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ABSTRACT 

 

 

Hybrid steel and concrete framed structures, which consist of bare steel (BS), 

reinforced concrete (RC) and steel-concrete composite (SCC) members, are more 

increasingly and extensively used in modern buildings. The structural benefit of this 

system is to combine the advantages of two construction materials with concrete 

having high compression strength, large damping ratio and good corrosion resistance 

and steel possessing of high tension strength, good ductility and efficiency in 

constructability. This structural form is superior to traditional BS and RC framed 

systems, and therefore, it becomes a popular selection in modern high-rise buildings. 

 

It is noted that the current design practice for this structural form is both 

inconvenient and inconsistent to apply. Design guidance and principles in most 

codes are mainly derived for first-order analysis, and the tedious and cumbersome 

hand calculations used in conjunction with complicated formulas are necessarily 

required, such as the assumptions of K-factors or the effective length for members in 

sway or non-sway frames. In addition, the related clauses for stability check vary in 

BS, RC and SCC design codes and these lead to the design procedure being 

inconsistent and inefficient. In this research, a unified second-order design method is 

proposed and it only requires section capacity check at critical locations of a member 

by failure surfaces without needs of using the prescriptive formulae in various codes. 
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The philosophy of advanced analysis method is to consider the various effects 

inherent to real structures, namely as initial imperfections, geometric and material 

nonlinearities and so on. Due to the differences in material characteristics between 

concrete and steel, BS members are slender usually with critical stability problems, 

while RC members always show significant plasticity and both of these nonlinear 

behaviors are observed in SCC members. Moreover, frame global and member local 

imperfections are initially existed, which influence deflections as well as force 

distributions and need to be properly modeled. To these ends, a practical and 

efficient advanced analysis approach is proposed for designing of hybrid steel and 

concrete framed structure with considerations of all these vital effects. 

 

In this thesis, a beam-column finite element with an arbitrarily-located plastic 

hinge (ALH element) is firstly proposed for both second-order elastic and advanced 

plastic analysis. This element is initially curved such that member local 

imperfections can be directly modeled. Due to existence of the internal degree of 

freedoms, only one element is sufficient to simulate large deflections in members. 

Two plastic hinges are further incorporated into the element ends that inelastic 

behaviour of the element can be more accurately presented. Furthermore, the 

additional degrees of freedom in the proposed element are condensed and this 

dramatically improves numerical efficiency and brings much convenience to 

computer programming. Apart from the conventional formulation requiring two and 

more elements to model imperfections or capture the locations of plastic-hinges, one 

element per member is adequate in the proposed analytical model. It is believed that 

this numerical procedure is efficient and the saving in computer time and data 

manipulation efforts is considerable. 
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V 

 

In order to evaluate a section under axial force and biaxial bending, three types 

of sectional yield surfaces are generated namely as initial yield, failure and concrete 

fracture surfaces.  The initial yield and failure surface defines the elastic-limit and 

ultimate-limit states, respectively, while the concrete fracture surface is constructed 

with the use of the Branson’s model for simulating concrete cracking effects. In 

addition, a refined plastic hinge model integrated with these sectional yield surfaces 

for various material types of members is also proposed in this thesis. 

 

In generating of the sectional yield surfaces, an analysis technique for arbitrary 

sections is proposed. The quasi-Newton iterative scheme is adopted for determining 

the location of neutral axis of a section. Two types of stress-resultant approaches for 

concrete components are provided as the equivalent stress block and elaborated 

layer-integration methods. The former is limited to the ultimate limit states, whereas 

the latter can be utilized for any specified conditions. A structural steel component is 

automatically meshed into small fibers and each rebar is lumped into a point that 

occupies a certain area. The openings and voids occupied by other components are 

excluded by the negative area approach. 

 

The recently published codes, such as Eurocode 3 (2005) and Eurocode 4 (2004), 

recommend the use of second-order analysis method for different types of structural 

members. The corresponding second-order design perspectives in Eurocodes for RC, 

BS and SCC members are investigated. Furthermore, several design examples are 

also analysed and presented to demonstrate the feasibility of using the proposed 

second-order design method in modern practice. 
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VI 

 

In the proposed advanced analysis approach, the material constitutive models 

are required and they are critical to the accuracy. Therefore, the material models 

from Eurocodes and available literatures are selected and discussed. Since the 

Eurocode 4 (2004) only permits the use of normal strength concrete in concrete-

filled composite construction, an experimental investigation on the material 

properties of high-strength concrete (HSC) in circular and octagonal steel tubes is 

demonstrated. 

 

A series of benchmark examples in literatures and experiments are selected for 

verifying the accuracy and feasibility of the proposed analysis approach for cross 

sections, individual members and framed structures to elaborate the efficiency and 

validity of the proposed method.  

 

The distinct feature of this research includes development of an efficient curved 

beam-column finite element and integration with an accurate cross section analysis 

technique, which only requires material constitutive relations. Based on the proposed 

formulations, unified and practical second-order design and advanced analysis 

method for hybrid steel and concrete members and framed structures are developed. 
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CHAPTER 1 INTRODUCTION 

INTRODUCTION 

 

 

Steel-concrete structures take the best characteristics of steel and concrete 

materials for production of a more efficient structural form and many structural 

benefits can be found in a hybrid steel and concrete framed structure, which is 

usually superior to the traditional steel and reinforced concrete constructions in 

regard to the cost-effectiveness, constructional efficiency, seismic performance and 

so on. However, the current design and analysis practice for this structural form is 

complicated, inconvenient and inconsistent. Moreover, the initial imperfections 

including the global frame imperfection and the local member imperfection, which 

are important factors affecting structural stability and force-distributions, cannot be 

properly presented and modeled in the conventional analysis approach. To alleviate 

the drawbacks, a new and superior design and analysis methods for the hybrid steel 

and concrete members and frames are explored in the present research. 

 

This thesis proposes a unified second-order design and an efficient advanced 

analysis method for hybrid steel and concrete framed structures. Herein, a curved 

beam-column finite element with arbitrarily located plastic hinge (ALH) is firstly 

derived for simulating large deflections and inelastic behaviors of planar and spatial 

frames. Further, a robust cross section analysis technique based on the quasi-Newton 

numerical scheme is developed for arbitrary sections. Sequentially, three types of 

sectional yield surfaces are generated for evaluating the sectional strength and a 
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refined plastic hinge model combined with these surfaces are given for various types 

of members. With these formulations, the unified design and analysis approach 

requiring only the fundamental material constitutive models is developed. In addition, 

an experimental investigation on the use of high-strength concrete (HSC) in the 

concrete-filled composite construction is carried out. Extensive numerical examples 

have been employed from the available literatures and experiments for verification 

of the accuracy, reliability and practicality of the proposed analytical methods, and 

several design cases are also adopted to demonstrate the application of the proposed 

approach. 

 

In this chapter, a review on the background of the relevant research is presented 

and the objectives of the research are also detailed. Finally, the layout of this thesis is 

briefly illustrated. 

 

1.1. Background 

 

Hybrid steel and concrete framed systems have been increasingly adopted in the 

past decades, where different material types of structural members are 

simultaneously used in a building system. The common types of hybrid steel and 

concrete framed structures are illustrated in Figure 1.1, which may consist of bare 

steel (BS), reinforced concrete (RC) and steel-concrete composite (SCC) members.  

 

Many structural benefits can be found in a hybrid steel and concrete framed 

structure including the structural efficiencies in terms of strength, stiffness and 



 

Chapter 1 Introduction  

____________________________________________________________________ 

3 

ductility and cost-effectiveness with the optimal use of materials according to their 

mechanical characteristics. For example, concrete has high compressive strength, 

large damping ratio and good corrosion resistance, while steel possesses high-tensile 

strength, excellent ductility and efficient constructability. Griffis (1986)  studied the 

hybrid constructions and found that, besides time-efficient construction process 

could be achieved, the concrete components usually offered considerable damping 

properties to the whole structural system, while the steel components with lighter 

self-weight could reduce the foundation cost. 

 

Besides the member strength checks, the flexural buckling of axially-

compressive members and the overall stability of framed structures are always 

concerned in both analysis and design. The initial imperfections and the P-δ effects 

are vital for the individual column buckling and further affect the overall-system 

stability. In the past, due to the limitation of the computer technology, the design 

practice is mainly based on the hand calculation associated with the linear elastic 

assumptions. In order to consider the buckling effects, Euler (1759) firstly derived a 

buckling equation for a theoretically isolated and perfectly straight column under 

different boundary conditions. Since then, a stability design method by assuming the 

column effective length determined by the related K-factors had been proposed and 

still widely adopted until now. Later, the Perry-Robertson formula was derived by 

Ayrton and Perry (1886) and Robertson (1925) based on the Euler’s buckling 

equation (1759) with consideration of the initial member imperfections; and a series 

of buckling curves for different values of imperfections were obtained and adopted 

in most of the design codes and guidance since then. 
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With rapid development of computer technology, the traditional first-order 

linear design approach is gradually recommended to be replaced by the second-order 

nonlinear design method. Second-order design method, which is also called direct 

analysis method in the AISC (2010) code, is a numerical and simulation-based 

approach. In this design method, the P-Δ and P-δ effects and the initial imperfections 

for individual members and the complete frame are directly considered in analysis. 

Member-local and frame-global stabilities can be accurately reflected in the analysis 

process, and as a result the assumption for the effective length by K-factors is 

eliminated. The successful applications of the second-order design approach have 

been demonstrated by Liew et al. (1993a, 1993b), Chan and Zhou (1994, 1995), 

Chen et al. (1995) and so on in the last decades. 

 

In the current design practice, separated codes for design of members made of 

different materials are referred to. For example, Eurocode-2 (2004) is employed for 

RC members, Eurocode-3 (2005) for BS members and Eurocode-4 (2004) for SCC 

members. This brings much inconvenience and sometimes confusions to the 

structural engineers. Although the descriptions for stability design in the steel, 

concrete and composite codes may be different, the requirements for consideration of 

second-order effects, such as P-Δ and P-δ effects and the initial imperfections, are 

conceptually the same. It is noted that the P-δ effect is commonly ignored in most 

previous research and therefore the tedious member buckling strength check by 

codes is still needed. To this, a unified design approach for the hybrid steel and 

concrete systems is needed to be investigated for both design efficiency and analysis 

accuracy. 
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In second-order analysis design approach, as the P-Δ and P-δ effects and the 

initial imperfections have been directly reflected in analysis, the member strength 

can be simply evaluated by the cross section check at its critical locations. However, 

different types of sections can be found in a hybrid steel and concrete frame, such as 

reinforced concrete, single or built-up steel and encased or in-filled concrete 

composite sections shown in Figure 1.2. In order to calculate the sectional capacities 

of these sections, the complicated and tedious formulations in codes for various 

types of sections are still required. Therefore, a robust and generalized cross section 

analysis technique for arbitrary sections is necessary to be explored. 

 

The philosophy of the advanced analysis approach is to accurately reflect the 

structural behaviour inherent to a real structure, and therefore, various effects are 

needed to be considered such as initial imperfections, concrete cracking, geometrical 

and material nonlinearities. Moreover, advanced analysis approach is a fundamental 

tool for performance-based seismic design, progressive collapse simulation and the 

failure limit state analysis, and it is useful for investigating the system performance 

under other extreme event or rare cases. Due to the mechanical properties are 

significantly varied between the steel and concrete, an efficient and practical 

advanced analysis approach is required to be investigated. 

 

The use of concrete-filled steel tube (CFT) columns are increasingly popular in 

the modern structures, especially for the high-rise buildings. However, their 

applications are commonly limited to typical sectional shapes such as the rectangular 

or the circular. When one needs to design the uncommonly shaped tubular sections, 

the existing codes such as Eurocode 4 (2004) do not provide adequate design 
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formulae and provisions. Furthermore, the specified concrete grades as in Eurocode 

4 (2004) are ranged from C25 to C60 for the composite construction, and therefore, 

the utilization of high strength concrete (HSC) in steel tubular columns is needed to 

be experimental studied.  

 

In summary, unified second-order design and practical advanced analysis 

methods for hybrid steel and concrete framed structures are explored in this thesis. In 

addition to this novel design and analysis approaches, an initially curved beam-

column element with capacity of simulating large deflections and high inelastic 

behavior is needed to be derived. As to avoid the tedious formulae for various types 

of section capacity checks, a robust cross section analysis technique is to be 

developed for arbitrary sections composed of concrete, steel reinforcement and steel 

components. Moreover, a generalized plastic hinge model for the hybrid steel and 

concrete members is also needed to formulate. The distinct feature of the present 

study is that an efficient curved beam-column element is derived in conjunction with 

an accurate cross section analysis technique, where only the basic material 

constitutive relations are required in both design and analysis. 

 

1.2. Research objectives 

 

The objectives of this thesis are to propose a unified second-order design 

approach and a practical advanced analysis method for the hybrid steel and concrete 

composite structures. Due to the mechanical characteristics being significantly 

different among the various material types of the structural members, a new beam-

column element is needed to be formulated for simulation of all these vital factors. 
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Similarly, a robust cross section analysis technique is needed to be developed for 

arbitrary sections. The constitutive models are crucial for both the analysis and 

design and a proper input of the related material properties is a prerequisite for a 

reliable analysis and design.  

 

Hence, the research objectives are summarized as follows, 

 

1) To propose a new beam-column element with the allowance for initial 

member curvature and capability for simulating large deflections and 

inelastic behavior. Under some circumstances, the plastic hinge is likely to 

form along the member length rather than its ends, especially for a beam 

under uniformly distributed loads. Therefore, an arbitrarily located plastic 

hinge within a member needs to be allowed in the proposed element. 

 

2) To develop an analytical model for advanced analysis by one element per 

member and this can significantly improve the numerical efficiency as well 

as the reduction on modeling efforts. In order to achieve an efficient 

nonlinear analysis, the numerical solution methods are explored and studied. 

 

3) To investigate an accurate and robust cross section analysis technique for 

arbitrary sections in a hybrid steel and concrete framed structure. Various 

material constitutive models are capable to be considered in analysis. 

Moreover, different sectional states such as concrete fracture, initial yield 

and ultimate failure limits need to be evaluated accurately in the proposed 

method. 
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4) To extend the refined plastic hinge model for various material types of 

structural members in a hybrid steel and concrete frame. Since the 

conventional plastic hinge model is mainly developed for analysis of BS 

members, the extension of this model to other types of members are needed 

to be explored. 

