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Abstract 

To understand the photochemical O3 pollution at different elevations in 

mountainous areas, and to provide a conceptual description of O3 pollution in Hong 

Kong, a number of field campaigns were undertaken in different locations in Hong 

Kong and the inland PRD region, which were followed by in-depth data analysis and 

model simulation. 

Intensive field measurements were concurrently conducted for the first time at a 

mountain site (TMS) and an urban site at the foot of the mountain (TW) from 

September to November 2010. The mixing ratios of air pollutants were greater at TW 

than those at TMS, except for O3. The relatively higher levels of O3 at TMS were 

attributed to the combined influence of NO titration, vertical meteorological 

conditions, regional transport and mesoscale circulations. The photochemical O3 

formation at TMS was mostly influenced by VOCs, with measurable influence of NOx, 

while O3 production at TW was generally limited by the concentrations of VOCs. By 

using a photochemical box model coupled with master chemical mechanism 

(PBM-MCM), the photochemical reactivity at the above two sites were investigated. 

It was found that slightly higher HO2 concentrations were found at TMS, while much 

higher OH concentrations were estimated at TW, suggesting that the HOx cycling 

processes were different at the two sites due to the differences of O3 and its precursors. 

The O3 formation was dominated by the reaction of HO2 + NO at the two sites, while 

O3 was mainly destroyed by the reactions of OH + NO2 at TW, and by the O3 

photolysis and the reaction of O3 + HO2 at TMS. Furthermore, more O3 could be 

produced for each radical generated at TMS. 

Since VOCs are the most important chemicals contributing to high O3 production 

in Hong Kong and the inland PRD region, identification of VOC sources and 
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quantification of source contributions could provide valuable information for the 

formulation and implementation of O3 pollution control measures. A new 

reactivity-based approach, combining the Positive Matrix Factorization (PMF) model 

with an observation-based model (OBM), was developed in this study. A new 

parameter, i.e., Relative Incremental Reactivity (RIR) – weighted value, considering 

both the emissions and reactivity of VOCs, was used to evaluate the contributions of 

VOC sources and the major species to O3 formation. In the inland PRD region, ten 

VOC sources were identified, while seven sources were identified in Hong Kong. 

Among all the sources, vehicular- and solvent-related emissions contributed 

significantly to ambient VOCs. In addition, the RIR-weighted values indicated that 

the O3 formation in inland PRD and Hong Kong was controlled by a small number of 

VOC species in specific sources. Sensitivity analysis on the basis of relative O3 

reduction efficiency (RORE) indicated that the O3 reduction was the most effective 

when the identified VOC sources and the major species from these sources were cut 

by certain percentages. 

Finally, to formulate and implement effective control strategies for O3 pollution, 

a conceptual model was developed for the first time in Hong Kong based on the 

integrated data analysis at Tung Chung (TC) in Hong Kong between 2005 and 2010. 

By comparing meteorological parameters between O3 and non-O3 episode days, it was 

found that high temperatures, strong solar radiation, low wind speeds and relative 

humidity, northeasterly and/or northwesterly prevailing winds were favorable for the 

O3 formation, while tropical cyclones were most conducive to the occurrence of O3 

episodes. Backward trajectories simulation and graphical illustration of O3 pollution 

suggested that super-regional and regional transport were other factors that 

contributed to high O3 levels in Hong Kong. The photochemical O3 formation, 



 

IV 
 

generally VOC-limited in Hong Kong, was controlled by a small number of VOCs, 

which were mainly from solvent usage and vehicular emissions.  

Overall, the results of this study suggested that mesoscale circulations had a 

significant influence on the distributions of air pollutants in mountainous areas in 

Hong Kong, and the cycling processes among radicals, the production and destruction 

of O3 were different at the mountain and urban sites due to the different levels of O3 

and its precursors. It is recommended that before the formulation and implementation 

of VOC control strategies, the abundance and reactivity of each VOC in each source 

should be considered. This study has provided an alternative way to more efficiently 

alleviate O3 pollution by controlling specific VOCs in certain VOC sources and 

highlighted the importance of monitoring these VOCs.  
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The novelty of this study 

In this study, to investigate the characteristics of photochemical air pollutants and 

the impact factors for the O3 variations at different elevations in mountainous areas in 

Hong Kong, concurrent field measurements were firstly conducted at the mountain 

site (Mt. Tai Mo Shan, TMS) and the low-elevation urban site (Tsuen Wan, TW) in 

Hong Kong from September to November 2010. A newly developed photochemical 

box model coupled with master chemical mechanism (PBM-MCM) was applied to 

and constrained by the above full suite of air pollutants at TMS and TW to understand 

chemical mechanisms of photochemical reactivity under the influence of different 

levels of O3 and precursors, including the HOx budget, the OH chain length, and 

calculated O3 production for the first time in Hong Kong.  

Previous studies demonstrated that the O3 formation was generally VOC-limited 

in Hong Kong, where most of the VOC control measures were mass-based. As such, a 

new reactivity-based method, combining the PMF and an observation-based model 

(OBM), was firstly developed based on the data collected in the inland PRD. This 

reactivity-based method was further used to investigate the roles of VOC sources in 

the O3 formation in the urban area of Hong Kong, and the implications for VOC 

control policy were emphasized by considering both reactivity and abundance of VOC 

sources. 

Finally, to obtain a full picture of O3 pollution in Hong Kong, a conceptual 

model based on the 6-year monitoring data at Tung Chung (TC) was firstly developed 

by investigating the influence of meteorological conditions, O3-precursors 

relationship and sources of O3 precursors in 2005-2010. The significance of the 

conceptual modeling results to the future O3 control policy formulation and 

implementation was highlighted. 
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Chapter 1 Overview 

1.1 Introduction 

Ozone (O3), a major component of photochemical smog which impairs visibility 

and human health, is formed by a complex series of chemical reactions involving 

(hydrogen oxide radical) HOx radicals, i.e., hydroxyl radical (OH) and hydroperoxyl 

radical (HO2), volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the 

presence of sunlight (Seinfeld and Pandis, 2006). In the troposphere, O3 plays 

important roles in determining the oxidative capacity of the atmosphere, affecting 

human and vegetation health, and influencing the radiation budget of the atmosphere 

(NCR, 1991). In recent years, with increasing recognition of the adverse impact of O3 

on human health, a series of control measures have been implemented in Hong Kong 

and the rest of the Pearl River Delta (PRD) region to reduce O3 and its precursors 

(GDEMC and HKEPD, 2005 – 2012; Cheng et al., 2010a, b; Zheng et al., 2010a). 

Though the concentrations of O3 precursors have been reducing gradually in last 

decades, the concentration of O3 is still increasing and high levels of O3 were 

frequently observed in Hong Kong and the rest of Pearl River Delta (PRD) region 

(Wang et al., 2009; HKEPD, 2010, 2012a). For instance, Zheng et al. (2010a) 

demonstrated that there were 3 – 5 ppbv increases in 1 h-average O3 levels and 8 – 11 

ppbv increases in 1 h-max O3 levels in 2007 compared to the values in 2006 across 

the PRD region. Moreover, a 14-year continuous study provides clear evidence that 

O3 levels in the background atmosphere of South China have exhibited a slow rising 

trend since 1994 (Wang et al., 2009). Therefore, investigation of characteristic of O3 is 

urgently needed for effectively controlling O3 pollution in this area. 

The dependence of O3 formation on VOCs and NOx has classified the 

O3-precursors relationships into two categories: VOC-limited and NOx-limited. 
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Previous studies have reported that the O3 formation in the urban areas of Hong Kong 

and the inland PRD was generally VOC-limited (So and Wang, 2004; Huang et al., 

2005; Zhang et al., 2007, 2008; Cheng et al., 2010a, b; Zheng et al., 2010a). Therefore, 

identification of VOC sources and quantification of source contributions could 

provide important information on reducing VOC emissions, which will result in O3 

reduction. The sources of VOCs have been investigated in Hong Kong and the inland 

PRD by using different methods. For instance, Guo et al. (2011a) applied the Positive 

Matrix Factorization (PMF) model to investigate VOC sources in Hong Kong and the 

inland PRD region, reporting that vehicular emissions and solvent use were the two 

major contributors to ambient VOCs. Using the same approach, Lau et al. (2010) 

identified 9 sources of VOCs at four sites in Hong Kong in 2002 – 2003 and 2006 – 

2007, concluding that vehicle and marine vessel related sources and liquefied 

petroleum gas (LPG) were the most significant local sources. However, most of 

previous studies of the source identification and evaluation regarded each individual 

VOC as equally important to the O3 formation, without considering the actual 

difference in O3 formation potentials of individual compounds. Hence, the relative 

importance of potential VOC sources to the O3 formation still remains unclear in this 

region.  

Various measures have been implemented to reduce VOC emissions in Hong 

Kong and the inland PRD but most of the control strategies implemented were based 

on mass-based approaches, focusing on the control of the weight of total VOC emitted. 

Though measurability and practicality are the major advantage of the mass-based 

approach, it does not consider the O3 formation potentials of VOCs (Avery et al., 

2006). If heavier VOCs with lower photochemical reactivity were replaced by lighter 

VOCs with higher photochemical reactivity the O3 pollution would be worse, as the 
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more reactive VOCs would increase the photochemical O3 formation (HKEPD, 2010; 

Derwent et al., 2007a). Reactivity-based methods using MIR (maximum incremental 

reactivity) and OFP (O3 formation potential) can overcome the limitation by 

considering the contributions of VOC species to photochemical O3 (Chang et al., 2005; 

Derwent et al., 1998; Carter, 1994; Chameides et al., 1992), but the two methods 

simply estimate O3 formation under optimum or ideal conditions. Consequently, a 

new reactivity-based method, considering both the emissions and the reactivity of 

VOCs, is urgently needed for better understanding the roles of VOCs in O3 formation 

in Hong Kong and the inland PRD, where serious O3 pollution is frequently observed.  

Though many studies on photochemical O3 have been conducted in Hong Kong 

and the inland PRD in recent years (Lam et al., 1998; Chan et al., 1998a, b; Lee et al., 

2002; So and Wang, 2003; Huang et al,, 2005, 2006; Wang et al., 2006; Guo et al., 

2009; Wang et al., 2009), these studies focused on the levels and spatial and temporal 

variations of O3, the O3-precursors relationships, and the influence of meteorology on 

O3. The photochemical reactivity of O3, its precursors, free radicals, and intermediate 

products, which could provide valuable insights into the formation and abatement of 

O3 pollution, were poorly understood in this region. In addition, the photochemical 

reactivity may be different due to the variations of O3, its precursors, and 

meteorological conditions in different areas, especially in this region where the 

topography and physical features are complex (AFCD, 2008). For further policy 

implementation of regional policies to alleviate photochemical O3 problem, it is 

necessary to understand the photochemistry of O3 and its precursors in different areas. 

In addition to the emissions of its precursors, meteorological conditions have 

significant influence on O3 pollution. High temperature, intense solar radiation, low 

winds and relative humidity are favorable for photochemical O3 formation. Tropical 
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cyclones have been found to be mostly conducive to the occurrence of high O3 mixing 

ratios in PRD (Lam et al., 2004, Huang et al., 2005, Jiang et al., 2008). In addition to 

the above meteorological parameters, long-range transport could also induce high O3 

levels observed in Hong Kong and the inland PRD region. Guo et al. (2009) 

investigated the O3 characteristic at a suburban site in PRD and found that the high O3 

mixing ratios there were associated with air masses from Eastern China. Based on 

data simulated by the Weather Research and Forecasting (WRF) model, Jiang et al. 

(2010) reported that the weather conditions induced regional transport of O3 pollution 

occurred in the fall of 2007.   

It has been well known that in addition to long-range transport, mesoscale 

circulations like mountain-valley/sea-land breezes, play important roles in 

redistributing air pollution in mountainous/coastal regions. The coastline and the 

mountains combine to give a terrain with many complex physical features in Hong 

Kong. The role of sea-land breezes in air pollution transport has been well-studied 

(Zhang and Zhang, 1997; Liu et al., 2000; Ding et al., 2004). For instance, Ding et al. 

(2004) studied the impact of sea-land breeze on transporting air pollutants during an 

O3 episode in the PRD region and concluded that cross-border transport and sea-land 

breeze did play a critical role in air-quality deterioration in the PRD region. There 

were relatively few Hong Kong studies focusing on mountain-valley breezes, even 

though they are almost certainly very important to air pollution transport in Hong 

Kong, where topography and physical features are complex and where about 75% of 

the land area is hilly (AFCD, 2008). In addition, there were very few studies 

conducting field measurements at mountain sites, especially concurrent measurements 

at the foot and summit of the mountain in this region. 
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Through the results of this study, it could be found that meteorological conditions, 

i.e., high temperature, strong solar radiation, low wind speed, northerly winds, 

regional transport and mesoscale circulations have significant influence on O3 

pollution in Hong Kong. In particular, tropical cyclones were mostly conducive to the 

occurrence of high O3 mixing ratios in this region. In addition, regional transport and 

mesoscale circulations could have significant influence on the redistribution of air 

pollutants in subtropical Hong Kong. Furthermore, the O3 formation was generally 

VOC-limited at the urban environment, while measurable influence of NOx could be 

also found at the mountain site in Hong Kong. Controlling vehicular- and 

solvent-related emissions could alleviate the O3 pollution throught reducing VOCs in 

Hong Kong and the inland PRD region. Moreover, the investigation of photochemical 

reactivity indicated that the HOx cycling processes and O3 fomration were different at 

TMS and TW due to different levels of precursors, and the longer OH chain length 

suggested that more O3 could be produced for each radical that is produced at TMS. 

Overall, these results are expected to provide additional support to alleviate the O3 

pollution in the PRD region.  

1.2 Aims and objectives 

An intensive field measurement was carried out simultaneously at the mountain 

site and an urban site at the foot of the mountain in Hong Kong from September to 

November 2010. The high quality measurement data from this concurrent field 

measurement, together with data from another field measurement in the inland PRD, 

enable a set of comprehensive analysis of the characteristics and the impact factors of 

O3 pollution and the O3-precursors relationships at different elevations, the influence 

of mesoscale circulations on the distributions of air pollutants, the similarities and 

differences of photochemical reactivity under the influence of different levels of O3 
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and its precursors, and the contributions of VOC sources to O3 formation in Hong 

Kong. In addition, data from a 6-year monitoring campaign at Tung Chung provide us 

with an opportunity to develop a conceptual model for the O3 pollution in Hong Kong. 

The major objectives of this study are therefore as follows: 

 Characterize the O3 pollution and investigate the impact factors that influence 

the variations of O3 pollution at different elevations in Hong Kong; 

 Investigate the influence of mesoscale circulation/regional transport on air 

pollutants and the relationships between O3 and its precursors at different elevations 

in Hong Kong. 

 Develop a new reactivity-based method to evaluate the contributions of VOC 

sources to O3 formation in Hong Kong and the inland PRD region. 

 Investigate the similarities and differences of photochemical reactivity under 

different relative concentrations of O3 and precursors at two sites in Hong Kong. 

 Develop a conceptual model for the O3 pollution in Hong Kong. 

1.3 Structure of the thesis 

The thesis is composed of nine chapters as follows: 

1) Chapter 1 provides the background and the major research objectives of this 

study. 

2) Chapter 2 presents a brief literature review on the characteristics and the 

impact factors of O3 pollution, the characteristics of O3 precursors, the O3-precursors 

relationships and the photochemical oxidation. 

3) Chapter 3 describes the methodology used in this study, including the 

description of sampling sites, measurement techniques, data analysis, quality control, 

quality assurance (QA/QC) and model description. 
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4) Chapter 4 gives an overview of the variations of O3 pollution and its impact 

factors and the O3-precursors relationships at different elevations in Hong Kong. 

5) Chapter 5 develops a new reactivity-based method to investigate the roles of 

VOC sources in O3 formation based on the data collected in the inland PRD region.  

6) Chapter 6 applies the new reactivity-based method to the Hong Kong dataset 

to investigate the contributions of VOC sources to O3 formation and provide 

suggestions for O3 control in Hong Kong.  

7) Chapter 7 investigates the photochemical reactivity under the influence of the 

different levels of O3 and its precursors at two sites in Hong Kong. 

8) Chapter 8 presents the development of a conceptual model of O3 pollution in 

Hong Kong. 

9) Chapter 9 highlights the major findings, the significant contributions and the 

implications of the study. 
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Chapter 2 Literature Review 

2.1 Photochemical ozone formation 

Ozone (O3), a major constituent of photochemical smog, is a key trace gas in the 

atmosphere. The O3 layer in the upper atmosphere (stratosphere) is beneficial, 

preventing potentially damaging electromagnetic radiation from reaching the Earth's 

surface. However, in the lower atmosphere (troposphere, 0 – 10 km), O3 plays 

important roles in atmospheric chemistry, climate change, and air quality (NRC, 1991; 

Godish, 2004). Owing to its adverse health effects, tropospheric O3 has become one of 

the most studied topics in recent decades (Bell et al., 2004; Mauzerall and Wang, 2001; 

Zheng et al., 2010a).  

Ozone in the troposphere is determined by the downward transport of 

stratospheric air (Stohl, et al., 2003), dry deposition on the earth’s surface and series 

of photochemical reactions involving volatile organic compounds (VOCs) and 

nitrogen oxides (NOx) in the presence of sunlight. The mechanisms of photochemical 

reactions resulting in O3 formation are summarized below. Figure 2.1 presents the 

details of the chemistry for the oxidation of a generic saturated hydrocarbon, RH (i.e., 

an alkane), into its first-generation oxidized products, while reactions R1 – R9 show 

the simplified mechanism for the process of O3 formation initiated by both saturated 

and unsaturated hydrocarbons with OH radical (Jenkin and Clemitshaw, 2000). 
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The OH radical, formed primarily via the photolysis of O3, initiates the reaction 

sequence. Then the OH radical reacts with both saturated and unsaturated 

hydrocarbons to form alkyl proxy radicals (RO2·), efficiently converting NO to NO2. 

Finally, photochemical O3 is formed by the subsequent photolysis of NO2. It should be 

noted that the formation of RO2· is the rate-limiting step for the above photochemical 

reactions. The net reaction for the above mechanisms converts one molecule of the 

saturated and/or unsaturated hydrocarbons to ketones and aldehydes, forming two 

molecules of O3. In addition, O3 can also be generated from CO oxidation via  

(R8)    CO + OH· → CO2 + H· 

(R9)    H· + O2 → HO2 

followed by (R5), (R6), and (R7). 

Although VOCs and NOx have been confirmed to be key precursors of 

photochemical O3 production, it is difficult to determine whether O3 production 

during specific events is associated with NOx-sensitive chemistry or VOC-sensitive 

chemistry, due to its complicated chemistry processes which depend on 

meteorological parameters and concentrations of VOCs and NOx. The rate of O3 

production (ppb h-1) as a function of NOx and VOCs concentrations is shown in 

Figure 2.2 (Sillman, 1999). The isopleths plot shows that the rate of O3 formation is a 

nonlinear function of VOC and NOx concentrations in the atmosphere, depending on 

the relative concentrations of VOCs and NOx. When NOx is low, the rate of O3 

formation increases with the increase of NOx in a near-linear fashion. As NOx 

increases, the rate of increase in O3 formation slows and eventually reaches a local 

maximum. At higher NOx concentrations, the rate of O3 formation would decrease 

with the increase of NOx. The line representing the local maxima for the rate of O3 

formation (the “ridge line”) can be thought of as a dividing line separating two 



 

different p

increases 

increased 

the increas

NOx is an 

by NOx or

low VOC

effective 

understand

of NOx an

VOCs pre

Figure 2.2 
VOC (ppbC
lines repres
arrows sho
parcels ove
of urban ce
 

2.2 Ambie

photochemic

with the in

VOCs. In t

se of VOCs

important p

r VOCs, and

C/NOx ratio

O3 abatem

ding of the 

nd VOCs in

esent in the a

Isopleths gi
C) and NOx (
sent product
ow the calcu
er an 8 h peri
enters in the U

ent concent

cal regimes

ncrease of N

the VOC-se

s and decrea

parameter t

d high VOC

os correspo

ment strate

two key O3

n the area 

atmosphere

ving net rate
(ppb) for me
tion rates of 
ulated evolu
iod (9 am-5 
US, based on

tration and

s. In the NO

NOx and sho

ensitive (or 

ases with th

to evaluate 

C/NOx ratio

ond to VOC

egy in a g

3 precursor r

(e.g. VOCs

e. 

e of ozone p
ean summer d
f 1, 2.5, 5, 10
ution of VO
pm), each w
n calculation

d character

Ox-sensitive

ows relativ

NOx-satura

he increase o

whether the

os generally 

C-limited. 

given urba

relationship

s : NOx rati

production (p
daytime mete
0, 15, 20 an
C and NOx

with initial VO
ns shown in M

ristics of oz

regime belo

ely little ch

ated) regim

of NOx. So 

e production

correspond

Thus, the 

an area re

ps: 1) the rel

io), and 2) 

ppb/h, solid l
eorology and

nd 30 ppb/h. 
concentratio

OC/NOx = 6 
Milford et al.

one 

ow the ridg

hange in res

me, O3 incre

the ratio of 

n of O3 is c

d to NOx-lim

developme

equires an 

lative conce

the mix of

 

lines) as a fu
d clear skies.
The dashed

ons in a ser
and speciati

. (1994) 

15

e line, O3 

sponse to 

ases with 

f VOCs to 

controlled 

mited and 

ent of an 

in-depth 

entrations 

f reactive 

function of 
. The solid 

d lines and 
ries of air 
ion typical 



 

16 
 

Extensive O3 studies have been conducted to characterize tropospheric O3 in 

different locations all over the world (Chan et al., 1998a; Jacob et al., 1999; Hidy, 

2000; Kleinman, 2000; Solomon et al., 2000; Jaffe et al., 2003; Vingarzan and Taylor, 

2003; Chou et al., 2006; Oltmans et al., 2006; Derwent et al., 2007b; Jaffe and Ray, 

2007; Krzyscin et al., 2007; Jenkin, 2008; Guo et al., 2009; Kurokawa et al., 2009; 

Shao et al., 2009a, b; Tanimoto et al., 2009; Tarasova et al., 2009; Wang, T. et al., 

2009; Wang, Y. et al., 2011). In general, the O3 levels and characterisitics varied 

temporally and spatially due to the fact that the O3 concentration in any given area 

results from a combination of formation, transport, destruction and deposition.  

The magnitude and patterns of O3 vary in different areas because of the complex 

interactions of chemical and meteorological factors. Previous research indicates that 

ground-level O3 concentrations are strongly influenced by the changes in 

anthropogenic emissions of O3 precursors, regional transport and atmospheric 

circulations (Ryerson et al., 2003; Pochanart et al., 2003; Zellweger et al., 2003; 

Parrish et al., 2004, 2009; Chang et al., 2005; Jaffe and Ray, 2007; Oltmans et al., 

2008; Guo et al., 2009; Wang et al., 2009; Zheng et al., 2009a, b; Gilge et al., 2010; 

Fiore et al., 2011). Below shows the detailed literature review of the ambient O3 

concentrations and characteristics. 

2.2.1 Atmospheric oxidation chemistry and O3 productions 

As described above, the O3 formation in the atmosphere involves the chemistry 

of atmospheric radicals, particularly the hydroxyl radical (OH) and it’s chemical 

relative hydroperoxyl radical (HO2). It was found that the photolysis of O3, nitrous 

acid (HONO), oxygenated VOCs (OVOCs) and hydroperoxide (H2O2) are the primary 

sources for the HOx, including OH and HO2 in the atmosphere (Ren et al., 2013). 
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Investigating the atmospheric oxidation chemistry can provide detailed 

information of the O3 formation mechanism. Therefore, many studies have been 

conducted to characterize the atmospheric oxidation and O3 production in different 

locations (Ren et al., 2006, 2008, 2013; Mao et al., 2009, 2010; Hofzumahaus et al., 

2009; Dusanter et al., 2009; Shirley et al., 2006; Sommariva et al., 2004; Martinez et 

al., 2003). Most of the studies were conducted in North America and focused on the 

abundance of OH and HO2 by measurements, in addition to using different models 

with different mechanisms to investigate the HOx budget and O3 calculation. In 

general, unexplained high concentrations of OH were observed in the presence of high 

VOC mixing ratios and low to moderate NOx levels in rural forested North America 

(Rent et al., 2008) and above the tropical rainforest in Surinam (Lelieveld et al., 2008). 

On the other hand, different variations were found in the urban areas. For example, 

Ren et al. (2006) conducted a field measurement of OH and HO2 radicals in New 

York City. They found that OH and HO2 levels in the winter of 2004 were much 

higher than those observed in the summer of 2001. The average maximum daytime 

mixing ratios in winter 2004 were 0.05 pptv for OH and 0.7 pptv for HO2, which were 

about one fifth of the levels in the summer of 2001. Furthermore, a zero-dimension 

chemical model with the regional atmospheric chemical mechanism (RACM) was 

constrained by the measured parameters to investigate the HOx chemistry in the urban 

environment. Though the model reproduced the daytime OH well, it under-predicted 

the HO2 during the whole day, which may be caused by the missed HOx production in 

the model.  

Similar results suggested by the lower HO2/OH ratio in the model were also 

found in other urban areas in North America, e.g. Mexico City (Dusanter et al., 2009; 

Shirley et al., 2006). The lower HO2/OH ratio suggested that model may overestimate 
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the HO2 to OH propagation rate or a process converting OH into HO2 may be missing 

from the chemical mechanism when the NO mixing ratios were higher than 5 ppbv. 

The model results indicated that photolysis of HONO and HCHO was the major 

contributor to HOx production during the daytime, while the reactions of O3 and 

alkenes dominated at night. Mao et al. (2010) compared the photochemical activity of 

four sampling campaigns in North America: TEXAQS2000 (Houston, 2000), 

NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003) and 

TRAMP2006 (Houston 2006). They found that the photochemical reactivity was 

associated with the relative dependence of O3 precursors, i.e. VOCs and NOx. 

However, a problematic result of greater OH production than OH loss during morning 

rush hour was found in all four sutides, which may be related to the under-predicted 

HO2 in high NOx conditions. In addition to the abundance of HOx, the measurement of 

OH reactivity provides a useful tool to investigate atmospheric photochemistry. In the 

Inter-continental Chemical Transport Experiment-B (INTEX-B) campaign, the 

measured OH reactivity was higher than the OH reactivity calculated from the total 

measurements of all OH reactants. The higher OH reactivity was most likely related 

to some highly reactive VOCs that had HCHO as an oxidation production. 

In the PRD region, limited studies have been conducted to characterize the 

atmospheric oxidation (Hua et al., 2008; Hofzumahaus et al., 2009; Lou et al., 2010; 

Lu et al., 2012). Hofzumahaus et al. (2009) measured the OH abundance at the 

Guangzhou Backgarden site in the PRD region. The most striking feature of their 

findings is the high average OH concentration of 15 × 106 cm-3 around noon, although 

a large OH reactivity of about 20 s-1 was found. Lou et al. (2010) presented the 

atmospheric OH reactivity at the same site and found that the OH reactivity, kOH 

exhibited a pronounced diurnal profile with a mean maximum value of 50 s-1 at 
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daybreak and a mean minimum value of 20 s-1 at noon. The comparison between the 

measured reactivity and the calculated kOH from measured trace gases revealed a 

missing reactivity of about a factor of 2 at day and night. The contributions for the 

calculated OH reactivity of different reactants indicated that anthropogenic pollutants, 

including CO, NOx, light alkenes and aromatic hydrocarbons dominated the OH 

reactivity at night, while it was stongly influenced by local biogenic emissions of 

isoprene during the day. In addition, a box model constrained by the measured data 

could reproduce the observed OH reactivity well and suggested that the unmeasured 

secondary chemistry products, i.e. aldehydes and ketones, were the main cause of the 

discrepancy between the calculated and measured OH reactivity.  

2.2.2 Long-term trends of ozone 

Investigation of long-term trends of O3 could provide useful information for 

evaluating the impact of O3 on human health, vegetation, and climate change. The 

long-term trends of O3 in the given areas are determined by the trends of background 

levels and regional changes. The increase of industrial activities, motorized traffic, 

and agricultural activities, especially over the last century, has resulted in a strong 

increase of emissions of many species, such as sulfur dioxide (SO2), NOx and VOCs 

including carbon monoxide (CO) and methane (CH4). Except for SO2, these species 

are involved in the chemical production of O3 in the troposphere. There is increasing 

evidence for the emergence of long-term trends in tropospheric O3. Early satellite 

measurements indicating a hemispheric rise in tropospheric O3 are now supported by 

more recent studies, which suggest a rising trend in surface O3 in areas of North 

America and Europe (Lin et al., 2000). 

A large number of studies have been conducted to investigate the long-term 

variations in ground-level O3 concentrations around the world (Vingarzan and Taylor, 
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2003; Vingarzan, 2004; Oltmans et al., 2006; Jenkin, 2008; Tanimoto, 2009; Tarasova 

et al., 2009; Wang et al., 2009; Gilge et al., 2010). Vingarzan (2004) characterized the 

background levels and trends of O3 by reviewing the historical and current surface O3 

data from 30 background stations in Canada, the United States and other locations 

around the world, reporting that background O3 levels over the midlatitudes of the 

Northern Hemisphere have continued to rise over the past three decades, with an 

increase of 0.5 – 2% per year. In addition, it was indicated by model projections using 

Intergovernmental Panel on Climate Chang (IPCC) emission scenarios for the 21st 

century that background O3 may rise to levels that would exceed internationally 

accepted environmental criteria for human health and the environment.    

In Europe, surface O3 concentration is highly variable in both space and time on 

long scale. For instance, Simmonds et al. (2004) showed that background O3 in the 

clean oceanic sector measured at Mace Head, Ireland, increased by about 8 ppb for 

the period 1987 – 2003. Oltmans et al. (2006) reported a significant increase in O3 

concentration with an overall increase of 12.6 (± 0.8) % /decade from 1978 to 2004 at 

Zugspitze, Germany. Similarly, a gradual increase, resulting from global scale effects, 

was also found in the north-hemispheric baseline O3 concentrations by investigating 

the average trends of O3 concentrations at 13 rural sites in 1990 – 2006 and at 5 urban 

sites in 1993 – 2006 in the UK.  

Tarasova et al. (2009) investigated the historical O3 trends based on long-term O3 

measurements at two background mountain sites, namely the Kislovodsk High 

Mountain Station in Caucasus, Russia (KHMS) and the Jungfraujoch in Switzerland 

(JFJ), reporting that O3 mixing ratio increased at JFJ (0.73 ± 0.20 ppb/year in 1991 – 

2001 and 0.04 ± 0.21 ppb/year in 2001 – 2006) and decreased at KHMS (-0.91 ± 0.17 

ppb/year in 1991 – 2001 and -0.37 ± 0.14 ppb/year in 2001 – 2006) due to the 
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different influence of topographic features and emission sources. Consistent with 

Oltmans et al., 2006 and Tarasova et al., 2009, Gilge et al. (2010) also reported that 

the O3 mixing ratios have slightly increased at three Global Atmosphere Watch 

(GAW) program mountain stations: Hohenpeissenberg, Sonnblick and Jungfraujoch. 

This feature was observed independent of wind sector and for most seasons, with a 

tendency to higher positive trends in winter and lower, partly negative trends in 

summer.  

