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Abstract

This thesis concentrates on the study of distributed broadband beamforming sys-

tem and source localization problem.

The main contributions of this thesis consist of the following four parts.

1. For the design of distributed broadband beamforming system, each micro-

phone is equipped with wireless communications capability. It is designed

such that the error between the actual response and the desired response

is minimized which is then formulated as a minimax optimization prob-

lem. Since we find that the performance of the optimized designs is very

sensitive to the perturbations in microphone locations, we first use sensor

network technology which solved by semi-definite programming method to

estimate the microphone locations, and then incorporate it into the design

process. We propose a suitable robust formulation as a remedy to regain

the performance. The minimax optimization problem is transformed into a

semi-definite programming problem so that interior point algorithms can be

applied. We illustrate the proposed method by several designs and demon-

strate that this approach is essential to regain accuracy in the optimized

designs.

2. The broadband beamforming design problem is formulated as a non-strictly

convex semi-infinite programming problem. The approach to solve it is that

adding a small perturbation quadratic function to the objective function

to make it strictly convex. We demonstrate that the solution of the per-
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turbation semi-infinite programming problem approximates the solution of

the original problem as the perturbation going to 0. The new exchange

algorithm is applied successfully to the filter design problem.

3. We present a new method to solve the source localization problem with time-

difference information. Fist we formulate a mixed SDP-SOCP relaxation

model and then state how to obtain the exact solution from the solutions

of the mixed SDP-SOCP relaxation model and the second order polyno-

mial equation. The estimator properties for the true source location under

noises is proposed. We also give bi-level method to solve the source localiza-

tion problem that formulated only as a semi-definite programming. Then a

mixed SDP-SOCP relaxation model for source localization combined with

sensor network localization problem is studied, also we give some statistical

analyses for it. Many illustrated examples demonstrate those approaches

can be applied successfully and some comparisons are presented.

4. We obtain a representation for the solution of the mixed SDP-SOCP model

and the characterization such that the mixed SDP-SOCP model has an

exact relaxation in two-dimensional case. We derive the geometry of the

localizable region for the proposed mixed model. The characterization shows

that the source localization with some time-difference information can be

solved exactly by the mixed SDP-SOCP relaxation model in a larger region

than the triangle region determined by three points.
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Chapter 1

Introduction

1.1 Background

Current advancement of wireless communications has made its deployment in

wider perspective. This facilitates the development of distributed systems, such

as a microphone network, which overcomes some of the technical problems from

a wired system by providing greater freedom of movements to the speaker and

avoidance of cabling problems common with wired microphones caused by con-

stant moving and stressing the cables. There are numerous applications that

can be built on a microphone network. Speech is the preferred natural interface

for controlling equipment in households or factories. However, signal degrada-

tion poses a serious problem in many environments, which affects the accuracy of

the speech recognition and voice control system. As a result, beamforming tech-

niques, a signal processing technique used in sensor arrays for directional signal

transmission or reception, are required to enhance the received signals.

Broadband beamformers (Veen and Buckley [1988] Trees [2002] Khosravy et al.

[2009] Zhang et al. [2010b]) have been studied extensively due to their wide appli-

cations in many areas such as radar, sonar, wireless communications, biomedicine,

speech and acoustics. When microphone arrays are deployed, many beamforming
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algorithms exist (for example, Hoshuyama et al. [1999] Gannot et al. [2001] Chan

and Chen [2007]) to reduce the level of localized and ambient noise signals from

the desired direction via spatial filtering, which plays an important role in noise

reduction and speech enhancement. For many applications, such as video con-

ference and mobile telephony, the speaker doesn’t stand very far from the array.

There are various algorithms dedicated for the design of this kind of beamformer

in the literature. In (Kennedy et al. [1998]), the near-field-far-field reciprocity

relationship is derived and applied to design near-field beamformers via far-field

design techniques. An interesting approach is presented in (Ryan and Goubran

[2000]). It makes use of a signal propagation vector representing an ideal point

source of acoustic radiation. When the desired frequency response is known, mul-

tidimensional filter design techniques can be applied. In (Nordebo et al. [1994]),

the minimax problem is formulated as a quadratic programming problem and the

SQP method is applied. A penalty function method is developed in (Nordholm

et al. [1998]) to formulate the problem as an unconstrained nonlinear optimiza-

tion problem. This method is modified in (Lau et al. [1999]) by replacing the

penalty function with a root-catching method. In (Yiu et al. [2003]), the l1 norm

measure and the real rotation theorem are applied to formulate the problem as a

semi-infinite linear programming problem.

For many applications, the design problem can be formulated as a minimax

optimization problem. Similar to many filter design problems (Dam et al. [2000]

Yu et al. [2005] Lee et al. [2006]), large-scale linear programming techniques (for

example, Lim and Lian [1993] Choi and Lim [2008]) are often used. When the

problem size increases as a result of an increase in the number of filters as well

as the filter lengths, or a refinement in the discretization of the frequency-space

domain, the number of constraints will be very large and these problems will be

very expensive to solve if the methods above are applied. Hence, an efficient

algorithm is necessary.

Semi-definite programming (SDP) is a generalization of linear programming

(LP) where the decision variables are arranged in a symmetric matrix instead of

a vector, and the non-negative orthant is replaced by the cone of positive semi-

— 2 —
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definite matrices (Wolkowicz et al. [2003] Li et al. [2003] Huang et al. [2003]).

Since interior point algorithms can be employed, semi-definite programming has

polynomial time computational complexity and can be solved efficiently. It has

also been successfully applied to many signal processing problems, such as fre-

quency response masking filter design (Lu and Hinamoto [2003]), antenna design

(Wang et al. [2003]), filter bank design (Kha et al. [2007]), and sensor network

(Biswas and Ye [2004]), achieving very good performance. Hence, in this thesis,

first we will apply the SDP method for solving the broadband beamformer design

problem.

Semi-infinite programming (SIP) is an optimization problem with a finite num-

ber of variables and an infinite number of constraints (Goberna and López [1998;

2002] Hettich and Kortanek [1993] Reemsten and Górner [1998]). It has many

applications in approximation theory (Glashoff and Roleff [1981]), optimal con-

trol (Liu et al. [2001]), and engineering problems such as optimum filter design in

signal processing (Potchinkov and Reemsten [1995]). The difficulty for solving the

SIP is that it has infinite number of constraints. There are two common method

to solve it, one is the discretization method (Hettich Still [2001] Teo et al. [2000]),

the other is the reduction based method (Hettich and Kortanek [1993] Reemsten

and Górner [1998]). For discretization methods, they are computationally costly

when the number of discretization is very large. On the other hand, the reduction

method may need strong assumptions. However, another families called exchange

methods are also very important and usually be used (Cheney [1982] Laurent and

Carasso [1978] Hettich and Gramlich [1990] Tichatschke and Nebeling [1988] Kor-

tanek and No [1993] Betró [2004]). Recently, Zhang, Wu and López (Zhang et al.

[2010a]) proposed a new exchange method for the convex SIP problem (P) whose

main feature is that only those active constraints with positive Lagrange multipli-

ers are kept, and no global optimization needs to be carried out at each iteration

to detect the (almost) most violated constraint. The algorithm associated with

the method terminates in a finite iterations needs to be under the condition that

x → f(x) or x → g(x, s) is strictly convex. For solving the non-strictly convex

cases, the idea is that we add a small perturbation to the objective function in

order to let it be strictly convex. Thus in this thesis, we will propose a pertur-

— 3 —
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bation method of exchange algorithm for solving the general convex semi-infinite

programming (CSIP) problems. We will show that under some assumptions, an

approximation solution of original problem can be obtained in a finite of iterations

by the perturbation exchange algorithm. Then we will use this exchange method

to solve the broadband beamformer design problem.

One of the assumptions in applying the aforementioned design techniques is

that the locations of the microphones are required to be measured exactly. In

practice, the microphones could be scattered around and could even be moving

around occasionally. If very precise measurements are needed every time, this

will make the design process very tedious and repetitive. If wireless microphones

are deployed instead, we just need to make use of the accurate positions of a few

anchor nodes in the network together the pairwise distance measurements between

any two nodes to estimate the locations of the wireless microphones. Since the

distance measurements always contain noise and the effect of the measurement

uncertainty usually depends on the geometrical relationship between sensors which

is not known a priori, optimization techniques are often deployed to find the

best estimates. Here, we also adopt the SDP method for solving the problem

(Biswas et al. [2006a] So and Ye [2007]). The basic idea behind the technique is

to convert the nonconvex quadratic distance constraints into linear constraints by

introducing a relaxation to remove the quadratic term in the formulation. The

performance of this technique is highly satisfactory compared to other techniques

(Biswas et al. [2006b] Wang et al. [2008a]). Very few anchor nodes are required to

accurately estimate the position of all the unknown nodes in a network. Also the

estimation errors are minimal even when the anchor nodes are placed arbitrarily

within the network.

Owing to perturbations in the estimated sensor locations, a robust formulation

is required to allow for certain amount of errors. In fact, the designed beamformers

turn out to be very sensitive to errors in the microphone locations. In this thesis,

the sensor network technology will be employed and incorporated into broadband

beamforming design. In particular, an appropriate robust formulation is proposed

to give more flexibility in the designs. We will demonstrate by examples that the
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proposed robust approach is essential to regain the accuracy in the designs if

microphone locations are indeed erroneous.

Time difference of arrival estimation (TDOA) between signals received at two

microphones has been considered to be a useful parameter for a variety of applica-

tions such as acoustic source localization, speech recognition and radar communi-

cation. There are various techniques that can be used to compute the TDOA. The

most basic method to solve this problem is cross-correlation (CC) method (Carter

[1993]) which first cross-correlates the two received signals and then consider the

maximum peak in the output as the estimation. To improve the the accuracy and

moderate computational complexity of the result, generalized cross-correlation

method which is to find the maximum peak in the output of cross correlation

between the filtered versions of two received signals is proposed by Knapp and

Carter in 1976 (Knapp and Carter [1976]). To choose the weighting function, there

are two common methods. One is the phase transform (PHAT) and the other is

maximum likelihood estimator (ML). Also there are some other algorithms such

as average square difference function (ASDF), adaptive algorithms, MUSIC (Chu

and Mitra [1999]), ESPRIT (Jakobsson et al. [1998]) and wavelets (Barsanti and

Tummala [2003]).

Acoustic source localization, aiming to locate the sound source given some

measurements, remains to be an important problem in the signal processing lit-

erature owing to their importance to many applications including radar, sonar,

teleconferencing, wireless communications and voice control. It can be solved

based on TDOA, or angle-of-arrival (AOA) measurements, or a combination of

them. TDOA information has been stated on the above. In the AOA approach,

each sensor node is equipped with an antenna array which can be costly, thus

using AOA to estimate the source location is less practical. Typically, the source

location is estimated by two stages. In the first stage, the TDOA between each

pair of microphones is estimated and then transformed into distance difference

measurements between sensors, resulting in a set of nonlinear hyperbolic equa-

tions. In the next stage, efficient algorithms are needed to find the intersection

of these nonlinear hyperbolic equations and obtain an estimate to the location of
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the source. As a matter of fact, finding the intersection of hyperbolic equations is

a highly nonlinear problem. For many years, numerous iterative algorithms have

been proposed for solving this problem, including the maximum likelihood estima-

tion method (Hahn and Tretter [1973]) and the constrained optimization method

(Yang et al. [2010]). Usually linear approximation and numerical techniques are

used in these approaches. However, finding a good initial point to avoid local

minima is a difficult task, and therefore the convergence can not be guaranteed.

To avoid the reliance on a good initial solution guess, estimators with some kind

of closed-form formulas are also widely adopted (Smith and Abel [1987] Chan and

Ho [1994] Gillette and Silverman [2008]).

Another approach is to employ convex relaxation to convert the problem into

a convex optimization problem. In this way, very efficient algorithms can be de-

rived. In this thesis, we will also apply the SDP method for solving the source

localization problem. Another method is the second order cone programming

(SOCP) (Tseng [2007]) which has been applied successfully to localization prob-

lems. However, for the SOCP relaxation, it has been proven in (Tseng [2007]) that

the optimized source location must lies in the convex hull of the microphone array.

It is unfavourable for acoustic localisation since the speaker is usually standing in

front of the microphone array instead of surrounded by the microphones.

Motivated by the works in SDP and SOCP in the literature, in this thesis,

we will study the convex relaxation method for solving the source localization

problem extensively. The basic idea behind the convex relaxation technique also

comes from (Biswas et al. [2006a]). In order to achieve better solution, it is pos-

sible to couple the idea of SOCP together in the formulation. In view of this,

a novel mixed SDP-SOCP relaxation model is proposed. We derive the charac-

teristics of the optimal solution to the mixed SDP-SOCP method. Furthermore,

for comparison with existing convex relaxation methods, we define the notion of

a localizable region, in the sense that the source location can be sought exactly

when the errors in TDOA are zeroes. We aim to propose a standard in compar-

ing different convex relaxation methods using this defined localizable region. For

localization problems on a plane, based on the derived solution characteristics,
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we derive the exact geometry for this localizable region for the proposed mixed

model, and show that the region is larger than the convex hull formed by the

microphone array alone and also larger than other convex relaxation methods.

This is important for applications when the source is staying in front of the ar-

ray instead of surrounded by the array. We continue to collect experimental data

with two different array configurations and demonstrate our proposed method can

indeed find very accurate estimates to the locations.

1.2 Main results

In Chapter 2, we study the design of distributed broadband beamforming system.

In the configuration, we assume that each microphone is equipped with wireless

communications capability. A broadband beamformer can then be designed such

that the error between the actual response and the desired response is minimized.

Many algorithms have been proposed to solve this optimization problem, similar

to many filter design problems, large-scale linear programming techniques are

often used. But the problem will be very expensive to solve if the number of

filters as well as the filter lengths increase. Therefore we propose the semi-definite

programming method which has polynomial time computational complexity and

can be solved efficiently since the interior point algorithms can be employed. Once

their mutual distance information are collected, the sensor network technology is

used to estimate sensor microphone locations and is incorporated into the design

process. The sensor network is also solved by the semi-definite programming

method. We have studied the performance of the optimized designs and found

that it was very sensitive to perturbations in microphone locations. We then

propose a suitable robust formulation as a remedy to regain the performance.

We illustrate the proposed method by several designs and demonstrate that this

approach is essential to regain accuracy in the optimized designs.

For the design of distributed broadband beamforming system, we also apply

the l1 norm measure and the real rotation theorem to formulate it as a non-strictly
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convex semi-infinite linear programming problem. Zhang, Wu and López (Zhang

et al. [2010a]) proposed an exchange method for the strictly convex SIP prob-

lem. For our non-strictly convex cases, we add a small perturbation quadratic

function to the objective function in order to let it be strictly convex. We pro-

pose a perturbation method of exchange algorithm for solving the general convex

semi-infinite programming (CSIP) problems. We prove that the solution of the

perturbation semi-infinite programming problem approximates the solution of the

original problem as the perturbation going to 0. The exchange algorithm for

this semi-infinite programming program is proposed, whose main feature is that

only those active constraints with positive Lagrange multipliers are kept, and no

global optimization needs to be carried out at each iteration to detect the (almost)

most violated constraint. This method is applied successfully to the broadband

beamformer design problem.

The time of difference of arrival between each pair of microphones is estimated

and transformed into distance difference measurements between sensors, resulting

in a set of nonlinear hyperbolic equations. Sound Source is localized from these

hyperbolic equations which is a highly nonlinear problem and difficult to solve.

In chpater 3, we propose a novel formulation called the mixed SDP-SOCP relax-

ation model for source localization with time-difference information. We present

a method to obtain the exact solution for the source localization. The method

shows that the exact solution for the source localization can be obtained from the

solutions of the mixed SDP-SOCP relaxation model and the second order polyno-

mial equation. We also give the estimator properties for the true source location

under noises. Moreover, the mixed SDP-SOCP relaxation model for source local-

ization combined with sensor network localization problem is presented, and some

statistical analyses are given.

In (Tseng [2007]), we know for single SOCP relaxation, the optimal solution

must be in the convex hull of microphone array. In chapter 4, we study some

properties for the solution of the mixed SDP-SOCP model in two-dimensional

case. We obtain a representation theorem for the solution of the mixed SDP-

SOCP model and the characterization such that the mixed SDP-SOCP model
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has an exact relaxation. The characterization theorem shows that the source

localization with some time-difference information can be solved exactly by the

mixed SDP-SOCP relaxation model in a larger region than the triangle region

determined by three points, which means the exact solution region by our mixed

SDP-SOCP model is not only the convex hull formed by the microphone array,

but also outside the convex hull.

For illustration, many examples are presented in Chapter 5. In Chapter 6, we

give four methods to find the time difference of arrival (TDOA), and use the cross

correlation method to solve our actual problem.

1.3 Preliminaries

Positive semidefinite matrices

A symmetric n×n matrix A is said to be positive semidefinite, denoted by A ≽ 0,

if xTAx ≥ 0 for all x ∈ Rn. On the other hand, a symmetric matrix A is said to

be positive definite, denoted by A ≻ 0, if xTAx > 0 for all non-zero x ∈ Rn.

The next two theorems present several equivalent characterizations of sym-

metric positive semidefinite and positive definite matrices.

Theorem 1.3.1 Let A be an n × n real symmetric matrix of rank r. Then the

following statements are equivalent:

1. A is positive semidefinite.

2. All eigenvalues of A are nonnegative.

3. There exists an n× r matrix S such that A = SST

4. All principal minors of A are nonnegative.
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Theorem 1.3.2 Let A be an n × n real symmetric matrix, then the following

statements are equivalent:

1. A is positive definite.

2. All eigenvalues of A are positive.

3. There exists a nonsingular matrix S such that A = SST .

4. All leading principal minors of A are positive.

Theorem 1.3.3 Let A be an n × n matrix and let B be a nonsingular n × n

matrix. Then A ≽ 0 if and only if BTAB ≽ 0.

Proof. Assume that A ≽ 0 and let x be any vector in Rn. Then xTBTABx =

(Bx)TA(Bx) ≥ 0 since A ≽ 0. Therefore, BTAB ≽ 0.

On the other hand, assume that BTAB ≽ 0, let x be any vector in Rn. Since B

is nonsingular, there exists y ∈ Rn such that By = x. Thus xTAx = yTBTABy ≥
0 since BTAB ≽ 0. Therefore, A ≽ 0.

The next theorem, known as Schur’s Complement Lemma, is well known.

Theorem 1.3.4 (Schur) Let

A =

A1 A2

AT
2 A3


be a symmetric matrix, and assume that A1 ≻ 0. Then A ≽ 0 if and only if

A3 − AT
2A

−1
1 A2 ≽ 0.

Proof. I 0

−AT
2A

−1
1 I

A1 A2

AT
2 A3

I −A−T
1 A2

0 I

 =

A1 0

0 A3 − AT
2A

−1
1 A2

 .
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Since

I −A−T
1 A2

0 I

 is nonsingular, then it follows from Theorem 1.3.3 that

A is positive semidefinite if and only if A3 − AT
2A

−1
1 A2 ≽ 0.

Semidefinite programming

Semidefinite programming (SDP) (Wolkowicz et al. [2003]) is a generalization of

linear programming (LP) where the decision variables are arranged in a symmetric

matrix instead of a vector, and the non-negative orthant is replaced by the cone

of positive semidefinite matrices. Thus the following is an SDP problem.

inf tr(CX)

s.t. tr(AiX) = bi, for i = 1, · · · ,m

X ≽ 0,

(1.3.1)

where C,A1, . . . , Am are given n × n symmetric matrices, b1, . . . , bm are given

scalars, and X is an n × n symmetric positive semidefinite matrix whose entries

are the decision variables.

Semidefinite programming has been a very active area of research since the

early 1990’s for its many important applications in several areas of sciences and

engineering especially in the areas of combinatorial optimization and control the-

ory. One of the early successful applications of SDP in combinatorial optimization

was the Goemans-Williamson’s randomized algorithm (Goemans and Williamson

[1995]) for the well-known max-cut problem.

Semi-infinite programming

Semi-infinite programming is an optimization problem with a finite number of

variables and an infinite number of constraints, or an infinite number of variables
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and a finite number of constraints. It can be stated as follows:

min f(x)

s.t. g(x, s) ≤ 0, ∀s ∈ Ω
(1.3.2)

where f : Rn → R and g : Rn ×Ω → R are continuous functions, and Ω is a given

nonempty compact set in Rp.

Second order cone programming

Second order cone programming (SOCP) is a convex optimization problem in

which a linear function is minimized over the intersection of an affine linear mani-

fold with the Cartesian product of second order (Lorentz) cones. We define second

order cone:

Q = {x = (x0, x̄) ∈ Rn : x0 ≥ ∥x̄∥},

where ∥ · ∥ is the standard Euclidean norm.

The second order cone programming can be written as follows:

min cT1 x1 + · · · cTr xr

s.t. A1x1 + · · ·+ Arxr = b

xi ≽Q 0, for i = 1, · · · , r

(1.3.3)

where ci ∈ Rni , Ai are given m × ni matrices, b is a given m-dimension vector,

and xi are ni-dimension decision variables.

We denote arrow-shaped matrix Arw(x) as:

Arw(x) =

x0 x̄T

x̄ x0I


Since Arw(x) ≽ 0 if and only if either x = 0, or x0 > 0 and the Schur complement

x0 − x̄T (x0I)
−1x̄ ≥ 0. It means that x ≽Q 0 if and only if Arw(x) is a positive

semidefinite matrix and x ≻Q 0 if and only if Arw(x) is a positive definite matrix.

Thus we can see that the SOCP is a special case of semidefinite programming.
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Chapter 2

Design of distributed

beamforming system using

semi-definite programming and

semi-infinite programming

2.1 Introduction

In this chpater, broadband beamformers design with wireless microphone array

is studied. For many applications, the design problem can be formulated as a

minimax optimization problem. Here, we use an efficient method called Semi-

definite programming (SDP) to solve it. Then we use sensor network technique

to estimate the wireless microphones, which just need a few anchor nodes in the

network together with the pairwise distance measurements between any two nodes.

SDP method is also used for solving the problem. Owing to perturbations in the

estimated sensor locations, an appropriate robust formulation is represented to

allow for certain amount of errors. The sensor network technology is incorporated

into broadband beamforming design. We will demonstrate by examples that the

13
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proposed robust approach is essential to regain the accuracy in the designs if

microphone locations are indeed erroneous.

Zhang, Wu and López (Zhang et al. [2010a]) proposed an exchange method

for the strictly convex SIP problem. The algorithm associated with the method

terminates in a finite iterations needs to be under some strictly convex conditions.

Our filter design problem can be formulated as a non-strictly convex semi-infinite

programming (SIP) problem. Because this SIP problem is not strictly convex,

the exchange method in (Zhang et al. [2010a]) can not be directly applied to the

filter design problem. For solving the non-strictly convex cases, our idea is to

add a small perturbation quadratic function to the objective function in order

to let it be strictly convex. We will prove in this chapter that the solution of

the perturbation SIP problem approximates the solution of the original problem

as the perturbation going to 0. The method is applied successfully to the filter

design problem in the chapter.

The rest of the paper is organized as follows. In Section 2, we formulate the

wireless beamformer design problem and the localization problem of microphones.

Then, we introduce its corresponding robust problem. We transform all the prob-

lems into equivalent SDP problems. For illustration, several examples are solved.

