E(B) and V ar(B) respectively. Then

the buffer time metric can be computed as:

B(1, t) = B(1, t−4t)−R14t+R0p1(t)

B(2, t) = B(2, t−4t)−R24t+R0p2(t)
...

B(k, t) = B(k, t−4t)−Rk4t+R0pk(t)

(3.1)

It is easily generated from Eq. 3.1 that the V ar(B) will be reduced in one deliver cycle if

the packet is delivered to one user whose current buffer time is smaller than E(B). The

degradation in V ar(B) will achieved a maximal when the packet is delivered to the user

with least buffer time. In other words, the fastest convergence will occur when the server

deliver the content to the user with least buffer time in every delivery. However, without a

coordinator, the best case is hardly to achieve due to we cannot detect the current buffer

value at the server side. Therefore we are using the buffer window mechanism to determine

which user to deliver. Our proposed scheme will approximate the process on minimizing

the V ar(B), although it may be a little bit slower in convergence compared with the best

case.
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3.2.2 Buffer Time Optimization

In the previous section we target on minimizing the variance between buffer playback time

V ar(B). As presented in DCF mechanism, a uniform window size is set for each user during

the delivery. The delivery is determined by selecting a random number from each user’s

window and delivering the video content to the user with smallest selected random number.

However, the DCF mechanism does not take the different video content from each user

request into account, and therefore results in an imbalance delivery among users. In this

work we differentiate the request from each user and propose the following function, f(.),

to map the current playback time Bk(t) to window buffer size Wk(t).

Wk(t) = f(Bk(t)) (3.2)

Since the delivery is directly determined by window buffer size, which result in corresponding

delivery probability, as shown in Eq.3.3.

pk(t) =
Wk(t)
N∑
k=1

Wk(t)

=
f(Bk(t))
N∑
k=1

fk(t)
(3.3)

where pk(t) is the delivery probability for user k.

To minimize the variance V ar(B), we are trying to compare the V ar(B(t)) before and after
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the delivery. Before the delivery, the V ar(B) is defined as,

V ar(B(t)) =
1

N

N∑
k=1

[Bk(t)− E(B(t))]2 (3.4)

And after the delivery, the updated V ar(B(t)), denoted as V ar(B(t +4t)), is computed

as,

V ar(B(t+4t)) =
1

N

N∑
k=1

[Bk(t+4t)− E(B(t+4t))]2 (3.5)

Given the definition of B(t+4t) in Eq.3.1, we can expand the Eq. 3.5as following,

V ar(B(t+4t)) =
1

N

N∑
k=1

[Bk(t)−Rk4t− E(B(t)) + E(Rk4t)− E(R0pk(t))]
2 (3.6)

Given E(Rk(4t)) = Rk(4t) and E(R0pk(t)) = R0E(pk(t)) = R0
1

N
, the computation of

V ar(B(t+4t)) can be simplified by replacing the items in Eq. 3.6 into the following format,

V ar(B(t+4t)) = V ar(B(t)) +
N∑
k=1

R0(pk(t)−
1

N
)(2Bk(t)− 2E(B(t))) +R0(pk(t)−

1

N
)]2

(3.7)
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Therefore, the difference of variance before and after delivery is as follow,

4 = R0(pk(t)−
1

N
)(2Bk(t)− 2E(B(t))) +R0(pk(t)−

1

N
)]2 (3.8)

Assuming the packet is delivered to user k, then

pk =

0, when i = k

1, otherwise
(3.9)

Therefore, Eq. 3.11 is formulated into,

4k(t) = 2R0(1−
1

N
)Bk(t)− 2

R0

N

N∑
i=1,i 6=k

Bi(t) + C1 (3.10)

where C1 is a constant independent of Bk(t) and pk(t). The expectation of 4k(t) is,

E(4(t)) =
N∑
k=1

pk(t)4k(t)

=
N∑
k=1

2R0(1−
1

N
)pk(t)Bk(t)− (N − 1)R0E(B(t))

= 2R0(1−
1

N
)
N∑
k=1

pk(t)Bk(t) + C2

(3.11)

When the variance is decreased, the difference function 4(t) should be minimized; it can

be either positive or negative value. In this work we solve the problem by converting it into
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an equivalent optimization problem:

Minimize
N∑
k=1

pk(t)Bk(t)

s.t.
N∑
k=1

pk(t) = 1

(3.12)

Given a coordinator in the network, the user k with minimal Bk(t) can be selected to deliver.

However, in most wireless network applications, there is no coordinator in the system. In

our proposed approach, we utilize an optimal solution by matching function f(.) to generate

a proper transmission probability metric based on the current Bk(t) metric.

3.3 Utility-based Approximation

In traditional delivery approaches, without a coordinator, the server does not have any

information about the user’s current playback status. The delivery fails to be efficient

enough due to the miss of such information. In our proposed approach, we define a utility

function to describe the current playback status for each user, which will be transmitted to

the server together with the request. The utility function is an evaluation of the urgency

for the user request, defined as follow,

Uk (τ) =
τ1−αk
1−α , 0 < α < 1 (3.13)

In Fig. 3.2 we plot the shape of utility function. Generally in delivery, the urgency of
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Fig. 3.2: Alpha-utility Function Shape

request is usually higher when the playback content is closer to zero. So in this work we

adopt the convex utility function. The parameter α ranges from 0 to 1, to guarantee the

convexity. The gradient of utility is decreasing in buffer time τk , i.e., a higher utility

indicates a smaller τk and thus a higher priority is allocated to user k. Based on this, we

develop a distributed backoff window based coordinating scheme that reflects the gradient

by the backoff window size.

The urgency of video request could be described by the gradient of utility as follow:

U ′ (τ) = ∂U(τ)
∂τ = τ−α, 0 < α < 1 (3.14)
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The gradient of utility goes to infinity when the current playback time τk is closed to zero.

Therefore the probability for delivery should be highly increased.

3.4 Projection from Utility to Buffer Window

3.4.1 Linear Projection

In this section we implement the utility into the scheduling, to make the delivery more

efficient. In traditional DCF scheme, there is a random window for each user. Uniform

window size is set in DCF delivery to equalize the weight of users, however, in real video

delivery applications, users request should be differentiated due to different content. The

differentiation will result in a better efficiency of delivery. Motivated by the differentiation,

we propose a content-aware delivery scheme, named as Utility Coordination Function (UCF)

to globally optimize the utility in the network. The window size for each user is dynamic

and determined by the utility, which is a reflection of the urgency of video playback.

For each delivery, each user has a window size which is inversely proportional to the urgency

function. The definition is,

Wk = (βR0)
−θταθk = (βR0)

−θτλk (3.15)

where the Rk is the allocated sending rate to user k, R0 is the raw data rate of Wifi system,

β is a normalized factor, and θ is the ratio to map current buffer time to window size. In this
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way, the buffer time is mapped to the backoff window size by scaling and power mapping

with exponent αθ. We name this approach as Utility Coordination Function (UCF). In

this work we are using UCF to replace DCF in traditional wireless delivery to improve the

quality of service in video transmission.

Compared with the content-free DCF delivery, the UCF scheme allocates the resource based

on the request urgency, and thus takes the heterogeneous video contents into consideration.

The proposed approach provides more flexibility and achieves a better balance among users.

The set up of UCF system parameters are similar to the DCF case as shown in Table. I.

The only difference is in the computing of the backoff window size as in Eq. 3.15.

The mapping of the buffer time to the backoff window size needs to be normalized in the

actual implementation to reflect the system parameters, i.e., the maximum backoff window

size and the system rates for the video. This will result in a variety of choices for the

exponent l, as shown in the Fig. 3.3.

3.4.2 Non-linear Adaptive Projection

In previous section a proportional matching between deli-very chance and urgency is pro-

posed. The urgency of user request is taken into consideration in the delivery, however, for

the most urgent case; the importance is not highly emphasized. In this section we propose a

nonlinear mapping between the buffer time and window size. This improves the robustness

and is named as Enhanced Utility Coordination Function (EUCF).

In our proposed UCF delivery scheme, we are using the α utility function as shown in
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Fig. 3.3: Mapping from remaining playback time to buffer window size

Eq.3.13. In this utility function, larger α value will result in a higher urgency. Intuitively

the most urgent request should be emphasized with a significant weight so that it is more

likely to be delivered. Motivated by this we propose using variant α, instead of the uniform

one in UCF, in this approach. The range of α value should between 0 and 1 to guarantee

the convexity of utility function. The value of α is determined by the urgency of request,

which is highly related with the current buffer time. Therefore, the less buffer time, the

higher level of urgency with an α value more closed to 0. We are using

α = arctan(τk) (3.16)

The arctan(.) function maps the buffer time τk in (0, inf) into an interval (0, 1), which is

the corresponding α value. The function shape is concave so that the more urgent user will

be served with a much higher probability.

Replace the corresponding α in Eq. 3.15, the formulation of window size in EUCF approach
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is formulated as,

Wk = (βR0)
−θταkθk

(3.17)

where αk is differentiated between different requests.

3.5 Collision Solutions

The algorithm operates as follows, in backoff window update iterations, for a given buffer

status for video source k, the backoff window size is obtained from Eq.3.15. Then for a

given backoff window Wk for user k, a random integer backoff counter can be selected from

the interval [1,Wk] with a uniform distribution. Each user sets its counter to be a random

number from its own interval, and decreases the counter by one in selected slot-time [5].

All users will perform countdown simultaneously until one of the users reaches zero in the

counter. If the counter of user k is zero and when the medium is sensed idle, it obtains the

transmission opportunity and sends bits, where tdata is the data window size measured in

time, and R0 is the raw data rate of the Wi-Fi system. Wk is initially set to CWmin. After

a successful transmission, the buffer of the user who gets the transmitted data increases

and buffer size for the others reduces during the transmission time. So in the system, the

buffer information is refreshed and the gradient of the utility function of every user will

be updated in the next round. According to Eq.3.15, a higher utility gradient leads to a

smaller Wk and thus a larger transmission probability.

