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Abstract 

This thesis presents hierarchical architectures and learning algorithms for 

multi-label image classification and scene categorization. Three main contributions 

are reported in the thesis. They include: (1) an adaptive recognition model based on 

neural networks for image annotation; (2) a hierarchical neural approach for 

multi-instance multi-label image classification; and (3) a hybrid holistic and 

object-based approach for scene categorization. 

In the first investigation, we propose an adaptive recognition model based on 

neural networks for annotating images. The Adaptive Recognition Model (ARM) 

consists of an adaptive ClassiFication Network (CFN) and a nonlinear Correlation 

Network (CLN). The adaptive CFN aims to annotate an image with labels, and the 

CLN is used to unveil the correlative information of labels for annotation refinement. 

Image annotation is carried out by an ARM in two stages. In the first stage, the 

features extracted from regions of the input images are fed to a CFN to produce 

classification labels. In the second stage, the CLN uses label correlations learnt from 

the training images to refine the classification result. The ARM works in a 

forward-propagating manner, resulting in high efficiency in image annotation. 

Furthermore, the computational time of an ARM is insensitive to the number of 

regions of the input image and the vocabulary size. In this thesis, the effect of label 

correlation in image annotation is, comprehensively, studied on a real image dataset 

and a synthetic image dataset. The exploitation of a controllable synthetic dataset 
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helps to systematically study the function of label correlation and effectively analyze 

the performance of the ARM. Experimental results demonstrate the efficiency and 

effectiveness of the proposed ARM. 

In the second investigation, we propose a multi-instance multi-label algorithm 

based on hierarchical neural networks for image classification. Image annotation can 

be regarded as a multi-instance multi-label image classification problem. But different 

from the first investigation that requires regional ground truth for model training, the 

model proposed in the second investigation can be trained using the image ground 

truth only. In particular, the proposed model, termed Multi-Instance Multi-Label 

Neural Network (MIMLNN), consists of two stages of MultiLayer Perceptrons 

(MLPs). For multi-instance multi-label image classification, all the regional features 

are fed to the first-stage MLPs, with one MLP copy processing one image region. 

After that, the MLP in the second stage incorporates the outputs of the first-stage 

MLPs to produce the final labels for the input image. The first-stage MLP is expected 

to model the relationship between regions and labels, while the second-stage MLP 

aims at capturing the label correlation for classification refinement. The classical error 

Back-Propagation (BP) approach is adopted to tune the parameters of MIMLNN. In 

view of that the traditional gradient descent algorithm suffers from the long-term 

dependency problem, a refined BP algorithm named Rprop is extended to effectively 

train MIMLNN. Experiments are conducted on a synthetic dataset and the 

widely-used Corel dataset. Experimental results demonstrate the superior performance 

of MIMLNN by comparing with state-of-the-art algorithms for multi-instance 
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multi-label image classification.  

In the third investigation, we target at scene categorization (termed scene 

classification as well). We first employ a deep learning algorithm of a hierarchical 

architecture to classify scenes, and show that the deep learning algorithm is a 

promising holistic approach for scene classification. After that, we propose a hybrid 

holistic and object-based approach for scene classification. In particular, if the 

decisions made by holistic and object-based approaches are identical, the scene class 

agreed by them is selected as the final decision. Otherwise, a majority voting scheme 

is employed to make the final decision based on the results of all the classifiers of 

both holistic and object-based approaches. 

At the end of this thesis, a conclusion is drawn and three future research 

directions are pointed out. The three directions all concentrate on deep neural 

networks. In particular, the first direction is to explore an efficient image classification 

network based on MIMLNN using deep neural networks. In the second direction, we 

would like to label each image pixel, and then explore deep neural networks to obtain 

the scene class by learning from all the pixel labels. In the third direction, we would 

like to perform scene parsing using deep neural networks.
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Chapter 1 Introduction 

1.1 Motivation 

With the prevalence of digital imaging devices such as digital cameras and 

mobile phones, a large number of images are produced every day. An emerging issue 

is how to efficiently and effectively search required image items from a huge image 

database. To achieve that, the images should be accurately classified into various 

categories, such that they can be well organized and retrieved. Multi-label image 

classification and scene categorization are two fundamental and challenging topics of 

computer vision. Although many successes of the two topics have been achieved, the 

performance is still far from satisfactory.  

Multi-label image classification is to find out multiple objects in an image and 

then assign corresponding object labels to the image. It is more challenging than 

traditional single-label image classification, since the contents of multi-label image 

classification are much more complex. Image annotation is a classical multi-label 

image classification problem. Image annotation aims to find out mappings between 

low-level visual features and high-level labels/concepts from labeled images, and then 

annotate unlabeled images based on the learnt mappings. Apart from direct mappings 

between visual features and labels, label correlation, reflecting co-occurrence 

relationships among different labels, has also been adopted by many researchers to 

refine image annotation performance. However, many existing label correlation 
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modeling methods characterize linear, symmetric, and positive correlation only. Some 

can characterize nonlinear but symmetric correlation only; while others may 

characterize asymmetric but positive correlation only. We consider that in practice 

label correlation can be nonlinear, asymmetric, both positive and negative. The 

co-occurrence relationships between labels can be very complicated. In addition, little 

existing work systematically investigates the effect of label correlation. Furthermore, 

most of previous correlation models are designed according to experts’ experiences. 

Those models are good for some problems, but they may not work well for some 

other tasks. It is thus meaningful to explore models that can automatically learn label 

correlation from training images. With the development of deep learning, neural 

networks recapture significant attention in recent years. Therefore, in this thesis, we 

propose neural network methods to automatically learn label correlation for refining 

multi-label image classification. In particular, we first propose an Adaptive 

Recognition Model (ARM) for image annotation. The model consists of two stages of 

neural networks. The first-stage neural networks learn the mappings between the 

visual features and labels of image regions; while the neural network in the second 

stage learns label correlations from training images. The correlation values between 

different labels can be explicitly known from the weights of the neural network. This 

helps the analysis of label correlation. The main disadvantage of an ARM is that it 

needs regional ground truth for training. In light of that, we then propose another 

neural network model based on ARM. The new model, termed Multi-Instance 

Multi-Label Neural Network (MIMLNN) can automatically learn the mappings 
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between visual features and labels of regions, as well as label correlation, just based 

on regional visual features and image ground truth. We do not need to provide 

regional ground truth for training MIMLNN.  

 Scene categorization is challenging because different scenes may consist of 

similar objects and thus possess similar visual features. For example, both coasts and 

lakes have water and rocks. Sometimes it is even difficult for human beings to 

accurately distinguish these two scenes, not to mention a computer. Scene 

categorization is termed scene classification as well. In the rest of this thesis, we use 

both scene categorization and scene classification alternatively. There are two main 

strategies for scene classification: holistic and object-based. A holistic strategy 

characterizes a scene image using global visual features only, without considering the 

regional object attributes. By contrast, an object-based strategy represents a scene 

image by modeling the object attributes. Both of them have advantages and 

disadvantages. When the scene contents are simple, holistic strategy performs well. If 

the scene contents are complex and contain multiple objects, the holistic strategy may 

not be effective. By contrast, when the scenes consist of different objects, the 

object-based strategy is advantageous. However, if the scenes are of simple contents, 

the object-based strategy may be inefficient. Furthermore, the accuracy of regional 

object recognition significantly influences the final classification performance of an 

object-based strategy. In view of this, in this thesis, we propose to combine holistic 

and object-based strategies for scene classification. To our best knowledge, very little 

work investigates the combination of holistic and object-based strategies.  
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Deep learning is a very hot topic of machine learning in recent years, since it has 

been demonstrated that deep or hierarchical architectures can represent higher level 

and more abstract features than shallow architectures. Therefore, our proposed 

methods concentrate on hierarchical architectures in this thesis. The proposed two 

methods for multi-label image classification, and the methods for scene categorization 

are all of hierarchical architectures.  

1.2 Statements of Originality 

This thesis presents hierarchical architectures and learning algorithms for 

multi-label image classification and scene categorization. The work described in this 

thesis was carried out at the Department of Electronic and Information Engineering, 

The Hong Kong Polytechnic University, between August 2009 and August 2013, 

under the supervision of Dr. Zheru Chi, Prof. Dagan Feng, and Dr. Hong Fu. 

The thesis consists of six chapters and two appendixes. The work described in 

this thesis was originated by the author except where acknowledged and referenced, 

or where the results are widely known. The following states the original contributions: 

(1) An adaptive recognition model based on neural networks for image annotation is 

the work of the author. In this investigation, we propose a two-stage neural network 

model. The neural networks in the first stage establish the relationships between 

regional visual features and labels. The neural network in the second stage learns the 

label correlation from training image to refine the results from the first-stage neural 

networks. A proposed synthetic image dataset and a real image dataset are utilized for 
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the experiments to evaluate our proposed model.  

(2) A hierarchical neural approach for multi-instance multi-label image classification 

is the work of the author. In this investigation, we propose a hierarchical neural model 

to automatically learn the mappings between regional visual features and labels, as 

well as the label correlation just using regional visual features and the image ground 

truth of training images. A proposed synthetic image dataset together with the 

widely-used Corel image dataset are used for the experiments to evaluate the 

effectiveness of our proposed approach. 

(3) Combining holistic and object-based approaches for scene classification is the 

work of the author. In this investigation, we first employ a state-of-the-art deep 

learning method for recognizing scenes, and show that deep learning is a promising 

holistic approach for scene classification. We then propose a hybrid holistic and 

object-based approach to effectively classify scenes. 

1.3 Outline of the Thesis 

The thesis consists of six chapters and two appendixes. The thesis is outlined as 

follows. 

Chapter 2 introduces the basic principles and definitions of image annotation, 

multi-instance multi-label image classification, scene classification, deep learning; 

and reviews important developments achieved in these areas.  

In Chapter 3, we propose an Adaptive Recognition Model (ARM) based on neural 

networks to annotate images. The proposed model ARM consists of a ClassiFication 
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Network (CFN) and a CorreLation Network (CLN). The annotation is carried out by 

ARM in two stages. Firstly, an input image is segmented into a number of regions. 

The visual features extracted from the regions are fed to the classifier of the CFN. 

Secondly, the classification result is refined in the CLN using the label correlation to 

generate the final annotation for the input image. Besides a real image dataset, a 

synthetic image dataset is constructed for experiments. Based on the proposed 

synthetic dataset and a real dataset, we systematically analyze the effect of label 

correlation in image annotation.  

In Chapter 4, in view of that the model ARM proposed in Chapter 3 requires 

regional ground truth for training, we extend the architecture of ARM and propose a 

training method that does not utilize the regional ground truth. Given the regional 

visual features and the image ground truth of training images, the proposed model, 

termed Multi-Instance Multi-Label Neural Network (MIMLNN), can automatically 

learn the mappings between regional visual features and labels, as well as the label 

correlation. The classical error Back-Propagation (BP) method is employed to train 

MIMLNN. Considering that gradient descent, a classical BP algorithm, suffers from 

the long-term dependency problem, an advanced BP algorithm Rprop is extended to 

train MIMLNN. The experiments are conducted on a synthetic image dataset and the 

popular Corel image dataset.  

In Chapter 5, we investigate a combination of holistic and object-based 

approaches for scene categorization. We first employ a state-of-the-art deep learning 

method to learn feature representations of natural scenes to perform classification. We 
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show that a deep learning method is a promising holistic approach for scene 

classification. Then, we propose to combine holistic and object-based approaches for 

scene classification. We report that the performance of our combined approach is 

better than those of individual methods. 

Chapter 6 concludes this thesis with final remarks and discusses some possible 

directions of future research.  

Appendix A tabulates the names and entry numbers in the label vector of all the 

54 synthetic labels used in Chapter 3. 

Appendix B describes the implementation details of the Rprop algorithm used in 

Chapter 4. 
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Chapter 2 Literature Review 

In this chapter, the basic principles and definitions of multi-label learning, image 

annotation, scene classification, and deep learning are introduced; and recent 

developments in these areas are reviewed and discussed. 

2.1 Multi-Label Learning and Image Annotation 

2.1.1 Multi-Label Learning 

Traditional supervised learning concentrates on Single-Instance Single-Label 

Learning (SISLL); that is, an object is represented by an instance and associated with 

only one label. SISLL is successful, but not practical, since a real-world object may be 

represented by multiple instances and associated with multiple label. Therefore, 

multi-instance learning (MIL) (Chen et al., 2006; Chen and Wang, 2004; Feng et al., 

2011) and multi-label learning (MLL) (Boutell et al., 2004; Kang et al., 2006; Xu, 

2011) have been proposed. For the task of image classification, in MIL, an image is a 

bag of instances, with each instance representing an image region. As informative 

regional features are utilized, this approach characterizes images with complex 

contents pretty well. However, MIL targets at binary classification. It assigns an 

image with one label only. By contrast, MLL deals with multi-label tasks, and it is 

able to associate an image with multiple labels. But MLL regards an image as a single 

instance. The regional features are not employed. The issue is that different labels of 

an image usually relate to different regions. The use of global features is not powerful 
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to discriminate the image labels. Therefore, some researchers have developed 

multi-instance multi-label learning (MIMLL) based on MIL and/or MLL for 

multi-label image classification (Zhou and Zhang, 2007; Zha et al., 2008; Zhang and 

Wang, 2009).  

For MIMLL image classification, each image is comprised of a bag of regions 

and associated with multiple labels. In the learning phase, the relationship between the 

image regions and labels is unknown. The aim of learning is to figure out the 

relationship between the regions and labels from training images, and then the learnt 

relationship can be used to classify unlabeled images. Zhou et al. (Zhou and Zhang, 

2007) proposed MIMLBoost and MIMLSVM for multi-instance multi-label scene 

classification. MIMLBoost transforms an MIML learning task into an MIL problem 

and solve the MIL problem by using MIBoost (Xu and Frank, 2004), while 

MIMLSVM transforms an MIML learning task into an MLL problem and tackle the 

MLL problem by adopting MLSVM (Boutell et al., 2004). A drawback of 

MIMLBoost and MIMLSVM is that both of them do not take label correlation into 

account.  

2.1.2 Image Annotation 

2.1.2.1 Definition of Image Annotation 

Image annotation is an MLL problem. When an image is partitioned into and 

represented by a bag of regions, image annotation becomes an MIMLL problem. 

Image annotation is a process that employs various machine learning algorithms to 
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find out the mappings between low-level visual features and high-level object labels 

from labeled images, and then propagates the labels to unlabeled images based on the 

learnt mappings. Fundamental visual features include color, shape and texture. 

High-level concepts are the labels that are used to describe image contents. For 

example, an image that contains a tiger can be annotated with label “tiger”.  

2.1.2.2 Label Correlation 

Apart from direct mappings between visual features and labels, the use of label 

correlation for annotation improvement is another research topic in image annotation. 

Label correlation is a type of relationship that reflects the frequency of co-occurrence 

of annotated labels. If two labels are frequently annotated to the same images, then 

they have strong mutual correlation. If the label correlation of testing images is 

similar with that of training images, then the use of correlative information of labels 

extracted from training images would benefit the annotation. 

