THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the
printed version, the printed version shall prevail.

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF ELECTRONIC AND INFORMATION ENGINEERING

Machine Learning Approaches

for Visual Object Detection

Chensheng SUN

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

August, 2012

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best
of my knowledge and belief, it reproduces no material previously pub-
lished or written, nor material that has been accepted for the award of
any other degree or diploma, except where due acknowledgment has

been made in the text.

(Signed)

Chensheng Sun (Name of student)

Abstract

Visual object detection is a fundamental and challenging problem in computer vision
and image processing. The study of visual object detection usually focuses on two as-
pects, proposing effective yet efficient features, and designing powerful and fast detec-
tors. While feature extraction is a domain-specific problem for image processing that
usually requires substantial knowledge, experience, and even inspiration, designing
the detectors usually relies on techniques of pattern recognition and machine learning.
In this thesis, we study the machine learning approaches for visual object detection.

We first review several theoretical machine learning issues, in particular, the struc-
tural risk minimization learning principle. Then, several empirical loss functions and
optimization methods for solving the support vector machines are discussed. Based
on insights into the problem formulation and the solving techniques, we propose a
generalized forward feature selection scheme that is applicable to a number of prob-
lems. For the sake of comprehensiveness, learning problems other than classification,
e.g. ranking and structural prediction, are also studied for the purpose of visual object
detection.

The Boosting cascade detector is the most popular method in visual object de-
tection. Boosting essentially also falls into the structural risk minimization regime,
but with specialized algorithms that treats the problem as a functional optimization.
We examine both the functional optimization formulation and the convex optimiza-
tion formulation of the AdaBoost algorithm, and propose a mixed form that solves
the totally-corrective AdaBoost but using weak classifiers derived from the functional
optimization perspective. To alleviate the training cost, we propose a feature subset
selection method based on the partial least square regression. In building a cascade
detector, three important issues are studied, i.e. optimizing for the the asymmetric ob-
jective, selecting a proper operating point for each stage of the cascade, and recycling
information from the early stages of the cascade. A novel biased-selection strategy for
information recycling is proposed.

For the last part of this work, we study the kernel methods. Various methods for
improving the efficiency of the kernel scoring function are discussed, and are grouped
into three categories, i.e. the approximations of the scoring function, the explicit fea-

ture map, and learning a sparse basis set. Inspired by the kernel methods, we propose

i

a middle-level feature based on the similarity to exemplar instances. For the visual ob-
ject detection problem, elements from multiple kernel learning and multiple instance
learning can be conveniently incorporated into the similarity feature, and a learning
framework using the forward feature selection technique and a coarse-to-fine scheme

is proposed to learn an efficient visual object detector using the similarity features.

List of Publications

1. Jiwei Hu, Chensheng Sun and Kin Man Lam, “Can a Machine Have Two Sys-
tems for Recognition, Like Human Being?”, submitted to Pattern Recognition.

2. Chensheng Sun and Kin Man Lam, “A Biased Selection Strategy for Information
Recycling in Boosting Cascade Visual Object Detectors”, submitted to Pattern

Recognition Letters.

3. Chensheng Sun and Kin Man Lam, “Multiple-Kernel, Multiple-Instance Sim-
ilarity Features for Efficient Visual Object Detection”, IEEE Transactions on
Image Processing, vol. 22, No. 8, pp. 3050-3061, 2013.

4. Chensheng Sun, Sanyuan Zhao, Jiwei Hu and Kin Man Lam, “Multi-Instance
Local Exemplar Comparisons for Pedestrian Detection”, 2012 International Con-
ference on Signal Processing, Communications and Computing, pp. 223-227,
August 2012.

5. Chensheng Sun, Sanyuan Zhao, Jiwei Hu and Kin Man Lam, “Totally-Corrective
Boosting using Continuous-Valued Weak Learners”, 2012 IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 2049-2052, March
2012.

6. Chensheng Sun, Jiwei Hu and Kin Man Lam, “Feature Subset Selection for
Efficient AdaBoost Training”, Proceedings of the 2011 IEEE International Con-
ference on Multimedia and Expo, pp. 1-6, July 2011.

7. Jiwei Hu, Chensheng Sun and Kin Man Lam, “Learning a Discriminative Model
for Image Annotation”, Proceedings of the 2011 Annual Summit and Confer-
ence of the Asia-Pacific Signal and Information Processing Association, October
2011.

8. Jiwei Hu, Chensheng Sun and Kin Man Lam, “Semi-supervised Metric Learn-
ing for Image Classification”, Proceedings of the Pacific Rim Conference on
Multimedia, vol. 6297/2010, pp. 728-735, 2010.

iii

v

Acknowledgment

I am deeply grateful to my supervisor Prof. Kin-Man Lam. He grants me the oppor-
tunity of entering the world of academic research, and provides guidance and insights
whenever I need help. I am especially thankful to his support, encouragement, and
patience in this prolonged five years of study, and for the very thorough revision he
has made of my articles and this thesis.

I would like to thank Prof. Guo Ping Qiu, Prof. Ling Guan, Prof. Xudong Xie,
Prof. Cheng Cai, and Prof. Zhanli Sun. The insightful discussion with them has
broaden my view and enlightened my mind, and I have learned a lot from their knowl-
edge and experience.

I am fortunate to have the chance to work with Kwok-Wai Wong, Siu-Hong Tse,
Wing-Poing Choi, Hei-Sheung Koo, Xiaoguang Li, Guang Feng, Xuejuan Gao, Yue
He, Yu Hu, Pengzhang Liu, Sanyuan Zhao, Feng Xu, Guannan Li, Chao Li, Wentao
Liu, Deliang Yang, Jiwei Hu, Dong Li, Hailiang Li, Muwei Jian, and Huiling Zhou
during my Ph.D. study. I am thankful to their share of knowledge and thoughts at
work, and the life we have enjoyed together.

At last, I would express my deep gratitude to my parents, for their endless love and
care through my life. No matter how far away, they are always my biggest and best

supporters.

vi

Contents

Abstract

List of Publications

Acknowledgment

List of Figures

List of Tables

1 Introduction

1.1
1.2

1.3

The visual object detection problem
State-of-the-art oo
1.2.1 The sliding window paradigm
1.2.2 Methods considering properties of visual objects
1.2.3 Other issues in visual object detection

Scopeofthisthesis

2 Structural risk minimization learning

2.1

2.2

2.3

Structural risk minimization L.
2.1.1 Learning to minimize the expectedloss
2.1.2 Large margin linear classifiers
2.1.3 L-1normregularization
Loss functions for classification
22.1 Hingeloss
222 Logisticloss
223 Exponentialloss
Methods for solving SVM L.
2.3.1 Decomposition methods for dual SVM
2.3.2 Dual coordinate descent method for linear SVM
2.3.3 Primal sub-gradient descent method for linear SVM
2.3.4 Cutting plane methodso

Vil

il

xiii

XV

~N O\ W N =

10

viil

CONTENTS

2.4 Embedded forward feature selection 36

2.4.1 A forward feature selection algorithm 37

242 Specialcases 40

2.4.3 Experimental evaluation 43

2.5 Problems other than classification 46

251 Ranking 46

2.5.2 Structural prediction 49

2.5.3 Application in sliding window detection 51

The Boosting algorithm 53

3.1 Boosting as convex optimization 53

3.2 Boosting as functional optimization 56

3.2.1 Discrete AdaBoosto 56

322 Real AdaBoost 58

323 Gentle AdaBoost 59

3.2.4 Experimental evaluation 60

3.3 Continuous-valued weak learners for totally-corrective Boosting . . . 63
3.3.1 Embedding continuous-valued weak learners in totally-corrective

AdaBoost 63

3.3.2 Experimental evaluation 65

333 Conclusions 67

3.4 Feature subset selection based on partial least squares 67

3.4.1 Partial least square regression 69

3.4.2 PLS for feature subset selection 72

3.4.3 Experimental evaluation 73

344 Conclusions Lo 75

Boosting cascade detectors 77

4.1 Cascadedetectorso 77

4.2 Learning with asymmetric goals 79

4.2.1 Naive weight manipulation 79

4.2.2 Optimal cost sensitive decisionrule 80

4.2.3 Cost-sensitive loss functions 83

4.2.4 Direct formulation of the asymmetric goal 86

4.2.5 Boosting with asymmetricgoal 90

4.3 Operating point selection for detector efficiency 95

CONTENTS ix
431 Fixedruleo 97

432 One-pointplanning 97

433 Two-pointplanning 98

4.3.4 Non-attainable goal with maximum number of weak classifiers 100

435 Evaluation 100

4.4 Information recyclingincascade 103
4.4.1 Biased selection strategy for weak classifier recycling 105

4.4.2 Biased selection strategy for feature recycling 108

4.4.3 Experimental Evaluation 109

4.44 Conclusions and future works 114

5 Kernel methods and the similarity features 115
5.1 Thekerneltrick 115
5.1.1 Kernel SVM 116

5.12 Kernel PCA 117

5.2 Accelerate the kernel machines 119
5.2.1 Approximate the scoring function 119

5.2.2 Explicitfeaturemap 123

5.2.3 Sparse kernel machines Lo 130

5.3 Multiple kernel and multiple instance similarity features 138
53.1 MKMIS features 139

5.3.2 Learning with MKMIS features 143

5.3.3 Experimental Evaluation 145

534 Conclusions Lo 152

6 Conclusions 153
Bibliography 165

CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2

3.3

34

3.5
3.6

3.7

3.8

3.9

3.10

4.1
4.2

4.3

Applications of visual object detection. 1
Loss functions for binary classification. 17
An example of 1-slack cutting plane training of linear SVM. 35
Forward feature selection for SVM and logistic regression. 45
Ranking lost is related to the area under the ROC curve. 48
Weak classifier performance and weights in Discrete AdaBoost. . . . 58
Convergence of the exponential error for Discrete AdaBoost, Real Ad-

aBoost, and Gentle AdaBoost. 61
ROC curves on the training data and test data for Discrete AdaBoost,
Real AdaBoost, and Gentle AdaBoost. 61
Distribution of the training instance scores for Real AdaBoost and
Gentle AdaBoost. 62

Exponential loss of L-1 and L-2 regularized totally-corrective AdaBoost. 62
ROC curves on the test set for L-1 and L-2 regularized totally-corrective
AdaBoost. L 64
Exponential loss of totally-corrective AdaBoost with continuous-valued
weak learners. Lo L L 66
ROC curves of totally-corrective AdaBoost with continuous-valued

weak learners. Lo Lo 66

Convergence of exponential loss for AdaBoost trained with various

feature subset selection methods. 73
Comparison of PLS and random feature subset selection method for

AdaBoost training. 74
The training and testing of a cascade detector. 78

The ratios of exponential loss and 0-1 loss for AdaBoost training with
naive weight manipulation. oL 81

Bayes decision rule for symmetric and asymmetric loss. 82

xi

Xii

4.4

4.5

4.6
4.7

4.8
4.9
4.10
4.11

4.12
4.13

4.14

4.15

4.16
4.17

5.1

5.2

5.3

54

5.5

5.6
5.7

LIST OF FIGURES

Training set weights and weak classifier weights for AdaBoost using
naive weighted loss. 84

Bayes optimal decision boundary and decision boundary found by

naive weighted cost AdaBoost and the modified cost of [71]. 87
LAC/LDA post processing of AdaBoost weak classifiers’ weights. . . 91
Directly Boosting the LAC/LDA cost improves over the Discrete Ad-

aBoost. 94
The ROC curve goes up as more weak classifiers areused. 96
Regions in the ROC chart for operating point selection. 96
Comparison of the operating point selection methods. 102

Score of the training set for stage 10 of a cascade detector using the
classifierof stage 9. 103
Feature recycling in multiple weak classifiers. 109
Empirical loss and generalization performance of weak classifier recy-
cling. 109
Number of new weak classifiers and recycled weak classifiers during
the Boosting learning process. 110

ROC curves of the Boosting classifier trained with feature recycling,

selectingup to SO features. 111
Selection frequency of recycled features. 112
Cascade detector trained with information recycling. 113

Piecewise linear approximation and piecewise constant approximation
of al-Dscoring function. 121
Accuracy of the piecewise linear and piecewise constant approxima-
tion for the intersection kernel SVM and the x? kernel SVM. 122
Detector performance for the intersection kernel SVM and the y? ker-
nel SVM using piecewise linear approximation. 123
Kernel signature function, spectrum, and continuous feature map func-
tion for the intersection kernel and the y? kernel. 125
Approximation accuracy of the intersection kernel and the x? kernel
by the explicit featuremap. Lo 127
Approximation errors for the intersection kernel and 2 kernel. 128
Results of the Gaussian kernel SVM using the original features, L-1
regularized and L-2 regularized linear SVM using the multiple-kernel

similarity features on synthetic toy data. 146

LIST OF FIGURES Xiil

5.8

59
5.10

5.11

Comparison of single-kernel and multiple-kernel similarity features on

synthetictoy data. 147
Effect of exemplar refinement using synthetic toy data. 148
Feature extraction scheme of the multi-kernel multi-instance similarity
feature for the INRIA pedestrian dataset. 149
Detector performance using the multi-kernel multi-instance similarity

feature on the pedestrian detection problems. 150

Xiv LIST OF FIGURES

List of Tables

2.1

4.1

5.1

Number of hard negative training instances in a n-slack cutting plane

training PrOCeSS. « « v v v v v v v e e e e e e e e e e e e e 31

Comparison of the number of weak classifiers and ratio of windows

processed by eachstage. L. 101

Kernel, kernel signature, and the spectrum for the intersection kernel
andthe Y2 kernel. 125

XV

XVi LIST OF TABLES

Chapter 1 Introduction

1.1 The visual object detection problem

Detecting instances of an object category is one of the most important applications of
computer vision. Identifying the existence and location of object instances in an image
has direct applications such as optimizing the focus and exposure in digital cameras
for human faces, improving automobile driving safety to avoid clashing with other ve-
hicles or pedestrians, etc. Object detection is also the basis of more advanced analysis
and image understanding. For example, tracking the trajectory of soccer players for

game strategy analysis, analyzing human limb pose for computerized rendering, etc.

() (b)

Figure 1.1: Applications of visual object detection. (a) Face detection is now widely
used in cameras for improved focus and exposure. (b) Pedestrian detection (using
image + radar) is used in vehicles for driving safety.

Though finding objects of a particular category in images is trivial for human vi-
sion, the same task is a well-known challenge in computer vision, and has been in-
tensively studied in the recent years. The real world challenges a computerized visual
object detection system in several ways. First and foremost, the visual appearance of
objects belonging to a semantic category could cover a wide range of variations, 1.e.
the well-known problem of the semantic gap. Both intrinsic factors and extrinsic fac-
tors contribute to the appearance variations. A category usually covers a wide range

of different objects. For example, there are numerous types of cars that differ in struc-

2 CHAPTER 1. INTRODUCTION

ture, surface decoration, etc. Furthermore, many objects are deformable. In particular,
the articulated structure is prevalent in nature. An object may look differently due
to articulated motion or elastic deformation. In addition, the imaging conditions also
has significant impact on how an object looks, for example, the illumination, viewing
point, and so on. The second challenge is that most applications require highly accu-
rate detection results, making as few errors as possible. Considering the large amount
of data acquired from cameras, and the relatively small number of object instances in
the images, the detector should have very low false positive rate while successfully
detecting most of the objects. At last, scanning through an image to find an object
instance is computational demanding, since large number of object hypothesis need to
be tested. Therefore efficiency is crucial for a practical detector, and that is also why
visual object detection systems do not come into application until recent years, when
fast hardware becomes available at low cost.

Study on visual object detection significantly benefits from the pattern recognition
and machine learning research, in which one of the central problems is to estimate a
function that produces the desired output for a given input. For visual object detection,
the output of the function can be a categorical decision (e.g. true/false for detecting a
single class of objects), a confidence score for an object hypothesis, or the expected
location of an object in an image, depending on how the object detection problem is
formulated. The visual object detection problem also provides a good test bed for
old and new machine learning techniques, and promotes the machine learning study
by proposing new challenges and abundance of data. We notice that many computer
vision researchers are also active in the machine learning field, showing the importance

of machine learning in vision tasks.

1.2 State-of-the-art

In this section, we give a review of the state-of-the-art in visual object detection. Many
works discuss the problem of finding a specific object in images, subject to various
geometric transformation or distortion, and the problem is referred to as near-duplicate
object retrieval, and is essentially an image matching problem. The focus of research
is usually on interest points, expressive descriptors, e.g. [1, 2, 3, 4], and efficient and
robust matching techniques. By contrast, detecting a category of objects needs to deal
with much larger within-class variation, and therefore is more challenging.

The object detection problem can be formulated as hypothesis testing. We consider

1.2. STATE-OF-THE-ART 3

locating a particular category of objects in an image. A set of object hypotheses) can
be generated from the image. For example, a hypothesis y states the existence of
that category at a particular location. Image features x € A can be extracted for
each hypothesis. Therefore the detector can be represented by a function f (x,y),
that assigns a confidence score or decision to the hypothesis y according to the image
feature x. Usually a non-maximum suppression post-processing step is applied to
those accepted object hypotheses, implementing the Occam’s razor such that a few
accepted hypotheses are sufficient to explain the observed information, which also
reflects the heuristics that two objects should not overlap significantly with each other.

In the following, according to how the hypothesis space) is formulated, we di-
vide the techniques into two groups: the sliding window technique that simplifies the
hypothesis space to rectangular regions is reviewed in section 1.2.1; techniques that
utilize assumptions specific to the visual objects are reviewed in section 1.2.2. Finally

in section 1.2.3, other issues studied in visual object detection are introduced.

1.2.1 The sliding window paradigm

In its simplest form, the hypothesis set) consists of rectangular windows in the image.
This simplistic construction brings two benefits. First, it is straightforward to explore
the hypothesis space by nearly exhaustive evaluation of the hypothesis set, and the
detector works as a window that slides over the image. Second, it is convenient to
design a feature space for the rectangular windows. Therefore the sliding window
paradigm is the most widely used method in literature. The study on sliding window
detection focuses on two aspects, i.e. image features and classifiers. While the later is
a general machine learning problem, the former extensively uses domain knowledge

specific to computer vision.

Image features

A rectangular window in an image can be represented by the array of pixel values, and
some works directly utilize the pixel values, e.g. [5, 6, 7]. For detecting objects in
video, a motion vector can be computed for each pixel to obtain a motion map, e.g.
[8]. More complex features can be extracted based on the array of per-pixel values to
improve the discriminative power and invariance to intra-class variation. Intuitively,
the following information can be helpful for visual object detection in addition to the

per-pixel values: (1) an unordered distribution of the per-pixel values, e.g. a histogram;

4 CHAPTER 1. INTRODUCTION

(2) local contour shape or layout of the pixels; (3) repetitive texture patterns, e.g. the
Fourier spectrum. To capture these information, extensive works have been devoted to
designing image features. The feature extraction process usually consists of a number
of elemental operations, which we summarize as follows.

First, basic operators such as linear filtering, thresholding, quantization, max, min,
etc. can be applied to the per-pixel values. The operator may have various response
fields, i.e. the set of pixels involved in the operator. For example, gradient can be
computed for each pixel using the adjacent pixels, the local binary pattern [9] binary
code is obtained by comparing two pixels and then quantizing to {0, 1}, while the
Gabor feature [10, 11] and the Haar-like features [12, 13] are calculated using all
pixels in a local region. The granule comparison features [14, 15] consider arbitrary
pairs of regions, and the self-similarity feature [16, 17] measures the rough layout of
objects by the similarity/difference between pairs of regions. Max pooling is used in
[10, 11] to mimic the visual cortex in biological vision systems.

Second, an encoding scheme can be employed to introduce semantic meanings.
The encoding scheme can be manually specified, such as the LBP [9] encoding scheme
that introduces the notion of uniformity to distinguish structured regions and cluttered
regions. More commonly a codebook is used, e.g. obtained by k-means clustering.
The encoding can be a simple assignment to the codewords, or encoded as a vector
whose length is equal to the size of the codebook, e.g. soft assignment to the code-
words, sparse coding, and the locality constrained encoding [18].

At last, statistics can be computed for a set of image elements to give an orderless
summarization and invariance of small deformation. A histogram can be used to repre-
sent the occurrence frequency, e.g. the color histogram, gradient orientation histogram
[19], the local binary pattern histogram [9], the bag-of-visual-words histogram [20],
etc. Simple histograms can be extended by adding more dimensions, considering the
interaction of the image elements. For example, gray-level co-occurrence is a classic
texture descriptor [21], and is extended for color images in [22]. A recent work [23]
extends the co-occurrence histogram to include more information, e.g. color differ-
ence of pixels. The co-occurrence feature is generalized for visual codewords as in
[24], such that the feature is semantically more meaningful. Second order statistics
such as the covariance matrix has been successfully used in [25, 26].

Besides, we note that the image can also be represented as a disjoint set of elements
rather than a feature vector. For example, the contour fragment is used in [27, 28,
29, 30, 31]. Directly learning from these feature representation requires operators

that work on sets, for example, the Chamfer matching for measuring the similarity of

1.2. STATE-OF-THE-ART 5

contours.

The context of a window also constitutes an important cue for the existence of an
object, especially when the cue from the window itself is weak. A lot of work has
been devoted to the context feature in recent years, e.g. [32, 33, 34, 35, 36, 37, 38,
39, 40, 41]. Various types of context can be employed, for example, the global scene
category, the location of the object in the scene, the interaction of the object and other
objects in the scene, etc. To apply the context cue, we may directly include it in testing
the hypothesis, prune the hypothesis space before detection, or enhance the score of a

hypothesis in post-processing of the classifier outputs.

Classifiers

Given a feature representation, learning the classifier is a problem extensively studied
in the machine learning community. Probabilistic approaches have been adopted in
some works, e.g. [27] combines the responses of multiple templates using a Bayesian
approach. Many other successful works in visual object detection are based on state-
of-the-art machine learning techniques, among which the most popular are the support
vector machines (SVM) and the Boosting methods.

Before we introduce the learning algorithms, we note that a challenge in learning a
good classifier for object detection is the very high dimensionality of the feature vec-
tor. For example, hundreds of thousands of Haar-like features can be enumerated for
a window, and the associated pair of granule comparison feature [15] easily produces
a feature space of millions and even billions of dimensions due to the combinatorial
explosion. Therefore feature selection and dimensionality reduction is crucial. Good
performance can be achieved using simple learning algorithm with effective dimen-
sionality reduction. For example the partial least square [42, 43] approach effectively
finds a low-dimensional subspace and then good performance is achieved using simple
quadratic discriminant analysis. Other algorithms perform feature selection such that
the feature extraction cost can also be reduced, e.g. Boosting [12] and random forests
[44].

Built upon the statistical learning theory [45], the SVM guarantees good general-
ization performance on new data by balancing between minimizing the VC dimension
of the classifier and minimizing the empirical loss. The method is further enhanced by
the kernel trick which introduces an implicit feature space, and allows object represen-
tation other than in a vector space, e.g. representing an object as a disjoint set of local

features, as long as a kernel can be defined on pairs of object instances. A lot of im-

6 CHAPTER 1. INTRODUCTION

provements have been made for the SVM, and is still an active research topic. Various
problems are solved by the SVM, e.g. regression, multi-class classification [46], rank-
ing [47], structural prediction [48], etc., and many of them quickly find application in
visual object detection. New optimization methods have been proposed for training
SVM such that large scale dataset can be learned efficiently, e.g. [49, 50, 51]. The
performance of SVM is enhanced by kernels that are more suitable to the problem.
Kernels tailored for the vision problems have been proposed, e.g. the pyramid match-
ing kernel [52], the spatial pyramid matching kernel [53], and the efficient matching
kernel [54]. Furthermore, good kernels can be learned instead of manually designed,
e.g. by multiple kernel learning (MKL) [55]. The efficiency of the classifier can be im-
proved by various methods, such as feature selection [56, 57, 58], reducing the number
of support vectors [59, 60, 61, 62], and using approximate feature maps [63, 64].
Boosting [65] was developed in an attempt to combine a number of weak learn-
ers to obtain a strong learner. It is of significant interest in visual object detection for
two reasons. First, a powerful classifier can be learned without overfitting, which may
stem from the high dimensional feature space. Second, the resulting classifier can be
very efficient to evaluate, meeting the demand of real-time applications. The Boosting
algorithm itself has been analyzed by many works, to understand its properties and
to improve its performance. For example, Boosting is interpreted as as additive re-
gression in [65], from the margin maximization learning perspective in [66], and as a
convex optimization problem in [67, 68]. Essentially the Boosting algorithm can be
unified into the structural risk minimization learning paradigm as SVM, but is solved
by a step-wise approach that incrementally generates features in the form of the se-
lected weak learners. The Boosting algorithm is tailored for the visual object detection
problem in many works. For example, cost-sensitive loss is introduced in [69, 70, 71]
such that the classifier is optimal for unbalanced performance requirement. Chained
cascade of boosting classifiers are studied in [72, 73, 74, 75], such that the information
used in the previous stages are also exploited in the later boosting classifiers, and the

resulting detector is more efficient to evaluate.

1.2.2 Methods considering properties of visual objects

Though the sliding window approach is simple and powerful, it ignores crucial infor-
mation about the object. For example, many objects are constituted by meaningful
parts in a meaningful configuration. Methods that directly consider the properties of

visual object categories are also well studied in literature.

1.2. STATE-OF-THE-ART 7

A visual object can be divided into parts, and naturally each part contributes to
confidence score of the full object. An approach directly using this idea is the general-
ized Hough transform [7, 76, 77, 44], where a detected part casts votes for a number of
object hypotheses according to the displacement between the part location and the ob-
ject location. The parts are limited to interest points and a codebook of parts is learned
via clustering in [7, 76, 77], while in [44] the parts are densely sampled and the code-
book and votes are learned by a random forest. The Hough transform is essentially
a linear model as described in [77]. It is also interpreted as a star shape probabilistic
graphic model called the Markov random field. More complex graphs can be used,
e.g. the constellation model [78, 79]. The parameters of the Markov random field can
be learned using maximum likelihood, or using structural SVM [48]. The part models
can be learned using discriminative methods, as in the discriminatively trained part
models [80]. The idea of part based model is further enhanced to obtain a grammar
model in [81], which allows more flexible combination of the parts.

For the discriminatively trained part models [80], the location of each part needs to
be decided in order to maximize the object score, i.e. the object hypothesis is extended
asy = [yo,¥1,---¥n), where yj is the status (e.g. location, size, etc.) of the full body,
and y; is the status of the i-th part. Therefore efficient techniques are necessary in order
to explore this high dimensional hypothesis space, for example, the belief propagation
method.

Due to the use of a detailed hypothesis space and the use of part information, these
methods conveys extra information about the object, which can be readily extracted
from the detection result, and utilized in higher level analysis, e.g. segmenting the

object from background [76], estimating the status of the object [82], and so on.

1.2.3 Other issues in visual object detection

Many other learning issues are encountered in the context of visual object detection.
In this section we briefly introduce three of them, i.e. improving the efficiency of the
detector, learning from weakly labeled data, and scaling up the detector to multiple

classes.

Detector efficiency

For a typical image, the hypothesis set)/ usually consists of a large number of hypothe-
ses. Even with the sliding window approach working on a regular grid of windows, the

number of windows easily reaches hundreds of thousands in a typical image. To im-

8 CHAPTER 1. INTRODUCTION

prove the efficiency of the detector, various methods have been devised. First, efficient
methods for feature extraction have been studied, e.g. using the integral image [12],
caching the features and sharing them between windows, etc. Second, attention-based
mechanism can be employed to quickly reduce the search space. For example, early
works based on interest point detectors [79] limit the hypothesis set to those supported
by sufficient number of interest points, and generalized Hough transform [77] quickly
get the scores for all hypotheses in a feature-centric manner—instead of collecting
the confidence for each hypotheses, each observed image feature casts votes into the
hypothesis space. The sparsity of the votes significantly reduces the computational
cost. The cascade approach [12] is another attention-based approach. The cascade is
composed of a number of classifiers, usually with increasing complexity as moving
downwards the cascade. Most non-object hypothesis can be rejected by the first few
stages, incurring a very small amount of computational cost, and only those hypothe-
ses likely to be objects need to be checked by the later stages, which are more powerful
but also more complex. Numerous improvements have been incorporated into the cas-
cade approach, e.g. [83]. Recently the attention-based cascade has been generalized
for simultaneously detecting multiple classes of objects, by relying on the general idea
of objectness, e.g. [84, 85, 86]. The recent branch-and-bound approach [87] is another
solution to avoid checking all hypotheses. It branches the hypothesis set into subsets,
and calculates a bound on the maximum score for each subset. Those subsets with

insufficient upper bounds can be rejected without checking any hypothesis in them.

Weakly labeled data

Learning the object detector from training data is usually formulated as a supervised
learning problem. Each training instance is given in the form of a pair of image and
label (1;,y;), and the feature x; is extracted from the image according to the label y;.
However, the training instances could be weakly labeled. First, the label may not be
accurate. For example, it is hardly possible to define the bounding box exactly and
consistently by different human labelers, and inevitably there is some alignment error
between different training instances. Second, the labels may not be fully provided for
an training instance. For example, we want to learn a part-based detector, and the
label y = [yo,¥1,..-Yn| should consist of the full body label y, and the part labels
{y:;i > 0}, but it is often the case that only the full body label is provided. Third, the
labels could be missing for some training instances, and we are given both labeled and

unlabeled data. Various techniques are proposed to deal with these cases. The inac-

1.2. STATE-OF-THE-ART 9

curate labels can be treated in the multiple instance learning problem [88, 89, 90, 91],
which generates a bag of instances for each original instance, and assumes that the bag
includes the optimal label. Learning a part-based detector only using holistic labels
is studied in [80], where the parts are initialized using heuristics and then iteratively
refined. Semi-supervised learning [92] solves the case of missing labels for some train-
ing instances, i.e. learning from both labeled and unlabeled data. The unlabeled data
participates in the learning process in various manners, e.g. as additional regulariza-
tion terms. Adapting a pre-trained detector to a particular environment also deals with
missing labels of the new obtained data, e.g. adapting a generic pedestrian detector to

optimize performance for surveillance video in a particular crossroad [93].

Scale up to many classes

Though many application systems only require detecting a single category of objects,
e.g. face detectors in cameras and pedestrian detectors for surveillance video, it is
still desirable to be able to detect many classes of objects. Detecting many classes
brings new difficulties in several aspects. A naive implementation would cause the
complexity of the system grows linearly with the number of classes. To alleviate this
problem, methods have been proposed such that when training the detectors for sev-
eral classes together, the detectors may share computation among the classes [94] and
thus the complexity of the full system increases sub-linearly. Class-independent mea-
sures such as “objectness” have been studied in several works [84, 86] such that a
window can be decided to be an object or background without knowing which ob-
ject category it is. For the generalized Hough transform and discriminative part-based
models, the knowledge sharing can be easily implemented by sharing the codebook
or sharing parts between classes, e.g. [95, 96]. Besides the detector efficiency issue,
sharing/transferring knowledge between different classes has also been studied for two
other reasons. First, the accuracy for classes with small number of available training
instances can be improved by borrowing strength from other classes, which is studied
as a multi-task learning problem; second, the human labeling effort for learning new
classes can be significantly reduced, since a few examples are sufficient for learning
a good classifier. Direct model transfer is studied in [97, 98, 99], while the attribute

[100, 101] is introduced as an intermediate concept for knowledge sharing.

10 CHAPTER 1. INTRODUCTION

1.3 Scope of this thesis

In this thesis, we study a basic problem in visual object detection, i.e. how to train a
good visual object detector. We adhere to the sliding window paradigm in most parts,
and focus on the machine learning techniques. The goal is to improve performance,
efficiency, and training speed. The main body of this thesis can be divided into the
following three parts.

The structural risk minimization (SRM) learning principle is studied in Chapter 2.
Many techniques use the spirit of structural risk minimization, for example, support
vector machines, logistic regression, and Boosting. A number of learning problems
can be solved, e.g. classification, ranking, structural prediction, etc. The properties
and solving techniques of several problems are analyzed. Based on the in-depth un-
derstanding of the SRM problems, a forward feature selection method is proposed such
that a small feature subset can be found while good performance can be maintained,
and efficient classifiers can be built using this technique.

Chapter 3 is devoted to the Boosting algorithm, which is one of the most successful
techniques in contemporary applications. We study the theory and technical details of
for training Boosting classifiers, and improve the existing methods in two points. First,
the totally-corrective Boosting methods are studied and a second-order criterion for
weak classifier selection is incorporated into the totally-corrective Boosting. Second, a
feature subset selection method based on the partial least square regression is proposed
to accelerate the training of the Boosting classifiers.

The Boosting algorithm is popular in visual object detection due to its successful
marriage with the cascade detector. Therefore, Chapter 4 is devoted to the Boosting
cascade detector. We study several important issues in training the Boosting cascade
detector. First, each stage of a cascade is a classifier with a highly unbalanced perfor-
mance, and how to adapt normal learning algorithms for this asymmetric performance
goal should be brought to attention. Second, setting the performance goal for each
stage of the cascade is a key to detector efficiency, but is usually neglected in research
works. Lastly, we propose methods for further improving the cascade detector’s ef-
ficiency by re-using information that is already obtained in the earlier stages of the
cascade.

In Chapter 5, kernel methods are studied, and various methods for improving the
efficiency of the kernel methods are discussed. Inspired by the kernel methods, we
propose a middle-level feature based on the similarity to exemplar instances. For the

visual object detection problem, we incorporate elements from multiple kernel learn-

1.3. SCOPE OF THIS THESIS 11

ing and multiple instance learning into the similarity feature, and propose a learning

framework using the forward feature selection technique and a coarse-to-fine scheme

for finding good exemplars.

12

CHAPTER 1. INTRODUCTION

Chapter 2 Structural risk minimization

learning

In this chapter we study the problem of learning a classifier from labeled training
data. We review the structural risk minimization principle in Section 2.1, focusing
on why and how we can avoid overfitting and obtain a classifier with low error rate
on testing data. Then several loss functions for binary classification are studied in
Section 2.2, entailing three popular techniques, i.e. support vector machine (SVM),
logistic regression, and AdaBoost. Techniques for solving the learning problems are
discussed in Section 2.3, taking the SVM as an example. Based on analysis of the
solving techniques, a generalized forward feature selection algorithm is proposed in
Section 2.4. Finally in Section 2.5 we discuss the ranking and structural prediction

problems, which also find successful applications in visual object detection.

2.1 Structural risk minimization

2.1.1 Learning to minimize the expected loss

Let each sample instance be a labeled pair drawn from an unknown distribution, i.e.
(x,y) ~ D, where x is the feature vector, y is the label, and D is the joint distribution
over features and labels. Let X’ be the domain of z, and) be the domain of y. In
the following we consider binary classification problems in a N-D vector space, i.e.
X = RN, Y = {+1,—1}. Given a training set S with M = |S| labeled instances
(x,y), we want to learn a function f that predicts the label y for an instance with
feature x, i.e. § = f (x). The function f is selected from a set H of functions, which
can contain a finite or infinite number of functions. The goal is to select a function that
has low expected error rate on the distribution D, i.e. low expected loss, also called
the generalization error. The problem of generalization has been studied from various
aspects in the statistical learning theory, e.g. Bayesian learning, stability theory, etc.
In the following we briefly introduce the rationale of learning using the concept of

VC dimension [45]. The VC (Vapnik-Chervonenkis) dimension of a function set H is

13

14 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

defined as follows:

Definition. (VC dimension) A set S of instances can be shattered by H, if for arbitrary
labeling of these instances, there exists a function in H that correctly predicts the
labels for all instances in S. The VC dimension d of H is the size of the largest set S
that can be shattered by H, i.e. there exists a set of size d that can be shattered by H,
but there does not exist a set of size d + 1 that can be shattered by H.

Based on the VC dimension, a probabilistic upper bound on the expected loss

(generalization error) is given in [45] as the following theorem:

Theorem. Denote the expected loss (generalization error) as errp = Pix y~p (f (X) # v),
and denote the empirical loss (training error) as errg = P yys (f (X) #y). Then

with probability 1 —), the expected loss is upper bounded by the following expression:

d(log (2M/d)+ 1) —log(n/4)
M

errp < errg + \/

Though tighter bounds can be found for various classifiers, this bound is already
quite instructive. It suggests that in order to achieve good generalization performance,
we should strike a balance between the empirical loss and the complexity of the func-
tion set H, indicated by the VC dimension d. Usually the following problem is solved

for learning from training data:
mfin L(f) st. R(H)=c (2.1)
It can also be written in the unconstrained Lagrangian form:

mfin L(f)+AR(H) (2.2)

with one-to-one correspondence between ¢ and A. R (H) is the model complexity
term, e.g. the VC dimension of 7, and it constrains the search for a good classifier
in a function set with limited complexity. L (f) is the empirical loss term, requiring
the classifier to have low error on the training data. In formulation (2.1), the model
complexity is fixed by constraining to a particular 4, and the empirical loss is mini-
mized by finding the best function in H. Then model selection is required to find the
optimal model complexity to minimize the expected loss, by trying different 4, which
is equivalent to varying c or A, and the best ¢ or A can be determined by minimizing

the expected loss on a standalone validation set.