In this way, the most urgent user will gain the largest resource allocation in this transmission

cycle. The collision situations also need to be dealt with. It is possible that there are more

than one user reached zero in a certain round, then concurrent transmissions collide with
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each other. DCF scheme resolve this case by doubling the contention window for all users

involved in the collision, We adopt a similar approach in our proposed scheme. If there is a

collision at time ti, the size of the contention window of each user involved in the contention

will be doubled at time ti+1. Let us denote the window size of user k at time ti as Wk,i,

then

Wk,i+j = 2× (Wk,i + 1)− 1, 0 ≤ j ≤ m (3.18)

Wk,i+j = CWmax, i ≥ m (3.19)

where i represents the number of failed attempts. Here m is called the maximum backoff

stage, which can be obtained by solving the following equation,

CWmax = 2m × (CWmin + 1)− 1 (3.20)

After each successful transmission, Wk is reset for the new transmission attempt.

3.6 Experiments

In this section we present our simulation result with proposed and traditional approaches.

We apply UCF and EUCF to solve a real video delivery problem in wireless network, and

compare our result with DCF scheduling methods. The Wi-Fi System is typically set up

with parameters in Table 3.1.
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Table 3.1: MAC Layer Timing Parameters

Parameters Value

Slot Time(µs) 9
SIFS(µs) 16
DIFS(µs) 34
CWmin 15
CWmax 1023

ACK(µs) 44
R0(Mbit/s) 2

We study the performance of the proposed algorithm by running a MATLAB based simu-

lation. We are using the standard video sequence to simulate 4-users case as an example.

These four users are running 4 different video sequences with different rate-distortion char-

acteristics, and they all have the live video sessions over the same 802.11 air interface at

the same time. The sample of video content is displayed in Fig. 3.4. The data rate, video

content and initial buffer time is listed in table 3.2. Assuming in the network there are

some background traffics and overhead, we are having total rates of R0 for the four video

sessions.

Fig. 3.4: Sample Frames in our experiment
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Table 3.2: Initial Information of Four Sessions

User ID Video Rates Buffer(s)

1 NewsCIF@15Hz 208kbps 0.5
2 ParisCIF@15Hz 407kbps 1
3 StefanCIF@15Hz 649kbps 1.25
4 FlowerCIF@15Hz 801kbps 2.1

Table 3.3: Transmission Results for DCF Mechanisms

User ID Video τk (s) Freeze Time(s)

1 NewsCIF@15Hz 11.81 0
2 ParisCIF@15Hz 2.94 0
3 StefanCIF@15Hz 0 6.77
4 FlowerCIF@15Hz 0 9.37

3.6.1 Invariant Network

In this section we implement our proposed scheme and compare our simulation result with

DCF scheduling. To demonstrate the effectiveness of our proposed UCF scheme, we test

our method with 2 different scenarios.

1) General Delivery Process;

2) Delivery Process in under-serve case.

We firstly evaluate our performance in a general delivery process, i.e., the raw data rate

is sufficient to support all user’s request. In this experiment we set the raw data rate to

the summation of the consumption rate of each request. The corresponding buffer content

status evolutions are shown in Table 3.3.
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The DCF scheme is content-free and therefore the rates allocated over time are basically

equal to all users. However, due to different video consumption rates for the four video

requests, the ‘stefan’ video request goes into ‘freeze’ after 6.77 seconds and the ‘flower’

sequence goes into freeze at 9.37 seconds. The resulting video buffer states are plotted in Fig.

3.5. It is observed the two requests cannot be satisfied after a few seconds, or the users can

only get a lower quality video in a scalable video coding system. This drastically degrades

the Quality of Experience (QoE). Meanwhile, the ‘news’ video user obtains more resource

than its playback requirement, and thus the video content buffered increases rapidly. This

does not further improve its streaming quality but leads to a waste of the system resource

and potential buffer overflow. The imbalance between users is due to the uniform window

size setting and equalized delivery probability distributed to the similar resource allocation

among users without considering their content differences.
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Fig. 3.5: Four users simulation for DCF mechanisms

For comparison, we simulate the same general delivery process with the UCF scheme. The

resulting video buffer states are plotted in Fig. 3.6. The UCF scheme updates the backoff

39



window size every 20ms, and the resulting window size leads to a sending rate allocation that

reflects the urgen-cy in playback buffer status. Notice that in this case, the playback buffer

converges within 2 seconds, and the lower bit rate sequence news’s buffer time is pulled

down repeatedly in the process, while high bit rate sequence like flower’s buffer is saved

from underflow repeatedly in the process. Overall, the proposed UCF scheme works well

with 4-user video delivery process. Balancing the different rates and buffer states among

users over time, and the proposed backoff window control also works fine with exponent

λ = 4.0 and max buffered video content size of tmax = 8 seconds. The final buffer time

converges as the system resource and total video consumption rates reach equilibrium.
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Fig. 3.6: Four users simulation for UCF mechanisms

However, in the real application, it is also an usual case that there is no enough resource to be

allocated to users, which is names as under-serve. In order to demonstrate the effectiveness

of our proposed method, we also test the under-serve scenario. In this case the raw data

rate in the system is less than the total consumption of request, which is a worse and more

challenging network condition. We plot the resulting buffer states for each request in Fig.

40



0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

 λ = 4.0 tmax = 8.0 wmax=1024, EUCF Scheme 

B
uf

fe
r 

tim
e(

s)

 Video timeline (s)

 

 
News−208kbps
Paris−407kbps
Stefan−649kbps
Flower−801kbps

Fig. 3.7: Four users simulation for EUCF mechanisms

3.8 and Fig. 3.9.

UCF and EUCF scheme provides a smaller time scale distributed wireless resource alloca-

tion among video sessions, without the need to exchange information among video users or

to a centralized coordinator. At a larger time scale, some limited exchange of information

on the rate-distortion characteristics among video sessions can lead to much better rate-

distortion performance than totally content blind DCF as well. This is illustrated in the

Table 3.4. Without the exchange of information, DCF only allocates approximately the

same rates among the video users, this can only achieve certain video PSNR quality which

is suboptimal. Given the fact that the rate-distortion (R-D) characteristics are known, a

resource pricing scheme [37] that searches on the slope of the R-D functions, can actually

leads to an optimal rate allocation among video users. This serves as the session initializa-

tion set up and coupled with UCF/EUCF, we can achieve better PSNR qualities w.r.t to
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Fig. 3.8: Under-serve simulation for DCF mechanisms

Table 3.4: UCF/EUCF and DCF PSNR Comparison
User Video PSNRU (dB) PSNRD(dB)

1 NewsCIF@15Hz 39.84 36.86
2 ParisCIF@15Hz 36.22 36.17
3 StefanCIF@15Hz 35.71 33.94
4 FlowerCIF@15Hz 36.06 32.57

the DCF schemes as well, in addition to avoiding buffer underflow.

In TABLE 3.4, the first two video sequences achieve the similar PSNR in both schemes.

In fact, both sequences obtain more resources under the DCF scheme, but the streaming

quality can not be further improved with the excessive resource allocation. Users 3 and 4

achieve significant performance increase in the proposed UCF/EUCF scheme due to content-

aware utility driven resource allocation. The PSNR improvements compared with the DCF
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Fig. 3.9: Under-serve simulation for UCF mechanisms

case are 1.75dB and 1.49dB, respectively.

3.6.2 Variant Network Simulation Result

In order to prove the effectiveness of our proposed schemes, we test our method with 3

different scenarios.

1) There is a new user join the network;

2) There is a user leave the network;

3) One of the users changed his playback video clips to another, so that his/her data rate

is different.
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Fig. 3.10: Under-serve simulation for EUCF mechanisms

In this section we present our result for user join and departure scenarios. Given the 4 users

case, we first test the case for a new user join the network. The parameter for the new user

is set to a request of 1200kbps video sequence with initial buffer time 0. Figure 3.11 shows

the buffer time variation for each user in the network.

In the first half of the experiment, the buffer time of the initial four users are plotted. Even

the initial buffer time is not same, they achieve a similar level in a short time. We can

see from the result that the new comer successfully get his/her delivery in the first a few

rounds, and the buffer time is converged into the same level very quickly.

Then we test the user departure case. Assuming that one of the user (user 4 in this case)

leave the network, the buffer time result is plotted in Fig. 3.12.
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Fig. 3.11: User join with EUCF mechanisms

It is observed in Fig. 3.11 besides the left user, the buffer time of other users are uniformly

increased, and they will achieve the previous balance.

Our 4-user experiment case can be extended to k users. The two experiments above proved

that for any k-user situation, the EUCF system can provide stable performance to address

user join and departure. For multiple user join/departure, the variance can be divided into

several consecutive single user join/departure cases. The system is adaptive to user numbers

from time to time, and the new equilibrium is achieved shortly.

In this section we also test our proposed EUCF scheme on user request variation. Consider

the 4 user case, when one of the users (user 1 in this experiment) changes his/her request,

and the data consuming rate changes correspondingly. In our experiment, we set user 1 to
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change his/her consuming rate from 200kbps to 1200kbps. The result is shown in Fig. 3.13.

From the Fig. 3.13 we can see the buffer time of user 1 (marked as red in the figure) dropped

dramatically when the request changes. Then this user is delivered in a few cycles and the

system converges to a new equilibrium.