 

5) To introduce a unified and practical second-order design approach. The 

recently published codes, such as Eurocode 3 (2005) and Eurocode 4 (2004), 

have recommended the direct use of second-order analysis in design 

practice. A study on the use of these codes is required. Several examples are 

selected and analyzed by the proposed method and the conventional linear 

approach for comparisons. 

 

6) To study the proper inputs of the material constitutive models. Since the 

material properties play an important role on the accuracy in analysis, and 

therefore, a study on these constitutive models mainly based on Eurocodes 

is carried out. As the Eurocode 4 (2004) only permits the use of normal 

strength concrete in concrete-filled composite construction, the material 

behavior of high-strength concrete (HSC) in steel tubes is needed to be 

experimentally studied. 

 

7) To propose a practical and efficient advanced analysis approach for the 

hybrid steel and concrete frames. A series of benchmarking examples from 
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literatures and experiments are selected for verification of the proposed 

method. 

 

1.3. Layout of the thesis 

 

This thesis contains eight chapters and the layout is presented as follows, 

 

Chapter 1 reviews the background of this research project, where the 

characteristics of the hybrid steel and concrete framed structure and its design and 

analysis methods are summarized. The research objectives of this project are also 

detailed and the content of this thesis is discussed. 

 

Chapter 2 gives literature reviews covering the major topics in this research 

project. The second-order analysis methods based on the beam-column finite 

element as well as their features are discussed. Furthermore, inelastic analysis 

methods associated with the refined plastic hinge and the plastic zone methods are 

also discussed. Additionally, the cross section analysis methods for determining the 

sectional capacities are summarized. Finally, the developments of the second-order 

design approach and the applications of the advanced analysis method are reviewed. 

 

Chapter 3 proposes an efficient and accurate numerical solution for advanced 

analysis of beam-column members by one element per member allowing for various 

effects such as initial member imperfection and geometrical and material 

nonlinearities. A new curved beam-columns element with arbitrarily-located plastic 
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hinge (ALH) is proposed. The additional degree of freedoms in the element will be 

condensed so that it can be easily incorporated into the existing software for 

nonlinear structural frame analysis. In order to consider large deflections, the 

formulations of the equilibrium through an updated Lagrangian description are 

established. In addition, numerical solution strategies for the nonlinear analysis are 

reviewed. Finally, several examples are presented and the accuracy of the results is 

investigated by comparing with the benchmark examples.  

 

Chapter 4 extends the element formulations and the applications of the curved 

ALH element proposed in Chapter 3 to three-dimensional space for large deflections 

and inelastic analysis of spatial framed structures. A simplified approach, which 

assumes the space frame with finite but small rotations, is adopted for extending the 

planar element formulations to the counterpart in three-dimensional space. The 

updated Lagrangian description and the incremental secant stiffness method are 

introduced for efficient consideration of large deflections in analysis. The element 

formulations and the kinematic descriptions of motion are also described. At last, 

verification examples are given for the validation of the accuracy of the proposed 

numerical method. 

 

Chapter 5 proposes a cross section analysis technique for arbitrary sections in a 

hybrid steel and concrete frame. In order to calculate the sectional capacities, a 

quasi-Newton iterative scheme is adopted for determining the neutral axis of a 

section. Three types of sectional yield surfaces, namely the initial yield, failure and 

concrete fracture surfaces, are proposed for the uses in the second-order design and 

advanced analysis. Finally, the validations for the cross section analysis technique 
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will be conducted and compared with published works in literatures and design 

codes.  

 

Chapter 6 gives a unified design approach for hybrid steel and concrete 

members and frames. By adopting the curved ALH element as proposed previously, 

the P- and P- effects and initial imperfections can be explicitly reflected in 

analysis and the member design can then be checked simply by the failure surface at 

the critical locations. In order to clarify the design philosophy, its design principles 

will be discussed. Further, the codified provisions for the second-order analysis and 

design of RC, BS and SCC members from Eurocode 2 (2004), Eurocode 3 (2005) 

and Eurocode 4 (2004), respectively, are discussed. Finally, a series of individual 

columns and several portal frames are selected for analysis and design. 

 

Chapter 7 proposes an advanced analysis approach for the hybrid steel and 

concrete members and frames. The curved ALH element, which has maximum three 

plastic hinges along its length, is adopted allowing for various effects such as initial 

imperfections, geometric and material nonlinearities. A refined plastic hinge model 

combined with use of the sectional yield surfaces is proposed for simulating the 

inelastic behavior of a member. Cracking in concrete component is considered by the 

flexural stiffness modeling approach based on Branson’s model combining with the 

concrete fracture surface. Consequentially, only the basic material properties are 

required for analysis and design. To obtain an accurate result, the constitutive models 

form codes and literatures are discussed. In order to use high strength concrete (HSC) 

in concrete-filled composite columns, which is still not covered in codes, an 
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experimental study was established. Finally, several calibrated examples are 

presented for illustrating the accuracy and validity of the proposed method. 

 

Chapter 8 is the final chapter which concludes the study of this thesis and 

presents the significance of this research project. Furthermore, the recommendations 

for future works are also given. 
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Figures 

 
(a) Type 1 

 
(b) Type 2 

 
(c) Type 3 

 

Figure 1.1 Illustrations of hybrid steel and concrete frames 
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Figure 1.2 Common sections in a hybrid steel and concrete framed structure 
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CHAPTER 2 LITERATURE REVIEW 

LITERATURE REVIEW 

 

 

This chapter presents a review on the beam-column finite element methods for 

nonlinear analysis and the features of several available elements are discussed.  To 

consider material nonlinearity, two popular inelastic analysis methods, namely as the 

plastic hinge and the plastic zone approaches, are concluded. Since the capacities of 

a cross section under different limit states are the essential parameters in this 

research, the related analysis techniques are summarized and discussed. In addition, 

the second-order design and advanced analysis methods are reviewed and elaborated. 

 

2.1. Beam-column finite element methods for nonlinear analysis 

 

The beam-column element analysis method is generally regarded to be 

considerably efficient and effective in design of practical framed structures and the 

research has been extensive conducted since 1970s. Along with the rapid 

development of computer technology with higher speed and larger memory, this 

beam-column finite element approach has been extended to the structural nonlinear 

problems. Consequently, extensive efforts had been made by many researchers, 

including Meek and Tan (1984), Chan and Kitipornchai (1987), Chan (1988), Bridge 

et al. (1990), Chan and Zhou (1994), Chen and Chan (1995), Izzudin and Smith 

(1996), Spacone et al. (1996), Izzuddin (1996), Liew et al. (1997), Neuenhofer and 

Filippou (1998), Pi et al. (2006a, 2006b) and so on, who have used various 
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numerical techniques for solving nonlinear engineering problems. To this end, 

several reliable and numerically stable beam-column elements have been derived and 

developed for various types of nonlinear analysis.  

 

In this research project, several beam-column elements have been studied. For 

clarity, the element formulations of these elements are briefly reviewed in this 

section. 

 

2.1.1 Cubic Hermite element 

 

The cubic Hermite element is one of the most simple and popular elements used 

in engineering analysis, which was adopted by many researchers as Connor et al. 

(1967), Bathe and Bolourchi (1979), Meek and Tan (1984), Chan and Kitipornchai 

(1987), Kassimali and Abbasnia (1991), Teh (2001) and so on. The shape function of 

the element can be expressed as, 

 
3

1 1 2 2

0

i

i

i

v a x N L N L 


    (2.1) 

where, v denotes the lateral displacement along element length; L is the element 

length; ai is the coefficients in the shape functions;   is the dimensionless  

coordinate; θ1 and θ2 are the rotations at two ends; and N1 and N2 are the shape 

function parameters expressed as, 
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Moreover, the axial lengthening due to bowing can be written as, 
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in which, ub is the axial shortening due to element bowing. 

 

Therefore, the secant relations can be obtained by the first derivation of the total 

potential energy equation as, 
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in which, EA is the axial rigidity; EI is the flexural rigidity; e is the total axial 

shortening; P is the axial forces; and M1 and M2 are the bending moments at two 

ends. 

 

From the element formulations, it is observed that the element deflection cannot 

be too large otherwise the analysis results could be inaccurate because the deflection 

function is cubic and under constant shear. Therefore, two and more elements are 

usually required for modeling a single member in order to minimize the errors. So 

and Chan (1991) reported that, the buckling load of a simple supported strut was 

over-estimated by 21.6% if the member was modeling by one cubic element. 
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Moreover, the initial member curvature and the corresponding P-δ effect are unable 

to be simulated and therefore this element formulation might be outdated and not 

suitable for the direct use in second-order nonlinear analysis. 

 

2.1.2 Curved Pointwise Equilibrating Polynomial (PEP) element 

 

The initially curved Pointwise Equilibrating Polynomial (PEP) element as 

proposed by Chan and Zhou (1995) has been extensively adopted for various types 

of second-order nonlinear analysis in the past decade. This element is especially 

suitable for second-order nonlinear analysis and also fulfilled the codified 

requirements where only one element per member is adequate for most nonlinear 

analyses. The element is initially curved and the member imperfection can be 

expressed as, 

       (    )         and            (2.9) 

in which, v0 is the lateral initial imperfection along the member; t is the non-

dimensional distance along the element; and vm0 is the amplitude of initial 

imperfection at the mid-span. 

 

In PEP element, there are totally four and two boundary conditions for 

compatibility and equilibrium respectively and given as, 
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Therefore, a fifth-order polynomial function is assumed as, 
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By solving the boundary conditions and the shape function can be written as, 
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where, the N1, N2 and N0 are given by, 
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The distinctive advantages of this element lie on the accurate consideration of 

member initial imperfection and the capacity for simulating large deflections by only 

one element per member. Zhou and Chan (2004) extended the PEP element for the 

elasto-plastic and large deflection analysis of steel frames, where an arbitrarily 
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located elastic-perfectly-plastic hinge can be formed along the element length. Chan 

and Cho (2008), Cho and Chan (2008)  and Fong et al. (2009) used the PEP element 

for second-order analysis of single angle trusses and verified the analysis results by 

experiments. Fong et al. (2010; 2011)  studied the application of the PEP element for 

nonlinear analysis of composite steel and concrete members and frames, and 

conducted a series of experimental investigations for verifications. Liu et al. (2010) 

utilized this element for performance-based seismic design by the pushover analysis 

approach.  

 

2.1.3 Stability function element 

 

The stability function element was originally proposed by Livesley and 

Chandler (1956) and adopted for the analysis of structural steel frames. The stability 

function was obtained by directly solving the differential equilibrium conditions 

between the element forces and deformations.  Based on the stability function 

approach, Oran (1973a, 1973b) adopted the co-rotational description and  proposed 

the tangent stiffness matrix for planar and spatial analysis respectively, and the 

equilibrium equation of his stability function element can be expressed as, 
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where, the b1 and b2 are the curvature functions due to axial loads; c1 and c2 are the 

stability function. However, these parameters are different for the compression and 

tension conditions. For the compression condition, they can be expressed as, 
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While, for the tension condition, the parameters can be written as, 
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and 
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For the special condition that the no axial load exists, the parameters are given as, 

 1 4c   (2.36) 

 2 2c   (2.37) 

 

According to these sets of parameters, it can be noticed that there may be 

numerical instability during the analysis when the axial load is very small and 

numerical divergence may occur.  
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Later, the stability function approach has been studied and developed by many 

researchers. Chen and Lui (1987) further refined by a power series and the 

truncations were eliminated. And Goto and Chen (1987) formulated this power series 

and proposed a complete set of tangent stiffness matrix for the nonlinear analysis. 

Ekhande et al. (1989) derived a new complete set of stability function for the three-

dimensional frames. Chan and Gu (2000) incorporated the initial member 

imperfection to the stability function and developed a second-order analysis 

approach using one element per member. Kim et al. (2006) proposed a stability 

function element allowing for the consideration of lateral-torsional buckling.  

 

2.1.4 Beam element with mid-span and end springs 

 

In the conventional plastic hinge approach, the plastic hinges are only allowed to 

form at the element ends, and many researchers have successfully adopted this 

method for inelastic analysis of steel frames, such as Al-Mashary and Chen (1991), 

White (1993), Kim and Chen (1996), Chan and Chui (1997), Chiorean and Barsan 

(2005), Gong (2006) and so on. Usually, two and more elements are required to 

model a member since the location of a plastic hinge may occur along the member 

length due to distributed loads. In order to improve numerical efficiency and reduce 

the modeling efforts, Chen and Chan (1995) firstly proposed a beam element with 

one mid-span and two end springs for elasto-plastic analysis of steel beams by single 

element per member as illustrated in Figure 2.3.This is a super element containing 

two sub-elements, which are connected by a degradable spring placed at the mid-

span. The incremental equilibrium equations can be written as, 
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where, 1 1 and 1 2  are the element rotations at the left sub-element and the 

corresponding moments are 1 1 M and 1 2 M ; 2 1 and 2 2  are the element 

rotations at the right sub-element with the associated moments as 2 1 M and 2 2 M ; 

v  and F are respectively the lateral displacement and shear force at the mid-span; 

and R is the spring stiffness at the mid-span and connects the two sub-elements. 

 

The above equation can be rewritten as, 
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in which, 
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In order to enhance numerical efficiency, the internal degrees of freedoms are 

condensed and the equilibrium equations are rewritten as, 
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and the tangent stiffness and the external loads are condensed as, 
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However, this element formulation is only suitable for inelastic analysis of 

beams and the location of the internal plastic hinge is also fixed at the mid-span. 

Therefore, a new beam-column element is needed to be derived, where the internal 
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plastic hinge can be arbitrarily located and the second-order effects associated with 

the initial member imperfection can be reflected. 

 

2.1.5 Other elements 

 

Some elegant elements have been derived by other researchers ,such as King et 

al. (1992), Pi and Trahair (1994a, 1994b), Neuenhofer and Filippou (1998), Barsan 

and Chiorean (1999), El-Tawil and Deierlein (2001a, 2001b), Nukala and White 

(2004) and so on, these elements perform well in many frame analysis. However, 

they are mostly based on straight geometry that initial member imperfections present 

in practical members and required in codes are not modeled efficiently. On the other 

hand, curved beam-column elements have been developed, but they are limited to 

linear analysis so reliable elements allowing for initially curved geometry and large 

deflection is not available for nonlinear analysis. To this, one objective of this 

project is to develop such an element for the purpose of efficient advanced analysis 

of framed structures undergoing large deflection and material yielding with plastic 

hinges formed along the element length or at its ends. 