In Section 3, a new SIP problem associated with the filter design problem is for-

mulated. A perturbation method and the convergence theorem of general convex

semi-definite programming problem are presented. The application of the method

to the filter design problem is given.
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2.2 Design of distributed beamforming system

using semi-definite programming

2.2.1 Formulation

The structure of a wireless near-field broadband beamformer can be found in

Figure 2.1, where the positions of microphones can be arbitrary and the sound

signal is received by the microphone array and processed by the FIR filters behind.

FIR Filter

+Source
Output

FIR Filter

FIR Filter

FIR Filter

FIR Filter

Figure 2.1: The structure of a wireless near-field beamformer.

We assume that there are N elements in the array. Using a simple spherical

model, the transfer function from the source point r to the i-th element of the

broadband beamformer is given by

Ai(r, f) =
1

∥r − ri∥
e−j2πf∥r−ri∥/c, (2.2.1)

where r is the position vector of the source signal, ri is the position vector of the

i-th microphone, f is the frequency, and c is the sound speed. Then, the array

response vector is therefore given by

a(r, f) = (A1(r, f), . . . , AN(r, f))
ᵀ. (2.2.2)

Let each microphone signal be sampled at a rate of fs, and suppose that each FIR
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filter has L taps. Denote the filter response vector by

d0(f) =
(
1, e−j2πf/fs , . . . , e−j2πf(L−1)/fs

)ᵀ
(2.2.3)

and the filter coefficients by

w = (wᵀ
1 , . . . ,w

ᵀ
N)

ᵀ, (2.2.4)

where

wi = (wi(0), . . . , wi(L− 1))ᵀ, i = 1, . . . , N,

then the actual response of the broadband beamformer is given by

G(r, f) = wᵀd(r, f)

with

d(r, f) = a(r, f)⊗ d0(f),

where ⊗ denotes the Kronecker product and the dimension of w is n = N × L.

Let Gd(r, f) be the specified desired response of the broadband beamformer,

and consider a region Ω = ∪m
i=1Ωi in the space-frequency domain where each Ωi

is a convex set and Ωi ∩Ωj = ∅ for i ̸= j. Then, the minimax design problem can

be formulated as

min
w∈Rn

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)|.

Obviously, if the term |wᵀd(r, f) − Gd(r, f)| above is replaced by |wᵀd(r, f) −
Gd(r, f)|2, the optimal solution will not be changed. Hence, we can formulate the

filter design problem as

Problem 2.2.1 Find a coefficient vector w ∈ Rn of the FIR filters to minimize

the following cost function

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)|2. (2.2.5)

For wireless microphones, since they can be placed in anywhere, it is more

practical if we can estimate the locations spontaneously. In fact, the locations of

the microphones can be estimated by a method whose principle is the same as
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the localization problem in sensor network. That is, to estimate the locations of

the microphones, we need to have some points whose locations are known. These

points are called anchors and can be denoted by a = {ak :∈ Rh, k ∈ M (1)}, where
M (1) is the index set of the anchors and h is the dimension which can be 1, 2

or 3, depending on the structure of the anchors. The unknown microphones are

called sensors, which can be denoted by r = {rj :∈ Rh, j ∈ M (2)}, where M (2) is

the index set of the sensors. An example of sensors and anchors can be seen in

Figure 2.2, where three diamond points are the anchors and two circle points are

the sensors.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.9

1

 

 

anchor
sensor

Figure 2.2: An example of sensor network.

For every pair of points, we can estimate the distance. That is, we have

Euclidean distance measures d̂kj between anchor ak and sensor rj for some k, j,

and d̂ij between sensor ri and sensor rj for some i < j. Denoting Na = {(k, j) :
k ∈ M (1), j ∈ M (2)} and Nr = {(i, j) : i < j, i ∈ M (1), j ∈ M (1)}, we have

∥ak − rj∥2 = d̂2kj ∀(k, j) ∈ Na,

∥ri − rj∥2 = d̂2ij ∀(i, j) ∈ Nr.
(2.2.6)

From these information of distances, we can then estimate the locations of the

sensors. The localization problem is to find the sensor coordinates r such that

(2.2.6) is satisfied. The localization problem is equivalent to the optimization
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problem below:

Problem 2.2.2 Find the locations r of the sensors to minimize

F (r) =
∑

(i,j)∈Nr

∣∣∣∥ri − rj∥2 − d̂2ij

∣∣∣+ ∑
(k,j)∈Na

∣∣∣∥ak − rj∥2 − d̂2kj

∣∣∣ . (2.2.7)

Thus, we can find the locations r of the sensors by optimizing the cost function

(2.2.7). If the optimal value F ∗ is zero, then the solution obtained is the exact

locations. However, in most cases, the optimal value F ∗ is strictly greater than

zero. To see this, we suppose that the number of a is m. Then, the number of

Na is mN and the number of Nr is N(N − 1)/2. Hence, the total number of

the equalities in (2.2.6) is mN + N(N − 1)/2. On the other hand, the number

of decision variables is hN . Then, when mN + N(N − 1)/2 > hN , that is,

m+ (N − 1)/2 > h, this problem is over-determined. Since h ≤ 3, this condition

is satisfied in most cases. Hence, the optimal value of Problem 2.2.2 is strictly

greater than zero and the obtained locations are not exact in most cases. Since

the locations r is not exact and the performance of the designed beamformer is

very sensitive to the errors in the locations, a robust design is needed.

Similar to Problem 2.2.1, we consider a corresponding robust problem where

the location vector contains certain uncertainties. Denote the position vector by

r̃ = p(r, θ), where r is a position vector in Problem 2.2.1 and θ ∈ [−η, η] is the

parameter for uncertainty. Without loss of generality, we define p(r, 0) = r. We

can formulate the robust filter design problem as

Problem 2.2.3 Find a coefficient vector w ∈ Rn of the FIR filters to minimize

the following cost function

max
θ∈[−η,η]

max
(r,f)∈Ω

|wᵀd(r̃, f)−Gd(r̃, f)|2. (2.2.8)

Both Problem 2.2.1 and Problem 2.2.3 are nonlinear minimax optimization prob-

lems. After the discretization of the space-frequency domain Ω̃ = [−η, η] × Ω,
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gradient-based methods can be applied to solve for numerical solutions. However,

if the discretization of Ω̃ is very large, these problems become very expensive

to solve. Thus, an algorithm with polynomial time computational complexity is

desirable.

2.2.2 Methodology

Robust broadband beamformer design

The cost functions in Problem 2.2.1 and Problem 2.2.3 are quadratic. They can

be rearranged as SDP problems as follows. Expanding the complex functions

d(r, f) = d1(r, f) + jd2(r, f),

Gd(r, f) = Gd1(r, f) + jGd2(r, f),

and denoting

u(r, f) = (wᵀd1(r, f)−Gd1(r, f)),

v(r, f) = (wᵀd2(r, f)−Gd2(r, f)),

by adding an additional variable z, Problem 2.2.1 becomes

min
w∈Rn,z∈R

z

s.t. u(r, f)2 + v(r, f)2 ≤ z, ∀(r, f) ∈ Ω. (2.2.9)

We will make use of the following theorem proven in (Chen [2001]):

Theorem 2.2.1 Let A be an n × n real symmetric matrix of rank r. Then, the

following statements are equivalent:

1. A is positive semi-definite.

2. All eigenvalues of A are nonnegative.

3. There exists an n× r matrix S such that A = SST .
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4. All principal minors of A are nonnegative.

By Theorem 2.2.1, the constraint in the above problem holds if and only if

Φ(z,w, r, f) =


z u(r, f) v(r, f)

u(r, f) 1 0

v(r, f) 0 1

 ≽ 0, ∀(r, f) ∈ Ω, (2.2.10)

where “ ≽ ” denotes the positive semi-definite symbol. Denote

G(z,w) = diag{Φ(z,w, r1, f 1), . . . ,Φ(z,w, rk, fk)}, (2.2.11)

where Ωd = {(r1, f 1), . . . , (rk, fk)} ⊂ Ω is a set of dense grid points. Then, we

transformed Problem 2.2.1 into a SDP optimization problem:

Problem 2.2.4 Find a coefficient vector w ∈ Rn of the FIR filters and z, such

that z is minimized, subject to the constraint

G(z,w) ≽ 0. (2.2.12)

Similarly to Problem 2.2.1, Problem 2.2.3 can also be transformed into an SDP

optimization problem. Denote

G̃(z,w) = diag{Φ(z,w, p(r1, θ1), f 1), . . . ,Φ(z,w, p(rk, θk), fk)}, (2.2.13)

where Ω̃d = {(θ1, r1, f 1), . . . , (θk, rk, fk)} ⊂ Ω̃ is a set of dense grid points. Then,

Problem 2.2.3 is transformed into an SDP optimization problem:

Problem 2.2.5 Find a coefficient vector w ∈ Rn of the FIR filters and z, such

that z is minimized, subject to the constraint

G̃(z,w) ≽ 0. (2.2.14)

Basically, since there is a discretization of the interval [−η, η], Problem 2.2.5 is

more expensive to solve than Problem 2.2.4. However, if η is small, it’s not

necessary to do the whole discretization of the interval [−η, η] and Problem 2.2.5

can be simplified. This can be seen in the next theorem.
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Theorem 2.2.2 Suppose that η is small. Then, for any given coefficients vector

w ∈ Rn and frequency f , we have

max
θ∈[−η,η]

|G(p(r, θ), f)−Gd(p(r, θ), f)|2 =

max
{
|G(p(r,−η), f)−Gd(p(r,−η), f)|2 , |G(p(r, η), f)−Gd(p(r, η), f)|2

}
+ |o(η)|.

(2.2.15)

Proof. Denote H(f) = (H1(f), . . . , HN(f))
ᵀ, where Hi(f) = wᵀ

i d0(f). Then, the

actual frequency response G(p(r, θ), f) can be reformulated as

G(p(r, θ), f) = Hᵀ(f)b(p(r, θ), f). (2.2.16)

Denote the gradient of b(p(r, θ), f) with respect to the parameter θ as

∂b(p(r, θ), f)

∂θ
=

(
∂B1(p(r, θ), f)

∂θ
, . . . ,

∂BN(p(r, θ), f)

∂θ

)ᵀ
. (2.2.17)

Then, since p(r, 0) = r and η is small, we can rewrite G(p(r, θ), f) as

G(p(r, θ), f) = Hᵀ(f)

(
b(r, f) +

∂b(p(r, 0), f)

∂θ
θ

)
+ o(θ). (2.2.18)

Similarly, Gd(p(r, θ), f) can be rewritten as

Gd(p(r, θ), f) = Gd(r, f) +
∂Gd(p(r, 0), f)

∂θ
θ + o(θ). (2.2.19)

Then, we have

|G(p(r, θ), f)−Gd(p(r, θ), f)|2

=

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ + o(θ)

∣∣∣∣2
=

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ

∣∣∣∣2 + |o(θ)|.

(2.2.20)

Note that the first term of the right hand side of (2.2.20) is convex with respect

to θ and the maximum of a convex function exists when θ is in the boundary. Then,
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we have

max
θ∈[−η,η]

∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
θ

∣∣∣∣2
=max

{∣∣∣∣G(r, f)−Gd(r, f) +

(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
η

∣∣∣∣2 ,∣∣∣∣G(r, f)−Gd(r, f)−
(
Hᵀ(f)

∂b(p(r, 0), f)

∂θ
− ∂Gd(p(r, 0), f)

∂θ

)
η

∣∣∣∣2
}

=max
{
|G(p(r,−η), f)−Gd(p(r,−η), f) + o(η)|2 ,

|G(p(r, η), f)−Gd(p(r, η), f) + o(η)|2
}

=max
{
|G(p(r,−η), f)−Gd(p(r,−η), f)|2 ,

|G(p(r, η), f)−Gd(p(r, η), f)|2
}
+ |o(η)|. (2.2.21)

This completes the proof.

By Theorem 2.2.2, if η is small, Problem 2.2.5 can be simplified to

Problem 2.2.6 Find a coefficient vector w ∈ Rn of the beamformer filters and

z, such that z is minimized, subject to the constraint

Ĝ(z,w) ≽ 0, (2.2.22)

where

Ĝ(z,w) = diag{Φ(z,w, p(r1, η), f 1),Φ(z,w, p(r1,−η), f 1),

. . . ,Φ(z,w, p(rk, η), fk),Φ(z,w, p(rk,−η), fk)}. (2.2.23)

Localization of microphones

Let R(= [r1, r2, . . . , rn]) ∈ Rh×N be the unknown matrix. Then, we have

∥ri − rj∥2 = eᵀ
ijR

ᵀReij,

∥ak − rj∥2 =
(
aᵀ
k eᵀ

j

) I

Rᵀ

 [I R]

 ak

ej

 ,
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where eij is the vector with 1 at the i-th position, −1 at the j-th position and

0 elsewhere, ej is the vector with −1 at the j-th position and 0 elsewhere. Let

Y = RᵀR, then (2.2.6) is equivalent to find a symmetric matrix Y ∈ RN×N and

a matrix R ∈ Rh×N such that the following equations are satisfied:

eᵀ
ijY eij = d̂2ij, ∀(i, j) ∈ Nr(
aᵀ
k e

ᵀ
j

) I R

Rᵀ Y

 ak

ej

 = d̂2kj, ∀(k, j) ∈ Na

Y = RᵀR.

(2.2.24)

To relax the sensor network localization problem, we relax Y = RᵀR to Y ≽ RᵀR

which is equivalent to (Boyd et al. [1994]):

Z :=

 I R

Rᵀ Y

 ≽ 0.

Then, the relaxed version of the problem (2.2.24) can be represented as a standard

semi-definite programming model, that is, we need to find a symmetric matrix

Z ∈ R(h+N)×(h+N) such that the following equations are satisfied:

(bᵀ 0ᵀ)Z

 b

0

 = bᵀb, for some vectors b ∈ Rh

(0ᵀ eᵀ
ij)Z

 0

eij

 = d̂2ij, ∀(i, j) ∈ Nr

(
aᵀ
k e

ᵀ
j

)
Z

 ak

ej

 = d̂2kj, ∀(k, j) ∈ Na

Z ≽ 0.

(2.2.25)

The first set of equations in (2.2.25) is to assure that the first h × h submatrix

of Z is I. The number of the vector b depends on the dimension h. If h = 1,

there is only one element in I and the minimum number of b is 1. If h = 2,

since I is symmetric, there are three elements to be determined and the minimum

number of b is 3. If h = 3, there are six elements in the symmetric matrix I to

be determined and the minimum number of b is 6. There are many choices for b.

An example can be seen in Table 2.1.
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h b

1 1

2 (1 0)ᵀ, (0 1)ᵀ, (1 1)ᵀ

3 (1 0 0)ᵀ, (0 1 0)ᵀ, (0 0 1)ᵀ, (1 1 0)ᵀ, (1 0 1)ᵀ, (0 1 1)ᵀ

Table 2.1: A typical choice of the vector b.

A relaxed solution Z can be obtained by solving equations (2.2.25). How-

ever, as we discuss in previous section, the second and third set of equations in

(2.2.25) are not satisfied in most cases and the solution does not exist. There-

fore, we need to consider Problem 2.2.2. To transform Problem 2.2.2 into a

semi-definite programming problem, we add some nonnegative slack variables as

α = {α+
ij, α

−
ij, α

+
kj, α

−
kj :≥ 0,∀(i, j) ∈ Nr,∀(k, j) ∈ Na}. Then, Problem 2.2.2 is

reformulated as

Problem 2.2.7 Find α and the locations r of the sensors, such that the cost

function ∑
(i,j)∈Nr

(α+
ij + α−

ij) +
∑

(k,j)∈Na

(α+
kj + α−

kj)

is minimized, subject to the constraints

∥ri − rj∥2 − d̂2ij = α+
ij − α−

ij, ∀(i, j) ∈ Nr

∥ak − rj∥2 − d̂2kj = α+
kj − α−

kj, ∀(k, j) ∈ Na.
(2.2.26)

With the introduced relaxed matrix Z, Problem 2.2.7 is transformed into a stan-

dard SDP problem:

Problem 2.2.8 Find α and the symmetric matrix Z, such that∑
(i,j)∈Nr

(α+
ij + α−

ij) +
∑

(k,j)∈Na

(α+
kj + α−

kj)
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is minimized, subject to the constraints

(bᵀ 0ᵀ)Z

 b

0

 = bᵀb, for some vectors b ∈ Rh

(0ᵀ eᵀ
ij)Z

 0

eij

− α+
ij + α−

ij = d̂2ij, ∀(i, j) ∈ Nr

(
aᵀ
k e

ᵀ
j

)
Z

 ak

ej

− α+
kj + α−

kj = d̂2kj, ∀(k, j) ∈ Na

Z ≽ 0.

(2.2.27)

Problem 2.2.8 is a semi-definite programming problem which can be solved by any

SDP software. Note that any solution of Problem 2.2.8 has at least rank h. For

a localizable system, we need to impose certain conditions on the rank of Z and

the relaxation of Y . This is summarized in the following.

Definition 2.2.1 The localization problem is localizable if there is a unique local-

ization in Rh and there is no rj ∈ Rh′
, j = 1, . . . , n, where h′ > h, such that

∥ri − rj∥2 = d2ij, ∀(i, j) ∈ Nr∥∥∥∥∥∥
 ak

0

− rj

∥∥∥∥∥∥
2

= d2kj, ∀(k, j) ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space

where the locations of the anchors are augmented to (aᵀ
k 0

ᵀ)ᵀ ∈ Rh′
, k ∈ M (1).

Then, we have the following theorems (proven in So and Ye [2007]):

Theorem 2.2.3 The following statements are equivalent:

1. The problem is localizable.

2. The max rank of the solution Z has rank h.
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3. The solution Z satisfy Y = RᵀR or Trace(Y −RᵀR) = 0.

Theorem 2.2.4 If a problem contains a subproblem that is localizable, then the

submatrix solution corresponding to the subproblem in the SDP solution has rank

h. That is, the SDP relaxation computes a solution that localize all possibly local-

izable unknown sensor points.

From these two theorems, we can see that the solution to the SDP problem

provides the first and second moment information onR (Bertsimas and Ye [1998]).

After we find a solution Z by solving Problem 2.2.8, rj will be the estimated

position of j-th microphone and Yjj −∥rj∥2 will be used as its perturbation. The

total perturbation of the microphones is then given by

Trace(Y −RᵀR) =
N∑
j=1

(
Yjj − ∥rj∥2

)
.

2.2.3 Illustrative examples

In solving the formulated linear SDP problems (Problem 2.2.4, Problem 2.2.5,

Problem 2.2.6 and Problem 2.2.8), interior point algorithms can be applied. There

are several software packages available, such as LMI control toolbox (Gahinet

et al. [1995]), SDPA-M (Fujisawa et al. [2005]), SDPSOL (Wu and Boyd [1996]),

SeDuMi (Sturm [1998]). All these software packages can be applied. In this sec-

tion, we use SDPA-M (Fujisawa et al. [2005]) and the computation was performed

in Matlab.

The proposed method is first used to design several broadband beamformers

with different target performances. At the same time, we will study the perfor-

mances of the designs towards errors in speaker and microphone locations. We

focus on multimedia applications and the desired frequency response function will

include the frequency range of human voice together with a range of positions
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that the speaker is located. We choose the desired response function as

Gd(r, f) =

 e−j2πf( ||r−rc||
c

+L−1
2

T), if (r, f) is in passband region

0, if (r, f) is in stopband region
,

where rc is the coordinate for the center element, the sound speed is c = 340.9m/s

and the sample increment is T = 125µs, that is, the sampling rate is set as 8kHz.

In the first example, we consider an equispaced linear array with five elements.

To avoid spatial aliasing for the frequency of interest, the element spacing is 5cm.

That is, they are located at the coordinates {(−0.1, 0), (−0.05, 0), . . ., (0.1, 0)}.
A seven-tap FIR filter behind each element is used. The passband region and

stopband region are specified on an x-axis parallel with, and y = 1 meter in front

of, the array. The passband region is defined as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz}

while the stopband region is the union of several parts as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 2.5kHz ≤ f ≤ 4kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 2.5kHz ≤ f ≤ 4kHz}.

The complexity of the implementation depends on the discretization of the

space-frequency domain Ω in this problem. Suppose that the number of discretiza-

tion of Ω is given by mx ×mf . Then, for different numbers of discretization, the

comparison of our method with the SIP method (Yiu et al. [2003]) is given in

Table 2.2.

From Table 2.2, we see that our method is more efficient than SIP method

(Yiu et al. [2003]), especially when the number of discretization becomes very

large. The amplitude of the actual response G(r, f) is shown in Figure 2.3.

Next, we consider the robust filter design for the above problem, where there is

a small perturbation in y-axis in both the passband region and stopband region.
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mx ×mf LP SDP

40× 40 17.66s 8.98s

80× 80 299.63s 36.97s

120× 120 1490.25s 85.04s

130× 130 2192.06s 102.89s

Table 2.2: Comparison of the running times (seconds)

Figure 2.3: Amplitude of G(r, f) in Example 1 where N = 5, L = 7 and y = 1m.
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We set y = 1 + θ, θ ∈ [−0.1, 0.1]. Then, the number of discretization of Ω is

denoted by mx × mf × mθ, where mθ is the number of discretization of θ. In

order to demonstrate the design, we employ a grid size of 40 × 40 × 10 for the

discretization. The optimized function value is 0.0388 (-14.11dB). However, if

we apply Theorem 2.2.2 to solve this problem, that is, θ only take values at

the boundary point {−0.1, 0.1}, then the optimal function value obtained is the

same as -14.11dB (in fact, the difference between these two values is less than the

allowable error 10−8).

Figure 2.4: Amplitude of G(r, f) with robust design in Example 1, where N = 5,

L = 7 and y = 1m.

The robust property of the result can be depicted when the source moves.

In Figure 2.4, the filter has been designed with y = 1m. Then, the source is

subsequently displaced to calculate the final amplitude response. Here, when the

source moves to y = 0.9m and y = 1.1m, the amplitudes of the actual response

are depicted in Figure 2.5 and Figure 2.6, respectively. When the speaker location

changes, we found that the optimized performance is very similar with or without

robustness in the formulation. This again confirms the findings in (Yiu et al.

[2003]) that the optimal design is not too sensitive to the movement of speaker.

Next, we consider another case of this robust filter design, where the first
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Figure 2.5: Amplitude of G(r, f) with robust design in Example 1, where N = 5,

L = 7 and y = 0.9m.

Figure 2.6: Amplitude of G(r, f) with robust design in Example 1, where N = 5,

L = 7 and y = 1.1m.
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Figure 2.7: Amplitude of G(r, f) with robust design in Example 1, where N = 5,

L = 7, x1 = −0.15m and x5 = 0.15m.

and the last microphones have perturbations. We set x1 ∈ [−0.15,−0.07] and

x5 ∈ [0.07, 0.15]. In order to demonstrate the design, we employ a grid size of

40 × 40 × 2 for the discretization. The optimized function value is 0.0379 (-

14.21dB). When the x-coordinate of the first and the last microphones move to

−0.15m and 0.15m, respectively, the amplitude of the actual responses are shown

in Figure 2.7.

For this case, if we do not use the robust filter design to design the beam-

former, then the amplitude of the actual response is depicted in Figure 2.8. This

performance is poor, compared to Figure 2.7. Detail of the comparison between

using robust filter design and not using robust filter design is given in Table 2.3.

From the results, it is clear that the optimized beamformer is very sensitive to

perturbations in microphone locations. With the use of the robust formulation,

the optimized performance is recovered in spite of the perturbations.

