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I 

 

Abstract 

Metallic glasses (MGs) have attracted scientific and technological attention due to 

their excellent physical, mechanical and chemical properties. Although the brittle 

nature of bulk metallic glasses (BMGs) limits their practical applications, it has been 

found that some new kinds of amorphous alloys show improved ductility through 

introducing the pores or secondary phases in their microstructures. The improved 

ductility is also observed in MGs with decreasing sample sizes. To date, the 

mechanisms governing the improved ductility in those MG systems are still under 

debate. Thus for the design of MGs for engineering applications, it is urgent to 

explore the mechanisms of the improved ductility. In this work, we use the 

phase-field modeling methods to study the origin of improved ductility in porous 

BMGs, in-situ formed BMG matrix composites and nano-sized MGs which are 

typical MG systems showing ductility. 

 

Through simulations on the plastic deformation in porous BMGs, we found that the 

pore with much smoother surface can detour the incident shear bands, resulting in the 

improved ductility. On the other hand, adiabatic shear banding occurs when the pores 



 

 

II 

 

are not filled with gas or are in vacuum, avoiding the brittle failure due to the 

generation and multiplication of new shear bands. 

  

The development of the in-situ formed BMG matrix composites containing dendrite 

microstructures is another outstanding advancement of the applications of the 

metallic glasses. In this work, the effects of two factors of the dendrites, i.e., the 

rotation angle representing the dispersion pattern and the fracture energy of such 

crystalline phase, on the plastic deformation of BMG composites are discussed. It is 

observed that the tips of the dendrite play a major role in the bifurcation and detour 

of the shear bands when the rotation angle is from 0 to 15. It is found that the 

dendrite with high fracture energy can achieve high crack resistance and then cause 

more obvious bifurcation and detour of the shear bands, while the ones with lower 

fracture energy can cause more fracture area (both in matrix and in crystalline 

phases) to absorb more strain energy, which could result in improved ductility of the 

BMG composites. These features observed from simulation are useful in explaining 

the mechanisms of the improved ductility in the BMG composites and are also 

helpful in guiding the design of those composites for engineering applications. 
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Besides, the improved ductility and mechanical strength are also observed in the 

simulation when the size of the sample decreases, especially to the nano-scale (20 

nm - 200 nm). Furthermore, some meaningful features and phenomena such as the 

emergence of necking and ductility during deformation are revealed from the 

simulated results and are found to be consistent with the experimental results. In this 

work, we elucidate two factors that lead to the size effect on the mechanical 

properties of MG nanowires, i.e., the fractions of initial deformation defects in the 

nanowire interior and on the nanowire surfaces. With the decreasing diameter, it is 

noted that the initial states of the deformation defects on the surfaces which are 

difficult to be quantitatively measured by experiments, play an important role in the 

deformation of MG nanowires. Based on the results of simulations, the Hall-petch 

like relation between the fracture strengths and the sample diameters are derived, 

which can well explain the discrepancies among the previous reports in literatures.  
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Chapter 1 Introduction 

Metallic glasses (MGs) have attracted scientific and technological attention since the 

development of Au25Si75 MG using the rapid cooling method by Pol Duwez 

[Klement et al. 1960]. Unlike crystalline solids, the structure of metallic glass is 

topologically disordered without any translational or orientational long-range order. 

The chemical, physical and mechanical properties due to the random close packing 

atomic structure are promising for further potential applications. Some industrial 

applications are shown in Figure 1.1. Among them, making golf plate may be the 

first step for the application of MGs in the business field as shown in Figure 1.1 (d) 

[Johnson 1998; Inoue 2005]. Their low elastic modulus and the lower vibrational 

response could favor controlling the ball. It could also be useful in surgery implant 

due to their good biocompatibility and easy forming into desired shapes, as shown in 

Figure 1.1 (a-c) [Huang et al. 2009; Schroers et al. 2009]. Besides, it was also used 

as the Corilolis mass flowmeter or pressure sensors, as shown in Figure 1.1 (e) 

[Nishiyama et al. 2007], and it was reported that the sensitivity was much higher 

than those made from crystalline materials. With the development of the glass 

forming ability, new potential applications were further discovered [Schroers et al. 
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2007; Huang et al. 2009]. However, until now the application of this glassy system 

is still limited. The main reason is the brittle fracture due to the shear localization at 

room temperature. Thus, it is an urgent need to disclose the mechanism of their 

deformation behaviors, especially the failure behaviors at room temperature, and 

develop new kinds of MGs or their alloys that exhibit good ductility. 

 
Figure 1. 1 Applications of glassy alloys in the industrial products. (a) Zr-based BMG surgical razors. (b). Zr-based BMG blade. 

(c). Commercial S-15C blade. [Huang et al. 2009] (d). Commercial application of glassy alloys in golf bars [Inoue 2005]. (e). 

Zr- and Ni-based glassy alloy diaphragms [Nishiyama et al. 2007]. 

 

In the present chapter, the deformation behaviors of the metallic glasses are first 

introduced. Some previous works in the literatures are reviewed to describe the 
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typical theories and models of the deformation mechanisms. The developments of 

the porous BMG and BMG composites containing in-situ dendrite phase are then 

introduced. The studies on the size effects on the mechanical properties of metallic 

glasses are discussed. It should be mentioned that the studies on the metallic glasses 

and their applications are widely conducted. The current brief review cannot cover 

all the aspects, and only the contents related with the present thesis research are 

focused on. The objectives of this thesis research are presented in the last section of 

this chapter.  

1.1 Deformation behaviors of metallic glasses 

The deformation modes of metallic glasses are complicated due to the various 

loading conditions and working environments. Until now, the localized deformation 

and the continuous viscous flow are found to be the main deformation modes in 

metallic glasses, which are reported to be affected significantly by the temperature 

and the strain rate. In the following sections, the deformation behaviors shall be 

described in details. 

1.1.1 Homogeneous deformation of metallic glasses 

The homogeneous deformation in metallic glasses usually occurs when the 
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temperature is greater than 0.7Tg [Argon 1979] and can be considered as the viscous 

flow in the supercooled liquid state. The significant ductility achieved through this 

deformation behavior results in a lot of potential applications of MGs.  

 

It was found that the homogeneous deformation behaviors were significantly 

affected by the strain rates and the transition between the Newtonian and 

non-Newtonian behaviors could occur [Kawamura et al. 1996; Nieh et al. 1999; 

Bletry et al. 2004; Reger-Leonhard et al. 2000; Chu et al. 2003; Chiang et al. 2004; 

Bae et al. 2004].The transition between the Newtonian and non-Newtonian 

behaviors of homogeneous deformation depends on the applied stresses and the 

strain rates. The Newtonian behavior can be characterized as the relationship that the 

strain rate is proportional to the applied shear stress. On the other hand, it was found 

that the stress sensitivity of deformation decreased rapidly when the fluid flow 

changes into non-Newtonian deformation behavior. Stressed at low strain rates, the 

MGs deform as a Newtonian fluid, and become non-Newtonian flow at high 

straining rate. The critical straining rate for the deformation behavior transition 

depends on the temperatures.  

 



 

 

5 

 

In spite of the differences of the two homogeneous deformation behaviors, 

considerable plastic strains can be obtained in the supercooled liquid region. By 

using this high ductility resulting from the homogeneous deformation, some 

sophisticated structural components can be fabricated and have been used in the 

MEMS and biomedical structures [Saotome et al. 2001a; Saotome et al. 2001b; Chu 

et al. 2006].  

1.1.2 Inhomogeneous deformation of metallic glasses 

Compared with the homogeneous deformation at elevated temperatures, the 

localized deformation are special features observed in the deformation of MGs. The 

typical stress-strain curves under different strain rate were obtained by Mukai et al. 

[Mukai et al. 2002a] through the tensile test in the BMG as shown in Figure 1.2 (a). 

It was found the deformation is brittle in tension. On the contrary, the deformation in 

compression was characterized by a certain amount of plasticity after yielding. It 

was also found that the serrated flow usually featured the early stage of the plastic 

deformation before the occurrence of fracture as shown in Figure 1.2 (b) [Mukai et 

al. 2002b; Wright et al. 2001]. The formation and propagation of shear bands could 

cause a sudden drop in stress, which is characterized by one individual serration in 
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the stress-strain curve. The load could be recovered after the arrest of the shear band 

propagation by the surrounding material. During the shear banding extension, the 

formation and arrest of shear bands could occur repeatedly and result in the serrated 

flow, characterizing the typical stress-strain curves for the compression tests. Unlike 

crystalline solids, the tensile and compressive yield behaviors were found 

asymmetric in metallic glass through the experiment studies [Mukai et al. 2002b; 

Zhang et al. 2003]. It was proposed that the yield of metallic glasses should obey the 

Mohr-Coulomb criterion rather than the von Mises principle. This conclusion was 

also proved by the atomic calculation [Schuh and Lund 2003]. According to the 

Mohr-Coulomb criterion, the fracture angle of the samples under compression and 

tension should be different, consistent with the experiments [Mukai et al. 2002b]. 

 

Figure 1. 2 The stress-strain curves of the tensile and compression tests. (a) Nominal tensile stress-strain curves at different 

strain rates [Mukai et al. 2002a]. (b). Stress-strain curve in uniaxial compression [Wright et al. 2001]. 
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It was found that strain softening characterized the deformation in the metallic glass 

alloys if the temperature is lower than 0.7Tg [Argon 1979] or the strain rate is high, 

which was significantly different from the strain hardening in the crystalline solid. 

After yielding, an increase in strain softens the MGs and drives the material to 

deviate from the elasticity. It was also suggested that the strain softening was a 

direct reason for the shear localization and the formation of shear bands. Through 

experiments with a Zr-based BMG, it was found the hardness decreased with the 

increasing deformation strain [Bei et al. 2006]. The results suggested that the 

sheared region was weaker than its surrounding regions with undeformed 

amorphous structure during the deformation. Besides, it was found that the free 

volumes increased during the localized shear deformation in DSC measurements 

[Kanungo et al. 2003; Cao et al. 2005, Liu et al. 2007]. By quantitative analysis of 

high-resolution transmission electron microscopy results, it was found that high 

concentration of nano-scale voids, resulting from the coalescence of excess free 

volumes, was contained in the localized plastic deformation regions [Li et al. 2002]. 

The generation and coalescence of free volumes could decrease the density of the 

corresponding deformed regions, resulting in the softening of the materials. Another 

important structural evolution under plastic deformation was the localized melting 
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and the molten droplets observed on the fracture surfaces, which were considered as 

the results of temperature rise in the shear bands [Flores and Dauskardt 1999; Liu et 

al. 1998]. The results showed that the temperature rise could be as high as 200K in 

the shear band. The melting of materials could decrease the viscosity of the material, 

resulting in the less resistance to the loading. 

 

These two important structural evolutions observed in the previous research were 

consistent with the assumptions made for the explanation of the strain softening. It 

was suggested that the main reason for the decrease of the viscosity in shear bands 

was the formation of free volumes during deformation. It was proposed that the 

reduction of viscosity was due to the local adiabatic heating. Based on these 

observations, the formation and propagation of shear band were considered as the 

local generation and accumulation of free volumes resulting from the dilatation or 

operations of the shear transformation zone (STZ) and local heating. Therefore, 

several models were proposed to describe the mechanisms of the deformation 

behavior, especially the inhomogeneous deformation. 
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1.2 Models of structures sustaining plastic flows 

The structure of metallic glasses is generally considered as the icosahedral order 

proposed by Frank (Frank 1952) with highly close packed and the lack of translational 

periodicity. Similar to crystals, the dislocation line structures and the corresponding 

theory were introduced to explain the plastic flow in the metallic glass [Gilman 1973]. 

Through investigations on the properties of edge and screw dislocations in amorphous 

Lennard-Jones solid, the edge dislocation was found to be unstable while the screw 

was observed to be stable [Chaudhari et al. 1979]. Contrary to this, both the edge and 

screw dislocations were found to be stable in amorphous structure and could be 

moved to form a diffuse step on the surface of the model [Shi 1986]. While in MD 

simulation, the edge and screw dislocations were observed to be unstable in Ni-Y 

metallic glasses [Takeuchi et al. 2010]. Thus it may be difficult to use the dislocation 

theory to describe the deformation in metallic glasses. 

 

Different from the dislocation model, the free-volume theory proposed that an empty 

space with volume comparable to that of one atom could help to facilitate the local 

structural rearrangement, avoiding much structural relaxation [Spaepen 1977]. Based 

on this model, several quantitative simulations have been conducted to study the 
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mechanical deformation in metallic glasses [Huang 2002; Dai et al. 2005; 

Thamburaja and Ekambaram 2007]. However, the structures of metallic glasses are 

different from the dense random packing of hard sphere, which is an ideal glassy 

structure for the definition of free volumes [Bernal and Mason 1960; Scott 1960]. 

Rather than one free volume or atom to accomodate the plastic strain in the metallic 

glasses, shear transformation zone (SZT) model suggested the local atomic cluster 

could act as the structural defects sustaining plastic deformation and facilitating the 

structural rearrangements [Speapen 1977; Argon 1979]. The fundamental process of 

deformation was caused by the evolution of shear transformation zone. Under the 

applied stress, STZ may switch between two orientational states and be more 

susceptible to structural rearrangement than the surrounding atoms in response to the 

applied stress.  

 

Besides these theoretical studies, some experiments results are also helpful for us to 

understand the structural defects in metallic glasses. It was observed that either 

atomic jumps of a specific nature or similar localized reordering occurred during the 

structural relaxation, reflected by the height of the internal friction of MG sample 

[Kunzi et al. 1979]. By comparing the internal friction between the as-cast and 
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plastic deformed metallic glasses, it was found that the external stress could lead to 

the atomic shear rearrangements in relaxation centres and the increase of the number 

of these centres [Khonik 1996]. Using high-resolution transmission electron 

microscopy, it was also found that there was free volume variation for atoms in the 

shear band compared with those in the underformed regions, which suggested that 

free volumes could be the structure defects participating in the structural 

rearrangement during the plastic deformation. [Li et al. 2002].  

 

Although the investigation of atomic structure of metallic glasses has advanced to a 

great extent, the understanding of defective structures are still challenging by the 

experimental techniques. Based on the existing experimental results, several theories 

of plastic flow have been developed to understand the deformation mechanism of 

metallic glasses. 

1.3 Theories of plastic flows in metallic glasses 

Understanding the deformation mechanism is important in the development of 

metallic glasses with high ductility. According to the macroscopic features of the 

deformation in MGs, some theoretical models have been proposed in the past 
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decades which shall be introduced in the following sections.  

1.3.1 Free-volume theory 

Similar to that of the hard sphere model [Bernal and Mason 1960], the free volume 

concept was introduced to describe the deformation behaviors of the metallic glasses 

by Spaepen and Argon [Spaepen 1977; Argon 1979]. The free volume is defined as 

the extra volume compared with the undeformed ideal densely packed amorphous 

structure. The deformation of the metallic glasses is considered as the diffusion or 

transformation of the free-volume defects. Argon [Argon 1979] proposed that the 

deformation defects should be in a typical size of 5-atom diameter. The shape might 

be sphere at high temperature and disk when the temperature was low. Besides, the 

explicit expression of the inhomogeneous flow rate was given by using this 

free-volume model [Spaepen 1977]. 

 

In term of this concept, the inhomogeneous deformation in metallic glasses could be 

considered as the results of the free-volume coalescence. The local free-volume 

density can be changed through diffusion, annihilation and stress-driven creation. 

Using free volume which is a function of position and time as the order parameter, 
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one microscopic model was proposed to describe the rate of free-volume generation 

and the resulting plastic flow in the metallic glasses [Huang et al. 2002]. The 

inhomogeneous deformation and strain localization were detected by using this 

free-volume model in a simple shear problem. Dai et al. [Dai et al. 2005] proposed a 

free-volume coalescence-diffusion Deborah number to determine whether there was 

shear banding instability in the MG systems to account for the competition between 

free volume coalescence softening [Spaepen 1977; Argon 1979; Steif et al. 1982; 

Johnson et al. 2002; Huang et al. 2002] and adiabatic heating softening [Leamy 

1972; Liu et al. 1998]. Besides these two models developed from the concept of free 

volume, kinetic equations for free-volume were developed [Thamburaja and 

Ekambaram 2007] based on the principles of thermodynamics and the micro-force 

balance [Gurtin 2000]. The Helmholtz free energy of ideal amorphous alloys was 

supplemented by the energy which depends on the free-volume density and its 

spatial gradient. The proposed model was implemented by using the commercial 

finite-element software ABAQUS/Explicit through a user-material subroutine. 

According to this constitutive model, the stress-strain curves and the strain 

localization were well predicted.  
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However, it was found that the free volume of an atom in metallic glasses was just 

10% of the volume of the atom [Ziman 1961], which was significantly smaller than 

the free space required for one atom jump. Thus, it is not appropriate to directly apply 

the original free-volume concept in the MG system. Actually as stated by Argon 

[Argon 1979], the plastic deformation may be accommodated by the diffusion of the 

atoms in the free-volume regions rather than the jump assisted by the atomic 

vacancies. 

1.3.2 Shear transformation zone model 

In the STZ model, it was assumed that the undeformed structure was solid-like for its 

shear modulus, while the structure with flow defects was liquid-like. It was also noted 

that the flow defects were considered as some structures consisting of STZs. These 

STZ regions could appear and disappear and could also orientate from one direction to 

another under the shear stress. 

 

By incorporating the thermodynamics into the conventional STZ theory [Falk et al. 