2.1.2.3 Important Developments 

Various machine learning approaches have been employed to handle the 

annotation task. These approaches include the translation model (Duygulu et al., 

2002), relevance model (Jeon et al, 2003; Lavrenko et al., 2004; Feng et al., 2004), 

hidden Markov model (Ghoshal et al., 2005; Li and Wang, 2003), conditional random 

field (Li and Sun, 2006; Wang and Gong, 2007), graph model (Liu et al., 2009; Tang 

et al., 2010; Jamieson et al., 2010), neural networks (Fu et al., 2010), support vector 
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machine (SVM) (Qi and Han, 2007), hypothetical local mapping (Li and Wang, 2008), 

etc.  

An early important work is a translation model (TM) proposed by Duygulu et al. 

(Duygulu et al., 2002), in which image annotation is treated as a task of translation. 

Duygulu et al. represented images in blobs and then employed a translation model to 

translate the blobs into a set of semantic labels. Jeon et al. proposed a cross-media 

relevance model (CMRM) for image annotation (Jeon et al, 2003). Differing from 

translating labels to blobs of TM, CMRM takes advantage of the joint probability of 

labels and blobs to predict labels for unlabeled images. The performance of CMRM is 

superior to that of TM. Based on CMRM, Lavrenko et al. developed a 

continuous-space relevance model (CRM) (Lavrenko et al., 2004). CRM utilizes 

continuous-valued features rather than discrete features used in CMRM for region 

description. Experimental results demonstrate that CRM performs much better than 

CMRM. In addition to CRM, Feng et al. proposed another relevance model named 

multiple Bernoulli relevance models (MBRM) to model the joint probability of 

semantic words/labels and visual features (Feng et al., 2004). MBRM uses a multiple 

Bernoulli model to estimated word probabilities and a non-parametric kernel density 

estimate to compute the image feature probabilities. Compared with CRM that models 

words using a multinomial distribution, the multiple Bernoulli model makes MBRM 

applicable to various lengths of annotations. As a result, MBRM outperforms CRM. 

Latent semantic analysis (LSA), which is originally designed for text retrieval, is 

proposed for image annotation as well (Monay and Gatica-Perez, 2003). Monay and 
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Gatica-Perez treated an image as a document, each label assigned to the image as a 

word of the document. The images were first represented with visual features. Then 

latent variables were introduced to link image features with words so as to capture 

co-occurrence information of images and labels. In a later work, Monay and 

Gatica-Perez further refined the annotation performance using probabilistic latent 

semantic analysis (PLSA), which was regarded as a probabilistic version of LSA 

(Monay and Gatica-Perez, 2004). 

Ghoshal et al. developed a generative stochastic model named hidden Markov 

model (HMM) for image annotation (Ghoshal et al., 2005). In that work, images are 

modeled as having been stochastically generated by HMM whose states represent 

concepts, and annotated with the a posteriori probability of concepts presented in 

them. Being different from sole use of HMM (Ghoshal et al., 2005), Zhao et al. 

combined HMM and Support Vector Machine (SVM) to solve annotation problems 

(Zhao et al., 2009). As the combined model takes advantages of both discriminative 

classification and generative model, the performance is superior to that of HMM. Li 

and Wang proposed a Two-dimensional Multi-resolution Hidden Markov Models (2D 

MHMMs) to couple images and concepts (Li and Wang, 2003). They defined each 

category of images as a concept represented by a 2D MHMM. The 2D MHMM 

associated to each image category is used to extract representative information for the 

category. Conditional random field (CRF), being a discriminative alternative to HMM, 

is another important attempt to image annotation (Li and Sun, 2006 ; Wang and Gong, 

2007). 
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Graph model is another powerful tool to handle annotation problems. Liu et al. 

proposed an image-based graph learning and a word-based graph learning for image 

annotation (Liu et al., 2009). The image-based graph learning is performed to obtain 

candidate annotations, while the word-based graph learning is developed to refine the 

annotations based upon word correlation. 

Fu et al. proposed a concept association network (CAN) based on neural 

networks for image annotation (Fu et al., 2010). CAN extracts label correlation using 

a linear system. Since label correlation is taken into account and advanced 

attention-driven techniques (Fu et al., 2006; Fu et al., 2009) are adopted for image 

segmentation, promising performance is achieved by CAN.  

In general, most of above approaches use a region-based annotation scheme, 

which first segments images into regions, and then extracts regional features for 

annotation. Besides a mapping from low-level visual features to high-level labels, 

label correlation is also employed to refine the annotation performance. However, the 

effect of label correlation has not yet been systematically investigated. Furthermore, 

those region-based approaches usually associate each segmented region with one label 

only, which may not be effective in practice since a region sometimes can be 

annotated with multiple labels. Our proposed image annotation model is motivated by 

CAN. It is hence worth giving a more detailed description of CAN at the end of this 

section. 

As shown in Figure 2-1, CAN is of a three-layer structure: feature stimulus, 

visual classifiers, and concept nodes (Fu et al., 2010). The annotation is conducted by 
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a CAN in three stages. An image is first segmented into regions, from which visual 

features are extracted as feature stimulus. The feature stimulus is, then, presented to 

the visual classifiers, which produce the outputs for corresponding concept nodes. In 

the concept node layer, the image is finally annotated by considering both the 

information from the lower layers and the outputs from other concept nodes. The 

number of classifiers used is equal to the number of concepts. For the dataset used by 

Fu et al. (Fu et al., 2010), there are in total 98 labels, resulting in that 98 classifiers 

need to be trained. Obviously, it is time consuming and may not be practical, as 

practical annotation vocabulary may have hundreds of or even thousands of labels. 

Another problem of the CAN lies in its long annotation time. The annotation problem 

of the CAN is finally converted into finding out a node combination with the 

maximum response in the concept node layer. In order to exhaust all possible node 

combinations, the outputs of all the classifiers need to be obtained for each region first, 

and then top ten outputs of each region are selected to do the combinations. Suppose 

that an image has R regions and the annotation vocabulary has T (T ≥ 10) labels. 

Then, R×T classifier outputs need to be obtained. After that, top ten outputs for each 

region are chosen for combination, and total 10R combinations are computed to get 

the maximum concept combination as the final annotation. It can be seen that the 

annotation time is significantly dependent of the number of regions R and the 

vocabulary size T. Therefore, although promising performance has been achieved by 

CAN, it is necessary for us to develop a more effective and efficient annotation model 

for image annotation of a large image database. 
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Figure 2-1. Architecture of concept association network (CAN) (Fu et al., 2010). 

2.2 Scene Classification 

2.2.1 Basic Definitions 

Scene classification approaches can be grouped into two categories: holistic and 

object-based. A holistic strategy represents a scene image using global visual features; 

while an object-based strategy represents a scene image by modeling the object 

attributes. Figure 2-2 shows the procedures of a holistic strategy and an object-based 

strategy for scene classification. For the scene beach, the holistic strategy first extracts 

global visual features of the image, and then predict a scene class based on global 

features. By contrast, the object-based strategy first recognizes the objects, e.g., sky, 

water, people, and sand. The scene class is then predicted according the occurrences 

of the objects. 
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Figure 2-2. Procedures of a holistic strategy and an object-based strategy for scene 

classification. 

2.2.2 Holistic Approaches 

Many popular scene classification approaches are holistic, such as Bag-of-words 

(Fei-Fei and Perona, 2005), SIFT (Lowe, 1999), Gist (Oliva and Torralba, 2001), 

SPM (Lazebnik et al., 2011), CENTRIST (Wu and Rehg, 2011) etc.  

The bag-of-words approach (Fei-Fei and Perona, 2005) characterizes the images 

using an intermediate representation. First of all, a dictionary of visual words is 

constructed using clustering techniques such as K-means based on image visual 

features. After that, the visual features of an image is projected to the dictionary to 

obtain a visual word vector as the representation of the image.  

SIFT has four essential steps: keypoint detection, keypoint localization, 

orientation assignment and keypoint descriptor (Lowe, 1999). Keypoint detection is to 

detect interest points, which are called keypoints. To do that, an image is first 

convolved with a number of Gaussian filters at different scales. Then the differences 

of successive Gaussian-convolved images are computed. The maxima/minima of the 

Difference of Gaussians (DoG) that occur at multiple scales are then taken as the 
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keypoints. Keypoint detection produces many candidates, some of which may be 

unstable. The step of keypoint localization then tries to reject points that have a low 

contrast by performing a fitting to the data for accurate location, scale, and ratio of 

principal curvatures. After that, in the orientation assignment step, each keypoint is 

assigned one or more orientations based on local image gradient directions, such that 

the invariance to rotation can be achieved. In the final step, each keypoint found by 

previous steps is represented by a keypoint descriptor vector. A keypoint descriptor is 

created by first computing the gradient magnitude and orientation at each image 

sample point in a region around the keypoint location. These samples are then 

accumulated into 8-bin orientation histograms summarizing the contents over 4 4

subregions. At the end, a 128-dimension (8 4 4  ) descriptor vector is generated for 

each keypoint representation.  

Gist represents a real world scene by a spatial envelope, which is a set of 

perceptual properties, namely naturalness, openness roughness, ruggedness and 

expansion (Oliva and Torralba, 2001). It has been shown that the spatial envelope 

properties are related to the shape of the scene, and are meaningful to human 

observers. The properties are estimated from two image spectral representations: the 

global energy spectrum and the spectrogram. The estimation of spatial envelope 

properties from the global energy spectrum is then solved using Discriminate Spectral 

Templates (DST); while the estimation from the spectrogram is solved using 

Windowed Discriminate Spectral Template (WDST). DST describes how each 

spectral component contributes to a spatial envelope property; while WDST describes 
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how the spectral components at different spatial locations contribute to a spatial 

envelope property. They together model the Gist features of a scene. 

SPM characterizes image visual features using a number of SIFT descriptors 

(Lowe, 1999). Then a vocabulary of visual words is built based on the SIFT 

descriptors using K-means clustering. After that, each SIFT descriptor can be 

represented by the visual words. Finally, the visual words are concatenated through a 

spatial pyramid to represent the images. 

CENTRIST represents an image using the histogram of Census Transform (CT) 

(Wu and Rehg, 2011). CT compares the intensity value of a pixel with its eight 

neighbor pixels. If a pixel is larger than or equal to one of its neighbors, a bit 1 is set 

in the corresponding neighbor location. Otherwise, a bit 0 is set. The eight bits are 

then collected to form a decimal number (CT value) between 0 and 255. The 

histogram of the CT values for all the pixels is taken as CENTRIST representation. 

The above holistic representations perform well for scenes that have very few 

objects and simple contents. But they may not work well for scenes that contain 

multiple complex objects, since the holistic representations do not take into account 

object attributes. 

2.2.3 Object-Based Approaches 

To address the shortcoming of holistic approaches, some researchers propose to 

use an object-based strategy (Vogel and Schiele, 2007; Cheng and Wang, 2010; Luo et 

al., 2005; Serrano et al., 2004).  
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Vogel and Schiele (Vogel and Schiele, 2007) partitioned an image into regular 

10 10  regions. A concept classifier then annotates each region with a concept. The 

area ratio occupied by each concept is then calculated to form a concept occurrence 

vector as the representation of the scene image. The work proposed by Vogel and 

Schiele (Vogel and Schiele, 2007) does not take into account the spatial relationships 

between the concepts. In light of that, Cheng and Wang proposed contextual Bayesian 

networks to perform semantic modeling of natural scenes (Cheng and Wang, 2010). 

Differing from that Vogel and Schiele partitioned an image using a regular grid, 

Cheng and Wang partitioned an image using automatic segmentation. The segmented 

regions are recognized by an object classifier. Based on the object recognition result, 

the spatial relationships between objects and concept occurrence are modeled by 

Bayesian networks to infer scene classes.  

Object-based strategy is advantageous for scenes consisting of complex objects. 

If the scenes are of simple contents, however, object-based strategy may be inefficient. 

Furthermore, the accuracy of regional object recognition significantly influences the 

final classification performance.  

2.3 Deep Learning and Feature Learning 

Traditional feature extraction concentrates on feature engineering, which is to 

manually design feature representation algorithms according to experts’ experiences. 

The hand-designed feature representations usually perform well for some specific 

tasks. But they may not work well for other tasks. Furthermore, the parameters of 
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hand-designed feature representations need to be manually tuned. However, how to 

choose appropriate parameters could be a tough job, even for an experienced engineer. 

Feature learning, therefore, attracts significant attention in recent years. Feature 

learning aims to automatically learn features from raw data like image pixels, rather 

than manually design features according to experts’ experiences. It moves feature 

representation closer to human vision mechanism. Feature learning (also termed 

unsupervised feature learning), however, did not achieve many progresses until 2006, 

when deep learning started to boom (Bengio, 2009; Krizhevsky et al., 2012; Farabet et 

al., 2013). Very little research concentrates on deep learning before 2006, as deep 

architectures are difficult to train (Bengio and Glorot, 2010). Deep or hierarchical 

architectures are good at extracting high-level and abstract features (Bengio, 2009). 

However, the training of these multilayer architectures using a traditional gradient 

descent algorithm with random weight initialization always falls into local minima. 

But if the weights are well initialized so that they are close enough to a good solution, 

a gradient descent algorithm would work well (Bengio, 2009). In 2006, Hinton and 

Salakhutdinov proposed a greedy layer-wise method to pretrain deep neural networks 

so as to gain good initial weights, and then a gradient descent algorithm is employed 

to fine-tune the weights (Hinton and Salakhutdinov, 2006). Figure 2-3 shows the 

training procedure of a deep autoencoder proposed by Hinton and Salakhutdinov. The 

training process has three steps. The pretraining step, treats every two layers as a 

restricted Boltzmann machine (RBM), and trains the RBM using contrastive 

divergence (CD) algorithm (Hinton and Salakhutdinov, 2006). After that, the network 
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is unrolled into an encoder and a decoder. Finally gradient descent is adopted to 

fine-tune the deep network.  

 

 

Figure 2-3. Training procedure of a deep autoencoder (Hinton and Salakhutdinov, 

2006). 

 

Based on the pretraining method, Hinton et al. proposed deep belief networks 

(DBNs) (Hinton et al., 2006). DBN achieves outstanding performance on small-size 

digit recognition. However, the accuracy dramatically decreases when DBN is scaled 

to full-size images. The main reason could be that DBN cannot capture spatial cues of 

images. To address this problem, Lee et al. proposed convolutional deep belief 

networks (CDBNs), which adopt convolution operators to deal with spatial contents, 

to learn features for full-size images (Lee et al., 2009). In addition to CDBN, several 

other hierarchical feature learning methods based on deep learning, e.g., 
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Deconvolutional Networks (DN) (Zeiler, 2010), Hierarchical Matching Pursuit (HMP) 

(Bo et al., 2011), Convolutional-Recursive Neural Networks (CRNN) (Socher et al., 

2012), have been proposed for handling full-size images in recent years.
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Chapter 3 An Adaptive Recognition Model 

Based on Neural Networks for Image 

Annotation 

3.1 Background  

Automatic image annotation, usually termed image annotation, is a process that 

employs various machine learning algorithms to find out the mappings between 

low-level visual features and high-level labels/concepts from labeled images, and then 

propagates the labels to unlabeled images based on the learnt mappings. In recent 

years, apart from the direct mapping between visual features and labels, label 

correlation, which reflects co-occurrence relationship of different labels, has also been 

adopted to refine the performance of image annotation (Wang et al., 2009; Liu et al., 

2009; Fu et al., 2010; Zhang and Ma, 2009). However, many existing label correlation 

learning methods characterize linear, symmetric, and positive correlation only. We 

consider that in practice label correlation can be nonlinear, asymmetric, both positive 

and negative. We need nonlinear correlation because that in practice the co-occurrence 

relationships between labels can be very complicated. A linear model may not be 

effective enough to represent label correlation. Asymmetric correlation means that 

two labels can have different influences to each other. like “clouds” and “sky”. In a 

natural image, “clouds” always appears together with “sky”; but sometimes “sky” 

appears without “clouds”. Positive correlation indicates that the occurrence of a label 
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increases the probability of the occurrence of another label like “sky” and “clouds”; 

while negative correlation indicates that the occurrence of a label inhibits the 

occurrence of another label, like “sun” and “moon”. Moreover, little existing work 

systematically studies the effect of label correlation in image annotation. How 

significantly the label correlation plays a role, in what situation and to what extent 

that the label correlation can improve the annotation performance remain unknown. 