2.1. STRUCTURAL RISK MINIMIZATION 15

2.1.2 Large margin linear classifiers

The linear classifiers are the most popular classifiers in practice. Without loss of gener-
ality, we consider the separating hyperplane passing through the origin, and with unit
normal vector w:

£ (x) = sign (w'x) . [wll, = 1

The VC dimension of the set of linear classifiers in R" is N + 1. The linear classifier is
popularized by the max-margin learning, which shows that the VC dimension of linear
classifiers can be effectively bounded. Define the margin of an example (x,y) to be
yw!x, and define the A-margin separating hyperplanes to be a linear classifier that
separates the positive and negative data by margin A, i.e. yw’x > A. The following

theorem from [45] gives an generalization error bound for large margin classifiers:

Theorem. Let vectors x € X be within a sphere of radius R, the set of A-margin

separating hyperplanes has VC dimension d bounded by the following inequality:

2
dgmin<[%} ,N) + 1.

Then with probability 1 — 1, the expected loss is upper bounded by:

m € dm
€TT’D§M+§<1+ 1+m>,

, and m is the number of misclassified training

_ g d(log(2M/d)+1)—log(n/4)
where ¢ = 4 T U

instances.
Therefore the learning problem can be transformed to minimizing the empirical

loss for a fixed model complexity measured by the margin:

min L(f) st. A=c ||w|i=1, (2.3)

w

which is equivalent to:

min L (f) st. A=1, ||w|i=1/c, (2.4)

w

or in the unconstrained form with one-to-one correspondence between A and c:

min AMwla+L(f) st. A=1. (2.5)

16 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

2.1.3 L-1 norm regularization

The max-margin separating hyperplane is formulated using unit normal vector w,
which results in L-2 norm regularization in problem (2.5). L-1 norm regularization
is also a popular technique. A generalization error bound for L-1 norm regularization

is given in the Boosting literature [66]:

Theorem. Let H be the set of base classifiers (or weak classifiers, weak hypotheses),
and with VC dimension d. Let f (x) = Y. a;h; (x), S, |ai

classifier obtained by a linear combination of T' weak classifiers from ‘H. Then with

= 1 be the strong

probability 1 — n, the following upper bound on the expected loss holds:

)

2
errp < Ps(yf (x) <A)+ 0 \/1M\/ dlog XQW d + log% (2.6)

The first term on the right hand side of (2.6) approximately measures error on the
training set, and the second term is determined by the margin A. The bound implies
that we should minimize the empirical loss and maximize the margin, but with L-1
norm constraint for w. Furthermore, the formulation is independent of T. Therefore
we may allow all the weak hypotheses to be included in the problem, but indeed only
a subset of base classifiers will be selected due to the sparsity-inducing L-1 norm

constraint on the linear combination coefficient c.

2.2 Loss functions for classification

The bound on the expected loss is determined by both the model complexity and the
empirical loss. As shown in section 2.1, the model complexity of linear classifiers
can be bounded using the concept of margin, by regularizing the L-1 or L-2 norm of
the normal vector w of the separating hyperplane. Therefore another problem is how
to calculate the empirical loss such that we have a problem that can be conveniently
solved.

Usually the empirical loss is represented as sum of loss on the training instances:

M

L(f) = Zl<yi7f (xi)),

i=1

where [(y;, f (x;)) is the loss per training instance, and ideally the 0-1 loss should be

2.2. LOSS FUNCTIONS FOR CLASSIFICATION 17

used for binary classification problems:

0 y=sign(f(x))

Hy, f(x) = {1 y # sign (f (x))

However, the 0-1 loss is not convex and not differentiable, making the learning prob-
lem have many local optima and difficult to solve. In the following we discuss three
approximations of the 0-1 loss, i.e. the hinge loss used in the support vector machines,
the logistic loss used in logistic regression, and the exponential loss used in AdaBoost.
The loss functions are shown in Fig. (2.1). We can see all are upper bound of the 0-1

loss.

= ()-1 loss: yf(x)<O

35 s Hinge loss: max(0, 1-yf(x))
| ogistic loss: log(1+exp(-yf(x))
Exponential loss: exp(-yf(x))

yf(x)

Figure 2.1: Loss functions for binary classification.

2.2.1 Hinge loss
The hinge loss is formulated as follows:
I(y, f (x)) =max (0,1 — yf (x))’, with small o > 0.

As o approaches 0, the hinge loss approximates the 0-1 loss with increasing accuracy.
However, usually 0 = 1 or o0 = 2 are used since they lead to problems easy to solve.

The hinge loss is used in the support vector machines. For L-2 regularized SVM and

18 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

o = 1, the learning problem is:

M
rr‘l"i/n swliw +C ; max (0,1 — y;w’x;) 2.7)

Introducing the slack variables {¢;}, the problem can be transformed to:

M
min sw/w+C Y &
w,€ i=1

st ywlix, >1-§&,i=1,..., M,
&>0,1=1,..., M.

(2.8)

The hinge loss introduces interesting properties that gives the method its name
“support vector machine”. We study its properties by the Lagrangian dual problem.

The Lagrangian of (2.8) is:
1 M M M
_ LT T
L(w, & a,8)= oW W+C;€i +;ai (1-&—yw'x;) — ;ﬁi@ (2.9)

The following Karush-Kuhn-Tucker (KKT) conditions are sufficient and necessary for

the optimality of the original problem:

Stationary Primal and dual feasibility Complementary slackness
M
L—w—Yayxi=0 yw'x;>1-¢ a; (1 - & —yw'x;) =0
i=1
a; 2 0
pi > 0

Substituting the KKT conditions into the Lagrangian, the dual problem can be ob-

tained, which is a quadratic programming problem with box constraints:
min ;a’Qa—e'a st 0<a; <C,i=1,...,M, (2.10)
«

where @ is a M x M matrix, Q;; = y;y,;X; X;, and e is a vector of all 1s. The following
relations can be obtained from the KKT conditions:

o W — foil QLY X5

e For those out-margin examples: y;w'x; > 1,& =0,a; =0, 3; = C.

e For those on-margin examples: y;w'x; =1, =0,0<0; <O, 3, = C — o.

2.2. LOSS FUNCTIONS FOR CLASSIFICATION 19

e For those in-margin examples: y;w'x; < 1,& > 0,6, =0, a; = C.

Therefore the separating hyperplane is decided only by those on-margin and in-margin
examples, i.e. y;w!x; < 1. The on-margin and in-margin examples are called the
support vectors. However, there is no closed form relation to determine the {«;} for
those on-margin examples (i.e. those y;w’ x; = 1), since the hinge loss function is not
differentiable at y f (x) = 1.

2.2.2 Logistic loss

Assume the likelihood of a labeled instance (x,7) is (1 + exp (—yf (x))) . If the
margin y f (x) is a large positive value, the probability approaches 1, if the margin is
a large negative value, the probability approaches 0. Then the negative log likelihood

can be used as a loss function:

Ly, f (%)) =log (1 +exp (—yf (%)) (2.11)

The logistic loss L (f) = S22 Tog (1 + exp (—: f (x;))) is the negative log likelihood
of the training set, and minimizing the logistic loss is equivalent to the maximum
likelihood estimation of the parameter of the distribution.

The population minimizer of the logistic loss can be derived in closed form. We

minimize the expected loss functional with respect to the distribution D:
min - Ep (log (1 +exp (—yf (x)))) (2.12)

The gradient of the loss functional is:

_yep(=yf(x¥))\ — _exp(=f(x))
Ep (1+exp<—yf<x>>> = Py =1%) et (2.13)
_ exp(f(x)) ’
+PD (y - _1’ X) 1+exp(f(x))

By setting the gradient to 0, we can obtain the solution of problem (2.12) as:

Py=1x)

f(x) = log 5—=———~ (2.14)
TS
(2.14) is called the logit of the probability P (y = 1|x). Minimizing the logistic loss

using a linear function f (x) = w’x is known as the logistic regression. The L-2 norm

20 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

regularized logistic regression problem is:

w

M

min %WTW + Z log (1 + exp (—yinxi)) (2.15)
i=1

Introducing the auxiliary variables m; = 1;w’ x;, the problem becomes:

M
min Jw'w + 3 log (1 + exp (—m;))
i=1

w,m

(2.16)
st. m; =ywix,i=1,...,M.

The Lagrangian of (2.16) is:
\ M M
_ T T
L(w,m a)= SWw + Zl:log (I +exp(—m;)) + ;ai (mi — YW XZ-), (2.17)

and the KKT conditions are:

Stationary Primal and dual feasibility Complementary slackness

M
oL __ _ _ T
e =AW — Eloziyixi =0 m; =yw'x;
1=

oL _ —exp(=my) -
Om; — l4exp(—m;) +a; =0

The dual problem is an unconstrained problem:

M M
ngn 2a’Qa + ; (1 —ay)log (1 —ay) + ; a; log o (2.18)
Similar to the SVM, the separating hyperplane is in the subspace spanned by the train-

ing instances:
1 M
W = X Zi:l oYX, (2.19)

using the dual variables {«a;} as the combination weights. But the difference is, since
the logistic loss is differentiable, a closed form relation between the primal and dual

variables exists for the logistic loss:

_exp(—my)
= Thexp ()

(2.20)

)

In particular, the dual variables {c;} are equal to the negative gradient of the primal

2.2. LOSS FUNCTIONS FOR CLASSIFICATION 21

objective w.r.t. the margins {m,} of the training instances:

M
L= Zlog(l +exp (—m;)),and a; = —

i=1

oL
5mi '

(2.21)

2.2.3 Exponential loss

The exponential loss, popular due to its use in the AdaBoost algorithm, has the follow-
ing form:

I(y, f(x)) = exp (—yf (x)) (2.22)

Similar to the logistic loss, the exponential loss is convex and differentiable, and the
population minimizer of the exponential loss can also be derived in closed form. Given

the distribution D, we minimize the expected loss functional on D:
min Ep (exp (—yf (x))) (2.23)

The gradient of the expected loss is:

Ep (—yexp(~yf(x))) = —Pp(y=1x)exp(—f(x)) (2.24)
+Pp (y = —1,x) exp (f (x))
Set the gradient to 0, and we can obtain the solution as:
1 Py=1
f(x) = = log Ply=1px) (2.25)

2% Ply =1}

The solution (2.25) is indeed the half logit, while the logistic loss results in a solution
of the full logit (2.14).

We also study the property of learning with exponential loss by studying its La-
grangian dual problem. A linear classifier is learned by solving the following problem:

w

M
min %WTW + Z exp (—inTXi) (2.26)
i=1

Introducing the auxiliary variables m; = y;w’ x;, the problem becomes:

M
: AT
min §wW'w + € —m,;
wan 2 2 exp (=mi) (2.27)

st. m; =ywix;,i=1,.., M.

22 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

The Lagrangian is:

M M
A
L(w,m, «a)= §WTW + ; exp (—m;) + ; o (mi — yinxi), (2.28)
and the KKT conditions are:
Stationary Primal and dual feasibility Complementary slackness
M
g—f, = Aw — ; ayix; =0 m; = yw'x;
2 —ay— =0
The dual problem is:
M
min s;a’Qa — Y a; (1 —loga;) (2.29)

=1

Similar to the case of logistic loss, there exists a closed form relation between the
primal and dual variables, and the dual variables are equal to the negative gradient of

the loss function:
oL

M
L= Zi:1 exp (—m;), and o; = o

(2.30)

2.3 Methods for solving SVM

In this section, we discuss methods for solving the learning problems. A learning
problem is formulated as an optimization problem, and in particular many of them
are convex, e.g. the three loss functions discussed in section 2.2 and the L-1 and L-2
norm regularization for linear classifiers are all convex. Therefore general optimization
techniques can be applied. However, machine learning poses different requirements
for the solution techniques than the studies in mathematical optimization [102]. First,
a highly accurate solution is usually not necessary since the training data can be noisy,
and the bound on expected loss is probabilistic. Second, fast training and capability to
deal with large data is required since usually large amount of training data are available
in high dimensional feature space. In this section we study several such methods
for training the support vector machines. Two methods that solve the dual SVM are
discussed in section 2.3.1 and 2.3.2. The decomposition method [103, 104] in 2.3.1
solves general SVM problems, readily lending it to solving non-linear kernel SVMs.

The dual coordinate descent method from [105] is introduced in 2.3.2, and this method

2.3. METHODS FOR SOLVING SVM 23

is specialized for linear models without an intercept term. Then two methods that solve
the primal problem based on the sub-gradient information are discussed in section
2.3.3 and 2.3.4, i.e. the sub-gradient descent method [49] and the 1-slack cutting plane
method [106], both of which are very efficient for linear SVM and can explore very
large training set. The n-slack cutting plane method is also discussed in 2.3.4, which
constitutes the theoretical basis of retraining with hard examples used in training visual

object detectors.

2.3.1 Decomposition methods for dual SVM

We consider solving for a large margin separating hyperplane with arbitrary intercept
b:
f(x)=w'x+0b. (2.31)

The learning problem is:

w,€,b
sty (wixg+b) >1-&,i=1,.., M,
£&>0,i=1,..., M.

M
1T
min 5w W—i—C’Zlfi
=

(2.32)

Adding the intercept term b induces a slightly different problem as we have discussed

in section 2.2.1. The intercept b is not regularized, and the dual problem is:

min W (a) = 10’ Qa— e’
«

S.L. 0 S Qg S Ca 1= 17 "'7M7 (233)
M
Zazyl = 07
i=1

where Q;; = vy;y;x! x;. The dual problem is a quadratic programming problem, with
quadratic objective function W (), box constraints 0 < «; < C, and in addition, a
linear equality constraint Zfﬁl a;y; = 0 due to the intercept term b.

The decomposition method solves the dual problem in the following manner, by

iterating the following steps:
e Divide the variables in {«;} as the working set B and the fixed set N.

e Solve the dual optimization problem with respect to variables in the working set
B.

24 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

The method is very similar to coordinate descent for unconstrained problems, but due
to the linear equality constraint, the working set B need to contain at least two vari-
ables. The method with | B| = 2 is called the sequential minimal optimization (SMO)
[103] algorithm for its use of a minimal working set B .

and) = [

ap

(B BN
, We
QnB QNN]

After selecting the working set, let a = [
an

obtain the following sub problem:

rg}gn saLQppop — o (1 — Qpnoy) + const

st. 0<aq;,<C,i€ B, (2.34)

abys+ akyn = 0.

This is a small scale problem with only | B| variables, and can be solved efficiently. In
the following we discuss two methods for selecting the minimal working set B of two

variables.

First order method for working set selection

The first order method [103, 104] is based on the intuition that the selected variables
should lead to fastest decrease of the objective value. Therefore the derivative of the
objective function is considered as the working set selection criterion. The first order

approximation of the dual objective is:
Wi(a+d) =W (a)+d"g(a),

where g (o) = Qo — e is the gradient of W (a), which can be maintained through
the solving process with a small amount of computation. Given the current value of
a, We seek a increment vector d to minimize the approximation 1% (a4 d), and also
require that there are only two non-zero elements in d, i.e. the working set size is 2. In

the following we denote the index of the two variables as 7 and 7, and use k for general

2.3. METHODS FOR SOLVING SVM 25
index of the elements in c. The problem is:

min W (a+d) =W (a) +d"g ()
st. yI'd =0,

dp > 0,fork : o, = 0,

dp <0,fork:ap=C,

[{dy : dx # 0}| = 2,

|d||, = small const.

(2.35)

The first three constraints come from the feasibility of the solution, and the last con-
straint is to ensure that the solution does not touch the bounds of cx. To have a feasible
solution for (2.35), all possible choices of the two elements {7, j} can be listed as

follows:

Variable i Variable j

yvi=1l,a, <C,d; >0 yjzl,ozj>0,dj<0
yi=1l0<C,d; >0 |y;=—-10;<C,d;j >0
yi=—1,0,>0,d; <0 | y; =1,0; >0,d; <0
yi:—l,&i>0,di<0 yj:—l,aj<0,dj>0

Therefore the working set {i, 7} can be obtained with a simple strategy. Define:

Ly (o) = {klaxy < Ciyp =1, oray, > 0,y = —1}

(2.36)
[low (O() = {klak < C? Y = _1> or oy > ank = 1}
The choice of the working set is:
i = argmax {—yrgr (o) [k € L, ()},
k (2.37)

Jj = arg mkin {—vrgr (@) |k € Loy (o)}

Second order method for working set selection

The second order method [107] considers directly minimizing the objective function

rather than its first-order approximation, taking both the working set and the incre-

26 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING
ments of the variables in the workingset as unknowns:

rgin w (a + dB) - W (a) = gB(a)TdB + %dgHBB (a) dB
B
S.t. ygdB = 0,

dk ZO, fOI‘kiOzk:O,

dkSO, fOI'k?ZOék:C.

(2.38)

gp (o) and Hpp (o) are the gradient and Hessian of W () with respect to the vari-
ables in the working set 5. Since the objective function is quadratic, its second order
approximation is exact.

Denote cfi = y,;d; and cij = y,d;, obviously we have cfi = —dj since ygdB = 0.

d;

The objective function becomes:
+ (@) g5 ()] [Z

Qi Qij d
%[di dj} [jS ij] dj]A (2.39)

= 3 (Kii + Kjj — 2Kyj) & + (—yig: (@) + ;95 (@) d;

Define a;; = K;; + K;; — 2K;;, and b;; = —v;9; (o) + y;9, (o) > 0, the objective
function becomes: .
a”d2 + byd,,

.. . 5 by .. .
If a;; > 0, the minimum is at dj = —d;, = ——L <0, and the minimum value is
ij

——L < 0, i.e. the objective value is reduced. Therefore if we have selected i, we

Qg
can select j to directly minimize the objective value. In practice, ¢ is selected using
1-st order information as in [103, 104], and then j is selected to directly minimize the

objective function:

i = arg max {—yegr () |k € I,y () }

. : (2.40)
j = argmin {——Ik‘ € liow (@) , —1i9:i (@) + yrgr (o) > 0}

If a;; < 0, which may happen when the kernel is not positive definite, an upper
bound of the objective function is minimized:

sz + bwd] a,jd2 + b; d

-2

2.3. METHODS FOR SOLVING SVM 27

where 7 is a small positive value. And the working set selection is as follows:

i = argmax {—yrgy () [k € Ly (@)}

(2.41)
k€ Lipw (o), —yigi (@) + yrgr (o) > 0}

. : 02,
] = arg mk}n {_T

2.3.2 Dual coordinate descent method for linear SVM

The dual coordinate descent algorithm [105] solves a linear SVM without the intercept

term: y

mi? sWw+C g

W i=1

st ywix, >1—-&,i=1,..,M, (2.42)

&>0,i=1,..., M.
The dual problem is:
min ta’Qa —e’a
a2 (2.43)

st. 0<q;<C,i=1,.., M,

where Q;; = y;y;x! x;.
By ignoring the intercept term b, the equality constraint is removed from the dual
problem, therefore it is possible to modify a single «; while keeping the solution feasi-
ble, resulting in a coordinate descent algorithm. Let W (at) = %aTQa — el a be the
dual objective function. In each iteration of the the coordinate descent algorithm, we
select a variable «; and make a step of size d, which is decided by the following sub

problem:
mdin W (d)

S.t. OSO(Z—FdSC,

(2.44)

where)
Wi (d) = §Q,~,~d2 + ¢g; (o) d + const

is the objective function that considers only the i-th coordinate «;. d is the descent step
size in this coordinate.

The optimality condition of the dual problem is:

VW (a) = 0,Vi, (2.45)

28 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING
where VP () is the projected gradient:

VZW (a) O<ao; < C
VIW (@) = { min (0, V,W () o; = (2.46)
max (O, VZW (a)) a; = C

Therefore given the selected coordinate ¢, the step size d is obtained by setting the

derivative to O:

- 7 = ”-d i :O:}d:—— 2.47
9d Qud + gi (@) 0. (2.47)
The update in the coordinate is:
a o +d=qa; — gi (a)) (2.48)
Qii
and we project it back to the feasible set of «;:
o 4— min (max (ai — gga) , O) ,C)) (2.49)

If Q;; is 0, the solution is simply «; = C.
For linear SVM, the primal variable w can be updated with each coordinate descent
step, and the gradient of the dual objective with respect to each dual variable can be

computed as follows:

gi (@) = (Qa); = 1= yiw'x; — 1

Therefore each coordinate descent is very cheap, and the dual coordinate descent al-

gorithm is very efficient for solving linear SVM without the intercept term.

2.3.3 Primal sub-gradient descent method for linear
SVM

The primal sub-gradient descent algorithm [49] solves the linear SVM without the

intercept term b, using the following unconstrained problem formulation:

min %WTW + % Z max (0, 1-— inTXZ-) (2.50)

w

2.3. METHODS FOR SOLVING SVM 29

The objective function is convex but non-differentiable. We can calculate a sub-

gradient of the objective function at location wy:

M g
1 i W1 X <1

1
Vi=Aw;, — — T4 ixi,wherew i =
t t M; w " 0 yw/x;>1

Instead of using the full training set to calculate the sub-gradient, a much smaller
set A; of training instances can be used to approximate the sub-gradient:

ViR AW — 0 D Tl (2.52)

1€ A

IAI

In the extreme case, we approximate the sub-gradient using one single selected training
instance ¢, i.e. V, = Aw, — m;y;%X,. We can sequentially loop over the training
instances, or randomly pick a training instance in each step. After calculating the

sub-gradient, a step size 1, = 1o/t is performed in the negative sub-gradient direction:

Wiy = We = Ve = (L= nd) We oty Z i YiXi (2.53)
ZGA

Furthermore, the dual problem can be written as:

max —prar Qo + Z % (2.54)

The KKT conditions require that w = % Zf\i | Y X;, therefore at the optimum, the
dual objective is equal to —%WTW + e’ . The primal objective should be equal to the

dual objective at optimal, i.e.:
—w w—i——Z@———W w+ela (2.55)
Therefore we can obtain:
1M
/\WTWZeTa—MZ& <1=|wl, <V1/A (2.56)
i=1

which indicates the optimal solution is inside a ball of radius 1/1/X . Therefore in the
sub-gradient descent method, we project w,, 1 back to inside the ball Wi, < +/1/A

30 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

to obtain:

. 1
Wil = Weppgo min | 1, ——— | . (2.57)
(Wit1/2 H2\/X>

This shows improved convergence speed in practice.

2.3.4 Cutting plane methods

n-slack cutting plane method: Exploring the hard examples

First we discuss the n-slack cutting plane method, which solves the following problem:

M
1
min sw'w+C Y &
w.€ i=1

s.t. inTX,L' >1-— gi’ 1= 1, ...,M,
&>0,i=1,.., M.

(2.58)

The intercept term b can also be incorporated without affecting the following discus-
sion. This problem has M linear inequality constraints for w, which defines the feasi-
ble set of w. The cutting plane method for inequality constrained problems approxi-
mates the feasible set using a number of cutting planes. A cutting plane is defined at a
position w,, and corresponds to an inequality constraint in the original problem.

We use function g; (w) = 1 — & — y;w?x; < 0 to represent the i-th constraint on

w in problem (2.58). A cutting plane is added for g; (w) at position w; as:

ow

Wi

Gip (W) = gi (W) + (W — W)

The cutting plane §;, (w) is a under estimator of g; (w) since g; (w) is convex. In par-
ticular, for the linear constraints, the cutting plane is the function itself, i.e. g;; (w) =
g; (w). The cutting plane method for constrained optimization problem can be de-
scribed as follows.

Starting with a relaxed problem without any constraint g; (w), i.e. without any
training instance. The initial feasible set of w is the full space. Then in each iteration,
we get a solution w; for the relaxed problem, and add cutting planes for those violated
constraints g; (w) > 0, i.e. including those hard instances into the training set. The
effect is that part of the feasible set of w is cut off by adding the constraints. Those
inactive cutting planes g; (w) < 0, i.e. the easy training instances, can be removed

from the problem without affecting the solution. Therefore the procedure is:

2.3. METHODS FOR SOLVING SVM 31

e Initialize the solution wy = 0 and &; = 0, Vi, and the training set Sy = J.
e [terate:

— Update the training set by collecting the in-margin instances from the full

training set, ie. {i : g; (w;) > 0}, and remove those easy training instances.

— Train the classifier using the new training set S;.

Therefore SVMs can be efficiently trained using the n-slack cutting plane algo-
rithm for very large training datasets. Instead of directly training on the full dataset,
we train the classifier using a small subset, and then update the working set of training
instances by removing those easy instances, and adding those hard instances. The so-
lution converges to the result of training on the full dataset. An example of using the
n-slack cutting plane algorithm for training a linear SVM classifier using a negative
training set comprising all windows in the negative images (i.e. images not containing
any instance of the object category) is shown in Table 2.1. We constrain the working
set of negative instances to be at most 10,000. The first working set is randomly taken
from the negative images. Then the working set is updated by keeping the hard neg-
atives in the current working set, and including those most difficult negative windows
in the training images. The table shows the number of hard negative windows (SVM
score > —1) in the negative training images with each trained classifier. It can be
observed that the process quickly identifies those hard negatives, which comprise less
than 0.1% of the total windows in the negative images. The small set of most diffi-
cult negative instances can fit into memory, and a classifier trained using these hard
negatives is exactly identical to that trained using the full negative dataset with multi

millions of training instances.

Table 2.1: Number of hard negative training instances in a n-slack cutting plane train-
ing process.

Iteration 0 1 2 3 4
hard neg | 11,801,876 | 704,225 | 250,029 | 9,364 | 5,898

32 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

1-slack cutting plane method for linear SVM

The 1-slack cutting plane method [106] considers the following unconstrained opti-

mization problem:

M
min Aw’w + % > max (0,1 - yw'x,) (2.60)

" i=1
The problem is convex, but the empirical loss L (w) = Zf\il max (0,1 — y;w’x;)
is not differentiable everywhere. Using the sub-gradient, the cutting planes of L at

positions w; is a linear function:

~

Ly (w) = L(wy) 4+ (w—wy) g (wy), (2.61)

where g (w;) is the sub-gradient of L (w) at w;. Then the loss function is bounded

from below by the pointwise maximum of the cutting planes:
L(w) > max {j}t (w)} . (2.62)

The bound is tight if sufficiently many cutting planes are constructed in the proper

manner. Furthermore, L, (w) = 0 is a cutting plane of L (w) at w = 0. Therefore

77777

L(w) > L} = max <O,tH11aXT {I:t (W)}) . (2.63)

By progressively adding cutting planes to form tighter and tighter lower bounds of
the original objective function (2.60), the cutting plane method for solving the uncon-

strained convex optimization problem (2.60) works as follows:
e Initialize the solution to be wg = 0.
e ForT = 0, ---,TMAX

— Add a cutting plane Ly (w) at the current solution w.

— Approximate the loss function using L7, i.e. the pointwise maximum of

the cutting planes, and then solve the problem to obtain a solution wp .

2.3. METHODS FOR SOLVING SVM 33

For the SVM problem, a sub-gradient of the loss function is:

M
g(wy) = Vi Z TiYiX;, Where my; = { YW %= (2.64)

— 0 ywlx; >1

The indicator 7 ; selects those hard (in-margin and on-margin) instances using the

current solution w;. The cutting plane is:

Li(w) = L(w)+(w—w) g(w)
M
= % 2 i (1 — vix;) (2.65)
M

M

— 1 T1

= M2 Thi W Mzaﬂt,iyixi
1=

@
Il
—

And the approximated problem is:

M M
min %WTW -+ max <0, max {ﬁ Yo mei — wTﬁ D TiYiX; }) , (2.66)

""" =1 i

which is equivalent to:
A
min Jwiw + ¢
W7§

M M
S.t. WTﬁ Z T YiXq > % Z Teq — g,t = 1, ceny T, (267)
=1 =1

)

£>0.

Therefore the cutting plane algorithm for the unconstrained problem is equivalent to
the cutting plane algorithm that cuts the feasible set of w by sequentially adding con-

straints for the following problem:

min 2w w + ¢

w,& 2
M M
st wlL Z:lm-yixi > Z:lm — &, vmw e {0, 1}, (2.68)
§=>0,

since for any current solution wy, m; = { is also the labeling that

0 ywlix; > 1
maximizes & > m — wT L S™Y myx,, ie. the mostly violated constraint in the
problem (2.68).

34 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

Compared with the original SVM problem, (2.68) introduces hypothetical training
instances with actual margin ﬁ Zfi | TiYiX;, and target margin ﬁ ij‘il 7;. Further-
more, only one slack variable ¢ is required, and therefore (2.68) is called the 1-slack
formulation. It can be verified that the solution of 1-slack formulation is equal to that

of the n-slack formulation, since the following holds for any each w:

1 <l 1 <l
g = max{MZm—WTMZmyixi}
i=1 =

™ =1

M
> max (O, 1— yinXi) (2.69)

Sl
-
i
I

I
g~
M=t

s
I
—

i

Therefore the optimal value of (2.68) is identical to the optimal value of (2.60), and the
solution of the 1-slack formulation is identical to that of the n-slack formulation. Next
we derive the dual problem for the 1-slack problem (2.67). Let ¥, = ﬁ Zf\il Tt i YiXis

and A, = 7 S M. T4, (2.67) can be written as:

min 2w w + ¢

w,€ 2
S.t. WT\I/t Z At—f,t:].,...7T, (270)
§£>0.
The Lagrangian is:
A\ T
Lw.& o f)=wiw+E+) o (A —§—wl,) - ¢ (2.71)
t=1
The KKT conditions are:
Stationary Primal and dual feasibility Complementary slackness
T
g—‘f’:)\W—ZOZt\I]tZO WT\PtEAt—f,Vt Oét(At—g—WT\Ijt):O
t=1
T
=l-Ya-pg=0 €20 BE=0
Q; Z 0

2.3. METHODS FOR SOLVING SVM 35

Max CP=40, Min CP=10
60 T . 160

== # of active cutting planes, 5=0.01
140 | = # of cutting planes used in optimization
50
120
40 /
100
30 80 /
60
20
/ 40
10
20

el

0 50 100 150 20(0 50 100 150 200

Objective value

of cutting planes

of cutting plane iterations # of iterations
(a) (b)

Figure 2.2: An example of 1-slack cutting plane training of linear SVM. (a) The ob-
jective function converges from below as more cutting planes are added. (b) By using
only the most difficult cutting planes, the complexity of each subproblem is effectively
constrained without impairing the quality of the solution.

The dual problem is:
min %aTQa —ATa

T

st S <1, (2.72)
t=1
(o7 > O,t = 1, ,T

where Q is a T' x T matrix, Q;; = W7¥,. There are T variables in the dual prob-
lem, and usually the number of cutting planes needed to obtain a good solution is
significantly smaller than the training set size M. Therefore the complexity of 1-slack
training scales approximately as O (M) respect to the dataset size, and is a very effi-
cient method for linear SVM. Furthermore, in the later iterations, the in-active cutting
planes, i.e. w%@t > A; — £ + o, where wy is the current solution, and o is a small
positive constant, can be removed from the problem without affecting the solution.
We also specify a minimum number n,,;, and a maximum number n,,,, of cutting
planes used in solving problem (2.70). If the number of active cutting plane is smaller
than n,,;, or larger than n,,,,, we keep the cutting planes with the top 7, O Nynas
highest values of A; — w% U, in problem (2.70) and (2.72). n,,,;, prevents the solution
drifting and helps convergence, since an in-active cutting plane at wy could be active
for the next solution W 1. N4, keeps the problem (2.70) and (2.72) at manageable
size. Fig. 2.2a shows the convergence of the objective function. The cutting plane

algorithm approaches the optimal value from below as more cutting planes are intro-

36 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

duced. Fig. 2.2b shows how the problem size grows and is controlled by 7,,;, = 10

and 1,4, = 40.

2.4 Embedded forward feature selection

In this section, we derive an embedded forward feature selection method for a class
of structural risk minimization learning problems. The feature selection problem is
described as follows.

Denote the features we use to represent a sample instance as a feature set , which
comprises a number of feature channels, i.e. H = HyJ...|JHp. The full feature
space can be represented by H = H; X --- x Hp. The feature vector for a sample
instance can be obtained by the concatenation of features in H, i.e. x € H. We want
to select a feature subset H C H, such that the classifier using this feature subset has
good performance. The feature selection is of interest for several reasons. First, it
produces efficient classifiers since only those selected features need to be extracted at
testing time. Second, it results in easier learning problems since we are working with
a low dimensional feature space H limited to those selected features H. Third, the
selected features often provide useful insight into the nature of the problem.

Methods for feature selection can be divided into three categories [56], the filter
methods, the wrapper methods, and the embedded methods. The filter methods assign
an importance score to each feature, and then select features according to their impor-
tance scores. Feature selection and learning are two independent stages in this case.
The wrapper methods treat the classifier as a black box, and test subsets of features by
training a particular classifier using these features. Since exhaustively enumerating all
subsets is impractical, greedy strategies are usually used instead. The forward feature
selection starts with an empty set &, and adds the feature that mostly improves the per-
formance in each iteration. The backward feature selection starts with the full set H,
and removes the feature that least affects the performance in each iteration. For the em-
bedded methods, the feature selection is performed along with training the classifier,
and information from the trained classifier is exploited for finding the good features.
The embedded methods are of most interest for two reasons. First, they usually have
higher efficiency over the wrapper methods, since information of the classifier can
be exploited to guide the feature selection, rather than retraining the classifier using
the modified feature set. Second, often better feature subsets can be produced than

that by the filtering methods, since the features are selected to optimize the classifier’s

2.4. EMBEDDED FORWARD FEATURE SELECTION 37

performance, and can be expected to be complementary to each other, while the high-
scored features in filtering methods are usually highly correlated with each other. In
this section, we introduce an embedded forward feature selection method for a class

of structural risk minimization learning problems.
2.4.1 A forward feature selection algorithm

Column generation method for feature selection

T

We consider x € RY, and linear model f = w'x, and consider the class of loss

functions separable in the training instances, i.e.:

M

L(w) = Zl (yi7 WTXi). (2.73)

=1

T

By introducing the auxiliary variables f; = w' x;, and a regularization term R (w),

the learning problem becomes:

M
min AR (W) + > U (yi, fi)
;W =1

st. fi=wlx;,i=1,.., M.

(2.74)

We assume the domain of w is w € R”. To see how the features can be introduced

one by one, we write the Wolfe dual of the problem:

M M
max AR(W) + > (i, fi) + > ai (fi — w''xy)
af,w i=1 i=1

st fi=wix, B 40, =0,i=1,., M, (2.75)
M
OR NS w0, i —
Aawj ;O‘zxw 0,j=1,...,N.

If R (w) and [(y;, f;) are both convex, the optimal values of the primal and dual prob-
lems are equal. For the dual problem, it can be observed that each feature j; now
correspond to a constraint)\% — Zf\il a;z;; = 0. Selecting a subset of features is
equivalent to fixing some w; to 0 and ignoring the corresponding constraints, i.e. re-
laxing the dual problem. Therefore a forward feature selection method can be derived
from the cutting plane algorithm, which relaxes the problem (2.75) and sequentially

add back the constraints, i.e. performs forward feature selection. For this problem, the

38 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

cutting plane algorithm is also known as the column generation algorithm. Denote ma-
trix H in which each row H; = x; is the feature vector of a training instance and each
column H.; is the j-th feature for all training instances. In the following we use H for
both the matrix of features and the feature set used to represent the training instances.
The column generation method sequentially generates the columns of the matrix of
selected features [. The algorithm solves a sequence of relaxed dual problems, each

being tighter (with more constraints, i.e. more features) than the previous one:

e Start with H = @, iterate the following steps:

— Solve the relaxed dual problem with H,ie. represent the training instances
using the selected feature subset. This is equivalent to ignoring the con-
straints j ¢ H,and fixing the corresponding w; to 0. Obviously w; = 0 is
in the feasible set of w, therefore the solution of the relaxed problem will

always be feasible for the original problem.

— Find the maximally violated dual constraint:

OR
)\a—U)J — ’Lz:l: aixij

arg max
J¢H

9

and update the selected feature set: H«+ H U {7} Note that if the loss
function is differentiable, the dual variables {; } can be obtained in closed
form as «; = _%};ﬁ)' Otherwise the problem needs to be modified, for

which we will show an example later.

In the following we show the implication of adding the most violated constraint from
two aspects, i.e. optimizing the Lagrangian, and coordinate descent of the uncon-

strained primal problem.

Lagrangian perspective of the column generation method

For a constrained convex optimization problem:

st gi(x) <0, (2.76)

2.4. EMBEDDED FORWARD FEATURE SELECTION 39

The Lagrangian is:
i J

The most violated constraint corresponds to the dual variable that has the largest abso-

lute derivative:

arg max g; () = arg max g(f

1,9:(2)>0 i,9i(x)>0 ‘ (278)
arg max |h;(x)] = arg max ‘%

gj,hj(m)¢o| 1(@) 8 (o |98

The Lagrangian (2.77) is a lower bound of the original problem (2.76). The column
generation method is essentially a coordinate ascent method of the Lagrangian, starting
with o = 0 and 8 = 0, and in each step selecting a coordinate o; or 3; to modify
according to the first order derivative, and forming tighter lower bounds of the original
problem. For the Wolfe dual (2.75), since it 1s a maximization problem, the column
generation method approaches the optimal value from above, such that the original

objective (2.74) is reduced with the inclusion of new features.