2004], the macroscopic deformation behaviors were described in the metallic glass 

systems [Langer 2006; Manning et al. 2007]. An effective disordered temperature was 
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introduced to govern the density of the shear transformation zones in the metallic 

glasses during the deformation [Langer 2006; Manning et al. 2007]. One constitutive 

equation describing the plastic rate of deformation tensor 𝐷𝑖𝑗
𝑝𝑙

 was proposed to 

relate it to the deviatoric stress tensor 𝑠𝑖𝑗 as, 

0 ( , )Zepl

ij ijD e f s
 

   ,      (1.1) 

where s is the stress tensor; 𝜃 = 𝑘𝐵𝑇 and 𝜒 = 𝑘𝐵𝑇𝑒𝑓𝑓 are the common and effective 

temperature in energy units; 𝑒𝑍  is the formation energy of one STZ; 𝜏0  is the 

molecular time scale. On the other hand, 𝐷𝑖𝑗
𝑝𝑙

 is also related to two internal state 

parameters: the density of the STZ Λ  and the tensor 𝑚𝑖𝑗  that represents the 

orientational deformation. During the deformation, the two state variables obey the 

thermodynamic equations of motion, respectively. 

 

The motion of effective temperature can be described as the following equation, 

A
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 
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 
  .   (1.2) 

Where, 1 and 2 are dimensionless constants. The term exp(-ez/)(s,) is 

proportional to the rate of entropy being produced. (s,) is a 

temperature-dependent noise intensity, which is non-negative. The parameter ss(q) 

refers to the steady state value of the effective temperature. eA, different from eZ, is 
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the formation energy during the configurational fluctuation which is coupled to the 

ordinary thermal fluctuation. Combined with the motion equations of the density and 

the orientational transformation of the STZ, the shear localization can be obtained.  

 

Considering the thermal or mechanical noise which makes rapid and small-scale 

motions, the athermal limit of plasticity theory was also built. In the athermal STZ 

model, the number of STZs in ± direction can be described as, 

0N ( ) ( ) ( )( )
2

eqN
R s N R s N s N          ,    (1.3) 

where N is total number of molecular sites. The STZs were assumed to rotate just in 

the ± directions relative to the shear stress. R(±s)/0 represents the rate of the STZ 

transitions between + and ‒ direction rotations, and (s)/0 is the rate of the density 

change of STZs created and annihilated driven by the noise. By integrating the 

equations, the shear localization was derived in a simple shear geometry study with 

periodic Lees-Edwards boundary conditions. One localization criterion was also 

gained to describe the deformation of the metallic glassy alloys. 

1.3.3 Phase-field model 

One featured phenomenological model describing the deformation behaviors is the 
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phase-field model proposed by Zheng [Zheng and Li 2009]. The plastic deformation 

is accommodated by the deformation defects, which consist of sites with free volumes 

and are more vulnerable to atomic rearrangement than the densely packed structures. 

These deformation defects are randomly distributed in the metallic glasses, and can be 

activated by thermal or mechanical stimulation. Under the external applied stress, the 

activated deformation defects can accumulate, which could result in shear bands at 

room temperature. What is deserved to state is that the model treats the shear banding 

as the consequence of the structural transformation of the deformation defects. 

 

According to the Landau theory, the system states can be described by the free energy 

including the energy generated by the introduction of deformation defects. Combined 

with the variational principle, the dynamic equations describing the displacements of 

the system and the evolution of the deformation defects can be derived to represent 

the deformation behaviors (e.g. the localized plastic strain) in the metallic glasses. 

 

Based on this theory, several simulations were conducted and some valuable features 

were observed from the results. The shear localization and the crack propagation were 

observed in the simulation in a two-dimensional (2D) MG plate containing one initial 
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crack [Zheng and Li 2009]. From the calculation, the relationship between the crack 

propagation velocity and local heat was evaluated. Besides, the interaction between 

two shear bands was also predicted [Shen and Zheng 2010]. It can be concluded that 

the phase-field model is effective in studying the mechanical properties of the metallic 

glass compared with the molecular dynamics (MD) or other numerical simulations. 

Since the shear bands, especially those in spreading, are either too large for the MD 

simulation to simulate their instability evolution (the branching and interaction), or 

too small for the finite element method (FEM) to capture the atomic structural 

evolution. Therefore, the work in the present thesis shall be conducted according to 

this model theory. The detailed formulation of the model shall be introduced in 

Chapter 2.  

1.4 New kinds of metallic glass alloys 

During the development of the MG materials in the past decades, new kinds of glassy 

alloys and composites are developed to overcome the ductile limitation in engineering 

applications. Several kinds of MG alloys have been developed, such as the porous 

MG, the MG containing crystalline particles or some dendrite phases. It is found that 

these MG alloys avoid the brittle fracture and show ductility in a certain degree. Thus 
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it is necessary to investigate the mechanism where this ductile feature comes from in 

these new MG alloys, which will benefit the development of MG and its alloys with 

improved ductility. 

1.4.1 Porous metallic glasses 

As early as in 1996, Apfel and his coworker [Apfel and Qiu 1996] proposed the 

BMG foam could be developed. Soon after such theoretical investigation, the first 

MG foam was produced by mixing the Pd43Ni10Cu27P20 with the hydrated B2O3 

under water vapor releasing [Schroers et al. 2003]. The same MG foam was also 

made by water quenching the Pd-Cu-Ni-P alloy around the granular salt (NaCl) 

followed by the elimination of the salt [Wada and Inoue 2003]. The method of 

introduction of the melt infiltration of hollow carbon microspheres was used to make 

the commercial Zr57Nb5Cu15.4Ni12.6Al10 foam. 

 

It is noted that the properties of the pores could affect the mechanical performance 

of the MG foams. Several studies were conducted to investigate their mechanical 

properties by varying the pores features. By controlling the hydrogen pressure of the 

atmosphere, the samples with different volume fractions and sizes of pores were 
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obtained. From experiments, it was noted that there was no significant differences 

for the thermal stability between the porous Pd-Pt-Cu-P glassy samples and those of 

the pore-free ones [Wada et al 2005]. During the uniaxial compression experiments 

on the Zr-based amorphous metallic foams, the relationships between the plastic 

strain, energy absorption and the pore properties were obtained [Brothers and 

Dunand 2005a]. Soon after this study, it was also found that the plastic strain and 

energy absorption were dramatically increased without much reduction in the yield 

strength under the compressive tests by controlling the pore size and the volume 

fraction [Inoue et al. 2007]. It was concluded that the ductility should be originated 

from the branched and wavy shear bands due to the stress concentration around the 

pores. Besides these experiment investigations, molecular dynamic (MD) 

simulations were conducted to model the nano-indentation and the uniaxial 

compression tests of the Cu46Zr54 metallic glasses foams [Wang et al. 2010]. It was 

also found that the size of the pores played a vital role in the initiation and 

propagation of the shear bands. The improved ductility and energy absorption ability 

could be gained when the pores collapse or the shear band was blocked. 

 

From the above mentioned studies, it can be concluded that the porous MGs could 
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gain ductility under compression when the volume fraction and pore size were 

properly controlled. Nevertheless, the theoretical explanations on the origination of 

the improved ductility are still limited. To develop porous BMGs for structural or 

functional applications, it is an urgent need to investigate the mechanisms of ductile 

deformation in porous BMGs, especially how the pores affect the shear band 

initiation and propagation.  

1.4.2 BMG composites containing in-situ dendrite phase 

In the past decade, various bulk metallic glass composites were developed, such as 

the Zr- [Hays et al. 2000; Kuhn et al. 2002; Liu et al. 2007; Hofmann et al. 2008a], 

Fe- [Gu et al. 2006; Yao and Zhang 2007; Guo et al. 2010], Ti- [Hofman et al. 

2008b], Ni- [Choi-Yim et al. 2005], Pd- [Hu et al. 2003], La- based [Tan et al. 2002; 

Lee et al. 2004] BMG composites. Two important methods were used to introduce 

the second phases into the BMGs [Lewandowski et al. 2006]. The ex situ method 

was to add the crystalline phase artificially into the melting during being cast into 

the solid. By using this method, Conner et al. [Conner et al. 1998] produced the 

Zr41.25Ti13.75Cu12.5Be22.5 glass reinforced by addition of continuous tungsten fibers or 

1080-steel wires. It was found that the fracture strain and the toughness were 
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dramatically enhanced. On the other band, the in situ approach was used to form the 

second phase in the dendrite pattern during the solidification processes through 

controlling the composition. By tunning the composition in the Zr-Ti-Cu-Ni-Be 

system, the ductile metal-reinforced MG matrix composite was developed [Hay et al. 

2000]. In the in-situ formed BMG composites, the plastic strain at failure, impact 

resistance and the ductility were significantly improved due to the formation of the 

dendrite phase. 

 

In the BMG composites containing dendrite phases, the mechanical properties 

should depend on the properties, size, volume fraction and the distribution pattern of 

the crystalline dendrite. It was found that different shapes of the second phases 

resulted in various plastic deformation behaviors of the metallic glass composites 

[Schuh et al. 2007]. Compared with the dendrite shape reinforcements [Szuecs et al. 

2001; Hays et al. 2000], the spherical morphology of the crystalline phase could lead 

to much higher ductility of the composite [Sun et al. 2006; Sun et al. 2007]. The 

volume fraction of the crystalline phase was another important factor affecting the 

mechanical properties. It was reported that the plastic strain was obviously enhanced 

with the increasing of the volume fraction of the dendrite phase [Szuecs et al. 2001; 
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Sun et al. 2006].  

 

Based on the experiments results, the improved ductility was considered to be 

caused by the generation of multiple shear bands, and the restriction of the shear 

band propagation. To date, microscopic observation on the interaction between the 

dendrite and the shear band is still too difficult to be conducted by experiments. It is 

still ambiguous how the shape and the mechanical properties of the dendrite affect 

the mechanical performance of the composites. 

1.5 Size effects on mechanical properties of metallic glasses 

1.5.1 Size effect on mechanical properties of micro-scale 

metallic glasses 

Several parameters have been proposed to describe the ductility of the micro-sized 

MG alloys. One of the most commonly used parameters is called ‘critical shear 

offset’, which is the shear offset within one shear band operation. It can be used to 

explain the size effect on the type of tensile fracture in the metallic glass system [Wu 

F.F. et al. 2009]. It was found that a certain amount of tensile plasticity could be 

derived when the sample size was smaller than the equivalent shear offset. Assuming 
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the similarity between the shear offset formation in MGs and the dislocation gliding 

in the crystalline solid, the fracture mechanics was introduced and the plastic zone 

size in front of the shear band was proposed to study the size effect [Yu et al. 2009; 

Ashby and Greer 2006; Yuan and Xi 2011; Wu F.F. et al. 2008; Wu W.F. et al. 2008; 

Wu et al. 2010a]. The sizes of the plastic zones were estimated for a variety of MG 

systems and the origin of plasticity was found to correlate to its size [Yu et al. 2009]. 

Similar to this plastic-zone theory to predict the fracture type, a critical plane energy 

density was proposed to estimate the catastrophic failure [Wu et al. 2010a]. The 

transition between the ductile and brittle failures was also systematically studied by 

Han [Han et al. 2009] and an equation for the critical instability index was given. 

Based on the instability index proposed by Han, another instability index was 

derived by simplifying the elastic support of a BMG compression sample as a spring 

[Cheng et al. 2009]. Both these indexes supplied us convenient ways to understand 

the size effects on the fracture modes of MGs. 

 

Besides the size effect on the fracture modes, the plastic zone theory was further 

used to study the influence of sample size on the mechanical properties, such as the 

yield stress and fracture toughness [Ashby and Greer 2006: Yuan and Xi 2010; Wu 
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F.F. et al. 2008; Wu W.F. et al. 2008]. The results showed that the fracture toughness 

increased with the reduction of the sample size. Nevertheless, the results about size 

effect on the yield strength in the literatures are contradictory. Some researchers 

found that the yield strength increased as the sample size decreased [Lai et al. 2008; 

Cheng et al. 2007; Lee et al. 2007], while Dubach et al. did not detect any 

size-dependent yield stress of MGs [Dubach et al. 2009]. These diverse results might 

be caused by the imperfect pillar geometry of the samples, the various artificial 

defects or some inconsistent testing conditions. 

1.5.2 Size effect on mechanical properties of nano-scale 

metallic glasses 

Cheng [Cheng et al. 2009] found that the shear-band speed would be slow down and 

the temperature in the shear band would get lower when the sample size was 

decreased, i.e., the shear banding was hindered or slowed down. According to the 

principle of energy balance, whether the shear band is activated or not can be 

determined according to the comparison between the strain energy and the energy of 

the shear band. Thus in the pillar sample there should be a critical stress or critical 

strained volume that is required for the shear band formation [Wu F.F. et al. 2009; Li 
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and Li 2006]. Volkert and his coworkers [Volkert et al. 2008] estimated that the 

critical stress required for shear band formation should increase with decreasing 

column diameter. There might be no sufficient strained volume to reach the energies 

or local stress to form the shear band when the sample size decreases to below 400 

nm, resulting in homogeneous deformation without localised shear banding. On the 

other hand, removing the correlation among a certain number of the free volumes 

was also helpful in avoiding the localized deformation. Through the MD simulation, 

Delogu [Delogu 2009] stated that the correlation between consecutive STZs was 

prevented by decreasing the sample size, which could result in the change of the 

deformation modes of MGs. Chen [Chen et al. 2011] also found that the 

homogeneous deformation occurred when the sample size decreased to 70 nm. 

 

Compared with the above mentioned results concerning the compressive tests, a 

fewer reports were focused on the size effect on the tensile properties of MGs. It 

may be because that it was very difficult to conduct the tensile tests of the 

nano-scale regular samples. However, some interesting and meaningful phenomena 

have been reported. The necking was obviously observed without any localized 

deformation during the tensile tests. By adding some unevenness on the surface, the 
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sample obtained 23% elongation until fracture through necking, and no shear 

banding appeared during the tensile test [Guo et al. 2007].   

1.6 Motivations and objectives 

Although the studies on the MGs were conducted for more than half a century, our 

understanding on the deformation mechanism of MGs is still not complete. The 

free-volume theory seems improper to describe the localized strain in the metallic 

glass (MG) systems, since the hole for the atomic jump was not necessary for the 

deformation in MG system. In the past decades, some amorphous alloys (e.g. porous 

BMGs, BMGs containing in-situ dendrite phase and the nano-scale MGs) have been 

produced. They are found to show improved ductility compared with conventional 

BMGs. However, theoretical and simulation investigation on the origin of resulting 

ductility of these amorphous alloys are still limited. It should be noted that the span of 

the length and time scales are so vast. Thus the shear-band propagation is too large for 

the molecular dynamic (MD) simulation to simulate the unstable states, such as the 

branching and interaction functions. It was also found that the atomic scale 

deformation details were so small that the finite element method was unable to 

capture its features. Nevertheless, the phase-field model in mesoscopic scale can be 
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used to bridge this gap and describe the shear-band initiation, propagation, even the 

branching and interaction in the MG systems and its composites, which can help us to 

disclose the mechanism of improved ductility of the MG systems. 

 

In this work, the phase-field model on MG systems will be used to numerically 

investigate the above-mentioned issues concerning the metallic glasses and the MG 

composites, which are found to exhibit improved mechanical properties of the MGs, 

copping with the fatal brittle failure in the BMGs.   
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Chapter 2 Simulation 

methodology—Phase-field modeling 

methods 

Phase-field modeling is an effective method to study the phase transitions, 

microstructure evolutions and the properties of various ordered microstructures. 

Shear banding at room temperature in MGs results from the competition among 

creation, accumulation and the annihilation of the defective glassy regions, 

accompanied by changes in structural order in the system. Thus it is suitable to 

investigate deformation mechanisms concerning the shear banding in MGs based on 

the phase-field theory. In this Chapter, we describe the theoretical framework of 

phase-field modeling methods that are used for the simulation of mechanical 

deformation issues related with shear banding in MGs.  

2.1 Phase-field modeling on microstructure evolution 

2.1.1 Phase-field modeling on kinetics of phase transitions 

The thermodynamics can only tell us the general microstructure evolution trend 

during phase transformation [Haasen 1974], but it is the highly non-equilibrium 
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microstructure rather than the state close to the equilibrium state that determines the 

material properties [Raabe 1998]. Compared with the empirical methods, computer 

simulation based on theoretical state variable approach can tackle the 

phase-transformation kinetics, describing both the spatial and temporal changes in the 

chemical, crystallographic and structural orders of the materials, which are defined as 

the phase-field variables. 

 

As early as 1930s, Landau developed a thermodynamic theory of secondary-order 

(continuous) phase transition [Landau 1937a; Landau 1937b]. Subsequently, various 

authors applied Landau’s theory to a great variety of phase transitions. Among those, 

Cahn-Hilliard and Allen-Cahn kinetic phase-field models [Cahn and Hilliard 1958; 

Cahn 1961; Cahn 1962; Cahn 1965; Allen and Cahn 1979], being considered as the 

metallurgical derivatives of the Onsager [Onsager 1931a; Onsager 1931b] and 

Ginzburg-Landau theories [Landau 1937a; Landau 1937b ], are versatile to describe 

the continuous and quasi-discontinuous phase transition phenomena in the coherent 

and non-coherent metallic systems. By extending the Cahn-Hilliard model, the 

Allen-Cahn model aims to cope with the nonconserved-variable based phase 

transformation (e.g. Long-range order, crystal structure)[Allen and Cahn 1979].  
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The original Ginzburg-Landau approach was based on the general Onsager or 

Ginzburg-Landau kinetic equation written as, 

ˆ
ˆi
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  ,                                   (2.1) 

where 𝐹̂  is the free energy functional of various functions 𝜓𝑗  , t means the time and 

𝑀̂𝑖𝑗  is the symmetric Onsager kinetic operator matrix, i, j = 1, 2,…. . 

 

In a magnetic system, based on the assumption that the potential energy of the system 

can be expanded as a power-law series close to the critical temperature Tc [Landau 

1937a; Landau 1937b], the free energy of Landau form can be developed in terms of 

all the nearest neighbor binding enthalpies and their configurational entropy. Then for 

the introduction of a concentration field (r,t), the local free energy density close to 

the critical points Tc and crit can be described as, 
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where, A, B, C are the phenomenological constants which must be fitted from the 

relevant theory or experiments. 