To address these problems, in this chapter, the effect of label correlation is 

comprehensively and systematically investigated based on a proposed synthetic image 

dataset and a real image dataset.  

Because of their powerful information processing abilities and simple 

implementations, neural networks have been widely applied in a variety of domains 

(Zhu and Wang, 2011; Yu et al., 2010; Chang et al., 2009; Chen et al., 2009; Zhu and 

Cao, 2011; Burse et al., 2010). Neural networks have also been adopted to solve the 

image annotation problem (Zhao et al., 2008; Tsurugai et al., 2008). However, Zhao et 

al. (Zhao et al., 2008) made use of simple global visual features only, while it has 

been demonstrated that global visual features may not characterize images with 

multiple complex objects well (Wang et al., 2009). Tsurugai et al. (Tsurugai et al., 

2008) did not take into account label correlative information. Recently, a concept 

association network (CAN) has been proposed for image annotation (Fu et al., 2010). 

As advanced attention-driven techniques (Fu et al., 2006; Fu et al., 2009) are adopted 

for image segmentation, promising performance is achieved by CAN (Fu et al., 2010). 

However, the CAN suffers from an inefficiency problem. Its annotation time is 
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significantly influenced by the vocabulary size and the number of segmented regions 

of the input image. In addition, CAN characterizes label correlation by using a 

positive linear system. But a linear system may not be able to effectively characterize 

complex label correlation.  

In view of this, we propose an adaptive recognition model (ARM) for image 

annotation in this chapter. Different from that the CAN characterizes label 

correlations using a hand-designed linear system, ARM uses a nonlinear two-layer 

perceptron to automatically learn label correlation from training images, with the 

correlation values storing in the connection weights of the perceptron. The label 

correlation can be intuitively analyzed based on the connection weights. Besides a 

real image dataset, we also construct a synthetic image dataset to evaluate our 

proposed model. To our best knowledge, a synthetic dataset has not yet been used for 

experiments of image annotation in the previous work. There are two main 

advantages of conducting annotation experiments on synthetic images. Firstly, the use 

of synthetic images can markedly reduce or even get rid of various noises introduced 

in inaccurate segmentation and feature representation. Thus, we can concentrate our 

investigation on the properties and performance of our model. Secondly, the synthetic 

images are controllable, and hence, we can construct synthetic images according to 

our requirements for specific research. For example, we can control the extent of 

correlation among some labels in the synthetic dataset to investigate the effect of label 

correlation network in image annotation.  
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3.2 Adaptive Recognition Model (ARM)  

Figure 3-1 illustrates the annotation flowchart of our proposed ARM. The right 

dash box in Figure 3-1 represents an ARM, which consists of a classification network 

(CFN) and a correlation network (CLN). The CFN is made up of a number of copies 

of a classifier and an integration layer that integrates the classifier outputs. The 

annotation is carried out as follows. Given an input image I, first of all, it is 

segmented using state-of-the-art segmentation techniques such as an attention-driven 

model (Fu et al., 2006; Fu et al., 2009) or JSEG (Deng and Manjunath, 2001) into R 

regions, from which visual features are extracted. The visual features representing the 

R regions are then inputted to the classifiers of CFN with one classifier copy 

processing one region. After that, the classifier outputs are assembled in the 

integration layer to produce a classification result. Finally, the classification result is 

refined in the CLN using the correlative relationship of labels to generate the final 

annotation for the input image. The CFN and CLN are discussed in full details in the 

subsequent two sections, respectively. 
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Figure 3-1. Annotation flowchart of our proposed ARM. The right dash box represents the ARM.
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3.2.1 Classification Network 

The CFN consists of a number of classifier copies and an integration layer. The 

classifier copies are duplicated from the same classifier. Thus, only one classifier 

needs to be trained. The classifier is a feed-forward neural network with three layers, 

i.e., the input layer, hidden layer, and output layer. In mathematics, a three-layer 

neural network classifier with M input nodes, N hidden nodes, and T output nodes can 

be formulated in matrix form as follows: 

                       1
I H h f W x b                             (3-1) 

and 

                        2
O O y f W h b                           (3-2) 

where  , 1, ,ix i M  x  is the input vector.  , 1, ,iy k T  y  is the output 

vector.  , 1, ,jh j N  h  is the output of the hidden layer. 

 , , 1, , , 1, ,I I
j iw i M j N   W  and  , , 1, , ,  1, ,O O

k jw j N k T   W  are 

the input weight matrix and output weight matrix, respectively. 

 , 1, ,H H
jb j N  b  is the bias vector of the hidden layer, and 

 , 1, ,O O
kb k T  b  is the bias vector of the output layer. Function arrays 1( )f  

and 2 ( )f  are, respectively, made of N and T transfer functions ( )f  . In this thesis, 

( )f   is a sigmoid function, which is defined as follows:  

                              
1

( )
1 e x

f x 


                      (3-3) 

where β is a smooth parameter. The output of ( )f   is a real value between 0 and 1. 

Substituting Eq. (3-1) into Eq. (3-2), we can obtain  
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                       2 1 .O I H O  y f W f W x b b                 (3-4) 

The input–output relationship of the classifier is characterized in Eq. (3-4). 

The outputs of the classifiers are integrated in the integration layer according to 

the following equation: 

                            
1

R

r
r

   
 
u g y                      (3-5) 

where u is the output vector of the integration layer. yr is the output vector of the rth 

classifier. R is the number of classifier copies used for the input image (equal to the 

number of regions). g(·) is a function array made of T piecewise functions g(·) 

defined as follows: 

1,    if 1
( )  

,    if 0 1

x
g x

x x


   

 
Note that the input x is non-negative, since the output of the transfer function ( )f   

defined in Eq. (3-3) is between 0 and 1. We can expand Eq. (3-5) in element form as  

                             ,
1

R

k k r
r

u g y


   
 
                        (3-6) 

where uk is the kth element of u, and yk,r is the kth element of the rth classifier output 

vector. 

Compared with CAN, there are three main advantages of a CFN. Firstly, only 

one classifier needs to be trained. Secondly, the classification results of the regions are 

assembled in the integration layer. This structure enables the CFN to exploit not only 

regional features, but also global features to some extent for image classification. 

Thirdly, many region-based annotation approaches including a CAN associate one 

segmented region with only one label, which may not be effective to characterize 
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segmented regions in practice, while our approach allows one region to be associated 

with multiple labels. 

3.2.2 Correlation Network 

The CLN is a two-layer (the input layer and output layer) perceptron. The output 

of the integration layer in CFN is the input of CLN. The formulation of CLN can be 

mathematically expressed as 

                           3
C C v f W u b                       (3- 7) 

where   ,  1, ,  ku k T  u  is the input vector as defined in Eq. (3-5). The weight 

matrix  , ,  1, ,  ,  1, ,  C C
l kw k T l T   W  is a correlation matrix, and 

 ,  1, ,  C C
lb l T  b

 
is the bias vector of the output layer.  3 f  is a function 

array that is made of T transfer functions  f   defined in Eq. (3-3). 

,  1, ,  kv k T  v  is the output vector of CLN. v is also the final annotation vector 

of the ARM. The following treatments are taken. 

1) select R labels corresponding to the R largest elements of output v as the final 

annotation, if R ≤ 5. 

2) select five labels corresponding to the five largest elements of output v as the 

final annotation, if R > 5. 

Note that the maximum annotation length is set to be 5 here. The maximum length is 

selected according to the ground truth statistics of the image dataset. For example, the 

maximum length can be determined by the maximum label length or the most 

frequently appeared label length in the ground truth of the training images. We set the 
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maximum annotation length to 5 here because the real images used in the experiments 

are associated with at most five labels. In a future application, we can increase the 

maximum length when new labels and images are added. 

We can expand Eq. (3-7) into 

                         
T

C C
k l,k l k

l=1

v = f w u +b
 
 
 
 .                    (3-8) 

As the bias C
kb  is a constant after training, kv  is mainly determined by ,1

T C
l k ll

w u
 , 

where ,
C
l kw  is a correlation coefficient that reflects the occurrence frequency of the 

lth label given the kth label. After the training of CLN, the correlative information of 

labels is stored in matrix WC . Thus, the correlation matrix WC is the key component 

to analyze the label correlation of training images. Note that ,
C
l kw  can be different 

from ,
C
k lw . If , ,

C C
l k k lw w , WC is a symmetric matrix. Figure 3-2 illustrates an example 

of the correlation matrix WC for three labels: “sky”, “sun”, and “moon”. The 

correlation values have been normalized to [−1, 1]. Note that the correlation value can 

be negative as shown between “sun” and “moon.” Negative correlation represents that 

the occurrence of one label inhibits the occurrence of some other labels in the same 

images, e.g., “sun” and “moon”. A value of -0.48 means that the occurrence of “moon” 

(the column) inhibits the occurrence of “sun” (the row) with a degree 0.48. In 

summary, there are two main differences between the ARM and CAN in 

characterizing label correlation. Firstly, the CAN adopts a simple linear network to 

represent label correlation, while our proposed ARM employs a nonlinear network, 

which is more effective to characterize the complex nonlinear relationship between 

labels. Secondly, the CAN processes only positive correlation, while the ARM is able 
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to deal with both positive and negative label correlation. 

 

 
 

Figure 3-2. Example of the correlation matrix WC for three labels: “sky”, “sun”, and 

“moon”. 

3.3 Training Algorithms of ARM  

In our approach, CFN and CLN are trained separately. Both CFN and CLN are 

trained by the conventional error back-propagation (BP) algorithm. 

 

 
 

Figure 3-3. Training process of the CFN.	
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The parameters of CFN that need to be trained are weight matrices WI and WO, 

and bias vectors bH and bO of the region classifier. The training of CFN is hence 

converted to the training of an MLP classifier (three-layer feed-forward neural 

network) using the BP algorithm. Figure 3-3 illustrates the training process of the 

classifier. Training images are first segmented into regions. Every region is 

represented by a feature vector and associated with a binary 0-1 label vector, in which 

value 1 denotes the annotated label. If a region is too ambiguous to be annotated with 

any labels, its label vector has only value 0. The region features and annotations are 

then fed to the classifier, where region features are the classifier input and region 

annotations are the target output. Given randomly initialized parameters WI, WO, bH 

and bO, the BP algorithm updates iteratively the parameters according to the error 

between the target output and the actual output of the classifier. After a number of 

iterations, the expected parameters WI, WO, bH and bO can be learnt. 

The parameters of CLN to be trained are the correlation matrix WC and bias 

vector bC. The training process of CLN is depicted in Figure 3-4. In contrast to the 

classifier trained on regions, the training of CLN is based on images. Given a training 

image associated with a label vector k, vector k is used as both the input and target 

output of CLN. That is u = v = k (Eq. 3-7). Therefore, the training of CLN aims to 

learn the correlation matrix WC and bias vector bC using the annotations of training 

images. 
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Figure 3-4. Training process of CLN. 

3.4 Experiments  

The experiments are conducted on a both synthetic image dataset and a real 

image dataset. The subsequent two sub-sections describe two datasets and their 

experimental results, respectively. A discussion on label correlation is presented at the 

end of this section. 

3.4.1 Synthetic Image Dataset 

3.4.1.1 Description of the Dataset 

Six fundamental colors, namely “red”, “green”, “blue”, “yellow”, “cyan” and 

“magenta”, and nine basic shapes, namely “round”, “triangle”, “rectangle”, “octagon”, 

“4-point star”, “5-point star”, “moon”, “heart” and “lighting bolt” depicted in Figure 

3-5 are used to construct synthetic images. As shown in Figure 3-5, each color covers 

Correlation Network 

Training 
Images

Image AnnotationsImage Annotations

Learnt Parameters: 
WC, bC

BP Algorithm
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a certain range of values from dark to bright instead of using a constant value. When a 

color is selected for image construction, the color’s value is randomly chosen in its 

value range.  

 

 

 

Figure 3-5. Six colors and nine shapes used for synthetic image construction. 
 

One shape filled in with one color constructs one synthetic object, whose ground 

truth consists of the shape name and the color name. For example, shape “round” and 

color “red” make up an object named “round_red”. Nine shapes and six colors totally 

construct 54 different objects, from which a 54-dimensional label vector is formed. 

The 54 synthetic labels and their corresponding entry numbers in the label vector are 

listed in Table A-1 in Appendix A. Table A-1 will help us to investigate the label 

correlation later on. A synthetic image is made of one to four objects with a white 

background. The white background is used to highlight the objects for better 

visualization. The objects can be arbitrarily rotated in the images. To simplify the 

experiments, we do not consider overlapped objects. Hence, the objects can be well 

segmented by JSEG algorithm (Deng and Manjunath, 2001), with one segmented 

region well representing one object.  

In order to study the effect of label correlation, we design two synthetic image 

sets for experiments. R (1 ≤ R ≤ 4) objects are randomly generated for each image of 
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Set 1. In other words, Set 1 has no artificial correlation. In Set 2, we let some objects 

always appear together to make artificial correlations. Specifically, “round” and 

“triangle”, “rectangle” and “octagon”, “4-point star” and “5-point star”, “moon” and 

“heart” filled in with the same color are made in the same images. For example, 

“round_red” and “triangle_red” appear together. They are called a label-pair. A 

label-pair has strong mutual correlation. There are in total 24 label-pairs. According to 

Table A-1, the 24 label-pairs can be represented by number-pairs as 1-7, 2-8, 3-9, 4-10, 

5-11, 6-12, for “round”-“triangle” pairs, 13-19, 14-20, 15-21, 16-22, 17-23, 18-24, for 

“rectangle”-“octagon” pairs, 25-31, 26-32, 27-33, 28-34, 29-35, 30-36, for “4-point 

star”-“5-point star” pairs, and 37-43, 38-44, 39-45, 40-46, 41-47, 42-48 for 

“moon”-“heart” pairs. Note that i-j and j-i are the same. Thus, the correlation matrix 

WC is a symmetric matrix in theory. Figure 3-6 and Figure 3-7 respectively display 

example images of Set 1 and Set 2. Both Set 1 and Set 2 have 1000 images, in which 

300 images are for training, 300 for validation and 400 for testing. The ratio among 

training size, validation size and testing size is 3:3:4. For each region, 2*2*2 RGB 

color histogram and 7 invariant moments are used to characterize the visual content. 