In the experiment above, we prove that the proposed EUCF is more robust with variance in

the wireless network. The algorithm deals with the change of user and request very quickly

with effective result. The experiment focused on a 4-user case only, but the scheme can be

extended to any number of users, which is a generally wireless network case.
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3.7 Summary

In this chapter, we discuss the parameter selection in our experiment. Several parameters

are introduced in our new proposed UCF and EUCF delivery scheme and these parameters

will determine the performance of delivery directly.
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Chapter 4

Spatio-Temporal Graph
Embedding and Spline Modeling
for Human Action Recognition

4.1 Overview

With the development of computing and communication technologies, video content anal-

ysis is becoming one of the most popular research areas in computer vision and machine

learning. Video action pattern recognition has wide applicability in video surveillance,

sports, entertainment, searching, human-computer interaction and many other activities in

daily life. Basically, the problem can be defined as determining a query action into several

pre-defined ones. The set of actions contains a semantic meaning in our daily life, such as

running, clapping, or jumping.

Actions can be categorized into different spatio-temporal patterns. Therefore the extraction

of appropriate features is critical to solve the problem. Various kinds of features such as
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luminance points [40], human body detection [108], spatio-temporal interest points [48] were

proposed in the literature and proved to have good performance on discriminative action

recognition.

Although the central problem looks very simple, there are several quite challenging sub-

problems, which are the subjects of intense research. Generally, these sub-problems can be

categorized into low-level pre-possessing, human body representation, and subspace learn-

ing. The low-level pre-processing applied on the original video clip leads to the information

extraction which is used as a representation of the human body for action recognition. The

subspace learning basically aims to finding a subspace projected to which the discrimination

can be preserved while reducing the dimensionality. A subspace can be learned in various

ways to train a system, which can recognize the query video clip automatically [39] [50].

Some people-computer interactive systems are also developed in this task. In such a kind of

a system, people can define some special points to help recognition. For example, in [108],

the hands, feet and head of people are manually marked by the user before training and

recognition. With this prior information, the performance is usually better than that of the

automatically systems.

In this chapter we propose a spline-based method, which is based on luminance spatio-

temporal features, to recognize different actions automatically. In the proposed method,

luminance video frames are vectorized and projected into a high dimensional space thus

forming a trajectory which is generated to represent the video. A spline approximation and

resampling is applied afterwards to make the trajectory smooth for processing. Finally a

distance metric is constructed in this way and a KNN classifier can easily be applied for
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recognition.

The chapter is organized into the following sections. The formulation for our proposed

methods is given in section 4.2. Solutions for proposed methods is presented in section 4.3,

simulation results are shown in section 4.3 and compared with other recent works. Finally

conclusions are drawn in section 4.5 and further works are included as well.

4.2 Problem Formulation

In this section we describe the problem formulation, along with several pre-processing steps:

video representation, noise reduction and subspace learning. Challenges in the human action

recognition tasks include human detection and representation, motion understanding and

analysis. By solving these problems with appropriate algorithms, the signals can be prepared

for learning and recognition.

Video clips are composed of frames which consist of pixel values. It is a challenging task

to detect the human body in video sequences, especially with large visual variations and

occlusions. Originally, researchers treated human as a single object in the frame so that

the human body can be separated from the background. Many solutions based on this idea

have already been proposed in the literature. Traditional methods focused on detecting and

recognizing different human actions, such as in [18] and [111]. The main techniques involved

are the so-called “object-extraction-based” method [85], which extracted a certain object

by image processing techniques, such as edge detection and object segmentation processing.

However, the appearance of human body in video sequences may not be very concrete and is
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easily corrupted by noise. This approach suffers from lack of robustness to lighting, nature

of the background, and occlusions.

To make algorithms more robust, different kinds of video representations were introduced to

capture the invariance in the video, such as local image features or spatio-temporal interest

points in [48], which provided a compact and abstract representation for patterns within a

given image. The applications included object detection, tracking, and segmentation. The

performance was demonstrated to be robust for variations of background. The so-called

Scale Invariant Feature Transform (SIFT) points were then proposed in [59], and a method

was designed for extracting distinctive invariant features based on the SIFT points. The

SIFT points were selected by calculating the Difference of Gaussians at every pixel and

representing as descriptors in different directions. Points of interest can also be encoded as

a histogram [81] and this kind of representation is combined with a Support Vector Machine

(SVM) [12] or some other probabilistic model. Using similar ideas, a generative graphical

model in [66] used the interest points for human action recognition. This method analyzed

the human action directly in the space-time volume without explicit motion estimation [82].

On the action understanding side, people focused on detecting the type of action by motion

analysis. After extracting the human in the video clip, the human can be represented by

several special parts, such as, arms and legs. The action is analyzed by detecting the motion

of these parts and models for different actions can be learned from the given motions during

the training process [108]. With the various backgrounds and different viewing angles, how

to effectively detect the critical points on human body becomes the main difficulty for these

approaches.
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To avoid the detecting difficulties in critical points, appearance based approach is proposed

to solve more general problems. Subspaces can be learned from the training video clips and

used to model the query ones. Traditional subspace modeling includes Principle Component

Analysis (PCA) [91] and Linear Discrimination Analysis (LDA) [4] and so on. Linear

Projection Preserving (LPP) is proposed in [32] to build a graph on understanding the

neighboring information.

Another popular approach is to treat the human action as a sequence and learn the model

from the difference in the temporal domain. Besides, in [31], a non-linear principal curve

approximation was developed. Intuitively, it is a curve passing through the center of the

data points cloud, with a smoothness constraint. In [46] and [47], it was demonstrated that

as long as the second moment of the data points cloud is finite, there must be a principal

curve, and an iterative polygonal principal curve learning algorithm was developed.

In this work, we model human action video clips as manifolds in the scaled appearance

space over time. Video clips of different human actions performed by different subjects under

different image formation conditions span a space with complex structure and relationships.

By scaling the original video frames into icon images, the local noise can be effectively

attenuated while the information about the action is maintained. The formulation can be

divided into video representation, subspace learning and matching problem.

4.2.1 Video Representation

Video representation is the first and also one of the most important sub-problems in video

pre-processing. A good representation should include the key point and useful information
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for discrimination while discarding unnecessary information.

Generally, in video processing, video frames are usually represented as a matrix. In our

method, we use the luminance information to keep the data in every single frame, with a

vector structure. To simplify pre-processing, pixel values are directly extracted as features.

The video frame is first down-sampled to a smaller icon to reduce spatial redundancy

together with noises, and then the icon is projected into a high dimensional space and

become a point. In this way, different video clips of different human actions performed by

different subjects under different image formation conditions span a space with complex

structure and relationships. The spatial features in the clips are kept in a vector form while

the temporal ones are included in the trajectory as well.

Fig. 4.1: Video frame representation by down-sampling and projection

Considering a video clip which contains n frames, with W × H pixels in each frame, the

kth frame Fk can be represented as a point in the space RW×H . Actually the frame of size

W ×H still contains more information than necessary, so down-sampling it will reduce the

number of elements while keeping adequate information for recognition. The down-sampling

step reduces the original frame down to a smaller w×h one. By down-sampling each frame

can be further represented as a point in a space of smaller dimension, i.e., Rw×h. After this

processing, the trajectory still contains sufficient statistical discriminative information for
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classification. The left part of Fig. 4.1 shows the down sample processing.

4.2.2 Dimensionality Reduction

To further simplify the processing, another pre-processing step is introduced by subspace

learning. In this step a global subspace is learned. By projecting the every sample points

to the subspace, the discriminative information in the set is maintained while the number

of dimension is reduced for faster processing. A global PCA [91] is applied here to reduce

the dimensionality of the space, consider a n-frame video sequence, given a frame Fk ∈

Rw×h, k ∈ [1, n] , the subspace learning can be expressed as:

xk = AFk = [a1, a2, ..., aw×h]Fk, aj ∈ Rd (4.1)

where the subspace projection A, of size d by w × h, is obtained from an unsupervised

local learning, with the objective of preserving the maximum amount of information, while

keeping the number of dimension an acceptable level. The global subspace projection is

shown in the right part of Fig. 4.1. Each aj in 4.1 is a d× 1 column vector of matrix A.

Figure 4.2 shows 3 groups of curves, each for a different human action in the Cambridge

hand gesture dataset in 3-D space. In the figure, video clips containing different actions

have different shapes, and as one can judge some actions are clearly different, while for

others it is rather difficult to distinguish them since the 3-D view cannot offer enough

visual information for doing so. Actually the geometry information of these curves already

contains sufficient statistics to recognize the different human actions. In the next 3 sections,
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Fig. 4.2: 3-D example for Cambridge Handgesture Dataset

we will propose our approach based on thus statistical information.

4.2.3 Maximum Likelihood Detection

Video clips are represented as trajectories in a high dimensional space Rd after the prepro-

cessing and dimension reduction. The representation is still not simple enough to discrimi-

nate the different action classes.

Assume that the training point set {x1, x2, ..., xn} in the Rd space is with Gaussian distri-

bution, then we can obtain the mean mx and the variance σx respectively. Given a query

frame q, and a training frame x, the likelihood that q and x have same action label is also
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under a Gaussian distribution, i.e.,

L(q;x) ∼ N(mx, σx) (4.2)

Since x is a Gaussian Mixture, the likelihood can be further computed as

L(q;x) = L(q;mx, σx) = 1

2πd/2σ
1/2
x

e−
1
2
(q−mx)T σ−1

x σx(q−mx) (4.3)

In this way, given a query trajectory q(t) and a training sequence x(t), t = 1, 2, ..., n, the

likelihood between q and x can be computed as:

L(q(t);x(t)) =
∏n
t=1 L(q(t);mx(t), σx(t)) (4.4)

If there are totally k training trajectories, we can compute the k likelihood and then decide

the action label of q(t) by using Maximum Likelihood decision as follow,

k∗ = arg maxk
∏n
t=1 L(q(t);mk(t), σk(t)) (4.5)

However, in the trajectory matching, another challenge is to match up the sequences with

different durations. Trajectories with different length may have different matching options.