 

2.1.6 Discussions 

 

In this section, several types of available beam-column elements have been 

discussed and the corresponding formulations are briefly presented. Since the 

material characteristics are different among the members in a hybrid steel and 

concrete framed structure, the element for the present study should be capable of 

simulating large-deflection and inelastic-behavior simultaneously. Moreover, the 
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initial imperfection exists in practical members and needs to be modeled in the 

nonlinear analysis. Therefore, the element should possess initial imperfection and it 

should be capable of modeling and locating the critical position for plastic hinge 

along member length or at its ends. 

 

The cubic Hermite element as illustrated by Meek and Tan (1984) is the most 

popular beam-column element and widely-adopted in engineering practice. Due to 

its limited deformation capacity, two and more elements are required for a structural 

member, which not only causes difficulties in modeling of initial imperfections, but 

also dramatically increases the computational expenses for the nonlinear analysis. 

 

The curved PEP element proposed by Chan and Zhou (1995) is a high-order and 

stable element for nonlinear analysis and capable for simulating very large-deflection 

by only one element per member. The initial member curvature is also modeled in 

the element formulation. This element is especially suitable for the second-order 

elastic analysis and design for the slender and irregular framed structures. However, 

as to reflect the inelastic behavior along member length in an advanced plastic 

analysis, two elements are still required, which causes difficulties in locating the 

hinge position and additional modeling efforts. Although it has a version of plastic 

hinge along a member, it needs to be predominantly under axial load and moment 

due to loads along member is only assumed at ends. 

 

The stability function element is derived from the differential equilibrium 

equation based on the Timoshenko’s beam-column theory (1935) and is a closed-

formed solution. Chan and Gu (2000) developed the classical element and 
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incorporated the initial member imperfection to element formulations, which is 

proven to be highly accurate. However, the element formulations are complicated 

and three sets of tangent stiffness matrix are needed for the analysis, namely as 

compression, tension and zero axial load cases respectively. Furthermore, the 

numerical instability might occur when the axial load is very small. Similarly, the 

plastic hinge cannot form along element length and two more elements are still 

required for an advanced inelastic analysis. 

 

The beam element with mid-span and end springs proposed by Chen and Chan 

(1995) is suitable for the inelastic analysis of a beam under uniform distributed loads. 

However, the second-order effect due to axial load cannot be considered in this 

element, and the location of the middle hinge is fixed. Moreover, the element 

formulation is derived for the analysis of the two-dimensional frame, and its 

extension to spatial frames needs to be explored. The concept of this element is 

attractive, where two simple elements can be integrated into a super-element for 

advanced nonlinear problems. 

 

In summary, these available elements are not entirely suitable for the present 

study, and therefore, a new curved beam-column element is needed to be derived in 

this thesis. 

 

2.2. Inelastic analysis methods for beam-column element 

 

Material yielding is another major factor controlling the ultimate load and 

overall stability of a framed structure, which are necessarily considered in the 
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Advanced Analysis. Conventionally, two methods are widely adapted namely as the 

plastic hinge and the plastic zone approaches. The plastic hinge analysis method, 

also named as lumped plasticity approach, is to concentrate the element inelastic 

behavior at a section along a member with stiffness modeled by the degradable 

springs. While, the plastic zone analysis method, also referred as the distributed 

plasticity method, is to simulate the spreading of plasticity within a volume of the 

member. Both methods have been extensively studied and applied in solving various 

types of material nonlinear problems. In order to select a practical and efficient 

inelastic analysis approach for the present study, the plastic hinge and the plastic 

zone approaches are reviewed in this section. 

 

2.2.1 Plastic hinge approaches 

 

The basic concept of plastic hinge approach assumes plasticity is only lumped at 

the two ends of an element, while the other portion within the element remains 

elastic throughout the analysis. Therefore, two zero-length springs are inserted to the 

ends of the conventional beam-column element shown in Figure 2.4. Two types of 

plastic hinge models have been widely adopted as the traditional plastic hinge and 

the refined plastic hinge approaches, as illustrated in Figure 2.5.  

 

In the traditional plastic hinge approach, it assumes that the hinge stiffness is 

infinitely large before section fails at the hinge location, while it will degrade to a 

frictionless hinge as its ultimate capacity. Therefore, an abrupt change of the load vs. 

deflection behavior would occur during the analysis. This method is simple and only 

the failure criterion for a section is needed. Many researchers have utilized this 
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method for inelastic analysis of individual members or frames. Harstead et al. (1968) 

used the plastic hinge approach for inelastic analysis of the H-columns under biaxial 

bending. Alvarez and Birnstiel (1969) proposed an inelastic analysis method for 

multi-story steel frames. Kassimali (1983) presented a numerical procedure for large 

deformation and inelastic analysis of steel frames. Wong and Tin-Loi (1990) 

produced an incremental analysis approach for steel frames accounting for the 

effects of both geometrical and material nonlinearities. Freitas, and Ribeiro (1992)  

presented an numerical method for the nonlinear analysis of imperfect space trusses. 

Guralnick and He (1992) conducted an analysis of the elastic-perfectly plastic 

framed structures. More recently, Liu et al. (2010) adopted this method for 

performance-based seismic design based on the pushover analysis and reported that 

the traditional plastic hinge is efficient and suitable for the use in engineering 

practice. 

 

In contrary to the traditional plastic hinge approach, a smooth transition from 

ideally elastic to fully plastic stages can be achieved in the refined plastic hinge 

method, as demonstrated in Figure 2.5. The section springs will be gradually 

softened according to the loadings that the partial yielding effects can be simulated, 

where two sectional conditions are needed to be defined as elastic-limit and failure 

states respectively. The refined plastic hinge method has been studied extensively in 

the past. Chan and Chui (1997) proposed a generalized design-based elas-to-plastic 

analysis method for steel framed by section assemblage concept. Kim and Chen 

(1998) suggested a sensitivity study on the required number of elements in refined 

plastic-hinge analysis. Liew et al.  (2000a) developed an improved plastic hinge 

approach for three-dimensional nonlinear analysis of steel framed structures. Kim et 
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al. (2002, 2003) explored the refined plastic hinge and incorporated the 

considerations of the local and lateral torsional buckling.  

 

2.2.2 Plastic zone approaches 

 

In the plastic zone analysis, all members and their sections are needed to be 

discretized into a certain number of sub-elements and fibers as illustrated in Figure 

2.6. Each fiber in a section will be monitored, and the overall member deformation is 

obtained through a numerical integration process across the discretized section at the 

integrations points along the element length. Herein, the spread of plasticity in the 

whole volume of the member can be explicitly reflected. The accuracy of the 

analysis by the plastic zone approach depends on the number of the integration 

points along the element and the fiber length of the section. Usually, the plastic zone 

approach is considered to be an exact and elaborated method, and many researchers 

selected this method for study the inelastic structural behaviors of individual 

members and simple frames. 

 

The results from the plastic zone approach are usually treated as the benchmark 

examples for verifying the inelastic analysis approaches as well as the computer 

programs. Chu and Pabarcius (1964) studied the elastic and inelastic buckling of 

portal frames. El-Zanaty (1980) evaluated the inelastic behavior of multistory planar 

steel frames. Yang and Saigal (1984) proposed an analytical model involving 

geometrical and material nonlinearities for the static and dynamic responses of 

beams. White (1985) developed a plastic-zone approach for the elastic analysis of 

planar steel frames. Meek and Lin (1990) used the updated Lagrangian formulation 
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and the plastic-zone analysis for the thin wall members, and the yielding of the steel 

plates was considered. Toma and Chen (1992) carefully studied three steel frames 

and also recommended these examples as benchmark problems for calibrating the 

inelastic analysis approaches. Fang et al. (1999, 2000) developed an approach based 

on the plastic zone method for inelastic analysis of composite beams with the semi-

rigid connections. Teh and Clarke (1999) extended the plastic zone approach for 

three-dimensional analysis of steel frames. 

 

2.2.3 Discussions 

 

In this section, the two popular inelastic analysis methods are reviewed and 

discussed. Generally speaking, the plastic hinge method is simple and efficient, but 

local plasticity cannot be accurately reflected. While, the spread-of-plasticity can be 

reflected in the plastic zone approach, however, the required computer time is much 

more extensive. In order to select a practical and accurate inelastic method for the 

present study, these two methods are compared. 

 

In terms of accuracy, King et al. (1992) compared the plastic hinge and plastic 

zone approaches and summarized that: (a) the plastic hinge method can be 

satisfactorily performed in most of the common cases; (b) the ultimate strength and 

the overall load-deflection results by the two approaches are closed; and (c) the local 

region of a large frame where the columns are under high axial loads, the predicted 

results by the plastic hinge method might be less accurate than the predictions of the 

system behavior. Generally, in most engineering applications, the analysis accuracy 
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of the plastic hinge method is comparable to the plastic zone analysis by adopting the 

proper plastic hinge models. 

 

When referred to the numerical efficiency, Ziemian (1993) studied the two 

approaches and indicated that, the required calculation time for the plastic zone 

analysis method could reach to a hundred times greater than that for the plastic hinge 

analysis approach. Thus, as a result of the huge computational expense, Kim and 

Chen (1996) reported that the plastic-zone solution cannot be adopted efficiently in 

engineering practice and therefore limited to the utilizations in research. 

 

In summary, in order to formulate a practical inelastic analysis method for the 

moderate and large-scale framed structures, the plastic hinge approach is 

undoubtedly preferred. However, since the plastic hinge model crucially affects the 

accuracy of the analysis, its formulation also needs to be studied and investigated in 

this thesis.  

 

2.3. Cross section analysis methods 

 

The cross section analysis technique for various sections in a framed structure 

has been extensively studied since the 1960s. However, due to the limited capacities 

of computers during that time, many hand-calculated equations and design diagrams 

were proposed for the specified type and shape of a section. Moreover, member 

subjected to axial load and biaxial bending is very common in practical structures, 

such as the corner columns, and these equations, including the simplified iterative 

relations between the two bending axes, may result in an uneconomical design. 
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Santathadaporn and Chen (1968) studied biaxial bending capacities of two types 

of steel sections, namely as rectangular and wide-flange I shapes, and proposed the 

design equations for calculating their lower and upper bound moment capacities. 

Their formulations are based on an equilibrium approach, and the stress resultant is 

achieved by mathematical integration. Further, the neutral axis still needs to be pre-

determined, and possible locations for a wide-flange I section are evaluated. Several 

standard sections are analyzed with their whole yield surfaces presented. 

 

The biaxial interaction diagrams of reinforced concrete (RC) sections were 

widely studied. Bresler (1960) investigated the design criteria for a RC section under 

pure axial load and biaxial bending and the concept of failure surfaces was 

introduced. Furlong (1961) investigated the biaxially loaded ultimate strength of 

square columns, and several design diagrams were given. A simplified ultimate 

strength method of design for columns subjected to bending about both principal 

axes was presented by Fleming et al. (1965), where a series of non-dimensional 

design curves were derived. Moreadith (1978) studied the rectangular RC sections 

under tension and uniaxial bending and proposed the corresponding interaction curve. 

Later, several irregularly shaped sections, such as T-shaped, L-shaped, channel-

shaped and others, had been studied by Hsu and his co-workers (1987, 1988, 1989; 

1985) . 

 

With the rapid development of technology in personal computers, the analysis 

technique for cross sectional capacity of complex shapes and composed of different 

materials has been extensively developed in the past decades. The tedious and less 



 

Chapter 2 Literature review  

____________________________________________________________________ 

34 

accurate hand calculation formulations and design diagrams can be avoided and 

complex and irregular sections can be designed and analyzed in practice. Several 

numerical algorithms have been recently proposed for sections of arbitrary shape. In 

order to distinguish the differences between these methodologies, the following key 

characteristics are reviewed. 

 Whether the composite sections can be analyzed, or the solution is limited 

to bare steel or reinforced concrete sections; 

 Whether arbitrary functions of material constitutive models can be inputted, 

or the simplified bi-linear material curves are assumed; 

 Whether the section is divided into fibers or pieces for the stress integration, 

or the closed-form integral formulations are adopted; and,  

 Whether the location of the neutral axis can be efficiently and accurately 

determined. 

 

A method of calculating the ultimate flexural capacity of a polygonal concrete 

cross section with arbitrary reinforcement was proposed by Brondum-Nielsen (1985). 

The method can be adopted for both the symmetrical and unsymmetrical sections 

with or without openings and is also suitable for computer programming. However, 

the position of the neutral axis is needed to be pre-assumed in this approach and this 

leads to inaccuracy and inconvenience.  

 

Rotter (1985) presented a numerical technique to provide an exact solution for 

solid polygonal sections without openings. The method is based on the Green’s 

theorem (Sokolnikoff, Redheffer, & Avents, 1958). The stress resultant and the 
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tangent stiffness are exactly derived. Nonlinear stress versus stain relations can be 

inputted. The numerical procedure is fast because only several points at the section 

boundaries are to be evaluated for the stress integrals. However, this method is only 

limited to analyze of simple and polygonal sections. 

 

Later, an efficient quasi-Newton iterative method for the analysis and design of 

reinforced concrete sections under uniaxial or biaxial loads was proposed by Yen 

(1991) which was also suitable for the computer application. In his approach, the 

stress distribution of concrete is idealized to be a rectangular block and the stress 

versus strain relation for the reinforcing bears is assumed to be bi-linear. 

Convergence and numerical stability are not guaranteed for unusual and complex 

shapes. 

 

Around a similar period, Yau et al (1993) presented a numerical procedure for 

the exact design and analysis of arbitrarily shaped reinforced concrete sections 

against a combination of axial force and biaxial bending moments. An iterative 

scheme is proposed for determining the position of the sectional neutral axis, and 

equivalent stress block method is adopted for calculating the stress resultant of 

concrete. Their approach can be used for oddly shaped concrete sections and 

minimum steel area can be calculated. 

 

Vivo and Rosati (1998) proposed two algorithms for evaluating the ultimate 

strength capacity of reinforced concrete sections of arbitrary shape. A secant strategy 

is introduced for solving the nonlinear equilibrium equations. The stress resultants of 

the components are calculated by an accurate integration formula. However, the 
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concrete constitutive law is needed to be idealized to a fifth-order polynomial 

interpolation function and the mathematical formulations are complicated. The 

solutions are noticed to be effective for both regular and irregular sections.  

