
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

HYBRID INTELLIGENT OPTIMIZATION 

TECHNIQUES AND ITS INDUSTRIAL 

APPLICATIONS 

 

 

 

 

 

LAI CHUNG YEE JOHNNY 

 

 

 

 

 

 

Ph.D 

 

The Hong Kong  

Polytechnic University 

 

2014 
 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



The Hong Kong Polytechnic University 

Department of Electronic and Information Engineering 

 

 

 

HYBRID INTELLIGENT OPTIMIZATION 

TECHNIQUES AND ITS INDUSTRIAL 

APPLICATIONS 

 

 

by 

LAI CHUNG YEE JOHNNY 

 

A thesis submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

August 2013 



i 
 

STATEMENT OF ORIGINALITY 

 

The following contributions reported in this thesis are claimed to be original. 

1. Applying a wavelet function to determinate the weighting value F in Differential Evolution 

mutation (Chapter 3).  Owing to the properties of the wavelet, the searching performance of 

Differential Evolution is improved. 

2. Embedding a wavelet based mutation operation in Differential Evolution to modify the trial 

vector in the searching process (Chapter 3).  Thanks to the wavelet properties, the searching 

region can be controlled and searching performance can be improved. 

3. Combining 1) and 2) to formulate an improved Differential Evolution algorithm called the 

Differential Evolution with Double Wavelet Mutations (DWM-DE) (Chapter 3).  The 

proposed DWM-DE can provide better performance in term of solution quality, solution 

reliability, and convergence rate. 

4. Applying the proposed DWM-DE algorithm on the Economic Load Dispatch (ELD) problem 

(Chapter 5).  The DWM-DE algorithm offers good performance on obtaining a low 

operating cost in the ELD problem. 

5. Applying the proposed DWM-DE algorithm to train a fuzzy inference system for detecting 

hypoglycaemia (Chapter 6).  The DWM-DE algorithm offers good results on the training 
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process for constructing the detection model. 

6. Developing an intelligent optimizer that embeds two Differential Evolution engines into one 

single system (Chapter 4).  By using T-test to analyse the population difference between two 

systems and a fuzzy controller, the optimiser adjusts the internal parameters of the two 

engines adaptively.  The proposed intelligent optimiser can provide better performance in 

term of solution quality, solution reliability, and convergence rate. 

7. Applying the proposed intelligent optimiser on the Economic Load Dispatch (ELD) problem 

(Chapter 5).  The intelligent optimiser offers good performance on obtaining a low 

operating cost in the ELD problem. 

8. Applying the proposed intelligent optimiser to train a fuzzy inference system for detecting 

hypoglycaemia (Chapter 6).  The intelligent optimiser offers good results on the training 

process for constructing the detection model. 
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ABSTRACT 

 This thesis focuses on developing efficient methods to solve different real-world 

optimisation problems.  The proposed methods are based on Evolutionary Computation (EC) to 

perform the optimisation.  Results in the following areas will be reported.  (1) An improved 

Differential Evolution with Double Wavelet Mutations (DWM-DE) is proposed as a general-

purpose evolutionary algorithm.  (2) An improved intelligent optimiser that integrates two 

optimisation engines is proposed to solve high-dimension and complex optimisation problems.  

(3) The industrial optimisation problem of Economic Load Dispatch with Valve-Point Loading 

(ELD-VPL) is used to test the performance of the proposed methods in (1) and (2).  (4) The 

biomedical application of hypoglycaemia detection is employed as a real-world complex 

classification platform for testing the performance of the proposed methods in (1) and (2).   

 In this thesis, an improved optimisation algorithm and an intelligent optimiser are 

proposed for high-dimension complex optimisation problems.  The algorithm is an improved 

version of Differential Evolution (DE) called DE with double wavelet mutations (DWM-DE).  

By introducing the double wavelet mutations in DE, the searching process is enhanced by 

offering an effective balance between the exploration and exploitation of the solution space for 

better solution reliability and quality.  In the DE mutation operation, a wavelet function is 

employed to control the mutation factor F.  In the DE crossover operation, a wavelet-based 

second mutation mechanism is proposed to modify the trial vectors within the population.  A 

suite of 29 benchmark test functions is employed to test the performance of the proposed DWM-

DE.  The experiment results show that the proposed DWM-DE is a useful tool for solving 
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optimisation problems, and it offers better results in terms of solution reliability, solution quality 

and convergence rate.  The experiment results reflect that DWM-DE is particularly suitable for 

complex problems with a high dimension. 

The intelligent optimiser embeds two DE engines into one single system.  Through 

sharing the population information of the two DE engines, the optimiser offers better searching 

performance.  The user of the intelligent optimiser is not required to set the parameter values of 

the optimiser.  The two DE engines operate in parallel and an internal fuzzy controller is 

employed to adjust the parameter values adaptively in real time during the iteration process.  The 

fuzzy controller takes the searching process information of the population as input.  The Student 

T-Test method is employed to obtain the difference of the population information in the two 

engines.  The resulting intelligent optimiser is capable of dealing with different high-dimension 

complex optimisation problems efficiently.  A suite of 29 benchmark test functions is employed 

to test the performance of the proposed intelligent optimiser.  The experiment results show that 

the proposed intelligent optimiser a useful tool for solving optimisation problems, and it offers 

better results in terms of solution reliability, solution quality and convergence rate.  In particular, 

the experiment results show that the intelligent optimiser could offer much better results when 

the problem is complex and the problem dimension is high (>30). 

 The ELD-VPL problem concerns the process of sharing the power demand among online 

generators in a power system for the minimum fuel cost.  The proposed DWM-DE algorithm and 

intelligent optimiser are employed to solve the ELD-VPL problem.  Two different ELD-VPL 

problems of different scales have been tested.  It is observed that the proposed methods give 

better optimal costs when compared with other techniques in the literature. 
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 A fuzzy inference system (FIS) is employed as a classifier to classify the presence of 

hypoglycaemic episodes for Type 1 diabetes mellitus (TIDM) patients by measuring some 

physiological signals continuously from human body.  It captures the relationship between the 

presence of hypoglycaemic episodes and the physiological signals of corrected QT interval of the 

electrocardiogram (ECG) signal and heart rate.  The proposed DWM-DE algorithm and 

intelligent optimiser are employed to optimise the FIS parameter values that formulate the fuzzy 

rules and fuzzy membership functions.  Data of 15 children with TIDM are studied and used in 

the training and testing process for the proposed FIS.  The experiment results show that the two 

proposed optimisation methods could offer good performance on training the FIS.  The resulting 

FIS can offer good performance on doing hypoglycaemia detection.   
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Chapter 1  
 

 

INTRODUCTION 
 

 
I BACKGROUND 

 

Many real-world applications in different fields face a common problem of optimisation.  

The major goal of doing optimisation is to find the best solution of a given problem within a 

defined domain.  We could describe an optimisation problem by specifying the possible set of 

feasible candidate solutions and measure the possible set based on different problem conditions.  

Mathematically, the choice of the best solution usually depends on a defined objective function, 

possibly subject to some constraints.  In the simplest case, we seek to minimise or maximise a 

real-valued objective function by systematically choosing the input values of the objective 

function from an allowed set in a given domain.  In the fields of science and engineering, 

optimisation is the process to minimize a system’s undesirable properties and maximize its 

desirable properties.  What the details of the system properties are and how the system 

performance can be improved often depend on the information given by and the expert 

knowledge on the system. 

In the past decade, many different kinds of algorithms have been developed to perform 

optimisation.  However, most of them have their own limitations when applied to different 
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problems.  As a result, there is growing interest on improving algorithms to solve optimisation 

problems.  Many researchers have been working for methods to explore and exploit the hidden 

problem features for solving various real-world problems in an efficient and scalable way 

[Chiong 12] [Bosman 03] [Pelikan 02].  It is a kind of black-box approach, which means 

optimising a system without the presence of an accurate algebraic model for that system.  Yet, 

some expert knowledge of the problem can be obtained by capturing the relationship between the 

candidate solutions and their suitability to the problem.  There are many well-known methods for 

realising black-box optimisation; for example, the gradient descent search, golden section search, 

Fibonacci search, hill climbing search, etc. [Avriel 03].  A well-structured traversal of the search 

space incorporating the state-of-the-art computing algorithms within the area of Computational 

Intelligence (CI) has been employed to realise optimisation.  CI techniques have been actively 

researched in order to improve their performance on complex optimisation problems.  

Thanks to the rapid growth of computer hardware and technologies, Evolutionary 

Computation (EC) algorithms, which are kinds of CI techniques, have been well accepted as 

reliable methods for tackling complex optimisation problems.  This is particularly true when the 

objective function to be optimised is a multi-modal function with many local optima and is non-

differentiable.  EC adopts an iterative and progressive approach, such as growing or developing a 

population, to reach the optimised solution.  In each iteration step, the population is updated 

through a guided random search that aims at the desired end.  Such a process of iterative 

searching is often inspired by the biological mechanisms of evolution.  Popular examples of EC 

algorithms for tackling optimisation problems include Particle Swarm Optimisation (PSO), 

Genetic Algorithm (GA), Ant Colony Optimisation (ACO) and Differential Evolution (DE) 

[Chiong 12]. 
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Different optimisation problems have different characteristics and may require different 

EC algorithms for searching the best solution.  Hence, determining the most suitable EC 

algorithm for a given optimisation problem becomes an important consideration of researchers.  

Moreover, many EC algorithms often require the proper setting of parameters values in order to 

enhance the convergence and accuracy of the solution.  Example parameters to be considered 

include the scaling factor in Differential Evolution (DE), the acceleration constants in Particle 

Swarm Optimisation (PSO), the probability of mutation in Genetic Algorithm (GA), etc.  Besides, 

on implementing an EC algorithm, the number of iteration often needs to be pre-determined by 

the user based on a trial-and-error approach or on expert knowledge to the problem.  A wrong 

estimate of the number of iteration may lead to pre-mature evolution, convergence to local 

optimum only, or unnecessary wasting of computational power. 

In recent years, a number of high-dimension complex optimisation problems emerge.  

Many EC methods fail to handle them.  Moreover, many EC methods require a huge amount of 

time to obtain the best solution.  Two examples of high-dimension complex optimisation 

problems are covered in this thesis.  They are the economic load dispatch with valve-point 

loading problem and the hypoglycaemia detection problem.  The economic load dispatch with 

valve-point loading problem is an industrial optimisation problem which minimizes the fuel cost 

of power generation by sharing the loading demand among the online power generators in a 

power supply system.  It is a problem of as high as 40 dimensions with a complex objective 

function.  Hypoglycaemia detection is an important problem in the area of insulin therapy.  

Insulin therapy is a medical treatment for patients with diabetes.  A classification model is 

required to support the detection.  To construct the classification model, an optimiser is required 

to reduce the detection error of the model.   
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In this thesis, an improved optimisation algorithm and an intelligent optimiser are 

proposed for high-dimension complex optimisation problems.  The algorithm is an improved 

version of Differential Evolution (DE) called DE with double wavelet mutations (DWM-DE).  

The standard DE algorithm can offer good performance in many applications; but when the 

dimension of the application is high, the performance of DE may drop significantly.  The 

proposed DWM-DE alleviates this problem by embedding wavelet mutations in both the DE 

mutation and crossover operations.  In a typical optimisation problem, we have to achieve a 

balance between the exploration and the exploitation of the searching space.  In the early stage of 

searching, we want more exploration while more exploitation is desired at the later stage of 

searching.  Exploration means widely searching the solution space in a large area.  Exploitation 

means searching the solution space in a small area to obtain a fine-tuned solution.  This 

mechanism can be realized by a wavelet function.  A wavelet function is a mathematical tool to 

model seismic signals in a finite domain.  The balance between the exploration and exploitation 

can be achieved by taking advantage of the wavelet function’s properties.  The wavelet function 

is embedded in the double wavelet mutation operations that provide a more efficient searching 

process with better reliability in searching the global solutions of different problems. 

The proposed intelligent optimiser embeds two DE engines into one single system.  

Through sharing the population information of the two DE engines, the optimiser offers better 

searching performance.  The user of the intelligent optimiser is not required to set the parameter 

values of the optimiser.  The two DE engines operate in parallel and an internal fuzzy controller 

is employed to adjust the parameter values adaptively in real time during the iteration process.  

The fuzzy controller takes the searching process information of the population as input.  The 

Student T-Test method is employed to obtain the difference of the population information in the 
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two engines.  The resulting intelligent optimiser is capable of dealing with different high-

dimension complex optimisation problems efficiently. 

 

II OBJECTIVES OF RESEARCH  

 

 In the light of the above discussion, our research aims at meeting the following five 

objectives, and the results are discussed in this thesis. 

 1. While many different kinds of optimisation methods have been proposed, they often 

can only work successfully in specific problem areas.  For instance, some methods work well in 

unimodal problems and some work well in multimodal problems.  Finding the suitable 

optimisation method for a given problem becomes a challenge.  The user may be required to 

have a deep understanding of the problem nature, which could introduce great difficulty.  We 

work on proposing improved methods that can relax the performance dependence on different 

problem natures. 

 2. Optimisation algorithms often require a proper setting of their parameter values done 

by the user.  The performance of the algorithms might depend very much on these values.  

Expert knowledge on the problem nature and the optimisation algorithm is often required before 

the user can determine the best parameter values.  We work on proposing methods that are not so 

dependent on the parameter values or can adaptively set the values during the iterative process. 

 3.  Apart from making the optimisation method easy to implement and use, we should 

ensure its reliable convergence to the global optimum.  Furthermore, the computation time 

required to perform the searching of the solution should not be excessive.  Thus, we work on 
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proposing useful global optimisation methods that are simple to implement, easy to use and 

reliable. 

 4.  We work on proposing methods that can handle the economic load dispatch with 

valve-point loading (ELD-VPL) problem. 

 5. We work on designing a classification model for the hypoglycaemia detection problem, 

and proposing suitable methods to tune the model for doing the detection.  

 

III ORGANIZATION OF THESIS 

 

 The organization of this thesis is given as follows. 

Chapter 2 provides a literature review.  It introduces the current research in the CI area on 

solving optimisation problems, with emphasis particularly on the development of EC methods.  

Different kinds of EC methods are introduced in this chapter.  Moreover, some findings and 

results about the ELD-VPL and the hypoglycaemia detection problems are also discussed. 

Chapter 3 introduces the proposed Differential Evolution with Double Wavelet Mutations 

(DWM-DE) algorithm.  By introducing the double wavelet mutations in the Differential 

Evolution algorithm, the searching process is enhanced by offering an effective balance between 

exploration and exploitation of the solution at different stages of evolution for better solution 

reliability and quality.  The performance of the proposed DWM-DE algorithm is evaluated by 

using a suite of 29 benchmark test functions which covers four different categories of 

optimisation problems. 
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Chapter 4 presents the second method for tackling complex and high-dimension 

optimisation problems.  An intelligent optimiser is proposed that integrates two DE engines into 

one single system.  The two DE engines share their individual population information with each 

other to achieve better searching performance.  The Student T-Test method is employed to 

analyse the two populations' information during the searching process, which is fed to an internal 

fuzzy controller as input to adjust the parameter values of the two DE engines adaptively.  The 

proposed intelligent optimiser is also tested with the 29-benchmark test functions used in the 

previous chapter to evaluate its performance. 

In Chapter 5, the ELD-VPL problem is introduced.  It is an engineering process to share 

the power demand among the online generators in a power system for the minimum fuel cost.   

The two proposed optimisation methods are employed to solve the ELD-VPL problem.  Two 

different requirements of the ELD-VPL problem will be tested.  It is observed that the two 

proposed methods give satisfactory optimal costs when compared with other techniques in the 

literature. 

Chapter 6 presents the application of hypoglycaemia detection that involves the 

optimisation process.  To classify the present of hypoglycaemic episodes for Type 1 diabetes 

mellitus (TIDM) patients, a detector is developed to measure some physiological signals 

continuously from human body.  A fuzzy inference system (FIS) is employed in the detector for 

doing modelling, which captures the relationship between the presence of hypoglycaemic 

episodes and the physiological signals of corrected QT interval of the electrocardiogram (ECG) 

signal and heart rate.  The two proposed methods discussed in Chapters 3 and 4 are employed to 

optimise the FIS parameter values that formulate the fuzzy rules and fuzzy membership 

functions.  The optimisation is formulated as a multi-objective problem.  Moreover, a validation 
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mechanism is proposed in the training process to avoid over-fitting the training data to the 

proposed FIS. This phenomenon is called overtraining.  The data of 15 children with TIDM are 

studied and used in the training and testing process for the proposed FIS.  The experiment result 

shows that the two proposed optimisation methods can offer good performance on training the 

FIS. The FIS can offer good performance on doing hypoglycaemia detection. 

A conclusion for this thesis will be given in Chapter 7.  Some directions for future work 

are also presented in this chapter.  
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Chapter 2  

 

 

LITERATURE REVIEW 

 
 

Evolutionary Computation (EC) is one of the popular intelligent methods for handling 

optimisation problems.  It is a sub-topic of Computational Intelligence (CI).  Before EC 

became popular on solving optimisation problems, classical derivative-based non-linear 

optimisation techniques were the major tools on solving optimisation problems.  The 

Pontyagrin’s principle, Lagrangian relaxation, Bellman’s principle, and Lagrange’s 

Multiplier are the common tools for obtaining the best solution of a system [Swagatam 08].  

Unfortunately, when the complexity and dimension of the optimisation problems increase, 

those derivative-based optimisation techniques fail to solve the problem with the best solution 

quality.  The complexities could be due to rough function surfaces, discontinuous behaviour, 

multimodal function properties, etc.  EC methods were proposed to overcome the limitations 

of classical non-linear optimisation techniques.  Fig. 2.1 shows a summary of different 

optimisation method families. 

EC controls a group of elements (population) to search for the optimal solution.  The 

control of population is an iterative process to guide the population to reach the optimal point 

in the solution space.  The population members are selected and the evolution is controlled by 

a designed rule in a way of guided random search [Zhang 05].  One of the successful EC 

methods is called Genetic Algorithm (GA), which is commonly used on solving complex 

optimisation problems [Ahn 02].   
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The searching operation of GA is inspired by the natural adaptation of biological 

species [Michalewicz 94].  It simulates the biological crossover and mutation operations of 

chromosomes in the searching operation and enhances the quality of the solution by a number 

of evolutions [Srinivas 94].  GA is implemented such that a population of chromosomes 

(candidate solutions) on the solution domain evolve toward better solutions [Zhang 07].  The 

evolution happens in a number of generations (iteration steps).  GA evaluates the fitness of 

every chromosome in the population in each generation.  This process is a measure of the 

suitability of a chromosome.  After taking some evolutionary operations, the better (more 

fitted) individuals in the population are selected and a new population is formed as the next 

generation.  The new population then repeat the evolution process [Michalewicz 94].  GA 

terminates the searching process with a defined number of iterations.  Different problem areas 

works with GA successfully, including the tuning of fuzzy controllers, the setting of neural or 

neural-fuzzy networks’ parameters, path planning, greenhouse climate control, economic load 

dispatch, etc. [Whitley 91] [Wang 08] [Maield 94] [Labbi 05] [Yuan 11].  It is especially 

useful for complex high-dimension optimisation problems.   

 The classical GA is based on binary calculation, which has limitations when applying 

to multi-dimensional and high-precision numerical optimisation problems [Michalewicz 94].  

For instance, if the problem dimension is 100, the variables are in the range between -500 to 

500, and the required solution precision is 10
-6

, the required binary solution vector is 3000 in 

size.  As a result, the solution space consists of 2
3000

 points.  It is a very wide solution space 

that degrades the GA performance much, especially on searching time.  This drawback could 

be overcome by using real-coded genetic algorithm (RCGA).  In RCGA, each element in 

chromosome is represented by a floating-point number.  Thanks to the nature of floating-

point numbers, a large problem domain can be handled without involving a large solution 
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space.  Many EC algorithms have been proposed based on the idea of RCGA.  One of the key 

successful areas is the swarm-based optimisation. 

 

 

Fig. 2.1.  Summary of different optimisation methods families. 

 

 

I SWARM-BASED OPTIMISATION 

 

With the success of GA, a family of evolutionary algorithms called swarm-based 

optimisation was introduced to improve further the performance of GA.  Swarm-based 

optimisation is a population-based stochastic optimisation technique based on swarm 

intelligence, which is an artificial intelligence technique based on the study of population 
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behaviour.  Beni and Wang first introduced it to solve the problem of cellular robotic systems 

[Beni 89].   

In the system of swarm intelligence, a group of agents forms a population.  The 

structure of each agent should be simple.  During the optimisation, the agents share 

information with each other in order to process the measurement and searching [Bonabeau 

99].  The way of interaction is often inspired by operations in natural and biological systems.  

One of the key characteristics of swarm intelligence is that there is no centralised control 

among the agents [Rifaie 12].  All agents are following simple rules to control their own 

operations.  The simple rules govern individual agents to operate based on the neighbouring 

agents’ status.  We could consider these simple rules are for local information exchange.  The 

effect of local information exchange is that every agent can communicate with other agents 

by means of direct or indirect connections [Kennedy 01].  Direct connection means an agent 

updates its status based on some selected agents.  Usually they are the neighbour agents.  

Indirect connection means the agents update their status implicitly based on the information 

of other groups of agents.  As a result, the groups of agents could form a global inter-

connection network for information exchange.  Hence, a global intelligent behaviour can be 

archived by swarm-based optimisation.  Examples of natural rules that have been applied in 

swarm intelligence include fish schooling, animal herding, bacterial growth, bird flocking, 

and ant colonies [Dorigo 97] [Dorigo 99] [Miller 10] [Rifaie 12] [Jens 10] [Sabhin 05] 

[Kennedy 01] [Vicsek 08]. 

Two of the most successful swarm intelligence algorithms are Differential Evolution 

(DE) [Storn 97] and Particle Swarm Optimisation (PSO) [Kennedy 95].  Derivative 

information of the objective function is not required in both DE and PSO.  They only involve 

simple mathematical operations.  As a result, they can be implemented easily with simple 
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computer platforms, even in embedded systems with a low-end central processing unit (CPU).  

Moreover, they can be implemented easily with any computer language. 

 

A.  Differential Evolution 

 

 Differential Evolution (DE) has been applied in many different kinds of optimisation 

problem successfully.  It is a stochastic optimisation algorithm, which controls a population 

to search the solution space for the optimal solution.  The difference between two vectors in 

the population are used to guide the population to the optimal point.  The control scheme is 

self-organizing because it does not require separating the probability distribution 

[Chakrakraborty 08] [Das 11].   

 DE belongs to the class of evolutionary algorithms (EAs).  The operation of EAs is 

inspired by biological evolution.  EAs work with a population to search for the optimal 

solution.  As compared with other optimisation methods, EAs have lower chances of trapping 

in local optima.  As a result, EAs are viewed as a tool for handling global optimisation 

problem by many researchers.  Some of the popular examples of EAs include Evolutionary 

Programming (EP) and Genetic Algorithm (GA) [Goldberg 89] [Yao 99].  Like most of the 

methods in EAs, DE controls a population to perform evolution to guide the population to 

move towards the global solution.   

