

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

High Performance Publish /
Subscribe Middleware for Wireless

Sensor Network

Steven Lai

Ph.D

The Hong Kong Polytechnic
University

2013

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic
University

Department of Computing

High Performance Publish /
Subscribe Middleware for Wireless

Sensor Network

Author:

Steven Lai

Supervisor:

Dr. Jiannong Cao

A thesis submitted in partial fulfillment of the

requirements for the degree of Doctor of

Philosophy

September 2012

Certificate of Originality

I hereby declare that this thesis is my own

work and that, to the best of my knowledge

and belief, it reproduces no material previ-

ously published or written, nor material that

has been accepted for the award of any other

degree or diploma, except where due acknowl-

edgment has been made in the text.

(Signed)

Lai Yi

(Name of student)

Dedication

To my supervisor Prof. Cao and my colleagues in IMCL for their continuous

help on my work. To my family and my friends, Amber, Alice, Engel, Kim,

etc. who have supported me during my most difficult time.

i

ii

Abstract

Many WSN applications such as intelligent transportation systems, smart

building and intelligent car park are event-based in the sense that these appli-

cations require specifying, detecting and delivering events which are of users’

interest and may trigger necessary actions. However, developing event-based

applications is challenging because of two reasons. First, it is difficult to

specify and detect composite events. Second, different applications may have

different requirements for event processing such as communication reliability,

network life time or delay bound.

In general, an event-based system may have primitive or composite events.

Primitive events, such as threshold of temperature, may be detected by single

sensor node. Composite events, on the other hand, is defined by the rela-

tions among primitive events and must be detected by multiple sensor nodes

cooperatively. Although there are several works on providing event-based

services in WSN, most of them can only deal with primitive event types

but cannot handle composite events very well. In this research work, we

introduce PSWare, a type-based publish / subscribe middleware framework

for WSN that supports composite events. PSWare provides a declarative

event definition language for the users to specify the composite events. It

also facilitates easy configuration of different event processing algorithms and

integrate them into the system at run time.

Based on PSWare, we present TED (Type-based Event Detection), a

novel distributed composite event detection algorithm. The essential idea of

TED is event fusion, where some sensor nodes are selected as fusion points

and component events are fused for the detection of a high level event. Event

fusion with minimum energy cost is an NP-complete problem. Therefore,

TED uses a number of heuristics with bounded performance.

We use PSWare to develop applications in certain domains such as In-

telligent Transportation Systems (ITS) and Structural Health Monitoring

(SHM). We design algorithms so that PSWare is customized to work well in

these application domains. In particular, we design a clustering algorithm

for PSWare to use in SHM. We formulate the clustering problem and found

it to be NP-complete so we propose heuristic centralized and distributed

algorithms.

We evaluate PSWare from different aspects. We evaluate TED through

analysis and extensive simulation. Both analytical and simulation results

show TED can save energy in event-based applications where primitive events

occur in a higher frequency than composite events. Then we carry out some

real world experiments using PSWare. The results show that PSWare can

offer reasonably simple API for the application developers to use while TED

and our clustering algorithm can improve the underlying event detection

performance. Compared with opportunistic approaches to event detection in

these real applications, PSWare can reduce 40 - 50 % of the energy cost.

ii

Publications

• Steven Lai, Jiannong Cao, and Xiaopeng Fan. Ted: Efficient type-based

composite event detection for wireless sensor network. In Proceedings of

7th IEEE International Conference on Distributed Computing in Sen-

sor Systems (DCOSS’11), June 2011

• Steven Lai, Jiannong Cao, and Yuan Zheng. Psware: A publish / sub-

scribe middleware supporting composite event in wireless sensor net-

work. In Proceedings of the 2009 IEEE International Conference on

Pervasive Computing and Communications (PerSeNS’09), pages 1–6,

March 2009

• Yi Lai, Yuan Zheng, and Jiannong Cao. Protocols for traffic safety us-

ing wireless sensor network. In Proceedings of the 7th International

Conference on Algorithms and Architectures for Parallel Processing

(ICA3PP’07), pages 37–48, June 2007

• Xuefeng Liu, Jiannong Cao, Steven Lai, Chao Yang, Hejun Wu, and

Youlin Xu. Energy efficient clustering for wsn-based structural health

monitoring. In Proceedings of 30th IEEE International Conference on

Computer Communications (INFOCOM’11), April 2011

iii

• Xuefeng Liu, Jiannong Cao, Md. Zakirul Alam Bhuiyan, Steven Lai,

Hejun Wu, and Guojun Wang. Fault tolerant wsn-based structural

health monitoring. In Proceedings of 41st Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN’11),

June 2011

• Vaskar Raychoudhury, Jiannong Cao, Weigang Wu, and Steven Lai.

K-directory community: Reliable service discovery in manet. Journal

of Pervasive and Mobile Computing (JPMC), 7(1), February 2011

• Jiannong Cao, Hejun Wu, Xuefeng Liu, and Yi Lai. isensnet: an in-

frastructure for research and development in wireless sensor networks.

Frontiers of Computer Science in China, 4(3):339–353, 2010

iv

Acknowledgements

This work is supported by Hong Kong RGC under CERG grant PolyU5102/08E

and the Hong Kong Polytechnic University under Niche Area Project grant

1-BB6C.

v

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 Motivation . 2

1.1.2 Issues . 3

1.2 Background . 5

1.2.1 Publish / Subscribe Systems 5

1.2.2 WSN Middleware . 7

1.2.3 Events and Subscriptions 8

1.2.4 Event Detection and Detection Cost 10

1.2.5 Composite Event-based Applications 12

1.3 Thesis Outline . 14

2 Literature Review 17

2.1 Overview . 17

2.2 WSN Middleware . 19

2.2.1 Issues in Designing WSN Middleware 19

2.2.2 Query-based Middleware 23

2.2.3 Virtual Machine-based Middleware 24

vii

2.2.4 Event-based Middleware 26

2.2.5 Agent-based Middleware 27

2.2.6 Middleware with Other Programming Abstractions . . 28

2.2.7 Summary of Existing WSN Middleware 30

2.3 Macroprogramming for WSN 32

2.3.1 Overview . 32

2.3.2 Abstraction for Imperative Programming 33

2.3.3 Service and Data Centric Abstraction 35

2.3.4 Neighborhood and Region Based Abstraction 37

2.3.5 Summary . 42

2.4 Event-based Systems . 44

2.4.1 Event Definition . 44

2.4.2 Event Evaluation . 51

2.4.3 Event Operator and Function 55

2.4.4 Summary . 62

2.5 Data Aggregation in WSN . 63

2.5.1 MAC Layer Data Aggregation 64

2.5.2 Cluster-based Data Aggregation 65

2.5.3 Tree-based Data Aggregation 68

2.5.4 Application-specific Data Aggregation 71

2.5.5 Summary of Existing Works 76

3 System Design 79

3.1 PSWare: Model and Architecture 79

3.1.1 PSW-EDL: Event Definition Language in PSWare . . . 81

viii

3.1.2 PSW-EN: Event Notifier in PSWare 83

3.1.3 API for Event Processing Framework 85

3.2 Composite Event Processing in PSWare 90

3.2.1 Event Specification . 90

3.2.2 Runtime Environment for Event Detection 93

3.3 Support for Customization in PSWare 96

3.3.1 Customizable Event Definition 97

3.3.2 Customizable Event Detection 100

3.3.3 Customizable Event Delivery 105

4 Generic Composite Event Detection 107

4.1 The Composite Event Detection Problem 107

4.1.1 System Model . 107

4.1.2 Problem Formulation 108

4.2 A Centralized Approach . 111

4.2.1 Determine the Re-selection Probability 112

4.3 TED: a Type-based Event Detection Algorithm 116

4.3.1 Algorithm Input . 117

4.3.2 TED for Normal Nodes 118

4.3.3 TED for Event Fusion Points 119

4.4 Fusion Point Deployment Problem 120

4.4.1 Even Deployment . 120

4.4.2 Hierarchical Deployment 124

5 Clustering for PSWare 129

5.1 Overview of WSN-based SHM 129

ix

5.2 Structural Mode Shapes . 132

5.2.1 Clustering for Modal Analysis 134

5.2.2 Mode Shape Assembling 140

5.3 Clustering Algorithms . 143

5.3.1 Problem Formulation 143

5.3.2 Centralized Algorithms 146

5.3.3 Distributed Algorithm 148

6 System Implementation 153

6.1 ITS Implementation Using PSWare 153

6.1.1 Pre-defined Events . 154

6.1.2 User Interface Design 156

6.1.3 Customized Event Detection for ITS 156

6.2 SHM Implementation Using PSWare 158

6.2.1 Neighbor Information Exchange 159

6.2.2 Clustering . 160

7 System Evaluation 163

7.1 Analysis on TED . 163

7.1.1 Analysis on Message Cost 163

7.1.2 Analysis on Delay . 166

7.2 Simulation . 168

7.2.1 Impact of Event Distance 170

7.2.2 Impact of Event Size 172

7.2.3 Impact of Event Probability 176

7.3 Experiments . 180

x

7.3.1 Application Case One: Car Park 181

7.3.2 Application Case Two: Transportation Systems 184

7.3.3 Application Case Three: Indoor Monitoring 187

7.3.4 Application Case Four: SHM 189

8 Conclusion and Future Directions 193

8.1 Conclusion . 193

8.2 Future Directions . 195

A Complete List of the EDF Instructions 216

A.1 Basic Instructions . 216

A.2 Operators . 217

A.3 Event-related Instructions . 219

xi

xii

List of Figures

1.1 A conceptual model for distributed pub/sub systems 5

1.2 WSN middleware . 9

1.3 Event definition and detection 10

1.4 Composite event detection through event fusion point 12

1.5 Composite event detection using event probability 13

2.1 Topics related to PSWare . 18

2.2 Issues in designing WSN middleware 19

2.3 Category of existing WSN middleware 22

2.4 Query-based middleware for WSN 23

2.5 Virtual machine-based middleware for WSN 25

2.6 Categories of macroprogramming for WSN 33

2.7 Basic idea of ToD . 65

2.8 Clustering in iHeed . 66

2.9 Optimized tree construction based on residual energy 69

2.10 An example of q-digest . 73

2.11 Example of deterministic weighted sample 74

2.12 Network model of sparse data aggregation 75

xiii

3.1 PSWare programming model 80

3.2 Type-based event model . 81

3.3 Motivating application for indoor monitoring 82

3.4 Event processing in PSWare 90

3.5 PSWare-EDL compiler structure 91

3.6 EDL compiler flow . 92

3.7 PSWare runtime environment 94

3.8 iTED over PSWare . 101

3.9 Type-based event delivery . 106

4.1 Selecting fusion points in centralized approach 114

4.2 Event detection cost . 123

4.3 Fusion point distribution model in TED 125

4.4 Fusion point distribution . 126

5.1 Mode shapes of a typical cantilevered beam 133

5.2 Overview of cluster-based modal analysis process 134

5.3 The complexity of the ERA 138

5.4 The optimal cluster sizes in different conditions. 140

5.5 Mode shape assembling . 141

6.1 Demo application architecture 154

6.2 GUI Design . 156

6.3 SHM Operation Flow . 158

7.1 Simulation environment . 168

7.2 Average event size: 5 nodes 169

xiv

7.3 Average event size: 10 nodes 170

7.4 Average event size: 15 nodes 171

7.5 Average event distance: 30 . 172

7.6 Average event distance: 40 . 173

7.7 Average event distance: 50 . 174

7.8 Event size: 5, distance: 10 . 175

7.9 Event size: 5, distance: 20 . 176

7.10 Event size: 5, distance: 30 . 177

7.11 Event distance: 20, size: 10 178

7.12 Event distance: 20, size: 15 179

7.13 Event distance: 20, size: 20 180

7.14 Car park sensor platform . 181

7.15 Car park sensor deployment 182

7.16 Car park experiment results 183

7.17 Lab testbed for transportation systems 184

7.18 Experimental results on lab testbed: iTranSNet 185

7.19 Sensor nodes for transportation systems 187

7.20 Experimental results on the real roads 187

7.21 Deployment of the senosr nodes for indoor monitoring 189

7.22 Experiments for temperature monitoring 190

7.23 PSWare experiment setup . 191

7.24 Experimental results for SHM 192

xv

xvi

List of Tables

2.1 Summary of existing event operators 59

4.1 Summary of the symbols in TED 124

5.1 Summary of Notations . 132

5.2 Parameters used in Figure 5.4 140

xvii

xviii

Chapter 1

Introduction

1.1 Overview

Development in wireless communication and electronics has made it possible

to create low-cost, low-power wireless sensor nodes. Each sensor node usu-

ally contains a wireless transceiver, a micro processing unit and a number of

sensors. The sensor nodes can collect data and do some simple processing

locally, and can communicate with each other to form an ad hoc wireless sen-

sor network (WSN) [3]. A WSN is usually self-organized and self-maintained

without any human intervention. Wireless sensor networks have been used

in various application areas such as smart building [76], wild environment

monitoring [80], intelligent transportation systems [54], battle surveillance

[36] and healthcare [74].

While WSN has a wide range of applications, programming sensor net-

works is a challenging because different from programming in the traditional

environment. WSN imposes a lot of constraints such as limited compu-

1

A Thesis Submitted by Steven Lai

tational power, less memory and unreliable communication. Application

developers need to not only understand the requirements for the specific

application domain but also take into consideration of the characteristics of

WSN. In this research work, we propose PSWare, a publish/subscribe (pub/-

sub) middleware for WSN which eases the development of WSN applications.

Our middleware uses a pub/sub programming paradigm for the application

programmer to subscribe application specific events. It provides an easy-to-

use Event Definition Language (EDL) to allow the application developers to

define composite events while uses a flexible architecture so that different

domain-specific event processing algorithms can be easily integrated into the

middleware.

1.1.1 Motivation

Despite the large variety of WSN applications, many of them are essentially

event-based. In applications such as intelligent transportation systems [54],

smart buildings [76] and healthcare [74], the events sensor nodes detect events

which reflect the environmental changes and the systems respond to these

events accordingly. Events may be primitive or composite. Primitive events

(e.g. when the temperature exceeds certain threshold) can be detected by a

single sensor node without having to cooperate with others. On the other

hand, composite events consist of multiple primitive events. They reflect a

serial of environmental changes with spatial and temporal relations among

them and must be detected collaboratively by different sensor nodes.

Because of the common requirements and challenges for composite event

2

Chapter1 Introduction

subscription and detection, it is more desirable to have a generic middleware

layer to handle composite events instead of reinventing the wheel and im-

plementing application-specific event processing mechanisms. In addition,

the middleware should be flexible enough so that different event process-

ing algorithms for different application domains can be easily integrated. In

summary, the middleware should achieve the following design goals:

1. Event abstraction: since composite events are collaboratively processed

by different sensor nodes in the network, they introduce extra com-

plexity because of the resource constraints and unreliable communica-

tion. A middleware framework providing high level event abstraction

is needed to ease the application development.

2. Re-usability and flexibility : different applications may share certain

common modules during event processing. They may also have other

different modules. A middleware framework can help so that common

modules may be used and different modules may be replaced without

affecting others.

1.1.2 Issues

In this research, we address the essential issues of designing and developing

PSWare. On the highest level, an event description language (EDL) is pro-

vided to allow users to describe composite event relationships. On the lowest

level, a runtime environment is necessary on each sensor nodes so that they

could understand and execute the event processing algorithms translated

from the high-level EDL. More specifically, we need to address the following

3

A Thesis Submitted by Steven Lai

research/engineering issues to make our middleware work.

• Event definition language: we need to provide an event description

language which is powerful yet easy to use.

• Event definition language compiler : a compiler is essential to trans-

late the programs written in our high-level language into a low-level

language understandable by the sensor nodes. The compiler must be

smart enough to extract the semantic meanings from the program and

do some optimization.

• Runtime environment support : the middleware running on each sensor

node should provide a runtime environment to execute the compiled

programs.

• Subscription propagation: after the program written in EDL is com-

piled, the subscription should be intelligently disseminated into the

network. If the subscription is too big, it may need to be divided into

small ones. Furthermore, only related sensor nodes need to be updated.

• Event detection: we need to design efficient protocol for the sensor

nodes to cooperate with each other to detect composite events.

• Event delivery : after the subscribed events have been detected, we

need energy-efficient routing protocols so that the detected events will

be delivered at the minimum cost.

4

Chapter1 Introduction

Subscriber

Broker

Publisher

Publish

Publish

Publish

Subscribe

Subscribe

Subscribe

Notify

Notify

Figure 1.1: A conceptual model for distributed pub/sub systems

1.2 Background

In this section, we briefly overview the background of pub/sub systems and

WSN middleware.

1.2.1 Publish / Subscribe Systems

The publish/subscribe (pub/sub) communication paradigm has received an

increasing attention because of its loosely coupled nature. Conceptually, a

distributed pub/sub system model can be illustrated in Figure 1.1.

An essential part of a pub/sub system is the event service which is re-

sponsible for managing subscriptions and detecting the events based on the

subscriptions. Once an event is detected, the corresponding subscribers in-

terested in that event will be notified. The tasks required by the event service

5

A Thesis Submitted by Steven Lai

are usually done by brokers. In a distributed pub/sub system, there can be

many brokers in the network and they usually cooperate with each other in

order to provide the event service. Apart from the brokers, a pub/sub system

usually include other entities such as subscribers and publishers. Subscribers

register their interest in events by calling a subscribe() operation to the event

service. To fire an event, a publisher typically calls a publish() operation.

The event service notifies the subscribers by calling notify() to all relevant

subscribers.

Compared with Traditional interaction paradigms such as message pass-

ing, RPC [8], notification [28], shared spaces [14] and message queuing [5],

pub/sub paradigm allows decoupling between publishers and subscribers in

three dimensions [23].

• Space decoupling : the interacting parties do not need to know each

other. The publishers publish events through an event service and the

subscribers get these events indirectly from the event service. The pub-

lishers do not usually have any reference to these subscribers; neither

do they know how many of these subscribers are participating in the

interaction. Similarly, subscribers do usually not have any reference to

the publishers; neither do they know how many of these publishers are

participating in the interaction.

• Time decoupling : the interacting parties do not need to be actively par-

ticipating in the interaction at the same time. In particular, the pub-

lisher might publish some events while the subscriber is disconnected,

and conversely, the subscriber might get notified about the occurrence

6

Chapter1 Introduction

of some event while the original publisher of the event is disconnected.

• Flow decoupling : publishers are not blocked while producing events

and subscribers can get notified about the occurrence of some event

while performing some concurrent activity (through a callback), i.e.,

subscribers do not need to pull for events in a synchronous manner.

In short, message production and consumption do not happen in the

main flow of control of the publisher or subscriber.

Because of the decoupling features of pub/sub paradigm, developing ap-

plications based on pub/sub paradigm will become easier easy. A few pub-

/sub systems such as Siena [15], Elvin [97], Gryphon [4] and Jedi [20] have

already been implemented in distributed networks.

1.2.2 WSN Middleware

WSN offers an opportunity for a wide range of applications. The sensor nodes

are low cost, low power and easily deployable. When combined, they offer

numerous advantages over traditional networks, such as a large-scale flexible

architecture, high-resolution sensed data and application adaptive mecha-

nisms. However, due to their tight integration to the physical world, sensor

networks pose considerable impediments and make application development

nontrivial. Using middleware to bridge the gap between applications and

low-level constructs is an attractive approach to resolving many WSN issues

and easing the application development. Consequently, a lot of WSN middle-

wares have been proposed and they provide different kinds of programming

abstraction.

7

A Thesis Submitted by Steven Lai

Conventionally, middleware is a software layer between operating sys-

tem and applications. It abstracts the underlying details provided by OS

and provides a high level API for applications. The purpose of middleware

is usually for easier application development because the application devel-

opers can make use of the easier and higher level API instead of the ones

provided by OS. WSN middleware is similar in the sense the middleware also

sits between the operating system and the application. Moreover, WSN mid-

dleware allows the application to view the network as a whole and therefore,

program it without being aware of where the data is stored and transmitted.

A conceptual model for a WSN middleware is illustrated in Figure 1.2.

1.2.3 Events and Subscriptions

In our pub/sub model, each event is a list of attributes which are the ac-

tual data obtained from the sensor network [42]. Applications can subscribe

events with subscriptions which contain event types [23] and event filters [15].

Events can have relations among each other. The relations are expressed as

event operators.

Events together with their relations can be represented as a directed

acyclic graph where each node represents an event and the each edge rep-

resents a relation. If the relations are all binary relations, each node in the

graph can have an indegree of either 0 or 2. Figure 1.3a shows an example of

such a graph. The nodes with 0 indegree represent primitive events. The rest

of the nodes represent composite events. The event which has 0 outdegree is

the subscribed event.

8

Chapter1 Introduction

Figure 1.2: WSN middleware

9

A Thesis Submitted by Steven Lai

(a) Event hierarchy (b) Event detection through aggrgation

Figure 1.3: Event definition and detection

Once the subscriptions are defined, it will be disseminated into the net-

work so that sensor nodes can start to collect data and detect events. The

sensor nodes collect data in rounds. In each round, the collected data will

be matched against the subscription. If an event is found to match the sub-

scribed event type, it will be delivered to the sink to notify the subscriber.

1.2.4 Event Detection and Detection Cost

Events can be detected with different strategies based on their types and

relations. In this work, we consider the detection cost as message cost. The

simplest type of event is the primitive event. Existing work may not have

a clear definition on primitive events in the sense that such event may be

detected by a single node or by multiple nodes. In the case of multiple

nodes, the events are usually detected in the form of data aggregation with

aggregates such as average, max or sum. For the sake of discussion, in this

10

Chapter1 Introduction

work, we consider primitive events as only those that can be detected by

single sensor node. For events which involve data aggregation, we consider

them as composite events as discussed shortly. Since such detection does not

involve collaboration among nodes, the communication cost for detecting

primitive events is always zero.

The second type of event is composite event. Composite events are de-

tected based on a number of sub-events. These sub-events may be primitive

or composite events. Apparently, nodes must collaborate in order to detect

composite events. Therefore, the communication cost for detecting a com-

posite event comprise of the communication cost for each sub-event and the

additional cost for forwarding these sub-events to a node for detection. Fig-

ure 1.3b shows an example of a composite event that merely aggregates the

primitive events. Since four primitive events are used, the communication

cost for detecting the event is 4.

Apart from data aggregation such as sum, max or average, a composite

event may require more complicated spatial or temporal relations among its

sub-events. A sensor node then needs to be selected to first save the detected

sub-events. As shown in Figure 1.4 if a composite event is detected based

on two or more sub-events e1 and e2, then the detected e1 and e2 will first

be forwarded to a node in their topological center. In this paper, we refer

to such node as event fusion point. The communication cost for detecting

the composite event will be the cost for detecting each individual sub-events

together with the cost for delivering the event detection results to the event

fusion point.

Sometimes the sub-events may not always happen. In this case, we don’t

11

A Thesis Submitted by Steven Lai

e1

e2

Figure 1.4: Composite event detection through event fusion point

need to always send the results to the event fusion point. Instead, we can

forward only the detected events in order to further save the energy. For

example, as shown in Figure 1.5, if we have two events e1 and e2 which have

a relation such that the composite event happens only when both events have

been successfully detected. If e2 needs to be monitored at a higher rate than

e1 and the probability that e2 will really occur is also higher than that of e1.

Then we can further move the fusion point closer to e2 so that the nodes do

not need to start detecting less frequent e2 if e1 has not been detected. In

this way, we can further reduce the communication cost because the nodes

do not need to spend energy continuously trying to detect e2.

1.2.5 Composite Event-based Applications

We consider several applications that motivated the development of PSWare.

The first one is indoor monitoring for fire detection. When a fire occurs,

12

Chapter1 Introduction

e1

e2

Figure 1.5: Composite event detection using event probability

usually more than one sensor node can detect changes in sensory data such

as temperature and light. In addition, when the rescue team comes, they not

only need to know the location of the fire but also its spreading speed and

direction. This requires detecting changing patterns of the events. In such

applications, events will be defined as location of the sensors along with the

changes of temperature and light over the time.

The second application is WSN-based structural health monitoring (SHM).

The objective of such system is to detect damages on structures such as

buildings and bridges if they occur. Event detection is important in these

applications because the SHM sensors will introduce high energy consump-

tion during damage detection. It is therefore more desirable to wake them

up only upon the occurrence of certain events [49]. One of such example is

to start the sensors when certain vibration pattern has been detected on the

building to be monitored. In such applications, events may be defined as

13

A Thesis Submitted by Steven Lai

vibration patterns over the structure.

Our last application is intelligent transportation systems (ITS). ITS may

include a wide array of applications such as traffic light control, road enforce-

ment and congestion information. Many of such applications need the vehicle

information. In these applications, we may define vehicle related events as

primitive events. Then based on those events, different applications may

define different composite events which are important to the services being

provided.

From these applications, we can see event detection is an essential part.

Moreover, for each application domain, it usually have some basic events

such as car events for ITS and temperature event for fire monitoring. Then

based on these basic events, different composite events may be defined to

further meet the requirements of these applications.

1.3 Thesis Outline

The remaining of the thesis is organized in the following way. First, we

review the literature in Chapter 2. We first identify the most relevant topics

to PSWare. There are mainly four related areas: WSN middleware, WSN

macro-programming, event definition and data aggregation for WSN. For

each of these areas, we categorize the existing works and discuss the features

based on these categories. Before getting into the technical details for these

works, we first try to illustrate their high-level ideas with diagrams.

In Chapter 3, we describe the design of our middleware. Our design uses

a top-down approach. We first overview the entire system design and list

14

Chapter1 Introduction

the most important design issues including compiler design, event detection

algorithm and sensor placement and clustering. Then, we start from the

highest level of our middleware - the EDL compiler that directly interact

with the user through subscriptions. After the EDL compiler, we describe

the design of our runtime environment that supports our event subscription

and detection. Then we describe our event detection framework which can

be used to easily integrate different types of event detection algorithms.

We go into our first research issue - the composite event detection problem

in Chapter 4. We formulate the problem and describe our solution in details.

In addition to the main algorithm, we discuss a sub-problem, the fusion

point deployment problem. We discuss our second research issue in Chapter

5. This issue came from the structural health monitoring (SHM) application

in WSN. We formulate the problem and propose the corresponding solutions.

We summarize our implementation details in Chapter 6. We discuss how

different real world applications such as ITS or SHM, can be developed by

into PSWare.

We describe our system evaluation in Chapter 7. We first evaluate our

generic event detection algorithm, TED, through analysis and simulation.

Then we integrate TED into PSWare and perform evaluation through exper-

iments.

In Chapter 8, we conclude our work and discuss the possible future di-

rections.

15

A Thesis Submitted by Steven Lai

16

Chapter 2

Literature Review

2.1 Overview

There are many issues related to designing PSWare including:

• Programming abstraction: since the purpose of middleware is to help

develop applications, an appropriate layer of abstraction is needed so

that the application developers do not have to worry too much about

the underlying details.

• Middleware design: the middleware is designed with such an objective

in mind that different types of event detection algorithms may be eas-

ily integrated into the system. This requires a flexible and extensible

architectural design.

• Optimized event detection: an efficient event detection algorithm is

the heart of the middleware because the whole system relies on it for

efficient event processing.

17

A Thesis Submitted by Steven Lai

Runtime
Support
System

Language /
Compiler

Architectural
Design

Distributed
Event

Detection

System
Deployment

Engineering
Topics

Research
Topics

PSWare

Figure 2.1: Topics related to PSWare

In summary, the issues related to PSWare design can be illustrated in

Figure 2.1. From the engineering perspective, we need to provide a high

level event definition language to the user. By doing that, we need a compiler

for such event definition language. After the high level event definition has

been compiled, we need a runtime environment which will act as a glue

layer between the compiled codes and the actual event definition algorithm.

From the research perspective, the event detection problem mainly involves

two aspects - distributed event processing and sensor nodes placement. The

distributed processing part emphasizes on optimization so that the events

may be detected with minimum energy cost. The placement part studies

how the sensor nodes may be efficiently deployed in the network to help

achieving the optimization goal.

In this chapter, we study the existing literatures and work on these topics.

18

Chapter2 Literature Review

Abstraction

Data fusion

Networking

Security Qos

WSN Middleware

Figure 2.2: Issues in designing WSN middleware

2.2 WSN Middleware

A lot of works on middleware for WSN have been proposed. Different works

provide different features to the upper application layer. In this section, we

first describe the issues and challenges in designing middleware for WSN.

Then, we survey some of the most important works in the area of middle-

ware for WSN. Finally, we summarize the exiting works and analyze some

remaining yet unsolved issues.

2.2.1 Issues in Designing WSN Middleware

WSN brings a lot of benefit as well as some challenges. To design and im-

plement an effective and efficient middleware for WSN, theses issues need to

be addressed. A few surveys [96, 84, 45, 39] have been done to summarize

the existing works. In this section, we will select some key issues regarding

to the challenges for designing WSN middleware. The overview of the issues

19

A Thesis Submitted by Steven Lai

is illustrated in Figure 2.2. On the left-hand side, abstraction support, data

processing and networking may be handled at different software layers. On

the right-hand side, QoS and security are usually handled across different

software layers.

Abstraction Support : WSN usually consists of large number of hetero-

geneous sensors. These sensors may be developed by different vendors and

may have different capability, precision and platform. Therefore, the mid-

dleware should hide the underlying platform details and provide a high level

programming paradigm for the application programmers. Ideally, a good

programming paradigm allows programming the sensor network as a single

’virtual’ entity, rather than individual nodes [96].

Resource Constraints : usually each sensor node in the network has limited

resources like energy, computing power, memory and communication band-

width. Hence, middleware components have to be lightweight to fit these

constraints. Middleware should also provide support to dynamically adapt

performance and resource consumption to the varying needs of the applica-

tion, for example, by enabling dynamic tradeoffs between output quality and

resource consumption. In addition, multiple applications may run on the

same network so the middleware needs to fairly allocate resources between

different applications.

Scalability : scalability is defined as follows. If an application grows, the

network should be flexible enough to allow this growth anywhere and anytime

without affecting network performance [39]. As sensor nodes are small and

cheaper, sensor networks are usually deployed in very large scales. As a

result, middleware should support mechanisms for self-configuration and self-

20

Chapter2 Literature Review

maintenance of collections of sensor nodes.

Network Dynamics : ad hoc networks of sensor nodes may exhibit a highly

dynamic network topology because of node mobility, environmental obstruc-

tions or hardware failures. Middleware should support the robust operation

of sensor networks by coping with the changing network environment.