If we consider every possible matching option, the growth indifference of duration will make

the matching complexity grows exponentially, which is computationally prohibitive. In this

work we compute point-to-point likelihood, which strictly keep the temporal information
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in the trajectory. It is constrained that points must be matched according to order. No

skipping, repeating or crossing is allowed for matching. In this way, the matching is simpli-

fied into a linear level. In order to find the optimal matching, likelihood of all the possible

matching offset between two trajectories are computed. The maximal value is selected as

the best evaluation. Therefore, the likelihood computation is corrected into,

L(q(tq);x(tx)) =



min
h

n∏
t=1
L(q(tx + h);mx(tx), σx(tx)) tq > tx

n∏
t=1
L(q(tq);mk(tx), σk(tx)) tq = tx

min
h

n∏
t=1
L(q(tq);mx(tq + h), σx(tq + h)) tq < tx

(4.6)

In this way, a time align process is performed and the matching computation is simplified

to a linear level. To achieve optimal matching, likelihood of all the possible matching offset

between two trajectories are computed. The maximal likelihood is selected as the best

evaluation. Then the decision can be made as,

k∗ = arg maxk suph
∏n
t=1 L(q(tq);x(tx)) (4.7)

4.2.4 Luminance Aligned Projection Distance Approach

The Bayesian-based likelihood solves the trajectory matching problem effectively, but not

efficiently. The computation for likelihood in Eq. 4.3 is very complicated and limits the

method to many real-time applications. In this section we propose a simplified version, the

Luminance Aligned Projection Distance (LAPD) approach, to efficiently solve the matching

problem.

58



Given a training set after dimension reduction, the parameter d, mx and σx are constant

for every query clip. So the computation of likelihood can be simplified by removing the

first multiplier factor in Eq. 4.3, i.e.,

L(q;x) = L(q;mx, σx) = e
−

1

2
(q−mx)T σ−1

x σx(q−mx) (4.8)

The exponential function is a monotone increasing function, and the detection of maximum

likelihood is equalized to finding the minimum Mahalanobis distance from query clip q to

mx. The distance measurement is more reliable when a subject is repeating same action

under illumination conditions or in different background. Especially, the subspace can be

directly obtained by decomposing the covariance matrix, S = σ−1σ = ATA. Based on

this observation, we propose a distance-based approach to detect the maximum likelihood.

Intuitively, the distance between two trajectories, is believed to be an effective and reliable

measurement for similarity. Samples which have similar content should have smaller dis-

tance, as compared to those with dissimilar content. To make the decision more promising,

we use a KNN classifier rather than maximum likelihood detection, which is equivalent to a

1-NN classifier. The classifier is applied after the distance metric is computed to label the

query clip.

Distance from Point to Trajectory

In this section the distance between a single point and a trajectory in a d-Dimensional

space, with subspace modeling A, is discussed.
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Basically, the distance between two points in the subspace A can be defined as Eq. 4.9.

d(x, y) = ||A(x− y)||2 = (x− y)TATA(x− y) (4.9)

where both x and y are points in Rd. Specially, when A is a unit matrix, the d(x, y) is the

Euclidean distance. Also, when A is the variance in the Gaussian training set, the distance

definition becomes a special variation of the likelihood defined in Eq. 4.3.

Furthermore, consider a point x and a trajectory Y composed of a group of points {y1, y2, ..., yn}.

Then similarly, the distance from a point x to the trajectory can be defined as the minimal

point-to-point distance, i.e.,

d(x, Y ) = min
i
d(x, yi) = min

i
||A(x− yi)||2 (4.10)

LAPD: Distance Between Trajectories

The distance between trajectories shows the similarity between two video clips. In previous

sections we compute the point-to-point and point-to-trajectory distance. In this section we

compute the inter-trajectory distance in a similar way.

To compute an effective distance which gives reliable similarity representation, the Lumi-

nance Aligned Projection Distance (LAPD) is proposed based on the following idea: given

a pair of trajectories, finding an optimal matching offset h in the longer trajectory started

at where the afterwards average point-to-point distance is minimized.

Suppose trajectories are denoted as xj,k(t), for curve j belonging to action class k, and for

each class, there are j = 1..nk curves, t is the frame index which varies from 1 to n. Then
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for an unknown video clip trajectory y(t) with m frames, and a known action video clip

x(t) of n frames, assuming m < n, the LAPD between x and y is defined in Eq. 4.11.

dLAPD(x, y) = min
h

1
m

∑m−1
t=0 ||A(x(t+ h)− y(t))||2 (4.11)

Let us assume that we have K action classes and each has j = 1..L training clips, xkj (t).

Then for an unknown clip y(t), recognition can be implemented based on the minimum

LAPD,

k∗ = arg mink minj dLAPD(y(t), xkj (t)) (4.12)

For each incoming query video clip C, we calculate the distance between C and those clips

in the training set which contains N training samples. An N × 1 distance array DN is

generated with different action labels. After sorting the entries of the distance array DN ,

the M smallest values are selected from the training distance array with the corresponding

action labels. Therefore, given the first M labels, voting is applied to count the number of

labels for each action class. The final decision is based on the label with the most votes.

In this method, we focused on finding the relationship between the two trajectories in

subspace. Instead of computing the distance directly, a best matching point is firstly found

by trying every possible offset in matching the two trajectories which minimize the distance

between them. The spatial information is maintained in the trajectory coordination, while

the temporal features are kept by continuous point-to-point matching. This processing

removes the effect brought by noise, and proved to be robust against some other factors

such as scaling and background changes.
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4.2.5 Spline Approximation and Graph Embedding

In this section, we are taking an appearance modeling approach based on graph embedding

[32]. Gesture video clips are modeled as trajectories in the scaled appearance space. Then

the trajectory Spline modeling and re-sampling and prototype merging are performed to

reduce the problem size, i.e., the affinity graph size, for the embedding part. Gesture

recognition is achieved by aligned projection distance metric in the appearance space from

spatio-temporal graph embedding.

The Locality Preserving Projection (LPP) converted the affinity matrix to a transformation

A by decompose eigenvalues as in Eq. (2), which is used as localized subspace modeling in

the later step.

xLXTα = λXWXTα (4.13)

However, the problem complexity is directly tied to the size of the affinity matrix W . Direct

embedding of all training dataset points is not feasible. On the other hand, in the dataset

each gesture action class is represented by many action video clips, and each clip with many

frames. For the limited number of data points that can be used in the graph embedding

appearance model, an efficient solution of allocating these points among training video data

set is required.

On the other hand, there is usually a lot of redundancy in the training dataset. Video clips

with same action are captured multiple times, which introduce many repeating statistical
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information. Based on the representation in previous section, we tested on some specific

trajectories and get the following figures, as shown in Fig. 4.3 and 4.4 respectively.

Fig. 4.3: Observation of Trajectories: Case 1

Fig. 4.4: Observation of Trajectories: Case 2

In Fig. 4.3 we plot the case that two different hands are doing the same action under

different luminance conditions. We are using the first two dimensional results obtained

from dimensionality reduction in the previous steps. From the figure we can see that the

illumination affect the result very much. The different illumination will enlarge the within

class distance, while the difference in subject is not that much.

Similarly, in Fig. 4.4 we plot the situation that same hand doing different actions in various
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illuminating background. We can see from the figure that the actions in different illuminat-

ing background (plotted in different colors) is faraway with each other. Therefore, a lot of

redundancy can be detected within the dataset.

With the observations above, a prototype merging method with spline approximation is

proposed to address the issue. For each action class, only L prototype trajectories are

allowed, and for each trajectory, only M data points are allowed to meet the total data

points number constraint. The L prototype is obtained by trajectory merging, which is

similar to the Vector Quantization(VQ). But instead of operating on points, curves are

merged with the LAPD metric, which searches a matching temporal offset among sampling

points on two trajectories. The detail of technique is already introduced in previous section

and we rewrite the formulation as follow,

d(X,Y ) = min
h∈[0,n−m+1]

1

m

m∑
k=1

‖X(k + h)− Y (k)‖2 (4.14)

where X and Y are two different trajectories and m and n are the number of frames in

X and Y . The merging is achieved by align two trajectories at the LAPD offset, merging

matching points by their average. A toy example is plotted in Fig 4.5. In each round the

closest two trajectories is merged into one and finally only L curves are left. Suppose two

curves of n-frame X0(t), and m-frame X1(t), with n > m, then the merged trajectory Z(t)
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Fig. 4.5: An example for Prototype Trajectory merging

can be given as,

Z(t) =


X0(t+ h∗) +X1(t)

2
, h∗ ≤ t ≤ h∗ +m− 1,

X0(t), otherwise
(4.15)

therefore, we can have,

h∗ = arg min
h∈[0,n−m+1]

1
m

m∑
k=1

‖X0(k + h)−X1(k)‖2 (4.16)

Spline [92] has a rich history in signal processing and in this work, we use spline approxima-

tion to model video action trajectories. Training data points are obtained from resampling
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the splines to meet the constraint on M and find better representation by equal distance

re-sampling and then sampling at equal curve length. For example, if M points are to be

sampled from a trajectory, X(t): t ∈ [0, 1], we have the n-point approximate curve length

of X at point k by,

Length(X) =
n∑
k=2

‖x(tk)− x(tk−1)‖, tk = k/n (4.17)

Therefore, the curve length is given by Length(X) = Length(tn), and those M curve

sampling points can be found by equal curve length sampling, i.e., the m-th point is found

by,

arg min
k
‖Length(tk)− m−1

M Length(X)‖ (4.18)

An example of M=7 is plotted in the Fig. 4.6.
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Finally the size of affinity matrix for LPP will become an acceptable number for processing

by choosing a proper L and M . Furthermore, we can control the kernel size parameters

to reflect different affinities among intra and inter class data points on re-sampled training

curves, i.e., L training curves for each action class with M data points each,

Wj,k =


eαd(xj ,xk), Case(i),

eβ1d(xj ,xk), Case(ii),

eβ2d(xj ,xk), Case(iii),

(4.19)

where parameter α is used for (i) intra-trajectory data points affinity, β1 and β2 are used

for (ii) intra-set, inter-trajectory points affinity and, (iii) inter-set, inter-trajectory affinity,

respectively. Set here refers to trajectories belonging to the same gesture class but different

lighting conditions as in the Cambridge Hand Gesture dataset. By introducing these pa-

rameters, the subspace learned from the training set will be more reliable since trajectories

belonging to the same gesture class can be closer than those belonging to a different class.