This generates a 15-dimensional feature vector. Note that we do not take into account 

the regions that represent the white background. In other words, the white background 

of a synthetic image is not involved in either training or testing. However, for real 

images presented in Section 3.4.2, all the image regions including the background are 

utilized for experiments. The number of hidden nodes of the classifier is chosen 20 for 

the synthetic image dataset. 
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Figure 3-6. Examples of synthetic images of Set 1. 

 

 

 

Figure 3-7. Examples of synthetic images of Set 2.	
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3.4.1.2 Experimental Results 

Mean per-word precision and mean per-word recall are two important measures 

to evaluate the annotation performance (Duygulu et al., 2002; Feng et al., 2004). The 

definition of precision and recall for label w is defined as follows. 

                  A
precision w

B
 ,      A

recall w
C

 ,                (3-9) 

where A is the number of images correctly annotated with w, B is the number of 

images automatically annotated with w, C is the number of images manually 

annotated with w (ground truth). Mean per-word precision and mean per-word recall 

are obtained by averaging per-word precision and per-word recall over all the labels 

manually labeled to the testing images. One problem in these measures is that when 

the labels have significantly different numbers of images manually annotated with 

them, the final evaluation results are considerably impacted by the annotation of some 

images. For example, suppose that in the testing images, label “a” is manually 

annotated to 1000 images, while label “b” is manually annotated to only 1 image. 

When the precision and recall are averaged over these two labels to obtain mean 

per-word precision and mean per-word recall, “a” and “b” are treated equally. This is 

actually unfair, as the annotation of the image manually labeled with “b” dramatically 

influences the overall performance. To solve this issue, we adopt mean per-image 

precision and mean per-image recall (Tang and Lewis, 2007) for annotation 

evaluation here. Considering that precision and recall always conflict with each other, 

we also design an F-score based on precision and recall. The precision, recall, and 



39 
 

F-score for image I are defined as follows: 

                           
  O

precision I
P

 ,                     (3-10) 

                            
  O

recall I
Q

 ,                        (3-11) 

                

   
   

2
( )

precision I recall I
F I

precision I recall I

 



                   (3-12) 

where O is the number of labels correctly annotated to I, P is the number of labels 

automatically annotated to I, Q is the number of labels manually annotated to I. As the 

numbers of labels annotated to different images vary in a small range, the problem 

existing in mean per-word precision and mean per-word recall can be significantly 

alleviated. Hereafter, mean per-image precision, mean per-image recall and mean 

per-image F-score are termed precision, recall and F-score for short. 

To study the effect of label correlation, we compare the annotation performances 

of CFN only and CFN+CLN (ARM). The experimental results on Set 1 and Set 2 are 

depicted in Figure 3-8 and Figure 3-9, respectively. As can be seen from Figure 3-8, 

the precision, recall and F-score are 0.835, 0.844, 0.840 respectively for CFN, and 

0.828, 0.837, 0.832 respectively for CFN+CLN. The performance of CFN+CLN is 

similar with that of CFN, meaning that the use of label correlation does not produce 

better annotation results on Set 1. By contrast, Figure 3-9 shows that on Set 2, 

CFN+CLN for annotation significantly improves the precision from 0.845 to 0.902, 

recall from 0.854 to 0.910, and F-score from 0.850 to 0.906. This can be accounted 

for by that there is no obvious correlation among labels in Set 1, while there is strong 

artificial correlation among some labels in Set 2. Consequently, the CLN trained by 
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Set 2 is able to refine the annotation results using the helpful correlative information 

of labels learnt from Set 2. 

 

 

 

Figure 3-8. Annotation performance of CFN and CFN+CLN on synthetic image Set 1. 

 

 

 

Figure 3-9. Annotation performance of CFN and CFN+CLN on synthetic image Set 2. 
 

Figure 3-10 and Figure 3-11, respectively, visualize the correlation matrices WC 

learnt from Set 1 and Set 2. A brighter region represent a larger value (a stronger 
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correlation) while a darker region a smaller value (a weaker correlation). The 

correlation matrix WC of Set 1 has a bright diagonal region, indicating that the labels 

of Set 1 have strong self-correlations only, (little mutual correlation exists among 

different labels). The WC of Set 1 can be roughly regarded as an identity matrix. That 

is why combining CFN and CLN for annotation does not produce improvement as 

shown in Figure 3-8. Differing from WC of Set 1, the correlation matrix WC of Set 2 

visualized in Figure 3-11 has bright elements not only on the diagonal, but also on 

other 8 regions, each of which has 6 elements. As these 8 regions symmetrically 

locate on both sides of the diagonal, we only need to choose 4 regions above the 

diagonal for analysis. From left to right, the 4 regions are named Regions 1, 2, 3 and 4. 

The positions of the 4 regions’ elements can be labeled with 24 label entry number 

pairs as 1-7, 2-8, 3-9, 4-10, 5-11, 6-12 for Region 1, 13-19, 14-20, 15-21, 16-22, 

17-23, 18-24 for Region 2, 25-31, 26-32, 27-33, 28-34, 29-35, 30-36 for Region 3, 

and 37-43, 38-44, 39-45, 40-46, 41-47, 42-48 for Region 4. The label corresponding 

to the 24 entry number pairs have a strong mutual correlation. Clearly, the 24 entry 

number pairs match the 24 label-pairs presented in Section 3.4.1.1 with Region 1 

representing “round”-“triangle” pairs, Region 2 “rectangle”-“octagon” pairs, Region 3 

“4-point star”-“5-point star” pairs, and Region 4 “moon”-“heart” pairs. It is worth 

pointing out that there are six elements on the diagonal which are brighter than the 

other elements in Figure 3-11. That is to say, six labels have a stronger self-correlation 

than the other 48 labels. The entry numbers of these six elements are 49 to 54, 

corresponding to labels “lighting bolt-red”, “lighting bolt-green”, “lighting bolt-blue”, 
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“lighting bolt-yellow”, “lighting bolt-cyan” and “lighting bolt-magenta”. The reason 

for their stronger self-correlations can be explained by that they are not forced to 

appear with any labels. So they have opportunities to be annotated alone to an image, 

which strengthens their self-correlations. The other 48 labels always emerge with their 

partners, by which the mutual correlation is strengthened and the self-correlation is 

weakened. Evidently, the proposed CLN is effective to characterize the label 

correlation. 

 

Figure 3-10. Visualization of the correlation matrix WC learnt from synthetic image 

Set 1, where a brighter region represents a larger value (a stronger correlation).	

 

Figure 3-11. Visualization of the correlation matrix WC learnt from synthetic image 

Set 2, where a brighter region represents a larger value (a stronger correlation).	
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In another experiment, we employ CFN and CLN trained on Set 2 to annotate the 

testing images of Set 1. Figure 3-12 displays the annotation performance of CFN and 

CFN+CLN, indicating that the use of CLN seriously degrades the performance. The 

precision and recall decrease by 0.292 and 0.293, respectively. F-score drops from 

0.815 to 0.522. This experiment demonstrates that the label correlation can refine the 

annotation on the premise that the testing images have the same or similar label 

correlation with the training images. In other words, the label correlation of training 

images should be applicable to testing images. Otherwise, the correlative information 

is useless or even harmful to image annotation. 

 

 

 

Figure 3-12. Annotation performance of CFN and CFN+CLN on the testing images of 

Set 1, where CFN and CLN are trained on Set 2.	
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3.4.2 Real Image Dataset 

3.4.2.1 Description of the Dataset 

Concept Association Network (CAN) (Fu et al., 2010) was experimented on a 

real image dataset collected from the Internet. For a convenient comparison, we use 

the same dataset. This dataset contains 5306 images and 98 annotated labels. Every 

image is manually annotated with 1 to 5 labels in ground truth. The images are 

segmented by attention-driven model (Fu et al., 2006; Fu et al., 2009). Every region is 

manually annotated, and represented by a 37-dimensional feature vector. The 

37-dimensional features consist of a 27-dimensional HSV color histogram and a 

10-dimensional edge histogram. In our experiments, 30% of images are for training, 

30% for validation and 40% for testing. This is equivalent to 1592 training images. 

1592 validation images and 2122 testing images. As the real image dataset has a 

higher dimension of features and more labels than the synthetic image dataset, we 

empirically increase the number of hidden nodes of the classifier to 50. 

3.4.2.2 Experimental Results 

Figure 3-13 illustrates the annotation performance of CAN and ARM. ARM-5 

represents ARM that sets the maximum annotation length to 5, which is also the 

scheme defined in Section 3.2. Figure 3-13 shows that the precision of CAN (0.354) 

is 0.034 higher than that of ARM (0.32). However, compared with CAN whose recall 

is 0.446, the recall of ARM is 0.539, 0.093 higher than that of CAN. ARM also 



45 
 

achieves a slightly larger F-score (0.402) than CAN (0.395). The main reason for why 

CAN outperforms ARM in precision can be explained as follows. Among 2122 testing 

images, 2068 images have less than four labels, and there are in total 1850 images 

whose number of regions is larger than the number of labels in ground truth. However, 

our annotation scheme presented in Section 3.2 determines the number of labels for an 

image based on the number of regions of the image when the number of regions is not 

larger than 5, and sets the maximum annotation length to 5. Hence, for the real dataset 

we used, this scheme generates redundant labels in most cases, which reduces the 

annotation precision. Now we set the maximum annotation length to 3 and retest 

ARM (termed as ARM-3). The performance is also shown in Figure 3-13. This time 

the precision of ARM increases to 0.353, roughly equal to that of CAN. Although the 

recall of ARM decreases from 0.539 to 0.508, it is still more than 6% higher than that 

of CAN, and the F-score of ARM is 2% higher than that of CAN. Figure 3-13 

demonstrates that ARM performs at least comparatively and usually better than CAN. 

In the experiments reported in the following, we still use 5 as the maximum 

annotation length. Table 3-1 tabulates the annotation performance of ARM when 

different (training+validation)/testing data divisions are used. The training size is 

equal to the validation size. The precision, recall, and F-score gradually increase as 

the proportion of training and validation images grows from 0.1 to 0.9. This is 

reasonable since the larger the number of training and validation images used, the 

better the model can be trained. 
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Figure 3-13. Annotation performance of CAN and ARM on the real dataset. ARM-5 

represents ARM whose maximum annotation length is set to 5, and ARM-3 represents 

ARM whose maximum annotation length is set to 3.	

 

Table 3-1. Performance of the ARM for different (training+validation)/testing data 

divisions. 

 

(train+val.)/test 1/9 2/8 3/7 4/6 5/5 6/4 7/3 8/2 9/1 

Precision 0.279 0.288 0.297 0.308 0.314 0.320 0.328 0.342 0.348 

Recall 0.475 0.486 0.508 0.522 0.529 0.539 0.551 0.569 0.580 

F-score 0.352 0.362 0.375 0.388 0.394 0.402 0.411 0.427 0.435 

 

Figure 3-14 illustrates some testing images and corresponding annotations 

produced by ARM when the maximum annotation length is set to 5. Some objects 

such as “fence”, “vase” and “bear” are difficult to be labeled correctly. One main 

reason that accounts for a poor detection of these objects is that their training samples 

are far from adequate. For instance, there is only one training image that contains 

“vase”, and the numbers of training images for “fence” and “bear” are only two and 
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three, respectively. It is even not easy for a human being to recognize an object if 

he/she has seen the object for one or two times only, not to mention an annotation 

model. Another reason lies in visual features. Taking “bear” as an example, its fur has 

similar color as glacier. As a result, it is difficult for an annotation model to 

distinguish “bear” from the background when the “bear” is in the glacier. 

 

 

 

Figure 3-14. Examples of testing images and corresponding annotations by ARM.	
 

To compare the efficiency of CAN and ARM, we recorded the annotation time of 

the testing images for both models. The simulations are run on Matlab on an Intel 

Core2 Quad CPU 2.83 GHz, 6 GB RAM PC. As segmentation and feature extraction 

are not our focuses, the annotation time of an image is defined as a time slot between 

inputting visual features to the model and the model generating the final annotation 

for the image. The total annotation time and the mean per-image annotation time of 
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CAN and ARM on 2122 testing images are tabulated in Table 3-2. In contrast to CAN 

that needs to annotate an image with 1.47 seconds, the mean per-image annotation 

time of ARM is 0.02 seconds only. Obviously, our ARM significantly outperforms 

CAN in terms of efficiency. This is attributed to the forward-propagating working 

manner of ARM. In previous sections, we mentioned that the annotation time of CAN 

on an image is seriously influenced by the number of regions of the image and the 

vocabulary size. Subsequent experiments will demonstrate this point. 

 

Table 3-2. The total annotation time and the mean per-image annotation time of CAN 

and ARM on 2122 testing images. 

 

Model CAN ARM 

Total annotation time (second) 3116.12 45.92 

Mean per-image annotation time (second) 1.47 0.02 

 

The annotation time shown in Table 3-2 is recorded on a vocabulary that has 98 

labels. We now reduce the vocabulary size to 10, and gradually increase the size to 80. 

For each vocabulary size, a corresponding number of labels are randomly selected 

from the 98 labels for experiments. The random selection of labels is performed five 

times for each vocabulary size, and the averaging results of the five sets of labels are 

reported. With respect to different vocabulary sizes, the mean per-image annotation 

time of CAN and ARM is shown in Figure 3-15. As can be seen from Figure 3-15, the 

annotation time of CAN roughly linearly grows as vocabulary size increases. For the 

ARM, the mean per-image annotation time has increased very slightly, from 0.0209 
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seconds to 0.0215 seconds. In other words, the ARM is able to retain its high 

efficiency as vocabulary size grows, which is preferable as vocabulary size is always 

in a large scale and varied in a practical application. Figure 3-16 shows corresponding 

annotation performance in terms of F-score for ARM and CAN. As vocabulary size 

increases, the annotation F-score of both ARM and CAN decrease. Figure 3-16 also 

indicates that the difference between ARM and CAN decreases when the vocabulary 

size grows. This can be accounted for by that a large vocabulary size increases the 

complexity of the ARM, as a result of which the training of the ARM tends to be 

difficult and its annotation superiority over CAN reduces accordingly. Thus, the ARM 

is more effective for small vocabulary annotation than large vocabulary annotation. 

 

 

Figure 3-15. Mean per-image annotation time of CAN and ARM with respect to 

different vocabulary sizes. 
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Figure 3-16. Annotation performance of CAN and ARM with respect to different 

vocabulary sizes. 

 

We choose three sets of images from the 2122 testing images used in the 

experiments shown in Figure 3-13 to investigate the relationship between various 

numbers of regions in an image and the annotation time of CAN and ARM. The three 

sets all contain 100 images. Each image in the same set has the same number of 

regions. The first set has two regions in each image, while the other two sets have, 

respectively, three and four regions. ARM and CAN are the same to the ones used in 

the experiments shown in Figure 3-13, which are trained on the 3184 training and 

validation images and with 98 labels. Figure 3-17 depicts the mean per-image 

annotation time of CAN and ARM on three sets of images. As the number of regions 

in each image increases from two to four, the mean annotation time of CAN 

significantly grows from 0.9139 seconds to 2.029 seconds. By contrast, the mean 

annotation time of the ARM rises only slightly from 0.0196 seconds to 0.0234 

seconds. This demonstrates that the annotation time of the ARM is insensitive to the 
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number of regions in each image. Figure 3-18 shows the corresponding annotation 

performance in terms of F-score for ARM and CAN. We can see that ARM 

outperforms CAN for all three sets of images. 