Data Fusion: most sensor network applications involve nodes that contain

redundant data and are located in a specific local region. This property makes

it possible for in-network data fusion of data from different sources. Data

aggregation saves energy by reducing the total amount of data needs to be

transferred.

Cross-layer Design: different from traditional middleware which can sup-

port a wide variety of applications, WSN middleware cannot be generalized in

this way due to limited resource availability. Therefore, most works on WSN

middleware include mechanisms for including the application knowledge in

the middleware. This lets developers may application requirements to net-

work parameters, which enable them to fine-tune network monitoring. Much

existing middleware is coupled to a specific type of applications. However,

middleware is intended to support a wide range of applications so developers

must explore the trade-offs between the degree of application specificity and

middleware generality [39].

Security : WSN middleware need to handle security issues in data process-

ing and data communication. Since sensor networks are often deployed for

sensitive applications like military surveillance, patient monitoring, forecast-

ing systems, etc, data collected and distributed by these sensors will have to

be genuine and authentic [84]. However, due to limited resource availability,

21

A Thesis Submitted by Steven Lai

WSN
Middleware

Query
Virtual

Machine Agent Event

Tree-based Cluster-
based Instruction TCL script Query Handler

Figure 2.3: Category of existing WSN middleware

existing security algorithms may not be suitable for WSN so new security

schemes need be developed to meet the security requirements of WSN.

QoS Support : in WSN, we can view QoS from two perspectives, appli-

cation and network. The former refers to QoS parameters specific to the

application, such as sensor node measurement, deployment, coverage and

number of active sensor nodes. The latter refers to how the supporting

communication network can meet application needs while efficiently using

network resources such as bandwidth and power consumption. Sometimes

application-specific QoS requirements may conflict with network QoS require-

ments. For example, the application may always want to have more sensor

nodes being active at the same time but the network, on the other hand,

wants to let most of the sensors sleep. Therefore, it is up to middleware to

balance the QoS requirements from both application and network perspec-

tive.

We categorize the existing WSN middleware according to the program-

ming abstraction provided. Programming abstraction is the most direct way

for developers to interact with middleware. Figure 2.3 shows the category of

existing middleware.

22

Chapter2 Literature Review

Sensor
Sensor

Sensor
Sensor

Sensor

Sensor Sensor

Query

Network

Figure 2.4: Query-based middleware for WSN

2.2.2 Query-based Middleware

Query-based approach provides a SQL-like query language to higher level. As

shown in Figure 2.4, high level applications interact with the network using

queries. To allow faster data delivery, the underlying network may group

the data according to their types. The nodes may form a tree or clusters to

further speed up the query processing.

The earliest work falling into this category is COUGAR [10]. On the high-

est level, it uses SQL like query language. Sensors are modeled as abstract

data types (ADT) in an object oriented fashion so the signal processing func-

tions can be represented as a method of a type. An initial version of Cougar

has been implemented on the actual sensor.

Some work such as TinyDB [79] uses a query-based approach with a cou-

ple of distinct language features such as event-based queries and aggregation.

Internally, it defines some metadata for query optimization. A few power-

23

A Thesis Submitted by Steven Lai

based query optimization techniques were introduced such as power-based

ordering and event query batching. For query dissemination, a semantic

routing tree protocol was proposed. Dissemination of multiple queries with

optimization is briefly discussed as the future work. TinyDB also discusses

policies that have to be made when the data cannot be delivered due to time

constraints and resource constraints.

In order to process the query more easily, the query-based middleware

usually has certain network structures such as cluster or tree. For example,

SINA is a query-based middleware for WSN. It assumes that the sensor nodes

are formed into clusters and the underlying communication is attribute-

based. On the highest level, it provides a SQLT for the users. SQLT is

basically a SQL-like language and supports task scripting when the sensor

meets the condition of the query. SINA is only evaluated in simulation and

it doesn’t seem to have any real implementation.

2.2.3 Virtual Machine-based Middleware

Virtual machine-based middleware usually provides an instruction set for

the applications. As illustrated in Figure 2.5, the instructions serve as the

interface for the high level applications while the actual services are provided

by the underlying modules. Depending on their complexity, some modules

may have more than one instructions linked to them.

Some of the existing works use virtual machine models that have already

been developed such as JVM. For example, MagnetOS [7] provides the image

of JVM 1.3. Two algorithms have been proposed to dynamically place the

24

Chapter2 Literature Review

Instructions

Sensor Node

Data Aggregation

Routing

Maths Operators

Code Scheduler

Figure 2.5: Virtual machine-based middleware for WSN

application modules on sensor nodes in order to save energy. MagnetOS

seems to have been implemented but not on Berkeley sensor motes.

However, virtual machines such as JVM may be too heavy weighted to

be executed on sensor nodes. Therefore, some work chose to develop new

VM models. For example, Maté [64] is a VM based approach for WSN

middleware. Three contexts are defined and they correspond to three events:

clock timers, message reception and message send request. Each context has

a stack structure to allow concise code size. Based on such kind of stack

structure, coding in Maté is also stack-based. Maté has been implemented

in TinyOS.

Other middleware may require supporting components. For example,

Smart Messages (SM) [52] mainly contains three components. A VM is used

25

A Thesis Submitted by Steven Lai

to provide hardware abstraction for SM execution. A tag space offers a name-

based memory and consists of (name, data) pairs. A code cache is used to

cache some of the codes for efficiency. With the help of these components,

SM uses content-based routing and migration based on the tag spaces. Two

routing algorithms have been implemented. One is based on Ad hoc On-

Demand Distance Vector (AODV) [93], the other one is based on Greedy

Perimeter Stateless Routing (GPSR) [53]. SM discusses security issues and

provides the Admission Manager module to achieve the security goal. SM

has been implemented on Pocket PC.

2.2.4 Event-based Middleware

Event-based middleware first allows the users to define events. Then the cor-

responding event handler will be specified and executed once certain type of

event happens. Existing event-based middleware mostly deals with primitive

events and many of them use SQL to define and subscribe to events.

A good example for event-based middleware using SQL is DSWare [66].

DSWare uses a SQL-like language to express describe events. The SQL

commands ’insert’ and ’delete’ are used to register and cancel a specific event.

However, with these simple commands, DSWare can only support primitive

event detection. DSWare is implemented only in simulations.

In addition to events subscription and report, some other works make use

of events to update codes. Impala [71] supports application module updates

based on the reception of different kinds of events. In their paper, the authors

focus on the architecture of the middleware Impala. No detail is provided

26

Chapter2 Literature Review

about the high-level API provided by Impala. There are three main modules

in the middleware: Application Adapter, Application Updater and Event

Filter. Impala has been implemented on Pocket PC with Linux operating

system. The work is compared to Maté in terms of design and programming

paradigm provided to the application layer. It didn’t compare the actual

performance.

2.2.5 Agent-based Middleware

An agent-based approach usually treats the codes running on individual sen-

sor nodes as mobile agents. Codes can therefore, move between different

sensor nodes. One of the motivations to use an agent-based approach is to

allow multiple applications to be executed on the same network. One of

such example is Agilla [27]. Agilla is based on Maté and uses stack architec-

ture to reduce the length of the instructions. On each of the sensor node, a

max number of 4 agents can be supported at the same time. Agents can be

cloned or migrated depending on the application. Inter-agent coordination is

achieved through a tuple space and an acquaintance provided by the Agilla

middleware.

Different from previous middlewares, agent-based approaches usually do

not have a de facto language or scripts and different work may adopt different

approaches. For example, Agilla uses stack-based instructions. Another

work SensorWare [11] uses a Tcl core as the scripting language provided

to the upper layer. The program is basically composed of event handlers

which perform tasks based on the events received. A mobile agent-based

27

A Thesis Submitted by Steven Lai

approach is used in the sense that the script can be replicated and migrated in

several sensor nodes. SensorWare seems to have a module, namely Admission

Control module, for security. SensorWare has been implemented on Pocket

PC. Its performance is briefly compared with SQLT (used in SINA) in terms

of code size.

2.2.6 Middleware with Other Programming Abstrac-

tions

The middleware listed before use popular and well-understood programming

abstractions. There are, however, other works that use programming ab-

stractions which are more specific to certain applications or are simply not as

popular as the previous ones. For instance, tuple space is a popular approach

in traditional distributed systems but may not be as well-known as queries.

TinyLIME [21] is a middleware that is based on tuple space. TinyLIME is

built on top of LIME which uses a tuple space approach. The authors as-

sume a network model where sensor nodes are sparsely scattered in a certain

region. They communicate with a base station within its one-hop communi-

cation region. Base station and clients are connected with each other using

multihop communication. The sensory data of a sensor node is represented

as a mobile agent on the base station. TinyLIME has been implemented on

both Berkeley motes and notebook with Java.

Some works develop programing abstractions which are specific to cer-

tain applications. For example, EnviroTrack [1] introduces a programming

language designed specifically for object tracking in WSN. The EnviroTrack

28

Chapter2 Literature Review

compiler will first compile the program into C programs. The language has

hid out the network layer to the application programmer and it provides

an object-based naming mechanism. EnviroTrack has been implemented in

TinyOS on Mica motes.

Some works may not emphasizes on programming abstractions but they

do address some issues listed in Section 2.2.1, for example, data fusion

through clustering. Yu et al. [111] specifically discuss the design issue of

a cluster-based middleware. In this paper, the authors first discuss some

general design principles for designing a WSN middleware. The discussed

design principles include data-centric mechanisms, application knowledge,

localized algorithms, lightweight and QoS. Based on these design principles,

the authors argue that a cluster-based approach is more suitable to meet

those design principles. The authors also briefly describe the architecture for

such kind of middleware.

Apart from clustering, QoS is also an important topic in WSN. MiLAN

[44] focuses on QoS and it introduces the concept of proactive network. In

MiLAN, the authors argue that the previous works has focused on designing

new network-level protocols without considering existing standards or how

applications use the protocols. MiLAN extends the network stack and allows

applications to specify the required variables and QoS requirements associ-

ated with them. A state-based graph is used to let the application describe

variables. In the network layer, MiLAN uses a service discovery protocol.

The implementation details haven’t been discussed in the paper.

Cross-layer is also addressed by some middleware design. TinyCubus

[82] features a cross-layer design. There are mainly three modules in Tiny-

29

A Thesis Submitted by Steven Lai

Cubus. The first component, data management frameworks provides a set

of standard data management and system components. The components are

selected based on current system parameters, application parameters and op-

timization parameters. The second component, cross-layer framework, pro-

vides a generic interface to support parameterization of components using

cross-layer interactions. It uses a specification language that allows for the

description of the data types and information required and provided by each

component. The third component, tiny configuration engine, is used to con-

trol the topology and the role of each sensor. Code distribution can use such

kind of configuration information to distribute the code more effectively.

2.2.7 Summary of Existing WSN Middleware

Most of the existing works describe their abstractions in details. Existing ap-

proaches include query-based approaches [10, 99, 79], VM-based approaches

[7, 64, 52], tuple space-base approaches [21] and mobile agent-based ap-

proaches [27, 11]. In addition to these well-known programming paradigms,

some works provide some application-specific abstractions. For example,

Enviro Track [1] provide a programming model which is suitable for object

tracking applications.

In terms of network issues such as routing and data fusion, some of the

works have briefly described the related issues. For example, SINA [99] uses

a cluster-based approach to perform data aggregation and discuss the routing

issues about how to deliver the data to a mobile subscriber. SM [52] uses

content-based routing and migration based on the tag spaces. Two routing

30

Chapter2 Literature Review

algorithms have been implemented. One is based on AODV and the other is

based on GPSR. Yu et al. [111] further argue that a cluster-based approach is

more suitable. TinyLIME [21] briefly describe the communication scheduling

issues for WSN where most of the sensors sleep during the most of the time.

TinyDB [79] seems to have a most comprehensive discussion of the related

network issues such as the construction and maintenance of semantic routing

trees. The authors also discuss various kinds of policies for delivering the

data.

In terms of implementation, some works [99, 66], seem to have been im-

plemented only in simulation. For real world implementation, certain earlier

works [71, 11, 52] make use of platforms such as pocket PC which are more

powerful and expensive than those sensor nodes for large-scale deployment.

With the increasing popularity for the Berkeley sensor motes [19] among

academia, recent works [64, 21, 79, 1, 27] has been implemented on those less

powerful sensor nodes. TinyCubus [82] has been implemented in TOSSIM

[65] which is a simulator provided by TinyOS [31]. Codes created for TOSSIM

can usually be deployed in real Berkeley sensor motes easily. Other works

don’t seem to describe the implementation details.

In terms of evaluation, most of the existing works don’t have much formal

mathematical models for analysis. Since middleware is usually targeted to a

specific area of applications, it is also difficult to fairly compare the perfor-

mance between middleware with completely different designs. As a result,

most of the works don’t compare with existing works. Instead, some works

[99, 64, 11, 52, 27] evaluate the work by creating applications based on the

middleware. Some works [71, 66, 111, 82, 21] evaluate the work by setting up

31

A Thesis Submitted by Steven Lai

a testbed either in real world or in simulation and performing some experi-

ments based on the predefined metrics. Other works [1, 79] are already very

application-specific and simulations/experiments according to the predefined

metrics can also be regarded as application simulation/experiments.

Recently, the security and QoS issues in WSN middleware have also at-

tracted increasing attentions [44].

2.3 Macroprogramming for WSN

Apart from middleware approach, there are other works that design and im-

plement different programming abstractions for WSN. Such works are differ-

ent from middleware works because apart from programming abstractions,

middleware works usually need to deal with other issues such as resource

management, QoS and routing. As a result, most of the WSN middlewares

are standalone programs by themselves with a lot of underlying mechanisms

implemented such as tree or clustering. At the meantime, they also provide

a thin high level programming abstraction (usually in terms of scripts) to the

middleware users.

2.3.1 Overview

The works that we are going to discuss in this section focus primarily only on

the programming abstraction. The programs written with such abstractions

may be compiled into native binaries. Many of these works use the term

’macroprogramming’ for such type of abstraction. More specifically, macro-

programming techniques usually introduce new and completely different view

32

Chapter2 Literature Review

WSN
Macroprogramming

DeclarativeImperative

Region /
neighborhoodThread ServiceStates Data

Centric

Figure 2.6: Categories of macroprogramming for WSN

on how to program sensor networks. They provide very high-level abstrac-

tion to the application programmers and let them to program the network

as a whole. Some of the works on WSN middleware introduced in Section

2.2 can be regarded as macroprgramming even not explicitly mentioned. In

addition to the works described in the previous section, we review some of

the other works related to macroprogramming in WSN.

As shown in Figure 2.6, the existing works on macroprogramming may

be first categorized as imperative and declarative. For imperative program-

ming abstraction, the programmer will still have to specify the individual

steps for performing the tasks. Under this category, we further have thread-

based approach and state centric approaches. For declarative programming

abstraction, we further divide them into three sub-categories: data centric,

service and region / neighborhood based.

2.3.2 Abstraction for Imperative Programming

Due to resource constraints, implementing threads may not be so straight-

forward on sensor nodes since a lot of overhead may incur during context

33

A Thesis Submitted by Steven Lai

Listing 2.1: A sample program written in RuleCaster

1 /* Ruleblock 1*/

2 SPACE(kitchen),TIME(1s){

3 STATE stoveOnHazard :- stoveOn (), notMonitored ().

4 notMonitored () :- pressure(X), X<50.

5 }

6 /* Ruleblock 2*/

7 SPACE(door),STATE(kitchen:stoveOnHazard){

8 STATE hazard :- leaving (). }

9 /* Ruleblock 3*/

10 SPACE(door),STATE(door:hazard) {

11 ACTION alarm (10). }

switching. TinyThread [83] is a work that provides a library for threading.

It proposes a multi-threading library for TinyOS, a popular OS used by sensor

nodes. Basically, each thread has its own stack to store its local state. The

programming abstractions include Blocking I/O and some synchronization

primitives.

On the other side, state-based approaches borrow the idea from finite

state machine. RuleCaster [9] is probably the first to describe such kind

of abstraction. It consists of a high level state-based language, RCAL, a

compiler that compile RCAL to codes executed by sensor nodes, and a mid-

dleware. An example of RCAL is shown in Listing 2.1

PIECES [69] took one step further by formally defining the state-centric

programming model. It also uses the object tracking application as an ex-

ample to show that the state-centric programming model is effective. Then,

the idea of collaboration groups is proposed. Basically, a group contributes

to a state update. Each group has a number of entities called agents. In

PIECES, programmers think in terms of dividing the global state into a set

34

Chapter2 Literature Review

of pieces with one principal (a computational entity) maintaining each piece.

Principals can communicate with each other by defining collaboration groups

over principals. PIECES has been implemented only in Java and Matlab as

simulations.

2.3.3 Service and Data Centric Abstraction

While imperative programming abstractions can probably give programmers

enough expressiveness to define their application requirements, they still re-

quires the programmers to write the detailed procedures. An alternative

way is to provide declarative languages to programmers. Different from the

imperative approach, in a declarative approach, programmers don’t have to

specify individual steps in their applications. Instead, they just need to

declare what the application should do. A good example of a declarative

language is SQL. To use SQL, the programmer does not have to understand

the underlying details about how data are indexed and searched. They just

need to specify what kind of data they want.

There are mainly three types of programming abstraction to be discussed

in this section. The first one is the data centric approach. Apart from the

query-based middleware introduced in the previous section, ATaG [91] is also

a representative work in this category. Abstract task graph (ATaG) is a data-

driven macroprogramming language. The language is composed of abstract

task and abstract data item. Abstract channels are used to connect a task to

a data item. In the paper, ATaG is expressed only in graphs and the authors

briefly talk about the compilation process.

35

A Thesis Submitted by Steven Lai

Listing 2.2: A sample program written in SNACK

1 service Service {

2 src :: MsgSrc;

3 src [send:MsgRcv] -> filter :: MsgFilter -> [send]

Network;

4 in [send:MsgRcv] -> filter;

5 }

The service-based approach has also been studied by several works. This

is partially because service is a hot research topic in WSN and there is

a need for such a macroprogramming approach to support these research

works. SNACK (Sensor Network Application Construction Kit) [34] consists

of a configuration language, component and service library and a compiler.

SNACK system leverages nesC [31] - its base components are written in nesC,

and its compiler generates a nesC configuration and several nesC modules.

A sample program written in SNACK is shown in Listing 2.2.

SNACK’s syntax is briefly summarized as follows:

• n :: T declares an instance named n of a component type T

• n[i:τ] refers to an output interface on component n with name i and

interface type τ

• [i: τ]n refers to an input interface

The basic idea behind SNACK is dividing the programmers into three types.

System programmers use nesC to develop reusable components. Service pro-

grammers combine those components into services that implement high-level

semantics such as routing tree, periodic sensing, etc. Application program-

mers select a handful of services to run on a given network. A SNACK

36

Chapter2 Literature Review

Listing 2.3: Service description in SONG

1 service(breakService(Region),

2 needs(sensor(breakSensor ,Region)),

3 creates(Pulse(X),detected(X,T,Region))

4)

service, like a nesC configuration, is a collection of component declarations

and connections that behaves like a component.

The actual definition of service, however, is different among different re-

search works. As an effort to unify such a definition for services in WSN,

SONG [70] formally describes the architecture and programming model of a

semantic-service-oriented sensor information system platform. The authors

think that by using ontology and semantic services, one may encapsulate

sophisticated domain knowledge into computational components or services.

Listing 2.3 shows such a service description.

For example, a SpeedEstimation service may take a sequence of pulses

and produce the speed of the object. The implementation details of SONG

haven’t been discussed in the paper.

2.3.4 Neighborhood and Region Based Abstraction

The final category under declarative abstraction is neighborhood / region

- based approach. Since the power of individual sensor nodes is extremely

limited, it is very common for senor nodes to cooperate with their neighbors.

Therefore, neighborhood-based approach can be useful for WSN applications.

Some of the work provides a thin layer of library on top of TinyOS so that

the programmers can make use of the neighborhood-based features in their

37

A Thesis Submitted by Steven Lai

Listing 2.4: A sample program written in Kairos

1 void buildtree(node root)

2 node parent , self;

3 unsigned short dist_from_root;

4 node_list neighboring_nodes , full_node_set;

5 unsigned int sleep_interval =1000;

6 // Initialization

7 full_node_set=get_available_nodes ();

8 for (node temp=get_first(full_node_set); temp!=NULL;

temp=get_next(full_node_set))

9 self=get_local_node_id ();

10 if (temp==root)

11 dist_from_root =0; parent=self;

12 else dist_from_root=INF;

13 neighboring_nodes=create_node_list(get_neighbors(temp)

);

14 full_node_set=get_available_nodes ();

15 for (node iter1=get_first(full_node_set); iter1!=NULL;

iter1=get_next(full_node_set))

16 for (;;) // Event Loop

17 sleep(sleep_interval);

18 for (node iter2=get_first(neighboring_nodes); iter2!=

NULL; iter2=get_next(neighboring_nodes))

19 if (dist_from_root@iter2 +1< dist_from_root)

20 dist_from_root=dist_from_root@iter2 +1;

21 parent=iter2;

familiar environment. Hood [106] is such an example. Developed by the same

group that developed TinyOS, Hood proposes a neighborhood programming

abstraction for sensor network. Sensors in the same neighborhood can share

data among themselves. Hood provides a specification language that allows

code to be generated in NesC programs.

While Hood provides a generic model for neighborhood-based program-

ming, other works address issues within specific application settings. For ex-

ample, Kairos [37] addresses the naming issue. It argues that in a distributed

environment, sensor nodes may have conflicting names for resources. It ad-

38

Chapter2 Literature Review

dresses this issue by defining three simple programming abstractions. First,

nodes are logically named using integer identifiers. Second, one-hop neigh-

bors of a node can be obtained by calling get neighbors(). Third, data at the

remote node may be accessed by syntax like ’variable@node’. The code will

be translated and linked to Kairos runtime and will be distributed by using

code distribution software such as Deluge [46].

A sample program written in Kairos is demonstrated in Listing 2.4. In

this short piece of codes, a shorted path tree is constructed by making use

of the neighborhood abstractions provided by Kairos.

A similar concept to neighborhood-based approach is region-based ap-

proach. Since many WSN applications require location information, a region-

based approach can be particularly important in these application areas.

Abstract Region [105] provides a set of programming primitives for sensor

networks. It is implemented in nesC as a library module. Listing 2.5 shows

its APIs.

Listing 2.5: API provided by abstract region

1 /* Discover region */

2 result_t Region.formRegion(<region specific args >,

3 int timeout);

4 /* Wait for region discovery */

5 result_t Region.sync(int timeout);

6 /* Set local shared variable */

7 result_t SharedVar.put(sv_key_t key , sv_value_t val);

8 /* Get shared variable from give node */

9 result_t SharedVar.get(sv_key_t key , addr_t node ,

10 sv_value_t *val , int timeout);

39

A Thesis Submitted by Steven Lai

11 /* Wait for shared variable gets */

12 result_t SharedVar.sync(int timeout);

13 /* Reduce v a l u e to r e s u l t with given op */

14 /* y i e l d returns pct of nodes responding */

15 result_t Reduce.reduceToOne(op_t operator ,

16 sv_key_t value , sv_key_t result ,

17 float *yield , int timeout);

18 /* Reduce and set result in all nodes */

19 result_t Reduce.reduceToAll(op_t operator ,

20 sv_key_t value , sv_key_t result ,

21 float *yield , int timeout);

22 /* Wait for reductions to complete */

23 result_t Reduce.sync(int timeout);

A few applications such as object tracking and contour finding have been

developed based on the API. A more formal definition of region is provided by

Regiment [89]. On the highest level, a functional language called ’Regiment’

is provided to the application programmer. A sample program written in

Regiment is illustrated in Listing 2.6.

Listing 2.6: A sample program written in Regiment

1 let aboveThresh (p,x) = p > threshold

2 read node =

3 (read sensor PROXIMITY node ,

4 get location node)

5 in centroid (afilter aboveThresh

6 (amap read world))

A compiler will then compile the ’Regiment’ program into a program

40

Chapter2 Literature Review

that can be executed by a VM running on top of each sensor node. In their

paper, the authors define several basic components, stream, space and event

in Regiment. The notion of these components is based on Fran [22]. Based on

these components, the authors propose another set of concepts such as area,

region and anchor. A number of operators are defined for those components.

In another paper, the same authors talk about their design of the Token

Machine Language (TML) [88]. Basically TML is a virtual machine that

can run on each individual sensor node. The basic components of TML are

token store and handlers. Token store contains a number of tokens which

can be regarded as events. The tokens can be sent and received through

wireless channels. Handlers are software routines that execute when certain

types of tokens are received. Some variables may be shared by multiple token

handlers. An example of a handler which handles token ’Red’ is defined in

Listing 2.7.

Listing 2.7: A token handler for Regiment

1 shared int s;

2 token Red (int a, int b) {

3 stored int x;

4 if (present(Green))

5 x = 39;

6 else {

7 x += a + b;

8 timed schedule Red(500, s, a);

9 }

10 }

41

A Thesis Submitted by Steven Lai

Up to now, the authors seem to focus on their design of macroprogram-

ming architecture. A lot of detailed issues haven’t been addressed especially

how to build a compiler that compiles Regiment to TML.

2.3.5 Summary

Works on macroprogramming languages can be briefly categorized according

to how they are used and deployed. Since the programming language, NesC

[31] provided by TinyOS is already a powerful component-oriented language,

some reusable modules with the NesC constructs to provide high-level ab-

stractions. Some works such as [105, 83] use such kind of approach and they

provide some kind of libraries to the application programmer to ease the de-

velopment of applications. Some works such as [37, 34, 106] use a different

approach. They provide a new language for the application programmer.

Programs written in such kind of language will be compiled to NesC pro-

grams. Other works such as the works described in Section 2.2, [89, 9] move

one step further. Instead of compiling the programs into NesC programs,

they construct a runtime environment on the sensor nodes and compile the

programs into intermediate programs that can be executed on such kind of

runtime environment. Based on such observation, we define three different

kinds of macroprogramming approaches:

1. Macroprogramming with library support: the approach that simply

provides library APIs based on existing programming infrastructure

such as NesC.

2. Macroprogramming with native code generation: the approach that

42

Chapter2 Literature Review

compile the programs into NesC programs.

3. Macroprogramming with runtime support: the approach that generates

and distributes codes into the network with runtime support.

The first approach provides the lowest level of abstraction. With the help of

code distribution tools such as Deluge [46], XNP [50] and Trickle [94], the

second approach can achieve dynamic code distribution. For programs that

require frequent updates, this approach may not be as efficient as the third

approach because each time, the entire binary image of the program needs

to be disseminated into the network. The third approach is the most flexible

approach but the implementation of a runtime environment on sensor nodes

with various resource constraints can sometimes be challenging.

Fortunately, we can reuse some existing works on WSN-based middleware

to provide such runtime environment required by the last approach. Existing

works such as Maté and Agilla provide low level yet compact instruction-like

abstractions. We can provide higher level abstractions based on them. More-

over, these systems have been implemented in Berkeley motes and proven to

work.

Existing works on macroprogramming in WSN may also be divided ac-

cording to the programming primitives provided. Some works such as [37,

106, 105] provide neighbor-based primitives. Some works such as [34, 70]

provide service-oriented abstractions. Some works such as [69, 9] provide

state-base primitives.

Most of the works introduced in this section hasn’t been implemented in

the real hardware so there isn’t much description of the performance evalua-

43

A Thesis Submitted by Steven Lai

tion. Others use similar approaches as those described in WSN middleware

such as by creating applications and testbeds.

2.4 Event-based Systems

As a first step towards a high-performance pub/sub middleware, we need

to provide a high-level event language to application programmers. Such

kind of language is primarily used to express complex events or event pat-

terns. Unlike query-based middleware approaches which use standard SQL

language, event definition languages should be more expressive for spacial

and temporal relations among data. In this section, we take a look at the

work that has already been made in this area. More specifically, we study the

existing event-based systems from different aspects such as event definition,

event evaluation and event operators / functions. These aspects are closely

related to a successful event-based middleware.

2.4.1 Event Definition

Event definition may find its root in some earlier works on distributed sys-

tems since one of the issues that these systems deal with is distributed data

processing. Some works such as Linda [14], use tuple space to represent

simple events. Linda is a parallel programming language that makes use of

tuple space. Four basic operations are defined in Linda: out(), in(), read()

and eval(). In particular, eval is similar to event matching in pub / sub sys-

tem. It matches actual (event) against formal (event expression). The use of

actual and formal is also seen in WSN-based event systems such as low level

44

Chapter2 Literature Review

naming [42] and TinyLime [21].

Listing 2.8: Elvin’s subscription language gramma

1 subscription:

2 bool_expression

3 | var_expression

4 bool_expression:

5 "(" subscription ")"

6 | "!" subscription

7 | subscription "&&" subscription

8 | subscription "||" subscription

9 | "exists (" NAME ")"

10 | type_expression equality_operator type_expression

11 type_expression:

12 "string"

13 | "int32"

14 | "float"

15 | "datatype (" NAME ")"

16 var_expression:

17 numeric_expression

18 | string_expression

19 numeric_expression:

20 NAME numeric_operator INTEGER

21 | NAME numeric_operator FLOAT

22 | NAME numeric_operator NAME

23 string_expression:

24 NAME equality_operator STRING

25 | STRING equality_operator NAME

26 | NAME equality_operator NAME

27 | NAME "matches (" STRING ")"

45

A Thesis Submitted by Steven Lai

28 equality_operator:

29 "=="

30 | "!="

31 numeric_operator:

32 "=="

33 | "!="

34 | "<"

35 | ">"

36 | "<="

37 | ">="

38 NAME: [a-zA -Z][a-zA -Z0 -9_]*

However, the actual and formal described in Linda were more similar to

primitive event matching and therefore, is not suitable for more complicated

event systems. As a result, some later work defined events in a way which is

more comprehensive than tuple space. For example, Meghdoot [38] defines

an event as a conjunction of pairs, where each pair consists of an attribute

and a value. A subscription is a collection of predicates each of which is a

triple consisting of an attribute, a value and a relational operator.

A more formal specification of a subscription language is discussed in

Elvin [97]. The language is both simple and straightforward. Its grammar is

specified in Listing 2.8.

These works may be enough in some certain simple event systems where

the event matching is only done on primitive events. On the other hand,

systems that requires event patterns probably need more language features.

Yeast [56] defines Event-action specifications. The users can define speci-

fications that comprise event patterns. Each event pattern is a compound

46

Chapter2 Literature Review

pattern of primitive event descriptors. An event descriptor matches an event

either transiently or permanently. For example, users can specify an event

descriptor that is to be matched whenever the load on a particular com-

puter host exceeds some threshold value, or an event descriptor that is to be

matched after a specified time.