In the second example, we consider a filter design problem, where there is an

equispaced linear array with seven elements. They are located at the coordinates

{(−0.15, 0), (−0.1, 0), . . ., (0.15, 0)}. A twenty one-tap FIR filter behind each
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Figure 2.8: Amplitude of G(r, f) without robust design in Example 1, where

N = 5, L = 7, x1 = −0.15m and x5 = 0.15m.

Methods Passband gain Passband ripple(dB) Stopband ripple(dB)

1 1.03146 0.20281 −14.23836

2 1.05639 0.36851 −6.87912

3 0.98606 0.34450 −5.32115

Table 2.3: 1. using robust filter formulated in Example 1; 2. using filter formulated

in Example 1 without robust consideration; 3. using traditional LP method (Yiu

et al. [2003]) without robust consideration.
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element is used. The passband region is defined as

{(r, f) : −0.4m ≤ x ≤ 0.4m, 0.15m ≤ y ≤ 0.25m, 0.3kHz ≤ f ≤ 3kHz}

while the stopband region is the union of several parts as

{(r, f) : −0.4m ≤ x ≤ 0.4m, 0.1m ≤ y ≤ 0.3m, 3.3kHz ≤ f ≤ 4kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, 0.1m ≤ y ≤ 0.3m, 0.3kHz ≤ f ≤ 3kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, 0.1m ≤ y ≤ 0.3m, 3.3kHz ≤ f ≤ 4kHz}.

Figure 2.9: Amplitude of G(r, f) in Example 2, where N = 7, L = 21, and

y = 0.2m.

For this example, we can treat it as a robust filter design problem by setting

y = 0.2 + θ, where θ ∈ [−0.1, 0.1]. Then, we can apply Theorem 2.2.2 to solve

this problem. In order to demonstrate the design, we employ a grid size of 40×40

for the discretization. The optimized function value is 0.0856 (-10.68dB). The

amplitude of the actual response G(r, f) (θ=0) is shown in Figure 2.9.

To see the robust property of the result when the source moves, we move the

source to y = 0.1m and y = 0.3m. The corresponding amplitudes of the actual

responses are depicted in Figure 2.10 and Figure 2.11. From these two figures, we

see that the changes of the performances are not much when the source moves.
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Figure 2.10: Amplitude of G(r, f) in Example 2, where N = 7, L = 21, and

y = 0.1m.

Figure 2.11: Amplitude of G(r, f) in Example 2, where N = 7, L = 21, and

y = 0.3m.
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In the third example, we consider five microphones which are located at the

coordinates {(−0.1,−0.2),

(−0.05,−0.1), (0, 0), (0.05,−0.1), (0.1,−0.2)}. A seven-tap FIR filter is used be-

hind each element. In this example, the passband region and stopband region are

the same as those in Example 1. In order to demonstrate the design, we employ a

grid size of 40× 40 for the discretization. The optimized function value is 0.0475

(-13.23dB). The amplitude of the actual response G(r, f) is shown in Figure 2.12.

Figure 2.12: Amplitude of G(r, f) in Example 3 where N = 5, L = 7 and y = 1m.

Next, we consider the robust filter design of this example. The same as Ex-

ample 1, we assume that x1 ∈ [−0.15,−0.07] and x5 ∈ [0.07, 0.15]. In order to

demonstrate the design, we employ a grid size of 40 × 40 × 2 for the discretiza-

tion. The optimized function value is 0.0520 (-12.84dB). When the x-coordinate

of the first and the last microphones move to −0.15m and 0.15m, respectively, the

amplitude of the actual response is shown in Figure 2.13.

If we do not use the robust design, the amplitude of the actual response is

shown in Figure 2.14 when the x-coordinate of the first and the last microphones

move to −0.15m and 0.15m, respectively. The detail of the comparison between

using robust filter design and not using robust filter design is given in Table 2.4.

We can see that the performance of the robust design scheme is the best.
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Figure 2.13: Amplitude of G(r, f) with robust design in Example 3, where N = 5,

L = 7, x1 = −0.15m and x5 = 0.15m.

Figure 2.14: Amplitude of G(r, f) without robust design in Example 3, where

N = 5, L = 7, x1 = −0.15m and x5 = 0.15m.
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Methods Passband gain Passband ripple(dB) Stopband ripple(dB)

1 1.03246 0.23434 −12.82194

2 1.03612 0.28552 −8.57016

3 1.06463 0.26534 −10.30237

Table 2.4: 1. using robust filter formulated in Example 3; 2. using filter formulated

in Example 3 without robust consideration; 3. using traditional LP method (Yiu

et al. [2003]) without robust consideration.

In the last example, we demonstrate how to incorporate the sensor localization

method together with the robust design formulation. We consider a 5m×5m class-

room and the speaker stands in the middle of the room. At the corner of the room,

there are two anchors with coordinates {(−2.5, 2.5), (2.5, 2.5)}. Seven micro-

phones are located at the coordinates {(−0.15, 0.7), (−0.1, 0.8), (−0.05, 0.9), (0, 1),

(0.05, 0.9),

(0.1, 0.8), (0.15, 0.7)}. We assume the distances between the nodes can be esti-

mated and there exist errors in the estimated distances. We simulate the estimated

distances similar to (Wang et al. [2008b]). That is, we add a random error to the

estimated distance:

d̂ij = dij · (1 + ϵ×Nf )

where Nf is a given noisy factor between [0, 1] and ϵ is a standard normal ran-

dom variable. For this example, we further assume that the microphone with

coordinate (0, 1) is also an anchor, and all the other microphones are sensors.

The noisy factor is chosen as 0.005 and the distances between the nodes can be

estimated. In the first stage, we estimate the microphones’ positions by solving

Problem 2.2.8. The estimated positions are illustrated in Figure 2.15 and the

perturbations of these six sensors are 0.0139, 0.0007, 0.0004, 0.0005, 0.0004 and

0.0018, respectively. Since the perturbations of three sensors with coordinates

(−0.05, 0.9), (0.05, 0.9) and (0.1, 0.8) are very small, they are neglected and we

just consider the uncertainties of the other three sensors.

In the second stage, with the estimated positions and the perturbations, we

design a robust beamformer with a seven-tap filter behind each microphone. The
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Figure 2.15: Estimated positions via solving the localization problem.

passband region, stopband region and the desired frequency response function are

chosen in the same manner as in Example 1. By solving Problem 2.2.6, we obtain

the optimal design. The amplitude of the actual response G(r, f) is shown in

Figure 2.16.

Figure 2.16: Amplitude of G(r, f) in Example 4.
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2.3 Design of distributed beamforming system

using semi-infinite programming

2.3.1 Formulation

In this section, we transform the filter design problem into a new semi-infinite

programming problem.

In the last section, the filter design problem and the robust filter design prob-

lem are formulated as the following

Problem 2.3.1 Find a coefficient vector w ∈ Rn of the FIR filters, such that the

cost function

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)| (2.3.28)

is minimized.

Problem 2.3.2 Find a coefficient vector w ∈ Rn of the FIR filters, such that the

cost function

max
θ∈[−η,η]

max
(r,f)∈Ω

|wᵀd(r̃, f)−Gd(r̃, f)| (2.3.29)

is minimized.

We expand the complex functions as

d(r, f) = d1(r, f) + jd2(r, f),

Gd(r, f) = Gd1(r, f) + jGd2(r, f),

and denote

u(r, f) = (wᵀd1(r, f)−Gd1(r, f)), (2.3.30)

v(r, f) = (wᵀd2(r, f)−Gd2(r, f)). (2.3.31)
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An alternative and more flexible way to convert the design problem into a semi-

infinite linear programming problem is to control the real part and the imaginary

part separately by introducing two new variables as:

z1 = max
(r,f)∈Ω

|u(r, f))|, z2 = max
(r,f)∈Ω

|v(r, f))|.

Thus, the design problem can be formulated as the following semi-infinite

programming:


min

z∈Rn+2
bTz

subject to

A(r, f)z −G(r, f) ≤ 0 ∀(r, f) ∈ Ω

LP (Ω)

where z = (w, z1, z2)
T , b = (0, ϕ1, ϕ2)

T ,

A(r, f) =


d1(r, f)

T −1 0

−d1(r, f)
T −1 0

d2(r, f)
T 0 −1

−d2(r, f)
T 0 −1

 , G(r, f) =


Gd1(r, f)

−Gd1(r, f)

Gd2(r, f)

−Gd2(r, f)

 ,

in which ϕ1 and ϕ2 are two different weights for the real and imaginary parts,

respectively.

Define

V (z) = bTz and g(z, (r, f)) = A(r, f)z −G(r, f)

Then the above problem LP (Ω) can be represented as

 min V (z)

s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω.
(BP )
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2.3.2 Perturbation exchange algorithm and its convergence

Zhang, Wu and López (Zhang et al. [2010a]) proposed an exchange method for the

convex SIP problem (P) whose main feature is that only those active constraints

with positive Lagrange multipliers are kept, and no global optimization needs to

be carried out at each iteration to detect the (almost) most violated constraint.

The algorithm associated with the method terminates in a finite iterations needs

to be under some strictly convex conditions.

In this section, we propose a perturbation method of exchange algorithm for

solving general convex semi-infinite programming (CSIP) problems and prove that

the solution of the perturbation SIP problem approximates the solution of the

original CSIP as the perturbation going to 0.

Perturbation exchange algorithm

A convex semi-infinite programming (CSIP) problem can be written as follows: min f(x)

s.t. g(x, s) ≤ 0 for any s ∈ Ω.
(P )

where f : Rn → R and g(s, ·) : Rn → R are continuous convex functions, and Ω is

a given nonempty compact set in Rp (or in Cp).

We also focus on the convex SIP problem (P) satisfying the following condition

(A):

Assumption A.

(i). f is convex and continuously differentiable on Rn;

(ii). For any s ∈ Ω, g(·, s) is convex and ∇xg(x, s) exists and is continuous on

Rn;
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(iii). Slater constraint qualification (SCQ) holds; i.e., there exists x̂ ∈ Rn such

that g(x̂, s) < 0 for all s ∈ Ω.

(iv). There exists a finite subset Ω0 such that for every λ ∈ R, the set

F0
λ := {x ∈ Rn; f(x) ≤ λ and g(x, s) ≤ 0 for all s ∈ Ω0}

is bounded when nonempty.

We consider a perturbation of the problem (P ) as follows: min fϵ(x)

s.t. g(x, s) ≤ 0 for any s ∈ Ω.
(Pϵ)

where

fϵ(x) = f(x) + ϵ∥x∥2. (2.3.32)

For given finite set R = {sj, j = 1, · · · ,m} ⊂ Ω, we consider the finitely

constrained convex programming problem: min f(x) + ϵ∥x∥2

s.t. g(x, sj) ≤ 0 for any j = 1, · · · ,m.
(Pϵ(R))

Remark 2.3.1 Let x∗ ∈ Rn be a feasible solution of (Pϵ(R)). It is known that

(Luenberger [2004]) x∗ is optimal if and only if there exist multipliers λ∗ ∈ Rm

such that (x∗, λ∗) satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

∇f(x) +
m∑
j=1

λ(sj)∇xg(x, sj) = 0,

λ(sj) ≥ 0, g(x, sj) ≤ 0, λ(sj)g(x, sj) = 0, j = 1, · · · ,m, .

(KKT )

Now, applying Algorithm 2.1 in (Zhang et al. [2010a]) to (Pϵ(R)), we obtain

a perturbation exchange algorithm (PEA) which is described as follows.

For given a small η ∈ (0, 1/2), choose ϵ = ϵ(η) > 0 small enough such that

ϵ sup
z∈F0

λ̄

∥z∥2 ≤ η,
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and λ̄ = 1 + f(z̄) for some given z̄ ∈ {x ∈ Rn; g(x, s) ≤ 0,∀s ∈ Ω}.

Step 0. Choose a finite reference set R0 = {s0j , j = 1, · · · ,m0} ⊂ Ω such that

Ω0 ⊂ R0, and fϵ is level bounded on the feasible set of (Pϵ(R0)). Let x0 be an

optimal solution to (Pϵ(R0)) and let {λ(s0j)), j = 1, · · · ,m0} ∈ Rm be the set of

associated multipliers. Set k = 0.

Step 1. Find a point sknew ∈ Ω such that

g(xk, s
k
new) > η.

If such a point does not exist, then stop. Otherwise, put R̄k+1 = Rk ∪ {sknew}.

Step 2. Let xk+1 be an optimal solution to (Pϵ(R̄k+1)) and let {λk+1(s), s ∈
R̄k+1} be the set of associated multipliers.

Step 3. Define new reference sets Rk+1 = R̄k+1 \ Rl
k+1, where the leaving

reference set

Rl
k+1 :=

{
s ∈ R̄k+1;λk+1(s) = 0

}
.

Set k = k + 1, and return to Step 1.

Remark 2.3.2 It is obvious that the optimal solution xk+1 to (Pϵ(R̄k+1)) also

solves (Pϵ(Rk+1)).

Let xk be an optimal solution to (Pϵ(Rk)) and let vk denote the optimal value

of (Pϵ(Rk)). Let Λk = {λk(sj), j = 1, · · · ,m, } be the corresponding Lagrange

multiplier. Since fϵ is strictly convex, by the KKT’s condition (KKT), if the

algorithm (PEA) does not terminate in k iterations, then

vk+1 − vk =fϵ(xk+1)− fϵ(xk) > ∇fϵ(xk)
T (xk+1 − xk)

=−
∑

sj∈Rk

λk(sj)∇xg(xk, sj)
T (xk+1 − xk)

≥
∑

sj∈Rk

λk(sj) (g(xk, sj)− g(xk+1, sj))

=−
∑

sj∈Rk

λk(sj)g(xk+1, sj) ≥ 0

(2.3.33)
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where the last equality is due to
∑

sj∈Rk
λk(sj)g(xk, sj) = 0. In particular,

vk+1 − vk > 0. (2.3.34)

The following result is a consequence of Theorem 3.1 in (Zhang et al. [2010a]).

Theorem 2.3.1 The algorithm (PEA) terminates in a finite number of itera-

tions.

Convergence

Our main convergence result is the following theorem.

Theorem 2.3.2 For given η > 0, Let x∗
η be the point determinated by the algo-

rithm (PEA) in a finite number of iterations. Then

(1). Every accumulation point of {x∗
η, η → 0} is an optimal solution of (P ).

(2). limη→0 fϵ(η)(x
∗
η) = v∗, where v∗ is the optimal value of (P ).

(3). For any η > 0,

0 ≤ v∗ − fϵ(η)(x
∗
η) ≤ M1(η)dist (F ∩ {f ≤ α},Fη ∩ {f ≤ α + η}) ,

where α ≥ v∗,

Fη := {x; g(s, x) ≤ 0 for all s ∈ Ω0 and g(x, s) ≤ η for all s ∈ Ω} ,

F = {x; g(s, x) ≤ 0 for all s ∈ Ω} ,

M1(η) := sup
x∈Fη∩{f≤α+η}

(∥∇f(x)∥+ 2ϵ(η)∥x∥) ,

and dist(A,B) := maxx∈B miny∈A ∥x− y∥ for compact set A ⊂ B.
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(4). For any η > 0,

0 ≤ v∗ − fϵ(η)(x
∗
η) ≤

ηM1(η)

η + ρ
∥x∗

η − x̂∥,

where x̂ is a point such that g(x̂, s) < 0 for all s ∈ Ω, ρ := −maxs∈Ω g(x̂, s), and

α ≥ max{v∗, f(x̂)}.

Proof. Since the set {x∗
η, η > 0} ⊂ F0

λ̄
is bounded. Therefore, there exists at

least an accumulation point x∗ of {x∗
η, η → 0}. By g(x∗

η, s) ≤ η for all s ∈ Ω, we

have x∗ ∈ F . It is clear that there exists finite positive integer N = Nη, such that

x∗
η is an optimal solution of the problem min

x∈Rn
fϵ(η)(x)

s.t. g(x, s) ≤ 0 for all s ∈ RN and g(x, s) ≤ η for all s ∈ Ω\RN .

Therefore, if x is such that g(x, s) ≤ 0 for all s ∈ RN and g(x, s) ≤ η for all

s ∈ Ω\RN , then

fϵ(η)(x
∗
η) ≤ fϵ(η)(x).

For any subsequence ηn → 0 such that x∗
ηn → x∗, Since F0

f(x∗) ⊃ {x; f(x) ≤
f(x∗)} ∩ F and {x∗

ηn , n ≥ 1} are bounded, we have that as η → 0,

sup
x∈F0

f(x∗)

|fϵ(η)(x)− f(x)| ≤ ϵ(η) sup
x∈F0

f(x∗)

∥x∥2 → 0,

and as n → ∞,

|fϵ(ηn)(x∗
ηn)− f(x∗)| ≤ |f(x∗

ηn)− f(x∗)|+ ϵ(ηn) sup
k≥1

∥x∗
ηk
∥ → 0.

Hence, fϵ(ηn)(x
∗
ηn) → f(x∗), and f(x∗) ≤ f(x) on {x; f(x) ≤ f(x∗)} ∩ F . Noting

that f(x∗) ≤ f(x) on {x; f(x) > f(x∗)} ∩ F , it follows that f(x∗) ≤ f(x) for all

x ∈ F . Thus, x∗ is an optimal solution of (P ), and limη→0 fϵ(η)(x
∗
η) = v∗. (1) and

(2) are valid.
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Next, let us show (3). Let x̂∗
η be the orthogonal projection of x∗

η onto F ∩{f ≤
α}. Then fϵ(η)(x̂

∗
η) ≥ v∗ and

0 ≤v∗ − fϵ(η)(x
∗
η)

=v∗ − fϵ(η)(x̂
∗
η) + fϵ(η)(x̂

∗
η)− fϵ(η)(x

∗
η)

≤fϵ(η)(x̂
∗
η)− fϵ(η)(x

∗
η)

=∇fϵ(η)(x̃
∗
η)(x̂

∗
η − x∗

η)

≤
(
∥∇f(x̃∗

η)∥+ 2ϵ(η)∥x̃∗
η∥
)
∥x̂∗

η − x∗
η∥

where x̃∗
η is a point of the segment determined by x̂∗

η and x∗
η. Noting that f(x∗

η) ≤
fϵ(η)(x

∗
η) ≤ infx∈F{f(x)+ ϵ(η)∥x∥2} ≤ v∗+η, we have that x̃∗

η ∈ Fη ∩{f ≤ α+η}
which is a compact set. Therefore, (3) is valid.

Finally, we prove (4). It is obvious that

g

(
ρ

η + ρ
x∗
η +

η

η + ρ
x̂, s

)
≤ ρ

η + ρ
g(x∗

η, s) +
η

η + ρ
g(x̂, s)

≤ ρ

η + ρ
× η +

η

η + ρ
× (−ρ) = 0,

and so ẑ∗η := ρ
η+ρ

x∗
η +

η
η+ρ

x̂ ∈ F . Then

0 ≤v∗ − fϵ(η)(x
∗
η)

=v∗ − fϵ(η)(ẑ
∗
η) + fϵ(η)(ẑ

∗
η)− fϵ(η)(x

∗
η)

≤fϵ(η)(ẑ
∗
η)− fϵ(η)(x

∗
η)

=∇fϵ(η)(z̃
∗
η)(ẑ

∗
η − x∗

η)

≤
(
∥∇f(z̃∗η)∥+ 2ϵ(η)∥z̃∗η∥

)
∥ẑ∗η − x∗

η∥

where z̃∗η is a point of the segment determined by ẑ∗η and x∗
η, and so, z̃∗η ∈ Fη∩{f ≤

α+ η} with α ≥ max{v∗, f(x̂)}. Noting that ∥ẑ∗η − x∗
η∥ ≤ η

η+ρ
∥x̂− x∗

η∥, we obtain
(4).

Remark 2.3.3 (1). If (P) has a unique optimal solution, denoted by x∗, then by

Theorem 2.3.2 (1), limη→0 x
∗
η = x∗, and limη→0 fη(x

∗
η) = f(x∗). Therefore, the
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perturbation algorithm (PEA) provides an approximate optimal solution to (P)

after finitely many iterations.

(2). Theorem 2.3.2 (3) and (4) provide error bounds for the approximate

optimal solution x∗
η of (P).

(3). Since

F ∩ {f ≤ α} ⊂ Fη ∩ {f ≤ α + η} ⊂ F0
α+η,

it is obvious that

dist (F ∩ {f ≤ α},Fη ∩ {f ≤ α + η}) ≤ sup
x,y∈F0

α+η

∥x− y∥,

and

M1(η) = sup
x∈Fη∩{f≤α+η}

(∥∇f(x)∥+ 2ϵ(η)∥x∥) ≤ sup
x∈F0

α+η

(∥∇f(x)∥+ 2ϵ(η)∥x∥) .

2.3.3 Multiple exchange algorithm for beamforming prob-

lem

Algorithm

We consider a perturbation of the Beamforming problem (BP ) as follows: min Vϵ(z)

s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω,
(BPϵ)

where

Vϵ(z) = V (z) + ϵ∥z∥2. (2.3.35)

Assumption: There exists a finite subset Ω0 such that for every λ ∈ R, the

set

Fλ := {z ∈ Rn+2;V (z) ≤ λ, g(z, (r, f)) ≤ 0,∀(r, f) ∈ Ω}

is bounded when nonempty.
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For given finite set R = R1 ∪ R2 ∪ R3 ∪ R4 = {(rj, fj), j = 1, · · · ,m} ⊂ Ω,

we consider the finitely constrained convex programming problem: min V (z) + ϵ∥z∥2

s.t. g(z, (rj, fj)) ≤ 0 for any j = 1, · · · ,m.
(BPϵ(R))

For given a small η ∈ (0, 1/2), choose ϵ = ϵ(η) > 0 small enough such that

ϵ sup
z∈Fλ̄

∥z∥2 ≤ η,

where λ̄ = 1+f(z̄) for some given z̄ ∈ F . We describe the perturbation exchange

algorithm (PEA) for beamforming problem as follows.

Step 0. Choose a finite reference set R0 = {(r0
j , f

0
j ), j = 1, · · · ,m0} ⊂ Ω such

that Ω0 ⊂ R0, and fϵ is level bounded on the feasible set of (Pϵ(R0)). Let z0 be

an optimal solution to (Pϵ(R0)) and let {λ(r0
j , f

0
j ), j = 1, · · · ,m0} ∈ Rm be the

set of associated multipliers. Set k = 0.

Step 1. Find a set {(rk
new, f

k
new), new = 1, · · · , n} ⊂ Ω such that

gi(zk, (r
k
new, f

k
new)) > η.

If such a point does not exist, then stop. Otherwise, put R̄i
k+1 = Ri

k∪{(rk
new, f

k
new)}.

Step 2. Let zk+1 be an optimal solution to (Pϵ(R̄k+1)) and let {λk+1(r, f), (r, f) ∈
R̄k+1} be the set of associated multipliers.

Step 3. Define new reference sets Rk+1 = R̄k+1 \ Rl
k+1, where the leaving

reference set

Rl
k+1 :=

{
(r, f) ∈ R̄k+1;λk+1(r, f) = 0

}
.

Set k = k + 1, and return to Step 1.