 

 

Figure 3-17. Mean per-image annotation time of CAN and ARM on three sets of 

images.  

 

Figure 3-18. Annotation performance of CAN and ARM on three sets of images. 
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shown in Figure 3-13 is named CFN 1. Besides CFN 1, four more CFNs are trained. 

The differences of these five CFNs are as follows. CFN 1 has the smallest training 

error, while CFN 2 to CFN 5 have gradually a larger training error. This can be 

attained by stopping the training of each CFN as soon as the training error reaches a 

predefined value. Excluding the case of overtraining, a larger training error always 

means a poorer annotation. That is to say, CFN 1 outperforms CFN 2, CFN 2 

outperforms CFN 3, etc. We consider two types of annotations for each of the five 

CFNs: 1) annotation by CFN only; and 2) annotation by CFN + CLN, where CLN is 

the same as that is used in the experiments shown in Figure 3-13. The annotation 

performance of CFN and CFN + CLN for five CFNs is summarized in Table 3-3. As 

can be seen from Table 3-3, the performance of CFN for five CFNs (CFN 1 to CFN 5) 

gradually decreases from 0.310 to 0.046 in terms of precision, from 0.526 to 0.083 in 

terms of recall, and from 0.390 to 0.060 in terms of F-score. Nonetheless, compared 

with CFN only, CFN + CLN achieve an improved performance. The improvement 

made by CLN rises from 3.2% to 23.4% in precision, from 2.5% to 21.7% in recall, 

and from 3.0% to 22.8% in F-score. These results suggest that the poorer annotation 

the CFN can achieve, the more significant improvement CLN is able to make. The 

improvement made by the CLN for CFN 1 and CFN 2 is small with, respectively, 3% 

and 3.2% in F-score. This can be explained by that the label correlation of the dataset 

is not strong, since most of the images have only two to three labels. The experiment 

demonstrates that the label correlation plays a more important role when the 

annotation accuracy of a model is far from satisfactory.
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Table 3-3. A performance comparison of CFN and CFN+CLN for five CFNs on 2122 testing images. 

 

Model 

Mean per-image 

precision 

Precision improved 

by CLN (%) 

Mean per-image recall

Recall improved by 

CLN (%) 

Mean per-image 

F-score 

F-score improved by 

CLN (%) 

CFN 1 0.310 
3.2 

0.526 
2.5 

0.390 
3.0 

CFN 1+CLN 0.320 0.539 0.402 

CFN 2 0.201 
3.5 

0.345 
2.6 

0.254 
3.2 

CFN 2+CLN 0.208 0.354 0.262 

CFN 3 0.117 
6.0 

0.187 
5.3 

0.144 
5.7 

CFN 3+CLN 0.124 0.197 0.152 

CFN 4 0.078 
11.5 

0.147 
8.8 

0.102 
10.6 

CFN 4+CLN 0.087 0.160 0.113 

CFN 5 0.047 
23.4 

0.083 
21.7 

0.060 
22.8 

CFN 5+CLN 0.058 0.101 0.074 
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3.4.3 Discussion on Label Correlation 

Based on experimental results on both the synthetic dataset and the real dataset, 

the following conclusions for label correlation can be drawn. 

1) In order for the label correlation to play an important role in the annotation 

improvement, the dataset must have strong correlative information among annotated 

labels. 

2) The label correlation that is extracted from the training dataset is helpful only 

if the images to be annotated have the similar label correlation patterns. Otherwise, 

the use of label correlation is helpless or even harmful. 

3) The label correlation plays a more important role when a visual classifier has a 

poorer performance. 

In summary, if the training dataset possesses strong label correlation and such a 

label correlation is applicable to unlabeled images, it is always beneficial to 

incorporate label correlation for image annotation. The crucial issue is how to 

guarantee that the label correlation of the training dataset can be generalized to 

unlabeled images, which is also a tough research topic that needs more investigation.  

3.5 Summary  

In this chapter, we have presented an ARM for image annotation. The ARM 

consists of an adaptive CFN and a nonlinear CLN. The adaptive CFN enables the 

proposed ARM to exploit regional features together with global features for image 
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annotation. The CLN is capable of encoding label correlative information to improve 

the annotation results. Thanks to its forward-propagating working manner, the ARM 

is of high efficiency in annotating images. Furthermore, the computational time of an 

ARM is insensitive to the number of regions of the input image and vocabulary size. 

Besides a real image dataset, we have also designed a synthetic image dataset for 

experiments. The synthetic dataset is effective in the investigation of label correlation 

and the annotation performance of the ARM. Experimental results demonstrate the 

effectiveness and efficiency of our proposed model. A systematic study of label 

correlation to improve annotation performance has also been presented in this chapter. 
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Chapter 4 Multi-Instance Multi-Label 

Image Classification: A Hierarchical Neural 

Approach 

4.1 Background  

In Chapter 3, we propose a two-stage neural network model ARM for image 

annotation. ARM achieves high annotation efficiency and accuracy. However, ARM 

requires regional ground truth for training. The issue is that it is laborious and time 

consuming to manually label each image region, especially when the training set is in 

large scale. It is thus desirable for us to explore a method that only needs global image 

ground truth for training. To address this problem, in this chapter, a hierarchical neural 

architecture based on ARM is proposed for Multi-Instance Multi-Label image 

classification. Both MIML image classification and image annotation aim to assign 

multiple labels to an image. The difference is that for MIML image classification, an 

image is partitioned and represented by multiple instances/regions, and usually an 

MIML algorithm does not need to know regional ground truth for training; while for 

image annotation, an image can be represented by its global features or by multiple 

regions. To differ from the task performed in Chapter 3 that requires regional ground 

truth, we term the target task in this chapter MIML image classification rather than 

image annotation. The proposed neural model is thus termed Multi-Instance 

Multi-Label Neural Network (MIMLNN).  
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MIMLNN is different from ARM in two folds. Firstly, from the architecture 

perspective, MIMLNN extends the CorreLation Network (CLN) from a two-layer 

perceptron to a three-layer perceptron, because a perceptron with three layers (usually 

termed multi-layer perceptron) is more powerful in modeling complex functions than 

that with two layers. MIMLNN is expected to model more complex, nonlinear, both 

positive and negative, and asymmetric label correlation. Furthermore, by controlling 

the number of nodes in the hidden layer, we can significantly reduce the number of 

connection weights. It has been proved that if being well trained, a neural network 

with one more layer can approximate the same function using much less weights, and 

thus can achieve better generalization performance (Hinton and Salakhutdinov, 2006). 

Secondly, from the training or learning perspective, MIMLNN uses image ground 

truth only. MIMLNN is expected to automatically learn the region-label mapping and 

label correlation just by using region-level features and image-level labels of training 

images. In particular, the classical error Back-Propagation (BP) is employed to tune 

the weights of MIMLNN. A traditional BP algorithm is gradient descent. The gradient 

descent algorithm updates neural weights according to the partial derivative 

magnitude of a predefined error function. Since the error back-propagates by 

multiplying the derivative of the sigmoid function, the value of which is between 0 

and 1, the gradient magnitude could be very small for deep layers when the error 

back-propagates through multiple layers. As a result, the weights at very deep layers 

are difficult to update. This is called the long-term dependency problem (Cho et al., 

2003; Cho et al., 2005). To address this problem, we extend the refined BP algorithm 
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Rprop (Riedmiller, H. Braun, 1993) for MIMLNN training. Rprop algorithm updates 

weighs depending on the derivative sign rather than the derivative magnitude of the 

error signal. Therefore, the problem of long-term dependency can be significantly 

alleviated. The experiments reported in this chapter are conducted on a synthetic 

image dataset and the popular Corel image dataset. One main advantage of using a 

synthetic dataset is that the contents of synthetic images are controllable. For example, 

we can design specific label correlation for our research. Note that the synthetic 

dataset used in this chapter is different from that used in Chapter 3. To demonstrate 

the superior performance of MIMLNN, several state-of-the-art methods, e.g., 

MIMLBoost and MIMLSVM (Zhou and Zhang, 2007), are implemented for a 

comparison purpose.  

4.2 Multi-Instance Multi-Label Neural Network (MIMLNN) 

Figure 4-1 shows the image classification flowchart of MIMLNN. MIMLNN 

consists of two stages of MLPs. The first-stage MLP is named MLP1, and the 

second-stage MLP is denoted as MLP2. Given an image, the classification is 

conducted by MIMLNN as follows. First of all, the image is divided into a number of 

regions by performing segmentation or using a regular grid. After that, the features 

extracted from the regions are fed to MLP1s, with one copy of MLP1 processing one 

region’s features. Finally, the responses of all the MLP1s in the first stage are 

incorporated in MLP2 to generate the final labels. 
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Figure 4-1. Image classification flowchart of MIMLNN. 

 

Both MLP1 and MLP2 are of three layers: input layer, hidden layer and output 

layer. In mathematics, the MLP1 can be formulated as follows: 

                    ( ( ) )b a a b  y f W f W x b b ,                     (4-1) 

where x is the input vector; y is the output vector; Wa is the weight matrix between the 

input layer and the hidden layer; Wb is the weight matrix between the hidden layer 

and the output layer; ba and bb are the bias vectors of the hidden layer and output layer, 

respectively. Function array ( )f  is made of sigmoid transfer functions ( )f  . The 

formulation of ( )f   is defined as: 

                     ( ) 1/ (1 e )xf x   .                        (4-2) 

The output of sigmoid function ( )f   is a real value between 0 and 1. Similarly, we 

can have the formulation of MLP2 as follows: 

                  ( ( ) )d c c d  v f W f W u b b ,                   (4-3) 

where the input vector u is the summation of the outputs of MLP1s: 
1

n i

i
 u y , with 

n denoting the number of image regions. By substituting Eq. (4-1) into Eq. (4-3), we 
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can have the formulation of the proposed model MIMLNN: 

     
1

( ( ( ( ( ) )) ) )
n

d c b a i a b c d

i

    v f W f W f W f W x b b b b ,         (4-4) 

where xi is the feature vector of the ith image region. Eq. (4-4) characterizes the 

input-output relationship of MIMLNN.  

The output of MLP2, v, is the label vector with each entry associating with a 

label. Thus, vectors y, u, and v have the same dimension. In the training phase, v is the 

target binary label output of the input image, with 1 denoting a ground truth label. In 

the testing phase, the real-number vector v is finally converted to a binary vector by 

using a threshold (0.5 in our experiments), with 1 denoting a selected label and 0 

denoting not. If all the nodes of v are smaller than the threshold, the node with the 

maximum value is selected as the final label. 

The structure of MIMLNN has the following advantages. First of all, the 

first-stage network uses the same MLP. This structure enables MIMLNN to process 

images with various numbers of regions. Secondly, the function of MLP1 is to 

automatically model the relationship between the image regions and labels. 

Furthermore, most region-based image classification methods associate a region with 

at most one label. By contrast, MLP1 is a multi-output network, as a result of which 

an image region is allowed to have more than one label. This mechanism is more 

practical, since in real applications one image region may associate with multiple 

labels. Thirdly, the outputs of MLP1s are incorporated in the second-stage MLP2. 

Comparing with many other methods that model the region-label relationship, MLP2 

is able to make use of label–label information such as label correlation to refine the 
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classification result. The issue is how to propagate the image-level labels to the 

regions, that is how to train MIMLNN based on the image-level labels and 

region-level features. The following section will present the training procedure. 

4.3 Training Algorithms of MIMLNN 

4.3.1 Gradient Descent Algorithm 

Gradient descent algorithm is a traditional approach to train MLP. It updates 

neural weights/biases according to the negative gradient of an error function. The 

error function can be defined as follows:  

                         
1

( ) ( )
2

TE   o v o v ,                      (4-5) 

where o is the target output of MIMLNN. Notation T denotes transposition. Then we 

can have the update rule as follows: 

                    ( 1) ( )
( )ij ij

ij

E
w t w t

w t
 

  


,                     (4-6) 

where parameter λ is the learning rate. MLP2 can be directly trained by applying the 

updating rule in Eq. (4-6). To train MLP1, the error is back-propagated in the 

following way: 

1. Error E is back-propagated to the MLP1s, obtaining error E1, E2,…, En for all 

the n MLP1s, respectively. 

2. The weights/biases of MLP1 are updated n times according to Eq. (4-6), 

sequentially using error E1, E2,…, En. 

Specifically, let p and q respectively denote the activations (output vectors) of the 



62 
 

hidden layers of MLP1 and MLP2. That is, ( )a a p f W x b , and 

( )c c q f W u b . Let δ , ξ , ψ , and φ  respectively denote the input vectors of 

the four transfer functions of MIMLNN. That is, ( )p f δ , ( )y f ξ , ( )q f ψ , 

and ( )v f φ . In addition to that, we define /E   p p , /E   y y , 

/E   q q , /E   v v . After simple calculation, we can obtain 

                         'i i i iv o v f    ,                         (4-7) 

                         ' d
i i ji j

j

q f w v   ,                      (4-8) 

                         'k k c
i i ji j

j

y f w v   ,                     (4-9) 

                         'k k b k
i i ji j

j

p f w y   ,                    (4-10) 

where k denotes the kth MLP1 copy, and  'f   denotes the derivative of transfer 

function  f  . Given an input image with n regions, by expanding Eq. (4-6), we can 

finally have the gradient descent algorithm for training MIMLNN as described in 

Algorithm 1, where parameter   is the learning rate. In our experiments, all the 

weights/biases are randomly initialized from the zero-mean unit-standard deviation 

normal distribution. The training is stopped based on the performance of the 

validation data. Specifically, the training will be stopped if the error on the validation 

data does not reduce within a certain number of iterations. 
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Algorithm 1. Gradient descent algorithm for training MIMLNN

: training dataset , validation dataset 

1: randomly initialize ,  ,  ,  ,  ,  ,  ,  

2: 

3:    feed forward to compu

tr val

a a b b c c d d

D DInput

repeat

W b W b W b W b

       
       

te ,  ,  ,  ,  and the error  on the training set 

4 :    back-propagate to compute ,  ,  ,   

5:    1 ,  1

6:    1 ,  1

7:     

tr

d d d d
ij ij i j i i i

c c c c
ij ij i j i i i

E D

w t w t v q b t b t v

w t w t q u b t b t q

k

 

 

   

       

       

for

p y q v

p y q v

       
       
       
       

1:  

8:        1 ,  1

9 :        1 ,  1

10:      1 ,  1

11:      1 ,  1

12:    

13:    fe

b b k k b b k
ij ij i j i i i

a a k k a a k
ij ij i j i i i

b b b b
ij ij i i

a a a a
ij ij i i

n

w t w t y p b t b t y

w t w t p x b t b t p

w t w t b t b t

w t w t b t b t

 

 

       

       

   

   

do

end for

ed forward to compute the error  on the validation et 

14:   does not reduce anymore

: ,  ,  ,  ,  ,  ,  ,  

val val

val

a a b b c c d d

E D

Euntil

Output W b W b W b W b

 

4.3.2 Long-Term Dependency Problem 

A gradient descent algorithm is easy to implement. However, it suffers from the 

long-term dependency problem (Cho et al., 2003), especially when the network has 

many layers. This is because the back-propagating error is multiplied by the 

derivative of the sigmoid function, the value of which is between 0 and 1. Therefore, 

the gradient for very deep layers could become very small, resulting in that the 

parameters are difficult to update. Taking MIMLNN as an example, the error E has to 

back-propagate through four layers to reach the weights a
ijw  of MLP1. Thus, E is 

multiplied by the derivative of the sigmoid function for four times. In particular, the 

derivative of the sigmoid function is defined as follows: 
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                            2
' 1 e 1 ex xf x f x f x      .           (4-11) 

The value of  'f   is between 0 and 1. According to Algorithm 1, the update-value 

a
ijw  of a

ijw  can be expanded as follows: 

       '( ) ( )

       '( ) ( '( ) ( ( ) ))

       '( ) ( '( ) ( ( ) '( ) ( ( ) )))

       '( ) ( '( ) ( ( ) '(

a k k
ij i j

k k b k
j i ji jj

k k b k c
j i ji j lj lj l

k k b k c d
j i ji j lj l rl rj l r

k k b k c
j i ji j lj

w p x

x f w y

x f w f w t q

x f w f w t f w t v

x f w f w t f



 

  

   

  

  

 

 

 




 
  

) ( ( )( ) '( ))))d
l rl r r rj l r

w t o v f       

(4-12) 

Obviously, the error has been multiplied by  'f   for four times. Thus, the 

update-value a
ijw  could be very small, making the weight updating inefficient. 