In North America, an increasing O3 trend has often been found in the past two 

decades. Lin et al. (2000) examined the long-term trend of background O3 in surface 

air over the United States using the hourly O3 data at EPA monitoring stations from 

1980 – 1998. A feature of increase in the highest percentile concentrations and 

decrease in the lowest percentile concentrations was extracted from the analysis of 

monthly probability distributions. They reported that the increase was significant in 

spring and fall with a range of 3 – 5 ppbv, probably attributed to the increase in the O3 

background transported from outside of the United States, which was demonstrated by 

a recent study by Oltmans et al. (2008). Similarly, Jaffe et al. (2003) presented that O3 

concentration in spring had increased by approximately 10 ppbv from the mid-1980s 

to 1995 by using a 15-year record of O3 at a rural elevated site, Lassen Volcanic 

National Park in North California. They explained that the increased spring O3 was 

due to the increase in global NOx emissions, which was further evidenced by Parrish 

et al. (2004). In addition, an increasing O3 trend was also identified in the western US 

by the analysis of O3 data for the period 1987 – 2004 (Jaffe and Ray, 2007). 

Interestingly, Parrish et al. (2009) pointed out that the background boundary layer O3 

mixing ratios over the 130 years covered by available data had increased substantially 

(by a factor of two to three). They held the opinion that the increase continues at 
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present, at least in the marine boundary layer of the Pacific coast region of North 

America. In Canada, a decreasing and an increasing trend for annual O3 was found 

between 1985 and 2000 in the eastern and western portion of southern British 

Columbia, respectively (Vingarzan and Taylor, 2003).  

In Asia, most of the studies about long-term variations of O3 were concentrated 

in Japan, Mainland China, Hong Kong and Taiwan. Lee et al. (1998) presented an 

evaluation trend of O3 in Northeast Asia based on 8 year-long O3 sounding data 

obtained between 1989 and 1997 at Naha in Japan. They reported an O3 increase of 

2.5%/year in Asian continental air during the winter – spring period, relating to the 

increasing emission of NOx from the Northeast Asia region. Compared to the O3 

concentration in 1999 – 2002, an increasing trend was observed during springtime in 

2003 – 2006 (Tanimoto, 2009) at a mountainous site in Japan. In Taiwan, Chou et al. 

(2006) reported that the annual average concentration of O3 increased by 58% from 

1994 – 2003 in Taipei, while the emissions of O3 precursors, i.e. NOx and VOCs 

decreased significantly in the same period. They explained that the increasing trend of 

O3 in Taipei was due to the reduced titration by NO.  

In Mainland China, Xu et al. (2008) reported that the average O3 concentrations 

have increased by 2.0%/year, 2.7%/year, 2.4%/year and 2.0%/year for spring, summer, 

fall and winter, respectively, based on the data collected during 6 periods between 

August 1991 and July 2006 at Lin’an in eastern China. They pointed out that the 

increase of O3 was likely attributed to the increase of NOx concentration. In Beijing, 

O3 concentrations increased at a rate of 1.1 ± 0.5 ppb/year during 2001 – 2006 based 

on the analysis of data collected at six urban sites between the months of July and 

September. This surface O3 variability was accentuated primarily by a decrease in 
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NOx emissions and an increase in non-methane hydrocarbon compounds (NMHCs) 

emissions. 

Wang et al. (2009) presented a continuous record of surface O3 in a background 

air monitoring station at Hok Tsui, Hong Kong from 1994 to 2007. The O3 mixing 

ratio was found to be increased by 0.58 ppbv/year based on a linear fit to the 14-year 

record. They explained that the increasing background O3 in the South China coastal 

region was associated with the increasing NO2 column concentration in upwind 

Eastern China. 

2.2.3 Temporal variations of ozone concentrations 

The following section will be reviewed the studies of temporal variations of O3, 

such as seasonal variations and diurnal variations around the world. 

2.2.3.1 Seasonal variations of ozone concentrations 

Extensive measurements have shown that O3 concentration exhibits pronounced 

seasonal cycles that may have different shapes at different latitudes and altitudes 

(Monks, 2000). The seasonal cycle of O3 in the troposphere is controlled by a number 

of processes such as proximity to large sources areas of O3 precursors, geographical 

location and meteorological factors (Vingarzan and Taylor, 2003).  

Over the last couple of decades typical seasonal variations were found for the 

annual cycle of O3 over the mid-latitudes with a broad summer maximum typical of 

populated and industrialized areas and a spring maximum typical of remote regions 

under the influence of background conditions (Ancellet and Beekmann, 1997; Monks, 

2000; Tanimoto et al., 2002; Carnero et al., 2010). For example, Tiwari et al. (2008) 

stated that daytime 12-hourly mean O3 mixing ratios varied from 45.18 to 62.35 ppbv 

during summer and from 28.55 to 44.25 ppbv during winter in Varanasi, India, during 
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2002 – 2006. Elevated O3 levels during the summer months can be attributed to high 

temperature, favoring photochemical production of O3, while relatively lower levels 

of O3 during the winter might be due to greater atmospheric stability and an increased 

incidence of nocturnal inversions, which might enhance the chemical scavenging of 

O3 and dry deposition. Carnero et al. (2010) also reported that O3 concentrations in 

Spain presented a seasonal variability, with higher values in summer and, lower 

concentrations in winter. The high levels in summer could be due to the 

photochemical production in-situ and/or the influence of horizontal or vertical O3 

transport. It could be concluded that the relatively higher O3 concentrations in summer 

are mostly associated with the in-situ photochemical O3 formation, relating to the 

stronger solar radiation. On the other hand, the primary reason for the origin of the 

spring maximum O3 concentrations was the accumulations of its precursors, i.e. 

VOCs and NOx during winter (Simpson et al., 1995). 

2.2.3.2 Diurnal variations of ozone concentrations 

In general, O3 variation over the diurnal scale can provide insight to the interplay 

of emissions, chemical and physical processes that operate on a diurnal cycle. 

Previous studies have shown that O3 levels tend to follow the solar radiation 

intensity, resulting in higher O3 concentrations during the daylight period (Wang et al., 

2006a; Guo et al., 2009). For instance, maximum O3 mixing ratio was frequently 

observed in the afternoon, which was primarily due to the higher solar radiation, 

temperature, and the active in-situ photochemical formation. On the other hand, the 

destruction of O3 by primary pollutants and different deposition mechanisms resulted 

in the minimum levels observed at night (Chan et al., 1998a; Wang et al., 2001; 

Cheng et al., 2010a). Though the typical diurnal behavior was observed at different 

locations, different characteristics are also existed due to the different conditions of air 
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pollutants, deposition and air masses transport. For example, relatively higher O3 

mixing ratios were observed at the suburban site in Hong Kong (Tung Chung, TC) 

than at a rural site in the inland Pearl River Delta (PRD) region at night, which may 

be due to the import of O3 from the ocean in Hong Kong (Guo et al., 2009). On the 

other hand, the diurnal variation of O3 exhibited a broad daytime peak at a relatively 

remote coastal site (Cape D’Aguilar, i.e., Hok Tsui), while the peak of O3 was much 

narrower at a downwind suburban site (Sha Lo Wan) in Hong Kong (Wang et al., 

2001a). 

2.2.4 O3 studies in the mountainous areas 

Unlike from surface measurements and aircraft observations, studies conducted 

in mountain areas often provide information on the regional background 

concentrations of air pollutants, the influence of regional transport and mesoscale 

circulations, the photochemistry of biogenic volatile organic compounds (BVOCs), 

and the influence of meteorological factors on O3 chemistry (Pochanart et al., 2003; 

Zellweger et al., 2003; Gao et al., 2005; Wang et al., 2006b; Fu et al., 2010). The 

characteristics of O3 in mountainous areas have been investigated in various locations 

in recent years (e.g. Evtyugina et al., 2009; Scott and Ahmet, 2009; Crowley et al., 

2010). For example, Burley and Bytnerowicz (2011) investigated the O3 distribution at 

White Mountains (1237 ~ 4342 m) in California and concluded that high O3 

concentrations were correlated with slow-moving back-trajectories which had spent 

more time inland and less time offshore. Monteiro et al. (2012) analyzed a high O3 

episode by employing a statistical technique and a modeling approach at a mountain 

site (1086 m) in the Mediterranean region, and reported that transport of O3 and its 

precursors by local mountain breezes and sea-breeze circulation was mainly 

responsible for the high O3 concentrations. Turnipseed et al. (2004) simulated the 
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mesoscale atmospheric flow conditions influenced by regional topography in the 

Niwot Ridge Ameriflux site within the Rocky Mountains (3050 m), and significant 

influence of mesoscale winds was found under the strong synoptic westerly winds. Ou 

Yang et al. (2012) investigated the seasonal and diurnal variations of O3 at a 

high-altitude mountain site (2862 m) in central Taiwan and concluded that the 

springtime maximum O3 concentration was most likely caused by the long-range 

transport of air masses from Southeast Asia.  

In Mainland China, limited studies have been undertaken to investigate the 

characteristics of O3 pollution in mountainous areas (e.g. Gao et al., 2005; Wang et al., 

2006b; Li et al., 2008; Xue et al., 2011). Gao et al. (2005) reported measurements of 

O3 and CO at the summit of Mt. Tai (1534 m) and suggested that air masses from the 

North China Plains or the re-circulation over the Shandong Peninsula had significant 

influence on air pollutants. Li et al. (2008) investigated the impact of chemical 

production and transport on summer diurnal O3 behavior at a mountainous site on the 

North China Plain. They suggested that in-situ chemistry accounted for most of the O3 

increment from morning to mid-afternoon. Wang et al. (2006) and Xue et al. (2011) 

studied the origin of surface O3 and reactive nitrogen speciation at Mt. Waliguan 

(3816 m) in western China, and indicated that high O3 events were mostly derived 

from the downward transport of the upper tropospheric air rather than anthropogenic 

pollution. It should be noted that all of these studies were carried out only at mountain 

sites in northern/western China. 

2.3 Characteristics of O3 and VOCs in the Pearl River Delta (PRD) 

In recent years, the local governments in the Pearl River Delta (PRD) have taken 

measures to control O3 pollution in the region (http://www.epd.gov.hk/epd/english/ 

environmentinhk/air/air_maincontent.html) with the increasing recognization of 
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detrimental health effects of O3. Many local and international research teams have 

undertaken studies on O3 pollution (e.g. Wang and Kwok, 2003; Wang et al., 2003, 

2005; Zhang et al., 2008; Guo et al., 2009; Shao et al., 2009b; Zheng et al., 2010a) as 

well as the O3 precursors (VOCs) (e.g. So and Wang, 2004; Wang et al., 2005; 

Simpson et al., 2006; Chan et al., 2006; Guo et al., 2004a, b, 2006, 2007, 2009; Jiang 

et al., 2010; Cheng et al., 2010a, b). Elevated ground O3 concentrations are still being 

reported in the PRD region. For instance, Zheng et al. (2010a) demonstrated that there 

were 3 – 5 ppbv increases in 1 h-average O3 levels and 8 – 11 ppbv increases in 1 

h-max O3 levels in 2007 compared to the values in 2006 across the PRD region. 

Moreover, a 14-year continuous study provides clear evidence that O3 levels in the 

background atmosphere of South China have exhibited a slow rising trend since 1994 

(Wang et al., 2009). 

2.3.1 Photochemical ozone pollution in the PRD 

The PRD region is situated on the coast of South China (21°17′-23°56′N and 

111°59′-115°25′E) and has an area of 41,700 km2. This region is one of the most 

populated city clusters in China, where major cities include Hong Kong, Shenzhen, 

Guangzhou, Dongguan, and Huizhou. With its astonishing economic growth, rapid 

industrialization and urbanization, the PRD region is facing increasing serious 

photochemical O3 pollution. Research into O3 pollution has been conducted in the 

PRD region since the 1990s. Apart from the 14 air quality monitoring stations 

established by the Hong Kong Environmental Protection Department (HKEPD), the 

Hong Kong Polytechnic University set up the Atmospheric Chemistry Research 

Laboratory at Cape D'Aguilar, Hong Kong in 1993. Wang et al. (1998) reported that 

four O3 episodes were observed at Cape D'Aguilar in 1994, and the hourly averaged 

O3 concentrations exceeded 100 ppbv and in one case reached 162 ppbv. They found 
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that recirculation of urban air caused by the reversal of surface winds was an 

important mechanism for transporting the “aged” urban plumes to the monitoring 

sites. 

In Hong Kong, seasonal variations were obvious, with relatively higher O3 

concentrations often observed in fall and lower levels in summer. Chan et al. (1998a) 

analyzed the surface O3 through the study of the temporal and spatial variations of the 

rural and urban O3 levels in Hong Kong. A seasonal pattern of O3 with a major peak 

in autumn and a trough in summer was found. They concluded that the alternation of 

the prevailing oceanic and continental air masses, plus the climate system associated 

with the Asian monsoon had significant influences on the seasonal variations of O3 in 

Hong Kong. Similarly, Lam (2001) evaluated the seasonal behavior of the surface O3 

at Cape D'Aguilar station. The result indicated that the average O3 levels were high in 

fall with maximum of 41 ppbv and low in summer with a minimum of 16 ppbv. For 

diurnal variation, the O3 mixing ratio typically reaches a maximum value in the 

afternoon due to active in-situ photochemical production, and has a minimum level at 

night because of the surface deposition and nighttime reaction with primary pollutants 

(Wang et al., 2006a; Guo et al., 2009).  

It was well documented that meteorological conditions have significant influence 

on O3 formation in the PRD (e.g. Lee et al., 2002a; Wang and Kwok, 2003; Ding et 

al., 2004; Lam et al., 2005; Wang et al., 2006a; Huang et al., 2005; Huang et al., 2006; 

Jiang et al., 2008, 2010). Guo et al. (2009) and Cheng et al. (2010a) compared the 

meteorological conditions between the O3 and non-O3 episode days based on field 

measurement in the PRD in 2007. They pointed out that high temperature, intense 

solar radiation, low winds, and low relative humidity were favorable for 

photochemical O3 formation. In addition to the above meteorological parameters, 
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tropical cyclone was found to be mostly conducive to the occurrence of high O3 

mixing ratios in the PRD (Lam et al., 2004, Huang et al., 2005, Jiang et al., 2008). 

Huang et al. (2005) counted that about 62% of O3 episodes from 1999 to 2003 

resulted from cyclonic weather patterns. Jiang et al. (2008) used regional air quality 

modeling to evaluate a continuous O3 episode that occurred when Typhoon Nari was 

located northeast of Hong Kong during the period September 14 – 19, 2001. When a 

tropical cyclone was formed and its center was over the East and the South China Sea, 

it intensified the inflow in the lower atmospheric layer and the outflow in the upper 

atmosphere, which caused stagnation and subsidence air over Hong Kong, forming an 

inversion layer. Such an inversion layer was not favorable for the dispersion of air 

pollutants, resulting in the high O3 mixing ratios. Besides the tropical cyclone system, 

an anticyclone appearing over Mainland China to the north and a trough situated to 

the east over the South China Sea were also found to be the optimal weather 

conditions for the occurrence of O3 episodes in Hong Kong (Huang et al., 2006). 

Whereas O3 production is associated with specific weather conditions, i.e. high 

temperature, strong solar radiation, low relative humidity and calm winds, many 

previous studies pointed out that the O3 episodes were also influenced by different 

flow patterns, i.e., regional transport and/or mesoscale circulations. Most studies 

showed that elevated O3 concentrations in the PRD were influenced by local 

photochemical production and regional transport from the outside of PRD region 

(related to Hong Kong) (e.g. Lee and Hills, 2003; So and Wang, 2003; Ding et al., 

2004; Huang et al., 2006; Lam et al., 2005; Zhang et al., 2007; Zhang et al., 2008; 

Cheng et al., 2010a, b). A few studies indicated the association of super-regional 

transport from the East China coastline with O3 pollution in the PRD (Wang et al., 

2009; Guo et al., 2009; Jiang et al., 2010; Zheng et al., 2010a; Zhao et al., 2011). For 
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example, Guo et al. (2009) investigated the O3 characteristic at a suburban site in the 

PRD and found that the high O3 mixing ratios there were associated with air masses 

from eastern China. Based on the data simulated by WRF-Chem model, Jiang et al. 

(2010) reported that the weather conditions induced regional transport of O3 pollution 

occurred in the fall of 2007. However, all these studies were constrained within the 

PRD region and could not provide a detailed mechanism on how super-regional 

transport from eastern China and/or other areas affects the air quality in the PRD. The 

relative contributions of local photochemical production and super-regional transport 

to O3 pollution in the PRD are not fully understood. 

It has been well known that mesoscale circulations, like 

mountain-valley/sea-land breezes, play important roles in redistributing air pollution 

in mountainous/coastal regions. Although Hong Kong has an area of only about 1000 

km2, its topography and physical features are complex. About 75% of the land area is 

hilly and the highest peak rises to 957 m (Mt. Tai Mo Shan). The coastline and the 

mountains combine to give a terrain with many complex physical features, not to 

mention the influence of the city itself (i.e. skyscrapers) on the local meteorology. The 

role of sea-land breezes in air pollution transport has been well studied in the PRD 

(Zhang and Zhang, 1997; Liu et al., 2000; Ding et al., 2004). For example, Wang et al. 

(1998) investigated four O3 episodes using observation O3 data from a coastal location 

in Hong Kong. Reversal of surface winds, which transported the “aged” plumes from 

urban area to the monitoring site, resulted in the high O3 concentrations. Liu and Chan 

(2002) applied a 3-D atmospheric model with the local wind fields to investigate the 

local boundary-layer dynamics on a high O3 episode observed in Hong Kong in 2000. 

They found that the calm winds and the delicate interaction between the synoptic 

forcings and the local circulations, and between the different sea-breeze circulations 
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were the dominant factors responsible for the severe air-pollution episode in Hong 

Kong. In addition, Ding et al. (2004) studied the impact of sea-land breeze on 

transporting air pollutants during an O3 episode in the PRD region and concluded that 

cross-border transport and sea-land breeze did play a critical role in air-quality 

deterioration in the PRD region.  

2.3.2 VOC studies in the Pearl River Delta region 

2.3.2.1 Levels of VOCs in the PRD region 

Volatile organic compounds (VOCs), emitted from anthropogenic and biogenic 

sources, are one of the most important groups of air pollutants in the atmosphere. In 

addition to their important roles in tropospheric photochemistry, some VOCs, i.e., 

benzene, toluene, ethylbenzene and xylenes, are hazardous air pollutants. Therefore, 

VOCs have been studied extensively in the PRD region in recent years (Sin et al., 

2000; Lee et al., 2002a; Ho et al., 2004; So and Wang et al., 2004; Guo et al., 2004a, 

2006; Cheng et al., 2010a, b; Wang et al., 2005; Zhang et al., 2012; Tang et al., 2007a, 

b; Zhang et al., 2007). In general, previous studies have found that VOCs levels in 

Hong Kong were generally lower or comparable to those of overseas cities (Derwent 

et al., 2000; Borbon et al., 2002), but much lower than those found in Asia and South 

America (Grosjean et al., 1998; Morikawa et al., 1998; Barletta et al., 2002). Sin et al. 

(2000) reported the annual average concentrations of VOCs based on the 

measurement conducted from July 1997 to June 1998 at two sites, central/western 

(C/W) and Tsuen Wan (TW) in Hong Kong. The annual average concentration of the 

measurable VOCs was comparable to that observed in American and European cities, 

with a range of 0.20 ~ 5.0 ppbv. Among all the VOCs, toluene had the highest mixing 

ratio, which occasionally exceeded 20 ppbv.  
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In addition to Sin et al. (2000), other previous studies reported that toluene was 

the most abundant VOC species in Hong Kong. For example, Guo et al. (2004a) 

analyzed the VOC samples collected at C/W and TW from January 10 to December 

30, 2001 and reported that toluene was the most abundant VOCs in all the samples, 

with the maximum daily value up to 53 μg/m3. In addition, Ho et al. (2004) reported 

the VOCs levels at PolyU campus (PU), Kwun Tong (KT), and Hok Tsui (HT). 

Toluene was the most abundant hydrocarbon, followed by benzene in all the stations. 

The concentrations of toluene at PU ranged from 14.4 to 54.3 μg /m3 in winter and 

from 11.6 to 39.2 μg /m3 in summer, while toluene at KT had an average 

concentration of 26.42 μg /m3 in winter and 64.34 μg /m3 in summer. In addition, So 

and Wang (2004) analyzed the annual VOCs data from four sites: Tsuen Wan, Mong 

Kok, Central/Western, and Hok Tsui in Hong Kong. Alkanes contributed the most to 

the ambient VOCs in Hong Kong, followed by aromatics and alkenes. Toluene had 

the highest level at the road site, Mong Kok, with the average concentration of 8.24 

ppbv. At Tai O, a rural/coastal site in Hong Kong, large variations were observed in 

the measured NMHCs from August 2001 to December 2002. Alkanes had the highest 

contribution to the ambient VOCs, followed by aromatics, alkynes and alkenes, which 

accounted for 40%, 35%, 11%, and 10%, respectively. The top 10 most abundant 

compounds, toluene, ethyne, ethane, propane, ethene, n-butane, CH3Cl, ethylbenzene, 

benzene, and i-pentane, contributed 76% to total measured VOCs. In particular, 

toluene contributed 22% to the total measured VOCs. Recently, Guo et al. (2009) 

reported that alkanes accounted for most of the NMHCs abundance at Tung Chung 

(TC) (63%) in Hong Kong during the fall of 2007, while akenes, aromatics and 

biogenic VOCs accounted for 16%, 19% and 2%, respectively. They concluded that 
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the high contribution of alkanes at TC may be due to widespread use of liquefied 

petroleum gas (LPG).  

Many studies have been conducted in the inland PRD, especially in the major 

cities, i.e., Guangzhou, Dongguan, Foshan, Jiangmen and Zhongshan (Wang et al., 

2002; Barletta et al., 2005; Chan et al., 2006; Tang et al., 2007a, b; Barletta et al., 

2008; Liu et al., 2008b; Tang et al., 2008; Zhang et al., 2012). Chan et al. (2006) 

investigated the VOC levels in the PRD region by collecting 78 ambient air samples 

throughout Dongguan, Foshan, Guangzhou, Jianmen, and Zhongshan in late summer 

2000. The samples were classified into three categories: industrial, industrial-urban 

and industrial-suburban. Influenced by the emissions from industrial solvent use and 

vehicular emissions, toluene was the most abundant VOC quantified, followed by 

ethane, ethene, ethyne, propane, n-butane, i-pentane, benzene, and m-xylene. Tang et 

al. (2007b) investigated the VOC levels at three sites in Guangzhou in April 2005, 

reporting that toluene was the most important VOC species in Guangzhou, with the 

average concentration ranging from 3.09 to 10.02 ppbv. However, in September 2005, 

Barletta et al. (2008) collected a total of 96 VOC samples in two important urban 

centers of the PRD region, Guangzhou and Dongguan. The most abundant VOCs in 

Guangzhou and Dongguan were propane and toluene, with an average mixing ratio of 

6.7 ppbv and 6.1 ppbv, respectively. Liu et al. (2008b) measured levels of ambient 

VOCs at seven sites in the PRD region during the Air Quality Monitoring Campaign 

spanning 4 October to 3 November 2004. Alkanes constituted the largest percentage (> 

40%) in the mixing ratios of the quantified VOCs at six urban and rural sites, while 

the exception was one major industrial site (Dongguan) was dominated by aromatics 

(about 52%).  
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Recently, Zhang et al. (2012) investigated the levels of ambient VOCs before 

and after outbreak of the 2008 financial crisis at a small town, Wanqingsha (WQS) in 

the PRD region. Toluene was still the most important VOC though the influence of 

financial crisis. However, the composition of total VOCs was different before and 

after the financial crisis. Before the financial crisis, aromatics were the most important 

VOC group (44.2%), followed by alkanes (34.8%), alkenes and alkynes (21%). After 

the financial crisis in 2008, alkanes contributed the most to the total VOCs, 

accounting for 50.8%, followed by alkenes and alkynes (27.1%) and aromatics 

(22.1%).  

To extend the investigation of VOCs levels in the PRD region and provide 

representative VOC measurements over the entire study area, a two-year grid study, 

with sampling sites covering a total area of 40,000 km2, was performed by Louie et al. 

(2012) in summer and winter of 2008 and 2009. The largest contributing VOCs, 

accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, 

propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Among them, 

toluene had the highest level, with the mixing ratio of 4.18 ppbv.  

2.3.2.2 Spatial variations of VOCs 

VOCs levels in the PRD region present remarkable spatial variations. In general, 

the VOC levels were higher in the urban sites than the suburban and the rural sites. 

Guo et al. (2004a) compared the VOC levels at two different sites in Hong Kong, 

Tsuen Wan (TW) and Central/Western (CW). It was found that the levels of all the 

alkanes and alkenes, like propane, butane, i-butane, and propene, were higher at TW 

than at CW. The higher concentrations at TW may be due to the presence of more 

industrial combustion sources and busier traffic, which was attributed to the fact that 
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the TW station is located in a mixed of industrial, residential and commercial area 

whereas the CW station is in an urban residential area.  

So and Wang (2004) investigated the spatial variations of VOCs at four different 

sites in Hong Kong: Tsuen Wan (industrial), Mong Kok (roadside), Central/Western 

(residential) and Hok Tsui (rural). In general, the average concentrations of 

hydrocarbons were, in descending order: roadside > industrial > residential > rural. 

The highest level of VOCs at roadside was attributed to the heavy vehicular emissions 

and the presence of surrounding buildings, which could prevent the vehicular 

emission from dispersing effectively. Due to fewer industrial activities and a lower 

volume of traffic, the residential site (C/W) presented relatively lower levels of 

VOCs.  

Based on a two-year grid study in the summer and winter of 2008 and 2009 in 

the PRD region, Yuan et al. (2012) identified three hotspot areas with significant 

VOC contributions: 1) the Pearl River Estuary; 2) an area from Central Dongguan to 

North Shenzhen; and 3) the Zhuhai-Zhongshan-Jiangmen area. Zhang et al. (2013) 

compared the composition and levels of aromatic hydrocarbons (AHs) at urban 

(Guangzhou Environmental Monitoring Center, GEMC), suburban (Guangzhou 

Higher Education Mega Center, HEMC), upwind rural (Zencheng College of South 

China Normal University, ZC) and downwind rural (Wanqingsha, WQS) sites in 

Guangzhou. The total mixing ratios of aromatic hydrocarbons at GEMC, HEMC, ZC 

and WQS averaged 9.26 ± 1.04, 6.40 ± 1.63, 2.50 ± 0.71 and 10.4 ± 1.33 ppbv, 

accounting for 12%, 14%, 11%, and 28% to the total NMHCs, respectively. Toluene 

was the most abundant compound among the AHs at all sampling sites except ZC, 

where benzene exhibited the highest mixing ratio. In addition, the levels of benzene, 

toluene, C8 – and C9 – aromatics at urban GEMC, suburban HEMC, and downwind 



 

36 
 

rural WQS were all significantly higher than those at upwind rural ZC. In particular, 

benzene showed significantly higher levels at the urban site GMEC than the suburban 

site HEMC or rural sites ZC and WQS. However, the highest mixing ratios of toluene 

and C8 – aromatics were observed at WQS. 

2.3.2.3 Temporal variations of VOCs 

It is well documented in previous studies that the diurnal variations of VOCs in 

the PRD are generally controlled by three factors: meteorology, emissions, and 

chemical reactions (Ho et al., 2004; So and Wang, 2004; Tang et al., 2007b; Liu et al., 

2008b; Wang et al., 2008). Ho et al. (2004) investigated the diurnal variations of 

benzene, toluene, ethylbenzene and xylene at the PolyU station in Hong Kong. The 

concentrations of toluene, ethylbenzene, m,p-xylene, and o-xylene followed the same 

pattern: they increased at 09:00 – 12:00, then decreased at 12:00 – 15:00, then peaked 

at 15:00-18:00, and finally decreased slightly at 18:00 – 21:00. Ho et al. (2004) 

pointed out that the decrease of VOCs at noon may be due to the decrease of traffic 

volume and the dilution effects caused by an increase of the mixing depth, while the 

increased level of VOCs in the afternoon was because of the increased traffic volume 

and other evaporative emissions.  

Tang et al. (2007b) performed a study on diurnal variations of non-methane 

hydrocarbons (NMHCs) in the PRD region in 2005. The diurnal patterns of 

hydrocarbons and total NMHCs were quite different for the urban (Guangzhou, GZ), 

suburban (Panyu, PY), and rural sites (Dinghu Mountain, DM). In GZ, NMHCs 

showed high mixing ratios in the morning (08:00 – 09:00, local time), decreased to the 

lowest at the afternoon (14:00 – 15:00) and then increased gradually to the highest 

value in the evening (20:00 – 21:00). This feature was corresponded to the traffic 

volumes in GZ, indicating that traffic emissions were the major sources of the 
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NMHCs. The lowest levels observed at noon were likely due to the increased mixing 

height of the planetary boundary layer and the intensive reaction with OH radical. 

However, in PY, a higher total NMHC mixing ratio was observed at 11:00 – 12:00, 

indicating that hydrocarbons in PY were more influenced by aged air masses from the 

urban areas than from fresh local vehicular emission. In addition, Liu et al. (2008b) 

investigated the diurnal variations of VOCs in Guangzhou (GZ, urban site) and 

Xinken (XK, rural site) in the PRD region, confirming that fresh emissions, OH 

reactions and the variations of mixing height had a significant influence on the diurnal 

variations of VOCs. Guo et al. (2009) analyzed VOC samples collected at 

Wanqingsha (WQS) in Guangzhou and Tung Chung (TC) in Hong Kong in the 

autumn of 2007. They found that the total NMHCs at WQS showed two major peaks, 

one in the early morning and the other in the late afternoon, but the peaks were much 

weaker and were not statistically different from the troughs at TC.  

The total NMHC levels at urban sites in the PRD region presented significant 

seasonal patterns. In Hong Kong, high levels in winter and low levels in summer were 

often observed (Lee et al., 2002b; Ho et al., 2004; So and Wang, 2004; Guo et al., 

2007; Tang et al., 2007b; Wang et al., 2008). The seasonal variations of VOCs in 

Hong Kong are greatly influenced by the Asian monsoons. In winter, the weaker 

vertical mixing, slower photochemical reaction, and regional/super-regional transport 

could result in the higher VOCs levels. However, in summer, due to the influence of 

Asian monsoon circulations, the oceanic air frequently influenced Hong Kong, 

bringing in clean marine air, which could dilute the air pollutants. In addition, the 

rainy weather in the summertime causes a wet deposition of pollutants, and results in 

lower concentration than in winter. On the other hand, Zheng et al. (2009a) reported 

that in the inland PRD, relatively higher levels of VOCs were observed during 



 

38 
 

July-November, while relatively lower levels of VOCs were observed from December 

to February in 2006. The higher levels from July to November were due to the large 

emissions from different industries, i.e., alcoholic beverage production, electronic 

manufacture, heavy-manufacture, and pulp and paper industries. The lowest VOC 

emissions were found in February because of Chinese New Year occurred in this 

month. 

2.3.3 Roles of VOCs in photochemical O3 formation 

Volatile organic compounds are composed of hundreds, if not thousands, of 

organic compounds. Each species varies distinctly from others in its abundance and 

reactivity, and together they determine their roles in photochemical O3 formation. 

VOC photochemical reactivity is a measure of how much a VOC species reacts in the 

atmosphere and contributes to the formation of O3, which is an important 

consideration when policy makers think about controlling VOC emission sources to 

prevent O3 or photochemical smog formation. In this section, studies of 

photochemical reactivity of VOC and Oxygenated VOC (OVOC) in Hong Kong and 

the rest of PRD region are reviewed.  