The Yeast specification language has the format of ”event pattern do ac-

tion”. In Yeast, events are categorized as time events, object events and com-

pound events. Each kind of event has a set of descriptors. Time events have

’in’ and ’within’ which specifies the event is after of before a time. Object

descriptors have the format of ”obj class obj name obj attr relational test”.

In addition, two special relation tests ’changed’ and ’unchanged’ are defined.

Compound event descriptors are combination of time and object events with

’then’, ’and’ and ’or’. An example of a Yeast script is shown in Listing 2.9.

Listing 2.9: Example of a yeast script

1 In 10 minutes and host research load > 5.0 do [something]

An more complicated example of Yeast with server is shown in Listing

2.10. Basically, the user can register with the server via ’regyeast’. After

registration, a handful commands are provided to the user. ’addspec’ is

used to add an event specification. ’lsspec’ is used to list the existing event

specifications. ’suspspec’ and ’fgspec’ are used to suspend and resume a

specific event specification.

Listing 2.10: Example of a yeast script with server

1 1% regyeast

2 you have been registered with yeast

47

A Thesis Submitted by Steven Lai

3 2% addspec in 1 minute do echo 1 minute elapsed

4 3% lsspec

5 1 addspec in 1 minute do echo 1 minute elapsed

6 4% lsspec 1

7 1 addspec in 1 minute do echo 1 minute elapsed

8 Will attempt match at Sun Jan 1 11:39:28 1995

9 5% suspspec 1

10 8% lsspec

11 1 - addspec in 1 minute do echo 1 minute elapsed

12 7% fgspec 1

13 8% lsspec

14 1 addspec in 1 minute do echo 1 minute elapsed

15 9% sleep 60

16 10% 1sspec

To demonstrate the interactive usage of yeast, on Line 1 - Line 3 of

Listing 2.11, one developer first defines an event that is used to monitor the

debugging status of a source code file. Once the file has been debugged,

on Line 4, the other developer announces the new status of the file and the

corresponding developers will be notified.

Listing 2.11: Example of interactive yeast

1 defattr file debugged boolean

2 addspec file project.c debugged == true

3 do notify project.c debugged

4 announce file project.c debugged = true

Compared with previous works, a distinct feature of yeast lies in its ca-

pabilities in expressing temporal relations among events. Such feature is

48

Chapter2 Literature Review

important in a pub / sub system supporting composite events.

There are other works in the area of active databases that use event-

condition-action (ECA) rules for event definition. In READY [35], the event

specification is defined as: ”event var : event type | expression”. A few

event operators are defined in the paper such as ’&&’ (and), ’||’ (or), ’;’

(then), and ’butnot’. Another form of compound matching is to specify a

sequence of events which all match the same ”element pattern” (a matching

expression used for each element of the sequence) using: ”event var[j::k] :

event type | expression”. The event var[j..k] indicates that the event variable

will be bound to a sequence of events, with j and k being the minimum and

maximum number of events in the sequence, respectively.

In SAMOS [30], rule definition is used to specify ECA-rules. The basic

syntax is shown in Listing 2.12.

Listing 2.12: Syntax used in SAMOS

1 DEFINE EVENT event_name event_clause

2 DEFINE RULE rule_name

3 ON event_name IF condition_clause DO action_clause

The categories of events are described in the paper, primitive events and

composite events which are described by event algebra. For composite events,

six operators are defined. The basic ones are conjunction, disjunction and

sequence. Other three operators include ’*’ which means the event will be

only signaled once, history event which means the event will be signaled every

time during a specific period of time and negative event which means the

event will be signaled if it hasn’t been detected during a specific period. Event

49

A Thesis Submitted by Steven Lai

parameters are defined so that the origin of the event can be specified. For

example: ”(E1;E2):same object” denotes the sequence of events happening

on the same object.

To make it easier for the user to understand the event definition, some

works use the syntax such as query which is more popular. An example of

such is Query for Events [12]. Listing 2.13 shows an example for of Query

for Events.

Listing 2.13: An example of query for event

1 order[

2 orderId {4711} ,

3 customer {"John"},

4 buy[

5 stock{"IBM"},

6 limit {3.14} ,

7 volume {4000}]

8]

A few operators such as conjunction and disjunction are defined and a

formal definition of the query language is shown in Listing 2.14.

Listing 2.14: Formal language specification of query for events

1 DETECT bigbuy{

2 tradeId{varI},

3 customer{varC},

4 stock{varS}}

5 ON buy{{

6 tradeId{varI},

7 customer{varC},

50

Chapter2 Literature Review

8 stock{varS},

9 price{varP},

10 volume{varV}

11 }} where { var P * var V >= 10000 }

12 END

With the increasing popularity for functional programming, some works

such as λ-calculus [18] use functional approach. Functions in λ-calculus are

anonymous and are written in the form ”λx.E”. λ indicates this is a function,

x is the parameter and E is the body of the function.

These works from ADB may not directly address the issue of how to

express the temporal and spatial relations among events. They do, however,

provide some generic models such as ECA rules, event queries and λ-calculus

that may be used to express more complicated relations among events. Such

generic model can also be used in a pub / sub system for specifying composite

events.

2.4.2 Event Evaluation

Once the event has been defined, it is also important to evaluate the event

based on the event definition. In this section, we look at some of the works

related to event evaluation. To make the evaluation simpler, some work may

create specific data structures for evaluation. Event processing service (EPS)

[85] provides an algorithm to evaluate composite events. Some of the basic

operators are provided by EPS. The events are represented as trees. The leave

nodes are primitive events and intermediate nodes are composite events or

subexpressions provided by the application. The proposed algorithm allows

51

A Thesis Submitted by Steven Lai

some common subexpressions to be shared by multiple composite events. A

similar idea is proposed by Rebeca [86] that discusses a content-based routing

algorithm. The algorithm is based on finding the relationships between filters

and the paper discusses several propositions that can be used to find the

covering and overlapping of conjunction filters.

Other than creating certain data structure for evaluation, some work

try to group the event filters in a hierarchical way. SIENA [15] is such an

example. In SIENA, the authors don’t attempt to provide a complete pattern

language. Their goal is to study pattern operators that can be exploited to

optimize the selection of notifications within the event notification service. In

the paper, they define various covering relations between filters, notifications

and advertisements.

The work discussed previously are primarily intended for existing dis-

tributed systems and they may not consider the WSN-specific issues such

as energy saving and deployment. As a result, they may not be suitable for

WSN.

A popular approach for event evaluation in the field of active databases

is the rule-based approach. As one of the most frequently referenced work,

Generalized event monitoring language (GEM) [81] is used to define rules

for monitoring complicated events. It allows abstract events to be speci-

fied in terms of combinations of lower-level events. GEM uses a declarative

rule-based syntax in which various temporal constraints can be specified for

event composition. Each GEM script is constructed from some basic GEM

primitives. A few of them is defined in Listing 2.15

52

Chapter2 Literature Review

Listing 2.15: Primitives in GEM

1 primitive -event -expr :=

2 event -id | * | every <time -period -expr > | [at] <time -

point -expr >

3 guarded -composite -event -expr :=

4 composite -event -expr [when guard]

Then, these primitives are connected using operators:

• e1 & e2: occurs when both e1 and e2 occur irrespective of their order

• e + time-period: occurs a specified period of time after the occurrence

of event e

• {e1 ; e2} ! e3: occurs when e1 occurs followed by e2 with no interleaving

e3

• e1 | e2: occurs when e1 or e2 occurs

• e1 ; e2: occurs when e1 occurs before e2

Based on the operators, GEM scripts including event declarations, rule

definitions and control commands can be defined with the syntax specified

in Listing 2.16

Listing 2.16: GEM syntax

1 event <event -id>

2 [(<formal -attribute -declarations >)]

3 rule <rule -id > [<detection -window >]

4 { <event -expression > ==> <action -sequence > }

5 notify <event -id > [(<attribute -value -list >)]

53

A Thesis Submitted by Steven Lai

6 forward (<event -id >|<event -variable >)

7 <event -id> [(<attribute -value -list >)]

8 enable [<rule -id >]

9 disable [<rule -id >]

As a practical example of using GEM, Listing 2.17 shows a GEM script

that monitors gauge changes.

Listing 2.17: GEM example

1 event gauge_changed(double val)

2 event upper_exceeded

3 event lower_exceeded

4 rule gauge_rule1 { x:gauge_changed

5 when x.val >= 10 ==>

6 notify upper_exceeded;

7 enable gauge_rule2; disable }

8 rule gauge_rule2 { x:gauge_changed

9 when x.val <= 5 ==>

10 notify lower_exceeded;

11 enable gauge_rule1; disable }

12 enable gauge_rule2

Even though GEM is also for distributed systems, it’s rule-based frame-

work may also be applied to WSN since the detection of an event by one sen-

sor node may trigger another sensor node to start event detection. In fact, its

rule-based framework inspired the design of our event detection framework

which will be discussed in Section 3.2.

Finally, some works use application specific event evaluation methods.

EVE [32] is an event-driven middleware for workflow execution. Workflow

54

Chapter2 Literature Review

type specifications are mapped to B/SM. Each step in the workflow cor-

responds to the execution of a service. ECA rules define when and how

services are executed. From the perspective of B/SM, a workflow consists

of interacting, reactive components called brokers and broker behavior is

defined by ECA-rules describing their reactions to events. The authors de-

fine some primitive events such as broker interaction events and time events.

These primitive events can be constructed using some operators defined by

the authors, such as sequence, exclusive disjunction, conjunction, repetition,

negation and concurrency.

2.4.3 Event Operator and Function

Having discussed event definition and event evaluation, we now review some

works on event operators and functions. We review the works in this category

in order to summarize the necessary event operators / functions expected

from a pub / sub system. While some of the works in the previous sections

have already mentioned some event operators, in this section, we summarize

the event operators from these works with a deeper discussion.

When active database (ADB) started to become a hot topic, it was soon

realized that composite events are needed to specify events in such a system.

SNOOP [16] is such a system for ADB. the event operators defined in SNOOP

are shown as:

• OR (5): disjunction of two events E1 and E2, denoted E15E2, occurs

when E1 occurs or E2 occurs.

• AND (4): conjunction of two events E1 and E2, denoted E1 4 E2,

55

A Thesis Submitted by Steven Lai

occurs when both E1 and E2 occur, irrespective of their order of occur-

rence.

• SEQ (;): sequence of two events E1 and E2, denoted E1;E2, occurs

when E2 occurs provided E1 has already occurred. This implies that

the time of occurrence of E1 is guaranteed to be less than the time of

occurrence of E2.

• Aperiodic Operators (A, A∗): The Aperiodic operator A allows one

to express the occurrences of an aperiodic event within a closed time

interval. There are two versions of this event specification. the non-

cumulative aperiodic event is expressed as A(E1, E2, E3), where E1, E2

and E3 are arbitrary events. The event A is signaled each time E2

occurs within the time interval started by E1 and ended by E3.

• Periodic Event Operators (P , P∗): A periodic event is a temporal event

that occurs periodically. A periodic event is denoted as P (E1, T I[:

parameters], E3) where E1 and E3 are events and TI[: parameters]

is a time interval specification with optional parameter list. P occurs

for every TI interval, starting after E1 and ceasing after E3. Param-

eters specified are collected each time P occurs. If not specified, the

occurrence time of P is collected by default.

• NOT (¬): the NOT operator, denoted ¬(E2)[E1, E3], detects the non-

occurrence of the event E2 in the closed interval formed by E1 and

E3

Apart from event operators, some works use event functions which is

56

Chapter2 Literature Review

conceptually similar to operators but syntactically different. Java Event

CorrelaTOR (JECTOR [68]) tries to use composite event specification ap-

proach that can express complex timing constraints among correlated event

instances. Event specification in JECTOR is shown in Listing 2.18

Listing 2.18: JECTOR syntax

1 attributes ([NAME , TYPE], . . . , [NAME , TYPE])

2 which occurs

3 whenever timing condition

4 TC is [satisfied I violated]

5 if condition

6 C is true

7 then

8 ASSIGN VALUES TO C E s ATTRIBUTES;

An example of a composite event using JECTOR is shown in Listing 2.19

Listing 2.19: JECTOR example

1 define composite event LinkADownAlert with

2 attributes ([" Occurrence Time" : time] ,

3 ["Link Down Time" : time]) which occurs

4 whenever timing condition

5 @(LinkADown , i) + 2 minutes <= @r(LinkAUp , @(LinkADown ,

i), I)

6 and @(LinkADown , i) + 2 minutes <= @r(LinkADownAlert ,

7 @(LinkADown , i), I) and @(LinkADown , i) - 3 minutes >=

8 @r (LinkADownAlert , @ (LinkADown , i) , 0)

9 is satisfied

10 if condition true is true

11 then {

57

A Thesis Submitted by Steven Lai

12 "Link Down Time" := @(LinkADown , i) ;

13 }

A few works [108] summarizes the existng event operators. They com-

pared a lot of existing works on composite event description and proposed

some unified event operators. The work first summarized the existing event

operators as in Table 2.1.

58

C
hapter2

L
iteratu

re
R

eview

Operators
Conjunction Disjunction Sequence Concurrent Negation Iteration Selection

ECCO A+B A|B A;B A||B ¬A A∗ AN

Opera A||B A|B A;B - ¬A A∗ -
CEA A&B A|B A;B - ¬A - -

Schwiderski A,B A|B A;B A||B NOT A A∗ -

A-mediAS A&B A||B A;B - ¬A - A[i]

Ready A&&B A||B A;B - not A - -
Eve CON(A,B) DEX(A,B) SEQ(A,B) CCR(A,B) NEG(A,B) REP (A, n) -

GEM A&B A||B A;B - !A - -
Snoop A,B A ∨B A;B - - A∗ -
Rebeca A ∧B A ∨B - - ¬A A∗ -
SAMOS A,B A|B A;B - NOT A TIMES(n,A) A ∗ /last(A)

Table 2.1: Summary of existing event operators

59

A Thesis Submitted by Steven Lai

Based on the summary for the existing operators, a set of unified operators

are proposed as follows:

• Conjunction A+B: Event A and B occur in any order. (A+B)T with

a temporal parameter T indicating the maximal length of the interval

between the occurrences of A and B. Note that (A+B)∞ or (A+B)

refers without restrictions.

• Disjunction A|B: Event A or B occurs.

• Concatenation AB: Event A occurs before event B where timestamp

constraints are A meets B, A overlaps B, A finishes B, A includes B,

and A starts B.

• Sequence A;B: Event A occurs before B where time stamp constraints

are A before B, and A meets B. (A;B)0 is a special case belonging to

A meets B.

– E.g. (A;NULL;B): denotes there is no occurrence of any event

between event A and B.

– E.g. (A;B)T : means that an interval T between event A and B.

– E.g. (A;B0): denotes that there is event A and event B occur

contiguously.

• Concurrency A||B: Event A and B occur in parallel.

• Iteration A∗: Any number of event A occurrences.

• Negation ¬AT : No event A occurs for an interval T .

60

Chapter2 Literature Review

– E.g. (A¬B): denotes no B occurs during A’s occurrence.

– E.g. (A¬B)T : denotes no B occurs after starting A’s occurrence

within an interval T .

– E.g. (A;B)¬C: denotes that event A is followed by B and there

is no C in the duration of (A;B).

• Selection AN : The selection AN defines the occurrence defined by N .

– E.g. AAV GT : denotes taking the average during an interval T .

– E.g. ALASTT : denotes taking the most recent instance during

an interval T .

• Spatial Restriction AS: Event A occurs if it is a spatial restriction

defined in S, that can be defined as a specific location or a group

identifier etc.

– E.g. ACB03FD: The area code CB03FD identifies the zone

around Computer Laboratory in Cambridge. Event A is valid

only when spatial condition is satisfied.

• Temporal Restriction AT : Event A occurs within T .

– E.g. (A;B)T or (A;BT): B occurs within an interval T after A.

– E.g. BT : B is valid for an interval T .

They also discuss the issues about how to detect events based on FSA.

61

A Thesis Submitted by Steven Lai

2.4.4 Summary

Most existing works on distributed pub/sub systems such as [15, 38, 97] only

provide primitive events filtering. Each event is usually regarded as a set

of attribute-value pairs. Each attribute usually has an identifier and a data

type.

In the field of active database (ADB), there are also quite a few works

on event description languages [68, 16, 35, 30, 86]. ADB extends the tra-

ditional database by incorporate the ECA rules. ECA means ’on Event;

under Condition; take Action’. ECA is used in ADB for describing complex

user preferences. An example of ECA is that customer may define their re-

quirements as ’When the stock price of IBM has dropped to 50, buy in 100

shares”. The most difficult part of ECA is the event description so quite a

few works in ADB propose different solutions to this problem. Event descrip-

tion languages based on ADB usually focus on expressing complex temporal

relationships between events. A lot of temporal operators have been defined

and they may be borrowed when designing our own event description lan-

guage. However, these languages normally don’t provide any mechanisms

for describing spatial relationships between events since spatial relationships

don’t make much sense in a database system. Therefore, we probably need

to use a more general approach for our event description language.

In terms of implementation and evaluation, some of the works in ADB is

probably not of our interest since they belong to another field. For example,

one of the works in ADB implemented the language based on the log file

of the database. This is probably not applicable in WSN. For other works

62

Chapter2 Literature Review

some of them did a real compiler implementation and briefly discuss the

implementation issues.

Some works such as [81, 108] try to provide a general model for event

description. [56] is also an interesting piece of work in the sense that it

proposes an interactive specification language for event description.

In summary, events may be divided into primitive events and composite

events. Each primitive event is composed of a set of attribute-value pairs.

Each composite event is consisted of a set of primitive events which are

combined with a set of operators. [16, 108] have detailed descriptions of

these operators. Almost all existing works on event description language try

to invent its own syntax and notion.

2.5 Data Aggregation in WSN

Data gathering technique is important to the design and implementation of

PSWare because event detection is also a special type of data gathering. In

order to reduce the traffic, data aggregation is widely used to process some

data in-network. The data aggregation problem in WSN is well-studied.

There are a lot of existing works trying to solve this problem from different

perspectives.

The existing works on data aggregation may be categorized according

to the network layer they operate on. In particular, since there are many

works which use data aggregation on network layer, we further divide the

data aggregation approach on network layer into tree-based and cluster-based

approaches for a clearer presentation.

63

A Thesis Submitted by Steven Lai

2.5.1 MAC Layer Data Aggregation

In MAC layer approach, data are aggregated without prior knowledge of ap-

plication or network. The benefit of this approach is that the approach can

be quite generic since it is independent of other layers. In its simplest form,

the approach just opportunistically merge multiple packets into one to save

some overhead. A representative example of this is adaptive application-

independent data aggregation (AIDA) [40]. AIDA is an application indepen-

dent aggregation protocol which lies between MAC layer and network layer.

The basic idea is to combine multiple network packets into a single MAC

layer packet to transmit in order to save the MAC layer control messages

such as RTS and CTS. Aggregation occurs based on the feedback of the traf-

fic information. Actually, such kind of energy saving is very limited since

combining multiple small packets into a big packet will introduce extra cost

if the transmission fails and retransmission is necessary.

A similar work in MAC layer approach is Data-Aware Anycast (DDA)

[25]. The work introduces two aggregation protocols at different layers. DDA

is the MAC layer aggregation approach. An ’aggregation ID’ which is a

timestamp is included in the RTS message. The node which can aggregate

the packet replies with CTS. Randomized Waiting (RW) is another approach

at the application layer. It allows the sensor nodes which are closer to sink

to wait for a longer period of time in order to aggregate packets.

However, because the MAC layer approach does not consider information

from other layers, there is a limit on which the data can be aggregated. In

view of this, Tree on DAG (ToD) [24] took one step further. ToD is based

64

Chapter2 Literature Review

Sensor

Sensor

Sensor Sensor

Sensor SensorSensor

Sensor

SensorSensor

Figure 2.7: Basic idea of ToD

on DAA. The authors further propose an idea which combines structure-

free and structured aggregation techniques. The basic idea is illustrated in

Figure 2.7. It divides the network into cells. Within each cell, structure-free

aggregation is used. Inter-cell aggregation is done by a structure called ToD.

ToD is basically a combination of two trees. The following figure shows an

example of ToD in one-dimension. In case the event occurs across multiple

cells, the two trees ensure that the data can be aggregated at either one of

them.

2.5.2 Cluster-based Data Aggregation

Clustering is a popular topic in many WSN-based applications. It may be

considered as a network layer technique that groups sensor nodes to perform

certain tasks. Clustering is a natural step to data aggregation in the sense

that clusters can allow sensor nodes to send their data to the cluster head for

distributed processing. Clustering for data aggregation has been studied for

a relatively long period of time. Low-energy adaptive clustering hierarchy

(LEACH) [43] is probably one of the earliest work. It is an application-

specific power-efficient routing protocol and is suitable for remote monitoring

65

A Thesis Submitted by Steven Lai

Figure 2.8: Clustering in iHeed

applications. The protocol is divided into rounds. In each round, the cluster

heads are altered. However, the protocol is based on the assumption that

all sensor nodes could adjust their power in order to communicate with the

sink.

Power-Efficient GAthering in Sensor Information Systems (PEGASIS)

[67] was introduced as an improvement of Leach. Similarly, it is still based

on the assumption that each sensor node has power control and the ability to

transmit data to any other node in the network. The basic idea of PEGASIS

is that further energy saving can be achieved if data is aggregated towards the

sink. The problem can be essentially formulated as a traveling sales person

problem. A communication chain is formed for only once first. Each sensor

node must have the global knowledge of the network. A TDMA scheme is

used to allocate time slot for each sensor node to transmit data.

As sensor nodes have become smaller, it has come clear that for many

66

Chapter2 Literature Review

WSN-based applications, it may not be easy or cost-effective to adjust sen-

sor nodes’ transmission power once deployed. Therefore, more practical im-

plementation was needed. Integrated Hybrid, Energy-Efficient, Distributed

(iHeed) [109] is a real implementation of a cluster protocol. The protocol is

integrated into the existing multi-hop routing protocol of TinyOS. The proto-

col periodically uses a probabilistic approach to elect cluster heads with high

residual energy. By using such an approach, the clusters heads in iHEED are

well distributed as shown in Figure 2.8.

Apart from real implementation, some works address QoS requirements

when clustering [113]. Depending on the time delay, three cases may occur:

• If the delay constraint can be satisfied, the sensor node defers the report

for a fixed time interval with certain probability. When delay occurs,

the sensor node will receive and aggregate any additional reports.

• If the delay constraint can be satisfied only if the report is not deferred,

the sensor node simply tries to forward this report to the next hop.

• If the delay constraint cannot be satisfied in any case, the sensor node

will discard the report, to avoid further wasting of any additional re-

sources.

A formal study of the distributed clustering problem is presented in

Energy-Efficient Protocol for Aggregator Selection (EPAS) [17]. It stud-

ies the problem on how to select aggregators evenly in the network in a

distributed fashion to achieve best energy saving. The authors start their al-

gorithm from one-level aggregation first. Then, the work is further extended

67

A Thesis Submitted by Steven Lai

to Hierarchical EPAS (hEPAS) to provide a multiple-level aggregation solu-

tion.

Because of the vast amount of works done in cluster-based data aggrega-

tion, some work summarizes the existing techniques [110]. In terms of how

to elect cluster heads, there are four metrics: node ID, larger degrees, higher

weights and node redundancy. The authors suggest that metrics based on

node ID or degree may not be energy efficient because certain nodes in the

network may exhaust their energy faster than others. In terms of execution

of the clustering algorithms, it can be either iterative or probabilistic. In

iterative clustering algorithms, a node waits for a specific event to occur to

decide its role. Iterative algorithms usually result in slow convergence speed.

In probabilistic clustering algorithms, nodes independently decide their roles.

There are still a lot of open issues such as connectivity, MAC, rotating CH,

node duty cycle, optimal cluster size and node synchronization.

2.5.3 Tree-based Data Aggregation

Tree-based data aggregation is another aggregation technique in the network

layer. Different from clustering, the degrees of the nodes in a tree are usually

more evenly distributed than those in clusters. Many problems in this area

can be formulated as classic graph theory problems or optimization problems.

Some of the early work in this area took an intuitive approach [55]. They

introduce and analyze a few data-centric aggregation schemes. These schemes

include ’center at nearest source (CNS)’, in which all sources send data to the

nearest source to the sink, ’shortest paths tree (SPT)’, in which the data are

68

Chapter2 Literature Review

A B

CD

E

10J 3J

8J

3J9J

A B

CD

E

10J 3J

8J

3J9J

Figure 2.9: Optimized tree construction based on residual energy

sent along the shortest paths and aggregated on the common edges, ’greedy

incremental tree (GIT)’, in which sources to the sink are added to the tree

one by one based on their distances to the sink.

Some similar ideas were discussed in [92] where the authors first divide the

existing aggregation works into two general categories. Routing-driven com-

pression (RDC) routes the data with the shortest path and opportunistically

perform aggregation. Compression-driven routing (CDR) tries to optimize

the routing tree to compress more data. The methodology based on joint-

entropy. The author uses such a mathematic framework to evaluate these

routing schemes under different parameters. Based on their results, the au-

thors then propose a sub-optimal scheme which forms several clusters in the

network. The sensors within each cluster uses shortest path to send data

to the cluster head. The cluster head then aggregate data and send to sink

without any further aggregation. [102] is similar to [92]. The authors take

one step further and make a different and more reasonable assumption that

the sensors be randomly deployed in the area.

Optimization techniques are widely used in tree-based approach. Many

works in this area formulate the problem into mathematical programming

problem. For example, Xue et al. [107] considers the residual energy and the

69

A Thesis Submitted by Steven Lai

transmission cost between individual nodes. Then the problem is formulated

as a linear programming problem (LP) and is extended to multiple sink

nodes. Figure 2.9 illustrates the tree construction process.

Similarly, [63] also considers residual energy but formulate the problem

into another graph theory problem. It lets the nodes with higher energy to

be the aggregation parents. The paper argues that residual energy must be

considered in order to maximize network lifetime. An example is shown in

the paper as the following figure. The shortest path from C to A is through B

but since B has little energy left, this link will end prematurely if C connects

to B. A better approach is to let C connect to D which has higher residual

energy. Two approaches are proposed, one centralized approach and the

other distributed approach. In the centralized approach, all sensor nodes are

first sorted according to their energy levels. The problem is then naturally

transformed to a graph theory problem in order to find optimal tree based on

the existing energy level and topology. The distributed approach is similar

to Reverse-Path Forwarding (RPF). There are two steps in this approach.

Apart from residual energy, other parameters may also be considered in

formulating the problem. Minimum Fusion Steiner Tree (MFST) [75] uses

Steiner tree to model the problem. The work considers both transmission

cost and fusion cost which is equivalent to processing cost. The work was

later extended to cope with network dynamics.

The tree construction problem can be more complicated if mobility is

taken into consideration. Dynamic Convoy Tree-Based Collaboration (DCTC)

[112] is a work that studies the tree construction problem for mobile WSN

applications such as target tracking. The algorithm is used to collect local

70

Chapter2 Literature Review

data of the sensor nodes to a mobile sink. The protocol sets up a convoy

tree with the root close to the mobile sink. There are two schemes proposed

in the protocol, conservative and prediction-based. Conservative scheme add

the sensor nodes to the convoy tree based on their distances to the mobile sink

while prediction-based scheme adds sensor nodes to the convoy tree based on

a prediction algorithm. The tree will be reconfigured when the mobile sink

moves further away from the original root.

2.5.4 Application-specific Data Aggregation

If the application level knowledge is taken into consideration, further en-

ergy efficiency may be achieved. However, each data aggregation technique

introduced in this section can only be applied to a specific type of WSN

applications.

The first type of data aggregation technique we are going to introduce is

related to our previous sections since it is related to query-based middleware

for WSN. Tiny Aggregation Service (TaG) [78] is a work which was later

extended to TinyDB. The work tries to add aggregation service of WSN to

the core service. The aggregation is expressed in SQL and is disseminated

from the sink. Each sensor node chooses its sender of the query as the

aggregation parent. During aggregation, parents will wait for the children’s

messages before sending their own.

Based on the similar concept, Temporal coherency-aware in-Network Ag-

gregation (TiNA) [98] is another work based on Cougar [10]. It makes two

contributions. First, Group-Aware Network Configuration (GaNC) is a rout-

71

A Thesis Submitted by Steven Lai

Listing 2.20: An example of TiNA

1 SELECT {attributes , aggegates}

2 FROM sensors

3 WHERE conditions -A

4 GROUP BY {attributes}

5 HAVING conditions -B

6 EPOCH DURATION i | EVERY e

7 TOLERANCE tct

ing protocol that builds the routing tree according to the ’group by’ clause

of the SQL in order to save energy. It is compared with the ’First-Heard-

From (FHF)’ method. During parent-selecting, the node will also look at the

(static) attributes used in the ’group-by’ clause to select a parent with the

same group. TiNA introduces a new type of SQL clause for WSN: TOLER-

ANCE x%. When a new sensor’s reading is within the difference of x%, it will

not be transmitted. TiNA can be built on top of any existing SQL-based

aggregation techniques. The language extenstion demonstrated in Listing

2.20. The standard SQL part is from Line 1 to 5 and the tolerance introduce

by TiNA is at Line 7.

Another application specific work is VigilNet [41]. It was later extended to

the EnviroTrack middleware [1] which was briefly introduced in the previous

section. VigilNet had an in-depth discussion on how to implement a real

data aggregation system for the tracking applications. There are four layers

of aggregation in the proposed system. Level 1 mainly concerns how to

sample and aggregate raw data. Level 2 concerns how to aggregate data

from different sensors on a single node. Level 3 concerns how to aggregate

data within groups. Basically, potential group leaders are selected based on

72

Chapter2 Literature Review

1 2 3 4 5 6 7 8

a b
4 6

c d
2 2

fe

g

Figure 2.10: An example of q-digest

max coverage. Level 4 is just the backend aggregation where all the data has

been transmitted to the sink.

Instead of using application knowledge to help the underlying network

layer to aggregate data, some works directly use statistical methods to di-

rectly reduce the data volume. Such works aim at finding the optimal trade-

off between data accuracy and energy efficiency. For example, in paper [51],

the authors propose the algorithms which can use any multi-path routing

protocols for aggregation in order to increase reliability. It tries to capture

the distribution of all the data and aggregate the parameters only. The work

is based on Expectation-Maximization (EM) algorithm, which is standard for

finding maximum likelihood estimates of parameters in probabilistic models.

Q-digest [100] is a data structure which can be used to estimate some

more complex aggregation functions such as median, histogram and so on.