Error bounds

From Theorem 2.3.2 (3) and (4), we obtain error bounds for the approximate

optimal solution z∗
η of the Beamforming problem.
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For any η > 0 and α ≥ v∗,

0 ≤ v∗ − Vϵ(η)(z
∗
η) ≤ M1(η)dist (F ∩ {V ≤ α},Fη ∩ {V ≤ α + η}) ;

and for ẑ with g(ẑ, (r, f)) < 0 for all (r, f) ∈ Ω, for any η > 0 and α ≥
max{v∗, f(ẑ)},

0 ≤ v∗ − Vϵ(η)(z
∗
η) ≤

ηM1(η)

η + ρ
∥z∗

η − ẑ∥,

where ρ := −max(r,f)∈Ω g(ẑ, (r, f)), and

M1(η) :=
√
ϕ2
1 + ϕ2

2 + 2ϵ(η) sup
z∈F0

α+η

∥z∥.

In particular, if α = v∗, then F0
α+η ⊂ F0

λ̄
, thus

M1(η) ≤
√

ϕ2
1 + ϕ2

2 + 2η,

and

dist (F ∩ {f ≤ α},Fη ∩ {f ≤ α+ η}) ≤ sup
x,y∈F0

λ̄

∥x− y∥.

Illustrative examples

In this section we give one example to demonstrate the performance of the algo-

rithm for non-strictly convex example and apply the proposed algorithm to solve

the broadband beamformer design problem. The quadprog function in Matlab is

used to solve.

The same as the previous illustrative examples in the last chapter, we choose

the desired response function as

Gd(r, f) =

 e−j2πf( ||r−rc||
c

+L−1
2

T), if (r, f) is in passband region

0, if (r, f) is in stopband region
,

where rc is the coordinate for the center element, the sound speed is c = 340.9m/s

and the sample increment is T = 125µs, that is, the sampling rate is set as 8kHz.

In this example, we also consider an equispaced linear array with five elements

with coordinates {(−0.1, 0), (−0.05, 0), . . ., (0.1, 0)}. A seven-tap FIR filter behind
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each element is used. The passband region and stopband region are specified on

an x-axis parallel with, and y = 1 meter in front of, the array. The passband

region is defined as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz}

while the stopband region is the union of several parts as

{(r, f) : −0.4m ≤ x ≤ 0.4m, y = 1m, 2.5kHz ≤ f ≤ 4kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 0.5kHz ≤ f ≤ 1.5kHz},

{(r, f) : 1.5m ≤ |x| ≤ 2.5m, y = 1m, 2.5kHz ≤ f ≤ 4kHz}.

The amplitude of the actual response G(r, f) is shown in Figure 2.17.

Figure 2.17: Amplitude of G(r, f) where N = 5, L = 7 and y = 1m.
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Chapter 3

A mixed SDP-SOCP relaxation

model for source localization

problem with time-difference

information and sensor network

localization

3.1 Introduction

In this chapter, we will apply the SDP method for solving the source localiza-

tion problem. The basic idea behind the technique comes from (Biswas et al.

[2006a]), that is to convert the nonconvex quadratic distance constraints into lin-

ear constraints by introducing a relaxation to remove the quadratic term in the

formulation. Here we propose a novel idea, combining the second order cone

programming (SOCP), then a mixed SDP-SOCP relaxation model is expressed

for source localization problem with time-difference information. We present a

method to obtain the exact solution for the source localization. The method
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shows that the exact solution for the source localization can be obtained from the

solutions of the mixed SDP-SOCP relaxation and the second order polynomial

equation. We also give the estimator properties for the true source location under

noises and present a bi-level method. In (Tseng [2007]), we know for single SOCP

relaxation, the optimal solution must be in the convex hull of microphone array.

In the next chapter, we will study some properties for the solution of the mixed

SDP-SOCP and present a characterization such that the mixed SDP-SOCP has

an exact relaxation. The characterization shows that the exact solution region is

not only the convex hull of microphone array, but also outside the convex hull.

The source localization problem can be combined with the sensor network local-

ization problem, we also give a mixed SDP-SOCP relaxation model for it and give

some statistical analyses.

The chapter is organized as follows. In Section 2, we formulate a mixed SDP-

SOCP relaxation model for source localization problem with time-difference in-

formation. We present a method to obtain the exact solution for the source lo-

calization from the solutions of the mixed SDP-SOCP relaxation and the second

order polynomial equation. The estimator properties for the true source location

under noises is studied. In section 3, we present the bi-level method. A mixed

SDP-SOCP relaxation model for source localization combined with sensor net-

work localization problem is studied in section 4, also we give some statistical

analyses for it.
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3.2 Mixed SDP-SOCP relaxation model for source

localization problem with time-difference in-

formation

3.2.1 Convex relaxation models

Assume we have microphones ai = (ai1, ai2, · · · , aid)T , i = 1, · · · ,m, whose lo-

cations are known. Given a true source location s, we can derive the true time

difference of arrival(TDOA)

T ({ai,aj}, s) =
∥s− ai∥ − ∥s− aj∥

c0
, i, j = 1, · · · ,m, (3.2.1)

where c0 is the speed of sound in the air. The estimated TDOA will be given

by τ̂ij using the signals received at the two microphones. The source localization

problem is to estimate the source location ŝ from using these nonlinear hyperbolic

equations. In this section, we will introduce four relaxation models for solving

this source localization problem.

SDP relaxation model

With a set of delay estimates, the problem is to find ŝ such that

∥s− ai∥ − ∥s− aj∥ = c0τ̂ij, i, j = 1, · · · ,m. (3.2.2)

These equations also can be expressed as

βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥2 = αi, i = 1, · · · ,m,

αi = β2
i , i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m.

(3.2.3)
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We relax the equality constraints αi = β2
i to

 1 βi

βi αi

 ≽ 0 which ensure that

αi ≥ β2
i and transform the source localization problem into

min δ

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥2 = αi, i = 1, · · · ,m, 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m,

(3.2.4)

where δ is a positive constant for penalization.

Noting that ∥ai − s∥2 =
(
aT
i − 1

) I

sT

 [I s]

ai

−1

. Let Y = sT s. Then

the above problem is equivalent to



min δ
m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

(
aT
i − 1

) I s

sT Y

ai

−1

 = αi, i = 1, · · · ,m,

 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m,

Y = sT s.

(3.2.5)

An effective method for solving this problem is to relax Y = sT s to Y ≽ sT s

which is equivalent to

Z :=

 I s

sT Y

 ≽ 0.
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Then, the relaxed version of the problem (3.2.5) can be represented as the following

mixed SDP relaxation model



min δ

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

(
aT
i − 1

)
Z

ai

−1

 = αi, i = 1, · · · ,m,

 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m,

Z1:d,1:d = Id,Z ≽ 0, s = Z1:d,d+1.

(3.2.6)

SOCP relaxation model

For equation (3.2.2), instead of (3.2.3), it also can be expressed as βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ = βi, i = 1, · · · ,m.
(3.2.7)

Similar to the method in (Tseng [2007]), we relax the equality constraints

∥s − ai∥ = βi to ” ≤ ” inequality constraints, which yields a second order cone

problem. Then we transform the source localization problem into the following

SOCP relaxation model
min δ

m∑
i=1

βi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ ≤ βi, i = 1, · · · ,m.

(3.2.8)

where δ is a positive constant for penalization.
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YWL’s model

In this section, we present another convex relaxation model introduced in (Yang

et al. [2009a]). They use a maximum likelihood formulation

min
m∑
j=1

m∑
i=1,i ̸=j

(
1

c0
∥s− ai∥ −

1

c0
∥s− aj∥ − τ̂ij)

2. (3.2.9)

which can be equivalently written as
min

m∑
j=1

m∑
i=1,i̸=j

(ti − tj − τ̂ij)
2

s.t.
1

c0
∥s− ai∥ = ti, i = 1, · · · ,m.

(3.2.10)

They transform the objective function of (3.2.10) as θ and notice that

θ = ∥t̄− τ̃∥2 + ∥t̄+ τ̄∥2 (3.2.11)

where

t̄ = (t1 − t2, · · · , t1 − tm, t2 − t3, · · · , t2 − tm, · · · , tm−1 − tm)
T = Gt

t = (t1, · · · , tm)T

G =



1 −1 0 · · · · · · 0
...

. . . . . .
...

1 0 · · · · · · 0 −1

0 1 −1 0 · · · 0
...

...
. . . . . .

...

0 1 0 · · · 0 −1
...

...
. . . . . .

...

0 · · · · · · 0 1 −1


τ̃ = (τ12, · · · , τ1m, τ23, · · · , τ2m, · · · , τm−1,m)

T

τ̄ = (τ21, · · · , τm1, τ32, · · · , τm2, · · · , τm,m−1)
T .

(3.2.12)
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Then the objective function of (3.2.10) can be written as

θ = ∥t̄− τ̃∥2 + ∥t̄+ τ̄∥2

= tr


t

1

(tT 1
)
F


= tr


T t

tT 1

F


(3.2.13)

where

T = ttT

F =

 2GTG GT (τ̄ − τ̃ )

(τ̄ − τ̃ )TG τ̄ T τ̄ + τ̃ T τ̃

 (3.2.14)

The constraints 1
c0
∥s− ai∥ = ti can be represented as

Tii = t2i

=
1

c20
∥s− ai∥2

=
1

c20

(
aT
i −1

) I s

sT z

ai

−1

 ,

(3.2.15)

where z = sT s.

By Cauchy-Schwartz inequality,

Tij = titj

=
1

c20
∥s− ai∥∥s− aj∥

≥ 1

c20
|(s− ai)

T (s− aj)|

(3.2.16)

where

(s− ai)
T (s− aj) =

(
aT
i −1

) I s

sT z

aj

−1

 (3.2.17)
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Using the above argument together with the following relaxations:

sT s ≼ z ⇔

 I s

sT z

 ≽ 0

t

1

(tT 1
)
≽ 0 ⇒

T t

tT 1

 ≽ 0

(3.2.18)

then (3.2.10) can be cast into the following SDP model

min tr


T t

tT 1

F + δ
m∑
i=1

m∑
j=1

Tij

s.t. Tii =
1

c20

(
aT
i −1

) I s

sT z

ai

−1


Tij ≥

1

c20
|
(
aT
i −1

) I s

sT z

aj

−1

 |

T t

tT 1

 ≽ 0

 I s

sT z

 ≽ 0, i, j = 1, · · · ,m, j > i

(3.2.19)

where δ is a positive constant for penalization.

Mixed SDP-SOCP relaxation model

For equation (3.2.2), we expressed it as βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ = βi, i = 1, · · · ,m.
(3.2.20)
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Adding some redundant constrains

βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ = βi, i = 1, · · · ,m,

∥s− ai∥2 = αi, i = 1, · · · ,m,

αi = β2
i , i = 1, · · · ,m.

(3.2.21)

It is equivalent to the following problem

βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ = βi, i = 1, · · · ,m,

∥s− ai∥2 = αi, i = 1, · · · ,m,

αi ≥ β2
i , i = 1, · · · ,m,

αi ≤ β2
i , i = 1, · · · ,m.

(3.2.22)

The inequality constraints αi ≥ β2
i is equivalent to

 1 βi

βi αi

 ≽ 0, and αi ≤ β2
i

is equivalent to ∥s− ai∥ ≤ βi.

Thus we relax the equality constraints ∥s − ai∥ = βi to ” ≤ ” inequality

constraints, which yields a second order cone problem. Then we transform the

source localization problem into

min δ
m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ ≤ βi, i = 1, · · · ,m,

∥s− ai∥2 = αi, i = 1, · · · ,m, 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

(3.2.23)

where δ is a positive constant for penalization.

Then using a similar method as described in previous section, the above prob-
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lem is equivalent to

min δ

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ ≤ βi, i = 1, · · · ,m,

(
aT
i − 1

) I s

sT Y

ai

−1

 = αi, i = 1, · · · ,m,

 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

Y = sT s.

(3.2.24)

The relaxed version of the problem (3.2.24) can be represented as the following

mixed SDP-SOCP relaxation model



min δ
m∑
i=1

αi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

∥s− ai∥ ≤ βi, i = 1, · · · ,m,

(
aT
i − 1

)
Z

ai

−1

 = αi, i = 1, · · · ,m,

 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

Z1:d,1:d = Id,Z ≽ 0, s = Z1:d,d+1.

(3.2.25)

It is obvious that the solution of (3.2.2) is a feasible solution for (3.2.25). The

following question is natural and important:

(Q). Whether the solution of (3.2.2) can be obtained from the solutions of the

mixed SDP-SOCP relaxation?

In next section, we present an approach how to obtain the exact solution for
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the source localization from the solutions of the mixed SDP-SOCP relaxation.

3.2.2 An error correction algorithm

In this section, we consider source localization with time-difference information

of m points. By solving order polynomial equations, we obtain the exact solution

for the source localization from the solution of the mixed SDP-SOCP relaxation

model.

Let α = (α1, α2, · · · , αm)
T , β = (β1, β2, · · · , βm)

T , s = (s1, s2, · · · , sd)T . Let

ai = (ai1, ai2, · · · , aid)T , i = 1, 2, · · · ,m, be m points in Rd, where m ≥ d + 1.

Assume

rank{a1,a2, · · · ,am} = d.

Then the mixed SDP-SOCP (3.2.25) can be written the equivalent form:



min α1 + α2 + · · ·+ αm

s.t. βi − βj = c0τ̂ij, i, j = 1, 2, · · · ,m,

∥s− ai∥2 + (y − ∥s∥2) = αi, i = 1, 2, · · · ,m,

y ≥ ∥s∥2, αi ≥ β2
i , βi ≥ ∥s− ai∥, i = 1, 2, · · · ,m.

(3.2.26)

For convenience, we use the notation (s, β, α, y) to denote a feasible solution for

(3.2.26).

Let s∗ = (s∗1, s
∗
2, · · · , s∗d)T be true source localization, i.e., it satisfies

∥s∗ − ai∥ − |s∗ − aj∥ = c0τ̂ij, i, j = 1, 2, · · · ,m.

Denote by β∗
i = ∥s∗ − ai∥, i = 1, 2, · · · ,m.

Lemma 3.2.1 Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (3.2.26). Then there exists

λ ≥ 0 such that

β̂i = β∗
i − λ, i = 1, 2, · · · ,m.
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Proof. Set β∗ = (β∗
1 , β

∗
2 , · · · , β∗

m)
T , α∗ = ((β∗

1)
2, (β∗

2)
2, · · · , (β∗

m)
2)T , and y∗ =

∥s∗∥2. Then (s∗, β∗, α∗, y∗) is a feasible solution of the mixed SDP-SOCP (3.2.26).

Since

α∗
i = (β∗

i )
2 = ∥s∗ − ai∥2, i = 1, 2, · · · ,m

and (ŝ, ŷ, β̂, α̂) is an optimal solution of (3.2.26), then we have

m∑
i=1

β̂2
i ≤

m∑
i=1

α̂i ≤
m∑
i=1

α∗
i =

m∑
i=1

(β∗
i )

2

Notice that β̂i, i = 1, · · · ,m and β∗
i , i = 1, · · · ,m are the solution of the linear

equations with m variables and d equations:

xm − xi = c0τ̂m i, i = 1, 2, · · · ,m− 1,

and the rank of the coefficient matrix of the above linear equations is d, then there

exists λ ∈ R such that

β̂i = β∗
i − λ, i = 1, · · · ,m.

From
m∑
i=1

(β∗
i − λ)2 ≤

m∑
i=1

(β∗
i )

2,

we have λ > 0.

Therefore, there exists λ ≥ 0 such that β∗ = β̂ + λ, i.e, s∗ is a solution of the

equations

∥s− ai∥ = β̂i + λ, i = 1, 2, · · · ,m. (3.2.27)

This implies that

∥s− am∥2 − ∥s− ai∥2 = (β̂m + λ)2 − (β̂i + λ)2, i = 1, 2, · · · ,m− 1.

That is

d∑
j=1

2(aij − amj)sj

=
d∑

j=1

(a2ij − a2mj) + (β̂2
m − β̂2

i ) + 2λ(β̂m − β̂i), i = 1, 2, · · · ,m− 1.

(3.2.28)
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Define

B = (bij)(m−1)×d, C = (c1, · · · , cm−1)
T , D = (d1, · · · , dm−1)

T ,

where

bij = 2(aij − amj), i = 1, 2, · · · ,m− 1, j = 1, · · · , d,

and

ci =
d∑

j=1

(a2ij − a2mj) + (β̂2
m − β̂2

i ), di = 2(β̂m − β̂i), i = 1, 2, · · · ,m− 1.

Then the equations (3.2.28) can be written by

Bs = C + λD, (3.2.29)

which implies that

BTBs = BTC + λBTD.

Therefore,

s = (BTB)−1BTC + λ(BTB)−1BTD. (3.2.30)

Substituting (BTB)−1BTC+λ(BTB)−1BTD for s in ∥s−am∥2 = (β̂m+λ)2,

we obtain

∥(BTB)−1BTC + λ(BTB)−1BTD − am∥2 = (β̂m + λ)2. (3.2.31)

The above equation can be written the following form:

λ2
(
1− ((BTB)−1BTD)T (BTB)−1BTD

)
+ λ

(
2β̂m − 2

(
(BTB)−1BTC − am

)T
(BTB)−1BTD

)
+ β̂2

m − ((BTB)−1BTC − am)
T ((BTB)−1BTC − am) = 0.

(3.2.32)

By solving the above second order polynomial equation, we can obtain the

exact solution for the source localization from the solution of the mixed SDP-

SOCP relaxation. That is, we have the following result.
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Theorem 3.2.1 Let ai = (ai1, ai2, · · · , aid)T , i = 1, 2, · · · ,m, be m points in Rd

satisfying

rank{a1,a2, · · · ,am} = d.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (3.2.26) and let λ̂ called error corrector

be a positive solution of the equation (3.2.32). Define

s∗ = (BTB)−1BTC + λ̂(BTB)−1BTD, (3.2.33)

Then s∗ is is a true source location, i.e.,

∥s∗ − ai∥ − |s∗ − aj∥ = c0τ̂ij, i, j = 1, 2, · · · ,m. (3.2.34)

Remark 3.2.1 If m = d+ 1, then

(BTB)−1BT = B−1.

Therefore, the equation (3.2.32) can be simplified the following form:

λ2
(
1−DT (B−1)TB−1D

)
+ λ

(
2β̂d+1 − 2

(
B−1C − ad+1

)T
B−1D

)
+ β̂2

d+1 − (B−1C − ad+1)
T (B−1C − ad+1) = 0,

(3.2.35)

and

s∗ = B−1C + λ̂B−1D, (3.2.36)

Remark 3.2.2 If d = 2 and m = 3, then

B =

2(a11 − a31) 2(a12 − a32)

2(a21 − a31) 2(a22 − a32)



C =

a211 + a212 − a231 − a232 + β̂2
3 − β̂2

1

a221 + a222 − a231 − a232 + β̂2
3 − β̂2

2



D =

2(β̂3 − β̂1)

2(β̂3 − β̂2)
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3.2.3 Estimator properties

In this section, we study the least square estimator of source localization with

time-difference information of m points and noises.

Let ai = (ai1, ai2, · · · , aid)T , i = 1, 2, · · · ,m, be m points in Rd, where m ≥
d+ 1. Assume

rank{a1,a2, · · · ,am} = d.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (3.2.26) and let λ̂ be a positive solution

of the equation (3.2.32). Let ri be a noisy observation of the distance between s∗

and ai:

ri = β∗
i + εi, (3.2.37)

where β∗
i = β̂i+ λ̂, and ε1, · · · , εm are noises. We assume that ε1, · · · , εm are i.i.d.

random variables with common mean 0 and the unknown variance σ2.

Thus

τij = τ̂ij +
εi − εj

c
, (3.2.38)

where τij denotes a noisy observation of τ̂ij.

The noisy observation equations associated the equations (3.2.27) are as fol-

lows:

∥s− ai∥2 = (β∗
i )

2 + 2β∗
i εi + ε2i , i = 1, 2, · · · ,m. (3.2.39)

This implies that

∥s− am∥2 − ∥s− ai∥2 = (β∗
m)

2 − (β∗
i )

2 + ζi, i = 1, 2, · · · ,m− 1,

where

ζi = 2β∗
mεm − 2β∗

i εi + ε2m − ε2i , i = 1, 2, · · · ,m− 1.

That is

d∑
j=1

2(aij − amj)sj =
d∑

j=1

(a2ij − a2mj) + (β∗
m)

2 − (β∗
i )

2 + ζi, i = 1, 2, · · · ,m− 1.

(3.2.40)
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Then the equations (3.2.40) can be written as

ζ = Y −Bs, (3.2.41)

where

Y = C + λ̂D + ζ,

from equation(3.2.29) and

ζ = (ζ1, · · · , ζm−1)
T .

Lemma 3.2.2 If E(ε41) < ∞, then the covariance matrix of ζ:

Cov (ζ, ζ) = Σ = (σij)(m−1)×(m−1), (3.2.42)

where

σij =

 4(β∗
m)

2σ2 + 4β∗
mv3 + v4 − σ4, if i ̸= j,

4((β∗
m)

2 + (β∗
i )

2)σ2 + 4(β∗
m + β∗

i )v3 + 2v4 − 2σ4, if i = j,

Proof. For any i, j,

ζiζj =4(β∗
m)

2ε2m − 4β∗
mβ

∗
j εmεj + 2β∗

mε
3
m − 2β∗

mεmε
2
j

− 4β∗
mβ

∗
i εmεi + 4β∗

i β
∗
j εiεj − 2β∗

i ε
2
mεi + 2β∗

i εiε
2
j

+ 2β∗
mε

3
m − 2β∗

j ε
2
mεj + ε4m − ε2mε

2
j

− 2β∗
mεmε

2
i + 2β∗

j ε
2
i εj − ε2i ε

2
m + ε2i ε

2
j .

Then

Cov(ζi, ζj)

=E (ζiζj)

=4(β∗
m)

2E(ε2m) + 2β∗
mE(ε3m) + 4β∗

i β
∗
jE(εiεj) + 2β∗

i (εiε
2
j)

+ 2β∗
mE(ε3m) + E(ε4m)− E(ε2m)E(ε2j) + 2β∗

jE(ε2i εj)− E(ε2i )E(ε2m) + E(ε2i ε
2
j)

=

 4(β∗
m)

2σ2 + 4β∗
mv3 + v4 − σ4, if i ̸= j,

4((β∗
m)

2 + (β∗
i )

2)σ2 + 4(β∗
m + β∗

i )v3 + 2v4 − 2σ4, if i = j,

and v3 = E(ε31), and v4 = E(ε41).
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The least square estimator s̃ of ŝ is defined by

argmin
s

∥Bs−Y∥2. (3.2.43)

Then

s̃ = (BTB)−1BTY = ŝ+ (BTB)−1BTζ. (3.2.44)

Theorem 3.2.2 (1). s̃ is a unbiased estimator of ŝ, i.e.,

E (s̃) = ŝ. (3.2.45)

(2). If E(ε41) < ∞, then the covariance matrix of s̃:

Cov (s̃, s̃) = (BTB)−1BTΣ((BTB)−1BT )T , (3.2.46)

Proof. (3.2.45) is obvious since

E(ζi) = 0, i = 1, · · · ,m− 1.

Next, let us show (3.2.46).

Cov (s̃, s̃) =E
(
(s̃− E(s̃))(s̃− E(s̃))T

)
=(BTB)−1BTE

(
ζζT

)
((BTB)−1BT )T

=(BTB)−1BTΣ((BTB)−1BT )T .