2.3.3.1 Overview of VOC photochemical reactivity 

There are some frequently used scales with regards to the VOC photochemical 

reactivity. The first and oldest method is to compare the rate constant of the reaction 

between a VOC and the OH radical, which is known as kOH value with the unit of cm3 

molecule-1 s-1 (Atkinson et al., 1994, 1998a, b, 2003; Warneke et al., 2004). To 

compare the OH reactivity of VOC species, the Propene-Equivalent concentration of 

species (j) (Prop-Equiv(j) ) (Chameides et al., 1992) was further developed by 

Equation (2-1): 
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The second method is to compare the maximum incremental reactivity (MIR) of 

a VOC, which reflects the greatest effect of a VOC on O3 formation when an amount 

of VOC is added to the mixture atmosphere, with units of grams of O3 formed per 

gram of organic compound reacting (Carter, 1994, 1995, 2008). The MIR method is 

thought to be more robust since it takes into account the real world atmospheric 

conditions where the reaction takes place rather than just the chemical structure of the 

molecule represented by kOH value. The MIR scales of hundreds of VOC compounds 

were published by Carter (2000, 2008). Based on MIR, the ozone formation potential 

(OFP) of a VOC (j) can be calculated by multiplying its mixing ratio with the 

corresponding MIR value (Carter, 1994): 

 OFP (j) = Conc. (j) × MIR (j)                    (2-2) 

The third method is called the photochemical ozone creation potential (POCP), 

which aims to provide a VOC ranking under conditions leading to elevated O3. The 

POCP of a given VOC specie (j) is defined as:  

100
ethenewith increment  O
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OH loss rate (LOH) is another frequently used scale to measure the initial peroxy 

radical (RO2) formation rate, which might be the rate-limiting step of O3 formation in 

polluted atmospheric environment (Carter, 1994). LOH of a given species (j) can be 

calculated by its ambient concentration ([VOC]j ) and the OH reaction rate coefficient 

(kj
OH).  

                  LOH = [VOC]j × kj
OH                    (2-4) 

OVOC is an important fraction of VOC species and has attracted growing 

interest in recent years. Earlier studies suggested the important role of OVOC in the 
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process of atmospheric O3 formation (Loyd, 1979; Singh et al., 1995; Wennberg et al., 

1998). Relatively high MIR scales of some OVOC were also reported by Carter 

(2000). However, due to the analytical difficulties in OVOC sampling and analysis, 

OVOC abundances in the atmosphere remained uncharacterized. In recent years, 

technological improvement such as proton transfer reaction-mass spectrometry 

(PTR-MS) has facilitated the quantification of OVOC and new data are appearing 

continuously. The total OVOC abundance was found much higher than C2 – C8 

NMHCs in the Pacific troposphere (Singh et al., 2001, 2004). High abundances and 

OFP contributions of OVOC were also found recently in the PRD (Louie et al., 2012).    

2.3.3.2 VOC and OVOC photochemical reactivity in Hong Kong and the PRD 

region 

In Hong Kong, photochemical reactivity was found to be dominated by a few 

highly reactive VOC species, among which isoprene was the major contributor in 

rural sites and toluene, propene, xylene and formaldehyde were found to be the 

leading contributors in urban sites (Guo et al., 2004a; So and Wang ,2004; Zhang et 

al., 2007). Based on the C3 – C12 NMHC annual data of four sites in HK from 2000 to 

2001, So and Wang (2004) evaluated the reactivity of OH radicals and OFP of 

NMHCs. Isoprene was found to have the highest OH-reactivity and O3 formation 

potential at the rural site, while toluene was the most important contributor at the 

roadside sites. Guo et al. (2004a) collected ambient measurements of 156 VOC 

species (39 alkanes, 32 alkenes, 2 alkynes, 24 aromatics, 43 halocarbons, and 16 

carbonyls) in Central/West (CW) and Tsuen Wan (TW) in 2001. Analysis revealed 

that formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, 

isoprene, and n-butane were major contributors to O3 formation. Examination of C1 to 

C10 hydrocarbons and 2 halocarbons measured in 2002 showed that the reactivity of 
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VOCs was dominated by anthropogenic VOC, especially the reactive aromatics (e.g. 

toluene and xylene) (Zhang et al., 2007).  

In the rest of the PRD region, earlier observations of hydrocarbons did not 

include OVOC and photochemical reactivity analysis revealed that toluene, ethene, 

propene and xylene were the leading contributors to the photochemical reactivity in 

urban areas while isoprene dominated in rural areas (Tang et a., 2007b; Barletta et al., 

2008; Liu et al., 2008b; Lai et al., 2009; Tan et al., 2012). Tang et al. (2007b) found 

that isoprene from biogenic emission contributed largely to the OFP at the remote site, 

while ethene, toluene and m,p-xylene were the main contributors to the OFP at the 

urban and suburban sites of GZ. Barletta et al. (2008) reported that ethene and toluene 

were among the top compounds in terms of O3 formation in urban centers in the PRD, 

due to their high mixing ratios and MIR (3.97 for toluene; 9.07 for ethene). Liu et al. 

(2008b) calculated the OH loss rate to estimate the chemical reactivities of 38 alkanes, 

37 alkenes, 17 aromatics and 1 halocarbon. It showed that of the anthropogenic VOCs, 

alkenes played a predominant role in VOC reactivity at an urban area whereas the 

contributions of reactive aromatics were more important at a rural site. However, the 

contributions of isoprene to the OH loss rate were very low at both urban and rural 

sites. Lai et al. (2009) reported that although LPG alkanes account for 24% of the total 

VOC (TVOC), their contribution to the total OFP was only about 7%. In contrast, 

ethene and propene accounted for about 16% of the TVOC, but contributed about 26% 

to the total OFP in Guangzhou. Tan et al. (2012) also reported the leading contributors 

to OFP and Prop-Equiv in Foshan were ethene, toluene, propene, i-pentane, and 

m/p-xylene.  

Based on the speciated VOC emission inventory, the top 10 VOC species 

contributing to OFP in the inland PRD region were isoprene, m,p-xylene, toluene, 
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ethene, propene, o-xylene, 1,2,4-trimethylbenzene, 2-methyl-2-butene, 1-butene, and 

α-pinene. With 35.9% contributions to total VOC emissions, they accounted for 64.1% 

of the OFP in the region (Zheng et al., 2009b). One OVOC (methanol) contributed 5.3% 

to the VOC emissions but accounted for just 0.8% of the OFP. The OFP of all 7 

OVOC species estimated in this inventory contributed 2.42% of the total OFP. The 

relatively low contribution was mainly due to the fact that the source profiles (Liu et 

al., 2008a) adopted in this study did not include quantification of OVOC. For the 

biogenic emission inventories (Tsui et al., 2009; Zheng et al., 2010b), isoprene and 

monoterpenes together contributed 70% and 59% of the total biogenic VOC in HK 

and the inland PRD region, respectively. Though O3 formation was not calculated in 

these study (Tsui et al., 2009; Zheng et al., 2010b), based on the large emission of 

these two species and their high reactivities, they dominated the OFP of biogenic 

emissions.  

For OVOCs, they were silted into the category of “other VOC” and no 

significant contributions of any OVOC to OFP were reported. Recently, continuous 

new data regarding OVOC in Hong Kong and the inland PRD have appeared. In 

addition to the significant contributions of alkenes and aromatics to O3 formation 

revealed by the above studies, recent studies suggested that the contributions of 

OVOC were also important in this region. Lü et al. (2010) investigated the seasonal 

and diurnal variations of carbonyl compounds in Guangzhou. Formaldehyde, 

acetaldehyde and acetone were the most abundant carbonyl compounds, accounting 

for more than 60% of the total concentrations of carbonyls. Formaldehyde, 

acetaldehyde, valeraldehyde, butyraldehyde, and propionaldehyde contributed 89 – 96% 

of the total OFP of carbonyls while acetaldehyde, butyraldehyde, formaldehyde, and 

valeraldehyde account for 75 – 90% to the total Prop-Equiv concentrations. During 
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the PRIDE PRD2006 Campaign, Lou et al. (2010) directly measured the OH 

reactivities (kOH) and found that kOH in PRD was dominated by organic compounds. 

The comparison between calculated reactivities from measured CO, NOx and 

hydrocarbons and measured kOH revealed a missing reactivity of unmeasured species, 

which box model calculations revealed was related to OVOCs. 

Yuan et al. (2012) measured 47 hydrocarbons and 3 carbonyls at six sites in the 

PRD. The contributions of anthropogenic alkenes and isoprene to OH loss rates (LOH) 

were dominant. Alkane contributions to total LOH were minor due to their low kOH 

value. The calculated LOH from VOCs at the urban sites in the PRD was comparable 

to that of studies in Beijing (Shao et al., 2009a) and Houston (Gilman et al., 2009), 

but lower than the average urban values of heavily polluted Mexico (Ape et al., 2010). 

Carbonyls contributed 19.1% – 50.5% of the total LOH at suburban/rural sites. The 

significant contributions of carbonyls to LOH further confirmed the box model results 

of Lou et al. (2010). Moreover, observation-based model (OBM) showed that a large 

increment in both simulated HO2 and O3 concentrations was achieved with additional 

input of hourly carbonyl data, suggesting that apart from hydrocarbons, carbonyls 

might significantly contribute to the O3 production in the PRD region (Cheng et al., 

2010a).  

Another photochemical trajectory modeling study calculated the photochemical 

ozone creation potential (POCP) of 139 VOC species including 19 OVOCs (Cheng et 

al., 2010b). Alkenes and aromatics had relatively high POCP values. OVOC had 

lower POCP values than the above two groups but was higher than alkanes. Among 

OVOC, aldehydes showed the highest mean POCP values, ranging from 30 to 116. 

Ethers and glycol ethers had lower mean POCP values (16 – 77), followed by alcohols 

and glycols (9 – 65) and ketones (8 – 65). Considering both the POCP and the 
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emission amount, isoprene, ethene, α-pinene, m-xylene, propene, formaldehyde, 

toluene, and 1, 2, 4-trimethylbenzene were the key emitted precursors to O3 formation 

in the PRD. More recently, a large spatial-temporal scale of VOC and OVOC 

sampling campaign was conducted throughout the PRD region (HKEPD, 2010). 

Compared to toluene, the mixing ratios for the most abundant OVOC species, i.e., 

formaldehyde, actone, acetaldehyde and 2-butanone, were lower, which were about 

0.6, 0.6, 0.26, and 0.19 times the mixing ratio of toluene. Altogether, OFP from 

OVOC was more than 1/3 of that from VOC alone, demonstrating the important roles 

of OVOC in O3 formation in the PRD region (Louie et al., 2012).  

2.3.4 Sources of VOCs in the PRD region 

Source-receptor relationships revealed by the chemical and physical 

characteristics of hydrocarbons measured at source and receptor can be used to 

identify and quantify the VOC emission sources based on receptor concentrations. 

Usually, they start with the measurements of VOC species in the atmosphere. Then 

diagnostic ratios and correlation analysis between different species or receptor models 

are applied to identify and quantify the VOC contributing sources. Receptor models 

can be grouped into two groups: multivariate analysis, including principal 

components analysis (PCA) and positive matrix factorization (PMF), and chemical 

mass balance (CMB) receptor model, which requires detailed VOC source speciation 

information. In this section, observation-based VOC source characterization studies in 

Hong Kong and the inland PRD are reviewed.  

2.3.4.1. Observation-based VOC source characterization studies in Hong Kong 

A number of field measurements of VOCs have been conducted in the last 

decade to characterize the sources of ambient VOCs in Hong Kong.  
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Earlier studies presented VOC ambient measurements and characterized VOCs 

contributing sources by diagnostic ratios and correlation analysis (Sin et al., 2000; Lee 

et al., 2002b; Ho et al., 2004; Guo et al., 2004a; So and Wang, 2004; Zhang et al., 

2008). Generally, vehicles were the most identified source, followed by fuel 

evaporations and industrial emissions. For example, Lee et al. (2002a) detected 12 

VOCs at five roadside sites, 60% of which consisted of toluene, benzene, 

ethylbenzene and xylenes. High toluene to benzene ratios (T/B ratio) were found as in 

other cities in Asia. As toluene and benzene were the major pollutants from vehicle 

exhausts, Lee et al. (2002a) recommended the necessity to control automobile 

emissions. Ho et al. (2004) collected ambient VOCs at three locations and the Cross 

Harbor tunnel. Toluene was found to be the most abundant VOC detected in Hong 

Kong. High toluene/benzene ratios were also found in this study, suggesting large 

industrial emissions (additional sources of toluene beside vehicles) in these areas. 

Vehicular emissions were found to be one of the most important pollutant sources in 

Hong Kong, making an important contribution to the aromatic compounds in the 

atmosphere. Evaporative emission of gasoline was found to be another important 

VOC source.  

Guo et al. (2004a) measured 156 VOC species at two urban sites. Strong 

correlation of most hydrocarbons with propene and n-butane were found, indicating 

vehicular emissions were primary contributions to levels of hydrocarbons in Hong 

Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied 

petroleum gas (LPG), natural gas leakage, and other industrial emissions, as well as 

biogenic emissions affected the ambient levels of hydrocarbons. So and Wang et al. 

(2004) applied principal component analysis to a subset of NMHCs and suggested 

that while isoprene at the rural site mainly came from biogenic emissions, vehicular 
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emissions were the major source in the urban areas, especially at roadsides. Zhang et 

al. (2008) analyzed the ratios of xylenes-to-ethylbenzene, C6H14-to-toluene and 

p-xylene-to-total xylenes for diagnostic analyses and found that sources of reactive 

aromatics did not appear to be dominated by mobile emission but rather were related 

to industrial, waterfront, and fuel-storage activities.  

The application of receptor models provided more comprehensive understanding 

of VOC source characteristics in Hong Kong (Guo et al., 2004b, 2006, 2007, 2011a; 

Cheng et al., 2010a; Lau et al., 2010; Feng et al., 2012; Yuan et al., 2012a). In the 

earlier studies, VOC source apportionments in Hong Kong were firstly estimated 

using PCA/APCS receptor model by Guo et al. (2004b, 2006, 2007) and Cheng et al. 

(2010a), which does not require prior knowledge of source compositions. Later on, 

CMB (Feng et al., 2012), UNMIX (Feng et al., 2012), and PMF (Lau et al., 2010; Guo 

et al., 2011a; Yuan et al., 2012a) models were also used in source apportionment 

studies, among which, PMF was believed to generate more reliable results (Miller et 

al., 2002; Yuan et al., 2012a; HKEPD, 2012b). Vehicle exhaust (11.5 – 48%), 

LPG/natural gas usage (11 – 40.8%) and solvent usage (14.6 – 36.4%) were the major 

contributing sources in urban areas in Hong Kong, followed by industrial emissions 

(3.1 – 9%) and gasoline evaporation (unidentified to 4.7%). Biogenic emissions were 

relatively low at urban areas, with contributions between 0.1 – 2%. For sub-urban sites, 

solvent (11.3 – 55.8%), vehicle exhaust (16.8 – 53%) and LPG/natural gas usage 

(unidentified to 41.3%) were the large contributors. Gasoline evaporation (2 – 17.4%), 

industrial emissions (unidentified to 5.7%), biomass burning (unidentified to 4%) and 

biogenic emissions (unidentified to 3.3%) were also identified. At the rural sites, 

vehicle exhausts were identified as the major contributor (15.2 – 48%). The 

contributions from gasoline evaporation varied from 6.5% to 21% and LPG/natural 
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gas usage varied from unidentified to 15.6%. Industrial emissions contributions varied 

from 3% to 35%, of which the highest values observed in Tai O (adjacent to 

Shenzhen), were believed to be related to regional transport from the inland PRD. 

Large contributions of aged VOC were also found at the rural site. 

2.3.4.2 Observation-based VOC source characterization studies in the inland 

PRD 

Early in 2005, a study reported that vehicular emissions, combustion, natural gas 

leakage or other methane/ethane sources might be the important contributors to the 

urban atmosphere in China, based on cross-correlations of VOC measurements in 43 

Chinese cities (Barbara et al., 2005). Further efforts have been made to study the VOC 

source characteristics in the inland PRD based on ambient measurements with 

diagnostic ratios and correlation analysis (Chan et al., 2006; Tang et al., 2007b; 

Barletta et al., 2008; Liu et al., 2008b; Wang et al., 2008; Tan et al., 2012; Yuan et al., 

2012b) and receptor models (Guo et al., 2006, 2011a; Liu et al., 2008a,b,c; Cheng et 

al., 2010a; Tan et al., 2012; Yuan et al., 2012a).  

According to the diagnostic and correlation studies, vehicular exhausts were the 

most often identified contributors in urban areas and were major contributors to 

ambient NMHC (excluding aromatic hydrocarbons) (Chan et al., 2006; Tang et al., 

2007b; Barletta et al., 2008; Wang et al., 2008; Liu et al., 2008b; Tan et al., 2012; 

Yuan et al., 2012b). Industrial emissions and solvent evaporation had widespread 

effects in the inland PRD region (Chan et al., 2006; Tang et al., 2007b; Barletta et al., 

2008; Yuan et al., 2012b) and were found to be the major contributions to aromatic 

hydrocarbons (Tang et al., 2007b; Yuan et al., 2012b), especially in industrial areas or 

cities with prosperous solvent-related industries, such as Dongguan and Foshan. More 

aged VOCs transported from upwind sites were found in non-urban sites, with mixed 
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contributions from vehicular exhausts, industrial emissions and others (Liu et al., 

2008b; Wang et al., 2008; Yuan et al., 2012b). 

Emissions from industrial activities were found to greatly impact the air quality 

in the inland PRD. Tang et al. (2007b) collected NMHC samples at three sites in the 

inland PRD. Vehicular exhaust and industrial emissions were found to be the major 

sources. Barletta et al. (2008) measured NMHC at Guangzhou and Dongguan, where 

propane and toluene were found to be the most abundant species respectively. Based 

on correlation analysis, vehicular emission appeared to be the dominant source in 

Guangzhou, while industrial activities may be the major contributor of selected 

species (including toluene) in Dongguan. Wang et al. (2008) continuously observed 

50 NMHC at an urban site in Guangzhou and a rural site in Xinken. High correlations 

between NOx, CO and VOC in the urban site suggested the dominant contribution 

from motor vehicles. Propane, i-butane and n-butane accounted for nearly 40% of 

NMHCs in the urban site, indicating the impact of LPG usage. In comparison, VOCs 

were found to be more aged in the rural sites due to the transport from the upwind 

urban centers. Liu et al. (2008b) studied the VOCs correlations in Guangzhou and 

Xinken and results suggested that VOCs in Guangzhou came directly from local 

sources, such as automobiles, while VOCs at Xinken were influenced by both local 

emissions and transport of air mass from upwind areas.  

Yuan et al. (2012b) studies the correlations between VOC species in Guangzhou. 

Vehicular emissions and LPG usage were found to be the dominant sources of C4 – C5 

alkenes (except isoprene), whereas industrial and/or solvent use accounted for a 

significant fraction of aromatic concentrations. Tan et al. (2012) measured 40 

hydrocarbons and calculated their OFP in Foshan. According to the temporal patterns 

and VOC species correlations, vehicular emissions were a major source for NMHCs 
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except for aromatics. Solvent evaporation was the major contributor of aromatics, due 

to the prosperous solvent-related industries in Foshan. Recently, Zheng et al. (2013) 

investigated industrial sector-based VOC source profiles based on source samples 

collected from sources operating under normal conditions. The industrial sectors 

included printing, wood furniture coating, shoemaking, paint manufacturing and metal 

surface coating. Benzene, toluene, ethyl acetate and isopropyl alcohol were the major 

species related to the printing industry, while acetone and 2-butanone were the major 

species observed in the shoemaking sector. In addition, aromatics formed the most 

important group in the paint manufacturing, wood furniture coating and metal surface 

coating industries.  

For the source apportionment studies using receptor models, Guo et al. (2006) 

applied the PCA/APCS model to apportion the source contributions of air masses 

originating in the inland PRD. Based on the experimentally determined local VOC 

source profiles (Liu et al., 2008a), Liu et al. (2008c) applied the CMB model in the 

inland PRD. In addition, the PMF model has been extensively used for the source 

apportionments of VOCs in the inland PRD. For example, Guo et al. (2011a) and Ling 

et al. (2011) investigated the souce apportionemts of VOCs at a suburban site in the 

inland PRD region. Solvent- and vehicular-related emissions were the major 

contributors to ambient VOCs. Based on the VOC measurements of the PRD grid 

study, Yuan et al. (2012a) conducted VOC source apportionment with PMF model for 

84 sites across the PRD. Zhang et al. (2012) used PMF to study the contributing 

sources of aromatic hydrocarbons in urban, sub-urban, downwind rural and upwind 

rural sites in the inland PRD. Vehicular exhausts were important contributors of 

ambient VOC to the entire region, with contributions of about 30%. The contributions 

were higher in urban areas (44 – 52.6%) compared to non-urban and rural areas (19 – 
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31.2%). Solvent usage was also an important contributor but displays different spatial 

patterns from vehicular exhausts. Compared to urban areas (16.2 – 38%), 

contributions of solvent usage were higher in non-urban, industrial and rural sites (23 

– 51%). Industrial emissions account for 12.9% of ambient VOC for the entire region. 

Much higher contributions of industrial emissions were found by Guo et al. (2006), 

which may be a mixed source including solvent evaporation from related industries. 

LPG usage and gasoline evaporation are identified at the urban and non-urban sites, 

with a contribution of 13% and 8.7% in the entire region, respectively. 

In summary, the above literature review indicates that although many studies 

have investigated the characterization of O3 and its precursors in the PRD region, such 

as the temporal and spatial variations, the O3-precursors relationships, the influence of 

meteorological conditions on O3 pollution and the source apportionments of O3 

precursors, there are still scientific gaps that need to be filled. For example, most of 

the previous studies were undertaken at the low-elevation urban, suburban and rural 

sites. There is little knowledge about the mechanisms of the variations of O3 at 

different elevations in the mountainous areas in this region, where topography and 

physical features are complex. Though previous studies have investigated the 

photochemical reactivity in this region, most of these studies were conducted at 

specific sites in the inland PRD region with relatively simple data and chemical 

mechanisms. Compared to previous studies, our group is the only one who conducted 

concurrent field measurement in Hong Kong and inland PRD, and used 

photochemical box models and chemical transport models to explore the O3 formation 

mechanisms. In this study, concurrent measurements were conducted at the mountain 

site and at the foot of the mountain for the first time to investigate the characteristics 

of photochemical air pollutants and the impact factors for the O3 variations at different 
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elevations in mountainous areas in Hong Kong. In addition, a photochemical box 

model couple with master chemical mechanism (PBM-MCM) was developed for the 

first time to understand the detailed chemistry involved in O3 formation under the 

influence of different levels of O3 and precursors at the two sites.  

Furthermore, although different methods have identified the main VOC 

emissions in the PRD region and evaluated the O3-precursors relationships, the roles 

of specific VOC sources and species of individual sources in the formation of O3 in 

this region, where O3 formation is generally VOC-limited, are still unclear. In addition, 

though different measures have been conducted to control VOCs in the PRD region, 

most of the measures are mass-based, which focus on the control of the weight of total 

VOC emitted and do not consider the O3 formation potentials of VOCs, which 

photochemical O3 formation is more correlated with. Therefore, to effectively control 

VOCs, reactivity-based approaches are urgently needed. In this study, a new 

reactivity-based method, combining the PMF and an observation-based model (OBM), 

was firstly developed to investigate the roles of VOC sources in the O3 formation in 

Hong Kong and the inland PRD region. 

In addition, to understand the factors that influence photochemical O3 pollution, 

conceptual models of O3 have been developed in recent years for different regions. 

However, there is no conceptual model for the O3 pollution in Hong Kong and the 

inland PRD region. In this study, in order to obtain a full picture of O3 pollution and to 

formulate and implement effective control strategies for O3 pollution in Hong Kong, a 

conceptual model based on the 6-year monitoring data at Tung Chung (TC) was firstly 

developed. 
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Chapter 3 Methodology 

3.1 Sampling sites 

Hong Kong (22°6′-22°36′ N, 113°48′-114°30′ E) is situated on the coast of South 

China and enclosed by the Pearl River Delta (PRD) with a total area of 1,104 km2 and 

a population of seven million People (HKCSD, 2012). The climate in the Hong Kong 

is dominated by the Asian monsoons. One year can be divided into two distinct 

seasons – wet season and dry season – with the alternation of summer monsoon and 

winter monsoon. The wet season lasts from around April to October when the summer 

monsoon is prevailing, including spring and summer seasons. The prevailing wind is 

from the southeast, south and southwest. It is hot, humid and rainy, with about 90% of 

the rain falling. The dry season lasts from late October to March when the Asian 

winter monsoon is dominant, including autumn, winter and early spring. The 

prevailing wind is from the northeast and north. 

In this study, field measurements were simultaneously carried out at two sites. 

One was the Hong Kong EPD air quality monitoring station at Tsuen Wan (TW), and 

the other site was set on the Mt. Tai Mo Shan (TMS) in Hong Kong. The sampling 

period was from 06 September to 29 November, 2010 (Figure 3.1).  

Tsuen Wan (TW) (22.373 oN, 114.112 oE), located at the foot of Mt. Tai Mo Shan 

and an urban area, is a mixed residential, commercial and light industrial area in the 

New Territories in Hong Kong. The monitoring site was located on the rooftop of a 

building approximately 15 – 20 m above the ground level, which is adjacent to the 

main traffic road-Castle Peak Road and surrounded by residential and industrial 

blocks. This site can be represented as mixed urban residential, commercial and 

industrial area.   
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Mt. Tai Mo Shan (TMS) is the highest mountain in Hong Kong. Enveloping this 

massif is 1440 hectares of natural territory, which borders Tai Po Kau nature Reserve 

in the east and Shing Mun Country Park in the south. To the west is Route Twisk 

highway and Tai Lam Country Park. To the north is the old valley of the Lam Tsuen 

(AFCD, 2008). There are forest plantations in the southeastern part of the mountain. 

Limited by climatic and geographic factors, these plantations end at the 550 m contour, 

above which shrubs and grasses dominate (AFCD, 2008). Farther to the south are the 

urban centers of the partial New Territory, Kowloon peninsula and Hong Kong Island. 

To the southwest is the newly-developed residential area of Tung Chung, the 

international airport and the South China Sea. To the west are the Tuen Mun 

residential areas. Because of its unique topography, mountain-valley breezes and 

sea-land breezes are often observed at Mt. Tai Mo Shan. These mesoscale circulations 

enhance the interaction of polluted urban air and the mountain air. The sampling site 

was set on the rooftop of the building in the Youth Hostel Association at the mountain 

waist of Mt. Tai Mo Shan (22.405o N, 114.118o E, and 640 a.s.l.), about 500 meters 

away from the Tai Mo Shan Road, which provides access to the summit. In addition, 

TW and TMS sites are suitable for assessing the influence of mesoscale circulations 

on redistributing air pollutants. 
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newly-developed residential town located on northern Lantau Island, about 3 km 

south of the Hong Kong International Airport at Chek Lap Kok with Hong Kong 

urban center 20 km to the southwest and Macau 38 km to the northeast. The TC site 

was adjacent to highway and railway lines that connect the airport with other islands 

of Hong Kong. The potential impact of the airport, highway and railway lines on VOC 

and NOx levels at the sampling site was demonstrated to be insignificant (AOAQS, 

2011; Guo et al., 2007; So and Wang, 2004). In addition to the influence of local 

emission sources, TC is also affected by polluted continental air masses from the 

highly industrialized PRD region, South China. As such, the TC site is an ideal 

location to assess the O3 pollution in Hong Kong.  

3.2 Measurement techniques 

3.2.1 Continuous measurements of O3, CO, SO2 and NO 

At TW, O3, CO, SO2, NO-NO2-NOx and meteorological parameters were 

measured at a monitoring station operated by the HKEPD. This station used similar 

instruments and quality assurance and control protocols to those in the US air-quality 

monitoring program (http://epic.epd.gov.hk/ca/uid/airdata). At TMS, measurement 

instruments were installed in a room of the building, beneath the rooftop. Ambient air 

samples were drawn through a 5m long perfluoroalkoxy (PFA) Teflon tube (OD: 12.7 

mm; ID: 9.6 mm). The inlet of the sampling tube was located 2 m above the rooftop 

of the building. The other end of the sampling tube was connected to a PFA manifold 

with a bypass pump drawing air at a rate of 5 L min-1. The intake of the analyzers for 

O3, CO, SO2 and NO-NO2-NOx was connected to the manifold. 

A detailed description of the in-situ measurements of O3, CO, SO2, and 

NO-NO2-NOx is given below: 
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Ozone (O3) was measured using a commercial UV photometric instrument 

(Advanced Pollution Instrumentation (API), model 400E) that had a detection limit of 

0.6 ppbv. The analyzer was calibrated by a transfer standard (TEI 49PS) prior to the 

field studies.  

Sulfur dioxide (SO2) was measured by a pulsed UV fluorescence (API, model 

100E), with a detection limit of 0.4 ppbv and 2-σ precision of 0.5% for ambient levels 

of 50 ppbv (2-min average). Carbon monoxide was measured with a gas filter 

correlation, nondispersive infrared analyzer (API, Model 300E) with a heated 

catalytic scrubber (as purchased) to convert CO to carbon dioxide (CO2) for baseline 

determination. Zeroing was conducted every 2 h, each lasting 12 min. The 2-min data 

at the end of each zeroing were taken as the baseline. The detection limit was 30 ppbv 

for a 2-min average. The 2s precision was about 1% for a level of 500 ppbv (2- min 

average) and the overall uncertainty was estimated to be 10%. Nitric oxide and NOx 

were detected with a chemiluminescence NO-NO2-NOx analyzer (API, Model 200E). 

The analyzer had a detection limit of 0.4 ppbv. The Model 200E is a single chamber, 

single photomultiplier tube design which cycles between the NO, NOx, and zero 

modes. The addition of the zero mode provides excellent long term stability and 

extremely low minimum detectable limits. All the SO2, CO, and NO-NOx-NO2 

analyzers were calibrated daily by injecting scrubbed ambient air (TEI, Model 111) 

and a span gas mixture. A NIST-traceable standard (Scott-Marrin, Inc.) containing 

156.5 ppmv CO (± 2%), 15.64 ppmv SO2 (± 2%), and 15.55 ppmv NO (± 2%) was 

diluted using a dynamic calibrator (Environics, Inc., Model 6100), according to the 

calibration protocol in HKEPD (2012c). For the O3, SO2, NO and NOx analyzers, a 

data logger (Environmental Systems Corporation, Model 8816) was used to control 

the calibrations and to collect data, which were averaged to 1-min values. 
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In addition to the above chemical measurements, several meteorological 

parameters were monitored by an integrated sensor suite (Vantage ProTM & Vantage 

Pro 2 Plus TM Weather Stations, Davis Instruments). The weather station has two 

components: the sleekly designed integrated sensor suite, also known as the ISS, and 

the data-receiving console. The ISS collects weather data such as outdoor temperature, 

solar radiation, relative humidity, wind speed and direction, and wirelessly transmits 

its data to the console, which displays the data. To make viewing the data easier, the 

console is designed with an easy-to-read (7.6 cm × 8.5 cm) screen and a 

glow-in-the-dark keypad for night viewing. 

3.2.2 Sampling and analysis of VOCs by canister 

Concurrent VOC samples were collected on selected non-O3 episode (i.e. 28 

September, 02, 08, 14, 18 – 19, 27 – 28 October, and 20 – 21 November) and O3 

episode days (i.e. 23 – 24, 29 – 31 October, 01 – 03, 09 and 19 November) at TMS 

and TW. The potential high O3 episode days were selected based on weather 

prediction and meteorological data analysis, and were generally related to stronger 

solar radiation, lower wind speeds, and less vertical dilution of air pollution compared 

to non-O3 episode days. These O3 episode and non-O3 episode days were later on 

confirmed by the observed O3 mixing ratios. In this study, an O3 episode day was 

defined when the peak one-hour average O3 mixing ratio exceeded 100 ppbv (i.e. 