 In the operation of DE, a trial vector is generated by a simple subtraction of two other 

vectors in the population.  As a result, exploration of the solution space is realised.  As only a 

simple subtraction is required, DE is very easy to implement.  Many applications have been 

applied with DE successfully, for example, optimisation of non-linear functions [Babu 01], 

power plant control [VanSickel 07], and data clustering [Paterini 04].   

 Like many EC methods, DE performs optimisation with a population.  The size of the 

population remained unchanged until the end of searching.  In this chapter, the population in 
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DE is denoted as Px,g, where g is the current number of generation.  The population Px,g is 

defined as follows: 

 

 
  .1...,,1,0,

...,,1,0;1...,,1,0,
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max,,
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        (2.1) 

 

where gi ,x  is the i-th vector in the current population; gmax is the maximum number of 

generation; the dimension of the vector is D; Np is the total number of vectors in the 

population.  The searching operation of DE is bounded in a special area of solution space.  

Before the searching process starts, the population should be distributed randomly and 

uniformly in the searching space.   During the searching process, DE performs two major 

operations to control the movement of population.  The first operation is called mutation, and 

the second operation is called crossover.  For mutation, DE generates a mutated vector vi,g by 

adding a scaled difference of two randomly selected vectors in the population to the target 

vector xi,g.  The mutation operation is defined as follows: 

 

 grgrgigi F ,,,, 21
xxxv            (2.2) 

 

where r1 and r2 are two random integers between 0 and Np1, F is a control parameter for the 

mutation operation.  The value of F is used to control the rate of movement of the trial 

vectors.  It is called the scaling factor of mutation operation.  After the mutation operation, 

DE performs another process called crossover.  The crossover operation generates a new trial 

vector ui,g by using vector element  xj,i,g and vj,i,g .  The operation of crossover is defined as 

follows: 
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where ]1,0[rC  is a user-defined value for controlling the number of elements in the 

mutated vector to generate a new trial vector.  It is defined as the crossover rate.  randj(0,1) is 

a random number generator function for the j-th element that generates a value between 0 and 

1.  The crossover operation is designed to ensure that at least one element in the mutated 

vector is copied to the new trial vector.  After the mutation and crossover operations, the DE 

performs the selection process for the new trial vectors.  The new trial vector and the target 

vector are compared by their fitness function values.  If the new trial vector offers a better 

fitness function value than the target vector, DE takes the trial vector into the next generation 

population; otherwise, the new trial vector is ignored and the target vector is kept in the 

population for the next generation.  The selection operation is defined as follows: 
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The fitness function is denotes as f().  This selection operation enables the DE to have 

optimisation ability to obtain better solution.  After a number of generations, DE takes the 

latest best vector as the final solution.  Fig. 2.2 shows the pseudo code for the algorithm of 

standard DE (SDE).   
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 Apart from the above standard DE scheme, there are a number of other DE schemes.  

Price [Das 11] suggested a naming convention to identify different schemes of DE.  The 

general convention used has a format of "DE/x/y/z", which contains four parts.  The first part 

is a string to indicate the name of the method.  Since all different schemes are based on the 

DE framework, this part is filled with the string "DE".  The second part specifies the method 

of how to select the vector in the population.  Examples include "rand" and "local-to-best".  

When "rand" is used, the vector is selected randomly.  When "local-to-best" is used, the 

vector with the best fitness value will be selected.  The third part is an integer telling the 

number of difference vectors considered for perturbation.  The last part is a string used to 

indicate the type of crossover.  There are two major types of crossover: exponential (exp) 

crossover and binomial (bin) crossover.  Hence, the standard DE scheme is defined as 

DE/rand/1/bin in the literature.  In the following, we outline five other schemes suggested by 

Price [Storn 97]. 

 

DE/rand to best/2/bin 

 DE/rand to best/2/bin uses the same mechanism as the standard DE scheme to 

perform optimisation.  However, the donor vectors used for perturbing are different.  Two 

begin 

Initialise the population 

while (not termination condition) do 

         begin 
              Mutation operation by (2.2) 

              Crossover operation by (2.3) 

              Evaluation of the fitness function 

Select the best vector by (2.4) 

         end 

end 

Fig. 2.2.  Pseudo code for standard Differential Evolution (SDE) 
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randomly selected vectors in the population and the vector with the best fitness value in the 

current generation are used as the donor vectors.  The mutation operation is given by, 

 

   grgrbestggigigi FF ,,2,,1,, 21
xxxxxv        (2.5) 

 

where bestg ,x  is the vector with the best fitness value in the current generation.  F1 and F2 are 

user defined weighting factors.  We usual set 21 FF   to reduce the number of control 

parameters in DE/rand to best/2/bin. 

 

DE/best/1/bin 

 The mutation operation in DE/best/1/bin is given by, 

 

 grgrbestggi F ,,,, 21
xxxv          (2.6) 

 

F1 is a user defined weighting factor.  The vector with the best fitness value in the current 

generation is used to be the perturbed vector. 

 

DE/rand/2/bin 

 In DE/rand/2/bin, five different vectors are involved in mutation operation.  The 

weighted differences from four vectors are added to the perturbed vector to generate the trial 

vector.  Moreover, the perturbed vector is randomly selected in the population.  The mutation 

operation of DE/rand/2/bin is given by, 

 

   grgrgrgrgigi FF ,,2,,1,, 4321
xxxxxv        (2.7) 
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F1 and F2 are user-defined weighting factors.  We usually set 21 FF   to reduce the number 

of control parameters. 

 

DE/rand /1/bin with per vector dither 

 In DE/rand/1/bin with per vector dither, the weighting factor F is replaced by a dither 

function.  It means that the weighting factor is no longer a constant value.  The mutation 

operation is given by the following equation: 

 

 grgrgigi dither ,,,, 21
xxxv           (2.8) 

 

where 

 

)1,(FrandFdither            (2.9) 

 

DE/best/2/bin 

 In DE/best/2/bin, five different vectors are involved in the mutation operation.  The 

weighted differences from four vectors are added to the perturbed vector to generate the trial 

vector.  Moreover, the perturbed vector is the vector with the best fitness in the population.  

The mutation operation of DE/rand/2/bin is given by, 

 

   grgrgrgrbestggi FF ,,2,,1,, 4321
xxxxxv   (2.10) 

 

F1 and F2 are user-defined weighting factors.  We usually set 21 FF   to reduce the number 

of control parameters. 
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B.  Particle Swarm Optimisation 

 

Particle Swarm Optimisation (PSO) is a stochastic optimisation algorithm that uses a 

population to perform searching [Kennedy 97] [Poli 07].  The operation concept is inspired 

by the social behaviour of animals.  It is a multi-agent searching that uses parallel techniques 

to simulate bird flocking [Angeline 98].  The multi-agents in PSO are called particles [Naka 

03] [Bratton 07].  In the searching operation, the particles conceptually fly through the multi-

dimensional searching space (bird flocking) and intend to fly to the global optimum point 

[Liang 06].  Each particle has its own position and velocity just like a bird in a group, which 

are updated in each generation along the searching process.  The particles in PSO are grouped 

together to form a swarm.  Different kinds of grouping topologies are proposed [Liang 06] 

[Kennedy 99] [Mendes 04] in the literature for achieving better performance in different 

applications [Naka 03] [Yoshida 00] [Chen 07].   

In each generation of PSO, each particle’s velocity and position in the swarm are 

calculated using the neighbourhood information and the previous generation result [Liu 07].  

The best result among all the previous generations will be stored in memory as global 

information to guide the particles to move.  The updating process goes on to guide all the 

particles moving to the optimum point until the end of the searching process [Kennedy 02].  

Fig. 2.3 shows the pseudo code of the standard PSO (SPSO) algorithm.   
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 In Fig. 2.3, the value t denotes the iteration (generation) number, the t-th iteration 

swarm is denoted as X(t).  Each particle is denoted as    tXtp x .  Every particle contains 

  elements.  Each element at the t-th iteration is denoted as    tt
pp

jx x  where j = 1, 2,… , 

  and where p = 1, 2,...  ,  ; the maximum number of particles in the swarm is denoted as  .  

The problem dimension is equal to  .   

 When the optimisation process starts, the particles are initialised randomly on the 

searching domain.  A fitness function is used to evaluate the goodness of the particles.  PSO 

controls the particles to move to the optimum point (i.e. minimum or maximum fitness value) 

by means of iteration steps.  The swarm evolves in each iteration step by following the 

procedure as given by the pseudo code in Fig. 2.3.   The position  tx p

j  and the velocity  tv p

j  

are given by the following equations [Zhao 05]: 

 

begin 

   Initialise the population  

   while (not termination condition) do 

begin 

Update velocity v(t) and position of 

each particle x(t) by (2.11) and (2.12) 

respectively 

if  v(t) > vmax 

       v(t) =  vmax 

end 

if  v(t) < vmax 

       v(t)=  vmax 

end 

Reproduce a new X(t) 

end 

end 

Fig. 2.3.  Pseudo code for SPSO. 
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where j = 1, 2, …,  ; ppbest =  ppp pbestpbestpbest ...21 ; gbest =

 gbestgbestgbest ...21 ; gbest represents the best particles in the swarm; the velocity 

 tv p

j  represents the flying speed of the p-th particle; ppbest  represents the previous best of 

the p-th particle.  In SPSO, an inertia weight w is embedded in the calculation of the velocity.  

1  and 2  are the acceleration constants governing the speed of the searching process.  They 

are user-defined values for different applications.  rand(0,1) generates a random number 

between 0 and 1.  It is used to introduce randomness in the searching process.  k is a 

constriction factor which is used to perform the stability analysis, which ensures all the 

particles in the swarm converge at the end of the searching process while the swarm 

maintains a wide exploration at the beginning of searching [Eberhart 00] [Clerc 02].  The 

relation governing k, 1  and 2  in SPSO is given by, 

 

 42

2

2 
k  (2.13) 

 

where 21    and 4 .  The SPSO updates the particles moving direction by using the 

value of ppbest  and gbest to avoid the same direction of movement for particles.  This 

behaviour of SPSO can guide the particles moving toward to pbest and gbest.   

 To ensure a well balance between the exploitation and exploration of the searching 

space [Kennedy 01], the value of w in (2.11) is modified by (2.14) in each iteration step as 
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follows. 

 

t
T
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 minmax

max  (2.14) 

 

The current number of iteration is denoted as t and the maximum number of iteration is 

denoted as T.  The wmax is the upper limits of inertia weight and the wmin is lower limits of the 

inertia weight.   

 From observation and experiment results, SPSO converges early in the searching 

process [Mo 07] [Hsieh 09].  It means that the particles can move fast to the surrounding area 

of the optimum.  However, when the particles are near to the optimum, SPSO loses the ability 

to guide the particles further.  Experiment results show that a large number of iteration is 

required to make the particles moving closer to the optimum.  This behaviour of SPSO can be 

explained from the velocity update of (2.12).  If a particle is already close to the global best, 

the PSO will guide that particle to move away from that area to avoid trapping in the local 

optimum.  A phenomenon called stagnation [Eberhart 98] will happen when gbest cannot be 

updated further (with a better global result found).  All the particle velocities are nearly zero.  

It means that the particles cannot move far away to search for a better result to update gbest.  

If this situation keeps unchanged, all the particles will move to the same position of the 

global best particle and stop moving.  As a result, no further improvement can be obtained on 

the searching result and the convergence of the swarm is stopped. 

 The mutation operation of GA is employed in SPSO to avoid the phenomenon of 

stagnation [Ahmed 05].  The algorithm of SPSO with mutation operation is called APSO.  

The employed mutation operation randomly chooses some particles within the swarm and 

modifies their element values by using some control scheme.  The major objective of the 
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mutation is to provide some additional force to move the particles along the searching to 

obtain better results.  The mutation operation in APSO is defined as follows: 

 

   jj xxmut  (2.15) 

 

where 
jx  is an element of a particle which is selected randomly inside the swarm; the value 

of  is randomly chosen in the range of   jj parapara minmax1.0,0   where jparamin  and 

jparamax  are the lower and upper bounds of the j-th element in the particle respectively.  Only 

10% of the solution space is involved.   Fig. 2.4 shows the mutation operation in the APSO 

pseudo code.  The mutation operation of APSO is performed after position update in (2.12).   

 

 

 Self-Learning Particle Swarm Optimiser (SLPSO) has been proposed to overcome the 

drawback of SPSO [Li 12].  In SPSO, the same strategy is used to control the movement of 

all particles in the swarm.  It reduces the performance of SPSO on solving complex problems.  

In SLPSO, four strategies are employed to control the movement of particles in the swarm.  

To control which strategy is used, an adaptive learning system is implemented in SLPSO to 

perform the decision-making.  As a result, the particles in the swarm can move more 

effectively in the solution space.  HPSOM is another hybrid PSO method to overcome the 

drawback of SPSO [Ahmed 05].  In HPSOM, a mutation operation is introduced, which 

begin 

     Initialise the population  

     while (not termination condition) do 

           begin 

Perform the process of PSO (shown in Fig. 2.3) 

Perform mutation operation 

Reproduce a new X(t) 

           end 

end 

Fig. 2.4.  Pseudo code for hybrid PSO with mutation operation. 
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makes the particles in the swarm to have better performance on exploring the solution space.  

As a result, too early convergence could be avoided.   

Different successful industrial applications of PSO can be found.  Examples include 

control system [Gaing 04], routing [Gudise 04], prediction [Yu 07], and power system 

[Esmin 05].  Comparable searching performance has been observed in PSO with a faster 

convergence rate and higher solution reliability.  Yet, some literature defined PSO as a local 

searching algorithm only [Kennedy 01] [Kennedy 95].   

 

 

II ECONOMIC LOAD DISPATCH WITH VALVE-POINT LOADING (ELD-VPL) 

 

Nowadays, electricity supply is one key issue for modern cities.  To minimise the 

consumption of natural resources, to reduce electricity generation cost, to provide stable 

electricity supply, and to meet the growth of electricity demand are all important factors for 

operating power supply systems.  The Economic Load Dispatch (ELD) problem concerns the 

modelling method for consolidating those relevant factors, and formulating it as a single 

objective optimisation problem.  Fig. 2.5 shows an overview of the ELD problem.   
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In the ELD problem, electric power utilities (companies) are expected to maximise 

the profit by minimizing the operating cost on generating the power to the clients.  The 

loading demand and transmission losses should be considered on providing a stable power 

supply.  For secure operation, the demand of power should be dispatched to different 

generators correctly such that the generation capacity limits of individual generators are not 

exceeded.  As a result, the major purpose of solving the ELD problem is to control a group of 

power generators to generate enough electricity with minimum fuel cost, and operates the 

generators within their physical constraints.    The ELD problem has two characteristics that 

make the input-output relationship of the model become highly nonlinear by nature: the effect 

of the power generators' valve-point loadings in the fuel cost function and the rate limits of 

the generators.  As a result, the objective function for the ELD with Valve-Point Loading 

Fig. 2.5.  Overview of the ELD problem. 
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(ELD-VPL) problem is multimodal, highly nonlinear, and discontinuous in the solution space, 

high in dimension, and highly constrained.   

In the past decade, different kinds of optimisation methods are introduced to tackle 

the ELD problem.  The methods are categorised into two major families: analytic methods 

with classical mathematics and Computational Intelligence (CI) methods.  Examples of 

analytic methods with classical mathematics include linear programming and nonlinear 

programming [Adler 77] [Bui 82].  However, analytic methods have their drawbacks.  For 

instance, the performance is highly dependent on the starting point of the searching process.  

It means expert knowledge is required to determine the starting point.  Moreover, analytic 

methods can lead to trapping in local optima easily.  As a result, it is not able to handle non-

linear optimisation problems effectively [Farag 95], especially those problems with piecewise 

linear cost approximation like the ELD-VPL problem.  Because of the complex nature of the 

ELD-VPL problem, most of the classical techniques failed to address the ELD-VPL problem 

satisfactorily.   

 With the success of the development of CI methods, many examples of applying CI 

techniques on solving the ELD-VPL problem have been reported.  Neural networks (NN) 

were applied to construct the optimiser for the ELD-VPL problem [El-Sharkawy 96] 

[Yalcinoz 98].  Population searching methods, such as Particle Swarm Optimisation [Park 05] 

[Pancholi 04], and Genetic Algorithm [Youssef 00] were also applied.  Moreover, a number 

of hybrid methods have been developed and applied.  For instance, multi-pass dynamic 

programming (DP), the first-order gradient method, and the conventional Lagrangian 

relaxation approach were proposed and presented in [Chen 01].  An algorithm called DEC-

SQ was also used to tackle the problem and presented in [Coelho 06].  A hybrid method of 

PSO was also presented in [Victoire 04].   
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III HYPOGLYCAEMIC EPISODES 

 

 Low level of blood glucose is a common issue for the human body.  It may happen in 

consequence of high level of energy consumption, action of insulin and the food ingestion.  

When the human body suffer from low level of blood, hypoglycaemia occurs in human body.  

Non-diabetic persons are not common to have hypoglycaemia [Yale 04].  The problem may 

be due to long-time starvation, superfluous insulin, innate problem, drugs, alcohol, 

insufficient hormone generation, and organ defect [DCCT 95].  Study reported that the 

diabetic patients have a higher chance to develop hypoglycaemia in their body if they have 

been treated with insulin.  Another study reported that young patients with intensive 

glycaemia control would have a high frequency of developing hypoglycaemia [Pickup 00].  

Different people may have different level of blood glucose to develop hypoglycaemia in their 

body.  In general, maintaining above 70 mg/dL (3.9 mmol/L) for fasting glucose is 

considered as healthy for adults.  If the blood glucose level drops below 55 mg/dL, the body 

may start to develop hypoglycaemia symptoms [DCCT 95].  If the blood glucose level is 

below 50 mg/dL (2.8 mmol/L), the body is suffering hypoglycaemic.  Medical treatment is 

required for the patients through, for example, injection or infusion of glucagon.  The human 

body requires maintaining a certain level of glucose in order to allow the nervous system and 

brain to function properly.  When the central nervous systems detected the presence of 

hypoglycaemia, it will automatically reduce the cerebral glucose consumption 

(neuroglycopenic symptoms) [Maia 07].  Some symptoms can be activated before 

neuroglycopenic symptoms, for example, sweating, weakness, fatigue, blurry or double 

vision, weakness extreme hunger and headache.  As a result, the patient can be aware of the 

presence of hypoglycaemia.  If the human brain does not have enough supply of glucose, the 
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body may suffer neuroglycopenic symptoms, for example, loss of consciousness (coma), 

seizures, and confusion [Amir 07].   

It is particularly dangerous if the hypoglycaemia happens at night because the patient 

may not be able to take immediate response.  As a result, mild episodes of hypoglycaemia 

may become serious.   Study reported that more that 50% of serious episodes of 

hypoglycaemia happened at evening.  Even with the modest insulin elevation, serious 

hypoglycaemia may result due to deficient glucose counter-regulation.  Moreover, the dawn 

phenomenon makes the handling of hypoglycaemia more difficult [Weinstein 07].  The dawn 

phenomenon shows that the requirement of insulin for human body decreases between 

midnight and 5 am.  Between 5 am and 8 am, the requirement of insulin for human body 

increases.  The technology of detecting the presence of hypoglycaemia is very demanding in 

the medical industry [Caduff 09] [Cho 08] [Chu 08].   

 Constructing a real-time detector to detect the presence of hypoglycaemia by using 

body signals is very important for patients.  The detector can be realised by a fuzzy inference 

system (FIS).  [Seber 08] [Wang 06] [Freedman 05] [Ling 12] [Nuryani 12].  Fig. 2.6 shows 

an overview of the hypoglycaemia problem. 
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Different hybrid Computational Intelligence (CI) methods have been proposed to 

support the detecting of the presence of hypoglycaemia.  Many researchers studied the real 

time physiological signals of mellitus (TIDM) patients and constructed detection methods for 

the presence of hypoglycaemia using the real-time physiological signals [Ling 11].  Different 

models have been proposed to detect the presence of hypoglycaemia by heart rate (HR), 

corrected QT interval of the electrocardiogram (ECG) signal (QTc), change of HR, change of 

QTc.  In the literature, most of the developments are based on experiments using real data of 

TIDM patients.  Several different approaches [Chu 08] [Altman 94] [Ling 11] [Chan 11] 

[Nuryani 12] have been used to realise the detection model.  They are:  

 

1. Fuzzy inference system  

2. Linear multiple regression  

3. Genetic algorithm based multiple regressions 

4. Feed-forward neural network (FFNN) 
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Fig. 2.6.  Overview of the hypoglycaemia problem. 
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5. Hybrid particle swarm optimised by fuzzy reasoning 

6. Support vector machine (SVM) 

7. Rule discovery system using neural network 

 

 Hypoglycaemic is a serious medical problem for young patients.  A lot of study is still 

undergoing for constructing a reliable model to detect the blood glucose level. 
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Chapter 3  

 

DIFFERENTIAL EVOLUTION  

WITH 

DOUBLE WAVELET MUTATIONS  

 
 

 

I INTRODUCTION 
 

 

 In this chapter, two stages of wavelet mutation are introduced in the Differential 

Evolution (DE) algorithm to enhance the searching performance.  The two mutations offer an 

effective balance between the exploration and exploitation of the solution space.  As a result, 

better solution quality and reliability can be achieved.  The first wavelet mutation is realised 

to replace the conventional DE mutation. A wavelet function is used to control the scaling 

factor in DE mutation operation.  In the second stage, the DE crossover operation is added 

with a wavelet mutation, in which a wavelet function is used to modify the elements in the 

trial vectors in the population.   

 DE is a member of the family of Swarm Based Optimisation, which is a stochastic 

optimisation technique that mimics swarm intelligence in a population.  In the standard DE, 

there are two major operations: mutation and crossover.  On properly improving the mutation 

and crossover operations in DE, we can achieve a balance between the exploration and the 

exploitation of the searching space.  In the early stage of searching, we want more 
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exploration while more exploitation is desired at the later stage of searching.  Exploration 

means widely searching the solution space in a large area.  Exploitation means searching the 

solution space in a small area to obtain a fine-tuned solution.  This mechanism can be realised 

by a wavelet function [Daubechies 92].  The modulation for balancing the exploration and 

exploitation is realised by incorporating dilations to the oscillatory wavelet function, which 

take advantage of the wavelet function’s properties.  As a result, a more efficient searching 

process with better reliability in searching the global solutions of different optimisation 

problems can be realised.   It is found that the proposed double wavelet mutations aid the DE 

algorithm to offer improved results for a suite of 29 benchmark test functions.  The 

improvements are in terms of convergence rate, solution quality and solution reliability.  

Experimental results show that the proposed algorithm can offer better solutions over other 

conventional methods.  

 The organisation of this chapter is as follows.  The proposed DE with double wavelet 

mutations will be presented in Section II.  Section III discuss the experimental results on 

applying the proposed method to 29 benchmark test functions.  Section IV give a conclusion 

for the whole chapter. 