 

Rodriguez and Aristizabal-Ochoa (1999) introduced a general method for 

calculating the RC cross section of any orientation of the neutral axis under biaxial 

bending moments. The closed-form expressions for the stress resultant are proposed, 

where the nonlinear stress versus strain relation for the concrete is adopted. The 

creep and confinement effects of the concrete can be considered in the method. The 

concrete component is required to be divided into several parallel layers and the 

corresponding stress resultant formulations are derived and given.  

 

Chen et al. (2001) further improved the iterative quasi-Newton procedure by 

selecting the plastic centroid for the reference origins and extended the analysis 

approach to the steel and concrete composite sections. The convergence, numerical 

stability and speed are dramatically improved and the complex and irregular sections 

can be analyzed. The exact integral expressions of the stress resultants for both the 

polygonal and circular subsections are derived. Various types of material constitutive 

models can be inputted, while the tensile part of the concrete is neglected. This 

method is proven to be efficient and effective for ultimate limit state analysis. The 

sectional states under other specified conditions, such as elastic-limit or cracked-

limit states, cannot be calculated by this method. 

 

Sfakianakis (2002) proposed a novel computer technique for analysis of 

reinforced, composite and repaired concrete sections of arbitrary shape by fiber 
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model associated with the numerical computer graphics. In his approach, the 

computer graphics are employed as a computational tool for the integration of 

normal stress and therefore the whole section is described by a computer image with 

a certain amount of pixels. There is no iterative procedure in the solution procedure 

and divergence problem will not occur within each step. However, the required 

storage space and computational expense are enormous. In order to clearly present a 

cross section without distortion, the pixel should be tiny enough and the matrix for a 

cross section is extremely large. Moreover, since each pixel in the computer system 

is a rectangular block, when the boundary shape of the section is curved or circular, 

the sizes of each pixel are required to be extremely small in order to maintain a high 

level of accuracy for the analysis. 

 

Charalampakis and Koumousis (2008) introduced a fiber model algorithm for 

the analysis of arbitrary composite sections under biaxial bending. The stress 

resultant is achieved by the analytical method. The complex composite sections 

containing openings can be analyzed by their method. The moment vs. curvature 

diagrams, bending moment interactions and failure surfaces can be obtained. In their 

approach, the structural steel section is divided into curvilinear trapezoids. 

 

Chiorean (2010) proposed an incremental-iterative procedure based on the arc-

length constraint equation for the analysis of composite steel and concrete cross 

sections. The tangent stiffness strategy was adopted for solving the nonlinear 

equilibrium equations. His approach was capable of dealing with design of arbitrary 

sections with various material properties. However, divergence is noticed in the 

given examples under the extreme conditions closed to pure compression or tension. 
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Papanikolaou (2012) presented a numerical methodology for the analysis of 

arbitrary composite sections under biaxial bending and axial load. Various types of 

material constitutive models can be considered as well as the geometry being 

complex. The stress integration is achieved by using the Green path integral, and an 

adaptive strain-mapped Gaussian sampling is introduced. An incremental solution 

strategy is adopted for calculating the ultimate responses. The strength interaction 

curves, three-dimensional failure surfaces and moment-curvature curves can be 

outputted by his approach. However, the calculation time might be huge due to the 

load step needs to be small for minimizing the errors in the incremental procedure. 

 

2.4. Second-order design approach 

 

Second-order method of analysis, which is also called as direct analysis method 

in AISC (2010), is a nonlinear and simulation-based approach allowing for various 

types of nonlinear effects for structural strength and stability, such as initial member 

and global frame imperfections, material residual stresses and so on. Therefore, the 

forces distribution and the deformations from the analysis are closed to the actual 

situation that a safe and reliable result can be obtained. Since the P-Δ and P-δ effects 

as well as the initial imperfections have been directly considered in analysis, the 

member strength check can be simply conducted by a cross section capacity check at 

the critical locations of a member. Unlike the conventional linear design method, 

which requires assumptions of column effective lengths associated with the tedious 

calculation of the K-factors, this design approach is efficient and the cumbersome 

assumptions are eliminated.  



 

Chapter 2 Literature review  

____________________________________________________________________ 

39 

 

2.4.1 Consideration of initial imperfections 

 

Imperfections unavoidably exist in all the members and frames caused during 

fabrication, construction, transportation and other activities like welding and 

therefore the perfectly straight assumption in the analytical model is unavailable in 

practice. In the second-order analysis method of design, the considerations of these 

effects are essential as reported by Chan and Zhou (1998). Two types of 

imperfections are usually taken into account namely as the initial member curvature 

and the frame out-of-plumpness. In a correct second-order design method, both these 

imperfections are needed to be considered in order to ensure the design results will 

be adequately safe. 

 

The research on modeling of geometric initial imperfections was started in 

1980s. Wen and Lange (1981) proposed a curved beam element for buckling 

analysis of arc members. Later, an investigation on the buckling and post-buckling 

behaviors due to the initial imperfections were carried out by Chajes (1983). Kam 

and Lee (1986) proposed a member tangent stiffness matrix for consideration of 

geometrical imperfections and it also introduced an incremental-interactive 

procedure to trace the load-displacement path of the frames. Srpčič and Saje (1986) 

developed an element with initial curvature for large deflection analysis of the thin 

and curved planar beam. However, the P-δ effect due to the member imperfections 

was not properly considered in their element formulations and the common types of 

frames had not been investigated in detail in their research. 
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Several sophisticated elements with the direct incorporation of the initial 

member imperfection have been derived and proposed in 1990s. Chan and Zhou 

(1995) derived a curved PEP (Pointwise Equilibrating Polynomial) element for 

second-order analysis of steel frames which was based on the finite element method 

with the high-order shape function. Chan and Gu (2000) further developed the 

stability function element allowing initial member curvature for practical design of 

framed structures. These elements are stable and widely accepted in many 

contemporary engineering practices. In the present research, a new initially-curved 

element with an internal arbitrarily located hinge is proposed and discussed in 

Chapters 3 and 4. 

 

The major distinction of a correct second-order analysis method of design is to 

check whether geometric imperfections have been directly simulated in the analytical 

model. In this thesis, a unified design approach with considerations of both the initial 

member curvature and the global frame imperfection is proposed. 

 

2.4.2 Current codes for second-order design 

 

Research on the second-order design method for steel frames has been 

extensively studied in the past few decades and this method has been well-

documented in most modern design codes such as AS4100 (1998), AISC (2010), 

Eurocode 3 (2005), Hong Kong Steel Code (2011). Further, AS4100 (1998) was the 

first national design code allows the use of nonlinear analysis approach for the 

design of steel frames and it was termed as “Advanced analysis”. This approach is 

also called as the “direct analysis method (DAM)” in AISC (2010) which 
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recommends its use in place of the traditional linear design method. Numerous steel 

frames have been designed by the second-order analysis method of design in the last 

ten years which was proven to be efficient, economical and adequately safe in 

engineering practice. 

 

Several national codes, including AS5100 (2004), Eurocode 4 (2004), BS5400 

(2005) and Hong Kong Steel Code (2011) can be utilized in the design of steel and 

concrete composite structures. The current approaches for the stability design of 

compression members are still based on the linear analysis method associated with 

the assumptions of the effective length or the moment amplification factors. 

However, the recently published Eurocode 4 (2004) accepts the second-order 

analysis method and the initial imperfections for various types of sections were also 

given. This method has been successfully adopted in design of composite members 

and portal frames as reported by Fong et al. (2010).  

 

The second-order effects of slender reinforced concrete (RC) columns are 

required to be considered in the design codes, such as Eurocode 2 (2004), ACI 318 

(2008), Hong Kong Concrete Code (2013) and so on. Nevertheless, these design 

methods are still based on the linear assumption and the considerations of these 

nonlinear and buckling effects are done indirectly by the indirect methods, such as 

the nominal stiffness and the nominal curvature methods in Eurocode 2 (2004). 

However, the concept and theoretical consideration of these P-Δ and P-δ effects as 

well as the initial imperfections are the theoretically same regardless of the members 

in different materials but the values of these imperfections may vary with respect to 

the types of materials and forming processes. Therefore, the second-order analysis 
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method of design for RC columns and frames is needed to be investigated and 

developed. 

 

In order to carry out a second-order analysis for various types of members in a 

hybrid steel and concrete framed structure, different codes for these materials such as 

steel code for steel members and reinforced concrete code for RC members are 

unavoidably needed in design. This causes inconvenience and inconsistence of 

designing these members and therefore a unified second-order design approach is 

investigated in this thesis. 

 

2.5. Advanced analysis method 

 

Advanced analysis method is considered as an accurate simulation-based 

technique for investigating the ultimate behaviors of a structure under some extreme 

events, such as seismic attacks, progressive collapse and accidental occasions and so 

on. In order to obtain reliable analysis results, various types of important effects 

inherent to a real structure should be considered and they include initial 

imperfections, geometric and material nonlinearities, residual stress and concrete 

cracking. In the past decades, this method has been extensively studied and many 

researchers have proposed their analytical models for advanced analysis of framed 

structures. 

 

White (1993) developed plastic hinge methods for advanced analysis of steel 

frames. He defined the term “advanced” as a method that sufficiently captures the 

limit states such that checking of the specification equations was not needed. Two 
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plastic hinge methods had been discussed and the consideration of geometric 

imperfection effects was also studied. 

 

Kim and Chen (1996) proposed an advanced analysis method for planar un-

braced steel frames. In order to consider the initial frame imperfection, three types of 

methods were discussed as (a) an explicitly modeling method by offsetting the nodes; 

(b) an equivalent notional force method and (c) a tangent modulus reduction method. 

According to their studies, all these methods could produce accurate analysis results 

by comparing to the plastic-zone analysis approach for the simple planar portal 

frames. However, these methods were only suitable for the regular planar frames and 

the P-δ effects induced by the member initial imperfection is modeled by using 

several elements that the modeling is complicated and inconvenient. 

 

Liew et al. (1997) developed an advanced analysis technique for the large-

displacement inelastic analysis of spatial structures. An imperfect strut model with 

one elastic-perfectly-plastic hinge placed at mid-span was proposed for simulating 

both the geometric and material nonlinearities. The structural instability due to initial 

imperfections can also be checked in their analytical model. They observed that the 

method predicts not only the limit load of the structure, but also assists to study the 

load sharing and force distributions of the framed system and to identify the critical 

members that their failure leads to progressive collapse. 

  

Liew et al. (2000b) summarized the recent development of advanced analysis of 

spatial structures, where the modeling of inelasticity in beam-column members had 

been investigated. Further, the inelastic analysis methods for composite beams and 
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the modeling of semi-rigid connections were also reviewed. They claimed that the 

use of the advanced design philosophy could help the understanding about the 

system behavior so that a more rational and cost effective design could be achieved. 

 

Kim and Choi (2001) proposed an advanced analysis method by accounting for 

the semi-rigid connections between beams and columns. The stability function 

element was introduced to capture the P-δ effect and the gradual material yielding 

was considered by the stiffness degradation model. The shear deformation was also 

included in their analytical model and the effects of the semi-rigid connections based 

on the Kishi-Chen (1990) power model was studied. From the comparisons with the 

plastic zone analysis, it showed a more accurate result could be obtained by their 

method. 

 

Trahair and Chan (2003) reviewed methods for studying the out-of-plane 

behaviors of two-dimensional frames under in-plane loading, where the inelastic 

lateral buckling effects involving the residual stresses, initial member imperfections , 

twists and so on. The difficulties in the method were discussed and the suggestions 

had also been made for testing the accuracy of an analytical model. 

 

Chan et al. (2005) reported a robust advanced analysis method based on a finite-

element procedure for the large deflections and inelastic analysis of the imperfect 

frames with semi-rigid base connections. They introduced the refined plastic hinge 

approach for modeling of section yielding. The simulations of the framed global 

imperfections are specially considered and studied by two methods as the notional 

horizontal force method and the Eigen-buckling mode method. They found that, the 
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Eigen-buckling mode method was more suitable for engineering practice since the 

assumption of most adverse directions of imperfections was skipped. Moreover, they 

further reported that the semi-rigid base connection significantly affected the overall 

behavior of a structure. 

 

2.6. Concluding Remarks 

 

In this chapter, several beam-column finite elements for nonlinear analysis are 

reviewed where the four typical elements are presented along with their 

corresponding formulations. The inelastic analysis methods based on the plastic 

hinge and plastic zone approaches are summarized and discussed. Further, in order to 

evaluate various material types of cross sections in a hybrid steel and concrete 

framed structure, the analysis techniques are discussed. Finally, the development of 

second-order analysis and advanced analysis methods for design are discussed. 
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Figures 

 

Figure 2.1 Forces vs. deformation in a beam-column element 

 

 

Figure 2.2 Forces vs. deformation of the curved PEP element 

 

 

Figure 2.3 Beam element with mid-span and ended springs 
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Figure 2.4 Illustration of plastic hinge approach 

 

  

Figure 2.5 Behaviors of plastic hinge and refined plastic hinge 
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(a) Discrete framed structure 

 

(b) Meshed section with monitored fibers 

Figure 2.6 Illustration of plastic zone approach 

Break 
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CHAPTER 3 ANALYTICAL MODEL FOR ADVANCED ANALYSIS BY ONE ELEMENT PER MEMBER 

ANALYTICAL MODEL FOR ADVANCED ANALYSIS BY 

ONE ELEMENT PER MEMBER 

 

 

This chapter presents an efficient and accurate numerical solution for advanced 

analysis of beam-column members by one element per member allowing for various 

effects such as initial member imperfection, geometrical and material nonlinearities. 

A new curved beam-column element with an arbitrarily-located plastic hinge is 

derived in this thesis, which is extended from the three springs beam element 

proposed by Chen and Chan (1995). The additional degree of freedoms in the 

element will be condensed that it can be easily incorporated into the existing 

software. Since structure could exhibit large deformations in an advanced analysis 

under the ultimate limit state, especially for the inelastic or elastic post-buckling 

simulation, formulations of the equilibrium through an updated Lagrangian 

description is established. In addition, numerical solution strategies for the nonlinear 

analysis will be briefly reviewed. Finally, several examples are presented and the 

results are found to be in good agreement with the benchmark examples.  
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3.1. Introduction 

 

The analytical model using one element per member for advanced and second-

order design of steel frames has been extensively studied by Chan et al. (2000; 2010). 

This technique not only brings convenience and efficiency in the analysis procedure, 

but also eases the difficulties of modeling the initial member imperfections, which is 

essential and crucial for both second-order elastic and advanced plastic analysis. 