China’s Grade II Standard). Ambient VOC samples were collected using cleaned and 

evacuated 2-L electro-polished stainless steel canisters. The canisters were prepared 

and delivered to Hong Kong by the Rowland/Blake group at University of California, 

Irvine (UCI). A flow-controlling device was used to collect 1-h integrated samples. 

During non-O3 episode days, hourly VOC samples were collected at 2-h intervals 

from 7 a.m. to 7 p.m. per day at both sites. For O3 episode days, hourly samples were 
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consecutively collected from 9 a.m. to 4 p.m., with additional samples collected at 6 

p.m., 9 p.m., midnight, 3 a.m. and 7 a.m.. Due to logistic issues, 19 additional samples 

were collected at TMS, and one additional sample was taken at TW. Totally, 201 and 

183 VOC samples were collected at TMS and TW, respectively. 

After sampling, the whole air samples were returned to the laboratory at UCI for 

chemical analysis. The analytical systems are described as below (Colman et al., 

2001). The whole system included multicolumn gas chromatography. The first 

HP-6890 (GC-1) in a system contained two columns. The first column was a J&W 

DB-5 (30 m; i.d., 0.25 mm; film ,1 μm) connected in series to a RESTEK 1701 (5 m; 

i.d., 0.25 mm; film, 0.5 μm), which was output to an ECD detector. The 

DB-5/RESTEK 1701 union helped to resolve halocarbon and organic nitrate species 

that have similar polarity through higher retention of the nitrate species. The second 

column was a DB-5ms (60 m; i.d., 0.25 mm; film, 0.5 μm), which was output to an 

MSD detector (HP-5973). The DB-5/RESTEK 1701 received 6.84% of the total 

carrier flow, and the DB-5ms received 10.1%. The second HP-6890 (GC-2) contained 

a J&W DB-1 column (60 m; i.d., 0.32 mm; film, 1 μm) output to an FID detector. 

This column received 15.1% of the flow. The third HP-6890 (GC-3) contained a J&W 

GS-Alumina PLOT column (30 m,; i.d., 0.53 mm) connected in series to a DB-1 (5 m; 

i.d., 0.53 mm; film, 1 μm), which was output to a FID detector, and a RESTEK 1701 

(60 m; i.d., 0.25 mm; film, 0.50 μm), which was output to an ECD detector. The 

PLOT/DB-1 union helped to reduce signal spikes from PLOT column bleed and 

tightened up the CO2 peak width. The GS-Alumina PLOT column received 60.8% of 

the flow, and the RESTEK 1701 received the remaining 7.16%. The oven parameters 

employed for each GC can be found in Colman et al. (2001) and Simpson et al. (2010). 

Liquid nitrogen was used to achieve subambient initial temperatures. 
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3.2.3 Sampling and analysis of carbonyls 

Carbonyl samples were collected simultaneously at TMS and TW on the same 

sampling days as for the NMHC samples. Silica cartridges impregnated with acidified 

2,4-dinitrophenylhydrazine (DNPH) were used for sampling. Air samples were drawn 

through the cartridge at a flow rate of 0.8 L min−1 for 2 hours; the flow rate through 

the cartridges was monitored with a rotameter which was calibrated before and after 

each sampling. An O3 scrubber was connected to the inlet of the DNPH–silica 

cartridge to prevent interference from O3. During non-O3 episode days, carbonyl 

samples were simultaneously collected from 7 a.m. to 7 p.m. every two hours at both 

sites. For O3 episode days, carbonyls were consecutively collected every two hours 

from 7 a.m. to 7 p.m., with additional samples collected at midnight and 3 a.m. 

Totally 172 and 157 carbonyl samples were collected during O3 and non-O3 episode 

days, respectively. The unequal sample size is because some samples at the two sites 

were contaminated. 

All cartridges were stored in a refrigerator at 4°C after sampling. The sampled 

carbonyl cartridges were eluted slowly with 2 ml of acetonitrile into a 2-mL 

volumetric flask. A 20-μl aliquot was injected into the high performance liquid 

chromatography (HPLC) system through an auto-sampler. The operating conditions 

of the HPLC are shown in Table 3.1. Typically, C1 – C8 carbonyl compounds can be 

measured effectively by this technique with a detection limit of ~0.2 ppbv.  

Since the sampling periods were 2 hours, cubic spine interpolation was used to 

derive hourly carbonyl concentrations for modeling purpose. Cubic spine 

interpolation is a useful technique to interpolate between known data points due to its 

stable and smooth characteristics. As an interpolation method, this method tends to 
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derive the unknown values with the help of the known ones and tries to interpolate the 

values as closer to the original ones as possible. 

Table 3.1 Gradient separation of C1 – C8 aldehyde and ketone derivatives 
Column Nava-Pak C18 3.9 ×150 mm 
Moblie phase A: Water/Acetonitrile/ Tetrahydrofuran 60/30/10 
Gradient B: Water/Acetonitrile 40/60 

Flow rate 100% A for 2 min then a linear gradient from 100% A to  
100% B in 18 min, 100% B for 4min 

Injection  volume 20μL 
Detection Absorbance at 360 nm 

 

3.2.4 Quality control and quality assurance for VOC and carbonyl analyses 

Before sampling, all canisters were cleaned at least five times by repeatedly 

filling and evacuating humidified pure nitrogen gas. In order to check whether there 

was any contamination in the canister, we filled the evacuated canisters with pure N2 

and stored them in the laboratory for at least 24 hours. These canisters were then 

checked by the same VOC analytical method to ensure that all the target compounds 

were not found or were under the method detection limit (MDL). In addition, 

duplicate samples were regularly collected to check the precision and reliability of the 

sampling and analytical methods. 

NMHCs were identified by their retention times and their mass spectra. The 

quantification of target VOCs was accomplished using multi-point external 

calibration curves, which was employed by a combination of National Bureau of 

Standards, Scott Specialty Gases (absolute accuracy estimated to be within ± 5%) and 

UCI-made standards. The measurement precision, accuracy and detection limits of 

NMHCs varied compound by compound and were periodically quantified for each 

species during the sampling period. Detailed procedures are described in Simpson et 

al. (2010) and Colman et al. (2001). Briefly, the measurement precision for NMHCs is 

1% or 1.5 pptv (whichever is larger) for the alkanes and alkynes, and 3% or 3 pptv 
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(whichever is larger) for the alkenes, and 5% for aromatics. The limit of detection is 3 

pptv for the NMHCs. 

Identification and quantification of carbonyl compounds were based on retention 

times and peak areas of the corresponding calibration standards, respectively. The 

instrument was calibrated using five standard concentrations covering the 

concentrations of interest for ambient air. There were good linear relationships (R2 > 

0.998) between the concentrations and responses for all carbonyls identified. 

Cartridge collection efficiency was determined with two cartridges in series; over 98% 

of carbonyl compounds were found in the first cartridge. Relative percent differences 

for duplicate analysis were within 10%. 

3.2.5 Sampling on-line VOCs at Tung Chung 

For online VOCs data, it was collected and analyzed by the online VOC 

analyzers (Syntech Spectras GC 955, Series 600/800, the Netherlands) from 2005 to 

2010 in TCAQMS. This instrument is a separating and analytical system which 

consists of two sampling systems and two column separating systems: one for the C2 

– C5 hydrocarbons (GC1) and the other for the C6 – C10 (GC2) hydrocarbons. The 

target C2 – C10 hydrocarbons included ethane, ethene, ethyne, propane, propene, 

n-butane, i-butane, 1-butene, trans-2-butene, cis-2-butene, 1,3-butadiene, n-pentane, 

i-pentane, 1-pentene, trans-2-pentene, isoprene, n-hexane, i-hexane, n-heptane, 

n-octane, i-octane, benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, 

1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. In this 

study, the GC system operated continuously and collected as well as analyzed the 

ambient sample every 30 minutes, 24 hours every day. For example, the time stamp 

00:30 indicated the end of the sampling period, i.e. from 00:00 until 00:30 and the 
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start of the analysis period, i.e. from 00:30 until 01:00. Furthermore, the half-hourly 

data was averaged into hourly values and used in this study.  

For these analyzers, built-in computerized programmes of quality control 

systems, i.e. auto-linearization and auto-calibration, and calibration with span gas 

were used. Before sampling, the analyzers were calibrated weekly by injecting 

certified calibration gas (NPL span gas, National Physical Laboratory). In addition, 

the quality of the real-time data was assured by comparison with the canister samples 

which were analyzed at UC-Irvine. The measurement precision, accuracy and 

detection limits of the above VOCs varied compound by compound. Briefly, the 

detection limit was 0.002 – 0.787 ppbv. The accuracy of the measurements was 1% – 

10% for the above VOCs, whereas the measurement precision was 2.5 – 20%. 

3.3 Models used in this study 

3.3.1 The description of PMF model 

USEPAPMF 3.0 model (EPA, 2008a) was utilized for the source apportionment 

of the 183 VOC samples. Detailed description of this model can be found in Ling et al. 

(2011). In general, the budget of ambient VOCs is determined by the emissions from 

different sources, the deposition of chemical and physical processes. Based on the 

fundamental assumption of mass conservation of species from the emissions sources 

to the receptor site, the concentration of one specific VOC could be proportional to its 

emission amounts from different sources in the certain atmospheric volume. 

According to the above assumption, a speciated data set in the PMF model is 

represented as a data matrix X of i by j dimensions, where i number of samples and j 

chemical species (VOCs) were measured (Eq. 3-1, Paatero, 2000). The function of the 

PMF model is to identify the number of emission sources and the species profile of 

each source, and to attribute the amount of mass from each source to each species in 
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each individual sample by an analyst based on the measured data at the receptor site, 

which could presented by equation 1. Therefore, two metrics, i.e., factor contributions 

and factor profiles, were included and exported in the PMF results. 

         ij

p

k
kjikij efgx 

1
     (3-1) 

where xij is the jth species concentration measured in the ith sample, gik is the 

species contribution of the kth source to the ith sample, fkj is the jth species fraction 

from the kth source, eij is the residual for each sample/species, and p is the total 

number of independent sources (Paatero, 2000).  

In this study, although 41 species were identified and quantified, it is not 

necessary to use all of them for the PMF model due to the fundamental assumption of 

non-reactivity or mass conservation of the PMF model. The selection of the VOC 

species for the input of the PMF model was based on the following principles: 1) 

Species at low concentrations with high uncertainty due to their relatively low 

abundance and/or high reactivity, i.e. β-pinene, camphene and myrcene, were 

excluded (Guo et al., 2011a; Lau et al., 2010; EPA, 2008; Paatero, 2000; Huang et al., 

1999). More than 25% of the samples for these species were below the detection limit; 

2) Species that are highly reactive (i.e. butenes, pentene and 1,3-butadiene with 

lifetime of a few hours) were excluded, since they were rapidly consumed in the 

atmosphere and affected the apportionment results (Zhang et al., 2013; Guo et al., 

2011a; Lau et al., 2010; Brown et al., 2007). An exception to this principle was the 

inclusion of unique species that are important tracers of sources, for example, 

isoprene is an important biogenic VOC; 3) Species at low concentrations that are not 

typically tracers of sources were excluded, i.e. ethyltoluenes. In total, 25 major VOCs 

together with CO were input into the PMF model to explore the sources of observed 
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VOCs. These 25 selected VOCs accounted for 96% (ppbv/ppbv) of the total 

concentrations of the 41 VOC species. The uncertainties for each species were 

determined as the sum of 5% of VOC concentration and two times the method 

detection limit of the species, as suggested by Paatero (2000). For values below the 

detection limit, they were replaced by half of the detection limit values and their 

overall uncertainties were set at 5/6 of the detection limit values. In addition, due to 

the complex speciation of VOCs, one VOC may be a tracer of several sources. For 

instance, benzene, xylenes, hexane and its isomer, C9-C10 alkane species could be 

emitted not only from vehicular emissions/fuel evaporation, but also from solvent 

emissions. Another example, though propane and n/i-butanes are typical components 

of LPG, they are also emitted from vehicles. In this analysis, different numbers of 

factors were tested, and an optimum solution was determined based on both a good fit 

to the observed data and the most meaningful results by comparing with previous 

studies (Guo et al., 2011a; Lau et al., 2010). It is noteworthy that the number and 

profile of factors (sources) in this study were determined based on the results from 

previous receptor-modeling studies (Guo et al., 2011a, 2007; Ling et al., 2011; Lau et 

al., 2010) and VOCs source emission studies (Guo et al., 2011b; Ho et al., 2009; Liu 

et al., 2008; Tang et al., 2008, 2007; Borbon, et al., 2002; Blake and Rowland, 1995). 

Good correlations were found between the observed and predicted VOC 

concentrations at TW (R2 = 0.98) after PMF implementation. Moreover, all the 

selected species had scale residuals normally distributed between -3 and 3, confirming 

that the measured data were well modeled (EPA, 2008).  

Furthermore, to estimate the sensitivity of the whole analysis to the selection of 

25 species, the results for these two scenarios were compared. The general 

characteristics for the source profiles on the basis of 41 input VOC species were 
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almost the same as those by using the 25 selected VOC species as input except for the 

attributions of some VOC species, i.e., α/β-pinene, camphene, limonene, ρ-cymene 

and 1-pentene. Two additional source profiles were found for the result of 41 species 

(data not shown). One is the profile with relatively high contributions of α/β-pinene, 

camphene, limonene and ρ-cymene (additional source 1), in addition to the significant 

contributions of these species in the source of biogenic emissions, while the other is 

solely dominated by 1-pentene, with some contribution of butenes (additional source 

2). It is well documented that butenes and 1-pentene were mainly from vehicular 

emissions in Hong Kong and the rest of PRD region (Guo et al., 2011; Ho et al., 2009; 

Liu et al., 2008). The variations for these sources indicated that the source profiles 

may be biased due to the large uncertainty of these species caused by their low 

abundance and/or high reactivity (Table 2). In addition, ethyltoluenes showed high 

correlations with paint and sealant solvent tracers, i.e., ethylbenzene and xylenes, 

indicating that paint and sealant was the main contributor to these species. 

Furthermore, butenes and 1,3-butadiene correlated well with the tracers of LPG usage, 

i.e., propane, butanes, ethene and propene, indicating that these species would emit 

from LPG vehicles (Guo et al., 2011b; Liu et al., 2008). It should be noted that, 

though there were some variations for the results of the addition input VOCs, the 

contributions of these species/sources were small due to their low abundance. 

Therefore, based on the above discussion, we believe that the selection of 25 species 

for the PMF simulation is reasonable and valid in this study. 

3.3.2 The description of Observation-Based Model (OBM)  

The observation-based model (OBM) developed by Cardelino and Chameides 

(1995) uses the measured ambient mixing ratios of O3 and its precursors (i.e. VOCs, 

CO, NO), as well as meteorological data as a function of time at given sites input as 
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for the photochemical box model to simulate the total amount of photochemical O3 

production and to explore O3-precursors relationships at these locations based on the 

carbon bond IV mechanism. This mechanism categorizes each VOC species into 

different groups according to their functional bonds. Therefore, this model could only 

be used to calculate the O3 production, the O3-precursors relationships in a given area. 

It can’t be used to investigate the detailed chemistry of photochemical pollution in the 

atmosphere. On the other hand, due to the fact that measured meteorological data, 

including the temperature, relative humidity and boundary layer depth should be input 

into the model for simulation, the OBM model could only reflect the influence of 

above parameters on O3 formation in a given area. 

OBM model includes two base simulations for calculating total photochemical 

O3 production. The first simulation uses the concentrations of specified species such 

as O3, NO, CO and the primary VOC functional groups based on carbon IV 

mechanism to calculate the concentrations of the unspecified species and the 

integrated source functions by the following equation (Equation 3-2):  

))(( FT
jjjj

j CCtDLP
t

C





,  (3-2) 

where Cj is the concentration of the jth specified species, and [∂Cj/∂t]obs is the observed 

local time derivative in Cj. This source function, Σj (t) (in unit of ppb hr-1) represents 

the combined effects of emissions at the site, including horizontal transport to the 

measurement site and the horizontal transport away from the measurement site. 

In addition, based on the first simulation results, the second base case simulation 

can give an internal check on the accuracy of the source function calculated in the first 

simulation and determine the O3 formation potential at the given sites (i.e., Ps
O3-NO, 

which is the integration of model-calculated rates of the net O3 production, including 
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total O3 production and NO destruction). The second base case simulation is 

conducted by the following equation (Equation 3-3):  

))(( FT
jjjjj

j CCtDLP
t

C





,  (3-3)  

With the source function, Σj is given by the solutions obtained from the first 

simulation (Equation 3-3). 

Based on the integrated results of the above two base case simulations, the model 

can be used to evaluate the sensitivity of O3 photochemical production to the changes 

in the concentration of its individual precursors at the given locations by the relative 

incremental reactivity (RIR) method which is developed by Carter and Atkinson 

(1989) and defined as the percent change in O3 production per percent change in 

precursor sources. Equation (3-4) illustrates the RIR of precursor X at a site “S”. 
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,  (3-4) 

Where superscript “S” is the specific measurement site; X represents a specific 

precursor; S(X) means the integrated amount of species X (in ppbv) emitted or 

transported to the measurement site that results in the concentration of X at the site; Δ 

X is the change in the concentration of X caused by a hypothetical change Δ S(X); 

Ps
O3-NO represents the ozone formation potential, which is the net O3 formation and 

NO consumed during the evaluation period. The RIR functions, thus calculated, 

giving a relative measure of the effectiveness of reducing the emissions of one 

compound or group of compounds over that of another compound or group of 

compounds represent a series of sensitivity factors that can be used to directly infer 

the basic ozone-precursor relationships within given locations (Cardelino and 

Chameides, 1995). 
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In addition, to calculate the RIR function for a specific precursor or class of 

compounds over multiple sampling days, an area-averaged RIR function is used as 

follows, which defines the average RIR function for source X on the Sth sampling day 
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Furthermore, the standard deviation and standard error for this area-averaged 

RIR function is defined by equations 3-6, 3-78 and 3-8: 
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This standard error can be used to determine whether an application of the OBM 

to a given dataset is appropriate or not. If the standard error of the mean for the 

time-averaged RIRs defined in the OBM is relatively small, the calculated RIRs will 

be more likely to be robust (Cardelino and Chameides, 1995). Since the data used in 

the OBM are the concentrations of precursors at a site, which is related to its emission 

rate, RIRs can be used to determine the sensitivity of O3 photochemical production to 

precursor emissions in the area of the original measurements without a detailed or 

accurate knowledge of these emissions (Cardelino and Chameides, 1995). 

3.3.3 WRF simulation 

The Weather Research and Forecasting (WRF) model is a next-generation 

mesoscale numerical weather prediction system designed to serve both operational 
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forecasting and atmospheric research needs (Skamarock and Klemp, 2008). It is 

suitable for use in a broad spectrum of applications across scales ranging from meters 

to thousands of kilometres (http://wrf-model.org/index.php). Simulations and 

real-time forecasting tests have indicated that the WRF model has a good performance 

for weather forecasts, and has broad application prospects (Steven et al., 2004; Done 

et al., 2004).  

As mountain-valley breezes are small scale weather phenomena caused by 

thermal forcing, and there is a complex terrain in Hong Kong (AFCD, 2008), 

considerably high model resolution is needed to capture these breezes. In this study, 

the mountain-valley breezes were simulated using a domain system of five nested 

grids (36, 12, 4, 1.333, and 0.444 km). The domain with finest resolution (0.444 km 

grid) covered the Hong Kong region. In the vertical scale, there were 31 sigma levels 

for all five domains, with the model top fixed at 100 hPa. For physical processes, the 

WRF single-moment 3-class microphysics scheme (Hong et al., 2004), RRTM long 

wave radiation scheme (Mlawer et al., 1997), Goddard short wave radiation scheme 

(Chou and Suarez, 1994), MM5 similarity surface layer (Zhang and Anthes, 1982), 

Noah land surface model coupled with urban canopy model (Chen and Dudhia, 2001), 

and Yonsei planetary boundary layer scheme (Hong et al., 2006) were applied for all 

domains. The Grell-Devenyi ensembled cumulus parameterization scheme (Grell and 

Dévényi, 2002) was applied for the outer three domains, while there was no cumulus 

parameterization scheme in the inner two domains. In addition, the distribution of 

urban land cover was replaced using the latest data downloaded from 

http://webmap.ornl.gov. To assess the simulation of the WRF model, simulated hourly 

mean meteorological parameters were compared with observation data at TMS and 

TW site, together with the measured meteorological data from 22 surface weather 
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stations and 2 sounding stations in the PRD region. The respective correlation 

coefficients of 2 m temperature and relative humidity, 10 wind directions and wind 

speed ranged from 0.50-0.80, reflecting that the simulation could provide a reasonable 

description for the variations of temperature, relative humidity, wind speed and wind 

direction in the PRD region. It should be noted that the WRF simulation was 

conducted with the helpof Dr. Jiang Fei from Nanjing University. 

3.3.4 Photochemical box model (PBM) implementing the most up-to-date version 

of near-explicit photochemical mechanism (PBM-MCM) 

A simple box-model coupled with the MCMv3.2 was used to describe the 

chemical development of the photooxidants in an air parcel with its base on the 

ground, its upper lid set as top of the boundary layer. The boundary layer mixing 

height gradually increased during the morning from 300 m to 1400 m and collapsed 

back to 300 m at night, representative of the autumn conditions in the region (Fan et 

al. 2008). The grid of the model was set as 7 km × 7 km. As the simple box model 

includes no treatment of vertical or horizontal dispersion, the VOCs are assumed to be 

well mixed throughout the model atmospheric boundary layer. The box-model follows 

a similar format to that described previously (Carslaw et al, 1999, 2001) for 

constraining with observational data. Here the extensive field measurements at TMS 

and TW provide input data. As well as the photochemical processes, the model also 

includes the physical processes of dry deposition and exchanges with the aloft layer at 

night for the long-lived peroxides, carbonyls, and PAN-type species, as well as 

heterogeneous losses for N2O5, HO2, CH3O2, OH, HNO3, and NO3 as given in 

previous modeling studies (e.g. Carslaw et al. 1999, Derwent et al. 1998, Cheng at al. 

2010b). The modelling results were then used to provide insight into the complex 

chemical processing in the region. The model represents an idealised situation of 
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worst-case scenario for the photochemical O3 development by investigating the 

targeted species photo-oxidant concentrations. The simulated concentrations of the 

targeted species and intermediates might not reflect the actual values as the 

observation data may be influenced by short-term increases or reductions from local 

sources that are not represented on the scale of the well-mixed box. 

All the input data were averaged over one-hour time intervals for the purpose of 

data evaluation. The base model was constrained with relative humidity, pressure, 

temperature, NO, NO2, SO2, CO and 55 VOCs over the period of the episode days. It 

should be noted that that this PBM-MCM model was developed by Sean Lam and 

Sam Saunders from the University of Western Australia with financial support of Dr. 

Hai Guo’s projects. 

For the photochemical box model, several measures were adopted to control the 

accuracy for the model simulation. Firstly, the model used was the latest version of 

master chemical mechanism (MCM v3.2). The parameters used in this mechanism 

were mostly based on experimental data. For the photolysis rate, the up to date NCAR 

TUV model was used to generate site specific photolysis rate for the study area 

according to the measured meteorological conditions. All the available species in the 

MCM scheme were constrained with direct measurement data from the field 

campaign. Finally, the model simulation results were compared with the observed 

data at the two sampling sites. The results indicated that the model predicted well for 

peak O3 during the study period (Lam et al., 2013), further suggesting that 

photochemical box model used in this study could provide a reasonable description of 

O3 formation at the sampling sites. 

3.3.4.1 Photolysis rates 
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The photolysis rates for particular VOCs vary with solar zenith angle, which can 

be calculated for different locations and times of the year. Hence a set of photolysis 

rates specific for the 2010 measurement campaign period and Hong Kong domain 

were tailored for this work. Detail calculation of the photolysis rates could be found in 

Lam et al. (2013). In brief, initially the photolysis rates from the original MCM 

two-stream isotropic scattering model (Hough, 1988), set for the location of Hong 

Kong and solar zenith angle were calculated for the period of the field measurements 

in 2010. To assess the influence this may have on the model output, an alternative 

calculation of photolysis rates was conducted. Adopting a similar approach to that 

developed by Pinho et al. (2009) for Portugal in Europe, photolysis coefficients were 

calculated using the photon flux determined from the Tropospheric Ultraviolet and 

Visible Radiation (TUVv5) Model (Madronich, 2013). To reduce the calculation time, 

a scaling factor was then applied to the original MCM two-stream isotropic scattering 

model in order to fit the photolysis rates calculated by the TUV model (Table 3.2).  

Table 3.2 Modelled photolysis rate parameterization in PRD 
Reactions MCMv3.2 photolysis designation Ratio 
O3 → O2 + O(1D) J<1> 1.708 
O3 → O2 + O(3P) J<2> 1.223 
H2O2 → 2OH J<3> 1.265 
NO2 → NO + O(3P) J<4> 1.381 
NO3 → NO + O2 J<5> 1.167 
NO3 → NO2 + O(3P) J<6> 1.341 
HNO2 → OH + NO J<7> 1.270 
HNO3 → OH + NO2 J<8> 1.489 
CH2O → H + HCO J<11> 1.366 
CH2O → H2 + CO J<12> 1.249 
CH3CHO → CH3 + HCO J<13> 1.850 
C2H5CHO → C2H5 + HCO J<14> 1.450 
C3H7CHO → n-C3H7 + HCO J<15> 1.000 
C3H7CHO → C2H4 + CH3CHO J<16> 1.000 
i-C3H7CHO → n-C4H9 + HCO J<17> 1.000 
CH2=C(CH3)CHO → Products J<18><19> 0.833 
CH3COCH3 → CH3CO + CH3 J<21> 1.216 
CH3COCH2CH3 → CH3CO + CH2CH3 J<22> 2.774 
CH3COCHCH2 → Products J<23><24> 0.407 
CHOCHO → CO + CO + H2 J<31> 0.092 
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CHOCHO → Products J<32> 9.183 
CH3COCHO → CH3CO + HCO J<34> 1.179 
CH3COCOCH3 → Products J<35> 1.366 
CH3OOH → CH3O + OH J<41> 1.313 
CH3ONO2 → CH3O + NO2 J<51> 1.230 
CH3CH2ONO2 → CH3CH2O + NO2 J<52> 1.737 

CH3CHONO2CH3 → CH3CHOCH3 + NO2 J<54> 1.299 
C(CH3)3(ONO2) → C(CH3)3(O.) + NO2 J<55> 1.266 
CH3COCH2(ONO2) → CH3COCH2(O.) + NO2 J<56> 8.458 

CH3COCH2(ONO2) → CH3CO + HCHO + NO2 J<57> 1.000 

 

3.3.4.2 Model scenarios 

Three model scenarios were considered in this study: 1) Stationary 

photochemical box in TW: in this scenario, the monitoring station at TW was assumed 

to be the centre of the box model and the concentrations of the targeted species were 

homogenous throughout the box. Hence, the model in scenario 1 was constrained with 

TW data only; 2) Stationary photochemical box in TMS: similar to scenario 1, 

monitoring station at TMS was assumed to be the centre of the box model and the 

model was constrained only with TMS data; 3) Moving box (Mbox): this scenario was 

an over simplified mountain-valley breezes phenomenon with the grid sitting between 

TW and TMS monitoring stations and an air parcel moving on an idealized trajectory. 

During daytime hours (18:00 – 07:00, local time (LT)), the monitoring station at TW 

was assumed to be the centre of the box model and the concentrations of the targeted 

species were homogenous throughout the box. The air parcel from TW followed the 

valley breezes entering the grid simultaneously, which brought trace gases emitted 

from TW to the top of the mountain. Photochemical reaction occurred under abundant 

sunlight at the top of the mountain (TMS). At this scenario, the model was constrained 

with TW data only. If mesoscale circulations were dominated, the modeled O3 levels 

compared well with the observations at TMS during daytime hours. When at dusk, the 

air parcel was carried back down by the mountain breezes into the grid until the next 
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morning (18:00 – 07:00 LT). At this scenario, TMS was assumed to be the centre of 

the box model and the model was constrained with TMS data only.  
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Chapter 4 Characterization of photochemical pollution at different 

elevations in mountainous areas in Hong Kong 

4.1 Introduction 

Distinguished from surface measurements and aircraft observations, studies 

conducted in mountain areas often provide information on the regional background 

concentrations of air pollutants, the influence of regional transport and mesoscale 

circulations, the photochemistry of biogenic volatile organic compounds (BVOCs), 

and the influence of meteorological factors on ozone (O3) chemistry (Pochanart et al., 

2003; Zellweger et al., 2003; Gao et al., 2005; Wang et al., 2006b; Fu et al., 2010). 

The characteristics of O3 in mountainous areas have been investigated in different 

locations in recent years (e.g. Evtyugina et al., 2009; Scott and Ahmet, 2009; Crowley 

et al., 2010). For example, Burley and Bytnerowicz (2011) investigated the O3 

distribution at White Mountains (1237 – 4342 m) in California and concluded that 

high O3 concentrations were correlated with slow-moving back-trajectories which had 

spent more time inland and less time offshore. Monteiro et al. (2012) analyzed a high 

O3 episode by a statistical technique and a modeling approach at a mountain site 

(1086 m) in the Mediterranean region, and reported that transport of O3 and its 

precursors by local mountain breezes and sea-breeze circulation was mainly 

responsible for the high O3 concentrations. Turnipseed et al. (2004) simulated the 

mesoscale atmospheric flow conditions influenced by regional topography in the 

Niwot Ridge Ameriflux site within the Rocky Mountains (3050 m), and significant 

influence of mesoscale winds was found under the strong synoptic westerly winds. Ou 

Yang et al. (2012) investigated the seasonal and diurnal variations of O3 at a 

high-altitude mountain site (2862 m) in central Taiwan and concluded that the 
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springtime maximum O3 concentration was most likely caused by the long-range 

transport of air masses from Southeast Asia.  

In mainland China, limited studies have been undertaken to investigate the 

characteristics of O3 pollution in mountainous areas (e.g. Gao et al., 2005; Wang et al., 

2006b; Li et al., 2008; Xue et al., 2011). Gao et al. (2005) reported measurements of 

O3 and CO at the summit of Mt. Tai (1534 m) and suggested that air masses from the 

North China Plains or the re-circulation over the Shandong Peninsula had significant 

influence on air pollutants. Li et al. (2008) investigated the impact of chemical 

production and transport on summer diurnal O3 behavior at a mountainous site in 

North China Plain. They suggested that in-situ chemistry accounted for most of the O3 

increment from morning to mid-afternoon. Wang et al. (2006) and Xue et al. (2011) 

studied the origin of surface O3 and reactive nitrogen speciation at Mt. Waliguan 

(3816 m) in western China, and indicated that high O3 events were mostly derived 

from the downward transport of the upper tropospheric air rather than anthropogenic 

pollution. Nonetheless, all of these studies were carried out only at mountain sites in 

northern/western China. 