Primal coordinate descent perspective of the column generation method

The column generation criterion is equivalent to the 1-st order criterion for selecting
coordinates in a coordinate descent method for solving the following unconstrained

problem:

M
min AR (w) + > 1 (i, w'x;). (2.79)

=1
Starting with w = 0, the coordinate descent method selects one w; in each iteration.
The first order derivative can be used for selecting the coordinate:
M
OR Z ol (quTXi)

a ax |[A—— +
rgmjx ow; ow;

(2.80)
i=1
Then a step is performed in this direction by: w; < w; + n. The step size can be
decided by optimization, or using a shrinking strategy: 1, = 1o/t .

For the previous column generation method, if the loss [is differentiable, the o

can be obtained in closed form as a; = —0l (y;, f;)/0f; , and the column generation

40 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

criterion is equivalent to finding the coordinate with maximum derivative, since:

ol (Z/z',WTXz') Mol (vi, fi) Of; -

=1 i=1

If [is not differentiable, e.g. the hinge loss, we can use its arbitrary sub-gradient
Ol (yi, f:)/ 0 i, since the objective value is assured to decrease along any sub-gradient
direction. Or we may solve a modified dual problem to obtain «;, which will be dis-
cussed in section 2.4.2. Therefore the forward feature selection algorithm can be im-

plemented for general problems by the following procedure:
e Solve the learning problem with the reduced feature set H.
e Select new features into H according to the gradient/sub-gradient of the features
(2.80).

2.4.2 Special cases

Non-differentiable loss: The Hinge loss

For the L-2 regularized SVM problem:

[(yl-, WTXZ-) = max (0, 1— inTX,-) ,and R (w) = w'w. (2.82)
The loss is not differentiable. Introducing the slack variables {¢;}, the learning prob-
lem is:

min Swlw + % &
wE € =
st f; = wlx,, (2.83)
vifi > 1-§&,
& > 0.

2.4. EMBEDDED FORWARD FEATURE SELECTION 41

Its Wolfe dual is:

\ M M M M
fr?axﬁﬂl EWTW +X 4+ > o (fz' - WTXz') + 228 (L =& —wifi) = D v
w.f.€,e.0, i=1 i=1 i=1 i=1
s.t. fi=wlx;,
6@' Z 0772 2 07
a; — Biyi = 0,1 = i — v =0,
M
)\wj — Z Q55 = 0.
i=1
(2.84)

Therefore the column generation criterion is:

M

/\wj— E Oéil'ij

=1

) (2.85)

arg max
j

The dual variable a can be obtained from the Lagrangian dual problem (2.10). Ac-
cording to the analysis in section 2.2.1, it is easy to verify that —q; is a sub-gradient

of I (y;, f;), since:

ol (ys, f7) 0 ywix; > 1
% — any value in [0, —y;] U [—v;, 0], yiwTx; = 1 (2.86)
Z —Yis inTXZ' <1

and we have:
a; = By, Bi=0 it yfi>1
0<3 <1 if yfi=1 (2.87)

Bi=1 if yfi<l

Non-differentiable regularizer: L-1 norm regularization

The regularization term R (w) may not be differentiable. In this section, we study the

M
L-1 norm regularization R (w) = > |w;].
j=1

X .
We generate an extended feature vector x* = . In the following we use the
—X

superscript * to refer to working with the extended feature vector x*. Then the L-1

regularized problem can be converted to the following problem with a differentiable

42 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

regularizer, but constraining the domain of w* to be nonnegative:

2N M
mip A E wj + Z L (y;, [7)

)

s.t. fZ = wlx! (2.55)
w; > 0.
Its Wolfe dual is:
2N M M 2N
max Ay, w; + oLy, fi) + >« (fz - WTX@') - Bjw;

wfeB o1 i=1 i=1 j=1
s.t. fi = wix,wi >0, (2.89)
Bi 2 07 .

M
8L 13J 1
A=Yy — B =0, yf)—l—ozz—O
=1

Let J* = {j e {1, 2NW\H*: M iy >)\}, then the column generation cri-

terion 1is:

M M
arg §I€1(1]Il <)\ — Z aixij> ie. arg gré%x T, (2.90)

1= =1

M
which is essentially identical to arg max > x5, where
JES =1
_ M
J:{]E{l,"'7 :1Oéi2§'ij >)\},

and with a sign reverse post processing: 7* = j + N if Zf\il a;z; < 0, 1.e. use
the oppositely signed feature to ensure that a positive step in the negative gradient
direction improves the objective value, i.e. to ensure w; is non-negative. The criterion

is identical to using the projected gradient for the following problem:

2N

A + > Uy,
win Zw Z (e, w'x7) 2.91)

S.t. wj > 0.

By projecting the gradient of the objective function onto the feasible set of w, the

2.4. EMBEDDED FORWARD FEATURE SELECTION 43
projected gradient of the objective function is:

)\+Zalyzfz Z w;<>0

(2.92)
min (0 /\—f—zal%ﬁ xw) wy =0

The column generation criterion is also equivalent to using sub-gradient of the follow-

ing unconstrained primal problem:

N M
min A Y w;] + >0 1 (v, wx;) (2.93)

w j=1 i=1
The sub differential of r (w) = |w| evaluated at w = 0 is [\, A], therefore a sub-

gradient of the objective function at w; = 0 is:

i ol (ys, fi) Of;

of, ow; (2.94)

i=1

The column generation criterion finds the feature to maximize the magnitude of this

. M
sub-gradient in each iteration. Furthermore, if maJX ‘Zi_l a;z;;| < A, then no con-
Jje o

straint is violated in (2.89), all projected gradient in (2.92) are 0, and in (2.93) moving
in any negative sub-gradient direction will increase the objective value, therefore no
more features will be selected. This property ensures that the L-1 regularization is
inherently able to perform feature selection even without the forward feature selection

method, with the sparsity controlled implicitly by A.

2.4.3 Experimental evaluation

To illustrate the forward feature selection method, we design a classification task on
the INRIA pedestrian dataset. 10,000 negative instances are collected for training,
and another 10,000 for testing, both of which are collected from the hard windows
(score of a linear SVM + HOG detector > —1) from the negative training and testing
images, respectively. 2,474 and 1,178 positive instances are used for training and
testing, respectively. A HOG feature vector is extracted from 105 size 16 x 16 blocks
and 21 size 32 x 32 blocks in the cropped object window of size 128 x 64 pixels. A
length 32 histogram is used to represent each block, and therefore the feature vector
length is 4,032.

Three methods for feature selection are compared. The first method is the recursive

44 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

feature elimination (RFE) method from [56], which is a backward elimination method.
Starting with the full feature set, it trains a linear SVM classifier, and then treats the
SVM parameter w as weights for the features. Then an elimination rule is applied
based on w. For example, we remove those lowest weighted features comprising
the 2% of the total weights in each iteration. The second method is based on the
L-1 regularization, which implicitly introduces sparsity in the resulting w, and the
sparsity is controlled by the regularization parameter A in (2.93). The last method is
our proposed forward feature selection (FFS) method described in section 2.4.1. The
L-2 regularized SVM and L-1 regularized SVM problems are solved using the liblinear
package [108].

We show the ROC curves on the testing set using various number of features se-
lected by the FFS algorithm in Fig. 2.3a. It can be observed that the using a fraction of
the full feature set (e.g. 500 to 1,000), the classifier performance closely approximate
that using the full feature set, showing that the feature set can be effectively reduced
without impairing the performance. Then the three methods are compared in Fig. 2.3b
and Fig. 2.3c. For the L-1 method, we train a L-2 regularized SVM using the fea-
tures selected by the L-1 regularized SVM. The empirical loss on the training set and
the regularized loss (empirical loss + regularization), i.e. the value of the objective
function, are plot against the number of selected features in Fig. 2.3b. The area under
the ROC curve (AUC) for the testing data is shown in Fig. 2.3c. It can be observed
that the performance of FFS is very close to RFE, both outperforms the L-1 method.
FFS is more favorable than RFE in case that the target number of selected features is
much smaller than the total number of features, since RFE starts with high dimensional
feature space, and training with high dimensional feature space is computational ex-
pensive. Furthermore, FFS provides a fine grained control of the number of selected
features; we may add one single feature in each iteration. By contrast, if we remove
one feature each time in RFE, the computational cost will be too high. Similar con-
clusions can be drawn for the L-2 regularized logistic regression, for which the results
are shown in Fig. 2.3d, Fig. 2.3e, and Fig. 2.3f.

2.4. EMBEDDED FORWARD FEATURE SELECTION

2
&
c
LS
©
2,
Q
o
[
» 0.
©
w
~ 088 f/ Use all (4032) features
0.84 100 features
f 200 features
0.82 ——— 500 features
08 l 1000 features
"0 01 02 03 04 05 06 07 08 09 1
False Acceptance Rate
(a)
0.98
FFS
0.975 —&— RFE
—— L1
0.97
0 p—— o
2 0.965 ©
N i
Q
5 096
o
f:_’ 0.955
5 oosl/ .
2 095
=}
5 osis|
© 0.945
<
0.94
0.935
093 L L L L L L
100 200 300 400 500 600 700 800 900 100
of selected features
()
2000
All features: Regularized loss
BT 00 N SO (e All features: Empirical loss
~ ———— FFS: Regularized loss
1600 N | mm——— FFS: Empirical loss
—&— RFE: Regularized loss
1400) --&-- RFE: Empirical loss
—©— L1: Regularized loss
@ 1200 ~-=©-- L1: Empirical loss
S \\‘S\
R B e
1000 - Sl =
*\ ‘‘‘‘‘ O~
800 ~¢°‘ \3
x
i W
R
600 sy,
400 L L L L L Il
100 200 300 400 500 600 700 800 900 100
of selected features
(e)

Loss

1 - False Rejection Rate

Area under the ROC curve

45

200

—— All features: Regularized loss
All features: Empirical loss
FFS: Regularized loss

FFS: Empirical loss

—&— RFE: Regularized loss

-=&-~- RFE: Empirical loss
—©— L1: Regularized loss
-=©-- L1: Empirical loss

50
100 200 300 400 500 600 700 800 900 100
of selected features
(b)
1
v ol
0.98 g
0.96
f’;
Use all (4032) features
100 features
200 features
500 features
1000 features
01 02 03 04 05 06 07 08 09 1
False Acceptance Rate
(d)
0.98
—— FFS
0.975 —&— RFE
—— L1
0.97
O— o —
0.965 fef S —— A
0.96¢
0.955 f/e/
0.95 /
0.945 /e/.g
0.94 /
0.935 /
093\ L L L L I}
100 200 30 400 500 600 700 800 900 100
of selected features

Figure 2.3: (a) (d) ROC curves, (b) (e) empirical loss, and (c¢) (f) area under the ROC
curves for SVM (a) (b) (c) and logistic regression (d) (e) (f), using various feature
selection methods and selecting various number of features.

46 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

2.5 Problems other than classification

Besides the binary classification problem, some other learning problems are also use-
ful in visual object detection. In this section we discuss two of such problems, i.e.
predicting a score for ranking the priority of a number of instances, and structural

prediction that predicts more complex labels than the class identity.

2.5.1 Ranking

The ranking problem can be formulated as follows. Let r, be the ranking priority of an
instance with feature x,, we want to find a function f (x), such that the scores reflect
the relative ranking priority between different instances. We expect f (x,) > f (xp) if
ra > Tp, 1.€. instance a has higher priority than instance b. The ranking loss function

can be defined for a pair of instances:

l(a, b) _ {0 Tq > rb>f (Xa) > f (Xb) 7i'e' f (Xa) - f (Xb) >0 (295)

1 rg >ry, f (%) < f(xp),1e f (%) — f(x) <0

Therefore the ranking can be achieved by classifying pairs of instances, which we call
the ranking instances. A ranking instance (a,b) is assigned a label equal to y,, =
sign (rq — 1p). If the ranking pair is not interesting, we simply set y,, = 0, such that
this pair would not be considered in the learning problem. Using a linear prediction
function f (x) = wlx, the feature for a ranking instance can be written as x,, =
Xq — Xp-

All the previously discussed techniques for solving binary classification problems
can be applied to this ranking problem. However, given a training set of M instances,

there would be M x M ranking instances available. The empirical loss is:
M M
L=2_2 1)
i=1 j=1

This poses difficulty to the learning process since the number of training instances can
be huge. How to avoid taking all the instances into consideration would be essential for
an efficient learning algorithm. For ranking SVM, both the n-slack cutting plane algo-
rithm and the 1-slack cutting plane algorithm in section 2.3.4 can be applied. However,
when the number of training pairs is huge, usually the number of support vectors of

ranking pairs is also huge. For example, we find that the number of hard ranking pairs

2.5. PROBLEMS OTHER THAN CLASSIFICATION 47

is usually on the order of millions for the INRIA classification test with 2,474 posi-
tives and 10,000 negatives evaluated in section 2.4.3, which cannot be fit into memory.
Therefore the 1-slack cutting plane algorithm is better off for the ranking problems.

The unconstrained ranking-SVM problem can be written as:

min W w+ Cy LY max (WTXab), (2.96)
w " (abep ’
where P is the set of ranking pairs (a,b) such that a has higher priority than b, i.e.
Yab = 1, and Mp is the size of P. The 1-slack formulation is:

1
min sw’w + C§,
W7£

st v e {0,137 Wi Y maxi > 5 Y T — (2.97)
(4,7)EP (a,b)eP

£>0.

However, to add the cutting planes, the indicator vector 7 should be calculated for a

particular w, and for all pairs (a, b):

1 wixy, <1 (2.98)
Thab =)
hab 0 wlixg >1

Naively evaluate this for all (a,b) € P would involve O (M,), i.e. O (M?) complexity.
To avoid this cost, a method is proposed in [106]. An observation is that the constraints

in (2.98) can be written as:

1 X 1 M
WTMP ; (¢f —¢i)xi > M, ; (¢f +¢7)—¢ (2.99)

where ¢ is the number of times a training instance x; appears as the high priority term
for a in-margin pair in P, and ¢; is the number of times x; appears as the low priority
instance for a in-margin pair in P, i.e.:

of =[{(i,b) : (i,b) € P,w"xy < 1}] (2.100)

7

¢ =|{(a,i) : (a,i) € P,w"xq < 1}| (2.101)

7

The single-pass Algorithm 1 can be used to decide ¢;” and ¢; for all 7 in O (M). The
algorithm acts like a pair of pointers moving along the line of sorted w’x;. The pointer

¢ indicates the current instance under consideration. The pointer j moves until the

48 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

difference between the score of ¢ and j exceeds 1, such that for any & > j, wlix > 1,
and m;; = 0. As 7 moves, the number of misclassified pairs in which i is the first term
is cumulated in counter b. As ¢ moves, the number of correctly classified pairs with j

as the second term is cumulated in counter a.

Algorithm 1 Find the cutting plane for ranking SVM.

S is the vector of {si = Wsz-} sorted in descending order.
I is the indexes of the elements in S in the original set of training instances.
77, is ranking priority of the instance with index ¢ in S.
R is the set of ranking priorities, e.g. R = {1, 2} for binary classification.
M, is the number of instances with priority r.
Initialize ct =0, ¢~ = 0.
forr =2,3,...do
a=0,0=0,1=1,5=1.
while : < M do
if r;, = r then
while S; —S; <1AND 5 < M do
if T > Ty then
b++,c; =c; + M, —a.
end if ’ ’
J++
end while
a++,¢ =cf +b
end if
end while
end for
return c” and c”.

HEA=3 HFA=3 H#FA=Z2 #HFA=1 #FA=1 #HFA=U
#FR=2

#FR=0 #FR=1 #FR=1 #FR=1 #FR=3 #FR=3
— e T I +
1 1 1 1
1 1 1 1
d e J L 4

==
\NFE= =

1
1
v N % N N

000000000 OG®OO
Figure 2.4: The number of swapped pairs is related to the area under the ROC curve.

The ranking loss is an upper bound of the switched pairs, and the number of

switched pairs is proportional to the area under the ROC curve:

1
ROC Area = / 1—-FRR)dFAR=1— ——— FR;
() nroc M ZZ #
1
=1— —#SwappedPair, (2.102)
nrocM

2.5. PROBLEMS OTHER THAN CLASSIFICATION 49

where nroc 1s the number of unique points on the ROC curve, the summation is over
the unique ROC points, M, is the number of positive instances, and #F'R; is the
number of false rejections at each ROC point. An illustration of the relation between

the ROCArea and the swapped pairs is given in Fig. 2.4.

2.5.2 Structural prediction

In the structural prediction problem, we want to predict the label y of an instance with
feature x, but the label is more complex than the binary class identity. For example,
predict the class identity from > 2 classes, estimate the human body pose represented
by the body joint positions, etc. We want to learn a scoring function f (y,x) , such
that the correct label y scores higher than any other label y’. Then the label of a test
instance can be inferred by maximizing the scoring function over the domain of y.
Different from the classification problem and the ranking problem, the function f now
takes a label-feature pair (y,x) as the input, and generates an internal representation
® (y,x) for the pair, which is called a joint feature mapping. For example, in the
human pose estimation problem, the image features are extracted according to the
location of each body part. Furthermore, the label y may contribute to the joint feature
mapping @ (y, x) by itself. An analogy of the scoring function using the joint feature
mapping is the joint probability P (x,y) o P (x|y) P (y), where y contributes to the
joint probability in both the likelihood term P (x|y) and the prior term P (y). For
example, prior knowledge can be crucial in estimating the body pose.

The structural prediction problem is studied in [48]. The structural prediction prob-
lem can be cast as a ranking problem, such that we would like the correct labeling
(y,x) ranks higher than any other labeling (y’, x), i.e. f (y,x) > f (y/',x), Vy' #y.
Furthermore, it is desirable that the difference between f (y,x) and f (y’, x) reflects
how different y and y’ are, or the cost of confusing y’ for y is proportional to how
different they are. Two approaches can be employed to take this into consideration.
First, we may require f (y,x) to be larger than f (y’,x) by a margin proportional to
A (y,y’), which measures the difference between y and y’. If the margin fails to be

satisfied, an error occurs. This results in the following margin-scaling loss function:

0 fly,x)>f,x)+Ay,y)

(2.103)
L fly,x) < f(y,x)+A(y,y)

L(x,y,y) = {

Second, we may penalize an error, i.e. f (y,x) < f (y’,x) by a cost proportional to

50 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

A (y,y’), resulting in the following loss-scaling loss function:

0 [y, x) > f(y,x)

(2.104)
Aly,y) fly,x) < f(y,x)

[(x,y,y) = {

In learning the structural prediction model, we are given a training set that the
groundtruth label of each instance is known: S = {(x;,y;)}..,. For each training
instance, there could be || — 1 incorrect labels ¥, . Instead of considering all incorrect
labels in the loss function, only the one with highest loss is considered. Therefore the

empirical loss is:
M
— . &/
L= ;1 }I,rltzem)() {l(%i,¥:,55) } (2.105)

Using margin scaling and hinge loss, the learning problem written in constrained form

1s:

M
o AwT
min swW'w+ Y &
w.§ i=1

6>0 i=1,.., M.

(2.106)

There are M x (|| — 1) constraints since ¥, may take any value in)). However, for
each training instance, only the most violated constraint is active. Therefore we only
need to consider the most violated constraint for each training instance. A strategy
similar to the n-slack cutting plane method in section 2.3.4 can be employed. We

iterate between two stages:

e Find the most violated labeling ! for each labeled instance (x;,y;) using the

current solution wy:
Vi, = arg H;E}X {A(yi.97) — wi (D (yi,x:) — @ (97, %:)) } (2.107)
e Only keep the most violated constraint for each training instance, and solve the

optimization problem.

The 1-slack cutting plane method in section 2.3.4 can also be applied to structural

learning, as done in [109]. The constrained form (2.106) is equivalent to the following

2.5. PROBLEMS OTHER THAN CLASSIFICATION 51

unconstrained form:

M
min Jw'w + 3 max (O7 max {A (y;,§)) — w' (® (yi,x;) — @ (y;,xz))}>
w i=1 ¥
(2.108)
A lower-bound of the empirical loss in (2.105) can be formulated using the cutting

planes:

L (w) > max (0’t3115.%.?{T {Cy (w)}) : (2.109)

where C}; (w) is the cutting plane of L (w), evaluated at w;:

M
Ct (W) = Z Tty (A (Yiv y;,t) - WT (q) (Yia XZ) - (S’;’m Xi)))a (2110)
=1

and yg}t is the most incorrect labeling using current w; as in (2.107). The indicators

{m¢,:} are defined as follows:

0 T(I) iai_q) Al’?i > A iaA,‘)
Ty =) Wt ((y X) (YZ,t X)) - (y y’L,t) (2'111)
1, otherwise.
Then the sub problem solved in each cutting plane iteration is:
min $w’w + max (O, max_ {Cy (w)}) . (2.112)
Written in the slacked form, the sub problem is:
mi? swliw + ¢
oo A M A
s.t. Z Trt,in ((I) (Yu Xi) - (y;tv Xz)) Z Z ﬂ-t,iA (Y’H yg,t) - 57 = 17) Ta
i=1 i=1
£>0.
(2.113)

The dual problem is a QP with only 7’ variables, and thus this problem is much easier
to solve than problem (2.106).

2.5.3 Application in sliding window detection

Learning a sliding window detector can be cast as a ranking or structural prediction
problem. As a ranking problem, the detector assigns a ranking priority to each win-

dow, and a object should have higher priority than all the background windows, while

52 CHAPTER 2. STRUCTURAL RISK MINIMIZATION LEARNING

the ranking order between two objects or two background windows is not important.
The training procedure using the ranking problem can be identical to that using the
classification problem, by forming ranking pairs between positive instances and neg-
ative instances from the negative images. In addition, the ranking can be addressed
by forming ranking pairs of a positive instance and a window from the neighborhood
of the positive instance, for example, requiring the groundtruth window ranks higher
than any window that does not significantly overlap with the groundtruth.

The overlap between the groundtruth object window and an arbitrary other win-
dow can be further exploited by treating detection as a structural prediction problem,
e.g. [110]. The goal is to predict the location y of an object inside the image x. The
object label y represents the bounding box of the object inside the image. The joint
feature mapping @ (y, x) simply extracts image features for the window y in the im-
age x. Given a set of object windows, the incorrect labeling for each training instance
consists of all windows other than the groundtruth bounding box, but another object
window is not counted as a incorrect labeling. The distance function A (y,y’) mea-
sures how much the incorrect bounding box y’ differs from the groundtruth bounding
box y according to their overlap ratio. Therefore the overlap ratio can be better ex-
ploited, and improvement in detection performance can be expected. Furthermore,
large dataset can be exploited using the cutting plane training for ranking SVM and
structural SVM.

In practice, we find that the detector learned by ranking SVM or structural SVM
performs similarly to that learned by classification SVM, all trained for the pedestrian
detection problem using the INRIA dataset. All the dozens of millions of windows
in the negative training images are exploited using the n-slack cutting plane method
for hard negative mining. This implies that given sufficient training data, the normal
direction of the max-margin separating hyperplane is very close to the optimal pro-
jection direction for ranking or structural prediction. However, as reported in other
works, e.g. [110], better detectors can be obtained by ranking or structural prediction

when the amount of training data is small.

Chapter 3 The Boosting algorithm

The boosting algorithm is studied in this chapter. First we introduce the Boosting al-
gorithm as a convex optimization problem that finds the optimal linear combination
coefficients of weak learners in Section 3.1, and as a functional optimization problem
in Section 3.2. Then two improvements for the Boosting algorithm are proposed.
The continuous-valued weak learners derived from treating Boosting as functional
optimization is plugged into the totally-corrective Boosting due to the convex opti-
mization formulation for better performance in Section 3.3, and the training process
is accelerated by a feature subset selection method based on the partial least square

(PLS) regression in Section 3.4.

3.1 Boosting as convex optimization

Boosting is a meta-algorithm for supervised learning. It combines the outputs of a
number of weak learners {f; (x)} to obtain a single strong learner F' (x). The weak
learners are required to perform just slightly better than random guess, while the strong
learner can be very accurate. The strong learner is the linear combination of the weak

learners:

F(x) =) wf(x) (3.1)

As introduced in section 2.1, the generalization performance of Boosting algorithms is
only related to the VC dimension of the weak learners and the distribution of margins

of the training instances:

Theorem. Let ‘H be the set of base classifiers (weak classifiers), and with VC dimen-
T

siond. Let F (x) = > wy f; (X) be the strong classifier obtained by linear combination
=1

of weak classifiers fr;m ‘H. M is the training set size. Then with probability 1 — n:

F () 1 [dlog*(M/d) 1
errp < Ps |y—7—— <A | +0 \/ +log —
(Z;f:l Wy vM A n

53

54 CHAPTER 3. THE BOOSTING ALGORITHM

For a given value of the margin A, Pg (y% < A) can be approximated by
t=1 W

the empirical loss, e.g. the hinge loss, the logistic loss, and the exponential loss. Then

the Boosting learning problem can be formulated as:

M
min Y1 (y;, F (x;);A)
w i=1
T
=1
T

Notice that the loss function [is parameterized by the target margin A. Due to the
linear dependency between A and Zle |wy|, we may fix A, e.g. A =1, and varying

the L-1 norm of w, and the problem becomes:

M
min 321 (3 F (%), 1)

T
S.t. F (Xz) = wtft (Xl)a (33)
T t=1
> |w] = C.
t=1

Written in the Lagrangian form, the problem is:
M
2 L, F (i)

1=

T

min A Y |w| +

t=1 . (3.4)

st F(x) = > wefi (x1),
t=1

Given the set of base learners {f; (x), ..., fy (x)}, the combination weights can be
obtained by solving the optimization problem (3.4). Furthermore, the forward feature
selection technique discussed in section 2.4 can be applied such that the weak learners
are sequentially included into the strong learner. A new weak learner is selected into
the strong learner according to the following criterion:

M
Z a/ifj (Xz) s (35)
i=1

arg max
j

where {«q;} are the dual variables for the training instances, and can be interpreted as

instance weights. For differentiable losses, e.g. exponential loss and logistic loss, {c; }

3.1. BOOSTING AS CONVEX OPTIMIZATION 55
can be obtained in closed form from the current strong classifier score:

Exponential loss [(yi, F (xi)) = exp (—y:i F (x;))
O 0l(y, F(xi)) _ _
o; = Fx) Y exp (—y; F' (x;))
Logistic loss [(yi, F (xi)) = log (1 + exp (—y: F (x4)))

o — _Ol(yi, F (x2)) _ Y exp (—yi F (x;))
Z OF (x;) 1+ exp (=4l (x;))

In addition, the sign of the weak learners can be inversed such that w; > 0 for all weak

learners, and the weak learner selection criterion becomes:
M
arg mjax Zi:l a; fi (x;). (3.6)

Then the learning problem can be modified to:

T M
min AY w, + Y L(yi, F(x;))
w t=1 i=1

T
st F(x;) = letft (x;), (3.7
t=

wtz()

Boosting algorithms that alternate between selecting weak learners and solving for w
are known as totally-corrective Boosting algorithms as in [68], since all weak learn-
ers’ weights are updated by solving problem (3.7). In practice we find that L-2 reg-
ularization works equally well as the L-1 regularization in terms of generalization
performance. The new weak classifier selection criterion is identical for L-1 and L-2
regularization, but the L-2 regularized problem (3.8) is an unconstrained optimization
problem with smooth and convex objective, and can be easily solved by Newton’s
method, which is much easier than (3.7). The only benefit of (3.7) seems to be in the
inherent sparsity induced by the L-1 regularization/constraint. However, the Boosting
has explicitly performed forward feature selection, making the additional sparsity due
to the L-1 technique unnecessary.
T M T
m“i,n)\t;wf +i—21L <yi,t21wtft (XZ)) (3.8)
Furthermore, the L-1 regularized formulation will stop adding new weak classifiers

if there is no violated dual constraint, i.e. max Zi‘il a; fj (x;) < A, which does not
j

56 CHAPTER 3. THE BOOSTING ALGORITHM

happen for the L-2 regularized form.

3.2 Boosting as functional optimization

The Boosting algorithms are also interpreted from the functional optimization per-
spective. Instead of solving for the combination coefficients of a number of weak
learners, we want to minimize the expected loss on the distribution D, with respect to

the unknown function F (x):
min By (L (y, F (X)) (3.9)
Again, the expected loss can be approximated by the empirical loss:
M
mFin i:zll(yi,F(xi)). (3.10)
Starting with F' (x) = 0, we proceed by modifying the function in an additive manner:
F(x)+ F(x)+wf (x). (3.11)
Therefore in each step we solve the following problem:
i ey (L (v, F () +] (). G.12)

In this section we introduce three popular Boosting variants using the exponential loss
exp (—yF (x)). All the three algorithms solve the function optimization problem (3.9),

using different methods.

3.2.1 Discrete AdaBoost

In the following we denote F the vector of strong learner scores for all training in-
stances, f the vector of weak learner scores for all training instances, and L the sum of

exponential loss on the training set. We take the 2nd order approximation of the loss:

1
L(F 4+ wf) = L(F) +wf’G + 5uﬂfTny (3.13)

3.2. BOOSTING AS FUNCTIONAL OPTIMIZATION 57

where the gradient G and Hessian H are computed as follows:

oL
Gy = = —Y; exXp (_yi-Fz'>7
afl fi=0
2
L
Hy = 8—2 = exp (—y; Fi)
Ofi Ji=0
Hjj = 0,i#j. (3.14)

If we limit our choice of weak learners to binary classifiers, i.e. f; € {+1,—1}, then

%wa T Hf is constant for all f . Therefore the approximation (3.13) is minimized by:

fr = argmfinfTG
M
_ : s - F) f
argmfmz yzeXp(Y; z)fz

=1

M
= argmin Zl —a; fi (3.15)

This problem is interpreted as finding the weak classifier that minimizes a weighted
loss, with the weight for each training instance being w; = exp (—y; F;). Since o; =
y; exp (—y; F;) is the negative gradient of the loss function, therefore the problem can
also be interpreted as finding the weak classifier that best approximates the negative
gradient direction.

Then the weight w of the new weak classifier can be found in closed form, by
minimizing L (F + wf) with respect to w:
Z —err 1 1 —err*

= —log ———, (3.16)
err 2 err*

1l
w=—=1lo
5 g

where Z is the sum of weights and err is the weighted error:

Z = ZeXp(—yiF(Xi)),

e =Y exp(—uF (%),
yi#f(x:)
err
= 3.17
err 7 ()

We can expect the problem becomes more and more difficult, and err* approaches

0.5, thus the later weak classifiers will have lower weights, as illustrated in Fig. 3.1.

58 CHAPTER 3. THE BOOSTING ALGORITHM

0.45 \ T \ T ‘ ‘ : 1
0.4
0.35}

0.3

Weighted error
Weak classifier weight

0.25

L L L L 0
10 20 30 40 50 60 70 80

Selected weak classifier

0.2
0

Figure 3.1: As the strong classifier becomes stronger, the weighted data becomes more
difficult, the weighted error of the best weak classifier increases, and the weak classi-
fier will have lower weight.

Therefore the sum of weights Zthl w; can be constrained by selecting a finite number

of weak learners.

3.2.2 Real AdaBoost

Instead of using binary classifiers as weak learners, the weak learner set H may include
continuous-valued functions. Therefore we may set the combination weight w to 1,

and look for a function f that minimizes the expected loss functional:
min L = Ep (L (y, F (x) + f (x))) (3.18)

Taking the derivative of the loss functional, and set it to O:

oL
0f (x)

= FEp (e—yF(x) (_y) e—yf(x))
=0 (3.19)

3.2. BOOSTING AS FUNCTIONAL OPTIMIZATION 59

where w specifies a weighted distribution, with instance weights w; = e v,
Therefore we can obtain the minimizer of (3.18) in closed form:
Pp(y=1,x)e ™ 1 P, (y = 1|x)

1
ISP _ 1 3.20
f1(x) =g log 5~ (Y= —Lx)ef®™ 2 %P, (y=—1|x) (320

Then the new weak learner f (x) can be learned as a regression function, to approxi-

mate the following value on the training set:

(3.21)

Then among all the learned regression functions, we select the one that mostly im-

proves the empirical loss:

win ip (—y: (F (x:) + f (x:))),

ie. mfin > wiexp (=i (f (x:))) (3.22)

=1

3.2.3 Gentle AdaBoost

Similar to the Real AdaBoost, the Gentle AdaBoost uses continuous value weak learn-
ers. The difference is, instead of directly minimizing the loss, the Gentle AdaBoost

uses the Newton’s method. The gradient and Hessian of the loss functional is:

_ OL(F(x))
0T T

= Ep(—ye ™) =P, (y=-1,x) - P, (y=1x) (3.23)
H((x) = % = Ep (e7¥"™) = P, (x) (3.24)

Therefore the Newton step in the functional space is:

~H'G =
= R, (y=1kx) - R (y=-1|x) (3.25)

The new weak learner is a regression function fitted to the following target value:

Po(y=1x) = P, (y = —1]x). (3.26)

60 CHAPTER 3. THE BOOSTING ALGORITHM

Similar to the Real AdaBoost, the regressor that minimizes the empirical loss is se-
lected. Compared to the Real AdaBoost, the Gentle AdaBoost is more numerically
stable since the weak classifiers’ output is limited to [—1, 41|, and hence the running

F(x:) does not take extremely large or small

weight of the training instances w; = e~
values.

The Gentle AdaBoost can also be directly derived from the 2nd order approxima-
tion (3.13) that minimizes the empirical loss rather than the loss functional. But the
difference is, now we consider f to be the output of any continuous-valued function,

and the weight of the new weak classifier can be fixed to 1:
1
LF+f)~L(F)+f'G+ 5fTHf (3.27)
The minimizer is:

1
fr = argmfinfTGjLEfTHf

= argmin (f+ H7'G) H (f+ H'G). (3.28)

Plugging in the Hessian and gradient given in (3.14), we can obtain H'G = —y.
Therefore training the weak classifier essentially involves solving a weighted least
square problem using the feature vector x; as input, and the label y; as the target

variable, and using exp (—y; F' (x;)) as the instance weights.

3.2.4 Experimental evaluation

We perform a simple experiment to evalaute the performance of Discrete AdaBoost,
Real AdaBoost, and Gentle AdaBoost. For the weak learners, we use stumps perform-

ing on individual features. A stump is a function of the following form:

vy x >th
= 3.2
/(@) { vy T <th (3-29)

For each feature, an optimal threshold ¢/ is selected. For Discrete AdaBoost, the deci-
sion stump assigns v; = 1 and v, = —1, or vice versa. For Real AdaBoost and Gentle
AdaBoost, v; and v, are selected according to (3.21) or (3.26). Then the weak clas-
sifier that minimizes the exponential loss is selected. In addition, to avoid numerical
problems in computing the weights w; = exp (—y; F' (x;)), the strong classifier score

F (x;) is truncated to be within [—10, 410} when computing the instance weights.

3.2. BOOSTING AS FUNCTIONAL OPTIMIZATION 61

0.9

Discrete AdaBoost
Gentle AdaBoost
Real AdaBoost

0.8

0.7 ‘\
0.6 \
\

0.5}

A
0.3 \\
b N\

0.1

Exponential loss

e

0 20 40 60 80 100
Number of Weak Classifiers

Figure 3.2: Comparison of the convergence speed of Discrete AdaBoost, Real Ad-
aBoost, and Gentle AdaBoost.

P R
f —r
0.99 -4 / 0.99 - —'-_,_,_." el =
J / — ‘_,J_H_
0.98 ¢ / 0.98 r_f_,-"" e
£ 097 2 097f el
2 vl : Yavs
S 0.96 S 0.96
S S
% oes) A
-E 0.95 -E 0.95 r'r /
2 094 2 004l
£ Sl v
' 0.93 ' 0.93}-
Discrete AdaBoost f Discrete AdaBoost
0.92 Real AdaBoost 0.92 Real AdaBoost
Gentle AdaBoost Gentle AdaBoost
0.91 - 0.91 ;
0.9 ; ; 0.9 ; ;
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
False Acceptance Rate False Acceptance Rate

(a) (b)

Figure 3.3: Comparison of the ROC curves. (a) ROC curves on the training set. (b)
ROC curves on the testing set.