3.3 Bi-level method for source localization prob-

lem

The solution of (3.2.6) is not what we want, in this section we consider bi-level

method to solve it. In the constrains

 1 βi

βi αi

 ≽ 0, we have αi ≥ β2
i . Since
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αi = β2
i is the solution that we want, we need βi to be bigger. Therefore we

transfer our relaxation problem to be:



min
m∑
i=1

αi −
m∑
i=1

cγi

s.t. βi − βj = c0τ̂ij, i, j = 1, · · · ,m,

(
aT
i − 1

)
Z

ai

−1

 = αi, i = 1, · · · ,m,

 1 βi

βi αi

 ≽ 0, i = 1, · · · ,m,

Z1:d,1:d = Id,Z ≽ 0,

βi ≥ γi.

(3.3.47)

Then we need to find c such that the sum of αi − β2
i is minimized. That is

min
c

f(c) =
m∑
i=1

(αi − β2
i ) (3.3.48)

This method do the best to let αi close to β2
i .

3.4 Mixed SDP-SOCP relaxation model for source

localization combined with sensor network

localization problem

3.4.1 Mixed SDP-SOCP relaxation model

In the previous section, we present the mixed SDP-SOCP relaxation model for

source localization problem. In this section, we want solve the source localization
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problem combined with sensor network localization problem.

The standard sensor network localization problem takes edge distance infor-

mation and attempts to determine the location of the sensors. For example, given

the sensor-to-sensor edge set Nr with distances dij for all (i, j) ∈ Nr and the

sensor-to-anchor edge set Na with distances d̂kj for all (k, j) ∈ Na, and given the

anchor locations {a1, . . . ,am} in Rd, we want to determine the sensor locations

{r1, r2, . . . , rn} in Rd that satisfy ∥ri − rj∥2 = d2ij, ∀(i, j) ∈ Nr,

∥ak − rj∥2 = d̂2kj, ∀(k, j) ∈ Na,
(3.4.49)

Let R = [r1, r2, . . . , rn] be the Rd×n matrix determined by r1, r2, . . . , rn.

Then, we have


∥ri − rj∥2 = eT

ijR
TReij, ∀(i, j) ∈ Nr,

∥ak − rj∥2 =
(
aT
k eT

j

) I

RT

 [I R]

ak

ej

 , ∀(k, j) ∈ Na,
(3.4.50)

where eij is the vector with 1 at the i-th position, −1 at the j-th position and

0 elsewhere, ej is the vector with −1 at the j-th position and 0 elsewhere. Let

Y = RTR. Then (3.4.49) is equivalent to find a symmetric matrix Y ∈ Rn×n

and a matrix R ∈ Rd×n such that the following equations are satisfied.



eT
ijY eij = d2ij, ∀(i, j) ∈ Nr,

(
aT
k eT

j

) I R

RT Y

ak

ej

 = d̂2kj, ∀(k, j) ∈ Na,

Y = RTR.

(3.4.51)

An effective method for solving this problem is to relax Y = RTR to Y ≽
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RTR which is equivalent to

Z :=

 I R

RT Y

 ≽ 0.

Then, the relaxed version of the problem (3.4.51) can be represented as a standard

semi-definite programming model.



min 0 •Z

subject to (0T eT
ij)Z

 0

eij

 = d2ij, ∀(i, j) ∈ Nr,

(
aT
k eT

j

)
Z

ak

ej

 = d̂2kj, ∀(k, j) ∈ Na,

Z1:d,1:d = Id, Z ≽ 0.

(3.4.52)

For our source localization combined with sensor network localization prob-

lem, we assume there are some anchor microphones ai = (ai1, ai2, · · · , aid)T ,
i = 1, · · · ,m whose locations are known and some sensor microphones ri =

(ri1, ri2, · · · , rid)T , i = 1, · · · , n whose locations are unknown. Given a true source

location s, we also can derive the true time difference of arrival(TDOA) as the

previous section

T ({rj, rk}, s) =
∥s− rj∥ − ∥s− rk∥

c0
, (j, k) ∈ Tr,

T ({rj,ah}, s) =
∥s− rj∥ − ∥s− ah∥

c0
, (j, h) ∈ Ta,

(3.4.53)

where c0 is the speed of sound in the air. The estimated TDOA will be given

by τ̂jk using the signals received at the two sensor microphones and τ̂jh using the

signals received at one sensor microphone and one anchor microphone. Also we

have the information about sensor-to-sensor edge set Nr with distances dij for

all (i, j) ∈ Nr and the sensor-to-anchor edge set Na with distances d̂kj for all

(k, j) ∈ Na.  ∥ri − rj∥2 = d2ij, ∀(i, j) ∈ Nr,

∥ak − rj∥2 = d̂2kj, ∀(k, j) ∈ Na,
(3.4.54)
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We want to determine the sensor locations {r1, r2, . . . , rn} in Rd and the source

location ŝ that satisfy time difference constraints plus distance constraints:

∥s− rj∥ − ∥s− rk∥ = c0τ̂jk, (j, k) ∈ Tr,

∥s− rj∥ − ∥s− ah∥ = c0τ̂jh, (j, h) ∈ Ta,

∥ri − rj∥2 = d2ij, ∀(i, j) ∈ Nr,

∥rj − ak∥2 = d̂2kj, ∀(k, j) ∈ Na,

(3.4.55)

Denote such sensor-sensor edges by Ntr and sensor-anchor edges by Nta in

Tr∪Ta, i.e., Ntr = ∪(j,k)∈Tr{(s, j), (s, k)}, Nta = ∪(j,h)∈Ta{(s, j), (s, h)}. We assume

that Ntr ∩ Nr = ∅ and Nta ∩ Na = ∅. (3.4.55) is equivalent to find a symmetric

matrix Y ∈ Rn×n and a matrix R ∈ Rd×n such that the following equations are

satisfied.



βsj − βsk = c0τ̂jk, ∀(j, k) ∈ Tr,

βsj − βsh = c0τ̂jh, ∀(j, h) ∈ Ta,

βsj = ∥s− rj∥, ∀(s, j) ∈ Ntr,

βsh = ∥s− ah∥, ∀(s, h) ∈ Nta,

eT
1,j+1Y e1,j+1 = αsj, βsj ≥ 0 ∀(s, j) ∈ Ntr,

(
aT
h eT

1

) I R

RT Y

ah

e1

 = αsh, βsh ≥ 0 ∀(s, h) ∈ Nta,

αsj = β2
sj, ∀(s, j) ∈ Ntr,

αsh = β2
sh, ∀(s, h) ∈ Nta,

eT
i+1,j+1Y ei+1,j+1 = d2ij, ∀(i, j) ∈ Nr,

(
aT
h eT

i+1

) I R

RT Y

 ah

ei+1

 = d̂2ih, ∀(i, h) ∈ Na,

Y = RTR.

(3.4.56)

It is equivalent to the following problem
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βsj − βsk = c0τ̂jk, ∀(j, k) ∈ Tr,

βsj − βsh = c0τ̂jh, ∀(j, h) ∈ Ta,

βsj = ∥s− rj∥, ∀(s, j) ∈ Ntr,

βsh = ∥s− ah∥, ∀(s, h) ∈ Nta,

eT
1,j+1Y e1,j+1 = αsj, βsj ≥ 0 ∀(s, j) ∈ Ntr,

(
aT
h eT

1

) I R

RT Y

ah

e1

 = αsh, βsh ≥ 0 ∀(s, h) ∈ Nta,

αsj ≥ β2
sj, ∀(s, j) ∈ Ntr,

αsj ≤ β2
sj, ∀(s, j) ∈ Ntr,

αsh ≥ β2
sh, ∀(s, h) ∈ Nta,

αsh ≤ β2
sh, ∀(s, h) ∈ Nta,

eT
i+1,j+1Y ei+1,j+1 = d2ij, ∀(i, j) ∈ Nr,

(
aT
h eT

i+1

) I R

RT Y

 ah

ei+1

 = d̂2ih, ∀(i, h) ∈ Na,

Y = RTR.

(3.4.57)

The same as the previous technique, the inequality constraints αsj ≥ β2
sj is

equivalent to

 1 βsj

βsj αsj

 ≽ 0, and αsj ≤ β2
sj is equivalent to ∥s− ai∥ ≤ βis.

Thus we relax the equality constraints ∥s − rj∥ = βsj to ” ≤ ” inequality

constraints, which yields a second order cone problem. Also relax Y = RTR to

Y ≽ RTR which is equivalent to

Z :=

 I R

RT Y

 ≽ 0.

Then, the relaxed version of the problem (3.4.57) can be represented as a

mixed SDP-SOCP model.
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min
∑

(s,j)∈Ntr

αsj +
∑

(s,h)∈Nta

αsh

subject to βsj − βsk = c0τ̂jk, ∀(j, k) ∈ Tr,

βsj − βsh = c0τ̂jh, ∀(j, h) ∈ Ta,

βsj ≥ ∥s− rj∥, ∀(s, j) ∈ Ntr,

βsh ≥ ∥s− ah∥, ∀(s, h) ∈ Nta,

(0T eT
1,j+1)Z

 0

e1,j+1

 = αsj, βsj ≥ 0 ∀(s, j) ∈ Ntr,

(
aT
h eT

1

)
Z

ah

e1

 = αsh, βsh ≥ 0 ∀(s, h) ∈ Nta, 1 βsj

βsj αsj

 ≽ 0,∀(s, j) ∈ Ntr, 1 βsh

βsh αsh

 ≽ 0,∀(s, h) ∈ Nta,

(0T eT
i+1,j+1)Z

 0

ei+1,j+1

 = d2ij, ∀(i, j) ∈ Nr,

(
aT
h eT

i+1

)
Z

 ah

ei+1

 = d̂2ih, ∀(i, h) ∈ Na,

Z1:d,1:d = Id, Z ≽ 0.

rj = Z1:d,d+1+j

(3.4.58)

3.4.2 Statistical analysis

Statistical analysis for least square model

Assume we have M pairs of microphones rj and rk, (j, k) ∈ Tr, whose locations

are unknown, and N pairs of microphones ah and rj, (h, j) ∈ Ta, whose locations

are known and unknown respectively. Given a true source location s, we can
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derive the true time difference of arrival(TDOA)

T ({rj, rk}, s) =
∥ s− rj ∥ − ∥ s− rk ∥

c
,

and

T ({ah, rj}, s) =
∥ s− ah ∥ − ∥ s− rj ∥

c
,

where c is the speed of sound in the air. Then the estimate of these true TDOA

will be given by τ̂jk and τ̂hj respectively using the signals received at the two

microphones.

We need to estimate the source location ŝ. If the TDOA estimates for each

microphone pair are assumed to be independently corrupted by zero-mean addi-

tive white Gaussian noise of equal variance, then the estimator can be found by

minimizing the least squares error criterion

V (ŝ) =
∑

(j,k)∈Tr

(τ̂jk − T ({r̂j, r̂k}, ŝ))2 +
∑

(h,j)∈Ta

(τ̂hj − T ({ah, r̂j}, ŝ))2 (3.4.59)

Then the source location estimate if found from

ŝLS = argmin
ŝ

V (ŝ)

T ({r̂j, r̂k}, ŝ) can be expressed as their first-order Taylor series expansion

T ({r̂j, r̂k}, ŝ)

=
∥ ŝ− r̂j ∥ − ∥ ŝ− r̂k ∥

c

=
∥ s− rj +△s−△rj ∥ − ∥ s− rk +△s−△rk ∥

c

≈
∥ s− rj ∥ +

s−rj
∥s−rj∥ · (△s−△rj)− (∥ s− rk ∥ + s−rk

∥s−rk∥
· (△s−△rk))

c

= T ({rj, rk}, s) +
1

c

(
(s− rj)

∥ s− rj ∥
· (△s−△rj)−

(s− rk)

∥ s− rk ∥
· (△s−△rk)

)
.

Thus

T ({r̂j, r̂k}, ŝ)− T ({rj, rk}, s)

≈1

c

(
(s− rj)

∥ s− rj ∥
− (s− rk)

∥ s− rk ∥

)
· △s− (s− rj)

c ∥ s− rj ∥
· △rj +

(s− rk)

c ∥ s− rk ∥
· △rk
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For (j, k) ∈ Tr, set

hjk =
1

c

(
(s− rj)

∥ s− rj ∥
− (s− rk)

∥ s− rk ∥

)
,

ϕjk =
(
− (s−rj)

c∥s−rj∥ ,
(s−rk)
c∥s−rk∥

)T
,

△rjk =
(
△rj,△rk

)T
Then

T ({r̂j, r̂k}, ŝ)− T ({rj, rk}, s) ≈ hjk · △s+ ϕT
jk△rjk, (j, k) ∈ Tr.

Similarly, we can get

T ({ah, r̂j}, ŝ)− T ({ah, rj}, s) ≈ hhj · △s+ ϕhj · △rhj, (h, j) ∈ Ta,

where

hhj =
1

c

(
(s− ah)

∥ s− ah ∥
− (s− rj)

∥ s− rj ∥

)
,

ϕhj =
(s− rj)

c ∥ s− rj ∥
,

△rhj =△rj.

For convenience, according to the same order we arrange

T ({r̂j, r̂k}, ŝ)− T ({rj, rk}, s), (j, k) ∈ Tr, T ({ah, r̂j}, ŝ)− T ({ah, rj}, s), (h, j) ∈ Ta,

τ̂jk − T ({r̂j, r̂k}, ŝ), (j, k) ∈ Tr, τ̂hj − T ({ah, r̂j}, ŝ), (h, j) ∈ Ta,

△rjk, (j, k) ∈ Tr, △rhj, (h, j) ∈ Ta,

ϕjk, (j, k) ∈ Tr, ϕhj, (h, j) ∈ Ta,

hjk, (j, k) ∈ Tr, hhj, (h, j) ∈ Ta.

respectively, into

△τŝ = (△τ 1ŝ , · · · ,△τM+N
ŝ )T ,

△ττ̂ = (△τ 1τ̂ , · · · ,△τM+N
τ̂ )T ,

△r =
(
△rT

1 ,△rT
2 , · · · ,△rT

M ,△rM+1, · · · ,△rM+N

)T
,

(ϕT
1 , · · · , ϕT

M , ϕM+1, · · · , ϕM+N)
T ,

H =
(
h1,h2, · · · ,hM ,hM+1, · · · ,hM+N

)T
.
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Set

Φ =



ϕT
1

ϕT
2

. . .

ϕT
M

ϕM+1

. . .

ϕM+N


,

Then

△τŝ = H△s+ Φ△r,

and

V (ŝ) =
∑

(j,k)∈Tr

(τ̂jk − T ({r̂j, r̂k}, ŝ))2 +
∑

(h,j)∈Ta

(τ̂hj − T ({ah, r̂j}, ŝ))2

=
∑

(j,k)∈Tr

(τ̂jk − T ({rj, rk}, s) + T ({rj, rk}, s)− T ({r̂j, r̂k}, ŝ))2

+
∑

(h,j)∈Ta

(τ̂hj − T ({ah, rj}, s) + T ({ah, rj}, s)− T ({ah, r̂j}, ŝ))2

=(△ττ̂ −△τŝ)
T (△ττ̂ −△τŝ)

=(△ττ̂ − Φ△r −H△s)T (△ττ̂ − Φ△r −H△s).

It can be shown that the right side of the above equation can be minimized at

△sLS = (HTH)−1HT (△ττ̂ − Φ△r)

The covariance of △sLS is given by

cov{△sLS} = E[(△sLS − E(△sLS))(△sLS − E(△sLS))
T ]

Since TDOA estimates are assumed to be corrupted with a zero-mean, uncor-
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related noise, E(△sLS) = 0. Then

cov{△sLS}

= E[△sLS△sTLS]

= (HTH)−1H′E
(
△ττ̂△τTτ̂ + Φ△r△rTΦ

)
H((HTH)−1)T

= (HTH)−1H′ (cov{△ττ̂}+ cov{Φ△r})H(HTH)−1

(3.4.60)

Statistical analysis for least absolute value model

In this subsection we consider the least absolute deviation error:

E(ŝ) =
∑

(j,k)∈Tr

|τ̂jk − T ({r̂j, r̂k}, ŝ)|+
∑

(h,j)∈Ta

|τ̂hj − T ({ah, r̂j}, ŝ)|

From some estimates in previous subsection, E(ŝ) can be rewritten as

E(ŝ) = |△ττ̂ − Φ△r −H△s| . (3.4.61)

The least absolute deviation (LAD) estimator △sLAD can be found by minimizing

the least absolute deviation error criterion

△sLAD = argmin
△s

|△ττ̂ − Φ△r −H△s| .

Let yi denote the i-th component of △ττ̂ − Φ△r. Set β = △s and let zi denote

the i-th row of H. Then, the minimization min△sE(ŝ) of the right side of the

above equation is equivalent to the least absolute deviation estimator β̃ of the

linear model

yi = ziβ + ei, i = 1, 2, · · · ,M +N,

where ei, i = 1, 2, · · · ,M +N , are independent random variables with a common

probability density function f . We assume that the median of ei is 0 and f is a

continuous, and positive in a neighborhood of 0.

Set S =
∑M+N

i=1 zTi zi = HTH, xi = ziS
−1/2. Then

∑M+N
i=1 xT

i xi = IM+N and

(see Theorem 1 in Babu [1989]),

2f(0)S1/2β̃ ≈
M+N∑
i=1

xT
i signei =

M+N∑
i=1

xT
i sign(yi − ziβ).
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That is, the least absolute deviation estimator △sLAD of △s:

△sLAD ≈ 1

2f(0)

M+N∑
i=1

(HTH)−1zTi signei.

Since the median of ei is 0, then P (ei ≤ 0) = P (ei ≥ 0) = 1
2
, E(signei) = −P (ei <

0) + P (ei > 0) = 0 and E[(signei)
2] = 1, which implies that

cov(△sLAD,△sLAD) = E(△sLAD(△sLAD)
T )

≈ 1

4f 2(0)
E(

M+N∑
i=1

(HTH)−1zTi zj(H
TH)−1signeisignej)

=
1

4f 2(0)
(HTH)−1

M+N∑
i=1

zizj(H
TH)−1

=
1

4f 2(0)
(HTH)−1.

In particular, if ei ∼ N(0, σ2), then f(0) = 1√
2πσ

, and

cov(△sLAD,△sLAD) ≈
πσ2

2
(HTH)−1.
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Chapter 4

The solution region of the mixed

SDP-SOCP model associated

with source localization problem

4.1 Introduction

In the last chapter, we have presented the the mixed SDP-SOCP relaxation model

(3.2.25) of (3.2.2). Some methods to obtain the exact solution for the source

localization have been proposed. The estimator properties for the true source

location under noise has been studied. It is obvious that the solution of (3.2.2) is

a feasible solution for (3.2.25). For the SOCP relaxation part, by Proposition 5.1

(a) in (Tseng [2007]), we know that the optimal source location s must lies in the

convex hull of some microphones ai. That means when the source is located in the

convex hull of microphone array, it can be correctly localized by the above SDP-

SOCP relaxation model (3.2.25). However, when the source is located outside

of the convex hull of microphone array, the optimal solution of the SDP-SOCP

relaxation problem (3.2.25) may has some errors. The following question is natural

and important:
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(P). When the number of microphone is fixed and the error of time difference

of arrival estimates goes to zero, what is the condition such that the solution for

(3.2.25) is the solution of (3.2.2)?

In this chapter, we shall answer this question. We study the problem in two-

dimensional case. We obtain a representation for the solution of the mixed SDP-

SOCP model and the characterization such that the mixed SDP-SOCP model has

an exact relaxation. The characterization shows that the source localization with

some time-difference information can be solved exactly by the mixed SDP-SOCP

relaxation model in a larger region than the triangle region determined by three

points. The representation theorem and its proof are presented in Section 2 for

the solution of the mixed SDP-SOCP model. The characterization theorem and

its proof are given in Section 3.

4.2 A representation theorem for the solution of

the mixed SDP-SOCP

In this section, we study some properties of the solution possessed by the mixed

SDP-SOCP in R2, i.e., d = 2 and m = 3. For standardization, since most array

configurations can be represented by a union of triangular array, we shall simplify

the theorem by deriving the properties for a triangular array. The main result is

Theorem 4.2.2 which gives a representation for the solution of the mixed SDP-

SOCP and which plays a key role in the proof of the characterization theorem

(Theorem 4.3.1 in next section), which is important in deriving the geometry of

the localizable region.

Let α = (α1, α2, α3)
T , β = (β1, β2, β3)

T , s = (s1, s2)
T . Let ai = (ai1, ai2)

T ,

i = 1, 2, 3, be three points in R2. Then the mixed SDP-SOCP (3.2.25) can be
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written the equivalent form:

min α1 + α2 + α3

s.t. β1 − β2 = c0τ̂12,

β1 − β3 = c0τ̂13,

∥s− ai∥2 + (y − ∥s∥2) = αi, i = 1, 2, 3,

y ≥ ∥s∥2, αi ≥ β2
i , βi ≥ ∥s− ai∥, i = 1, 2, 3.

(4.2.1)

For the convenience, we use the notation (s, y, β, α) to denote a feasible solution

for (4.2.1).

Let s∗ = (s∗1, s
∗
2)

T satisfy

∥s∗ − a1∥ − ∥s∗ − a2∥ = c0τ12, ∥s∗ − a1∥ − ∥s∗ − a3∥ = c0τ13.

Denote by β∗
i = ∥s∗ − ai∥, i = 1, 2, 3. Set β∗ = (β∗

1 , β
∗
2 , β

∗
3)

T , α∗ = ((β∗
1)

2, (β∗
2)

2,

(β∗
3)

2)T , and y∗ = ∥s∗∥2. Then (s∗, y∗, β∗, α∗) is a feasible solution of (4.2.1).

Theorem 4.2.1 If s∗ is in the triangle region ∆a1a2a3 determined by the three

points a1, a2 and a3, then (s∗, y∗, β∗, α∗) is an optimal solution of (4.2.1)

Proof. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1), then there exist a λ ≥ 0

such that

β̂i = β∗
i − λ, i = 1, 2, 3,

Thus

ŝ ∈ ∩3
i=1B(ai, β

∗
i − λ) ⊂ ∩3

i=1B(ai, β
∗
i ).

But if s∗ ∈ ∆a1a2a3 , then

∩3
i=1B(ai, β

∗
i ) = {s : ∥s− ai∥ ≤ β∗

i = ∥s∗ − ai∥, i = 1, 2, 3} = {s∗}.

Therefore ŝ=s∗.

Lemma 4.2.1 Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1). Then ∥ŝ−ai∥ <

β̂i, i = 1, 2, 3 can not be satisfied at the same time.

— 81 —



PhD Thesis Solution Region of the Mixed SDP-SOCP Model

Proof. If for all i = 1, 2, 3, ∥ŝ − ai∥ < β̂i. Then it is clear that ŷ > ∥ŝ∥2. Let

δ = mini=1,2,3{β̂i − ∥ŝ− ai∥}, β̃i = β̂i − δ/2. Given ε > 0 such that ŷ − ∥ŝ∥2 ≥ ε

and (β̂i − δ/2)2 ≤ α̂i − ε, i = 1, 2, 3. Let s̃ = ŝ, ỹ = ŷ − ε, α̃i = α̂i − ε, then

(s̃, ỹ, β̃, α̃) is also a feasible solution of (4.2.1) and α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ, β̂, α̂) is not optimal.

Lemma 4.2.2 Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1). Then β̂2
i <

α̂i, i = 1, 2, 3 can not be satisfied at the same time.