 

II DE WITH DOUBLE WAVELET MUTATIONS 
 

 To implement the searching operation in DE, a group of solution vectors (population) 

is generated population over the solution space randomly.  During the searching process, the 

population keeps updating their position on the solution space for the optimum solution with 

respect to a fitness function.  In ideal case, all the vectors should converge to the global 

optimum.  In this chapter, we assume the optimum point is the point that has the smallest 

fitness value in the solution space to simplify the discussion.  Fig. 3.1 shows the pseudo code 
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for the algorithm of standard DE (SDE).  In this chapter, double wavelet mutations are added 

to the SDE algorithm to enhance the searching performance.  The resulting algorithm is 

called DE with double wavelet mutations (DWM-DE).  Fig. 3.2 shows the pseudo code of 

DWM-DE.  The discussion of SDE and DWM-DE are discussed as follows.   

 

 

 

A.  Standard Differential Evolution (SDE) 

 

 In each evolution, a population of Np vectors is controlled by the DE mutation and 

crossover operation.  Let the population for the current generation g of DE be Px,g, and the i-

th vector in this population be gi,x .  As a result, we have: 

 

begin 

    Initialise the population 

While (not termination condition) do 

         begin 

              Mutation operation by equation (3.2) 

              Crossover operation by equation (3.3) 

              Evaluation of the fitness function 

Select the best vector by equation (3.4) 

          end         

end 

begin 

    Initialise the population 

While (not termination condition) do 

         begin 

Update the new value of F by equation 

(3.12) 
Mutation operation by equation (3.2) 

Crossover operation by equation (3.3) 

Modifying the trial population vectors  

based on equation (3.15) 
Evaluation of the fitness function 

Select the best vector by equation (3.4) 

          end         

end 

Fig. 3.1.  Pseudo code for standard DE (SDE). 

Fig. 3.2.  Pseudo code for the proposed DWM-DE. 
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where D is the number of elements in each vector and maxg  is the maximum number of 

generation.  During the initialisation, the population is randomly and uniformly distributed on 

the solution space and located within the specified boundary.  After the initialisation, DE 

performs mutation operation for each vector in the population.  The mutation operation 

creates a mutated vector vi,g for each target vector xi,g.  The operation of mutation is defined 

as follows: 

  

 grgrgigi F ,,,, 21
xxxv           (3.2) 

 

where r1 and r2  are two random integers between 0 and Np1, F is a control parameter for the 

mutation operation.  The value of F is used to control rate of movement of the trial vectors.  It 

is called the scaling factor of mutation operation.  After the mutation operation, DE performs 

another operation called crossover.  The crossover operation generates a new trial vector ui,g 

by using vector element  xj,i,g and vj,i,g.  The operation of crossover is defined as follows: 

 

 
 
 



 


otherwise.   
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gij
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where ]1,0[rC  is a user-defined value which is used to control the number of mutated 

elements in the new trial vector.  It is called the crossover rate.  randj(0,1) is a random 

number generator function for the j-th element, which is used to generate a value between 0 

and 1.  The crossover operation is designed to ensure that at least one element in the mutated 
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vector is copied to the new trial vector.  After the mutation and crossover operations, the DE 

performs the selection process for the new trial vectors.  The new trial vector and the target 

vector are compared by means of the fitness function value.  If the new trial vector offers a 

better fitness function value that the target vector, DE takes the trial vector into the next 

generation population; otherwise, the new trial vector is ignored and the target vector is kept 

in the population for the next generation.  The selection operation is defined as follows: 

 





 


otherwise.     

)()( if     

,

,,,

1,

gi

gigigi

gi

ff

x

xuu
x        (3.4) 

 

The fitness function is denotes as f().  This selection operation offers the DE to have 

optimisation ability for a better solution.  After a number of generations, DE takes the latest 

population as the final solution.  

 

B.  Differential Evolution with Double Wavelet Mutations (DWM-DE) 

 

 To apply SDE to an optimisation problem, the user is required to determine the value 

of the scaling factor F.  This value is a fixed value in SDE and it is commonly set within the 

range of [0, 1].  Different applications require different values of the scaling factor F to 

obtain good performance.  The user needs to rely on their experience and expert knowledge 

to determine this value.  Moreover, a fixed value may not be able to provide a good balance 

between the exploration and exploitation of the searching space.  As a result, we propose the 

value of F keeps diminishing with the increase of the number of iteration.  This leads to the 

idea on controlling the value F by a wavelet function.  By using the wavelet function to 

control the value F, different degrees of movement of the population is achieved.  As a result, 
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a high degree of exploration for searching can be realised in the early stage.  Controlling the 

value of F by a wavelet function is the first stage of wavelet mutation in the proposed DWM-

DE.  For the second stage of wavelet mutation, it is realised in the crossover operation in 

which a wavelet-based second mutation mechanism is embedded to modify the trial vectors 

within the population.  The searching performance on exploration and exploitation can be 

enhanced.  In the two stages of mutations, the output of wavelet function is configured to be 

continuous decreasing alone the searching process.  It means than the output is inversely 

proportional to the number of iteration.  Therefore, the effect of the wavelet mutation is 

reduced at the later stage of searching.  Exploitation can be achieved when the effect of the 

wavelet mutation is reduced.  As a result, the good balance between the exploration and 

exploitation can be realised, and less number of iteration is required for obtaining the best 

solution.  Moreover, by taking advantage of the wavelet function’s properties, the solution 

reliability is increased in a statistical sense.  The solution reliability in the DE algorithm is an 

important factor to evaluate the searching performance due to the random factor present in 

the searching operation.  

 

C.  Double Wavelet Mutations 

 

1.  Wavelet function 

 

 A wavelet function is used to model seismic signals.  Modulation can be realised by 

incorporating translations and dilations to the oscillatory function.  The function is bounded 

within a finite domain.  It satisfies the following properties: 

Property 1: 

0)( 



dxx           (3.5)  
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)(x  is a continuous-time function.  It means that the momentum of positive side and 

negative side are equal in terms of the area of )(x . 

Property 2: 





dxx

2
)(          (3.6) 

It means that most of the energy is bounded in a finite domain.  Equation (3.7) and Fig. 3.3 

show an example mother wavelet function. 

   xex x 5cos2/2          (3.7) 

 

 

Fig. 3.3.  Morlet wavelet. 

 

According to property 1, the area of positive side and negative side of the Morlet wavelet 

function are equal.  In addition, according to property 2, the interval 2.5 < x < 2.5 of the 

function contains most of function energy (>99%).  To control the magnitude of )(x , a 

dilation parameter is introduced, which is denoted by a.  The amplitude-scaled )(x  is 

defined as follows. 

 











a

x

a
xa 

1
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Different dilations of the Morlet wavelet is shown in Fig. 3.4.  The amplitude of )(xa  is 

controlled by the dilation parameter a.  The output of )(xa  is proportional to the value of a.   

 

2.  Operation of DE wavelet mutation 

 

 The operation of proposed wavelet mutation (WM) is defined as follows. 

 grgrgigi F ,,,, 21
xxxv  , (3.9) 

where 

)( aF  , (3.10) 











aa
F




1
. (3.11) 

Using (3.7) as the mother wavelet, the value of F is given as follows: 





























a
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1 2
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, (3.12) 

 

 With the property of wavelet function defined in (3.5), the momentum of positive side 

and negative side are equal in terms of the area for the mother wavelet.  With N samples, if 

the value of N is large and the value of   is chosen randomly, the sum of the value F along 

the evolution is equal to zero, i.e.   

 

0
1


N

F
N

 for N , (3.13) 
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The solution reliability can achieved by Property 1 and 2 as defined in (3.5) and (3.6).  Better 

solution reliability means that the algorithms can offer very similar solution for many trials.  

The solution reliability can be measured by determining the standard deviation of the 

solution.  If the standard deviation of the solution is small, it means that the solution 

reliability is good.  As most of the energy is bounded in a finite domain for a wavelet 

function, we could control the output amplitude by using the dilation parameter a in order to 

control the searching for exploration or exploitation.  In the proposed wavelet mutation, the 

value of a is defined as follows, which introduces a monotonic increasing behaviour to the 

wavelet function: 

 

   



ln1ln 











wm

T

t

ea   (3.14) 

 

where the current number of iteration in the evolution is denoted as t, the total number of 

iteration is denoted as T, λ is used to limit the maximum value of a and wm  is the shape 

parameter of the monotonic increasing function.  From equation (3.14), the value of a vary 

with the value of t.  If the value of t is large, the effect of mutation is decreased.  

 

 Fig. 3.5 shows the of the shape parameter wm  to a with respect to t/T.  In this figure, 

the value of a is between 1 and 10000 (for  = 10000).  When the value t,   are equal to zero 

and the value of a is equal to 1, equation (3.12) gives the maximum value of F.  When the 

value t is nearly equal to T and the value of a is large, equation (3.12) gives the minimum 

value of F.  As a result, the wavelet mutation could offer more exploration in the early stage 

of searching while more exploitation is done at the later stage. 
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Fig. 3.4.  Morlet wavelet dilated by different values of a (x-axis: a, y-axis: )(xa .) 

 

Fig. 3.5.  Effect of the shape parameter 
wm  to a with respect to t/T. 

 

3.  Operation of DE crossover with wavelet mutation 

 

 In the proposed DWM-DE, the DE crossover operation is added with a second stage 

of wavelet mutation [Neubauer 97].  The second stage wavelet operation is done after the 

SDE crossover operation to offer a balance between the exploration and exploitation of the 

searching space.  The resulting i-th vector of the crossover operation is denoted as 

T
t

) ( x  
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 giDgigigi uuu ,,1,,1,,0, ,,,  u  where i is the vector number of the population, g is the current 

generation number, and the maximum number of elements in the vector is denoted as D.  Let  

 giDgigigi uuu ,,1,,1,,0, ,,,  u   be the mutated crossover vector and  
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where  jj parapara maxmin ,  is the boundary of each element in the solution vector.  Equation 

(3.14) is used to control the value of a.  Following the same behaviour of F in equation 

(3.12), in the early stage of searching, we want to explore more in the searching space.  As a 

result, we want the value of   to be large.  In addition, we want more exploitation in the 

searching space at the later stage of searching.  As a result, we want the value of   be small.  

After the second wavelet mutation, the DWM-DE used the same method of standard DE to 

perform the population selection process.  

 

III. BENCHMARK TEST FUNCTIONS AND RESULTS 
 

A.  Benchmark Test Functions 

 

 A suite of 29 benchmark test functions [Brest 06] [Ao 09] [Fan 03] [Ali 05] is used to 

evaluate the performance of the proposed DWM-DE.  These 29 benchmark test functions 

covers many different kinds of optimisation problems and can be separated into four main 

categories.  The functions f1 - f8 (first category) are unimodal functions that involve a 
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symmetric solution space and contain a single optimum point only.  The functions f9 - f16 are 

multimodal functions with a few local minima; they are put to the second category.  The third 

category covers the multimodal functions with many local minima; functions f17 - f24 belong 

to this category.   The last category contains functions with shift and rotate; functions f25 - f29 

belong to this category, which are the shifted and rotated versions of some functions of the 

pervious categories.   

 Table 3.1 shows the names of the test functions.  The definitions of these functions are 

listed in Table 3.2.   The definitions of function parameters a, b, c and m, and the function 

u() are provided in [Ali 05]. 
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Table 3.1.  Benchmark Test Functions Family. 

Category of Test Functions Names of Test Functions 

Unimodal functions 

f1. Sphere model 

f2. Generalised Rosenbrock’s function 

f3. Step function 

f4. Quartic function 

f5. Schwefel’s problem 2.21 

f6. Schwefel’s problem 2.22 

f7. Easom’s function 

f8. McCormick function 

Multimodal functions  

with  

a few local minima 

f9. Shekel’s foxholes function 

f10. Kowalik’s function 

f11. Maxican hat function 

f12. Six-hump camel back function 

f13. Hartman’s family 1 

f14. Hartman’s family 2 

f15. Egg Holder function 

f16. Styblinski-Tang function 

Multimodal functions  

with 

many local minima 

f17. Generalised penalised’s function 

f18. Generalised Rastrigin’s function 

f19. Generalised Griewank’s function 

f20. Ackley’s function 

f21. Schwefel’s function 

f22. Schaffer function 

f23. Chichinadze function 

f24. Sine envelope sine wave function 

Functions 

with 

shift and rotate 

f25. Shifted sphere model 

f26. Shifted Schwefel’s problem 1.2 

f27. Shifted rotated high conditioned elliptic function 

f28. Shifted Rosenbrock’s function 

f29. Shifted Rastrigin’s function 
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Table 3.2.  Benchmark Test Functions. 

Test function Domain Optimal point 
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B.  Experimental Setup 

 

 We evaluate the performance of SDE [Chakrakraborty 08], DE with single wavelet 

mutation (first-stage mutation only, SWM-DE), DE/local-to-best/1 [Ao 09], DE/rand/1 with 

per-vector-dither [Rahnamayan 08], and the proposed DWM-DE by observing the estimated 

optimum values of the benchmark test functions.  It this experiment, the optimum value is the 

minimum value of the solution space.  The experimental conditions are defined as follows: 

 

• Shape parameter of the wavelet mutation (
wm ) (for DWM-DE): 1   

• Parameter λ for the monotonic increasing function (for DWM-DE): 10000. 

• Initial population: Generated randomly and uniformly. 

• Crossover rate ( rC ): 0.5. 

• Constant mutation factor (F) (for SDE, DE/local-to-best/1 and DE/rand/1 with per-

vector-dither): 0.5. 

• The size of population: 30. 

• Numbers of iteration for all algorithms: As listed in Table 3.3. 
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Table 3.3.  Number of Iteration. 

Test Function No. of Iteration 

f1. Sphere model 300 

f2. Generalised Rosenbrock’s function 500 

f3. Step function 100 

f4. Quartic function 200 

f5. Schwefel’s problem 2.21 500 

f6. Schwefel’s problem 2.22 200 

f7. Easom’s function 200 

f8. McCormick function 50 

f9. Shekel’s foxholes function 50 

f10. Kowalik’s function 100 

f11. Maxican hat function 50 

f12. Six-hump camel back function 50 

f13. Hartman’s family 1 50 

f14. Hartman’s family 2 100 

f15. Egg holder function 1000 

f16. Styblinski-Tang function 50 

f17. Generalised penalised’s function 200 

f18. Generalised Rastrigin’s function 1000 

f19. Generalised Griewank’s function 200 

f20. Ackley’s function 500 

f21. Schwefel’s function 500 

f22. Schaffer function 1000 

f23. Chichinadze function 50 

f24. Sine envelope sine wave function 2000 

f25. Shifted sphere model 500 

f26. Shifted Schwefel’s problem 1.2 500 

f27. Shifted rotated high conditioned elliptic function 200 

f28. Shifted Rosenbrock’s function 200 

f29. Shifted Rastrigin’s function 1000 
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C.  Results and Discussion 

 

 In this experiment, all results reported for the benchmark test functions are averaged 

ones out of 50 trials.   

 

1.  Unimodal functions 

 Function f1 has a smooth and symmetric surface around the solution.  It is a model of 

sphere.  Due to its smooth surface, most of the methods can converge to the global minimum 

but at different rates.  Fig. 3.6a shows the convergence rates.  It shows that the proposed 

DWM-DE could provide the best performance in terms of convergence rate.  In terms of 

mean cost value and best cost value, it offers better result than the other methods as shown in 

Table 3.4.  In addition, the standard deviation is small, which means that the proposed DWM-

DE offer a reliable searching mechanism. 

 Function f2 is the Generalised Rosenbrock’s function.  It has a smooth and symmetric 

surface around the solution.  The function shape looks like a "Banana".  The solution space of 

this function contains a flat gorge.  Similar to f1, the main purpose of testing is to measure the 

convergence rate of the searching methods.  The result is shown in Fig. 3.6b.  The proposed 

DWM-DE offers the highest convergence rate.  When using the proposed DWM-DE, the 

solution quality is increased.  In terms of mean value and standard deviation as shown in 

Table 3.4, DWM-DE performs better than the other methods. 

 Function f3 is a Step function.  Most of the optimisation algorithms failed to handle 

the functions with flat surface because the optimisation algorithms could not obtains any 

information of searching direction from the flat surface.  Yet, all the methods involved in this 

study could handle this function well as shown in Fig. 3.6c and Table 3.4. 

 Function f4 is the Quartic function.  It contains a global minimum at the centre of the 

solution space.  The experiment results are shown in Fig. 3.6d and Table 3.4.  The 
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convergence rate offered by the proposed DWM-DE is much higher than that of the other DE 

methods.  After around 10 times of iteration, the proposed DWM-DE is able to reach the 

minimum. 

 Functions f5 is the Schwefel’s problem 2.21.  Fig. 3.6(e) shows the experiment results.  

Functions f6 is the Schwefel’s problem 2.22.  The experiment results are shown in Fig. 3.6(f).  

The convergence rate for functions f5 and f6 of the proposed DWM-DE is the highest.  The 

best solution, mean and standard derivation provided by DWM-DE are the best as shown in 

Table 3.4.  Thus, the proposed algorithm gives better solution quality and reliability. 

 Function f7 is the Easom function.  The function was inverted for minimisation.  A 

very large solution space for this function is designed to test the performance of the proposed 

DWM-DE. The result is shown in Fig. 3.6g.  The convergence rate for functions f7 of the 

proposed DWM-DE is the highest.  It gives better performance in terms of solution quality 

and reliability as shown in Table 3.4. 

 Function f8 is the McCormick function, which is a two-dimension benchmark function 

with the global minimum at f(-0.54719,-1.54719) = -1.9133.  The global minimum is not 

located at the centre of the search domain.  The McCormick function contains a flat and 

smooth surface.  The experiment result shows that DWM-DE can provide the best solution 

quality and the best solution reliability.   
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Fig. 3.6.  Unimodal functions. 



Chapter 3: Differential Evolution with Double Wavelet Mutations 

 

Page | 53  

 

Table 3.4.  Comparison between Different DE Methods for Benchmark Test Functions 

(Category 1). 

  DWM-DE SW-DE SDE DE/ 
local-to-

best/ 

1 

DE/rand/1 
with per-

vector 

-dither 

 Mean 0.5902 33.9672 0.9937 228.8271 411.8185 

f1 Best 0.0605 0.668 0.4317 17.3954 206.3942 

 Std Dev 0.5712 75.9703 0.308 213.2461 99.2895 

  

 Mean 0.0961 51.5008 25.3632 40.3851 30.2437 

f2 Best 0.0068 22.9713 23.7534 26.9933 27.3151 

 Std Dev 0.0867 30.3582 0.6442 15.6161 3.9049 

  

 Mean 0 0.78 11.24 4.7 51.54 

f3 Best 0 0 7 1 35 

 Std Dev 0 0.9957 1.9119 3.4241 8.1346 

  

 Mean 0.0385 0.2103 0.2307 0.5176 4.2939 

f4 Best 0.0172 0.0366 0.1033 0.0798 1.7894 

 Std Dev 0.0111 0.2053 0.0684 0.3172 1.3556 

  

 Mean 1.4127 33.9335 5.5862 44.3662 22.7523 

f5 Best 0.7089 16.0324 3.7069 21.1518 19.1513 

 Std Dev 0.3512 9.5589 2.9702 9.0817 2.05 

  

 Mean 0.388 0.7726 3.3391 4.3577 27.5979 

f6 Best 0.1151 0.182 2.3578 0.1878 20.7384 

 Std Dev 0.187 0.7565 0.5352 3.6601 3.2958 

  

 
f7 

Mean -1 -0.9455 -0.9284 -0.66 -0.4641 

Best -1 -1 -1 -1 -1 

Std Dev 0 0.2131 0.2488 0.4785 0.4454 

 

 

f8 

Mean -1.913223 -1.913209 -1.913199 -1.913223 -1.913152 

Best -1.913223 -1.913223 -1.91322 -1.913223 -1.913219 

Std Dev 0 0.000018 0.000023 0 0.00007 

 

 

 The proposed DWM-DE can offer a higher rate of convergence for unimodal 

functions.  The degree of freedom of the trial vectors can be increased by controlling the 

scaling factors F and   with a wavelet function.  We could have high degree of exploration 

in the early stage of evolution.  Moreover, taking advantage of the fine-tuning ability of the 

wavelet operations, the population can have more exploitation at the late stage of searching to 

catch the global minimum.  In short, the proposed DWM-DE is the best method to tackle 

unimodal functions among the DE methods covered in Table 3.4. 
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2.  Multimodal functions with a few local minima 

 

 Eight multimodal functions with a few local minima are used to evaluate the five 

algorithms.  These functions are Shekel’s foxholes function, Kowalik’s function, Maxican hat 

function, Six-hump camel back function, Hartman’s family 1, Hartman’s family 2, Egg 

holder function and Styblinski-Tang function.  All of them contain some local minima within 

the searching space.  The experimental results for these functions are listed in Table 3.5 and 

shown in Fig. 3.7.   

 Function f15 is the Egg-holder function, which is a well-established benchmark test 

function for evaluating the performance of global optimisation algorithms.  It is a difficult 

test function for optimisation algorithms, especially when the dimension of the equation is 

high (≥20).  It contains a number of local optima.  The algorithm could be trapped in some 

local optimal point easily.  In the experiments, we set the Egg-holder function with the 

dimension of 20.  The experimental results show that DWM-DE out-performs significantly 

the other four algorithms in terms of convergence speed, solution quality and solution 

reliability.  It should be noted that when the dimension of the Egg-holder function is 2, 

DWM-DE just performs nearly the same as the other methods.  This test function illustrates 

that when the dimension of the problem is high, the effect of the double wavelet mutations is 

more significant. 

 Function f16 is the Styblinski-Tang function.  It is a 2-dimension benchmark test 

function with the global optimum at f(-2.903534, -2.903534) = -78.332.  This function has a 

bowl shape surface with four separated regions in which each region contains one local 

optimum.  Moreover, one of the four separated regions contains the global optimum.  

Because of the four separated regions, the optimiser could not recover easily when the 

algorithm is trapped in one of the regions in the search domain.   
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Fig. 3.7.  Multimodal functions with a few local minima. 
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Table 3.5.  Comparison between Different DE Methods for Benchmark Test Functions 

(Category 2). 