4.3.3 Rprop Algorithm 

To solve the long-term dependency problem, the refined BP algorithm Rprop 

(Riedmiller, H. Braun, 1993) is employed to train MIMLNN. Rprop does not take into 

account the derivative magnitude of the error signal for parameter updating. The sign 

of the derivative can determine the direction of the weight update. Generally, the 

update-value is increased by a factor    when the derivative retains its sign, and the 

update-value is decreased by a factor    when the derivative changes its sign. As a 

result, the derivative magnitude does not affect the weight update. Even though the 

gradient is very small, the weights/biases can be effectively tuned. Appendix B 

describes the implementation details of Rprop algorithm. Before implementing Rprop 

algorithm, we need to compute gradient ( )ijE w t   for each weight and bias using 

the equation presented in Section 4.3.1. Note that Rprop is a batch training algorithm. 
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That is, the gradient used in Rprop is computed by averaging the gradients for all the 

patterns presented. As described in Appendix B, there are some parameters of Rprop 

that need to be set. In our experiments, we set 0 0.1  , max 50.0  , 6
min 1e  , 

1.2  , and 0.5  , as suggested by Riedmiller and Braun (Riedmiller and Braun, 

1993).  

4.4 Experiments  

4.4.1 Experimental Results on a Synthetic Image Dataset 

The first dataset used to evaluate the performance of MIMLNN is a synthetic 

image dataset. The synthetic images are comprised of nine objects: “round”, 

“triangle”, “rectangle”, “octagon”, “4-point star”, “5-point star”, “moon”, “heart”, 

and “lighting bolt”. Each object has six colors: red, green, blue, yellow, cyan, and 

magenta. Each synthetic image contains 1 to 4 non-overlapping objects and a white 

background. In order to make some label correlations, objects “round” and “triangle”, 

“rectangle” and “octagon”, “4-point star” and “5-point star”, “moon” and “heart” with 

the same colors are designed to always appear in the same images. Figure 4-2 shows 

example images of the synthetic dataset. 
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Figure 4-2. Examples of the synthetic dataset. 

 

Each synthetic image is segmented by using JSEG (Deng and Manjunath, 2001), 

a widely-used segmentation technique. Since the synthetic images are quite simple, all 

the objects can be well segmented by JSEG, with each segmented region exactly 

representing one object. Therefore, we do not need to worry about the uncertainty 

introduced by the inaccurate segmentation. Each region is represented by seven 

invariant moments and the three average values of three color channels R, G, B. Note 

that the color features are not useful to characterize the nine objects/labels here. The 

three average values of RGB can be regarded as noise to the features. We take the 

color features into account so as to find out whether or not the proposed approach 

MIMLNN can distinguish the nine labels based on the noisy features. The dataset has 

in total 1000 images. We use 400 images for training, 400 images for validation and 

lighting bolt

rectangle, octagon,

4-point star, 5-point star
heart, moon, lighting boltround, triangle

rectangle, octagon, 
moon, heart

moon, heart, lighting bolt
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200 images for testing. In our experiments, different numbers of hidden nodes of 

MLP1 and MLP2 are tested, and the one with the best performance on the validation 

data is retained. Each experiment is performed ten times, and the average performance 

is reported. To simplify the implementation, MLP1 and MLP2 use the same number of 

hidden nodes. According to the experimental results, MIMLNN achieves the best 

performance on the validation data when MLP1 and MLP2 have ten hidden nodes. 

Since we deal with nine objects with 10 features, the configurations of MLP1 and 

MLP2 are 10-10-9 and 9-10-9, respectively. There are various metrics for the 

evaluation of classification performance. For multi-label image classification, 

precision, recall and F-score (Goutte and Gaussier, 2005) are three widely used 

metrics. They are adopted to evaluate the performance of MIMLNN for the synthetic 

dataset. The average performance of nine classes is reported. 

To investigate the effect of the second-stage network, the performance of using 

and without using MLP2 is compared. The results are shown in Table 4-1. The use of 

MLP2 improves the performance. This is because the synthetic dataset processes some 

label correlations, and MLP2 can capture these correlations for classification 

refinement. Almost 100% accuracy is achieved when using MLP2, meaning that the 

proposed MIMLNN classifies the synthetic images very well. In other words, 

MIMLNN is able to automatically associate the labels with regions based on the noisy 

features. The experiments on synthetic dataset demonstrate the feasibility and 

effectiveness of MIMLNN. However, the synthetic objects are rather simple, and the 

segmentation and feature extraction are ideal, which is not practical in real 
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applications. Thus, we use a real dataset to evaluate MIMLNN in the subsequent 

experiments. 

 

Table 4-1. Performance comparison of using and without using MLP2 on the synthetic 

dataset. 

 

Method Precision Recall F-score 

MLP1 0.9552 0.9542 0.9547 

MLP1 + MLP2 0.9995 0.9997 0.9996 

4.4.2 Experimental Results on the Corel Dataset 

The Corel dataset (Duygulu et al., 2002) is a popular image classification dataset. 

In this chapter, we select 1000 Corel images for experiments. Ten objects/classes, 

namely “sky”,“sun”, “clouds”, “tree”, “people”, “buildings”, “plane”, “bear”, “snow” 

and “tiger” are used to label the images. Figure 4-3 shows example images of the 

Corel dataset. All the images are segmented using Normalized Cuts (Shi and Malik, 

1997), and the maximum number of regions for one image is ten. In total 30 features 

(including region color and standard deviation, region average orientation energy, 

region size, location, convexity, first moment, and the ratio of region area to boundary 

length squared) adopted in (Duygulu et al., 2002) are used to characterize a region. 

Again, we use 400 images for training, 400 images for validation, and 200 images for 

testing. The number of hidden nodes is determined by the performance on the 

validation data. The final configurations of MLP1 and MLP2 are 30-20-10 and 

10-20-10 (30 features and 10 labels), respectively. Each experiment is performed ten 

times, and the average performance is reported. For the Corel dataset, besides 
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precision, recall and F-score, two other popular metrics AUC (Area Under Curve) of 

PR (Precision-Recall) and AUC of ROC (Receiver Operating Characteristic) (Davis 

and Goadrich, 2006) are adopted for the performance evaluation. For the PR curve, 

the x-axis is recall and y-axis is precision. For the ROC curve, the x-axis is False 

Positive Rate (FPR) and y-axis is True Positive Rate (TPR). False Positive (FP) is that 

the prediction is positive and the actual value is negative, and FPR is the fraction of 

FP samples out of negative samples. True Positive (TP) is that the prediction is 

positive and the actual value is also positive. TPR is the fraction of TP samples out of 

positive samples. TPR is actually equivalent to recall. The AUC of ROC describes the 

probability that a randomly chosen positive sample is ranked higher than a randomly 

chosen negative sample. For both PR curve and ROC curve, a higher AUC denotes a 

better performance. 

 

 

Figure 4-3. Examples of the Corel dataset. 

 

For comparison purposes, MIMLBoost and MIMLSVM are implemented and 
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evaluated on the Corel 1000 dataset. The training and validation sets are combined as 

a new training set for MIMLBoost and MIMLSVM learning. The parameters of 

MIMLBoost and MIMLSVM are determined by twofold cross-validation. The 

performance of MIMLBoost, MIMLSVM, and MIMLNN are tabulated in Table 4-2, 

where MIMLNN (GD) denoting MIMLNN trained by gradient descent (GD) and 

MIMLNN (Rprop) denoting MIMLNN trained by Rprop. As can be seen from Table 

4-2, MIMLNN trained by Rprop outperforms MIMLBoost and MIMLSVM for all the 

five metrics, especially for recall and F-score. Furthermore, compared with gradient 

descent, the Rprop training algorithm significantly improves the performance of 

MIMLNN. This experiment demonstrates the superior performance of MIMLNN and 

the efficiency of the Rprop algorithm. 

 

Table 4-2. Performance of MIMLSVM, MIMLBoost, and our proposed MIMLNN 

using gradient descent (GD) and Rprop on the Corel dataset. 

 

Method Precision Recall F-score AUC (RP) AUC (ROC)

MIMLSVM 0.5415 0.3753 0.4434 0.4769 0.7991 

MIMLBoost 0.5105 0.384 0.4383 0.455 0.8157 

MIMLNN (GD) 0.5023 0.3622 0.4195 0.4145 0.7869 

MIMLNN (Rprop) 0.5515 0.4914 0.519 0.4818 0.8237 

 

Figure 4-4 shows the AUC (ROC) of MIMLNN trained by Rprop for all the ten 

labels. We can see that MIMLNN gains the largest AUC value on labels “sun” and 

“snow”. This could be explained by that the features of “sun” and “snow” are quite 

unique and easy to distinguish. By contrast, it is relatively difficult for MIMLNN to 
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scheme 1, in the second scheme, the weights/biases are randomly initialized in 

different symmetric intervals. The resulting average F-scores are shown in Figure 4-5. 

Standard deviations are depicted as the error bars. It can be seen that the initial 

interval that is either too small (such as [-0.1 0.1]) or too large (such as [-2 2]) does 

not perform well. A possible reason is that for both small and large intervals, the 

initial weights/biases usually locate in a region that is far from the optimal solution. 

Other moderate intervals achieve similar good performance. A good choice is to set 

the initial interval around [-0.6 0.6]. As the value of sigmoid transfer function is 

between 0 and 1, such a moderate interval would have a higher probability to 

initialize the weights/biases in a region where a good solution can be finally found. 

 

Table 4-3. F-score of MIMLNN when the weights/biases are initialized to be 

identical. 

 

Initial value -1.0 -0.8 -0.4 0.0 0.4 0.8 1.0 

F-score  0.069  0.114  0.199  0.095  0.163  0.051  0.051 

 

 

Figure 4-5. Mean F-scores and standard deviations of MIMLNN when the 

weights/biases are randomly initialized in different symmetric intervals. 
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We also investigate the performance of MIMLNN when different numbers of 

hidden nodes are used. The results are shown in Figure 4-6. The figure shows that at 

around 20 hidden nodes, MIMLNN achieves the satisfactory performance. After that, 

AUC (ROC) tends to be stable. F-score and AUC (PR) slightly reduce when the 

number of hidden nodes increases. This is probably because when the number of 

hidden nodes is too large, MIMLNN tends to overfit the training data, resulting in a 

relatively low performance on the testing data. Figure 4-7 shows some images that 

MIMLNN performs better than MIMLBoost and/or MIMLSVM. 

 

 
 

Figure 4-6. Performance of MIMLNN when different numbers of hidden nodes are 

used. 
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Figure 4-7. Some image classification results. The first-line labels below each image 

are the ground truth. The second-line labels are generated by MIMLNN. The 

third-line and fourth-line labels are generated, respectively, by MIMLBoost and 

MIMLSVM. 
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In our approach, the label correlation is extracted by automatic learning using a 

neural network (MLP2). Different from many other correlation modeling methods, the 

main advantage of our approach lies in that the neural network can model nonlinear, 

asymmetric, not only positive but also negative correlations. To demonstrate the 

effectiveness of the neural network method, we implement three other methods for a 

comparison. The first method is Spearman’s rank correlation coefficient, a classical 

correlation coefficient measuring method that calculates statistical dependence 

between two variables. The second method is a Concept Association Network (CAN) 

which characterizes label correlation using a linear system (Fu et al., 2010). The third 

method is based on Graph Learning (GL) (Liu et al., 2009). The authors (Liu et al., 

2009) take into account label correlations from both the training data and data 

collected from the Internet. In this chapter, however, we only consider correlation 

from the training data. These three methods are respectively termed Spearman, CAN 

and GL. For a fair comparison, an MLP1 is first trained, and then the correlations 

extracted by the three methods are separately employed to enhance the output of 

MLP1. In particular, based on the three methods, we can construct three different 

matrices that consist of correlation values between any two labels. The three 

correlation matrices are then used to multiply the output vector of MLP1 so as to 

generate more accurate classification results. By contrast, our approach is like using a 

neural network (MLP2) to automatically learn label correlation to improve the output 

of MLP1. The results are tabulated in Table 4-4. The performance of MIMLNN is also 

listed in Table 4-4 for a convenient comparison. Furthermore, the result of MLP1 
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without considering correlation is shown as well. We can see that all the three 

correlation extraction methods improve the classification performance of MLP1. They 

are, however, outperformed by our proposed MIMLNN. The reason may lie in their 

limitations in modeling label correlation compared with MIMLNN. Spearman can 

represent both positive and negative correlations. But its correlation matrix is 

symmetric, meaning that two labels share the same probability to occur given the 

other one. This is impractical since the probability of “a” to occur given “b” is usually 

different from that of “b” given “a”, like “sky” and “clouds”. CAN extracts 

asymmetric correlation; however, CAN characterizes linear and positive correlations 

only. GL can capture nonlinear correlation, but not negative one. By contrast, a neural 

network is able to model nonlinear, positive and negative correlations via automatic 

learning. This experiment demonstrates that a neural network is a promising 

alternative for label correlation modeling. 

 

Table 4-4. Performance comparison among different label correlation modeling 

methods. 

 

Method MLP1 MLP1+Spearman MLP1+CAN MLP1+GL MIMLNN
Precision 0.5133 0.5292 0.4802 0.521 0.5515 

Recall 0.3642 0.3942 0.4748 0.3867 0.4914 

F-score 0.4254 0.4508 0.4771 0.4431 0.519 

 

Both gradient descent and Rprop algorithms are first-order learning algorithms. 