 

Due to the significant differences in material properties and characteristics 

between concrete and steel, the overall mechanical behavior of bare steel (BS), 

reinforced concrete (RC) and steel-concrete composite (SCC) members is diverse. 

For example, concrete is brittle and anisotropy with high compressive strength but 

negligible tensile capacity, while steel is isotropy and possesses high strength and 

stiffness. Unfortunately, BS members are usually slender and their stability problem 

is prominent, and the inelastic behavior is always concerned in design of RC 

members. In general, both the stability and inelastic behavior are required to be taken 

into account in design of SCC members.  

 

The philosophy of advanced analysis method is to consider the various effects 

inherent to a real structure, such as initial imperfects, geometric and material 

nonlinearities and so on. A typical sub-frame of the hybrid steel and concrete frame 

is shown in Figure 3.1, which consists of different material types of structural 

members. In order to carry out an analysis for this type of hybrid steel-concrete 

frame by only one element per member, the element should be capable of capturing 

all the vital effects. 
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Initial imperfections exist in all structural members as well as the whole 

structure, which significantly influence both the stability and strength checks. The 

importance of proper modeling of initial imperfections has been extensively studied 

by Chan et al. (1995, 1998). The analytical model based on one element per member 

is critical for accurate presentation of initial imperfection effects. The directions of 

the initial member imperfections need to be revised according to the loading 

conditions and usually determined by the first Eigen-buckling mode. Therefore, the 

approach to model one member by several elements, which not only significantly 

increases the computational time, but also brings much effort to update the model in 

each load combination. In this thesis, the formulations for directly modeling the 

initial member imperfection by one element are introduced. 

 

Conventionally, the plastic hinge approach assumes the plasticity only occurred 

at a certain length near the ends, thus two lumped hinges are inserted at both ends 

and deteriorates the rotational stiffness for simulation of the gradual cross-section 

yielding. However, in some circumstances, the plastic hinge is most likely formed at 

middle zone of the member rather than at the two ends, or formed at two end-zones 

and middle zone simultaneously. Therefore, two more elements are usually required 

for modeling each member, which causes the inconvenience in modeling the member 

initial imperfections. Against this background, a three hinges beam-column element, 

which allows plastic hinges to form in middle and two end zones respectively, is 

firstly proposed. 
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The kinetic motion of the element can be achieved by the total Lagrangian or 

updated Lagrangian descriptions. In the total Lagrangian description, the equilibrium 

is established by referring the original position in the whole analysis procedure and 

usually limited by the magnitude of the member deflections because of numerical 

efficiency and accuracy. However, members and frames usually exhibit large 

deformations under ultimate limit states or some extreme scenarios, such as the post-

buckling analysis, studies of progressive collapse, pushover analysis and so on. 

Therefore, to overcome this problem of large member deflections, an updated 

Lagrangian approach is conventionally adopted, where the equilibrium is conducted 

by referring to the last configuration. In order to simplify the derivation, the Co-

rotational method (Oran, 1973a, 1973b) is adopted where the effects of pure member 

deformations are separate from the joint displacements. Therefore, the updated 

Lagrangian description can be achieved by continuously updating the transformation 

relations between the local reference system and the global coordinates with the 

latest configuration, which will be presented in this chapter. 

 

In this chapter, a beam-column element formulation with one arbitrarily located 

hinge will be presented, and furthermore, the formulations for the plastic hinge at 

two ends will be studied and the analytical model for the refined plastic hinge will be 

given. In order to incorporate the proposed element into the existing computer 

program, the condensation approach for the element stiffness matrix and the 

generalized external nodal forces are introduced. Since the equilibrium is established 

by an updated Lagrangian description, the derivation for the transformation matrix is 

presented. Besides, numerical solution strategies for the current analytical approach 
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are given. Finally, several benchmark examples are analyzed to verify the validity of 

the proposed theory. 

 
3.2. Assumptions 

 

The following basic assumptions are adopted in the current study.  

1) Euler-Bernoulli hypothesis is valid and the member is mainly under axial 

loads and the second-order effect due to axial loads is considered.  

2) Strains are small but the deformation can be large.  

3) Plane sections before deformation remain plane after deformation which 

implies a linear strain distribution exists across the section depth.  

4) Material nonlinearity is considered by plastic hinge springs while the 

element is elastic.  

5) Applied loads are nodal and conservative, which are assumed to be 

independent of the load path and proportionally increased. 

6) Warping deformation, shear deformation as well as twisting effect are not 

considered.  

 

The above assumptions are valid for most types of civil engineering structures 

and compatible with most codes requirements. Nevertheless, the consideration of 

lateral-torsional buckling is essential for design of slender beams, which can be 

achieved by checking according to the empirical formula provided in codes. This 

consideration is less likely to encounter in practical structures, and therefore does not 

have serious limitations on the use of the proposed element. If necessary, a complex 
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analysis allowing for beam buckling can be achieved by adoption of shell elements 

(Liu & Chan, 2009) at the expense of long computer time. 

 

3.3. Curved beam-column element with an arbitrarily located hinge 

 

3.3.1 Background 

 

In this project, a new curved beam-column element with an arbitrarily located 

hinge (ALH Element) is proposed and shown in Figure 3.2, which is further 

extended from the three hinges beam element proposed by Chen and Chan (1995), 

with the improvements summarized as: (1) the location of internal hinge can be 

arbitrary; (2) second-order effect induced by the axial load is considered; (3) initial 

member imperfection is taken into account; and (4) plastic hinge model is refined for 

the gradual yielding. 

 

In developing the element formulation, two sets of coordinate systems are 

introduced (e.g., a fixed global co-ordinates and a local convective system) as 

illustrated in Figure 3.3. In the local convective system, the member deflections are 

separated from the nodal translations that the element formula deviation can be 

simplified and concise. According to the minimum potential energy principle, it is 

assumed that the local member deflection is small. In order to analyze the member 

exhibiting large rotation, the formulation of the equilibrium equation can be 

established by an updated Lagrangian description.  
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Due to existence of the internal node, there are three more additional degrees of 

freedoms (DOFs) in the proposed element by comparison with the conventional 

beam-column element in a two-dimensional space. To incorporate efficiently into the 

existing computer program, the internal DOFs will be condensed before global 

stiffness assembly and decoupled in calculating the resisting forces. The member 

forces and DOFs in the various coordinate systems are illustrated in Figure 3.3. 

 

3.3.2 Formulation of displacement function 

 

The forces vs. displacements relations of the arbitrarily located hinge (ALH) 

element are illustrated in Figure 3.2. The initial member imperfection is assumed as: 

       

(      )

  
 and            (3. 1) 

where    is the shape function of initial member imperfection;     is the amplitude 

of initial imperfection at mid-span;   is the length of the member; x is the distance 

along the element (see Figure 3.2). 

 

It is observed that, the finite element interpolation is a piecewise function, which 

can be expressed with eight coefficients of    and    with i = 0 to 3 respectively as 

given by,  

   {
             

     
 

             
     

 

 and 

         

        
 (3. 2) 

where   is the lateral displacement function due to applied loads for the element;   is 

the location of the internal plastic hinge;    and    are the coefficients for the 

polynomial function which will be determined by the boundary conditions. 
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In order to solve the eight coefficients in the shape function, eight boundary 

conditions are introduced as follows, 

 {

            

 ̇    ̇    

 at        (3. 3) 
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 ̇    ̇         

 ̇    ̇        

 at      (3. 4) 

 {

           

 ̇    ̇    

 at       (3. 5) 

in which     and     are the two external rotations at ends;  ,     and     are the 

internal lateral deflection and rotations at the junction between the two sub-elements 

respectively. 

 

By solving the boundary conditions according to the equations above and the 

shape function can be written as, 

   {
{         }  {       } 

{         }  {       } 
 and 

         

        
 (3. 6) 

in which N11, N12, N13, N21, N22 and N23 are shape parameters for shape functions 

given by, 

     
 (    )(    ) 

  (    ) 
 (3. 7) 

     
(    ) (    )

  (    ) 
 (3. 8) 
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(    ) (        )

  (    ) 
 (3. 9) 

     
(    ) (    )

  (    ) 
 (3. 10) 

      
 (    )(    ) 

  (    ) 
 (3. 11) 

     
(    ) (        )

  (    ) 
 (3. 12) 

 

For the axial compression and lengthening, the respective displacement function 

can be conventionally assumed to be linear and the shape function can be determined 

as, 

 u           (3. 13) 

where,    is the coefficients for the linear function of axial deformation which will be 

determined by the boundary conditions. 

 

And boundary conditions of axial deformation can be obtained as, 

 u    at        (3. 14) 

 u    at       (3. 15) 

 

By solving the boundary conditions the axial displacement function is, 

 u   (
 

 
 

 

 
)   (3. 16) 

where e is the deformation along with axial force as illustration in Figure 3.2. 

 

3.3.3 Bowing effects 
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Besides the axial shortening or lengthening occurs due to axial load, the distance 

between the two end nodes will be shortened due to bending moments. This bowing 

effect should be accounted for in the analysis, and it can be calculated as, 

    
 

 
∫(

  

  
)

 

 

d  ∫(
  

  

   

  
)

 

 

d    (3. 17) 

 

By expressing the shape function in terms of the nodal displacement variables, 

the bowing effect can be expressed explicitly as, 

 

    (
    

 
 

   

  
 

   

  
)  

 

 
      (    )  

 
 

  
    

 (     )  
 

  
    

 (     ) 

 
 

  
    

 (    )  
 

  
    

 (    ) 

 
    

  (      )
    [

 

 
   (    )  

 

  
    (     )] 

      
 

  
 

 

 
   (    )        

 

  
 

 

  
    (    ) 

 
 

 
   (    )   

(3. 18) 

 

3.3.4 Secant relations 

 

The secant relations can be formulated by the principle of stationary potential 

energy, which is necessary for the numerical incremental-iterative type of analysis. 

The total potential energy function   is given by, 

         (3. 19) 

where U is the strain energy and V is the external work done. 
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The degrees of freedom as presented in Figure 3.2 are as follows: 

 {

                      

                    
 (3. 20) 

 {

                      

                    
 (3. 21) 

 

The external work done can be expressed as, 

   ∑     and i=1 ~ 6 (3. 22) 

 

The potential strain energy can be given by, 

   
 

 
∫    ̇    
 

 

 
∫    ̈    

 

 
∫  ( ̇     ̇ ̇)   
  

∫     
  

 (3. 23) 

where    and    are the stiffness and rotation at the internal hinge respectively and 

can be assumed as,.  

              (3. 24) 

            (3. 25) 

in which,    is the plasticity parameter related to the loading state, which will be 

further discussed in the following sections. 

 

It can be seen from the potential strain energy equation that, the first two terms 

are the elastic strain energy consumed by member flexural and axial deformations, 

while the third item is the second-order energy induced by axial force associated 
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with the initial member imperfection, and the last item is the plastic energy absorbed 

by plastic hinge rotation at the internal hinge. 

 

The equilibrium condition can be obtained by the first variation of the potential 

energy function according to the minimum potential energy method as, 

    
  

 u 
 

  

  

  

 u 
   and i=1 ~ 6 (3. 26) 

 

Therefore, the secant relations can be obtained as follows, 
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(3. 27) 
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(3. 28) 
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(3. 29) 
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(3. 30) 
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(3. 32) 

 

3.3.5 Tangent stiffness matrix 

 

In order to predict incremental displacements due to the corresponding forces, 

the tangent stiffness matrix is required and can be calculated by the second variation 

of the total potential energy function as, 

     
   

      
        

   

   
 

   

  

  

   
        and i,j=1 ~ 6 (3. 33) 

 

Therefore, the tangent stiffness of the element is determined and can be written 

in terms of three parts as, 

               (3. 34) 

in which,    is the tangent stiffness of the element;    is the linear stiffness matrix; 

   is the geometric stiffness matrix; and    is the spring stiffness for the internal 

plastic hinge. 

 

The linear stiffness matrix    is given by, 
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[
 
 
 
 
 
k   k   k   k   k   k   

k   k   k   k   k   
 . k   k   k   k   

𝑌. k   k   k   
𝑀. k   k   

k   ]
 
 
 
 
 

 (3. 35) 

where, 

 k    
   

 (    )
 (3. 36)  k    

   

 (    )
 (3. 37) 

 k     
    

  (    ) 
 (3. 38)  k    

   

 (    )
 (3. 39) 

 k     
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 (3. 40)  k     

     (      )

  (      ) 
 (3. 41) 

 k    
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 (3. 42)  k    
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 (3. 43) 
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 (3. 44)  k    

   

 (    )
 (3. 45) 

 k    
   

 (    )
 (3. 46)  k    

  

 
 (3. 47) 

  k    k    k    k    k    k    k    k    k      (3. 48) 

 

The geometric stiffness matrix    is presented as, 

    

[
 
 
 
 
 
k  G k  G k  G k  G k  G k  G

k  G k  G k  G k  G k  G
 . k  G k  G k  G k  G

𝑌. k  G k  G k  G
𝑀. k  G k  G

k  G]
 
 
 
 
 

 (3. 49) 

in which, 

 

k  G  
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(3. 50) 
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  (   ξ) (3. 51) 
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 The spring stiffness matrix    can be expressed as, 

    

[
 
 
 
 
 
      

              

 .     
𝑌.        

𝑀.   
 ]
 
 
 
 
 

 (3. 71) 

 

3.3.6 Condensed stiffness matrix and generalized nodal forces 

 

In order to incorporate the proposed element into the existing program 

efficiently, the degree of freedoms (DOFs) of the internal node ui will be condensed. 

The internal and external DOFs can be expressed as, 

    {       }
  (3. 72) 

    {       }  (3. 73) 

 

Therefore, the stiffness equation can be written as, 

 [
      

   
    

] [
  

  
]  [

  

  
] (3. 74) 

where, 

     [
         
         
         

] (3. 75) 

     [
         
         
         

] (3. 76) 

     [
         
         
         

] (3. 77) 

    {       }  (3. 78) 
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    {   𝑀   }  (3. 79) 

 

The condensed stiffness k
*
 and generalized force f can be expressed as, 

        (3. 80) 

in which, 

           
    

      (3. 81) 

         
    

     (3. 82) 

 

The internal DOFs ui at hinge location can be decoupled by multiplying the 

incremental rotations at external DOFs, ue, as, 

       
  (        ) (3. 83) 

 

3.3.7 Equivalent nodal forces 

 

Except for the concentrated nodal forces directly applied to the element nodes, 

an arbitrarily lateral distributed force may be loaded along the element length and the 

loads are needed to be converted to the equivalent nodal forces as well as 

concentrated nodal forces in a finite-element analysis. Currently, due to the existence 

of one internal node along the element length, the equations for calculating the 

equivalent nodal forces for the conventional beam-column element cannot be 

directly utilized. Therefore, the corresponding equations should be derived. Since all 

forces are assumed applied at nodes only in a finite element analysis, the equivalent 

nodal forces (as shown in Figure 3.4) can be obtained by the principle that the work 
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done due to the equivalent nodal forces and the arbitrary lateral distribution forces 

should be balanced, which can be mathematically expressed as,  

       ∫  ( )
   

    

 ( )   ∫  ( )
   

    

 ( )    (3. 84) 

where,      is a vector for the equivalent nodal forces; u is the DOFs in an element; 

 ( ) is an arbitrary lateral distribution force; and  ( ) is the shape functions of the 

proposed element. 