 
 

 

 DWM-DE SWM-DE SDE DE/ 
local-to-best/ 

1 

DE/rand/1 
with per-vector 

-dither 

 Mean 0.998 0.998 0.998 0.998 0.998 

f9 Best 0.998 0.998 0.998 0.998 0.998 

 Std Dev 0 0 0 0 0 

  

 Mean 0.0009 0.0012 0.0011 0.0015 0.0016 

f10 Best 0.0005 0.0004 0.0007 0.0003 0.0007 

 Std Dev 0.0003 0.0011 0.0008 0.0039 0.0018 

  

 Mean -1 -1 -1 -1 -1 

f11 Best -1 -1 -1 -1 -1 

 Std Dev 0 0 0 0 0 

  

 Mean -1.0316 -1.0316 -1.0316 -1.0316 -1.0315 

f12 Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 Std Dev 0 0 0.0001 0 0.0002 

  

 Mean -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 

f13 Best -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 

 Std Dev 0 0 0 0 0 

  

 

f14 

Mean -3.3124 -3.3036 -3.2909 -3.2911 -3.2777 

Best -3.322 -3.322 -3.322 -3.322 -3.322 

Std Dev 0.0303 0.0408 0.0475 0.0527 0.0448 

 

 

f15 

Mean -17185.636825 -14785.571548 -9540.044930 -9166.199635 -9981.148852 

Best -17369.449901 -15957.227385 -11146.971689 -11490.211886 -10646.983475 

Std Dev 134.842749 775.309032 998.757469 1779.006804 513.702581 

 

 

f16 

Mean -78.332331 -78.332331 -78.33233 -78.33233 -78.332318 

Best -78.332331 -78.332331 -78.332331 -78.332331 -78.332331 

Std Dev 0.000001 0.000001 0.000003 0.000003 0.000018 

 

 

 For all the functions of multimodal functions with a few local minima, the five 

algorithms offer similar performance on searching the optimal point except the Egg Holder 

function.  DWM-DE can provide much better solution quality and convergence rate.  No 

algorithm is trapped in the local minima.  No significant enhancement is brought by the 

double wavelet mutations for multimodal functions.  Yet, DWM-DE can still offer good 

performance in term of the solution quality and reliability.  It is applicable for multimodal 

functions with a few local minima.  
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3.  Multimodal functions with many local minima 

 

 Functions f17 - f24 are multimodal functions with many local minima.  The 

experimental results for these functions are listed in Table 3.6 and shown in Fig. 3.8.  

Functions f17, f18, f19 are the Generalised penalised function, Generalised Rastrigin’s function 

and Generalised Griewank’s function respectively.  They are widely used as test functions for 

global optimisation algorithms.  Those functions have many local minima distributed 

regularly.  When the function dimension increased, the number of local minima increases 

exponentially.  In the experiments, the function contains plenty of local minima when the 

dimension is 30.  From Fig. 3.8a-c, we can see that the rate of convergence is improved 

significantly when the wavelet mutation is introduced.  By adding the double wavelet 

mutations to DE, the chance of trapping in some local minima is reduced.  Moreover, by 

introducing the second wavelet mutation, the searching process of DWM-DE is capable of 

moving closely to the global minimum in the early iteration stage.  The balance between the 

exploration and exploitation can be achieved thanks to the wavelet function’s properties.  The 

wavelet function provides a more efficient searching process with better reliability in 

searching the global solutions of different problems.  

 Function f20 is the Generalised Ackley’s function.  It modulates a cosine wave into an 

exponential function.  It is a continuous multimodal function with a flatland and a central 

minimum.   The result is shown in Fig. 3.8d.  It shows that if the double wavelet mutations 

are used, the value of the fitness function drops rapidly.  After 250 times of iteration, the 

fitness value becomes near the global minimum.  It should be noticed that even DE with 

single wavelet mutation could not satisfactorily reach the global minimum.  It shows the 

advantage of the double wavelet mutations on reducing the effort for the population to 

investigate those local minima that are far away from the global minimum.   
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 Function f21 is the Schwefel’s function.  Most of the optimisation algorithms fail to 

handle this function because the global minimum is isolated from the similar best local 

minimum geometrically.  The population is potentially prone to converge to the local 

minimum.  The result is shown in Fig. 3.8e.  Similar to functions f19 and f20, if the double 

wavelet mutations are used, the convergence rate is much improved.  With DWM-DE, the 

fitness value moves closely to the global minimum at the early iteration stage. 

 Function f22 is the Schaffer function.  It is a 2-dimension benchmark function that has 

a single global minimum at the point f22(0,0) = 0.  It contains a large number of local minima.  

Searching for the global minimum is a difficult task because the value at the best local 

minimum and the global minimum differs by about 0.0001 only.  In the experiment, although 

the convergence rate is not significantly improved, DWM-DE could offer much better 

solution quality and solution reliability.  

 Function f23 is the Chichinadze function which is a 2-dimension benchmark test 

function with a global optimum at f (5.90133, 0.5) = -43.3159.  As this function is not 

complex, DWM-DE just performs nearly the same as the other algorithms. 

 Function f24 is the Sine envelope sine wave function. It is also called the Schaffer 

function.  The Sine envelope sine wave function is a multi-dimensional version of the 

Schaffer function.  It contains a large number of local minima.  Searching for the global 

minimum is a difficult task because the difference between the value at the best local 

minimum and the global minimum is about 0.001 only.  The number of local optima is not 

well defined, and they are continuously spread around the global optimum.  Theoretically, 

there are infinite local minima that form a number of grooves around the global minimum.  In 

the experiments, we set the Sine envelope sine wave function’s dimension to 20.  The 

experimental results show that DWM-DE significantly out-performs the other algorithms in 

terms of convergence speed, solution quality and solution reliability.  It should be noted that 



Chapter 3: Differential Evolution with Double Wavelet Mutations 

 

Page | 62  

 

if the dimension of the Sine envelope sine wave function is two (which is the Schaffer 

function f22), the DWM-DE just performs nearly the same as the other algorithms in term of 

the convergence rate.  It illustrates that for the high dimensional problem, the performance 

enhancement of the double wavelet mutations is more significant.   

 

Table 3.6.  Comparison between Different DE Methods for Benchmark Test Functions 

(Category 3). 

  DWM-DE SWM-DE SDE DE/ 
local-to-best/ 

1 

DE/rand/1 
with per-vector 

-dither 

 Mean 0.4883 67682.17 207.3875 147.6601 6835946 

f17 Best 0.1582 8.0881 22.4585 4.7027 149.9788 

 Std Dev 0.2989 289798.5 291.9504 391.5459 450.1213 

  

 Mean 8.3213 9.6949 124.7772 34.9675 160.9108 

f18 Best 0.0063 3.3497 87.5478 16.9349 136.2236 

 Std Dev 4.4707 3.155 10.5849 11.9889 10.8145 

  

 Mean 1.0243 2.0471 2. 83 3.0293 54.1213 

f19 Best 0.8751 1.1207 1.5661 1.0394 33.3442 

 Std Dev 0.0576 1.1589 0.4224 1.9004 10.991 

  

 Mean 0.3199 3.983 0.7723 4.6762 17.728 

f20 Best 0.0271 0.2236 0.0261 2.2245 7.1453 

 Std Dev 0.3194 3.5579 2.9323 1.5461 3.687 

  

 

f21 

Mean -12568.8 -12254.1 -12475.8 -10328.1 -10128.1 

Best -12569.5 -12563.5 -12569 -11004.5 -11272.4 

Std Dev 0.6883 181.3254 145.1123 391.6365 560.2403 

 

 

f22 

Mean 0.000001 0.00583 0.003886 0.002062 0.001943 

Best 0 0 0 0 0 

Std Dev 0.000001 0.005322 0.005322 0.004286 0.004345 

 

 
f23 

Mean -43.315756 -43.31493 -43.315719 -43.315739 -43.310539 

Best -43.315859 -43.315862 -43.315866 -43.315859 -43.315487 

Std Dev 0.000219 0.002076 0.000187 0.000221 0.005238 

 

 

f24 

Mean 1.629914 1.855742 9.812808 8.221035 10.605929 

Best 0.644249 0.75169 8.753928 6.868805 9.863131 

Std Dev 0.572477 0.624029 0.342526 0.589078 0.250125 
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Fig.8  
Fig. 3.8.  Multimodal functions with many local minima. 
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 To summarise, the performance enhancement of the proposed DWM-DE for 

multimodal functions with many local minima is significant.  In particular, DWM-DE can 

offer much better searching operation to avoid the chance of get trapped in local optimum.  

 

4.  Functions with shift and rotate 

 

 Five functions with shift and rotate is introduced to test the performance of the DWM-

DE.  Three functions are unimodal functions.  They are the Shifted sphere model, Shifted 

Schwefel’s problem 1.2, and Shifted rotated high conditioned elliptic function.  Two 

functions are multimodal functions.  They are the Shifted Rosenbrock’s function, and Shifted 

Rastrigin’s function.   

 Some of the benchmark functions in the previous three categories have drawbacks as 

the elements in the optimum vector might have the same value for different dimensions 

owing to the symmetry nature.  The global optimum is normally located at the centre of the 

searching domain.  Some optimisers are designed to converge to the centre of the searching 

domain even no searching direction is provided.  Hence, this kind of benchmark functions 

might not be good to evaluate the real performance of optimisers.  To overcome these 

drawbacks, shift and rotate are introduced to the benchmark test functions to generate 

optimum points with different numerical values.  The optimum point is not lying at the centre 

of the searching domain.   

 The experimental results for these functions are listed in Table 3.7 and shown in Fig. 

3.9.  The results show that the proposed DWM-DE is still able to offer the best performance.  

The double wavelet mutations offer significant improvement on searching the optimum point.  

The solution reliability and quality offered by DWM-DE are good. 
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Table 3.7.  Comparison between Different DE Methods for Benchmark Test Functions 

(Category 4). 

  DWM-DE SWM-DE SDE DE/ 
local-to-best/ 

1 

DE/rand/1 
with per-vector 

-dither 

 Mean 0.000742 0.10379 41.30417 349.7417 26.59024 

f25 Best 0.000244 0.008027 0.019934 7.378115 13.61648 

 Std Dev 0.000302 0.074309 135.404 389.9865 10.21125 

  

 Mean 0.011645 3.756602 199.2697 374.9674 575.92 

f26 Best 0.002418 0.213621 0.123243 3.066111 259.5999 

 Std Dev 0.004996 3.114776 466.9468 429.4013 163.9056 

  

 Mean 0.00149 39.90172 194.3431 0.004001 2.516334 

f27 Best 0.000056 0.082571 0.000341 0.000096 0.396908 

 Std Dev 0.001327 131.0532 815.1713 0.028289 1.447321 

  

 Mean 4.760516 7.149275 5.435293 4.099365 11.69429 

f28 Best 0.001795 0.000027 0.009373 0.00047 0.008133 

 Std Dev 8.102966 10.73707 8.352652 6.416724 15.96312 

  

 

f29 

Mean 8.267052 126.6133 10.32804 35.18819 159.3997 

Best 2.004883 103.3226 5.175221 12.95799 127.034 

Std Dev 2.98555 8.730934 3.015084 10.97512 10.40491 
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(c) 

  

(d) 

 

(e) 

Fig. 3.9.  Functions with shift and rotate. 
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D.  The T-Test 

 

 Student T-Test determines whether two groups of data are statistically different from 

each other.  It is particularly useful when the analysis involves two groups of random data 

that follow a normal distribution.  The t-value generated by the Student T-Test is a ratio 

between the means difference and standard deviations of the two sample groups: 
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2

12   (3.17) 

 

where 1g  and 2g  are respectively the mean of the best fitness values of the two methods; 

σ1 and σ2 are respectively are the standard deviations of the best fitness values of the two 

methods respectively; and ξdegree is the number of samples in the group.  For 50 trials, we 

have the ξdegree equal to 50.  Table 3.8 shows the t-values of DWM-DE with the other 

methods.  If the t-value is undefined, it is denoted as N/A.  If the value of t is equal to or 

larger than 1.645, we have 95% confidence that a significant difference between the two 

algorithms is observed.   In most of the cases, the value of t in the experiment is larger than 

1.645.  We can conclude that there are significantly differences of the DWM-DE with other 

methods.  
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Table 3.8.  t-Value between DWM-DE and Other Algorithms. 

 
Functions t-value 

between 

DWM-DE 

and SWM-

DE 

t-value 

between 

DWM-DE 

and SDE 

t-value 

between 

DWM-DE 

and  DE/ 

local-to-

best/ 

1 

t-value 

between 

DWM-DE 

and  

DE/rand/1 

with per-

vector 

-dither 

f1 3.106535 4.396617 7.568123 29.28583 

f2 11.97319 274.8664 18.24283 54.5784 

f3 5.539252 41.57059 9.705914 44.80157 

f4 5.90861 19.61271 10.67363 22.19623 

f5 24.0406 9.866993 33.41888 72.54976 

f6 3.489848 36.80786 7.659204 58.28451 

f7 1.808415 2.034921 5.024374 8.507825 

f8 5.49971940 7.378506 N/A 7.172083 

f9 N/A N/A N/A N/A 

f10 1.860521 1.655212 1.084652 2.712445 

f11 N/A N/A N/A N/A 

f12 N/A 0 N/A 3.535534 

f13 N/A N/A N/A N/A 

f14 1.224414 2.69834 2.477622 4.536719 

f15 21.5656321 53.64307 31.78391 95.91962 

f16 0 2.236068 2.236068 5.09902 

f17 1.651429 5.011117 2.657828 10.73876 

f18 4.521753 85.52812 39.58508 109.6375 

f19 6.232955 20.30214 7.456842 34.15952 

f20 7.250986 1.084521 19.51148 33.26134 

f21 11.0344 8.376944 38.8019 34.21467 

f22 7.74469251 5.1618 3.40025 3.160417 

f23 2.79791516 0.908512 0.38636 7.036571 

f24 1.88564606 86.73324 56.73815 101.5953 

f25 1866.1629 0.2252802 0.229957 25.50071 

f26 38.6004 0.09139 0.20335 2.14371 

f27 0.2323165 0.0292461 313.0812 120.0552 

f28 1.3201740 0.4982667 -0.61887 2.163564 

f29 138.99749 11.447236 20.80993 128.9796 
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E.  Sensitivity of the Shape Parameter for DWM-DE 

 

 For different values of the shape parameter wm , the proposed DWM-DE may 

perform differently.  In this section, we are going to evaluate the effect to the performance for 

different values of the shape parameter wm .  Table 3.9 lists the mean values of the solution 

obtained by DWM-DE under different setting of the shape parameter wm .  In these 

experiments, the parameter λ is fixed at 10000.  Five values of wm  are used to test the 

performance: 0.2, 0.5, 1, 2, and 5.  Referring to the experimental result reported in Table 3.9, 

the value of wm  does not affect the performance significantly in some functions.  However, 

the performance of the proposed DWM-DE is sensitive to the value of the parameter wm  in 

some other functions.  We are not able to generate any rules or methods to choose the best 

value of the parameter wm .  As a result, we suggest the user to set the value of the parameter 

wm  to 1 to simplify the usage of DWM-DE. 

 

. 

Table 3.9.  Sensitivity of Shape Parameter for Wavelet Mutation. 
 

Functions 
wm =0.2 wm =0.5 wm =1 wm =2 wm =5 

f1 0.1022 0.4705 0.5902 1.4617 0.6216 

f2 0.0065 0.0144 0.0961 0.3188 16.7615 

f3 0 0 0 0.12 1.76 

f4 0.0329 0.033 0.0385 0.044 0.0582 

f5 0.4248 0.7679 1.4127 2.771 4.5791 

f6 0.3018 0.5405 0.388 0.937 0.7229 

f7 -1 -1 -1 -0.9999 -0.9798 

f8 0.998 0.998 0.998 0.998 7.2744 

f9 -1.913223 -1.913223 -1.913223 -1.913223 -0.564333 

f10 0.0014 0.001 0.0009 0.0013 0.0016 

f11 -1 -1 -1 -1 -1 

f12 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

f13 -3.8628 -3.8627 -3.8628 -3.8623 -3.862 

f14 -3.3121 -3.312 -3.3124 -3.3186 -3.3059 
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f15 -17369.000322 -17369.449901 -17369.449901 
 

-17369.449901 -15666.236432 

f16 -78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

f17 0.1728 0.4728 0.4883 1.308 7.9534 

f18 5.4248 4.9128 8.3213 10.4683 10.9009 

f19 0.9953 1.0694 1.0243 0.9733 0.9356 

f20 0.0457 0.2032 0.3199 1.2207 1.7944 

f21 -12569.4 -12569.1 -12568.8 -12567.5 -12554.9 

f22 -3.322 
 

-3.322 
 

-3.322 
 

-3.322 
 

-3.322 
 

f23 -17369.449901 
 

-17369.449901 
 

-17369.449901 
 

-17369.449901 
 

-17369.449901 
 

f24 -78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

f25 1.334 0.975 0.000742 0.00642 2.03452 

f26 3.43453 2.45446 0.011645 0.34354 2.33325 

f27 6.56546 3.46554 0.00149 4.35534 5.466645 

f28 8.76945 6.742316 4.760516 4.44436 4.770212 

f29 10.43546 9.445051 8.267052 11.234099 15.243094 

 

 

F.  Sensitivity of the Parameter λ for DWM-DE 

 

 For different values of the parameter λ, the proposed DWM-DE may perform 

differently.  In this section, we are going to evaluate the effect to the performance for 

different values of the parameter λ.  Table 3.10 lists the mean values of the solution obtained 

by DWM-DE under different setting of the parameter λ.  In these experiments, the value of 

wm  is fixed at 1.  Four values of the parameter λ are used to test the performance: 100, 1000, 

10 000, and 100 000.  Referring to the experimental result reported in Table 3.10, the value λ 

does not affect the performance significantly in most of the functions.  Similar to the 

parameter wm .  We are not able to generate any rules or methods to choose the best value of 

the parameter λ.  As a result, we suggest the user to set the value of the parameter λ to 10000 

to simplify the usage of the DWM-DE. 
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Table 3.10.  Sensitivity of Parameter λ for Wavelet Mutation. 

 
Functions λ =100 λ =1000 λ =10000 λ =100000 

f1 0.3202 0.8152 0.5902 1.4945 

f2 0.0131 0.0357 0.0961 0.0359 

f3 0 0.02 0 0.02 

f4 0.0405 0.0395 0.0385 0.0395 

f5 0.6381 1.0508 1.4127 1.5449 

f6 0.4413 0.7524 0.388 0.8447 

f7 -1 -0.9997 -1 -1 

f8 -1.913223 -1.913223 -1.913223 -1.913223 

f9 0.998 0.998 0.998 0.998 

f10 0.0011 0.001 0.0009 0.0011 

f11 -1 -1 -1 -1 

f12 -1.0316 -1.0316 -1.0316 -1.0316 

f13 -3.8628 -3.8619 -3.8628 -3.8623 

f14 -3.3122 -3.3145 -3.3124 -3.3211 

f15 -16369.1234 -17369.449901 -17369.449901 -17369.449901 

f16 -78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

f17 0.3142 0.6711 0.4883 0.9591 

f18 6.7112 7.7008 8.3213 8.3281 

f19 1.0369 1.0698 1.0243 1.0726 

f20 0.2116 0.3268 0.3199 0.4361 

f21 -12569.1056 -12568.6379 -12568.8411 -12568.2966 

f22 -3.322 
 

-3.322 
 

-3.322 
 

-3.322 
 

f23 -17369.449901 
 

-17369.449901 
 

-17369.449901 
 

-17369.449901 
 

f24 -78.332331 
 

-78.332331 
 

-78.332331 
 

-78.332331 
 

f25 3.97655 0.000742 0.000944 0.05642 

f26 3.56753 0.011645 0.013333 0.343434 

f27 7.22233 0.00149 0.02345 4.35732 

f28 7.70043 4.760516 4.760888 4.44367 

f29 15.11532 8.267052 8.267052 12.20008 
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IV CONCLUSION 
  

The design detail of the DWM-DE algorithm is discussed in this chapter.  To help the 

evolution, two stages of wavelet operation are embedded in the standard DE algorithm.  By 

introducing the double wavelet mutations in DE, the searching process is enhanced by 

offering an effective balance between the exploration and exploitation of the searching space 

for better solution reliability and quality.  In the DE mutation operation, a wavelet function is 

employed to control the mutation factor F.  In the DE crossover operation, a wavelet-based 

second mutation mechanism is proposed to modify the trial vectors within the population.  A 

suite of 29 benchmark test functions is employed to test the performance of the proposed 

DWM-DE.  Experiment results show that the proposed DWM-DE is a useful tool for solving 

optimisation problems, and it offers better results in terms of solution reliability, solution 

quality and convergence rate.  The experiment results reflect that DWM-DE is particularly 

suitable for complex problems with a high dimension (≥20). 

 



Page | 77  

 

Chapter 4  
 
 

INTELLIGENT OPTIMISER 

WITH  

WAVELET-MUTATED 

DIFFERENTIAL EVOLUTION 

 

I INTRODUCTION 

 

 In this chapter, we discuss a proposed intelligent optimiser.  It operates with two identical 

optimisation algorithms and a fuzzy controller.  The two optimisation algorithms are operated in 

parallel with different initial conditions.  The fuzzy controller is used to control the parameters of 

the two optimisation algorithms.  The parallel implementation framework aims at enhancing the 

optimisation performance.  The optimisation algorithm is enhanced from the standard 

Differential Evolution (DE) algorithm by introducing a wavelet mutation in the DE crossover 

operation.  We name this algorithm as Wavelet-Mutated Differential Evolution (WM-DE).  The 

wavelet mutation operation aims to achieve a balance between the exploration and exploitation 

of the searching space.  In the early stage of searching, we want more exploration while more 
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exploitation is desired at the later stage of searching.  Exploration brings a wider searching in a 

larger solution space.  Exploitation brings the searching of the solution space in a small area to 

reach a fine-tuned solution.  This mechanism can be realised by a wavelet function, which is a 

mathematical tool to model seismic signals in a finite domain.  The performance of DE can be 

improved by the wavelets properties in terms of convergence speed, solution quality and solution 

reliability in a statistical sense.  A detailed discussion on wavelet-based mutation has been given 

in Chapter 3. 

 In Chapter 3, we have proposed a novel optimisation algorithm called DWM-DE, which 

can successfully enhance the DE performance on solution reliability, convergence speed and 

solution quality.  However, the performance of DWM-DE still depends quite much on some 

control parameters and the setting of the initial conditions.  To overcome this drawback, a fuzzy 

controller is employed in the proposed intelligent optimiser to control the parameter values 

adaptively during the progress of searching.  To reduce the dependence on initial conditions of 

the optimisation algorithm, a parallel implementation framework involving two WM-DE engines 

is proposed.  To reduce the number of control parameters as a compensation for the increase of 

complexity brought by the fuzzy controller, we propose to use a single wavelet operation instead 

of double.  The resulting system consists of two WM-DE engines running in parallel at different 

initial conditions to tackle the same objective function.  The fuzzy controller in the proposed 

intelligent optimiser captures the on-line population information from the two WM-DE engines.  

The difference between them is used to determine the parameter values of the two engines for the 

next generation of evolution.  The Student T-Test method is introduced to analyse the population 

information from two WM-DE engines.   
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 Student T-Test is a statistical method to determine whether the data of two groups are 

statistically different from each other in terms of their mean values.  In the proposed intelligent 

optimiser, the Student T-Test method is used to identify the population difference in terms of 

mean fitness values and generate a t-value.  Then, the individual population standard deviations 

and the t-value act as the inputs of an internal fuzzy controller to determine the next generation’s 

F and Cr values for the two WM-DE algorithms.  In practice, the two WM-DE engines act as a 

pairing system with additional searching information shared between each other.  The result is a 

closed-loop adaptive control system that supports the intelligent optimiser for better performance.  

Thanks to the Student T-Test analysis and the fuzzy controller, the solution reliability can be 

enhanced when the fuzzy controller tries to minimise the t-value.  A smaller t-value means a 

smaller difference between the populations of the two WM-DE engines, which keep guiding 

each other to the optimal point. 

 The organisation of this chapter is as follows.  The proposed intelligent optimiser and the 

development of the fuzzy controller are presented in Section II.  Section III, discuss the 

experimental results on applying the intelligent optimiser to 29 benchmark test functions.  A 

conclusion is drawn in Section IV. 