 

This magnetic second-order phase transition theory supplies fundamental for some 

other kinds of phase transition issues in materials science. The successful introduction 
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of metallurgical variants allows us to address the phase transformations in metallic 

systems according to the chemical or structural phase-field variables [Cahn and 

Hilliard 1958; Cahn 1961; Cahn 1962]. As early as 1958, Cahn and Hilliard 

theoretically investigated the isostructural decomposition phenomena [Cahn and 

Hilliard 1958]. Being furnished with this Landau type potential and a gradient 

interface term, the classical Cahn-Hilliard equation can be obtained as, 
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   ,                  (2.3) 

which is used to describe the concentration evolution in the alloys [Cahn 1965].  

represents the interfacial energy, and c(r,t) is the field variable describing the 

concentration of the impurity in the material.  

 

However, there always are issues concerning the non-conserved parameters, such as 

the crystal orientation, long-range order or crystal structure, during the microstructure 

evolution. Thus it is necessary to further introduce the nonconserved fields to predict 

the non-isostructural phase transformation phenomena. At the same time, the free 

energy should also be modified through adding the function of one or more structural 

variables 𝜂𝑖(𝒓, 𝑡) and i=1, 2, …, . For example, the local free energy density can be 

obtained as the following statement when there is only one structure variable 𝜂(𝒓, 𝑡), 
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where D1, D2, D3, D4, ccrit1, ccrit2 are phenomenological constants which should be 

fitted from the relative theory or experiments.  

 

Considering the non-conserved ordering process, the kinetic equation for the 

non-conserved phase-field variable was derived through studying the curved 

antiphase boundary motion [Allen and Cahn 1979],  
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where 𝑀𝜂 = 2𝛼𝜅  is in units as a diffusion coefficient m
2
/s,  is the positive kinetic 

coefficient, f is the free energy density and  is the nonconserved order parameter. 

This non-linear equation is similar to the time-dependent Ginzburg-Landau equation 

(TDGL) in which there is no conservation. It supplies theoretical foundation for us to 

investigate the kinetics of the order parameter describing the process of the phase 

separation in alloys (e.g. the order-disorder transitions). 

 

The generalized phase-field models are developed by furnishing the 

Ginzburg-Landau or Onsager kinetic equation (as shown in Eq. (2.1) with an 
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appropriate well-fitted Landau free energy density functional of both the conserved 

and nonconserved phase-field variables.  

2.1.2 Phase-field modeling on deformation behaviors of 

solids 

2.1.2.1 Fracture dynamics 

The dynamic fracture is a challenging topic for the classical approaches of mechanics 

[Freund 1990], especially it is difficult to predict the instability of the tip dynamics. 

For the mode III dynamic fracture, one scalar field, distinguishing the “broken” and 

“unbroken” states of the system, was introduced in the phenomenological continuum 

model [Karma et al. 2001; Karma and Lobkovsky 2004]. The order parameter  

ranges from 0 to 1.0. 𝜙 = 0  represents the unbroken state and 𝜙 = 1  means the 

fracture state of the system with crack occurring. By coupling the order parameter to 

the displacement field u, the main dynamic equations are stated as [Karma et al. 2001; 

Karma and Lobkovsky 2004], 

21 2 2( ) ( )( )t c

F
hf g


       



          u   ,          (2.6a) 

2

0 [ ( ) ]t g      u σ u   .                   (2.6b) 

The Eq. (2.6a) describes the dynamic evolution of the order parameter, and the crack 
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should occur when the value of  reaches 1.0. The deformation process can be 

represented through Eq. (2.6b) under external loading. Here, the function 𝑔(𝜙) is a 

monotonously increasing function of field variable  with limit 𝑔(0) = 0  and 

𝑔(1) = 1 , controlling the softening of the system when the strain is large.  (𝜙) is a 

double-well potential with minimum at 𝜙 = 0 and 𝜙 = 1 .  is the elastic shear 

modulus and c is the critical strain of yielding.  is the interfacial energy and the 

length scale describing the process zone size is defined as 𝜉 =  √𝜅 𝜇𝜀𝑐2 ⁄ . The 

characteristic time for the energy dissipation is 𝜏 =  1 𝜒𝜇𝜀𝑐
2⁄  . 0 means the density 

of the material. 𝑒𝑐 = 0.5𝜇𝜀𝑐
2 can be considered as a measure of the fracture energy 

of the solid. 

 

In contrast to this non-conserve field introduction, Eastgate et al. proposed a 

phase-field model by using the normalized mass density, coupling the displacement 

field as the order parameter to describe the fracture of mode I [Eastgate et al. 2002]. 

This theory was similar to the model simulating the structure evolution as the 

solidification [Langer 1980]. This order parameter  ranges from 0 to 1.0, where  = 

0 is the vacuum state characterizing the crack occurring and  = 1.0 represents the 

unstrained material. The free energy of the system was obtained as the integral, 
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2
2

[ , ]
2

w
F g dV  

   
    

   
   ,                    (2.7) 

where,  

 
2

2 2 2[ , ] ( ) [ ]
4

s

h
g e      ε ε ε   .                  (2.8) 

The first term in Eq. (2.7) characterizes the spatial fluctuation of the phase field. The 

second term is described as Eq. (2.8), in which the first term is a Ginzburg-Landau 

double well potential controlling the phases of vacuum state and the solid phases. 

s[]1-mm and if the material is in unstrained state, s1, otherwise this value can 

be higher or lower according to the loading situation (compression or tension). The 

factor s[]- can be considered as the density of vacancies or interstitials. The 

parameter h controls the energy barrier between the solid and vacuum states, and 

w/h governs the width of the solid-vacuum interface. e[] is the strain energy of the 

system. The motion of the phase field  and the displacement u are overdamped and 

Eulerian, moving the fields along the direction of net force. The time derivative is 

thus proportional to the force on the field. Specifically it can be described as, 

,
F

J J D
t t

 




 
     

 

u
  ,                  (2.9a) 

1 1
( )

DF F F

t D

 


   


     



u

u u
  ,                  (2.9b) 

where,  and D are the viscosity and the diffusion constant respectively. Eq. (2.9a) is 
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the continuity equation. The first term in J is a diffusion term, while the second term 

makes sure that the mass follows the motions of the displacement field. In fact this 

model seems to describe the fracture of a colloidal crystal.  

2.1.2.2 Dislocation dynamics 

Other typical applications of phase-field model are to describe the motions of the 

dislocation, vacancies and grain boundary in the crystalline solid [Wang et al. 2001]. 

Dislocations play a key role as the plastic deformation carrier during the 

deformation in metallic materials. By introducing the density functional field 

𝜂 (𝛼,𝑚𝛼, 𝒓)  which equals to the number of slip modes determined by the 

crystallography of the system, the free energy can be described as, 

2 3

1 1 1

sin ( , , )
p q

cryst

n

m n

E A n m d r





 


  

 
  

 
 r   ,              (2.10) 

where m is the Burgers vector in the slip plane . On the other hand, the 

gradient energy in the case of dislocation system can be written as, 

1 2

31 2
1 2

1 1

( , ) ( , )1
( ( , )

2

p p
grad i k

ijkl

j l

b b
E d r

r r 

 
  

 

  
     


r r

  ,       (2.11) 

where  

1

( , ) ( , ) ( , , )
q

m

m m


    


 b r b r  

represents the Burgers vector density in all slip planes of the type . 𝛽𝑖𝑗𝑘𝑙(𝛼1, 𝛼2)  
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is a constant tensor which is positive and provides a vanishing interfacial energy 

along the slip planes of the inclusions. Then the stress-free strain 𝜀𝑖𝑗
0   produced by 

the Burgers vector is described as, 

0 0

1 1

1 1

( ) ( , ) ( , , )

1
( , ) ( ) ( , , )

p q

ij ij
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 
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 

 






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r r

r

  .            (2.12) 

Based on this definition, the elastic energy of the elastically homogeneous but 

structurally inhomogeneous coherent system under applied stress 𝜎𝑖𝑗
𝑎𝑝𝑝𝑙  can be 

described as, 

3
0 0 0 0

3

0 3

1
[ ( ) ( ) ( ) ( ) ( ) ]

2 (2 )
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

 

   







k k k e k（ ）
  ,  (2.13) 

where the symbol f represents a principle value of the integral and the superscript  

defines a complex conjugation. Cijkl is the elastic modulus tensor. ik(e) is the Green 

function defined as the inverse of the tensor  Ω𝑖𝑘
−1(𝑒) = 𝐶𝑖𝑗𝑘𝑙𝑒𝑗𝑒𝑙,  e=k/|k| is a unit 

vector in reciprocal space along k. 

 

The total energy of an arbitrary dislocation system can be obtained by the 

summation of the crystal energy, the elastic strain energy and the gradient energy, 

elast cryt gradE E E E     .                     (2.14) 
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According to the phenomenological time-dependent Ginzburg-Landau (TDGL) 

equation, the kinetic equation for the fields 𝜂 (𝛼,𝑚𝛼, 𝑟)  can be obtained, 

( , , , )

( , , , )

m t E
L

t m t





  

 


 



r

r
  ,               (2.15) 

where L is the kinetic coefficient characterizing the dislocation mobility. By solving 

Eq. (2.15), the evolution and motions of the dislocation in the crystalline system can 

be obtained. The distribution of the inelastic strain around the dislocation can also be 

derived through Eq. (2.12). 

2.2 Phenomenological models of structure defects in 

metallic glasses  

Compared with the dynamical equilibrium state of the density of free volumes in 

liquid, the free volumes in metallic glasses are unstable and dispersed [Bennett et al. 

1979]. Through the atomic force microscopy (AFM), it was found that the structure of 

MGs consisted of ideal regions (densely-packed atomic cluster) and defective 

locations (loosely packed atomic cluster) [Liu et al. 2011]. The similar feature of 

structure heterogeneity was also found in the annealed MGs [Yang et al. 2012]. Thus 

it is reasonable to assume the structure model of the metallic glass as the composite of 

ideal glassy matrix and the defective regions. It is difficult to directly detect the shape 
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and size of the defective region in the metallic glasses due to the limitation of the 

experimental method, although the densely packed regions were considered as fractal 

[Yang et al. 2012]. The average size of the defective regions was estimated as 1~4 nm 

in radius as dedicated in AFM results [Yang et al. 2012], while the volume of the 

activation cluster was calculated as 0.135 nm
3
 for Pd-based BMG through the 

internal friction tests [Shen 2013].  

 

The kinetics of the loosely packed regions controls the mechanical properties of the 

metallic glasses. Through the internal friction experiments, it was found that the 

obvious variation of the structural defects took place during the structural relaxation 

[Khonik and Spivak 1996; Khonik 1996]. Compared with the as-cast Ni60Nb40 

sample, the larger internal friction peak and more than 10 modulus deficiency 

were detected for the cold rolling (inhomogeneous deformation) BMG [Khonik and 

Spivak 1996]. It was indicated that significant modification of defective structure 

had taken place, and especially the new defective structures were created. Combined 

with the hysteresis observed, it was suggested that the external applied stress caused 

the creation of the dislocation-like defects and their motions [Khonik and Spivak 

1996], which can be considered as the phase transition during the plastic 
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deformation. In addition, it was found that the internal friction peak disappeared for 

the cold-rolling sample after annealed at sub-Tg temperature [Khonik and Spivak 

1996]. It was also found that the MGs annealed at higher temperature could cause 

the lower internal friction, which indicated the annihilation of the defects [Shen 

2013]. Hence, it can be concluded that the structural defects in MGs could be 

created and activated through the external loading and the as-cast defects could also 

be annihilated through the thermal treatment at elevated temperatures.  

 

As shown in Figure 2.1, the original defects or the as-synthesized defects which are 

defined as the “relaxation centre” in Khonik’s internal friction test could change 

their structures into those of the deformed defects (containing metastable phase) 

during the room-temperature deformation process. Under external thermal 

stimulation, the initial defective structure can relax to the ideal glassy structure. 

Transformation between the ideal glass and the deformed defects occurs under 

mechanical deformation or thermal fluctuation. Such as-synthesized defects whose 

structures change significantly with external loading could be considered as 

deformation defects. 
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Figure 2. 1 Models of the structural changes in MGs under thermal and mechanical fluctuation. ”B” represents the atomic 

configuration of the as-synthesized defects. “C” is the ideal randomly close packed glassy structure. “D” marks the structure 

configuration of the deformed defects. Arrows “a” and “b” denote the thermal and mechanical activation process respectively.  

 

The shape of the structural defects is difficult to be detected directly. Nevertheless, it 

was found there were free volume variations per atom in the shear band compared 

with the underformed regions, which was observed through the high-resolution 

transmission electron microscopy [Li et al. 2002]. During the deformation in metallic 

glass, free volume is one of the dominant structure defects participating in the 

structural rearrangement. Thus it is reasonable to consider the atomic cluster 

consisting of free volumes as the deformation defects.  
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Figure 2. 2 Schematics of atomic configurations in: (I) ideal glass; (II) defect and atomic rearranging movement; (III) Structural 

relaxation and (IV) An atomic arrangement into plastic flow. Each energy state and atomic movement event can be activated 

through thermal or/and mechanical stimulation. Meanings of “a” and “b” are the same as those in Figure 2.1. 

 

Under external fluctuation, the deformed deformation defects (marked as “D” in 

Figure 2.1 and “II” in Figure 2.2) will resort to more stable state. Under weak 

external stimulation, the atomic rearrangement is confined by the surrounding 

matrix marked by the transformation from II to III in Figure 2.2. With increasing 

applied shear strain, more strain energy need to be absorbed and relaxed by the 

glassy matrix around the defects, resulting in atomic rearrangement marked as 

structure IV in Figure 2.2 to sustain the plastic flow. The irreversible transformation 

is named as  relaxation [Shen 2003]. The accumulation and continue creation of 

structure IV shall make the sample fail. Besides, cooperative motions of local atoms 
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can lead to the irreversible structural transition in MGs [Ladadwa and Teichler 2006] 

as shown as transition from structure II to IV in Figure 2.2. This irreversible event 

corresponds to the localised motions of atomic defects and is a result of the creation 

and annihilation of the deformation defects. On the other hand, the defective 

structure can be recovered to the initial ideal glass state under the thermal activation 

as the transition from the state II to I shown in Figure 2.2. The structures and 

transitions among them shown in Figure 2.2 could exist during the deformation and 

the deformation mode can be determined by the competition among the transitions.  

 

Thus, the phase-field theory is suitable to be applied to describe the deformation 

behaviours in metallic glass at room temperature similar to those describing the 

fracture and dislocation in crystalline solids. In the following sections, the phase-field 

model for the shear banding in MGs shall be described. 

2.3 Formulisms of phase-field modeling on deformation of 

metallic glasses  

Shear banding characterizes the deformation of MGs below 0.7Tg. The shear band 

originates from the stress concentration caused by the initial crack or some other 
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initial deformation defects, while the evolution of shear band is a complex procedure 

concerning many factors. In the phenomenological description of shear banding, the 

plastic deformation is considered to be carried by the deformation defects consisting 

of sites with free volumes. As other theories [Falk and Langer1998, Spaepen 1977, 

Argon 1979] proposed, it could be assumed that the amorphous materials consisting 

of ideal glasses which possess a shear modulus, and the deformation defects which 

may behave like a liquid. The deformation defects may appear and disappear under 

the thermal or mechanical activations. When the applied stress is higher than the yield 

or flow strength, the activated free volume sites accumulate and the deformation 

defects can transform irreversibly to another more stable structure. When the 

collection of the deformation defects consisting of sites with activated free volumes 

reaches a certain level, shear band occurs.  

 

As discussed above, the shear band in MGs could be considered as a consequence of 

the structural transformation of deformation defects, which represents that the 

structures consisting of free volumes are more vulnerable to external rearrangement 

than those of the ideal glass. Activated thermally or mechanically, the structures of the 

deformation defects shall rearrange, and the shear band shall be represented as a result 
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of accumulation and nucleation of the deformed deformation defects when the local 

deformation reaches a certain level. Thus in the phenomenological model, the density 

of deformation defects could be chosen to represent the occurrence of the shear band 

based on the assumption that this scalar quantity can also reflect the change of other 

quantities such as local atom packing, chemical composition, short- and 

medium-range topological order and so on. Without this assumption, the deformation 

state of the system in the completely disordered materials such as MGs would be too 

complicated to be described by this phenomenological model. Thus the density of 

deformation defects is usually used as the order parameter in the model. 

 

The normalized density of deformation defects can be defined as ρ(r)=(vi-v0)/(vm-v0), 

where vi is the atomic volume of the ith atom, vm is the maximum dilated volume when 

complete decohesion occurs at the sites, and v0 is the volume in the ideal random close 

packed state. When the temperature is below the glass transformation temperature Tg 

and the applied load is lower than the flow stress, few sites with large density of 

deformation defects could be activated and thus the MGs act like an elastic solid. 

When the applied load approaches the flow stress or the local heating is involved, e.g., 

from excessive plastic deformation, more sites with large density of deformation 
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defects could be activated [Spaepen 1977; Flores et al. 2002; Pampillo 1975; Chen et 

al. 1994]. As the above mechanism states, the ideal un-deformed state can be 

described as the structure with ρ(r)=0, and the presence of disorder structure 

compared with the reference state can be represented as ρ(r)≠0. The shear band can be 

described as the states when the density of deformation defects is greater than one 

critical value, defined as ρ(r)≥0.8, while the fracture occurs when ρ(r)→1.0. 