Proof. If for all i = 1, 2, 3, β̂2
i < α̂i. Then it is clear that ŷ > ∥ŝ∥2. Choose δ > 0,

such that α̂i − δ ≥ β̂2
i , i = 1, 2, 3 and ŷ − ∥ŝ∥2 ≥ δ. Let s̃ = ŝ, ỹ = ŷ − δ, β̃i = β̂i,

α̃i = α̂i − δ, i = 1, 2, 3. Then (s̃, ỹ, β̃, α̃) is also a feasible solution of (4.2.1) and

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3. Therefore, (ŝ, ŷ, β̂, α̂) is not optimal.

For simplicity of notations, let us consider the case: a1 = (a, 0)T , a2 = (b, 0)T

and a3 = (0, c)T where a ≤ 0, b > 0, c < 0. Let Ω be the region enclosed by lines

u2 = 0, u1 − a = −a
c
u2 and u1 − b = − b

c
u2, i.e.,

Ω =

{
u = (u1, u2)

T ;u2 ≥ 0, u1 − a > −a

c
u2 and u1 − b < −b

c
u2,

}
.

Since (s∗, y∗, β∗, α∗) is an optimal solution of (4.2.1) if s∗ is in the triangle

region ∆a1a2a3 determined by the three points a1, a2 and a3, we only consider the

case: s∗ ∈ Ω with s∗2 > 0.

For λ ∈ [0,min1≤i≤3 β
∗
i ], then we have

B(a1, β
∗
1 − λ) ∩B(a2, β

∗
2 − λ) ⊂ B(a3, β

∗
3 − λ).

where B(a, r) = {u, |u− a| ≤ r}. In particular, β∗
3 − λ > −c.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1). Then there exists λ ∈
[0,min1≤i≤3 β

∗
i ], such that

β̂i = β∗
i − λ, i = 1, 2, 3;
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and

ŝ ∈ ∩3
i=1B(ai, β

∗
i − λ) = B(a1, β

∗
1 − λ) ∩B(a2, β

∗
2 − λ).

Let sλ = (sλ1 , s
λ
2)

T denote the point such that sλ2 ≥ 0 and ∥sλ − ai∥ = β∗
i − λ

for i = 1, 2. When λ > 0, ∥ŝ− a3∥2 < (β∗
3 − λ)2, and if a ≤ ŝ1 ≤ b, then

ŝ2 < sλ2 < s∗2.

By Lemma 4.2.1 and Lemma 4.2.2, the one of the following seven cases :

(C1): 
∥ŝ− a1∥2 = (β∗

1 − λ)2,

∥ŝ− a2∥2 = (β∗
2 − λ)2,

∥ŝ− a3∥2 ≤ (β∗
3 − λ)2 = α̂3;

(4.2.2)

(C2):  ∥ŝ− a1∥2 = (β∗
1 − λ)2,

(β∗
2 − λ)2 − ∥ŝ− a2∥2 = (β∗

3 − λ)2 − ∥ŝ− a3∥2 > 0;
(4.2.3)

(C3):  ∥ŝ− a2∥2 = (β∗
2 − λ)2,

(β∗
1 − λ)2 − ∥ŝ− a1∥2 = (β∗

3 − λ)2 − ∥ŝ− a3∥2 > 0;
(4.2.4)

(C4): ∥ŝ−a1∥2 = (β∗
1−λ)2, ∥ŝ−a2∥2 < (β∗

2−λ)2 = α̂2, ∥ŝ−a3∥2 ≤ (β∗
3−λ)2,

and (β∗
2 − λ)2 − ∥ŝ− a2∥2 > (β∗

3 − λ)2 − ∥ŝ− a3∥2;

(C5): ∥ŝ−a1∥2 = (β∗
1−λ)2, ∥ŝ−a2∥2 < (β∗

2−λ)2, ∥ŝ−a3∥2 ≤ (β∗
3−λ)2 = α̂3,

and (β∗
2 − λ)2 − ∥ŝ− a2∥2 < (β∗

3 − λ)2 − ∥ŝ− a3∥2;

(C6): ∥ŝ−a1∥2 < (β∗
1−λ)2 = α̂1, ∥ŝ−a2∥2 = (β∗

2−λ)2, ∥ŝ−a3∥2 ≤ (β∗
3−λ)2,

and (β∗
1 − λ)2 − ∥ŝ− a1∥2 > (β∗

3 − λ)2 − ∥ŝ− a3∥2;

(C7): ∥ŝ− a1∥2 < (β∗
1 − λ)2, ∥ŝ− a2∥2 = (β∗

2 − λ)2, ∥ŝ− a3∥2 ≤ (β∗
3 − λ)2 =

α̂3,and (β∗
1 − λ)2 − ∥ŝ− a1∥2 < (β∗

3 − λ)2 − ∥ŝ− a3∥2.
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We want to prove that the cases (C4), (C5), (C6) and (C7) can not appear.

The following theorem is a main result in this section.

Theorem 4.2.2 (Representation theorem). Assume that −c ≥ |a + b|. Let

(ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1). Then ŝ2 ≥ 0 and there exists λ ≥ 0

such that β̂ = β∗ − λ, and one of (C1), (C2) and (C3) holds. Furthermore, if

ŝ1 ∈ [a, b], then (C1) must be true.

Proof. The proof will be completed by the following five lemmas.

Lemma 4.2.3 Let (ŝ, ŷ, β∗ − λ, α̂) be a feasible solution of (4.2.1). If (ŝ, ŷ, β∗ −
λ, α̂) satisfies (C4) or (C6), then (ŝ, ŷ, β∗ − λ, α̂) is not an optimal solution of

(4.2.1).

Proof. We only consider the case (C4) since the case (C6) is similar. Assume that

(ŝ, ŷ, β∗ − λ, α̂) satisfies (C4). If ŝ is below of x-axis, let ŝ∗ denote the reflection

of ŝ with respect to x-axis. Then ∥ŝ−a2∥ = ∥ŝ∗−a2∥, ∥ŝ−a1∥ = ∥ŝ∗−a1∥, and

(β∗
3 − λ)2 − ∥ŝ∗ − a3∥2 ≤(β∗

3 − λ)2 − ∥ŝ− a3∥2

<(β∗
2 − λ)2 − ∥ŝ− a2∥2 = (β∗

2 − λ)2 − ∥ŝ∗ − a2∥2.

Set

g(λ,u) = (β∗
3−λ)2−∥u−a3∥2−

(
(β∗

2 − λ)2 − ∥u− a2∥2
)
, u ∈ ∩3

i=1B(ai, β
∗
i −λ).

Then g(λ, sλ) > 0, g(λ, ŝ) < 0 and g(λ, ŝ∗) < 0, thus there exists s̃ with sλ1 < s̃1 <

ŝ1
∗, s̃2 > 0, and ∥s̃− a1∥2 = (β∗

1 − λ)2 and ∥s̃− a2∥2 < (β∗
2 − λ)2 = α̂2, such that

g(λ, s̃) = 0.

Set ỹ = ∥s̃∥2 + (β∗
2 − λ)2 − ∥s̃− a2∥2, β̃ = β∗ − λ and α̃1 = (β∗

1 − λ)2 + (β∗
2 −

λ)2−∥s̃−a2∥2, α̃2 = β̃2
2 , α̃3 = β̃2

3 . Then (s̃, ỹ, β̃, α̃) is a feasible solution of (4.2.1),
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and α̃1 < (β∗
1 − λ)2 + (β∗

2 − λ)2 − ∥ŝ− a2∥2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ, β∗ − λ, α̂) is not optimal.

Lemma 4.2.4 Assume that −c ≥ |a+b|. Let (ŝ, ŷ, β∗−λ, α̂) be a feasible solution

of (4.2.1). If ŝ2 < 0 or ŝ1 ∈ [a, b], and (ŝ, ŷ, β∗ − λ, α̂) satisfies one of (C2) and

(C3)

then (ŝ, ŷ, β∗ − λ, α̂) is not an optimal solution of (4.2.1).

Proof. We only consider the condition (C2). If ŝ is below x-axis, denote by ŝ∗

the reflection of ŝ with respect to x-axis. Then

(β∗
3 − λ)2 − ∥ŝ∗ − a3∥2 <(β∗

3 − λ)2 − ∥ŝ− a3∥2.

If (β∗
3−λ)2−∥ŝ∗−a3∥2 ≥ (β∗

2−λ)2−∥ŝ∗−a2∥2, set ỹ = ∥ŝ∗∥2+(β∗
3−λ)2−∥ŝ∗−a3∥2,

β̃ = β∗ − λ and α̃1 = (β∗
1 − λ)2 + (β∗

3 − λ)2 − ∥ŝ∗ − a3∥2, α̃2 = ∥ŝ∗ − a2∥2 + (β∗
3 −

λ)2 − ∥ŝ∗ − a3∥2, α̃3 = β̃2
3 . Then (ŝ∗, ỹ, β̃, α̃) is a feasible solution of (4.2.1), and

α̃i < α̂i for i = 1, 2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ, β∗ − λ, α̂) is not optimal.

If (β∗
3 − λ)2 − ∥ŝ∗ − a3∥2 < (β∗

2 − λ)2 − ∥ŝ∗ − a2∥2, then there exists s̃ with

ŝ2 < s̃2 < ŝ∗2, ∥s̃ − a1∥2 = (β∗
1 − λ)2 and ∥s̃ − a2∥2 < (β∗

2 − λ)2, such that

g(λ, s̃) = 0. Set ỹ = ∥s̃∥2 + (β∗
2 − λ)2 − ∥s̃ − a2∥2, β̃ = β∗ − λ and α̃1 =

(β∗
1 − λ)2 + (β∗

2 − λ)2 −∥s̃−a2∥2, α̃2 = β̃2
2 , α̃3 = β̃2

3 . Then (s̃, ỹ, β̃, α̃) is a feasible

solution of (4.2.1), and α̃1 < (β∗
1 − λ)2 + (β̂2 − λ)2 − ∥ŝ− a2∥2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3,
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which implies that (ŝ, ŷ, β∗ − λ, α̂) is also not optimal.

Therefore, ŝ must be above x-axis, i.e., ŝ2 ≥ 0, and sλ1 < ŝ1.

The equation (β∗
3 −λ)2−∥u−a3∥2 = (β∗

2 −λ)2−∥u−a2∥2 can be written by

2cu2 = 2bu1 + (β∗
2 − λ)2 − (β∗

3 − λ)2 − b2 + c2,

which is a straight line with a negative slope.

Assume that the straight line intersects the circle {u; ∥u − a1∥ = β∗
1 − λ} at

ŝ(1) = (ŝ
(1)
1 , ŝ

(1)
2 )T and ŝ(2) = (ŝ

(2)
1 , ŝ

(2)
2 )T , where ŝ

(1)
2 ≤ ŝ

(2)
2 .

Without loss of generality, assume that ŝ
(1)
2 < ŝ

(2)
2 , then ŝ

(2)
2 > 0, and ŝ = ŝ(1)

or ŝ = ŝ(2).

If ŝ = ŝ(1), for ε > 0, set

uϵ
1 = ŝ1 − ε, uε

2 =
b

c
uε
1 +

(β∗
2 − λ)2 − (β∗

3 − λ)2 − b2 + c2

2c
= ŝ2 −

b

c
ε.

Then when ε is small enough, uε = (uε
1, u

ε
2)

T ∈ B(a1, β
∗
1 − λ) ∩B(a2, β

∗
2 − λ),

∥uε − a1∥2 + (β∗
2 − λ)2 − ∥uε − a2∥2 > (β∗

1 − λ)2,

and

(β∗
3 − λ)2 − ∥uε − a3∥2 = (β∗

2 − λ)2 − ∥uε − a2∥2 < (β∗
2 − λ)2 − ∥ŝ− a2∥2.

Set ỹ = ∥uε∥2 + (β∗
2 − λ)2 −∥uε −a2∥2, β̃ = β∗ − λ and α̃1 = ∥uε −a1∥2 + (β∗

2 −
λ)2 − ∥uε − a2∥2, α̃2 = β̃2

2 , α̃3 = β̃2
3 . Then (uε, ỹ, β̃, α̃) is a feasible solution of

(4.2.1), and α̃1 < (β∗
1 − λ)2 + (β∗

2 − λ)2 − ∥ŝ− a2∥2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Therefore, (ŝ, ŷ, β, α̂) is not optimal.

If ŝ = ŝ(2) and ŝ1 ≥ a, for ε > 0, set

uε
1 = ŝ1 − ε, uε

2 = ŝ2 − ε.
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Then

∥uε − a1∥2 = (β∗
1 − λ)2 − 2ε(|ŝ1 − a|+ ŝ2) +O(ε2),

and so, for ε small enough, uε ∈ B(a1, β
∗
1 − λ). Set

λε = λ+ (β∗
1 − ∥uε − a1∥)

β∗
1 − λ

|ŝ1 − a|+ ŝ2
.

Then

λε = λ+ ε+O(ε2),

and

b

c
uε
1 +

(β∗
2 − λε)2 − (β∗

3 − λε)2 − b2 + c2

2c
+O(ε2) = ŝ2 −

β∗
2 − β∗

3 + b

c
ε.

Since |β∗
2 − β∗

3 | <
√
b2 + c2 < b − c, we have β∗

2 − β∗
3 + b > c, i.e.,

β∗
2−β∗

3+b

−c
> −1

which yields

uε
2 <

b

c
uε
1 +

(β∗
2 − λε)2 − (β∗

3 − λε)2 − b2 + c2

2c
.

Noting that ŝ2 > 0 and sλ1 < ŝ1, we see that (β∗
2 − λ)2 > ∥ŝ− a2∥2. Then we

can choose ε0 > 0 small enough such that for all ε ∈ (0, ε0), u
ε ∈ B(a1, β

∗
1 −λε)∩

B(a2, β
∗
2 − λε),

∥uε − a1∥2 + (β∗
3 − λε)2 − ∥uε − a3∥2 > (β∗

1 − λε)2,

and

uε
2 <

b

c
uε
1 +

(β∗
2 − λε)2 − (β∗

3 − λε)2 − b2 + c2

2c
.

Noting that

(β∗
3 − λε)2 − ∥u− a3∥2 > (β∗

2 − λε)2 − ∥u− a2∥2,

if and only if

u2 <
b

c
u1 +

(β∗
2 − λε)2 − (β∗

3 − λε)2 − b2 + c2

2c
,

we have that

(β∗
3 − λε)2 − ∥uε − a3∥2 > (β∗

2 − λε)2 − ∥uε − a2∥2.
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Set ỹ = ∥uε∥2 + (β∗
3 − λε)2 − ∥uε − a3∥2, β̃ = β∗ − λε and α̃1 = ∥uε − a1∥2 +

(β∗
3 − λε)2 − ∥uε − a3∥2, α̃2 = ∥uε − a2∥2 + (β∗

3 − λε)2 − ∥uε − a3∥2, α̃3 = β̃2
3 .

Then (uε, ỹ, β̃, α̃) is a feasible solution of (4.2.1). Since

∥uε − a1∥2 − ∥ŝ− a1∥2 = −2ε ((ŝ1 − a) + ŝ2) +O(ε2),

∥uε − a2∥2 − ∥ŝ− a2∥2 = −2ε ((ŝ1 − b) + ŝ2) +O(ε2),

∥uε − a3∥2 − ∥ŝ− a3∥2 = −2ε (ŝ1 + (ŝ2 − c)) +O(ε2),

and

(β∗
3 − λε)2 − (β∗

3 − λ)2 = −2ε(β∗
3 − λ) +O(ε2),

we have that

α̃1 + α̃2 + α̃3 − (α̂1 + α̂2 + α̂3)

=∥uε − a1∥2 − ∥ŝ− a1∥2 + ∥uε − a2∥2 − ∥ŝ− a2∥2 − 2
(
∥uε − a3∥2 − ∥ŝ− a3∥2

)
+ 3

(
(β∗

3 − λε)2 − (β∗
3 − λ)2

)
=− 4cε+ 2ε(a+ b)− 6ε(β∗

3 − λ) +O(ε2).

Therefore, under the condition −c ≥ |a+b|, when ε is small enough, α̃1+α̃2+α̃3 <

α̂1 + α̂2 + α̂3, and so, (ŝ, ŷ, β∗ − λ, α̂) is also not optimal. This is a contradiction.

Lemma 4.2.5 Assume that −3c ≥ |a + b|. Let (ŝ, ŷ, β∗ − λ, α̂) be a feasible

solution of (4.2.1). If ŝ2 = 0, and one of (C5) and (C7), then (ŝ, ŷ, β∗ − λ, α̂) is

not an optimal solution of (4.2.1).

Proof. We only consider the condition (C5). Suppose that ŝ2 = 0, then ŝ1 =

β∗
1 − λ+ a. If (β∗

3 − λ)2 − ∥ŝ− a3∥2 > (β∗
2 − λ)2 − ∥ŝ− a2∥2, then

α̂1 + α̂2 + α̂3

=∥ŝ− a1∥2 + ∥ŝ− a2∥2 + 2((β∗
3 − λ)2 − ∥ŝ− a3∥2) + (β∗

3 − λ)2

=(β∗
1 − λ)2 + (β∗

1 − λ+ a− b)2 + 2((β∗
3 − λ)2 − (β∗

1 − λ+ a)2 − c2) + (β∗
3 − λ)2.
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Choose ε0 > 0 such that for any ε ∈ [0, ε0),

(β∗
3 − λε)2 − ∥ŝε − a3∥2 > (β∗

2 − λε)2 − ∥ŝε − a2∥2,

where λε = λ+ ε and ŝε = (ŝ1 − ε, 0)T . Set ỹ = ∥ŝε∥2 + (β∗
3 − λε)2 − ∥ŝε − a3∥2,

β̃ = β∗ − λε and α̃1 = ∥ŝε − a1∥2 + (β∗
3 − λε)2 − ∥ŝε − a3∥2, α̃2 = ∥ŝε − a2∥2 +

(β∗
3 − λε)2 − ∥ŝε − a3∥2, α̃3 = β̃2

3 . Then

α̃1 + α̃2 + α̃3

=∥ŝ− a1∥2 + ∥ŝ− a2∥2 + 2((β∗
3 − λ)2 − ∥ŝ− a3∥2) + (β∗

3 − λ)2

− 2ε(β∗
1 − λ) + ε2 − 2ε(β∗

1 − λ+ a− b) + ε2 − 6ε(β∗
3 − λ) + 3ϵ2

+ 4ε(β∗
1 − λ+ a)− 2ε2

=α̂1 + α̂2 + α̂3 + 2ε (a+ b− 3(β∗
3 − λ)) + 3ε2

Therefore, noting that β∗
3 − λ > −c, under the condition −3c ≥ |a + b|, when ε

is small enough, α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3. Therefore, (ŝ, ŷ, β∗ − λ, α̂) is not

optimal.

Lemma 4.2.6 Assume that −c ≥ |a+b|. Let (ŝ, ŷ, β∗−λ, α̂) be a feasible solution

of (4.2.1). If one of (C5) and (C7), then (ŝ, ŷ, β∗−λ, α̂) is not an optimal solution

of (4.2.1).

Proof. We only consider the condition (C5). Suppose that (ŝ, ŷ, β∗ − λ, α̂) is an

optimal solution of (4.2.1). Then by Lemma 4.2.5, ŝ2 > 0, and ŝ is above x-axis

by a similar argument in the proof of Lemma 4.2.4. Thus, ŝ is above x-axis with

s̃2 > 0 and sλ1 < ŝ1.

For ε > 0, set

uε
1 = ŝ1 −

ε(ŝ1 − a)

|ŝ1 − a|
uε
2 = ŝ2 − ε.

Then

∥uε − a1∥2 = (β∗
1 − λ)2 − 2ε (|ŝ1 − a|+ ŝ2) + 2ε2 +O(ε2),
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and so, for ε small enough, uε ∈ B(a1, β
∗
1 − λ). Set

λε = λ+ (β∗
1 − ∥uε − a1∥)

β∗
1 − λ

|ŝ1 − a|+ ŝ2
.

Then

λε = λ+ ε+O(ε2),

Noting that s̃2 > 0 and sλ1 < ŝ1, we see that (β∗
2 − λ)2 > ∥ŝ− a2∥2. Then we can

choose ε0 > 0 small enough such that for all ε ∈ (0, ε0), u
ε ∈ B(a2, β

∗
2 − λε).

Set ỹ = ∥uε∥2 + (β∗
3 − λε)2 − ∥uε − a3∥2, β̃ = β∗ − λε and α̃1 = ∥uε − a1∥2 +

(β∗
3 − λε)2 − ∥uε − a3∥2, α̃2 = ∥uε − a2∥2 + (β∗

3 − λε)2 − ∥uε − a3∥2, α̃3 = β̃2
3 .

Then (uε, ỹ, β̃, α̃) is a feasible solution of (4.2.1). Since

∥uε − a1∥2 − ∥ŝ− a1∥2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
(ŝ1 − a) + ŝ2

)
+O(ε2),

∥uε − a2∥2 − ∥ŝ− a2∥2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
(ŝ1 − b) + ŝ2

)
+O(ε2),

∥uε − a3∥2 − ∥ŝ− a3∥2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
ŝ1 + (ŝ2 − c)

)
+O(ε2),

and

(β∗
3 − λε)2 − (β∗

3 − λ)2 = −2ε(β∗
3 − λ) +O(ε2),

we have that

α̃1 + α̃2 + α̃3 − (α̂1 + α̂2 + α̂3)

=∥uε − a1∥2 − ∥ŝ− a1∥2 + ∥uε − a2∥2 − ∥ŝ− a2∥2 − 2
(
∥uε − a3∥2 − ∥ŝ− a3∥2

)
+ 3

(
(β∗

3 − λε)2 − (β∗
3 − λ)2

)
=− 4cε+ 2(a+ b)

ε(ŝ1 − a)

|ŝ1 − a|
− 6ε(β∗

3 − λ) +O(ε2).

Therefore, under the condition −c ≥ |a+b|, when ε is small enough, α̃1+α̃2+α̃3 <

α̂1 + α̂2 + α̂3, and so, (ŝ, ŷ, β∗ − λ, α̂) is also not optimal. This is a contradiction.

Lemma 4.2.7 Let (ŝ, ŷ, β∗−λ, α̂) be an optimal solution of (4.2.1). If (ŝ, ŷ, β∗−
λ, α̂) satisfies (C1), then ŝ2 > 0.
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Proof. If ŝ2 < 0, denote by ŝ∗ the reflection of ŝ with respect to x-axis. Then

∥ŝ∗ − a1∥2 = (β∗
1 − λ)2, ∥ŝ∗ − a2∥2 = (β∗

2 − λ)2, ∥ŝ∗ − a3∥2 ≤ (β∗
3 − λ)2

and

(β∗
3 − λ)2 − ∥ŝ∗ − a3∥2 <(β∗

3 − λ)2 − ∥ŝ− a3∥2.

Set ỹ = ∥ŝ∗∥2+(β∗
3 −λ)2−∥ŝ∗−a3∥2, β̃ = β∗−λ and α̃1 = (β∗

1 −λ)2+(β∗
3 −λ)2−

∥ŝ∗ − a3∥2, α̃2 = ∥ŝ∗ − a2∥2 + (β∗
3 − λ)2 − ∥ŝ∗ − a3∥2, α̃3 = β̃2

3 . Then (ŝ∗, ỹ, β̃, α̃)

is a feasible solution of (4.2.1), and α̃i < α̂i for i = 1, 2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ, β∗ − λ, α̂) is not optimal.