 

 

II INTELLIGENT OPTIMISER WITH WAVELET-MUTATED DIFFERENTIAL 

EVOLUTION  

 

 The proposed intelligent optimiser has an implementation framework that contains 

several parts.  Fig. 4.1 shows the block diagram of the proposed intelligent optimiser.  In addition, 

the pseudo code for its implementation is given in Fig. 4.2.  The major parts in the intelligent 
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optimiser are two WM-DE engines.  On doing the optimisation, the two WM-DE engines run in 

parallel to tackle the same objective function with two different initial populations.  The initial 

populations are generated randomly at the beginning of the searching process.  When the two 

WM-DE engines are operating, their individual populations at each generation (iteration) will be 

analysed by the population analysers as shown in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 

 

The Intelligent Optimiser 

 

WM-DE  

Engine 1 

WM-DE  

Engine 2 

 

Population 

Analyser 

Population 

Analyser 

 

Student  

T-Test 

Fuzzy 

Controller 

Px,g1 

αg2, σg1 

αg1, σg2 

tg, σg1, σg2 

Px,g2 

 

Px,g1: Current population from WM-DE Engine 1 

Px,g2:  Current population from WM-DE Engine 2 

Fg1:    Next F for WE-DE Engine 1 

Fg2:   Next F for WE-DE Engine 2 

Crg1:  Next Cr for WE-DE Engine 1 

Crg2:  Next Cr for WE-DE Engine 2 

αg1:  Mean of fitness from WE-DE Engine 1's population  

αg2:  Mean of fitness from WE-DE Engine 2's population 

σg1:  Standard deviation of fitness from WE-DE Engine 1's population  

σg2:  Standard deviation of fitness from WE-DE Engine 2's population  

tg:   Student T-test result based on populations of WE-DE engines 

Comparator 

Fg1, Crg1 

Fg2, Crg2 

Fig. 4.1.  Block diagram of the intelligent optimiser. 
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begin 

    Initialise the population for WM-DE Engine 1 

    Initialise the population for WM-DE Engine 2 

    while (not termination condition) do 

         begin 

               WM-DE Engine 1 operation for one iteration 

               Determine the values of αg1 and σg1  

               WM-DE Engine 2 operation for one iteration  

               Determine the values of αg2:  and σg2  

               Calculate tg by (4.3) 

               Determinate the new value of Fg1 by the fuzzy controller           

               Determinate the new value of Fg2 by the fuzzy controller 

               Determinate the new value of Crg1 by the fuzzy controller           

               Determinate the new value of Crg2 by the fuzzy controller 

         end  

end 

 

 In the population analyser, the fitness value of each vector is calculated.  Then, the mean 

and standard deviation of fitness values within the population of each WM-DE engine are found.  

The Student T-Test algorithm analyses the difference between the two populations and generates 

a t-value.  The t-value and the standard deviations obtained from the two populations are input to 

the internal fuzzy controller, which determines the F and Cr values for the WM-DE engines for 

the next iteration (generation).  As a result, a closed-loop adaptive intelligent optimiser is 

realised.  At the end of the evolution, a comparator is employed to compare the results from the 

two WM-DE engines and adopt the best solution as the finally result of the intelligent optimiser.  

The detailed implementation of the intelligent optimiser is given as follows. 

 

 

 

 

Fig. 4.2.  Pseudo code of the intelligent optimiser. 
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A.  Population Analyser 
 

 The major objective of the population analyser is to estimate the movement of the 

population.  In the proposed intelligent optimiser, each WM-DE engines move their populations 

within their individual searching domains.  In the ideal case, after several times of iteration, all 

the population should converge to the area near the global optimal point.   To understand the 

progress of searching of the WM-DE engine, we could determine the mean and standard 

deviation of the fitness values of the vectors in the population.  Along the searching process, the 

standard deviation of the fitness should be gradually decreasing.  In the proposed system, two 

WM-DE engines are operated in parallel to handle the same objective function and solution 

space.  In the later stage of searching, the difference between the means from the two WM-DE 

engines should be very small.  Both the mean and the standard deviation are thus used to analyse 

the progress of searching. 

 The normalised mean fitness value of the current generation within a WM-DE engine is 

given by: 


pN

i

gi

p

g xf
N

)(
1

,

   

       (4.1) 

where Np is the number of vectors in the current generation,   denotes the l2 norm, and xi,g is 

one of the vectors in the current iteration.  The normalised standard deviation of the fitness value 

of the current generation within a WM-DE engine is given by: 
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         (4.2) 



Chapter 4: Intelligent Optimiser with Wavelet-mutated Differential Evolution

 

Page | 83  

 

B.  Student T-Test 

 

 In the proposed intelligent optimiser, the Student T-Test is employed to identify the 

population difference between the two WM-DE engines.  The Student T-Test is a useful method 

to perform Hypothesis Test (HT) in the field of statistical research.  HT works by collecting data 

and measuring the difference between the particular sets of data to prove the null hypothesis, 

which determines an initial guess of some experimental result.   If the initial guess of the result is 

correct, we label the null hypothesis as TRUE, otherwise as FALSE.   

 Student T-Test determines whether the data of two groups are statistically different from 

each other in terms of their mean values.  It is particularly useful when the analysis involves two 

groups of random data that follow a normal distribution.  The t-value generated by the Student T-

Test is a ratio between the means difference and standard deviations of the two sample groups:  
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         (4.3) 

where tg is the t-value of the g-th generation; 
1g  and 

2g  are respectively the mean values from 

the WM-DE engine one and WM-DE engine two; 1g  and 2g  are respectively the standard 

deviations from the WM-DE engine one and WM-DE engine two; and ξdegree is the number of 

samples in the group. 

 The t-value can be zero, positive and negative.  The t-value being zero means that there is 

no difference between the two groups.  To make the t-value meaningful, we need to consider the 

significance of the HT to assure the result is statistically meaningful.  To understand the 
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significance, we need to set an alpha level, which is generally considered as a risk level.  In most 

of the scientific research, we set the alpha level at 0.05.  The alpha level governs the probability 

that the means of the two tested groups have a statistically significant difference.  The 

significance of t-value changes with the degree of freedom ξdegree, which is the sum of the 

number of samples in the two tested groups minus two.  Given the alpha level, the degree of 

freedom ξdegree, and the t-value, we can determine whether the t-value is significant enough to 

prove the null hypothesis. 

 In the proposed optimiser, the value of ξdegree is determined by the following equation: 

 221deg  ppree NN           (4.4) 

where Np1 is the number of vectors in the population of the WM-DE engine 1 and Np2 is the 

number of vectors in the population of the WM-DE engine 2.  When we are using the intelligent 

optimiser, we have a null hypothesis that there should not have any significant difference 

between the two WM-DE engines as they are solving the same objective function.  Along the 

searching operation, the t-value should be kept small and less than the significant level.  

However, in most of the cases of solving different optimisation problems, the t-value could not 

be kept small because of the randomness in the searching process of WM-DE.  Therefore, an 

internal fuzzy controller is employed in the proposed optimiser to control the searching process 

of WM-DE in order to reduce the chance that the two populations have significant differences. 
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C.  Fuzzy Controller 

 

 The fuzzy controller is used to perform decision-making via a fuzzy inference process. 

The inference process involves the operation of fuzzy logic, fuzzy rules and fuzzy membership 

functions.  The inputs and outputs of the fuzzy controller are descripted in linguistic terms with 

fuzzy membership functions.  The fuzzy controller can perform decision-making based on 

human knowledge by using fuzzy logic and fuzzy rules.   

To implement the fuzzy inference system, there are two major types of implementation: 

Mamdani method and the Sugeno method.  In the proposed intelligent optimiser, the Mamdani 

method is adopted to perform fuzzy inference for determining the WM-DE parameters.  For the 

Mamdani method, the inputs and outputs are described by fuzzy sets.  To realise making decision, 

the linguistic control rules in fuzzy controller are designed by experienced human experts.  At 

the final stage of decision-making in the fuzzy controller, a process called defuzzification is used 

to generate the crisp output values from the corresponding fuzzy sets and corresponding 

membership functions.  In the proposed intelligent optimiser, the defuzzification is realised by 

the method of centre of gravity (COG). 

 For the population-based searching algorithm like WM-DE, because of the randomness 

of the searching process, different experiments of a given problem may have different movement 

of the population.  With different population distribution information in different stages of the 

searching process, we could have different system parameter values for the WM-DE engines.  

The way of choosing those system parameter values could be described as some heuristic rules.  

As a result, a fuzzy controller can be employed to determine the F and Cr values.  The t-value of 

the current generation and the standard deviations of the population fitness from the two WM-
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DE engines can act as the input for the fuzzy controller to determine the F and Cr values for the 

next generation. In the proposed intelligent optimiser, the fuzzy controller act as a closed-loop 

control system to vary the parameter values of the two WM-DE engines at different searching 

states. 

 A fuzzy controller processes linguistic variables, and each variable normally consists of a 

set of linguistic terms.  In the proposed intelligent optimiser, the linguistic terms are modelled by 

triangular-shaped membership functions, which can be written as: 
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where xm(t) is the input of the fuzzy membership function, m=1, 2,…,mf; mf denotes the number 

of membership functions.  Fig. 4.3 represents three triangular-shaped membership functions (of 3 

fuzzy terms M1, M2 and M3) for an input variable.  The input range is between zero and one.  

Every input and output of the fuzzy controller in the proposed intelligent optimiser has three 

linguistic terms that cover different values of input and output.   The reason for choosing the 

triangular-shaped membership function is that it is less computational demanding than other 

types of membership functions.  The triangular-shaped membership function requires simple 

arithmetic operations only.   
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Fig. 4.3.  Triangular-shaped membership functions. 

 

In the proposed system, the membership functions for the three inputs are ftg,m(tg, atg,m, btg,m, 

ctg,m), fσg1,m(σg1, aσg1,m, bσg1,m, cσg1,m) and fσg2,m(σg2, aσg2,m, bσg2,m, cσg2,m).  And the four outputs are 

fFg1,m(Fg1, aFg1,m, bFg1,m, cFg1,m), fFg2,m(Fg2, aFg2,m, bFg2,m, cFg2,m), fCrg1,m(Crg1, aCrg1,m, bCrg1,m, cCrg1,m) 

and fCrg2,m(Crg2, aCrg2,m, bCrg2,m, cCrg2,m).  In the inference process, the fuzzy controller generates 

the fuzzified output by processing the fuzzified inputs with a set of fuzzy if-then rules.  There are 

four formats of rules in the fuzzy rule base, one for each output: 
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Rule  :IF           tg         is      ftg,m(tg, atg,m, btg,m, ctg,m) 

            AND      σg1        is      fσg1,m(σg1, aσg1,m, bσg1,m, cσg1,m) 

            THEN   Fg1        is     fFg1,m(Fg1, aFg1,m, bFg1,m, cFg1,m) 

Rule  :IF           tg         is      ftg,m(tg, atg,m, btg,m, ctg,m) 

            AND      σg2        is      fσg2,m(σg2, aσg2,m, bσg2,m, cσg2,m) 

            THEN   Fg2        is     fFg2,m(Fg2, aFg2,m, bFg2,m, cFg2,m) 

Rule  :IF           tg         is      ftg,m(tg, atg,m, btg,m, ctg,m) 

            AND      σg1        is      fσg1,m(σg1, aσg1,m, bσg1,m, cσg1,m) 

            THEN   Crg1       is      fCrg1,m(Crg1, aCrg1,m, bCrg1,m, cCrg1,m) 

Rule  :IF           tg         is      ftg,m(tg, atg,m, btg,m, ctg,m) 

            AND      σg2        is      fσg2,m(σg2, aσg2,m, bσg2,m, cσg2,m) 

            THEN   Crg2      is      fCrg2,m(Crg2, aCrg2,m, bCrg2,m, cCrg2,m) 

 

The rule number is denoted by , where  =1,2, …,nr; nr is the total number of rules in the fuzzy 

rule base.  

 After the fuzzification of the inputs, aggregation of each rule output is performed to 

generate an output as a single fuzzy set.  The output of aggregation for the corresponding fuzzy 

rule is defined as follows: 

),min( ,2,1  ININo                         (4.6) 

where IN1,τ and IN2,τ are the two input membership function values of the fuzzy rule .  The fuzzy 

output of each rule is realised as follows. 

 OUTPUToOUT           (4.7) 

where OUTτ is the output membership function of the corresponding rule and OUTPUTτ is the 

defined output membership function.   

During the inference process, we map all the output membership functions from all rules 

to form the aggregated result for performing defuzzification.  The process of defuzzification is 



Chapter 4: Intelligent Optimiser with Wavelet-mutated Differential Evolution

 

Page | 89  

 

used to determinate the numerical output of the fuzzy system.    In the intelligent optimiser, the 

defuzzification is implemented by using the Centroid method, which uses the centroid point of 

the aggregated result as the numerical result. The Centroid defuzzification is given by, 



 


dyOUT

ydyOUT
ty

all

all
)(               (4.8) 

where OUTall is the aggregated result of all the corresponding rules, and y(t) is the corresponding 

numerical output of the fuzzy system. 

 In the proposed intelligent optimiser, the membership functions for the inputs and outputs 

of the internal fuzzy controller are shown in Fig. 4.4 and Fig. 4.5.  The design of the membership 

functions is based on many experiments with the knowledge of the characteristics of DE.  For the 

input of normalised standard deviation, the range is between 0 and 0.2.  We consider the value 

smaller than 0.05 as LOW and the value larger than 0.15 as HIGH.  For the input of t-value, the 

range is between 0 and 10.  For, ξ = 50, if the t-value is equal or higher than 1.645, we could 

have the confidence that those two engines’ populations have significant difference between each 

other.  As a result, we consider the t-value smaller than 1.645 as LOW.   

For the outputs of F and Cr, they are ranged between 0 and 0.9. In most of the application, 

DE works well with the values of F and Cr between 0.3 and 0.5.  We consider the value of F and 

Cr as LOW if they are smaller than 0.1, and we consider the value of F and Cr as HIGH if they 

are larger than 0.7. 
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Fig. 4.4.  Input membership functions. 

 

 

 

 

 
 
 

Fig. 4.5.  Output membership functions. 
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Totally 36 fuzzy rules can be generated.  They are: 

For the F parameter: 

1. IF (σg1 is low)    AND (tg is low)   THEN (Fg1 is low) 

2. IF (σg1is medium)  AND (tg is low)   THEN (Fg1 is low) 

3. IF (σg1 is high)   AND (tg is low)   THEN (Fg1 is medium) 

4. IF (σg1 is low)    AND (tg is medium)   THEN (Fg1 is medium) 

5. IF (σg1 is medium)   AND (tg is medium)  THEN (Fg1 is medium) 

6. IF (σg1 is high)   AND (tg is medium)   THEN (Fg1 is high) 

7. IF (σg1 is low)    AND (tg is high)   THEN (Fg1 is medium) 

8. IF (σg1 is medium)   AND (tg is high)   THEN (Fg1 is medium) 

9. IF (σg1 is high)   AND (tg is high)  THEN (Fg1 is high) 

10. IF (σg2 is low)    AND (tg is low)   THEN (Fg2 is low) 

11. IF (σg2 is medium)  AND (tg is low)   THEN (Fg2 is low) 

12. IF (σg2 is high)   AND (tg is low)   THEN (Fg2 is medium) 

13. IF (σg2 is low)    AND (tg is medium)  THEN (Fg2 is medium) 

14. IF (σg2 is medium)   AND (tg is medium)  THEN (Fg2 is medium) 

15. IF (σg2 is high)   AND (tg is medium)  THEN (Fg2 is high) 

16. IF (σg2 is low)    AND (tg is high)   THEN (Fg2 is medium) 

17. IF (σg2 is medium)   AND (tg is high)   THEN (Fg2 is medium) 

18. IF (σg2 is high)   AND (tg is high)  THEN (Fg2 is high) 

 

For the Cr parameter: 

1. IF (σg1 is low)    AND (tg is low)   THEN (Crg1 is low) 

2. IF (σg1 is medium)  AND (tg is low)   THEN (Crg1 is low) 

3. IF (σg1 is high)   AND (tg is low)   THEN (Crg1 is medium) 

4. IF (σg1 is low)    AND (tg is medium)   THEN (Crg1 is medium) 

5. IF (σg1 is medium)   AND (tg is medium)   THEN (Crg1 is medium) 

6. IF (σg1 is high)   AND (tg is medium)   THEN (Crg1 is high) 

7. IF (σg1 is low)    AND (tg is high)   THEN (Crg1 is medium) 

8. IF (σg1 is medium)   AND (tg is high)   THEN (Crg1 is medium) 

9. IF (σg1 is high)   AND (tg is high)  THEN (Crg1 is high) 

10. IF (σg2 is low)    AND (tg is low)   THEN (Crg2 is low) 

11. IF (σg2 is medium)  AND (tg is low)   THEN (Crg2 is low) 

12. IF (σg2 is high)   AND (tg is low)   THEN (Crg2 is medium) 

13. IF (σg2 is low)    AND (tg is medium)   THEN (Crg2 is medium) 

14. IF (σg2 is medium)  AND (tg is medium)   THEN (Crg2 is medium) 

15. IF (σg2 is high)   AND (tg is medium)   THEN (Crg2 is high) 

16. IF (σg2 is low)    AND (tg is high)   THEN (Crg2 is medium) 

17. IF (σg2 is medium)   AND (tg is high)   THEN (Crg2 is medium) 

18. IF (σg2 is high)   AND (tg is high)  THEN (Crg2 is high) 
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 The first of 18 rules are used for the F parameter and the second 18 rules are used for the 

Cr parameter.  In SDE, the F parameter is very important for the mutation operation that 

produces a new vector for the next generation.  On doing the DE mutation operation, the 

difference of two vectors is calculated and then multiplied by F.  Then, it is added to one of the 

vectors in the population to obtain a new vector for the next generation.  The F parameter 

controls the displacement from the old vector to the new vector.  A large value of F means the 

new vector will move far away from the original position.  The basic design principle of the 

fuzzy rules is that we want the searching to have a balance between the exploration and 

exploitation of the searching space.  In the early stage of searching, we want more exploration 

while more exploitation is desired at the later stage of searching.  By examining the population 

standard deviation of the fitness values, we can estimate the progress of searching of the WM-

DE engine.  In practice, the population is randomly distributed in the solution space in the early 

stage of the searching process, making the standard deviation to be large and the value of F to be 

high.  It moves towards the global optimal point along the searching at the later stage, making 

the standard deviation to be small and the value of F to be low.   

 With the null hypothesis that there should not have any significant difference between the 

two WM-DE engines as they are solving the same objective function, the t-value should tend to 

be small along the searching.  The rules for the F parameter are governed by two inputs: the 

population standard deviation of the fitness values and the t-value.  The two inputs are encoded 

with three linguistic terms.  As a result, nine rules can be formulated.  Since there are two WM-

DE engines in the intelligent optimiser and controlled by the fuzzy controller, and the control 

operation are based on the corresponding population standard deviation of fitness values of one 

engine, totally 18 rules for the F parameter can be formulated. 
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 Similarly, another 18 rules can be formulated for the Cr parameter.  The Cr parameter 

affects DE on doing the crossover operation, which modifies the vector elements after the DE 

mutation operation.  It can be considered as introducing some random disturbances to the DE 

operation.  Similar to the F parameter setting, we want the searching to have a balance between 

the exploration and exploitation of the searching space.  In the early stage of searching, we want 

more exploration while more exploitation is desired at the later stage of searching.  If the value 

of Cr is large, it means that there is a bigger difference between the resulting vector and the 

original vector.  To have more exploration in the early stage and more exploitation in the later 

stage, we want the value of Cr to be large in the early stage of the searching process.  As a result, 

the population can have more chance to move away from some local optima.  In the later stage of 

searching, we want the value of Cr to be small to do a fine-tuning for the final solution.  With the 

null hypothesis that there should not have any significant difference between the two WM-DE 

engines as they are using the same objective function, the t-value should tend to be small along 

the searching. 

 The block diagram of the internal fuzzy controller is shown in Fig. 4.6.  This fuzzy 

controller has 3 inputs and 4 outputs, and generates outputs for every iteration step. 
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D.  Wavelet-mutated Differential Evolution (WM-DE) 

 

 The Wavelet-mutated Differential Evolution (WM-DE) algorithm is a simplified version 

of Differential Evolution with Double Wavelet Mutations (DWM-DE) algorithm.  In WM-DE, 

only one wavelet mutation is taken after the DE crossover operation.  Fig. 4.7 shows the pseudo 

code for the WM-DE.  In the DWM-DE, the weighting F is generated by a wavelet function.  In 

the intelligent optimiser, the weighting F is generated by the fuzzy controller.  

begin 

Initialise the population 

      while (not termination condition) do 

       begin 

          Mutation operation by equation (3.2) 

          Crossover operation by equation (3.3) 

          Modifying the trail population vectors based on equation (3.15) 

          Evaluation of the fitness functions 

       end 

end 

 

Fig. 4.7.  Pseudo code of WM-DE. 

 

Fuzzy 

Controller 

tg  

 

σg1 

 

 σg2 

Fg1 

Fg2 

Crg1 

Crg2 

Fig. 4.6.  Inputs and outputs of the fuzzy controller. 
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III BENCHMARK TEST FUNCTIONS AND RESULTS  
 

A.  Benchmark Test Functions 
 

 In Chapter 3, a suite of 29 benchmark test functions is used to test the performance of the 

DWM-DE.  In this Chapter, the same suite of benchmark test functions is also used to evaluate 

the performance of the intelligent optimiser.  As discussed in Chapter 3, these 29 benchmark test 

functions covers many different kinds of optimisation problems and can be separated into four 

main categories.  The functions f1 - f8 (first category) are unimodal functions that involve a 

symmetric solution space and contain a single optimum point only.  The functions f9 - f16 are 

multimodal functions with a few local minima; they are put to the second category.  The third 

category covers the multimodal functions with many local minima; functions f17 - f24 belong to 

this category.  The last category contains functions with shift and rotate; functions f25 - f29 belong 

to this category, which are the shifted and rotated versions of some functions of the pervious 

categories.  The list of the benchmark test functions are shows in Table 3.1 and the definitions of 

these functions are listed in Table 3.2.   

 

B.  Experimental Setup 
 

 We evaluate the performance of SDE, DWM-DE (discussed in Chapter 3), DE/local-to-

best/1, DE/rand/1 with per-vector-dither and the proposed intelligent optimiser.  These five 

optimisation methods are employed to find the minimum values of the benchmark test functions.  

The list below shows the simulation conditions of the experiments: 
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• Shape parameter of the wavelet mutation ( wm ) (for DWM-DE and the proposed 

intelligent optimiser): 1   

• Parameter λ for the monotonic increasing function (for DWM-DE and the proposed 

intelligent optimiser): 10000. 

• Initial population: It is generated uniformly at random. 

• Mutation scaling factor (for SDE, DE/local-to-best/1  and DE/rand/1): F = 0.5 

• Crossover rate factor (for DWM-DE, SDE, DE/local-to-best/1  and DE/rand/1): Cr = 0.5  

• Population size: 50 

• Numbers of iteration for all algorithms: As listed in Table 4.1 
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Table 4.1.  Maximum Number of Iteration. 