Hong Kong and the rest of Pearl River Delta (PRD) region are situated along the 

coast of southern China. The rapid economic development has caused elevated levels 

of air pollution in this region (Huang et al., 2006; Guo et al., 2009). Owning to its 

critical role in the atmospheric oxidizing capacity, human health and vegetation (NRC, 

1991; PORG, 1997; IPCC, 2007), photochemical O3 has been studied in Hong Kong 

and the PRD region for the past two decades (Chan et al., 1998a, b; Wang et al., 2003; 

Ding et al., 2004; Zhang et al., 2007; Guo et al., 2009). Though these studies help us 

better understand the O3 pollution in the PRD region, they were conducted at 

low-elevation urban and rural sites (< 50 m).  
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Many studies showed that mesoscale circulations like sea-land breezes and/or 

mountain-valley breezes play important roles in air pollution transport in such a 

region with complex topography and land-use/land cover. The role of sea-land breezes 

in air pollution transport has been well-studied previously (Zhang and Zhang, 1997; 

Liu et al., 2000; Ding et al., 2004). For mountain-valley breezes, there were relatively 

few Hong Kong studies focusing on this topic, even though it is almost certainly very 

important to air pollution transport in Hong Kong, where topography and physical 

features are complex and where about 75% of the land area is hilly (AFCD, 2008). In 

addition, there were very few works conducting field measurements at mountain site, 

especially the concurrent measurements at the foot and summit of the mountain in this 

region.  

In this chapter, we investigated the characteristics of air pollutants and the causes 

of variations of air pollutants at the mountain site (TMS) and the low-elevation urban 

site (TW), the relationship between the two sites and the influence of mesoscale 

circulations were explored by integrated data analysis and different models. In 

addition, the relationships of O3-precursors at the two different sites were further 

evaluated.  

4.2 Overall observation results 

4.2.1 Levels of trace gases and O3 episodes 

Table 4.1 summarizes the statistics of trace gases during the sampling period. In 

general, the mixing ratios of air pollutants were greater at TW than TMS, whereas the 

secondary pollutant O3 was greater at TMS than TW. The average concentrations of 

NOx, CO and SO2 at TMS were 10.7 ± 0.3 ppbv, 436 ± 7 ppbv and 4.1 ± 0.1 ppbv, 

which were 0.19, 0.85 and 0.67 times those measured at TW, respectively. On the 

other hand, the mean O3 concentration was 55 ± 1 ppbv at TMS, 2.5 times that at TW. 
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To gain further information on the O3 pollution at the two sites, the frequency of O3 

episode days was investigated. At the urban TW site, only one O3 episode day (19 

September, concentration = 116 ppbv) and three near-O3 episode days (i.e. the peak 

hourly O3 mixing ratio between 80 – 100 ppbv, or China’s Grade I Standard) were 

observed. At the TMS site, the maximum hourly average O3 mixing ratio reached 163 

ppbv. Twenty-one O3 episode days (i.e. 8, 19 – 20 September, 23 – 24, 29 – 31 

October, 1 – 3, 8 – 9, 11, 17 – 19, 22 – 23, 26 – 27 November) were found during the 

sampling period. 

Table 4.1 Statistics of trace gases at the TMS and TW sites 
Species TMS TW 

Mean±95% CI* Max Value Mean±95% CI* Max value 

O3 (ppbv) 55 ± 1 163 22 ± 1 116 
Ox(ppbv)1 58 ± 1 178 47 ± 1 157 
NOx (ppbv)2 10.7 ± 0.3 75 55 ± 1 262 
CO (ppbv) 436 ± 7 842 517 ± 8 1150 
SO2 (ppbv) 4.1 ± 0.1 28 6.1 ± 0.2 31 

* Mean ± 95% confidence intervals. 
1 Ox = NO2 + O3 
2 NOx = NO + NO2

 

 

4.2.2 Diurnal variation 

Figures 4.1a and b show the diurnal variations of mean O3, NOx, CO, SO2 and 

surface winds at TMS and TW, respectively. TMS and TW had similar diurnal 

patterns of O3, experiencing O3 maxima in the afternoon and minimum at night and in 

the morning. However, the maximum O3 at TMS showed a delay, when compared 

with that at TW. The average daily maximum O3 mixing ratio at TMS (76 ± 6 ppbv, 

15:00 LT) appeared 1 h later (p < 0.05) than that observed at TW (35 ± 4 ppbv, 14:00 

LT). The delayed daily maximum O3 at TMS was due to the fact that the air mass 

arriving at TMS was generally more aged than that at TW, which may be attributed to 

regional transport (section 4.3.4.1) and/or mesoscale circulations (section 4.3.4.2). At 

TMS, O3 exhibited relatively stable concentrations from midnight to the early 
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morning, a decrease at sunrise, a minimum at about 10:00 LT, a daytime buildup to a 

broad maximum value at about 15:00 LT, and a slow decrease until midnight, with an 

average diurnal difference of 16 ppbv. The slow nighttime decay of O3 at TMS might 

be attributed to the limited NO titration and the reduced boundary layer mixing height. 

Indeed, the boundary layer height was approximately 2 km in the daytime and 

reduced to about 1 km at night in Hong Kong (Guo et al., 2012).  

The diurnal variations of O3 at TW had one peak at about 03:00 and another at 

14:00 LT with a trough at about 07:00 LT (Figure 4.1b). The peaks and the trough of 

O3 were corresponding to NO minimum and maximum, consistent with previous 

studies (Chan et al., 1998a; So and Wang, 2003). The combination of photochemical 

formation and downward mixing from the overlying air masses could result in the O3 

daily peak in the afternoon (So and Wang, 2003; Guo et al., 2009). After reaching the 

daily peak (14:00 LT), O3 gradually decreased and approached to the normal 

background level at night due to the fact that NO emitted during the rush hours could 

titrate some O3 and the photochemical production of O3 ceased at night (Chan et al., 

1998a; So and Wang, 2003) and to a lesser extent, the dry deposition process could 

also cause the drop of O3 concentration (Zanis et al., 2007; Xue et al., 2011). Then, O3 

started to buildup slowly and presented a peak in the early morning, which was more 

obvious when a trough was generated at 07:00 LT. This trough was caused by the NO 

from the fresh vehicular emission which titrated part of the O3 (Chan et al., 1998a; So 

and Wang et al., 2003). On the other hand, the small O3 peak in the early morning 

may be caused by the decreased titration of NO. While NO started to decrease at 

00:00 LT and reached its lowest level at about 04:00 LT (data not shown), O3 

increased gradually and formed a peak at 00:00 – 05:00 LT. In addition, the small O3 

peak in the early morning might be also attributed to the constant transport of O3 to 
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TW by southeasterly flows from the South China Sea where O3 was less consumed 

(So and Wang et al., 2003; Guo et al., 2009). This speculation was based on the fact 

that the winds changed from easterly to southeasterly from midnight until dawn. The 

imposed O3 from the South China Sea and the minimum traffic activities caused 

higher O3 concentrations in the early morning than the normal background level at 

night (So and Wang, 2003; Guo et al., 2009). The speculation was further evidenced 

by the diurnal variations of dimethyl sulfide (DMS), an ocean tracer. DMS had a 

small peak observed from 00:00 to 03:00 LT (data not shown), corresponding to the 

small O3 peak observed between midnight and dawn. Previous studies indeed reported 

that southeasterly winds from South China Sea could result in higher O3 levels at 

night (So and Wang, 2003; Guo et al., 2009). 

The diurnal variation of NOx at the TW site showed a typical urban profile, i.e. 

bimodal structure. The first peak appeared in the early morning (07:00 – 09:00 LT) 

while the second peak was at about 18:00 – 19:00 LT, coincident with the traffic 

pattern of Hong Kong. On the other hand, a broad NOx peak with a delay (compared 

to TW) was observed at TMS. The peak NOx value (15.3 ± 2.2 ppbv) at TMS was 

much lower (p < 0.01) than that at TW (84.5 ± 8.1 ppbv). In addition, the diurnal 

profiles of SO2 and CO were similar at TMS, with a small and broad peak in the 

afternoon, which might be indicative of the influence of regional transport (Guo et al., 

2009; Jiang et al., 2010) and/or mesoscale circulations (Parrish et al., 1993; Gao et al., 

2005; Wang et al., 2006b).  
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(MAC) and methyl vinyl ketone (MVK), based on the assumption that the processing 

time of the air mass was identical for MAC and MVK and there were no additional 

sources of MAC and MVK apart from the oxidation of isoprene (equations 4-1 – 4-5 

as follows), 

ISOP + OH → 0.63 HCHO + 0.32 MVK + 0.23 MAC k1 = 1.0 × 10-10 cm-3 s-1   

(4-1) 

MAC + OH → products  k2 = 3.3 × 10-11 cm-3 s-1   (4-2) 

MVK + OH → products  k3 = 1.9 × 10-11 cm-3 s-1   (4-3) 

)1(
)(

23.0

][

][ ])[(

12

1 21 tOHkk avge
kk

k

ISOP

MAC 


              (4-4) 

)1(
)(

32.0

][

][ ])[(

13

1 31 tOHkk avge
kk

k

ISOP

MVK 


              (4-5) 

where [MAC], [ISOP] and [MVK] were the measured values for MAC, isoprene and 

MVK, respectively, and t is the processing time. Details of this method can be found 

in Liu et al. (2009) and Yuan et al. (2012). Figure 4.2b presents the calculated and 

simulated OH radical concentrations at TMS and TW during daytime hours. At TMS, 

the average mixing ratios of OH radical simulated by OBM and MCM models were 

(2.31 ± 0.27) × 106 and (3.93 ± 0.74) × 106 molecule cm-3, respectively, and (2.03 ± 

0.28) × 106 molecule cm-3 from the calculations of the parameterization method. On 

the other hand, the average concentrations of OH at TW calculated by the 

corresponding three methods were (2.63 ± 0.29) × 106, (4.26 ± 0.74) × 106 and (2.27 ± 

0.31) × 106 molecule cm-3, respectively. Though variations were found for the results 

of different methods, the average mixing ratios of OH radical at the two sites were 

comparable (p > 0.05). In addition, by considering the factor of fractional conversion 

which represented the relative importance of photolysis reactions on OH radical 

formation in the atmosphere (Jenkin et al., 2000; Atkinson et al., 1997), the mean 

fraction conversion index at TMS (0.17 ± 0.03) was lower than that at TW (0.23 ± 
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0.04, p < 0.05). Based on the aforementioned analyses, it could be concluded that 

photochemical reactions at TMS were not stronger than at TW. Hence, the higher O3 

levels observed at TMS than those at TW were not induced by the different degrees of 

photochemical reactions. 

4.3.2 Influence of NO titration 

The feature of higher O3 at the higher elevation site (TMS) than at the 

ground-level site (TW) is somewhat in line with the vertical profiles of O3 observed in 

Hong Kong and other locations (e.g. Wang et al., 2001; Chen et al., 2002; Tseng et al., 

2009; Ma et al., 2011). Wang et al. (2001) showed that O3 generally increased with 

elevation above surface and had a modest peak between 550 and 650 m at the 

subtropical Cape D’ Aguilar site in Hong Kong in October and November, 2001. In 

addition, Chen et al. (2002) and Tseng et al. (2009) reported that high O3 

concentrations appeared at the height of 500 – 600 m and decreased rapidly towards 

the ground during daytime in central Taiwan. Both studies suggested that high O3 

concentrations at higher elevations were partially attributed to the limited NO 

titrations, due to the lower levels of NO at higher elevations. In this study, the average 

NO mixing ratio at the mountain site (TMS) was 3.5 ± 0.1 ppbv, compared to 28 ± 1 

ppbv at TW, indicating that the higher O3 mixing ratios at TMS were likely attributed 

to the limited NO titration (O3 + NO = NO2 + O2). The NO titration is a main process 

of loss for O3, which can convert NO to NO2 rapidly (Tang et al., 2012). In order to 

investigate the titration effect, the concentrations of “oxidant” Ox (the sum 

concentration of O3 + NO2) were calculated at the two sites (Jenkin et al., 2000; Chen 

et al., 2002; Jiang et al., 2010). The mean Ox mixing ratio was 47 ± 1 ppbv at TW, 

close to the value (58 ± 1 ppbv) found at TMS (Table 4.1), confirming lower degree of 

NO titration at the TMS site. 
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4.3.3 Influence of vertical meteorological conditions 

Besides NO titration, vertical structure of meteorological variables is an 

important factor that could influence the O3 levels at different elevations (Lin et al., 

2007; Ma et al., 2011). Therefore, we investigated the vertical profiles of 

meteorological conditions, such as temperature and relative humidity in Hong Kong 

on the selected 40 days, including twenty-one (21) O3 episode days and selected 

nineteen (19) non-O3 episode days before/after the O3 episode days. Two cases (23 

and 27 October) were presented here as examples (Figure 4.1c). The vertical profile of 

meteorological data for Hong Kong was downloaded from the Department of 

Atmospheric Science, College of Engineering, University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html). In addition, the vertical profile of 

O3 was the average pattern of the data in 2005 – 2010, which were obtained from the 

Measurement of Ozone by Airbus In-Service Aircraft project (MOZAIC, 

http://mozaic.aero.obs-mip.fr/web/). Detailed description for this dataset could be 

found in Ding et al. (2008). It should be noted that the vertical meteorological data 

presented here were obtained from the King’s Park station (site 45004, 22.32 o N, 

114.17 o E, with straight distances of 12 km and 7 km to TMS and TW, respectively), 

at 08:00 LT. Inspection of the figure suggested that fluctuation in relative humidity 

and potential temperature caused by inversion layers was found at the altitudes of 600 

– 900 m on 23 October and 720 – 1000 m on 27 October. Furthermore, the modified 

bulk Richarson number (Ri) (Doran et al., 2003) was calculated, and the Ri values 

were 4.6 and 1.0 at the altitudes from 600 to 900 m on 23 October and from 720 to 

1000 m on 27 October, respectively, indicating that the atmosphere was stable and no 

wind-shear turbulence existed at those elevations (Lin et al., 2007). These inversion 

layers suppressed dispersion of air pollutants and gave rise to high O3 levels at high 
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altitudes, consistent with previous studies (Lin et al., 2007; Ma et al., 2011). Indeed, 

the inversion layer was often (24 days of the selected 40 days) observed at the range 

of altitudes of 500 to 1000 m, which may be a factor that resulted in the high O3 levels 

at the TMS site located at the elevation of 640 m. 

4.3.4 Influence of atmospheric processes 

Figure 4.3 presents the scatter plots of (a) m,p-xylene to ethylbenzene and (b) 

i-butane to propane at TMS and TW. Since m,p-xylene and i-butane are more reactive 

than ethylbenzene and propane, respectively, the ratios of m,p-xylene/ethylbenzene 

and i-butane/propane will decrease when photochemical reaction occurs during the air 

mass transport. These two pairs of ratios were much lower at TMS (p < 0.05), with the 

m,p-xylene/ethylbenzene ratio of 0.74 ± 0.04 pptv/pptv (1.66 ± 0.05 at TW) and the 

i-butane/propane ratio of 0.62 ± 0.06 pptv/pptv (0.78 ± 0.02 at TW). In addition, the 

ratio of alkyl nitrates to their parent hydrocarbons was also investigated. Since the 

lifetime of ethyl nitrate is shorter than ethane, and the lifetime of 2-butyl nitrate is 

longer than n-butane, the more aged air mass will have smaller ratio of ethyl 

nitrate/ethane vs. 2-butyl nitrate/n-butane (Roberts et al., 1998; Reeves et al., 2007). 

The ratio of ethyl nitrate/ethane vs. 2-butyl nitrate/n-butane was 0.17 ± 0.01 at TMS, 

while it was 0.91 ± 0.10 at TW. The results suggested that the air mass arriving at 

TMS was generally more aged than that at TW, which may be attributed to regional 

transport (Guo et al., 2009; Cheng et al., 2010a) and/or mesoscale circulations, i.e., 

mountain-valley breezes. 
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local emissions (scenario 2), i.e. southerly and easterly winds (90o ≤ wind direction ≤ 

270o) and northerly winds with low speeds (< 2m/s). O3, CO, SO2 and TVOCs 

showed higher mixing ratios (p < 0.05) in scenario 1, with average values of 57 ± 2 

ppbv, 495 ± 9 ppbv, 4.6 ± 0.2 ppbv and 47 ± 7 ppbC, respectively, while the 

respective average concentrations were 48 ± 2 ppbv, 370 ± 11 ppbv, 3.6 ± 0.2 ppbv 

and 33 ± 7 ppbC for scenario 2. This feature was consistent with previous studies 

(Chan and Chan, 2000; Guo et al., 2009). In addition, the relationship between VOC 

variability and the atmospheric lifetime was analyzed to estimate the distance of the 

sources of air pollutants with/without the influence of regional transport (Jobson et al., 

1998; Warneke and de Gouw, 2001; Wang et al., 2005). This relationship is expressed 

as follows (equation 4 – 6): 

Slnx = Aτ-b   (4 – 6) 

where Slnx is the standard deviation of the natural logarithm of the mixing ratio X, τ is 

the atmospheric lifetime, and A and b are fit parameters. The detailed description for 

this function can be referred to Wang et al. (2005). In brief, the constant b is related to 

the source-receptor distances and lies between 0 and 1. The closer the sampling site is 

from the air pollutant sources, the smaller the exponent b (Ehhalt et al., 1998; Wang et 

al., 2005). Figure 4.5 presents the relationship of variability with lifetime for different 

VOC species under the influence of scenarios 1 and 2. It can be found that the b 

exponent was higher in scenario 1 than in scenario 2 (p < 0.05), indicating that air 

masses at TMS were more frequently impacted by regional transport, particularly 

under prevailing northerly winds with high speeds (Wang et al., 2005). 
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pollutants at TMS were somewhat influenced by air masses from the highly polluted 

PRD region, apart from the influence of Hong Kong urban air by mesoscale 

circulations (discussed in section 4.3.4.2). 

Table 4.2 Comparison of VOC ratios for TMS regional air, urban Hong Kong and PRD 
region 
Site TMS  

regional aira 

TW  

urban aira 

Other Hong Kong 

Urban airb 

PRD regionc 

Ethyne/propane 1.46 0.89 0.99 0.73 – 1.89 

Benzene/propane 0.57 0.25 0.29 0.35 – 0.70 

Toluene/benzene 3.14 5.13 4.11 1.75 – 5.40 

n-Butane/propane 0.62 1.22 0.93 0.47 – 0.52 

aThis study; bHKEPD, 2010; cdata from Barletta et al. (2008) and Zhang et al. (2012) 

 

4.3.4.2 Mesoscale circulations 

To investigate the influence of mountain-valley breezes on air mass transport 

during this study, correlations of SO2 and CO at the TMS and TW sites were analyzed. 

Figures 4.6a and b show correlations of daytime and nighttime averages of CO and 

SO2 for TMS vs. TW. In general, good to moderate correlations were found for both 

CO (R2 = 0.73 and 0.63 for daytime and nighttime hours, respectively) and SO2 (R
2 = 

0.62 and 0.69 for daytime and nighttime hours, respectively) between the two sites, 

suggesting some interplays of air masses. The slopes, which were less than one, 

implied the dilution of air masses during their transport from TW to TMS. Note that 

the prevailing winds at the mountain site were mainly from the north while those at 

TW were mostly from southeast (Figure 4.1a). It is unlikely that the correlations for 

TMS versus TW were caused by the same regional air mass. Therefore, it suggested 

that the interplays of air masses and the moderate to good correlations between the 

two sites were likely caused by the influence of mesoscale circulations, i.e. 

mountain-valley breezes. The lower correlation for CO observed during the nighttime 

hours was likely due to the fact that the observed CO concentrations at TW were 
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mountain breeze during nighttime (23:00 LT) hours. Therefore, the model simulation 

results further confirmed the influence of mountain-valley breezes on the 

redistribution of air pollutants between TW and TMS. Since O3 is a secondary 

pollution, as the air masses aged, secondary reactions occurred and the accumulated 

O3 pollution increased (Jiang et al., 2010). Mesoscale circulations, i.e. 

mountain-valley breezes, can bring freshly-emitted precursors such as VOCs and 

newly-formed O3 including that formed during the transit from the urban areas at the 

foot of the mountain (i.e. TW) to the summit (i.e. TMS) during daytime hours, which 

induced higher O3 levels at TMS. 

In summary, based on the above discussion, it could be concluded that the higher 

O3 mixing ratios at TMS was attributed to the combination influence of NO titration, 

vertical meteorological conditions, and different atmospheric processes including 

mesoscale circulations and regional transport. 

4.4 The relationships between O3 and its precursors 

Different variations of O3 and other trace gases at the two sites indicated that 

relationships between O3 and its precursors may be different at the two sites. 

Correlations between O3 and reactive nitrogen (NOy) can provide useful information 

on the chemistry of photochemical O3 formation in a given location (Sillman et al., 

1998 and references therein). It is reported that positive correlations between O3 and 

NOy indicated that O3 formation was mainly controlled by NOx, while negative 

correlations between O3 and NOx suggested a VOC-sensitive regime and positive 

correlations indicated a NOx-sensitive regime (Sillman et al., 1998 and references 

therein, Wang et al., 2006). In this study, NO was detected with a chemiluminescence 

analyzer (API, Model 200E), while NO2 was converted to NO by a hot molybdenum 

oxide (MoO) convertor and measured by the chemiluminescene detector. This 
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analysis technique converts not only NO2 but also other reactive nitrogen species, 

including peroxyacetyl nitrate anhydride (PAN), organic nitrates and nitric acid to NO 

(Wang et al., 2001; Steinbacher et al., 2007; Xu et al., 2013). The “NOx” measured, 

defined as “NOx
*”, is thus the sum of NO, NO2 and other reactive nitrogen species 

described above, which approximates to NOy levels in the atmosphere (Wang et al., 

2001; Steinbacher et al., 2007; Xu et al., 2012). As such, the measured NOx
* was 

taken as a surrogate of NOy in this study.  

Since the range of peak O3 levels was large at TMS, correlations between O3 and 

NOx
* were investigated for six scenarios, which were divided according to different 

ranges of the peak 1 h average O3 mixing ratio. Figure 4.9 presents the correlations of 

O3 with NOx
* for the 10 min average data during the photochemical active hours 

(10:00 – 18:00, LT) in different O3 scenarios. Negative correlations between O3 and 

NOx
* were found at TMS in the scenarios with lower O3 levels (the highest hourly 

average of 20 ~ 80 ppbv, p < 0.05). These features suggested a VOC-sensitive regime, 

where the photochemical O3 formation was suppressed as NOx mixing ratios 

increased (with average NOx
* levels changing from 7.8 ± 0.4 to 13.4 ± 0.8 ppbv) in 

the corresponding scenarios. However, correlations deteriorated (p > 0.3) when O3 

levels were higher (the highest hourly average of 80 – 140 ppbv), indicating that the 

suppression of NOx
* was reduced and photochemical O3 formation had changed from 

VOC-sensitive to both VOC- and NOx-sensitive as O3 levels increased (Sillman et al., 

2003). However, it should be noted that the correlations could only provide a rough 

evaluation for the O3-precursor relationships at the two sites. 



 

Figure 4.9 
of (a) 20 ≤ 
(f) O3 >120
 

Figur

active hou

were nega

VOC-sens

Figure 4.10

The r

relationshi

Previous s

Jenkin et 

approxima

O3 could b

Scatter plots
O3 ≤ 40; (b)

0 at TMS dur

re 4.10 sho

urs (10:00 –

atively corr

sitive at TW

0 Scatter plot

ratio of VO

ips between

studies (Do

al., 2000)

ate referenc

be effective

s of O3 (ppbv
) 40 < O3 ≤ 6
ring samplin

ows the sca

– 18:00 LT)

related with

W (Sillman e

t of O3 (ppbv

OCs/NOx (N

n O3 and i

odge, 1977;

) found tha

ce point for 

ly reduced 

v) versus NO
60; (c) 60 < O
ng period 

atter plots o

) at TW. Th

h NOx
*, im

et al., 2003)

v) versus NO

NO + NO2) 

its precurso

; Finlayson-

at the VOC

evaluating r

by a decrea

Ox
* (ppbv) fo

O3 ≤ 80; (d) 

of O3 and N

he results in

mplying tha

.  

Ox* (ppbv) at

is an impo

ors (Sillma

-Pitts and P

Cs/NOx (pp

relative ben

ase of VOC 

r the days w
80 < O3 ≤ 10

NOx
* during

ndicated tha

at O3 forma

TW during t

ortant param

an, 1999; J

Pitts, 1993; 

pmC/ppm) 

nefits of NO

under VOC

with the hourl
00; (e) 100 <

g the photo

at O3 conce

ation was 

 
the sampling

meter to eva

Jenkin et al

 NESCAUM

ratio of 8

Ox and VOC

C-limited co

97

ly peak O3 
 O3 ≤ 120; 

ochemical 

entrations 

primarily 

g period 

aluate the 

l., 2000). 

M, 1995; 

8 was an 

C controls. 

onditions, 



 

98 
 

with the ratio of VOCs/NOx < 4/1; and by a reduction of NOx concentration under 

NOx-limited conditions, with the ratio of VOCs/NOx > 15/1. In the transition area, 

when the ratios range from 4/1 to 15/1, a combination of VOCs and NOx controls was 

needed. Figure 4.11 shows the range of measured VOCs vs. NOx during daytime 

hours at TW and TMS. At TW, about 82% of data points had VOC/NOx ratio within 

the range of 1 to 4, while the ratio for 17% of data points was ranging from 4 to 8. 

This result indicated that photochemical O3 formation was mainly VOC-limited at 

TW; therefore, VOC reduction was most effective in reducing O3. On the other hand, 

different characteristics were observed at TMS. Most of the data points (about 60 %) 

had the ratios in the transition area, with values of 4 to 15, while the rest 40 % of data 

points had values ranging from 1 to 4. Additionally, about 96% of those data points 

with ratios ranging from 4 to 15 were found to range from 4 to 8. The relatively 

higher ratios of VOCs/NOx at TMS indicated that though VOCs were the most 

important compounds in the production of O3 at TMS, the contribution of NOx was 

also significant and a combination of VOC and NOx reductions may be warranted. 

However, it should be noted that the VOCs observed at TMS may be residues left 

from the VOCs in the upwind source areas due to photochemical reactions during 

transport. In addition, different VOC species react at different rates and with different 

reaction mechanisms, which induce the nonlinear dependency of O3 formation on NOx 

and VOCs. Furthermore, the ratios of VOCs/NOx used in this study to separate the 

VOCs/NOx-sensitive regimes were based on the results of previous studies (Sillman, 

1999; Jenkin and Clemitshaw, 2000), which may not be representative of the actual 

conditions in Hong Kong and/or the inland PRD region. The above limitation could 

cause uncertainties for the analysis of the ratios of VOCs/NOx at TMS.  
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Chapter 5 Sources of ambient volatile organic compounds and their 

contributions to photochemical ozone formation at a site in the Pearl 

River Delta  

5.1 Introduction 

Volatile organic compounds (VOCs) in the atmosphere have received much 

attention for decades due to the fact that they are important precursors to 

photochemical smog and their possibilities of causing adverse health effects (Singh et 

al., 1981; Edgerton et al., 1989; Carter, 1994; Cardelino and Chameides, 1995; Eric et 

al., 1998; Sillman, 1999). The main anthropogenic sources of VOCs are vehicular 

emissions, solvent usage, consumer products, biomass/biofuel combustion and fossil 

fuel combustion, whereas the natural sources are mainly emissions of vegetation. 

Previous studies have found that the increasing trend of ground-level ozone (O3) was 

related to high anthropogenic VOC emissions (So and Wang, 2004; Chang et al., 2005; 

Shiu et al., 2007; Zhang et al., 2007, 2008; Wang et al., 2009; Cheng et al., 2010a). 

Studies on the relationships between O3 and its precursors also show that O3 

production was VOC-limited in the urban areas in Hong Kong and the inland PRD 

region (So and Wang, 2004; Huang et al., 2005; Zhang et al., 2007, 2008; Cheng et al., 

2010a, b; Zheng et al., 2010a). Therefore, an effective strategy for controlling 

photochemical air pollution could be formulated and implemented through 

identification and quantification of emission sources of VOC and their relationships 

with O3 production. 

Positive matrix factorization (PMF) is a receptor-oriented source apportionment 

model that has been applied in identifying and quantifying the source profiles of 

VOCs in different locations in the world (Jorquera and Rappengluck, 2004; Latella et 
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al., 2005; Xie and Berkowitz, 2006; Song et al., 2007; Sauvage et al., 2009). For 

example, Brown et al. (2007) studied VOC source apportionment by PMF in Los 

Angeles area in the USA. Yuan et al. (2009) estimated VOC source apportionment in 

Beijing using PMF. Guo et al. (2011a) conducted source apportionment by PMF in the 

PRD region, identifying 5 and 6 emission sources of VOCs in Hong Kong and inland 

PRD, respectively.  

It is well documented that VOCs can react with the hydroxyl radical (OH) and 

nitrogen oxides (NOx) and result in photochemical O3 production in the atmosphere 

(Chameides et al., 1992; Cardelino and Chameides, 1995; Sillman, 1999; Poisson et 

al., 2000). As such, effort has been made to investigate the relationship between 

VOCs and O3 with different methods, including emission-base models (EBMs) and an 

observation-base model (OBM) (Cardelino and Chameides, 1995; Russell and Dennis, 

2000). Compared with EBMs, OBMs simulate O3 photochemical production and 

destruction based on measured ambient concentrations of O3 and its precursors, which 

can avoid the uncertainties caused by emission inventories and the simulated 

boundary layer dynamics (Russell and Dennis, 2000). 

In recent years, though studies had been conducted for the VOC source 

apportionments and/or the ozone precursor relationships in different locations in the 

world (Cardelino and Chameides, 1995; Latella et al., 2005; Xie and Berkowitz, 2006; 

Zhang et al., 2007, 2008; Song et al., 2007; Liu et al., 2008a; Sauvage et al., 2009; 

Yuan et al., 2009; Zheng et al., 2009a, b; Cheng et al., 2010a, b), there is little 

knowledge about the roles of specific VOC sources and species of individual sources 

in the formation of O3 in these locations, especially Hong Kong and the inland PRD 

region, which is the dynamic region on the southern coast of China with astonishing 

economic growth, rapid industrialization and urbanization.  
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In this chapter, in order to understand the contributions of different VOC sources 

and their species to photochemical O3 production in Hong Kong and the inland PRD 

region, a new method combining the PMF model and the OBM model was firstly 

developed based on the data collected at a suburban site (i.e., WQS) of the PRD 

region. Our objectives are: i) to use the PMF model to identify the source profiles of 

VOC in PRD; and ii) to use the OBM model to analyze the contributions of these 

sources to the O3 formation in the inland PRD; 3) compared the results with previous 

studies and conducted sensitivity analysis to assess the application for the above new 

method.  

5.2 The source profiles and apportionments of VOCs at WQS 

In this chapter, 22 main VOC species were selected for the analysis, as these 

species are the most abundant species and/or are typical tracers of various 

anthropogenic emission sources (Table 5.1). Species that are highly reactive (i.e. with 

lifetime of a few hours) or with high uncertainty were excluded, since they react away 

quickly in the atmosphere and including them may bias the modeled source profiles 

(Brown et al., 2007). Correlation between two VOC species can be used to determine 

whether the two VOCs originate from the same source, and/or participate in 

photochemical reactions. If two VOCs from the same source are involved in 

photochemical reactions, their correlation will weaken due to different reactivity. As 

an example, Figure 5.1 illustrates the scatter plots of ethylbenzene versus o-xylene, 

and propane versus i-butane at WQS. These pairs had good correlations (R2 = 0.96 

and 0.63, respectively), showing clear source signatures. This confirms that the VOC 

species selected are appropriate for source apportionment in this study. 
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plastics (Seila et al., 2001). Hence, high levels of trimethylbenzenes observed in 

source 1 represented paint and varnish, mainly used in coating and furniture 

manufacturing that is abundant in Dongguan and Foshan cities (Liu et al., 2008b; 

http://www1.dg.gov.cn/, http://www.foshan.gov.cn/). On the other hand, source 5 is 

identified as adhesive and sealants due to high levels of xylenes, which are frequently 

used in shoemaking, printing, packaging, toy and textiles industries in Dongguan and 

Shenzhen (http://www1.dg.gov.cn/, http://www.sz.gov.cn). As Dongguan and 

Shenzhen are upwind of the WQS site, VOCs at WQS are often influenced by these 

two cities (Chan et al., 2006; Guo et al, 2009, 2011a; Cheng et al., 2010a). 