 

According to the phenomenological description on the deformation and fracture 

features in the MGs from the atomic scale, the free-energy density can be written as a 

function of the density of deformation defect ρ(r) according to the Ginzburg-Landau 

formulism when the system is free of external stress, 

2 3 4 ,
2 3 4

a b c
f             (2.16) 

where a, b and c are the coefficients depending on temperature, strain, chemical 

composition, or other state variables. From Eq. (2.16), we can also note that when the 

order parameter ρ(r)0, the free energy f(ρ)=0, which means the structure is kept as 

the undeformed ideal randomly close packed (RCP) state. Any deviation from the 

reference state will cause the increase of the free energy. When ρ(r)1.0, the system 

is full of activated deformation defects and the glassy structure shall fail.  
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According to the characteristic of shear band, the regions around the deformation 

defects still remain elastic, and the strain energy which corresponds to the 

long-range elastic field originated from the external applied stress can be written 

as, 

1

2
ij ijkl kl ije C        ,                     (2.17) 

where εij is the component of the strain tensor defined by the displacement field u 

as 

( ) 2ij j i i ju x u x      ,  i,j=1,2,3; 

Cijkl is the component of the stiffness matrix, which is defined as, 

( )ijkl ij kl il jk ik jlC            , 

where  is the shear modulus and  is Lame constant. Under external loading, the 

total free energy can be described as the following equation, 

2 3 4 5( , ) ( )
2 3 4

ij ij ij

a b c
f e f e o                    .      (2.18) 

In Eq. (2.18), the coefficients a, b and c can be expanded as a Taylor’s series of the 

plastic strain energy ∆e according to the perturbation scheme usually used in the 

Landau theory as, 
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where ∆e=e[εij]-e0, and e0 is the strain energy at the elastic limit when f. The 

coefficients a0, b0 and c0 in Eq. (2.19) depend on external state variables except the 

strain. In MGs, the plastic deformation only causes limited strain increment at the 

onset of plastic flow, thus it is reasonable to expand the coefficients in the power 

series function of the e to describe the coupling between the plastic deformation and 

the order parameter (density of the deformation defects). By considering the fourth 

order of the product of e and  as the leading error term, we can obtain the local free 

energy density of the MGs as the following approximation, 

2 3 4 2 30 0 0 1 1
0( , ) ( )( )

2 3 4 2 3
ij ij ij

a b c a b
f e e e                     .      (2.20) 

This equation describes the contribution from the deformation defects and the plastic 

deformation due to the external applied stress. On the other hand, the local softening 

can also be caused by the creation or annihilation of the deformation defects [Stief et 

al. 1982]. We could couple local heating and the order parameter by assuming the 

linear relation between the temperature T and a0 as, a0=a(Tg-T)/Tg where a is a 

constant. 

 

Under external load, the free energy of the system consists of the kinetic energy and 

the gradient energy between the regions with different density of the deformation 
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defects. Thus the free energy can be described as an integral of the free-energy 

density, the gradient of the density of deformation defect and the kinetic energy 

over the whole volume of the medium, 

 
2 20 ( , ) ,

2 2
ijF f dV

 
  

 
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 
 u                  (2.21) 

where ρ0 is the mass density of the sample,  is the surface tension between the 

regions with different density of the deformation defects. In this expression, the first 

term describes the kinetic energy of the system, the second term represents the local 

density of free energy and the last one is the gradient energy of the structure.  

 

Based on the TDGL, the equations of motions for u and ρ can be described as the 

variation of the free-energy of the system, 
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and, 
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   (2.22b) 

where τρ is the characteristic time for deformation defects activation. Eq. (2.22a) 

controls the deformation of the material, especially the localized strain. Eq. (2.22b) 

describes the structural evolution of the material, especially the accumulation of the 

deformation defects under the influence of the plastic strain. It is noted that the 
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effective shear modulus obtained from Eq. (2.22a) for a locally homogeneous 

system is dependent on the amount of the deformation defects, which is consistent 

with the observation of the softening of the material in atomistic simulation [Li and 

Li 2007] and the experiments [Johnson 2002; Inoue and Takeuchi 2004; Pampillo 

1975].  

 

Furthermore, it is believed that the heat conduction equation can be used to describe 

the local heating due to the localized plastic strain in the material systems. The 

conduction equation can be stated as, 

2
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t t
 
 

  
 

  ,                          (2.22c) 

where Q is calculated as 𝑄 = ∫𝜎𝑖𝑗𝑑𝜀𝑖𝑗   with ij and ij 
in the calculation being the 

components of the local stress and plastic strain, respectively. Therefore Q is non-zero 

only near the shear bands in the model system under tensile deformation. Because of 

the localized nature of shear banding, plastic strains inside and near the shear bands 

could be much larger than the elastic strains. Thus Q is much close to the mechanical 

work and the contribution of elastic energy to Q can be neglected. The parameter is 

the coefficient representing the percentage of conversion of mechanical work into 

heat, or the Taylor-Quinney coefficient. The situation 1  means the adiabatic 
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situation, while 0   represents isothermal deformation process. The parameter k is 

the thermal conductivity and Cp is the heat capacity. Therefore, the dynamic process 

of deformation and fracture behaviors in MGs can be described by solving Eqs. 2.22(a) 

~ 2.22(c).  

 

According to the phase-field model on bulk metallic glass [Zheng and Li 2009], the 

shear band propagation and branching have been successfully simulated in a 

rectangle sample with an initial crack perpendicular the loading direction. It is stated 

that the extension of shear band change with the amplitude of the applied load. 

When the stress intensity is moderate, the shear band occurs from the tip of the 

initial crack. The wavy shear band and branching occur when the load increases. All 

these phenomena observed during simulation are consistent with the experiment 

[Lowhaphandu and Lewandowski 1998].  

2.4 Summary 

Phase- field theory is a useful tool to study the mesoscopic properties of solids under 

external loading. Especially, it is an effective method to investigate the phase 

transition and structural ordering in the complicated structures. Shear banding, the 
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typical characteristics of the room-temperature deformation in MGs, can be 

considered as the structural transition between the ideal glass and the defective 

regions. The deformation modes can be determined through the competition between 

the creation of the new defects and the annihilation driven by the continuum strain 

or/ and thermal field. Thus it is feasible to study the deformation mechanism at room 

temperature in MGs through the phase-field theory. Compared with other methods, 

such as the molecular dynamics and the finite element method, the phase-field is a 

mesoscopic theory comparable with the length scale of the shear banding. It was 

proved that the dynamic features can be effectively captured by this model.  

 

Thus the phase-field model is useful in probing the deformation mechanism in MGs, 

especially the localized plastic deformation at room temperature. It is suitable to 

introduce the model to simulate the shear banding in BMGs and BMG composites. 

The model is appropriate for both the 2D and 3D simulations, and the size effect can 

also be studied by this theory through choosing the suitable system parameters. 
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Chapter 3 Simulation of shear banding in 

porous bulk metallic glasses 

Porous BMG is a fascinating amorphous alloy which aims to solve the problem of 

brittle fracture of BMG at room temperature. It has been found that the ductility could 

be improved by controlling the properties of the pores introduced into it, which can 

block shear band propagation or induce branching of shear bands. In this Chapter, the 

mechanism of the improved ductility is studied by phase-field modeling. In particular 

the interaction between the pores and the shear bands is elucidated through the 

simulation on the shear-banding behaviors in porous BMG with different 

characteristics of pores. 

3.1 Background of research on porous BMGs 

Metallic foam materials have amazing mechanical properties such as low density and 

Young’s modulus, high specific strength, and high energy absorption capacity [Evans 

et al. 1998; Gibson and Ashby 1997; Ashby et al. 2000]. They have many engineering 

applications, such as energy absorption during the separation of spacecraft from space 

station, and screw protection in cab seats mounted in military vehicles and even in 

commercial automobiles [Evans et al. 1998; Gibson and Ashby 1997; Ashby et al. 
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2000]. On the other hand, metallic glasses exhibit distinguish mechanical properties 

such as high strength, corrosion and wear resistances. Thus porous BMGs have 

received increasing attention since they have the advantages of both metallic foams 

and metallic glasses [Brothers and Dunand 2004; Brothers and Dunand 2005b; 

Brothers and Dunand 2006; Schroers et al. 2003; Wada and Inoue 2003; Jayaraja et al. 

2006; Lee and Sordelet 2006], and are found to be very promising in functional 

applications such as fluid filters, catalytic substrates, and biomedical implants. 

 

With the development of the preparation techniques, the metallic foams with different 

properties (including the pore shapes, the volume fraction of pores and the 

distribution pattern of the pores) could be synthesized [Schroers et al. 2004; Brothers 

et al. 2005; Wada and Inoue 2003; Brothers and Dunand 2004; Jarayaj et al. 2006; 

Wada et al. 2007]. Without much degradation of their strength, the improved ductility 

was obtained through controlling the pore size and volume fraction [Brothers and 

Dunand 2005a; Brothers and Dunand 2005b; Inoue et al. 2007]. Through systematic 

study, it was found that there were branched and wavy shear bands in the porous 

BMGs under compression as shown in Figure 3.1 from SEM investigations [Inoue et 

al. 2007]. It was suggested that the resulting ductility came from the blocking and 
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branching functions of the pores that affected shear bands evolution. Another 

important reason of the improved ductility was that the pores acted as the stress 

concentrator, stimulating proliferation of shear banding. It was also found that the 

pore sizes and the pore volume fraction could significantly affect the ductility and the 

energy absorption of the porous BMGs, and even the geometry of the pores could 

affect their yield strength [Inoue et al. 2007]. Higher volume fraction of pores could 

improve the plasticity of the porous BMG but its strength might decrease. In order to 

develop porous BMGs with excellent mechanical properties such as a combined 

large fracture toughness and ductility, understanding the mechanism of interaction 

between the pores and the shear bands is important and could provide guidelines for 

the design of the porous BMGs. 

 

Although significant advances in experiments have been made in the understanding 

of shear banding behaviors in deformed porous BMG, little is known about the 

interaction between the pores and shear bands, especially the evolution of shear band 

affected by the introduction of the pores. Thus in the following sections, we shall 

focus on the simulation of the interaction between the shear band and pores using 

the phase-field model [Zheng and Li 2009]. In the simulation, we will consider 
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different conditions of deformation of porous BMG such as the athermal shear 

banding, the shear banding with local heating, the vacuum pore and the pore filled 

with helium.  

 

Figure 3. 1 SEM image of porous BMG sample subjected to 0.1 compressive plastic strain [Inoue et al. 2007]. 

3.2 Simulation details 

According to the phase-field model [Zheng and Li 2009] as described in Section 2.3, 

the shear band propagation and the evolution of shear banding in porous BMG could 

be simulated by solving Eqs. 2.22(a) ~ 2.22(c). In this work, some typical examples 

are investigated to study the shear banding in the porous BMGs. A Zr-based BMG 

plate with dimensions of 20202 m
3
 is considered. One initial crack with length of 
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l0=0.4 m and a pore with a diameter of 2 m are introduced prior to the tensile load 

applied in this BMG sample, as shown in Figure 3.2 (b). The tensile loads are applied 

perpendicular to the initial crack and on the boundaries. The materials properties are 

list as follows, the glass transition temperature Tg=625 K; the Young’s modulus 

E=95 GPa; Poisson’s ratio =0.35; the mass density =6050 kg/m
3
, the heat 

capacity cp=475 (J/kg)K
-1

, and the thermal conductivity k=5 (W/m)K
-1

. The elastic 

strain limit under uniaxial tension is 0.02. The characteristic time of deformation 

defects activation is =0.25 ns. 

 

One important parameter, the deformation defect activation energy G proposed by 

Argon and Spaepen [Argon 1979; Spaepen 1977], is generally determined by the 

strain-rate-sensitivity of plastic flow at different temperature below Tg [Krishnanand 

and Cahn 1975]. This activation energy features the microscopic deformation 

behaviors of metallic glasses. In this work, G is chosen as 4.6 eV at T=300 K for 

Zr-based BMG, equivalent to the energy barrier of deformation defect activation 

described in the phase-field model. The coefficients in Eq. (2.20) can be described as, 

a0=4(2-T/Tg)G, b0=-24G, c0=16G. Choosing a1=-6 and b1=6 aims to stabilize 

the activated deformation defect state at ϼ(r)=1.0 under plastic deformation. 
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Remark: In order to differentiate the density of deformation defects, the density of 

the materials and the distance used in Section 3.3.1, the function notation ϼ(r) is 

used to represent the density of deformation defects in the chapter. 

 

Figure 3. 2 (a) Schematic of the model system of porous BMGs. (b) Schematic of the model system with an initial crack. The 

length of the initial crack is l0=0.4 m. Tensile stress is perpendicular to the initial crack. 

 

The boundary condition of Eq. (2.22b) at the pore surface is ϼ(r)=ϼ0, and on the other 

surfaces of the porous BMG it is assumed that ϼ(r)=0 except at the surfaces of the 

initial crack where ϼ(r)=1.0 is used as boundary condition. Because ϼ(r) represents 

deformation defect density, ϼ0 between 0 and 1 could be a measure of the roughness 

of the pore surface. During the simulation, ϼ(r)=0 represents the smooth surface of 

the pore, while ϼ(r)=1.0 represents the rough surface of the pore. In order to solve 

the partial differential Eqs. 2.22(a) ~ 2.22(c), the length rescale factor 𝑙𝑟 = √𝜅 𝜇𝑒0⁄  

and time rescale factor 𝑡0 = 𝑙𝑟 √𝜇 𝑒0⁄⁄  are applied to make Eqs. 2.22(a) ~ 2.22(c) 
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dimensionless and they could characterize the length and time scales of the system, 

respectively. The parameter  can be estimated from the surface energy  by 

𝜅 =  𝛾𝑅 , and the characteristic length for Zr-based BMG is R= 0.56 m [Zheng and 

Li 2009]. For the fracture surface of the Zr41Ti14Ni10Cu12.5Be22.5 BMG, the surface 

energy was calculated as 1.97 J/m
2 
[Zheng and Li 2009]. In the numerical analysis, 

triangles are used to discrete space domain and the backward differentiation formula 

(BDF) scheme is employed to discrete and integrate time. In order to investigate the 

fracture modes of this porous bulk metallic glass sample, the uniaxial tension loads 

are applied on the upper and bottom boundaries in the direction perpendicular to the 

initial crack, and the other edges are kept free. By solving Eqs. 2.22(a) ~ 2.22(c), 

shear banding in porous BMG could be investigated under different external loading 

conditions and pore microstructures. 

Remark: It should be noted that if thermal effects or local heating are not considered, 

only Eq. (2.22a) and Eq. (2.22b) need to be solved simultaneously, otherwise, 

Eqs.2.22(a) ~ 2.22(c) are required to be solved simultaneously. 

3.3 Simulated results 

The pore can lead to the initiation of the shear bands and the shear band detouring 
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during the deformation of porous BMGs [Inoue et al. 2007]. The properties of the 

pores and local heating could also significantly affect the shear band propagation and 

evolution. Strain and stress distribution around shear band are key factors that affect 

shear band evolution. Thus in this section we first compare the strain distribution in 

porous BMG and that of the elastomer around the pores. Then we will investigate the 

stress distribution when the shear band touches the pore. Finally, effects of local heat 

around the pores with and without filling of gas on the shear banding are investigated.   

3.3.1 Strain localization in porous BMGs under 

deformation 

It is generally accepted that the deformation (the plastic strain) in BMGs is localized 

into the shear band. To understand the micromechanics of shear band, we compare 

the strain fields of a shear band which is just initiated at the position O with those of 

an elastomer containing a pore with the same size, which in the (ρ, θ) polar 

coordinate system are written as [Goodier 1933].  
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where r0 represents the pore radius. The strains near shear band by taking O as the 

origin are shown in Figure 3.2. is the distance between the point calculated and the 

origin O. represents the angle between the line (passing through the origin and 

parallel with the loading direction) and the line (passing through the origin and the 

point calculated). Through algebraic calculation, the normalized results including the 

normal and shear strains (marked as black) are derived and shown in Figure 3.3. 

 

Then we consider the deformation of porous BMG system shown in Figure 3.2 (a) 

by solving Eqs. 2.22(a) and 2.22(b) with the interior boundary condition that the 

pore surface is rough, i.e., ϼ(r)=ϼ0=1.0 on the pore surface. Shear bands could be 

initiated from two utmost positions labeled as O and I at the pore surface. Since the 

plastic strains in porous BMG can be taken as the differences between the strains of 

porous BMG and the elastomer, it can be seen that the plastic strains near shear band 

are highly localized and decrease with increasing distance to the origin following a 

relation much like an exponential function, which has been predicted by the 

theoretical model in Ref. [Zheng 2011]. Moreover, the strain components are almost 

zero at positions with >0.5r0 except the shear strain at positions with =/2. 
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Figure 3. 3 The strain fields at a point (ρ, θ) near the shear band initiated from the pore surface. The red curves are those of an 

elastomer containing a pore. 

3.3.2 Shear banding in porous BMGs without considering 

local heating 

We first investigate shear banding without considering local heating and the 

deformation of porous BMGs is simulated using Eqs. 2.22(a) and 2.22(b). As shown 
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in Figure 3.2 (b), shear bands can be generated from an initiation crack, and then 

propagate along the direction perpendicular to the applied tensile stress . The 

presence of pores, certainly, will make the shear bands discontinuous. 

 

From the simulation, we find out that there are two ways in which the discontinuous 

shear band extends in the porous BMG as shown in Figures.3.4 (a) and (b), which are 

denoted as mode-A and mode-B shear banding, respectively. When the pore surface is 

smooth (ϼ0(r)0), shear band can be detoured by the pore where the shear band 

touches the pore which is observed in experiments [Inoue et al. 2007], resulting in 

mode-A shear banding. When the pore surface is rough ϼ0(r)1.0, shear band is 

initiated from the side of the pore opposite to where the shear band touches the pore, 

resulting in mode-B shear banding, and the porous BMG is still brittle. The porous 

BMG with mode-A shear banding during deformation is considered as the material 

with improved ductility. 
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Figure 3. 4 (a) Mode-A shear banding: the shear band is impeded by the pore. (b) Mode-B shear banding: the shear band goes 

through the pore. Only porous BMG plate near the pore is shown and the length bar is indicated. (c) The critical ϼ0(r)(represented 

as ϼc(r)) as a function of strain energy at the elastic limit e0 under different stress intensity factors KI.  