Test Function No. of Iteration 

f1. Sphere model 500 

f2. Generalised Rosenbrock’s function 5000 

f3. Step function 100 

f4. Quartic function 200 

f5. Schwefel’s problem 2.21 500 

f6. Schwefel’s problem 2.22 500 

f7. Easom’s function 500 

f8. McCormick function 50 

f9. Shekel’s foxholes function 50 

F10. Kowalik’s function 100 

f11. Maxican hat function 50 

f12. Six-hump camel back function 50 

f13. Hartman’s family 1 50 

f14. Hartman’s family 2 100 

f15. Egg Holder function 1000 

f16. Styblinski-Tang function 50 

f17. Generalised penalised function 200 

f18. Generalised Rastrigin’s function 1000 

f19. Generalised Griewank’s function 500 

F20. Ackley’s function 500 

F21. Schwefel’s function 500 

f22. Schaffer function 500 

f23. Chichinadze function 100 

f24. Sine Envelope Sine Wave function 10000 

f25. Shifted Sphere model 500 

f26. Shifted Schwefel’s problem 1.2 500 

f27. Shifted rotated high conditioned elliptic function 200 

f28. Shifted Rosenbrock’s function 200 

f29. Shifted Rastrigin’s function 1000 
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C.  Results and Discussion 
 

 In this experiment, all results reported for the benchmark test functions are averaged ones 

out of 50 trials.   

1.  Unimodal functions 

 Function f1 has a smooth and symmetric surface around the solution.  It is a model of 

sphere.  Due to its smooth surface, most of the methods can converge to the global minimum but 

at different rates.  Fig. 4.8(a) shows the convergence rates.  It shows that the proposed intelligent 

optimiser could provide the best performance in terms of convergence rate.  In terms of mean 

cost value and best cost value, the proposed intelligent optimiser offers better result than the 

other methods as shown in Table 4.2.  In addition, the standard deviation is small, which means 

that the proposed intelligent optimiser offer a reliable searching mechanism.  By introducing the 

fuzzy control and the T-Test measurement in the proposed intelligent optimiser, the population 

distribution information can be studied by the optimiser to control the internal parameters of F 

and Cr during the searching.  Thanks to the T-Test measurement, we could help a stable progress 

of evolution.  This leads to better solution reliability reached by the proposed intelligent 

optimiser.   

 Function f2 is the Generalised Rosenbrock’s function.  It has a smooth and symmetric 

surface around the solution.  The function shape looks like a "Banana".  The solution space of 

this function contains a flat gorge.  Similar to f1, the main purpose of testing is to measure the 

convergence rate of the searching methods.  The result is shown in Fig 4.8(b).  The proposed 

intelligent optimiser offers the highest convergence rate.  When using the proposed intelligent 

optimiser, the solution quality is increased. In terms of mean value and standard deviation as 
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shown in Table 4.2, the intelligent optimiser and DWM-DE performs better than the other 

methods. 

 Function f3 is a Step function.  Most of the optimisation algorithms failed to handle the 

functions with flat surface because the optimisation algorithms could not obtains any searching 

direction from the flat surface.  Function f3 is one of the functions with many flat surfaces.  All 

the methods involve in this study could handle this function well as shown in Fig 4.8(c) and 

Table 4.2.  Thanks for the adaptive control inside the proposed intelligent optimiser, better 

solution quality, solution convergence rate and solution reliability can be obtained. 

 Function f4 is the Quartic function.  It contains a global minimum at the centre of the 

solution space.  The experiment results are shown in Fig 4.8(d) and Table 4.2.  The convergence 

rate offered by the proposed intelligent optimiser is much higher than that of the other DE 

methods.  After around 10 times of iteration, the proposed intelligent optimiser is able to reach 

the minimum. 

 Functions f5 is the Schwefel’s problem 2.21. The 4.8(e) shows the experiment results.  

Functions f6 is the Schwefel’s problem 2.22.  The experiment results are shown in Fig. 4.8(f).  

The convergence rate for functions f5 and f6 of the proposed intelligent optimiser is the highest.  

The best solution, mean and standard derivation provided by the intelligent optimiser are the best 

as shown in Table 4.2.   

 Function f7 is the Easom function.  The function was inverted for minimisation.  A very 

large solution space for this function is designed to test the performance of the proposed 

intelligent optimiser.  The result is shown in Fig. 4.8(g).  The convergence rate for functions f7 of 
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the proposed intelligent optimiser is the highest.   It gives better performance in terms of solution 

quality and reliability as shown in Table 4.2. 

 Function f8 is the McCormick function, which is a two-dimension benchmark function 

with a global minimum at f (0.54719, 1.54719) = 1.9133.  The McCormick function contains 

a flat and smooth search surface.  The experimental results show that the intelligent optimiser 

and DWM-DE can provide the best solution quality and the best solution reliability as shown in 

Table 4.2.  Moreover, Fig. 4.8(h) shows that the proposed intelligent optimiser can provide the 

highest rate of convergence. 
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Table 4.2.  Comparison between Different DE Methods for Benchmark Test Functions (Category 

1). 

  intelligent 

optimiser 

DWM-

DE 

SDE DE/ 

local-to-

best/ 

1 

DE/rand/

1 

with per-

vector 

-dither 

 Mean 0.035028 0.5902 0.9937 228.8271 411.8185 

f1 Best 0.000377 0.0605 0.4317 17.3954 206.3942 

 Std Dev 0.031695 0.5712 0.308 213.2461 99.2895 

  

 Mean 0.0002 0.0961 25.3632 40.3851 30.2437 

f2 Best 0.0002 0.0068 23.7534 26.9933 27.3151 

 Std Dev 0 0.0867 0.6442 15.6161 3.9049 

  

 Mean 0 0 11.24 4.7 51.54 

f3 Best 0 0 7 1 35 

 Std Dev 0 0 1.9119 3.4241 8.1346 

  

 Mean 0.0294 0.0385 0.2307 0.5176 4.2939 

f4 Best 0.0144 0.0172 0.1033 0.0798 1.7894 

 Std Dev 0.0091 0.0111 0.0684 0.3172 1.3556 

  

 Mean 1.2127  1.4127 5.5862 44.3662 22.7523 

f5 Best 0.6033 0.7089 3.7069 21.1518 19.1513 

 Std Dev 0.3432 0.3512 2.9702 9.0817 2.05 

  

 Mean 0.0285 0.388 3.3391 4.3577 27.5979 

f6 Best 0.0031 0.1151 2.3578 0.1878 20.7384 

 Std Dev 0.0250 0.187 0.5352 3.6601 3.2958 

  

 

f7 

Mean -1 -1 -0.9284 -0.66 -0.4641 

Best -1 -1 -1 -1 -1 

Std Dev 0 0 0.2488 0.4785 0.4454 

 

 

f8 

Mean -1.913223 -1.913223 -1.913199 -1.913223 -1.913152 

Best -1.913223 -1.913223 -1.91322 -1.913223 -1.913219 

Std Dev 0 0 0.000023 0 0.00007 
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(b) 
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(c) 

 

 
(d) 
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(e) 
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(g) 

 

 
(h) 

 

Fig. 4.8.  Results for unimodal functions. 
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 For unimodal functions, the proposed intelligent optimiser and DWM-DE can offer a 

higher rate of convergence.  More exploration would be done by the mutation operations during 

the early stage of evolution.  In the later stage of evolution, the fine-tuning ability of the wavelet 

operations leads to more exploitation of the small region around the global minimum.  Besides, 

by introducing the fuzzy control and the T-Test measurement in the proposed intelligent 

optimiser, the population distribution information can be studied by the optimiser to control the 

values of the internal parameters F and Cr during the searching.  As a result, better solution 

quality and solution convergence rate can be obtained.  Moreover, the small standard deviation 

values of the solutions show that the T-Test measurement could help a stable progress of 

searching within the two populations.  This leads to better solution reliability of the proposed 

intelligent optimiser.   In short, the proposed intelligent optimiser is the best to tackle unimodal 

functions among the DE methods covered in Table 4.2. 

 

2.  Multimodal functions with a few local minima 

 Eight multimodal functions with a few local minima are used to evaluate the five DE 

methods.  Those functions are the Shekel’s foxholes function, Kowalik’s function, Maxican hat 

function, Six-hump camel back function, Hartman’s family 1 function, Hartman’s family 2 

function, Egg holder function and Styblinski-Tang function.   The experimental results for these 

functions are listed in Table 4.3 and shown in Fig. 4.9.  

 For functions f9 to f14, as discussed in Chapter 3, the experimental results show that all the 

optimisation methods involved in the experiment offer similar results on searching the optimal 

point.  Although the functions contain a few local minima, no trapping in the local minima is 
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found in all the methods.  Yet, the proposed intelligent optimiser performs better than the other 

methods in term of solution quality, convergence rate, and solution reliability.  

 Function f15 is the Egg-holder function, which is a well-established benchmark test 

function for evaluating the performance of global optimisation algorithms.  It is a difficult test 

function to be optimised, especially when the dimension is high (>20).  The optimiser could be 

trapped in the local optima easily.  In the experiment, we set the Egg-holder function’s 

dimension to 20.  In terms of convergence speed, solution quality and solution reliability, the 

experimental results show that the intelligent optimiser performs better than the other methods.  

Meanwhile, when the dimension of the Egg-holder function is two, the intelligent optimiser just 

performs nearly the same as the conventional methods.  This test function demonstrates that 

when the dimension of the problem is high, the effect of the wavelet mutation becomes more 

significant.   

 Function f16 is the Styblinski-Tang function.  It is a 2-dimension benchmark function with 

the global minimum at f (0.903534, 0.903534) = 78.332.  This function has a bowl shape 

surface with four separated regions in which each region contains one local minimum.  Moreover, 

one of the four separated regions contains the global minimum.  Owing to the nature of four 

separated regions, an optimiser could not recover easily if it is trapped in one of the regions in 

the searching domain.  The experimental results are shown in Fig. 4.9(h).  The convergence rate 

of the proposed intelligent optimiser is the highest.  Both the proposed intelligent optimiser and 

DWM-DE give better performance in terms of solution quality and reliability as shown in Table 

4.3. 
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Table 4.3.  Comparison between Different DE Methods for Benchmark Test Functions (Category 

2). 

 

 

 

 Intelligent 

Optimiser  

DWM-DE SDE DE/ 

local-to-best/ 

1 

DE/rand/1 

with per-vector 

-dither 

 Mean 0.998 0.998 0.998 0.998 0.998 

f9 Best 0.998 0.998 0.998 0.998 0.998 

 Std Dev 0 0 0 0 0 

  

 Mean 0.0005 0.0009 0.0011 0.0015 0.0016 

f10 Best 0.0003 0.0005 0.0007 0.0003 0.0007 

 Std Dev 0.0001 0.0003 0.0008 0.0039 0.0018 

  

 Mean -1 -1 -1 -1 -1 

f11 Best -1 -1 -1 -1 -1 

 Std Dev 0 0 0 0 0 

  

 Mean -1.0316 -1.0316 -1.0316 -1.0316 -1.0315 

f12 Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 Std Dev 0 0 0.0001 0 0.0002 

  

 Mean -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 

f13 Best -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 

 Std Dev 0 0 0 0 0 

  

 

f14 

Mean -3.3199 -3.3124 -3.2909 -3.2911 -3.2777 

Best -3.3229 -3.322 -3.322 -3.322 -3.322 

Std Dev 0.0300 0.0303 0.0475 0.0527 0.0448 

 

 

f15 

Mean -26008.6 -25462.7 -21094.9 -11467 -10975.7 

Best -26333.5 -26333.5 -23402 -17668.3 -13185.6 

Std Dev 213.2864 546.7434 1093.533 1949.098 763.1555 

 

 

f16 

Mean -78.332331 -78.332331 -78.33233 -78.33233 -78.332318 

Best -78.332331 -78.332331 -78.332331 -78.332331 -78.332331 

Std Dev 0.000001 0.000001 0.000003 0.000003 0.000018 
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(e) 
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(g) 

 

(h) 

Fig. 4.9.  Results for multimodal functions with a few local minima. 
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 For multimodal functions with a few local minima, the proposed intelligent optimiser and 

DWM-DE can perform better on providing a higher rate of convergence.  More exploration 

could be done by taking advantage of the mutation operation.  During the later stage of evolution, 

the population can exploit the small region around the global minimum.  Besides, by introducing 

the fuzzy control and the T-Test measurement in the proposed intelligent optimiser, the 

population distribution information can be used by the optimiser to adjust the values of the 

internal parameters F and Cr adaptively during the searching.  As a result, better solution quality 

and convergence rate can be obtained.  Moreover, thanks to the T-Test measurement, we could 

realise a stable progress of searching within the two populations.  This leads to better solution 

reliability offered by the proposed intelligent optimiser.  It is reflected by the small standard 

deviation values of the solutions for the test functions.  In short, the proposed intelligent 

optimiser is the best to tackle multimodal functions with a few local minima when compared 

with the other methods. 

 

3.  Multimodal functions with many local minima 

 Functions f17 - f24 are multimodal functions with many local minima.  The experimental 

results for these functions are listed in Table 4.4 and shown in Fig. 4.10.  Function f17, f18, f19 are 

the Generalised penalised function, Generalised Rastrigin’s function and Generalised Griewank’s 

function respectively.  They are widely used as test functions for global optimisation algorithms.  

Those functions have a lot of local minima distributed regularly.  When the function dimension 

increased, the number of local minima increases exponentially.  In the experiments, the function 

contains plenty of local minima as the dimension is 30.  From Fig. 4.10, we can see that if the 
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proposed intelligent optimiser is used, the rate of convergence is improved.  Moreover, by 

introducing the fuzzy control and the T-Test measurement in the proposed intelligent optimiser, 

the population distribution information can be used by the optimiser to control the values of the 

internal parameters F and Cr adaptively during the searching.  As a result, better solution quality 

and convergence rate can be obtained.  With the support of the T-Test measurement, we could 

realise a more stable progress of searching within the two populations.  This leads to better 

solution reliability offered by the proposed intelligent optimiser. 

 Function f20 is the Generalised Ackley’s function.  It modulates a cosine wave into an 

exponential function.  It is a continuous multimodal function with a flatland and a central 

minimum.   The result is shown in Fig. 4.10(d).  It shows that the proposed intelligent optimiser 

and the DWM-DE converge rapidly.  After 250 times of iteration, the population has nearly 

reached the global minimum.  It shows the advantage of the wavelet mutation operation on 

reducing the number of steps for moving and the evaluation to those regions containing local 

minima but far away from the global minimum.   

 Function f21 is the Schwefel’s function.  Most of the optimisation algorithms fail to 

handle this function because the global minimum is isolated from the similar best local minimum 

geometrically.  The population is potentially prone to converge to the local minimum.  The result 

is shown in Fig. 4.10(e).  Similar to functions f19 and f20, if the proposed intelligent optimiser is 

used, the convergence rate is much improved.  It can nearly reach the global minimum at round 

100 times of iteration.  

 Function f22 is the Schaffer function.  It is a 2-dimension benchmark function that has a 

single global minimum at the point f22(0,0) = 0.  It contains a large number of local minima.  
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Searching for the global minimum is a difficult task because the value at the best local minimum 

and the global minimum differs by about 0.0001 only.  From the experiments, although the 

convergence rate is not significantly improved, the intelligent optimiser can offer better solution 

reliability and better solution quality as shown in Table 4.4.  

 Function f23 is the Chichinadze function, which is a 2-dimension benchmark function 

with a global minimum at f(5.90133, 0.5) = 43.3259.  As the nature of this function is not 

complex, most of the methods offer the same result.  However, the proposed intelligent optimiser 

shows the highest convergence rate. 

 Function f24 is the Sine envelope sine wave function. It is also called the Schaffer 

function.  The Sine envelope sine wave function is a multi-dimensional version of the Schaffer 

function.  It contains a large number of local minima.  Searching for the global minimum is a 

difficult task because the difference between the value at the best local minimum and the global 

minimum is about 0.001 only.  The number of local optima is not well defined, and they are 

continuously spread around the global optimum.  Theoretically, there are infinite local minima 

that form a number of grooves around the global minimum.  In the experiment, we set the Sine 

envelope sine wave function with a dimension of 20.  In terms of solution quality and solution 

reliability, the experimental results show that the intelligent optimiser performs better than the 

other methods, although the intelligent optimiser could not offer the highest convergence rate.  

Table 4.4.  Comparison between Different DE Methods for Benchmark Test Functions (Category 

3). 

  intelligent 

optimiser 

DWM-DE SDE DE/ 

local-to-best/ 

1 

DE/rand/1 

with per-

vector 

-dither 

 Mean 0.4346 0.4883 207.3875 147.6601 6835946 



Chapter 4: Intelligent Optimiser with Wavelet-mutated Differential Evolution

 

Page | 116  

 

f17 Best 0.1308 0.1582 22.4585 4.7027 149.9788 

 Std Dev 0.1999 0.2989 291.9504 391.5459 450.1213 

  

 Mean 8.1902 8.3213 124.7772 34.9675 160.9108 

f18 Best 0.000067 0.0063 87.5478 16.9349 136.2236 

 Std Dev 3.2217 4.4707 10.5849 11.9889 10.8145 

  

 Mean 0.181280 1.0243 2.2483 3.0293 54.1213 

f19 Best 0.016792 0.8751 1.5661 1.0394 33.3442 

 Std Dev 0.099791 0.0576 0.4224 1.9004 10.991 

  

 Mean 0.029157 0.3199 0.7723 4.6762 17.728 

f20 Best 0.014373 0.0271 0.0261 2.2245 7.1453 

 Std Dev 0.012089 0.3194 2.9323 1.5461 3.687 

  

 

f21 

Mean -12569.468 -12568.8 -12475.8 -10328.1 -10128.1 

Best -12569.481 -12569.5 -12569 -11004.5 -11272.4 

Std Dev 0.010201 0.6883 145.1123 391.6365 560.2403 

 

 

f22 

Mean 0.003886 0.005249 0.006801 0.000759 0.002625 

Best 0 0 0 0.000001 0 

Std Dev 0.004808 0.004889 0.004498 0.001983 0.003478 

 

 

f23 

Mean -43.315862 -43.315756 -43.315719 -43.315739 -43.310539 

Best -43.315862 -43.315859 -43.315866 -43.315859 -43.315487 

Std Dev 0 0.000219 0.000187 0.000221 0.005238 

 

 

f24 

Mean 0.7858 0.9907 1.0441 4.0761 7.7249 

Best 0.4602 0.6446 0.6390 3.5609 6.8711 

Std Dev 0.2617 0.2868 0.4637 0.5406 0.5424 
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(a) 
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(c) 

 

 
(d) 
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(e) 
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(g) 

 

 
(h) 

 

Fig. 4.10.  Results for multimodal functions with many local minima. 
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 In general, compared to the other methods, the proposed intelligent optimiser can 

significantly improve the chance of reaching the global optimum and the rate of convergence for 

multimodal functions with many local minima. 

4.  Functions with shift and rotate 

 Five functions with shift and rotate are employed for testing the performance of the 

intelligent optimiser.  Three functions are unimodal functions.  They are the Shifted sphere 

model, Shifted Schwefel’s problem 1.2, and Shifted rotated high conditioned elliptic function.  

Two functions are multimodal functions.  They are the Shifted Rosenbrock’s function, and 

Shifted Rastrigin’s function.  

 Some of the benchmark functions in the previous three categories have drawbacks as the 

elements in the optimum vector might have the same value for different dimensions owing to the 

symmetry nature.  The global optimum is normally located at the centre of the searching domain.  

Some optimisers are designed to converge to the centre of the searching domain even no 

searching direction is provided.  Hence, this kind of benchmark functions might not be good to 

evaluate the real performance of optimisers.  To overcome these drawbacks, shift and rotate are 

introduced to the benchmark test functions to generate optimum points with different numerical 

values.  As a result, the optimum point is not lying at the centre of the searching domain.   

 The experimental results for functions with shift and rotate are listed in Table 4.5 and 

shown in Fig. 4.11.  The results show that the proposed intelligent optimiser still can offer the 

best performance.  The advantage brought by the sharing of population information of the two 

embedded WM-DE engines and the adaptive control of the internal parameter values of the 
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optimiser could enhance the searching performance in all functions of this category.  The 

solution quality and reliability offered by intelligent optimiser are good. 

 

 

 

 

 

Table 4.5.  Comparison between Different DE Methods for Benchmark Test Functions (Category 

4). 

  intelligent 

optimiser 

DWM-DE SDE DE/ 

local-to-best/ 

1 

DE/rand/1 

with per-

vector 

-dither 

 Mean 0.00036 0.000742 41.30417 349.7417 26.59024 

f25 Best 0.000119 0.000244 0.019934 7.378115 13.61648 

 Std Dev 0.000294 0.000302 135.404 389.9865 10.21125 

  

 Mean 0.005599 0.011645 199.2697 374.9674 575.92 

f26 Best 0.007681 0.002418 0.123243 3.066111 259.5999 

 Std Dev 0.002605 0.004996 466.9468 429.4013 163.9056 

  

 Mean 0.00112 0.00149 194.3431 0.004001 2.516334 

f27 Best 0.000046 0.000056 0.000341 0.000096 0.396908 

 Std Dev 0.001003 0.001327 815.1713 0.028289 1.447321 

  

 Mean 1.113245 4.760516 5.435293 4.099365 11.69429 

f28 Best 0.000085 0.001795 0.009373 0.00047 0.008133 

 Std Dev 1.809608 8.102966 8.352652 6.416724 15.96312 

  

 

f29 

Mean 7.114673 8.267052 10.32804 35.18819 159.3997 

Best 1.22332 2.004883 5.175221 12.95799 127.034 

Std Dev 1.75345 2.98555 3.015084 10.97512 10.40491 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 
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(e) 

Fig. 4.11.  Results for functions with shift and rotate. 
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IV CONCLUSION 
 

 In this chapter, we have proposed an intelligent optimiser that incorporates two identical 

Wavelet-Mutated Differential Evolution (WM-DE) engines working in parallel on the same 

fitness function.  It employs a fuzzy controller to control the internal parameters of the optimiser 

based on some expert knowledge.  The implementation framework takes advantage of the 

parallel structure to enhance the optimisation performance.  By using the improved algorithm of 

WM-DE, the proposed intelligent optimiser can achieve a balance between the exploration and 

exploitation of the solution space for reaching the global solution.  A suite of 29 benchmark test 

functions is employed to test the performance of the proposed intelligent optimiser.  In terms of 

convergence rate and solution quality, the proposed intelligent optimiser could offer better 

results.  Thanks to the parallel structure and the fuzzy controller, better solution reliability can be 

achieved.  Experimental results also show that the intelligent optimiser could offer much better 

performance when the problem is complex and with a high dimension (>30).   
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Chapter 5  
 
 

ECONOMIC LOAD DISPATCH  

WITH  

VALVE-POINT LOADING 

 

I BACKGROUND 

 

Economic Load Dispatch (ELD) problem is a fundamental issue when developing a 

power supply system. Insufficiency and increasing cost of natural resources, and the 

continuously increasing demand for electric energy have driven engineers to consider the ELD 

problem for operating modern power systems, where multiple generators are implemented to 

generate enough total output power to meet the consumer demand.  Each generator normally has 

a unique cost-per-hour characteristic for its operating range.  Moreover, each power station 

should have different costs for fuel and maintenance.  ELD is a modelling method to consolidate 

various factors to formulate a single objective optimisation problem.  There are many traditional 

methods developed to solve the ELD problem.  Some examples include the Lagrange multiplier 

method, Lambda iteration method and Newton-Raphson method.  All these methods suffer from 

the difficulty of obtaining the best result.  Moreover, they might take a long computational time 
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on processing for the solution.  A high-quality load dispatching and generation scheduling might 

not be achieved easily. 