If ŝ2 = 0, then ŝ1 = β∗
1 −λ+a and ŝ1 = β∗

2 −λ− b. Therefore, b−a = β∗
2 −β∗

1 .

This is a contradiction of that b−a, β∗
1 , β

∗
2 are three edges of the triangle △a1a2s∗ .

4.3 A characterization theorem

In this section, based on the representation theorem derived in the previous sec-

tion, we continue to study the characteristics of the solution to the mixed SDP-

SOCP model. In particular, we would like to know the geometric structure for

the localizable region, where the source can be located exactly when there is no

error in the delay estimates. This gives a standard to compare the performance

of different convex relaxation models.

Technically, we want to find a condition such that (s∗, y∗, β∗, α∗) is an optimal

solution to (4.2.1) where s∗1 ∈ [a, b]. For simplicity of notations, let us first consider

a1 = (a, 0)T , a2 = (b, 0)T and a3 = (0, c)T where a < 0, b > 0, c < 0.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1) and assume that ŝ1 ∈ [a, b].

Then by Theorem 4.2.2, ŝ2 > 0 and ŝ is a solutions of the equation (4.2.2).
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Define

D = {λ ∈ (0,min{β∗
1 , β

∗
2 , β

∗
3}] ; such that (4.2.2) has a solution} . (4.3.5)

Now, assume ŝ to be a solution of the equation (4.2.2). Define

M(λ) :=(β∗
1 − λ)2 + (β∗

3 − λ)2 + ∥ŝ− a2∥2 + 2((β∗
3 − λ)2 − ∥ŝ− a3∥2), λ ∈ D.

It follows from Theorem 4.2.2 that (s∗, y∗, β∗, α∗) is an optimal solution of

(4.2.1) if and only if

g(λ) := M(λ)− ((β∗
1)

2 + (β∗
2)

2 + (β∗
3)

2) > 0 for any λ ∈ D. (4.3.6)

Set

U =
{
s∗ = (s∗1, s

∗
2)

T ; g(λ) > 0 for all λ ∈ D
}
. (4.3.7)

The following theorem gives a characterization such that the mixed SDP-SOCP

(4.2.1) has an exact relaxation under the condition −c ≥ |a+ b|.

Theorem 4.3.1 (Characterization theorem). Assume that −c ≥ |a + b|. Let

(ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1) and assume that ŝ1 ∈ [a, b]. If

Ψ(s∗) :=−
(
(β∗

1)
2 − (β∗

3)
2 +

a((β∗
1)

2 − (β∗
2)

2)

b− a
+ ab+ c2

)
(
β∗
1 − β∗

2 − 3β∗
3 +

2a(β∗
1 − β∗

2)

b− a

)
− 2c2

(
−2 β∗

1 +
((β∗

1)
2 − (β∗

2)
2 + (b− a)2)(β∗

1 − β∗
2)

(b− a)2

)
> 0.

(4.3.8)

then ŝ = s∗, i.e., the mixed SDP-SOCP (4.2.1) has an exact relaxation.

Conversely, if the mixed SDP-SOCP (4.2.1) has an exact relaxation, then

Ψ(s∗) ≥ 0.

Proof. By ∥ŝ− a1∥2 = (β∗
1 − λ)2 and ∥ŝ− a2∥2 = (β∗

2 − λ)2 , we have that

(b− a) (2ŝ1 − (a+ b)) =(β∗
1 − λ)2 − (β∗

2 − λ)2 = (β∗
1 − β∗

2) (β
∗
1 + β∗

2 − 2λ) ,
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which yields

ŝ1 =
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

a+ b

2
.

Therefore,

ŝ22 =(β∗
1 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

.

Noting that ŝ2 > 0, we obtain

ŝ2 =

√
(β∗

1 − λ)2 −
(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

.

By some algebraic manipulations, we have

(β∗
1 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

=
1

(b− a)2
(
(b− a)2 − (β∗

1 − β∗
2)

2
)(

λ− β∗
1 + β∗

2 − (b− a)

2

)(
λ− β∗

1 + β∗
2 + (b− a)

2

)
Noting that the sum of the lengths of any two sides of a triangle is always greater

than the length of the third one, we see that

0 <
β∗
1 + β∗

2 − (b− a)

2
< min{β∗

1 , β
∗
2}.

Let ŝ0 denote the point of intersection of the lines a3s
∗ and a1a2. Then we also

have that

β∗
1 − ∥a1 − ŝ0∥ < β∗

3 , β∗
2 − ∥a2 − ŝ0∥ < β∗

3 , and ∥a1 − ŝ0∥+ ∥a2 − ŝ0∥ = b− a.

Thus
β∗
1 + β∗

2 − (b− a)

2
< β∗

3 ,

and so

0 <
β∗
1 + β∗

2 − (b− a)

2
< min{β∗

1 , β
∗
2 , β

∗
3}.

Thus, when 0 < λ <
β∗
1+β∗

2−(b−a)

2
,

(β∗
1 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

> 0;
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and when
β∗
1+β∗

2−(b−a)

2
< λ <

β∗
1+β∗

2+(b−a)

2
,

(β∗
1 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

< 0.

Since min{β∗
1 , β

∗
2 , β

∗
3} <

β∗
1+β∗

2+(b−a)

2
, from 0 ≤ λ < min{β∗

1 , β
∗
2 , β

∗
3} and

(β∗
1 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

≥ 0,

we obtain λ <
β∗
1+β∗

2−(b−a)

2
, that is, D =

(
0,

β∗
1+β∗

2−(b−a)

2

)
.

Now, by

(β∗
3 − λ)2 − ∥ŝ− a3∥2

=(β∗
3 − λ)2 − ŝ21 − ŝ22 + 2cŝ2 − c2

=(β∗
3 − λ)2 −

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

a+ b

2

)2

− (β∗
1 − λ)2 +

(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

− c2

+ 2c

√
(β∗

1 − λ)2 −
(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

=− (β∗
1 − β∗

3)(β
∗
1 + β∗

3 − 2λ)− a

(
(β∗

1 − β∗
2)

b− a
(β∗

1 + β∗
2 − 2λ) + b

)
− c2

+ 2c

√
(β∗

1 − λ)2 −
(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

,

we obtain

g(λ) =3λ2 − 2λ (β∗
1 + β∗

2 + β∗
3)− 2(β∗

1 − β∗
3)(β

∗
1 + β∗

3 − 2λ)

− 2a

(
(β∗

1 − β∗
2)

b− a
(β∗

1 + β∗
2 − 2λ) + b

)
− 2c2

+ 4c

√
(β∗

1 − λ)2 −
(
(β∗

1 − β∗
2)

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

.

Therefore

{s∗ = (ŝ1, ŝ2); g̃(λ) > 0 for any λ ∈ D} = U,
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where

g̃(λ) :=

(
3λ2 − 2λ (β∗

1 + β∗
2 + β∗

3)− 2(β∗
1 − β∗

3)(β
∗
1 + β∗

3 − 2λ)

− 2a

(
β∗
1 − β∗

2

b− a
(β∗

1 + β∗
2 − 2λ) + b

)
− 2c2

)2

−16c2

(
(β∗

1 − λ)2 −
(
β∗
1 − β∗

2

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2
)
.

Notice that

g̃(0) = 0, g̃

(
β∗
1 + β∗

2 − (b− a)

2

)
≥ 0,

and for any
β∗
1+β∗

2−(b−a)

2
≤ λ ≤ β∗

1+β∗
2+(b−a)

2
,

(β∗
1 − λ)2 −

(
β∗
1 − β∗

2

2(b− a)
(β∗

1 + β∗
2 − 2λ) +

b− a

2

)2

≤ 0,

which implies that for any
β∗
1+β∗

2−(b−a)

2
≤ λ ≤ β∗

1+β∗
2+(b−a)

2
,

g̃(λ) ≥ 0.

Therefore, we can write

g̃(λ) = λ
(
9λ3 + a1λ

2 + a2λ+ a3
)
,

where

a1 :=12

(
β∗
1 − β∗

2 − 3β∗
3 +

2a(β∗
1 − β∗

2)

b− a

)
=12

(
−3β∗

3 +
(a+ b)(β∗

1 − β∗
2)

b− a

)
≤12 (−3β∗

3 + |a+ b|) ≤ −24β∗
3 < 0,

a2 :=4

(
β∗
1 − β∗

2 − 3β∗
3 +

2a(β∗
1 − β∗

2)

b− a

)2

− 12((β∗
1)

2 − (β∗
3)

2)− 12a((β∗
1)

2 − (β∗
2)

2)

b− a

+
16(β∗

1 − β∗
2)

2

(b− a)2
− 12ab− 28c2,

a3 := 8Ψ(s∗) =− 8

(
(β∗

1)
2 − (β∗

3)
2 +

a((β∗
1)

2 − (β∗
2)

2)

b− a
+ ab+ c2

)
(
β∗
1 − β∗

2 − 3β∗
3 +

2a(β∗
1 − β∗

2)

b− a

)
− 16c2

(
−2 β∗

1 +
((β∗

1)
2 − (β∗

2)
2 + (b− a)2)(β∗

1 − β∗
2)

(b− a)2

)
.
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This yields that (s∗, y∗, β∗, α∗) is an optimal solution of (4.2.1) if and only if for

any λ ∈ D

f̃(λ) :=9λ3 + a1λ
2 + a2λ+ a3 > 0.

In particular, a3 = f̃(0) ≥ 0, and so, a3 ≥ 0 is a necessary condition.

Conversely, if a3 > 0, then by limλ→−∞ f̃(λ) = −∞, we see that there exists

λ0 < 0 such that

f̃ (λ0) = 0.

Let λ1 and λ2 denote other two roots of the equation f̃(λ) = 0. Then

λ0 + λ1 + λ2 = −1

9
a1.

Therefore, by −1
9
a1 ≥ 8

3
β∗
3 > β∗

1 + β∗
2 − (b− a),

λ1 + λ2 > β∗
1 + β∗

2 − (b− a),

which implies that one of λ1 and λ2 is bigger than (β∗
1 + β∗

2 − (b− a))/2. On the

other hand, since

f̃ (0) > 0, and f̃

(
β∗
1 + β∗

2 − (b− a)

2

)
≥ 0,

if f̃
(

β∗
1+β∗

2−(b−a)

2

)
> 0, then the number of roots in ((0, β∗

1 + β∗
2 + b − a)/2) of

f̃(λ) = 0 must be even number. Therefore, or f̃
(

β∗
1+β∗

2−(b−a)

2

)
= 0, or both λ1

and λ2 are ((β
∗
1 + β∗

2 + b− a)/2,∞), and so, the mixed SDP-SOCP (4.2.1) has an

exact relaxation.

The proof is completed.

Since the distance between two points is invariant under translation and rota-

tion, we can state a general form of Theorem 4.3.1 in the following theorem.

Theorem 4.3.2 Let a1,a2,a3 be three point in R2 and let r denote the pedal

point of the point a3 to the line segment from a1 to a2. Set

a = −∥a1 − r∥, b = ∥a2 − r∥, c = −∥a3 − r∥,
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and

β∗
i = ∥s∗ − ai∥, i = 1, 2, 3.

Assume that r is between a1 and a2, and −c ≥ |a+ b|.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1) and assume that ŝ1 ∈ [a, b]. If

Ψ(s∗) > 0, then ŝ = s∗.

Conversely, if the mixed SDP-SOCP (4.2.1) has an exact relaxation, then

Ψ(s∗) ≥ 0.

Corollary 4.3.1 For any three point a1,a2,a3 with ∥a1 − a3∥ = ∥a2 − a3∥, set

b = ∥a1 − a2∥/2, c = −
√

∥a2 − a3∥2 − b2.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (4.2.1) and assume that ŝ1 ∈ [a, b]. If

3
(
(β∗

1)
2 + (β∗

2)
2 − 2(β∗

3)
2 − 2b2 + 2c2

)
β∗
3−

c2

b2
(
((β∗

1)
2 − (β∗

2)
2)− 4b2(β∗

1 + β∗
2)
)
> 0,

(4.3.9)

then the mixed SDP-SOCP (4.2.1) has an exact relaxation.

Conversely, if the mixed SDP-SOCP (4.2.1) has an exact relaxation, then

3
(
(β∗

1)
2 + (β∗

2)
2 − 2(β∗

3)
2 − 2b2 + 2c2

)
β∗
3−

c2

b2
(
((β∗

1)
2 − (β∗

2)
2)− 4b2(β∗

1 + β∗
2)
)
≥ 0,

(4.3.10)

Proof. Since under the condition a = −b, a3 can be simplified by

a3 = 8Ψ(s∗)

= 12
(
(β∗

1)
2 + (β∗

2)
2 − 2(β∗

3)
2 − 2b2 + 2c2

)
β∗
3

− 4c2

b2
(
((β∗

1)
2 − (β∗

2)
2)− 4b2(β∗

1 + β∗
2)
)
,

(4.3.11)

Corollary 4.3.1 is a consequence of Theorem 4.3.2.
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Figure 4.1: Exact localizable region

To illustrate the characterization theorem, we give a simple example here.

Assume a = −1,b = 1,c = −1, by Theorem 4.3.1, we can find there is an extended

region to the convex hull of the triangular array which has the exact localizable

property (Figure 4.1). We call this region the localizable region of the model.
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Chapter 5

Experiments for source

localization problem

5.1 Introduction

In the last two chapters, we give the mixed SDP-SOCP relaxation model for source

localization problem and show the exact solution region. In this chapter, some

numerical results are presented. The chapter is organized as follows. In section 1,

we give comparison between mixed SDP-SOCP relaxation model with other three

relaxation models presented in chapter 2. The experiment for error correction

algorithm is given in section 2. In section 3 and 4, some numerical results by

real data and simulation are presented respectively using least square method,

error correction method and bi-level method. In the last section, a example for

mixed SDP-SOCP relaxation model for source localization combined with sensor

network localization is given.
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Figure 5.1: SDP relaxation model

5.2 Comparison between mixed SDP-SOCP re-

laxation model with other three models

In this section, some numerical results for comparing with four convex relaxation

models in chapter 3 will be presented under the condition that there are no TODA

errors. In solving those relaxation models, we use SDPT3 (Toh et al. [2006]) here

rather than SDPA-M (Fujisawa et al. [2005]) used in the second chapter.

Assume there are three microphones located at the coordinates {(−1, 0),

(0,−1), (1, 0)} and the true source location is (0.5, 0.35). The Figures 5.1, 5.2, 5.3

and 5.4 are using SDP relaxation model, SOCP relaxation model, YWL’s model

and mixed SDP-SOCP relaxation model respectively. From Table 5.1, we can see

that the proposed mixed SDP-SOCP can indeed find the exact location subject to

numerical errors, and is therefore more accurate than the other convex relaxation

models.
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Figure 5.2: SOCP relaxation model

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

m

m

 

 

side
microphone
true source location
estimated source location

Figure 5.3: YWL’s model

SDP SOCP YWL SDP-SOCP

ESL (0,−0.1707) (0.4650,−0.0023) (0.7033, 0.5092) (0.5000, 0.3498)

Error 0.7219 0.3540 0.2582 1.6939e− 04

Table 5.1: Error comparison
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Figure 5.4: Mixed SDP-SOCP relaxation model

5.3 An error correction algorithm for source lo-

calization problem

Here, we also assume that there are three microphones located at the coordinates

{(−1, 0), (0,−1), (1, 0)}, but the true source location is (0.8, 0.5). Since the true

source location is outside the region that our mixed SDP-SOCP relaxation model

could correctly compute which we discussed in the previous chapter, we use the

error correction algorithm in chapter 3. From Figure 5.5, the estimated source

location solved by mixed SDP-SOCP relaxation model is (0.7019, 0.2530) denoted

by diamond point and the corresponding error is 0.2658. After using the error

correction algorithm, the estimated source location become (0.8000, 0.5000) which

is the same as the true source location.
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Figure 5.5: Error correction

5.4 Examples with real data

Equipment and setup

In collecting the experimental data, the microphone arrays used for the recording

consist of 8 microphones, rectangular shape and L- shape in a room with 4 x 4.5

x 2.4m (L x W x H). The microphones are custom-built and are connected to

OctaMic amplifier, which is then connected to ADI-648 by RME to Hammerfall

DSP interface card in computer. All these equipments are from RME. The sound

driver used is ASIO Hammerfall DSP. All the microphone has been calibrated

before used. The speakers are connected using Delta 1010LT sound-card by M-

Audio. Note that separate sound devices are used for recording and playback but

their sampling frequency are set to be the same, which is 48000Hz. The speech

signals used for the recordings are from NOIZEUS database, which consists of 30

male and female clean speeches. The noise used is babble noise from NOISEX-92

database. All signals are up-sampled to 48000Hz for playback. The recording

setups are as shown in Figures 5.6 and 5.7. For each setup, Spkr 1 and Spkr 2 are
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Figure 5.6: Rectangular shape array

positioned at two distance, d=100 and 200cm.

Mixed SDP-SOCP relaxation model with least square method

We continue to study the use of the mixed SDP-SOCP model for localization

with real data. The SDPT3 (Toh et al. [2006]) will be employed to solve the

formulated model (3.2.25) for ŝ. By the characterization theorem, this relaxation

model will not be exact when the source is out the localizable region even the

time delay information is very accurate. Therefore, the location estimate can be

further refined by using ŝ as a starting point for a further optimization using the

least square iteration.

First we use this real data to compute the TDOA, and then solve the formu-

lated mixed SDP-SOCP model (3.2.25) to get ŝ. Figures 5.8, 5.9,5.10 and 5.11

are for rectangular shape microphone array, and Figures 5.12, 5.13,5.14 and 5.15

are for L shape microphone array, where the circle point is the true source loca-

tion and the diamond point is the estimated source location computed from least

square iteration with ŝ as a starting point. Clearly, the results look promising and

the proposed method is very efficient computationally.
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Figure 5.7: L shape array
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Figure 5.8: Speaker 1, D=100cm, SDP-SOCP-LS method
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Figure 5.9: Speaker 2, D=100cm, SDP-SOCP-LS method
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Figure 5.10: Speaker 1, D=200cm, SDP-SOCP-LS method
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Figure 5.11: Speaker 2, D=200cm, SDP-SOCP-LS method
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Figure 5.12: Speaker 1, D=100cm, SDP-SOCP-LS method
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Figure 5.13: Speaker 2, D=100cm, SDP-SOCP-LS method
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Figure 5.14: Speaker 1, D=200cm, SDP-SOCP-LS method
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Figure 5.15: Speaker 2, D=200cm, SDP-SOCP-LS method

Mixed SDP-SOCP relaxation model with error correction

method

Figures 5.16, 5.17,5.18 and 5.19 are for rectangular shape microphone array, and

Figures 5.20, 5.21,5.22 and 5.23 are for L shape microphone array, where the circle

point is the true source location and the star point is the estimated source location

computed from error correction method.
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Figure 5.16: Speaker 1, D=100cm, SDP-SOCP-EC method
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Figure 5.17: Speaker 2, D=100cm, SDP-SOCP-EC method
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Figure 5.18: Speaker 1, D=200cm, SDP-SOCP-EC method
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Figure 5.19: Speaker 2, D=200cm, SDP-SOCP-EC method
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Figure 5.20: Speaker 1, D=100cm, SDP-SOCP-EC method
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Figure 5.21: Speaker 2, D=100cm, SDP-SOCP-EC method
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Figure 5.22: Speaker 1, D=200cm, SDP-SOCP-EC method
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Figure 5.23: Speaker 2, D=200cm, SDP-SOCP-EC method
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Figure 5.24: Speaker 1, D=100cm, Bi-level method

Bi-level method

Figures 5.24, 5.25,5.26 and 5.27 are for rectangular shape microphone array, and

Figures 5.28, 5.29,5.30 and 5.31 are for L shape microphone array, where the circle

point is the true source location and the star point is the estimated source location

computed from bi-level method.
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Figure 5.25: Speaker 2, D=100cm, Bi-level method
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Figure 5.26: Speaker 1, D=200cm, Bi-level method
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Figure 5.27: Speaker 2, D=200cm, Bi-level method
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Figure 5.28: Speaker 1, D=100cm, Bi-level method
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Figure 5.29: Speaker 2, D=100cm, Bi-level method
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Figure 5.30: Speaker 1, D=200cm, Bi-level method
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Figure 5.31: Speaker 2, D=200cm, Bi-level method

SDP-SOCP-LS SDP-SOCP-EC Bi-level

speaker 1, D=100cm 0.0483 0.2664 0.0409

speaker 2, D=100cm 0.1167 0.2429 0.1424

speaker 1, D=200cm 0.0712 0.8071 0.1391

speaker 2, D=200cm 0.1522 0.7990 0.1540

Table 5.2: Error comparison with real data for rectangular shape microphone

array

Tables 5.2 and 5.3 are the error comparisons for rectangular and L shape

microphone array.

— 118 —



PhD Thesis Experiments

SDP-SOCP-LS SDP-SOCP-EC Bi-level

speaker 1, D=100cm 0.1333 0.1320 0.1210

speaker 2, D=100cm 0.1906 0.2113 0.1403

speaker 1, D=200cm 0.1793 0.1686 0.0291

speaker 2, D=200cm 0.3393 0.3522 0.2908

Table 5.3: Error comparison with real data for L shape microphone array

5.5 Examples with simulation

In this section, The matlab code written by Eric A. Lehmann for the purpose of

simulating reverberant audio data in small-room acoustics is used. It provide an

implementation of the image-source method (ISM) described in (Lehmann and

Johansson [2008]).

The image-source model (ISM) is a well-known technique that can be used in

order to generate a synthetic room impulse response (RIR), i.e., a transfer function

between a sound source and an acoustic sensor, in a given environment. Once such

a RIR is available, a sample of audio data can be obtained by convolving the RIR

with a given source signal. This provides a realistic sample of the sound signal

that would effectively be recorded at the sensor in the considered environment.

This approach is of considerable importance as it provides a quick and easy way

to generate a number of RIRs with varying environmental characteristics, such as

different reverberation times, for instance. Consequently, the ISM technique has

been used intensively in many application domains of room acoustics and signal

processing.

Here we assume the room is 5 x 5 x 2.5m (L x W x H).
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Figure 5.32: Example 1 with simulation, SDP-SOCP-EC method

Mixed SDP-SOCP relaxation model with error correction

method

In this section, we use mixed SDP-SOCP relaxation model with error correction

method to solve.

First, there are five microphones located at the coordinates {(1.7, 2.2), (2.1, 2.6),
(2.5, 3), (2.9, 2.6), (3.3, 2.2)} and the true source location is (2.5, 2). From Fig 5.32,

we can see that the estimated source location denoted by star point is almost at

the same position as the circle point which is the true source location. The corre-

sponding error is 0.0064.

In the next example, we move the source to the position (2.5, 1) and micro-

phones’ positions are the same as previous example, see 5.33. Adding microphones

to the right hand side or the left hand side regularly, See Figures 5.34, 5.35, 5.36

and 5.37. The corresponding errors are 0.1753, 0.1207, 0.1119, 0.0557 and 0.0209.