The experiment is performed using the INRIA pedestrian dataset. The training set
consists of 2,474 pedestrian images and 10,000 background windows randomly taken
from the negative images, and the testing set consists of 1,178 pedestrians and another
10,000 background windows. HOG features are extracted for 619 rectangular blocks,
with size 16 x 16, 32 x 32, and 64 x 64, resulting in a feature vector of length 19,808.
100 weak classifiers are selected for each Boosting algorithm. Since all three methods
optimizes for the exponential loss functional, we show the decrease of exponential loss
as more weak classifiers are added in Fig. 3.2. It can be observed that Real AdaBoost
and Gentle AdaBoost has faster convergence rate than Discrete AdaBoost, which is

essentially due the extra degree of freedom in the weak classifiers, and the use of sec-

62 CHAPTER 3. THE BOOSTING ALGORITHM

700 T T T T T T T 700

600 - E 600 -

500 -

400 -

300 -

(a) (b)

Figure 3.4: (a) Distribution of strong classifier scores for Real AdaBoost. (b) Distri-
bution of strong classifier scores for Gentle AdaBoost.

ond order information in finding the solution. To see the actual performance of each
method, the ROC curves on the training set and testing set using 50 weak classifiers
are displayed in Fig. 3.3. The Gentle AdaBoost is the best performing method, while
the Real AdaBoost is slightly inferior. This is probably due to the Gentle AdaBoost
constrains the weak learner output in [—1, +1], while the weak learner output of Real
AdaBoost is unconstrained. The distributions of the strong classifier scores on the
training set are shown in Fig. 3.4. We can see that the Gentle AdaBoost strong classi-
fier scores span a narrower range than Real AdaBoost, such that the exponential loss

better approximates the binary 0-1 loss.

e~
N

T,

o S .
- SN

™~
T

£
/
/

Discrete AdaBoost e S
L-2 Regularized,), = 1 NG b, ~
> L-2 Regularized, % = 0.1 ~_
L-2 Regularized,) = 0.01 ~_
L-2 Regularized,). = 0.001
L-1 Regularized,) = 0.1
""""" L-1 Regularized, 3 = 0.01
""""" L-1 Regularized, 3 = 0.001
3 L-1 Regularized,) = 0.0001

0 20 40 60 80 100
Number of Weak Classifiers

Exponential loss

i1

Figure 3.5: Comparison of the exponential loss of L-1 and L-2 regularized totally-
corrective AdaBoost.

We also compare the Discrete AdaBoost and the totally-corrective AdaBoost, both

3.3. CONTINUOUS-VALUED WEAK LEARNERS FOR TOTALLY-CORRECTIVE BOOSTING6

using decision stump weak classifiers. The L-1 regularized form (3.7) and the L-2 reg-
ularized form (3.8) are studied. For L-2 regularization, we show the results for A = 1,
0.1, 0.01, and 0.001. For L-1 regularization, we show results for A = 0.01, 0.001, and
0.0001. For L-1 regularization and A = 0.1, the totally-corrective AdaBoost stops after
selecting 48 weak classifiers, since no more weak classifier violates the dual constraint
in the forward feature selection scheme. The exponential loss are shown in Fig. 3.5. It
can be observed that for small A, the objective function is dominated by the empirical
loss, and therefore the totally-corrective methods results in much lower exponential
loss and converges faster than the Discrete AdaBoost. For large A, the regularization
term dominates the objective function. The ROC curve on the testing set is shown in
Fig. 3.6. The totally-corrective Boosting shows better performance for properly se-
lected A\. Furthermore, using very small J, i.e. radically minimizing the exponential
loss, actually impairs the performance, indicating the importance of regularization. It
also turns out that the gain due to totally-corrective Boosting diminishes with a large

number of weak classifiers selected (e.g. 100).

3.3 Continuous-valued weak learners for totally-

corrective Boosting

3.3.1 Embedding continuous-valued weak learners in

totally-corrective AdaBoost

As described in section 3.1, the Boosting algorithm seeks the optimal linear com-
bination coefficients w to optimize problem (3.7), and the forward feature selection
scheme in section 2.3 can be used for sequentially selecting weak learners. The crite-
rion for selecting the weak learner is (3.6), and no more weak learners will be selected
if mjax Zﬁ 105 fj (x;) < A, i.e. no dual constraint is violated for problem (3.7). Fur-

thermore, if the loss L is differentiable, the per-instance dual variable «; is:

 OL (i F(x)

o = OF (x,) (3.30)

Assume the weak learners have been obtained beforehand, solving the problem (3.6)
is referred to as the totally-corrective Boosting, since all the weak learners’ weights

are adjusted. By comparison, the stage-wise additive method discussed in section 3.2

64

0.99
0.98 _JfHF
[
E 0.97 g
c o
8
©
2
[5)
4
o
@
&£ -
n Discrete AdaBoost

— L-1 Regularized, } = 0.01
L-1 Regularized,), = 0.001
L-1 Regularized,). = 0.0001

0.04 0.06 0.08 0.1

False Acceptance Rate

(a)

0.99 ‘_'_‘_,._ ey
0.98 r-r'_' el i ',_rl:'_-’_.‘r -r,_'_'_,..—l—'i

£ 097 ol

14 f f

c

il

©

2,

[9)

['4

@

K7}

©

u,' Discrete AdaBoost

| —— L1 Regularized, 2 = 0.01
L-1 Regularized,), = 0.001
— L-1 Regularized, } = 0.0001

0.02

0.04 0.06
False Acceptance Rate

(©)

0.08 0.1

0.99 H=_._‘_'__.=-—i—' PSS
o r'_'_,_.—'—'_r'_'-r
0.98 :_'_,J‘"r
2 097 ﬂg
T
4)_.-'""—
5 0.9 r([
S oo if
2 0.95
% oo]l
& 0.94-
£l ,
7 003 Discrete Ad_aBoost
’ L-1 Regularized,), = 0.01
0.92 L-1 Regularized,) = 0.001
— L-1 Regularized,), = 0.0001
0.91
09 I L L L L Il
0 0.02 0.04 0.06 0.08 0.1

False Acceptance Rate

(e)

1 - False Rejection Rate

1 - False Rejection Rate

1 - False Rejection Rate

CHAPTER 3. THE BOOSTING ALGORITHM

Discrete AdaBoost

L-2 Regularized, 3 = 1

L-2 Regularized, 3 = 0.1

--| = L-2 Regularized,), = 0.01
L-2 Regularized,). = 0.001

09 L L L L Il
0 0.02 0.04 0.06 0.08 0.1
False Acceptance Rate
(b)

1
0.99 ..—l_'_'__'_'_._.—n‘
T

0.98 =
0.97

©
>

T

oY ——

Discrete AdaBoost
— L-2 Regularized,) = 1

L-2 Regularized, 3 = 0.1
L-2 Regularized, 3 = 0.01
~ L-2 Regularized,) = 0.001

0.93 7
0.92 r
0.91 /
0.90 Jl{

0.02 0.04 0.06 0.08 0.1
False Acceptance Rate
1
0.94 Hr/ Discrete AdaBoost
0.93 — L-2 Regularized,) = 1
J L-2 Regularized, 3, = 0.1
0.92 K — L-2 Regularized,) = 0.01
~— L-2 Regularized,). = 0.001
0.91 ! 9 »
09 L L L L L Il
0 0.02 0.04 0.06 0.08 0.1

False Acceptance Rate

®

Figure 3.6: ROC curves using (a) L-1 regularization and 25 weak classifiers; (b) L-2
regularization and 25 weak classifiers; (c) L-1 regularization and 50 weak classifiers;
(d) L-2 regularization and 50 weak classifiers; (e) L-1 regularization and 100 weak
classifiers; and (f) L-2 regularization and 100 weak classifiers.

3.3. CONTINUOUS-VALUED WEAK LEARNERS FOR TOTALLY-CORRECTIVE BOOSTING®6,

only compute the weight for the latest introduced weak learner, while weights of those
existing weak learners are not changed.

For AdaBoost that uses the exponential loss [(y;, F' (x;)) = exp (—y; F (x;)), it
is clear to see the equivalence between the weak learner selection criterion of totally-
corrective AdaBoost and the Discrete AdaBoost, as both can be interpreted as finding
the weak learner that best approximates the negative gradient direction of the loss func-
tional, and both selects a binary weak classifier to minimize the loss on the weighted
training set in each iteration. However, the functional optimization perspective of the
Boosting algorithm also introduces the Real AdaBoost and Gentle AdaBoost, both
using continuous-valued weak learners learned as regression functions. Therefore it
is interesting to see if plugging the continuous-valued weak learners into a totally-
corrective Boosting algorithm will improve the performance.

We select new weak learners using the Real AdaBoost and Gentle AdaBoost method,

i.e. learning regression functions of:

L P, (y =1]x)

0= 318y =i

sor f(x) = F,(y=1[x) = R (y = —1x),

and then solve the totally-corrective AdaBoost optimization problem (3.6) for the se-

lected set of weak learners.

3.3.2 Experimental evaluation

In the following experiment, we consider two types of weak learners, i.e. stumps 3.29
and look up tables (LUT). A LUT for a continuous variable in the range (—o0, +00)

is a function of the following form:
f(z) =i, i = min (n, max (0, [(z — b) /w])), (3.31)

If z < b, it is assigned to bin 0; if x > b + w X n, it is assigned to bin n. The range
[b,b+ n x w] is divided into n bins of equal width w. Each bin has a value v;, and
the weak learner score is decided according to which bin a sample instance falls into.
We use n = 64 for the LUTs, and decide b and w according to the value range of
the training instances. For both stump and LUT, the bin values {v;} are decided to
minimize the regression error.

We evaluate the methods in the pedestrian-detection problem, using the INRIA
dataset. The HOG feature [19] is used. The HOG feature is extracted for 619 blocks

66 CHAPTER 3. THE BOOSTING ALGORITHM

--©-- Discrete AdaBoost

--EF- Real AdaBoost

-~&-~ Gentle AdaBoost

—@— Totally-Corrective Discrete AdaBoost
—il— Totally-Corrective Real AdaBoost
—4— Totally-Corrective Gentle AdaBoost

--©-- Discrete AdaBoost

--EF- Real AdaBoost

-~&-~- Gentle AdaBoost

—@— Totally-Corrective Discrete AdaBoost
—il— Totally-Corrective Real AdaBoost
—4— Totally-Corrective Gentle AdaBoost

Exponential loss on the training set
Exponential loss on the training set

0.1
0 L L L L L L 0 L
10 20 30 40 50 60 70 80 90 100 10 20
Iteration No. Iteration No.
(a) (b)

Figure 3.7: (a) Convergence of loss using totally-corrective boosting with stump weak
learners. (b) Convergence of loss using totally-corrective boosting with LUT weak
learners.

of size 16 x 16, 32 x 32 and 64 x 64, resulting in a feature vector of length 22,284.
Then, each weak learner is based on a single feature. The Boosting strong classifier
is trained for an intermediate stage of a cascaded detector, where the negative training
set consists of fairly difficult samples. 2,474 positive instances and 5,000 negative
instances are used to train the classifiers, and then the performance is evaluated using a
test set of 1,178 positive instances and 5,000 negative instances. The totally-corrective

Boosting problem (3.7) is solved using the MOSEK optimization package.

0.96

0.94

0.92

0.9

0.88

Detection rate

0.86
0.84 / 7/ /| —e— TC DiscreteAdaBoost + Stump
/'I —fF— TC RealAdaBoost + Stump
0.82 f---11 e S AR— —&— TC GentleAdaBoost + Stump
il
1l
"

(] -=-©-- TC DiscreteAdaBoost + LUT
0.8 M :'I -=EF- TC RealAdaBoost + LUT
0.78 #/!’ ! --é-- TC GentleAdaBoost + LUT
0.05 0.1 0.15 0.2

False acceptance rate

Figure 3.8: ROC curves of totally-corrective AdaBoost with continuous-valued weak
learners.

The convergence of exponential loss on the training set and ROC curves on the

testing dataset are evaluated. Three conclusions can be drawn from the results. First,

3.4. FEATURE SUBSET SELECTION BASED ON PARTIAL LEAST SQUARES67

solving the totally-corrective Boosting problem improves performance over the stage-
wise forward functional optimization method in terms of empirical loss for Discrete,
Real, and Gentle AdaBoost. Second, our intuition that the continuous valued weak
learners can also be used in a totally-corrective learning is confirmed by the perfor-
mance improvement over using binary weak classifiers. Improvement shows on both
the training set and the testing set. This is because the 2-nd order information used in
the continuous-valued weak learners results in a faster decrease of the empirical loss.
Third, as shown in Fig. 3.8, the LUTs show worse generalization performance than the
stumps, which underpins the VC theory, since the LUTs have higher VC dimension

than stumps.

3.3.3 Conclusions

To conclude, the totally-corrective Boosting is an important advance on the existing
Boosting algorithms, and also provides new insights into the nature of the Boosting
algorithm generally. Though the column-generation method implies binary classifiers
as weak learners, thus emulating the gradient-descent in gradient Boosting, our exper-
iments show that other techniques used in gradient Boosting that outperform gradient
descent also lead to better results in combination with totally-corrective updates. In
our future research, we hope that our algorithm can be studied in further theoretical
depth, and we will also try to apply the hybrid method to other variants of Boosting

algorithms.

3.4 Feature subset selection based on partial
least squares

In visual object detection, the Boosting algorithm is popular for its embedded feature
selection capability. Let each weak learner f; (x) in 7 uses a single feature, e.g. a
Haar-like feature or a HOG block, and then the Boosting process selects a subset of
weak learners in H to include in the strong learner, thus selecting a subset of features.
In particular, a weak learner is parameterized by both the feature it uses, and its param-
eters, i.e. f; (x) = f;j(x;;6,). For example, a decision stump is parameterized by a
threshold and polarity. In the Boosting iterations, we fit the parameter 6; according to
the weights of the training instances, and select the optimal weak learner. The learning

process is as follows:

68 CHAPTER 3. THE BOOSTING ALGORITHM

e Initialize the weights {wi}ij\il of the training samples { (x;, y,)}f\il
e [terate the following steps:

1. Train the weak learners { f; }jvzl on the weighted training set, and select the
best weak learner as f;. Decide its weight wy.

2. Add the selected weak learners to the strong learner, i.e. F' < F + w;f;,
M

and update the sample weights {w; };_;.

Fitting the weak learners to the instance-weighted distribution {wz}ﬁl is the most
computation-intensive part in training a Boosting strong learner, since {wl}ﬁl changes
in each iteration, and all weak learner need to be retrained. It is highly favorable if we
can limit step 1 to a small number of weak learners, i.e. a feature subset. Furthermore,
the efficiency gain due to using a reduced subset will diminish if the cost of subset
selection is high and the feature subset needs to be refreshed in each Boosting iteration.
Therefore our goal is an efficient algorithm to select a feature subset that includes
complementary features, from which the Boosting algorithm can train a good strong
learner without frequently refreshing the feature subset.

The requirement for complementariness rules out filtering based methods such as
measuring the importance of each feature by the correlation or mutual information
with the labels, since the features are scored independently and those highly-scored
features can be highly correlated with each other. On the other hand, methods that
solve a learning problem, e.g. fit a linear function f (x;w) to predict the labels, may
provide a hint about the collaborative importance of the features according to the linear
combination weight w, which defines how the features jointly contribute to predict-
ing the labels. Such methods include ridge regression, LASSO regression, logistic
regression, SVM, etc. However, another requirement is that the function f (x; w) can
be obtained efficiently. The ridge regression needs to solve the linear system with NV
variables: (XX” +o0l)w = Xy, where X is the N x M matrix of features, y is
the M x 1 vector of labels, and [is a unit matrix. The LASSO regression, logistic
regression, and SVM need to be solved using numerical methods. Therefore these
methods are not particularly useful for high dimensional feature spaces, since the high
computational cost for generating the feature subset cancels out the benefit of using a

feature subset.

3.4. FEATURE SUBSET SELECTION BASED ON PARTIAL LEAST SQUARES69

3.4.1 Partial least square regression

The partial least square regression is an efficient learning algorithm that learns a linear
predictor f (x) = w’x, and therefore can be used as a feature subset selection module
in Boosting training. The partial least square aims to find latent structures in the feature
space and the label space, such that the following two objectives can be achieved. First,
the latent structures closely approximate the original feature space; second, the latent
structures of the feature space and the label space are highly correlated. Formally, the
partial least square regression can be described as follows.

Let X be the matrix of features, with n rows and N columns, and each row is an
instance, each column is a feature. Let Y be the matrix of labels, with n rows and M
columns, and each column is a label. Notice that the partial least square allows for
multiple labels, while in our binary classification problem M = 1. Therefore in the
following we consider Y = y to be a vector with values O or 1. We want to find a latent
structure that approximates the original data using combination of rank-1 matrices as

follows:

X=TP"+E = t,p! + - - +txpy +E, (3.32)
y=UQ"+F = uq+ - +ugqg +F. (3.33)

E and F are the residuals. t; and u; are called the scores, and {p;} and {¢;} are called
the loadings. The latent structure {p;} and {¢;} defines a subspace of the original
space (the row space of X and y). But usually {p;} or {¢;} are not orthogonal and
may not be independent, e.g. when that X’ > N or K > M. The original data is
represented in the latent structures, using the score matrix T or U.

The latent structure is constructed in a sequential manner, solving a sequence of

problems of the following form:

max cov (tg,u
(b,) (3.34)
st by =Xpwi, wp = yiop, [[will, =1, [luell, =1

The solution of this problem is that wy, is the first left-hand singular vector of X y;.
For M = 1, we have:
wi, = X[y v = L ug =y (3.35)

70 CHAPTER 3. THE BOOSTING ALGORITHM
For further convenience, we normalize ty to |[t;||, = 1 by:
Wi — Wi |[tellos te < ti/|txllos (3.36)

then w; = Xy still holds. The loadings py and g are found to minimize the

residual, i.e. solving the following least square problems:
X, = txp; and y = upqp. (3.37)
The solution of the regression problem is:
pr = Xjtpand ¢, = ypup/ufuy . (3.38)
Then the data is deflated as follows:
X1 = X — typp, and yyi1 = yi — Upg. (3.39)
It is easy to verify the following properties:
t1 Xy = 0, 7ty = 0, Xppuwy = 0, Vi > 0. (3.40)

The partial least square regression assumes that the y scores u; can be predicted
from the X scores t; using a linear predictor. This assumption is realistic since the
latent structure is found to maximize cov (ty, ug). The linear predictor ¢y, is found as
follows:

u, = tiep, = ¢ = tfuk, since ||tk||2 = 1. (341)

Then the approximation iy, = ¢ty is used to determine g, and deflate y:

Gk = yil,/ 000y =yity/cp =1, (3.42)
Yit1 = Yk — WQx = Yi — Crtbr. (3.43)

Finally a linear relation can be found between X and y:
y=Tc+F=Xb+F, (3.44)

where b = W*c = W*TTy = W*(XW*)"y is the linear coefficient for predicting

3.4. FEATURE SUBSET SELECTION BASED ON PARTIAL LEAST SQUAREST1
y from X, and W* is the matrix for calculating T from X:

T = XW". (3.45)
‘W can be derived as follows:

v Xwy, = (TPT + XK+1) Wi = TPTWk, k= 1,..., K,

o XW =TP'W
=T =XW(P'W)"
= W' =W([P'W)™" (3.46)

And finally we have the linear predictor between X and y, represented by:

b=Wc=WTy = WXW") 'y = W(P"W) " (WP) WXy
(3.47)
The complexity of the partial least square regression is approximately O (nNK),
where n is the number of training instances, N is the number of features, and K is
the order of the latent structure. Usually K is much smaller than n or N, for example,
K = 20 ~ 30 1s sufficient in our test. The partial least square regression for M = 1is

summarized in Algorithm 2.

Algorithm 2 Partial least square regression for scalar labels

Initialization: X; = X, y; =Y.
for k =1to K do
Calculate the following terms:
(D) wy, = X[y, tr, = Xpwy,
(2) Wi <= Wi|[tl, tre = b/ [tk
(3) pr = X[tk
@) ¢ = tfu, = tlyg
(5) Yit1 = Y& — tr, Xpr1 = Xi — trpj
end for
Calculate b:
W* = W(PTW)_
b =Wrc=WTly = W*(XW*)"y
return b.

1

72 CHAPTER 3. THE BOOSTING ALGORITHM

3.4.2 PLS for feature subset selection

The values in the linear coefficient vector b reflect how each feature contributes to
predicting the label y in a collaborative manner. Therefore a feature selection scheme
can be implemented by treating the values in b as importance scores. However, the
weights of those highly correlated features will be scaled down. Consider a highly
relevant feature that has several duplicated copies in the feature vector x. The copies of
this feature will be equally weighted in b, while the sum of their weights will equal to
that of the feature without duplication. To cope with this situation, instead of selecting
those highest weighted features, we treat b as defining an importance distribution, and
draw features from this distribution.

Another issue for using PLS for feature selection in Boosting is how to perform
PLS on weighted training instances with the weight w. An unweighted dataset can be
obtained by resampling the weighted dataset, using importance sampling. Learning
on this resampled dataset is equivalent to learning on the original weighted dataset.
In the following ~ stands for working with the resampled dataset. Finding the latent

structure for the resampled dataset can be described by the following problem:

N o o 3 (3.48)
st. t=Xw, a=y0, [|[W],=1, o], =1

And we consider the following problem absorbing the weights into the training data:

max cov (tpn, Upy)

(3.49)

S.L. tnn = Xnnwnnv Wnn = YnnUnn, ||Wnn||2 = 17 ||Unn||2 = 17

where X,,,, = diag (\/5) X, and y,,, = diag (\/5) y. It is easy to see that W = w,,,
since X2 y,.. = XTdiag (w)y = X§. Therefore:

t=Xw= me,

p=X"t =X"Xw,, = X? X,. W = Prn. (3.50)

The conclusion is that b,,, = b. Therefore we solve the PLS regression problem for

(X,uns Ynn), and then select a subset of features according to by,,.

3.4. FEATURE SUBSET SELECTION BASED ON PARTIAL LEAST SQUAREST3

3.4.3 Experimental evaluation

We test the PLS feature subset selection algorithm on the INRIA pedestrian dataset,
using 2,474 training instances and 8,000 negative training instances. The negative
training set includes 4,000 windows randomly selected from the negative images, and
4,000 hard negatives collected by a linear SVM detector using HOG+LBP features.
The full feature set includes 25,768 HOG features obtained by concatenating the HOG
from 688 rectangular blocks. The Discrete AdaBoost algorithm is used for training
the classifier, using decision stumps as weak classifiers. We compare the PLS feature
subset selection algorithm with several baseline methods, including exhaustively test-
ing all features, filtering based methods using correlation and mutual information, and
random selection. A feature subset of size 500 (2% of the full dataset) is selected,
from which the best feature is then selected by AdaBoost. To avoid extracting all fea-
tures for the whole training set, a subset of the training instances is used for feature
selection, using 1,000 positive instances and 2,000 negative instances. Experiments
show that this does not impair the quality of the selected feature subset. To evaluate

the performance, we show the empirical loss plotted against the number of Boosting

1terations.
0.8 T T T T 0.8 T T T
a —O— Exhaustive 5& —e— Exhaustive
0.7 —k— Correlation-1 i 0_7c Correlation-50
~——©— Mutuallnformation-1 ~—©— Mutuallnformation-50
06 —+— Random-1 06 —+— Random-50
’ —&— PLS-1 ’ —&— PLS-50
5 5
@ 0.5 @ 0.5
S Y S
5 5 \ e
S 0.4 S 0.4 \
0.3 N 0.3 L
0.2 0.2 e~ R |
: \\\;\EH]
01 S 0.1
1 1 1 1
1 6 11 16 21 26 31 36 41 46 50 1 6 11 16 21 26 31 36 41 46 50
AdaBoost training rounds AdaBoost training rounds
(a) (b)

Figure 3.9: (a) Comparison of empirical loss convergence using various subset selec-
tion method, update period = 1. (b) Comparison of empirical loss convergence using
various subset selection method, update period = 50.

First we update the feature subset in every iteration, and the results are shown in
Fig. 3.9a. The correlation and mutual information methods have very high probabil-

ity to include the best feature, and the performances are close to exhaustively testing

74 CHAPTER 3. THE BOOSTING ALGORITHM

—+— Random-25
—— Random-1
—6— PLS-25
—B— PLS-1

Exponential error

1 6 11 16 21 26 31 36 41 46 50
AdaBoost training rounds

Figure 3.10: Comparison of empirical loss convergence using the PLS selected subsets
and random subsets.

all the features. The PLS subset selection is better than the randomly selected subset,
showing that the chance of including useful features is improved by sampling from a
weighted distribution with the weights calculated by PLS. Then we refresh the feature
subset every 50 iterations, i.e. 50 weak classifiers are to be trained from the feature
subset. The results are shown in Fig. 3.9b The correlation and mutual information
perform poorly in this case, showing that the highest scored features are also highly
correlated with each other, hence the feature subset fails to include diverse and com-
plementary features. The advantage of PLS feature subset selection over the other
methods is obvious, including the random subset. This indicates that the PLS method
generates a much more informative feature subset than random selection, and also in-
cludes diverse and complementary features, in contrast to the correlation and mutual
information methods. Finally in Fig. in Fig. 3.10 we compare the PLS subset with the
randomly selected subset. The figure shows that a PLS subset updated every 25 itera-
tions performs similarly to a randomly selected subset that is updated in every iteration
(Random-1). Considering that the random subset does not incur any additional cost
in feature selection, this seems diminish the benefit of the subset selection algorithm.
However, over the 50 Boosting iterations, the Random-1 scheme explores almost the
entire set of features for the training set, such that all the features need to be extracted
for the training set, while the PLS-25 scheme only needs to extract the full feature set
for the small dataset used for feature selection, and only the selected feature subset, i.e.
at most 1,000 features, need to be extracted for the much larger training dataset. The

advantage of the feature subset selection algorithm is also in the reduction of feature

3.4. FEATURE SUBSET SELECTION BASED ON PARTIAL LEAST SQUAREST5

extraction and feature storage for the training data.

3.44 Conclusions

To conclude, we have applied the feature-selection techniques for selecting working
feature subsets in AdaBoost training. Based on the partial least square regression
approach and the novel sampling-based feature selection approach, an effective feature
subset can be selected, with low computational overheads. The training efficiency of
the AdaBoost algorithm can be improved by the proposed approach.

For the future work, the proposed approach can be tested with other weak classi-
fiers and other variants of AdaBoost. The proposed approach can also be embedded in
a fully functional pattern recognition system in order to evaluate the improvement at

the system level.

76

CHAPTER 3. THE BOOSTING ALGORITHM

Chapter 4 Boosting cascade detectors

Several issues involved in designing a Boosting cascade detector are discussed in this
chapter. To begin with, we give a short introduction of the cascade, pointing out the
problems that can be solved by a cascade in Section 4.1. Then three questions arising
from training a cascade are studied. First, each stage of a cascade detector is usually
makes a highly unbalanced decision, accepting almost all the positive instances while
rejecting an appropriate portion of the negatives. Therefore training an optimal clas-
sifier for this unbalanced objective is studied in Section 4.2. Then in Section 4.3, we
discuss how to set the goal for each stage of the cascade, such that the cascade is effi-
cient as a whole. Lastly, in Section 4.4, how to re-use information in the early stages
of the cascade is studied, and we propose a biased selection strategy for re-using weak
classifiers and features that are already obtained, such that the detector efficiency is

further improved.

4.1 Cascade detectors

The cascade approach is popular since it solves three problems in sliding window
style visual object detection. First, there are numerous non-object windows while only
a small number of object windows in typical images, hence the detector should have
a very low false positive rate but an acceptable detection rate. Second, we usually
have limited number of positive training instances, while numerous negative training
instances can be collected. How to efficiently exploit the negative training data is a
problem for the learning process. Third, the large number of windows to evaluate in a
sliding window scheme incurs high computational cost in detection, for which a highly
efficient detector is expected.

While the detector efficiency and performance are often contradictory goals, the
cascade approach achieves both by chaining a number of classifiers, each called a
stage of the cascade. Only those instances accepted by an earlier stage will be passed
to a later stage. Assume each stage classifier has recall rate a, and false positive rate
b, by chaining up n stages, we obtain a detector with recall rate o™ and false-positive

rate O". It is easy to train a detector with very high recall and moderate false positive

77

78 CHAPTER 4. BOOSTING CASCADE DETECTORS

rate, e.g2. a = 0.995 and b = 0.5; then 20 stages aggregate into a detector with recall
a” = 0.995%° ~ 0.90 and false positive rate b* = 0.5?° ~ 107%. Assume that each
stage has a fixed computational cost c. Since the majority of windows are non-objects,

the computational cost per-window can be calculated as:

n—1
, (1—-0b") c
b= ~)
sz-:o “T=0 T 1oy

Therefore, the expected cost of the whole cascade is on the same order as the cost of
a single stage, which indicates that the cascade is a very efficient detector. Besides,
the cascade is usually designed such that the earlier stages are very simple; therefore
most windows can be rejected with a very small amount of computation, further en-
hancing the detector efficiency. As for exploiting the huge negative training set, the
cascade stages are usually trained sequentially, such that only the false positives of the
earlier stages are used for training the later stages. Therefore the size of the remain-
ing negative dataset quickly decreases, and the full negative dataset can be effectively

exploited. The training and testing of a cascade detector are illustrated in Fig. 4.1.

Avery large pool of
Positive Negative v large p

L bl negative instances
training set training set

Test
10000 | [10000]<—— 100M

9990 | [0000 [<—| som

9980 W[10000 [<{—|sm Accept

9000 [10000]<— |y is not an
object.

(a) (b)

Figure 4.1: Illustration of the training (a) and testing (b) of a cascade detector.

The Boosting algorithm is very popular in combination with the cascade approach,
since it builds efficient classifiers with feature selection, and offers explicit control of
the complexity of each stage, such that we use just enough weak classifiers (features)
to achieve the desired recall and false positive rate (a, b) at each stage. In this section
we study several issues in designing a boosting cascade detector. In Section 4.2, we

study how to learn a classifier that is aware of the asymmetric training goal (a, b),

4.2. LEARNING WITH ASYMMETRIC GOALS 79

achieving this goal with minimal classifier complexity. Then in Section 4.3 we study
how to set the goal (a, b) for each stage, such that the detector complexity is minimized
as a whole. Finally in Section 4.4, recycling the features and weak classifiers between
stages and within a stage is studied, such that the complexity of the detector can be

effectively reduced without impairing the performance.

4.2 Learning with asymmetric goals

The false rejection rate (F'RR), false acceptance rate (F'AR), and error rate (F'R) of a

binary classifier are defined as follows:

FN FP FP+FN
FRR=———— FAR= ——— , FR = .41
TP+ FN FP+TN TP+ FN+FP+TN “.1)
Predicted
Positive Negative
Positive | True Positive (TP) | False Negative (FN)
Ground truth) — -

Negative | False Positive (FP) | True Negative (TN)

Each stage of the cascade is expected to have very low F'RR but moderate F'AR. The
Boosting algorithm sequentially adds new weak learners to the classifier, and pushes
the ROC curve upwards until the desired 'R R and F'AR are simultaneously achieved.
However, as we have discussed before, the learning algorithms minimize an upper
bound of E R rather than the asymmetric F'RR/F' AR goal. Therefore, the classifier
could be sub-optimal, for example, using more weak classifiers than necessary. In
the following, we introduce methods that address the asymmetric learning goal. First
we give a naive formulation based on training on weighted datasets. Then, the cost
sensitive Bayes decision rule [71] is introduced, and a discriminative approach for
approximating the cost sensitive boundary is formulated. Lastly we discuss methods
that directly optimize the FRR and F'AR, i.e. the linear asymmetric learning [69] and
LACBoost [70].

4.2.1 Naive weight manipulation

The cost-sensitive learning is considered as a proxy to achieve the asymmetric /'R

and FFAR. Let each false negative elicits cost ', and each false positive elicits cost

80 CHAPTER 4. BOOSTING CASCADE DETECTORS

C_1, then by tuning the cost parameters, we can make a classifier that minimizes the

cost-sensitive loss:
mfin fx Clp (f 7& Y, X,y = 1) + C—lp (f 7é Y, X,y = _1) dx 4.2)

Assume the loss is evenly split between the positive and the negative data, i.e.

/Clp (f#y.xy=1)dx= /C_lp(f #y,x,y=—1)dx, (4.3)

X

and assume equal prior probability of the two classes, i.e. P(y =1) = P(y = —1),

then we can obtain:

FRR (.,
FAR O’

C1FAR = C_1FRR,ie. 4.4)
Then we can expect that by setting C'; and C'_; according to the target FFRR and
F AR, the classifier will be optimal for achieiving the asymmetric goal, e.g. using the
least number of weak classifiers. However, in practice, the empirical loss used in the
learning problem (e.g. exponential loss) is only an approximation of the 0-1 loss, and
the ratio of the empirical loss on the positive and negative sets usually is not equal to
the ratio between FFRR and FFAR. We show the exponential loss and error rates on
the positive and negative training set during training a Discrete AdaBoost classifier in
Fig. 4.2, for C_; = 1 and C; = 1, 2, and 5. We can see the ratio of the exponential
loss closely follows the specified C'; and C_, but the ratio of the empirical loss fails
to predict the ratio of 0-1 loss, i.e. the ratio of FFRR and FAR. However, the cost
sensitive loss (4.2) is still of interest, and is a a good hint about how we should deal

with the asymmetric learning goal.

4.2.2 Optimal cost sensitive decision rule

Assume we have the true posterior probabilities P (y = 1|x) and P (y = —1|x). Then

an optimal cost-insensitive classifier is

Py =15x)

—_— 4.5
Ply = —1]x) (+3)

h(x) = sign (f (x)), where f (x) = log

4.2. LEARNING WITH ASYMMETRIC GOALS 81

c 05 1
© {
©
o 0.45 0.9
£
£
S 04 T 08
- ©
[kel
£ 035 207
=
5 £
S 03 = 06
5 2
@ =1
2 0.25 qg;’ 0.5
p— 1=
©
= 0.2 S 0.4 .'
g 2 e
g 0.15 © 03 -*.
:“03 0.1 w 0.2 3
5
g 0.05 0.1 p-----,
c
> 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1
Unweighted exponential loss on positive training data Error rate on positive training data
(a) (b)
c 05 1
5 /
©
o 0.45 0.9
£ o
S
© e
£ 04 N g 08
) © \
2 035 207
3 £
(5]
€ 03 £ o6
& 2
7} =
2 0.25 % 0.5 £
I < »
£ 02 S 04 o
g o 4
g 0.15 © 0.3
8 &
g 01 W 0.2f--
=
2 0.05 0.1}
3
c
> 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1
Unweighted exponential loss on positive training data Error rate on positive training data
© (d)
w 05 1
©
o
o 0.45 0.9
< .
£ / H /
S 0. £ 0.8r%
=1 ©
e L
> D
= c 0.7
g s e/
g £ o6}
S < > /
123 =1
‘:8 % 0.5 /
2 c 04
= o
; s \f/
g S 0.3f,
S s F/
E o 0.2 /
S
D 0.1
3
c
> 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1
Unweighted exponential loss on positive training data Error rate on positive training data
(e) ®

Figure 4.2: (a) (b) Exponential loss and 0-1 loss on the training set, for ¢} = 1,
C5 = 1. (c) (d) Exponential loss and 0-1 loss on the training set, for C; = 2, Cy = 1.
(e) (f) Exponential loss and 0-1 loss on the training set, for C; = 5, Cy = 1.

82 CHAPTER 4. BOOSTING CASCADE DETECTORS

And the optimal cost-sensitive scoring function is:

CiP(y=1|x) Cr
Py =—1x) f(x)+log : (4.6)

f(x) =log .

This suggests that a cost-sensitive classifier can be obtained by simply adjusting the
threshold of the cost-insensitive score function f (x), if f (x) is an accurate predictor
of the log odds everywhere. This is also the most popular technique in practice, and
we simply pick a proper operating point from the ROC curve derived from f (x). The
optimal decision boundaries for cost insensitive and cost sensitive loss with C; = 5
and Cy = 1 are illustrated in Fig. 4.3 for a 1-D problem. Notice that the ratio of cost
factors does not directly imply the ratio of errors (i.e. the area of the red and blue

regions).

(a) (b)

Figure 4.3: Illustration of the Bayes optimal decision boundary for (a) C; = 1, Cy = 1;
(b) Cy =5,Cy = 1.

However, the solution of a cost-insensitive learning problem usually only considers
approximating the separating boundary, i.e. the 0 level set of f (x) approximates the 0

level set of log %;

e ol S e Plu=1x)
{X.f(X)—O}N{X.logm—O}. 4.7)
But no guarantee can be made for the approximation at other locations, i.e. there may
not exist a level set of f (x) that closely approximates {x : log % = log CC—‘II}
Therefore adjusting the threshold cannot guarantee an optimal cost sensitive decision
boundary. Furthermore, Boosting selects and combines weak learners; the weak learn-
ers selected according to the symmetric cost may also be sub-optimal for the asym-

metric cost.