With these M trajectory points in each of L curves per gesture set, a graph affinity matrix

W is obtained by Eq. 4.19 . The choice of parameters M and L reflects a tradeoff between

the computational complexity and model effectiveness. The choice of kernel sizes and allows

for flexibility in re-shaping the local distances among trajectories.
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4.3 LAPD and Graph Embedding Solutions

4.3.1 LAPD Solutions

In this section we introduce our solution of DLFT and LAPD separately. The KTH data

set, which is tested in [48] and [81], is used as an example to illustrate the proposed method

in detail.

In this solution, given a query clip, the distance between the query and each training

trajectory is pairwise computed by Eq. 4.14, and a distance array is generated for each

query. The distance from the query to each action category is computed and a histogram

is shown in Fig. 4.7. The decision is made by selecting the smallest distance, which is quite

obvious in the figure.
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Fig. 4.7: Examples for Differential Trace for Different Actions
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The classification is based on a simple K Nearest Neighbor (KNN) classifier. The training

clips projected in LPP or LDA space are modeled as a 6-class Gaussian mixture, and the

classification is done by assigning maximum likelihood action labels. Experimental results

and discussions are presented in Section 4.4.

4.3.2 Graph Embedding Solutions

In this section we present our solution in spline approximation and graph embedding. The

processing includes trajectory merging, spline approximation, resample, and finally there is

an affinity metric construction session.

By trajectory merging we focused on reducing the number of trajectories in the training

dataset, trajectories that represent the same action class are iteratively merged until ter-

mination, and then spline approximation is applied to smooth the merged trajectories.

The parameter L and M is highly application dependent. L is the number of trajectories

left per class. The value of L is a reflection of within class statistical information. Too large

L will not reduce the number of training trajectories very much, while too small L may

cause the left trajectory not representative. In our experiment we manually set L = 3 and

we plot a merging example in Fig. 4.8.
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Fig. 4.8: Examples for Differential Trace for Different Actions

4.4 Experiments

We have tested our methods on two different datasets, the KTH human action dataset and

the Cambridge Hand Gesture dataset for human action recognition and hand gesture recog-

nition separately. These datasets cover variations in appearance, illumination, background

and spatio-temporal cues. Besides proposed approaches, we also tested the Dynamic Time

Warping method on the dataset above, and compare with some results obtained by other

approaches in the recent literature.

For all the datasets, our implementation is based on the leave-one-actor-out setting, where

the classifier is trained using all video sequences except those corresponding to the actor in

the test video. This processing is repeated many times until each video has been treated as

the test video.
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4.4.1 KTH Human Action Dataset

Dataset Introduction

To test the developed algorithm, we use the human activity data set from [81], which

contains 6 human actions, ‘boxing’, ‘handclapping’, ‘handwaving’, ‘jogging’, ‘running’, and

‘walking’. Actions are performed by a total of 25 subjects in 4 different settings:

S1: outdoors;

S2: outdoors, with camera zooming;

S3: outdoors, with different clothes on;

S4: indoor.

For each setting, each action has 4 video clips, with each segment’s start and end frame

number listed as a ground truth file. Each setting will have 4 × 25 × 6 = 600 actions, and

the data set comprises of a total of 2, 391 clips, with a small number of entries missing.

The video clips are of 160× 120 pixel resolution, and in processing stage, we down convert

the sequence into 20 × 15 icon image sequences for trajectory modeling. Some examples

from the action clips in [81] are plotted in Fig. 4.9. From left to right, the top row actions

are, walking, jogging, and running, and the bottom row actions are, boxing, hand waving

and hand clapping.
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Fig. 4.9: Sample frames in KTH human action dataset [48]

Simulation Result

In the pre-processing stage, we down-sampled the original video frame to 20× 15 icons and

applied a global PCA to reduce the number of dimension to 64. Thus the video sequences

are represented by trajectories in R64.

For the LAPD approach, the 64-dimensional feature is used again after pre-processing for

dimensionality reduction. We test two different scenarios, unsupervised learning and super-

vised learning respectively. The global PCA is an unsupervised subspace learning together

with dimensionality reduction and extraction of statistical information. We use this unsu-

pervised subspace for computation of distance between the query clip and the training ones,

and apply a KNN classifier to complete the classification. A confusion matrix is utilized to

describe the performance of pattern recognition. The numbers in the diagonal line is the

percentage for correct class, while the other place is the wrong cases. The confusion matrix

of unsupervised LAPD is plotted in Fig. 4.10, with an overall accuracy of 78.9%.
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 LAPD Performance on KTH Human Action, Accuracy = 78.9%

boxing

boxing 1.00 0.00 0.00 0.00 0.00 0.00
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clapping 0.00 0.99 0.01 0.00 0.00 0.00
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waving 0.00 0.05 0.95 0.00 0.00 0.00

jogging

jogging 0.00 0.00 0.00 0.64 0.14 0.23

running

running 0.00 0.00 0.00 0.27 0.58 0.15

walking

walking 0.00 0.00 0.00 0.24 0.18 0.58

Fig. 4.10: Performance on KTH human action recognition by unsupervised LAPD

For supervised learning, a LDA subspace learning is later applied to discriminate the differ-

ent patterns and to further reduce the number of dimension for easier LAPD computation.

The result is shown in Fig. 4.11, with an overall accuracy of 81.3%.

Our spline approximation method is also implemented in the experiment to prove the robust-

ness. Given the 64-dimensional features extracted in preprocessing step, the trajectories are

merged one by one until there are only a few discriminative curves per action class. Spline

approximation and resampling are then applied to smooth the curve for better representa-

tion. Finally graph embedding is applied and KNN classifier is utilized to categorize the

query trajectory into different pre-defined action classes. The confusion matrix is shown in

Fig. 4.12.
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 Supervised LAPD on KTH Human Action, Accuracy = 81.3%
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Fig. 4.11: Performance on KTH human action recognition by supervised LAPD

4.4.2 Cambridge Hand Gesture Dataset

Dataset Introduction

To demonstrate the robustness and versatility of the algorithm, we also tested another

dataset, the Cambridge Hand Gesture Dataset, which is composed of 900 image sequences

with 9 different hand gesture classes [43]. These classes are defined by 3 primitive hand

shape: Flat (F), Spread (S) and V-shape (V), and 3 primitive motion directions: Leftward

(L), Rightward (R) and Contract (C). There are totally 9 gesture classes by combining the

two factors above. Each class contains 100 image sequences, with 5 different illumination

cases. An example is shown in Fig. 4.13.
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 Spline Approximation of KTH, Accuracy = 83.3%
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Fig. 4.12: Performance on KTH human action recognition by Spline Approximation and
Graph Embedding

Each sequence in the dataset has a different number of images, varying from 37 to 119, and

the total number of image is 63, 188. The original image is a 320× 240 color image, and we

firstly reduce the number of data by converting it to gray image and then down-sample it

to a 32 × 24 icon. We then process these icons with the LAPD and spline approximation

approach, respectively.

Simulation Result

The hand is composed by many connected parts and the motion is highly articulated.

Without prior information, it is difficult to guess what kind of appearance is contained in
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Fig. 4.13: Sample frames in Cambridge hand gesture dataset, (top) 9 gesture classes by
3 motion directions and 3 hand shapes; (bottom) 5 different backgrounds with different
illuminations [43]

the image even if it is known to be a hand. To better discriminate the appearance, we keep

32× 24 pixels as icons in the preprocessing. For a global dimensionality reduction, a PCA

is applied on R32×24 and 64-dimensional trajectories are treated as representations for the

image sequences for further processing.

In the LAPD approach, we test two different scenarios, unsupervised learning and supervised

learning respectively. In both cases we repeat the computation steps as the ones in the KTH

dataset, and report the corresponding result in Fig. 4.14 and Fig. 4.15. The numerical

recognition accuracy is 80% and 85.1% respectively. For the individual set testing, the

comparison results are listed in Table 4.1.The numerical result is comparative to the one

in [43] and better than some other results reported in the literature.

The result obtained from spline approximation and graph embedding is presented in Fig. 4.16.
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 Unsupervised LAPD Recognition Result on Cambridge, Accuracy = 80%

F−L

F−L 0.95 0.00 0.01 0.03 0.00 0.00 0.01 0.00 0.00

F−R

F−R 0.00 0.87 0.02 0.01 0.04 0.00 0.00 0.06 0.00

F−C

F−C 0.00 0.01 0.91 0.00 0.00 0.03 0.00 0.02 0.03

S−L

S−L 0.12 0.00 0.03 0.72 0.00 0.02 0.05 0.00 0.06

S−R

S−R 0.00 0.20 0.06 0.00 0.69 0.00 0.00 0.04 0.01

S−C

S−C 0.06 0.01 0.08 0.04 0.02 0.63 0.03 0.01 0.12

V−L

V−L 0.03 0.00 0.01 0.00 0.00 0.00 0.91 0.00 0.05

V−R

V−R 0.00 0.06 0.00 0.00 0.02 0.00 0.00 0.83 0.09

V−C

V−C 0.02 0.00 0.04 0.00 0.00 0.05 0.11 0.06 0.72

Fig. 4.14: LAPD Performance on Cambridge Hand Gesture Dataset

Table 4.1: Hand Gesture Recognition Accuracy Comparison(%).
Method Set1 Set2 Set3 Set4 Set5 Average

LAPD(Unsupervised) 83 81 77 80 79 80.0
LAPD(Supervised) 91 85 78 84 87 85.1

Spline 87 76 75 84 87 81.5
TCCA[43] 81 81 78 86 − 81.5
Nieble[66] 70 57 68 71 − 66

The numerical result is about 81.5%.