We can see the error becomes small when adding microphone.
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Figure 5.33: Example 2 with simulation, SDP-SOCP-EC method
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Figure 5.34: Example 2 with simulation, adding microphone (3.7,1.8), SDP-

SOCP-EC method
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Figure 5.35: Example 2 with simulation, adding microphone (1.3,1.8), SDP-

SOCP-EC method
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Figure 5.36: Example 2 with simulation, adding microphone (4.1,1.4), SDP-

SOCP-EC method
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Figure 5.37: Example 2 with simulation, adding microphone (0.9,1.4), SDP-

SOCP-EC method

Next, we use another shape of microphone. Assume there are six microphones

located at the coordinates {(2.1, 3), (2.1, 2.5), (2.5, 3), (2.5, 2.5), (2.9, 3), (2.9, 2.5)}
and the true source location is (2.5, 2). See Fig 5.38, where the circle point is

the true source location and the star point is the estimated source location. The

corresponding error is 0.0694.

In the next example, we move the source to the position (2.5, 1.6) and micro-

phones’ positions are the same as previous example, see 5.39. Adding microphones

to the right hand side or the left hand side regularly, See Figures 5.40 and 5.41.

The corresponding errors are 0.3837, 0.2839 and 0.1453. We can see the error

becomes small when adding microphone.
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Figure 5.38: Example 3 with simulation, SDP-SOCP-EC method
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Figure 5.39: Example 4 with simulation, adding microphone (2.9,2.5), SDP-

SOCP-EC method
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Figure 5.40: Example 4 with simulation, adding microphone (3.3,2.5), SDP-

SOCP-EC method
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Figure 5.41: Example 4 with simulation, adding microphone (1.7,2.5), SDP-

SOCP-EC method
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Figure 5.42: Example 5 with simulation, Bi-level method

Bi-level method

In this section, we use bi-level method to solve. The same as previous section, first

assume there are five microphones located at the coordinates {(1.7, 2.2), (2.1, 2.6),
(2.5, 3), (2.9, 2.6), (3.3, 2.2)} and the true source location is (2.5, 2). See Fig 5.42,

the corresponding error is 0.0059.

In the next example, we move the source to the position (2.5, 1) and micro-

phones’ positions are the same as previous example, see 5.43. Adding microphones

to the right hand side or the left hand side regularly, See Figures 5.44, 5.45, 5.46

and 5.47. The corresponding errors are 0.7259, 0.0372, 0.0372, 0.0336 and 0.0336.

Next, we use another shape of microphone. Assume there are six microphones

located at the coordinates {(2.1, 3), (2.1, 2.5), (2.5, 3), (2.5, 2.5), (2.9, 3), (2.9, 2.5)}
and the true source location is (2.5, 2). See Fig 5.48, where the circle point is

the true source location and the star point is the estimated source location. The

corresponding error is 0.0072.
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Figure 5.43: Example 6 with simulation, Bi-level method
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Figure 5.44: Example 6 with simulation, adding microphone (3.7,1.8), Bi-level

method
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Figure 5.45: Example 6 with simulation, adding microphone (1.3,1.8), Bi-level

method
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Figure 5.46: Example 6 with simulation, adding microphone (4.1,1.4), Bi-level

method
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Figure 5.47: Example 6 with simulation, adding microphone (0.9,1.4), Bi-level

method
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Figure 5.48: Example 7 with simulation, Bi-level method
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Figure 5.49: Example 8 with simulation, Bi-level method

In the next example, we move the source to the position (2.5, 1.6) and micro-

phones’ positions are the same as previous example, see 5.49. Adding microphones

to the right hand side or the left hand side regularly, See Figures 5.50 and 5.51.

The corresponding errors are 0.2007, 0.0377 and 0.0377.
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Figure 5.50: Example 8 with simulation, adding microphone (3.3,2.5), Bi-level

method
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Figure 5.51: Example 8 with simulation, adding microphone (1.7,2.5), Bi-level

method
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Figure 5.52: Mixed SDP-SOCP relaxation model for source localization combined

with sensor network localization

5.6 Mixed SDP-SOCP relaxation model for source

localization combined with sensor network

localization

Here we give a example for Mixed SDP-SOCP relaxation model for source local-

ization combined with sensor network localization. Assume we just know three

anchor microphones ai, i = 1, 2, 3 located at the coordinates {(0.1, 0.1), (4.9, 0.1),
(2.1, 3)}. The true positions of three sensor microphones ri, i = 1, 2, 3 are {(2.5, 3),
(2.9, 3), (3.3, 3)} and the true source location is (2.5, 2). We know the distance

between a1 and r1,a2 and r1,a1 and r2,a2 and r3,r1 and r3,r2 and r3. Figure 5.52

shows the estimated position of sensor microphones and source location.
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Chapter 6

The review of time difference of

arrival

In this chapter, we give four methods to find the time difference of arrival (TDOA),

and use the cross correlation method to solve our actual problem.

6.1 Review of time difference of arrival

Generalized cross correlation(GCC) method

For a pair of microphones, the received signals at the two microphones can be

expressed as

x1(t) = s(t) + n1(t)

x2(t) = s(t+D) + n2(t)

whereD is the time difference of arrival(TDOA) of two microphones, and {ni(t), t =

1, 2} represent the noise. The Fourier transforms of these two microphone signals

can be represent as

X1(w) = S(w) +N1(w)
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X2(w) = S(w)ejwD +N2(w)

Then we can obtain the cross power spectral density with no pre-filtering

Φx1x2(w) = X1(w)X
∗
2 (w)

= [S(w) +N1(w)][S(w)e
jwD +N2(w)]

∗

= S(w)S∗(w)e−jwD + S(w)N∗
2 (w) + S∗(w)N1(w)e

−jwD +N1(w)N
∗
2 (w)

= Φss(w)e
−jwD + S(w)N∗

2 (w) + S∗(w)N1(w)e
jwτ12 +N1(w)N

∗
2 (w)

where Φss(w) is the power spectral density of the source signal.

The noise signals are assumed to be uncorrelated with the signal and each

other, thus it is not necessary to do the cross-correlation computation for the last

three terms in the above equation. The cross-correlation of signals is an inverse

Fourier transform operation.

Rx1x2(τ) = F−1[Φss(w)e
−jwD]

= Rss(τ) ∗ δ(τ −D)

=
∫∞
−∞Rss(t) · δ(τ −D − t)dt

=
∫∞
−∞Rss(t) · δ(t− (τ −D))dt

= Rss(τ −D)

Thus the TDOA estimate is calculated from

D̂ = argmax
τ

Rx1x2(τ)

With the Fourier transforms of these filters denoted by G1(w) and G2(w), the

generalized cross-correlation(GCC) function is given by

Rx1x2(τ) = 1
2π

∫∞
−∞(G1(w)X1(w))(G2(w)X2(w))

∗ejwτdw

= 1
2π

∫∞
−∞(G1(w)G

∗
2(w)X1(w)X

∗
2 (w)e

jwτdw

Defining the frequency dependent weighting function(sometimes called prefilter)

Ψ(w) = G1(w)G
∗
2(w), the GCC function can be expressed as

Rx1x2(τ) =
1

2π

∫ ∞

−∞
Ψ(w)Φx1x2(w)e

jwτdw
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The prefilter used in the phase transform(PHAT) is

ΨPHAT (w) =
1

| Φx1x2(w) |

Then the generalized cross-correlation with phase transform(GCC-PHAT) is

given by

RPHAT
x1x2

(τ) = 1
2π

∫∞
−∞( 1

|Φx1x2 (w)|)Φx1x2(w)e
jwτdw

= 1
2π

∫∞
−∞( 1

|Φss(w)e−jwD|)(Φss(w)e
−jwD)ejwτdw

= 1
2π

∫∞
−∞( 1

|Φss(w)|)(Φss(w)e
−jwD)ejwτdw

= 1
2π

∫∞
−∞( 1

Φss(w)
)(Φss(w)e

−jwD)ejwτdw

= 1
2π

∫∞
−∞ e−jwDejwτdw

= δ(τ −D)

Thus the TDOA estimate is calculated from

D̂ = argmax
τ

RPHAT
x1x2

(τ)

The prefilter used in Maximum Likelihood(ML) is

ΨML(w) =
1

| Φx1x2(w) |
| γx1x2(w) |2

1− | γx1x2(w) |2

where | γx1x2(w) |2=
|Φx1x2 (w)|2

Φx1x2 (w)Φx1x2 (w)
.

Average square difference function(ASDF) method

This method is to find the minimum error square between two received signals of

microphone pair.

RASDF (τ) = E([x1(t)− x2(t+ τ)]2

Thus the TDOA estimate is calculated from

τ̂ = argmin
τ

RASDF (τ)
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Least mean square(LMS) adaptive filter method

Assume x1(t) is the reference signal, x2(t) is the desired signal and a finite impulse

response(FIR) filter of length L is h(t) = [h0, h1, · · · , hL−1]. The LMS output can

be expressed as

y(t) = hT (t)X1(t)

where X1(t) = [x1(t), x1(t− 1), · · · , x1(t− L+ 1)]T . The error output is

e(t) = x2(t)− hT (t)X1(t)

An estimate h(t) can be obtained by minimizing E{e2(t)} using adaptive al-

gorithm. With the LMS adaptive algorithm, h(t) is updated according to

h(t+ 1) = h(t) + µe(t)X1(t)

where µ is a small positive adaptation step size which controls the rate of conver-

gence. Then the TDOA estimate is given by

τ̂ = argmax
l

| hl | .

Adaptive eigenvalue decomposition method

In the above methods, a common assumption is that each microphone receives

only the direct-path signal. In this section, we introduce the adaptive eigenvalue

decomposition method which fully into account the reverberation effect. In the

reverberation model, the received signals for a pair of microphones are expressed

as

xi(t) = hi ∗ s(t) + ni(t), i = 1, 2

where ∗ denotes the convolution and hi is the channel impulse response between

source and the ith microphone.

If we ignore the noise term, we can get

x1(t) ∗ h2 = s(t) ∗ h2 ∗ h1 = x2(t) ∗ h1.
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At the time instant t, above equation can be expressed as a vector matrix form

xT (t)w = xT
1 (t)h2 − xT

2 (t)h1 = 0,

where

xi(t) = [xi(t), xi(t− 1), · · · , xi(t− L+ 1)]T , i = 1, 2,

x(t) = [xT
1 (t),x

T
2 (t)]

T ,

w = [hT
2 ,−hT

1 ]
T ,

Then we have

x(t)xT (t)w = 0,

E{x(t)xT (t)}w = 0.

Let R = E{x(t)xT (t)} which is the covariance matrix of the microphone signals,

above equation can be expressed as

Rw = 0, (6.1.1)

which means w is in the null space of R. More specifically, w is the eigenvector of

R corresponding to the eigenvalue 0. Thus we can determine those two channel

impulse response h1 and h2.

With the estimated ĥ1 and ĥ2, the TDOA estimate can be determined by

τ̂ = argmax
l

| ĥ2,l | − argmax
l

| ĥ1,l |

6.2 Experiment comparison

In this section, the same real data in chapter 5 is used to compare TDOA estimates

obtained by the cross correlation method with the exact TDOA.

For rectangular shape microphone array, the detail of the comparison between

the exact TDOA and the TDOA estimates obtained by the cross correlation

method is given in Table 6.1, 6.2, 6.3 and 6.4. In the following tables, the upper
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row presents the exact TDOA and the lower row presents the TDOA estimates

obtained by the cross correlation method.

For L shape microphone array, the detail of the comparison between the exact

TDOA and the TDOA estimates obtained by the cross correlation method is given

in Table 6.5, 6.6, 6.7 and 6.8.
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Conclusions

In this thesis, the design of distributed broadband beamforming system is stud-

ied. We use two methods to solve the minimax optimization problem. First, it

is transformed into a semi-definite programming problem so that interior point

algorithms can be applied. Also it can be formulated as a non-strictly convex

semi-infinite programming problem, adding a small perturbation quadratic func-

tion to the objective function to make it strictly convex and the new exchange

algorithm is applied. For the source localization problem, we formulate a new

mixed SDP-SOCP relaxation model. We obtain a representation for the solution

of the mixed SDP-SOCP model and the characterization such that the mixed

SDP-SOCP model has an exact relaxation in two-dimensional case. Moreover, we

derive the geometry of the localizable region for the proposed mixed model. Many

illustrated examples demonstrate those approaches can be applied successfully and

some comparisons are presented.
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Appendices—The introduction of

Matlab codes

Matlab codes for chapter 2

In chapter 2, we use two methods to solve the beamforming design problem, one is

semi-definite programming, the other one is semi-infinite programming which ac-

tually using multiple exchange algorithm. For solving the semi-definite program-

ming problem, we use the software package SDPA-M (Semidnite Programming

Algorithm in MATLAB) Version 2.0 (Fujisawa et al. [2005]) introduced below.

SDPA-M

SDPA-M Version 2.0 which is a Matlab interface of the SDPA Version 6.0 is a fast

and numerically stable solver for semi-definite programming problems.

The SDPA-M solves the following standard form semidenite program

min
m∑
i=1

cixi

s.t. X =
m∑
i=1

Fixi − F0, X ≽ 0,
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and its dual

max F0 ·Y

s.t. Fi ·Y = ci(i = 1, · · ·m), Y ≽ 0,

Problem data input

• mDIM — Number of primal variable.

• nBLOCK,bLOCKsTRUCT — The number of blocks, the block structure

vector. If we deal with a block diagonal matrix F of the form

F =


B1 0 0 · · · 0

0 B2 0 · · · 0

· · · · · · 0

0 0 0 · · · Bl


where Bi is a pi × pi symmetric matrix (i = 1, 2, · · · , l).

Define

nBLOCK = l,

bLOCKsTRUCT = (β1, β2, · · · , βl),

βi =

 pi if Bi is a pi × pi symmetric matrix,

−pi if Bi is a pi × pi diagonal matrix.

• c—Constant vector. We write all the elements c1, c2, · · · , cm of the constant

vector c.

• F—Constraint matrices. F is nBLOCK×(mDIM+1) cell matrix. Here each

F{i, j} denotes the ith block of Fj−1 (i = 1, · · · , nBLOCK, j = 1, · · · ,mDIM+1).

The main function is sdpam.m whose calling syntax is as follows:

[objVal, x,X, Y ]

= sdpam(mDIM, nBLOCK, bLOCKsTRUCT, c, F, x0, X0, Y 0,OPTION)
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For our beamforming design problem, since the passband region and stopband

region have six block together. We construct the constraint matrix F to be a z∗z∗6
by n∗l+2 cell where z is the number of discretization, n is number of microphones

and l is the filter length. Thus mDIM = n ∗ l + 1, nBLOCK = z ∗ z ∗ 6 and

bLOCKsTRUCT = 3∗ones(1, z ∗z ∗6). The constant vector c = [1 zeros(1, n∗ l)].

Perturbation multiple exchange algorithm

The beamforming design problem is also converted into a semi-infinite program-

ming problem, which is solved by the perturbation multiple exchange algorithm

presented in chapter 2. Here we use the function quadprog in Matlab to solve.

In each iteration, the discretization method is used to find the points that are

greater than η.

Matlab codes for chapter 5

In chapter 5, The software package SDPT3 introduced below is used for solving

the mixed SDP-SOCP relaxation model.

SDPT3

SDPT3 is designed to solve conic programming problems whose constraint cone

is a product of semidenite cones, second-order cones, nonnegative orthants and

Euclidean spaces. Objective function is the sum of linear functions and log-barrier

terms associated with the constraint cones.
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The SDPT3 solves the following standard form of such SQLP problems

min
ns∑
j=1

[< csj , x
s
j > −vsj logdet(x

s
j)] +

nq∑
i=1

[< cqi , x
q
i > −vqi logγ(x

q
i )]

+ < cl, xl > −
nl∑
k=1

vlklog(x
l
k)+ < cu, xu >

s.t.
ns∑
j=1

As
j(x

s
j) +

nq∑
i=1

Aq
i (x

q
i ) + Alxl + Auxu = b,

xs
j ∈ Ksj

s ∀j, xq
i ∈ Kqi

q ∀i, xl ∈ Knl
l xu ∈ Rnu .

where K
sj
s is the cone of positive semidenite symmetric matrices of dimension sj,

Kqi
q is the quadratic or second-order cone of dimension qi, K

nl
l is the nonnegative

orthant of dimension nl.

It also solves the dual problem

max bTy +
ns∑
j=1

[vsj logdet(z
s
j ) + sjv

s
j (1− logvsj )]

+

nq∑
i=1

[vqi logγ(z
q
i ) + vqi (1− logvqi )] +

nl∑
k=1

[vlklog(z
l
k) + vlk(1− logvlk)]

s.t. (As
j)

Ty + zsj = csj , z
s
j ∈ Ksj

s , j = 1, · · · , ns

(Aq
i )

Ty + zqi = cqi , z
q
i ∈ Kqi

q , i = 1, · · · , nq

(Al)Ty + zl = cl, zl ∈ Knl
l ,

(Au)Ty = cu, y ∈ Rm.

Problem data input

For the above SQLP problem, let L be the total number of blocks in it, the block

structure of the problem data is described by an L× 2 cell array named blk.

If the jth block is a semidenite block consisting of a single block of size sj,
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then the input data is

blk{j, 1} =′ s′, blk{j, 2} = [sj],

At{j} = [s̄j ×m sparse],

C{j}, X{j}, Z{j} = [sj × sj double or sparse],

where s̄j = sj(sj + 1)/2.

If the jth block is a semidenite block consisting of numerous small sub-blocks,

say p of them, of dimensions sj1, sj2, · · · , sjp such that
∑p

k=1 sjp = sj, then the

input data is

blk{j, 1} =′ s′, blk{j, 2} = [sj1, sj2, · · · , sjp],

At{j} = [s̄j ×m sparse],

C{j}, X{j}, Z{j} = [sj × sj sparse],

where s̄j =
∑p

k=1 sjk(sjk + 1)/2.

If the ith block is a quadratic block consisting of numerous sub-blocks, say

p of them, of dimensions qi1, qi2, · · · , qip such that
∑p

k=1 qip = qi, then the input

data is

blk{i, 1} =′ q′, blk{i, 2} = [qi1, qi2, · · · , qip],

At{i} = [qi ×m sparse],

C{i}, X{i}, Z{i} = [qi × 1 double or sparse],

If the kth block is the linear block, then the input data is

blk{k, 1} =′ l′, blk{k, 2} = nl,

At{k} = [nl ×m sparse],

C{k}, X{k}, Z{k} = [nl × 1 double or sparse],

If the kth block is the unrestricted block, then the input data is

blk{k, 1} =′ u′, blk{k, 2} = nu,

At{k} = [nu ×m sparse],

C{k}, X{k}, Z{k} = [nu × 1 double or sparse],
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The main function is sqlp.m whose calling syntax is as follows:

[obj, X, y, Z, info, runhist] = sqlp(blk,At, C, b,OPTIONS, X0, y0, Z0).

For our mixed SDP-SOCP relaxation model, in writing matlab code, we con-

struct 3 parts for block. One is Z, it is a positive semi-definite matrix, then we

have blk{1, 1} =′ s′, blk{1, 2} = 3. One is


βi 0 0

0 1 βi

0 βi αi

 , it is also a posi-

tive positive semi-definite matrix, then we have blk{p, 1} =′ s′, blk{p, 2} = 3.

At last, one is

 βi

s− ai

, it is a vector in second order cone, then we have

blk{p, 1} =′ q′, blk{p, 2} = 3. The corresponding At, C, b are the coefficients

for those three type variables in the mixed SDP-SOCP relaxation model.

Simulation

For the simulation part, first the matlab code written by Eric A. Lehmann for

the purpose of simulating reverberant audio data in small-room acoustics is used.

Then we use the cross correlation method introduced in chapter 6 to find the time

difference of arrival. Here the function named xcorr in Matlab is used. After

finding the TDOA, we try to solve the relaxation models by SDPT3.
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B Betró. An accelerated central cutting plane algorithm for linear semi-infinite

programming. Math. Program., 101:479–495, 2004.

P Biswas and Y Ye. Semidefinite programming for ad hoc wireless network local-

ization. IPSN, pages 46–54, 2004.

P Biswas, T Lian, T Wang, and Y Ye. Semidefinite programming based algorithms

for sensor network localization. IPSN, pages 46–54, 2004.

P Biswas, T C Lian, T C Wang, and Y Ye. Semidefinite programming based

algorithms for sensor network localization. ACM Transactions on Sensor

Networks, 2(2):188–120, 2006a.

P Biswas, T C Liang, K C Toh, Y Ye, and T C Wang. Semidefinite programming

approaches for sensor network localization with noisy distance measurements.

IEEE Transactions on Automation Science and Engineering, 3(4):360–371,

2006b.

S Boyd, L E Ghaoui, E Feron, and V Balakrishnan. Linear matrix inequalities in

system and control theory. SIAM, 1994.

J Bruck, J Gao, and A Jiang. Localization and routing in sensor networks by

local angle information. SIGMOBILE, pages 181–192, 2005.

C G Carter. Coherence and time delay estimation: an applied tutorial for research,

development, test, and evaluation engineers. Piscataway, NJ: IEEE Press,

1993.

S C Chan and H H Chen. Uniform concentric circular arrays with frequency-

invariant characteristics-theory, design, adaptive beamforming and DOA es-

timation. IEEE Trans. Signal Processing, 55(1):165–177, 2007.

Y Chan and K Ho. A simple and efficient estimator for hyperbolic location. IEEE

Transactions on Signal Processing, 42(8):1905–1915, 1994.

— 155 —



PhD Thesis BIBLIOGRAPHY

Z J Chen. Higher Algebra and Analytic Geometry. China Higher Education Press

Beijing and Springer-Verlag Berlin Heidelberg, 2001.

E W Cheney. Introduction to Approximation Theory. Chelsea, New York, 1982.

J H Choi and C C Lim. A cholesky factorization based approach for blind FIR

channel identification. IEEE Trans. Signal Processing, 56(4):1730–1735, 2008.

L C Chu and U Mitra. Analysis of music-based delay estimator for direct-sequence

code-division multiple-access systems. IEEE Transactions on Communica-

tions, 47(1):133–138, 1999.

H Dam, K Teo, S Nordebo, and A Cantoni. The dual parametrization approach to

optimal least square fir filters design subject to maximum error constraints.

IEEE Trans on Signal Processing, 48:2314–2320, 2000.

L Doherty, K S J Pister, and L El Ghaoui. Convex position estimation in wireless

sensor networks. IEEE INFOCOM, 3:1655–1663, 2001.

T Eren, E K Goldenber, W Whiteley, and Y R Yang. Rigidity, computation, and

randomization in network localization. IEEE INFOCOM, 4:2673–2684, 2004.

K Fujisawa, Y Futakata, M Kojima, S Matsuyama, S Nakamura, K Nakata, and

M Yamashita. Seidefinite programming algorithm in matlab user’s manual-

version 6.2.0. Research Reports on Mathematical and Computing Sciences,

2005.

P Gahinet, A Nemirovski, A J Laub, and M Chilali. LMI control toolbox for use

with matlab user’s guide version 1. 1995.

S Gannot, D Burshtein, and E Weinstein. Signal enhancement using beamform-

ing and nonstationarity with applications to speech. IEEE Trans. Signal

Processing, 49(8):1614–1626, 2001.

— 156 —



PhD Thesis BIBLIOGRAPHY

J Gao, J Bruck, and A A Jiang. Localization and routing in sensor networks

by local angle information. ACM Transactions on Sensor Networks, 5(1):

181–192, 2009.

M Gillette and H Silverman. A linear closed-form algorithm for source localization

from time-differences of arrival. IEEE Signal Process. Lett, 15:1–4, 2008.

K Glashoff and K Roleff. A new method for chebyshev approximation of complex-

valued functions. Math. Comp., 36:233–239, 1981.
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