 

For example, if a uniform distributed load q is applied along the member, the 

equivalent nodal forces can be obtained as follows, 

 𝑀   
 

  
   (    )  (3. 85) 

 𝑀    
 

  
   (    )  (3. 86) 

   
 

 
   (3. 87) 

 𝑀   
 

  
   (    )  (3. 88) 

 𝑀    
 

  
   (    )  (3. 89) 

 

3.3.8 Transformation matrix [A] from member basic force displacement to 

member intermediate force / displacement 

 

The forces and the element stiffness in the proposed element is formulated in a 

set of local coordinate axes parallel to the element principal axes as shown in Figure 

3.3 (a). As aforementioned, DOFs in the internal hinge will be condensed as 

illustrated in Figure 3.3 (b). Usually, the element local coordinate system does not 
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have the same orientations with the global coordinate system, therefore, the element 

stiffness and forces must be transformed to the global axes in numerical analysis. 

 

In order to consider large deformation of an element, the formulation of the 

equilibrium through an updated Lagrangian approach is adopted. Apart from the total 

Lagrangian formulation, which is expressed by referring to its original or unreformed 

geometry, the updated Lagrangian formulation uses the last known or step 

configuration as a reference. Therefore, the transform matrix is kept updating during 

the analysis. 

 

Since the derivation of the proposed element formulation is still in two-

dimensional space that only one joint angle is allowed in each node, the rotational 

degree of freedom can be described by the Euler angles. Consider the relations 

between the local coordinates and intermediate coordinates as shown in Figure 3.3 (b) 

and Figure 3.3 (c) respectively. 

 (   )  (    )      (3. 90) 

in which,    and    are the horizontal and vertical displacement at the intermediate 

coordinates system. 

 

Also, e can be rewritten as, 

   √(    )        (3. 91) 

in which, 

        
       (

  

    
) (3. 92) 
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       (

  

    
) (3. 93) 

where,    
 
 and    

 
 are the rotations at the two ends of an element at the 

intermediate coordinates system. 

 

Partial differentiating the equations (3. 91), (3. 92) and (3. 93), and have, 

    
    

   
    

  

   
    (3. 94) 

      
  

(   ) 
    

    

(   ) 
        

 
 (3. 95) 

      
  

(   ) 
    

    

(   ) 
        

 
 (3. 96) 

 

By writing in matrix form, 

            (3. 97) 

where, 

    {       }  (3. 98) 

     {   
    

 
    }  (3. 99) 

     

[
 
 
 
 
 
   

  

(   ) 
 

    

(   ) 

  
  

(   ) 
 

    

(   ) 

  
    

   
      

  

   
        ]

 
 
 
 
 
 

 (3. 100) 

 

According to the contragredient principle, 

            (3. 101) 

where, 
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   {𝑀 
 𝑀 

   }  (3. 102) 

    {𝑀 
 𝑀 

   }  (3. 103) 

 

Similarly, differentiating the equation (3. 101), and have, 

               (    )     (3. 104) 

Also, the equation (3. 104) can be written as, 

                      (3. 105) 

where 

     [

    
    
        
        

] (3. 106) 

and 

     
 

(   ) 
{  (    )       [ (    )     ]} (3. 107) 

         
 

(   ) 
[       (    ) ] (3. 108) 

     
 

(   ) 
{ (    )[(    )      ]   (    )   } (3. 109) 

 

The derivation of matrix [D] is presented in Appendix I. The matrix [D] reflects 

the work done due to nodal displacements and initial stress. 

 

3.3.9 Transformation matrix [T] from member intermediate force/ 

displacement to nodal global force/displacement 

 

The member local displacements in intermediate coordinate system is related to 

the global nodal displacement given by, 
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          (3. 110) 

and it can be written as, 

 [

   
 

   
 

  

  

]  [

      
      

                    
                    

]  

[
 
 
 
 
 
  

  

  

  

  

  ]
 
 
 
 
 

 (3. 111) 

also, 

            (3. 112) 

 

By the contragredient principle, 

 

                 (                ) 

             (     k   u         )  

             (     k       u         ) 

             (     k         )   u  

(3. 113) 

                    (     k         )         

                     

where, the    is the element stiffness in the global coordinate system. 

 

3.4. Formulation of the three hinges element 

 

3.4.1 Background 

 

In order to represent the member plasticity at its end-nodes or end-zones, two 

section springs are further attached as illustrated in Figure 3.2, where the rotational 

stiffness for the left and right hinge springs are    and    respectively. The analysis 
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procedure for the refined plastic hinges element has been well-documented and 

studied by many researchers, such as Ho and Chan (1991), Yau and Chan (1994), 

Chen et al. (1995) and Liu et al.(2010) among others. The numerical algorithm is 

proven to be accurate and stable, and the procedure can be programmed simply and 

only requires the coefficients of the element stiffness. Thus, only a modest additional 

effort is needed to extend the ALH element to a three hinge element. 

 

3.4.2 Element stiffness formulation 

 

After condensation of the element stiffness matrix for the internal DOFs at the 

internal hinge, the incremental equilibrium can be written as, 

           (3. 114) 

or in matrix form, 

 {
   

 

   
 

   

}  {
            

            

            

}  {
   

   

 
} (3. 115) 

where, the    is the condensed incremental nodal forces; and    is the condensed 

tangent stiffness matrix. 

 

Considering the moment equilibrium condition at a section spring, the 

incremental equation can be written as, 

 {
   

   
}  {

     

     
}  {

   

   
} (3. 116) 

in which,     and     are the internal nodal moments at the element node and the 

section spring respectively;     and     are the incremental rotations corresponding 

to the moments; and    is the rotational stiffness for the section spring.  
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Therefore, the incremental relations for an element and the section springs can 

be expressed as,   

 {

    

    

    

    

}  {

       
                
               

       

}  {

    

    

    

    

} (3. 117) 

where,    and    are the spring stiffness at left and right hinges, respectively. 

 

By assuming the forces are applied at the external nodes, both      and      

equals to zero and the equotation (3. 117) can be written as, 

 {
    

    
}  [

   
       

 

   
    

    

]
  

 [
   
   

]  {
    

    
} (3. 118) 

 

Submitting equation (3. 118) into equation (3. 117), the incremental stiffness 

relationships for the three-hinges element can be obtained as, 

            (3. 119) 

or, in matrix form, 

 {
    

    

  

}  {
 ̃   ̃   ̃  
 ̃   ̃   ̃  
 ̃   ̃   ̃  

}  {
    

    

  

} (3. 120) 

where, 

  ̃      
  

 (       )

  
 (3. 121)   ̃   

        

  
 (3. 122) 

  ̃      
  

 (       )

  
 (3. 123)   ̃   

        

  
 (3. 124) 

  ̃       ;  ̃       ;  ̃       ;  ̃       ;  ̃        (3. 125) 

and, 
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    |
           

           
|  (       )(       )             (3. 126) 

 

3.4.3 Refined plastic hinge model 

 

The traditional plastic hinge model possesses an abrupt change from ideally 

elastic-to-perfectly-plastic states. In order to account for the gradual yielding 

behavior, the refined plastic hinge approach is introduced in this thesis. The 

rotational stiffness will be degraded along with the gradual plasticization of the cross 

section, providing a smooth transition during the elasto-plastic state. The formulation 

for the refined plastic hinge can be expressed as,  

             and        (3. 127) 

where, the R is the plasticity parameter related to the loading state, which can be 

expressed as follows, 

 R       for 𝑀 
 

 𝑀 
 
 (3. 128) 

 R  |
𝑀 

 
 𝑀 

 

𝑀 
 
 𝑀 

 
| for 𝑀 

 
 𝑀 

 
 𝑀 

 
 (3. 129) 

 R        for 𝑀 
 

 𝑀 
 
 (3. 130) 

in which, 𝑀 
 
 is the current moment at hinge location; 𝑀 

 
 and 𝑀 

 
 are the initial yield 

and plastic moment capacities under current axial load respectively, which will be 

discussed in the following chapters.   

 

It can be seen from the equations (3. 128) to (3. 130) that the hinge stiffness is 

controlled by the magnitude of the current hinge moment. When the moment is 

smaller than the elastic moment capacities, the hinge stiffness is very large and no 
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plastic rotation occurs. Ideally, the hinge stiffness should be infinite in elastic state; 

however, this extreme value is usually assigned to be a large number in computer 

analysis, which is set to             in the present study. Similarly, in order to 

avoid numerical error, the hinge stiffness is set to be a small value equaling to 

           for representing the full plastic state. 

 

3.4.4 Correction of force point movement after full plastic yielding 

 

Once a plastic hinge is fully yielded, the equilibrium condition may be violated 

as the applied moments at the hinge location are greater than the plastic moments. 

This reflects the condition of the force point lying outside the failure surface. There 

is an infinite number of paths to bring back this force point onto the failure surface. 

In the current study, the path pointed to the origin or zero moment point is chosen as 

the recovery path. The new equilibrium force point will be therefore moved, the 

gradient of the force point coordinates is computed, and the corresponding point at 

the failure surface will be determined as the resisting moments. 

 

3.5. Numerical solution strategies for nonlinear analysis 

 

3.5.1 General 

 

Newton-Raphson solution strategy for nonlinear analysis is the most frequently 

adopted method in conventional design practice. Besides the method is easy-

understanding and has an acceptable performance for the analysis of the regular 
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structures, it also returns the extract structural response at the given load level such 

as the ultimate or serviceability design loads, where the structural responses and 

member internal forces and deflections at the corresponding design load levels are 

usually required. However, this method is unreliable when the solution point is close 

to the limit points, and it also causes difficulties in distinguishing whether it is a 

structural instability or numerical failure.  

 

Since the nonlinearities and initial imperfections are taken into account in an 

advanced analysis, some types of behavior are very likely to occur during the 

numerical analysis such as in the post-buckling, stiffening and softening paths. In 

many occasions, the complete load vs. deflection response of a nonlinear structure is 

difficult to be obtained due to numerical divergence, especially in the situation that 

the tangent stiffness is ill-conditioned or even numerical-singular near the limit 

points. Therefore, the Newton-Raphson method, which only requires tangent 

stiffness in its incremental procedure with equilibrium iterations easily diverged, 

cannot fulfill performance analysis under some extreme conditions.  

 

Several advanced numerical solution strategies have already been proposed for 

handling the highly nonlinear problems, and their feasibility and reliability are also 

verified by numerous examples in the last decades. Batoz and Dhatt (1979) proposed 

a displacement control algorithm by incrementing the displacement instead of the 

load. This method shows satisfactory performance in passing the limit points as well 

as the snap-through points but fails in the snap-back problem in which the 

equilibrium path is not increased in accordance with the monitored displacement. 

Riks (1979) introduced an additional constraint equation to the tangent stiffness 
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equations by controlling the arc-length of tracing the equilibrium path. This 

technique was later improved by Crisfield (1981) and Ramm (1981) to restore 

symmetry in the tangent stiffness matrix. The method is reliable and stable for all 

types of nonlinear problems; however, it requires the solutions of quadratic equations 

in each iteration. Chan (1988) noted the aim of an iterative process is to eliminate the 

unbalanced equilibrium error and proposed the minimum residual displacement 

method. This method is to minimize the unbalanced error in each iteration, which 

also means it follows the shortest path to the solution point. Moreover, the 

expressions for the minimum residual method are simple and avoid of solution the 

constraint equations such as the quadratic equations for the load factor in the arc-

length method. 

 

In this section, the Newton-Raphson solution method will be briefly reviewed, 

and the constraint equation for the incremental-iterative procedure is also presented. 

Sequentially, the iteration schemes by the minimum residual displacement, the 

displacement control and the Arc-length control methods are discussed. Finally, the 

summaries of the numerical solution strategies are given. 

 

3.5.2 Newton-Raphson strategy 

 

The Newton-Raphson solution strategy for nonlinear analysis is the most well-

known method. The solution is to divide the nonlinear problem into a series of linear 

solutions. One or more times of iterations are required at each load increment    to 

minimize the solution error, which can be measured by the norm of the unbalanced 

force vector  R. The vector of unbalanced forces   R is given by, 



 

Chapter 3 Analytical model for advanced analysis by one element per member  

____________________________________________________________________ 

78 

  R    R (3. 131) 

in which, F is a vector of the external loads; and R is a vector of the internal resisting 

loads which can be calculated by the function of the nodal displacement u. 

 

In the conventional type of Newton-Raphson method, the tangent stiffness 

matrix will be updated in iterations. Nevertheless, the tangent stiffness matrix is only 

needed to be updated once in the first iteration for the modified Newton-Raphson 

method. The illustrations for the two types of Newton-Raphson strategies are as 

shown in Figure 3.6.The corresponding interactive sequence can be expressed as 

follows, 

  R    R  (3. 132) 

  u    
    R  (3. 133) 

 u    u   u  (3. 134) 

 R     u          u    (3. 135) 

where, i is the iteration number; and    is tangent stiffness matrix and updated 

iteratively in the Newton-Raphson method. 

 

3.5.3 Basic formulation and constraint equations 

 

The incremental equilibrium equation can be written as, 

        u (3. 136) 

in which    is a vector of the unbalanced force;    is the tangent stiffness matrix; 

and  u is a vector of the unbalanced displacement. 
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A constraint equation paralleled to the applied load vector is applied and can be 

expressed as, 

      ̅    (    u̅) (3. 137) 

where,    is the load correction factor for imposing the constrain condition;   ̅ is an 

arbitrary force vector parallel to the applied load; and  u̅  is the corresponding 

displacement vector conjugate to   ̅. 