Therefore, their computational complexities both scale linearly with the number of 

weights and biases to be optimized, i.e., O(n), with n denoting the number of weights 

and biases (Igel et al., 2005). Compared with gradient descent, however, Rprop 



77 
 

algorithm takes several more steps to calculate the weight update values. To compare 

the computational time of gradient decent and Rprop algorithms, we record their 

training times in terms of per-image per-iteration in Table 4-5. The simulations are run 

on MATLAB on an Intel Core2 Quad CPU 2.83 GHz, 6 GB RAM PC. Table 4-5 

shows that both gradient descent and Rprop take very little time (microsecond level) 

to complete one iteration per-image. Rprop is slightly slower than gradient descent 

(time increase by 4.7% only). This is because that Rprop and gradient descent 

algorithms perform most of the same operations in one update cycle, like signal 

feedforward, error back-propagation and gradient calculation. The time of extra 

operations performed by Rprop occupies only a very small proportion of the whole 

cycle. The validation procedures of Rprop and gradient descent are the same. Thus, 

we do not compare the validation computational time here. In terms of memory 

complexity, gradient descent and Rprop algorithms are both of magnitude O(n), with 

n denoting the number of weights and biases (Igel et al., 2005). Since gradient descent 

and Rprop algorithms perform most of the same variables and calculations, the 

memory required by Rprop algorithm is very similar to that by the gradient descent 

algorithm. The difference between memory storages of gradient descent and Rprop 

algorithms for our classification task is minor. 

 

Table 4-5. Per-image per-iteration training time of gradient descent and Rprop 

algorithms. 

 

Training algorithm GD Rprop Increase by Rprop

Time (microsecond) 78.9 82.6 4.7% 
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We also compare the training time and testing time in terms of per-image of 

MIMLBoost, MIMLSVM, and MIMLNN using the Rprop training algorithm. The 

results are shown in Table 4-6. As we can see, MIMLNN and MIMLSVM spend a 

similar amount of training time. For testing, however, MIMLNN is much faster than 

MIMLSVM due to its feedforward propagation manner. It is worth mentioning that 

both the training and testing of MIMLBoost are very slow. The inefficiency of 

MIMLBoost is mainly caused by its time-consuming clustering and boosting 

procedures (Li et al., 2009). 

 

Table 4-6. Per-image training and testing time of MIMLBoost, MIMLSVM, and 

MIMLNN using the Rprop algorithm. 

 

Method MIMLBoost MIMLSVM MIMLNN 

Training time (second) 23.26 0.071 0.077 

Testing time (second) 16.29 0.032 3.55e-4 

 

As presented in Section 4.2, the image regions can be obtained by performing 

automatic segmentation or using regular gridding. The experiments reported here are 

based on automatic segmentation, while in the final experiment, regular gridding is 

investigated. The image regions are extracted on a regular grid of 3 × 3 regions, 

resulting in nine regions for each image. The widely-used HOG (Dalal and Triggs, 

2005) feature is adopted to represent each region. The performance of MIMLNN is 

compared with a state-of-the-art approach SPM (Lazebnik et al., 2006) in Table 4-7. 

SPM achieves higher precision than MIMLNN; however, MIMLNN outperforms 
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SPM in terms of recall and F-score. The performance of both MIMLNN based on 

regular gridding and SPM is much lower than that of MIMLNN based on automatic 

segmentation as shown in Table 4-2. The main reason can be that the regions 

extracted from regular gridding are usually mixed up with different objects, so it is 

difficult to distinguish objects from these regions. By contrast, the regions extracted 

from automatic segmentation are more meaningful and easier to recognize. 

Furthermore, SPM is originally proposed for holistic single-class scene classification. 

It may not work very well for multi-label image classification. 

 

Table 4-7. Performance of SPM and MIMLNN based on regular gridding. 

 

Method Precision Recall F-score 

SPM 0.5902 0.3052 0.4024 

MIMLNN 0.4412 0.4313 0.4362 

4.5 Summary  

In this chapter, we propose a hierarchical neural approach MIMLNN for 

multi-instance multi-label image classification. MIMLNN consists of two stages of 

MLPs. The first-stage MLP is used to establish the relationship between image 

regions and labels. The second-stage MLP aims at capturing label correlation for 

classification refinement. To solve the long-term dependency problem encountered in 

the traditional gradient descent algorithm, a refined back-propagation algorithm 

Rprop is extended to train MIMLNN. The experiments are conducted on a synthetic 

dataset and the popular Corel dataset. Two state-of-the-art multi-instance multi-label 
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learning algorithms MIMLBoost and MIMLSVM are also implemented for 

performance comparison. Experimental results demonstrate the superior performance 

of MIMLNN for multi-instance multi-label image classification. 
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Chapter 5 Combining Holistic and 

Object-Based Approaches for Scene 

Classification 

5.1 Background  

Holistic and object-based are two main strategies for scene classification. Both of 

them have advantages and disadvantages. When scenes have a small number of 

objects or simple global visual features, a holistic approach can achieve a superior 

performance. However, for scenes that contain multiple objects and that objects play 

important roles in the scene discrimination, a holistic approach may not work well, 

since it does not take into account the object attribute information. When scenes 

consist of different objects, the object-based approach is advantageous. However, if 

scenes are of simple contents, where individual objects may not help in scene 

classification too much, the object-based approach may be inefficient. Furthermore, 

the accuracy of regional object recognition significantly influences the final 

classification performance of an object-based strategy. In light of this, in this chapter, 

we propose to combine holistic and object-based approaches for scene classification. 

To our best knowledge, very little work investigates a combination of holistic and 

object-based approaches.  

In this chapter, we first show in Section 5.2 that deep learning, a recent very hot 

topic of machine learning, is a promising alternative to recognize scenes in a holistic 
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way. After that, in Section 5.3, we propose to combine holistic and object-based 

approaches for scene classification. 

5.2 Deep Learning for Scene Classification 

In recent years, a number of deep learning algorithms have been proposed to 

automatically learn feature representations for full-size image recognition, e.g., 

Convolutional Deep Belief Networks (CDBNs) (Lee et al., 2009), Deconvolutional 

Networks (DN) (Zeiler et al., 2010), Hierarchical Matching Pursuit (HMP) (Bo et al., 

2011), and Convolutional-Recursive Neural Networks (CRNN) (Socher et al., 2012). 

Amongst these algorithms, HMP has been shown to obtain state-of-the-art 

performance on the recognition of some types of images. Therefore, we would like to 

apply HMP to our natural scene classification, to see how good performance it can 

achieve by comparing with several widely-used hand-designed feature representation 

methods.  

5.2.1 Hierarchical Matching Pursuit (HMP) 

There are two main components in HMP: dictionary learning with K-SVD, and 

matching pursuit encoder. The matching pursuit encoder consists of three modules: 

batch tree orthogonal matching pursuit, spatial pyramid max pooling, and contrast 

normalization. 

1) Dictionary learning with K-SVD: K-SVD is a state-of-the-art dictionary 

learning algorithm that generalizes K-means (Aharon et al., 2006). Given an 
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h-dimensional observations Y, K-SVD aims to learn a dictionary D = {di}, where di is 

called a filter, and an associated sparse code matrix X by minimizing 

                    2

0,
min         . . ,   iFD X

s t i K  Y DX x   ,           (5-1) 

where 
F
  denotes Frobenius norm. ix  is the ith column of X. 

0
  is zero-norm 

that counts the non-zero entries in the sparse code ix . K is the sparsity level that 

bounds the number of non-zero entries. Problem Eq. (5-1) is solved in an alternating 

way. In the first stage, D is fixed, and only sparse code matrix X is optimized. The 

problem is then converted into the following n sub-problems: 

                      2

0
min       . .   

i
i i ix

s t K y Dx x .               (5-2) 

Problem Eq. (5-2) is non-convex, but its approximation solution can be found using 

orthogonal matching pursuit that is introduced later. In the second stage, both D and 

its associated sparse coefficients are updated simultaneously using Singular Value 

Decomposition (SVD). It is worth mentioning that if the sparsity level K is set to 1 

and the sparse code matrix X is forced to be a 0-1 binary matrix, K-SVD becomes 

K-means algorithm.  

2) Batch tree orthogonal matching pursuit: The approximation solution for Eq. 

(5-2) is computed using orthogonal matching pursuit (OMP) (Pati et al., 1993) in a 

greedy manner. The basic idea of OMP is as follows. At each step, the filter with the 

highest correlation to the current residual is selected. Then the observation is 

orthogonally projected to all the previously selected filters and the residual is 

recomputed. The procedure is repeated until we gain K filters. The details of OMP can 

be found in (Pati et al., 1993). A problem with OMP is that the computation becomes 
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infeasible for a very large dictionary. In light of this, batch tree orthogonal matching 

pursuit (BTOMP) organizes the dictionary using a tree structure to accelerate the 

computation. Specifically, BTOMP uses K-means to group the dictionary into a 

number of sub-dictionaries, and associates the sub-dictionaries with a number of 

learnt centers. There are two steps for selecting the filters (Bo et al., 2011): (1) select 

the center that best matches the current residual, and (2) choose the filter within the 

sub-dictionary associated with this center. BTOMP has been shown to be more 

efficient than OMP.  

3) Spatial pyramid max pooling: Spatial pyramid max pooling decomposes an 

image patch into multiple levels. At each level, the patch is partitioned into different 

numbers of cells. Level 0 has only one cell, that is, the whole patch. At level 1, the 

patch is partitioned into four quadrants, and so on. The features of each cell C are the 

component-wise maxima over all sparse codes within a cell: 

                          1max ,..., maxi im
i C i C

C x x
 

   F ,               (5-3) 

where i ranges over all entries in the cell, and xim is the m-th component of the sparse 

code vector xi. Therefore, F(C) has the same dimensionality as the sparse codes. Let L 

be the number of levels, Nl the number of cells at level l. Then we can have the 

features for a patch P as follows: 

                            1
1 ,..., ,...,l LN N

l LP C C C   F F F F  .         

(5-4) 

The dimensionality of F(P) is equal to the dimensionality of the sparse codes 

multiplying the total number of cells in the patch.  

4) Contrast normalization: In order to handle various magnitudes of sparse codes 
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that are caused by local variations in illumination and foreground-background contrast, 

contrast normalization is adopted in HMP. For a patch P, the contrast normalization 

can be formulated as follows: 

                         
  2

P
P

P 




F
F

F
 ,                      (5-5) 

where   is a small positive number.  

HMP consists of multiple layers. The next layer is built on top of the outputs of 

the match pursuit encoder in the current layer. In the training phase, once a layer is 

trained, its dictionary is fixed, and its outputs are used as the input to the next layer 

for the training of the next layer’s match pursuit encoder. 

5.2.2 Experiments 

5.2.2.1 Natural Scene Dataset 

The experiments are carried out on the scene dataset used in (Vogel and Schiele, 

2007). The dataset has 700 images of six scenes: coasts, rivers/lakes, forest, plains, 

mountains, and sky/clouds. Figure 5-1  shows sample images of the six scenes. We 

choose this dataset for experiments mainly because that the scenes are difficult to 

recognize. The performance of various scene feature representations can be thus well 

evaluated. As shown in Figure 5-1, for instance, scenes rivers/lakes and coasts consist 

of similar objects such as water, rocks, sky etc., and therefore possess similar visual 

features. If a feature representation method wants to accurately distinguish these 

scenes, it should be able to describe higher level features like sea water and river 
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water, rather than capture basic visual features only. 

 

 

 

Figure 5-1. Sample images of the scene dataset. 

5.2.2.2 Configurations of HMP 

We modified the codes of HMP provided by the authors (Bo et al., 2011) to suit 

our task. The HMP we used has two layers. Only image gray intensity is considered to 

build the dictionaries. The dictionary size of the first layer is 75, and the size of the 

second layer is 1000. The sparsity level K for two layers is set to 5 and 10, 

respectively. 

5.2.2.3 Experimental Results 

The dataset is divided into ten folds. At each time, one fold is for testing and the 

remaining nine folds are for training. The average performance of ten testing folds is 

reported. For a fair comparison, SVM (Chang and Lin, 2011) with RBF kernel is 

employed to classify the features generated by different feature representation 

methods. The parameters of SVM are determined by two-fold cross-validation on the 
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training data. 

The classification performance of HMP and the three hand-designed feature 

representations are shown in Figure 5-2. Evidently, HMP outperforms all the three 

hand-designed representations, achieving the highest classification accuracy. Among 

the three hand-designed representations, SPM obtains the best performance. 

 

 

Figure 5-2. Classification accuracy using different feature representations. 

 

To further analyze the performance of different methods on individual scenes, we 

display the classification confusion tables of four methods in Figure 5-3 to Figure 5-6, 

respectively. The values larger than ten are tagged in the confusion tables. As shown 

in the confusion tables, rivers/lakes are hard to recognize. A number of plains and 

rivers/lakes images are frequently misclassified to coasts and mountains. This is 

mainly because that rivers/lakes has similar features with coasts and mountains. 

Another poorly classified scene is plains, which are frequently misclassified to coasts 

and mountains as well. Compared to the hand-designed feature representations, HMP 

performs much better on plains. One main difference between plains and other scenes 

is that the contents of plains are rather flat and open. Achieving a good accuracy on 
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plains means that HMP is able to learn more abstract features. 

 

 

Figure 5-3. Confusion table of Gist. 

 

 

Figure 5-4. Confusion table of CENTRIST. 
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Figure 5-5. Confusion table of SPM. 

 

 

Figure 5-6. Confusion table of HMP. 

 

Figure 5-7 shows some images that are misclassified by HMP. It can be seen that 

most of these images have great scene ambiguities. It is even difficult for human 

beings to recognize these scenes without careful examination. This indicates that 

although HMP performs better than other methods, it is still not able to handle the 

scene ambiguities very well. It is therefore desirable to explore higher level and more 

abstract features which can well overcome scene ambiguities.  

 

 

66.2

10.1

16.8

12.7

10.8

90.2

10.6

79.9

15.2

13.5

10.6

53.5

11.7

11.2

52.2

77.5

c f m p r s

coasts

forest

mountains

plains

rivers/lakes

sky/clouds

 

 

69.7

10.6

15.3

17

88.1

12

79.9

12.8

11.7

62.7

10.8 50.4

81.7

c f m p r s

coasts

forest

mountains

plains

rivers/lakes

sky/clouds



90 
 

 

 

 

 

Figure 5-7. Some images misclassified by HMP. The labels underneath each image specifies the ground truth (left) and the classification result 

(right). 
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5.2.3 Remarks 

The experimental results demonstrate that deep learning is a promising alternative 

for obtaining features for scene classification. Most of those images misclassified by 

HMP have strong scene ambiguities, which are even not easy for human beings to 

recognize. The experiments also reflect that global features are not powerful enough 

to tackle scene ambiguities. In order to well solve scene ambiguities, we should take 

into account not only the objects that would appear in an image, but also the object 

properties, e.g., object locations, object sizes, etc.  

5.3 Improving Scene Classification by Combining Holistic 

and Object-Based Approaches 

In this section, two popular holistic approaches and an object-based approach are 

introduced. A simple scheme to combine holistic and object-based approaches is 

discussed. If the decisions of holistic and object-based approaches are the same, the 

scene class agreed by them is selected as the final decision. Otherwise, a majority 

voting scheme will be employed to make the final decision based on the results of all 

the classifiers of both holistic and object-based approaches. Specifically, both the 

holistic and object-based classification approaches are implemented using an SVM 

classifier via one-versus-one scheme. In the decision stage, if the holistic and 

object-based approaches do not agreed with each other, all the SVM classifiers will be 

involved to vote for the final scene class through the majority voting principle. That is, 
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the scene class having the maximum number of votes will be selected. 