4.2. LEARNING WITH ASYMMETRIC GOALS 83

4.2.3 Cost-sensitive loss functions

The learner should produce a scoring function f (x) whose 0 level set directly ap-
proximates the cost sensitive Bayes decision boundary (4.5). It has been shown that
the minimizer of the exponential loss functional is the optimal cost-insensitive Bayes

decision boundary:

(4.8)

_ 1 Pp (y = 1|x)
argmin Ep (exp (—yf (x))) = =lo ,
gmin Ep (exp (—yf (x))) = 3 8 P (y = —1x)
where D is the distribution over (x,y). Similarly, we can prove that the minimizer
of the following naively weighted loss is the Bayes optimal decision boundary for the

cost sensitive loss:

Ly, f(x)) = Cyexp (—yf (x)), (4.9)

where y € {+1, —1}. The minimizer is:

1 ClpD (y = 1|X)

arg mfin Ep (L(y, [(x))) = 5 log C_1Pp(y=—1|x)

(4.10)

However, this naive weight adjustment has been criticized by many works. For ex-
ample, using Discrete AdaBoost with loss (4.9), the training instances are initially
weighted such that each positive instance has weight C'; and each negative instance has
weight C'_4, creating an asymmetric distribution over the two classes. But in practice
the asymmetry is immediately destroyed after obtaining the first weak classifier, such
that only the first weak classifier is actually trained on an asymmetric data. We show
an example by training a Discrete AdaBoost classifier using C; = 5and C_; = 1. The
ratio between the sum of positive instance weights and the sum of negative instance
weights are shown in Fig. 4.4a, and the weak classifier weights are shown in Fig.
4.4b. It can be observed that only the first weak classifier is trained on an asymmetric
distribution, and the first weak classifier is highly weighted for it contributes most to
minimizing the cost sensitive loss.

Let n(x) = Pp(y = 1|x), [71] studies cost-sensitive learning by studying the

conditional risk:
C(n)=nCiI(f(x)<0)+ (1 —n)CLl(f(x)=0), (4.11)

where [is the indicator function and measures the 0-1 loss. The optimal predictor f

84 CHAPTER 4. BOOSTING CASCADE DETECTORS

o
-

o
©

o
®

o
3

o
o

o
o

o
~

|
0.5}
|

o
w

Weight of the weak classifier

Neg Weight Sum / Pos Weight Sum

I
N

o
o

NNt

0 10 20 30 40 50 0 10 20 30 40 50
Boosting iteration Weak classifier index

(a) (b)

o
o

Figure 4.4: (a) Ratio of the sum of positive instance weights and sum of negative
weights for training each weak classifier; (b) Weak classifier weights in the Discrete
AdaBoost classifier.

is:

f(x)>0, ifn(x)> -
fx)=0, ifn(x) =552 (4.12)
f(x) <0, ifn(x) < gra

Two properties are satisfied by (4.11), which uses the 0-1 loss:

1. The risk (4.11) is maximized at n* = Cgfcl,l .

2. The risk is symmetric with respect to the cost factors C'; and C'_; in a neighbor-

hood of n* = ﬁ:

C (77* — 80_1) =C (77* + 501) . (413)

Replacing the 0-1 loss with an empirical loss function, e.g. the exponential loss, the
loss function for cost-sensitive problems is expected to also satisfy the two properties,
in addition to approximating the optimal cost sensitive Bayes decision boundary. By
replacing the 0-1 loss with the naively weighted exponential loss (4.9), and substituting

the solution (4.10), we can find that the conditional risk is:

Cin

C_i(1—n)
C1(1-n)

+(1—-n)C, 4.14)

The risk (4.14) is maximized at = 1/2, which violates property 1. Therefore [71]

4.2. LEARNING WITH ASYMMETRIC GOALS 85

proposes another form of cost-sensitive exponential loss:

Lo (y, f (%)) = exp (=Cyy f (%))

which is minimized at:

1 log C1Pp (y = 1]x)

- , 4.15
01 + 0_1 C_1PD (y == —1|X) ()

arg mfin Ep (Le (y, f (%))

whose 0 level set is also the Bayes optimal cost sensitive decision boundary. In addi-
tion, the scoring function (4.15) satisfies property 1. (4.15) does not scale the loss as
in (4.9); instead, the scoring function f (x) is scaled before calculating the loss, such
that a positive instance and a negative instance on the decision boundary f (x) = 0
incur the same amount of loss.

Cost sensitive Boosting algorithms can be derived for the cost sensitive loss (4.15).
The original AdaBoost algorithms should be modified as follows. First, the weight
update formula of the training instances is changed to w; = C,e~“w¥ ! (x:) Then
corresponding to the three methods in section 3.2 that solve the AdaBoost as a func-
tional optimization problem, the algorithms for cost-sensitive loss can be described as

follows:

Cost sensitive Discrete AdaBoost Select the new weak classifier to minimize the
weighted error as before. The weight of the new weak classifier cannot be obtained in
closed form, and a line search is needed to find the optimal weight for the new weak

classifier.

Cost sensitive Real AdaBoost The new weak classifier is the regression function to

approximate the following target value:

1 P (y = 1]x)
¥ = G e 0 B,y = 1) (4.16)

Cost sensitive Gentle AdaBoost The new weak classifier is the regression function
to approximate the following target value:

—_

_ P,(y=1,2z)—P,(y=
CiP,(y=1,2)+C_1P,(y

_ 71.)

fi (%)) (4.17)

Now we illustrate the cost-sensitive learning using artificial data. The positive data

is drawn from a 2-D Gaussian with o = 1, centered on (0, 0). The distribution of the

86 CHAPTER 4. BOOSTING CASCADE DETECTORS

negative data is centered on a ring with radius 3.5, and with standard deviation 1 in the
profile direction of the ring. We evaluate the Gentle AdaBoost, training the strong clas-
sifier up to 40 weak classifiers using regression stumps as weak classifiers. Fig 4.5a
shows the groundtruth cost-insensitive decision boundary and the O level set of the
learned classifier, and we can see the 0 level set closely approximates the groundtruth
decision boundary. Then the O-levelsets of the classifiers using the naive weight ma-
nipulation (4.9) and the modified loss (4.15) are compared, for (C; =2,C_; = 1)
and (C; = 5,C_; = 1), and the results are shown in Fig. 4.5b to 4.5e. We can see
indeed both approaches are effective in approximating the cost sensitive optimal deci-

sion boundary.

4.2.4 Direct formulation of the asymmetric goal

The cost sensitive learning optimizes for the cost sensitive decision boundary. How-
ever, the cost of each type of error does not directly imply the ratio of F'N R and F'PR.
Directly optimizing for the recall and FAR are studied in [69, 70], using the following

learning problem:

mfin FNR= [,p(f #y,xly=1)dx,
st. FPR= [,p(f+#y,xly=—1)dx = const.

(4.18)

i.e. minimizing the FNR for a particular choice of FPR. The problem is usually difficult
to solve. However, if FPR = 0.5 and the classifier is linear, i.e. f(x) = wTx, the

problem can be written as:

max Pp, (wix>bly=1),
w0y T (|) (4.19)
st. Pp_ (WTX <bly = —1) = 0.5,

where D+ and D— stand for the conditional distribution of the positive and negative
class, respectively. If w’x is symmetric for the negative class, the solution can be

obtained by solving the following problem:

T (. _
maxw (Hq H—l)

b
w Vwiyw

where g, and @, are the mean of the two classes, respectively; 3, is the covariance

(4.20)

matrix of the positive class. To derive the formulation of problem (4.20), the following

4.2. LEARNING WITH ASYMMETRIC GOALS 87

N
o-]
K
2- S 4
* W AU
- "
4-]
o .
6 , \ , \ \
6 4 2 o 2 4 6
(a)
6 6
4- - . - 4 - 3 E

[N
0- 4
"
2- 4
-~ I -
4 - ab 4
- -
5L . , , , . | . , \ , .
6 4 2 0 2 4 6 % 4 2 [2 4 6
(b) (©
61
4 - - . — - - .. 4
LN -
2- - 2b B
‘S w -
0- - of 1
2- - 2k 4
-~ -
4- - ab B
- -
5L . , , \ . | . , \ \ .
6 4 2 0 2 4 [4 2 [2 4 6

Figure 4.5: 0-levelset of the Gentle AdaBoost decision boundary and the groundtruth
optimal decision boundary. (a) using symmetric cost; (b) and (c) using the naive
weight manipulation (4.9) for (C; =2,C_; = 1) and (C; = 5,C_; = 1); (d) and (e)
using the modified loss (4.15) for (C}, =2,C_; = 1) and (C; =5,C_; =1).

88

CHAPTER 4. BOOSTING CASCADE DETECTORS

problem is studied:

max 1y
w#0,b
st inf Ppy (wh'x >b) >+, (4.21)

inf Pp_ (WTX < b) > 0.5.
D—

Notice that the infimum in (4.21) are over all possible distributions D— and D-+.

If D— is a symmetric distribution, obviously Pp_ (WTX < b) > 0.5 is satisfied by

b > wlu_,, and we can replace the second constraint in (4.21) by b > wlu_,. To

derive the solution to problem (4.21), we study the following problem:

i Tx >b) >
%{ Pp (W X > b) > 7. (4.22)

Here we directly give the solution from [70]:

e If D, = (pu,X) is an arbitrary distribution with mean g and covariance matrix

>
b>wip+ /% VwTSw. (4.23)
—

o If D, = (p,3)4 is a symmetric distribution with mean p and covariance matrix

T 1 . T .
b>wip+ /55 VWw'Ew ifye (0.5,1) 424)

b>wlp if v € (0,0.5]

o If D, = (u, %)y, is a symmetric and unimodal distribution with mean g and

covariance matrix X:

b>wlp+ %,/ﬁ VwlEw ify € (0.5,1)

(4.25)
b>wlp if v € (0,0.5]

o If D, = G (u, X)) is a Gaussian distribution with mean g and covariance matrix
3
b>wipn+ o' () - VwiZEw, (4.26)

where @ is the cumulative distribution function.

4.2. LEARNING WITH ASYMMETRIC GOALS 89

To sum up, let:

= ifx~ (u,X)
1 iftx~ (u,%
p(y) =9 VI (k. s (4.27)
2 1 .
3\ 2oy fx~ (B,) sty
| 27 () ifx~ G(p, %)
Then for a given +, the solution b and w to the problem (4.22) is:
—b+wlpu, > () VwIZw. (4.28)
Therefore: -
—b
< 0w (4.29)

P e

Since ¢ (7y) is a strictly increasing function of -, maximizing 7 can be obtained by
maximizing ¢ (). The problem (4.21) becomes:

—bt+wT T
max \/TTMW st b>wip (4.30)

And the maximum is achieved when b = w7 p_,, therefore w is the solution of:

T, _
a4 ”"1), 4.31)

w Vwiyw

The solution is the eigenvector corresponding to the largest eigenvalue for the follow-

ing generalized eigenvalue problem :
wlXpw = \w! 2w, (4.32)

where £p = (pu; — p_y) (py — ,u,l)T is the between class scatter matrix. The solu-
tion is:
w=x" (,U1 — p_l) . (4.33)

A direct application of the result is to treat the weak classifier scores as spanning
a new feature space, in which we learn a linear classifier with parameter w and b to
optimize the asymmetric learning goal. This post processing stage usually improves

the performance. The linear asymmetric classification (LAC) problem (4.31) is very

90 CHAPTER 4. BOOSTING CASCADE DETECTORS

similar to the Fisher’s LDA problem, which solves the following problem:

w' (llq - .U—1) (Nl - N—l)TW

wli¥w

, (4.34)

max
w
where Xy is the within-class scatter matrix:

Sw=Y i—m)(xi—p) + Y (i—py) (xi—ps), (435)

yi=1 yi=—1

and the optimal solution for Fisher’s LDA is w = Z;Vl (H1 — y,_l). Since usually the
covariance matrix of the negative class 3_; is near diagonal, therefore the LDA can
be treated as LAC with regularization.

An example of applying LAC/LDA post processing to a Discrete AdaBoost clas-
sifier is shown in Fig. 4.6a. First we train the Discrete AdaBoost classifier up to
selecting 150 weak classifiers, and then the weak classifier weights are re-learned us-
ing LAC/LDA on the validation data. The performance of the classifier is evaluated
on the standalone test data. We can see both LAC and LDA improves over the original
Discrete AdaBoost for FAR = 0.5. Furthermore, LAC post processing trades the
performance at the low FAR side for improved recall at the medium to high FAR side,
while LDA is more balanced, improving the performance almost in the whole range.
The performance improvements for stage 10 to 15 in a Boosting cascade detector are
shown in Fig. 4.6b. The strong classifier selects 150 weak classifiers, and the recall
for FAR = 0.5 is shown. We can see the LAC/LDA post processing consistently
improves performance, and the improvement is more significant for the later stages,

when the training set becomes more difficult.

4.2.5 Boosting with asymmetric goal

The LAC/LDA performs post processing for the weak classifiers’ outputs. However,
the weak classifiers could be sub-optimal for the asymmetric goal. Though the pre-
viously discussed cost-sensitive Boosting can be applied to learn the weak classifiers,
but as we have mentioned, there is no explicit relation between the cost-sensitive loss
and the ratio of mistakes on the positive and negative set. In this part, we introduce the
work in [70], in which a Boosting algorithm is directly derived using the LAC/LDA
cost, by applying the forward feature selection technique introduced in section 2.4.

First, we can see that the optimal LAC/LDA solution w is also the solution of the

4.2. LEARNING WITH ASYMMETRIC GOALS 91

,_:" I Discrete AdaBoost
0.98 e 0.995| LAC Post-processing
0.96 _/,{f’/_— . I LDA Post-processing

Discrete AdaBoost 0.99}

LAC post processing

0.94 f

000 /er —— LDA post processing
vl L7/
o {1/
0.84 ” ! i
0.82 H l 0.965|
ool |

“0 01 02 03 04 05 06 07 08 09 1

0.985

0.5

0.98

0.975¢

—~
™N—
——

Recall @ FAR:

1 - False Rejection Rate

0.96

1 12 13 14
False Acceptance Rate
(a) (b)

Figure 4.6: Applying LAC/LDA post processing to the weak classifiers of a Discrete
AdaBoost classifier. (a) ROC curves. (b) Recall rates at FAR = 0.5.

following problem for a proper 6:

mvin wl'siw —ow” (py — p_y) . (4.36)
0 is the tradeoff parameter corresponding to the maximum eigenvalue of the general-
ized eigenvalue problem (4.32). The first term measures how concentrated the positive
class is, and the second term measures the separation between the positive and the
negative classes. Introducing the non-negative and unit L-1 norm constraint on w, we

obtain the following problem:

min w3 w — ow”T —
w 2 1 (“1 H 1) (437)
st. w>0, 17w =1,

The Lagrangian formulation of this problem is:

min twT3w — ow’T —p_q) + M1 Tw,
w 2 1 (l'l'l © 1) (438)
s.t. w>0.

Let a training instance be represented as feature vector f; of the weak classifier scores,

and let M; and M _, represent the number of positive and negative training instances,

92 CHAPTER 4. BOOSTING CASCADE DETECTORS

respectively, then we can write down the following:

1 1 1 T
——Sfp,=— S £3 = £ —) (F — poy)"
231 M, Zl Py B Zl 1 Ml—lz() (k)

yi= Yi=— yi=1
(4.39)
Denote matrix AT = [fy, ..., fy/], i.e. each row of A is a training instance and each col-
T
. . 1 1 -1 —1
umn is a weak classifier/feature, and denote vector e = [m, o T BT o BT |
then we have:
Wl (= py) = e Aw
wisw=wlATQAw, (4.40)
where _
Q1 0
QR = :
0 O
i N S S
M M(M;—1 MM —1
1 (1 1) (11) (441)
0, = _M(J.\/Il—l) M _M(Z.Vh_l)
. 1 _ 1 1
L™ MM —1) M(M;—1) M-

To ensure () is positive definite, we can add a small diagonal term @Q = @ + o/,
and the effect is equivalent to additionally penalizing the sum of squares of the strong
classifier scores. Alternatively, we can add o/ to ATQA, which is amount to adding
an additional L-2 regularizer of w.
Denote p; = A;w and p = Aw, i.e. p; is the strong learner score of the i-th

training instance. Then the problem becomes:

min 1p"Qp — e’ p+ A1Tw,

w.p

s.t. w >0, 4.42)

Pi = AZ‘W, 1=]_, ceey M.

The Lagrangian is:

M N
1
L(w.p.a.f)=5p"Qp—0e"p+ Y ai(pi—Aw) =Y fw;+ 17w, (4.43)
=1

j=1

and the KKT conditions are:

4.2. LEARNING WITH ASYMMETRIC GOALS 93

Stationary Primal and dual feasibility Complementary slackness
%:Qp—9e+a20 w >0 Bjw; =0
B >0

Therefore the new weak classifier selection criterion can be obtained as forward feature

selection, by selecting the weak classifier that mostly violates the KKT condition:

arg max A.T;a, (4.44)

js.t. A5a>/\)

where A is the j-th column of A. The dual variables {c; } are obtained from the KKT
condition o; = fe; — Q; p, where Q); is the i-th row of ():

My
0 M 1 —
M—Wf—n@—m_zl%)’ vi=1
J:

0 —
M_1> Yi = —1

(4.45)

Therefore the weak classifiers are encouraged to give negative outputs on all the neg-
ative instances regardless of the current strong classifier scores, but the positive in-

stances are downweighted if its strong classifier score p; is higher than the positive
1

My

aging {p;} of the positive instances to be tightly distributed. Furthermore, as done in

mean score, i.e. p; > Zj\/[:ll p;, and upweighted if p; is below the average, encour-
(3.8), we replace the L-1 norm regularizer by the L-2 norm regularizer, resulting in the

following problem:

min 1w Sw — 0w’ (p; —p_y) + 3wlw. (4.46)

W 2

This is an unconstrained QP, and its solution can be obtained in closed form as
0(S1+ A" (py —), (4.47)

which is essentially identical to solution of the LAC problem (4.33), but adding A to
the diagonals of 3J; for some regularization. However, the weak classifiers are now
trained to optimize the LAC criterion, rather than to optimize the AdaBoost loss. Com-
pared with the L-1 regularized problem (4.38), for the unconstrained L-2 regularized
problem (4.46), the parameter ¢ only affects the scale of w. Therefore we only need

to test different values of A for model selection.

94 CHAPTER 4. BOOSTING CASCADE DETECTORS

Similarly, a Boosting algorithm can be derived for Fisher’s LDA cost function. The
problem is:
min IwTEpw — OwT —
o 2 B (l’l'l o 1) (4.48)
st. w>0, 1Tw=1.
Y is the between-class scatter matrix. Compared with (4.42), only the matrix () need
to be modifed, the new () is:

Q1 0
Q = ;
0 Q
i 1 -t ... ___ 1
M M(M_—1 M(M_1—1
1 (1 1) (11) (449)
0y — T MM_1-1) M T MM)
_ 1 _ 1 o 1
L™ M(M_1—1) M(M_1—1) M

The performance of Boosting algorithms directly optimizing the LAC cost and the
LDA cost are illustrated in Fig. 4.7. We train the stage classifiers for stage 10 to
15 in a Boosting cascade detector, using Discrete AdaBoost, LAC Boost, and LDA
Boost. The LAC Boost and LDA Boost uses the same number of weak classifiers as
that of Discrete AdaBoost. Compared with the LAC/LDA post processing, the weak
classifiers are obtained to optimize the LAC/LDA objective rather than the AdaBoost
objective, and the weak classifiers’ weights are obtained using the training set rather
than the validation set. Comparing Fig. 4.7 and Fig. 4.6, we can observe the additional
performance gain due to directly Boosting the LAC/LDA cost.

1

I Discrete AdaBoost
0.995 - "] LAC Boost
I | DA Boost

0.99 -

0.985 -

=0.5

0.98 -

0.975 -

Recall @ FAR:

0.97 -

0.965 -

0.96

11 12 13 14 15
Stage

Figure 4.7: Recall rate at FAR = 0.5 for Discrete AdaBoost, LACBoost, and LD-
ABoost, for stage 10 ~ 15 in a Boosting cascade detector.

4.3. OPERATING POINT SELECTION FOR DETECTOR EFFICIENCY 95

4.3 Operating point selection for detector ef-
ficiency

Let stage ¢ of the cascade achieve recall rate a; and false acceptance rate (FAR) b;,
which are determined by selecting a threshold for the stage classifier’s output, i.e.
picking an operating point from the ROC curve. A detector with n stages achieves
a detection rate [[_, a; and a false acceptance rate [[}, b;, which should meet the
design goal, i.e. [[;_;a; > Aand [, b, < B, where A and B are the detector’s
target detection rate and false positive rate, respectively. Then a designing choice is
how to select the threshold and hence the operating points {(a;,;)}, such that the
detector is optimal in terms of efficiency. Since the number of background windows
is much higher than the number of objects, the detector’s efficiency can be evaluated

according to the expected computational cost for rejecting a negative window:

n

Z CiBi—17 (450)

=1

where c; is the computational cost of the ¢-th stage, and B; = HZ=1 by, is the probability
that a negative window successfully passes through stage i. Assume {b;} is fixed, then
the efficiency can be maximized by minimizing the computational cost {c;} for every
stage, while meeting the overall performance requirement (A, B). For the Boosting
cascade detector, the complexity of a stage classifier can be measured by the number
of selected weak classifiers. For a particular FAR b;, the recall a; usually increases
with more weak classifiers added, i.e. the ROC curve is pushed upwards by increasing
the number of weak classifiers, as illustrated in Fig. 4.8. On the other hand, assume the
detector structure is fixed, i.e. the number of weak classifiers for each stage is fixed,
the detector efficiency can be optimized by rejecting as many negative windows in the
early stages as possible, i.e. adjusting a; and b; for each stage as long as the overall
Recall/FAR can be achieved.

In this section we introduce the operation point selection method from [83] that
optimizes the complexity of a Boosting cascade detector by selecting proper operating
points for each stage. The method considers both minimizing the number of weak
classifiers and minimizing the false acceptance rate for each stage. The basic assump-
tion of this method is that any point on the ROC curve of the current stage can be

reproduced by the ROC curves of later stages, perhaps at the cost of using more com-

96 CHAPTER 4. BOOSTING CASCADE DETECTORS

plex classifiers. The operating point is selected according to the ROC curve of the

validation set.

1 - False Rejection Rate

20 weak classifiers
40 weak classifiers
60 weak classifiers

0.4 0.6 0.8 1
False Acceptance Rate

Figure 4.8: The ROC curve of the strong classifier is pushed upwards as more weak
classifiers are added.

Cascade indifference curve
Recall =0.9""

° 0.98 —-oommme e FAR =0.0001""°,m <1
T
14
097
K]
8
E 0.96 —f- A
@
W 0,95 Foooo e
LI- \
B A —
\
Cascade indifference curve
0.93 Recall =0.9", [
FAR =0.0001"" 1< m <20
0.92 : : : : !
0 0.2 0.4 0.6 0.8 1

False Acceptance Rate

Figure 4.9: The cascade indifference curve and the regions for operating point selec-
tion.

4.3. OPERATING POINT SELECTION FOR DETECTOR EFFICIENCY 97

4.3.1 Fixed rule

The simplest rule for allocating the {(a;, b;)} is to set equal values for all stages, i.e.
a; = A", and b; = B'/". (4.51)

Then in each stage we keep adding weak classifiers to the Boosting strong classifier,
until the ROC curve reaches or moves above the point (a;, b;), i.e. any point of the
ROC curve is in region A in Fig. 4.9. A critical limitation of this method is, if the
target recall a; is very high, e.g. A = 0.90, n = 20 and a; = 0.90"/%° = 99.5%, and
if the training set contains a small number of very difficult positive instances, which
could be due to labeling noise, then the classifier will desperately add weak classifiers
to correctly classify these outliers, though the performance on the validation set may
not increase much, i.e. the classifier overfits to the training data and fails to produce the
desired generalization performance. On the other hand, if the validation set contains
a small number of hard positives, the classifier will never be able to correctly classify
these noisy positive instances since it is optimized only for the training set. Therefore
the objective (a;, b;) may never be reached. To alleviate this problem, and also to
improve the efficiency of the detector, the following two methods are proposed in

[83], both using more flexible criterion for selecting the operating point.

4.3.2 One-point planning

Rather than using a fixed performance requirement (Al/ n BY ") for all stages, the de-
tector performance can be equally achieved by stacking < n stages with performance
(Am/m B™/"), where 1 < m < n. The parameterized curve {(a™,b™)} with m as the
controlling parameter is called the cascade indifference curve, as shown in Fig. 4.9.
Fixing the value of b, a number of curves can be generated by varying a. Therefore
instead of using the fixed rule, we check if the ROC curve is above part of the cascade
indifference curve {(A™/™ B™") 1 <m < n}, i.e. any point of the ROC curve is
in region A or B in Fig. 4.9. Then by repeating any of such points for n/m times,
the detector goal can be reached. It is highly possible that some point in B can be
reached before any point in A is reached. For example, the training data contains a
small number of very hard positive instances, such that it is difficult to reach a high
recall AY/™ at a moderate FAR B'/", but it is much easier to reach a lower recall A™/"

and a much lower FAR B™/™. Therefore fewer weak classifiers are required to reach

98 CHAPTER 4. BOOSTING CASCADE DETECTORS

(Am/m B™/") than that needed to reach (A", BY/"), while apparently (A™/™, B™/")
may also reduce the number of stages needed to reach (A, B), since m > 1.

If there are multiple points in the region A | JB, we may select the point that has
the lowest false acceptance rate (i.e. corresponding to a larger m), to minimize the
number of windows passed to the next stage, or conversely, select the point that has
highest recall (i.e. corresponding to a smaller m). These two choices correspond to the
two intersections of the ROC curve with the boundary of region A and B. While the
former choice results in a quite efficient detector by radically rejecting many negative
windows in the early stages and possibly using fewer stages, the later is a conservative
choice to postpone the rejections to the later stages. We may also select the point on
the highest cascade indifference curve to optimize both recall and FAR, i.e. solve for

m and A* in the following problem:

Q= Axm/n A* — Blogay/log By
(4.52)

By, = B™/n m = nlog By /log B

and accept the point with largest value of A*. By this choice we may optimize the

recall rate for a fixed FAR rate in the final detector, or vice versa.

4.3.3 Two-point planning

It is possible that the ROC curve of the current stage does not contain any point above
the cascade indifference curve {(Am/ n B™ ”) , 1 <m < n} i.e. there does not exist
any single point on the ROC curve such that the full detector performance (A, B)
can be achieved by repeating this point for < n stages. Instead, the full detector
performance can be achieved by repeating a number of points on the ROC curve for a

total of < n stages. Denote the set of points on the ROC curve of the current stage as:

(a1a61)7'“ 7(04K7BK)' (453)

Then we want to find a number of points from { (a4, 5x)} such that by repeating each
point x;, times, and the sum of repetitions does not exceed the required number of

stages n, the desired detector performance (A, B) can be achieved, i.e. the optimal

4.3. OPERATING POINT SELECTION FOR DETECTOR EFFICIENCY 99

value of the following problem is larger than A:

K
max [] ap*
X k=1

K K
st [[B <B, > x, <n,
k=1 k=1

Tk ZO,k: 1,...,K.

(4.54)

By taking logarithm of the objective and the constraints, the problem is equivalent to:

K

max . xlogag
X k=1

K K
st Y xplog B <logB, > x, <n, (4.55)

k=1 k=1
Tk Z O,k’ = 1, ,K

Problem (4.55) is a linear programming problem with K variables and K +2 inequality
constraints. If the solution exists, the solution must lies on a vertex of the feasible
region. Therefore K of the inequality constraints must be tight, and at most two values
in {x}} are non-zero. Furthermore, if the optimal value > A, then the full performance
(A, B) can be achieved by repeating these two operating points. Therefore we can stop
adding weak classifiers. Among these two points, we may select the one with smaller
Bk such that the number of windows passed to the next stage is minimized, and the
detector efficiency is maximized. As in the illustration 4.9, the two-point selection
method may use point from any region.

The problem (4.54) is formulated such that we achieve the FAR goal while max-
imizing the recall, and conversely we can formulate a problem to minimize the FAR
while achieving the recall as in (4.56). The solution of the two problems are different,
and which formulation to use depends on what is more important for the detector, the

precision or the recall.

K
min] 7
x k}:{l K
4.56
I (4.56)

X
al > A > <,
k=1 k=1

Tk ZO,]{?: 1,...,K.

S.t.

100 CHAPTER 4. BOOSTING CASCADE DETECTORS

4.3.4 Non-attainable goal with maximum number of

weak classifiers

For all the methods above, a maximum number of allowed weak classifiers should
be specified for each stage. If no operating point(s) on the ROC curve satisfies the
fixed-rule, one-point or two-point planning goal when the maximum number of weak
classifiers are selected, we need an alternative strategy to select a threshold for the
stage. The selected threshold must sacrifice the false acceptance rate, the recall rate,
or both. For example, if we want to achieve the desired false acceptance rate B, and
allow some missed detections, then the alternative strategy for the three methods are

as follows:

e For fixed rule, among the points that satisfy the FAR requirement { Br < BY/n } ,

select the point with maximum recall ay.
e For one-point planning, solve (4.52) for m and A*, and accept the (o, %) that

maximizes A* while m > 1, i.e.:

arg max log ay/log By, s.t. nlog By /log B > 1. 4.57)

e For two-point planning, select the point with smaller 3, even though the optimal

value of (4.54) or (4.56) cannot reach the overall requirement.

Similarly, a reversed strategy can be employed such that we achieve the recall rate A,
and allow more false positives than B. Then, before selecting the operation point for

the next stage, the detector goal for the remaining stages should be updated as follows:
A<« Ala;,B <+ B/a;,andn +n — 1. (4.58)

Then the operation point of the next stage is selected as if we are learning a cascade

with n — 1 stages, and with the updated performance goal (4.58).

4.3.5 Evaluation

First we show an intuitive example of how the various methods select the operating
point in Fig. 4.10a. The classifier is trained as the first stage in a cascade with 15
stages, and the overall objective is FAR = 0.0001 and Recall = 0.9. The cascade

indifference curve and the admissible region for fixed-rule planning are also displayed.

4.3. OPERATING POINT SELECTION FOR DETECTOR EFFICIENCY 101

Stage Fixed Rule One-Point Two-Point
#WC | Win Ratio #WC | Win Ratio #WC | Win Ratio

1 8 1.00 6 1.00 7 1.00

2 12 0.469 11 0.407 8 0.484

3 12 0.254 20 0.207 13 0.251

4 21 0.138 18 0.108 18 8.84 x 1072

5 33 7.00 x 1072 | 26 5.88x 1072 | 23 4.57 x 1072

6 40 3.83 x 1072 | 50 2.51 x 1072 | 42 2.57 x 1072

7 57 2.08 x 1072 | 50 1.34 x 1072 | 40 9.93 x 1073

8 56 1.14 x 1072 | 68 7.18 x 1073 | 69 4.37 x 1073

9 95 6.07 x 1073 | 67 3.80 x 1073 | 54 2.18 x 1073

10 89 3.37x 1073 | 110 | 1.87 x 1073 | 103 1.36 x 1073

11 128 1.87 x 1073 [114 | 1.07x 1072|200 | 5.01 x 1074

12 89 1.04 x 1073 [123 | 6.41 x 107* | 200 | 3.81 x 1074

13 177 | 5.69x107%| 118 [3.91 x107*]200 | 294 x 10~

14 200 [3.18x107* 195 |247x107* 200 | 2.19x 1074

15 200 1.78 x 1074 [200 | 1.55 x 107* | 200 | 1.56 x 10~

Table 4.1: Comparison of the number of weak classifiers and ratio of windows pro-
cessed by each stage.

The fixed-rule selects from points that satisfy a;, > 0.993 and 5, < 0.541. The ac-
tual selected point by the fixed-rule method is illustrated as a black square, achieving
ar = 0.994 and B, = 0.524. Using one-point planning, any point on or above the
cascade indifferent curve can be selected, and our implemented method select the one
with minimum FAR, shown as red dot in the figure, with o, = 0.990 and 55, = 0.428.
Using the two-point planning method that optimizes problem (4.54), the selected point
is shown as the green dot with purple boundary, which is below the cascade indiffer-
ence curve, with o, = 0.0.989 and 8, = 0.0.371. The two-point planning problem
(4.54) selects two points in the solution, and the other point is shown as the green dot
on the top right. We can see that the one-point and two-point planning improves the
detector efficiency by rejecting more negative instances than the fixed-rule method, at
the expense of rejecting more true positives. The full detector performance is guaran-
teed by the assumption of repeatability, i.e. any point on the current ROC curve can
be reproduced by ROC curves of later stages. In addition, the one-point and two-point
planning may further improve the detector efficiency by using fewer weak classifiers,
as they make use of a larger set of points from the ROC curve.

The number of weak classifiers and portion of windows processed by each stage
are listed in Table 4.1 for the fixed rule, one-point planning, and two-point planning

methods. Each stage is limited to use a maximum of 200 weak classifiers. The recall

102 CHAPTER 4. BOOSTING CASCADE DETECTORS

] : 30
_—— I Fixed Rule
0;;; [""] One-Point Planning
LI g - B e I Two-Point Planni
Another point with non-zero 25 Wo-oint *anning
X, in the two-point problem.
(YT R ‘
2 i 3
& | Fixed rule: FAR=0.524, Recall=0.994 | § 20-
T 0.97 oo foenenree S [L °
S : 2
3 [one-point: FAR=0.428, Recall=0.990 | g
z 0.96 : E 15
14 (&)
© / f([Two-Point: FAR=0.371, Recall=0.989 | =
12} -
T 095 13 g
s r,‘ F g 10-
' —]
0.94 d ROC curve of the classifier
/ 5 B
0.93 /
O 92 L L L Il 0
0 0.2 0.4 0.6 0.8 1 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
False Acceptance Rate Stage
(@) (b)
1 — T 0.8
I Fixed Rule I Fixed Rule
[C"""] One-Point Planning 0.75|] One-Point Planning
I Two-Point Planning I Two-Point Planning
0.995- 1| | , 07-
0.65 -
2
&
o 0.99 - 9 0.6-
i E 0.55
= S 0.55-
8]
Q Q
& 0.985- < 05-
@
£
0.45 -
0.98 - B 0.4- |7
0.35-
0.975 — L0 LI | L UN | BiE]E EEE BN . 0.3 L] BUEUE A
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 3 4 5 6 7 8 9 10 11 12 13 14 15
Stage Stage
(© (d)

Figure 4.10: (a) An example of the three operating point selection methods. (b) Ex-
pected cumulative costs (number of weak classifiers) of evaluating a window for each
planning method. (c) The recall rates. (d) The False Acceptance Rates.

rate and false acceptance rate of each stage are shown in Fig. 4.10c and 4.10d. The
expected cost up to each stage is shown in Fig. 4.10b. We can see both one-point
planning and two-point planning produces more efficient detectors than the fixed rule
method. The benefit comes from both the smaller number of weak classifiers used,
and the quick elimination of negative windows in the early stages. We also find that
the fixed rule method fails to reach the Recall/FAR objective for the last two stages,
reducing the overall recall by about 1%, while the violation is much smaller for the
one-point planning and two-point planning, only reducing the overall recall by 0.5%
and 0.3%, respectively. Furthermore, it can be observed that the two-point planning
method reduces the recall very much in the early stages, such that the later stages

need very high recall rate in order to achieve the overall recall. Therefore the last few

4.4. INFORMATION RECYCLING IN CASCADE 103

0.14

I Positive set
012l I Negative set |
0.1F
2 008/
£
©
e
£ .08l -
0.04 + -
0.02+ | _
0
2.5 -1.25 0 1.25 2.5 3.75

Strong classifier score

Figure 4.11: Distribution of the scores of the training set for stage 10 of a cascade
detector using the classifier of stage 9.

stages of the cascade reach the limit of maximum weak classifier number, and also
have relatively high false acceptance rates. But since only a very small portion of
windows (~ 0.05%) need to be processed by the later stages, the detector’s efficiency

is not impaired.

4.4 Information recycling in cascade

In a cascade detector, it is usually believed that the earlier stages of a cascade contain
valuable information for the classification task of the later stages. For example, as
shown in Fig. 4.11, it can be clearly observed that the negative training instances
for the new stage, which are collected from false positives of the previous stage, also
have a much lower average score than the positive instances, when evaluated by the
classifier of the previous stage. The reason is that the operation point of the previous
stage is chosen for a high detection rate (e.g. 0.99) and a moderate false positive
rate (e.g. 0.5). The classification task of the current stage could be much easier if
the information from the previous stages can be re-used. For the Boosting cascade
detector, recycling the information may lead to fewer new weak classifiers or fewer
new features in the new stage, thus improving the detector efficiency.

Let Fy () = > wy;fi; () be the strong classifier for the ¢-th stage, and each
weak classifier f; ; (x) uses a feature x, ;. The information from the previous cascade

stage can be exploited in several ways:

104 CHAPTER 4. BOOSTING CASCADE DETECTORS

Strong classifier chaining We may treat the previous stage strong classifier score as
the starting point of the strong classifier, and continue training by adding more weak
classifiers to the Boosting strong classifier as in [72, 73, 74, 75]. Then the strong

classifier for the new stage is:

Fipr (x) = Fy (@) + Y wierjfony (@). (4.59)
J

A problem with this approach is, for many training instances, the previous strong clas-
sifier already incur a large margin yF; (x). Therefore in the AdaBoost scheme, their
weights exp (—yF; (x)) will be very small, and the training process is dominated by a
few very hard instances, which could impair the generalization performance. In this

sense, this strategy entirely inherits the bias of the training set of the previous stage.