Basically, the data structure is a binary tree structure with every node rep-

resents the number of values for a specific range. The leaf nodes represent

73

A Thesis Submitted by Steven Lai

Figure 2.11: Example of deterministic weighted sample

the actual values. Instead of retaining all the leaf nodes, it tries to balance

the trade-off between accuracy and space by introducing intermediate nodes.

Each intermediate node represents a summary of its child nodes. In the case

of q-digest, each intermediate node represents a range and the number of

child nodes within that range. Only those intermediate nodes will be actu-

ally stored and processed. An example of Q-digest in shown in Figure 2.10.

The trade-off discussed in q-digest is one of the primary concerns in WSN.

A quite similar idea is presented in [2] where tree-like structure is used to

find the most representative data through deterministic weighted samples.

The idea, however, is different from q-digest and can be considered as an im-

provement over q-digest. The algorithm tries to evenly distribute the sample

data among all nodes in the sensor network instead of having highly concen-

trated sample data at the nodes near sink. As shown in the figure below, by

assigning different weights to the sensor nodes, the final aggregation result

will contain most representative data which is evenly sampled from all the

nodes. Figure 2.11 shows an example where all nodes have the same weight.

The algorithm not only tries to balance the trade-off between accuracy and

74

Chapter2 Literature Review

Sensor

Sensor

Sensor

Sensor
Sensor

Sensor

Sensor
Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Figure 2.12: Network model of sparse data aggregation

space like q-digest, it also tries to evenly distribute the sample data among

all nodes in the network. Such consideration is quite relevant to the scenarios

in WSN if all sensor nodes are considered even and deployed randomly.

The last work we will introduce here is sparse data aggregation [29]. As

the name suggested, the data aggregation techniques described is primarily

for applications where the data are sparsely distributed among the network

and the whole WSN is surrounded by high-speed network access. It is quite

recent and addresses the problem of how to aggregate data from a set of

source nodes which are sparsely distributed in the network. However, the

work makes a very strong assumption that all the sensor nodes on the bound-

ary can access an external high-speed network. This assumption is almost

equivalent to assume that all the nodes on the boundary of the network are

sink nodes. Figure 2.12 shows such a model described. The shaded nodes

are the nodes with data to send. Some nodes are not in the tree but are

involved during the tree construction phase. All the trees are rooted from

the boundary of the network.

75

A Thesis Submitted by Steven Lai

2.5.5 Summary of Existing Works

Some of the earlier works such as LEACH and PEGASIS [43, 67] make as-

sumptions which are not suitable to current WSN. For example, both of the

works make the assumption that any sensor node could adjust its power and

communicate directly with the sink when needed. This may not be the case

for the current mainstream of the research in WSN.

Some of the works are interesting but may not be so related to our event

detection algorithms. For example, DCTC [112] gives very detailed mathe-

matical model for the aggregation problem where the aggregator is mobile.

Such kind of model has not been applied to our work yet.

There are a few works which may be quite related to our problem and

can be leveraged when we design our own algorithms.

• MAC-layer aggregation: AIDA and DAA [40, 25] focus on simple data

aggregation on the MAC-layer. These protocols are usually application

independent. However, since the application knowledge is not present

at such a low layer, these protocols can usually just save limited amount

of energy. Energy saving of these protocols is usually done by simply

combining multiple MAC packets into one so that control overhead

such as RTS and CTS can be reduced.

• Energy-based clustering: different from MAC-layer approach, works

such as LPT, iHEED and EPAS [63, 107, 109, 17, 75] take application

knowledge into consideration. The main objective of these clustering

algorithms is to save energy.

• QoS-aware clustering: different from energy-based approach, Zhu et

76

Chapter2 Literature Review

al. [113] discussed an aggregation algorithm with QoS as its primary

objective.

• Database solutions: these approaches are more application-specific.

TAG and TiNA [78, 98] belong to this category. These works sup-

port common aggregate operators in database systems such as average,

minimum and maximum.

• Mathematic-based solutions: based on database solutions, mathematic-

based solutions move one step further. In addition to database aggre-

gate operators, these works also support more sophisticated aggregates

such as median and histogram. Q-digest and some others [100, 2, 51]

are representative works falling into this category.

• Double-ruling [29] may be the most relevant work to our problem. The

work considers how to aggregate events occurred sparsely in different

part of the network. Unfortunately, this work is based on a very strong

assumption that all nodes on the boundary of the network be the sink

nodes. Therefore, it is still unsuitable to model the event detection

problem in our work.

In summary, none of the existing work can really solve our event detection

problem efficiently. However, some of the works can still be leveraged and

their results may be utilized in our work. Although data aggregation is a well-

studied topic in WSN, we believe the performance of data aggregation can

still be improved if we use a holistic approach. As shown in the later sections,

by integrating application-level knowledge into the aggregation algorithm,

77

A Thesis Submitted by Steven Lai

aggregation performance can be improved in most cases. We will discuss our

solution in the next section.

78

Chapter 3

System Design

3.1 PSWare: Model and Architecture

In this section, we describe the application programming model for PSWare.

Our model aims at solving the challenges which face event-based program-

ming.

As shown in Figure 3.1, our model mainly has two different types of people

that make use of two APIs of different levels:

• Application developers make use of the PSWare-EDL to define and

subscribe events and use the event receiving module to receive the

published events.

• Middleware developers make use of the event processing framework

to implement effective and efficient event processing algorithms. The

event processing framework may be further divided into two layers for

event detection and event delivery.

79

A Thesis Submitted by Steven Lai

PSWare-EDL PSWare-EN

Event Delivery

Middleware Infrastructure

Application User

Middleware Developer

Subscribe Publish /
Notify

Event Detection

Event Processing Framework

Figure 3.1: PSWare programming model

The first type is the application users. These users are responsible for

defining and subscribing to high level events for different types of applica-

tions. They use a high level event definition language (PSWare-EDL) to

translate the application requirements into events. They do not have to

worry about the underlying event processing mechanisms.

On the lower level, we have another type of users called middleware de-

velopers. These users are responsible for implementing domain-specific event

processing mechanisms. PSWare provides a couple of interfaces in TinyOS

to make the implementation easier.

The benefit for such a model lies in its flexibility. There are usually many

different types of applications for a specific application domain. For exam-

ple, in ITS, we may have collision warning, traffic flow control and overspeed

detection yet these applications can probably share a lot of common event

processing mechanisms. Therefore, the middleware developer only needs to

implement the event processing mechanism for once. Then, by defining dif-

80

Chapter3 System Design

Composite Event

Composite Event Composite Event

Figure 3.2: Type-based event model

ferent events, we can easily meet different application requirements without

sacrificing the efficiency.

3.1.1 PSW-EDL: Event Definition Language in PSWare

PSWare provides a type-based event programming model to the application

user. Such model has the following characteristics:

• Each event type is similar to a class in object-based programming

model. Similarly, event hierarchy in Figure 1.3a is similar to class

hierarchy.

• Similar to object-based model, attributes are encapsulated in each

event.

• Event definition is declarative. The high-level application developers

81

A Thesis Submitted by Steven Lai

Room BRoom A

Sink

(a) Centralized

Room BRoom A

Sink

(b) Distributed

Figure 3.3: Motivating application for indoor monitoring

only need to specify the event filters and event relations through op-

erators and functions. The underlying mechanisms for implementing

these operators are left to our event processing framework.

Figure 3.2 conceptually shows our event model. On the top level, the

application requirements are expressed in terms of the composite events that

need to be detected. The composite events may be further divided into sub-

events. Eventually all composite events can be divided into primitive events

which can be directly detected by individual sensor nodes.

To illustrate using an example, consider a monitoring application shown

in Figure 3.3. The composite event consists of two sub-events to be detected

in two different rooms, Room A and Room B. It occurs when the temperature

in room A rises to a certain threshold and after 5 minutes, the temperature

in room B also reaches that threshold. We may define the events as shown

in Listing 3.1.

82

Chapter3 System Design

Listing 3.1: Example of using event-based programming model

1 Event SimpleEvent {

2 int temp=System.temp;

3 int id=System.id;

4 int time=System.time;

5 } where {

6 temp > 30

7 }

8 Event CompEvent {

9 } on {

10 SimpleEvent e1 and

11 SimpleEvent e2

12 } where {

13 e1.Location ="A" and

14 e2.Location ="B" and

15 e2.time -e1.time =600

16 }

We can see that our event-based programming model shares some of the

similarity with SQL, especially for the event filters, which consist of opera-

tors. In this particular example, we have two event types. On the top level,

the application wants to monitor the temperature change so the event type

’CompEvent’ is defined. ’CompEvent’ consists of two sub-events of the same

type: SimpleEvent. Note that our programming model is declarative. The

user just specifies the event types and the corresponding filters without spec-

ifying the event processing methods because that part is left to the event

processing framework. We will go into more details in that in the latter part

of this section.

3.1.2 PSW-EN: Event Notifier in PSWare

Apart from submitting event definition, the application user needs to be no-

tified when the subscribed events are detected by WSN. This is done through

83

A Thesis Submitted by Steven Lai

event notifier. When the application user subscribes events, the user needs

to pass an additional object as the event notifier. When the subscribed event

is detected, PSWare will notify the user with this notifier object. Listing 3.2

shows our notifier class implemented and how it is related to the subscription

class.

Listing 3.2: Event notifier in Java

1 public interface EventNotifier {

2 public void notify(String eventStr);

3 ...

4 }

5 public class EventSubscription {

6 public Boolean subscribe(String subscription ,

EventNotifier notifier) {

7 ...

8 }

9 }

While Listing 3.2 shows the notifier in Java, bindings for other languages

can be created in similar fashion. A Python binding is shown in Listing 3.3.

Listing 3.3: Python binding of event notifier

1 class EventNotifier:

2 def notify(self , eventStr):

3 pass

4 class EventSubscription:

5 def subscribe(self , subscription , notifier):

6 ...

84

Chapter3 System Design

Upon the detection of events, the notifier will be invoked so that the

events can be delivered to the user. The event is delivered as a string, with

each attribute assigned with an actual value. As an example, suppose the

user has subscribed to the event ’SimpleEvent’ in Listing 3.1, then when the

event is detected by PSWare, it will be delivered to the user with the content

shown in Listing 3.4.

Listing 3.4: Received event from notifier

1 SimpleEvent e1 {

2 temp =32;

3 id=0;

4 time =13345;

5 }

3.1.3 API for Event Processing Framework

The event processing framework of PSWare is developed using NesC. PSWare

also provides a group of APIs for the middleware developers to write cus-

tomized event processing mechanisms. First, since all events can ultimately

be decomposed into primitive events, the middleware developer needs to first

define the required primitive events used in the application domain. This is

done through a configuration named ’PrimitiveEventC’. It is listed in Listing

3.5. The new event ID should be defined as an enumeration in PSWare’s

header file.

Listing 3.5: Primitive event component in NesC

1 generic configuration PrimitiveEventC(evet_id_t eventId) {

85

A Thesis Submitted by Steven Lai

2 provides {

3 interface Read <uint16_t >;

4 }

5 } implementation {

6 ...

7 }

In PSWare, everything is treated as an event and that includes tempera-

ture, photo and even timer. Similar to other generic components in TinyOS,

if necessary, new events can be added by defining a new event ID. Once set,

we need to create a higher level primitive event so that the application users

can make new event definitions based on top of it. This is done by an au-

tomatic tool which will be invoked when building and output a class which

will be used by the event notifier and an event definition which will be used

by EDL.

When this is set, the application user can already start to subscribe and

detect events by using PSWare’s default event detection algorithm: TED

[58]. If the middleware developer wants to write their own event detection

algorithm, they can choose to implement two interface ’EventMatcher’ and

’EventDeliver’ as shown in Listing 3.6. The ’EventMatcher’ interface includes

two major events which serve three purposes as follows:

1. During the execution of the middleware, the network may detect multi-

ple events for a single event type. Therefore, upon the detection of the

composite events, the event detection algorithm may choose a specific

event from one of this sub-types for detection. This is done by signaling

the first event ’select sub-event’.

86

Chapter3 System Design

2. Upon the detection of an event, the event detection algorithm may

perform some customized processing to update some information so

that the next time when the event happens again, it may be detected

with lower cost. This is when the second event ’eventMatched’ comes

into play. The middleware developer may implement customized event

processing mechanisms according to the matched events.

Apart from event matcher, we also have an event deliverer which will be

invoked when a subscribed event is detected. The middleware developer may

implement its only function to meet the requirements for event delivery. This

is done when the middleware signals the ’eventDeliver’ event.

Listing 3.6: The event matcher interface

1 interface EventMatcher {

2 event bool selectSubevent(EventInstanceInfo * composite ,

EventInstanceInfo * subevent);

3 event result_t eventMatched(evet_id_t eventId , evet_id_t

instanceID , bool detectionResult);

4 }

5 interface EventDeliverer {

6 event result_t eventDeliver(evet_id_t eventId , evet_id_t

instanceID , bool detectionResult);

7 }

To facilitate the implementation of event matcher and event deliverer

the middleware developer can make use of the APIs provided by PSWare in

Listing 3.7. These APIs are mostly used to retrieve the event information.

87

A Thesis Submitted by Steven Lai

Listing 3.7: PSWare API in NesC

1 interface EventType {

2 command EventTypeInfo * getEventType(evet_id_t eventId);

3 command bool isSubscribed(evet_id_t eventId);

4 command bool isComposite(evet_id_t eventId);

5 command EventRelation getRelation(event_id_t e1 ,

event_id_t e2);

6 }

7 interface EventInstance {

8 command int instanceAmount(evet_id_t eventId);

9 command EventInstanceInfo * getEventInstance(evet_id_t

eventId , evet_id_t idx);

10 command void deleteEvent(evet_id_t eventId , evet_id_t

instanceID);

11 }

12
13 typedef struct {

14 evet_id_t eventId;

15 evet_id_t level;

16 size_t size;

17 } EventTypeInfo;

18
19 typedef struct {

20 evet_id_t typeID;

21 evet_id_t instanceID;

22 uint16_t * attributes;

23 } EventInstanceInfo;

The first interface, ’EventType’ has four commands. The first command

is for the individual event instances to obtain the type information based on

their type ID as shown on line 20. The second and the third commands are

used to determine if a given event type is a composite event or is subscribed

by the user. The last command is for query the relation of e2 in reference

to e1. Its return type is an enumerate which can have value of: parent,

immediate parent, child and immediate child. This command will be useful

if the user wants to implement customized event processing mechanisms.

88

Chapter3 System Design

Since for each event type, there can be multiple events, we need the second

interface ’EventInstance’ to process those events. There are three commands

for this interface. The first one is used to obtain the number of the events for

a specific type currently stored in the event buffer on the sensor node. We

will discuss about the event buffer in the next section. Upon knowing the

number of events, the middleware developer can iterate through the event

list and use the second command to get the events. As for the last command,

when an event is detected to be useless, the middleware developer may delete

it from the list.

The data structures are shown after the interfaces. For a given event type,

we have the ID for the type, its level in the subscribed event tree and its size.

For the event instance data structure, we have its type ID, instance ID and its

attribute list. If the event contains some attributes of the primitive events,

they can be obtained here by using the index defined in the enumeration

value for primitive event. For instance, if one of the primitive event has

an enumeration value labeled ’EVENT LIGHT’, then if the event instance

also has one of its attribute from the sensor’s light reading, the middleware

developer can access it by writing ’attributes[EVENT LIGHT]’.

In summary, the middleware developer may follow the following steps to

implement customized event processing mechanisms:

• Implement new primitive event types if necessary.

• Define the event matcher for how sub-events are selected for matching

and what to do after a predefined event type is detected.

• Define customized function for event delivery.

89

A Thesis Submitted by Steven Lai

OS

Hardware

Pub/sub
middleware

Application
Programmer

Sensor Node

OS

Hardware

Pub/sub
middleware

Sensor Node

Compiler

Subscription
Disseminator

Event
Receiving

Module
Terminal with
Base Station

Display Event Notification

Subscription Propagation

Figure 3.4: Event processing in PSWare

3.2 Composite Event Processing in PSWare

In this section, we discuss how PSWare is designed to support composite

event. The overall work flow of event processing in PSWare is shown in

Figure 3.4. To use the middleware, applications developers will first define

event types according to the application requirements. The subscription will

then be compiled and processed by the EDL compiler and be disseminated

into the network. When the events are detected by sensor nodes, they will

be delivered to the application.

3.2.1 Event Specification

EDL is used for specifying events in PSWare. For each EDL script, it contains

one or more event definition and one subscribing statement. Formally, the

Backus-Naur Form (BNF) of the subscription is defined in Listing 3.8.

Listing 3.8: BNF (simplified) of subscription

90

Chapter3 System Design

Figure 3.5: PSWare-EDL compiler structure

1 subscription -> event_declarations subscribe_statement

2 event_declarations -> event_declaration |

event_declarations event_declaration

3 subscribe_statement -> SUBSCRIBE IDENTIFIER SEMICOLON

The subscribe statement simply uses the keyword ’subscribe’ followed the

event type name needed by the application. Each event type declaration can

have up to three parts: the event body, the where clause and the on clause.

The event body defines the attributes of the events. The on clause are used

to specify the sub-events used by a composite event. The where clause defines

the filter of the corresponding event type. Formally, the BNF of event type

is defined in Listing 3.9

Listing 3.9: BNF (simplified) of event type

1 event_declaration -> EVENT IDENTIFIER event_body

on_clause_opt where_clause_opt

2 event_body -> { field_declarations_opt }

91

A Thesis Submitted by Steven Lai

EDL Lexer / Parser

Notifier
Creator

Symbols

Event
Notifier

Template

Byte
Codes

Code
Generator

Syntax
Tree

Event
Receiving

Module

Figure 3.6: EDL compiler flow

3 on_clause -> ON { subevent_declarations_opt }

4 where_clause -> WHERE { conditional_expression }

The on clause and the where clause are both optional in case the event

is primitive or does not have a filter. The on clause looks similar to the field

declaration except sub-events instead of fields are declared. This is done

for a clear code presentation and easier type checking. The where clause

simply consists of conditional expressions so that the filters may be defined

by specifying the operators.

The EDL-based subscription will be processed by our EDL compiler. The

output of the compiler has two parts as shown in Figure 3.5. The first part is

the byte codes which will be executed by individual sensors to detect events.

The format and the organization of the byte codes are closely related to

the event processing framework and customization of PSWare. We will go

through these topics in the following sections.

The second part, the event receiving module is the implementation of the

event notifier as discussed in Section 3.1. As shown in Figure 3.6, The EDL

compiler will execute the following steps in order to generate the byte codes

92

Chapter3 System Design

and event receiving module:

1. Parse the EDL script and generate the corresponding syntax tree and

symbol table.

2. Generate the byte codes based on the syntax tree and symbol table.

3. Create the event receiving module based on the symbol table.

3.2.2 Runtime Environment for Event Detection

The byte codes generated by the compiler can be further divided into three

parts: event meta data, event filters and event matcher. These components

implements the programming interface discussed in Listing 3.6 and 3.7. Event

meta data contains the description of the event types such as event type

ID, event size and the individual attributes for each event. Event filters

are the constraints defined for each event type. Event matcher schedules

the execution for event detection according to the subscription and event

relations.

The runtime environment on each sensor node is similar to the VM-based

approach [64] in the sense that subscriptions are broken down into some basic

operations called instructions. For a complete list of instructions, please refer

to the Appendix. Such design choice is for extensibility so that new features

can be added more easily by adding new instructions. In addition to the

VM-based runtime environment, each sensor node has an event buffer where

the detected events can be stored for composite event detection.

The essential operations for our runtime environment are shown in Figure

3.7. In this environment, the event matcher will first fetch the events from

93

A Thesis Submitted by Steven Lai

Event
Matcher

...

...

Predicates
Event Buffer

Event Filter

Event
Matcher

...

...

Predicates
Event Buffer

Event Filter

Event Forward

Figure 3.7: PSWare runtime environment

the event buffer and then evaluate them against the corresponding filters. If

the event has been detected, then it will be transmitted over the network.

Formally, the procedure of the event matcher can be shown in Procedure 1

with some notations defined as:

• Event types: E = {e1, e2 · · · }

• For each en ∈ E, its filter is: en → filter

• For each en ∈ E, it has a set of events En = {e1n, e2n · · · } stored in the

buffer.

There are several keys in the procedure. First, when the event matcher

picks up the events of type en from the event buffer, it may use application

specific mechanisms to pick up the desired events instead of trying all the

possible combinations. Second, the ’deliver()’ and the ’forward()’ function

are used to deliver the subscribed events or forward the events so that com-

posite events may be detected. These two functions may also be application

dependent to achieve high energy efficiency.

Finally, it is necessary to mention the ’SystemEvent’. This module acts

94

Chapter3 System Design

Procedure 1 Procedure of the event matcher
Input: E

for all en ∈ E do
for all ein ∈ En do

if en is primitive then
result = evaluate primitive (ein)
if result == True then

eventMatched(ein)
if en is subscribed then

deliver(ein)
else

forward(ein)
end if

end if
else
esub = ∅
for all subevents em for en do
esub = esub

⋃
selectSubevent(en, em)

end for
for all subevents em for esub do

evaluate composite(ein, em, · · ·)
end for

end if
end for

end for

95

A Thesis Submitted by Steven Lai

as the device driver for PSWare. It defines the sampling rate and a primitive

event. All the fields of other events are obtained from ’System’. The module

needs to implement three interfaces: StdControl, SystemClock and Syste-

mEvent as shown in Listing 3.10. StdControl is a module for initialization

purpose. SystemClock defines the sampling frequency. SystemEvent is used

to obtain the pointer to the ’System’ event.

Listing 3.10: API of the ’System’ event

1 module SystemEventM {

2 provides {

3 interface StdControl;

4 interface SystemEvent;

5 interface SystemClock;

6 }

7 }

8 interface SystemEvent {

9 command EventInstanceInfo * get();

10 }

The ’SystemEvent’ is there so that needs to be implemented by the mid-

dleware developers as the Once the ’System’ event is defined, the application

developers can further define their own functions for event delivery and event

forwarding. We will show some examples in the next section.

3.3 Support for Customization in PSWare

An important feature of PSWare is that it can be customized. To sup-

port customization, PSWare uses a flexible layered architecture. In this way,

96

Chapter3 System Design

developers can customize different layers without affecting each other. More-

over, multiple event processing strategies may be dynamically used during the

runtime. In this section, we how such customization can be done at different

layers. These layers implement different aspects of a complete event-based

system, including, event detection, event delivery and event subscription.

3.3.1 Customizable Event Definition

It is a common scenario for applications to define extra event attributes

that have domain-specific meanings. For example, in an application which

requires reliable communication, we might want to define a probability value

which specifies the threshold for message loss. Then, in the middleware

framework, this number should be used during the actual communication.

The simplest way to pass some domain-specific information to the mid-

dleware is to modify the System event. As discussed in Section 3.2, the

System event is used like a device driver that represents the primitive events

collected by the system. Internally, this event is specified in a header file

and can be modified to suit different applications. The essential steps are as

follows:

1. Modify ’SystemEvent.h’ and add necessary attributes for the system

event

2. Use ’psware gen’ to generate the necessary constant values for accessing

the new attribute in the middleware runtime environment

3. Modify the middleware framework so that the attributes can be used

97

A Thesis Submitted by Steven Lai

4. Use the new attributes in the actual event definition

We will illustrate these steps through an application scenario. Suppose

the middleware developer has implemented a message retransmission mech-

anism for the event delivery and matching functions to make the application

more reliable. Then the application developers can specify a parameter in-

dicating the desired reliability for the events they define. The new ’Syste-

mEvent.h’ will look like in Listing 3.11.

Listing 3.11: Customized system event

1 typedef struct {

2 uint16_t nodeID;

3 uint16_t time;

4 float probability;

5 } SystemEvent;

Once the new probability attribute is defined, we need to generate some

necessary constant values for accessing the attribute. The tool for generat-

ing the constants is ’psware gen’. It will parse the event header files and

output some macro values. After that, the middleware can access the at-

tribute with the code fragment shown in Listing 3.12. In this piece of code,

we first obtain the system event through the EventInstance API. Then we

obtain the probability value by accessing the correct attribute. Note that

SystemEvent, SystemEvent probability are generated constant values for ac-

cessing the events and their attributes.

The event probability can then be further defined through event defini-

tion. To reuse the event definition in Listing 3.1, now if the user wants to

98

Chapter3 System Design

Listing 3.12: Customized system event

1 EventInstanceInfo * systemPtr = call EventInstance.

getEventInstance(SystemEvent);

2 float probability = (float)systemPtr ->content[

SystemEvent_probability];

add a parameter to indicate the reliability, he may insert a statement at Line

5 which defines the global reliability parameter.

Listing 3.13: Example of event definition with reliability

1 Event SimpleEvent {

2 int temp=System.temp;

3 int id=System.id;

4 int time=System.time;

5 System.reliability = 1.0;

6 } where {

7 temp > 30

8 }

9 Event CompEvent {

10 } on {

11 SimpleEvent e1 and

12 SimpleEvent e2

13 } where {

14 e1.Location ="A" and

15 e2.Location ="B" and

16 e2.time -e1.time =600

17 }

Once the parameter is defined. The information will be passed to the

middleware and the corresponding code fragment in Listing 3.12 will work

99

A Thesis Submitted by Steven Lai

as expected.

3.3.2 Customizable Event Detection

Event detection is the heart of an event-based system. In PSWare, we can

easily customize event detection on the event detection layer. Since PSWare

uses a type-based event model to support composite event, event detection

can also be customized according to the event types. The customization

takes the following steps:

1. Define some domain-specific event types that requires specific event

detection methods

2. Generate the necessary constant values for accessing the new attribute

in the middleware runtime environment

3. Implement the specific event detection methods in the middleware

We demonstrate the steps through a simple example, iTED. iTED is a

simplified version of the TED [58] algorithm, the default event detection al-

gorithm in PSWare. We will discuss our default event detection algorithm,

TED, in the next chapter. Different from TED, iTED is customized for

indoor monitoring applications where the events are first fused in each mon-

itored room. Then, the results are further fused for global event detection.

For simplicity, we assume each sensor node is equipped with a room ID and

there maybe more than one fusion points in each room. However, all fusion

points are selected in advance and will remain unchanged. The room ID can

either be pre-deployed in the sensor nodes’ program or be obtained using

100

Chapter3 System Design

Event Matcher

PSWare Framework

Fusion
Point Table

Deliver
Event Matcher

(Implementation)

Event Deliverer

Event Notifier Event Subscriber

Subscribe

Matched

WSN Application

Select Select

Event Table

Figure 3.8: iTED over PSWare

localization methods and more sophisticated fusion point selection methods

may be implemented by extending some components discussed here.

Figure 3.8 shows an overall diagram on how iTED interacts with PSWare.

To implement iTED in PSWare, we need three key components:

1. Fusion point table: each sensor node updates this table in order to find

the fusion point.

2. Event table: each sensor node maintains this table in order to decide

if a given detected event should be forwarded to the fusion point.

3. Event matcher: a component that implements the event matching in-

terface as discussed in Section 3.1, Listing 3.6.

The first step is to add a new attribute, roomID, to our system event.

This has already been discussed in the previous sub-section in Listing 3.11

and we will skip it here. The only difference is the new attribute here will

be of ’int’ type instead of ’float’ type.

101

A Thesis Submitted by Steven Lai

Our first component, the fusion point table maintained by each sensor

node v′n ∈ V ′ is denoted as tabler. It contains the following data:

• Hop count (hopn): the number of hops to reach the fusion point

• Parent (parentn): the next hop to that fusion point

The procedure for updating fusion point table is shown in Procedure 2.

Note that we make use of the roomID to filter the messages.

Procedure 2 Fusion point table exchange
Input: vn → msgr

for each entry t′ in msgr do
if not exists t′ → fidn in tabler then
addTo(tabler, t

′)
end if
for each entry t in tabler do

if t→ roomID = t′ → roomID then
if t′ → hopn < t→ hopn then
t→ hopn ← t→ hopn + 1
t→ parentn ← vn

end if
end if

end for
end for
if self is fusion point and not exists self → id in tabler then
addTo(tabler, (self → id, 0, self → id))

end if
msgr ← tabler
periodically broadcast(msgr)

The second and the last component, the event table and the event matcher

are closely related. Each sensor node will maintain an event table which is

denoted as tablee. The event table contains information for each event type

en ∈ E as follows:

102

Chapter3 System Design

• Event type ID (en): the ID which is assigned to each event type

• Fusion point for the event (fusionn): the fusion point at which the

event is mostly likely to be detected at the lowest cost.

• Fusion cost (costn): the fusion cost for event type en

In addition, each fusion point v′ ∈ V ′ will maintain another table, the

event matching tablem for the purpose of matching events. tablem contains

the following fields:

• Event type ID (en): the ID of the event type

• Event instance ID (i): the ith event instance of event type en (we use

ein to denote such an instance of event)

• Source node (vin): the node which forwarded ein to the fusion point

• Event timestamp (tin): the timestamp when the event ein is detected

• Detection cost (costin): the cost for detecting event ein

First, each node vn periodically broadcasts messages msgr which is its

tabler. If the node itself is a fusion point, then it will add itself in tabler and

broadcast the message. The procedure is shown in Procedure 2. In addition

to msgr, each v′k ∈ V ′ will periodically advertise its tablem by broadcasting

msgm so that other sensor nodes can construct their tablee with Procedure

3.

The construction of tablem will take place when the event instance ein is

detected and forwarded to a fusion point v′n. We will discuss how forwarding

could be done in the next subsection.

103

A Thesis Submitted by Steven Lai

Procedure 3 Event table exchange

Input: v′k → msgm
for each entry t′ in msgm do

if not exists t′ → en in tablee then
addTo(tablee, (t

′ → en, 1, v
′
k, t
′ → costin + tabler → hopk))

end if
for each entry t in tablee do

if t→ en = t′ → en then
if t′ → costin + tabler → hopk < t→ costn then
t→ costn ← t′ → costin + tabler → hopk
t→ fusionn ← v′k

end if
end if

end for
end for
if self is fusion point then
msgm ← tablem
periodically broadcast(msgm)

end if

When an event ein is matched at node vk, node will use tabler and tablee

to decide how to forward the detected event to the fusion points so that

higher level events can be matched. In case the fusion point for event type

en has not been decided, the node will forward the event to some of its

closest fusion points according to iTED. Upon the reception of ein from vk,

the fusion point will first update its own tablem. Then it will check if there is

any composite event ecomp which uses en and another event ej as its sub-event

(ecomp = comp(en, ej)). If there is, then ej will be used upon ’selectSubevent’.