 

By substituting equations (3. 137) into (3. 136), the total equilibrium condition 

can be written as, 

         ̅    ( u      u̅) (3. 138) 

and, the load and force vectors in each iteration can be updated as, 

                 ̅ (3. 139) 

 u    u         u̅ (3. 140) 

in which, the subscript i refers to the i-th iteration number within a load increment. 

 

All numerical procedures for nonlinear finite element analysis can be formulated 

on the basic of the equation (3. 138) with the difference corrector factor   . This 

equation was first proposed by Batoz and Dhatt (1979) for solving nonlinear 

problems by fixing the displacement increment at a chosen displacement degree of 

freedom. Obviously, when the corrector factor equals to zero, the equation will be 

reformulated to a conventional Newton-Raphson strategy.  

 

3.5.4 Interaction scheme by minimum residual displacement method 

 



 

Chapter 3 Analytical model for advanced analysis by one element per member  

____________________________________________________________________ 

80 

Since the main objective for the iterative procedure is to eliminate the 

unbalanced residual displacements, it is more efficient and direct to utilize a 

corrector factor for finding the minimum residual displacement increment. Chan 

(1988) proposed a iteration scheme, named minimum residual displacement (MRD) 

method, to satisfy the convergence criterion rather than to satisfy the constraint arc-

distance or work done, which is not the objective of an iteration for equilibrium. 

 

In order to give an implemental description on the MRD method, the derivation 

will be briefly given. The residual displacement can be expressed as  u       u̅, 

where  u̅ is the displacements due to the force vector   ̅ paralleled to the applied 

forces  . Therefore, the minimum residual displacement can be obtained by 

differentiating the expression of convergence criterion with respect to the parameter 

    as, 

 
  ( u       u̅) ( u       u̅) 

    
   (3. 141) 

and it can be further written as, 

      
 u 

   u̅

 u̅   u̅
 (3. 142) 

 

This method follows the shortest path to the solution point in the iterative 

procedure as illustrated in Figure 3.7. The expression for this method is simple and 

also avoids the solution of the quadratic equations for the constraint load factor     

as in the arc length method. 
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Except for the first iteration, the     can be calculated by the equation (3. 142). 

It is obvious to adopt a small value of load increment in the first step. However, as 

reported by Chan (1988), the current stiffness parameter proposed by Bergan et al. 

(1978) is one of the most logical and appropriate method to control the load size at 

the first iteration, which is given by, 

        (  )  (3. 143) 

where,   is the user-defined parameter;    is current stiffness parameter expressed as, 

    
  ̅ 

 
  u̅ 

  ̅ 
 

  u̅ 

 and  .  (  )
   .  (3. 144) 

 

3.5.5 Interaction scheme by displacement control method 

 

The displacement control method adopted was firstly proposed by Batoz and 

Dhatt (1979). A single degree of freedom (DOF) is chosen to be the steering 

displacement that its incremental value is fixed. Apart from the load-controlled 

Newton-Raphson strategy, the method is displacement controlled, where the 

equilibrium is satisfied to a pre-defined deflection during each load increment. A 

graphical illustration of this method is presented in Figure 3.8. 

 

Assume the m-th degree of freedom to be the steered, the corrector factor for the 

first iteration can be written as, 

      
  

 u̅  

 (3. 145) 
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where,    is the pre-defined displacement increment at the steering DOF; and  u̅   

is the displacement vector associated with an arbitrary load parallel to the applied 

loads. 

 

For the second and later iteration within a load increment cycle,  u̅     will be 

the same as  u̅   for no displacement at steering DOF. The corrector factor can be 

further obtained as, 

      
    

 u̅  

 and     (3. 146) 

in which,      is the load increment due to the unbalanced force at the iterations. 

 

This solution strategy shows good performance at passing the limit points and 

suitable for obtaining the full load vs. deflection curve in an inelastic analysis. The 

method is also feasible for the snap-through problem, but it fails at the snap-back 

analysis. Moreover, it can be seen from the above equations that, the choice of the 

steering DOF is crucial for the analysis and has significant influence on the 

numerical stability. Usually, the steering DOF is chosen to be the largest 

displacement increment point in the structures.  

 

3.5.6 Interaction scheme by arc-length control method 

 

Arc-length control method is one of the most popular solution methods for 

nonlinear problems, which was firstly proposed by Riks (1979) and further improved 

by Crisfield (1983).  In the Arc-length control method, an additional constraint 

equation is imposed on the load increment associated with an arc distance S. 
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Therefore, the corresponding constraint equation in the first iteration of a load cycle 

can be expressed as, 

       √ u̅ 
   u̅  (3. 147) 

where, S is the initial arc-length distance. 

 

For the later iterations, the arc distance S is kept constant, thus the equation can 

be expressed as, 

 (u     u      u̅ )
 (u     u      u̅ )     (3. 148) 

 

Expanding the equation, we have, 

      
             (3. 149) 

in which, 

     u̅ 
  u̅  (3. 150) 

     (u     u )
  u̅  (3. 151) 

    (u     u )
 (u     u )     (3. 152) 

 

By solving the equation (3. 149) and choosing the root for maintaining a positive 

angle between the origin and the updated incremental displacement vector in 

equation (3. 153), the load increment factor for the i-th interaction can be obtained as,  

            (3. 153) 

 

The solution strategy for the Arc-length control method is illustrated in Figure 

3.9. This method has been widely used and proved to be an effective and efficient 
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method for nonlinear analysis. However, in the iterative procedure, the quadratic 

equation as in (3. 149) needs to be solved, and the solution roots will be selected. 

 

3.5.7 Convergence criteria 

 

In an iterative solution procedure for the finite-element analysis, convergence 

criteria are needed to be introduced for the termination of the iteration. The criterion 

based on unbalanced forces is commonly adopted in engineering practice. In order to 

obtain an accurate analysis for both forces and displacements, the convergence 

criteria are checked using the unbalanced forces and displacements as, 

 
 u 

   u 

u 
  u 

     (3. 154) 

 
(   

     )  (   
     )

(R 
  R )  (R 

  R )
     (3. 155) 

where, TOL is a value for the acceptable accuracy and usually assumed to be 0.1% 

in conventional practice;  u  and u  are the incremental and total displacements at 

external nodes in global directions respectively;     and     are the global and 

internal unbalanced forces respectively; while R  and R  are the external resisting 

forces at global axes and the local resisting forces at member local axes respectively. 

 

3.5.8 Summaries 

 

Due to the complexity of the nonlinear problem, versatile solution strategies are 

still required for different types of analysis. For the conventional second-order 

design, the Newton-Raphson method is generally adopted because the response at a 
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fixed load level is needed. However, for advanced analysis of a structure under 

ultimate limit state or some extreme scenarios, the minimum residual displacement 

method or arc-length method is recommended for the convergence of the analysis. 

Furthermore, in inelastic analysis of the regular structure or single member, the 

displacement control method is attractive with a proper selection of the steering 

degree of freedom. 

 

3.6. Verification examples 

 

Based on the proposed numerical algorithm, a computer program is developed to 

study the nonlinear behavior of two-dimensional frames and members. In order to 

determine the accuracy, efficiency and versatility of the proposed analytical model 

for the conventional second-order design and advanced analysis, several examples 

are selected. All the examples are limited to bare steel and the other material types of 

structure and members will be discussed in the following chapters. 

 

3.6.1 Closed-form solutions of single initially curved members 

 

The accurate simulation of geometric nonlinearity is fundamental for both 

second-order design and advanced analysis. Thus, to study the accuracy of elastic 

analysis, three single curved members with different boundary conditions are 

analyzed by the closed-form solutions and the proposed approach. As only the 

second-order effects as well as initial imperfections are studied, the rotational 

stiffness for the plastic hinges is set to be infinity that the material yielding is not 
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considered in the proposed element. Accordingly, the location of the middle hinge is 

assigned to be located at the middle span. Besides, the member end conditions are 

ideally assumed to be rigid or pinned and the semi-rigid connection is not considered. 

 

The initial imperfection in member level is assumed to be as a sine function, 

which can be expressed as, 

         
  

 
 (3. 156) 

where,    is the variation of the initial imperfection along member length; x is the 

distance along the member;    is the magnitude of the initial curvature at mid-span; 

L is the member length. 

 

The closed-form solution by the stability function can be expressed as, 

   
𝑀 

 
[
    (     )

     
 

   

 
]  

𝑀 

 
[
     

     
 

 

 
]  

  

       
   

  

 
 (3. 157) 

in which,     is the Euler buckling load as       ; and   equals to √    . 

 

In the followings, three slender steel columns are analyzed and compared under 

different boundary conditions as “pinned-pinned”, “fixed-pinned” and “fixed-fixed” 

respectively. The section size is SHS300   10.0 with 300 mm for breadth and width 

and 10 mm for wall thickness. The material grade is S355 and the Young’s modulus 

is 205 GPa. The overall height of the column is 10 m with assuming the initial 

member imperfection of L/500 is assumed. The cross section area is 1.15   10
-2

 m
2
 

and the second moments of area about both the principal axes are 1.60   10
-4

 m
4
.  
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In the pinned-pinned boundary condition, the end moment M1=M2=0, and 

therefore the deflection at mid-span can be expressed as, 

     

 

       
 (3. 158) 

and the comparison between the analytical and present numerical results are plotted 

in Figure 3.10. 

 

Moreover, the second column is pinned at its top end and fixed at its bottom end 

respectively. Therefore, due to M2=0 and         , the moment at the bottom end 

M1 and rotation angle    at t he top can be written as, 

 𝑀   
            

       
 

  

           
 (3. 159) 

    
𝑀 

  
(  

  

      
)  

      

       
    

 

 
 (3. 160) 

and the load vs. deflection curves are presented in Figure 3.11. 

 

Herein, the third column is fixed at both ends, therefore,               

and the equations can be written as,  

 𝑀   𝑀   
            

       
 

  

      (    )
 (3. 161) 

    
𝑀 

  

k 

     
            (     )  

      

       
   

  

 
 (3. 162) 

therefore, the vertical displacement can be calculated from the following equation as, 

    
  

  
 

 

 
∫      

 

 (3. 163) 

and, the comparisons are illustrated in Figure 3.12. 
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These figures show that the numerical results from the proposed element using 

only one element per member are very accurate by comparing to the closed-form 

solutions.  

 

3.6.2 Advanced analysis of a simply supported column 

 

In this example, a simply supported column under different loading conditions is 

analyzed by advanced analysis method with the considerations of both geometric and 

material nonlinearities as well as initial member imperfection. The column studied is 

of length 20 m and its section size is CHS355.6   8.0. The design strength of steel is 

275 MPa and the corresponding Young’s modulus of elasticity is        .The 

sectional area for the column is  .        m
2
, second moment of area of  .   

     m
4
, and the elastic and plastic section modulus are  .        m

3
 and 

 .        m
3
, respectively. The initial member imperfection is taken as L/500. 

 

To model the initial imperfection by the traditional plastic hinge element, two 

and more elements must be required for a member and the middle node is needed to 

offset for simulate the member imperfection, as illustrated in Figure 3.13. Further, 

the initial imperfection shape recommended in design code is a sine curve which 

may need more elements for geometric modeling. For the circumstances that the 

imperfection value is small, this simplification is still valid and acceptable. However, 

when the initial imperfection is larger, the error induced by this modeling method 

becomes significant. This imperfection modeling method is hard to be adopted in 

actual practice when dealing with hundreds or even thousands of element and load 

cases. As the imperfection mode depends on loads, it varies with load case and 
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brings much inconvenience in practical design where hundreds of load cases may 

need to be combined. By utilizing the proposed element for advanced analysis, all 

members can be modeling by one element and the initial imperfection can be 

imposed on the element directly. This leads to much convenience and reliability in 

numerical convergence and efficiency. 

 

In a purely axial loaded condition, the analysis results by the conventional 

plastic hinge element and the proposed element is illustrated in Figure 3.14. In order 

to obtain a full load vs. deflection curve, the displacement control method is adopted 

for determining the load increment and the minimum residual displacement method 

is introduced for the interactive procedure. The controlled displacement incremental 

at vertical translation is 0.001 m. From the comparisons, the result obtained by the 

proposed element is closed to the conventional analysis method by two plastic hinge 

elements. 

 

The load vs. deflection curve for a uniform distributed load equal to 5 kN/m is 

shown in Figure 3.15. When the load-controlled Newton-Raphson method is 

introduced, the load incremental factor is taken as 0.01. In these pure bending 

conditions, both the material nonlinearity and large displacement effects are 

considered. The comparison shows high accuracy results by the proposed analytical 

method using one element per member can be achieved. 

 

3.6.3 Second-order and advanced analysis of a cantilever column 
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In this example, a cantilever column with an axial and a lateral loads is analyzed 

by elastic second-order and advanced plastic analysis method. In order to evaluate 

the validity and accuracy of the proposed element for this large deflection and highly 

nonlinear problem, the PEP element (1994) and the advanced structural analysis 

software NIDA (2013) will be used for the comparisons, which have been approved 

to be accurate and efficient by numerous applications and studies. The column herein 

studied is 20 meter long and its section size is CHS323.9   16.0. The corresponding 

steel grade is S275, where the design yield strength is     𝑀   and the Young’s 

modulus is        . The cross section area is  .        m
2
, and the second 

moment of area is  .        m
4
, and the elastic and plastic section moduli are 

 .        m
3
 and  .        m

3
, respectively. The initial member imperfection 

is taken as L/500. 

 

The capability for large deflections and the geometric nonlinear analysis can be 

tested by a second-order elastic analysis of a cantilever column, where the 

comparison is plotted in Figure 3.16. All the analytical models in NIDA and the 

proposed program are modeled by one element per member. A vertical and a lateral 

concentrated loads equaling to -100 kN and 10 kN respectively are applied to the top 

of the cantilever column. It can be observed that, the analysis results by the proposed 

analytical model are very accurate by comparing with the mature software NIDA 

(2013). 

  

Moreover, the inelastic behavior can be further taken into account by the refined 

plastic hinge method and the results for the advanced plastic analysis are presented 
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in Figure 3.17. The loading conditions are the same as the example in the second-

order elastic analysis above.  

 

From the comparisons, it shows the accuracy and validity of the proposed 

analytical model, which is not only suitable for second-order elastic analysis with 

large deflections, but also shows good performances in advanced plastic analysis 

with significant inelastic-softening behavior. 