Strong classifier nesting The second method is to treat F; (z) as a feature, and train
the first weak classifier using this feature, as in [111]. The strong classifier for the new
stage is:

Fiar (z) = f(F (@) +) wignjifesn s (2). (4.60)

Compared with strong classifier chaining, less bias is introduced in the first weak clas-
sifier. However, the information from the previous stages has not been fully exploited,

since the weak classifier is usually limited to a simple form, e.g. a decision stump.

Weak classifier recycling by totally-corrective Boosting The totally-corrective Boost-
ing algorithm can be applied to reuse the weak classifiers, e.g. in [112]. The previous
weak classifiers are considered to be already included in the strong classifier of the new
stage, but their weights are decided by solving the totally-corrective Boosting problem
on the new dataset. Then new weak classifiers are introduced for the new stage in the

usual manner. The strong classifier for the new stage classifier has the following form:

Nt+Nnew

Fra(x)= Y wejfe (@), (4.61)
j=1

where the new strong classifier contains all the NV; weak classifiers from the previous
stages, and the V., weak classifiers added in the new stage. If the L-1 regularized
totally-corrective Boosting is employed, the solution will select only a subset of the
N, old weak classifiers, while the rest are assigned with weight 0, indicating that they

are less relevant to the new problem. By assigning a new set of weights to the previous

4.4. INFORMATION RECYCLING IN CASCADE 105

weak classifiers, the bias due to the previous training set can be effectively reduced.

Feature recycling We can consider re-using the features {z; ; } extracted by the pre-
vious strong classifier, while discarding all other information, i.e. the weak classifiers’
weights {w; ;} and the parameter of the weak classifiers { f; ; (x)} (e.g. threshold and
polarity for a decision stump). This method introduces least bias from the previous
training dataset, but also incurs the most overhead in exploiting the existing informa-
tion. However, to the best of our knowledge, no work has been performed for feature
recycling in the literature.

In this section, we introduce a biased selection strategy for recycling the informa-
tion from the previous stages of the Boosting cascade detector. The strategy can be
applied for recycling both the weak classifiers and the features. Only those weak clas-
sifiers/features helpful for the new classification problem are re-used, while those less

relevant ones will not be included in the new stage.

4.4.1 Biased selection strategy for weak classifier recy-
cling

We first introduce a biased weak classifier selection strategy for recycling the weak
classifiers, using the stage-wise additive regression formulation rather than the totally-
corrective formulation. As shown in the previous sections, selecting a fixed number of
weak classifiers, the totally-corrective formulation achieves lower risk on the training
data than the non-totally-corrective way. But if sufficiently many weak classifiers are

selected, the generalization performance is similar between the two methods.
Let Frecycle = {f}N

recycle

detector up to the current point, and F,; = {f} Nuu be the set of all the weak clas-

be the set of weak classifiers already included in the

sifiers. Then F,.yqe 18 the set of weak classifiers that can be recycled, and Fiper =
Fair — Frecycie 18 the set of weak classifiers not included in the current detector, i.e.
those that if selected as the next weak classifier would increase the complexity of the
detector. Note that each feature and each parameterization of the weak classifier is
counted as a unique weak classifier. For example, obviously two decision stumps us-
ing different features are two different weak classifiers. Furthermore, two decision
stumps using the same feature, but with different thresholds are also counted as two
different weak classifiers. Then in each Boosting round, we need to decide if we
should recycle an existing weak classifier in F,.cyce, Or introduce a new one from

Fotner. For this purpose, we find the best weak classifier frecycie pest i Frecyele and the

106 CHAPTER 4. BOOSTING CASCADE DETECTORS

best weak classifier foiner pest N Forner, and see how much improvement can be made
by including either as the selected weak classifier for this Boosting round. For Dis-
crete AdaBoost, we calculate the weight wyccycie pest ANd Worner pest fOr the new weak
classifier, and evaluate the new empirical exponential loss. Denote the reduction in the
empirical 10ss as dyecycie pest AN dother pest, T€Spectively. If we find that dogper pest 18 nOt
signifcantly better than d,ccycie pest> €-8. dother,best — Arecyciepest < A, we decide that the
additional complexity introduced by a new weak classifier is not worthy, and recycling
an existing one may be a better choice. Otherwise, the best new weak classifier from

Fotner 18 used. The algorithm is summarized in Algorithm 3.

Algorithm 3 Train Boosting cascade stage with weak classifier recycling

Initialization: F,ccycie and Foper, the strong classifier F' = 0.
for k=1to K do
Find the best weak classifier frecycie,pest aNd forher pest Trom Freeyere and Fopper,
respectively.
Decide the weights for frecycie best and fother pest, and measure the improvement in
the loss function:
dother,best =L (F) —L (F + wother,bestfother,best)
drecycle,best =1L (F> — L (F + wrecycle,bestfrecycle,best)
if dother,best - drecycle,best >)\ then
Select the new weak classifier foper pest into the strong classifier:
F (X) — F (X) + wother,bestfother,best (X)
«/T_‘recycle — «Frecycle U {fother,best}

Fother — Fother\ {fother,best}
else

Update the weight of the existing weak classifier frceyciepest DY Wrecyclepest:
F (X) +— F (X) + wrecycle,bestfrecycle,best (X) .
end if
end for
return 7, recycles F others and F'.

If a fixed threshold A is used in Algorithm 3, the algorithm can be interpreted as an

approximate solution of the following problem:
min J (F, Frecyere) = L (F) + ACard (Freeyete) (4.62)

where J is the regularized loss function, composed by the empirical loss L, and penalty
on the number of unique weak classifiers used in the detector. F' is the strong classifier
of the current stage, F .y 15 the set of weak classifiers used in the detector, including
both weak classifiers used the previous stages and weak classifiers that only appear in

the new stage. Card (Fecyee) counts the number of unique weak classifiers used in

4.4. INFORMATION RECYCLING IN CASCADE 107

the detector. Algorithm 3 solves this problem by adding one weak classifier each time.
A new weak classifier is added if only it provides sufficient advantage over adjusting
the weight of a existing weak classifier, i.e. dother pest — Qrecycie,pest > A

Notice that since we do the update Fccycie <= Freeycte |J { frest} When a new weak
classifier is added, the algorithm not only encourages reusing weak classifiers in the
previous stages, but also encourages reusing weak classifiers selected in the earlier
Boosting iterations of the current stage. Furthermore, we treat weak classifiers whose
output values differ only by a constant value or a constant factor as the same weak
classifier. For example, if two decision stumps uses the same feature and threshold,
but differ in polarity, or two regression stumps differ only in the output value, they
will be treated as one weak classifier. Therefore Algorithm 3 allows decreasing of
weak classifier weights. The effect would be similar to the totally-corrective Boosting,
in which all the selected weak classifiers’ weights are adjusted in each iteration. By
contrast, our algorithm adjust only one weak classifiers’ weight in each iteration, by all
the selected weak classifiers’ weights can be adjusted in each iteration. Our algorithm
is less radical in minimizing the empirical loss, such that new weak classifiers can
be introduced before the weights of the existing weak classifiers are adjusted to the
optimum of the totally-corrective Boosting problem (3.7).

In Algorithm 3, the parameter A controls the behavior of feature recycling. Large
value for A\ encourages feature recycling, since a new weak classifier will be selected
only when it has a significant competitive edge over an existing weak classifier. Con-
versely, small value for A emphasizes reducing the loss L (F"). For AdaBoost training,
the exponential loss function is used, and the empirical loss converges in exponen-
tial speed. Therefore the room for improvement decreases with more weak classi-
fiers selected. If a fixed A is used, no new weak classifiers will be introduced in
the later Boosting iterations, since max (dother pest, Arecyciepest) < A. To deal with
this issue, we use an adaptive A\ during the training process. In particular, we set
A = XN max (dother best; Arecycie,pest). The parameter * controls the introduction of new
weak classifiers in a similar way as the parameter A in the totally-corrective Boosting
problem (3.7). However, working in a stage-wise additive manner, we may control *
more freely than the previous totally-corrective Boosting method.

The proposed weak classifier recycling scheme has a potential drawback in that the
sum of weak classifier weights may goes unbounded since it lacks any mechanism for
constraining the weak classifier weights. Therefore it is possible that Algorithm 3 has
many recycling steps, and the sum of weak classifier weights will be large while only

a small number of unique weak classifiers are used, which may causes overfit to the

108 CHAPTER 4. BOOSTING CASCADE DETECTORS

training data. By contrast, the ordinary AdaBoost constrains the sum of weak classifier
weights by selecting a finite number of weak classifiers, and the totally-corrective Ad-
aBoost explicitly introduces the L-1/L-2 regularization. We introduce two approaches
to alleviate this problem. First, with the stage-wise additive scheme which is not
totally-corrective, we apply a shrinking procedure if a weak classifier already used
in the current strong classifier is recycled. After the weak classifier is recycled and its
weight in the strong classifier is adjusted, we normalize the weak classifier weights w
such that its L-1 norm is not changed before and after the recycling step. Second, we
solve the totally-corrective Boosting with the selected the weak classifiers. Notice that
when using the second approach for recycling weak classifiers from previous stages of
the cascade, the recycled weak classifiers are introduced one by one, using the biased
selection strategy, while the existing totally-corrective Boosting approach for weak
classifier recycling introduces all the weak classifiers in the beginning, and relies on
the sparsity-inducing L-1 norm regularization to decide which are relevant and should

be have non-zero weights.

4.4.2 Biased selection strategy for feature recycling

A similar method can be applied for recycling features instead of weak classifiers, such
that we reuse the previously extracted features, but the weak classifiers are adjusted to
better fit the new training data.

Let Xyecyete = {2}y . be the set of features included in the detector up to the

recycle

current stage. Let Frecyere = {f (2)} be the set of weak classifiers only using

J76-){745(:1;cle

features from X,.c.yq.. We also denote oy = {f} v, be the set of all weak classifiers,

and Foiper = Fau — Freeyele be the set of weak classifier not using existing features.
The algorithm is similar to Algorithm 3, such that we select foiper pest if it has a

significant advantage over selecting f,ccycie vest» decided by the following criterion:

dother,best - drecycle,best > A

For a fixed threshold), the algorithm approximately solves the following problem:
min J (F, Xrecyere) = L (F) + ACard (Xrecyeie) (4.63)

If we consider weak classifiers using a particular feature as a group of weak classi-
fiers, the regularization term C'ard (chycle) penalizes for the number of groups used

in the detector. Therefore the algorithm does not penalize for multiple weak classifiers

4.4. INFORMATION RECYCLING IN CASCADE 109

using the same feature. Essentially multiple weak classifiers using a particular feature
can be interpreted as a more weak classifier, e.g. several decision stumps together can

be taken as a decision tree, as illustrated in Fig. 4.12.

4.4.3 Experimental Evaluation

First, we demonstrate the biased selection recycling scheme, but without any a pri-
ori weak classifiers from the earlier stages. Therefore the Boosting process tries to
recycle weak classifiers selected in the earlier Boosting iterations. The ordinary Ad-
aBoost, totally-corrective AdaBoost, and AdaBoost with weak classifier recycling are
compared. The decision stumps are used as weak classifiers. For the totally-corrective
AdaBoost, the parameter)\ is selected by cross-validation, and the optimal value is

A = 0.1. For the biased selection strategy for recycling weak classifiers, shrinking of

Wi

=

Figure 4.12: Reusing a feature in multiple weak classifiers is equivalent to using a
complex weak classifiers with this feature.

Ordinary Discrete AdaBoost|.
— Recycle) =0.3 - 0.9 -
— Recyclek'=0.2 . 0.98

X Recycle };=0.1

Exponential loss

Ordinary Discrete AdaBoost
= TC-AdaBoost

Biased selection strategy, x’=o.2 I

0 20 40 60 80 100 . . i . i
#of selected weak classifiers o 0.2 0.4 0.6 0.8 1

False Acceptance Rate

(a) (b)

Figure 4.13: (a) Convergence of exponential loss using the weak classifier recycling
methods. (b) Comparison of ROC curves of ordinary AdaBoost, totally-corrective
AdaBoost, and ordinary AdaBoost with weak classifier recycling.

110 CHAPTER 4. BOOSTING CASCADE DETECTORS

140

}:=0.3, # of new
120 -| ===~ 2'=0.3, # of recycled
%'=0.2, # of new
100 -| ===~ 2'=0.2, # of recycled
2'=0.1, #of new
80 - ==== }L':O.1 , # of recycled

Number of New/Reclcled Weak Classifiers

0 50 100 150 200
Boosting iteration

Figure 4.14: Number of new weak classifiers and recycled weak classifiers during the
Boosting learning process for various .

weak classifier weights is performed, and we show the results for A* = 0.1,0.2,0.3.
The convergence of exponential loss for ordinary AdaBoost and recycling with the
biased selection strategy are shown in Fig. 4.13a. It is observe that a large * leads
to a lower value of the exponential loss, since the weak-classifier recycling proce-
dure fine-tunes the weak classifier weights. On the other hand, a small * leads to a
similar performance to that of the ordinary AdaBoost, indicating that weak-classifier
recycling happens more rarely. Also notice that we train the strong classifier for at
most 200 Boosting iterations, and less than 80 unique weak classifiers are obtained for
A* = 0.3, since many Boosting iterations are spent in refining the weights of existing
weak classifiers. The ROC curves on the test data are shown in Fig. 4.13b for using
50 weak classifiers. For the biased selection strategy, we show the result for A* = 0.2,
since 0.3 seems to overfit on the training data. We can see the step-wise recycling
results in a significantly improvement over the ordinary AdaBoost, and is compara-
ble to the TC-AdaBoost. Notice that the TC-AdaBoost solves for the optimal weak
classifiers” weights exactly. The number of new weak classifiers and recycled weak
classifiers are shown in Fig. 4.14 with respect to the number of Boosting iterations.
Notice that, when using weak-classifier recycling, we need more than /N Boosting it-
erations for selecting N unique weak classifiers, since some iterations will adjust the
weight of an existing weak classifier rather than introducing a new one. We can see
that most recycling steps happen in the later Boosting iterations, implying that a num-
ber of diverse weak classifiers will be selected in the early iterations, and then their

weights are refined in the later iterations.

4.4. INFORMATION RECYCLING IN CASCADE 111

We also test the biased selection scheme for feature recycling, which still recycles
only features selected in the earlier Boosting iterations. Decision stumps are used as
the weak classifiers, and the ROC curves of using 50 features are shown in Fig. 4.15,
for A* = 0.1,0.2,0.4,0.6. The actual numbers of weak classifiers used are 58, 95,
189, and 344, respectively. All settings significantly improve over those that do not
use feature recycling. The distribution of the frequency that a feature is used is shown
in Fig. 4.16. As expected, large * causes more features to be recycled more often.
Since several stumps using a particular feature can be combined as a tree, the feature
recycling essentially allows the use of more complex weak classifiers (e.g. multi-
node trees rather than stumps) for those informative features, while using simple weak
classifiers for those less informative features, rather than fixing the weak-classifier

structure for all features.

No recycling[~
A=06 |
% =04
% =02
w=01 F

| - raise ejecuon xawe

0.8 1

False Acceptance Rate

Figure 4.15: ROC curves of the Boosting classifier trained with feature recycling,
selecting up to 50 features.

To compare the performance of various information-recycling cascades, we train
a fully functional Boosting cascade detector with information recycling. We compare
between three different methods. First, the strong classifiers’ scores are directly-reused
(SL-Rec), treating them as the first weak classifier in the next stage. Second, all ex-
isting weak classifiers are introduced in training the new stage in the beginning, using
L-1 regularized totally-corrective AdaBoost. We call this method Batch-Rec since it
recycles all weak classifiers in a batch operation. Third, the biased selection strategy
is employed such that an existing weak classifier f,ccycie best 1S recycled only when it is
better than the best new weak classifier fyper pest, and then we solve a L-2 regularized

totally-corrective AdaBoost to decide the weak classifiers’ weights. This method is

112 CHAPTER 4. BOOSTING CASCADE DETECTORS

45 45

- 35 - -

- 30 - -

25 - -

of features
of features

1 2 3 4
Frequency of being recycled Frequency of being recycled
(a) (b)
45 45
40- - 40- -
35- - 35- -
30 - - 30 - -
8 8
5 25- - 5 25- -
© ®
L L
5 20- - 5 20- -
* *
15 - 15 -
10 - - 10 -
5- - 5- -
0 0
12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 10 11 12 13 14 15
Frequency of being recycled Frequency of being recycled
() (d)

Figure 4.16: Frequency of feature recycling for selecting up to 50 features for (a)
A*=0.1;(b) * =0.2; (c) * = 0.4; (d) * = 0.6.

referred to as BS-Rec in the following. Notice that, in comparison with L-1 regular-
ization, L-2 regularization does not result in sparse solutions. Instead, we selectively
recycle a subset of the existing weak classifiers by the step-wise biased selection cri-
terion. An analysis of the resulting detectors is shown in Fig. 4.17. The number of
new weak classifiers introduced in each stage is shown in Fig. 4.17a. We can see the
two weak-classifier recycling methods result in much fewer new weak classifiers than
the strong-classifier recycling method does, especially in the later stages, which is due
to the face that the weak classifiers’ weights are not adapted to the new training data
for the SL-Rec method. The step-wise approach (BS-Rec) further reduces the num-
ber of new weak classifiers as compared to Batch-Rec. Furthermore, as shown in Fig.

4.17c, BS-Rec recycles fewer weak classifiers than Batch-Rec. Both results indicate

4.4. INFORMATION RECYCLING IN CASCADE 113

250

W
=3
S

I No Recycling T T T Ty I No Recycling
[sL-Rec [_IBatch-Rec
[_IBatch-Rec £ 50| I BS-Rec _
200 | [N BS-Rec - £
14 7]
2 ©
= o
E - § 200 -
o - -
% 150 i
3 g
= £ 150 -
3 f
5 100 - - é
o] w 100 - -
£ %
@
“ s0- - €
| | o | | 7
0 o—im I m I I |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 3 4 5 6 7 8 9 10 11 12 13 14 15
Cascade Stage Cascade Stage
(a) (b)
200 T T T T T T T T T T T 30
[_IBatch-Rec - I No Recycling
1g0| I BS-Rec - [CTsLRec
25 [_IBatch-Rec _
160 - i - I BS-Rec

140 - -

120- -

100 -

©

0 -

Oﬂ.mlﬂﬂ“ || |) 7

Expected Cumulative Cost

=)
=}
0

Number of Recycled Weak Classifiers

I
S

N
S

0 L i
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 3 4 5 6 7 8 9 10 11 12 13 14 15
Cascade Stage Cascade Stage
(© (d)

Figure 4.17: Train a cascade detector with information recycling. (a) Number of new
weak classifiers added in each stage; (b) Number of effective weak classifiers used in
each stage; (c) Number of recycled weak classifiers in each stage; (d) Expected cost of
evaluating the detector up to each stage.

that it can be counter-productive to include all existing weak classifiers in the begin-
ning, while the step-wise approach alleviates this problem. The number of effective
weak classifiers, i.e. both new weak classifiers and recycled weak classifiers, for each
stage are shown in Fig. 4.17b. As expected, no recycling results in the least number
of effective weak classifiers, Since frecycie,pest are almost always inferior to foiner pest
in terms of reduction of the empirical loss L (F'). Consequently, we need more re-
cycled weak classifiers to achieve the same performance level than using only new
trained weak classifiers. The detector efficiency for various methods, measured by the
expected number of weak classifiers evaluated for a window during sliding window

detection, is shown in Fig. 4.17d. From the results, we can observe a clear efficiency

114 CHAPTER 4. BOOSTING CASCADE DETECTORS

improvement using the BS-Rec method.

4.4.4 Conclusions and future works

We have proposed a method for effectively exploiting the available information in
training a Boosting cascade visual object detector. By biasing our preference of weak
classifiers towards those that reuses available information, e.g. the weak classifiers
that are already included in the detector and the features that are already extracted, our
method strikes a balance between the complexity of the detector and the reduction of
training objective function. Our method assigns a new set of weights for those recycled
weak classifiers, as done by the totally-corrective Boosting method. But rather than di-
rectly incorporating all previous weak classifiers into the problem, our method reuses
an existing weak classifier only when it is advantageous, and better performance is
observed in practice. The proposed biased selection strategy naturally extends to recy-
cling features, and provides an adaptive control of the complexity of weak classifiers,
such that for a highly informative feature, a powerful weak classifier can be obtained
by merging several ordinary weak classifiers. We believe our method is a meaningful
extension to the currently popular Boosting cascade visual object detectors. Further
research would involve better recycling criterion, and a in-depth analysis of optimizing

the detector efficiency.

Chapter 5 Kernel methods and the sim-

ilarity features

Kernel methods are powerful techniques for solving difficult learning problems, for
example, classification with non-linear decision boundaries. By mapping the original
features to an implicit feature space ® in which the inner product is defined via a
kernel function k, linear classifiers in ¢ can capture non-linear separating boundaries
in the original feature space. In this chapter we discuss the following issues for kernel
methods. In section 5.1, we give a brief introduction of the rationale behind the kernel
trick, along with two kernel methods, i.e. kernel SVM and kernel PCA. Methods for
improving the efficiency of the kernel SVM are discussed in section 5.2. The efficiency
of evaluating a classifier is essential for time-demanding applications such as visual
object detection. Lastly, inspired by the kernels as similarity metrics, we introduce
the multi-kernel, multi-instance similarity feature for visual object detection in section
5.3.

5.1 The kernel trick

The kernel trick assumes there is a feature mapping ¢ (x) : X — @, and a kernel
function k (x;,x;), such that the inner product in the feature space @ is equal to the

kernel function:
k(xi,x5) = o(x:)" ¢ (x;) . (5.1)

We are going to learn a linear model in the feature space ®: f(x) = w! ¢ (x).
By some manipulation, only the inner product of the training instances gb(xz-)Tgb (x5)
appears in the learning problem, and the solution is in the subspace spanned by the

.. . . M .
training instances, i.e. w = »_._, ;¢ (x;). The linear model becomes:

M M
Fx)=wo(x) =) ao(x) o (x) = aik(x;,x). (5.2)
i=1 i=1
The set of instances {Xy, ..., X, } used in the model are called the basis vectors through-

115

116 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

out this chapter. Then only the kernel k (x;,x;) = ¢(x;)" ¢ (x;) needs to be provided,
while the feature mapping ¢ (x) does not need to be explicitly known. Furthermore,
¢ (x) can be a very high dimensional vector, such that directly learning with the fea-
ture space ® is impractical. Then the learning problem solves for the parameters {; }

instead of w.

5.1.1 Kernel SVM

Dropping the bias term in the linear scoring function, the SVM learning problem in

the feature space @ is:

M
min sw/w+C Y &
w,€ i=1

s.L. inT¢ (XZ) Z 1- 51'7 1= 17 "'7Ma
£>0,i=1,.. M.

(5.3)

The dual problem can be written as:

M
min to’Ka — Y ya;
a Z z:zl (5.4)

S.t. 0§yzaZ§C',z:1,,M

K isa M x M matrix, and K;; = ¢ (x;)" ¢ (x;) = k (x;,x;). The primal solution w
can be obtained from the dual problem (5.4) as w = Zf‘il a;¢ (x;), and the scoring

function can be represented as:

f(x)=wle(x) = Z a;0(x;)" ¢ (x) = Z gk (x;, X). (5.5)

Hence the SVM is kernelized, such that only k (x;,x,) need to be provided, and the
dual problem is solved to obtain «x. Furthermore, as shown in section 2.2, the dual
solution c is a sparse vector such that only those on-margin and in-margin training in-
stances, 1.€. {z : yl-WTxi < 1}, will have «; # 0, which are called the support vectors,

and f (x) is fully decided by the support vectors.

5.1. THE KERNEL TRICK 117

5.1.2 Kernel PCA

Principal component analysis (PCA) finds an n-d subspace of the original feature space
with orthonormal basis B = [by, ..., b,], such that the projection in this subspace is

the best approximation of the original data:
M 2
min 3 ||x; - BB'x; — || st. BTB=1 (5.6)
i=1

Taking the derivative of the objective function with respect to c, and setting the deriva-

tive to 0, we can obtain:

1 M M
c= (Z x; — BBT Z x,-) . (5.7)
=1 =1

Substituting (5.7) into (5.6), then B can be obtained by solving the following problem:

> st. BTB=1, (5.8)

M
min Y ||%; — BB'%;
B =1

M
where X; = x; — % >~ x;. The problem is equivalent to:
i=1

n M
max Y bl (Z &ﬁ?) b;, st. BTB=1I, (5.9)
j=1 i=1

i.e. {b;} are the eigenvectors corresponding to the n largest eigenvalues of the covari-

ance matrix:

Cb; = \;b,, (5.10)
where C' is the covariance matrix:
1 < s oT I o op
C_M; & = XX (5.11)

and X = (X1, ...,Xy]. Obviously b; must lie in the subspace spanned by [X, ..., Xy],

therefore we can write b; = X o, and:

1 5 oo . 1 s

118 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

Now we turn to the feature space ¢ with feature mapping ¢ (x). Introduce the kernel
k (x;,%;) = ¢(x;)" ¢ (x;), and the centralized kernel:

k(xi,5) = <¢> (xi) - %ZMM)) <¢ (x) - %Zqﬁ(xk)) (5.13)

k=1

The PCA projection direction in the feature space can be obtained by calculating o,

as the eigenvectors of the centralized kernel matrix:

K=XTX=K—1yK — K1y + 1K1y,

R (5.14)
%Kaj = /\jaj,

where 1, is a M x M matrix, with all values equal to 1/M . Furthermore, the require-

ment that bijj = 1 transforms to:
bijj = ajTXTXaj = A]\I)\]a]T(lJ = 1, (515)

Therefore we normalize the vector c; such that its norm is 1/MA;, and M), is the
corresponding eigenvalue of K. Then projecting a test instance to the principle direc-

tion b; can be achieved by:

A M | M
¢(X)Tbj = qs(x)TXaj = Z (ajyp ~ Zam> k (x,,x). (5.16)
p=1 q=1

Compared with (5.8), the kernel PCA seeks a low dimensional subspace of the feature
space @, such that the de-meaned training instances can be closely approximated by

projections onto this subspace, i.e. solve the following problem:

M " 2
min Y ||é(x;) - Bvi| , st B'B=1., (5.17)
) =1

where ngS (x;) is the de-meaned training instance in the feature space ®, B is a matrix
whose columns are {¢ (by),...,¢ (by)}, which form an orthonormal basis of a sub-
space of the feature space @, and v; is the combination coefficients for reconstructing

¢ (x;). However, the image of the basis vectors in the original feature space, i.e. {b;},
cannot be obtained explicitly. Instead, ¢ (b;) is defined through the vector o;.

5.2. ACCELERATE THE KERNEL MACHINES 119

5.2 Accelerate the kernel machines

We consider the computational cost of evaluating the linear classifier (5.2) in the
feature space ®. If the feature mapping ¢ (x) is not provided, and only the ker-
nel k (x;,x;) is provided, the cost is usually O (M N), assuming evaluating a kernel
k (x;,x;) costs O (N), where N is the dimension of the original feature space, and M
is the number of basis vectors in the scoring function. The cost will be high if a large
number of basis vectors are used. If the feature mapping ¢ (x) is provided at little
cost, then the cost of the linear classifier is O (Dg), where Dy is the dimensionality of
the feature space ®. In this section we study how the efficiency of the kernel machine
can be improved. Three classes of methods are discussed. The first class of methods
directly considers approximating f (x) in the original feature space. We discuss the
work in [63], which applies to additive kernels that can be split into the sum over di-
mensions in the original feature space, for example, the histogram intersection kernel
and the x? kernel. The second class of methods consider finding an explicit feature
map ¢ (x), such that ¢(x;)" ¢ (x;) =~ ¢(x;)" ¢ (x;). The method in [64] is based on
the concept of kernel signature, and applies to a range of kernels called the heteroge-
neous kernels. The method in [54] is based on a technique that is closely related to
the kernel PCA in section 5.1.2, but chooses a sparse set of basis vectors to approxi-
mate the feature space ®. The third class of methods [61, 60, 62] consider to represent
f (x) using a small number of basis vectors {by, ..., bg} in the original feature space,
which may or may not be limited to the training instances. The basis set {by,...,bx}
is obtained along with solving the learning problem. For kernel SVM, the basis set is
usually much smaller than the set of support vectors, i.e. the on-margin and in-margin

training instances.

5.2.1 Approximate the scoring function

In this section we introduce the method proposed in [63], which applies to the additive
kernels. An additive kernel in /N-d feature space can be represented by the sum of

kernels over its dimensions:

k (Xi, Xj) = Z k (JTi?p, I’jJ,). (518)

120 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

Then the scoring function can also be represented by the sum of functions operating
on 1-D data:

N

Ak (X, %) =Y f (x,), and f (x) =

m=1 p=1 m=1

NE
NE

f(x)= amk (zp, Tmyp). (5.19)

Two most useful kernels in this category are the intersection kernel and the Chi-Square

kernel:
Ernter (961'7 I'j) = min (%, »’Uj))

(5.20)
k:xz (:Bi, (L’j) = xzf]/(xz + xj)

In the following we focus on the intersection kernel. The scoring function of the

intersection kernel for 1-D data is:
M
f@) =" aymin (2, 2,). (5.21)
m=1

Directly evaluating (5.21) costs O (M), since we have to compare the test instance x

with all the basis {x,, }. However, (5.21) can be represented as:
F@) =Y amm+ Y anr, (5.22)

which is a piecewise linear function of . Assume {z,, } have been sorted in ascending

order of values, and the partial sums have been calculated as:
Sem = Y_ajzjand Som = Y 0y, (5.23)
j=1 j=1

then f (x) can be evaluated using the following procedure:

e Find j = argmaxz; < z , which can be achieved in O (log M) by binary
j

search, since {z;} are sorted.
e Calculate f (z) = Sy + (Samr — Saj) .

Therefore the 1-D intersection kernel scoring function can be evaluated exactly in
O (log M), and for N-D intersection kernel the complexity is O (N log M). Further-
more, we can divide the value range of x into a number of bins with equal width, and

approximate f () in the k-th bin by a linear function f;, () = aj2+bg. The parameter

5.2. ACCELERATE THE KERNEL MACHINES 121

aj and by can be decided by least squares:

min le:k (f (2) — fu (m))de, (5.24)

ag,by

where uby and (b, are the upper bound and lower bound of the k-th bin. Then the

approximated scoring function is:
f@)=>"I(x€biny) fi (), (5.25)
k

where [(x € bing) = 1if x is in the k-th bin, 0 otherwise. By using bins with equal
width, I (z € biny) can be evaluated in O (1), therefore the N-D kernel can be evalu-
ated approximately in O (N). The piecewise approximation can be applied to any ad-
ditive kernel, and the approximation accuracy is high given sufficient number of pieces.
Functions other than linear functions can also be employed in the approximation, e.g.
polynomials or splines for better accuracy, or piecewise constant approximation for
better speed.

In the end, we note that the piecewise approximation is limited to the additive ker-
nels due to the curse of dimensionality, i.e. the number of pieces needed for good

approximation accuracy increases exponentially fast with the growth of the dimen-

sionality.
0.02 0.02
Exact
0.018 - . N N 0.018 - E?(ad) AT
Piecewise linear approximation Piecewise constant approximation
0.016 - 0.016 -
0.014 - 0.014 -
0.012 - 0.012 -
¥ o001- - ¥ 001-
0.008 - 0.008 -
0.006 - 0.006 -
0.004 - 0.004 -
0.002 - 0.002 -
0 L L L L I} 0 L L L L I}
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(a) (b)

Figure 5.1: (a) Piecewise linear approximation, and (b) Piecewise constant approxi-
mation of the scoring function using 20 pieces.

We show an example of the piecewise approximation in Fig. 5.1. The classifiers are

trained using L-1 normalized HOG features, and thus the value range of each feature

122 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

Piecewise linear

0.98 - Piecewise constant

Piecewise linear 3.5-

Piecewise constant

0.96 -

0.94 -
5 25
c 0.92- o
2 1)
=3]
o 09- 3 2
‘6 [z
© 0.88- aES 1.5-
g1
0.86 -
1-
0.84 -
082- 0.5
0'8\ L L L Il 0\
0 40 60 80 10C 0 20 40 60 80 10C
Number of pieces Number of pieces
(a) (b)
1+ 4
Piecewise linear
0.98 - Piecewise linear 3.5- Piecewise constant
0.96 - Piecewise constant
3-
0.94 -
5 25
c 0.92- o
2 1)
©]
© 09- 3 2
‘6 12}
© 0.88- aES 1.5-
g1
0.86 -
1-
0.84 -
082- 0.5
0'8\ L L L L Il 0\
0 20 40 60 80 10C 0 20 40 60 80 10C
Number of pieces Number of pieces
() (d)

Figure 5.2: Approximation quality measured by (a)(c) the correlation between the
exact functions and the approximated functions, and (b)(d) the mean square error be-
tween the exact functions and the approximated functions, for (a)(b) the intersection
kernel and (c)(d) the x? kernel.

is in [0, 1]. The quality of the approximation is measured by the correlation and mean
square error between the exact function and the approximated function evaluated in
[0,1] in Fig. 5.2 for the intersection kernel and the x? kernel. It can be seen that
the approximation accuracy can be very high using a small number of pieces. We
evaluate the linear SVM, the intersection kernel SVM, and the X2 kernel SVM on the
INRIA dataset. All methods are trained on the entire negative training set, including
millions of windows from the 1,218 negative training images. The n-slack cutting
plane algorithm is used for quickly identifying the support vectors. The Detector Error
Tradeoff (DET) curves are shown in Fig. 5.3. The horizontal axis shows the False

Positive Per Window rate as measured using all windows (tens of millions) in the

5.2. ACCELERATE THE KERNEL MACHINES 123

negative test images not containing any human. We can see both the intersection kernel
and the y? kernel improves over the linear kernel. The Recall rate for FPPW = 104
is improved by about 3%, and the FPPW is reduced by half for 0.90 recall.

Linear SVM
Intersection kernel SVM |-
%2 kemel SVM

Missing Rate

10 10 10 10
FPPW

Figure 5.3: Detection Error Tradeoff curves for the linear kernel, the intersection ker-
nel, and the 2 kernel using piecewise linear approximation.

5.2.2 Explicit feature map

Although the scoring function can be approximated with high accuracy by the piece-
wise linear functions, the classifier need to be trained as a kernel SVM, usually by
solving the dual problem, and the training complexity for non-linear kernel SVM usu-
ally scales as O(M?) with the number of training instances M. On the other hand,
efficient O(M) methods exist for linear SVM. If the explicit feature map ¢ (x) can be
found for the kernel % (z;, z;), we can directly train the classifier as a linear SVM. Two
techniques for building an approximated explicit feature map are discussed in this sec-
tion. The first technique is constrained to kernels satisfying some particular properties,
and the second technique applies to arbitrary kernels, but is usually less efficient than

the first one.

Kernel signature technique for homogeneous kernels

In the following we limit our discussion to kernels with 1-D features. The technique
can be generalized to N-D features for additive kernels, i.e. k (x,y) = Zjvzl k(z;,v;),
by applying the technique to each dimension. We introduce the method in [64], which

124 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

find an approximated explicit feature map ¢ (x), such that evaluating the scoring func-
tion (5.2) costs O (Dg), where Dg is the dimension of the feature space . The method
applies to kernels that can be represented by a kernel signature function, and satisfy-
ing some additional requirements. In the following we take the class of homogeneous
kernels for example. For 1-D feature, a kernel is v homogeneous if it has the following
property:

Ve >0, ky (cx, cy) = Tk (z,y) . (5.26)

Choosing ¢ = 1/,/xy, the kernel can be represented as:
kp (x,y) = ¢ Tky (cz, cy) = (zy) kh <\/y/:c \/a:/y> % K (logy —logx) .
(5.27)
IC(A) =k, (e’\/ 2 e~ 2) is called the kernel signature function. The kernel signature

is a positive definite function. By the Bochener’s theorem, it is the Fourier transform

of a function « (w), called its spectrum:

K () = /_ " M () duo, and i (w) = — / WA (A) dA (5.28)

. 2m

Therefore:

[\

+o00] Y
/ e "k (W) dw, A = log =
- T

o0

— /+°° <€—iwlogm VK (w)>* (e_wlogy Yk (w)) dw, (5.29)

[e.o]

k(2,y) = (2y)*K (\) = (zy)

where the superscript * indicates the complex conjugate. Based on (5.29), an infinite
dimensional feature map indexed by the continuous variable w can be derived for the

homogeneous kernel:
b (z) = e 087 [k (w) (5.30)

The kernel signature function and its spectrum for the intersection kernel and the x>
kernel are listed in table 5.1. The kernel signatures are displayed in Fig. 5.4a, and their
spectrums in 5.4b. The continuous feature map functions for x = 0.9 and x = 1 are
displayed in Fig. 5.4c and 5.4d, respectively.