Table 5.1 General characteristics of VOCs selected for model simulation 
VOC species Precisio

n (%) 
Accur

acy 
(%) 

Reactivity
a
 

Concentration (μg/m3) Lifetime
c

Max Min Mean 95%C.I
b
 

Ethane 0.5 5 0.27 16.36 0.32 3.25 0.49 47day 
Propane 0.7 5 1.15 23.15 0.60 3.83 0.69 11day 
n-Butane 0.6 5 2.54 7.85 0.42 2.49 0.34 4.9day 
i-Butane 1 5 2.34 8.38 0.19 1.72 0.28 5.5day 
n-Pentane 2 5 3.94 3.71 0.25 1.21 0.14 3.0day 
3-Methylpentane 2 5 5.7 21.26 0.41 3.36 0.66 2.2day 
i-Pentane 2 5 3.90 24.17 0.73 5.08 0.89 3.2day 
n-Hexane 2 5 5.61 45.71 0.03 4.45 1.59 2.2day 
n-Heptane 2 5 7.15 12.03 0.08 1.35 0.31 1.7day 
n-Octane 2 5 8.68 8.19 0.09 1.10 0.22 1.4day 
Ethene 0.7 5 8.52 11.82 0.64 4.35 0.53 1.4day 
Propene 16 5 26.3 3.40 0.26 0.64 0.08 11h 
1,3-Butadiene 2 5 66.6 0.67 0.01 0.09 0.02 4.2h 
Ethyne 0.5 5 0.8 10.72 0.76 4.56 0.40 12-17day
Benzene 2 5 1.23 9.32 0.70 2.50 0.29 9.5day 
Toluene 3 5 6.0 116.13 0.44 18.04 3.69 2.1day 
o-Xylene 5 5 13.7 115.90 0.14 3.45 2.41 20h 
m,p-Xylene 5 5 14.3-23.6 365.54 0.25 9.47 7.71 12-19h 
Ethylbenzene 5 5 7.1 119.46 0.20 6.17 2.61 1.7day 
1,3,5-Trimethylbenzene 5 5 57.5 5.62 0.05 0.41 0.14 4.9h 
1,2,4-Trimethylbenzene 5 5 32.5 98.88 0.20 2.88 2.11 8.5h 
1,2,3-Trimethylbenzene 5 5 32.5 22.48 0.05 0.61 0.46 8.5h 

a unit in × 1012 cm-3 molecule-1 s-1 

b 95% confidence interval 
c Simpson et al., 2010 
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associated with vehicular emissions, likely from gasoline-fuelled vehicles as the 

contributions of 1,3-butadiene, propene and i-pentane were usually high when the 

vehicular speed was over 50 km/h (Mugica et al., 2001;Watson et al., 2001; HKEPD, 

2005; Liu et al., 2008a; Guo et al., 2011b). 

Source 7 can be characterized as solvent usage 2 as the tracer n-octane solely had 

a high percentage in this source. It is reported that n-octane is widely used as a solvent 

in paint, adhesives and liquid process photocopiers (Health Canada, 1993). 

Source 8 was distinguished by high percentages of ethane and ethene (33% and 

18%, respectively), which could be emitted from incomplete combustion and/or 

natural gas usage (Barletta et al., 2005; Durana et al., 2006; Guo et al., 2011b). To 

ensure that this source profile is correctly interpreted, we added the biomass/biofuel 

burning tracer i.e. methyl chloride (CH3Cl) and the combustion tracer i.e. CO into the 

dataset for the PMF modeling. The rerunning modeling results showed that ethane, 

ethene, CH3Cl and CO correlated well with the source 8, suggesting that this source 

was biomass/biofuel burning (data not shown here). Indeed, our previous source 

apportionment study found that the contribution of natural gas usage to ambient 

VOCs in the study region was negligible (Guo et al., 2011a), so did the emission 

inventory study (Zheng et al., 2009a, b). 

Source 9 was characterized by high levels of n-hexane. n-Hexane is often used as 

a solvent in shoemaking, furniture and textile industries (ATSDR, 1999). Thus, source 

9 is assigned to solvent usage 3. 

Source 10 was identified by high percentages of ethyne, ethene, propene and 

benzene, and low levels of some aromatics and alkanes. These species are all 

associated with vehicular emissions, especially diesel vehicular emissions as diesel 

engine combustion generated much higher percentages of ethene and ethyne than 
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RIR-weighted values. The results are shown in Table 5.2. Among all the major species 

in these three dominant sources, alkenes and most aromatic species generally had the 

high RIR-weighted values, whereas ethyne and benzene showed different patterns in 

different sources. Benzene had negative RIR-weighted values in solvent usage 1 and 

biomass/biofuel burning (-0.06 and -0.34, respectively), but a small positive value in 

the diesel vehicular emissions (0.24). Generally, the contributions of benzene to O3 

formation in the three sources were very small (-3.1% – 0.5%). The negligible 

contributions of benzene to O3 formation were attributed to its low reactivity, similar 

to the findings of other studies (Derwent et al., 1998; Cheng et al., 2010b). It is 

noteworthy that though benzene had a low impact on the O3 formation on local scale, 

it might have a large impact on the O3 formation on regional scale when it transported 

to the downwind areas. On the other hand, the RIR-weighted value of ethyne in the 

source of biomass/biofuel burning was negative, but it was highly positive in the 

source of diesel vehicular emissions caused by its high concentration in this source. 

Similarly, it was found that the contribution of ethyne to the O3 formation was 

negligible in the source of biomass/biofuel burning (-0.97%). However, its 

contribution was moderate in the source of diesel vehicular emissions though its 

RIR-weighted value was high. This may be due to the fact that though ethyne had low 

reactivity, it can still contribute to the photochemical O3 formation when its 

concentration was high (Du et al., 2007). Overall, these results are consistent with 

previous studies which found that aromatics and alkenes made significant 

contributions to photochemical O3 production in the PRD region and in southern 

Taiwan, based on either MIR or RIR evaluations (Chang et al., 2005; Zhang et al., 

2007, 2008; Cheng et al., 2010a). 
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On the other hand, alkanes had low RIR-weighted values, which were due to 

their low RIR values, though some of them had high concentrations in some sources 

(i.e. n/i-butane and n-heptane in solvent usage 1; ethane in biomass/biofuel burning; 

propane and 3-methylpentane in diesel vehicular emissions) (Table 5.2). For solvent 

usage 1, the dominant VOC species were toluene, m/p-xylene and ethene,while ethene, 

toluene and ethyne dominated the contribution to O3 formation in diesel vehicular 

emissions (Table 5.2). And for biomass/biofuel burning, ethene showed the highest 

contribution. The results suggest that a relatively small number of VOC species in a 

small number of VOC sources were responsible for the photochemical O3 formation 

at the site. 

Table 5.2 Contribution of major VOC species in different sources to the O3 production 
VOC sources Major species Mean Con RIR (× 

10-2, %/%) 
RIR-weighted

a
(× 

10-2) 
Contribution

b
(%)

Solvent usage 1 n-Butane 0.57 0.5 0.29 0.21 
i-Butane 0.37 0.7 0.26 0.21 
n-Pentane 0.24 0.1 0.02 0.03 
n-Heptane 0.92 0.8 0.72 0.55 
Ethene 0.75 8.8 6.29 5.09 
Benzene 0.56 -0.1 -0.06 -0.06 
Toluene 7.61 9.4 71.57 55.35 
o-Xylene 0.43 5.9 2.53 1.94 
m/p-Xylene 1.82 26.1 47.54 36.68 
1,3,5-Trimethylbenzene 0.14 1.9 0.27 0.21 

Biomass/biofuel 
burning 

Ethane 0.15 0.3 0.04 1.86 
n-Butane 0.11 0.2 0.02 0.09 
n-Pentane 0.07 0.4 0.03 0.21 
Ethene 0.12 21.1 2.63 84.27 
Propene 0.02 8.2 0.20 1.12 
Ethyne 0.26 -3.8 -0.97 -2.99 
Benzene 0.09 -3.6 -0.34 -3.11 
Toluene 1.05 3.2 3.36 18.54 

Diesel vehicular 
emissions 

Propane 0.42 0.7 0.31 0.63 
n-Butane 0.20 0.8 0.16 0.31 
n-Pentane 0.09 0.5 0.05 0.09 
3-Methylpentane 0.41 1.0 0.41 0.83 
Ethene 1.51 17.2 26.01 52.15 
Propene 0.25 8.6 2.18 4.38 
Ethyne 2.69 4.1 10.92 21.89 
Benzene 0.60 0.4 0.24 0.53 
Toluene 1.42 6.8 9.73 19.50 
1,2,3-Trimethylbenzene 0.07 2.3 0.16 0.33 

a RIR-weight = RIR(X) × concentration (X), X represents the specific VOC species 
b contribution = [RIR(X) × concentration(X)]/∑[RIR(X) × concentration(X)] 
 

5.5 Sensitivity analysis 
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In order to evaluate the importance of the input parameters in the OBM model, 

an uncertainty assessment on the contributions of VOC sources to the O3 formation 

was conducted. The PMF-extracted concentrations of VOC species for each of the ten 

VOC sources were input into the OBM model. The "basic RIR value" of each source 

that corresponded to the mean PMF-extracted concentrations of VOC species in this 

source was obtained. As there were standard deviations for the PMF-extracted 

concentrations of individual VOC species for each source, we defined the "mean 

concentration + standard deviation" as the upper range, and the "mean contribution – 

standard deviation" as the lower range, and the upper range and lower range data were 

input into the OBM for model simulation. By comparing the RIR values obtained 

from the upper and lower range data simulation with the "basic RIR values", the 

uncertainties of the OBM-extracted RIR values were estimated. 

As such, the uncertainty of the modeling results was calculated using Equation 

5-1: 

%100/ 



mean

meanlowerupper

RIR

RIRRIR
V

 (5-1)
 

where V± is the percentage of uncertainty of the modeling results. 

Table 5.3 shows the uncertainty assessment results based on the source 

categories identified by the PMF model. As shown in Table 5.3, various uncertainties 

in the RIR values were identified for each source. In general, when the mass 

contribution of a VOC source to the total ambient VOCs increased, the RIR value of 

the source was higher than the basic RIR value. In the present study, the contribution 

of diesel vehicular emissions showed the lowest uncertainty, whichwas from -11% to 

7%, followed by the biomass/biofuel burning (-16% – 7%). The lower uncertainties 

may be attributed to the relatively stable emissions of VOC species from these sources, 

though the dominant species in these sources were highly reactive. In contrast, the 
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contribution of gasoline evaporation presented the highest uncertainty, ranging from 

-44% to 67%. The highest uncertainty of gasoline evaporation may be due to the large 

variations of the tracers (i.e. n/i-pentane) in this source during the entire sampling 

period, and the uncertainty caused by the PMF model. 

Table 5.3 Sensitivity analysis of the concentrations of VOC sources identified by the PMF 
model to the O3 formation 
Sources Mean 

Con.(%)a 
S.D.(%)b Basic 

RIR(%/%)c 
Uncertainty of 
RIR(%) 

Paint and varnish 5 ±2 0.43 -30 – 31 
LPG usage 10 ±3 0.14 -18 – 46 
Solvent usage 1 24 ±8 0.59 -21 – 19 
Gasoline evaporation 7 ±2 0.12 -44 – 67 
Adhesives and sealants 7 ±4 0.53 -38 – 29 
Gasoline vehicular emissions 8 ±2 0.30 -22 – 12 
Solvent usage 2 6 ±2 0.13 -8 – 39 
Biomass/biofuel burning 12 ±2 0.33 -16 – 7 
Solvent usage 3 9 ±4 0.15 -38 – 30 
Diesel vehicular emissions 11 ±2 0.39 -11 – 7 
a The mean mass contribution extracted by PMF modeling. 
b Standard deviation derived from PMF modeling. 
c The value corresponded to the mean mass contributions of VOC species extracted by PMF 
modeling 
 

5.6 Summary 

In this chapter, a new method combining positive matrix factorization (PMF) 

model and observation-base model (OBM) were first developed to investigate the 

contributions of VOC sources and species to local photochemical O3 formation in the 

Pearl River Delta region. The 10 VOC sources identified at WQS by the PMF model 

were solvent usage 1, biomass/biofuel burning, diesel vehicular emissions, LPG usage, 

solvent usage 3, gasoline vehicular emissions, gasoline evaporation, adhesives and 

sealants, solvent usage 2 and paint and varnish. Solvent usage and vehicular emissions 

(including gasoline, diesel vehicular emissions and gasoline evaporation) were two 

major contributors to local VOCs. The photochemical O3 production at WQS was 

VOC-limited with positive RIR values for VOCs and a negative RIR value for NO. 

Solvent usage 1, diesel vehicular emissions and biomass/biofuel burning were the top 
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three VOC sources that made significant contributions to the photochemical O3 

formation at WQS. Furthermore, the summed RIR values of solvent usage (including 

paint and varnish, solvent usages 1, 2 and 3, adhesives and sealants) and vehicular 

emissions (including gasoline, diesel vehicular emissions and gasoline evaporation) 

accounted for 51% and 28% of the total RIR (VOCs), respectively. Alkenes and most 

aromatics, especially ethene, toluene and m/p-xylene, had high RIR-weighted values, 

indicating that these species were significant contributors to the O3 formation. The 

findings suggest that photochemical O3 pollution in the PRD region could be 

efficiently controlled by reducing specific VOC species in specific VOC sources (i.e. 

toluene, m/p-xylene and ethene in solvent usage 1; ethene in biomass/biofuel burning 

and in diesel vehicular emissions). Sensitivity analysis revealed that the sources of 

diesel vehicular emissions, solvent usage 1 and biomass/biofuel burning had low 

uncertainties while the gasoline evaporation showed the highest uncertainty. 
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Chapter 6 Contribution of VOC sources to photochemical ozone 

formation and its control policy implication in Hong Kong 

6.1 Introduction 

With rapid urbanization and industrialization in the past two decades, surface 

ozone (O3) pollution, which determines the oxidative capacity of the atmosphere, 

reduces visibility and affects human and vegetation health, has been frequently 

observed in Hong Kong and the rest of Pearl River Delta (PRD) region (HKEPD, 

2012a; Wang et al., 2009; Guo et al., 2009). As key O3 precursors, volatile organic 

compounds (VOCs) are the most important chemicals contributing to high O3 

production rates in the PRD region, where O3 formation is sensitive to VOCs in urban 

areas (Ling et al., 2011; Cheng et al., 2010a,b; Zhang Y.H. et al., 2008; Zhang J. et al., 

2007). Therefore, identification of VOC sources and quantification of source 

contributions are fundamental for the formulation and implementation of O3 pollution 

control measures. 

In recent years, with increasing recognition of adverse impact of VOCs on 

photochemical smog and human health, a series of control measures to reduce VOCs 

emissions have been implemented in Hong Kong and the rest of PRD region 

(GDEMC and HKEPD, 2005 – 2012; Cheng et al., 2010a, b; Zheng et al., 2010a). 

Most of the control strategies implemented were mass-based approach, focusing on 

the control of the weight of total VOC emitted. Though measurability and practicality 

are the major advantage of the mass-based approach, it does not consider the O3 

formation potentials of VOCs (Avery et al., 2006). The O3 pollution would be worse 

by replacing heavier VOCs with lower photochemical reactivity by lighter VOCs with 

higher photochemical reactivity, as the more reactive VOCs would increase the 

photochemical O3 formation (HKEPD, 2010; Derwent et al., 2007a). Reactivity-based 
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methods using MIR (maximum incremental reactivity) and OFP (O3 formation 

potential) can overcome the limitation by considering the contributions of VOC 

species to photochemical O3 (Chang et al., 2005; Derwent et al., 1998; Carter, 1994; 

Chameides et al., 1992); but the two methods just simply estimate O3 formation under 

optimum or ideal conditions. As a matter of fact, there is no unique relationship 

between the competitive reaction rates of a set of organic compounds with hydroxyl 

radical (OH) and their ability to produce O3 in the atmosphere because the latter 

depends on the subsequent reaction mechanisms of the products of the OH radical 

attack. Therefore, a newly reactivity-based method, combining the positive matrix 

factorization (PMF) model with an observation-based model (OBM), was firstly 

developed by Ling et al. (2011), which was only applied at a non-urban site in the 

inland PRD region. The relative contributions of the sources of O3 precursors and the 

species in these sources to O3 production remain unclear in Hong Kong, where severe 

O3 pollution exists and control strategies should be different (GDEMC and HKEPD, 

2005 – 2012). 

The PMF model is a receptor-oriented source apportionment model, which 

constrains all the elements in the factor score (source profiles) and the factor loading 

(source contributions) matrix to be positive. Through identifying the intrinsic 

characteristics of the data, the model can apportion the ambient concentration data 

into different sources (Yuan et al., 2009; EPA, 2008). Although the fundamental 

assumption of mass conservation may cause uncertainty in the PMF simulation 

(Hopke, 2003), Na and Kim (2007) have concluded that the reaction loss does not 

significantly influence the quantification of source contributions by incorporating the 

reaction loss of the ambient VOCs in a receptor model. To date, PMF model has been 

applied extensively and provided robust results in identifying and quantifying the 
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sources of VOCs in different areas in the world, including urban, suburban, rural and 

background locations (Guo et al., 2011a; Ling et al., 2011; Lauz et al., 2008, 2009; 

Song et al., 2007;Xie and Berkowitz, 2006). In Hong Kong, Guo et al. (2011a) 

reported that vehicular emissions and solvent use contributed 48% and 43% to 

ambient VOCs, respectively, at a suburban site in 2007. Lau et al. (2010) identified 9 

sources of VOCs at four sites in Hong Kong in 2002 – 2003 and 2006 – 2007 by the 

same approach, concluding that vehicle and marine vessel related sources and 

liquefied petroleum gas (LPG) were the most significant local sources. However, most 

previous studies of the source identification and evaluation regarded each individual 

VOC as equally important to the O3 formation, without considering actual difference 

in O3 formation potentials of individual compounds. Hence, the relative importance of 

potential VOC sources to the O3 formation could be misled.  

In this chapter, the method combining the PMF and OBM model developed in 

Chapter 5 was used to identify the major VOC sources and assess the contributions of 

these sources to photochemical O3 formation by analyzing the VOC data collected at 

the urban site in Hong Kong. The following questions were targeted: 1) the major 

sources of VOCs in urban areas of Hong Kong? 2) the contributions of the VOC 

sources and the major species in these sources to photochemical O3 formation? 3) the 

reduction degree of VOC sources for the highest reduction efficiency of O3 pollution? 

The findings in this study are expected to provide valuable information to relevant 

parties for the formulation and implementation of VOCs and O3 control strategies in 

Hong Kong. To our best knowledge, this study is the first of its kind in Hong Kong. 

6.2 Source profile and source apportionment 

Figure 6.1 presents the explained variations (EVs) of individual apportioned 

sources and the corresponding major tracers, explaining the contributions of each 
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source to the specific VOCs at TW. Seven sources were identified, including gasoline 

exhaust, gasoline evaporation, paint and sealant solvent, LPG usage, diesel exhaust, 

consumer and household products and biogenic emissions. 

Source 1 was characterized by high percentages of n/i-pentanes, n-heptane, 

benzene and toluene, with considerable presence of 2-methylpentane and CO, 

indicating that it is related to vehicular emissions, likely from gasoline-fuelled 

vehicles as n/i-pentane, 2-methylpentane, benzene and toluene were demonstrated 

good tracers for gasoline exhaust in Hong Kong (Guo et al., 2011a; Ho et al., 2009; 

Tsai et al., 2006). Similarly, source 2 showed a dominance of n/i-pentanes, accounting 

for 40% of the total VOCs in the source profile, with certain amounts of 

2-methylpentane, n-heptane and toluene. This source is believed to be gasoline 

evaporation due the fact that the contributions of other combustion and/or vehicular 

tracers, i.e., ethane, ethene, benzene and CO were negligible while n/i-pentane levels 

were relatively high.  

Source 3 was dominated by high percentages of ethylbenzenes, xylenes and 

trimethylbenzenes, with aromatics accounting for 70% of the VOC source profile. In 

addition to vehicular emissions, these species could be from the solvent emissions of 

paints, inks, sealant, varnish and thinner for architecture and decoration (Liu et al., 

2008c; Borbon et al., 2002; Seila et al., 2001). The poor correlation among the above 

aromatics and other combustion tracers, i.e., ethyne, ethene, and CO in this source 

suggested that combustion and/or vehicular emissions were not the major contributors 

of ethylbenzenes, xylenes and trimethylbenzens in Hong Kong. Hence, this source can 

be identified as paint and sealant solvents. 

Source 4 was distinguished by high percentages of propane and i/n-butanes, 

which were typical tracers for LPG (Liu et al., 2008c; Blake and Rowland, 1995). In 
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addition, ethene and propene showed high levels in the source profile, indicating that 

this source could be also related to combustion emissions. Indeed, previous studies on 

roadside and exhaust samples have demonstrated that LPG fuelled vehicular could 

emit significant amount of ethene and propene (Tang et al., 2007b, 2008). In Hong 

Kong, LPG was used as fuel for taxis and public and private light bus. For example, 

about 99.9% of the registered taxi, 51.1% of the register public and private buses were 

powered by LPG by December 2010 in Hong Kong (HKCSD, 2010). Furthermore, 

consumer products may also contribute to this source as some of them use LPG as 

propellant (Lau et al., 2010). Therefore, this source could be assigned as LPG usage. 

Ethane, ethene, ethyne, benzene, n-decane and CO had a high percentage in 

source 5, with certain contributions of C3 – C4 alkanes and n-nonane. These species 

are all associated with vehicular emissions, likely from diesel-fuelled vehicles as the 

percentage of C2 species, benzene and n-decane were usually high in the diesel 

exhaust (Ho et al., 2009; Liu et al., 2008c).  

Source 6 was associated with high percentage of n-hexane and its isomer 

2-methylpentane, accounting for 62% and 40% of those VOCs measured 

concentrations. In addition to the possible emissions from combustion processes, 

these two species could be used in the solvents for household products and consumer 

products (Guo et al., 2011a; Lau et al., 2010; Kwon et al., 2007). The negligible 

amount of combustion tracers, i.e., CO, C2 species, in the source profile confirmed 

that the source could be assigned to consumer and household products. 

Source 7 was solely dominated by isoprene, which is the indicator of biogenic 

emissions (BVOCs) (Tsui et al., 2009; Song et al., 2008). 
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2007, these species were categorized as aged VOCs due to their low photochemical 

reactivity, resulting in the lower contributions of vehicle exhaust. For LPG usage, its 

contribution in this study was close to that obtained in 2002 – 2003 and 2006 – 2007, 

indicating that LPG usage has become a remarkable contributor to the ambient VOC 

loading in Hong Kong. Since 1999, the diesel-fuelled taxis and public and private 

buses were replaced by LPG. These LPG-fuelled vehicles would run long hours on 

roads and generate high mileage, resulting in high emissions of LPG usage (Lau et al., 

2010). In addition, the high contribution of LPG usage could be related to the 

increasing LPG consumption, i.e. from 230,000tons in 2001 to 400,000tons in 2010 

(HKCSD, 2010). This could be further confirmed by the average concentrations of 

major tracers of LPG, i.e., propane, n/i-buane at TW, which increased from 4.87, 3.63 

and 8.83 in 2001 (Guo et al., 2004b) to 6.39, 6.71 and 10.12 μg/m3 in 2010, 

respectively. For solvent-related sources, its contribution was comparable to that 

observed in 2002 – 2003 and 2006 – 2007 (Lau et al., 2010), while it was much lower 

than that in fall 2007 (Guo et al., 2011a). Although samples in this study and the study 

by Guo et al. (2011) were both collected in fall, the variations of the contribution of 

solvent-related sources might be attributed to the sampling site difference. Compared 

to TW, TC is a relatively new town, still under rapid development. Materials for 

decoration, i.e. paint and varnish, are being applied to residences in each new 

apartment block, resulting in higher contributions of solvent-related sources (Lam et 

al., 2013). 

It is interesting to compare the results of this study (top-down approach) with the 

current VOC emission inventory (bottom-up approach) in Hong Kong. The 

contributions of vehicle exhaust and solvent-related emissions were different from 

those of the emission inventory, which reported that about 24% and 60% of VOCs 
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Table 6.1 Comparison of source apportionments at TW with those from other areas in Hong 
Kong by PMF 
Factor Fall, 2010a Fall, 2007b 2002–2003c 2006–2007c 2010d 

Site TW TC CW, TC, TM, YL CW, TC, TM, YL  
Vehicle exhaust 42±3% 48±4% 16~27% 12~22% 24% 

Diesel 20±2% 21±2% -- --  

Gasoline 22±2% 27±3% -- --  
LPG usage 21±2% -- 15-30% 16-41%  
Gasoline evaporation 8±1% -- 4-8% 5-8%  
Solvent related sources 25±3% 43±2% 12-19% 11-15% 60% 
Biogenic 4±1% -- 2-6% 1-4%  
Remarks PMF PMF PMF PMF EIe 
aThis study; bGuo et al., 2011a; cLau et al. (2010) 
dHKEPD, http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission inve.html. 
eEI-Emission inventory 
TC-Tung Chung, CW-Central/Western, TM-Tap Mum, YL-Yuen Long 
 

6.3 Roles of VOC sources in photochemical O3 formation 

The PMF model could provide the concentration of each VOC in each source 

directly, defined as PMF extracted concentration. The OBM model was driven on the 

20 VOC sampling days by the PMF extracted concentrations. Figure 6.3a presents the 

average RIR values of different VOC sources, while Figure 6.3b gives the relative 

contribution of each VOC source to O3 by considering the reactivity and abundance of 

VOCs in the function of RIR-weighted value. It can be found that paint and sealant 

solvents had the highest RIR value, followed by BVOCs, diesel exhaust, LPG usage, 

gasoline exhaust, consumer and household products and gasoline evaporation. The 

relatively higher RIR values for paint and sealant and BVOCs were mostly attributed 

to the high reactivity of the major VOCs in those sources, i.e., ethylbenzene, 

trimethylbenzenes, xylenes and isoprene (Simpson et al., 2010). However, after taking 

into account both RIRs and the emission amount of each VOC source, paint and 

sealant solvents, diesel exhaust and LPG usage were the main contributors at TW, 

with about 78% to the total RIR-weighted value (VOC sources). The result suggested 

that controlling vehicular- and solvent-related VOCs is essential for effective control 
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6.5 O3 reduction efficiency  

From section 6.3, paint and sealant solvents, diesel exhaust and LPG usage were 

found to be the major contributors to the O3 formation. Hence, cutting their emissions 

would be the most effective for the remediation of O3 production. One question is that 

how much VOC source cut would have the highest O3 reduction efficiency. Here, a 

new parameter, namely relative O3 reduction efficiency (RORE), was adopted to 

evaluate the sensitivity of O3 reduction under different scenarios of VOC cut. 

Additional simulations were run by reducing the original amounts of measured VOCs 

by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%, while the other measured 

parameters were unchanged. The RORE was calculated as the relative difference in 

O3 formation potential (∆PO3-NO) between the base case with original VOCs and the 

above VOC reduction scenarios divided by the corresponding reduction percentage of 

VOCs. Figure 6.5 presents the average RORE values of each VOC source under 

different VOC-cut scenarios. It can be seen that paint and sealant solvents (F3) and 

BVOCs (F7) presented higher RORE values followed by diesel exhaust (F5) and LPG 

usage (F4), because of the high reactivity of the major VOCs in those sources as 

described in subsection 3.2. It is interesting to note that BVOC source (F7) had 

relatively higher RORE values (~0.20 – 0.35), implying the high reactivity of its VOC 

component. Indeed, as its major substituent, isoprene has rather high reactivity with 

OH radical. Nevertheless, the concentration of the BVOC source was relatively low. 

In contrast, the source of paint and sealant solvents (F3) also had higher RORE values 

(~0.28 – 0.44), and remarkably its concentration was higher, suggesting that the most 

cost-effective approach for O3 reduction was to cut the sources with higher RORE 

values and higher concentrations. Further inspection found that the RORE value of 

each source differed under different VOC reduction scenarios, and the scenario with 
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the highest RORE value varied for each source, suggesting that each source had its 

own VOC cut percentage which would be the most efficient for O3 reduction. For 

example, the RORE was the highest when 40% of VOCs in paint and sealant solvents 

were cut, indicating that controlling O3 would be the most effective when the VOC 

emissions from paint and sealant solvents were reduced by 40%. Similarly, the highest 

RORE values for the other sources, i.e., gasoline exhaust, gasoline evaporation, LPG 

usage, diesel exhaust, consumer and household products and BVOCs were presented 

in the scenarios of 50%, 40%, 80%, 40%, 10% and 50%, respectively. One of the 

reasons why each source had its own highest RORE was probably the differences of 

the VOC composition and their photochemical reactivity among the sources. Different 

reactivity of VOC sources, caused by the different composition, would lead to 

different capacities for the O3 formation (Gilman et al., 2009; Zheng et al., 2009b). 

Hence, the prefect cutting percentage of each VOC source would be subsequently 

changed. Moreover, it was well recognized that photochemical O3 production is 

related to the relative concentrations of its precursors, i.e., VOCs and NOx, with a 

non-linear relationship (Thornton et al., 2002; Jenkin and Clemitshaw, 2000; Sillman 

et al., 1999). The reduction of VOCs changed the ratios of VOCs/NOx, resulting in 

variations of RORE values under different VOC-cutting scenarios. However, the 

above simulation results were based on the simplified carbon bond IV mechanism 

which does not look into the chemical reactions of each VOC species in a source. As 

such, further simulations by a photochemical box model coupled with more explicit 

mechanisms, i.e., master chemical mechanisms, are needed to better understand 

detailed processes and pathways of the O3 formation under different VOC-cutting 

scenarios (Derwent et al., 2007a; Jenkin and Clemitshaw, 2000). It shoud be noted 

that the highest of RORE value in each reduction scenario in VOC emission 
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and propene in LPG usage, n-butane in diesel exhaust and toluene in consumer and 

household product displayed the highest RORE values in the scenario with 10% 

reduction, while toluene in the gasoline exhaust, n-pentane in gasoline evaporation 

and ethene in diesel exhaust showed maximum RORE value in the scenario of 30%, 

30% and 50% reduction, respectively. Interestingly, the RORE values of isoprene in 

BVOC source (i.e. F7) were relatively higher than those of major VOC species in 

other sources and reached the maximum in the scenario of 50%, suggesting that 

reducing BVOC emissions may be more efficient in O3 reduction in terms of single 

VOC species. Previous studies suggested that the measures in the newly-developed 

urban green areas and roadside vegetation seemed more practical by planting low 

isoprene emitting trees and canopy size of trees during the implementation of urban 

planning, when compared to forest, shrubland and grassland (Leung et al., 2010; Tsui 

et al., 2009). 