If ecomp has been successfully detected by the underlying event matcher,

then Procedure 4 will be executed so that tablem is updated accordingly

and iTED may reduce the energy cost for future event detection. Note that

Procedure 4 will make use of the APIs in Listing 3.7 since it needs to query

104

Chapter3 System Design

Procedure 4 Event matching

Input: ein matched by vk with cost: costin
addTo(tablem, (en, e

i
n, vk, now(), costin))

for each ej in E do
if ∃r ∈ R and r = ecomp = comp(en, ej) then

for each ekj in tablem do
if comp(ein, e

k
j) = true then

addTo(tablem, (ecomp, e
i
comp, self, now(), costin + costkj))

detected(ecomp)
end if

end for
end if

end for

the event relations.

3.3.3 Customizable Event Delivery

After the subscribed event is detected, it needs to be delivered to the user.

In many applications, this is done via the underlying routing protocols such

as Collection Tree Protocol (CTP) [33] provided by TinyOS. This is also the

case for the default event delivery in PSWare. However, in some applications,

this may not be a case. For example, in an intelligent transportation system,

the events may be delivered to mobile vehicles. In this subsection, we show

how PSWare can achieve the flexibility in event delivery through several

examples in ITS.

We choose ITS as an example because different event types in this ap-

plication may require different event delivery strategies and that is why the

flexibility in event delivery is of particular importance. The event types in

ITS may include:

105

A Thesis Submitted by Steven Lai

Event Matcher

PSWare Framework

Event Deliverer

Event Notifier Event Subscriber

WSN Application

Subscription
Maintainer

Subscribe

Urgent Event Non-urgent
Event

Figure 3.9: Type-based event delivery

• Emergency: events that represent urgent incidents. Examples of this

type of events include car accidents and urgent road maintenance.

These events probably need to be delivered to all nearby vehicles when

occurred.

• Driver’s information: events that provide assistant information to the

drivers. Examples include congestion information and meteorological

information. These events are usually not considered as urgent and

may be delivered in carry-and-forward fashion [47].

The overall architecture for ITS event delivery over PSWare is shown

in Figure 3.9. A key difference in this architecture is the introduction of

multiple event deliverer. Upon the signaling of ’eventDeliver’ in Listing 3.6,

the middleware developer can first query the event type by using the APIs in

Listing 3.7. With ’psware gen’, this may be easily achieved. The middlewre

just needs to pre-define a domain-specific event type for traffic accident.

When events of such types are detected, an emergency delivery method is

used. Otherwise, the normal event delivery method will be used.

106

Chapter 4

Generic Composite Event

Detection

4.1 The Composite Event Detection Problem

In previous sections, we have discussed the overall design for PSWare. Once

application programmers define the composite event types and make sub-

scriptions through our middleware, the sensor nodes need to process the data

and detect the subscribed composite events. In fact, a generic event detec-

tion algorithm is the heart of a pub/sub system. In this section, we formally

define our generic composite event detection algorithm used by PSWare.

4.1.1 System Model

We consider the network as a graph G = (N,A) where each node represents a

sensor node and each edge represents a communication link. For each an ∈ A,

it has a weight Wn associated with it.

107

A Thesis Submitted by Steven Lai

The subscriber provides a finite set of event types E = {e1, e2, · · · }. For

each en ∈ E, the subscriber defines a set of attributes en → attrn which

reflect certain real world phenomenon.

The subscriber also provides a finite set of event relations R = {r1, r2, · · · }

where each rn ∈ R represents the mapping of one or more sub-event types

e1, e2 · · · ∈ E to a composite event type e3 ∈ E, denoted as rn(e1, e2, · · ·) =

e3. One of the event type es ∈ E is subscribed by the subscriber.

We have a set of primitive event types Eprimitive ⊆ E event types such

that there is no ∃rn ∈ R such that rn(e1, e2, · · ·) = en where en ∈ Eprimitive

and e1, e2, · · · ∈ E. For each primitive event of type e′n ∈ Eprimitive, it will be

detected by a node ni ∈ N . For the sake of simplicity in discussion, we only

consider the message cost in our energy cost function and we do not consider

message retransmission. The event detection cost for each event type en ∈ E

is denoted as cost(en). Such cost is the number of hops for the event to be

delivered from the event source to its destination. Such destination could

be an event fusion point (to be discussed soon) for detecting higher level

composite events or the sink node where the events will be delivered.

4.1.2 Problem Formulation

Given:

• A network G = (N,A)

• A set of event types E with relation R

• An energy cost function cost(en) for en ∈ E

108

Chapter4 Generic Composite Event Detection

Find:

• For each event type en ∈ E, when an event instance of this type occurs,

find a subset of nodes V r
n ⊆ V which are involved in detecting the event.

Objective:

• Minimize the message cost:

n∑
i=i

cost(ei)

Theorem 1. The composite event detection problem is NP-complete.

Proof. We show our proof by reducing the steiner tree problem to our com-

posite event detection problem. Let Ns ⊂ N be the event source (nodes that

detect the primitive events). Since the cost is defined as message cost, if we

minimize the total path length from the event sources to the fusion points

(nodes which are responsible for detecting composite events), then we can

also minimize the message cost.

We construct a graph G′ = (N ′, A′) from G as follows:

1. N ′ = Ns

⋃
Nf

2. For each pair of nodes n′i, n
′
j ∈ N ′, we add an edge a′k ∈ A′ incident on

both if there is a path from n′i to n′j in G.

3. The weight of the newly added edge is a′k is the weight of the shortest

path from n′i to n′j in G.

The corresponding Steiner tree problem can be defined as below.

Given:

109

A Thesis Submitted by Steven Lai

• A graph: G′ = (N ′, A′)

• Each edge e′i in the graph has a weight of W ′
i

• A set of sources: Ns ⊂ N

Find:

• A minimum Steiner tree that spans Ns

If we have a solution for the Steiner tree problem in G′, then we simply

need to recover the shortest paths in G and it will also be the optimal solution

for our composite event detection problem. On the other hand, an optimal

solution for our composite event detection problem is also an optimal solution

for the Steiner tree problem if we replace the paths between every pair of

nodes n′i, n
′
j ∈ N ′ with the edges in A′.

110

Chapter4 Generic Composite Event Detection

4.2 A Centralized Approach

Based on our problem formulation, we can intuitively use a centralized ap-

proach to solve this problem. In the centralized approach, when the sensor

nodes detect the events, they first inform the sink node about the detected

event. Then the sink node will select the efficient nodes as event fusion

points for each event type and broadcast the information into the network.

The nodes will then forward their events to these fusion points. The fusion

points may be changed or updated with a predetermined probability to cope

with event dynamics. The reasons why the nodes will only inform the sink

about the events they detected rather than send the events to the sink for

detection are as follows:

• Each individual event may have a lot of attributes so it is more desir-

able to first calculate the energy-efficient event fusion points before the

actual event detection.

• As described in Section 1.1, events may have strong locality. Therefore,

the fusion points selected may be used for detecting events of the same

types in the future.

We assume the users have no prior knowledge on where the events might

happen. However, they do know the probability distribution of the events.

We will discuss the event probability distribution and its impact on the algo-

rithm in the latter section when we describe how the algorithm is designed

to cope with event dynamics.

The input of the algorithm includes:

111

A Thesis Submitted by Steven Lai

• Sensor network: G

• A set of events E ′ = {e1i , e2i , · · · } where eji denotes an event of type ei

Algorithm 5 Centralized TED

Input: G = (N,A), E ′

1: for all eji ∈ E ′ do
2: if ei is not assigned to any node then
3: Find any other elk ∈ E ′ such that either k==i or ek and ei has a

relation for a composite event ex
4: for all n ∈ N do
5: Construct an SPT for all elk and eji with root as n
6: Calculate the cost for the SPT as costn
7: end for
8: Find the SPT with the smallest costn and select n as fusion point

for ek and ei
9: Add n as the node detecting e1x to E ′

10: end if
11: end for

The algorithm will examine all the primitive events reported from the

network to see if there is any relation associated with them. If so, the algo-

rithm will try each node in G to construct shortest path tree (SPT) for these

related events and select the one with the smallest cost. The root of that

SPT will then become the fusion point for the related events. The algorithm

runs recursively in the sense that once the fusion points for a composite event

is selected, itself will become the node for detecting that composite event.

4.2.1 Determine the Re-selection Probability

While the previous section outlines the algorithm for centralized TED, we

still need to decide how often the nodes should switch to another fusion point

in order to cope with the event dynamics. We use exponential distribution as

112

Chapter4 Generic Composite Event Detection

the event probability distribution because of its memoryless property. More

specifically, for each composite event, the distance x between each of its sub-

events to any point in the network follows an exponential distribution as

follows:

f(x) = λ1e
−λ1x

In addition to the distance between events, the direction of events that

happen in different rounds will also affect the selection probability. The angle

θ between any pair of related events also satisfy an exponential distribution

as follows:

f(θ) = λ2e
−λ2θ

Both x and θ are shown in Figure 4.1b where the events e1, e2 are detected

before and e′1, e
′
2 are detected. For simplicity, we use distance to measure the

cost for one node to reach another. As shown in Figure 4.1b, for a composite

event that has two sub-events, originally the event is fused at n1. Then, for

the next detection of e′1 and e′2, if the fusion point is still the original one,

then the cost will be the added distance of (e′1, n1) and (e′2, n1). To calculate

such cost, we first need to calculate the angle θ1 between (e′2, e2) and (e2, n1):

θ1 =π − π − λ2
2

=
π + λ2

2

113

A Thesis Submitted by Steven Lai

e1 e2

e'1 e'2

θ

x x

(a) Event distribution

λ1
λ1

e1
e2

e’1
e’2

λ2

λ1/2 λ1/2

(b) Fusion point distance

Figure 4.1: Selecting fusion points in centralized approach

Then according to law of cosines, we can derive cost1:

cost1 =2×
√

(λ1)2 + (
λ1
2

)2 − λ1 ×
λ1
2
cos(

π + λ2
2

)

=2×
√

5(λ1)2

4
− (λ1)2cos(

π + λ2
2

)

On the other hand, if a new fusion point is selected, according to law of

sines, then the cost will be no more than:

cost2 =2(
λ1

2sinλ2
2

+ λ1)sin
λ2
2

+ d

=λ1(1 + 2sin
λ2
2

) + d

Here, d is the average distance between any point in the deployment

region to the closest fusion point.

114

Chapter4 Generic Composite Event Detection

The condition to select a new fusion point will be:

cost1 ≥ cost2

cost21 ≥ cost22

(λ1)
2(

5

4
− cos(π + λ2

2
)) ≥

λ21(1 + 2sin
λ2
2

)2 + d2 + 2λ1(1 + 2sin
λ2
2

)d (4.1)

Here d is decided by the node density and can be estimated once we

know the deployment area and the number of nodes in the deployment area.

Therefore, given f(x), f(θ) and d, we can use generalized gradient search to

find the values for θ and x such that Equation 4.1 is satisfied while minimizing

the probability for switching:

Pswitch = F (x > x∗)F (θ > θ∗)

=

∫ ∞
x∗

λ1e
−λ1xdx

∫ ∞
θ∗

λ2e
−λ2θdθ

= e−λ1x∗e−λ2θ∗

Once the probability is obtained, after each event detection, there will

be a probability of Pswitch that the event will switch to another fusion point.

This is done by making the fusion point broadcast a message in the network

so that all nodes can delete the corresponding event type assignment to that

fusion point.

So far the calculation for Pswitch is based on the assumption that the

network scale is not known in advance and the cost for broadcasting new

115

A Thesis Submitted by Steven Lai

fusion point information is not known in advance. If the network scale is

known to be |N | in advance, then we can change Equation 4.1 a bit to be

more accurate as in Equation 4.2.

cost1 ≥ cost2 + |N | × Pswitch (4.2)

By calculating |N | ×Pswitch, we can further fine-tune the switching prob-

ability to balance with the broadcast cost.

4.3 TED: a Type-based Event Detection Al-

gorithm

In this section, we propose TED, a distributed type-based composite event

detection algorithm for WSN. The essential idea of TED is that after each

sub-event is detected, the nodes will at first forward the detected events

randomly to some nearby fusion points in the hope that at least some of them

will be good ones. When the composite events are detected, the fusion points

will first check the record to see if the source nodes have already selected any

fusion point. If not, it will flood some feedback in the network so that the

source node will get it and other nodes can also use such feedbacks as ’hints’

when they need to forward the events. By collecting different feedbacks from

different fusion points, the sensor nodes will choose the best one according

to the cost. If the sub-events occur again, the nodes will be able to forward

the detected events based on the feedback so that the cost could likely be

116

Chapter4 Generic Composite Event Detection

reduced.

4.3.1 Algorithm Input

In TED, the set of event fusion points Nf ⊆ N are preselected. We will

discuss how to select the fusion points in an optimal way in the latter part of

the section. Therefore, each node will play two possible roles: normal node

or event fusion point. Normal nodes will need the following data structure

for the algorithm:

• Event filter table tablef : this table stores the filters for each event type.

tablef → filtern denotes the filter for event type en.

• Fusion point routing table (tabler): this table defines the routing to

each fusion point ni ∈ Nf . tabler → ni → parent denotes the parent

node to reach fusion point ni.

• Event forwarding table (tablee): this table defines the fusion point for

each event type en ∈ E. tablee → en → fp denotes the fusion point for

event type en.

The fusion points will also have the same data structure of the normal

nodes for the algorithm. In addition, they will have an additional table

tablem. This table temporarily stores the events collected from other nodes.

For each of the entries it has the following contents:

• ein: the ith event of type en

• cost: the detection cost for the event ein

117

A Thesis Submitted by Steven Lai

• flag: the flag (to be described in the algorithms) for the event ein

4.3.2 TED for Normal Nodes

Since the event detection starts from primitive events, the normal nodes

will run Algorithm 6 after detecting a primitive event ein of type en. For

Algorithm 6 TED for normal nodes

Input: evaluate(ein, tablef → filtern)==True
1: if tablee → en → flag 6= fpUnknown then
2: toForward = tablee → en → fp
3: Set ein → flag = tablee → en → flag
4: Forward ein to tabler → fp→ parent
5: else
6: if tablee → en → flag 6= fpUnknown then
7: Select k − 1 nearest fusion points Nk ∈ Nf

8: Nk = Nk

⋃
{tablee → en → fp}

9: else
10: Select k nearest fusion points Nk ∈ Nf

11: end if
12: for each n ∈ Nk do
13: forward ein to tabler → n→ parent
14: end for
15: end if
16: if ein → flag = fpSelected and ein → timeout == True then
17: tablee → en → flag = fpIndicated
18: end if
Input: feedback of event type en from ni ∈ Nf

19: entry = tablee → en
20: if en → source == self and (entry → flag 6= fpSelected or entry →

flag == fpSelected and entry → cost < en → cost) then
21: entry → flag = fpSelected
22: entry → fp = ni
23: else if entry → cost < en → cost then
24: tablee → en → flag = fpIndicated
25: end if

each event type, it has three possible states: fpUnknown, fpIndicated and

118

Chapter4 Generic Composite Event Detection

fpSelected. Initially, all the event types are fpUnknown because the sensor

node does not know which fusion point is the best to forward the event. The

flag will be updated upon the reception of feedbacks from the fusion points.

More specifically, if the event is detected at the fusion point ni, the fusion

point will flood the feedback with cost and event source included so that

the nodes can update their corresponding flags. The update is based on the

detection cost.

Upon the detection of event ein, the node will first check if there is already

a fusion point assigned to it. If so, the event will simply be forwarded to that

fusion point. Otherwise, the node will choose k closest fusion points randomly

and then forward the events to them.

4.3.3 TED for Event Fusion Points

When the fusion point receives ein from a node, it will first wait a period of

time until the expiry time of the event to check for other events for possible

matches. If no match is found during this period, the fusion point will still

use Algorithm 6 to further forward the events to other fusion points. The

pseudo code is shown in Algorithm 7.

The function ’detected’ is the place where Algorithm 6 is invoked. Upon

the detection of any composite event, the fusion point will also send the

feedbacks to the network.

119

A Thesis Submitted by Steven Lai

Algorithm 7 TED for fusion points

Input: ein from node ni ∈ N
1: for all ej ∈ E do
2: if en is a subevent of ej then
3: result = evaluate ej with ein
4: if result==True then
5: detected (ej)
6: ej → cost = ej → cost+ ein → cost
7: ej → source = ej → source

⋃
ein → source

8: feedback (ej)
9: end if

10: end if
11: end for
Input: expiry time of ein
12: detected (ej)

4.4 Fusion Point Deployment Problem

Because our distributed algorithm is based on certain nodes in the network

that acts as event fusion points to detect the events, in this section, we discuss

how to select such fusion points in order to optimally detect the events.

4.4.1 Even Deployment

We first look at a deployment where fusion points are evenly deployed. We

use the following deployment model:

• The entire network is divided into a set of equally sized regions.

• Within each region, we deploy the same number of event fusion points.

Such deployment model is suitable if the user has no prior knowledge

on where events would happen. After calculating the optimal deployment

strategy, the users can make use of it in two ways:

120

Chapter4 Generic Composite Event Detection

• After the sensor deployment, the users can deploy additional sensor

nodes as fusion points in the network.

• Before the deployment, the user can calculate how many fusion points

are needed in the network and mix them with normal nodes to deploy

them randomly.

We will use square for calculating the optimal deployment strategy in this

work. The optimal deployment strategies with regions of other types of shape

may be also be obtained in a similar fashion. Suppose we divide the whole

region of area A into squares of size s×s. Then on average, each sensor node

can find a fusion point at a distance of [90]:

r =

∫ 1

0

D(t)dt

=

∫ 1

0

2

3

√
c2t2 + (b2 − a2 − c2)t+ a2dt

=
c

6
[u(1 + v2) +

1

2
(1− u2)(1− v2)ln(

u− 1

u+ 1
)] (4.3)

where,

c =
s

2

u =

√
2 + 1

2
s

v =

√
2− 1

2
s (4.4)

In order to determine the optimal deployment strategy, we also need

to know the event probabilistic distribution. We use the same exponential

distribution model as introduced in Section 4.2.

121

A Thesis Submitted by Steven Lai

The cost introduced by TED mainly consists of three parts: forwarding

cost, feedback cost and detection cost. Initially, upon the detection of prim-

itive events, the nodes will randomly forward the events to k closest fusion

points.

costforward = r × k

Here k is determined by the event distribution such that after forwarding

different sub-events to the fusion points, there will be some overlapping fusion

points for different sub-events. Therefore, k is defined as follows:

k = (
λ1
r

+ 1)2 (4.5)

When the events are detected at the fusion points, feedback will be sent

to the event sources so that the sensor nodes can later forward the events to

them and the cost will be reduced. For simplicity of analysis, we assume the

fusion points will simply flood the feedback in the network. Therefore, the

feedback cost is:

costfeedback = |N | × k

The detection cost is the message cost for all sub-events to be forwarded

to a fusion point so that the composite event may be detected. As shown

in Figure 4.2, if we have two events e1 and e2, the minimum event detection

cost will be detecting the events on the line segment that connects the two

events. However, we may not find a fusion point on the line segment, so in

order to find a fusion point that can minimize energy cost, we should choose

a point that lies on the center of the line segment. Similar to Equation 4.3

122

Chapter4 Generic Composite Event Detection

r

e1 e2

Figure 4.2: Event detection cost

and 4.4, the average detection cost will be:

costdetect = 2×
∫ arctan 2r

λ1

0

λ1
2cosx

dx

Since each node needs to know how to reach the fusion points when

forwarding is needed, there is overhead for maintaining such information.

Similar to many existing routing protocols for WSN, we assume the nodes

will periodically send messages for link evaluation [101]. Therefore, the cost

for maintenance is:

costmaintenance = (
A

s2
)|N |c1

Here, c1 is constant that represents the relation between energy consump-

tion and the size of the packets. In addition, the sensor node should also have

storage constraint because the nodes simply might not able to store all the

routes to every fusion point. The storage constraint is defined as:

(
A

s2
) < c2

Objective is to minimize:

costall = 2(
T

t
+ 1)costforward + costmaintenance + Tcostdetect

123

A Thesis Submitted by Steven Lai

λ1 Expected location between
the events

λ2 Expected angle of the
events

A Deployment area
s× s The size of the square sub-

regions
c1 Energy cost per bit of data

transmission
c2 Storage constraint

Table 4.1: Summary of the symbols in TED

All the constants are summarized in Table 4.1. costall may be obtained

by nonlinear programming techniques such as generalized gradient search

algorithm. In addition to square deployment, other deployment method may

also be used and the only difference lies in Equation 4.3, 4.4 and 4.5.

4.4.2 Hierarchical Deployment

Apart from even deployment, the fusion points may also be deployed in

a hierarchical fashion. Formally, we assume a square network deployment

where the fusion points are distributed in a hierarchical way in the network.

We assume that the sink node is at the center of the network. And more

fusion points can be added by dividing the network evenly into the square

sub-regions of same size. For example, a network with only sink node is

shown in Figure 4.3a. If we add 4 fusion points, the fusion points will be

evenly distributed in the network as in Figure 4.3b.

We can achieve flexibility with this distribution model since we can add

more fusion nodes into the network if we want to decrease the cost for de-

124

Chapter4 Generic Composite Event Detection

(a) Level 1 fusion point (b) Level 2 fusion points

Figure 4.3: Fusion point distribution model in TED

tecting composite events.

For fusion level at ith level, the whole network is divided into 2i−1 subre-

gions regioni. For example, if the fusion level is at 1 as shown in Figure 4.3a,

the region covers the entire network. In Figure 4.3b, the network is divided

into 4 subregions at fusion level 2.

In our analytical model, we assume dynamic events where for each event

type en, it may occur anywhere in the network. In order to include such kind

of properties in the model, we define for each en ∈ E, it will be monitored by

t rounds. The interval between the rounds are Tn. During this t× Tn time,

the set of detected events of type en is defined as En = {e1n, e2n, · · · etn}.

We measure the event detection cost in terms of message cost. For sim-

plicity, we measure the message cost by the distance (which will in term be

reflected as the number of hops) a node can reach another. We uses short-

est path tree (SPT) data aggregation protocol [55] as reference to see under

125

A Thesis Submitted by Steven Lai

e1

e2

e'1

e'2

θ

x x

(a) Even distribution (b) Uneven distribution

Figure 4.4: Fusion point distribution

what conditions TED can outperform data aggregation protocols which do

consider event relations.

When the fusion points are hierarchically distributed in the network, the

composite event detection cost will be bounded by the level of fusion points

distributed in the network. Consider Figure 4.4 as an example, if we have

a sensor network in a rectangular region where it can be further be divided

into two smaller square region. If we assume for each square region, the

diameter length is d, then in Figure 4.4a, if we evenly distribute a fusion

point in each square region, the max distance for any sensor node in the

whole network to reach it’s closest fusion point is d
2
. If the fusion points

aren’t evenly distributed as shown in Figure 4.4b, then for some nodes in the

network, it might have a distance larger than d
2

to reach the fusion point.

Theorem 2. Let the network diameter be d, and the fusion point level be

l, the distance between two sub-events e1 and e2 is r. After e1 and e2 have

already been detected, the upper bound of the energy cost for detecting the

126

Chapter4 Generic Composite Event Detection

composite event e3 based on e1 and e2 is:

cost(e3) =
d

2l−1
+ r

Proof. As shown in Figure 4.4a, the upper bound for one single event to

reach a fusion point is:

d

2l

Then, the upper bound on the cost for the the two fusion points to reach

each other is:

d

2l−1
+ r

Theorem 2 indicates that if we have no prior knowledge about the events

to happen in the network, then fusion points with even distribution can still

allow us to have an upper bound on the composite event detection cost.

Theorem 3. If a node is a level l fusion point, then its distance from sink

r ∈ Dl

Dl = {a1, a2, · · · a2l−2|ai =
d

2l−1
× (2i− 1), i < 2l−2}

Proof. When l = 1, only sink node is the fusion point. Hence D1 = {0}.

Similarly, when l = 2, D2 = {d
2
}. We denote each ai ∈ Dk as aki . Based on

our fusion point distribution scheme, at fusion level k + 1, we simply divide

the sub-regions at fusion level k into four. Therefore, for each aki ∈ Dk, we

127

A Thesis Submitted by Steven Lai

can find two elements ak+1
2i−1, a

k+1
2i ∈ Dk+1 such that:

 ak+1
2i−1 = aki − d

2k

ak+1
2i = aki + d

2k

⇒

 ak+1
2i−1 = d

2k−1 × (2i− 1)− d
2k

ak+1
2i = d

2k−1 × (2i− 1) + d
2k

⇒

 ak+1
2i−1 = d

2k
× (2(2i− 1) + 1)

ak+1
2i = d

2k
× (2(2i) + 1)

Hence, Theorem 3 holds for any natural number.

Theorem 3 may be used as one of the conditions for selecting fusion

points.

128

Chapter 5

Clustering for PSWare

In the previous chapter, we outlined TED, a distributed event detection al-

gorithm. In addition, we described a hierarchical fusion point placement

problem. However, these algorithms use generic event probabilistic model

and may not perform well compared with more application specific algo-

rithms. Fortunately, PSWare has the flexibility of incorporating different

algorithms. In this chapter, motivated by SHM application we describe a

novel clustering algorithm that can help to detect events in this application

domain.

5.1 Overview of WSN-based SHM

One potential application of WSNs that is far less investigated by computer

science researchers is structural health monitoring (SHM). The objective of

SHM is to monitor the integrity of structures such as buildings, dams, bridges,

and to detect and pinpoint the locations of any possible damage. Unlike

129

A Thesis Submitted by Steven Lai

other monitoring applications, detection of possible structure damage is not

straightforward and requires significant amount of domain knowledge such as

finite element model updating and damage indicator extraction [26]. More-

over, many assumptions which were used to model the network associated

problems, such as unit disk or convex sensing region, 0/1 local decision, or

data aggregation by average, are unfortunately not realistic in SHM. The

required domain knowledge, along with the complexity of SHM, prohibits

computer science researchers from investigating this application as intensely

as others.

As a result, most research work so far in WSN-based SHM was done by re-

searchers in civil engineering. Using their knowledge in structure engineering,

they have designed and developed many WSN-based SHM systems [77][87].

However, based on our experience obtained from the previous collaborations

with civil researchers, they generally concern whether the developed WSN-

based SHM system can replicate the data delivery functionality of original

wire-based counterpart and have less interest to embed in-network processing

technology. Moreover, although they have solved many practical engineer-

ing problems, they still have difficulties to handle limitations of WSNs such

as limited wireless bandwidth, limited communication range, and limited

resources of wireless sensor nodes, etc. When designing WSN-based SHM

systems, civil engineers sometimes choose powerful wireless sensor nodes to

accomplish work that could have been achieved by more cost-effective coun-

terpart through system optimization. This leaves a large space to explore for

computer science researchers.

We demonstrate that computer science researchers can help fill this gap

130

Chapter5 Clustering for PSWare

and significantly improve the performance of a WSN-based SHM system.

We consider a fundamental problem in SHM: modal analysis, by which the

vibrational characteristics of a structure are obtained. These characteristics,

called modal parameters, are basis for most of SHM algorithms and can

also be used for vibration control and safety assessment. Traditional modal

analysis is centralized which needs to stream all the measurement data back

to a central unit. This method generally has high energy consumption and

low scalability. We describe a cluster-based modal analysis approach. The

basic idea of this approach is similar like the ’divide and conquer’, where

sensor nodes deployed on a structure are partitioned into clusters and modal

analysis is carried out in each cluster. The resultant modal parameters of

each cluster are then assembled together to obtain the modal parameters of

the whole structure. In this approach, clustering is of great importance and

should meet some extra requirements of modal analysis. Moreover, cluster

size should be optimized to minimize the total energy consumption.

The outline for the rest sections in this chapter is as follows:

1. We show that design of a WSN-based SHM system is a multi-disciplinary

area that the efforts from researchers in computer science engineering

can significantly help improve system’s usability and efficiency.

2. We proposed a cluster-based modal analysis strategy. The clustering

problem in this strategy is formulated and proven to be NP-complete.

Two centralized and one distributed algorithms are proposed.

131

A Thesis Submitted by Steven Lai

Ψk The kth mode shape vector of the structure
p The number of mode shape vectors to be identified

Gxy(ω) The cross spectral density (x 6= y)
and power spectral density (x = y)

N the total data amount
M, c, ni the total number of sensor nodes,

the number of generated clusters,
and the number of sensor nodes in cluster Si

nt Length of each section to calculate CSD
nd Number of averages

eS, eR, eT Energy consumed for sampling/rece./trans. one data
eNExT , eERA Energy consumed for NExT and ERA

Table 5.1: Summary of Notations

5.2 Structural Mode Shapes

In this section, we will describe the cluster-based modal analysis approach

with focus on the optimization of clustering. Before we formulate this cluster-

ing problem, the basic concept of modal parameters, the techniques adopted

for modal analysis and assembling method are described. Table 5.1 summa-

rizes the notations to be used.

In particular, we give a brief introduction of one important type of modal

parameters: mode shapes.

Each mechanical structure has a number of specific vibration patterns at

specific frequencies. These vibration patterns are called mode shapes. For

example, we deploy a total of m sensor nodes on a structure and extract a

total of p mode shapes from the measurement of these sensors:

132

Chapter5 Clustering for PSWare

(a) (b)

(c) (d)

Figure 5.1: Mode shapes of a typical cantilevered beam

[Ψ1,Ψ2, · · · ,Ψp] =

φ11 φ12 · · · φ1p

φ21 φ22 · · · φ2p

...
...

. . .
...

φm1 φm2 · · · φmp

(5.1)

where mode shape Ψk = [φ1k, φ2k, · · · , φmk]′ is the kth vibration pattern of

the structure. φik(i = 1, 2, · · · ,m) is the kth mode shape value defined at the

ith sensor.

As an example, Figure 5.1 illustrates the first three mode shapes of a

typical cantilevered beam, extracted from the measurements of the deployed

12 sensor nodes. Figure 5.1a represents the Original beam. Figure 5.1b,

5.1c and 5.1d represents Mode Shape 1, Mode Shape 2 and Mode Shape 3

respectively.

It can be seen that mode shape vector Ψk has an element correspond-

ing to each sensor node. The more number of sensor nodes used, the more

elements are contained in Ψk, and more accurately this vibration pattern

of the structure is described. Considering example in Figure 5.1, if we dou-

ble the number of nodes deployed on the beam, the vibration patterns will

133

A Thesis Submitted by Steven Lai

Clustering

Intra-cluster Modal Analysis
 (Model-based Data Aggregation

+ NeXT+ ERA)

Global Modes
Unification

Start Sampling

Modal Parameters
of the Structure

Vibration
data

Modal
Parameters of

Cluster

Figure 5.2: Overview of cluster-based modal analysis process

be represented with higher granularity. Another important characteristic of

mode shape is that elements in Ψk only represent the relative vibration am-

plitudes of structure at corresponding sensor nodes. That is, Ψk = ζΨk,

where ζ is any non-zero real number. This property will be re-visited when

we formulate the clustering problem in section 5.3.1.