 

Three factors, the applied tensile stress, the strain energy at the elastic limit e0, and the 

roughness of the pores ϼ0(r), actually control these modes. Under a fixed applied 

stress, mode-A shear banding changes into mode-B shear banding when the roughness 

of the pores ϼ0(r) changes from 0 to 1.0, and there should exist a critical ϼ0(r) 

represented as ϼc(r) for such transition of shear banding mode. In Figure 3.4(c), the 

ϼc(r) as a function of the strain energy at the elastic limit e0 is shown for a given 
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applied stress. According to the curves shown in Figure 3.4 (c) for various applied 

stresses, it is seen that ϼc(r) is not significantly affected by e0 and the applied stress 

when the strain energy at the elastic limit e0 is smaller than 1062 J/m
2
, and the critical 

roughness of the pore ϼc(r) is about 0.3-0.4. That means porous BMG with e0 smaller 

than 1062 J/m
2
 could be tougher if the pore surface is made to have a roughness 

ϼ0(r)0.3. On the other hand, the enhanced toughness of the porous MGs can still be 

kept with a little rougher surface when the strain energy at the elastic limit e0 is larger 

than 1062 J/m
2
. These results obtained can provide an important guideline for the 

design of porous BMG with enhanced fracture toughness. 
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Figure 3. 5 (a) Pore surface before (colored in black) and after (colored in pink) mode-A shear banding. (b) Contour plots of 

shear stresses in mode-A shear banding. (c) Pore surface before (colored in black) and after (colored in pink) mode-B shear 

banding. (d) Contour plots of shear stresses in mode-B shear banding. The color bar is for the contour plots of shear stresses. 

The gray bar corresponds to the value of 1-ϼc(r).  

 

The deformation of the pore and the stress distribution around the pores are further 

analyzed when the shear band touches the pore for these two shear banding modes, 

respectively, as shown in Figure 3.5. In mode-B shear banding, shear stress on the 

pore surface is heterogeneous. Shear stress tends to build up at the side of the pore 

surface opposite to where the incident shear band touches the pore; and shear 
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stresses at other places on the pore surface are relaxed as shown in Figure 3.5 (d). 

The shear band could be initiated at the place marked as ‘O’ where the stresses 

concentrate on the pore surface. In mode-A shear banding, shear stresses are built up 

on several places on the pore surface and are relatively homogeneous as shown in 

Figure 3.5 (b), and no obvious stress concentration can be observed. The stress 

distribution after the interaction between the incident shear band and the pore can be 

further revealed by the change of pore geometry under the deformation caused by 

the stress field of the incident shear band. As shown in Figure 3.5 (c), in mode-B 

shear banding, the shear deformation of the pore surface is mainly at the side 

opposite to where the shear band touches the pore, which is marked as ‘O’. Thus 

shear band could be generated at ‘O’. On the contrary, in mode-A shear banding, 

shear deformation of the pore surface occurs at its side close to the shear band, 

which is marked as ‘I’. The shear band is thus impeded by the pore surface near the 

side marked as ‘I’, as shown in Figure 3.5 (a). 

3.3.3 Effects of heat conduction around pores on shear 

banding 

Although in what stage and in what form it is relevant to shear banding remains 
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unclear, local heating is an important characteristic of shear banding. In porous BMGs, 

local heating could play a dominate role in shear banding since shear bands will be 

significantly affected by the heat conduction conditions around the pores. For 

example, shear bands among vacuum pores could be generated by adiabatic 

deformation, while shear bands around pores filled with gases are formed in a 

relatively homogeneous thermal environment. 

 

To investigate the shear banding by considering local heating, we solve the coupled 

equations Eqs. 2.22(a) ~ 2.22(c). The initial condition of heat conduction equation Eq. 

(2.22c) is T=300 K. Other conditions of Eqs. 2.22(a) and 2.22(b) are the same as those 

in Section 3.3.2. 
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3.3.3.1 Shear banding around vacuum pores. 

 

Figure 3. 6 (a) Brittle porous BMGs in mode-B shear banding. (b) Ductile porous BMGs in mode-C shear banding. (c) Brittle 

to ductile transition controlled by the coefficient  of mechanical work to heat conversion in porous BMGs with vacuum pores. 

The critical  (denoted as c) at which mode-B shear banding transforms into mode-C shear banding under a stress intensity 

factor KI is plotted as diamond symbols. The color bar is for the contour plots of temperatures. 

 

In the case that the pores are vacuum holes, it is found that the shear banding modes 

are related to a parameter  which is the percentage of mechanical work to heat 

conversion. There are two shear banding modes, named as mode-B and mode-C as 
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shown in Figures 3.6 (a) and (b) respectively. From the figures, it can be seen that the 

shear band is initiated directly from the side of the pore opposite to where the shear 

band touches the pore for mode-B. For the mode-C shear banding, the pore acts as 

sink and source of shear bands, resulting in shear band multiplication. Hence, porous 

BMG deformed in mode-C shear banding could have better ductility compared with 

that in mode-B shear banding. The decreases of  from 1 to 0 will change the shear 

banding from mode C to mode B under a fixed stress intensity factor.  

 

To determine the conditions that porous BMG is deformed in mode-C shear banding, 

we plot diamond symbols in Figure 3.6 (c) indicating the critical  (denoted as c) at 

which mode-B shear banding transforms into mode-C shear banding under different 

stress intensity factors KI= 0l  . Hence the curve of KIc denotes the boundary of 

brittle to ductile transition, and distinguishes modes-B and mode-C shear banding as 

discussed above.  

3.3.3.2 Shear banding around pores filled with helium 

In the previous section the pores in the porous BMG are considered as vacuum holes. 

While in fact those pores are made by blowing gas bubbles such as helium bubbles 

into the melts of alloys in producing porous BMG. Thus the pores could contain gas 
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which provides conduction paths for the heat generated by shear banding around the 

pores. Under this condition, the shear banding is studied in this part. 

 
Figure 3. 7 Shear banding in BMGs with vacuum pores ((a)~(d) with =0, 0.001, 0.1, and 1, respectively);and shear banding in 

BMGs with pores filled with helium ((e)~(h) with =0, 0.001, 0.1, and 1, respectively). The color bar is for the contour plots of 

temperatures. 

 

We consider porous BMG consisting of pores with a diameter of 2.0 m. The pores 

are filled with helium at 100 kPa which has the physical properties as follows, thermal 

conductivity 0.152 W/(m·K), heat capacity 5193 J/(kg·K), and density 0.178 kg/m
3
. 

The shear banding around pores filled with helium is shown in Figures 3.7 (e) ~ (h), 
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assuming the percentage of mechanical work to heat conversion to be =0, 0.001, 0.1, 

and 1, respectively. The stress intensity factor is KI=32 MPam
1/2

 and surface 

roughness of the pore is ϼc(r)=0.48. Under the same pore surface roughness condition 

and the same stress load, the shear bandings in porous BMG with vacuum pores are 

shown in Figures 3.7 (a) ~ (d) for comparisons when the percentages of mechanical 

work to heat conversion are =0, 0.001, 0.1, and 1, respectively. The color bar 

represents the temperature value and the contour lines are shown in Figure 3.7. 

Comparing the features of shear banding and the temperature distribution around 

shear bands in porous BMGs with vacuum pores and with pores filled with helium, we 

can find that the helium filled in the pores significantly affects the shear banding 

behaviors in porous BMG, while the temperature distribution around shear bands is 

not much affected. Obviously, porous BMG with pores filled with helium deforms in 

mode-B shear banding and its ductility could be less than that of porous BMG with 

vacuum pores. 

3.4 Discussions 

It should be noted that the introduction of the pores into the BMG can significantly 

change the stress distribution, which is obvious around the pore [Inoue et al. 2007]. 
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The main function of the pore is to confine the instable shear band propagation and 

increase the shear band densities, resulting in the improved ductility of the porous 

BMG. It should be noted that the asymmetry of tension and compression around the 

pores should affect the deformation mode. It is well known that compressive stress 

could prevent the crack extension. The failure of materials is usually caused by the 

combination of the normal and shear stresses in porous BMGs under tensile loading. 

There are two kinds of porous BMGs, i.e. the open-cell [Brothers & Dunand 2005a; 

Brothers & Dunand 2005b; Brothers et al. 2005] and the closed cell porous BMGs 

[Inoue et al. 2007]. The deformation mechanism should be different for these two 

kinds of porous BMGs, since the surface roughness and the heat conduction of these 

porous BMGs are different. The local heating is another important factor affecting 

the deformation mechanism. Thus in the present phase-field modeling, the 

roughness of the pore surface, the gas filled in the pore and local heating are chosen 

as the factors rather than the fraction of pores to investigate the deformation 

mechanisms of the porous BMGs, which are different with those used in other 

numerical simulation and experimental investigations. For example, in this work, the 

surface smoothness is reflected through the definition of boundary condition. The 

results successfully describe the deformation behaviors of the pores in the BMGs, 
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which is consistent with the results in the experiments [Brothers & Dunand 2005b].  

 

Figure 3. 8 SEM micrographs illustrating mechanisms of compressive deformation in Vit106 foam (pore size 230 μm and 

relative density 23%). Low-magnification images show foam structure following unloading from various applied macroscopic 

strains: (a) low strain (4%); (b) intermediate strain (24%); (c) high strain (43%). Also shown are deformed structures within the 

sample following unloading from: (d) 4% strain; (e) 9% strain; (f) 14% strain; (g) 19% strain. Visible fractures are indicated by 

arrows where they first appear [Brothers and Dunand 2005b]. 

 

In Figure 3.8 (e), we can see several cracks occur during the compressive 

deformation of the porous BMGs sample. Besides the shear fracture marked by the 

black heavy arrow, the crack marked by the red arrow should be caused from the 

surface of the pore, similar with the mode-B shear banding (as shown in Figure 3.4 

(b)) observed in our simulation which could be affected significantly by the surface 
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roughness of the pore. It can be found in Figures 3.8 (e) and (d) that, the 

deformation of pores under larger strains (at the arrival of the crack initiation at the 

left hand side of the pore) is consistent with the simulation results (as shown in 

Figure 3.5 (c)). When the strain is further increased, the crack at its left hand side 

marked by yellow arrow in Figure 3.8 (f) gets through the pore and results in the 

crack at the right hand side of the pore which is marked by the white heavy arrow. 

Different from mode-B shear banding in our simulation, this crack is accompanied 

by other cracks as denoted by the heavy black arrow in Figure 3.8 (e).  

3.5 Conclusions 

Shear banding in porous BMG is investigated by phase-field modeling. The surface 

roughness of the pores, the gas filled in the pores and the elastic limit and strain 

energy at the elastic limit in the matrix may affect the shear banding in porous BMG. 

The modeling provides quantitative measures on these parameters that determine 

different modes of shear banding. Under different preparation methods, the pores in 

the porous BMGs shall be greatly different, which may affect the plasticity of the 

materials by various mechanisms. The investigation on these factors can play an 

important role in the design of new kinds of BMG materials with improved ductility 
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for structural applications.  

 

During the simulation, two main modes of shear banding are found to be responsible 

for the improved ductility in porous BMGs. One is the prevention of shear banding 

when the closed pores possess smooth surfaces. The other is the occurrence of the new 

shear bands due to the heterogeneous local heating when the closed or open pores are 

filled with gases which are less effective in conducting heat. In this study, it is 

quantitatively determined that the characteristics of BMG such as the strain energy at 

the elastic limit should be combined with features of the pores such as their surface 

roughness to achieve ductility of the porous BMG.   
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Chapter 4 Simulation of shear banding in 

BMG composites containing in-situ formed 

dendrite phases 

4.1 Introduction 

During the development of BMGs, considerable efforts have been devoted to cope 

with the catastrophic fracture resulting from the occurrence of the shear banding. 

Even some BMGs exhibit high strength and fracture toughness, the brittle failure 

pattern caused by the absence of ductility would also occur in unconstraint loading 

geometries [Rao et al. 2001]. Various kinds of BMG composites containing 

quasicrystals, intermetallic or ductile dendrites have been developed, such as 

Ti-based [He et al. 2003a; Louzguine et al. 2004], Zr-based [Das et al. 2003] and 

Fe-based BMGs [Gu et al. 2006; Yao and Zhang 2007]. Especially it was noted that 

significant improvements on the ductility were reported from the experiments by 

introducing microstructural dendrite phases [Pekarskaya et al. 2001; Hays et al. 

2001, Hofmann et al. 2008a]. It was suggested that the restriction and bifurcation of 

shear bands caused by the dendrites may play an important role in the improved 

ductility. The effects of the volume fraction of dendrites and their distribution 
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patterns were investigated. The results showed that the properties of the crystalline 

dendrites could influence the deformation modes of the system by disturbing the 

shear band evolution paths. Nevertheless, the theoretical studies on the shear 

banding around the dendrites, which could provide guidelines for the design of 

BMG composite with in-situ formed dendrite phase, are still considerably limited. 

For example, it is still not clear how the relevant parameters of the dendrites such as 

their microstructure (patterns of the arms of the dendrites), shape and dispersion 

pattern (relative rotation angle with respect to the initial shear bands) affect the 

mechanical properties in the microscopic scales, which are difficult to be detected 

through the experiments. 

 

In this work, we focus on the evolution of shear band and the interaction between 

the shear banding and the crystalline dendrite especially when it touches the 

crystalline phase. The mechanisms of improved ductility and the dynamic evolution 

of shear band are numerically investigated based on the phase-field models in the 

Zr-based BMG composite containing in-situ formedβ-Zr2Cu dendrites [Zheng and 

Li 2009]. It is found that there are some factors influencing the shear band 

propagation, such as the properties of the dendrite phase, especially the rotation 
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angle, the structural features of the dendrites and the fracture energy of BMG matrix. 

Some important features can be observed in the microscopic scale, , such as the 

detouring and branching of shear band due to interactions between the shear bands 

and the dendrites , , which help us to investigate the origin of improved ductility and 

provide guidance for the design of BMG- composites with improved fracture 

toughness and ductility. 

4.2 Phase-field models used for the simulation 

The phase-field model on the shear banding in BMG matrix is the same as that used in 

Chapter 3 and has been introduced in Chapter 2. In the present study, Eqs. 2.22(a) and 

2.22(b) are used to investigate the shear banding in the BMG matrix and the local heat 

is not considered.  

 

Since it is an important step to model crystalline dendrite structure formation in our 

simulation, the phase-field modelling methodology for the dendrite solidification will 

be presented in the section that follows. We will also present the phase-field modeling 

method that is used for the simulation of cracking in crystalline dendrites.  
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4.2.1 Phase-field modeling on solidification of dendrite  

Dendritic structure is commonly observed in solidification of alloys. Its shape is 

usually very complicated. The phase-field model based on Elder’s solidification 

theory [Provatas and Elder 2010] has been successfully developed to describe the 

dendritic pattern formation. 

 

The order parameter (x) is employed to represent the phase transformation during 

the solidification. It ranges from -1.0 to 1.0. The value -1.0 corresponds to the liquid 

phase while =1.0 represents the solid phase. By introducing the order parameter 

(x), the free energy of a binary alloy has been proposed as a function of the 

solid-liquid order parameter field (x), the usual solute concentration field c(x), and 

the temperature field T(x). The equation can be described as, 

22

( , , )
2 2

c

v

c
F f c T dV

 


  
    

  
 ,     (4.1) 

where 𝜀𝑐 = √𝐻𝑊𝑐  and 𝜀𝜑 = √𝐻𝑊𝜑  are the constants used to set the scale of the 

solid-liquid and compositional domain interface energy, respectively. W and Wc are 

used to define the length scales of the solid-liquid interface and a compositional 

boundary, respectively. H is the nucleation barrier which controls the activation 
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between the liquid and solid phases at the melting temperature. When the 

components A and B have the similar atomic radius, then HA=HBH. The first and 

second terms in the integral represent the interfacial effects from the concentration 

and different structure state, respectively. The third term is the free energy density 

from the bulk effects. For alloy with only one solid phase, such as the -Zr2Cu, the 

free energy density f (, c, T) can be described as, 

 

( , , ) ( ( ) ( ) )(1 ) ( ( ) ( ) )

( ) ( )
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Hg RT c c c c







      

 
  

    

  ,      (4.2) 

where, TA and TB represent the melting temperature of the component A and B, 

respectively, LA and LB are the latent heats of constituent A and B, respectively. 𝑠𝐴
𝐿  

and 𝑠𝐵
𝐿   mean the bulk entropy densities of A and B in liquid state, respectively. P() 

is an interpolation function satisfying the limits P( =L)=0 and P( =s)=1.0. The 

interpolation function g() is a phenomenological expression with limits 

g(L=0)=0 and g(s=1.0)=1.0. The logarithmic terms denote the mixing 

entropy contribution to free energy. 

 

During the kinetic solidification of alloy, it should be noted that the microstructure is 

govern by the order parameter, concentration of impurity and the temperature. 
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However, the diffusion of heat occurs much more rapidly than the diffusion of solute 

impurities in a binary alloy at the low solidification rates. As a result, the 

temperature can be considered as “frozen” in the timescale of mass transport, which 

becomes the rate-limiting step in the solidification process. Under these conditions, 

it is reasonable to consider only the dynamics of solute diffusion and solid-liquid 

order parameter field. The changes in solute concentration are governed by the 

well-known mass conservation equation, 

2 2( , )
( , )

mix

AB
L c

f cc
D q c c

t c


 

    
     

    
,    (4.3a)

 

where  

2

2
( , ) ( ) /

( , )mix

ABf

c
q c Q

c
 







 

with Q() being used to interpolate the mobility between different phases. 

 𝐴𝐵
𝑚𝑖𝑥(𝑐, 𝜑) is the free energy density of the material consisting of atoms A and B as 

described by Eq. (4.2). DL is the diffusivity of the liquid.  