Table 6.2 Average RORE values for the main VOC species in each source under different 
scenarios 

Source Species 
RORE (× 10-2) (%/%) 
10% 20% 30% 40% 50% 60% 70% 80% 90% 

F1* Toluene 2.83  3.25  3.83  3.68  3.66  3.64  3.68  3.62  3.67  
F2 n-Pentane 0.10  0.48  0.57  0.30  0.45  0.33  0.32  0.39  0.40  

F3 

Ethylbenzene 3.41 2.77  2.28  2.71  2.81  2.65  2.77  2.42  2.71  
m-Xylene 22.66 20.59 7.85  9.28  18.22 16.55  15.82  14.35 9.01  
o-Xylene 12.14 11.47 11.33 11.01 11.07 11.41 10.63  10.82 10.59 
p-Xylene 8.68  9.32  9.29  9.77  8.96  9.13  8.92  8.74  8.67  

F4 

Ethene 2.89  2.93  2.97  2.97  3.18  2.78  2.90  2.64  2.85  
i-Butane 0.92  0.75  0.77  0.77  0.76  0.75  0.73  0.75  0.76  
n-Butane 2.01  1.87  1.80  1.90  1.91  1.88  1.90  1.82  1.82  
Propane 0.61  0.38  0.33  0.34  0.33  0.32  0.32  0.29  0.33  
Propene 3.83  3.60  3.49  3.24  3.51  3.47  3.33  3.29  3.23  

F5 
n-Butane 0.94  0.76  0.82  0.78  0.77  0.77  0.74  0.77  0.77  
Ethene 2.55  2.59  2.62  2.64 2.73  2.45  2.56  2.33  2.52  

F6 Toluene 1.36  1.07  1.07  1.05  1.00  1.05  1.03  1.04  1.04  
F7 Isoprene 12.97 12.83 12.72 16.60 19.36 16.04  18.06  12.35 13.16 
*F1 ~ F7 corresponded to the identified sources in Figure 6.2 
 

6.6 Summary 

The method combining positive matrix factorization (PMF) model with 

observation-base model (OBM) developed in Chapter 5, was applied for the first time 
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to better understand the VOC sources and their contributions to O3 formation in Hong 

Kong. Totally, 7 sources including gasoline exhaust, gasoline evaporation, paint and 

sealant solvents, LPG usage, diesel exhaust, consumer and household products and 

BVOCs were identified at TW. Subsequently RIR-weighted values, considering both 

RIRs and the concentrations of each VOC source, showed that paint and sealant 

solvents, diesel exhaust and LPG usage were the key contributors to O3 formation at 

TW, suggesting controlling solvent- and vehicular-related emissions should be the 

most effective strategy to reduce photochemical O3 formation in Hong Kong. In 

addition, the RIR-weighted method indicated that m/o/p-xylene and ethylbenzene in 

paint and sealant solvents, toluene in gasoline exhaust, n/i-butane, ethene, propene 

and propane in LPG usage and n-butane and ethene in diesel exhaust were the 

significant contributors to the O3 formation at TW. Analysis on the RORE values 

under varied VOC cutting scenarios of the sources and the major species in these 

sources indicated that the cutting percentages of the VOC sources and the major 

species from these sources were different for the most effective O3 reduction in Hong 

Kong. For instance, by cutting 40% of the dominant VOC source i.e. paint and sealant 

solvents, the efficiency of O3 reduction would be the highest for this source. 
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Chapter 7 Atmospheric photochemical reactivity and ozone 

production at two sites in Hong Kong: Application of a 

photochemical box model with master chemical mechanism 

(PBM-MCM) 

7.1 Introduction 

It has been well recognized that high concentrations of O3 have detrimental 

effects on human health, crops, and vegetation, in addition to its central roles in 

photochemistry and oxidizing capacity in the lower atmosphere. The abundance of O3 

in the atmosphere is determined by downward transport from the stratosphere, the dry 

deposition to Earth’s surface and the in-situ photochemical formation through 

reactions involving anthropogenic emitted VOCs and NOx in the presence of sunlight. 

The mechanisms of photochemical reactions resulting in O3 formation have been 

studied for decades. The OH radical, formed primarily via the photolysis of O3, 

initiates the reaction sequence. The OH radical reacts with both saturated and 

unsaturated hydrocarbons to produce alkyl proxy radicals (RO2) and hydroperoxyl 

radical (HO2), which convert NO to NO2 efficiently. Among these reactions, the 

formation of RO2 is the rate-controlling step (Gilman, et al., 2009). Finally, NO2 is 

converted back to NO by photolysis, resulting in the regeneration of O3. The 

photochemical O3 formation has a non-linear relationship with its precursors, i.e., 

VOC- or NOx-sensitive chemistry, which is dependent on the relative concentrations 

of NOx and VOCs (Sillman, 1999; Jenkin et al., 2000; Lu et al., 2010; Liu et al., 2012). 

At low [VOC]/NOx conditions (VOC-sensitive regime), the reaction between OH and 

NO2 is the dominant chain terminating reaction, competing with chain propagating 

reactions of OH and hydrocarbons. Therefore, reducing the concentration of 
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hydrocarbons by VOC emission controls would lead to a decrease in O3 formation. 

On the other hand, at high [VOC]/NOx ratios (NOx-sensitive regime), the 

peroxy-peroxy reactions are the dominant chain-terminating reactions, while the 

oxidation of NO to NO2 by hydroperoxy and alkyl peroxy radicals is the key 

propagating reactions, which forms O3 consequently. Hence, any reduction in NOx 

would decrease the photochemical O3 formation. 

Hong Kong and the rest of the PRD, one of the most urbanized and industrial 

regions in southern China, is experiencing severe O3 pollution with hourly mixing 

ratio frequently exceeding 100 ppbv in recent years due to large emissions of its 

precursors (Wang et al., 2009; Zheng et al., 2010a; HKEPD, 2012b; Ling et al., 2013). 

Though previous studies have been conducted to investigate the O3 pollution in this 

region in recent years, most of these studies only focused on the temporal and spatial 

variations, influence of meteorological conditions, and NOx- and/or VOC-limited 

regime for the photochemical O3 formation (Zhang J. et al., 2007; Zhang Y.H. et al., 

2008; Jiang et al., 2008, 2010; Cheng et al., 2010a; Ling et al., 2011; Guo et al., 2009, 

2013a). For example, Chan et al. (1998a, b) investigated the seasonal variations of O3 

in Hong Kong, reporting that the outflow of polluted continental air and the inflow of 

maritime air helped shape the seasonal patterns of O3 in Hong Kong. Guo et al. (2009) 

investigated the variations of O3 and its precursors at a suburban site in the inland 

PRD and a suburban site in Hong Kong, stating that regional transport had significant 

influence on the redistributions of air pollutants between inland PRD and Hong Kong 

based on the results of ratio analyses and Lagrangian trajectories and dispersion 

simulation. On the basis of the same data set, Cheng et al. (2010a) compared the 

meteorological conditions during O3 and non-O3 episode days, further confirming that 

higher temperature, stronger solar radiation, lower relative humidity, lower wind 
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speed and northerly wind could induce high O3 levels observed in the PRD region. By 

using an observation-based model, Zhang et al. (2007) and Cheng et al. (2010a) 

reported that 50 – 100% of the observed O3 enhancements in Hong Kong during O3 

episodes were attributed to local photochemical generation and that the O3 formation 

was VOC-limited.  

The photochemical reactivity of O3, its precursors, free radicals and intermediate 

products, which could provide valuable insights into the formation and abatement of 

O3 pollution, were poorly understood in this region. In addition, the photochemical 

reactivity may be different due to the variations of O3, its precursors, meteorological 

conditions in different areas, and especially the topography and physical features that 

are complex in this region (AFCD, 2008). As such, for further policy implementation 

of alleviating photochemical O3 problem in regional perspective, it is necessary to 

understand the photochemistry of O3 and its precursors at different areas. In the 

present study, simultaneous field measurements were conducted in a rural site (Mt. Tai 

Mo Shan, TMS) and an urban site (Tsuen Wan, TW) in Hong Kong. An overview of 

the project was presented in Chapter 4, while this chapter mainly focuses on a period, 

when the variations of O3 and its precursors were large at the two sites and the field 

measurements were intensive. The goal of this chapter is to investigate the difference 

of O3 photochemistry under different relative concentrations of O3 and its precursors 

at two sites. The output could provide valuable information on how to alleviate the O3 

pollution in the PRD region. We first investigate the variations of O3 and its 

precursors at the two sites in a selected period, i.e., from October 27 to November 03, 

2010, when large variations of O3 were found. Then we evaluate the difference of 

photochemical reactivity at the two sites under the conditions of different levels of O3 

and its precursors by using a newly developed photochemical box model coupled with 
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Master Chemical Mechanisms (PBM-MCM) on the basis of a full suite of 

measurement data of different parameters, i.e., meteorological conditions, VOCs, and 

trace gases, i.e., SO2, CO and NOx. Detailed description for the development of the 

PBM-MCM model could be found in Lam et al. (2013). Briefly, the chemical 

mechanisms for the input reactants, the boundary layer conditions, abundance and the 

photolysis rates of particular VOCs were revised according to the actual conditions in 

the PRD region. It is noteworthy that this is the first study on the investigation of 

photochemical reactivity in subtropical Hong Kong and southern China with the 

application of PBM-MCM model. The target issues are: 1) what is the difference of 

photochemical oxidations between the two sites? And 2) what are the roles of 

photochemical oxidations in in-situ photochemical O3 formation at the two sites?  

7.2 Characteristics of air pollutants during the episode event 

7.2.1 Overview of O3 and its precursors 

The variations of O3 have been overviewed in Chapter 4. In general, the mixing 

ratios of O3 were higher at TMS than at TW, which might be related to the combined 

effects of NO titration, vertical meteorological conditions, regional transport and 

mesoscale circulations (Chapter 4). In the chapter, the analysis focused on a selected 

period from October 27 to November 03, 2010, when larger variations of O3 were 

found at the two sites. For instance, the average mixing ratios of O3 were 35 ± 2 and 

73 ± 3 ppbv for TW and TMS, respectively. In addition, six days, i.e., from October 

29 to November 03, were classified as O3 episode days at TMS with daytime 

maximum values higher than 100 ppbv (i.e. China’s Grade II Standard), while the 

daytime maximum O3 levels at TW were within the range of 48 ~ 66 ppbv. Apart from 

O3, Table 7.1 presents the median, average and maximum mixing ratios of 55 VOCs 

together with CO and NO2 at TMS and TW during the O3 episode event. It should be 
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noted that most of the compounds in this table were primarily categorized by chemical 

class, while some species were grouped by their sources e.g. isoprene and terpenes 

classified as biogenic VOCs (BVOCs). In general, the mixing ratios of VOCs were 

higher at TW than at TMS due to the difference of sampling locations, with the mean 

total VOCs concentrations of 42 ± 2 (mean ±95% confidence interval) and 25 ± 1 

ppbv, respectively. As mentioned previously, the TW sampling site is located in an 

urban environment surrounded by major roadways as well as residential and industrial 

blocks, while TMS is a mountain site. At TMS, oxygenated VOCs (OVOCs) 

dominated the total VOC composition (48 ± 2%), followed by alkanes (22 ± 1%), 

aromatics (12 ± 1%), alkenes (11 ± 1%), other VOCs (i.e. Cl- and Br-contained 

halocarbons and dimethyl sulfur (DMS)) (7 ± 0.2%) and BVOCs (1 ± 0.1%). In 

particular, the most abundant VOC species at TMS were methanol (4023 pptv), 

acetone (3707), formaldehyde (3315), ethane (2015), toluene (1729) and ethyne 

(1621). At TW, though OVOCs had the highest contribution to the total VOCs, its 

percentage was lower than that observed at TMS (p < 0.05), with average value of 38 

± 2%, followed by alkanes (31 ± 2%), alkenes (12 ± 1%), aromatics (12 ± 1%), other 

VOCs (6 ± 0.5%) and BVOCs (1 ± 0.1%). Methanol (4805 pptv), acetone (3976), 

n-butane (3834), formaldehyde (3702), propane (3027) and toluene (2187) were the 

most abundant VOCs measured at TW. The similar VOC composition at TMS and 

TW suggested comparable VOC source influences at these two sites, reflecting the 

possible linkage between the mountain summit and its foot. Indeed, the results in 

Chapter 4 have concluded that mesoscale circulations, i.e., mountain-valley breezes, 

could influence the redistribution of air pollutants between the two sites. 

For non-methane hydrocarbons (NMHCs), though alkanes made the highest 

contribution, the abundance of individual species was different at the two sites. At 
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TMS, ethane and ethyne were the two major species of NMHCs. Such long lifetime 

species, together with the relatively higher percentage of OVOCs mentioned above 

indicated that the air masses at TMS were aged, which may be transported from the 

urban centers in Hong Kong and the inland PRD region under the influence of 

mesoscale circulations and regional transport (Chapter 4). On the other hand, the 

composition of NMHCs at TW was consistent with the findings of an intergrated 

analysis on NMHCs data collected at urban and suburban sites, i.e., Yuen Long, 

Central/Western and Tung Chung in Hong Kong, which reported that alkanes were the 

most important group for ambient NMHCs (44 – 63%) (Guo et al., 2009; HKEPD, 

2010). Among alkanes, propane and butanes had relatively higher mixing ratios (p < 

0.05) than other species, suggesting widespread use of the liquefied petroleum gas 

(LPG) at urban areas in Hong Kong because C3-C4 alkanes are mainly emitted from 

leakage of LPG (Guo et al., 2009, 2013b; Ho et al., 2009; Ling et al., 2013). In Hong 

Kong, LPG was used as fuel for 99.9% of the registered taxis and 51.1% of the public 

and private light bus by December 2010 (HKCSD2010). The higher emissions of 

propane and butanes from LPG usage could be further confirmed by comparing the 

levels of propane and butanes at TW in this study with those obtained in 2001 at TW. 

The average concentrations of major tracers of LPG, i.e., propane, n/i-buane at TW 

have increased from 4.87, 3.63 and 8.83 in 2001 (Guo et al., 2004b) to 6.39, 6.71 and 

10.12 μg/m3 in 2010, respectively. Correspondingly, the LPG consumption has 

increased from 230,000 tons in 2001 to 400,000 tons in 2010 in Hong Kong (HKCSD, 

2010).   
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Table 7.1 Statistics of the observed mixing ratios, OH reaction rate coefficients for O3 
precursors at TMS and TW 
Compound TMS TW kOH

b 
Mediana Average Maximum Median Average Maximum

Alkanes 
Ethane 1971 2015 2590 2250 2299 3446 0.25 
Propane 1022 1037 2560 2598 3027 10427 1.1 
n-Butane 626 672 2983 3065 3834 16121 2.4 
i-Butane 473 540 3174 1887 2327 8279 2.1 
n-Pentane 221 403 4507 340 408 2056 3.8 
i-Pentane 319 430 2886 489 627 4942 3.6 
n-Hexane 157 190 756 211 308 1457 5.2 
2-methylpentane 129 157 667 194 228 2045 5.6 
3-methylpentane 90 108 361 124 145 1136 5.2 
n-Heptane 81 95 290 134 168 1335 6.8 
n-Octane 25 29 84 42 52 751 8.1 
n-Nonane 23 29 81 52 57 413 9.7 
n-Decane 26 31 107 58 62 133 11 

Alkenes  
Ethene 675 715 1816 1526 1715 5936 8.5 
Propene 92 120 510 387 464 2555 26.3 
1-Butene 27 33 122 64 72 216 31.4 
i-Butene 84 221 3591 175 285 1465 51.4 
trans-2-Butene 3 6 40 22 28 242 64 
cis-2-Butene 4 5 26 17 22 204 56.4 
1,3-Butadiene 2 4 54 39 43 157 66.6 
1-pentene 13 17 97 24 34 279 31.4 
Ethyne 1638 1621 2541 2557 2552 4366 0.9 

Aromatics  
Benzene 614 640 1022 752 739 1195 1.2 
Toluene 1428 1729 6079 2187 2830 23919 5.6 
Ethylbenzene 307 439 1591 459 585 2201 7.0 
m-Xylene 137 210 1058 263 372 1955 23.1 
p-Xylene 91 126 513 161 223 1271 14.3 
o-Xylene 91 115 452 150 204 776 13.6 
3-Ethyltoluene 13 18 93 36 52 651 17 
4-Ethyltoluene 8 11 51 21 27 322 18 
2-Ethyltoluene 7 9 36 16 21 181 13 
1,3,5-Trimethylbenzene 6 10 77 16 29 317 56.7 
1,2,4-Trimethylbenzene 13 21 160 45 70 955 32.5 
1,2,3-Trimethylbenzene 4 7 43 15 21 169 32.7 

BVOCs and its related oxidants  
Isoprene 50 51 143 146 141 303 100 
α-Pinene 6 7 84 14 19 132 52.3 
β-Pinene 2 3 19 4 4 15 74.3 
Limonene 8 32 329 10 21 326 164 
Methacrolein (MAC) 39 48 271 61 74 319 29 
Methyl vinyl ketone 
(MVK) 

104 135 747 129 148 408 20 

Oxygenated VOCs (OVOCs)  
Formaldehyde 3271 3315 8093 3241 3702 9017 9.4 
Acetaldehyde 1107 1243 3921 1452 1774 9096 15 
Acetone 3537 3707 8243 3555 3976 9404 0.17 
Methanol 3895 4023 10184 4259 4850 16690 0.9 
Ethanol 518 670 5576 1271 2809 25209 3.2 
n-Hexanal 22 36 331 23 34 432 30 

Other VOCs  
CHCl3 72 72 121 97 99 166 0.1 
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CH3CCl3 8 9 11 9 9 28 2.5e-7
CH2Cl2 482 551 1410 806 1078 4396 6.1e-7
C2HCl3 42 55 190 46 61 263 2.2 
C2Cl4 64 77 243 99 130 639 0.17 
CH3Cl 1008 1014 1566 1037 1055 1770 7.4e-7
CH3Br 14 15 42 15 16 40 0.74 
DMS 3 4 10 5 7 33 5.4 

Non-VOCs  
CO 516 506 660 598 586 858 0.2 
NO2 7 8 29 27 27 62 8.7 
CH4 2 2 2 2 2 2 6e-3 
a Median, average and maximum mixing ratios are presented in pptv, except CH4 (in ppmv)  
b OH reaction rate coefficients (in 10-12 cm3 molecule-1 s-1) at 298 K and 1013 mbar 
 

7.2.2 The OH reactivity at the two sites 

In addition to the levels of O3 precursors, the OH reactivity of these species 

could provide more relevant information on the formation processes of ground level 

O3. By investigating the total OH reactivity, the roles of VOCs and NOx in the balance 

between perpetuation and termination of O3 formation reaction sequences could be 

determined (Gilman et al., 2009; Mao et al., 2010). Here, we compared the total OH 

reactivity for better understanding of the descrepancy of O3 and its precursors at TMS 

and TW. The total OH reactivity, i.e., ROH,TOTAL, which is the inverse of the OH 

lifetime, is defined as sum of the OH reactivities of all the measured reactants. It 

could be calculated as the sum of the reaction rate coefficients multiplied by the 

concentrations of all reactants with OH using the following equation (Equation 7-1): 

 

24

24

NOOH,VOCOH,COOH,CHOH,

2NOOHVOCOHCOOH4CHOHTOTAL OH,

                 

]NO[])VOC[(]CO[]CH[ R

RRRR

kkkk



  
 (7-1) 

The reaction rate coefficients here were obtained from Sander et al. (2006), 

Atkinson and Arey (2003), Atkinson et al. (2006) and Master Chemical Mechanism 

(http://mcm.leeds.ac.uk/mcm). It should be noted that the calculation of OH 

reactivities in this study represented the minimum values due to the fact that it only 

included the identified VOCs and excluded the undetectable VOCs in the atmosphere.  

However, previous studies have demonstrated that these values are expected to 
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adequately represent the ambient OH reactivity (Di Carlo et al., 2004; Yoshino et al., 

2006; Gillman et al., 2009). 

In general, higher OH reactivities were found at TW as a result of larger 

emissions of VOCs and NO2 in the urban environment. The average values of OH 

reactivity for VOCs, NO2, CO and CH4 at TW were 5.34 ± 0.38 (average ± 95% 

confidence interval), 6.08 ± 0.45, 2.91 ± 0.12, 0.29 ± 0.01 s-1, which were 1.73, 3.44, 

1.16 and 1.02 times those measured at TMS, respectively. Figure 7.1 presents the 

relative contribution of different atmospheric constituents to total OH reactivity at the 

two sites. At TMS, though VOCs dominated the OH reactivity, CO had a remarkable 

contribution, indicating that CO could react with OH effectively and lead to a 

significant contribution to O3 formation, consistent with previous studies conducted in 

other locations where air masses were aged (Zhang et al., 2008; Gilman et al., 2009). 

On the other hand, NO2 and VOCs had comparable contribution to the OH reactivity 

at TW, in line with earlier studies undertaken in other urban environments (Gilmant et 

al., 2009; Mao et al., 2010). The remarkable contributions of NO2 and VOCs to OH 

reactivity at TW were due to the high emissions of these reactive compounds in the 

urban environments (Gilman et al., 2009; Mao et al., 2010). Figures 7.1c and d give 

the contribution of each VOC group to the total OH reactivity of VOCs at the two 

sites. Among the VOCs, OVOCs was the biggest contributor to the total OH reactivity, 

followed by alkenes and aromatics, suggesting the importance of OVOCs in O3 

formation (Cheng et al., 2010a). OVOCs could be both secondarily formed by the 

oxidation of hydrocarbons and emitted from primary sources. For further evaluation 

of the specific roles of primary and secondary OVOCs in the photochemistry of O3, 

combinations of different models, i.e., source apportionment model and 

photochemical box model are needed. In addition, anlkenes and alkanes made higher 
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OVOCs, peroxides and the ozonolysis of alkenes, while the HOx sinks were 

radical-radical reactions, i.e., HO2 + HO2  HOOH + O2, HO2 + RO2  ROOH + O2 

and HO2 + OH  H2O + O2, and the reactions between OH and NO2, i.e., OH + NO2 

+ M  HNO3 + M. These reactions have been extensively studied (Mao et al., 2010; 

Jenkin et al., 2000). Figure 7.3 illustrates the average diurnal variations for different 

pathways of HOx sources and sinks at TMS and TW. Due to the fact that the 

photolysis of peroxides, i.e., H2O2 and CH3OOH was much less significant compared 

to the reaction shown in the figure, it was excluded in the present study (Sommariva 

et al., 2004; Jackson and Hewitt, 1999). It can be seen that the contributions of 

pathways to the sources and sinks of HOx were different at TMS and TW. This is not 

surprising because of the difference in atmospheric constituents. During daytime 

hours, the photolysis of O3 (with the average contribution of 58%) dominated the HOx 

production at TMS, where the O3 levels were higher, similar to the results obtained in 

other rural areas (Jenkin et al., 2000; Ren et al., 2008; Kim et al., 2013). At TW, the 

major contributors to free radicals were the photolysis of O3 and HCHO, with the 

average contributions of 35% and 40% to the total HOx production, respectively, 

suggesting that the photolysis of HCHO was an important source of HOx production, 

consistent with other studies in urban and suburban environments (Liu et al., 2012; 

Volkamer et al., 2010). This is different from the results obtained by Jenkin et al. 

(2000) and Mao et al. (2010), who claimed that the photolysis of HCHO dominated 

the HOx production at the urban sites in Europe and Mexico City, respectively. The 

discrepancy was dependent on the differences in O3 and HCHO levels in Europe cities 

and the Mexico City (Jenkin et al., 2000; Shirley et al., 2006; Lei et al., 2009). For 

instance, the average levels of HCHO were much higher in European cities (~ 10 

ppbv) and Mexico City (~ 7.4 ppbv), compared to that observed at TW (~ 4.1 ppbv). 
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It is also noteworthy that the photolysis of HONO acted as another very important 

source to HOx production (with the contribution of 17%), especially in the morning 

rush hour at TW, while its contribution was negligible at TMS. The higher 

contribution of HONO at TW might be owing to the higher levels of NO during 

morning rush hours, resulting in higher levels of HONO through reaction of OH and 

NO (Kurtenbach, et al., 2001). Indeed, measurement data indicated that diurnal 

variation of HONO at the urban sites in Hong Kong presented a peak during morning 

rush hours (Prof. T. Wang’s group, personal communication, 2013). Similar results 

were also found in some recent urban and suburban studies, in which about 20 – 35% 

of HOx were produced from the photolysis of HONO in urban areas in Berlin, 

Houston and Mexico City (Alicke et al., 2003; Dusanter et al., 2009; Ren et al., 2013). 

In addition, though the reactions between O3 and alkenes could produce OH, their 

contributions were only significant during nighttime hours when HOx production from 

photolytic processes was negligible.  

On the other hand, the radical-radical reactions, i.e., HO2 + HO2 and HO2 + RO2, 

were the major contributors to the HOx sinks at TMS, while the reaction of OH + NO2 

was less significant. However, the relative importance of different pathways to HOx 

sinks was different at TW due to the discrepancy of ambient conditions (Jenkin et al., 

2000). For example, OH + NO2 dominated HOx sinks in the morning rush hours when 

the NOx levels were high (Chapter 4), while the radical-radical reactions, i.e., HO2 + 

HO2 and HO2 + RO2 dominated the HOx sinks with similar rates to those at TMS at 

noon (~ 5× 106 molecule cm-3 s-1). The results are consistent with the observations in 

other urban locations with similar NOx concentrations, i.e., New York City, Houston 

and Mexico City (Mao et al., 2010; Shirley et al., 2006).   
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destruction rate represents the net instantaneous O3 production rate. Figure 7.4 depicts 

the modeled average diurnal variations of O3 production, destruction and net O3 

production rates at TMS and TW. It was found that the O3 production was 

significantly greater than the O3 destruction during daytime hours with peak values at 

around noon, indicating the net O3 production from in-situ photochemistry at the two 

sites. At TMS, the daytime (07:00 – 19:00 LT) average net O3 production rate was 

estimated to be 2.9 ppbv h-1, corresponding to ~ 36 ppbv O3 formed from the in-situ 

photochemistry. The amount is coincident with the average increment of O3 observed 

from early morning to late afternoon at TMS (~ 40 ppb), suggesting that in-situ 

photochemical formation significantly contributed to the O3 increment at TMS, in 

addition to other factors such as mesoscale circulations and regional transport that 

shaped the diurnal variations of O3 (Chapter 4). On the other hand, the daytime 

average net O3 production rate at TW was higher, with a value of 8.1 ppb h-1, 

indicating that 97 ppb of O3 could be formed from in-situ photochemistry, which was 

much higher than the observed O3 increment (~ 52 ppb). The lower observed O3 

levels were likely caused by the impact of the in-situ emissions of NOx from nearby 

emission sources, i.e., vehicular emissions, which titrated part of the O3 at this urban 

site (HKTD, 2011; Lam et al., 2013). This effect can not be determined in the model 

because the model results only represented averaged boundary layer values in a well 

mixed box (Lam et al., 2013). Analysis of the individual reaction pathways for O3 

production rates found that the reactions between HO2 and NO dominated the 

convection from NO to NO2 at the both sites, with the average daytime contribution 

of 68% and 67% at TMS and TW, respectively, while the reactions of RO2 + NO 

composed the remainder, about 37% and 33% to the O3 production at TMS and TW, 

respectively. It shoul be noted that the reaction rates among HO2, RO2 and NO were 
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urban site in Hong Kong were analyzed during an O3 episode event from October to 

November in 2010. Much higher O3 values were observed at TMS, while the levels of 

O3 precursors, i.e., VOCs and NOx were higher at TW. In addition, the compositions 

of VOCs indicated the influence of aged air masses and secondary formation at TMS 

and the wide spread of LPG usage at TW. VOCs and CO were two major contributors 

to OH reactivity at TMS, while NO2 and VOCs had comparable contribution to the 

OH reactivity at TW. Overall, the mixing ratios of O3 and its precursors, together with 

the magnitudes of OH reactivity of O3 precursors suggested significant difference of 

photochemical reactivity at the two sites. Furthermore, a PBM-MCM model was 

applied to and constrained by a full suite of measurement data to probe the 

photochemical reactivity at the two sites, including HOx budget, calculated O3 

production, OH chain length and O3 sensitivity. Slightly higher HO2 concentrations 

were found at TMS, while much higher OH concentrations were estimated at TW, 

suggesting that the HOx cycling processes were different at the two sites, perhaps 

caused by the differences of precursors. The O3 formation was dominated by the 

reaction of HO2 + NO at the two sites. On the other hand, O3 was mainly destroyed by 

the reactions of OH + NO2 at TW and by the O3 photolysis and the reaction of O3 + 

HO2 at TMS. Furthermore, the OH chain length was used to investigate the O3 

production efficiency to the OH generation at the two sites. Longer OH chain length 

was found at TMS, indicating that more O3 could be produced for each radical that 

was generated at that site. On the other hand, the model revealed that intermediate 

oxidants played important roles on the propagation and initiations of photochemical 

reactions. However, these intermediate oxidants, i.e., HONO, H2O2 and PAN were not 

measured in this study. It is suggested that measurement of measurements of these 

intermediate oxidants should be conducted in the future studies for improvement of 
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the photochemical models and more thorough investigation of the mechanisms of 

photochemical reactions in Hong Kong. 
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Chapter 8 Establishing a conceptual model for photochemical ozone 

pollution in subtropical Hong Kong 

8.1 Introduction 

In most urban areas, ambient concentrations of photochemically formed O3 are 

related to its precursors, while favorable meteorological conditions are required for 

the occurrence of high O3 concentrations (Ding et al., 2004; Seinfeld and Pandis, 2006; 

Guo et al., 2009; Zheng et al., 2010a). In Hong Kong, high O3 concentrations or “O3 

episodes” are commonly observed in late summer and autumn, and are closely 

associated with local photochemical production and long-range transport (Guo et al., 

2009; Wang et al., 2009).  

In order to understand the factors that influence photochemical O3 formation, 

conceptual models of O3 air pollution have been developed in recent years for 

different regions. A conceptual model is a qualitative explanation of the formation and 

accumulation of O3 in a given area based on the chemical characteristics of the 

ambient atmosphere, as well as the physical transport and removal process observed 

in given locations (Tom et al., 2006; Pun et al., 1998). Pun et al. (1998) developed a 

conceptual model to investigate the O3 formation in San Joaquin Valley in the USA 

and found that the high O3 concentrations observed resulted from both the transport of 

O3 and precursors from upwind locations, and the local production of O3 in urban 

areas within the valley. Tom et al. (2006) developed a conceptual description of the 

nature of the O3 air quality problem in the O3 transport region (OTR), including 

Connecticut, Delaware, the District of Columbia, Maine, Maryland, Massachusetts, 

New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont and 

north Virginia in USA and concluded that a severe O3 episode in the OTR can contain 

elements of long range air pollution transport from outside the OTR, regional scale 
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transport within the OTR from channeled flows in nocturnal low level jets, and local 

transport along coastal shores due to bay, lake, and sea breezes.  

To formulate and implement effective control strategies for O3 pollution, the 

major objective of this chapter is to develop a conceptual model for the first time for 

the formation, transport and accumulation of O3 in subtropical Hong Kong by 

integrated data analysis at Tung Chung (TC) between 2005 and 2010. We chose the 

TC site because only at this site the most comprehensive dataset including real-time 

O3, CO, NOx, SO2, VOCs and meteorological parameters has been systematically 

collected so far. In addition to the influence of local emission sources, the sampling 

site is also affected by polluted continental air masses from the highly industrialized 

PRD region of mainland China (Guo et al., 2009; Zhang et al., 2007). Thus, this site is 

capable of monitoring air pollutants transported from the inland PRD region and is 

suitable for assessing their impact on local air quality. A variety of aspects, including 

meteorological conditions, source apportionments of O3 precursors, O3-precursors 

relationships, and the characteristics of air masses in Hong Kong are evaluated. The 

conceptual model in this study tries to answer the following questions: 1) what 

meteorological conditions are favorable to photochemical O3 formation? 2) does 

regional transport have an important influence on high O3 levels? 3) Is the O3 

formation limited by VOCs, or NOx, or both, and therefore what are the main sources 

of them and which ones should be the most prioritized to be controlled?  