5.2.1 Clustering for Modal Analysis

In this sub-section, we first give an overview of this cluster-based approach

and then formulate the energy consumption of cluster-based modal analysis.

In the cluster-based modal analysis, deployed sensor nodes are parti-

tioned into a number of single-hop clusters and each CH performs intra-

cluster modal analysis to extract local mode shapes. Since mode shapes of

a cluster only contain elements corresponding to the sensor nodes in that

cluster, the mode shapes in all the clusters need to be assembled to obtain

the mode shapes defined on all the deployed sensor nodes. The whole process

is illustrated in Figure 5.2.

134

Chapter5 Clustering for PSWare

The modal parameters are identified using the natural excitation tech-

nique (NExT)[48] in conjunction with the ERA. NexT+ERA is a widely ac-

cepted modal analysis approach and can give accurate mode shape estimate

using output data-only.

In each cluster, the NExT is used first to calculate power spectral density

(PSD) of the CH and cross spectral density (CSD) between the CH and each

of the cluster member. PSD and CSD functions are estimated using:

Gxy(ω) =
1

nd · nt

nd∑
i=1

X∗i (ω) · Yi(ω) (5.2)

where Gxy(ω) is the CSD between two vibration signals, x(t) and y(t), mea-

sured from CH and a cluster member, respectively. X(ω) and Y (ω) are the

Fourier transforms of x(t) and y(t), and ’*’ denotes the complex conjugate.

nt is time length of each record xi(t) or yi(t). nd is the number of aver-

ages mainly for denoising purpose and nd practically ranges from 10 to 20.

When calculating Gxy, consecutive records of xi(t)(also yi(t)) generally over-

lap. When y(t) in Eq. 5.2 is replace by x(t), the power spectral density

(PSD) of CH is obtained.

After obtaining CSD and PSD functions, the inverse Fourier transform is

implemented and the cross-correlation functions (CCFs) and auto-correlation

function (ACF) are obtained. The ERA uses these functions to build a state

space system whereby mode shapes of the structure are identified.

Traditionally, CH collects the raw data from all its cluster members, cal-

culates CSDs and its PSD, and then uses the ERA to identify mode shapes.

However, the model-based data aggregation method proposed by [87] can be

135

A Thesis Submitted by Steven Lai

used here to decrease the energy consumption. In this approach, instead of

collecting measurements data from cluster members, CH broadcasts its time

record of length nt. On receiving the record, each cluster member calculates

its CSD and stores it locally. This procedure will be repeated nd times, until

the CSD is according to Eq. 5.2. Each cluster member then transmits the

first half of the corresponding CCF to the CH.

Based on the discussion above, we can estimate the energy consumption

of intra-cluster modal analysis. To obtain the mode shapes of a cluster

Si, the total energy consumption in Si, denoted as cost(Si), can be mainly

decomposed into the following three parts:

cost(Si) = Ers(Si) + Erc(Si) + Era(Si) (5.3a)

where Ers(Si), Erc(Si) and Era(Si) are the energy consumed in data

sampling, intra-cluster wireless communication and computation associated

with modal analysis, respectively.

Assume a cluster Si contains a total of ni sensor nodes, then sampling

cost Ers(Si) is:

Ers(Si) = ni ·N · eS (5.3b)

where N is the total amount of time history record sampled in each

sensor. Assuming 50 % overlapping, N = (nd/2 + 1/2)nt. eS is the energy

for sampling one data. We assume that nd , nt, N and eS are fixed.

136

Chapter5 Clustering for PSWare

The intra-cluster wireless communication cost Erc(Si) is:

Erc(Si) =N · eT + (ni − 1)N · eR

+(ni − 1)
nt
2

(eT + eR) (5.3c)

where eT and eR are the energy cost for transmitting and receiving one data,

respectively. The first two terms at the right side of Eq. 5.3c are the en-

ergy consumed when CH broadcasts its time history data and when all the

cluster members receive the broadcasts, respectively. The last term is the

energy consumption when the (ni − 1) cluster members transmit back their

correlation functions to the CH.

The computation cost Era(Si) can be formulated as:

Era(Si) = ni · eNExT + eERA(ni) (5.3d)

where eNExT is the energy consumed when each node implements the

NExT (including calculating the CSD/PSD and CCF/ACF) and eERA is the

energy used in CH when it carries out the ERA for mode shape identification.

eNExT is fixed given nt and nd. eERA is dependent on ni and number of mode

shape vectors p to be identified. Given p, eERA(ni) is not a linear function

of ni since the ERA involves complex matrix computations including SVD

and matrix inversion. This point is demonstrated in Figure 5.3, where the

computation time of our SHM mote to implement the ERA for different

cluster sizes is illustrated. The fitting function is also illustrated in the figure.

It can be seen that with the increase of ni, the time consumed, which is the

137

A Thesis Submitted by Steven Lai

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

ni

C
om

pu
ta

tio
n

T
im

e(
se

c)

ERA Complexity

y = 0.4*(ni)
2 + 1.2*(ni) -3.6

Figure 5.3: The complexity of the ERA

indicator of energy consumption, is quadratically increased.

From the equations above, we have cost(Si) = cost(ni), indicating that

the energy consumption of a cluster is only associated with the number of

sensor nodes in this cluster. It is of interest to see that if possible, whether

to generate small-sized clusters or large-sized clusters is more energy effi-

cient. To find the answer, we assume M sensor nodes can be partitioned into

equal-sized clusters of size n, then the number of clusters c = M/n. The

optimal cluster size, denoted as nopt, can be obtained by looking for the n

that minimizes the average energy consumption per node defined as:

138

Chapter5 Clustering for PSWare

Epn(n) =
c · cost(n)

M
= N(eS + β) + eNExT (5.4)

+
N(eT − β)

n
+
eERA(n)

n

where β = eR + nt
2N

(eT + eR).

The 3rd term in the right side of the Eq. 5.4 indicates that in terms of

wireless communication, partitioning sensor network into large-sized clusters

is preferred when eT ≥ β while generating small-sized clusters is better if

otherwise. The 4th term tells us that small cluster size n is more energy

efficient in terms of computation considering that eERA(n) is a quadratic

function of n. As a result, there does not exist a rule of thumb for clustering

and we have different optimal cluster sizes for different conditions. As an

example, some parameters obtained by some real tests of our SHM Mote are

listed in Table 5.2. Based on Table 5.2, Figure 5.4a shows various optimal

cluster sizes, illustrated as red dots in the figure, when the transmission power

eT is set to be from eT = eR to eT = 5eR. It can be seen that when eT = eR,

the smaller the cluster size, the better. (Note that the ERA requires that

the number of sensor nodes in each cluster should be at least larger than p).

With the increase of eT , the optimal cluster size is increased but does not go

unbounded considering the energy consumption of the ERA for large-sized

clusters.

Clustering using minimum dominating set [104] or maximum independent

set [6] cannot be directly applied to solve our clustering problem since they

mainly aim to find as small number of clusters as possible. Also, in the

139

A Thesis Submitted by Steven Lai

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7

8

9

10

11

12

13

14

15

16

e
T
 =1e

R

e
T
 =2e

R

e
T
 =3e

R

e
T
 =4e

R

e
T
 =5e

R

Cluster Size n
(a)

E
ne

rg
y

pe
r

N
od

e(
m

A
h)

Energy/Node (Epn) without Overlapping

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
8

10

12

14

16

18

20

22

24

e
T
 =1e

R

e
T
 =2e

R

e
T
 =3e

R

e
T
 =4e

R

e
T
 =5e

R

Cluster Size n
(b)

E
ne

rg
y

pe
r

N
od

e(
m

A
h)

Energy/Node (Epn) with Overlapping

Figure 5.4: The optimal cluster sizes in different conditions.

N p nt nd eS eR eNExT eERA
(mAh) (mAh) (mAh) (mAh)

0.0417(0.4n3
i

10752 3 1024 20 1.1e-4 5e-4 0.5 +1.2ni
-3.6)

Table 5.2: Parameters used in Figure 5.4

discussion so far, we assume that no overlapping nodes exist in the clusters.

However, we will show in the following section that a necessary condition

for cluster-based modal analysis is that all the generated clusters must be

connected through the overlapping nodes. This requirement further increases

the difficulty of the clustering problem.

5.2.2 Mode Shape Assembling

After the mode shapes in all clusters have been identified, they need to be

stitched together to obtain mode shapes defined on all of deployed sensor

nodes.

However, since mode shape vectors identified in a cluster only represent

the relative vibration amplitudes at cluster sensor nodes, mode shapes of

140

Chapter5 Clustering for PSWare

1
12

1110
98765

432

(a)

1
12

1110
9

8765432

(b)

Figure 5.5: Mode shape assembling

different clusters may not be able to be assembled together. This can be

demonstrated in Figure 5.5a, where the deployed 12 sensor nodes in Figure 5.1

are partitioned into three clusters to identify the 3rd mode shape. Although

the mode shape of each cluster is correctly identified, we still cannot obtain

the mode shapes for the whole structure. The key to solve this problem is

overlapping. We must ensure that each cluster has at least one node which

also belongs to another cluster and all the clusters are connected through

the overlapping nodes (a more formal definition will be given in the next

section). For example, in Figure 5.5b, mode shapes identified in each of the

three clusters can be assembled together with the help of the overlapping

nodes 5 and 9. This requirement of overlapping must be satisfied when

formulating the problem of optimal clustering.

It is obvious that overlapping will affect the overall energy consumption

and consequently, the optimal cluster size nopt will be different from that

when no overlapping is considered. By defining the number of overlapping

nodes as no =
c∑
i=1

|Si| −M , and still assume these M sensor nodes are par-

titioned into equal-sized clusters of size n, then the energy consumption per

node becomes

141

A Thesis Submitted by Steven Lai

Epn′(n) =
(M + no)/n · cost(n)− no ·N · eS

M
(5.5)

=
cost(n)

n
+
no
M
· κ

where κ = N · β + eNExT + N(eT−β)
n

+ eERA(n)
n

. Considering the fact

that unnecessary overlapping will cause extra energy consumption and the

number of overlapping nodes should be kept as small as possible, we require

that no ≥ M+no
n
− 1. Therefore,

Epn′(n) ≥ cost(n)

n
+

1− n/M
n− 1

κ (5.6)

The right side of Eq. 5.6 essentially provides a lower bound of energy

consumption that clustering can achieve when the overlapping constraint is

considered. The optimal cluster size nopt can be calculated by minimizing n

in Eq. 5.6. For example, the nopt for the parameters listed in Table 5.2 are

illustrated in Figure 5.4b.

By comparing Figure 5.4a with Figure 5.4b, it also can be easily seen that

optimal cluster size is larger when overlapping constraint is considered. Clus-

tering which generates small-sized clusters may not be energy efficient since

a large number of overlapping nodes can cause extra energy consumption in

terms of communication and computation.

Also should be noted is that the optimal cluster size nopt, either obtained

by Eq. 5.4 or by Eq. 5.6, is not affected by actual network topology. In

a dense network, it is more possible to achieve the obtained optimal cluster

142

Chapter5 Clustering for PSWare

size and therefore, the total energy will be lower than a sparse network.

Here, we do not consider the inter-cluster communication simply because

delivering obtained mode shapes requires significantly less energy than other

processes.

5.3 Clustering Algorithms

In this section, we will formulate the optimal clustering problem and, then,

describe the corresponding solutions to the problem.

5.3.1 Problem Formulation

The objective of clustering is that the generated clusters can minimize the

energy consumption of overall modal analysis. Clustering also has to satisfy

the following constraints (1) each sensor node belongs to at least one of

the generated clusters, (2) sensor nodes in each cluster is within a single

communication range to its CH, (3) number of sensor nodes in each cluster

is larger than p (p:the number of mode shape vectors to be identified) (4)

all the clusters are connected together through the overlapping nodes. More

formally, problem is formulated as follows: Given a sensor network G =

(V,E), find a clustering scheme that can cluster these V sensor nodes into

a set of clusters, denoted as C = {S1, S2, S3, · · · }, subject to the following

constraints:

1.
⋃
Si∈C

= V

2. Let the sub-graph for Si is G(Si, Ei), where Ei ⊆ E. Then ∀Si ∈

143

A Thesis Submitted by Steven Lai

C, ∃si ∈ Si, such that there is an edge aij ∈ Ei between si and any

other sj ∈ Si(si 6= sj)

3. ∀Si ∈ C, |Si| ≥ p

4. ∀Si,∃Sj ∈ C, (i 6= j), Si
⋂
Sj 6= ∅

5. ∀C ′ ⊆ C, (
⋃

Si∈C′
Si)

⋂
(

⋃
Sj∈C−C′

Sj) 6= ∅

Objective:

• Minimize
∑
Si∈C

cost(Si)

The first constraint is set because we wish to find the mode shapes de-

fined on all the deployed sensor nodes. The second constraint is to ensure

only single-hop clusters are generated. Constraint 3 is required by the ERA

algorithm. Constraints 4 and 5 are used to describe that generated clusters

are overlapping and connected.

The above clustering problem is an optimization problem. We will prove

that the decision version of the problem is NP complete which is defined as:

given a threshold k , does there exist a cluster set C = {S1, S2, S3, · · · }, which

satisfy all the constraints above and whose total energy cost
∑
Si∈C

cost(Si) is

equal or smaller than k?.

Theorem 4. The decision version of our clustering problem is NP-complete.

Proof. It is easy to find out this clustering problem is NP. Given a cluster

set C, all the constraints above, include constraints 4 and 5 can be checked

in a polynomial time. The detailed proof of this part is omitted for brevity.

144

Chapter5 Clustering for PSWare

We show this decision version of the clustering problem is NP-hard by

reducing the set cover problem to it. The set cover problem is defined as

follows.

Given:

1. A universe V ′

2. A set of S ′ = {S ′1, S ′2, ...} ⊆ V ′

3. The cost function for each subset S ′i ∈ S ′: cost′(S ′i)

4. A number k′

Find: If there is a subset C ′ ⊆ S ′ which satisfies

1.
⋃

S′i∈C′
S ′i = V ′

2.
∑
S′i∈C′

cost′(S ′i) ≤ k′

To reduce the set cover problem to the clustering problem, we construct

a sensor network G = (V,E) from the inputs of set cover problem in the

following way: The vertices V = V ′
⋃
X , where X = {x1, x2, ...xp} is a set

of p virtual nodes. To construct the edges E, for each S ′i ∈ S ′ , we first

choose an arbitrary node s′i ∈ S ′i, then we add an edge between s′i and any

other node s′j ∈ S ′i(s′j 6= s′i). We also add an edge between s′i and any virtual

node in X. The cost function in the clustering problem cost(·) = cost′(·).

We also define that by adding/deleting any virtual node x to/from any group

will not affect the cost function. The energy threshold k = k′.

With this transformation, it can be easily proved that 1) Assume C ′ =

{S ′1, S ′2, ...}is a solution to the set cover problem, then C = {S1, S2, ...} is

145

A Thesis Submitted by Steven Lai

a solution to the clustering problem, where Si = S ′i
⋃
X. 2) Assume G =

(V,E) is constructed from the set cover problem and we have a solution

C = {S1, S2, ...} to the clustering problem, then C ′ = {S ′1, S ′2, ...} is a solution

to the set cover problem, where S ′i = Si −X. The detailed proof is omitted

for brevity.

By reducing the NP-complete set problem to our clustering problem, we

have demonstrated that the decision version of our problem is NP-complete.

Obviously, the original clustering problem is also NP-Complete.

5.3.2 Centralized Algorithms

Two centralized algorithms are proposed to solve our clustering problem.

These two algorithms use the similar idea of the greedy algorithm for the set

cover problem but adopt different approaches to handle the extra constraints

of clustering. In both of the algorithms, a set of candidate single-hop clusters

is first established given the networkG = (V,E). Then the most cost-effective

cluster is selected from this set, one at a time, until all the sensor nodes in

V have been covered.

In the first algorithm, to find a candidate cluster set U , we first calculate

the optimal cluster size nopt according to Eq. 5.6. Then based on nopt, one-

hop neighbors of each node in V are partitioned. For each node si ∈ V ,

assume the one-hop neighbor set is Nesi , if |Nesi| ≥ nopt − 1, then each

cluster in the cluster set contains a common element si and the remaining

elements are the combinations of nodes in Nesi with the length of nopt − 1.

When |Nesi| < nopt− 1, Ci = {si}
⋃
Nesi . Note that we assume the network

146

Chapter5 Clustering for PSWare

is dense enough such that each sensor node has at least p one-hop neighbors.

The obtained cluster sets for all the nodes in V are combined together to

obtain the candidate cluster set U .

The algorithm then selects the most cost-effective cluster Si ∈ U , one

at a time, until all the sensor nodes in V have been covered. The cost

effectiveness, denoted as λ, is defined as λ = 1
|Si∪Ca|−|Ca| , where Ca represents

the set of nodes covered so far. When selecting the most cost-effective cluster,

we choose from the clusters in U which overlap with Ca. This strategy

can ensure that all the selected sensor nodes will be connected through the

overlapping nodes. If more than one candidate clusters which overlap with Ca

have the same λ, the one which maximizes the total degrees of the remaining

un-covered nodes (i.e. U − Si
⋃
Ca) will be chosen. It can be seen that this

algorithm divides the sensor nodes in V into as many single-hop clusters

of size nopt as possible while keeps the number of overlapping nodes into

minimums (from λ = 1
|Si∪Ca|−|Ca| , penalty is given to cluster having large

number of overlapping nodes with Ca). Both of these two points are of

importance to minimize the overall energy cost. The algorithm is shown as

Algorithm 8.

The second algorithm uses different strategy to handle overlapping. First,

the optimal cluster size nopt is calculated based on Eq. 5.5 without consid-

ering overlapping constraint. When selecting the most cost effective cluster,

it is chosen from all the candidate clusters in U . Since the overlapping con-

straint is not considered when selecting cluster, after all the sensor nodes in

V have been covered, the algorithm will test if all the clusters are connected

through the overlapping nodes and add extra clusters to connect them if

147

A Thesis Submitted by Steven Lai

necessary. The basic idea is to identify all the isolated cluster groups and

then find clusters to connect them. The detailed description is omitted for

brevity. This algorithm is shown as Algorithm 9.

Algorithm 8 First centralized algorithm for clustering

Input: G = (V,E) and parameters listed in Table. 5.2
1: find nopt which minimizes Eq. 5.5
2: U ← ∅ Ca ← ∅
3: for all ni ∈ V do
4: Si ← ∅
5: for all one hop neighbor nj of ni do
6: Si = Si

⋃
{nj}

7: end for
8: construct a cluster set Ci whose elements are the combinations taken

of the nodes in Si of length nopt − 1.
9: U = U

⋃
Ci

10: end for
11: repeat
12: Ccand = all the clusters in U which overlap with Ca
13: find a cluster Si in Ccand with the smallest 1

|Si∪Ca|−|Ca|
14: Ca = Ca

⋃
Si

15: until Ca covers V
Output: Ca

5.3.3 Distributed Algorithm

Based on our first centralized algorithm, we propose a distributed solution.

In this solution, each node only needs its one-hop neighbors information and

communicates only with its one-hop neighbors. The clustering will start at

a single controller node which usually is the sink node of the network.

Similar to Algorithm 8, each newly created cluster will be connected to

at least one of the existing clusters. In the distributed algorithm, each node

will maintain two lists of neighbors: unclustered and clustered. The lists will

148

Chapter5 Clustering for PSWare

Algorithm 9 Second centralized algorithm for clustering

Input: G = (V,E) and parameters listed in Table. 5.2
1: find nopt which minimizes Eq. 5.4
2: The same with the 2 to 16 lines of Algorithm 8
3: repeat
4: find a cluster Si in U with the smallest 1

|Si∪Ca|−|Ca|
5: Ca = Ca

⋃
Si

6: until Ca covers V
7: Identify Isolated cluster groups (ICGs) in Ca
8: Construct a graph GICG = (VICG, EICG):
9: Run MST algorithm on GICG and get T

10: for all edges in T do
11: Create an extra cluster Ce and add it to Ca
12: end for
Output: Ca

be sorted according to each neighbor’s own number of unclustered neighbors.

The nodes with fewer unclustered neighbors will do clustering or join other

clusters first. This is done by assigning each node’s execution of the algorithm

to a specific time slot.

Each node has only three roles during clustering: unclustered, CM (clus-

ter member) and CH. We illustrate the pseudo code based on the three roles

in Algorithm 10.

Each node will not execute the algorithm until the start of its own time

slot. The input p is the minimum cluster size constraint and nopt is the

calculated optimal cluster size. Once a CH decides to choose certain node

as CM, it will send a message reqch and the corresponding CM will send

acptch to acknowledge the selection. After the execution of the algorithm on

a node, an unclustered node will become CH. At the end of the algorithm,

each node will merge all its neighbors into one sorted list and assign time

149

A Thesis Submitted by Steven Lai

Algorithm 10 Distributed algorithm for clustering

Input: nopt, p, unclustered neighbors un, clustered neighbors cn (un and cn
are both sorted in increasing order according to the number of unclustered
neighbors)

1: if self is unclustered then
2: Self becomes CH
3: end if
4: if self is CH then
5: Select one node from cn as its member
6: if size(un) ≥ nopt then
7: Construct the cluster as size of nopt by selecting first nopt nodes from

un as CM
8: else if nopt > size(un) ≥ p then
9: Construct a cluster by selecting all nodes in un as CM

10: else
11: First construct a cluster by selecting all nodes in un as CM then

select more nodes from cn as CM until cluster size = p
12: end if
13: else if self is CM then
14: Broadcast a message to all neighbors saying the status is currently

CM.
15: end if
16: an = merge(un, cn)
17: for all n ∈ an that haven’t been assigned a time slot do
18: Assign time slot t[i] to n where i is the index of n in an
19: end for

150

Chapter5 Clustering for PSWare

slots. The duration of the time slot is large enough so that a CH can perform

the selection. t[i] is the ith time slot from the end of the current time slot. It

can be easily seen that the generated clusters from the distributed algorithm

can satisfy all the constraints.

Informally, it can be easily shown that the distributed algorithm is correct

as the solution it produces will satisfy all the constraints:

• Since all nodes will be given a time slot to run the algorithm, the

clusters will eventually cover the whole network.

• The clustering starts at the controller node and all the later CHs will

first select a CM from its cn. Therefore, all the clusters will be con-

nected.

• CH only selects CM within its one-hop neighbors, and the CHs will not

remove its role as CH so all clusters will be one-hop.

• For each CH, it will ensure the cluster size is at least p by selecting

additional CM until the cluster size reaches either p or nopt.

151

A Thesis Submitted by Steven Lai

152

Chapter 6

System Implementation

Since the goal of using middleware is to support application development. We

have implemented PSWare on Crossbow’s MicaZ sensor nodes with TinyOS

2.x. In this chapter we illustrate how PSWare can be implemented for dif-

ferent applications.

6.1 ITS Implementation Using PSWare

We use our middleware to implement a traffic management prototype system

in our testbed. The application architecture is shown in Figure 6.1. PSWare

acts as the interface between WSN and application. On the application side,

we have a web server where application-specific event templates are defined

there. In the traffic management, we have defined events such as traffic

jam and collision. Then the application users can subscribe the service by

making use of the event templates. They can further refine their application

requirements by providing parameters to the event templates.

153

A Thesis Submitted by Steven Lai

Figure 6.1: Demo application architecture

6.1.1 Pre-defined Events

In order for the users to use our middleware easier, we have provided some

pre-defined event templates. With adjustable parameters. Listing 6.1 shows

the most basic event - a car event in the system. All the attributes of the

event can be directly obtained from the sensor nodes. The user can further

add their own defined filters such as selecting only cars from certain road or

selecting a car with pre-defined ID.

Listing 6.1: Car event

1 Event CarEvent {

2 int roadID=System.roadID;

3 int carID=System.carID;

4 int posID=System.posID;

5 int speed=System.speed;

6 }

154

Chapter6 System Implementation

Based on the basic car event, we can further make use of it and define a

traffic jam event as shown in Listing 6.2. In the example, we defined a traffic

jam as having more 3 cars on a single road section.

Listing 6.2: Traffic jam event

1 Event TrafficJam {

2 int roadID=System.roadID;

3 int carNo=count(c);

4 } on {

5 CarEvent c;

6 } where {

7 roadID =1 &&

8 carNo >3

9 }

Another type of event is car collision event. It is defined in terms of two

car events. Listing 6.3 defines a collision event on a road if the two car’s

speed are above certain threshold and their distance are too close.

Listing 6.3: Car collision event

1 Event Collision {

2 int roadID1=c1.roadID;

3 } on {

4 CarEvent c1, c2;

5 } where {

6 c1.roadID ==c2.roadID &&

7 c1.speed -c2.speed >5 &&

8 c1.posID -c2.posID <2

9 }

155

A Thesis Submitted by Steven Lai

Car Event
Traffic Jam

Car Event

Car Event

No. of cars

Road ID

Parameters

(a) Traffic jam GUI

Car Event
Collision

Car Event

Car Event

Speed

Road ID

Parameters

Distance

Pos ID

Car ID

ParameterCar ID

Parameter

Car ID

Parameter

(b) Collision GUI

Figure 6.2: GUI Design

6.1.2 User Interface Design

We use a graphical user interface (GUI) to visualize the relations between

events. Users can also specify their parameters on the given event templates.

For example, for a traffic jam event in Figure 6.2a, user can further specify

the condition for a traffic jam such as the number of cars waiting on a road.

Similarly, for collision events 6.2b, the user can specify the condition for such

kind of events. Moreover, the user can also choose to monitor certain cars in

the system for the collision event. This can be done by adding a parameter

in the car events.

6.1.3 Customized Event Detection for ITS

Intelligent transportation system may cover many application areas includ-

ing collision avoidance, traffic light control and vehicle tracking. All these

applications require the detection of vehicles. In this paper, we consider the

scenario where sensor nodes are deployed as road side units (RSU) [54]. To

156

Chapter6 System Implementation

detect vehicles in such a model, the sensors should be waken up as the ve-

hicles are driving along the roads. The procedure for nodes’ wake-up and

forwarding is shown in Procedure 11. We use the following notations in the

procedure:

• V = {v1, v2 · · · }: the sensor nodes that come next on the road. For the

sensors on the road, ‖V ‖ = 1 but for the sensors next to the crossroads,

‖V ‖ > 1

• Vehicle events ei which are either detected locally or received from

another node.

Procedure 11 Event forwarding for ITS

1: if detected vehicle event ei then
2: for all vn ∈ V do
3: forward ei to vn
4: end for
5: end if
6: if received vehicle event ei from vm then
7: start data collection
8: if detected vehicle event ej then
9: select ei and ej for composite event detection

10: else
11: wait for event to expire
12: end if
13: stop data collection
14: end if

Except for the sentry node, nodes will not actively collect data until they

receive messages from others. Once the event from the previous node on the

road is received, it will be selected for composite event detection.

157

A Thesis Submitted by Steven Lai

ClusteringEvent
Subscription

Modal AnalysisPublishing

Figure 6.3: SHM Operation Flow

6.2 SHM Implementation Using PSWare

Apart from the ITS applications, we also implement an SHM prototype sys-

tem. As discussed in the previous chapter, our SHM system involves the

following steps:

1. Establish clusters in the network

2. Data sampling and processing to obtain the mode shape

3. Detect possible damage based on the mode shape

When developed using PSWare, the operation flow is shown in Figure

6.3. First, the event subscription will trigger the network to cluster. Then,

data will be sampled. During data sampling, we store the sampled data in an

internal buffer. Domain experts use modal analysis to obtain the mode shape.

Modal analysis is implemented as a special instruction by the domain experts.

Once the results are obtained, they will be published to the subscribers.

Since the modal analysis part requires a lot of domain knowledge and

is not the focus of this work, in this section, we primarily discuss how the

158

Chapter6 System Implementation

clustering algorithm can be integrated in PSWare. For our prototype system,

we have one sink node and subscriptions are disseminated through the sink

node. Such setup is similar to many existing SHM systems where the data

are transmitted to a monitoring station for damage detection.

6.2.1 Neighbor Information Exchange

Sensor nodes exchange information periodically. Each sensor node maintains

the following information:

• Its own clustering status. There are three possible values: UC (unclus-

tered), CH (cluster head) and CM (cluster member)

• Its neighbor table with clustering status: tablen

Each node vn periodically broadcasts messages msgn which is its tablen.

The procedure is shown in Procedure 12.

Procedure 12 tablen update
Input: vn → msgn

1: for each entry t′ in msgn do
2: if not exists t′ → fidn in tablen then
3: addTo(tablen, t

′)
4: end if
5: for each entry t in tablen do
6: if t→ status! = t′ → status then
7: t→ status! = t′ → status
8: end if
9: end for

10: end for
11: msgn ← tabler
12: periodically broadcast(msgn)

159

A Thesis Submitted by Steven Lai

6.2.2 Clustering

The actual clustering takes place after the subscription is received by an

individual sensor node. Internally, this is done by implementing the ’OPin-

stall’ instruction. This is a special instruction which will be invoked when a

sensor node receives new subscriptions. Please refer to Appendix for more

information on the instructions.

Procedure 13 Clustering in SHM

Input: OPinstall
1: if self is sink then
2: self.status = CH
3: else
4: self.status = UC
5: end if
6: while self.status == UC do
7: broadcast(msgn)
8: costn = MAX
9: for each entry t in tablen do

10: cost′n = 0
11: for each entry t′ in t.tablen do
12: if t′.status == UC then
13: cost′n = cost′n + 1
14: end if
15: end for
16: costn = min(cost′n, costn)
17: end for
18: run uc();
19: end while
20: if self.status == CM then
21: run cm();
22: else
23: run ch();
24: end if

The procedure is shown in Procedure 13. The procedure starts off from

the sink node selecting itself to be a cluster head. The rest of the nodes are at

160

Chapter6 System Implementation

first unclustered. Then each node will sort its neighbor’s list according to the

number of unclustered nodes that each neighbor has. This is to determine

the neighbors which are more ’isolated’ - those with most of its neighbors

already clustered. The rest of the part has already been described in the

previous chapter. Each node runs run uc(), run cm() and run ch() based on

their clustering status. These functions implement the distributed time-slot

based clustering algorithm discussed in the previous chapter.