 

According to the assumption of dissipative dynamics and the fact that the order 

parameter in solidification is a nonconserved quantity (i.e., an undercooling liquid 

can crystallize), the equation describing the dissipative dynamics of the phase field 

can be stated by using the variation of the free energy as, 
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2 2 ( , )1 mix

ABf cF dg
W

t d H


 
 

  


     

 
,   (4.3b)

 

By solving Eqs. 4.3(a) and 4.3(b), the shape of the solid phase formed in the melt of 

binary alloy could be obtained by extracting the boundary defined as  =0 between 

the liquid and solid phase. The growth of dendrite boundary can be efficiently 

simulated. 

 

In this work, β-Zr2Cu crystalline dendrite has been developed by numerically 

solving Eqs. 4.3(a) and 4.3(b). The properties of β-Zr2Cu crystalline are as follows: 

the melting temperature TM=1726 K, the latent heat L=2.311×10
9
 J/m

3
, the heat 

capacity cp=5.313×10
6
 J/(m

3
K), the diffusivity DL=10

-5
 m

2
/s. By using the numerical 

methods, e.g., the finite difference method, the growth of dendrite boundary can be 

efficiently simulated. 

4.2.2 Phase-field modeling on crack propagation in 

crystalline phase 

In the BMG composites, the adhesion between the secondary phase and the BMG 

matrix is assumed perfect, resulting in the continuous displacement at the 

dendrite-BMG interface. Shear bands in the BMG matrix can be bifurcated or 
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detoured by the arms of dendrite phase, or can pass through the crystalline phase. 

Fracture of the crystalline phase should be simulated if shear bands pass through the 

dendrites. Although the fracture and cracking in crystalline solid are complicated 

because of the dislocation involved in the process, the dynamic cracking has been 

modeled successfully by using phase-field approaches [Karama et al. 2001; Karama 

and Lobkovsky 2004]. The detailed model has been described in Section 2.1. 

Accordingly, the deformation and fracture in the crystalline phase could be denoted 

by numerically solving Eqs. 2.6(a) and 2.6(b). 

 

The deformation in the BMG composites can be simulated by combining the 

equations describing the deformation in BMG matrix and the equations describing 

the deformation and fracture in the crystalline phase. The simulation of shear 

banding can be derived by numerically solving the differential equations, Eqs. (2.6) 

and Eqs. (2.22). 

4.3 Simulation details 

In the present simulation, Zr-based BMG containing β-Zr2Cu dendrites will be 

considered. The simulation details of the Zr-based BMG matrix andβ-Zr2Cu 
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dendrites will be firstly introduced in this section. Then the simulated results shall be 

discussed about the patterns of the dynamic evolution of the shear banding. 

4.3.1 Simulation details of Zr-based BMG matrix 

A Zr-based BMG plate with dimensions of 20202 m
3
 shall be considered and 

chosen as the matrix in the simulation. An initial crack with length of 0.4 m, as 

shown in Figure 4.1 (a), is introduced. The materials properties of Zr-based BMG are 

as follows. Glass transition temperature: Tg=625 K; Young’s modulus: E=95 GPa; 

Possion’s ratio: =0.36; Density: 0=6050 kg/m
3
. Elastic strain limit under uniaxial 

tension: limit=2%. Characteristic time of deformation defect activation: =0.25 ns. 

The elastic energy at the elastic limit has been chosen as e0=38 J/m
2
. 

 

Figure 4. 1 (a) Model system of BMG-composite plate (20 m 20 m2 m). The dashed box is the area of the composite to be 

shown in Figures (4.2) ~ (4.5). (b) The geometry of dendrite phase.  is the rotation angle. 
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The coefficients in Eq. (2.20) are given by a0=4G (2-T/Tg), b0=-24G, c0=16G, 

where the deformation defect activation energy ∆G is estimated as 4.6 eV at room 

temperature [Lu et al. 2003]. The coefficients a1=-6 and b1=6 are chosen to 

quantitatively present the phase transformation of deformation defects in glassy 

alloy under deformation. According to the chosen coefficients, the shear modulus 

tends to zero when ρ(r)→1.0, which describes the shear softening and fracture in the 

glassy alloy. Then the critical density of deformation defect is defined as 0.8 to 

distinguish the shear softening regions from the remaining elastic medium.  

 

The length rescale factor 𝑙𝑟 = √𝜅 𝜇𝑒0⁄  and time rescale factor 𝑡0 = 𝑙𝑟 √𝜇 𝜌0 ⁄⁄  

are applied to Eq. (2.22) to make it dimensionless and feature as the length and time 

scales of the system, respectively. The parameter  can be estimated from the 

surface energy  by 𝜅 =  𝛾𝑅 , and the characteristic length for Zr-based BMG is 

R=0.56 m [Zheng and Li 2009]. For the fracture surface of the 

Zr41Ti14Ni10Cu12.5Be22.5 BMG, the surface energy was calculated as 1.97 J/m
2 

[Zheng and Li 2009]. The dimensionless equation can be solved numerically. 

Triangles are used to discrete space domain and the backward differentiation 

formula (BDF) scheme is employed to discrete and integrate time in the numerical 
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analysis. The uniaxial tension load is applied on the top and bottom boundaries 

perpendicular to the initial crack. 

4.3.2 Simulation details of dendrite phase 

In order to investigate the interaction between the shear band and the crystalline 

dendrite in microscopic scale, it is necessary to introduce the β-Zr2Cu dendrite 

phase into the simulation sample. The framework of theβ-Zr2Cu dendrite phase is 

formed through the numerical simulation as described in Section 4.2.1. As shown in 

Figure 4.1 (b), the dendrite with two small secondary arms is developed in the 

present simulation. The dimension of the dendrite is about 1.2 m. The properties of 

β-Zr2Cu crystalline phase are as follows: Young’s modulus: E=121 GPa [Chen et al. 

2009], Possion’s ratio: =0.28. Elastic strain limit under uniaxial tension: limit=2%.  

 

In the present study, two values of the fracture energy of the dendrite, i.e., ec=48.4 

J/m
2
 and ec=145.2 J/m

2
, have been chosen for analysis. Four rotation angles i.e., 0 º, 

15º, 30º, and 45º have been chosen for considerations, which describe the relative 

position between the initial shear banding and the primary arm in this dendrite phase 

and are marked  in Figure 4.1 (b). 
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4.3.3 Simulated results  

4.3.3.1 The morphology of dendrite phase 

The typical morphology of the dendrite phase is shown in Figure 4.1 (b). The 

dendrite structures are characterized by the primary dendrite axes with lengths of 1.2 

m. It is noted that the secondary arms are regularly patterned in spacing of 0.1 m. 

It can be found that the patterns of the dendrite phase obtained from phase-field 

simulation are consistent with the β-Zr2Cu dendrites observed in electronic 

microscopy [Hofmann et al. 2008a], in particular the secondary arms can be well 

distinguished from the primary arms of the dendrites. 

4.3.3.2 The shear band evolution 

 

Figure 4. 2 Shear banding in BMG composite containing dendrite phase with a fracture energy ec=48.4 J/m2, (a) =0º, (b) 

=15º, (c) =30º, (d) =45º. The colour bar represents the values of 1- in the dendrite, and the gray bar corresponds to the 

values of 1- in the BMG matrix. 
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For the Zr-based BMG composites containing β-Zr2Cu dendrite phase whose fracture 

energy is approximated as ec=48.4 J/m
2
, the interactions between the shear bands and 

the secondary phases with four different rotation angles (=0º, 15º, 30º, and 45º) 

which describe the relative positions between the initial shear bands and the primary 

arms of dendrite, are shown in Figure 4.2. If the rotation angle is =0º, the shear band 

gets close to the primary arm’s tip of the dendrite. Then cracking occurs in the 

dendrite as shown in Figure 4.2 (a). The cracking area of the dendrite is so large that 

shear bands are also generated in the BMG matrix close to the tip of the primary arms. 

It is noted that the interaction results in not only crack propagation in the dendrite, but 

also the extension of incident shear band in the BMG matrix. This interesting 

phenomenon suggests that under mechanical deformation the presence of dendrite 

phase in the BMG matrix leads to more fracture surfaces in the dendrite and more 

shear bands in the BMG matrix which could accommodate more plastic strains and 

the ductility of the composite could increase. In the case of the rotation angle =15º as 

shown in Figure 4.2 (b), when the shear band gets close to the secondary arms of the 

dendrite phase, its propagation direction is changed a bit by the secondary arms before 

it generates fracture surface in the primary arm. The crack passes through one of the 

primary arms of the dendrite and induces shear banding in the matrix, accompanying 
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by an additional crack which passes through the other primary arm of the dendrite. 

More shear bands could also be generated in the BMG matrix close to the cracking 

areas of the primary arms. Similar with the case of =0º, the ductility may increase 

since more fracture surfaces are generated in the dendrite and more shear bands are 

generated in the BMG matrix. If the rotation angles are =30º and 45º as shown in 

Figures 4.2 (c) and (d), respectively, the shear bands in the BMG matrix and cracks in 

the dendrite propagate almost along a straight line, without obvious bifurcation and 

detour. In all four cases, it is found that the cracks can be generated in the dendrite 

phase and they propagate easily. These phenomena could be caused by the fact that 

the strain energy at the elastic limit of BMG e0 (38 J/m
2
) and the fracture energy of the 

dendrite ec (48.4 J/m
2
) are similar. From the simulation, we can conclude that when 

<30º, the improved ductility could result from the shear band multiplication near the 

dendrite and the accommodation of plastic deformation by the dendrite. While the 

improved ductility only results from the accommodation of plastic deformation by the 

dendrite when >30º. These features show good agreement with the experiment 

results [Pekarskaya et al. 2001; Hays et al. 2001; Hofmann et al. 2008a], which justify 

the application of phase-field modeling in the analysis of shear banding in BMG 

composites in the mesoscopic scales. 
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It could be important in the design of BMG composites with even better ductility if we 

investigate the shear banding in the BMG composites containing crystalline dendrite 

phases with larger fracture energy. Hence we further consider the case when the 

crystalline dendritic phase possesses a fracture energy much larger than that of the 

BMG matrix, for example, in the Zr-based BMG composite reinforced with 

secondary phases showing phase transformation induced plasticity such as the Ni-Ti 

phase. In the simulation we assume these secondary phases possess the same model 

parameters in Eq. (2.6a) as those of β-Zr2Cu dendrites except their fracture energy. 

 

Figure 4. 3 Shear banding in BMG composite containing dendrite phase with a fracture energy ec=145.2 J/m2. (a) =0º, (b) 

=15º, (c) =30º, (d) =45º. The colour bar represents the values of 1- in the dendrite, and the gray bar corresponds to the 

values of 1- in the BMG matrix. 

 

When the dendrite has the fracture energy ec=145.2 J/m
2
 much larger than e0 of BMG 
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matrix, much obvious bifurcation and detour of shear bands can be seen as shown in 

Figure 4.3. When the rotation angle is =0º as shown in Figure 4.3 (a), shear band 

branching occurs when the shear band touches the primary arm of the dendrite. The 

branches of the shear band then induce fractures of other arms. At =15°, the 

dendrite’s secondary arms could cause the detouring motion of shear band around the 

dendrite before and after the shear band induces fracture in the dendrite, as shown in 

Figure 4.3 (b). In the cases of =30º and =45º, no obvious bifurcation and detour of 

shear band have been observed, as shown in Figures 4.3 (c) and (d), respectively, and 

there is no shear band multiplication near the dendrite. 

 

From the above-mentioned simulated results, some useful features about the 

interaction between the shear bands and the dendrites are summarized as follows. 

First, the tips of the primary and secondary arms of the dendrite play a major role in 

the branching and the detour of shear bands. Thus, properly controlling the dendrite 

dispersion pattern could be helpful in accommodating plastic strains by the dendrite 

and the ductility of the composite could be enhanced. Second, the branching and the 

detour of shear bands are much obvious in composite containing dendrite with high 

fracture energy, resulting in the accommodation of more plastic strains by the BMG 
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matrix. It is difficult for the incident shear bands to induce fractures in the crystalline 

phase when the fracture energy of the dendrite phase is high and the branching and 

detour of shear bands could occur. Third, when the fracture energy is low, cracks are 

easily generated and they propagate in the dendrite phase after the shear bands interact 

with the dendrites. Cracks at different places of dendrite further promote the shear 

banding close to the dendrite, resulting in shear band multiplication which also plays a 

significant role in enhancing the ductility of the BMG composite.  

4.3.3.3 The maximum shear stress fields 

In order to further reveal the mechanisms of improved ductility in BMG composites, 

the maximum shear stress fields defined as 𝜏 =  √(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + 𝜎𝑥𝑦2  are analyzed 

as shown in Figure 4.4, where ij are stress components around the dendrite with 

fracture energy ec=145.2 J/m
2
. 
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Figure 4. 4 Surface plots of shear stress fields in BMG composite containing dendrites with fracture energy ec=145.2 J/m2: (a) 

The rotation angle =0º. The color bars marked as Sm and Sd at the left are for the maximum shear stresses in unit of (95 GPa) 

in the BMG matrix and dendrites, respectively; (b) =15º rotation angles. The color bars marked as Sm and Sd at the right are 

the maximum shear stresses in the BMG matrix and dendrites, respectively.  

 

Figures 4.4 (a)-(b) show τ around the dendrite with the rotation angles =0º and =15º, 

respectively. It can be seen in Figure 4.4 (b) that the un-symmetric shear stress at the 

tip of incident shear band causes the detour of shear band upon touching the 

secondary arm of dendrite with a rotation angle =15º. In the contrary the shear 

stresses are symmetric around the tip of shear band touching the primary arm of 

dendrite with a rotation angle =0º, resulting in the branching of the incident shear 

band as shown in Figure 4.4 (a). The effect of fracture energy of dendrite on the 
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improved ductility is analyzed by showing τ around the dendrite in Figure 4.5. If the 

dendrite has large fracture energy (ec=145.2 J/m
2
) as shown in Figure 4.5 (b), in the 

BMG matrix there are large shear stresses only at the front of shear band which drives 

the shear band to move around the dendrite. If the dendrite has relative low fracture 

energy (ec=48.4 J/m
2
) as shown in Figure 4.5 (a), several places (marked as the black 

dashed box) in the BMG matrix could show large shear stresses which could initiate 

new shear bands. Such shear band multiplication occurs at some places close to the 

BMG-dendrite interface, and could relate with the fracture surfaces generated in the 

dendrite after the interaction between dendrite and shear bands, as reflected by the 

large shear stresses in dendrite shown in Figure 4.5 (a). 
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Figure 4. 5 Surface plots of shear stress fields in BMG composite containing dendrites at =15º rotation angles and with (a) 

fracture energy ec=48.4 J/m2 and (b) fracture energy ec=145.2 J/m2. The color bars marked as Sm and Sd are for the maximum 

shear stresses in the BMG matrix and dendrites, respectively. The fracture surfaces in the dendrite are not shown. 

4.4 Conclusions 

In this work shear banding in the BMG composite is simulated based on the 

phase-field models. A dendrite phase is first formed by using the phase-field model 

and then deformation behaviors in the crystalline dendrite phase and BMG matrix 



 

 

98 

 

are simulated. Some important features are revealed from the simulation in 

microscopic scales. Two factors of the dendrites, i.e., the rotation angle representing 

the dispersion pattern and the fracture energy of the crystalline phase, are discussed.  

 

From the simulation, the bifurcation and detour of the shear bands, which could 

result in the improved ductility of the composites, are observed when the crystalline 

dendrite phase is added. From the comparisons of the rotation angles, it is noted that 

the tips of the dendrite play a major role in the bifurcation and detour of the shear 

bands. It is found that the dendrite with high fracture energy can provide high crack 

resistance and then cause more obvious bifurcation and detour of the shear bands. 

The mechanisms of the bifurcation and detour of the shear bands can be well 

explained from the studies on the shear stress field. 

 

These features are useful to explain the mechanisms of the improved ductility in the 

BMG composite and also helpful to guide the design of the composites. Furthermore, 

the phase-field model on shear banding is successfully applied to investigate the 

BMG composites containing dendrite phases with complicated microstructures. The 

numerical model can be employed to explore the even more complicate effects of 
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the microstructure of dendrites on shear banding in the BMG matrix. 
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Chapter 5 Phase-field modeling on 

deformation behaviors of micro- and 

nano-scale metallic glasses 

Although the mechanical strength and the deformation behaviors change significantly 

when the sizes of metallic glasses decrease, it is very challenging to investigate the 

deformation mechanisms in micro- and nano-scale metallic glasses using the atomic 

simulation or the experimental methods. Whether there exist improved ductility and 

mechanical strength when the size of the metallic glasses decreases still remains 

unresolved. In this work, we will develop the phase-field model to bridge this gap and 

investigate the sample size effect on the deformation behaviors of metallic glasses. 