The object of appearance information in the hand gesture data set is mainly the hand, and

the change in the background is a factor to test the robustness of any algorithm. From our

KNN result, we found out that in the correct cases, the nearest trajectory in the training set

is always in the same class and same background as the query clip. The effect of the changing

of the illumination of the background will not influence the recognition performance.
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 Supervised LAPD Performance on Cambridge, Accuracy = 85.1%

F−L

F−L 0.92 0.00 0.00 0.05 0.00 0.01 0.02 0.00 0.00

F−R

F−R 0.00 0.82 0.00 0.00 0.08 0.02 0.00 0.03 0.05

F−C

F−C 0.00 0.01 0.95 0.00 0.01 0.01 0.01 0.00 0.01

S−L

S−L 0.10 0.01 0.00 0.76 0.00 0.10 0.02 0.00 0.01

S−R

S−R 0.00 0.15 0.00 0.01 0.75 0.03 0.00 0.02 0.04

S−C

S−C 0.02 0.00 0.00 0.02 0.00 0.91 0.00 0.00 0.05

V−L

V−L 0.01 0.00 0.00 0.01 0.00 0.00 0.89 0.01 0.08

V−R

V−R 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.77 0.19

V−C

V−C 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.02 0.89

Fig. 4.15: LAPD Performance on Cambridge Hand Gesture Dataset

As shown in both [43] and our LAPD solution, there are several confusions between the

class spread and flat, for either left or right direction. These are mainly due to very little

difference in appearance, and the details are lost when sampling the original frames down

to a small icon.

4.4.3 Parameter Selection in Experiment

In the experiment, there are some degree of freedom to choose parameter settings. Some

of the settings will affect the performance of proposed method. In this section, we present

our selection of parameter and give corresponding analysis on the reason to select.
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 Spline Approximation of Cambridge Handgesture, Accuracy = 81.5%

F−L

F−L 0.93 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.00

F−R

F−R 0.00 0.86 0.02 0.00 0.04 0.00 0.00 0.07 0.01

F−C

F−C 0.01 0.01 0.92 0.00 0.01 0.03 0.00 0.00 0.02

S−L

S−L 0.14 0.00 0.00 0.82 0.00 0.01 0.00 0.00 0.03

S−R

S−R 0.00 0.13 0.01 0.00 0.82 0.04 0.00 0.00 0.00

S−C

S−C 0.04 0.03 0.03 0.06 0.04 0.70 0.00 0.01 0.09

V−L

V−L 0.00 0.00 0.00 0.01 0.00 0.00 0.91 0.00 0.08

V−R

V−R 0.00 0.04 0.00 0.00 0.01 0.02 0.00 0.78 0.15

V−C

V−C 0.02 0.01 0.01 0.01 0.00 0.06 0.12 0.12 0.65

F−L

F−L 0.93 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.00

F−R

F−R 0.00 0.84 0.02 0.00 0.05 0.00 0.00 0.07 0.02

F−C

F−C 0.00 0.02 0.92 0.00 0.01 0.03 0.00 0.00 0.02

S−L

S−L 0.15 0.00 0.00 0.78 0.00 0.04 0.01 0.00 0.02

S−R

S−R 0.00 0.12 0.01 0.00 0.82 0.04 0.00 0.01 0.00

S−C

S−C 0.04 0.02 0.06 0.06 0.04 0.70 0.00 0.01 0.07

V−L

V−L 0.00 0.00 0.00 0.01 0.00 0.00 0.89 0.01 0.09

V−R

V−R 0.00 0.05 0.00 0.00 0.02 0.01 0.00 0.79 0.13

V−C

V−C 0.03 0.01 0.02 0.00 0.00 0.04 0.13 0.11 0.66

Fig. 4.16: Spline Performance on Cambridge Hand Gesture Dataset

Resolution and Dimensionality

As presented in Fig. 4.1, the preprocessing of the video sequence is composed by two se-

quential steps, down sample and PCA. In this section we will analyze the related parameter

selection in these two steps.

The first step is down sample. Given the original video frame with resolution W ×H, the

preprocessing down sample it to a smaller icon w × h. In our experiment, we find that the

resolution of icon will not greatly affect the recognition accuracy, but larger icon will take

longer time for processing. Therefore, according to the size of each dataset, we choose the

minimal icon size that can maintain the statistical information. In the KTH human action
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dataset, we are using 20 × 15 icon. In the Cambridge hand gesture dataset we are using

icons with resolution 32× 24 due to more detail required.

The second step in preprocessing is PCA for dimensionality reduction. This operation is a

tradeoff between the speed and accuracy. More dimension will preserve more useful informa-

tion for discrimination, but slow down the recognition processing as well. The performance

will also be drastically degraded if there is no sufficient features. Therefore a proper num-

ber of dimension is very important for recognition performance. In our experiment we

are using the following approach, during PCA we have the eigenvalue for each dimension

in subspace. The importance of dimension is reflected by the corresponding eigenvalue.

Eigenvectors with larger eigenvalue will have more contribution in discrimination. So we

sort the eigenvalues in descending order and preserve the first k dimension.

The first k eigenvector contains the most important statistical information in recognition,

and in Fig. 4.17 we plot how many percentage of information is preserved of KTH action

dataset as an example. The percentage is defined as follow,

ρ(k) =

k∑
n=1

λn

N∑
n=1

λn

(4.20)

where λn is the nth eigenvalue in PCA computation, and totally there are N eigenvalues.

We summarize some important value in Fig. 4.17 and show it in Table 4.2,

From table we can see that more than 97% of information is preserved in the PCA when
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Fig. 4.17: Parameter selection in PCA for dimensionality reduction

Table 4.2: Selection of number of dimensionality.

Number of Dim. Percentage (%)

16 83.1
32 89.9
64 95.1
128 97.0
256 99.4

64-D features are extracted, which is already enough to achieve a satisfactory recognition

accuracy. Therefore in our experiment, we finally reduce the number of dimensionality

to 64. Similarly, in the Cambridge hand gesture dataset, we adopt the same setting for

dimensionality reduction.
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Table 4.3: Parameter selection in KNN classifier.

Value of k. Recognition Accuracy (%)

1 73.3
3 75.0
5 78.9
7 77.8
9 75.0

Classifier Parameters

As presented in previous sections, we are using KNN classifiers to decide the query label in

recognition in our proposed LAPD approach. In the classifier, k nearest neighbors are used

as reference, so the number of k is a parameter which can be freely set in the experiment.

Too small k value will cause unreliable recognition result, while too large k will result in

unrelated samples in the nearest neighbor set. Therefore, a proper k value is necessary to

achieve high recognition accuracy.

Since the query is classified by a majority vote of its neighbors, the number of k is better to

be odd. In 4.3, we list the possible values of k and their corresponding recognition accuracy

on KTH human action dataset.

From the table we can see that the performance is slightly different. The performance is

best when the value of k is set to 5. Therefore we select k = 5 as the parameter for KNN

classifier. The result is similar in other dataset, so to be fair, in our experiment we are all

using k = 5 for the classifier setting, in all the dataset.
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Parameters in Spline Approximation

Compared with LAPD approach, the spline approximation has more flexibility. In the curve

merge stage, there are two parameters can be tuned, the number of trajectories kept per

class and the number of points kept per trajectory.

By iteratively applying curve merge on the original trajectories, there are less and less

trajectories per class. However, the number of trajectories we keep will also affect the

recognition performance. Too little curves may not be representative enough to statistically

describe the action, while too much curves will slow down the online recognition speed. In

our experiment, there is 100 trajectories per class. Before the merging, a LAPD distance

metric is pre-computed, mean and variance of the distance can be obtained from the metric

and utilized to control the processing of curve merging. Then the merging is started from

the trajectory pair with minimal LAPD and terminated until the minimal LAPD of left

trajectory achieves the mean LAPD in the distance metric which is pre-computed. However,

this may cause the imbalance between different action classes. To address this issue, we

observe the merging process and manually set the number of trajectory per class to 15,

which is closed to the criteria mentioned above.

Another parameter to set is the number of points per trajectory, The meaning of this param-

eter is similar with the previous one: too many points will cause complicated computation

during the online matching, while too few points will lose the statistical information in the

trajectory, which will represent the action class. In our experiment, we reference to the

number of frames per video clip, and set the number of points per trajectory to 50, which

is closed to the median of all trajectories.
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Table 4.4: Parameter selection in graph embedding.

Value of α Recognition Accuracy (%)

0.25 81.0
0.5 82.1
0.75 81.3

Besides the spline approximation and graph embedding, there should also be parameter

selection issues in graph embedding section. According to the affinity matric construction

process, the parameter α, β1 and β2 will also result in different recognition accuracy.

The relationship for these graph embedding parameters is correlated with each other. It

does not make sense to set these parameters in a very large range, so we assume that all

of them are in the interval [0, 1]. Basically they are a description with different emphasis.

The parameter α is used to describe the within class affinity, so we set it as the basic value

in the processing. In our experiment, we test three different value, α = 0.25, α = 0.5, and

α = 0.75 respectively. For a fair comparison, we set the other two parameters β1 = β2 = 0.5.