161

A Thesis Submitted by Steven Lai

162

Chapter 7

System Evaluation

In this chapter, we analyze the performance of PSWare through analysis,

simulation and experiments.

7.1 Analysis on TED

Since TED is the essential algorithm used in our application, our analysis

mainly focuses on its energy efficiency and delay. As discussed in our problem

formulation, we message cost for measuring the energy efficiency in TED.

7.1.1 Analysis on Message Cost

In order to analyze the efficiency of TED without losing generality, we assume

that sensor nodes are randomly deployed in a circular area with radius R.

We use distance to approximately measure the number of hops in order to

calculate the message cost for event detection. There is no existing work

that utilizes event types to detect composite events and it is also very hard

163

A Thesis Submitted by Steven Lai

to aggregate events without knowing their actual relations. Therefore, as

a reference to compare the message cost, we use shortest path tree (SPT)

algorithm where events are collected at the sink because their definitions are

not considered for event detection.

We use a similar event model that has been introduced in Section 4.2

for analysis. Moreover, since the actual cost of TED will depend on event

probabilities. We include such information in our model as well. Suppose

we have two event types e1 and e2 which are the two sub-event types for a

composite event e3 (i.e. e1re2 = e3, r ∈ R). The probability for e1 and e2 to

occur is P (e1) = p1 and P (e2) = p2 respectively. The probability for e3 to

occur when both e1 and e2 have occurred is P (e3|e1, e2) = p3.

In TED, each node periodically broadcasts its routes to the fusion tables

so that others can know how to reach the fusion points. Such cost is similar

to many existing routing protocols in WSN such as [101] where each node

periodically broadcasts its route metrics to the sink for the purpose of link

quality evaluation. Therefore, in TED, we mainly consider three types of

messages which will be used:

• The overhead for initial event forwarding: costf

• The overhead for the fusion points to send feedback: costb

• The message cost for detecting the actual composite events: costd

Let the average distance between two random nodes in the square region

be D and the average distance between a node and sink be d.

The cost for initial event forwarding will be: costf = 2 × D. In order

to avoid the extra cost for building up the overlay for each fusion point to

164

Chapter7 System Evaluation

communicate with individual sensor nodes, the fusion nodes simply flood the

feedback in the network. Therefore, the cost for the fusion points to send

feedback will be: costb = D×(|N |−2). The cost for detecting each individual

event is: costd = D. The total expected message cost using TED over a time

period T is:

costTED

=costf + costb + T (p1costd + p2costd + p3p2p1d)

=D|N |+ TD(p1 + p2) + Tdp1p2p3

Here T is the expiren used in tablee. The total expected message cost

using SPT over a time period T is:

costSPT = d× T (p1 + p2)

To see when TED will cost less than SPT, we have:

costTED < costSPT

D|N |+ TD(p1 + p2) + Tdp1p2p3 < dT (p1 + p2)

T ((p1 + p2)(d−D)− dp1p2p3)) > |N |

The inequality can be viewed as a trade-off between message cost saved

by TED and the overhead. Simply speaking, TED can reduce message cost

when:

• Fusion points are closer to event source

165

A Thesis Submitted by Steven Lai

• The probability of primitive event is high while the probability of the

composite event is lower.

• Each time after the tablee is constructed, it used for a relatively long

period of T

7.1.2 Analysis on Delay

In Algorithm 7, if there is no local match, the fusion point will wait for some

time to see if there is any other events forwarded from other nodes. In this

section, we study the delay of TED.

Theorem 5. Suppose the sensor nodes are randomly deployed in a circular

area where sink is located at the center of the network, the events have a time

span of t, fusion points are randomly distributed with an average distance to

other nodes of d and the sensor nodes forward the events at the speed of v.

Compared with SPT in the worst case, TED will introduce a delay of:

delayTED − delaySPT =
d

v
+ t

Proof. Let K be the average distance from an event to the sink. The delay

of SPT will be delaySPT = K
v

. To calculate the delay of the worst case in

TED, we first need to calculate when TED will eventually forward the event

to the sink. According to Algorithm 7, an event fusion point will forward

the event if the sink is closer than any other fusion points. Suppose after k

fusion points, the event will be forwarded to the sink. Then, we can get the

166

Chapter7 System Evaluation

following.

kd ≥ K

k ≥ 2

R

2

π

∫ π

0

2cos(
θ

2
)sin(θ)[θ − sin(θ)]dθ

k ≥ 128R

45π
× 2

R

k ≥ 1.81

Therefore, we have:

delayTED = (
d

v
+ t)(k − 1) +

D

v

delayTED − delaySPT = (
d

v
+ t)(k − 1)

=
d

v
+ t

167

A Thesis Submitted by Steven Lai

(a) Possible fusion points (b) Communication range

Figure 7.1: Simulation environment

We have conducted both simulation and experiments on PSWare to evalu-

ate its performance. The simulation is used mainly to validate our analytical

results on TED while the experiments are done according to some real WSN-

based applications in order to demonstrate the effectiveness and efficiency of

PSWare.

7.2 Simulation

We use simulation to validate our analytical results. Our simulation is based

on TOSSIM [65]. We have 127× 127 sensor nodes placed on a square space.

We use both even distribution and random distribution of the fusion points.

Similar to our analysis, we divide the whole area into small squares and de-

ploy equal number of fusion points for each square. Each sensor node is able

to communicate with its nearby neighbors. To simulate the event detection,

168

Chapter7 System Evaluation

0 10 20 30 40 50 60
50

60

70

80

90

100

110

120

Event Distance

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event distance

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.2: Average event size: 5 nodes

we first randomly generate event sources in the network. Then based on

these event sources, we further generate more sub-events that have relations

and let the sensor node detect the composite events. We study the perfor-

mance of TED under different parameters such as event distribution, event

probability, and deployment approach. In the figures, TED-R represents dis-

tributed TED with random fusion point deployment and TED-E represents

distributed TED with even fusion point deployment.

Similar to our analysis, we use SPT as a reference to compare with TED

so as to see how much cost we can save if we detect the events using their

relations. For simplicity, we assume in SPT approach, the events can always

be aggregated at the shared paths. We study the performance of TED under

different parameters such as fusion point deployment, event distance, event

size and event probability.

To obtain more accurate results, we repeat the simulation for 10,000 times

for each of the graph we discuss in the following sections. For each set of

data, the standard deviation is less than 0.5. We measure the simulation

169

A Thesis Submitted by Steven Lai

0 10 20 30 40 50 60
50

60

70

80

90

100

110

120

Event Distance

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event distance

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.3: Average event size: 10 nodes

results with three metrics:

• Event distance: the average number of hops between two events

• Event size: the average number of nodes involved in detecting events

• Event probability: the average probability for an event to happen

For each simulation, we fix two parameters to demonstrate the impact of

the other parameter to overall message cost.

7.2.1 Impact of Event Distance

The first parameter we study is the distance between events. More precisely,

we study the average event distance where it is defined as the average of

all the distance between any two events in the network. Figure 7.2 shows

the result when average event distance equals to 30. As we can see, SPT

introduces more message cost. Among the different versions of TED, TED-C

has highest message cost while TED-E has the lowest. In terms of the day,

170

Chapter7 System Evaluation

0 10 20 30 40 50 60
50

60

70

80

90

100

110

120

Event Distance

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event distance

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.4: Average event size: 15 nodes

TED-C introduces most delay because the events will have to be collected

in a centralized fashion first. The rest of the three have similar delay with

SPT slightly lower than the others. Delay increases naturally as the distance

increases. Such results agree with our analysis.

The next set of simulation results are shown in Figure 7.3. In this figure,

we can see as the event distance becomes greater, the average message cost

has also increased accordingly. This is inevitable because the nodes will have

relay the events for more number of hops in order to detect the composite

events. In terms of the delay, the results are similar to those in the previous

set. Note that the difference between this set of simulation and the previous

set is the event size. We will get into more details about the impact of event

size in the next section.

The last set of results for event distance is shown in Figure 7.4. In this

figure, the event size is set to be 15 nodes. Such scenario should cover a lot of

WSN applications where the events need to be detected by multiple sensor

nodes collaboratively. As we can see from the figure, when the event size

171

A Thesis Submitted by Steven Lai

0 5 10 15 20 25 30
50

60

70

80

90

100

110

120

Event Size

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

5

10

15

20

25

30

Event size

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.5: Average event distance: 30

becomes larger, the results have also become more stable. This is because

as the size becomes larger, the cost between different nodes is amortized. In

terms of delay, it’s still quite similar to the previous results and event size

do not have a significant impact on it.

In summary, as we can see from all the figures, TED can reduce message

cost in comparison with SPT. However, among all the simulation parameters

as we will see in the following sections, event distance does not seem to be a

critical factor where TED can save much cost. In terms of the delay, longer

event distance will introduce longer delay to all the algorithms because the

nodes simply need to use more hops to reach the sink. In addition, centralized

TED introduces longer delay than others because it needs to gather all the

events and disseminate the event fusion information to the network.

7.2.2 Impact of Event Size

The next factor we are going to study is event size. Event size is defined as

the number of nodes involved in detecting a particular event. For composite

172

Chapter7 System Evaluation

0 5 10 15 20 25 30
50

60

70

80

90

100

110

120

Event Size

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

5

10

15

20

25

30

Event size

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.6: Average event distance: 40

events, it represents all nodes in detecting their sub-events. During composite

event detection, sub-events may need to be forwarded to the fusion points

for further detection. The detection cost, therefore, also includes the cost for

forwarding the events. This factor is interesting to our simulation because

different event size may have different effect on the number of nodes that are

needed to detect more than one events. It can, therefore, affect the choice

of event fusion points since sometimes it may be better to choose the nodes

that can detect multiple events as the fusion points.

The first set of results are displayed in Figure 7.5. Similarly, TED has

lower message cost than SPT while SPT has smaller delay in comparison

with distributed TED.

The next set of results are shown in Figure 7.6. Since based on our

previous results, event distance is not a major factor for TED to message

cost, we set it to a constant value of 40 in this simulation. We use such large

value so that events will have less overlapping. Otherwise, if all events have

an overlapping, the fusion point will eventually be selected in the overlapping

173

A Thesis Submitted by Steven Lai

0 5 10 15 20 25 30
50

60

70

80

90

100

110

120

Event Size

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

5

10

15

20

25

30

Event size

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.7: Average event distance: 50

area and this reduces TED to SPT. Since the event size has increased from 5

to 10 nodes, we also need to decide which nodes out of all the event detection

nodes will be used as the decision maker for that event. In order to have a

reasonably easy function to calculate the cost without losing generality, we

choose the node at the geographical center of the event to be the detector

node.

As we can see, SPT still incurs the highest cost. Among all the TED vari-

ations, the centralized version has relatively higher cost while the distributed

TED with even fusion point deployment has the lowest cost. This is because

the centralized version will introduce control overhead and the even fusion

point deployment strategy guarantees that each event can find a fusion point

within certain number of hops. The results for delay is also similar to the

previous results so the event distance will not have a significant impact on

event delay either.

Our last set of results are shown in Figure 7.7. In this set of results,

we set the average event size to be 15 nodes. Note that this is already a

174

Chapter7 System Evaluation

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.8: Event size: 5, distance: 10

quite large event in comparison with most primitive events where only one

node is used for detection. It may be suitable for many applications where

the aggregate functions such as average or sum need to be evaluated. The

results are similar to the previous ones in the sense that SPT has the highest

message cost while TED-E has the lowest. However, this set of results are

more stable and consistent than the previous set. This is because as the event

size becomes larger, it is easier to cover more number of nodes and therefore

having more overlapped ones. TED may make use of such overlapped nodes

to select fusion points. Therefore, TED will have a wider choice as the event

size becomes larger and the results will become more stable. The delay, on

the other hand, is still quite consistent with the previous results.

In summary, according to all the results shown in this section, we can

draw conclusion that event size is not a major factor that will decide the

amount of message cost that TED could save. While TED does perform

better than SPT in respect of event size and event distance, we still need to

study more factor to see if it can perform even better.

175

A Thesis Submitted by Steven Lai

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.9: Event size: 5, distance: 20

7.2.3 Impact of Event Probability

Since we have studied two parameters in our previous sections, we will study

the last factor in accordance to the previous factors we have studied and see

how it can affect the performance of TED. Figure 7.8 shows our first set of

results. Our first set of results look promising since all variations of TED

saves significant amount of message cost than SPT and for some cases, the

delay for TED is even lower than that of SPT.

Our second set of results are shown in Figure 7.9. Since we have already

concluded in our previous section that event size is not a major factor that

will affect the performance of TED, in this set of results, we fix the event

size while increasing the event distance for each set. Then within each set,

we use the event probability as the X-axis to have a more direct view of the

relation between event probability and energy cost.

As shown in the figure, SPT still has the highest message cost. For TED,

the message cost is particular low while the event probability is less than

176

Chapter7 System Evaluation

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.10: Event size: 5, distance: 30

50%. This is because with TED, we can effectively filter the primitive events

if they are not going to lead to higher level of composite events. Such filtering

also has an impact on the delay. Unlike SPT where all the events must be

forwarded to the sink to decide if a particular composite does not happen,

TED can filter out such composite events in the network.

Our third set of results are shown in Figure 7.10. This set of results are

consistent with the previous two sets. For SPT, the message cost does not

change much with the event probability since all the data will be collected

by the sink regardless of the event probability. For all versions of TED, the

event detection cost is below 40 when the event probability is 20%. This is

because with such a low probability, many of the primitive events have been

filtered before they get a chance to be fused for higher level composite event

detection.

Among the three variations of TED, we can see TED-C has slightly higher

message cost than the other two. This is because of the overhead introduced

in the centralized approach where the event fusion points need to be selected

177

A Thesis Submitted by Steven Lai

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.11: Event distance: 20, size: 10

by the sink node. For the distributed variations, TED-R and TED-E have

similar performance. TED-E has slightly lower message cost because of its

even distribution. Each sensor nodes may find a fusion point in a bounded

distance. In terms of the delay, while centralized TED still has the highest

delay, distributed TED will introduce less delay when the events have lower

probability and can be filtered in the network.

In our previous results. We studied the impact event probability by fixing

event size while increasing the event distance. The fixed event size was set to

be 5 which is small enough to be considered as atomic event size. As we have

also studied the impact of event size in our previous sections, for the sake of

completeness, we also perform another three set of simulations to study the

event probability while fixing the event distance.

Since our network size is 127 by 127, we choose the fixed average event

distance to be 20. This is around 1
6

of the network dimension which is proba-

bly representative enough for many WSN-based application. Our fourth set

of results are presented in 7.11. In the figure, we can also see TED can save

178

Chapter7 System Evaluation

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.12: Event distance: 20, size: 15

significant amount of message cost in comparison with SPT while introducing

only marginal delay.

Our fifth set of results is shown in Figure 7.12. On the X-axis, the event

probability spans from 20% to 60%. Note that for composite events, this is

a conditional probability when all the sub-events happen. For instance, if a

composite event e3 comes from two sub-events e1 and e2. Then we have the

following:

P (e3) = P (e1)× P (e2)× P (e3|e1, e2)

Our final set of results is shown in Figure 7.13. Similar to our previous

sets of results, TED can save around 50% - 60% of energy cost compared

with SPT while the delay has not much change.

In summary, we can find our simulation results agree with our analyti-

cal results. The message cost of TED is linearly proportional to the event

probability while the message cost of SPT has little difference in regard to

179

A Thesis Submitted by Steven Lai

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Event Probability

M
es

sa
ge

 C
os

t

SPT
TED−C
TED−R
TED−E

(a) Cost

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Event probablity

D
el

ay

SPT
TED−C
TED−R
TED−E

(b) Delay

Figure 7.13: Event distance: 20, size: 20

probability changes. This characteristic will make TED especially effective

for applications where the primitive events happen very frequently while the

composite events happen rarely. We can also see that TED can help to reduce

the delay when the event probability is low.

7.3 Experiments

As described in Section 7.1, the performance of TED heavily depends on the

actual WSN applications because different applications may have different

very different event definitions. In this section, we study some of thes WSN

applications and find out how well TED performs.

We have implemented TED on MicaZ based on the existing middleware

layer as in [60]. Similar to Section 7.1, we implemented a module that does

opportunistic data aggregation based on the existing routing protocol pro-

vided by TinyOS for comparison.

We compare the performance using the following metrics:

180

Chapter7 System Evaluation

(a) The sensor node (b) The light sensor

Figure 7.14: Car park sensor platform

• Message cost: this is obtained by setting up a counter inside the sensor

node. The counter will be written into flash after the experiment so

that we can retrieve it.

• Event detection delay: we measure the time between the subscription

is disseminated and the event is notified.

7.3.1 Application Case One: Car Park

Our first application case is an intelligent car park [103]. We deployed some

micaz sensor nodes for the application. For simplicity, we use light sensor to

detect the presence of a vehicle. For better communication, the sensor nodes

are attached close to the ceiling instead of on the ground. The light sensor on

each node is connected through an extended cable as shown in Figure 7.14.

The floor plan and deployment of the sensor nodes is shown in Figure

7.15. The arrows represent the driving direction of the cars. Each letter ’p’

represents a parking slot. In such a system, the management is interested

in the number of park spaces and the location of them [103]. The primitive

181

A Thesis Submitted by Steven Lai

8 4 3 5 2 9

4 10 7 6

700 cm
60

0
cm

19500mm

0

12 1113

14

Figure 7.15: Car park sensor deployment

events for such a system will be the availability of individual car park spaces.

Based on the primitive event, if we want to get notified when the parking

spaces near the exit become available, then we just need to define composite

events which locate the spaces with certain IDs. Th event definitions are

shown in Listing 7.1. Here, the composite event takes two primitive events

for parking space 1 and 2 which are close to the exit. The experimental results

are shown in Figure 7.16. In this application, we primarily consider only the

message costs because the delay isn’t that important in such a system. The

message cost is highest during rush hour when there are a lot of cars entering

and leaving the car park. The message cost saved by TED is around 10-20%

regardless of the total messages. Note that for both figures, since we did the

experiments in the morning, there’s a spike in the message cost during the

rush hour.

Listing 7.1: Event definition for a car park

1 Event ParkSpaceEvent {

182

Chapter7 System Evaluation

6 7 8 9 10 11 12
0

5

10

15

20

25

Time

M
es

sa
ge

 C
os

t

Opportunistic
TED

(a) With three fusion points

6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Time

D
el

ay

Opportunistic
TED

(b) With four fusion points

Figure 7.16: Car park experiment results

2 int id=System.id;

3 int time=System.time;

4 int light=System.light;

5 } where {

6 light >THRESHOLD

7 }

8 Event CarParkEvent {

9 int id=System.id;

10 } on {

11 ParkSpaceEvent e1 , e2;

12 } where {

13 e1.id==1 ||

14 e2.id==2 ||

15 e1.time -e2.time <10

16 }

183

A Thesis Submitted by Steven Lai

(a) Our iTranSNet testbed (b) The model cars for iTranSNet testbed

Figure 7.17: Lab testbed for transportation systems

7.3.2 Application Case Two: Transportation Systems

Apart from intelligent car park, another related application is WSN-based

intelligent transportation system [62]. We also use the Micaz nodes to deploy

such an application using our TED. Before we do the field test, we first

perform some simple test on our lab testbed, iTranSNet. Figure 7.17 shows

our testbed setup. In such testbed, we mainly use the following components

to emulate a transportation system:

• Programmable model cars with UART interface to interact with MicaZ.

• Roads with light sensors to detect the presence of the model cars.

• Other programmable auxiliary facilities such as lamps and traffic lights.

Each road has magnetic strips underneath so that cars can be controlled

and follow the road. In addition, IC cards have been installed near the

intersections for each road. Each model car is equipped with a card reader

so that when it comes close to the intersection, the program can make a

decision on whether the car needs to turn or not.

184

Chapter7 System Evaluation

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Time

M
es

sa
ge

 C
os

t

SPT
PSWare

(a) Message cost

0 1 2 3 4 5 6
20

25

30

35

40

45

50

55

60

Time

D
el

ay

SPT
PSWare

(b) Delay

Figure 7.18: Experimental results on lab testbed: iTranSNet

In order to test different scenarios, we defined different event types for

potentially different ITS applications. Listing 7.2 shows one of the most basic

events for detecting a single vehicle.

Listing 7.2: Event definition for detecting a single vehicle

1 Event CarEvent {

2 int time=System.time;

3 int magnetic=System.magnetic;

4 int location=System.location;

5 } where {

6 magnetic >THRESHOLD

7 }

Listing 7.3 defines an event for detecting an over speeding vehicle.

Listing 7.3: Event definition for over speeding

1 Event SpeedEvent {

2 int speed=(e1.location -e2.location)/(e1.time -e2.time);

3 } on {

185

A Thesis Submitted by Steven Lai

4 CarEvent e1, e2;

5 } where {

6 e1.time >e2.time &&

7 speed >THRESHOLD

8 }

Listing 7.4 defines an event for detecting a traffic jam.

Listing 7.4: Event definition for traffic jam

1 Event TrafficJam {

2 int count=count(e1);

3 int roadID=e1.roadID;

4 } on {

5 CarEvent e1;

6 } where {

7 roadID == CERTAIN_ROAD &&

8 count >THRESHOLD

9 }

Different from the car park application, such applications are more delay

sensitive. So we also measured the time delay for the event detection. We

performed the testing on all the event types defined. The results are presented

in Figure 7.18. The experimental results basically agree with the simulation

results and show PSWare can save energy without too much delay.

After PSWare passes lab testing, we further deployed it in the real envi-

ronment. The deployment in the real environment is shown in Figure 7.19.

The event definitions are the same as those we have used for our indoor

test. The results are shown in Figure 7.20. Similar to the car park ap-

186

Chapter7 System Evaluation

(a) Road side sensor nodes (b) Sensor nodes on the lamp

Figure 7.19: Sensor nodes for transportation systems

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

20

Time

M
es

sa
ge

 C
os

t

Opportunistic
TED

(a) Message cost

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

20

Time

D
el

ay

Opportunistic
TED

(b) Delay

Figure 7.20: Experimental results on the real roads

plication, TED can save 10-20% energy while the delay is only a couple of

milliseconds.

7.3.3 Application Case Three: Indoor Monitoring

Our third application is related to smart building. We consider the applica-

tion scenario where the sensor nodes are deployed in a building so that the

temperature can be monitored. Such an application can probably be useful

187

A Thesis Submitted by Steven Lai

for certain types of context aware pervasive applications. For example, the

air conditioner can be adjusted if several adjacent rooms’ temperature rises

too fast. The primitive and composite event definitions are shown in Listing

7.5.

Listing 7.5: Event definition for indoor monitoring

1 Event SingleTemp {

2 int id=System.id;

3 int temperature=System.temperature;

4 } where {

5 temperature >THRESHOLD

6 }

7 Event CompositeTemp {

8 } on {

9 SingleTemp e1, e2, e3;

10 } where {

11 e1.id==1 &&

12 e2.id==2 &&

13 e3.id==4

14 }

The primitive event simply tests if the temperature passes certain thresh-

old and the composite event is the conjunction of several primitive events.

We deployed the some Micaz nodes in different rooms in our building as

shown in Figure 7.21. In the figure, each circle represents a sensor node.

The experimental results is shown in Figure 7.20. The results show that

TED can save the message cost by 10-20%. Also note that in order to

emulate certain events such as fire, we put some sensors on the heater during

188

Chapter7 System Evaluation

Figure 7.21: Deployment of the senosr nodes for indoor monitoring

the experiment so there’s a spike in each figure.

7.3.4 Application Case Four: SHM

Our final application is WSN-based Structural Health Monitoring (SHM)

system which was described in Chapter 5. The objective of such system

is to detect damages on structures such as buildings and bridges if they

occur. Event detection is important in these applications because the SHM

sensors will introduce high energy consumption during damage detection. It

is therefore more desirable to wake them up only upon the occurrence of

certain events [49].

Figure 7.23a shows our WSN-SHM testbed. In our experiment, we defined

a scenario where the sensor nodes will start to collect the data when a certain

vibration pattern is detected. The vibration is detected if the one sensor on

the top and another one on the bottom of the model read the vibration data

that satisfy certain criteria. The event definition is shown in Listing 7.6.

Listing 7.6: Event definition for SHM

1 Event Vibration {

189

A Thesis Submitted by Steven Lai

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

Time

M
es

sa
ge

 C
os

t

Opportunistic
TED

(a) With 2 fusion points

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

Time

D
el

ay

Opportunistic
TED

(b) With 3 fusion points

Figure 7.22: Experiments for temperature monitoring

2 data=System.Vibration;

3 } where {

4 data >THRESHOLD1

5 }

6 Event CompVibration {

7 } on {

8 Vibration e1 and

9 Vibration e2

10 } where {

11 e1.location==’top ’ &&

12 e2.location==’bottom ’ &&

13 e1.data -e2.data >THRESHOLD2

14 }

With the help of our testbed, we can manually generate events by hitting

the model in our testbed. Similar to our simulation, we implemented a näıve

event detection method where the nodes simply use the existing routings

provided by TinyOS [31] and detect events opportunistically. We implement

190

Chapter7 System Evaluation

(a) The testbed

2θ

......

... ...

x

(b) Parameters used in the experiments

Figure 7.23: PSWare experiment setup

two modules for both our TED and the opportunistic filtering where only the

primitive events are filtered. In order to create multi-hop communication, we

adjust the nodes communication range so that they can only communicate

with nearby neighbors. For TED, we use tested both the centralized and the

distributed versions and for the distributed version. For TED, we have the

parameters set as shown in Figure 7.23b.

Figure 7.24 shows all our experimental results. In addition to energy

efficiency, we also studied delay. We calculate the delay for TED as the

duration between the time that näıve approach detects the event and the

time that TED detects them. This is because näıve approach sends all the

detected primitive events directly to the sink and the delay is only introduced

by the multi-hop routing latency while both TED have additional delay in

191

A Thesis Submitted by Steven Lai

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Event Probability

M
es

sa
ge

 C
os

t

Naive
TED

(a) Message cost

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Event Probability

D
el

ay

TED
Naive

(b) Delay

Figure 7.24: Experimental results for SHM

detecting the events. The experimental results are expected because TED

slightly introduces more delay when doing the fusion points selection. The

results on message cost is similar to our simulations.

192

Chapter 8

Conclusion and Future

Directions

8.1 Conclusion

In this work, we presented PSWare, a pub/sub middleware for WSN sup-

porting composite events. We first described our research motivation for

PSWare. Because of the common requirements in WSN-based applications

for event detection, a middleware can significantly save the application devel-

opers’ programming effort. To develop efficient PSWare, several research and

engineering issues must be addressed. These issues include middleware ab-

straction, event definition, distributed composite event detection and system

design.

We reviewed a lot of existing works that are related to the issues in

our middleware. These existing works span several areas such as WSN-

based middleware, macroprogramming in WSN, event based systems and

193

A Thesis Submitted by Steven Lai

data aggregation for WSN. For each of the area, we categorized the existing

works and compared their differences. We summarized the existing works

and find out the room for improvement in PSWare.

PSWare was designed with all the above issues in mind. It uses a flexible

architecture where different types of composite event detection algorithms

can be easily integrated into it. Each layer represents the solution for a

particular issue that we have found out.

Apart from the engineering issues, we did an extensive study on the re-

search issues. The first is to study is the problem of general composite event

detection for WSN. We proposed a novel distributed composite event detec-

tion algorithm, TED, for WSN. We proved that the composite event detection

problem is NP-complete. Therefore, TED consists of a set of heuristic algo-

rithms to forward the events and select fusion points. We have derived some

important theorems regarding to the performance of TED.

The second research issue is clustering in our middleware. The issue was

raised from one of the PSWare enabled application - SHM. We formulated

the problem and proved it to be NP-complete. We proposed both centralized

and distributed solutions to the clustering problem.

We have implemented our algorithms and PSWare in the real hardware

sensor platform. We described our implementation approach. In addition, we

built up some real WSN-based applications using PSWare. We evaluated the

performance of PSWare through analysis, simulation and experiments. We

compared the performance of PSWare with opportunistic data aggregation

where events are aggregated without considering their event relations. By

making use of the event fusion points, TED can detect composite events

194

Chapter8 Conclusion and Future Directions

in an energy efficient fashion. Many WSN-based applications can be easily

developed with high efficiency.

8.2 Future Directions

Though PSWare has achieved good performance in event detection, there

is still room for improvement. First, in PSWare, we have addressed the

event definition and detection problems. However, subscription dissemina-

tion problem may also be an interesting issue. In this work, we haven’t

considered subscription dissemination problem because all the subscriptions

are disseminated into the entire network. We think it is possible that further

energy saving could be achieved if we jointly consider subscription dissem-

ination and event detection. The system may select the event detectors

according to the event subscriptions. Individual sensor nodes may order

the subscriptions for better event fusion results. They may even partially

evaluate the subscriptions to help selecting fusion points.

Another direction in the research issue is to consider the network dynam-

ics. Currently, our fusion points selection algorithms and clustering algo-

rithms are relatively static. Re-selection may be performed once the energy

efficiency drops to certain threshold. This can be improved if the sensor

nodes can perform re-selection or partial re-selection according to more cri-

teria. Such problems may also be interesting optimization problems and are

worth study.

Apart from research issues, there are other directions that may be further

worked on. For example, we can deploy PSWare in a larger scaled application

195

A Thesis Submitted by Steven Lai

scenario. Our current experiments in the real environments are still quite

small. We can, for instance, deploy the senor nodes on a real bridge for SHM

applications or deploy the sensor nodes in the real transportation networks

with the traffic lights to make our results more convincing.

196

References

[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, S. George, L. Gu,

T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru,

and A. Wood. Envirotrack: Towards an environmental computing

paradigm for distributed sensor networks. In Proceedings of the 24th In-

ternational Conference on Distributed Computing Systems, pages 582–

589, 2004.

[2] Hüseyin Akca and Hervé Brönnimann. A new deterministic data

aggregation method for wireless sensor networks. Signal Processing,

87(12):2965–2977, December 2007.

[3] Lan F. Akyildiz, Welljan Su, Yogesh Sankarasubramaniam, and Erdal

Cayirci. A survey on sensor networks. IEEE Communications Maga-

zine, 40(8):102–114, August 2002.

[4] Guruduth Banavar, Tushar Ch, Bodhi Mukherjee, Jay Nagarajarao,

Robert E. Strom, and Daniel C. Sturman. An efficient multicast proto-

col for content-based publish-subscribe systems. In Proceedings of the

19th IEEE International Conference on Distributed Computing Sys-

tems, pages 262–272, June 1999.