5.1 Introduction  

In the past several years, there have been a lot of investigations on the mechanisms 

of sample size effects on the deformation modes of metallic glasses (MGs). Several 

possible factors affecting the mechanical properties of the micro- and nano- scale 

MGs were investigated, such as the energy balance between the interface energy and 

the strain energy, or size effects on the plastic zone [Guo et al. 2007; Jang and Greer 
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2010] and stress state [Ma et al. 2012], surface constraint effects or surface 

unevenness effects [Guo et al. 2007; Li and Li 2005; Li and Li 2007; Luo et al. 2010; 

Wu et al. 2010b], and the effects of surface atoms on the shear transformation zones 

[Delogu 2009]. However, there were some inconsistent and controversial results 

noted in theoretical and experimental reports. For the nano-scale samples, some 

researchers reported that the yield strength was size-independent [Wu F.F. et al. 2009; 

Dubach et al. 2009; Chen et al. 2010]. Nevertheless, Jang and Greer indicated that 

the yield strength was size-dependent above 500 nm and size-independent below 

500 nm [Jang and Greer 2010], and Lai et al. stated that the yield strength should 

increase with the decreasing size [Lai et al. 2008]. It was also found that the critical 

size at which the localized deformation transformed to the homogeneous 

deformation was significantly divergent. The critical size was reported to change 

from 40 nm to 400 nm [Guo et al. 2007; Ma et al. 2012; Chen et al. 2010; Volkert et 

al. 2008]. In the contrary, it was found that the localized shear deformation was less 

important and global plasticity could be significant when the size decreased to 250 

nm [Schuster et al. 2008] or 150 nm [Wu X.L. et al. 2009]. These divergences can be 

partially understood as the results of the different sample conditions, such as the 

imperfect sample geometry or the various initial structural states in the MGs. During 
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the preparation of metallic glass samples, the fractions of free volumes in sample 

interior are diverse for the as-cast and annealed samples, and the experiments 

showed that the strength of the sample with less free volumes was higher than that 

of the samples with more defects [Wu W.F. et al. 2008]. On the other hand, many 

groups used focus ion-beam (FIB) technique to prepare nano-scale samples 

[Langford 2006]. Nevertheless, different initial status on the surface of the sample 

produced by FIB is also unavoidable [Kato 2004]. Thus it is important to investigate 

how the initial status of the samples, which are difficult to be detected in 

experiments, affect the deformation mode and the fracture strength, which favors the 

understanding of the mechanism of the size effect on the mechanical properties of 

metallic glass systems. 

 

In this study, we conduct the simulations on three-dimensional (3D) nanowire 

samples with diameter ranging from 30 nm to 400 nm in tensile conditions based 

upon the phase-field model. The phase-field model in metallic glasses was first 

developed by Zheng and Li [Zheng and Li 2009] and was successfully applied to 

model the shear banding in bulk metallic glasses (BMGs) in two-dimensional (2D) 

simulations. This model can be easily extended to the 3D simulation. The method 
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and the parameters in the model would be revisited in Section 5.2. The efficiency of 

this phenomenological theory in studying the fracture in 3D metallic glass systems is 

elucidated in Section 5.3.1. In Section 5.3.2, two factors of the MG nanowires, i.e., 

the fractions of initial deformation defects on their surfaces and in the nanowire 

interior, are considered to investigate their effects on the fracture strength of the 

specimens. From the simulations, the deformation mode, the fracture strength and 

the relationship between the fracture strength and the sample size are identified, and 

the underlying mechanisms are discussed.  

5.2 Simulation details 

According to the dynamic model [Zheng and Li 2009] as stated in details in Section 

2.3, the shear band propagation and the evolution of shear banding in BMG without 

considering the local heating could be simulated by solving Eqs. 2.22(a) and 2.22(b). 

Here we solve those equations in fully 3D samples. The samples are chosen as the 

cylinder with the fixed height of 800 nm as shown in Figure 5.1. The different sample 

sizes are characterized by the diameter of the cylinder, which ranges from 30 nm to 

400 nm. Hence the MG samples could be considered as nanowires. The Vitrelloy 1 

(Zr41Ti14Ni10Cu12.5Be22.5) is chosen as the material in the present simulations. The 
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material properties are listed as follows [Bruck et al. 1994; Conner et al. 1997]: 

Glass Transition Temperature Tg=625 K; Young’s modulus E=95 GPa; Poisson’s 

ratio =0.35; Mass density 0=6050 kg/m
3

. The elastic strain limit under uniaxial 

tension is f~2. The characteristic time for deformation defect activation is ρ=0.25 

ns [Khonik et al. 2008]. The coefficients in Eq. (2.20) are given by a0=4G(2-T/Tg), 

b0=-24G, c0=16G, where the deformation defect activation energy ∆G is 

estimated as 4.6 eV at room temperature [Lu et al. 2003]. The coefficients a1=-6 and 

b1=6 are chosen to quantitatively present the phase transformation of deformation 

defects in glassy alloy under plastic deformation. According to the chosen 

coefficients, the shear modulus tends to zero when (r)→1.0, which can show the 

shear softening and fracture in the glassy alloy. Then the critical density of 

deformation defect is defined as 0.8 to distinguish the shear softening regions from 

the remaining elastic region of ideal randomly packed solid structures.  

 

The length rescale factor 𝑙𝑟 = √𝜅 𝜇𝑒0⁄  and time rescale factor 𝑡0 = 𝑙𝑟 √𝜇 𝜌0 ⁄⁄  

featuring as the length and time scales of the system are applied to Eqs. 2.22(a) and 

2.22(b) to rescale them into dimensionless forms. The dimensionless equations can 

be solved numerically. Tetrahedrons are used to discrete space domain and the 
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backward differentiation formula (BDF) scheme is employed to discrete and 

integrate time in the numerical analysis. The uniaxial tension is applied on the top 

surface. The displacement constraint in Z-direction is imposed on the bottom surface, 

and the other surfaces are kept free as shown in Figure 5.1. Before calculation, the 

initial defects (defined as the points with (r)=1.0) are randomly distributed in 

interior and on sample surfaces except the top and bottom surfaces. The remaining 

nanowire regions are defined as the ideal glassy status with (r)=0. 

5.3 Simulated results  

It is necessary to validate the phase-field modeling on shear banding in 3D BMG 

model since in the previous studies the model was applied to simulate the 

deformation in 2D samples only. Thus we present the simulated results as follows. 

We shall firstly prove the validation of the phase-field model in the simulation of the 

3D MG samples in section 5.3.1. Then the effects of initial defects on nanowire 

surfaces and in the nanowire interior on the fracture toughness and ductility are 

analyzed in section 5.3.2. Finally the relation between the fracture strength and the 

sample sizes, and the deformation modes in nanowires with various diameters are 

discussed. 
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5.3.1 Validation of phase-field modeling on the simulation 

of deformation in 3D MGs 

As mentioned above, 3D simulation on MGs based on the phase-field theory has 

never been reported in literatures. Therefore, we shall first conduct a simple 3D case 

study for the analysis of structure fracture and shear band propagation in the metallic 

glasses to verify the effectiveness of the phase-field model in the simulation of 

mechanical deformation. The sample is in cylinder shape with a diameter of 0.4 m 

and a height of 0.8m as shown in Figure 5.1. In order to simulate the metallic glass 

sample with isotropic deformation defects, 6.8 volume fraction of the cylinder 

interior are randomly chosen before loading to have large density of deformation 

defects, i.e., ρ(r)=1.0, which simulates the MG nanowire with 6.8% deformation 

defects in its interior. The surface of the nanowire is assumed to be perfect.  
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Figure 5. 1 The model system of a MG nanowire. Tensile stress is applied along Z direction. 

 

During simulation, it is found that the MG nanowire sample with a diameter of 400 

nm fractures in localized shear banding mode. Figure 5.2 and Figure 5.3 show the 

equivalent plastic strain in the XZ plane and in the nanowire interior, respectively, at 

different time. In Figure 5.2 (a), the uniform elastic deformation is found and no 

plastic strain can be observed at t=4.0 ns, which is consistent with that in Figure 5.3 

(a). In Figure 5.2 (b), one localized shear zone with large plastic strain appears at 

t=10 ns. The area with non-zero plastic strain is larger at t=12.5 ns than that at t=10 

ns, as shown in Figure 5.2 (c). One shear band is formed as shown in Figure 5.2 (d) 

at t=13 ns, which is denoted as S2 in Figure 5.3 and is in yellow color. There are  
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Figure 5. 2 The equivalent plastic strain in the middle cross sectional plane in the nanowire (d=400 nm) at different time. (a) 

t=4 ns, (b) t=10 ns, (c) t=12.5 ns, (d) t=13 ns. The color bar represents the value of the equivalent plastic strain. The shape of 

the nanowire before deformation is depicted by the thin solid curves. 
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Figure 5. 3 The equivalent plastic strain in the sample (d=400 nm) interior at different time. (a) t=4 ns, (b) t=10 ns, (c) t=12.5 

ns, (d) t=13 ns. The color bar represents the value of the equivalent plastic strain. 
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some serration flows in the cracking surface, and we also find that the crack is 

initiated from the defects in the nanowire interior. 

 

In Figure 5.3, two surfaces are marked as S1 and S2 by dashed lines to identify the 

regions with significant plastic strains. It seems that these two surfaces rotate about 

+40°or -40°from the cracking plane denoted as N. From the results shown in 

Figure 5.2, we can see that the plastic strain around surface S2 is much larger than 

those in other regions, suggesting that S2 is the shear band dominating the fracture 

process in the zone marked as M in Figure 5.3. The fracture should be generated 

from the shear plane associated with the shear band. 

 

This characteristics of fracture, especially that the fracture surface is about 50°with 

the loading axis, is consistent with the experimental results [Wu F.F. et al. 2009; 

Jang and Greer 2010]. Thus it is suggested that the phase-field model can effectively 

describe the dynamic fracture of the MG systems. 
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5.3.2 Effects of initial deformation defects on the 

mechanical strength 

Surface imperfection is one of the important factors that affect the mechanical 

properties of the bulk metallic glasses [Li and Li 2005; Guo et al. 2007; Gilbert et al. 

1999; Lowhaphandu and Lewandoski 1998]. The imperfections are unavoidable in 

metallic glasses during the sample preparation. It was reported in literature that 

through proper treatment on the surfaces to reduce the initial deformation defects, 

the mechanical properties could be improved [Wu et al. 2010b]. When the MG 

samples are in small scale, e.g., nano-scale, the effects of deformation defects are 

much complicated than those in macroscopic scale. Although there was report on the 

effect of notch on the mechanical strength of MG nanowire [Li and Li 2005], few 

systematic studies have focused on the effects of initial deformation defects of the 

nanowire samples on their mechanical properties. 

 

In this section, the effects of initial deformation defects on MG nanowire surface 

and in the nanowire interior on the mechanical strength shall be studied. The fracture 

strength is obtained for the MG nanowire with diameters 400 nm and 40 nm and 

with various fractions of initial defects on its surface and in interior. In order to 
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discuss the effect of initial defects on nanowire surface, the fraction of initial defects 

in nanowire interior is kept as a constant. Similarly, to study the influence of the 

initial deformation defect in the nanowire interior, we will maintain the fractions of 

initial deformation defects on nanowire surfaces unchanged.  

5.3.2.1 The effect of initial deformation defects on nanowire surface on 

mechanical strength 

It was found in several experiments and simulation investigations that the effect of 

the surface would increase with the decreasing sample size [Li and Li 2005; Li and 

Li 2006; Li and Li 2007]. It was reported in MD simulations on MG nanowires that 

whether the shear transformation zones involving the surface atoms or not could 

significantly affect the deformation modes [Luo et al. 2010]. The experimental 

results indicated that when the sample diameter decreased below 100 nm the 

nanowire samples with some unevenness failed through necking while the 

homogeneous failure was observed in the nanowire samples without defects on their 

surface [Guo et al. 2007]. Here we shall employ phase-field model to investigate 

how the initial deformation defects on surface affect the fracture strength of 

Zr-based MG nanowires. 
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In the simulations, the nanowire sample with a diameter of 400 nm is the same as 

that described in Section 5.3.1. For the MG nanowire with a diameter of 40 nm, the 

height is also kept as 800 nm. We first investigate the influence of the initial 

deformation defects on nanowire surface by considering the fraction of initial 

deformation defects in nanowire interior to be fixed as 9.8%. Using the phase-field 

modeling, we can obtain the relationship between the fracture strength and the 

fraction of deformation defects on nanowire surfaces. 

 

The quantitative relationships between the normalized fracture strength with respect 

to the Young’s modulus and the fraction of the initial defects on nanowire surface 

are shown in Figure 5.4. The fraction of defects on the nanowire surface ranges from 

0 to 22% for the nanowire with a diameter of 400 nm, while the corresponding 

fraction changes from 15% to 38.6% for the nanowire with a diameter of 40 nm.  
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Figure 5. 4 The relationship between the normalized fracture strength and the fraction of initial defects on nanowire surfaces. 

The nanowire diameter is (a) d=400 nm; (b) d=40 nm.  

 

From Figure 5.4 (a) which shows the normalized fracture strength vs fraction of 

initial defects on nanowire surface of the sample with a diameter d=400 nm, we can 

see that there is nearly no change in normalized fracture strength when the fraction 

of the deformation defects on nanowire surface changes from 0 to 20%. The value is 

estimated as E/15, where E represents the Young’s modulus. Then the strength 

decreases rapidly to zero when the fraction of the deformation defects on nanowire 

surface increases to 22%. For the MG nanowire with d=40 nm, the fracture strength 

changes gradually with the decreasing fraction of deformation defects on nanowire 

surface, as shown in Figure 5.4 (b). When the fraction of initial deformation defects 

on nanowire surface increases to about 38.6%, the fracture strength decreases to zero. 
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In nanowire with d=40 nm, the fracture strength decreases significantly (more than 

75%) when the fraction of initial deformation defects on the nanowire surface 

changes from about 15.0% to 37%.  

 

In Figure 5.4, we can see that the fracture strength decreases with the increasing 

fractions of deformation defects on nanowire surface. It is because the larger fraction 

of initial deformation defects on the surface leads to higher possibility of activated 

deformation defects which could induce the local crack or fracture on nanowire 

surface. Thus the fracture strength could decrease. The correlation between the 

fracture strength and the surface imperfection is consistent with the experimental 

results [Wu et al. 2010b].  

 

It is noted that the fracture strength is more sensitive to the initial deformation 

defects on the nanowire surfaces in the sample with smaller diameter which has a 

larger surface-to-volume ratio. The volume of the nanowire is proportional to the 

square of the diameter d
2
, while the side surface area of the nanowire is a function of 

the diameter d. With the decreasing diameter, the sample volume decreases much 

significantly than the surface area and thus the surface portion of deformation 
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defects significantly increases. In nanowire with d=400 nm, the number of initial 

deformation defects on surface is small compared with that in the nanowire interior. 

Thus the effect of initial defects on surface can be neglected. While for the nanowire 

with d=40 nm, the amount of deformation defects on the surface cannot be neglected, 

and their roles as weak points during deformation should be considered. Such 

argument has been proved in simulations that the deformation defects on surface are 

easy to be activated when the diameter is in several nanometer scales [Delogu 2009], 

especially when the fraction of initial deformation defects on surface is several times 

higher than that in the nanowire interior. Such enhanced surface effects on 

mechanical deformation are similar with those observed in crystalline solid when the 

sample size is decreased to the order of 10 nm [Sieradzki et al. 2006]. 

 

From the simulated results it is noted that the surface effect is much significant in 

nanowire with d=40 nm. Keeping the fractions of deformation defects on nanowire 

surface to be 15% and those in the nanowire interior to be 9.8% for samples with 

diameters of 400 nm and 40 nm, we can observe that the strength of nanowire with 

d=40 nm is much higher than that of nanowire with d=400 nm. Such simulated 

results of size effect in metallic glass systems are consistent with experiments [Ma et 
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al. 2012]. 

5.3.2.2 The effect of initial deformation defects in nanowire interior on 

mechanical strength 

As mentioned above, the fraction of deformation defects (such as free volumes) is 

not a constant for the nanowire samples prepared by different methods. Even if the 

samples are prepared by the same method, the fractions of deformation defects can 

still be different for the samples with different sizes [Wu W.F. et al. 2008]. It has also 

been revealed that the samples with less deformation defects have higher strength 

than those with more deformation defects. However, it is difficult to detect the 

fraction of initial deformation defects in nanowire interior and to conduct the tensile 

experiments when the sample size decreases to tens of nanometers. Thus little 

attention has been paid to the effect of initial deformation defects of metallic glasses 

on their deformation behaviors. In this section, how the initial deformation defects in 

nanowire interior affects the fracture strength of metallic glass system will be 

studied. The effect of initial deformation defects in nanowire interiors on their 

deformation behaviors in the nanowires with diameters of 400 nm and 40 nm will be 

compared. In the simulation, the fraction of initial deformation defects on nanowire 

surface is fixed as 15.0% and the fraction of initial deformation defects in nanowire 
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interior changes from 6.8% to 10.9% in nanowire with d=400 nm. For the nanowire 

with d=40 nm, the fraction of defects on surface is assumed to be unchanged (15.0%) 

and the fraction in nanowire interior changes from about 10% to 70%.  

 
Figure 5. 5 The relationship between the normalized fracture strength with respect to the Young’s modulus E and the fraction of 

initial deformation defects in nanowire (NW) interior. (a) The diameter of the sample is 400 nm; (b) The diameter of the 

sample is 40 nm.  

 

As shown in Figure 5.5, it is found that the fracture strength is significantly affected 

by the fraction of initial deformation defects in nanowire interior for the two 

samples with d=400 nm and 40 nm. In some atomic force microscopy experiments, 

it is proposed that the structure of the MGs is composed of the ideal regions 

(densely-packed atomic clusters) and defective locations (loosely packed atomic 

clusters defined as deformation defects in the phase-field model) [Liu et al. 2011]. 

Thus it is suggested that the initial deformation defects such as the excess free 
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volumes could facilitate the formation and propagation of shear bands, resulting in 

easy and quick fracture. By increasing the fraction of initial deformation defects in 

the nanowire interior, under external loading, it is highly possible that one location 

containing higher fraction of initial deformation defects is subjected to higher strains, 

resulting in the early yield. The lower yield strength in the region with more 

deformation defects has been verified through measuring the nanohardness of the 

deformed regions, in comparison with that of the undeformed locations [Yoo et al. 

2009].  

 

As shown in Figure 5.5, the critical density of deformation defects in the nanowire 

interior beyond which the nanowire sample is too soft to support any applied load is 

about 11% for the sample with d=400 nm and about 60% for the sample with d=40 

nm, respectively. Furthermore we can observe that the fracture strengths of the 

nanowire samples with d=40 nm is much higher than that of the nanowire with 

d=400 nm when their densities of initial deformation defects in the nanowire interior 

are the same, indicating that the size effect on the mechanical strength in these 

nano-scale MG samples is significant.   
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5.3.3 Size effects on the fracture strength of MG nanowires 

In the previous sections, it is shown that the phase-field modeling on the shear 

banding in MG can effectively describe the dynamic deformation behaviors in 3D 

nano-scale metallic glass. In this section, we will use the phase-field model to 

investigate the size effect on the fracture strength and the deformation modes of MG 

nanowires. With the decreasing diameter, the surface effects could be more 

significant and dominant in the process of mechanical deformation. Thus the role of 

surface effects on the size-dependent mechanical deformation will mainly 

considered in this section.  