In the ELD problem, electric power utilities (companies) are expected to maximise the 

profit by minimising the operating cost on generating the power to the clients.  The load demand 

and transmission losses must be entertained on providing a stable power supply.  For secure 

operation, the demand of power should be dispatched to different generators correctly, such that 

the generation capacity limits of individual generators are not exceeded.  The major purpose of 

solving the ELD problem is to control a group of power generators to generate enough electricity 

with minimum fuel cost, and operates the generators within their physical constraints.  The effect 

of the power generators' valve-point loadings in the fuel cost function and the rate limits of the 

generators introduce the nonlinear behaviour to the ELD problem.  As a result, the objective 

function for the ELD with Valve-Point Loading (ELD-VPL) problem are multimodal, highly 

nonlinear, discontinuous in the solution space, high in dimension, and highly constrained.  To 

solve this problem, we have to employ a good algorithm for searching the globally optimal 

solution. 

 

II PROBLEM FORMULATION 

 

 As discussed above, ELD-VPL is to control a group of power generators to generate 

enough electricity with minimum fuel cost, and operates the generators within their physical 

constraints.  An optimiser is employed that aims at minimising the objective function of the ELD 

problem.  This objective function is defined as follows: 
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n

i

Li i
PC

1

)(            (5.1) 

where n is the total number of generators in the system.  Ci(PLi) indicates the i-th generator’s 

operation fuel cost function.  The total load demand of the ELD problem is defined as follows. 

 





n

1i

LossLL PP  D
i

          (5.2) 

niPPP
 max i,i min i, LLL ,,2,1;          (5.3) 

 

where the output power of the generator i is denoted as
iLP , the power loss due to transmission is 

denoted as PLoss, 
 max i,LP  is the maximum output power of the i-th generator and 

 min i,LP is the 

minimum output power of the i-th generator.  The operation fuel cost function for each generator 

is defined as follows. 

 

iLiLiLi cPbPaPC
iii
 2)(          (5.4) 

 

There are three coefficients in the operation fuel cost function: ai, bi, and ci.  If ai is not equal to 

zero, the fuel cost function is quadratic.  
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In the deployment environment of the power system, valve-point effects should be 

considered for each power generator.  The effects of valve points can be modelled with a 

rectified sinusoidal term and should be added to the operation fuel cost function for each 

generator. The resulting operation fuel cost function is given by: 

 

))(sin()(
min,

2

iiiii LLiiiLiLiLi PPfecPbPaPC       (5.5) 

 

The sinusoidal term introduces two additional coefficients: ei and fi.  In the ELD-VPL problem, 

each power generator is constrained by multivalve steam turbines.  The multivalve steam 

turbines introduce a large variation in the fuel cost functions.  Fig. 5.1 shows the valve-point 

effect on the operation fuel cost function of one of the generators.  The generator has ai = 

0.00690, bi = 6.73, ci = 94.705, ei = 100, fi = 0.084, 
 min i,LP = 36 MW and 

  i,LP
max

= 114 MW.  In the 

figure, we can see that the valve-point loading introduces many ripples on the fuel-cost curve, 

which is practically due to the introduced ripples in the heat-rate curves.  They increase the 

difficulty of solving the ELD-VPL problem.  
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Fig. 5.1.  The valve-point effect. 

 

 To allow the proposed intelligent optimiser and DWM-DE to determine the minimum 

cost for the ELD-VPL problem, the power loading of each generator can be formatted as a 

solution vector.  The solution vector can be written as follows. 

 

][
132 


n  1 LLLL PPPP P          (5.6) 

 

 



Chapter 5: Economic Load Dispatch With Valve-Point Loading 

 

Page | 132  
 







1

1

n

i

LossLLL PPDP
in

         (5.7) 

 

We do not consider the power loss in this thesis.  As a result, 0LossP  and we have 

 







1

1

n

i

LLL in
PDP            (5.8) 

 

The ELD-VPL problem is formulated as an optimisation problem, which is used to minimise the 

total fuel cost based on (5.5). 

III THE EXPERIMENT RESULTS 

 

 To test the performance of the proposed DWM-DE algorithm and the intelligent 

optimiser, two ELD-VPL problems with 13 and 40 generators are considered in this thesis.   The 

results obtained are compared with those reported in the literature.  Both the 13- and 40-

generator systems have non-convex solution spaces with many local minima.  As a result, the 

global minimum is difficult to determine.  For the 13-generator system, the total load demand of 

1800MW is tested.  For the 40-generator system, the total load demand of 10500MW is tested.  

 

Table 5.1.  Parameters for the 13-Generator System. 

Unit(i) ai bi ci ei fi 
 min i,LP  

min,nLP  

1 0.00028 8.10 550 300 0.035 0 680 

2 0.00056 8.10 309 200 0.042 0 360 
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3 0.00056 8.10 307 150 0.042 0 360 

4 0.00324 7.74 240 150 0.063 60 180 

5 0.00324 7.74 240 150 0.063 60 180 

6 0.00324 7.74 240 150 0.063 60 180 

7 0.00324 7.74 240 150 0.063 60 180 

8 0.00324 7.74 240 150 0.063 60 180 

9 0.00324 7.74 240 150 0.063 60 180 

10 0.00284 8.60 126 100 0.084 40 120 

11 0.00284 8.60 126 100 0.084 40 120 

12 0.00284 8.60 126 100 0.084 55 120 

13 0.00284 8.60 126 100 0.084 55 120 

 

Table 5.2.  Parameters for the 40-Generator System. 

Unit(i) ai bi ci ei fi  min i,LP  
min,nLP  

1 0.00690 6.73 94.705 100 0.084 36 114 

2 0.00690 6.73 94.705 100 0.084 36 114 

3 0.02028 7.07 309.54 100 0.084 60 120 

4 0.00942 8.18 369.03 150 0.063 80 190 

5 0.01140 5.35 148.89 120 0.077 47 97 

6 0.01142 8.05 222.33 100 0.084 68 140 

7 0.00357 8.03 278.71 200 0.042 110 300 

8 0.00492 6.99 391.98 200 0.042 135 300 

9 0.00573 6.60 455.76 200 0.042 135 300 

10 0.00605 12.9 722.82 200 0.042 130 300 

11 0.00515 12.9 635.20 200 0.042 94 375 

12 0.00569 12.8 654.69 200 0.042 94 375 

13 0.00421 12.5 913.40 300 0.035 125 500 
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14 0.00752 8.84 1760.40 300 0.035 125 500 

15 0.00708 9.15 1728.30 300 0.035 125 500 

16 0.00708 9.15 1728.30 300 0.035 125 500 

17 0.00313 7.97 647.85 300 0.035 220 500 

18 0.00313 7.95 649.69 300 0.035 220 500 

19 0.00313 7.97 647.83 300 0.035 242 550 

20 0.00313 7.97 647.81 300 0.035 242 550 

21 0.00298 6.63 785.96 300 0.035 254 550 

22 0.00298 6.63 785.96 300 0.035 254 550 

23 0.00284 6.66 794.53 300 0.035 254 550 

24 0.00284 6.66 794.53 300 0.035 254 550 

25 0.00277 7.10 801.32 300 0.035 254 550 

26 0.00277 7.10 801.32 300 0.035 254 550 

27 0.52124 3.33 1055.10 120 0.077 10 150 

28 0.52124 3.33 1055.10 120 0.077 10 150 

29 0.52124 3.33 1055.10 120 0.077 10 150 

30 0.01140 5.35 148.89 120 0.077 47 97 

31 0.00160 6.43 222.92 150 0.063 60 190 

32 0.00160 6.43 222.92 150 0.063 60 190 

33 0.00160 6.43 222.92 150 0.063 60 190 

34 0.00010 8.95 107.87 200 0.042 90 200 

35 0.00010 8.62 116.58 200 0.042 90 200 

36 0.00010 8.62 116.58 200 0.042 90 200 

37 0.01610 5.88 307.45 80 0.098 25 110 

38 0.01610 5.88 307.45 80 0.098 25 110 

39 0.01610 5.88 307.45 80 0.098 25 110 

40 0.00313 7.97 647.83 300 0.035 242 550 
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 The parameters for the 13- and 40-generator systems are shown in Tables 5.1 and 5.2 

respectively.  On using the DWM-DE algorithm, the following experiment settings are used: 

• Shape parameter of the wavelet mutation: 1. (This value is not very critical.  See the 

 discussion in Chapter 3.) 

• Parameter λ for the monotonic increasing function: 10000. (This value is not very critical.  

 See the discussion in Chapter 3) 

• Initial population: It is generated uniformly at random. 

• Numbers of iteration: 1000. 

• Number of population vectors: 50. 

• Crossover probability constant: 0.5. 

 

On using the proposed intelligent optimiser, the following experiment settings are used: 

• Shape parameter of the wavelet mutation: 1 (This value is not very critical.  See the 

 discussion in Chapter 3) 

• Parameter λ for the monotonic increasing function: 10000. (This value is not very critical.  

 See the discussion in Chapter 3) 

• Initial population: It is generated uniformly at random. 

• Numbers of iteration: 1000. 

• Number of population vectors: 25 x 2. 

 All results shown in this chapter are averaged ones out of 100 trials.  The experiment 

results in terms of mean cost value, best cost value, and standard deviation are presented in Table 

5.3. 
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Table 5.3.  Result of the ELD-VPL Problem. 

Number of 

Generators 

Load  Intelligent 

Optimiser 

DWM-DE standard DE DE/local-to-

best/1 

DE/rand/1 

with per-

vector-

dither 

13 1800M

W 

Mean 17992.02 17996.43 18185.27 18078.82 18213.61 

Best 17978.23 17972.78 18104.61 17982.91 18077.96 

Std Dev 11.41 20.85 51.61 47.95 45.34 

40 10500

MW 

Mean 121478.8 121521.79 121834.62 123363.29 122490.90 

Best 121420.01 121431.63 121530.99 121971.29 122188.14 

Std Dev 36.93 53.27 172.74 610.10 89.64 

 

 

 

Table 5.4.  Comparison with Other Published Results for the 13-Generator System (Load = 

1800MW). 

 

Intelligent Optimiser DWM-DE DEC-SQP IGA 

17978.23 17972.78 17938.95 18069.40 

 

 

Table 5.5.  Comparison with Other Published Results for the 40-Generator System (Load = 

10500MW). 

 

Intelligent 

Optimiser 

DWM-DE MPSO DEC-SQP DE/BBO QPSO NPSO-

LRS 

SOH-PSO 

121420.01 121431.63 122252.26 121741.97 121426.95 121448.21 121664.43 121501.14 
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 From the results obtained in the experiments, we find that the proposed intelligent 

optimiser and the DWM-DE algorithm perform much better than the other DE methods.   The 

average cost offered by the intelligent optimiser for the 13-generator system is $17992.02, and 

the best result (minimum cost) offered by DWM-DE is $17972.78.  The proposed intelligent 

optimiser provides the lowest standard deviation.  For the 40-generator system, the intelligent 

optimiser can provide the best performance.  The average cost is $121478.8, and the best result 

(minimum cost) is $121420.01.  The two proposed method could offer good results in terms of 

standard deviation.  Thanks to the wavelet operations, the DWE-DE algorithm searches the 

solution space more effectively.   In the proposed intelligent optimiser, the adaptive updating of 

the parameter values and the population analysis using the Student T-Test bring proper 

adjustment to the parameters of the two DE engines according to the populations’ behaviour.  As 

a result, better performance can be achieved.  The solution reliability is important for the ELD-

VPL problem because a reliable optimisation method can offer better quality of the power 

generation service.  The two proposed methods could offer better performance than the 

conventional methods in terms of solution quality, convergence speed and solution reliability.  

Both methods could be applied to solve the ELD-VPL problem successfully. 

 Table 5.4 summarises the best results obtained by the intelligent optimiser, DWM-DE, 

DEC-SQP [Coelho 06] and IGA [Chen 95] for comparison.  The results show that the DEC-SQP 

performs the best for the 13-generator system.  The best cost is $17938.95, while the best cost of 

DWM-DE is $17972.78 and the best cost of the intelligent optimiser is $179782.23.  Although 

the DWM-DE algorithm and the intelligent optimiser cannot offer the best result, the result is 

already very near to the DEC-SQP method.  As the dimension of the 13-generator system is 
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relatively low, the wavelet based mutations and the adaptive parameters tuning might not be able 

to enhance the searching process very effectively.   

 For the 40-generator system, the best results of the intelligent optimiser, DWM-DE, 

MPSO [Victoire 04], DEC-SQP [Coelho 06], DE/BBO [Bhattacharya 10], QPSO[Meng 10], 

SOH-PSO[Chaturvedi 08] and NPSO-LRS [Victoire 04] are summarised in Table 5.5.  Among 

all the methods, our proposed methods offer the best results.  For the 40-generator system case, 

the best cost (minimum cost) is $121,420.01 offered by the intelligent optimiser.  Since the 

dimension of the 40-generator system is large, the wavelet-based mutations can enhance the 

searching process effectively and reduce the chance of trapping in some local minimum.  For the 

ELD-VPL problem, to obtain the best result, we suggest applying the proposed methods for 

systems of high dimensions; for example, a dimension higher than 30.   

 

IV CONCLUSION 

 

 In this chapter, the proposed intelligent optimiser and DWM-DE algorithm are employed 

to determine the minimum operation cost for the Economic Load Dispatch with Valve-Point 

Loading (ELD-VPL) problem.  The ELD-VPL problem is multimodal, discontinuous, highly 

nonlinear, of high dimension, and highly constrained.  Due to the nature of the Valve-Point 

Loading (VPL) effect, many ripples are introduced on the fuel-cost curve, which further increase 

the difficulty of the problem.  Two different requirements of the ELD-VPL problem have been 

tested.  It is observed that the two proposed methods give satisfactory optimal costs when 

compared with other techniques in the literature.  Moreover, the experiment results show that the 

two proposed methods could offer better performance than the conventional methods in terms of 
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solution quality, convergence speed and solution reliability.  Thanks to the wavelet operations, 

the DWE-DE algorithm searches the solution space more effectively.  Thanks to the fuzzy 

controller and the T-Test analysis in the proposed intelligent optimiser, the population 

information can be captured to change the parameter values of the optimiser adaptively in order 

to obtain better searching performance. 
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Chapter 6  
 
 

HYPOGLYCAEMIA  

DETECTION  

USING  

FUZZY INFERENCE SYSTEM 

 

I BACKGROUND 

 

 Low level of blood glucose is an important issue for the human body.  It may happen 

owing to high energy-consumption, action of insulin and food ingestion.  When the human body 

suffer from a low level of blood glucose, hypoglycaemia occurs.  Non-diabetic persons are not 

common to have hypoglycaemia [Yale 04].  The problem may be due to long-term starvation, 

superfluous insulin, innate problem, drugs, alcohol, insufficient hormone generation, and organ 

defect [DCCT 95].  Study reported that the diabetic patients have higher chance to develop 

hypoglycaemia in their body if they have been treated with insulin.  Another study reported that 

young patient with intensive glycaemia control will have high frequency of developing 

hypoglycaemia [Pickup 00].  Different people may have different level of blood glucose to 
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develop hypoglycaemia in their body.  In general, if the body maintains above 70 mg/dL (3.9 

mmol/L) for fasting glucose, it is considered as healthy for adults.  If the blood glucose level 

drops below 55 mg/dL, the body may start to develop hypoglycaemia [DCCT 95].  If the blood 

glucose level is below 50 mg/dL (2.8 mmol/L), the body is suffering from hypoglycaemia.  

Medical treatment is required for the patients through, for example, injection or infusion of 

glucagon.  Maintaining a certain level of glucose is necessary for the nervous system and brain to 

function property.  When the central nervous systems detect the presence of hypoglycaemia, it 

will automatically reduce the cerebral glucose consumption (neuroglycopenic symptoms) [Maia 

07].  Some symptoms can be activated before neuroglycopenic symptoms occur, for example, 

sweating, weakness, fatigue, blurry or double vision, weakness extreme hunger and headache.  

As a result, the patient can be aware of the presence of hypoglycaemia.  If the human brain does 

not have enough supply of glucose, the body may suffer neuroglycopenic symptoms, for 

example, loss of consciousness (coma), seizures, and confusion [Amir 07].   

It is particularly dangerous if hypoglycaemia happens at night.  It is because the patient 

may not be able to take immediate response.  As a result, mild episodes of hypoglycaemia may 

become serious.  Study reported that more that 50% of all serious episodes of hypoglycaemia 

happened at evening.  Even with the modest insulin elevation, serious hypoglycaemia may result 

owing to deficient glucose counter-regulation.  Moreover, the dawn phenomenon makes the 

handling of hypoglycaemia more difficult [Weinstein 07].  The dawn phenomenon shows that 

the demand for insulin by the human body decreases between midnight and 5 am.  Between 5 am 

and 8 am, the demand for insulin by the human body increases.  As a result, the technology of 

detecting presence of hypoglycaemia is very challenging in the medical industry [Caduff 09] 

[Cho 08] [Chu 08].   
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In this study, a real-time detector is constructed to detect the presence of hypoglycaemia.  

The detector is realised by a fuzzy inference system (FIS).  The relationship between 

physiological signals and the presence of hypoglycaemia are captured by the FIS to perform the 

detection.  Four physiological signals are employed as the input of the detector.  They are the 

heart rate (HR), the change of HR with time (∆HR), the corrected QT interval (QTc) of the 

electrocardiogram (ECG) signal, and the change of QTc with time (∆QTc).  The output of the 

detector is the presence of hypoglycaemia (h).  The output of the FIS is a binary value of true or 

false.  To realise the classification, the FIS is required to construct the relationship between the 

physiological inputs to the presence of hypoglycaemia by using fuzzy logic.  The FIS contains 

four major elements.  They are fuzzy-rule base, inference engine, fuzzification, and 

defuzzification.  Linguistic variables are used to represent the physiological data (HR, QTc, HR 

and QTc) such that they can be processed by fuzzy logic to perform decision-making.  In the 

inference engine of the FIS, a number of fuzzy if-then rules are used to support reasoning for 

doing classification.   

Training process is required for the fuzzy inference system (FIS) to capture the 

relationship between the physiological signals and the presence of hypoglycaemia for patients 

with type-1 diabetes mellitus (T1DM) patients.  In this thesis, supervised learning is adopted as 

the training method.  The dataset with well-defined class labels are input to the FIS during the 

training process.  Optimisation can be employed in the training to determine the best parameter 

values for constructing the fuzzy rules and fuzzy membership functions inside the FIS.  The 

proposed intelligent optimiser discussed in Chapter 4 and the DWM-DE algorithm discussed in 

Chapter 3 are employed to determine the best parameter values for the proposed FIS to perform 

the classification. 
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In this study, the sensitivity (ξsen) and specificity (ηspec) are used to evaluate the 

performance of the classification.  If the classification can identify all the sick people, the 

sensitivity is equal to 100%.  If the classification can identify all the healthy people, the 

specificity is equal to 100%.  To offer a reliable detection of the presence of hypoglycaemia, 

high values of sensitivity and specificity must be obtained in both the training and testing.  For 

clinical requirements of classification, it is suggested that the value of sensitivity must be large 

than 70% and the value of specificity must be large than 50%.  To realise the clinical 

requirements, a multi-objective optimisation is adopted.   

In the training process, with the use of training set only, it may introduce a phenomenon 

called overtraining [Chan 11a] [Chan 11b].  The trained system performance may be degraded if 

overtraining occurs.  Overtraining means that the trained system bias on the training set data and 

lose the ability to handle general data set.  To minimise the effect of overtraining, we proposed to 

introduce another data set to the training process.  This data set is called the validation set.  As a 

result, three data sets are required for the proposed FIS.   

 

 

II PROBLEM FORMULATION 

 

 In this thesis, an FIS is employed to detect the presence of hypoglycaemia for type-1 

diabetes mellitus (T1DM) patients.  The proposed Double Wavelet Mutated Differential 

Evolution (DWM-DE) (discussed in Chapter 3) and the intelligent optimiser with two Wavelet-

Mutated Differential Evolution (WM-DE) engines (discussed in Chapter 4) are employed to tune 

the internal parameters of the FIS.  Fig. 6.1 demonstrates how the FIS works.  The proposed FIS 
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consists of four inputs and one output.  The inputs are the heart rate (HR), the corrected QT 

interval of the electrocardiogram signal (QTc), the change of heart rate (HR), and the change of 

QTc (QTc).  The output is the presence of hypoglycaemia (h), which is a binary value of true or 

false.  To realise the classification, the FIS is required to construct the relationship between the 

physiological inputs and the binary output by using fuzzy logic. 

 

 

 The ECG signal governs two of the physiological inputs of the FIS.  Fig. 6.2 shows an 

example two-cycle ECG waveform.  The ECG signal being investigated involves the parameters 

in the depolarisation and repolarisation stages of electrocardiography.  An ECG signal contains 4 

important points.  They are the T wave peak (Tp), R peak, Q points, and the T wave end (Te).  In 

this study, we measure the interval between the Q point and the T wave peak (Tp).  This interval 

 

Fuzzification 

 

Defuzzification 

Optimisation 

Method 

HR 

QTc 

∆HR 

∆QTc 

h 

Inference Engine 

Fuzzy-Rule 

Base 

Fig. 6.1.  Fuzzy inference system (FIS). 
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is called the QT interval.  The interval between two R peaks within the two-cycle ECG signal is 

also measured.  This interval is called the RR interval.  With the QT interval and RR interval, we 

could generate the physiological signal QTc by dividing RR with QT.  In addition, the heart rate 

is determine by RR divided by 60. 

 

 

Fig. 6.2.  ECG signal. 

 

 The FIS contains four major elements: fuzzy-rule base, inference engine, fuzzification, 

and defuzzification.  Linguistic variables are used to represent the physiological data (HR, QTc, 

HR and QTc) such that they can be processed by fuzzy logic to make decision.  The 

physiological data are mapped to the designed membership functions during fuzzification.  The 

fuzzy membership function is defined as follows: 

 

        

        (6.1) 

 
 

fm(x(t) ,m,cm)e

(xcm)
2

2m
2
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where m=1, 2,…,mf.  It is a bell-shaped fuzzy membership function where x(t) is the 

physiological input.  The number of membership functions is denoted as mf.  The standard 

deviation of the bell-shaped fuzzy membership function is denoted as m and the mean value of 

the membership function is denoted as cm.  Fig. 6.3 shows a set of bell-shaped fuzzy membership 

functions for an input variable.  It contains three linguistic terms (M1, M2, and M3).  The input 

range is between 0 and 1.   