197

A Thesis Submitted by Steven Lai

[5] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and

Daniel C. Sturman. A case for message oriented middleware. In Pro-

ceedings of the 13th International Symposium on Distributed Comput-

ing, pages 1–18, September 1999.

[6] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control

in multi-hop wireless networks. In IEEE INFOCOM, volume 2, pages

1028–1037. Citeseer, 2001.

[7] Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowel Du, T.W. Danny

Kim, , Blng Zhou, and Emin Gr(̈u)n Sirer. On the need for system-

level support for ad hoc and sensor networks. ACM SIGOPS Operating

Systems Review, 36(2):1–5, April 2002.

[8] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote pro-

cedure calls. ACM Transactions on Computer Systems, 2(1):39–59,

February 1984.

[9] Urs Bischoff and Gerd Kortuem. A state-based programming model

and system for wireless sensor networks. In Proceedings of the Fifth

Annual IEEE International Conference on Pervasive Computing and

Communications Workshops, pages 261–266, March 2007.

[10] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards

sensor database systems. In Proceedings of the Second International

Conference on Mobile Data Management, pages 3–14, 2001.

[11] Athanassios Boulis, Chih chieh Han, and Mani B. Srivastava. Design

and implementation of a framework for efficient and programmable

198

Chapter8 References

sensor networks. In Proceedings of the 1st International Conference on

Mobile Systems, Applications and Service, pages 187–200, 2003.

[12] Francçis Bry and Michael Eckert. A high-level query language for

events. In Proceedings of the IEEE Services Computing Workshops,

pages 31–38, 2006.

[13] Jiannong Cao, Hejun Wu, Xuefeng Liu, and Yi Lai. isensnet: an in-

frastructure for research and development in wireless sensor networks.

Frontiers of Computer Science in China, 4(3):339–353, 2010.

[14] Nicholas Carriero and David Gelernter. The s/net’s linda kernel. ACM

Transactions on Computer Systems, 4(2):110–129, May 1986.

[15] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-

sign and evaluation of a wide-area event notification service. ACM

Transactions on Computer Systems, 19(3):332–383, August 2001.

[16] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Com-

posite events for active databases: Semantics, contexts and detection.

In Proceedings of the 20th International Conference on Very Large

Databases, pages 606–617, 1994.

[17] Yuanzhu Peter Chen, Arthur L. Liestman, and Jiangchuan Liu. A hier-

archical energy-efficient framework for data aggregation in wireless sen-

sor networks. IEEE Transactions on Vehicular Technology, 55(3):789–

796, May 2006.

199

A Thesis Submitted by Steven Lai

[18] Simon Courtenage. Specifying and detecting composite events in

content-based publish/subscribe systems. In Proceedings of the 22nd

International Conference on Distributed Computing Systems, pages

602–610, 2002.

[19] Crossbow. Crossbow website. http://www.crossbow.com.

[20] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based

infrastructure to develop complex distributed systems. In Proceedings

of the 20th International Conference on Software Engineering, pages

261–270, 1998.

[21] Carlo Curino, Matteo Giani, Marco Giorgetta, and Alessandro Giusti.

Tinylime: Bridging mobile and sensor networks through middleware. In

Proceedings of the Third IEEE International Conference on Pervasive

Computing and Communications, pages 61–72, March 2005.

[22] Conal Elliott and Paul Hudak. Functional reactive animation. In Pro-

ceedings of the Second ACM SIGPLAN International Conference on

Functional Programming, pages 263–273, 1997.

[23] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. The many faces of publish/subscribe. ACM Com-

puting Surveys, 35(2):114–131, June 2003.

[24] Kai-Wei Fan, Sha Liu, and Prasun Sinha. Scalable data aggregation

for dynamic events in sensor networks. In Proceedings of the 4th in-

ternational conference on Embedded networked sensor systems, pages

181–194, November 2006.

200

http://www.crossbow.com

Chapter8 References

[25] Kai-Wei Fan, Sha Liu, and Prasun Sinha. Structure-free data aggre-

gation in sensor networks. IEEE Transactions on Mobile Computing,

6(8):929–942, August 2007.

[26] C.R. Farrar and K. Worden. An introduction to structural health mon-

itoring. Philosophical Transactions of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences, 365(1851):303, 2007.

[27] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla:

A mobile agent middleware for self-adaptive wireless sensor networks.

ACM Transactions Autonomous Adaptive System Special Issue on Self-

Adaptive and Self-Organizing Wireless Networking Systems, 4(3):1–26,

July 2009.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-

sides. Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, 1994.

[29] Jie Gao, Leonidas Guibas, Nikola Milosavljevic, and John Hershberger.

Sparse data aggregation in sensor networks. In Proceedings of the 6th

international conference on Information processing in sensor networks,

pages 430–439, May 2007.

[30] Stella Gatziu and Klaus R. Dittrich. Events in an active object-oriented

database system. In Proceedings of the first International Workshop on

Rules in Database Systems, 1993.

[31] David Gay, Matt Welsh, Philip Levis, Eric Brewer, Robert von Behren,

and David Culler. The nesc language: A holistic approach to networked

201

A Thesis Submitted by Steven Lai

embedded systems. In Proceedings of Programming Language Design

and Implementation, pages 1–11, 2003.

[32] Andreas Geppert and Dimitrios Tombros. Event-based distributed

workflow execution with eve. Technical report, University of Zurich,

1996.

[33] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,

and Philip Levis. Collection tree protocol. In Proceedings of the 7th

ACM Conference on Embedded Networked Sensor Systems, pages 1–14,

2009.

[34] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor network

application construction kit (snack). In Proceedings of the 2nd Inter-

national Conference on Embedded Networked Sensor Systems, pages

69–80, 2004.

[35] Robert E. Gruber, Balachander Krishnamurthy, and Euthimios Pana-

gos. The architecture of the ready event notification service. In Proceed-

ings of the 19th IEEE International Conference on Distributed Com-

puting Systems Middleware Workshop, 1999.

[36] Chao Gui and Prasant Mohapatra. Power conservation and quality

of surveillance in target tracking sensor networks. In Proceedings of

the 10th Annual International Conference on Mobile Computing and

Networking, pages 129–143, November 2004.

[37] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan.

Macro-programming wireless sensor networks using kairos. In Proceed-

202

Chapter8 References

ings of the International Conference Distributed Computing in Sensor

Systems, pages 126–140, June/July 2005.

[38] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El

Abbadi. Meghdoot: Content-based publish/subscribe over p2p net-

works. In Proceedings of the 5th ACM/IFIP/USENIX International

Conference on Middleware, pages 254–273, 2004.

[39] Salem Hadim and Nader Mohamed. Middleware: Middleware chal-

lenges and approaches for wireless sensor networks. IEEE Distributed

Systems Online, 7(3):1–1, March 2006.

[40] Tian He, Brian M. Blum, John A Stankovic, and Tarek Abdelzaher.

Aida: Adaptive application independent data aggregation in wireless

sensor networks. ACM Transactions on Embedded Computing System,

Special issue on Dynamically Adaptable Embedded Systems, 3(2):426–

457, May 2003.

[41] Tian He, Lin Gu, Liqian Luo, Ting Yan, John A. Stankovic, and

Sang H. Son. An overview of data aggregation architecture for real-

time tracking with sensor networks. In 20th International Parallel and

Distributed Processing Symposium, pages 1–8, April 2006.

[42] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh

Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient

wireless sensor networks with low-level naming. In Proceedings of the

Eighteenth ACM Symposium on Operating Systems Principles, pages

146–159, 2001.

203

A Thesis Submitted by Steven Lai

[43] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakr-

ishnan. An application-specific protocol architecture for wireless mi-

crosensor networks. IEEE Transactions on Wireless Communications,

40(8):660–670, October 2002.

[44] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and

Mark A. Perilloe. Middleware to support sensor network applications.

IEEE Network, 18(1):6–14, June 2004.

[45] Karen Henricksen and Ricky Robinson. A survey of middleware for

sensor networks: State-of-the-art and future directions. In Proceedings

of the International Workshop on Middleware for Sensor Networks,

pages 60–65, 2006.

[46] Jonathan W. Hui and David Culler. The dynamic behavior of a data

dissemination protocol for network programming at scale. In Proceed-

ings of the 2nd International Conference on Embedded Networked Sen-

sor Systems, pages 81–94, 2004.

[47] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel

Goraczko, Allen Miu, Eugene Shih, Hari Balakrishnan, and Samuel

Madden. Cartel: A distributed mobile sensor computing system. In

Proceedings of the Fourth ACM Conference on Embedded Networked

Sensor Systems, pages 125–138, 2006.

[48] G.H. James III, T.G. Carne, and J.P. Lauffer. The natural excitation

technique (NExT) for modal parameter extraction from operating wind

turbines. NASA STI/Recon Technical Report N, 93:28603, 1993.

204

Chapter8 References

[49] ShinAe Jang, Hongki Jo, Soojin Cho, Kirill Mechitov, Jennifer Rice,

Sung-Han Sim, Hyung-Jo Jung, Chung-Bang Yun, B. F. Spencer, and

Gul Agha. Structural health monitoring of a cable-stayed bridge using

smart sensor technology: Deployment and evaluation. Smart Structures

and Systems, 6(5):439–460, July 2010.

[50] Jaein Jeong, Sukun Kim, and Alan Broad. Xnp documentation. http:

//www.tinyos.net/tinyos-1.x/doc/NetworkReprogramming.pdf,

August 2003.

[51] Hongbo Jiang and Shudong Jin. Scalable and robust aggregation tech-

niques for extracting statistical information in sensor networks. In

Proceedings of the 26th IEEE International Conference on Distributed

Computing System, page 69, 2006.

[52] Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich Kre-

mer, and Liviu Iftode. Smart messages: A distributed computing

platform for networks of embedded systems. The Computer Journal,

47(4):475–494, 2004.

[53] Brad Karp and H. T. Kung. Gpsr: Greedy perimeter stateless rout-

ing for wireless networks. In Proceedings of the 6th Annual Interna-

tional Conference on Mobile Computing and Networking, pages 243–

254, 2000.

[54] Lawrence A. Klein. Traffic parameter measurement technology evalu-

ation. In Proceedings of the IEEE-IEE Vehicle Navigation and Infor-

mation Systems Conference, pages 529–533, August 1993.

205

http://www.tinyos.net/tinyos-1.x/doc/NetworkReprogramming.pdf
http://www.tinyos.net/tinyos-1.x/doc/NetworkReprogramming.pdf

A Thesis Submitted by Steven Lai

[55] Bhaskar Krishnamachari, Deborah Estrin, and Stephen B. Wicker. The

impact of data aggregation in wireless sensor networks. In Proceedings

of the 22nd International Conference on Distributed Computing Sys-

tems, pages 575–578, 2002.

[56] Balachander Krishnamurthy and David S. Rosenblum. Yeast: A gen-

eral purpose event-action system. IEEE Transactions on Software En-

gineering, 21(10):845–857, October 1995.

[57] Steven Lai, Jiannong Cao, and Xiaopeng Fan. Ted: Efficient type-based

composite event detection for wireless sensor network. In Proceedings

of 7th IEEE International Conference on Distributed Computing in

Sensor Systems (DCOSS’11), June 2011.

[58] Steven Lai, Jiannong Cao, and Xiaopeng Fan. Ted: Efficient type-based

composite event detection for wireless sensor network. In Proceedings

of 7th IEEE International Conference on Distributed Computing in

Sensor Systems, June 2011.

[59] Steven Lai, Jiannong Cao, and Yuan Zheng. Psware: A publish /

subscribe middleware supporting composite event in wireless sensor

network. In Proceedings of the 2009 IEEE International Conference on

Pervasive Computing and Communications (PerSeNS’09), pages 1–6,

March 2009.

[60] Steven Lai, Jiannong Cao, and Yuan Zheng. Psware: A publish /

subscribe middleware supporting composite event in wireless sensor

206

Chapter8 References

network. In Proceedings of the 2009 IEEE International Conference on

Pervasive Computing and Communications, pages 1–6, March 2009.

[61] Yi Lai, Yuan Zheng, and Jiannong Cao. Protocols for traffic safety us-

ing wireless sensor network. In Proceedings of the 7th International

Conference on Algorithms and Architectures for Parallel Processing

(ICA3PP’07), pages 37–48, June 2007.

[62] Yi Lai, Yuan Zheng, and Jiannong Cao. Protocols for traffic safety

using wireless sensor network. In Proceedings of the 7th International

Conference on Algorithms and Architectures for Parallel Processing,

pages 37–48, June 2007.

[63] Marc Lee and Vincent W.S. Wong. Lpt for data aggregation in wire-

less sensor networks. In IEEE Global Telecommunications Conference,

pages 2969–2974, December 2005.

[64] Philip Levis and David Culler. Maté: A tiny virtual machine for sen-

sor networks. ACM SIGOPS Operating Systems Review, 36(5):85–95,

December 2002.

[65] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Ac-

curate and scalable simulation of entire tinyos applications. In Pro-

ceedings of the First ACM Conference on Embedded Networked Sensor

Systems, pages 126–137, November 2003.

[66] Shuoqi Li, Ying Lin, Sang H. Son, John A. Stankovic, and Yuan Wei.

Event detection services using data service middleware in distributed

207

A Thesis Submitted by Steven Lai

sensor networks. Telecommunication Systems, 26(2-4):351–368, June

2004.

[67] Stephanie Lindsey, Cauligi Raghavendra, and Krishna M. Sivalingam.

Data gathering algorithms in sensor networks using energy metrics.

IEEE Transactions on Parallel and Distributed Systems, 13(9):924–

935, September 2002.

[68] G. Liu, A.K. Mok, and E.J. Yang. Composite events for network event

correlation. In Proceedings of the Sixth IFIP/IEEE International Sym-

posium on Integrated Network Management, pages 247–260, May 1999.

[69] Jie Liu, Maurice Chu, Juan Liu, James Reich, and Feng Zhao. State-

centric programming for sensor-actuator network systems. IEEE Per-

vasive Computing, 2(4):50–62, October 2003.

[70] Jie Liu and Feng Zhao. Towards semantic services for sensor-rich in-

formation systems. In Proceedings of the 2nd International Conference

on Broadband Networks, pages 967–974, October 2005.

[71] Ting Liu and Margaret Martonosi. Impala: A middleware system for

managing autonomic, parallel sensor systems. In Proceedings of the

Ninth ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming, pages 107–118, 2003.

[72] Xuefeng Liu, Jiannong Cao, Md. Zakirul Alam Bhuiyan, Steven Lai,

Hejun Wu, and Guojun Wang. Fault tolerant wsn-based structural

health monitoring. In Proceedings of 41st Annual IEEE/IFIP Inter-

208

Chapter8 References

national Conference on Dependable Systems and Networks (DSN’11),

June 2011.

[73] Xuefeng Liu, Jiannong Cao, Steven Lai, Chao Yang, Hejun Wu, and

Youlin Xu. Energy efficient clustering for wsn-based structural health

monitoring. In Proceedings of 30th IEEE International Conference on

Computer Communications (INFOCOM’11), April 2011.

[74] Benny Lo, Surapa Thiemjarus, Rachel King, and Guang Zhong Yang.

Body sensor network - a wireless sensor platform for pervasive health-

care monitoring. In The 3rd International Conference on Pervasive

Computing, pages 77–80, May 2005.

[75] Hong Luo, Yonghe Liu, and Sajal K. Das. Routing correlated data with

fusion cost in wireless sensor networks. IEEE Transactions on Mobile

Computing, 5(11):1620–1632, November 2006.

[76] Jerome P. Lynch and Kenneth J. Loh. A summary review of wireless

sensors and sensor networks for structural health monitoring. Shock

and Vibration Digest, pages 91–128, 2005.

[77] J.P. Lynch, A. Sundararajan, K.H. Law, A.S. Kiremidjian, T. Kenny,

and E. Carryer. Embedment of structural monitoring algorithms

in a wireless sensing unit. Structural Engineering and Mechanics,

15(3):285–297, 2003.

[78] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong. Tag: a tiny aggregation service for ad-hoc sensor networks. In

ACM SIGOPS Operating Systems Review, pages 131–146, 2002.

209

A Thesis Submitted by Steven Lai

[79] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and

Wei Hong. Tinydb: an acquisitional query processing system for sen-

sor networks. ACM Transactions on Database Systems, 30(1):122–173,

March 2005.

[80] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, and David

Culler. Wireless sensor networks for habitat monitoring. In Proceedings

of the 10th Annual International Conference on Mobile Computing and

Networking, pages 88–97, June 2002.

[81] Masoud Mansouri-samani, Morris Sloman, and Morris Sloman. Gem

- a generalised event monitoring language for distributed systems.

IEE/IOP/BCS Distributed Systems Engineering Journal, 4(2):96–108,

June 1997.

[82] Pedro José Marrón, Andreas Lachenmann, Daniel Minder, Jörg

Hähner, Robert Sauter, and Kurt Rothermel. Tinycubus: A flexi-

ble and adaptive framework for sensor networks. In Proceedings of the

2nd European Workshop on Wireless Sensor Networks, pages 278–289,

January 2005.

[83] William P. McCartney and Nigamanth Sridhar. Abstractions for safe

concurrent programming in networked embedded systems. In Proceed-

ings of the 4th International Conference on Embedded Networked Sen-

sor Systems, pages 167–180, 2006.

[84] Mohammad M. Molla and Sheikh Iqbal Ahamed. A survey of mid-

dleware for sensor network and challenges. In Proceedings of the 2006

210

Chapter8 References

International Conference Workshops on Parallel Processing, pages 223–

228, 2006.

[85] Douglas Moreto and Markus Endler. Evaluating composite events using

shared trees. In IEE Proceedings - Software, pages 1–10, 2001.

[86] Gero Mühl, Ludger Fiege, Alejandro Buchmann, Ludger Fiege Alej,

and Ro Buchmann. Filter similarities in content-based publish/sub-

scribe systems. In Proceedings of the International Conference on Ar-

chitecture of Computing Systems, pages 224–238, 2002.

[87] T. Nagayama and B.F. Spencer Jr. Structural health monitoring us-

ing smart sensors. Newmark Structural Engineering Laboratory Report

Series 001, 2008.

[88] Ryan Newton, Arvind, and Matt Welsh. Building up to macroprogram-

ming: an intermediate language for sensor networks. In Proceedings of

the 4th International Symposium on Information Processing in Sensor

Networks, pages 78–87, August 2005.

[89] Ryan Newton and Matt Welsh. Region streams: Functional macropro-

gramming for sensor networks. In Proceeedings of the 1st International

Workshop on Data Management for Sensor Networks in Conjunction

with VLDB, pages 78–87, August 2004.

[90] Math Pages. Mean distance from vertex to interior of plane figures.

http://www.mathpages.com/home/kmath283/kmath283.htm.

211

http://www.mathpages.com/home/kmath283/kmath283.htm

A Thesis Submitted by Steven Lai

[91] Animesh Pathak, Luca Mottola, Amol Bakshi, Viktor K. Prasanna,

and Gian Pietro Picco. Expressing sensor network interaction pat-

terns using data-driven macroprogramming. In Proceedings of the Fifth

Annual IEEE International Conference on Pervasive Computing and

Communications Workshops, pages 255–260, March 2007.

[92] Sundeep Pattem, Bhaskar Krishnamachari, R. Godindan, and Ramesh

Govindan. The impact of spatial correlation on routing with compres-

sion in wireless sensor networks. In Third International Symposium on

Information Processing in Sensor Networks, pages 28–35, April 2004.

[93] C. Perkins, E. Belding-Royer, and S.Das. Ad hoc on-demand distance

vector (aodv) routing, 2003.

[94] Neil Patel Philip Levis, David Culler, and Scott Shenker. Trickle: A

self-regulating algorithm for code propagation and maintenance in wire-

less sensor networks. In Proceedings of the 1st Conference on Sympo-

sium on Networked Systems Design and Implementation, pages 2–2,

2004.

[95] Vaskar Raychoudhury, Jiannong Cao, Weigang Wu, and Steven Lai.

K-directory community: Reliable service discovery in manet. Journal

of Pervasive and Mobile Computing (JPMC), 7(1), February 2011.

[96] Kay Römer. Programming paradigms and middleware for sensor net-

works. In GI/ITG Workshop on Sensor Networks, pages 49–54, Febru-

ary 2004.

212

Chapter8 References

[97] Bill Segall and David Arnold. Elvin has left the building: A publish/-

subscribe notification service with quenching. In Proceedings of the

1997 Australian UNIX and Open Systems Users Group Conference,

1997.

[98] Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, Ros

Labrinidis, and Panos K. Chrysanthis. Balancing energy efficiency and

quality of aggregate data in sensor networks. The VLDB Journal -

The International Journal on Very Large Data Bases, 13(4):384–403,

December 2004.

[99] Chien-Chung Shen, Chavalit Srisathapornphat, and Chaiporn Jaikaeo.

Sensor information networking architecture and applications. IEEE

Personal Communications, 8(4):52–59, August 2001.

[100] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and

Subhash Suri. Medians and beyond: New aggregation techniques. In

Proceedings of the 2nd International Conference on Embedded Net-

worked Sensor Systems, pages 239–249, 2004.

[101] Kannan Srinivasan and Philip Levis. Rssi is under appreciated. In

Proceedings of the Third Workshop on Embedded Networked Sensors,

2006.

[102] Ramanan Subramanian, Hossein Pishro-Nik, and Faramarz Fekri.

Clustering-based correlation aware data aggregation for distributed

sensor networks. In IEEE Global Telecommunications Conference,

pages 3253–3257, December 2005.

213

A Thesis Submitted by Steven Lai

[103] Vanessa W.S. Tang, Yuan Zheng, and Jiannong Cao. An intelligent car

park management system based on wireless sensor networks. In Pro-

ceedings of the 1st International Symposium on Pervasive Computing

and Applications, pages 65–70, August 2006.

[104] P.J. Wan, K.M. Alzoubi, and O. Frieder. Distributed construction of

connected dominating set in wireless ad hoc networks. Mobile Networks

and Applications, 9(2):141–149, 2004.

[105] Matt Welsh and Geoff Mainland. Programming sensor networks using

abstract regions. In Proceedings of the 1st Conference on Symposium

on Networked Systems Design and Implementation, pages 3–3, 2004.

[106] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood:

A neighborhood abstraction for sensor networks. In Proceedings of the

2nd International Conference on Mobile Systems, Applications, and

Services, pages 99–110, 2004.

[107] Yuan Xue, Yi Cui, and Klara Nahrstedt. Maximizing lifetime for data

aggregation in wireless sensor networks. Mobile Networks and Applica-

tions, 10(6):853–864, December 2005.

[108] Eiko Yoneki and Jean Bacon. Unified semantics for event correlation

over time and space in hybrid network environments. In On the Move

to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,

pages 366–384, November 2005.

[109] Ossama Younis and Sonia Fahmy. An experimental study of routing

and data aggregation in sensor networks. In Proceedings of the IEEE

214

Chapter References

International Conference on Mobile Ad-hoc and Sensor Systems, pages

57–65, November 2005.

[110] Ossama Younis, Marwan Krunz, and Srinivasan Ramasubramanian.

Node clustering in wireless sensor networks: Recent developments and

deployment challenges. IEEE Network, 20(3):20–25, May/June 2006.

[111] Yang Yu, Bhaskar Krishnamachari, and Viktor K. Prasanna. Issues

in designing middleware for wireless sensor networks. IEEE Network,

18(1):15–21, January/February 2004.

[112] Wensheng Zhang and Guohong Cao. Dctc: Dynamic convoy tree-based

collaboration for target tracking in sensor networks. IEEE Transactions

on Wireless Communication, 3(5):1689–1701, September 2004.

[113] Jin Zhu, Symeon Papavassiliou, and Jie Yang. Adaptive localized

qos-constrained data aggregation and processing in distributed sen-

sor networks. IEEE Transactions on Parallel and Distributed Systems,

17(9):923–933, September 2006.

215

Appendix A

Complete List of the EDF

Instructions

Here we show the complete list of instructions currently used by our Event

Detection Framework (EDF). We also briefly describe the function and the

usage of each instruction.

A.1 Basic Instructions

The basic instruction deals with the most fundamental operations. Since the

instruction uses a stack-based architecture in order to reduce the code size,

most of the instructions that fall into this category deal with the operations

related stacks.

• OPpush: this instruction is used to push an operand to the top of the

stack.

• OPpop: this instruction is used to pop and discard an operand from

216

ChapterA Complete List of the EDF Instructions

the top of the stack.

• OPcopy : duplicates the top operand of the stack

• OPhalt : once this instruction is reached, the VM will stop execution.

A.2 Operators

Basic mathematical operators:

• OPadd : pops two operands off the top of the stack, add them together

and push the result back to the top of the stack.

• OPmult : pops two operands off the top of the stack, multiply them

together and push the result back to the top of the stack.

• OPsub: pops two operands off the top of the stack, subtract the first

popped number by the second one and push the result back to the top

of the stack.

• OPdiv : pops two operands off the top of the stack, divide the first

popped number by the second one and push the result back to the top

of the stack.

• OPmod : pops two operands off the top of the stack, divide the first

popped number by the second one and push the remainder back to the

top of the stack.

• OPinv : pops one operand (n) off the top of the stack, calculate its

inverse (-n) and push the result back.

217

A Thesis Submitted by Steven Lai

Logical operators:

• OPand : pops two operands off the top of the stack, calculate the logical

and of them and push the result back to the top of the stack.

• OPor : pops two operands off the top of the stack, calculate the logical

or of them and push the result back to the top of the stack.

• OPxor : pops two operands off the top of the stack, calculate the ex-

clusive or of them and push the result back to the top of the stack.

• OPnot : pops one operand off the top of the stack, calculate the logical

not of it and push the result back to the top of the stack.

Relational operators:

• OPeq : pops two operands off the top of the stack, if the two operands

are equal, push 1 to stack. Otherwise, push 0 to stack.

• OPneq : pops two operands off the top of the stack, if the two operands

are equal, push 0 to stack. Otherwise, push 1 to stack.

• OPgt : pops two operands off the top of the stack, if the first operand

is greater than the second one, push 0 to stack. Otherwise, push 1 to

stack.

• OPgte: pops two operands off the top of the stack, if the first operand

is greater than or equal to the second one, push 0 to stack. Otherwise,

push 1 to stack.

• OPlt : pops two operands off the top of the stack, if the first operand is

less than the second one, push 0 to stack. Otherwise, push 1 to stack.

218

ChapterA Complete List of the EDF Instructions

• OPlte: pops two operands off the top of the stack, if the first operand

is less than or equal to the second one, push 0 to stack. Otherwise,

push 1 to stack.

Bitwise operators:

• OPshiftl : pops two operands off the top of the stack, left shift the first

popped number by the second one and push the result back to the top

of the stack.

• OPshiftr : pops two operands off the top of the stack, right shift the

first popped number by the second one and push the result back to the

top of the stack.

• OPland : pops two operands off the top of the stack, calculate the

bitwise and of them and push the result back to the top of the stack.

• OPlor : pops two operands off the top of the stack, calculate the bitwise

or of them and push the result back to the top of the stack.

• OPxor : pops two operands off the top of the stack, calculate the bitwise

exclusive or of them and push the result back to the top of the stack.

• OPlnot : pops one operand off the top of the stack, calculate its com-

plement and push the result back to the top of the stack.

A.3 Event-related Instructions

• OPinstall : this instruction is invoked after the subscription is success-

fully installed on a sensor node.

219

A Thesis Submitted by Steven Lai

• OPref : whenever an event e is being evaluated, this instruction is

invoked to obtain an instance of such event.

• OPoffset : this instruction is involved right after the ’ref’ instruction,

in order to access individual attributes of the event instance.

• OPset : if the attributes of an event need to be changed, this instruction

will be used.

• OPget : the ’get’ instruction does the opposite of ’set’ instruction. It

will simply retrieve content of a specific attribute in an event.

• OPcreate: is used to create a new instance of an event.

• OPeval : is used to determine if an event happens or not.

• OPgc: used by the event matcher for garbage collection.

220

	Introduction
	Overview
	Motivation
	Issues

	Background
	Publish / Subscribe Systems
	WSN Middleware
	Events and Subscriptions
	Event Detection and Detection Cost
	Composite Event-based Applications

	Thesis Outline

	Literature Review
	Overview
	WSN Middleware
	Issues in Designing WSN Middleware
	Query-based Middleware
	Virtual Machine-based Middleware
	Event-based Middleware
	Agent-based Middleware
	Middleware with Other Programming Abstractions
	Summary of Existing WSN Middleware

	Macroprogramming for WSN
	Overview
	Abstraction for Imperative Programming
	Service and Data Centric Abstraction
	Neighborhood and Region Based Abstraction
	Summary

	Event-based Systems
	Event Definition
	Event Evaluation
	Event Operator and Function
	Summary

	Data Aggregation in WSN
	MAC Layer Data Aggregation
	Cluster-based Data Aggregation
	Tree-based Data Aggregation
	Application-specific Data Aggregation
	Summary of Existing Works

	System Design
	PSWare: Model and Architecture
	PSW-EDL: Event Definition Language in PSWare
	PSW-EN: Event Notifier in PSWare
	API for Event Processing Framework

	Composite Event Processing in PSWare
	Event Specification
	Runtime Environment for Event Detection

	Support for Customization in PSWare
	Customizable Event Definition
	Customizable Event Detection
	Customizable Event Delivery

	Generic Composite Event Detection
	The Composite Event Detection Problem
	System Model
	Problem Formulation

	A Centralized Approach
	Determine the Re-selection Probability

	TED: a Type-based Event Detection Algorithm
	Algorithm Input
	TED for Normal Nodes
	TED for Event Fusion Points

	Fusion Point Deployment Problem
	Even Deployment
	Hierarchical Deployment

	Clustering for PSWare
	Overview of WSN-based SHM
	Structural Mode Shapes
	Clustering for Modal Analysis
	Mode Shape Assembling

	Clustering Algorithms
	Problem Formulation
	Centralized Algorithms
	Distributed Algorithm

	System Implementation
	ITS Implementation Using PSWare
	Pre-defined Events
	User Interface Design
	Customized Event Detection for ITS

	SHM Implementation Using PSWare
	Neighbor Information Exchange
	Clustering

	System Evaluation
	Analysis on TED
	Analysis on Message Cost
	Analysis on Delay

	Simulation
	Impact of Event Distance
	Impact of Event Size
	Impact of Event Probability

	Experiments
	Application Case One: Car Park
	Application Case Two: Transportation Systems
	Application Case Three: Indoor Monitoring
	Application Case Four: SHM

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Complete List of the EDF Instructions
	Basic Instructions
	Operators
	Event-related Instructions