To derive a finite dimensional feature map, we try to sample and truncate the
spectrum « (w), while ensuring C (\) can be approximated with high accuracy in a
neighborhood near the origin. Sampling the spectrum, i.e. multiplying x (w) with an

impulse train, is equivalent to convolving I (A) with an impulse train, i.e. repeating

5.2. ACCELERATE THE KERNEL MACHINES 125

kernel | k(z,y) | signature K (\) | 5 (w)
intersection | min (z,y) exp(—|\[/2))
x> (2zy)/(x +y) sech (\/2) sech (mw)

Table 5.1: Kernel, kernel signature, and the spectrum for the intersection kernel and
the y? kernel.

Intersection kernel

Intersection kernel

Xz kernel Xz kernel

I\

A n

BN
o N\

2
&

10 5 0 5 10 10 5 0 5 10
A ®
() (b)
1.6 1.6
real(¢m(0.9) for intersection kernel real(¢m(0.1) for intersection kernel
L e T imag(p, (0.9) for intersection kemel L [T imag(p, (0.1) for intersection kemel
42 real(p,_(0.9) for ;* kemel 42 real(p,_(0.1) for ;* kemel
A e T imag(¢m(0.9) for xz kernel A e T imag(¢m(0.1) for xz kernel
0.8 /\ 0.8
.09 N .09
0.6 // \\ 0.6
0.4 \
” 7 \
0 T
0.2t |
-5 0 5
(0] (0]
(© ()

Figure 5.4: (a) Kernel signature functions for the intersection kernel and the 2 kernel.
(b) Spectrum of the kernel signature functions for the intersection kernel and the y?
kernel. (c) Continuous feature map function evaluated at z = 0.9. (d) Continuous
feature map function evaluated at x = 0.1.

IC(N):
K\ = per K (A) = K(A) + Ax (V)

kj = Lk (jL)

(5.31)

* means convolution, A, () is the impulse train in time domain with period A, and

126 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

L = 27 /A is the corresponding sampling period in the frequency domain for . Con-
volving with A, (A) will cause distortion for K (A). In order to have good approxi-
mation for C near the origin, we require K (\) to decay fast in the time domain, and
the period A of the time domain impulse train be large enough, i.e. the sampling in
frequency domain be sufficiently dense, such that the approximation error due to alias-
ing is low. If IC (\) does not decay sufficiently fast, to maintain good approximation

accuracy of K () near the origin, a rectangular window of width A is applied to /C (\):

W (A) =rect (\/A) (5.32)
K\ = per WA KA = (WA K A) + Ax (A) (5.33)

Then #; = L (k*w) (jL), where w is the inverse Fourier transform of 1 (\). The
rectangular window W (\) = rect (A/A) is not a positive definite function, and w (w)
contains negative values. Therefore we truncate w (w) to be non-negative to ensure
positive definiteness of K ().

The approximated infinite dimensional discrete feature map {¢; (z),j =0, ..., +00}

can be obtained from the continuous feature map (5.30) as follows:

VIR j=0,
¢ (z) = < cos (B Llog) \/227k(j11)2 j > 0 odd, (5.34)
sin (% log x) 217K/ j > 0even.

+o

It can be verified that :

(6(2), 6 () = () Y kyemdtet

j=—o00

= (zy)"*K (log %) ~ (zy)* K <log %) =ky (z,y), (5.35)

i.e. ¢ (x) is an approximated feature map of the homogeneous kernel k;, (z,y). Fur-
thermore, the sequence &, is truncated, keeping only those terms |j| < (n —1)/2,
where n is an odd number specifying how many terms in {¢; (z)} are kept in the finite
dimensional feature map. For the truncation to work well, the spectrum & (w) should
also have most of its energy in the low frequency range.

To sum up, the following issues are important in applying this technique to find an

explicit approximated feature map for a kernel:

1. A signature function must exist for the kernel.

5.2. ACCELERATE THE KERNEL MACHINES 127

2. The signature function is a fast decaying function such that we can sample its
spectrum, i.e. convolving the signature function with a impulse train, while still
maintaining a good approximation of the signature function near the origin. Oth-

erwise, we need to apply a window to the signature function to avoid aliasing.

3. The spectrum of the signature function concentrates most of its energy in the low

frequency part, such that truncating the spectrum will not cause much distortion.

4. The period A of the time-domain impulse train and the order n of the approxi-

mation need to be carefully tuned for good accuracy.

1 is satisfied by all homogeneous kernels. As shown in Fig. 5.4, 2 and 3 are satis-
fied by both the x? kernel and the intersection kernel, both of which are homogeneous
kernels. We measure the approximation quality by the correlation between the exact
kernel and the approximated kernel using the explicit feature map. The correlation for
various A and n are displayed in Fig. 5.5. Very high accuracy can be achieved for the
x? kernel using n = 3, while the intersection kernel needs larger n to achieve good
accuracy, since it has a non-differentiable point in the kernel signature function and
thus its spectrum spans a wider range. To have a direct impression of the approxima-
tion accuracy, we show the ratio between the approximated kernel and the exact kernel
evaluated for z € [0,1] and y € [0, 1] as a color images in Fig. 5.6 for various n. We

can see the error concentrates near the boundary of the domain.

5 l t
9 19 29 39 49
n

(a) (b)

%

9 19 29 39 49
n

Figure 5.5: Correlations between the exact kernel and the kernel using the explicit
feature map for various n and A. (a) Intersection kernel; (b) x? kernel.

128 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

1.0%

0.9

0.8

0.7

0.6

04 o

0.3

0.2

0.1

01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10

(a) (b)

1.5

1.45

1.4

- -135

-1.3

- -1.25

-1.2

1.15

11

1.05

0.1

0.7 0.8 0.9 1.0 0.1 0.2 03
X X

(© (d)

Figure 5.6: Ratio between the approximated kernel and the exact kernel. (a) Intersec-
tion kernel using A = 10 and n = 3; (b) Intersection kernel using A = 10 and n = 7,
(c) x? kernel using A = 10 and n = 3; (d) x* kernel using A = 10 and n = 7.

Sparse basis set feature subspace

In this part we introduce the method in [54], which is called the kernel features by the
authors, but essentially approximates the feature space ¢ using a subspace whose basis
corresponds to a sparse set of feature vectors in the original feature space, therefore
we call the method “sparse basis set feature subspace”.

We want to find a low dimensional subspace of the feature space ®, such that a
training instance ¢ (x) can be approximated with high accuracy by the projection in
this subspace. Let the columns of matrix B be the basis vectors of this subspace,

B =[¢(by),...,¢ (bg)], and {by} are their image in the original feature space. Then

5.2. ACCELERATE THE KERNEL MACHINES 129
a low-dimensional approximation v of instance ¢ (x) can be calculated by:

argmin [|¢ (x) — Bv]|* (5.36)

The solution can be obtained in closed form as v = () (BT¢) Denote
G = BB, then G is a K x K matrix, G;; = 6(b;)" ¢ (b;) = k (b;, b;). Denote
K = B7¢ (x), then K is a K x 1 vector, K}, = ¢(by)" ¢ (x) = k (bg, x). Then ¢ (x)

can be approximated by:

~

¢ (x) = Bv = BG™'K. (5.37)

Since (x;)" ¢ (x;) = K'G'K;, where K; = B”¢ (x;) and K; = B"¢ (x;), there-

fore the approximated explicit feature map can also be represented as:

6 (x) = G_1 oK, (5.38)
where G_; /5 is the solution of GT, 1pGoijp = G, and can be obtained by Cholesky
decomposition of G~ 1.

However, what remains is how to construct the basis set B. We look for the basis

vectors {b; }to minimize the approximation error for the training data:
R(V,B) i) — Bvi*. 5.39
min R (Z 6 (x;) — Bl (5.39)

Substitute v; = (BTB) - (BngS (XZ)) into the problem, the problem transforms to:

k (xi, %), (5.40)

o8

max R(B) =

1

(2

where k (x;,%;) = ¢(x;)" ¢ (x;) = KTGK;. The problem can be solved by gradient-
based algorithms, e.g. the LBFGS algorithm, which is a Quasi-Newton method that
uses a low-rank approximation of the Hessian based on the gradients, and does not
need to explicitly store the Hessian, making it suitable for solving high dimensional
problems (N x K dimensions in our problem). The gradient of R (B) can be calculated

as follows:

oR X oK\ T oG
Btk 2 ") 'K, +KIGT' G K, 5.41
Oby, 2[(Gbk> Oby, 41

Now we consider the computational complexity for calculating the gradient, for M

130 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

training instances, K basis vectors, and N dimensional original feature space. Com-
puting G costs O (N K?), and computing K;; for all i € {1,..., M} costs O (NMK).
Then G~'K; can be computed for all 7 in O (M K?). Let n be the index of a feature,
0K, /0by,, is a vector of length K, in which only the k-th element is non-zero. There-
fore each (9K;/db;,)" G'K; can be computed in O (1), and (9K;/dby)" G'K;
can be computed in O (N), and the first term in the derivative can be computed in
O (NMK) for all by. 0G /by, is a matrix with K rows and K columns, but only the
k-th row and the k-th column are non-zero. Therefore the second term in the derivative
(5.41) can be computed in O (N M K) for each by, and O (N M K?) for all k. Overall,
the computational cost of evaluating the gradient is O (N M K?).

The problem formulation (5.39) is very similar to the kernel PCA problem (5.17),
both minimizing the square error of the approximation. But here the columns of B are
limited to examples in the original feature space, i.e. {¢ (b;)}, and are not required to
be orthonormal, while in (5.17) the columns of B can be arbitrary linear combination
of {¢ (x;)}, and the combination coefficient « is usually not sparse. Therefore this
approach reduces the cost of the linear classifier in the feature space from O (N M) to
O (NK), where N is the dimension of the original feature space, M is the size of the
original basis vector set, e.g. the full training set for kernel PCA, the support vectors
for kernel SVM, and K is the number of basis vectors for approximating the feature
space ®. Usually M grows when more training data are given, but K can be decided
as a constant value, and hence the classifier scales better when a large training data is
available.

For additive kernels k (x,y) = Zj\;l k (z;,y;), the technique can be applied sepa-
rately to each dimension. Compared with the explicit feature map based on the kernel
signatures, this sparse basis set method can be used for arbitrary kernels, but the down-

side is that the approximation accuracy depends on the training data.

5.2.3 Sparse kernel machines

The cost of evaluating a kernel scoring function can also be reduced by using a limited

number of basis vectors {b;} fi , to represent the scoring function f:

K

f(x)=wlo(x) = Z aid(bi) ¢ (x) =) ik (x;,%) (5.42)

i=1

5.2. ACCELERATE THE KERNEL MACHINES 131

The basis set {bi}fil is much smaller than the training set {xz}ﬁ1 and the complexity
of the classifier can be explicitly controlled by the basis number K. Instead of allowing
w =) . ;¢ (x;) to be any vector in the span of the training instances, w is constrained
to be in the subspace spanned by this basis set. The sparse basis set subspace approach
discussed in the last section essentially achieves this goal, but constructing the basis set
and learning the classifier are two separate stages. Therefore the basis set is selected
for good representation of the data rather than for good classification performance. In
this section, we decide the basis set during the learning process, such that the basis set
is directly optimized for the learning task. Three methods for building the sparse kernel
machine are discussed for kernel SVM. The first method from [61] uses a fixed number
of basis vectors, and optimizes the basis vectors to improve the SVM objective. The
second approach [60] sequentially introduces the basis vectors in a greedy manner,
selecting the basis vector that mostly improves the SVM objective in each round. The
last approach [62] adapts the cutting plane training in linear SVM for training kernel

SVM, by approximating the cutting planes using a small number of basis vectors.

Reduced kernel SVM with basis vector refinement

Approximating the model parameter w using a reduced set of basis vectors {b;} has

been proposed in [113], which learns the SVM and then finds the basis set to mini-

mize |w — W

g, where w is the projection of w in the subspace spanned by the basis
vectors. A direct approach for finding the basis set along with learning the SVM is
proposed in [61], which we briefly introduce in this part. For now we consider the
scoring function without the intercept term b, i.e. f(x) = w’ ¢ (x). By explicitly
formulating w as in the span of the training instances {¢ (x;)}, we formulate the SVM

learning problem as follows:

M
mgin %WTW +C Z &
K3 u =1
S.t. W = ; [a%10) (Xi)a (5.43)

ywlo(x) >1—&,i=1,..., M.
&>0i=1,..., M.

The solution is identical to the original kernel SVM problem (5.3), and the solution
« is a sparse vector such that only those support vectors (in-margin and on-margin
training instances) contribute to the separating hyperplane w.

Instead of representing w using the full training set {x;}, a reduced set of basis

132 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

vectors {b;} can be used, such that w = Zfi 1 ;¢ (b;). The basis set {b;} could be
a subset of the training set, or a different set of instances. Then the learning problem

becomes: y
mgin swlw+C Y
Sy K Z:1
st. w=> «a;¢(b;), (5.44)

=1
inTQS (Xz> Z 11— 5272 =]-7 "'7M7
51' 2 O,Z - 1,...,M.

In contrast to the original kernel SVM, for the SVM using a reduced set of basis

vectors, the weight o of the basis vectors usually is not sparse. The dual problem is:

B

M
max %BTKEXG_IKBXB - ;Blyz (5.45)

If we consider the scoring function with a intercept term b, i.e. f (x) = wl ¢ (x) + b,
the only difference to the dual problem is to add a constraint Zf\il b; = 0. Kpxisa
matrix with K rows and M columns, each column corresponds to a training instance
x; and each row corresponds to a basis vector b;, i.e. Kpx,;; = k(b;,x;). In the
following we denote K; as the i-th column of Kpx. G is a K x K matrix, and G;; =
k (b;, b;). Compare this formulation with the standard SVM dual problem, it is easy to
see that this problem is equivalent to a SVM using kernel matrix K = K%, G 'Kpx.
Kisa M x M matrix, and f(ij = K?G_lKj. This result is essentially identical to the
case we have studied in the sparse basis set feature subspace method, where an explicit

feature map can be constructed as:

qb (XZ) = Gfl/QKZ', where G_l = G,1/2TG71/2. (546)

Therefore we can construct the explicit feature map and then train a linear SVM using
¢ (x;). The classifier is

f(x) =wl(x) =w'G 1K, where W = G_1 5 Kpx 3. (5.47)
Then the weight of the basis vectors can be recovered as follows:

fxi)=w'o(x) ="K = W'G K = a=GL W% =G 'KpxB (548)

5.2. ACCELERATE THE KERNEL MACHINES 133

Instead of constructing the basis set {b;} by solving (5.40) as in the sparse basis
set feature space method, the basis set is learned to optimize the SVM objective, by
solving the following problem:

min R (B), (5.49)

where R (B) is the optimal value of problem (5.44). Gradient-based methods can be
employed to solve (5.49), e.g. the LBFGS algorithm. For a particular 3, the gradient
of R (B) can be computed according to the dual problem (5.45), since the solution of
the dual problem is identical to the primal problem:

OR
— =0 = 5.50
ooy 5 abkﬁ (5.50)
The gradient of K is:
oK, 0K, , 110K o 0GT!
= K; + K; + K, K, Sl
Ob;, Oby « Oby, * Oby (5:51)
=—G —G . 52
by G 8ka (5.52)

Therefore the gradient of R can be computed as:

T 0G

8b G 1[(BX/ga

L (KN
; ” = i ‘) GT'K G 'K
abk Z 59 BJ g 8 (abk) pxB+ (G Kpx)
(5.53)
which can be accomplished in O (N M K). In implementation, we initialize the basis
set B using KMeans clustering on the training data, and then refine the basis set using

the LBFGS algorithm.

Forward basis selection

Instead of refining the basis set B for which the size K = | B is pre-defined, the basis
vectors can sequentially introduced to optimize the SVM objective, as done in [60].

For the current basis set {b;} fi 1» the SVM learning problem is:

M
rrgn sa’Ga+ CY max <O, 1—vy; Zk: aik (bg, Xi)), (5.54)

i=1

134 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

where G is the kernel matrix for the selected basis vectors, G;; = k (b;, b;). To select
a new basis vector b into the basis set, we fix the weight vector « for the basis set
{b;} fi , which are already in the problem, and solve for the weight av of the new basis

vector b by solving the following one-variable problem:

G KBb (8%
KL, k(b,b)| |

u « (5.55)
+C) max (0, 1—y (ak (b,x;) + > ajk (bj,xi)>>

=1
which can be reduced to the following problem:

min R (a) = 1ok (b,b) a4+ a’Kpya

M (5.56)
+C Y max (0,1 —m; — y;ak (b, x;))
i=1

where Kp, is a length k vector, Kp,; = k(b;,b), and m; = Z;; a;k (bj,x;) is
the score of a training instance using the current model. The problem is piecewise
quadratic in ok 1. We can solve it using Newton’s method. For the current value of
«, the Hessian of R («) is k (b, b), while the gradient is:

M
=k(b,b)a+a Kp —CY myik(b,x), (5.57)

=1

OR ()
Oa

where 7; is an indicator, ; = 0 if y;ak (b, x;) > 1 — m;, and m; = 1 otherwise. Then
a line search can be performed along the Newton direction to minimize the objective
value. Among all possible choices of b, we select the one that minimizes the loss
R(a).

Cutting plane sparse kernel SVM

Based on the 1-slack cutting plane algorithm for solving linear SVMs [106], a method
is proposed in [62] to adapt the 1-slack cutting plane algorithm for training kernel
SVMs, by approximating the cutting planes using a small number of basis vectors.

Recall that the 1-slack cutting plane method for linear SVM solves the following

5.2. ACCELERATE THE KERNEL MACHINES 135
problem in iteration 7'

min w'w 4+ C¢
W7£

M M
S.t. WT Z Tt Y X5 > Z Ty — f, t= 1, ...,T, (558)
: =1

=1 7

§=>0.

The indicator vectors {7} are found according to the cutting planes of the uncon-

strained problem:

M
min iw'w+C Z max (0,1 — y;w’x;) (5.59)

w i=1

For a w,, the indicator vector is decided as follows:

1 ywlx; <1
mp={ = (5.60)
0 YW, X; > 1
M M
Denote ¥, = > m,y;x; and Ay = > my, the dual problem can be derived as:
1=1 =1
max —sa’Ho+a'A
(0%
st. o >0,i=1,..,T, (5.61)

1Ta < C,

where H isa T x T matrix, H;; = \If;f\I/J The solution of (5.58) satisfies :

w=> al;=> a,¥,, (5.62)

where { Wy, ..., ¥,,} isasubset of {¥,} satisfying w' ¥, = A, — £, i.e. is the set of

active constraints. The solution w is in the subspace spanned by {\i/l, ey \I/m}:
w € W = span (\I/l, e \Ifm)) (5.63)

The cutting plane training is summarized in Algorithm 4.
To evaluate 7; and add a cutting plane, we need to evaluate w/ x for all training
instances. Then to solve the problem (5.61), we need to update the matrix H, add a

new row and column corresponding to the new cutting plane W1, i.e. calculating U2,

136 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

Algorithm 4 Train linear SVM by solving (5.59) using 1-slack cutting plane method

Initialization: w; = 1.
forT'=1to1,,,, do
Add a cutting plane (¥, A7) by deciding 77 using (5.60).
Update H, i.e. adding the new row and column corresponding to V.
Solve the reduced dual problem (5.61).
Update w by (5.62).
end for
return w.

for all t. For linear SVM, adding the cutting plane and updating H can be solved in
O (M) and O (T') time, respectively, where M is the number of training instances and

Tx can be evaluated in

T is the number of existing cutting planes, and we assume w
O (1). However, for kernel SVM, since the feature mapping ¢ (x) is not given, we

need represent the cutting plane W, and the model parameter w as follows:

M
Uy =Y miyid (xi), (5.64)
T = M
W= a0 =) &0 (x). (5.65)
t=1 =1

Therefore the computation cost for finding the cutting plane (i.e. evaluating f (x;)
for all i) becomes O (M?), and for updating H becomes O (T + M?), also assuming
k (x;,%;) can be evaluated in O (1). To reduce this cost, instead of representing ¥, as
the linear combination of {¢ (x;)}, we seek a small set of basis vectors {by,...,bx}
where K < M, such that:

W' = span (¢ (b1) ,....¢ (bx)) = W, (5.66)
K
Um0y =Y Bud (b, (5.67)
rx
wa Y ol =Y ap(by). (5.68)

Then adding the cutting plane cost O (M K), and updating H takes O (T + K?).

Two problems need to be solved for this purpose. First, to approximate a cutting

5.2. ACCELERATE THE KERNEL MACHINES 137

plane V¥ by its projection ¥ onto W', we need to solve the following problem:

2

min

I (5.69)

U — Zﬁj¢ (b;)

The solution is 3 = G~ Kpxy, where G is a K x K matrix, Gij = k(b;,bj); Kpx
isa K x M matrix, Kpx;; = k (b;,x;); and § isa M x 1 vector, §; = m;y;.
Second, we need to construct the basis set {by, ..., bg }. Ideally we should solve

the following problem:

2

, (5.70)

T
min
{B:}.{b;} Z

t=1

K
v, — Zﬁtj(b (bj)
j=1

which is very similar to the kernel PCA (5.17) and the sparse basis set feature subspace
(5.39). Instead of solving the problem using batch method, an incremental method is
employed. Assume the current basis set is {by, ..., bx }, which can well approximate
the existing cutting planes {1, ..., Uz }. Now a new cutting plane W, is introduced,
and we want to add a new basis such that this new cutting plane by, can also be
accurately approximated. Let \i/TH be the projection of ¥ ; onto {by, ..., bk}, then

we solve the following problem:

. 2
(Br+41,br41) = arg Hﬂlibn H‘I’T+1 —VUpy — B¢ (b)H : (5.71)
The problem is equivalent to:

min 36(b)" 6 (b) = 286(b)" (Wrsr — ¥rs). (5.72)

¢(b)T<‘I’T+1—‘i’T+1)

Substitute § = #(6) T 6(b)

into the problem we can obtain:

2

<¢(b)T (q/T+1 - ¢T+1>>
mﬁ‘x 6(b)7 6 (b) |

(5.73)

Therefore we are looking for a ¢ (b) that is maximally correlated with the residual
\IJTH—\TJTH. Substitute Uy = Zf\il Try1,:Yi¢ (%;) and \ijT-i—l = Z]K:l Bry1,¢ (by)

138 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

into the problem, we can get:

M K 2
<Z1 7TT+1,iyik (b7 Xi) - ; 5;‘7{? (b> bj))

m]?x % (b.b) . (5.74)

The problem does not have a closed form solution. We may test all choices of b, or

solve the problem by gradient based methods. In particular, the first basis is selected to

M
2i=1 Yik (b, %;)/k (b, b)
point between the positive instances and the negative instances. To sum up, the cutting

maximize , which can be interpreted as finding the middle

plane training for kernel SVM is given in Algorithm 5.

Algorithm 5 Cutting plane training of kernel SVM

Initialization: a* = 0.
forT'=1to1,,,, do
Add a cutting plane (¥, A7) by deciding 77 using (5.60) and (5.68).
Add a new basis by by solving (5.74).
Approximate all the cutting planes { W, } by projecting to the basis set {b, }, obtain
the projections {3, }.
Update H according to {@t}
Solve the reduced problem (5.61) to obtain weights of the cutting planes c.
Update a* according to (5.67) and (5.68).
end for
return {b;} and o*.

5.3 Multiple kernel and multiple instance sim-

ilarity features

By introducing a feature space ¢ via the kernel function % (x;, x;), the linear classifiers
in @ are able to capture complex separating boundaries in the original feature space X.
The linear scoring function in & is:

FE)=wox) =3 akxb). (575)

1=

and {¢ (b;)} is the set of basis that spans a subspace of ® in which the normal of the
separating hyperplane lies. The kernel functions {k (x, b;)} essentially measure the

similarity between the test instance x and a number of exemplars {b;}. Considering

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES139

the similarity values as spanning a new feature space, the scoring function f (x) is also
a linear classifier in this similarity feature space. In this section, we generalize this
idea by considering using multiple similarity functions, which resembles the multiple
kernel learning approach, and using spatial pooling of the similarity values for the
visual object detection problem, which essentially implements the idea of multiple-
instance learning. We learn the classifier by directly max-margin in the similarity
feature space, and use feature selection and coarse-to-fine scheme to effectively find a

small number of exemplars to improve the efficiency of the classifier.
5.3.1 MKMIS features

Similarity features

Given a sample instance represented by a low-level feature vector x, and given a set
of exemplar instances F = {X.1, X¢2, ..., Xers }» We can derive a new feature space by

using the similarity between x and each exemplar in £ as features:
s =[S (Xe1,X) ;0 S (Xenr, x)] (5.76)

where S is the similarity function. We learn a classifier using the similarity fea-
ture vector s, rather than the low-level feature vector x. A linear scoring function
using the similarity feature is similar to a kernel machine using the low-level fea-
tures, both have the form f(x) = f ({S (x, xj)}j]\;), while the kernel trick re-
quires the similarity function to be a valid Mercer kernel S (x;,%;) = k(x;,X;),
such that & (x;,x;) is the inner product in some transformed feature space ¢ (x), i.e.
k(x;,%x;) = (¢ (xi), ¢ (x;)). However, this requirement is relieved when the similar-
ity is simply considered as spanning a new feature space, and the classifier we have

learned shows different properties from those methods using the kernel trick.

Multiple kernel similarity

There are many possible methods for measuring the similarity between two instances.
The similarity can be measured according to information from various sources, using
low-level features of different natures. Different similarity functions can be employed
to adapt to the geometry of the distribution in the low-level feature space, as in [114].

For example, the similarity function can be calculated based on the L-1 or L-2 distance,

140 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

the Mahalanobis distance with various covariance matrices, or by using the RBF kernel
with various bandwidths. The multiple kernel learning method aims to learn a kernel

k by combining a number of base kernels { k:p}f::l:

k(xi,%)) = g ({kp (xi,xj)}§:1> , (5.77)

and then £ is plugged into kernel methods, e.g. a kernel SVM.
For the similarity features, we concatenate the similarity values computed using

various methods into one vector:
S (x4,%;) = [S1 (X4,%,) 5 -, Sp (x4, %)) (5.78)

Compared with using a combined kernel, more information is preserved in the con-
catenated similarity feature vector. Consider that each instance is represented by a
number of feature channels x = [xl, LxP } , and a similarity function is defined for
each feature channel: S, (x;,%;) = S, (Xf X5) Due to the existence of noisy fea-
ture channels, two positive instances may not be similar holistically, but highly similar
in some feature channels, while the similar feature channels for different pairs of in-
stances may vary. Therefore, a similarity vector obtained by concatenation preserves
more information than is possible by combining the similarity values into one single

scalar value.

Multiple instance similarity

In visual object detection, the objects are usually not perfectly aligned in training or
testing. This could be due to inaccuracy in the labeled training set or deformation of
the object, e.g. the articulated motion of human body parts. Therefore, the best match
of a rectangular region from an exemplar bounding box may be at a shifted position
in another object instance’s bounding box. For example, for different pedestrians, the
heads can be at slightly different locations in different bounding boxes, although the
pedestrians have been roughly aligned. To take this into account, we introduce the
notion of multi-instances into the similarity features.

We divide the object’s bounding box into a number of rectangular regions, and use
each region as a feature channel in the multi-kernel similarity feature. Denote the loca-
tion of an exemplar region as the anchor, and denote the set of rectangular regions in a
neighborhood of the anchor as the support set. The support set corresponds to the bag

of instances in the multiple-instance learning literature. Due to the alignment inaccu-

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES141

racy, the best match can be any item in the support set. Ideally, a positive exemplar
should have high similarity to at least one item in a positive support set (i.e. the support
set from a positive instance), and low similarity to all items in a negative support set.
This is essentially the basic assumption of multiple instance learning (MIL), which
states that a positive bag contains at least one positive instance, while a negative bag
does not contain any positive instances. Therefore the multiple-instance learning can
be implemented at the feature level by simply taking the maximum similarity value to

the support set:
S (Xf,X];) = max {S()} , (5.79)

SES)

where S, is the support set for the anchor p.
Note that the above formulation is not symmetric, i.e. S (x?,x7) # S (x?, x0). If

the similarity function is positive semi-definite, a matching kernel can be made as:

»
= <S 2 x) + 5 (xg,xg?)). (5.80)

p=1

N)Iv—l

k (x;,x;)

This kernel is positive semi-definite, and ignores the misalignment error as long as it
can be covered in the support set. Therefore it can be plugged into any kernel ma-
chine from the textbook, e.g. used in a kernel SVM. In addition, the cost of location
displacement can be taken into account, e.g. as done in the graph-matching kernel
[115].

Discussions

Capturing the non-linear separating boundaries and multi-modal distributions in the
original featurespace X are two main benefit of the kernel methods, by introducing a
non-linear feature map ¢ (x). Another most intuitive and most widely used technique
for this purpose is “divide and conquer”, where the object class is divided into sub-
categories, either manually [116] or automatically [90, 117], using hard assignment
or soft assignment. Then models are learned individually for each sub-category such
that, together, they cover the whole range of object appearance. A test instance is
classified as belonging to the object class if it belongs to any of the sub-categories, or
by considering the sub-category scores as features and applying a high-level model.
This technique introduces issues such as deciding the number and range of the sub-
categories, which can be quite ambiguous. For example, sub-categories can be defined

for each part of the object, but hard to define for the object holistically, due to com-

142 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

binatorial explosion. The recent deformable part model [80] and grammar model [81]
are designed to capture the part-full structure, and to model the sub-categorization for
the full object as well as for the parts. A rich set of grammar is included to describe
the object category, and the geometric configurations of the parts can be well modeled.
However, the grammar model is hard to train due to the large number of tunable pa-
rameters, and is an overkill for basic tasks such as object detection. Furthermore, as
shown in a recent study [118], the part detector is still the weakest link in the grammar
model.

Instead of explicit sub-categorization, the similarity feature performs implicit sub-
categorization and thus is able to capture the multi-modal distribution. Compared with
the low-level features extracted directly from the sensor data, the similarity feature is
a middle-level feature that possesses semantic meanings. A classifier trained using the
similarity features is similar to the high-level model trained on the sub-category scores,
assuming that each exemplar is a sub-category classifier and the similarity value is the
classifier’s score. Furthermore, the use of multiple local exemplars performs the sub-
categorization at the part level, and the classifier is trained to favor some combination
while disfavor some others, therefore avoiding directly handling the combinatorial
explosion due to explicitly modeling all sub-categories for the full object.

The similarity feature is closely related to the nearest neighbor methods. The near-
est neighbor methods usually need a proper similarity metric for dealing with high-
dimensional feature space and for combining information from heterogeneous sources.
For the kernel methods, e.g. kernel SVM, the kernel indeed measures the similarity
between examples. A good kernel function is essential; this is studied within the scope
of learning kernels and multiple-kernel learning (MKL) [55], where the kernel is ob-
tained by combining a number of base kernels, which differ either in their features,
their functional form, or just their parameters. Therefore it is natural to consider mul-
tiple kernels in the similarity feature. In our design, each feature channel has a small
number of dimensions such that simple similarity metrics work well. For example, a
feature channel only represents a small rectangular region inside the object bounding
box. Instead of forming a combined kernel as in many MKL methods, all the similar-
ity values calculated using various features or similarity functions are concatenated to
form a single feature vector, which is then used with learning algorithms that performs
effective feature selection. Thus, the sub-categorization for each part can be learned
separately, and the part-full structure of the object can be modeled, since the full score

is obtained by summarizing the part scores.

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES143

5.3.2 Learning with MKMIS features

Formulation of the learning problem

We learn the classifier by structural risk minimization, directly using the similarity

features:
min AR (f)+ L(f), (5.81)

where R (f) is the regularization term that constrains the VC dimension of the classi-
fier, while L (f) is the empirical loss in the training set. The learnability is guaranteed
by the statistical learning theory, which states that the generalization error is proba-

bilistically bounded by a function of the VC dimension and the empirical loss. We

focus on linear models f (s) = a®'s, and in particular we consider the L-2 regularized
L-1loss SVM: N
min Ja’a+ Y max (0,1 —ya’s;), (5.82)
@ i=1

where NV is the number of training instances. The regularizationterm R (f) = R (o) =
%aTa encourages the classifier with a large margin in the similarity feature space, and
the hinge loss L (f) = L (a) = SV, max (0,1 — y;a”s;) relaxes the classifier to
deal with linearly non-separable training data.

Notice that the learning problem (5.82) differs from that of learning a SVM with
reduced basis set (5.83) only in the regularization term:

N
min 3a’Ga+ Y max (0,1 — y;a’s;), (5.83)
@ i=1
assuming s; = [k (X;,Xc1) , ..., k (X3, Xear)], and G is a M x M matrix, G;; = k (Xe;, Xej)-
However, the formulation (5.83) is not applicable if the similarity feature is not a
proper kernel, e.g. for the multiple-instance similarity features.

The multi-kernel similarity feature results in a linear scoring function as follows:

f(x) = > jpSp (X, Xej), (5.84)

Je{l,..,.M},pe{l,...P}

where {o;,} can be learned directly from the linear SVM. By comparison, current

works on MKL focus on learning a combined kernel & (x;,x;) = 25:1 Lpky (Xi,X;)

144 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

that is applied to all support vectors, and the classifier is:

M P
= Z o Z fpkp (X, Xes) (5.85)

j=1 p=1

If we treat the combined kernel as a similarity metric, the MKL learns a global sim-
ilarity metric, which is applied to every exemplar. In contrast, our method learns

exemplar-specific similarity metrics:

Sej (X, Xej) Za”, (X, Xej). (5.86)

Therefore, our model contains more parameters than MKL (M x P vs. M + P), and
is able to explore a richer set of functions. However, the large number of parameters

imposes learning difficulties, which we shall discuss in the next part.

Learning an efficient classifier

We want to learn a parsimonious classifier such that only a small sub-set of {c;,} is
non-zero. The forward feature-selection scheme from section 2.4 is a suitable choice
for this purpose, which sequentially selects the exemplars to optimize the objective of
(5.82). However, training is still computationally demanding since, we have a huge
number of similarity features (M x P), which requires massive storage and computa-
tional cost. All of these features are tested so as to select the best feature. To relieve
this burden, we introduce a coarse-to-fine scheme that consists of two main points:
First, instead of using the full exemplar set, we use a reduced sub-set. To do this
effectively, we may take a random sample of the exemplars, or learn a codebook by
clustering. In practice, we learn a codebook for each feature channel separately. Sec-
ond, to minimize the performance degradation due to using a small exemplar set, we
optimize the exemplars themselves after selecting the similarity features, by solving

the following optimization problem:

fmn Z L (yz, > w;j (Xi,Xej)>) (5.87)
Xe7

The regularization term R (w) does not need to be considered since we use L-2 reg-
ularization which is independent of the exemplars. The loss function is usually non-

convex with respect to the exemplars, and could be non-differentiable. We use the

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES145

coordinate sub-gradient descent method to sequentially optimize the exemplars {x.;}.

The gradient/sub-gradient is:

N 0L Of; Osy
8fz 8s,~j 8xej ’

(5.88)

=1

We take the hinge loss and the Gaussian similarity function s;; = exp (—7 [|x; — X; Hg)

for example. A sub-gradient for the hinge loss can be calculated according to follows:

oL/Of; = —wl (yfi<1),
(9fz/asm == U)j, (589)
0sij/8Xej = —273ij (Xi - Xej))

where I (y; f; < 1) is an indicator function, I = 1 if y; f; < 1, otherwise I = 0. There-
fore, the effect is that the exemplar x.; will only be affected by the in-margin training
instances. If w; is positive, x.; will be pulled towards the positive in-margin instances
while being pushed away from the negative in-margin instances, and vice versa. The
strength with which a training instance pushes/pulls an exemplar is proportional to the
similarity s;;, as well as the distance x; — X.;, such that those very distant training
instances will have a small influence due to the fast decay of s;;. The empirical loss
is always improved by modifying the exemplars, while the regularization term is not
affected. Therefore, we expect that the generalization performance can be improved,
especially when a very small sub-set of exemplars is used. This exemplar refinement
is also adopted in other algorithms, e.g. the learning vector quantization (LVQ) [119]

for nearest-neighbor classifiers, and the exhaustive search method is used in [120].

5.3.3 Experimental Evaluation

In this section we demonstrate our approach on synthetic data and real image data.
First, we study the properties of our approach using synthetic Gaussian mixture data,
showing that how the similarity feature, the forward feature selection learning, and
the coarse-to-fine learning together contribute to an efficient and effective algorithm.
Then, we test with real-world image data to further address the benefit of multiple-

kernel and multiple-instance similarity features.