5.3.1 Methodology 

5.3.1.1 Holistic Scene Classification 

A number of holistic image representations have been proposed (Lazebnik et al., 

2006; Wu and Rehg, 2011; Oliva and Torralba, 2001; Dalal and Triggs, 2005). Here 

we utilize two state-of-the-art approaches: Spatial Pyramid Matching (SPM) 

(Lazebnik et al., 2006) and CENTRIST (Wu and Rehg, 2011).  

SPM characterizes the visual features of an image using a number of SIFT 

descriptors (Lowe, 1999). Then a vocabulary of visual words is built based on the 

SIFT descriptors using K-means clustering. After that, each SIFT descriptor can be 

represented by the visual words. Finally, the visual words are concatenated through 

spatial pyramid to represent the images. Figure 5-8 shows the spatial pyramid split of 

an image. There are three levels: level 0, level 1, and level 2, respectively, splitting the 

image into 1 block, 4 blocks, and 16 blocks. Hence, in total 21 blocks are obtained. If 

the vocabulary contains w visual words, then the image is finally represented by a w × 

21 dimension feature vector.  
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Figure 5-8. Spatial pyramid partition of an image. 

 

CENTRIST represents an image using the histogram of Census Transform (CT). 

CT compares the intensity value of a pixel with its eight neighboring pixels. If a 

pixel’s intensity is larger than or equal to that of one of its neighbors, a bit 1 is set in 

the corresponding neighbor location. Otherwise, a bit 0 is set. The eight bits are then 

collected from left to right, top to bottom to form a binary number, which is 

consequently converted to a decimal number in [0 255]. The decimal number is the 

CT value for the center pixel. Figure 5-9 shows an example to calculate the CT value 

for the center pixel. CENTRIST is the histogram of the CT values of all the pixels. 

 

 
 

Figure 5-9. Calculation procedure of CT value. 

5.3.1.2 Object-Based Scene Classification 

An object-based approach first recognizes objects appearing in the image, and 

then classifies the image based on the object co-occurrence distribution. Spatial 

information and object correlation can be explored to refine the classification 
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accuracy (Vogel and Schiele, 2007; Cheng and Wang, 2010). In this work, the 

object-based approach is implemented as follows. (1) Partition an image into 10 × 10 

regular regions, which is the same scheme used in (Vogel and Schiele, 2007). For 

each region, recognize the objects. (2) Consider three parts of the image: top, middle, 

and bottom. Calculate the area ratio dominated by each object for each image part. (3) 

concatenate the area ratio features of three parts for the image representation. Use this 

representation to conduct scene classification. Suppose that there are n semantic 

objects considered. Then for each image part, an n-dimensional feature vector is 

attained, and in total an image is represented by a 3n-dimensional feature vector. 

5.3.1.3 Combination Scheme 

The combination scheme is shown in Figure 5-10. First of all, an input image is 

classified by the holistic and object-based approaches separately. The decisions of 

them are then compared. If the classification results of two approaches are the same, 

the scene class agreed by them is selected as the final decision. Otherwise, all the 

classifiers of the holistic and object-based approaches are used to vote for the final 

decision through the majority voting principle. That is, the class that gains the 

maximum number of votes is chosen as the scene type of the input image. 
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Figure 5-10. Scene classification flowchart of the proposed approach. 

 

In this work, we employ SVM (Chang and Lin, 2011) as the classifier. 

One-versus-one scheme is used. Suppose that there are in total k scene classes. We 

have  1 2k k   SVM classifiers for either holistic or object-based approaches. In 

the voting phase,    1 / 2 2 1k k k k     classifiers will be involved, and the final 

scene class is 

                        
 1

1

arg max ,
j

k k

final i j
c

i

c y c




  ,                  (5-6) 

where 1 j k  , iy  is the decision of classifier i.  , 1i jy c   if i jy c ; 

 , 0i jy c   if i jy c . 

5.3.2 Experiments 

5.3.2.1 Scene Dataset 

The natural scene dataset introduced in Section 5.2.2.1 is used. For the 

object-based approach, nine semantic objects are involved: sky, water, grass, trunks, 

foliage, fields, rocks, flowers, and sand. An image region is represented by an 

82-dimensional feature vector. The feature vector includes a 50-bin HSV histogram, 

an 8-bin edge direction histogram, and 24 features of the gray-level co-occurrence 
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matrix (32 gray levels) (contrast, energy, entropy, homogeneity, inverse different 

moment and correlation for the displacements 1, 0


, 1,1


, 0,1


, 1,1


). 

5.3.2.2 Experimental Results 

The dataset is divided into ten folds. Each time one fold is for testing and the 

remaining nine folds are for training. The average performance of ten folds testing 

data is reported. The parameters of all the SVM classifiers are determined by two-fold 

cross-validation on the training data. The final reported performance is the average 

accuracy of six classes, which is tabulated in Table 5-1. 

 

Table 5-1. Accuracy of different approaches (OB denotes object-based approach). 

Method SPM CENTRIST OB SPM+OB SPM+CENTRIST+OB SPM+CENTRIST

Accuracy 0.708 0.628 0.703 0.723 0.741 0.666 

 

As can be seen from Table 5-1, the combination of SPM and object-based (OB) 

methods achieves a higher accuracy than either SPM or the object-based approach. 

This means that the combination improves the performance. In addition to the 

combination of SPM and OB, we also investigate the combination of SPM, 

CENTRIST and OB, the result of which is also shown in Table 5-1. Evidently, the 

combination obtains a better performance than all the three individual methods. 

Furthermore, combining three methods makes a larger improvement than combining 

SPM and OB only. This indicates that the more methods to combine, the better 

performance we can achieve. One interesting thing is that the combination of SPM 

and CENTRIST only achieve an accuracy between SPM and CENTRIST. The reason 
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Figure 5-12 and Figure 5-13 show the confusion tables of the combinations 

SPM+OB and SPM+CENTRIST+OB, respectively. We can see from both figures that, 

scene rivers/lakes has the worst performance. Many images belonging to rivers/lakes 

are classified to coasts and mountains. This is mainly because that rivers/lakes has 

similar features with coasts and mountains. For example, rivers/lakes usually consists 

of water, trees, and rocks. These objects are also the main components of coasts and 

mountains. As a result, it is difficult for holistic and object-based approaches to 

distinguish them. Another poorly classified scene is plains, which is also frequently 

misclassified to coasts and mountains. Again, the misclassification is caused by that 

they consist of similar objects. 

 

 

Figure 5-12. Confusion table of the combination SPM+OB. 
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Figure 5-13. Confusion table of the combination SPM+CENTRIST+OB. 

5.3.3 Remarks 

The experimental results reported in this section demonstrate that the 

combination of holistic and object-based approaches achieves a better performance 

than any individual approach. Moreover, the performance improvement would be 

more significant if more approaches are to be combined.  

5.4 Summary 

Holistic and object-based approaches are two main strategies to tackle scene 

classification/categorization. In this chapter, we first demonstrate that Hierarchical 

Matching Pursuit (HMP), a state-of-the-art deep learning algorithm, is a promising 

holistic approach for scene classification, by comparing to other widely-used holistic 

approaches. After that, we propose to combine holistic and object-based approaches 

for scene classification. In particular, a scene image is classified respectively by 

holistic and object-based approaches. If holistic and object-based approaches agree 
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with each other (their results are identical), the scene class agreed by them is selected 

as the final decision. Otherwise, a majority voting scheme is employed to make the 

final decision based on the results of all the classifiers of both holistic and 

object-based approaches. We show that combining holistic and object-based 

approaches improves the scene classification performance.  
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Chapter 6 Conclusion and Future Work 

6.1 Conclusions of the Thesis  

In this thesis, we investigate hierarchical architectures and learning algorithms 

for multi-label image classification and scene categorization. The thesis can be 

concluded as follows. 

In Chapter 3, we propose an adaptive recognition model (ARM) based on neural 

networks for image annotation. The proposed model uses a two-layer perceptron to 

learn label correlation from training images. The label correlation learnt can be 

nonlinear, asymmetric, both positive and negative. A proposed synthetic image dataset 

and a real image dataset are employed to evaluate the performance of the ARM. The 

experimental results demonstrate that the ARM achieves promising performance for 

image annotation. The ARM can effectively learn the label correlation of training 

images. Furthermore, the computational time of an ARM is insensitive to the number 

of regions of the input image and vocabulary size. In addition to that, it can be 

concluded from the experimental results about label correlation that, 1) the label 

correlation play an important role in annotation improvement only if the dataset have 

strong correlative information among different labels; 2) the label correlation 

extracted from training images is helpful only if the images to be annotated have the 

similar label correlation patterns; 3) the label correlation plays more important role 

when a visual classifier has a poorer performance. 
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The limitation of the model proposed in Chapter 3 is that regional ground truth is 

required in training. To overcome the limitation, in Chapter 4, we propose a new 

model (MIMLNN) for multi-instance and multi-label image classification, and 

develop a training algorithm based on the error back-propagation method to tune the 

model parameters. The new model can automatically learn the mappings between 

regional visual features and labels, as well as label correlation using regional visual 

features and the image ground truth of training images. In light of that a gradient 

descent algorithm suffers from the long-term dependency problem, we extend an 

advanced back-propagation algorithm Rprop to effectively train the model. The 

experiments are conducted on a proposed synthetic image dataset and the popular 

Corel dataset. The results show that MIMLNN achieves encouraging performance by 

comparing to state-of-the-art algorithms for multi-instance multi-label image 

classification. The results suggest that MIMLNN using 20 hidden nodes and setting 

the initial weights to the interval around [-0.6 0.6] can attain the best performance 

after training. For label correlation modeling, an MLP outperforms Spearman’s rank 

correlation coefficient measuring method, a graph learning algorithm and a linear 

system, since an MLP can characterize nonlinear, asymmetric, both positive and 

negative label correlations. Furthermore, the experimental results also demonstrate 

that MIMLNN prefers proper segmentation rather than regular gridding, as 

segmentation can extract more meaningful regions, as a result of which MIMLNN 

achieves a higher correct classification rate.  

In Chapter 5, we propose to combine holistic and object-based approaches for 
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scene classification. In particular, firstly, we employ a state-of-the-art deep learning 

algorithm to classify natural scenes in a holistic way. Secondly, we propose to 

combine holistic and object-based approaches for scene classification. The 

experimental results demonstrate that the deep learning algorithm is a powerful 

holistic approach for scene classification. Most of those images misclassified by the 

deep learning algorithm have strong scene ambiguities, which are even not easy for 

human beings to recognize. More importantly, the experiments show that combining 

holistic and object-based approaches improves the performance of scene classification. 

Moreover, the performance improvement would be more significant if more 

approaches are to be combined.  

6.2 Future Research Directions  

More work can be pursued along the line of our research, which is discussed 

below. 

1) The model MIMLNN proposed in Chapter 4 achieves promising performance for 

small-scale multi-label image classification tasks. In our experiments, however, 

we find that the accuracy of MIMLNN would dramatically decrease when the 

dataset is in a large scale, i.e., large numbers of images and labels. The problem 

lies in the training. Although Rprop is used, the training of MIMLNN would 

become inefficient because the error still needs to be back-propagated thought 

many layers. This is a common problem in the training of deep architectures 

using a traditional error back-propagation method. Thus, we would like to adopt 
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recently-developed deep learning algorithms to effectively train MIMLNN for 

large-scale multi-label image classification. There are two possible approaches to 

realize it. The first approach is to use the training algorithm of deep belief 

networks. That is, MIMLNN is pretrained by the greedy layer-wise pretraining 

algorithm, and then a gradient descent algorithm is adopt to fine-tune the model. 

The second approach is to replace the multi-layer perceptrons in MIMLNN with 

convolutional neural networks (LeCun et al., 1989). Convolutional neural 

networks are capable of processing spatial information, since convolutional 

operators have been used. Then the model could be trained just using the training 

algorithms of convolutional neural networks. 

2) The second direction is to develop an advanced object-based scene classification 

system. As introduced in Chapter 2, previous object-based approaches classify a 

region to a label/concept. In our proposed direction, we would like to classify 

each image pixel to a label to construct a label map for the image. The label map 

is then quantified, with each pixel label being represented by a real number. 

Finally deep neural networks are exploited to learn the quantified label map and 

predict scene classes.  

3) The third direction concentrates on scene parsing, which is to label each image 

pixel. We would like to explore a deep neural network to carry out this task. In 

particular, the label maps of training images are quantified using the algorithm 

proposed in Direction 2. The deep neural network has the same number of input 

nodes and output nodes, with the number equal to the number of pixels in an 
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image. In the training phase, the deep neural network receives the raw image 

pixels as inputs and quantified label map as target outputs. In the testing phase, 

the deep neural network is expected to generate a quantified label map based on 

an image's raw pixels. The quantified label map is finally converted to a label 

map, such that each image pixel is assigned a label. 

As the research being conducted, we would explore more significant topics. 
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Appendix A: List of Synthetic Labels 

Table A-1. Total 54 synthetic labels and their corresponding entry numbers in the 
label vector. 
 

Entry number Label name Entry number Label name 

1 round_red 28 4-point star_yellow 

2 round_green 29 4-point star_cyan 

3 round_blue 30 4-point star_magenta 

4 round_yellow 31 5-point star_red 

5 round_cyan 32 5-point star_green 

6 round_magenta 33 5-point star_blue 

7 triangle_red 34 5-point star_yellow 

8 triangle_green 35 5-point star_cyan 

9 triangle_blue 36 5-point star_magenta 

10 triangle_yellow 37 moon_red 

11 triangle_cyan 38 moon_green 

12 triangle_magenta 39 moon_blue 

13 rectangle_red 40 moon_yellow 

14 rectangle_green 41 moon_cyan 

15 rectangle_blue 42 moon_magenta 

16 rectangle_yellow 43 heart_red 

17 rectangle_cyan 44 heart_green 

18 rectangle_magenta 45 heart_blue 

19 octagon_red 46 heart_yellow 

20 octagon_green 47 heart_cyan 

21 octagon_blue 48 heart_magenta 

22 octagon_yellow 49 lighting bolt_red 

23 octagon_cyan 50 lighting bolt_green 

24 octagon_magenta 51 lighting bolt_blue 

25 4-point star_red 52 lighting bolt_yellow 

26 4-point star_green 53 lighting bolt_cyan 

27 4-point star_blue 54 lighting bolt_magenta 
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Appendix B: Rprop Algorithm 

Given a predefined error signal E, we can have the Rprop update rule for all 

weights and biases as follows (Riedmiller and Braun, 1993). 

max
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In the Rprop algorithm, there are three different weight updating rules depending on 

three different conditions. Condition 1 indicates that if the derivative of the error 

signal retains its sign, the update-value is increased by a factor    in order to 

accelerate the convergence. Condition 2 indicates that if the derivative of the error 

signal changes its sign, which means that the last update was too big and the 

algorithm has jumped over a local minimum, the update-value is decreased by a factor 



108 
 

  , and the derivative ( )ijE w t   is set to zero so that the update-value would not 

be double punished. Condition 3 is to handle the case when the last derivative 

( ) 0ijE w t    as set in Condition 2. These conditions ensure that the parameter 

updating takes into account the derivative sign only. The derivative magnitude does 

not influence the parameter updating. As a result, the long-term dependency problem 

can be solved. 
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