 

In the preparation of MG nanowires, for example, using FIB processing, the 

nanowire surfaces are usually in inhomogeneous status and even crystallization 

occurs on the nanowire surface [Huang et al. 2005]. Thus, the fraction of initial 

deformation defect on the nanowire surfaces could diverge significantly in samples 

prepared by different methods and under different processing conditions. However, 

it is almost impossible to determine the authentic quantity of the fraction of the 

deformation defects on the nanowire surfaces of the MG samples. In order to 

investigate how the initial deformation defects affect the fracture strength among 
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samples with different diameters, two assumptions concerning the relationship 

between the initial deformation defects on the nanowire surfaces and the sample 

diameters are employed. In the first assumption, the fractions of the initial 

deformation defects on the nanowire surface are assumed to be in an inversed square 

root function with the diameters. In the second assumption, fractions of initial 

deformation defects on the nanowire surfaces are kept as a constant for the samples 

with different diameters. The second assumption as an approximation is reasonable 

as in some experiments one tries to reduce the discrepancy on samples’ initial status 

by some treatments such as using the low-energy FIB technique, which is suggested 

to cause less changes of the initial status of the nanowires with different diameters.  

 

In the present simulation, the initial deformation defects in the nanowire interior is 

assumed to be 9.8% while the fraction of initial deformation defects on the nanowire 

surface varies. In nanowire with the diameter d=400 nm, 20% initial deformation 

defects have been assigned randomly on the surface. For the samples with other 

diameters, the initial deformation defects on the surface can be determined 

according to the two assumptions mentioned above. 
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Figure 5. 6 The relationship between the normalized fracture strength and the nanowire diameters. (a) The fraction of initial 

deformation defects on the nanowire surface is 20% for nanowire with d=400 nm. For nanowires with d<400 nm, the defects 

density is assumed to be inversed proportional to d1/2. (b) The fraction of initial deformation defects on the nanowire surface is 

20% for nanowires with various diameters. 

 

The relation between the normalized fracture strength and sample diameter are 

shown in Figure 5.6. Figures 5.6 (a) and (b) correspond to the first and second 

assumptions on the initial deformation defects on the nanowire surfaces, respectively. 

In Figure 5.6 (a), we can see that when the diameter decreases from 400 nm to 250 

nm, the fracture strength increases significantly. The fracture strength seems 

size-independent when the diameter changes from 250 nm to 100 nm. Surprisedly, it 

is found that the fracture strength drops to zero when the sample diameter reduces to 

40 nm. In the nanowire with d=40 nm, the fraction of deformation defects on the 

surface is as high as 63.25% which is easy to be activated and the sample is unable 

to withstand any external loading. The maximum fracture strength is achieved and 
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kept constant when the diameter ranges from 100 nm to 250 nm. In Figure 5.6 (b), 

we can see the fracture strength increases dramatically when the diameter decreases 

from 400 nm to 150 nm. No much increases on their fracture strength when their 

diameter changes from 150 nm to 30 nm. It is noted that the sample with diameter 

30 nm has high fracture strength, which is completely different from that of 

nanowire with the same diameter and large initial deformation defects on surface.  

 

From the simulation, we can find that the size effects on the fracture strengths of 

nanowires are obviously different if the status of the initial deformation defects on 

nanowire surfaces is diverse, which may provide explanation for the discrepancies in 

the previous experiments data describing the size effects on the mechanical strength 

of MG nanowires. 
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Figure 5. 7 The deformation in nanowires with different diameters d just before fracture. (a) d=400 nm; (b) d=150 nm; (c) 

d=100 nm; (d) d=30 nm and (e) zoom-in view of the marked region shown in (d). The color bars represent the value of the 

plastic strain in nanowire. S1 and S2 represent the two shear bands and the black dashed lines correspond to the shear band 

locations. M marks the cracking region between two shear bands. The fraction of initial deformation defects on the nanowire 

surface is 20% and the fraction of initial defects in interior is kept as 9.8% for nanowires with various diameters. 

 

Now we assume in the nanowires under tension, the initial deformation defects on 

the surface and in the nanowire interior are independent of diameter. The tensile 

deformation behaviors in the nanowires with diameters d=400, 150, 100 and 30 nm 

just before the fracture occurs are shown in Figure 5.7. It can be seen that the 

deformation modes vary significantly with the change of sample size. For the 

nanowire with d=400 nm as shown in Figure 5.7 (a), it can be found that the fracture 

is caused by two progressive shear bands. The region between these two shear bands 

withstands high plastic strains. It can also be observed that the plastic strain in the 

region between these two shear bands is not uniform, suggesting that the 
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deformation in this sample is localized. Figures 5.7 (b) and (c) represent the 

deformation in nanowires with 150 nm and 100 nm in diameters, respectively. 

Different from that shown in Figure 5.7 (a), the plastic strains in the region between 

those two shear bands are more uniform. It is noted that in the nanowire with d=100 

nm there are some new features of deformation behaviors. We can see that the two 

shear bands tend to spread individually during their evolutions and will not meet 

inside the nanowire if they can further propagate, resulting in the small elongation of 

the nanowire with d=100 nm in comparison with those of nanowires with d=200 nm 

and d=150 nm. When the nanowire diameter decreases to 30 nm, some interesting 

phenomena can be observed. As shown in Figure 5.7 (e), which is the zoom-in view 

of the deformed region shown in Figure 5.7 (d), necking of the nanowire under 

plastic deformation can be seen. 

5.4 Discussions 

From the simulated results, it can be observed that the initial status of the 

deformation defects on the nanowire surface is the most significant factor that 

influences the fracture strength. The phase-field modeling is very helpful in the 

quantitative description of such surface effects on the mechanical properties of 
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nanowires, which is difficult to be handled by experiments. In the following sections, 

some possible factors causing the discrepancies among the previous experiments 

shall be discussed. We will quantitatively describe the fracture strength as a function 

of the nanowire diameter, which is helpful in unveiling the deformation mechanisms 

in nanowires with different diameters. 

5.4.1 The possible factors affecting experimental results 

Different from those of BMGs, MG nanowires exhibit tensile ductility and 

mechanical strength reaching the theoretical ideal strength of amorphous solid as 

observed in experiments [Guo et al. 2007; Jang and Greer 2010; Wu et al. 2010a]. 

Due to the complexity and the limitation of current experimental techniques, the 

factors affecting such novel mechanical properties of MG cannot be quantitatively 

reflected through experiments. In the previous sections, two possible factors, the 

initial deformation defects on the nanowire surface and those in the nanowire 

interior which could affect the mechanical properties of the MG nanowires, have 

been chosen to supplement the experiments. The effects of these two factors on the 

mechanical properties of MG nanowires are quantitatively investigated and they 

could be meaningful in both fundamental research and engineering applications. 
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Some surface treatment technologies have been introduced in the preparation of MG 

nanowires, e.g., drawing surface handling was conducted on the MG samples [Wu et 

al. 2010b]. In the experiments, it was found that the surface handling could reduce 

the flaws in MG sample (including the reductions of micro-cracks, the flow defects 

and the interstitial holes), and the residual stresses on the MG surface. All of these 

changes can improve the tensile fracture strength of the MG nanowires. The 

simulation in this work provides valuable supplemental information for the 

experiments data from the view of numerical analysis. The simulated results show 

that the size effects on fracture strength result mostly from the initial deformation 

defects on the nanowire surface. 

5.4.2 The relationship between the normalized fracture 

strength and the nanowire diameter 

The stress required to drive the shear band to propagate increases as the sample size 

decreases [Jang and Greer 2010]. It was also indicated that the shear banding in 

nano-scale metallic glass was not completely suppressed but required higher load to 

initiate. This may be the main reason for the observation in our simulation that the 

fracture strength increases as the nanowire diameter decreases from 400 nm to 100 
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nm when shear banding is the typical deformation mode. On the other hand, some 

new deformation mode may occur in the nanowires with diameters smaller than 100 

nm when the shear banding is not the dominant deformation mechanism. It is well 

known that the strength increases directly from the extra radial compressive stress 

which is estimated as /d ( is the surface energy of the material) from the nanowire 

surface [Luo et al. 2010] when the diameter d is decreased to 100 nm or below. A 

certain amount of applied tensile stresses is used to counteract these extra stresses 

due to the surface stresses. The suppression on cracking due to the existence of these 

compressive stresses also leads to the increasing fracture strength [Zhang et al. 2003; 

Shan et al. 2008; Hofman et al. 2008a].  

 

From the simulations and other experimental reports, it is found that with the size 

decreasing, the size effects are more obvious. The feature called “smaller is 

stronger”. In Figure 5.8, we fit the fracture strength of nanowire with d>100 nm with 

respect to d using a Hall-Petch-like relation 

0( )N Nd kd     ,                        (5.1) 

where 𝜎𝑁
0, k and  are d-independent constants and  is an exponent.  
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Figure 5. 8 The fitting of normalized fracture strength with respect to d-1. The squares in purple represent simulated results in 

nanowires with the diameter ranging from 400 nm to 30 nm. The green line represents the fitting using Eq. (5.2). 

 

In Figure 5.8, we can see that the normalized fracture strength can be fitted as the 

function of the reciprocal of the nanowire diameter, and the expression can be 

written as, 

10.0235 47.521N d
E

      ,                     (5.2) 

where the diameter d ranges from 100 nm to 400 nm. The d-independent normalized 

fracture strength 𝜎𝑁
0 is estimated as 0.0235E, which is about 2.2 GPa if the Young’s 

modulus is 95 GPa for the Zr-based BMG. It is also noted that the trend of change of 

N deviates from Eq. (5.2) when the diameter decreases below 100 nm (such as 
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d=40 nm and 30 nm in the simulation). Compared with the Hall-Petch relation for 

yield stress of the polycrystalline solids [Hall 1951], the simulated results show that 

the mechanical strength as a function of nanowire diameter is similar in describing 

the size effects. When the diameter changes from 400 nm to 100 nm, the fracture 

strength just deviates from the Hall-Petch like relationship rather than follows an 

inverse Hall-Petch relationship, which is usually observed as grain size softening in 

nanocrystalline solids when their grain sizes is below 50 nm [Kim and Okazaki 

1992].  

5.4.3 Changes of deformation mode in nanowires with 

d<100 nm 

From the simulated results, we can see that the shear-band deformation also occurs 

in the nanowires with diameters ranging from 400 nm to 100 nm, consistent with the 

results observed in experiments [Jang and Greer 2010]. The shear banding 

mechanism was not completely suppressed, and the fracture strength ranges from 

about E/15 at d=400 nm to nearly E/2 at d=100 nm. The size effects can be reflected 

as the localized plastic zone in nanowire with larger diameter (d=400 nm), and the 

more uniform plastic deformation between the shear bands due to the uncrossing 
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shear bands inside the nanowire with small diameter (d=100 nm). In particular it is 

found that the two uncrossing shear bands in the nanowire with d100 nm could 

improve the ductility and the fracture strength, compared with those of nanowire 

with d100 nm. 

 

When the diameter continues to decrease to 30 nm, the necking deformation occurs. 

This may be caused by the new mechanism, i.e., the surface effect, when the sample 

diameter is decreased to the order of 10 nm [Luo et al. 2010]. In the nanowire 

interior the stresses exerted by the nanowire surface are estimated as /d [Luo et al. 

2010; Sieradzki et al. 2006]. Under tension conditions, certain amount of applied 

tensile stresses should be used to counterbalance the compressive stresses caused by 

the surface effect, preventing the initiation of shear bands. What is more important is 

that this extra compressive stress makes the strains in the nanowire interior tensile in 

longitudinal direction (Z) and compressive in the other two directions (X and Y), 

which hinders the cracking or the shear band propagation. With the increasing 

compressive stress due to the reduction on nanowire diameter, it is highly possible 

that the initiation and extension of the crack are hindered, resulting in the higher 

fracture strength of the nanowire. At the same time, the strains on the nanowire 
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surface will be tensile in hoop direction. Thus the deformation on the surface are 

tensile in two directions (Z and hoop) resulting in large strains in locations near the 

surface and the easy activation of surface deformation defects, as observed also from 

MD simulation [Delogu 2009]. The severe plastic strains from nanowire surface, 

combined with the complex stress status for some locations with initial deformation 

defects in the nanowire interior, lead to the necking deformation behaviors which 

dominate the fracture process in the nanowires with smaller diameters (d<40 nm). 

 

The change in deformation modes is the striking feature observed in experiments 

when the sample size decreases to nano-scale. Especially, the large macroscopic 

plasticity due to the homogeneous deformation is the key discovery on the 

deformation of MG nanowires. For bulk metallic glass, the homogeneous 

deformation can only take place around the glass transition temperature [Schuh et al. 

2007; Inoue 2000]. However, for the nano-scale MGs, it was found that the metallic 

glass in dimensions below 100 nm can fail in shear offset after large homogeneous 

deformation when the surface is free of notches [Guo et al. 2007]. Otherwise, it will 

fail as necking like that observed in experiment when the surface has notches [Guo 

et al. 2007]. Our simulated results provide deep insight into the process of 
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homogeneous plastic deformation in MG nanowires. 

5.5 Conclusions 

In this work, the phase-field model is extended to 3D simulation on the fracture 

behaviors in metallic glasses. The fracture process and the deformation mechanisms 

of MG nanowires with different diameters can be accounted. The size effect of the 

mechanical properties of metallic glass nanowires has been considered based on two 

factors, i.e., the fractions of initial defects in nanowire interior and on its surfaces. 

Some meaningful features are revealed from the simulations and are found to be 

consistent with the experimental results. With the decreasing diameter, it is found 

that the initial status of the nanowire surfaces play a dominant role on the fracture 

strength. If the fraction of initial deformation defects on nanowire surface follows a 

linear relationship with d
-1/2

, the fracture strength shows a maximum at d200 nm 

and suddenly drops to zero due to so large fraction of initial deformation defects on 

the surface. If the fraction of initial deformation defects on the surface is 

in-dependent of nanowire diameter, the fracture strength increases significantly with 

the decreasing diameter ranging from 400 nm to 100 nm, and slightly increases 

when the diameter decreases from 100 nm to 30 nm. It is also found that the fracture 
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strength increases in a similar trend as the Hall-Petch relation when the diameter is 

larger than 100 nm. When the nanowire diameter is below 100 nm, the typical 

necking deformation is observed. These modeling results indicate that the 

discrepancies among the previous reports in literature could be caused by the 

different initial status of deformation defects in the samples. The simulated results 

provide quantitative understanding on the size effects on the mechanical properties 

of MG nanowires 
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Chapter 6 Conclusions and remarks 

The phase-field model of shear banding in MGs is successfully applied to 

investigate the improved ductility in porous BMG, the BMG composites and the 

MG nanowires. Some valuable results such as the factors and the possible 

mechanisms affecting the improved ductility are derived through the phase-field 

simulation in this thesis, which could assist the experimental studies and also provide 

guidance for the design of MGs with good ductility.  

 

Both porous BMGs and BMGs containing in-situ formed dendrite are found to show 

improved ductility. Porous BMG with closed pores are more effective in detouring the 

shear bands, and the lack of local heat conduction across the pores is helpful in 

inducing more shear bands from pore surface in porous BMGs containing closed or 

open pores. The BMGs composites containing dendrites with low fracture energy 

show improved ductility since more fracture areas (not only in BMG matrix but also 

in crystalline dendrites) could be generated, while the dendrites with higher fracture 

energy can effectively bifurcate the shear bands when their rotation angle is within 0 

and 15, which could avoid the brittle failure. These two types of BMG alloys are 
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potential in engineering application as their ductility could be improved by 

controlling the related factors elucidated in the simulation. 

 

Compared with porous BMGs and BMG composites, the improved ductility is more 

effectively enhanced through decreasing the sample size. It is observed that the 

ductility can be improved through two interacting shear bands and the zone between 

them sustaining large plastic strain when the diameter is below 100 nm. It is found 

that the nanowire surface plays a main role in the size effect on the mechanical 

properties of MG nanowire since the surface could impede shear band initiation and 

extension. Thus the improved ductility is more obviously observed in the nano-scale 

MGs.  

 

The mechanisms of improved ductility in MGs have been investigated through the 

phase-field modeling, which are important supplements to those obtained from 

experimental and theoretical results. However, only a few issues concerning the 

improved ductility of MGs are touched in my simulation work due to the limited 

PhD study period. Further studies are needed to explore those un-resolved issues 

concerning the deformation mechanisms in these novel materials. Firstly, the actual 



 

 

137 

 

shape of deformation defects should be considered accurately. In the theoretical and 

numerical studies, the shape of the deformation defects is usually considered as 

sphere, which has not been determined by the experiments or atomic simulations. It is 

necessary and meaningful to analyze what the shape of the deformation defect is, 

since the shape approximation on the deformation defects considered in our 

phase-field modeling was found to affect the deformation mechanisms of MGs. 

Secondly, the issues concerning the size effects on the mechanical properties of MGs, 

in particular the brittle-to-ductile transition in micro- or nano-scaled MGs, should be 

further studied. The critical size of MGs distinguishing the transition between the 

brittle and ductile plastic deformations is an important parameter influencing the 

application of MGs. Although the experiments have provided useful information on 

such critical size of MGs, the results were found to contradict with each other. Last 

but not least, the computational efficiency of phase-field modeling should be 

improved through introducing the parallel computing algorithms, to cope with the 

increasing sizes of the sample systems and enormous amount of degrees of freedoms 

in the governing equations. Thus in the future work, it is recommended to focus on 

the above-mentioned aspects to further understand the deformation mechanisms in 

MGs.  
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