146 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

T =S 3 6
PR
0.9 Ll
X #
08 }o) gl _
' L
o g— 9
/
0.6 7 |
& 05 l" - 4 3 el gl
- H ~ s . ¢ O (¢ -
t 2% /8 - .
0.3 N ’) e P -~
.f T o/ $8% ° o
1 R | 276 SVs e PN~]
0.2 o LIRLSVM-VKSF, 4\ Qj@‘@ .%é e e © () ®
0.1] 15 features using 12 exemplars \\’f@\Q@QI,/ “® (€] o0
: -5 L2RLSVM-MKSF-FFS-REF, . N \@ e =
)) 10 features using 10 exemplars 6’:\)) -) ‘ > ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -6 4 2 0 2 4 6
FAR
(@) ()
6 6 T
7 M . //“.“~\ . .
+ /./,/N,: . + e .\‘
\ . o
4 T Nt . C ", \ - 4 y i Nt £ '?\ -
;T4 + . ® ‘\’. /) s N W * \ .
NN A -2 $ /
& AN, W\ See,)
2- L A T T R - 2 A P _
~O e ® t'* L N . t R - e, "t .
£ O Tt ofisgy e
T AT PR— X R = *
0 . g o o & O At
R A 21 SN C W Fa
o° . + \ SO e . +
te .. R S + . .I;g N (g 5
_ . % o \ . \ \
2 o2 G Sy 2 . o) T ST
N . =
° (/:/_'@.\ . -~ 1+ { M Ld . . -~ + o‘h*{
P * + i AN -
4 .. s,% . + A - L 4 + o X J
e o° s - . o +
. .
6 L 6
-6 4 2 0 2 4 6 -6 4 2 0 2 4 6
(© (d)

Figure 5.7: (a) The ROC curve of various methods. (b) Score contours of GKSVM.
(¢) Score contours of LIR-LSVM-MKSE. (d) Score contours of L2ZR-LSVM-MKSEF-
FFS-REF. All training instances are used as exemplars for the similarity feature. The
selected support vectors/exemplars are shown as black circles. For the L2R-LSVM-
MKSEF-FFS-REF method, the final exemplars may not be in the initial exemplar set,
due to the refinement stage.

Synthetic toy data

We generate a 2-D Gaussian mixture distribution of points for both the positive and the
negative dataset. The positive class has four components with equal weights: {p1 =
(3, =3).041 = 1}, {2 = (=3,3).042 = 1}, {pss = (1, 1).045 = 0.5}, {p4a =
(—1,—1),0.4 = 0.5}. The negative class has two components with equal weights:
{p-1 = (2,2),0_1 = 2} and {2 = (—2,—2),0_o = 2}. Therefore, the positive
class forms two compact clusters and two less compact clusters, while the distribution

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES147

T ——— |
09 Ih\‘— —————
----- ¢
0.85 /
—— Multiple kernel similarity
----- Single kernel similarity
0.8

AUC of the ROC curve

0.75
1
i
|
/}
0.7
, i
i
|
i
!
0.65 |-
i
i
|
06—
0

. 1 . 1 .
5 10 15 20 25 30

lteration
(@)
6 6 —
+ o ° + . LN
~ e L : ¥ { N PO
4 *‘" ++ & . o 4 ~ et \ (s)
(+$e h + / °. ? (e ean O ¥
k + D { o5 ‘o) . g / °
\ LH0) | Q) e il /
N R Y, ‘\~‘}:b~ - AT S, e
2= N\ t&@+/‘ﬁ P RPN 2 D R TRIN
N L R o N .2 g gp
~ it @ﬁ{l;w +1f Ji,ﬁpr;r*
0 . l/./'r'# . o . 4'49 s
Py e ‘
" \ }"1 ff"’;ﬂ " B — 1 f*‘”‘ e _
\ e)/ + +
[IR e/ . - S +5 o+
2 | C O) P 2- Q e o
\ o\ M & SRR ° S H Y
e ® o o LR o‘#{ﬁ‘ . PY o e T "
N .) \ s 204 q
e P i + AN 4 + M
4 o0t b + 4
. ot + S e %
6 -6
-6 -4 2 0 2 4 6 -6 -4 2 0 2 4 6
(b) (©

Figure 5.8: Comparison of single-kernel and multiple-kernel similarity features. (a)
AUC of L2R-LSVM-SF-FFS vs. L2R-LSVM-MKSF-FFS. (b) Score contours of L2R-
LSVM-SF-FFS, using 7 similarity features. (c) Score contours of L2R-LSVM-MKSF-
FFS, using 7 similarity features.

of the negative class is rather flat. The training set consists of 160 points for each class,
and the test set consists of 800 points for each class.

In Fig. 5.7, we compare the holistic Gaussian kernel SVM (GKSVM) and the
multi-kernel similarity features (MKSF) with two different feature-selection meth-
ods, i.e. the L-1 regularized linear SVM (L1R-LSVM) and the L-2 regularized linear
SVM (L2R-LSVM) with our forward feature selection (FS) method. The refinement
stage (REF) is also implemented for L2R-LSVM, although we find that the benefit
of this diminishes when the codebook is large or when many features are selected.
For GKSVM, the kernel bandwidth v and the trade-off parameter \ are selected by
cross validation. 276 SVs are selected by GKSVM. All training instances are included
in the exemplar set, and the multi-kernel similarity feature is calculated using Gaus-

148 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

6 ! ———
+ ///7) \\\.‘
. \
0.9 /= ol e 1 SN e
P —— - 4 P N Lo) e H
» +++r' N N .\\g—/‘/
! *Q*/ \3\',. e /
o 0.85 TR Fle N
g 2 O » -t
E o Tes
3 / * Foul . o (S .
&} d s ey ﬂ;r{#% "
2 o8 2 T TG T
o o « T o Bt T
< .
= + ﬁ ++ 8 +
$ 075 L e T
5 v E B+
@© 2-/ ol P
2 / TN\ R Tk
< 07 o o PRI T
—— With refinement NP Ly Lo
----- Without refinement 4-\ '\‘_/. /) + ; . N
0.65 I e e o +
0.6 5t

.)
0 5 10 15 20 25 30 -6 -4 -2 0 2 4 6
Iteration

(a) (b)

Figure 5.9: Effect of exemplar refinement using a small exemplar set. (a) AUC of L2R-
LSVM-MKSF-FFS vs. L2R-LSVM-MKSF-FFS-REF. (b) Score contours of L2R-
LSVM-MKSF-FFS-REF using a small number of exemplars. The original exemplars
are shown as cyan diamonds, and the refined exemplars are shown as black circles.

sian kernels, with v € {0.2, 0.5, 0.7, 1.0, 1.5, 2.0}, resulting in 6 similarity features
for each exemplar. For L1IR-LSVM, the number of selected features is controlled by
varying \. 15 similarity features using 12 exemplars are selected; further sparsity will
cause significant performance loss. For L2ZR-LSVM, the number of selected features
is explicitly specified, and we show the result of using 10 features. As Fig. 5.7a
shows, a small number of similarity features is sufficient to outperform the single ker-
nel GKSVM using a large number of support vectors. The GKSVM and the LSVM
using similarity features favor different sets of exemplars, as shown in Figs. 5.7b to
5.7d. GKSVM selects the support vectors, i.e. all training instances inside the margin,
while LSVM first selects the exemplars near the cluster centers, and then selects more
exemplars to refine the decision boundary.

We illustrate how the multiple kernels improve over the single-kernel similarity
features (SKSF). In Fig. 5.8, we compare the best SKSF using v = 1.0 and the
MKSF. We show the area under the ROC curve (AUC) as a function of the number
of selected features, which is an indicator of the overall performance of the classifier.
The plot shows that MKSF consistently outperforms SKSF, and very good results can
be achieved by using as few as 6 features in MKSF. Figs. 5.8b and 5.8c show the
contours of the scoring function when 7 features are selected. It is clearly observable
that, using MKSF, basis functions of various bandwidths are selected to approximate

the underlying distribution.

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURES149

Bag of part Compare with Part- Similarity
instances specific codebooks features

Figure 5.10: Illustration of the feature extraction scheme of the multi-kernel, multi-
instance similarity feature for the INRIA pedestrian dataset.

Finally we show that the refinement stage is essential when training with a small
exemplar codebook. A small codebook is used by randomly picking 20 of the 320
training instances as exemplars. Fig. 5.9a shows the area under the ROC curve as a
function of selected features. The refinement consistently improves the performance.
The contour of the scoring function is shown in Fig. 5.9b, along with the exemplar
locations before and after refinement. It can be observed that the exemplar positions
are pulled towards the cluster centers, and thus the basis functions are better aligned

with the training data.

Pedestrian detection

In this part we demonstrate the multi-kernel multi-instance similarity feature on the
INRIA pedestrian dataset. The linear SVM with the HOG feature [19] is known to
perform very well on this dataset, and the idea of learning a holistic template by linear
SVM has been well received in the field. Although non-linear kernel machines usually
achieve a better performance in classifying objects with highly variable appearance,
they are rarely used in practical systems, except when the scoring function can be
efficiently evaluated—for example, approximated by linear functions of the image de-
scriptors [63, 64]. In the following work, we simplify a non-linear kernel machine
in another manner, treating it as a linear machine using the similarity features; and
we train an efficient classifier with a small number of similarity features, using our
proposed feature selection scheme.

The HOG feature is used as the low-level image descriptors. As in [19], 16 x
16 HOG blocks are taken from a regular grid with an overlap of 8 pixels between
adjacent blocks. The HOG histogram from a group of four 8 x 8 cells in the block

150 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

IMRI& Pedesirian Dataset

—HOG+Linear SV

|- HOG+Gaussian kernel SV
== ity featune + linear 3WVM

~==HOG+Intersacton kerneal SWhi

Missing Rals

- v ——Linear SV
0,84 --#-Haolistic Gaussian kemel SV |
—m=3um of par Gaussian kermel SYM |
0. =~ Part similarity with muli-nstance |
-¥-Part sirnilanty without multi-instance o

0 0.08 CK 075 0z o 10° 1
False Acceptance Rale False Posilive Par Window

(a) (b)

INRIA Padesinan Datagat ETH Pedesinan Dataset

E =
i E
4 Bas g,
go 3
E —HOG+Linear SVM = | —HOG+Linear SV
-=+0G+Interssction kermel SYM T, 3 4 -==-HOG+Intersactcn kernel E."n.-'l'».l'l t\
o[= HOGLEP -~k -HOGLEP Ry
-F-F"LS 3 R o - ol
—s=Similanty feature |\ =a=Sirniarity featune &
1~ [o T i’
False Positive Per Image False Pasitive Per image
(©) (d)

Figure 5.11: Results on the pedestrian detection problems. (a) The ROC curves on the
dataset with 40,000 hard negative instances. (b) FPPW on the full INRIA test dataset.
(c) FPPI on the full INRIA test dataset. (d) FPPI on the full ETH test dataset.

are concatenated together, and L-2 normalization is applied. No spatial interpolation,
orientation interpolation, or dimensionality reduction [80] is performed, such that the
low-level image descriptors can be calculated very fast using the integral image. The
object bounding box size in 128 x 64, hence there are 105 HOG blocks. Each HOG
block corresponds to a feature channel in our similarity feature. For multiple-instance
matching, a bag of 9 instances is generated by displacing the anchor site by [-4, 0, 4]
pixels in the = and y directions. A codebook of size 400 is learned for each feature
channel using k-means clustering and using only the positive dataset. Therefore, the
full similarity feature set has 42,000 features, which is already significantly reduced
compared to using the full set of part exemplars, i.e. 105 x 2,474 = 259, 770 similarity

features. The feature extraction scheme is illustrated in Fig. 5.10

5.3. MULTIPLE KERNEL AND MULTIPLE INSTANCE SIMILARITY FEATURESI151

The training set contains 2,474 positive examples, and the test set contains 1,178
positive examples. For the negative examples, we collect a hard negative dataset of
40,000 examples from the hard negative examples (score > —1) of a linear SVM +
HOG detector, and use half for training and half for testing.

First, we show the classification performance on this dataset in Fig. 5.11a. We
compare the performances of the holistic linear SVM, the holistic Gaussian-kernel
SVM with kernel k (x;,x;) = exp(—7||x; — x,||*), the sum-of-part-Gaussian-kernel
SVM with kernel k (x;,x;) = 25:1 exp(—7||x¥ — x§||2), and linear SVM with the
multi-kernel, multi-instance similarity features, selecting 1,200 features. The holis-
tic Gaussian-kernel SVM uses 7,037 support vectors, and achieves a recall rate of
about 92% recall when the false acceptance rate (FAR) is 5%, which is about a 4%
improvement over linear SVM. The performance is further improved by the sum-of-
part-Gaussian-kernel SVM, which uses 5,581 support vectors and achieves a recall
rate of about 95% when FAR=5%. However, both the holistic Gaussian-kernel SVM
and the sum-of-part-Gaussian-kernel SVM are expensive to evaluate. Our similarity
feature linear SVM uses only 1,200 similarity features, and achieves a slightly worse
performance than the sum-of-part-Gaussian-kernel SVM, about a 94% recall rate when
FAR=5%. Essentially we can write the sum-of-part-Gaussian-kernel SVM in a linear
form, using 5, 581 x 105 = 586, 605 part-similarity features, so our proposed scheme
significantly reduces the classifier’s complexity. We have also shown the result of part-
similarity features without using the multi-instance evaluation, and the performance
appears to be degraded.

In Fig. 5.11b and Fig. 5.11c, we show the performance evaluated on the full
INRIA dataset, and, in Fig. 5.11d the ETH dataset. In Fig. 5.11b, we compare our
method with the linear SVM, the Gaussian-kernel SVM, and the intersection-kernel
SVM [63] (using the corrected results from [121]). The sum-of-part-Gaussian kernel
SVM is too time-consuming to evaluate, therefore it is not included in this section.
We have also shown the performance of two other state-of-the-art methods using more
powerful low-level features, i.e. the HOG-LBP [122] with a linear SVM and the PLS
method [42] with a large set of heterogeneous low-level features. The missing rate—
FPPW curves and the missing rate—FPPI curves are provided for the INRIA dataset
in Fig. 5.11b and Fig. 5.11c, respectively, and for the ETH dataset in Fig. 5.11d.
For the INRIA dataset, using the FPPW evaluation metric, our approach reduces the
false positive rate by about an order of magnitude (e.g. from 10~* to 1075 when the
missing rate = 0.1 in Fig. 5.11b), compared to the HOG + linear SVM approach. Our

approach also outperforms two non-linear kernel SVMs operating on holistic HOG

152 CHAPTER 5. KERNEL METHODS AND THE SIMILARITY FEATURES

feature representation, indicating the benefit of using part similarities over holistic
similarities. However, the performance gain does not come without a cost. While
our approach is much more efficient than the Gaussian-kernel SVM due to the small
number of part similarity features, a considerable number (1,200 in our experiment)
of part exemplars are still used, which involves about 10 times more computational
cost than either the linear SVM with HOG (which can be considered as using 105
part exemplars) or the intersection-kernel SVM with HOG. However, we note that the
testing efficiency can be effectively improved by building cascade detectors. Besides,
it is evident that the low-level features have a significantly impact on the performance,
as demonstrated by the HOG-LBP and the PLS approach. We believe that our method
will also benefit from the introduction of heterogeneous descriptors, which we leave

for our future work.

5.3.4 Conclusions

In this chapter, we have proposed a middle-level feature for visual object detection,
and have designed a learning framework to obtain efficient classifiers using this fea-
ture. The middle-level feature is based on the similarity to exemplars, and elements of
multiple-kernel learning and multiple-instance learning are incorporated at the feature
level, enhancing the similarity feature in several ways. First, more complex decision
boundaries can be efficiently described using a small number of similarity measures.
Second, the part-full structure of visual objects as well as the geometric deformations
can be captured at the feature level, rather than resorting to complicated model design
or learning methods. Our forward feature-selection scheme and coarse-to-fine learning
scheme are tailored for the learning with a high-dimensional data problem when using
similarity features; they also produce an efficient classifier by using a small number of
features.

Our work can be extended in many ways. Choosing the most appropriate low-
level descriptor and similarity metric is an important issue for real-world applications.
The refinement procedure can be extended to learn other parameters of the similarity
function, for example, kernel bandwidth for the Gaussian kernel. This topic is related
to the metric learning problem studied in the nearest-neighbor classifiers. For the
classifier structure, a universal codebook can be used for all part locations, such that
the effective complexity of the classifier can be reduced by encouraging the re-use of
codewords at different part locations. The codebook-based approach is also amenable

to multi-class problems, in which codewords can be shared between different classes.

Chapter 6 Conclusions

The emphasis of this thesis is machine learning methods used for training a visual
object detector. Though designing features and other issues specific to analyzing the
visual information are more familiar to those people from image processing or work-
ing on vision applications, the machine learning techniques are the key to making
decisions from the collection of information acquired from the sensors, and have far-
reaching importance in a wide range of applications beyond visual object detection.
Our study is centered around the structural risk minimization principle for supervised
learning, for which the foundation is laid in the past several decades by a number of
researchers, and which receives popularity in just about the last 10 to 15 years, due to
a number of powerful tools being made practical, such as the support vector machines
and the Boosting methods.

After a brief review of the structural risk minimization principle and the loss func-
tions for classification in Chapter 2, we have studied several recent algorithms for
training the support vector machines. These algorithms exploits the particular for-
mulation of SVM problems. Studying the details of the optimization process grants
us better understanding of the learning process, and also motivates the embedded for-
ward feature selection method, which is expressed in the general formulation for many
learning problems. The feature selection method demonstrates its power for SVM and
logistic regression in our illustrating experiments. The ranking and structural predic-
tion problems are also studied, for they are also useful learning problems that have
been successfully applied in visual object detection.

The demand for high efficiency of the detector gives rise to the wide acceptance
of Boosting cascade detectors, and the whole Chapter 3 is devoted to this topic. We
have studied methods for improving the performance and efficiency of the Boosting
algorithm. The classifier performance is improved by solving the totally-corrective
AdaBoost problem using continuous-valued weak classifiers derived from the func-
tional optimization formulation of AdaBoost algorithms. Then regarding the training
time complexity, we employ the partial least square regression as a feature subset se-
lection method, and train weak classifiers for a subset of features rather than for all the
features. To build the cascade, three topics are discussed, i.e. training with asymmetric

objectives, selecting the operating point for each stage, and recycle existing informa-

153

154 CHAPTER 6. CONCLUSIONS

tion for better efficiency. For learning with the asymmetric objective, typical methods
include cost-sensitive learning and direct optimization of the Recall for a fixed FAR
value (e.g. 0.5). For selecting the operating point, the one-point and two-point plan-
ning methods both improves efficiency by using less weak classifiers and rejecting
more negative windows in the early stages. Re-use existing weak classifiers and fea-
tures further improves the efficiency of the cascade, and our biased selection strategy
gives better performance than existing recycling approaches.

Lastly we have studied the kernel methods, which, although very powerful, is
rarely used in existing visual object detection systems for its high computational cost
using non-linear kernels. Therefore methods for accelerating the kernel SVM are dis-
cussed, including approximating the scoring function, approximating the feature map,
and selecting a reduced set of basis vectors in the learning process. Inspired by the ker-
nel methods, we consider using the similarity as features and directly train linear clas-
sifiers with the similarity features. The elements of multi-kernel and multi-instance
can be introduced for measuring the similarity between visual objects, by applying
spatial max-pooling to the similarities with a number of local exemplars. Forward
feature selection and exemplar refinement are also applied in learning the classifier, to
improve the performance and efficiency of the detector.

To sum up, we have made a number of improvements to existing techniques for
learning a visual object detector. These improvements enhance existing methods in
both accuracy and efficiency. However, most of our work addresses the fundamental
aspects of the learning problems, and our study is focused on using the sliding window
scheme for detecting a single class of objects. Future research can be carried out in
many directions. For example, it will be interesting to study other properties and prob-
lems particular to the visual object detection scenario, which should bring another fold
of improvement to the detector performance. High-level analysis can be performed
based on the detector’s output, and the machine learning techniques are also expected

to act an important role in these applications.

Bibliography

[1] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and ob-
ject recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell.,
24:509-522, 2002.

[2] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91-110, 2004.

[3] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest
point detectors. International Journal of Computer Vision, 60(1):63-86, 2004.

[4] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615-1630, 2005.

[5] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view-based
human face detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(1):39-51,
1998.

[6] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-based
face detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(1):23-38, 1998.

[7] Bastian Leibe, Alan Ettlin, and Bernt Schiele. Learning semantic object parts
for object categorization. Image and Vision Computing, 26(1):15-26, 2008.

[8] Christian Wojek, Stefan Walk, and Bernt Schiele. Multi-cue onboard pedestrian
detection. In CVPR, pages 794-801, 2009.

[9] Timo Ojala, Matti Pietikinen, and David Harwood. A comparative study of
texture measures with classification based on featured distributions. Pattern
Recognition, 29(1):51-59, 1996.

[10] Thomas Serre, Lior Wolf, Stanley M. Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio. Robust object recognition with cortex-like mechanisms. /IEEE
Trans. Pattern Anal. Mach. Intell., 29(3):411-426, 2007.

155

156

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

Jim Mutch and David G. Lowe. Object class recognition and localization using
sparse features with limited receptive fields. International Journal of Computer
Vision, 80(1):45-57, 2008.

Paul Viola and Michael J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137-154, 2004.

Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for
rapid object detection. In ICIP (1), pages 900-903, 2002.

Genquan Duan, Chang Huang, Haizhou Ai, and Shihong Lao. Boosting associ-
ated pairing comparison features for pedestrian detection. In ICCV Workshop,
2009.

Chang Huang and Ramakant Nevatia. High performance object detection by
collaborative learning of joint ranking of granules features. In CVPR, pages
41-48, 2010.

Eli Shechtman and Michal Irani. Matching local self-similarities across images
and videos. In CVPR, 2007.

Thomas Deselaers and Vittorio Ferrari. Global and efficient self-similarity for
object classification and detection. In CVPR, pages 1633—-1640, 2010.

Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas S. Huang, and Yi-
hong Gong. Locality-constrained linear coding for image classification. In
CVPR, pages 3360-3367, 2010.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In CVPR, pages 886—893, 2005.

Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and
Cdric Bray. Visual categorization with bags of keypoints. In ECCV Inter-
national Workshop on Statistical Learning in Computer Vision, Prague, 2004,
2004.

Robert M. Haralick, K. Shanmugam, and Its’hak Dinstein. Textural features
for image classification. IEEE Transactions on Systems, Man, and Cybernetics,
3(6):610-621, 1973.

BIBLIOGRAPHY 157

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Jing Huang, Ravi Kumar, Mandar Mitra, Wei-Jing Zhu, and Ramin Zabih. Im-
age indexing using color correlograms. In CVPR, pages 762-768, 1997.

Satoshi Ito and Susumu Kubota. Object classification using heterogeneous co-
occurrence features. In ECCV (5), pages 209-222, 2010.

Yi Yang and Shawn Newsam. Spatial pyramid co-occurrence for image classi-
fication. In ICCV, 2011.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor
for detection and classification. In ECCV, 2006.

Oncel Tuzel, Fatih Porikli, , and Peter Meer. Human detection via classification

on riemannian manifolds. In CVPR, 2007.

Dariu Gavrila. A bayesian, exemplar-based approach to hierarchical shape
matching. IEEE Trans. Pattern Anal. Mach. Intell., 29(8):1408—1421, 2007.

Andreas Opelt, Axel Pinz, and Andrew Zisserman. Learning an alphabet of
shape and appearance for multi-class object detection. International Journal of
Computer Vision, 80(1):16—44, 2008.

Jamie Shotton, Andrew Blake, and Roberto Cipolla. Multiscale categorical

object recognition using contour fragments. IEEE Trans. Pattern Anal. Mach.
Intell., 30(7):1270-1281, 2008.

Vittorio Ferrari, L. Fevrier, Frédéric Jurie, and Cordelia Schmid. Groups of ad-
jacent contour segments for object detection. IEEE Trans. Pattern Anal. Mach.
Intell., 30(1):36-51, 2008.

Zhe Lin and Larry S. Davis. Shape-based human detection and segmentation via
hierarchical part-template matching. IEEE Trans. Pattern Anal. Mach. Intell.,
32(4):604-618, 2010.

Andrew Rabinovich, Andrea Vedaldi, Carolina Galleguillos, Eric Wiewiora,

and Serge Belongie. Objects in context. In ICCV, pages 1-8, 2007.

Carolina Galleguillos and Serge Belongie. Context based object categorization:
A critical survey. Technical report, Computer Science and Engineering, Univer-
sity of California, San Diego, 2008.

158

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

Zhuowen Tu. Auto-context and its application to high-level vision tasks. In
CVPR, 2008.

Santosh Kumar Divvala, Derek Hoiem, James Hays, Alexei A. Efros, and Mar-
tial Hebert. An empirical study of context in object detection. In CVPR, pages
1271-1278, 20009.

Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Quantifying contextual infor-
mation for object detection. In ICCV, pages 932-939, 2009.

Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and human
pose in human-object interaction activities. In CVPR, pages 17-24, 2010.

Leonid Karlinsky, Michael Dinerstein, Daniel Harari, and Shimon Ullman. The

chains model for detecting parts by their context. In CVPR, pages 25-32, 2010.

Yong Jae Lee and Kristen Grauman. Object-graphs for context-aware category
discovery. In CVPR, pages 1-8, 2010.

Carolina Galleguillos, Brian McFee, Serge J. Belongie, and Gert R. G. Lanck-
riet. Multi-class object localization by combining local contextual interactions.
In CVPR, pages 113-120, 2010.

Mikel Rodriguez, Ivan Laptev, Josef Sivic, and Jean-Yves Audibert. Density-
aware person detection and tracking in crowds. In ICCV, pages 2423-2430,
2011.

William Robson Schwartz, Aniruddha Kembhavi, David Harwood, and Larry S.

Davis. Human detection using partial least squares analysis. In ICCV, pages
24-31, 2009.

Aniruddha Kembhavi, David Harwood, and Larry S. Davis. Vehicle detection
using partial least squares. IEEE Trans. Pattern Anal. Mach. Intell., 33(6):1250—
1265, 2011.

Juergen Gall and Victor Lempitsky. Class-specific hough forests for object de-
tection. In CVPR, 20009.

Vladimir N. Vapnik. The nature of statistical learning theory 2nd edition.
Springer, 2000.

BIBLIOGRAPHY 159

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. Journal of Machine Learning Research,
2:265-292, 2001.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large Margin Rank
Boundaries for Ordinal Regression, chapter Advances in Large Margin Clas-
sifiers, pages 115-132. MIT Press, Cambridge, MA, 2000.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Large margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research, 6:1453—1484, 2005.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal esti-
mated sub-gradient solver for svm. In /CML, pages 807-814, 2007.

Vojtech Franc and Soren Sonnenburg. Optimized cutting plane algorithm for
support vector machines. In ICML, pages 320-327, 2008.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:xX—XxX,
2011.

Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discrimi-
native classification with sets of image features. In ICCV, pages 1458-1465,
2005.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR,
2006.

Liefeng Bo and Cristian Sminchisescu. Efficient match kernel between sets of

features for visual recognition. In NIPS, pages 135-143, 2009.

Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms.
Journal of Machine Learning Research, 12:2211-2268, 2011.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene
selection for cancer classification using support vector machines. Machine
Learning, 46(1-3):389-422, 2002.

160 BIBLIOGRAPHY

[57] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm support
vector machines. In NIPS, 2003.

[58] Gleen M. Fung and Olvi L. Mangasarian. A feature selection newton method
for support vector machine classification. Computational Optimization and Ap-
plication, 28:185-202, 2004.

[59] Yuh-Jye Lee and Olvi L. Mangasarian. Rsvm: Reduced support vector ma-
chines. In Proceedings of the First SIAM International Conference on Data
Mining, 2001.

[60] S. Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building support
vector machines with reduced classifier complexity. Journal of Machine Learn-
ing Research, 7:1493-1515, 2006.

[61] Mingrui Wu, Bernhard Scholkopf, and Gokhan Bakir. A direct method for
building sparse kernel learning algorithms. Journal of Machine Learning Re-
search, 7:603-624, 2006.

[62] Thorsten Joachims and Chun-Nam John Yu. Sparse kernel svms via cutting-
plane training. Machine Learning, 76:179-193, 2009.

[63] Subhransu Maji, Alexander C. Berg, and Jitendra Malik. Classification using

intersection kernel support vector machines is efficient. In CVPR, 2008.

[64] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit
feature maps. IEEE Trans. Pattern Anal. Mach. Intell., 34:480-492, 2012.

[65] Jorome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic re-
gression: A statistical view of boosting. The Annals of Statistics, 28:337-407,
2000.

[66] Robert E. Schapier, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting
the margin: A new explanation for the effectiveness of voting methods. The
Annals of Statistics, 26(5):1651-1686, 1998.

[67] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear program-
ming boosting via column generation. Machine Learning, 46(1-3):225-254,
2002.

BIBLIOGRAPHY 161

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Chunhua Shen and Hanxi Li. On the dual formulation of boosting algorithms.
IEEE Trans. Pattern Anal. Mach. Intell., 32(12):2216-2231, 2010.

Jianxin Wu, S. Charles Brubaker, Matthew D. Mullin, and James M. Rehg.
Fast asymmetric learning for cascade face detection. IEEE Trans. Pattern Anal.
Mach. Intell., 30(3):369-382, 2008.

Chunhua Shen, Peng Wang, and Hanxi Li. Lacboost and fisherboost: Optimally
building cascade classifiers. In ECCV (2), pages 608-621, 2010.

Hamed Masnadi-Shirazi and Nuno Vasconcelos. Cost-sensitive boosting. IEEE
Trans. Pattern Anal. Mach. Intell., 33(2):294-309, 2011.

Rong Xiao, Long Zhu, and Hongliang Zhang. Boosting chain learning for
object detection. In ICCV, pages 709-715, 2003.

Lubomir D. Bourdev and Jonathan Brandt. Robust object detection via soft
cascade. In CVPR (2), pages 236-243, 2005.

Rong Xiao, Huaiyi Zhu, He Sun, and Xiaoou Tang. Dynamic cascades for face
detection. In ICCV, pages 1-8, 2007.

Minh-Tri Pham, V-D. D. Hoang, and Tat-Jen Cham. Detection with multi-exit
asymmetric boosting. In CVPR, 2008.

Bastian Leibe, Ales Leonardis, and Bernt Schiele. Robust object detection with
interleaved categorization and segmentation. International Journal of Computer
Vision, T7(1-3):259-289, 2008.

Alain Lehmann, Bastian Leibe, and Luc J. Van Gool. Fast prism: Branch
and bound hough transform for object class detection. [International Journal
of Computer Vision, 94(2):175-197, 2011.

Markus Weber, Max Welling, and Pietro Perona. Unsupervised learning of
models for recognition. In ECCV, pages 18-32, 2000. 77777

Robert Fergus, Peter Perona, and Andrew Zisserman. Object class recognition
by unsupervised scale-invariant learning. In CVPR, volume 2, pages 264-271,
2003.

162

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

BIBLIOGRAPHY

Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, and Deva Ra-
manan. Object detection with discriminatively trained part-based models. IEEE
Trans. Pattern Anal. Mach. Intell., 32(9):1627-1645, 2010.

Ross B. Girshick, Pedro Felzenszwalb, and David Mcallester. Object detection

with grammar models. In Advances in Neural Information Processing Systems
24, pages 442-450, 2011.

Nima Razavi, Juergen Gall, and Luc J. Van Gool. Backprojection revisited:

Scalable multi-view object detection and similarity metrics for detections. In
ECCV (1), pages 620633, 2010.

S. Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D. Mullin, and James M.
Rehg. On the design of cascades of boosted ensembles for face detection. In-
ternational Journal of Computer Vision, 77(1-3):65-86, 2008.

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In
CVPR, pages 73-80, 2010.

Sudheendra Vijayanarasimhan and Kristen Grauman. Efficient region search
for object detection. In CVPR, pages 1401-1408, 2011.

Esa Rahtu, Juho Kannala, and Matthew Blaschko. Learning a category inde-
pendent object detection cascade. In ICCV, 2011.

Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond

sliding windows: Object localization by efficient subwindow search. In CVPR,
2008.

Stuart Andrews, loannis Tsochantaridis, and Thomas Hofmann. Support vector

machines for multiple-instance learning. In NIPS, pages 561-568, 2002.

Paul A. Viola, John C. Platt, and Cha Zhang. Multiple instance boosting for
object detection. In NIPS, 2005.

Piotr Dollar, Boris Babenko, Serge J. Belongie, Pietro Perona, and Zhuowen
Tu. Multiple component learning for object detection. In ECCV, volume 2,
pages 211-224, 2008.

Zhe Lin, Guang Hua, and Larry S. Davis. Multiple instance feature for robust
part-based object detection. In CVPR, 2009.

BIBLIOGRAPHY 163

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning. MIT press Cambridge, MA:, 2006.

Meng Wang and Xiaogang Wang. Automatic adaptation of a generic pedestrian
detector to a specific traffic scene. In CVPR, 2011.

Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing visual
features for multiclass and multiview object detection. [EEE Trans. Pattern
Anal. Mach. Intell., 29(5):854-869, 2007.

Nima Razavi, Juergen Gall, and Luc Van Gool. Scalable multi-class object
detection. In CVPR, 2011.

Patrick Ott and Mark Everingham. Shared parts for deformable part-based mod-
els. In CVPR, 2011.

Ruslan Salakhutdinov, Antonio Torralba, and Josh Tenenbaum. Learning to
share visual appearance for multiclass object detection. In CVPR, pages 1481-
1488, 2011.

Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object
category detection. In ICCV, 2011.

Guo-Jun Qi, Charu Aggarwal, Yong Rui, Qi Tian, Shiyu Chang, and Thomas
Huang. Towards cross-cateogory knowledge propagation for learning visual
concepts. In CVPR, 2011.

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to

detect unseen object classes by between-class attribute transfer. In CVPR, 2009.

Sung Ju Hwang, Fei Sha, and Kristen Grauman. Sharing features between ob-
jects and their attributes. In CVPR, 2011.

Kristin P. Bennett and Emilio Parrado-Hernandez. The interplay of optimiza-
tion and machine learning research. Journal of Machine Learning Research,
7:1265-1281, 2006.

John C. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Technical report, Microsoft Research, 1998.

T. Joachims. Making Large-Scale SVM Learning Practical, chapter Advances
in Kernel Methods - Support Vector Learning, pages xx—xx. MIT Press, 1999.

164 BIBLIOGRAPHY

[105] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method
for large-scale 12-loss linear support vector machines. Journal of Machine
Learning Research, 9:1369-1398, 2008.

[106] Thorsten Joachims. Training linear svms in linear time. In ACM SIGKDD,
2006.

[107] Rong-En Fan, Pai-Hsuen Che, and Chih-Jen Li. Working set selection using
second order information for training support vector machines. Journal of Ma-
chine Learning Research, 6:1889-1918, 2005.

[108] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. Journal of Machine
Learning Research, 9:1871-1874, 2008.

[109] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane
training of structural svms. Machine Learning, 77:27-59, 2009.

[110] Matthew B. Blaschko and Christoph H. Lampert. Learning to localize objects
with structured output regression. In ECCV, volume 1, pages 2-15, 2008.

[111] Chang Huang, Haizhou Ai, Bo Wu, and Shihong Lao. Boosting nested cascade
detector for multi-view face detection. In ICPR (2), pages 415-418, 2004.

[112] Peng Wang, Chunhua Shen, Nick Barnes, Hong Zheng, and Zhang Ren. Asym-
metric totally-corrective boosting for real-time object detection. In ACCYV, vol-
ume 1, pages 176-188, 2010.

[113] Chris J.C. Burges. Simplified support vector decision rules. In ICML, 1996.

[114] Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting
methods for mixture of kernels. In ACM SIGKDD, 2004.

[115] Olivier Duchenne, Armand Joulin, and Jean Ponce. A graph-matching kernel
for object categorization. In ICCV, pages 1792-1799, 2011.

[116] Lubomir D. Bourdev and Jitendra Malik. Poselets: Body part detectors trained
using 3d human pose annotations. In /CCV, pages 1365-1372, 2009.

[117] Tae-Kyun Kim and Roberto Cipolla. Mcboost: Multiple classifier boosting for
perceptual co-clustering of images and visual features. In Advances in Neural

Information Processing Systems 22, pages 841-848, 20009.

BIBLIOGRAPHY 165

[118] Devi Parikh and C. Lawrence Zitnick. Find the weakest link in person detectors.
In CVPR, 2011.

[119] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning, 2nd Edition. Springer-Verlag, 2008.

[120] Zhouyu Fu, Antonio Robles-Kelly, and Jun Zhou. Milis: Multiple instance
learning with instance selection. [EEE Trans. Pattern Anal. Mach. Intell.,
33(5):958-977, 2011.

[121] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian
detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal.
Mach. Intell., 34(4):743-761, 2011.

[122] Xiaoyu Wang, Tony X. Han, and Shuicheng Yan. An hog-lbp human detector
with partial occlusion handling. In ICCV, pages 32-39, 2009.