The result is shown in Table 4.4.

From the table we can see that the parameter α will slightly affect the recognition accuracy.

In our experiment it is found that the recognition accuracy is best when α is set to 0.5.

Therefore, we use this value in our other experiment.

The selection of parameter β will be more trivial, in our experiment we just investigate the

relationship between two β. According to previous result, we set the value of α to 0.5, and

test three different scenarios, β1 = 2β2, β1 = β2 and 2β1 = β2 respectively. The numerical

result is listed in table 4.5.
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Table 4.5: Parameter selection in graph embedding.

Value of α Recognition Accuracy (%)

β1 = 2β2 81.1
β1 = β2 82.1
2β1 = β2 81.6

According to the experiment result, we find that the numerical performance is best when

β1 = β2. The physical meaning for this result is that the inter trajectory affinity should be

uniform, no matter which set it belongs to.

4.4.4 Result Discussion

The proposed LAPD and spline approximation approaches are mainly aiming at keeping

both spatial and temporal features, which are crucial for action recognition in video se-

quences. In the KTH dataset, the 6 classes of human action have different spatio-temporal

content: the three hand actions have more spatial information than the temporal one, while

the body action mainly consists of temporal features.

For LAPD, the dominant feature for recognition is the distribution of frames in the transfor-

mation domain. The aligned method is designed to address the difference in video durations.

As is proved in the experiments the performance is quite accurate, even with a small number

of training samples.

For spline approximation, the dataset is greatly simplified. There are redundancy in the

database, and the discriminative information can be maintained during the simplification.
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The spline approximation and resample is applied to smooth the trajectories. Graph embed-

ding is used to provide intra-class and inter-class relationship, in both spatial and temporal

domains.

Both methods above still have a common advantage: they are both content independent

and only very simple pre-processing is needed. They can be applied to both human action

recognition and hand gesture recognition. Theoretically the algorithm itself, is not depen-

dent on the video content, and for every possible video sequence, the method can offer good

recognition accuracy as long as the classes are defined clearly.

4.5 Summary

In this chapter, we proposed two approaches for video content recognition without object

level learning. The LAPD solution method we proposed is to utilizing aligned projection

distance approach. We still use the trajectory to represent the video clip and calculate

the distance between every two clips to define how similar they are to each other. The

spline approximation and graph embedding method is to apply statistical tools to simplify

the computation. The results show that the recognition accuracy is comparable or better

than other techniques in the literature. Regarding complexity, the off-line generation of

the distance matrix costs some time, and it will also increase with the size of the training

set. However, the on-line recognition for the query is very fast and is also suitable for most

applications when the training set is fixed.
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Chapter 5

Real-time mobile based Video
Recognition (RVR) system

5.1 Overview

In the previous chapter we proposed a global subspace learning approach, luminance aligned

projection distance, to solve the human action recognition problem. The video sequences

are represented as trajectories in the high-dimensional space, spatial and temporal statistic

information are utilized to find the similarity between such trajectories. The recognition

accuracy is guaranteed but the problem is not efficiently solved enough. Another issue

need to be concerned in the video pattern recognition is the timing complexity. Online

applications are popular nowadays with highly demand on efficient processing methods.

In this chapter we focus on improving the speed for recognition, which will be applicable for

real-time application, with satisfactory recognition accuracy based on the previous proposed

methods. We report and analyze the time consumption in each stage of the processing
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method and propose a scheme on how to complete the task in real-time. The proposed

approach can compute real-time pattern when capturing query video clips, given subspaces

training before the online application starts. In this way, the proposed method can balance

the recognition accuracy together with the processing speed.

In this chapter we will use the same video representation processing steps as in the previous

chapter. We report the detail time consumption of each processing step and focused on

finding and improving the bottleneck. Every step in the approach can be treated separately

for timing analysis.

In this problem the timing can be divided into two different types: online recognition and

offline training. Basically most applications are focused on improving the online recognition

time, while the offline training is not highlighted at all. On the other hand, there is a

tradeoff between the online and offline computation, so it is possible to improve the online

computation with the cost of offline.

The rest of this chapter is organized as follows. We will briefly introduce large-scale video

recognition problem by providing an overview in representation and indexing in section 5.2.

In section 5.3 we will present the efficient spatio-temporal modeling method based on the

approach proposed in chapter 4. In section 5.4, we present our real time application by a

demo. Finally a summary session will be in section 5.5.
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5.2 Large Scale Database Processing

In this section we discuss the modeling problem for larger scale database processing. The

previous approaches for video feature extraction and modeling may not be reliable and

efficient enough. Faster solutions, especially those satisfy the real-time requirement, are

highly demanded in the literature

5.2.1 Preprocessing

In the preprocessing stage we convert a video sequence into a trajectory in a high dimen-

sional space. The preprocessing in this chapter follows the one in the Chapter 3, and we

briefly repeat the technique as follow.

The preprocessing starts from converting each video frame into a vector. Originally each

frame is represented as a RGB metric with an M by N by 3, where M by N is the original

resolution. Since the data is too large to efficient processing, a downsample is applied to

reduce the original image down to a small icon, with size m by n. Then the small icon is

resized as a vector as 1 by mn, therefore a video sequence with k frames can be represented

as a matrix k by mn.

A global PCA is applied to further reduce the number of dimension in the video processing.

The number of dimension per frame will be reduced down to d after the computation. Up to

now, one single video sequence with k frames is represented as a k by d matrix, and therefore

a dataset composed with N video frames will become N vectors in the d dimensional space.
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Table 5.1: Processing time for each computation step.
Computation Time Consumption(s)

Preprocessing 171
Global Learning 50

Dist Metric Comp. 6407
Curve Merge 26.4

Spline Approximation 81
Affinity Metric 70

5.2.2 Current Timing Analysis

As the training data set grows in size, it is a great challenge to model this local appearance

information. In this chapter, we focus on speeding up the processing by rearrange the order

of computation. We analyze the time consumption in our proposed method and locate the

bottleneck of processing speed. Then we focused on reducing the processing time so as to

shorten the total computation.

Our proposed approach, spline approximation and graph embedding are based on the LAPD

similarity measurement. After the preprocessing, trajectories are merged based on LAPD

and then the remained trajectories are smoothed by spline approximation. Then a graph

is embedded to complete the offline training. For online matching, the query video clip is

preprocessed into a trajectory and then matched to the training clips. We take Cambridge

Hand Gesture Dataset for example, and present the time consumption as follow.

In the table we summarize the time consumption for the whole dataset processing. From the

table it is easily observed that the distance metric computation and update is the bottleneck

of time consumption, which is also the target we are improving. In our proposed method,
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once we complete the merging of two trajectories, the distance metric is updated. This will

cause the computation of millions pairs of LAPD, which cost a lot of time.

5.3 Efficient Learning and Real-time Matching

In this section we propose a tree-based trajectory merging method, which can greatly reduce

the computation time with little degradation of recognition accuracy. In the proposed

method, we complete the curve merging in a parallel style. Once we compute the LAPD

distance metric, for the first half which are closed with each other, we complete the merging

for multiple pairs simultaneously. In this way, half of the trajectories will be merged, and

the other half remains unchanged. one trajectory in four will be removed in each merging

round. Therefore the totally processing time is greatly reduced.

5.3.1 Efficient Curve Merging

In our previous method, only one pair of curves is merged in each round, and the LAPD

metric is updated. The computation of LAPD metric is very time-consuming, as presented

in Table 5.1. Given n training trajectories per action class,
1

2
n2 LAPD computations are

required in computing the distance metric. Therefore the totally number of LAPD is,

N∑
n=L

1

2
n2 × nClass (5.1)

where N is the number of trajectories per class, L is the number of trajectories left per class,

91



and nClass is the number of classes. From this equation we can see that the computation

of LAPD is not critical, but in our previous solution, the number of computation is too

much to handle for real-time application. Therefore in this section we give our solution as

follow.

Instead of computing one pair of trajectories for merging, multiple merging are applied in

a parallel style, i.e., more than one merging are completed simultaneously. Denote ρ as

the percentage of trajectory merged per round, then q = 1 − 1

2
ρ percentage of trajectory

will be left. The range of q is between 0.5 and 1. As an extreme case, all the trajectory

pairs are merged and the number of trajectories will become half of original after merging.

Compared with Eq. 5.1, we update the new computation analysis as follow.

N∑
n=L

1

2
(qn)2 × nClass (5.2)

The limitation of computation is converged to
1

1− q2
N2 when the number of n is closed to

infinity. For comparison, the computation in Eq. 5.1 is about O(N3). With the growth of

dataset, the computation timing complexity is drastically reduced, and the corresponding

processing time, together with recognition accuracy, in Cambridge Hand gesture is listed in

Table 5.2,

From the table we can see that when the parallelization merging is applied, the processing

time will be greatly reduced, together with some accuracy degradation. Basically, the time

is greatly reduced when parallelization is applied, but not totally determined by the degree

of parallelization, in other words, when more pairs are merged in each computational round,
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Table 5.2: The updated processing time for distance metric update by different q
Number of q Time Consumption(s) Recognition Accuracy(%)

Original 6407 82.1
0.9 379 82.0
0.8 201 81.7
0.7 141 80.7
0.6 109 78.1
0.5 98 70.4

the time is not further reduced very much. However, on the other hand, the recognition

accuracy is degraded due to the inaccurate merging. Therefore, we can find out a balance

between the timing and accuracy.

For some online network or cloud computing, the saving in time is of great contribution.

The N times saving in time complexity can be translated to the N times larger scale one

algorithm can handle. The efficiency of algorithm will be greatly improved once the timing

complexity is reduced.