 

Fig. 6.3.  Bell-shaped fuzzy membership functions. 

 
 

In the proposed FIS, the bell-shaped fuzzy membership functions for the four physiological 

inputs are defined as follows: 

 



Chapter 6: Hypoglycaemia Detection using Fuzzy Inference System 

 

Page | 147  
 

       (6.2) 

       (6.3) 

      (6.4) 

      (6.5) 

 

 In the inference engine of the FIS, a number of fuzzy rules are used to perform reasoning 

for doing classification.  The rules used in the proposed FIS are the fuzzy if-then rules.  The 

format of the rules are defined as follows: 

 

Rule : IF           HR(t)      is      f HR,m(HR(t), HR,m, c HR,m) 

            AND     QTc(t)       is      f QTc,m(QTc(t), QTc,m, c QTc,m) 

            AND    ∆HR(t)      is      f ∆HR,m(∆HR(t),∆HR,m, c∆HR,m) 

           AND     ∆QTc(t)     is      f ∆QTc,m(∆QTc(t), ∆QTc,m, c∆QTc,m), 

          THEN   y(t)            is     w. 

 

where  is the rule number between 1 and the number of rules in the fuzzy rule base (nr).  (6.6) 

shows how to determine the value of nr with the number of inputs (n) of the FIS. 

nr = (mf) 
n           

(6.6) 
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After the fuzzification of the inputs, aggregation of each rule output is performed to generate an 

output as a single fuzzy set.  The output of aggregation for the corresponding fuzzy rule is 

defined as follows: 

 

                 (6.7) 

 

After the inference process, defuzzification is required to transform the fuzzy output to 

some crisp output.  In the proposed FIS, the process of defuzzification is defined as follows: 

 

               (6.8) 

 

where , = 1, 2, … nr are fuzzy singletons to be determined in the training process.  

The actual output of the FIS is realised as: 
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As a result, the output of the classifier is binary.  If the output is positive, it indicates the 

presence of hypoglycaemia. 

In the proposed system, the proposed intelligent optimiser and DWM-DE are employed 

to determine the best parameters for the fuzzy rules and membership functions in the FIS.  The 

detailed implementations of the intelligent optimiser and DWM-DE have been discussed in 

Chapter 4 and Chapter 3 respectively.  In this study, the sensitivity (ξsen) and specificity (ηspec) 

are used to evaluate the performance of the classification.  The definitions of sensitivity and 

specificity are given as follows. 

 

FNTP

TP
sen

NN

N


  

 

(6.10) 

FPTN
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sp ec

NN

N


  

 

(6.11) 

 

NTP means the number patient with illness identified correctly; NFN means the number of patient 

with illness not correctly identified; NFP means the number of healthy people incorrectly 

identified as sick; NTN means the number of healthy people correctly identified [Freedman 05] 

[Altman 94].  The sensitivity (ξsen) and specificity (ηspec) have the maximum value of one and 

minimum value of zero.  If the classification can identify all the sick people, the sensitivity is 

equal to one.  If the classification can identify all the healthy people, the specificity is equal to 
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one.  To offer a reliable detection of the presence of hypoglycaemia, high values of sensitivity 

and specificity should be obtained in both the training and testing.   

The FIS perform learning by capturing the input-output relationship of the system using 

some well-defined dataset.  Two data sets are often required: a training set and a testing set.  The 

training set is used for the FIS to learn the input-output relationship of the system.  The testing 

set is used to evaluate the performance of the trained system.  However, by using two sets of data 

only, it may introduce a phenomenon called overtraining.  The trained system's performance may 

be degraded if overtraining occurs, which means that the trained system is biased by the training 

set data.  The system then loses the ability to handle general data set.  To minimise the effect of 

overtraining, we propose to introduce another data set to the training process.  This data set is 

called the validation set, which is also used in the training process.  As a result, three data sets 

are required for the proposed FIS. 

 For the training process, fitness functions are required for the optimiser to evaluate the 

performance of the trained system.  To implement the training process with validation, four 

fitness functions are introduced in training process for the FIS.  The definition of the four fitness 

functions are given as follows:  
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(6.14) 

 
(6.15) 

 

The sensitivity offered by the training set and the validation set are denoted as ξtrain and ξval 

respectively.  The specificity offered by the training set and the validation set are denoted as ηtrain 

and ηval respectively.  The target value for the sensitivity and specificity are denoted as ξtarget and 

ηtarget respectively.  The values for the target sensitivity and specificity are not constant during 

the optimisation (training) process.  Fig. 6.4 shows the pseudo code to demonstrate the process of 

updating the target value for sensitivity and specificity.   

begin 

Initialise the target value 

ξtarget =0.10 

ηtarget= 0.10 

while (not termination condition) do 

      begin 

         Output (ξtrain,ξval) by Equation  (6.10) 

         Output (ηtrain,ηval) by Equation (6.11)  

         Output (f1) by Equation (6.12) 

         Output (f2) by Equation (6.13) 

         Output (f3) by Equation (6.14) 

         Output (f4) by Equation (6.15) 

         If (f1=ξtarget& f3=ξtarget) 

         then ξtarget=ξtarget+ 0.01 

         if (f2=ηtarget& f4=ηtarget) 

         then ηtarget =ηtarget + 0.01 

       end 

end 

 

Fig. 6.4.  Pseudo code for the training and validation. 
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The target values for the specificity and sensitivity are set to be very small at the 

initialization.  In this thesis, we set the target values for specificity and sensitivity to be 0.10 for 

the initialization.  During the optimisation, the target value for sensitivity (ξtarget) increases if and 

only if the sensitivities offered by the training set (ξtrain) and validation set (ξval) are both equal to 

the target value for sensitivity (ξtarget).  Similar to the sensitivity, the target value for specificity 

(ηtarget) increases if and only if the specificities offered by the training set (ηtrain) and validation 

set (ηval) are both equal to the target value for specificity (ηtarget).  The optimisation process will 

keep increasing the target values for ξtarget and ηtarget until the end of optimisation.  This 

mechanism can offer a balance between the training set and validation set when performing the 

training process.  For example, if the target sensitivity is equal to 0.70, the sensitivity of training 

is equal to 0.76, and the sensitivity of validation is equal to 0.90, then the fitness value of f1 and 

f3 will be set at the same value of the target sensitivity.  Since both the sensitivities offered by the 

training set and validation set are equal to the target sensitivity, the target sensitivity will be 

increased.  The validation set offer much higher value than the one offered by the training set, 

but the optimiser considers them as the same.  As a result, we could minimise the effect of 

overtraining by avoiding the training process from biasing to the training set or validation set.   

To realise the training discussed above that involves four fitness functions, a multi-

objective optimisation is done.  Pareto optimisation is one of the common methods to handle 

multi-objective optimisation problems.  The major objective of the Pareto optimisation is to 

optimise multi-objective functions at the same time, and every objective function has equal 

weighting.  It means that every objective has the same importance.  The basic operation principle 

of Pareto optimisation is that if the new trial solution declines any objective function in the 

system, it is a poor solution.  If the trial solution can improve more than one objective function 
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and do not decline any objective function in the system, it is a good solution and will be accepted.  

As a result, the Pareto optimisation will not be dominated by any objective function in the 

system.  The idea of Pareto optimisation can be realised in the selection process of the intelligent 

optimiser and DWM-DE.  The selection process of multi-objective optimisation is defined as 

follows: 

 

       (6.16) 

 

The i-th objective function is denotes as fi().  Fig. 6.5 demonstrates the operation of the multi-

objective DWM-DE.  Fig. 6.6 demonstrates the operation of the multi-objective WM-DE inside 

the intelligent optimiser.   

 

begin 

Initialise the population 

      while (not termination condition) do 

       begin 

          Update the new value of F by equation (3.12) 

          Mutation operation by equation (3.2) 

          Crossover operation by equation (3.3) 

          Modifying the trail population vectors based on equation (3.15) 

          Evaluation of the fitness functions 

          Select the best vector by equation (6.16) 

       end 

end 

 

Fig. 6.5.  Pseudo code for multi-objective DWM-DE. 
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begin 

Initialise the population 

      while (not termination condition) do 

       begin 

          Mutation operation by equation (3.2) 

          Crossover operation by equation (3.3) 

          Modifying the trail population vectors based on equation (3.15) 

          Evaluation of the fitness functions 

          Select the best vector by equation (6.16) 

       end 

end 

 

Fig. 6.6.  Pseudo code for multi-objective WM-DE. 

 

 

III EXPERIMENT RESULTS 
 

Fifteen children with TIDM at the Princess Hospital for Children in Perth, Western 

Australia, Australia are invited to join the study of hypoglycaemia.  Their average age is around 

fifteen years old.  They are required to measure their body signals and blood glucose levels for 

ten hours at midnight.  This study is approved by Woman’s and Children’s Health Service, 

Department of Health, Government of Western Australia, and with informed consent. 
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Fig. 6.7.  Actual BG-Level profiles of 16 T1DM children. 

 

Fig. 6.5 shows the blood glucose levels (BGL) for the fifteen children with TIDM.  Each 

patient is required to measure his or her blood glucose for around 450 minutes.  All the patients 

have significant changes of their blood glucose levels with the presence of hypoglycaemia.  The 

whole dataset contains samples of both presence and absence of hypoglycaemia data.  In this 

study, the body signals collected are normalised to reduce the effect of individual variability of 

patients.   

The obtained clinical dataset is used to train the fuzzy inference system (FIS) to perform 

the detection of the presence of hypoglycaemia.  In this thesis, the presence of hypoglycaemia is 

defined as a blood glucose level below 3.3mmol/l.  Table 6.1 shows the usage of the obtained 

BGL = 3.3mmol/l 
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clinical dataset.  The dataset is divided into three subsets.  Each subset has the samples of 5 

patients.  Each subset has different number of samples depending on which patient is chosen.  

For the training set, there are 199 samples.  For the validation set, there are 177 samples.  For the 

testing set, there are 193 samples.   

Table 6.1.  Dataset for the Experiments. 

Purpose Number of Patients Number of data points 

Training 5 199 

Validation 5 177 

Testing 5 193 

 

 

The training and testing performance are evaluated by using sensitivity and specificity.  

In this thesis, 10 different approaches for the hypoglycaemia detection [Sebar 03] [Wang 06] 

[Ling 11] are used for comparison.  They are:  

 

i) The proposed FIS with four inputs (HR, QTc, ∆HR and ∆QTc) tuned by the 

proposed intelligent optimiser with the proposed training and validation method. 

ii) An evolved fuzzy inference system with two inputs (HR and QTc) tuned by the 

proposed intelligent optimiser with the proposed training and validation method. 

iii) The proposed FIS with four inputs (HR, QTc, ∆HR and ∆QTc) tuned by the 

proposed DWM-DE with the proposed training and validation method. 

iv) An evolved fuzzy inference system with two inputs (HR and QTc) tuned by the 

proposed DWM-DE with the proposed training and validation method. 

v) A fuzzy inference system with four inputs (HR, QTc, ∆HR and ∆QTc) without 

validation (FIS-4- w/o-v) [Ling 11]. 
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vi) A fuzzy inference system with two inputs (HR and QTc) without validation 

(FIS-2- w/o-v) [Ling 11]. 

vii) A linear multiple regression with 4 inputs (HR, QTc, ∆HR and ∆QTc) (LR-4) 

[Ling 11]. 

viii) A linear multiple regression with 2 inputs (HR and QTc) (LR-2) [Ling 11]. 

ix) An evolved multiple regressions with two inputs (EMR2) [Ling 11].   

x) A feed-forward neural network (FFNN) [Ling 11]. 

 

The proposed intelligent optimiser with two WM-DE engines is used to optimise the 

fuzzy rules and membership functions of the FIS in case i) and ii).  The configuration of the 

experiments is given as follows. 

• Shape parameter of the wavelet mutation ( ): 1.  (This value is not very critical.  See 

the discussion in Chapter 3.) 

• Parameter λ for the monotonic increasing function: 10000.  (This value is not very critical.  

See the discussion in Chapter 3.) 

• Initial population: It is generated uniformly at random. 

• Number of iteration: 5000. 

• Population size: 50  2. 

 

On using the DWM-DE algorithm for iii) and iv), the settings of the parameter values are given 

as follows. 

• Shape parameter of the wavelet mutation: 1.  (This value is not very critical.  See the 

 discussion in Chapter 3.) 

wm
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• Parameter λ for the monotonic increasing function: 10000.  (This value is not very critical.  

 See the discussion in Chapter 3) 

• Initial population: Generated randomly and uniformly. 

• Number of iteration: 5000. 

• Population size: 100. 

• Crossover Rate: 0.5. 

 

In the experiment, two configurations of FIS is embedded for testing.  The first one is the FIS 

with the inputs of HR and QTc (two-input FIS).  The second one is the FIS with the inputs of HR, 

QTc, ∆HR and ∆QTc (four-input FIS).  The two-input FIS and four-input FIS are tested with 

different numbers of membership functions (mf).  Table 6.2 and Table 6.3 show the numbers of 

membership functions involved and numbers of rules involved.  The sensitivity and specificity 

obtained are also reported in these tables.  The result for the training dataset, validation dataset 

and testing dataset are reported separately in the tables.  In this study, the experiment for each 

case has run for 50 trials.  The best results obtained by the DWM-DE, the intelligent optimiser, 

and the other methods are given in Table 6.4.   

 

 

 

 

Table 6.2.  Results of using DWM-DE (Average of 50 Trials). 

No of mf td Testing Training Validation 
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Table 6.3.  Results of using Intelligent Optimiser (Average of 50 trials). 

 

The clinical requirements of classification suggest that the value of sensitivity should be 

large then 70% and the value of specificity should be large then 50%.  From the result reported 

in Table 6.3, we can see that the FIS model trained with the proposed intelligent optimiser can 

achieve a specificity > 53% and sensitivity > 74%.  The testing result can meet the clinical 

requirements successfully.  From the result reported in Table 6.2, we can see that the FIS model 

trained with the proposed DWM-DE can achieve a specificity > 51% and sensitivity >73%.  The 

testing result also satisfies the clinical requirements.  The resulting specificity and sensitivity 

increase when the number of inputs to the FIS increases.  It is reasonable as the FIS can capture 

more body information to perform the classification.  Besides, the resulting specificity and 

sensitivity increase when the number of membership functions involved in the FIS increases.  It 

is also reasonable as the FIS can have more freedom to model the relationship between the body 

signals and the presence of hypoglycaemia.  The drawback of increasing the number of inputs 

Inputs ξ η ξ η ξ η 

2 3 21 71.07% 40.92% 80.35% 40.84% 83.11% 42.14% 

5 45 73.22% 40.13% 80.56% 42.21% 81.22% 41.24% 

8 96 73.07% 40.21% 81.21% 43.32% 80.00% 42.23% 

4 3 105 72.06% 42.22% 82.34% 41.00% 86.24% 44.92% 

5 665 73.92% 51.22% 83.33% 41.00% 90.10% 50.95% 

No of 

Inputs 

mf td Testing Training Validation 

ξ η ξ η ξ η 

2 3 21 70.37% 40.32% 80.65% 40.08% 86.89% 43.68% 

5 45 72.22% 40.15% 80.66% 43.81% 82.43% 42.64% 

8 96 72.07% 40.71% 81.55% 44.02% 79.00% 43.13% 

4 3 105 73.56% 44.98% 82.54% 41.94% 86.30% 45.45% 

5 665 74.92% 53.64% 83.45% 40.66% 90.07% 50.45% 
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and the number of membership functions is that the demand of the computational power for the 

training process is increased.  Yet, the proposed DWM-DE and intelligent optimiser can be 

trained process successfully and are able to offer better solution quality and reliability. 

 

 

Table 6.4.  Best Testing Results for Hypoglycaemic Detection from Different Approaches. 

Method Sensitivity Specificity 

The Intelligent Optimiser 

with FIS - 4 inputs 

76.92% 56.14% 

The Intelligent Optimiser 

with FIS – 2 inputs 

75.12% 45.32% 

The DWM-DE  

with FIS - 4 inputs 

75.92% 55.14% 

The DWM-DE  

with FIS – 2 inputs 

74.92% 47.12% 

   

FIS-4-w/o-v 75.00% 51.64% 

FIS-2- w/o-v 73.21% 52.58% 

LR-4 51.78% 51.64% 

LR-2 50.00% 51.17% 

FFNN-2 64.26% 52.50% 

MR-2 62.31% 53.10% 
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IV CONCLUSION 

 

In this chapter, the proposed intelligent optimiser and the proposed DWM-DE algorithm 

are applied to the hypoglycaemic detection problem.  To tackle this problem, a Fuzzy Inference 

System (FIS) is used as a detector to recognise the presence of hypoglycaemia.  The FIS is 

developed to measure some physiological signals continuously from the human body.  It captures 

the relationship between the presence of hypoglycaemia episodes and the physiological signals 

of corrected QT interval of the electrocardiogram (ECG) signal and heart rate.  The proposed 

DWM-DE and intelligent optimiser are employed to optimise the FIS parameter values that 

formulate the fuzzy rules and fuzzy membership functions.  Data of 15 children with TIDM are 

studied and used in the training and testing process for the proposed FIS.  Experiment results 

show that the two proposed optimisation methods could offer good performance on training the 

FIS.  The resulting FIS can offer good performance on doing hypoglycaemia detection.  

Moreover, the proposed DWM-DE and intelligent optimiser trained the FIS model well for doing 

classification.   
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Chapter 7  
 
 

CONCLUSION 

 

I ACHIEVEMENT 

 

In this thesis, we have proposed two Evolutionary Computation (EC) techniques to solve 

optimisation problems.  They are the Differential Evolution with Double Wavelet Mutations 

(DWM-DE) algorithm and the intelligent optimiser.  The two techniques are developed based on 

the standard Differential Evolution (DE) algorithm to achieve better searching performance.  The 

proposed DWM-DE algorithm employs two additional stages of wavelet operations.  Taking 

advantage of the wavelet function’s properties, the proposed DWM-DE algorithm can offer 

better performance in terms of solution reliability, solution quality and convergence rate.  The 

proposed intelligent optimiser integrates two DE engines into one single system.  The two DE 

engines share the population information with each other to achieve better searching 

performance.  An internal fuzzy controller is embedded to adjust the internal parameters of the 

DE engines adaptively.  Thanks to the population information sharing and the adaptive control of 

the internal parameters, the proposed intelligent optimiser can offer much better performance in 

term of solution quality, solution reliability, and convergence rate.  The DWM-DE algorithm and 

the intelligent optimiser have been applied to the economic load dispatch with valve-point 

loading (ELD-VPL) problem and the hypoglycaemia detection problem to evaluate their 
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performance.  Experiment results have shown that the two proposed methods can achieve good 

performance in these two industrial applications.  

The design detail of the DWM-DE algorithm is discussed in Chapter 3.  To realise the 

evolution, two stages of wavelet operation are embedded in the standard DE algorithm.  By 

introducing the double wavelet mutations in DE, the searching process is enhanced by offering 

an effective balance between the exploration and exploitation of the solution space for better 

solution reliability and quality.  In the DE mutation operation, a wavelet function is employed to 

control the mutation factor F.  In the DE crossover operation, a wavelet-based second mutation 

mechanism is proposed to modify the trial vectors within the population.  A suite of 29 

benchmark test functions is employed to test the performance of the proposed DWM-DE.  The 

experiment results show that the proposed DWM-DE is a useful tool for solving optimisation 

problems, and it offers better results in terms of solution reliability, solution quality and 

convergence rate.  The experiment results reflect that DWM-DE is particularly suitable for 

complex problems with a high dimension (≥20). 

The design detail of the proposed intelligent optimiser is discussed in Chapter 4.  It 

incorporates two identical wavelet-mutated Differential Evolution (WM-DE) engines to 

construct a reliable optimiser.  The two engines operate in parallel with the same fitness function.  

A fuzzy controller is employed in the intelligent optimiser to control the internal parameters of 

the optimiser.  This implementation framework takes advantage of the parallel structure to 

enhance the optimisation performance.  A suite of 29 benchmark test functions is employed to 

test the performance of the proposed intelligent optimiser. The experiment results show that the 

proposed intelligent optimiser a useful tool for solving optimisation problems, and it offers better 
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results in terms of solution reliability, solution quality and convergence rate.  In particular, the 

experiment results show that the intelligent optimiser could offer much better results when the 

problem is complex and the problem dimension is high (>30).  

 Two industrial applications of solving the ELD-VPL problem and the hypoglycaemia 

detection problem are discussed in Chapter 5 and Chapter 6 respectively.  The proposed DWM-

DE and intelligent optimiser are applied to search for the minimum operating cost for the ELD-

VPL problem.  Two different requirements of the ELD-VPL problem have been tested.  It is 

observed that the two proposed methods give satisfactory optimal costs when compared with 

other techniques in the literature.  Moreover, the experiment results show that the two proposed 

methods could offer better performance than the conventional methods in terms of solution 

quality, convergence speed and solution reliability.  Thanks to the wavelet operations, the DWE-

DE algorithm searches the solution space more effectively.  Thanks to the fuzzy controller and 

the T-Test analysis in the proposed intelligent optimiser, the population information can be 

captured to change the parameter values of the optimiser adaptively in order to obtain better 

searching performance. 

 For the hypoglycaemia detection problem, a fuzzy inference system (FIS) is employed as 

a classifier to classify the presence of hypoglycaemic episodes for Type 1 diabetes mellitus 

(TIDM) patients.  A detector is developed to measure some physiological signals continuously 

from human body.  The FIS captures the relationship between the presence of hypoglycaemic 

episodes and the physiological signals of corrected QT interval of the electrocardiogram (ECG) 

signal and heart rate.  The proposed DWM-DE and intelligent optimiser are employed to 

optimise the FIS parameter values that formulate the fuzzy rules and fuzzy membership 
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functions.  The data of 15 children with TIDM are studied and used in the training and testing 

process for the proposed FIS.  The experiment results show that the two proposed optimisation 

methods could offer good performance on training the FIS.  The resulting FIS can offer good 

performance on doing hypoglycaemia detection.  

II FUTURE WORK 

 

 In this thesis, we have proposed methods applying to the standard DE’s crossover and 

mutation operations in order to enhance the searching performance for better solution quality, 

solution reliably and convergence rate.  In the future, different operation schemes for the DE 

crossover and mutation operation can be studied to improve the searching performance further.  

The major objectives of the operation scheme are to control the searching process of the 

population for a balance between the exploration and exploitation of the solution space.  In the 

early stage of searching, we want more exploration while more exploitation is desired at the later 

stage.  For the intelligent optimiser, we have proposed to use the T-Test algorithm to analyse the 

population difference between the two engines.  Different kinds of statistical algorithms can also 

be applied to analyse the population difference, for example, the F-Test and the Z-Test.  

Moreover, different kinds of fuzzy membership functions and fuzzy rules can be investigated to 

enhance the performance of the intelligent optimiser further.  For the industrial application of the 

hypoglycaemia detection problem, different kinds of modelling technique can be employed to 

realise the classifier.  For example type-2 fuzzy inference system, support vector machines 

(SVM) and neural networks (NN) can be studied.  
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