8.2 Procedures for developing a conceptual ozone model 

Figure 8.1 illustrates three steps for developing a conceptual ozone model. The 

first step is to generalize the meteorological conditions, air mass transport 

characteristics, and precursor levels on O3 episode days by analyzing the 

measurement data: first, we identified the O3 episodes, especially multi-day O3 
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episode referred to a period of at least 3 consecutive O3 episode days. Table 8.1 

identifies multi-day O3 episodes and selected non-O3 episodes at TC from 2005 to 

2010. A total of 10 multi-day O3 episodes were observed from 2005 – 2010 at TC. The 

non-O3 episodes were selected as the days with the hourly maximum O3 concentration 

lower than 102 ppbv in the same month as that for multi-O3 episodes. To provide the 

representative characteristics of non-O3 episode days, investigate the influence of 

different factors and improve the statistical significance, non-O3 episode days were 

selected as many as possible for comparison. 

Table 8.1 Ozone episode and non-ozone episode days in 2005-2010 
Ozone episode Period Non- ozone episode1) Period2) 

2005 episode 1 18/19/20 Jul 2005 2005 non-episode 1 Jul 2005 

2005 episode 2 2/3/4 Oct 2005 2005 non-episode 2 1~15 Oct 2005 

2006 episode 1 3/4/5 Nov 2006 2006 non-episode 1 1~15 Nov 2006 

2007 episode 1 15~21 Sep 2007 2007 non-episode 1 Sep 2007 

2007 episode 2 5/6/7 Oct 2007 
2007 non-episode 2 Oct 2007 

2007 episode 3 24/25/26 Oct 2007 

2008 episode 1 10~16 Sep 2008 2008 non-episode 1 Sep 2008 

2009 episode 1 6~9 Oct 2009 
2009 non-episode 1 Oct 2009 2009 episode 2 22~24 Oct 2009 

2010 episode 1 28~ 31 Aug 2010 2010 non-episode 1 Aug 2010 

1) Days with low ozone concentration (<200 µg/m3), used for comparison with ozone 
episode day (>200 µg/m3) 
2) Ozone episode days excluded if applicable 
 

Table 8.2 shows statistical descriptions of air pollutants together with 

meteorological parameters for O3 and non-O3 episode days. Figure 8.2 illustrates the 

mean diurnal variations of O3 and meteorological parameters, including solar 

radiation, temperature, relative humidity, wind speed, and wind direction at TC on O3 

and non-O3 episode days from 2005 to 2010. Much higher concentrations (p < 0.01) 

of O3 and some primary pollutants, i.e. SO2 and CO, were observed on the O3 episode 

days. However, NO level was comparable on both O3 episode and non-O3 episode 

days (p > 0.05), while higher NO2 (p < 0.01) was observed on O3 episode days. In 



 

O3 
episodes
Non-O3 
episodes

 

addition, t

non-O3 ep

lower (p <

O3 levels.

levels wer

solar radia

relative hu

Figure 8.2 
humidity, t
 
Table 8.2 S
episode eve

O3 
(ppbv) 

 
40.4 ± 
2.4 

 
25.6 ± 
0.6 

a Daily ave
*The select
 

On a

continenta

(2009) in

temperature

pisode days

< 0.01), ind

 Indeed, in

re closely a

ation ( > 70

umidity ( < 

Mean diurna
emperature a

Statistical de
ents and the 

NO 
(ppbv) 

11.5 ± 
0.9 
12.5 ± 
0.6 

erage maximu
ted non-O3 e

a regional sc

al air masse

nvestigated 

e and solar 

s (p < 0.01

dicating that

spection of

associated w

00 W/m2 at 

70% at day

al variations 
and O3 on the

scription of 
selected non
SO2 
(ppbv)

CO
(p

13.6 ± 
0.7 

79
0.

7.7 ± 
0.4 

57
5.

um value 
episode days 

cale, a high

es to Hong 

the relatio

r radiation w

), while th

t meteorolo

f all the 10 

with high t

daytime), l

ytime).  

of wind spe
e O3 and non

air pollutant
n-O3 episode 
O 

ppbv) 
Tem
(oC)

93.1 ± 
1 

34.1

70.1 ± 
6 

31.2

were presen

h pressure s

Kong, resu

onship betw

were highe

e relative h

gical param

multi-day O

temperature

low wind sp

eed and wind
n-O3 episode

ts and meteor
days* (Mean

mperature 
)a 

N
(

1 ± 2.6  3
1

2 ± 1.1 2
0

nted in Table 

system over

lting in hig

ween mete

r on the O

humidity an

meters had s

O3 episodes

e ( > 28 oC 

peed ( < 2 

d direction, s
 days 

rological par
n ± 95% con
NO2 
(ppbv) 

W
sp
(m

37.9 ± 
1.1 

3.

21.5 ± 
0.4 

4.

1 

r China ma

gh O3 conce

orological 

O3 episode d

nd wind sp

significant i

s found that

 at daytime

m/s at dayt

solar radiatio

rameters dur
nfidence inte
Wind 
peed 
m/s)a 

So
rad
(W

.7 ± 0.2 76

.7 ± 0.2  70

ay transport

entrations. G

conditions 

156

days than 

eed were 

impact on 

t high O3 

e), strong 

time) and 

 
on, relative 

ring the O3 
rval) 

olar 
diation 

W/m2)a 

Hu
(%)

4 ± 32 77.

5 ± 29 81.

t polluted 

Guo et al. 

and O3 

umidity 
)a 

1 ± 1.9

1 ± 1.1



 

157 
 

concentrations from October to December 2007. It was found that when there was an 

intensive high-pressure system over northern China, Hong Kong was in the front of 

the high pressure ridge. Due to the influence of the high-pressure system, the 

prevailing synoptic winds in Hong Kong were from the northeast, which might lead to 

high O3 levels. Indeed, on 24 − 26 October, an O3 episode event was found at TC. 

Furthermore, the diurnal patterns on the O3 episode days observed in 2005 − 2010 

(Figure 8.2) showed a clear diurnal shift in wind speed and direction at TC − 

southeasterly/northeasterly at lower speeds at night and northerly/northwesterly at 

higher speeds during daytime when the O3 levels were usually high, confirming that 

synoptic winds were associated with high O3 concentrations. Previous studies 

demonstrated that the prevailing north and northeast winds brought VOC-laden air 

and O3 from inland PRD region to Hong Kong (Guo et al., 2009; Wang et al., 2009). 

8.3.1.2 Impact of tropical cyclones  

Figure 8.3 presents the mean sea level pressure and wind field for O3 and non-O3 

episodes in Hong Kong between 2005 and 2009. Figure 8.4 shows the typical 

synoptic charts on the nine O3 episode days. It is remarkable that the nine severe O3 

episode days from 2005 to 2009 were all influenced by tropical cyclones over the East 

and South China Sea. The tropical cyclones were also found to be most conducive to 

the occurrence of high O3 episodes from 1994 to 2003 (Lee et al, 2002; Huang et al., 

2005). When a tropical cyclone was formed and its center was over the East and the 

South China Sea, it intensified the inflow in the lower atmospheric layer and the 

outflow in the upper atmosphere, which caused stagnation and subsidence air over 

Hong Kong, forming an inversion layer. Such an inversion layer is not favorable to 

the dispersion of air pollutants. Nevertheless, it should be noted that though all 

tropical cyclones over the East and the South China Sea caused high O3 levels, it does 
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8.3.2 Does regional transport have an important influence on high O3 levels? 

Analysis of synoptic wind patterns above suggested the influence of regional 

transport of air pollutants at TC. In order to determine whether the air masses 

originated from local, regional and super-regional sources, 24-h backward trajectories 

were developed using the NOAA-HYSPLIT 4.9 model with the Global Data 

Assimilation System (GDAS) meteorological data for 3-h intervals at the ending point 

of 200 m above sea level. These air masses were classified into local, regional (from 

PRD region), oceanic and super-regional air masses according to their source origins 

(i.e. longitude and latitude). In addition, cluster analysis was applied to segregate the 

calculated trajectories into a number of groups for each month from 2005 to 2010 

using the hierarchical Ward’s method with a square Euclidean measure (Ward 1963). 

In total, 55 cluster groups were obtained. Based on their pathways, air masses arriving 

at TC were classified into four categories for each month from 2005 – 2010. In order 

to characterize the four types of air masses, two cases are presented here. Taking 

September 2005 and June 2010 as examples (Figure 8.5), in September 2005, four 

categories were described: i) air masses originating from inland China, passing over 

Guangdong province and finally arrived at TC (track 1); ii) air masses originating in 

the Hong Kong area (track 2); iii) air mass originating in the South China Sea (track 3) 

with fast movement; and iv) air masses originating from the eastern China coast, 

passing over the coast of eastern Guangdong with very slow movement (track 4). 

Hence, tracks 1 and 4 were identified as super-regional transport; track 2 was 

identified as local transport while track 3 originated from the South China Sea. In 

June 2010, four categories were obtained as well: i) air masses originating from 

eastern China coast, passing over the coast of eastern Guangdong with very slow 

movement (track 1); ii) air masses originating from the PRD region (track 2) with 
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ppbv for regional and super-regional air masses, respectively. This confirmed that 

lower O3 concentration in local air masses was attributed to high emissions of NO in 

urban Hong Kong (Guo et al., 2009; Wang et al., 2009). Further inspection found that 

over the six years, the transport regime at TC was dominated by the air originating 

from super-regional transport (about 65% to the total air masses), followed by oceanic 

air (29%), regional transport (5%) and local emissions (1%). Due to the influence of 

Asian monsoon circulations, most of the oceanic air arrived at TC in summer, 

bringing in clean marine air, while super-regional and regional transport were often 

observed in autumn and winter, leading to the movement of precursor-laden air from 

the Asian continent to Hong Kong. The high frequency of air masses from 

super-regional and regional transport is another factor that contributes to high O3 

levels in autumn in Hong Kong, confirmed by the highest O3 mixing ratio in the 

super-regional air masses (Table 8.3). Indeed, a study conducted at TC in October − 

December 2007 also found that high O3 levels were attributed to regional and 

super-regional transport (Guo et al., 2009; Cheng et al., 2010a, b). 
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Table 8.3 Average values of SO2, NO, O3, CO and TVOCs in the four major types of air 
masses at TC from 2005 to 2010 
  2005 2006 2007 2008 2009 2010 
SO2 
(ppbv) 

La 3.6(21)b 23.5(48)  6.9(45) 10.1(36) 8.2(24) 
Ra 12.2(321) 16.6(474) 14.5(22) 9.4(690) 9.5(513) 8.1(497) 
Sa 6.1(4242) 10.9(3855) 10.4(1665) 8.7(5310) 5.8(5160) 4.6(5208)
Oa 4.3(2740) 4.4(2520)  3.4(1977) 2.5(1599) 2.4(2181)

NO 
(ppbv) 

L 26.4 61.3  33.2 25.3 78.3 
R 24.9 29.8 25.2 26.3 24.7 37.2 
S 11.6 13.6 13.2 14.1 11.2 14.7 
O 15.4 10.3  8.5 12.0 8.0 

O3 
(ppbv) 

L 9.0 3.1  9.6 16.7 11.3 
R 19.8 11.0 11.0 14.6 21.7 9.5 
S 25.2 23.3 27.7 25.9 28.0 22.6 
O 15.7 15.7  18.6 16.8 20.4 

CO 
(ppbv) 

L 499.3 948.0  704.3 584.9 918.3 
R 813.6 786.7 529.8 845.8 732.0 866.6 
S 769.9 640.4 739.7 809.4 589.2 677.6 
O 650.7 512.3  564.3 440.0 498.6 

TVOCs 
(μg/m3) 

L 24.8 38.6  37.8 48.5 72.0 
R 33.5 56.0 15.7 40.7 48.6 75.8 
S 14.5 14.4 18.4 26.8 27.4 29.1 
O 7.8 8.8  5.7 11.8 6.3 

a L, R, S, O stand for air masses from local, regional, super-regional and oceanic transport 
b Data in the bracket means the total number of air masses observed 

 
Figure 8.6 shows a conceptualization of the influence of different air masses on 

O3 levels at TC. The figure was generated based on the following steps. First, the 

transport history of air masses was investigated and the air masses were classified for 

the sampling period. In this study, 24-h backward trajectories were carried out using 

the HYSPLIT model with the GDAS meteorological data. For each day in the 

sampling period, eight trajectories were generated corresponding to arrival times at 

TC of 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 LT at the ending 

point of 20 m above sea level. These air masses were classified into local, regional, 

super-regional and oceanic air masses according to their original positions (i.e., 

latitude and longitude). In addition, the air masses for other hours during the day were 

classified using the following method: if an air mass at 03:00 was identified as 

regional transport, the air masses at 02:00 and 04:00 were also considered as regional 

transport; Secondly, the dominant surface winds of different air masses on high O3 
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days and non-O3 episode days in summer and autumn were identified; Finally, the 

relative O3 concentrations in different air masses (i.e. local, regional, super-regional 

and oceanic) with different dominant surface winds were determined. It should be 

noted that due to the consideration of the statistical power of the trajectory results, a 

high O3 day is defined as the day with the highest hourly average O3 mixing ratio 

exceeding 80 ppbv in the figure. In addition, only O3 mixing ratios during daytime 

(08:00 – 18:00, LT) were considered due to the fact that O3 is formed by VOCs and 

NOx reacting in the presence of sunlight. It is noteworthy that O3 episode days usually 

occur in summer and autumn in Hong Kong. Inspection of the figure found that the 

dominant surface wind was generally from the northwest during high O3 days, 

whereas the prevailing winds were generally from the southwest and northeast during 

summer (May − August) and autumn non-O3 episode days (September − November), 

respectively. Moreover, the contributions of super-regional, regional, oceanic and 

local air masses to the average O3 levels were 31 − 49%, 20 − 31%, 18 − 29 % and 0 

− 27%, respectively, during summer non-O3 episode days, while they were 29 − 56%, 

19 − 37%, 15 − 24% and 0 − 31%, respectively, on autumn non-O3 episode days. The 

relatively low contribution of oceanic air may be attributed to the fact that the 

south/southeast winds from the South China Sea brought in clean oceanic air with less 

primary pollutants and thus led to lower O3 concentrations (Zheng et al., 2010a). On 

the other hand, during high O3 days, super-regional, regional, and local air masses 

contributed 28 − 100%, 0 − 61% and 0 − 42% respectively to the O3 mixing ratios in 

summer, while the respective contributions were 33 − 100%, 0 − 56% and 0 − 39% in 

autumn. However, no contribution of oceanic air masses was found on high O3 days in 

summer and autumn. Overall, regional and super-regional air masses made the most 

significant contributions to the average O3 mixing ratio, followed by local and oceanic 
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negligible contribution to the O3 formation because of their low reactivity. This 

feature suggests that the contribution of a VOC to the O3 formation is determined by 

the combination of its reactivity and emission.   

Despite some variations, the results of both OBM and PTM-MCM models 

showed that some reactive VOCs including BVOCs i.e. isoprene, and AVOCs i.e. 

toluene, o-xylene and propene had the highest contributions to the O3 formation. 

Given that it is difficult to control BVOC emissions, the practical strategy to control 

O3 pollution is to effectively reduce AVOC emissions. In addition, POCP-weighted 

values calculated by PTM-MCM model suggest that the optimal strategy should also 

consider the emission quantity together with reactivity of individual VOCs when it is 

formulated and implemented. 

8.3.4 Which emission sources are responsible for the volatile organic compounds 

in the atmosphere of Hong Kong? 

Since photochemical O3 formation at TC was mostly VOC-limited, investigation 

of the characteristics of VOC source profiles and apportionments is the prerequisite 

for the formulation and implementation of O3 control strategies at TC in Hong Kong. 

Table 8.4 illustrates the source apportionment of VOCs at TC using the PMF model. It 

can be seen that the main VOC sources were solvent use (e.g. paint and varnish, 

adhesives and sealants), and household products, gasoline and diesel vehicular 

emissions, gasoline evaporation, liquefied petroleum gas (LPG) usage, biomass 

burning, biogenic emissions, and the petrochemical industry. Solvent usage made the 

greatest contribution to ambient VOCs at TC (41 ± 6 %, mean ± 95% confidence 

interval), followed by gasoline and diesel vehicular emissions (31 ± 8%) and a mixed 

source of gasoline evaporation and LPG usage (22 ± 3%). The results are in line with 

previous studies (Table 8.4). For instance, the contributions of vehicular emissions in 



 

169 
 

this study (21 – 43%) were similar to previous studies (20 – 48%), except the study 

conducted by Lau et al. (2010) who reported the vehicular emissions of -70% in Hong 

Kong. In contrast, the percentage contribution of vehicular emissions in 2008 – 2010 

obtained in this study was half that quantified in 2001-2003 (Guo et al., 2006, 2007), 

perhaps suggesting effective VOC control strategies such as utilizing cleaner diesel 

for buses in Hong Kong (http://www.epd.gov.hk/epd/english/environmentinhk/air/air_ 

maincontent.html). On the other hand, the contribution of solvent usage in this study 

(about 30% – 56%) was consistent with the results found in previous studies (32% – 

45%), and about twice of the study conducted in 2002 – 2003 (14 – 24%). The lower 

contribution of solvent usage to VOC emissions in 2002 – 2003 may be attributable to 

lower usage because of much fewer household, commercial and industrial activities 

caused by the severe acute respiratory syndrome (SARS) events in 2002 – 2003 in 

Hong Kong (Guo et al., 2011a). Furthermore, results of this study and HKEPD 

emission inventory (EI) indicated that solvent usage in Hong Kong was still the major 

contributor to ambient VOCs. In this study, gasoline evaporation and LPG usage were 

sometimes identified as a mixed source. This mixed source contributed 20.4 – 27%, 

similar to the results found in 2001 – 2003 and 2006 – 2008 (Guo et al., 2006; Lau et 

al., 2010), suggesting the emission from LPG usage and gasoline evaporation had less 

change in recent years. Therefore, these results point out the importance of effectively 

controlling solvent usage and vehicular emissions in Hong Kong. 
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* Mixed source of gasoline evaporation and LPG usage 
** EI=Emission Inventory     
*** HKEPD, 2011 http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission inve.html 
 

Table 8.4 Comparison of results with previous studies and emission inventories 

Factor 2005 2006 2007 2008 2009 2010 Sep2002- 
Aug2003 

Sep2006-Aug200
7 

Fall 
2007 2001 2001-200

2 
2002-200
3 2007 

Vehicle exhaust 43% 
33.60
% 

32% 
20.50
% 

25.30
% 

36.90
% 

69.8±0.7
% 

69.5±0.9% 48±4% 
39-48
% 

39% 48-65% 20% 

Gasoline 
21.50
% 

20.30
% 

21.50
% 

11.50
% 

13.30
% 

20.80
%   

21±2% 
    

Diesel 
21.50
% 

13.30
% 

10.50
% 

9% 12% 
16.10
%   

27±3% 
    

Gasoline evaporation 
17.40
% *23.8

% 
 *20.4

% 
*27% 

*20.5
% 

4.4±0.2% 5.4±0.2% 
  

14% 21-26% 
 

LPG/natural gas 
usage  

7.80% 
18.1±0.6
% 

27.6±0.8% 
 

11-19
% 

12% 15% 
 

Paint/varnish/solvent
s 

29.50
% 

41.30
% 

41.20
% 

55.80
% 

33.20
% 

48.20
% 

33.8±0.3
% 

41.1±0.1% 
43%±2
% 

32-36
% 

35% 14-24% 75% 

Industrial 4.40% 2.8±0.1% 2+0.1% 5-9% 8-15% 

Biomass/Combustion 5.60% 1.32 %
  

14.70
%    

9±2% 
    

Biogenic 0.10% 0.10% 
19.10
% 

3.30% 
  

2.20% 2.50% 
    

0.2-2% 

Aged VOC 
      

27.6±0.5
% 

23.8±0.5% 
     

Remarks PMF PMF PMF PMF PMF PMF PMF PMF PMF 
PCA PCA 

/APCS 
PCA 
/APCS 

EI** 
/APCS

References 
This 
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Study 
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This 
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Lau et al., 2010 
Guo et 
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2011a 

Guo et 
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2004b 
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2006 
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2007 

HKEPD
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solar radiation were relatively high on these three days, which had daily maximum 

temperature of 30 oC with solar radiation of 806 W/m2, 29 oC with solar radiation of 

805 W/m2, and 33 oC with solar radiation of 888 W/m2, respectively. Second, the 

relative humidity on these three days was comparable (p > 0.05). However, some 

differences were also found on these days. Firstly, a tropical cyclone was found over 

the East China Sea on 26 October 2007 (Figure 8.9a). On 04 June 2010, a 

low-pressure system (trough) to the south and east was over the South China Sea 

(Figure 8.9c), while an intense low-pressure system was found over Northern China 

and Hong Kong was in the front of the low pressure ridge on 29 July 2010 (Figure 

8.9d). Secondly, the wind patterns were different on these three days. On 26 October 

2007, the prevailing winds were southeasterly and northeasterly at night and 

northwesterly during daytime hours, while the dominant winds were southerly on 29 

July 2010 with high wind speeds. However, the winds were calm (0.5 – 2 m/s) on 04 

June 2010 with northerly and westerly winds during daytime hours and easterly winds 

at night. Thirdly, the backward trajectories analysis revealed that air masses arriving at 

TC were caused by super-regional transport on 26 October 2007, while the air masses 

were mainly from the ocean on 29 July 2010 (data not shown), indicating that high O3 

levels on 26 October 2007 (hourly peak value: 139 ppbv) and low O3 level (~ 20 ppbv) 

on 29 July 2010 were attributed to the influence of different air masses. Indeed, the 

OBM modeling results suggested that super-regional transport contributed as high as 

50% to the O3 pollution at TC on 26 October 2007. On the other hand, the conditions 

of high temperature, strong solar radiation, and the low wind speeds on 04 June 2010 

created a relatively stable lower tropospheric layer, which was favorable to the O3 

formation and accumulation at TC. This was confirmed by the OBM modeling results, 
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which revealed that high O3 levels (i.e. peak value: 132 ppbv) on 04 June 2010 were 

mainly (90%) controlled by local formation.   

On 15 November 2008, there was an intensive high-pressure system over 

northern China, while Hong Kong was in the front of the high pressure ridge. Due to 

the influence of this high-pressure system, more frequent northerly winds with higher 

speeds (maximum value: 6 m/s) were observed on 15 November 2008. In addition, 

the temperature and solar radiation (daily maximum value: 730 W/m2) on 15 

November 2008 were lower (p < 0.05) and the relative humidity was comparable to 

those on 29 July 2010. This implied that the O3 levels could be lower on 15 November 

2008 than on 29 July 2010. However, the O3 mixing ratio was actually higher on 15 

November 2008 (hourly peak value: 123 ppbv). Further inspection showed that the 

discrepancy between O3 levels on 15 November 2008 and 29 July 2010 was also 

attributed to the influence of different air masses. The higher O3 levels on 15 

November 2008 were caused by the regional and super-regional transport. Backward 

trajectory analysis demonstrated that regional and super-regional air masses were 

frequently observed on 15 November 2008, and the OBM modeling simulations 

further confirmed that 90% of O3 was caused by regional/super-regional transport on 

that day. 

In summary, the above discussion indicated that tropical cyclone was mostly 

conducive to the occurrence of high O3 mixing ratios. In addition, meteorological 

conditions such as high temperature, intense solar radiation, low relative humidity and 

wind speed were favorable to photochemical O3 formation. Furthermore, polluted 

continental air masses brought by the northerly winds facilitated the O3 production in 

Hong Kong. Nevertheless, it should be noted that these conditions were necessary but 

insufficient for the occurrence of O3 episodes. 
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super-regional air masses to the O3 formation on O3 episode days were extracted from 

the back trajectory analyses, even when the air movement was stagnant on some O3 

episode days, which could lead to uncertainties on the relative contributions. 

8.5 Implications for ozone control measures  

By considering the meteorological conditions, atmospheric chemistry and 

physics, and source apportionment of O3 precursors, a conceptual description of O3 

pollution problem at TC in Hong Kong was presented above. However, some details 

remain to be thoroughly understood. 

1) A key factor for the occurrence of O3 episodes in Hong Kong is the influence 

of tropical cyclones which cause subsidence, stagnation air and inversion layer. 

However, the mechanisms of such influence are not fully understood. 

2) Photochemical O3 formation was generally VOC-limited and related to a small 

number of VOC species in Hong Kong, and solvent usage and vehicular emissions are 

the two major VOC sources. It appears that an effective control measure on the 

emissions of solvent usage and vehicles is an optimal strategy for controlling O3 

pollution in Hong Kong. In addition, the optimal strategy should also consider the 

emission quantity together with reactivity of individual VOCs when it is formulated 

and implemented. 

3) Many VOC sources are located in the PRD region and regional transport from 

the inland PRD region has significant influence on the amount of air pollutants in 

Hong Kong (Tang et al., 2007a; Guo et al., 2009). As such, more concurrent field 

measurements should be conducted in these two closely interactive areas. In addition, 

air quality control strategies formulated in Hong Kong should consider the emissions 

from distant sources together with local sources. 
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4) In Hong Kong, the combination of the coastline and the mountains gives a 

terrain with many complex physical features. The role of sea-land breezes in air 

pollution transport has been well-studied previously (Ding et al., 2004). However, 

there are relatively few studies on mountain-valley breezes in Hong Kong, though it is 

very important to air pollution transport in Hong Kong. 

5) Although remarkable improvements in the VOC emission inventory and VOC 

measurements have been made in Hong Kong, significant uncertainties still exist in 

the source profiles and apportionments of VOC data. Hence, further survey on the 

VOC emission sources and accurate VOC source profile measurements and analyses 

are essential to better understand the VOC emissions from different sources in Hong 

Kong and its surrounding areas i.e. inland PRD region, to provide more reliable 

results on VOC sources and species which contribute the most to photochemical O3 

formation in Hong Kong.  

6) Though photochemical O3 formation is generally VOC-limited in Hong Kong, 

the influence of other highly reactive chemicals such as HONO, PAN, H2O2 and other 

reactive oxidants on the O3 formation should not be ignored. Besides VOCs, the 

characteristics of other precursors, i.e. NOx and products, i.e. particles, are required in 

order to better understand the specific atmospheric chemistry. Flux measurements of 

O3 and its precursors over different areas, i.e. Hong Kong and inland PRD, under 

different meteorological conditions, i.e. anticyclones and cyclones, mixing heights 

and transport processes are also necessary. 

7) Since the conceptual model was developed based on the data collected at one 

site i.e. TC, it is suggested that this model should be further confirmed and improved 

by using data from other sites in Hong Kong. 
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Chapter 9 Conclusions 

In this study, in-depth data analysis and model simulations were conducted based 

on the data collected in a number of field campaigns. The variations of air pollutants 

at different elevations and their impact factors were investigated based on the 

concurrent measurements conducted at TMS and TW. The mixing ratios of air 

pollutants were greater at TW than at TMS, except for O3, which was attributed to the 

mixed effects of NO titration, vertical meteorological conditions and different flow 

patterns. The variations of NO and “oxidant” Ox (O3 + NO2) between the two sites 

indicated that the discrepancy of O3 was partially related to the different degree of NO 

titration. In addition, the inversion layer formed at altitudes of 500 ~ 1000 m might 

caused higher O3 levels at TMS. Furthermore, analysis of the wind fields and various 

ratios of air pollutants indicated that high O3 concentrations at TMS were somewhat 

influenced by regional air masses from the highly polluted PRD region. In particular, 

the diurnal profiles and correlations of gaseous pollutants suggested influence of 

mesoscale circulations, which was confirmed using an Mbox model and a WRF 

model. The photochemical O3 formation at TMS was mostly influenced by VOCs, 

with measurable influence of NOx, while O3 production at TW was generally limited 

by the concentrations of VOCs.  

Furthermore, the photochemistry at the two sites was firstly investigated by a 

PBM-MCM model. Slightly higher HO2 concentrations were found at TMS, while 

much higher OH concentrations were estimated at TW, suggesting that the HOx 

cycling processes were different at the two sites, likely due to the different levels of 

O3 and its precursors. The O3 formation was dominated by the reaction of HO2 + NO 

at the two sites, while O3 was mainly destroyed by the reactions of OH + NO2 at TW, 

and by the O3 photolysis and the reaction of O3 + HO2 at TMS. Furthermore, longer 
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OH chain length was found at TMS, indicating that more O3 could be produced for 

each radical that was produced. 

To provide additional support to reduce VOCs in order to reduce O3 pollution in 

Hong Kong and the inland PRD region, where O3 formation was generally 

VOC-limited, a newly developed reactivity-based approach was developed in this 

study. Ten VOC sources were identified in the inland PRD region. Solvent usage, 

diesel vehicular emissions, and biomass/biofuel burning were the major VOC sources 

to O3 formation. Among these sources, ethene, toluene and m/p-xylene were mainly 

responsible for local O3 formation.  

In Hong Kong, seven sources were identified. Paint and sealant solvents, diesel 

exhaust and LPG usage were the key contributors to O3 formation. For the major 

species in the above three sources, m/o/p-xylene and ethylbenzene in paint and sealant 

solvents, toluene in gasoline exhaust, n/i-butane, ethene, propene and propane in LPG 

usage, and n-butane and ethene in diesel exhaust were the significant contributors to 

the O3 formation. The relative O3 reduction efficiency values indicated that the cutting 

percentages of the VOC sources and the major species from these sources were 

different for the most effective O3 reduction in Hong Kong.  

Finally, a conceptual model was developed based on a 6-year sampling campaign 

at Tung Chung to provide a general description of the influence factors of O3 pollution 

in Hong Kong. It was found that high temperature, strong solar radiation, low wind 

speed and northerly winds, and regional and/or super regional transport are favorable 

for high O3 levels, while the tropical cyclones were mostly conducive to the 

occurrence of high O3 mixing ratios.  

Overall, through the first concurrent measurements at the mountain site and the 

urban site at the foot of the mountain in Hong Kong, the variations of photochemical 
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pollutants, impact factors and photochemical reactivity at different areas were 

investigated. It could be concluded that O3 formation was associated with the related 

concentrations of its precursors and meteorological conditions, which could influence 

the photochemical reactivity of O3 formation in Hong Kong. Tropical cyclones were 

mostly conducive to the occurrence of high O3 mixing ratios. On the other hand, 

analysis on chemical mechanisms of O3 formation indicated that the cycling processes 

among radicals were different at the mountain and urban sites due to the different 

levels of O3 and its precursors. O3 production in Hong Kong was controlled by the 

pathway of HO2 and NO, while the mechanism for O3 destruction was different at the 

two sites. It is suggested that controlling solvent- and vehicular-related VOCs should 

be the most effective strategy to reduce photochemical O3 formation in Hong Kong. 

Among these sources, m/o/p-xylene and ethylbenzene in paint and sealant solvents, 

toluene in gasoline exhaust, n/i-butane, ethene, propene and propane in LPG usage 

and n-butane and ethene in diesel exhaust should be prioritized to alleviate O3 

production in Hong Kong. In other words, O3 formation could be effectively 

alleviated by controlling a small number of VOCs from specific sources, and the 

relatively O3 reduction efficiency could be the highest when the VOC emissions were 

reduced by certain percentages.  
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