5.3.2 Real-time Recognition

Besides the offline training processing, the timing complexity in the online recognition is

much more important in the cloud-based video pattern recognition. A query video clip is

uploaded to the cloud and request a class information, the matching should be fast enough

to satisfy the user demand. In this section we propose our real-time recognition solution.

Given a query case, there are three potential approaches to solve the recognition problem, i)

the client upload the video clip to the cloud and the cloud process the request by applying

93



a classification algorithm, then return the result; ii) the client download the whole video

database from the cloud and complete the classification at the client end; iii) the client

extract a uniform representive features with the cloud and send the features to the cloud,

the cloud process the uploaded features and compute the corresponding result, and then

return it to the client. Intuitively the approach ii is impractical due to the limited bandwidth

and the delay is not acceptable by most applications.

For approach i) and iii), it is nowadays more popular to do a feature extraction on the

clint side. Given a original video clip, the data will be several megabyte per second. The

uploading of original video clip with one hundred frames generally cost tens of seconds in

real application, which is not a very satisfactory user experience. Therefore in this section a

local feature extraction is applied. In our proposed approach, the video clip is represented

as a trajectory and uploaded to the cloud. The processing is not complicated and is easy

to be handled in real time. Based on our test result, the preprocessing time is 18ms per

frame, i.e., 30 frame can be processed in about 0.5s. As in most video standard, there is no

more than 30 frames captured per second, the preprocessing can be completed during the

capturing of live video clip, which achieve a real-time requirement.

With the growth of popularity for mobile applications, the video-based real-time processing

is also of highly demand today. In our proposed approach, the preprocessing is composed

by image resizing and reshaping, which is easy to be completed at the client side, by the

mobile devices.

Besides the client side, the cloud computation speed is also influencing the response time,

which is an important part of user experience. In this section we also present the detail of
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Table 5.3: Detail of Time consumption for Real-time Matching
Processing Time with Merging Time without Merging

Subspace Projection 4.85ms 4.85ms
LAPD Computing 43.2ms 1469ms

Classification 1.09ms 36.3ms

Total 49.14ms 1510.18ms

time consumption in online matching session, as listed in table 5.3.

In the table we also list the time consumption without trajectory merging. It is observed

that the timing complexity is greatly reduced by more than 95% after curve merging.

The 49.14ms online matching speed enables the proposed approach to handle most real-

time video processing applications, also makes the proposed method be suitable for larger

database processing.

5.4 Real-time Demo

In this section we provide a video demo to show an application with our proposed method.

In the demo we proposed to use a smart cell phone as a user and use a personal computer

as the cloud. The mobile user will capture an action video clip and then ask the cloud for

recognition. The task for mobile devices and the cloud is listed in Fig. 5.1.

As shown in the figure, after live video is captured from the mobile device, there will be

a computation partition session. In this session the technique steps will be divided into

“processed in cloud” and “processed in mobile”. In general, there can be three potential

approaches for the recognition: 1) mobile user uploads the captured video to the cloud, and
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Fig. 5.1: Flow Chart of the Demo

then the cloud will compute the recognition result and reply to the user. 2) the mobile user

download the dataset on the cloud and complete the recognition by itself. 3) the mobile

device extracts some representative features and upload these features to the cloud, the

cloud complete the recognition with the features and send back the result to user. Due to

the complicated computing algorithm and limited computation and storage resources in the

mobile devices, the first two approaches are proved to be less efficient, in this demo we are

using the third approach for processing.

Fig. 5.2: Training Video Processing Procedure

In our processing, the mobile user will do the following jobs, showing in Fig. 5.2: capture

live query video clips, and extract the trajectory of video as presented in Chapter 3, a

PCA will be applied to further reduce the number of dimensionality, and the trajectory

after PCA will be uploaded to the cloud. On the other side, the cloud will receive the
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lower-dimensional query trajectory, and complete a spline approximation with resample as

described in Chapter 3. Besides, the cloud will also complete pre-processing, training, and

matching algorithm with its powerful computational ability and its sufficient storage space.

Fig. 5.3: The Semantic Meaning of the Actions

Fig. 5.4:Testing Video Processing Procedure

Fig. 5.4: Testing Video Processing Procedure

Fig. 5.5:Testing Video Mobile Implementation Procedure-Method 1

Fig. 5.5: Testing Video Mobile Implementation Procedure-Method 1

Fig. 5.6:Testing Video Mobile Implementation Procedure-Method 2

To simplify the implementation, we take four out of the nine classes in the Cambridge

dataset as used in Chapter 3. The sematic meaning of the action is shown in Fig. 5.3. The

four actions represent the action “up”, “down”, “left” and “right” respectively. This can be

used for some game operation, direction and other related applications. The performance
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Fig. 5.6: Testing Video Mobile Implementation Procedure-Method 2

is proved to be real-time. A snap shot of video is shown in Fig. 5.7.

Fig. 5.7: Snapshot in the Real-time Demo

5.5 Summary

In this chapter we investigate the real-time action recognition problem, which is a challeng-

ing problem due to the large amount of video data and the difficulties in pattern recognition.

We analysis the time consumption of each sub-step and propose some operations for sav-

ing computation time without performance degradation. We target on both effective and

efficient recognition method, and it is proved to be so in the demo.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Content-aware video delivery, analysis and understanding are highly demanded for various

online application nowadays. There are already lots of related research work and prototype

in the literature. The main problem for video processing is that the large amount of data,

the transmission will be less efficient if the content is not considered. But on the other

hand, the transmission will not require any kind of complicated computation. For another

problem, video pattern recognition, the statistical information for understanding is difficult

to be detected due to a lot of redundancy in the raw data. On the other hand, for content

analysis problem, there are only several potentially answers, which can be easily described.

The main challenge in such problem is how to effectively extract the useful information

from large amount of data, especially in a very short time for online applications.

In this thesis, we investigated the video delivery and pattern recognition in detail and
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improve the QoS and action recognition accuracy by proposing utility-based scheduling

method and efficient representation and matching solutions. We target on finding a content-

aware solution which is suitable for a global optimal delivery scheme. The urgency of various

request is evaluated by utility, and resource is allocated to the highest utility in the long

run.

For video pattern recognition, we aim at finding a comprehensive representation for each

video and achieve the reduction in data amount together with preserving the critical infor-

mation. We focused on three different aspects for the processing, effective machine learning,

global representation and processing, and timing analysis. Each of these aspects improved

the performance either by enhance the recognition accuracy or reducing the computation

cost and processing time.

• For the wireless video transmission and delivery problem, we focused on improving

the global user utility by evaluate every request in the format of utility. Traditionally,

every user is equally treated with each other, and resources are strictly averagely

allocated to users. However this scheme is not suitable for some video applications.

In video delivery the users requests are different with each other due to different rate

on different video content. In this thesis content of the video request is taken into

account in this thesis as a reference for the user’s condition. We propose a utility as

a measurement of the QoS and optimize the global utility. It is proved by experiment

that the content-aware method is better than traditional methods.

• For the video representation and processing, we detect the visual information from

each pixel value. However, millions of pixels exists in one video frame and it is

infeasible to process all of them. Down sample is applied to reduce the number
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of pixels and remove the image noises, followed vectorization of video frame and

projection to a high dimensional space. In this way each video clip is represented

as a trajectory in the space. We then use PCA to globally reduce the number of

dimensions for further simplify the data to be processed together with preserving

the most important information for each frame. Similar statistical data are found

in similar video sequences, which is embedded in the trajectory. We apply high-

dimensional curve merge to further reduce the number of trajectories per class, and

then a spline approximation is applied to smooth the merged curve. Thus merging

operation will align the trajectories with different durations. After that there will

be a graph embedding session, which will emphasize or deemphasize the inter-class

differences and the intra-class differences. In the online matching stage, every query

video clip is preprocessed and a KNN classifier is applied to categorize the query

into one of the pre-defined classes. Simulation result proved the effectiveness of both

approaches, together with the robustness by using multiple dataset.

• For the real-time application part, we extend our approaches into more detail timing

analysis. Both of the offline training and online matching time complexity is ana-

lyzed. For offline training, a parallel curve merging scheme is proposed to save the

computational time, which drastically reduce the time consumption and accelerate

the processing. For online matching, we apply the feature extraction in the client side

and upload the features to cloud for categorization. Demo is proveded to prove our

result by giving a real-time performance.

The proposed schemes are tested in Ad-hoc wireless video transmission problem and human

action recognition problem. However it is not limited in such applications since the algo-

rithm proposed can be generally applied for other kind of media processing, for example
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image transmission, text classification, and so on. The exploration of our proposed method-

ology can create a comprehensive understanding that improves upon the state-of-the-art.

Numerical result is competitive or better than the ones in the literature. Robustness of

the proposed schemes is also demonstrated by result from various dataset with different

challenges.

6.2 Future Research

The work presented in this thesis can be extended in different aspects in the future. We

summarize some potential directions as follow.

• First, for the wireless video transmission problem, currently the formulation is not in

a close form. The performance is proved to be very closed to optimal but still a small

distance from optimal. For more users case, the computation in the server side will

become more and more complicated, so there should be some capacity for the problem

handling. We can also extend the problem in some other network protocol.

• Second, for our proposed global representation and subspace learning, there is still

room for improvement. Various kinds of classifiers could be used to replace the current

GMM and KNN one, such as SVM, in our proposed solution. For LAPD approach,

besides the spline approximation based processing method, there are still other oper-

ations, such as combining the modeling problem with some classical modeling, such

as HMM.

• Third, there is always a trade-off between the performance and time complexity. There

can be more alternative solutions to our proposed method. The approach should be
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highly dependent on application, which will be the mainstream in future.

• Finally, a possible research direction apply our proposed framework in other problems,

such as video searching and retrieval.
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