  

3.6.4 Advanced plastic analysis of a portal frame 

 

In this example, a simple portal frame is shown in Figure 3.18 and analyzed by 

the advanced plastic analysis approach. The portal frame is made by bare steel 

members with the section type as RHS250   100   10.0 and the material grade as 

S275. All the members are assumed to be initially curved as a half sinusoidal shape 

of maximum in-plane deflection of L/500 at the mid-span, and the direction of the 

member initial imperfections is set to be opposite to the deflections due to applied 

loads. A uniform distributed loads equaling to -10 kN/m is applied at the beam, 

while two concentrated loads equaling to 10 kN are applied at the top of the two 

columns. The frame is pinned to the ground and only the connectivity between the 

beam and the columns are assumed to be perfectly rigid. 

 

In order to study the performance of the proposed analytical model for the 

advanced analysis of the framed structure, the conventional beam-column element 

approach with refined plastic hinges at its ends is also introduced for the 

comparisons. In order to accurately reflect the inelastic behavior of the member, two 
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elements are required for modeling a member in the analysis by the conventional 

approach.  

 

In the proposed analytical approach, the location of the middle hinge in the 

proposed element can be arbitrarily placed associated with the position in the most 

critical section. Usually, this critical location should be pre-determined by an elastic 

analysis. In this example, the middle hinge locations for all the members are 

assumed at the middle-span for an easy comparison purpose.  

 

The comparison results for the two analytical approaches are presented in Figure 

3.19 and Figure 3.20, where the first, second and third plastic hinges are observed at 

the load factors equaling to 1.1053, 1.1490 and 1.6624 respectively in the present 

study. It can be seen that the results by the two approaches are closed in tracing the 

horizontal and vertical deflections of the portal frame, and the collapse path of the 

structure can be also reflected. 

 

3.6.5 Advanced analysis of Vogel’s six story frame 

 

This is a benchmark example reported by Vogel (1985) treated as an European 

calibration frame, which has been extensively studied by many researches for testing 

their inelastic analysis theories, as illustrated in Figure 3.21. The frame is applied by 

distributed gravity loads on beams and concentrated forces at the top of each floor. A 

global out-of-plumb straightness equaling to 1/450 is assumed while no member 

initial imperfections are taken into account. The yield strength of all members is 235 

MPa and the Young’s modulus is 205 GPa.  
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This frame has been analyzed by Vogel (1985), who used the plastic zone 

approach for tracing the entire load vs. deflection. Since the inelastic behavior is 

extremely significant in this example, two elements are still needed for modeling of 

each beam, while one element for a column is still valid. The comparison results are 

plotted in Figure 3.22. 

 

From the comparison results, it shows the proposed analytical method is very 

accurate and valid for large deflections and inelastic analysis of steel frames. The 

ultimate load factor by the plastic zone method is 1.112, while the corresponding 

load factor by the proposed method is 1.152. A very slight different in the load vs. 

deflection relations is observed in the Figure 3.22, and the proposed refined plastic 

hinge method is more efficient and effective by comparing to the plastic-zone 

approach. 

 

3.7. Concluding remarks 

 

In order to develop a unified analytical model for advanced analysis of hybrid 

steel and concrete members, a new curved beam-column element with an arbitrarily-

located and two end plastic hinges is proposed in this thesis. Moreover, for an easy 

incorporation of the proposed element into the existing software, the condensation 

approach for reducing the additional DOFs in the element is introduced. Sequentially, 

the formulation for the conventional refined plastic hinges can be added to the 

element ends. For the consideration of large deformation, the updated Lagrangian 

description is utilized that the equilibrium condition is established by referring to the 
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last known configuration in the interactive procedure. In conclusion, the proposed 

element is not only suitable for large deformation and stability analysis of the slender 

member such as steel columns, but also valid for the inelastic analysis of the stocky 

member such as reinforced concrete columns. Therefore, a unified analysis and 

design method can be then proposed for hybrid steel and concrete members by using 

this element, which will be further discussed in the following chapters. 

 

3.8. Appendix I -the derivation of matrix [D] 

 

Consider the force equilibrium between member local axes to intermediate 

coordinate system as, 

            (3. 164) 

or in matrix form, 
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] (3. 165) 

 

The equation (3. 165) can be rewritten as, 

  ̃    ̃      (3. 166) 

also written in matrix form, 
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] (3. 167) 
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Therefore, the expression for    can be obtained as, 

    (  ̃  )    ̃  (3. 168) 

and presented in matrix form, 
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] (3. 169) 

 

Moreover, the differentiation of the transformation matrix [A] can be obtained 

as, 
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(3. 170) 

 

Therefore, the differentiation can be rewritten as, 

                (  ̃  )    ̃          (3. 171) 

where, 

     [

    
    
        
        

] (3. 172) 

and, 
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(   ) 
[       (    ) ] (3. 174) 
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Figures 

 

 

 

 

 

Figure 3.1 A typical hybrid steel and concrete framed structure.  

(BS: Bare Steel; RC: Reinforced Concrete; SCC: Steel-Concrete Composite) 
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Figure 3.2 The forces vs. displacements relations of the ALH element 
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(a) Member basic displacements and forces 

(Local coordinates)  

 

 

 

 

 

 

 
(b) Condensed member basic displacements and forces 

(Local coordinates) 
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(c) Member intermediate displacements and forces 

(Intermediate coordinates) 

 

 
(d) Nodal displacements and forces 

(Global coordinates) 

Figure 3.3 Member deformations and associated forces  
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(a) Applied forces in local axes 

 

 

 

 

 
(b) Equivalent nodal forces 

Figure 3.4 Equivalent nodal forces 
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   Figure 3.5 Rotational relationships in a plastic hinge at end-zone 
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(a) Conventional Newton-Raphson solution method 

 

 

(b) Modified Newton-Raphson solution method 

Figure 3.6 Two types of Newton-Raphson strategies 
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Figure 3.7 The Minimum Residual Displacement (MRD) Method 

 

 

 

Figure 3.8 The displacement control method 
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Figure 3.9 The Arc-length control method 

 

 

Figure 3.10 Comparison results of the pinned-pinned column 
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Figure 3.11 Comparison results of the fixed-pinned column 

 

Figure 3.12 Comparison results of the fixed- fixed column 
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(a) Code recommended sine curve in one member 

 

 

(b) Parabolic curve in the proposed one element 

 

 

(c) Triangular shape in two conventional plastic hinge elements 

Figure 3.13 Modeling of initial member imperfection 
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Figure 3.14 Advanced analysis of an axial-loaded simply supported column 

 

 

Figure 3.15 Advanced analysis of a simply supported column under UDL  
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Figure 3.16 Second-order elastic analysis results of a cantilever column 

 

 

Figure 3.17 Advanced plastic analysis results of a cantilever column 
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Figure 3.18 Geometry and loading pattern of the portal frame 
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Figure 3.19 Horizontal displacement of the portal frame 

 

 

Figure 3.20 Vertical displacement of the portal frame 
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Figure 3.21 Geometry and loading pattern of the Vogel’s six story frame 
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Figure 3.22 Horizontal displacement of the Vogel’s six story frame 

Break 
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CHAPTER 4 ADVANCED ANALYSIS AND DESIGN OF THREE-DIMENSIONAL FRAMED STRUCTURES 

ADVANCED ANALYSIS AND DESIGN OF THREE-

DIMENSIONAL FRAMED STRUCTURES 

 

 

This chapter extends the applications of the planar curved ALH (Arbitrarily 

Located Hinge) element as proposed previously to three-dimensional space for large 

deflections and inelastic analysis of the framed structure. Due to the non-vectorial 

property of rotations in a space and more degrees of freedom in a space, the three-

dimensional analysis is more complex than its planar counterpart. A simplified 

approach, which assumes a space frame with finite but small rotations, is adopted for 

extending the planar element to the three-dimensional space. The updated 

Lagrangian description and the incremental secant stiffness method are introduced 

for considering large deflections in analysis, which is proven to be accurate and also 

efficient in the numerical interactive procedure. Since the internal degrees of 

freedom in the proposed element are condensed, a significant reduction on the size of 

the global stiffness matrix can be achieved with an apparent improvement in 

numerical efficiency. The element formulations and the corresponding kinematic 

descriptions of motion are detailed. Finally, verification examples are given for the 

validation and the accuracy of the proposed numerical method. 
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4.1. Introduction 

 

In a planar frame analysis, it assumes the out-of-plane direction of a frame is 

fully restrained, where the corresponding deformations are perfectly prevented. 

However, due to the ineffective restraints, three-dimensional geometry of a structure 

and the existence of the imperfections in the out-of-plane direction, this simplified 

assumption is usually invalid in the actual practice. In order to propose a practical 

analysis method and reflect the overall stability a framed structure, the three-

dimensional analysis approach must be adopted. 

 

Analysis in three-dimensional space is usually more complex than that in a two-

dimensional plane. Due to the non-vectorial property of rotations in the spatial 

dimension, as illustrated in Figure 4.1, the genuine large deflection analysis cannot 

be simply extended from a planar analysis. Argyris et al.  (1978) studied this non-

commutative nature of large rotations through an energy consideration, and found 

that no energy will be generated if two consecutive rotations are applied the y- and z- 

axes respectively. Therefore, this non-vectorial error can be minimized through a 

small rotational assumption and it is usually acceptable that if the rotations less than 

15°, this error is small. 

 

For three-dimensional analysis with finite but small rotations, the analytical 

method can be extended from its counterpart formulations in the planar analysis as 

presented in the Chapter 3. This simplified approach has been adopted and tested by 

numerous practices in the past decades and proven to be effective and efficient. For 

example, Chan et al. (1994, 1995) successfully extended the PEP (Pointwise 
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Equilibrating Polynomial) element formulations from a two-dimensional plane to the 

three-dimensional space. However, this direct extension from a planar element to a 

space frame element can induce an underestimation in some coupling effects 

between the flexural and torsional displacements, as reported by Liew et al. (2000a). 

Nevertheless, in engineering practice, this induced torsional displacement is usually 

not as significant as the second-order or inelastic effects, which can be also further 

checked by the codified formulas. 

 

In advanced analysis approach, both the large deflections and the inelastic 

behaviors of members and the overall frame should be captured. Moreover, the 

imperfections in local member and the overall structure should be considered. Since 

there are totally six degrees of freedom, e.g. three translations and three rotations, in 

each node of the structural model, the required computing expense and the storage 

for a global stiffness matrix in the three-dimensional space is considerably larger 

than those in a planar frame analysis. To minimize the numerical effort, the proposed 

element in the three-dimensional advanced analysis allows only one element to 

model a structural member such that the computer time can be dramatically reduced, 

and further, the plasticity along member length can also be considered as well.  

 

In the plastic hinge approach, the inelastic behavior in a certain region along the 

member is considered to be lumped into a degradable spring, and the spread-of-

plasticity cannot be directly considered. This plasticity spread could be considered 

by the plastic-zone method (S. E. Kim & W. F. Chen, 1996). However, as reported 

by Kim and Chen (1996), the plastic-zone solution cannot be actually adopted 

efficiently in daily engineering practice, since the computational time is too 
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excessive and it is therefore limited to research only. In order to propose a practical 

approach for advanced analysis, the refined plastic hinge method is adopted. Since 

three hinges have been already incorporated in the proposed element, the inelastic 

behavior can be more accurately simulated by using only one element per member. 

 

To consider the large deflection effects of three-dimensional frames and to 

eliminate the limitation of small or moderately large rotations, the co-rotational 

formulation associated with the incremental secant stiffness method proposed by 

Chan (1989) is adopted. In this approach, a set of local axes is attached to an element 

and rotated simultaneously with the deformations of the element. Thus, the rotations 

relative to the chord and at the two ends of an element are then evaluated by 

subtracting the axis rotations. The final total rotations are obtained by a series of 

rotational transformations rather than by a summation process. Therefore, genius 

large rotations and deflection can be considered because infinitesimal rotations can 

be treated as vectorial quantities. Moreover, the incremental secant stiffness method 

and the updated Lagrangian description are adopted for establishing the equilibrium 

condition, which have been reported by Chan (1989) to be satisfactory in 

convergence and numerical stability. 

 

In this chapter, the element formulations for the advanced analysis of the three-

dimensional frame are presented. The kinematic description of motion is further 

discussed in the followings. Finally, several examples are used to illustrate and 

verify the accuracy and validity of the proposed analytical model. 
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4.2. Three-dimensional curved element with arbitrarily located 

hinge 

 

In this section, the ALH element, as proposed in the previous chapter, is adopted 

and extended to three-dimensional space.  A set of local axes parallel to the section 

principle axes is attached to the individual element as shown in Figure 4.2. The 

element rotations can be calculated by subtracting the rigid body rotations from the 

total rotations. Further, the element is usually not placed vertically or horizontally to 

the global axes, and inclined to a local orientation angle as shown in Figure 4.3. 

Therefore, the mapping relations between the element forces and displacements are 

needed. Similar to the planar element presented in the Chapter 3, the internal degrees 

of freedom (DOFs) in the three-dimensional element will be condensed for 

numerical efficiency and compatibility to the existing computer program which 

allows only six degrees of freedom in each node. 

 

4.2.1 Basic force vs. displacement relations 

 

The basic forces versus displacement relations for the three-dimensional element 

are presented in Figure 4.4. The initial imperfections along two principle axes can be 

expressed as, 

 
        

(      )

  
 

and            (4. 1) 

         

(      )
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where     and     are the shape function of initial member imperfections along y-

axis and z-axis respectively;      and      are the amplitude of initial imperfection 

at mid-span along y-axis and z-axis respectively;   is the length of the member; and 

x is the distance along the element. 

 

The shape functions for the three-dimensional element can be given as, 

    {

{         }  {          } 

{         }  {          } 
 and 

         

        
 (4. 2) 

and, 

    {

{         }  {          } 

{         }  {          } 
 and 

         

        
 (4. 3) 

in which,     and     are the lateral displacement functions along y-axis and z-axis 

respectively; N11, N12, N13, N21, N22 and N23 are shape parameters for shape 

functions given in Chapter 3;     ,     ,      and      are the external rotations at 

ends about two principle axes; and   ,   ,     ,     ,      and      are the internal 

lateral deflections and rotations at two principle axes. 

 

The displacement function for axial compression and lengthening can be 

introduced as, 

 u   (
 

 
 

 

 
)   (4. 4) 

where e is the deformation along with axial force. 

 

Similarly, the twist angle can be expressed in linear interpolation as, 
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    𝑡(
 

 
 

 

 
)   (4. 5) 

where  𝑡 is the twist angle along with torsional moment. 

 

4.2.2 Total potential energy function 

 

The potential strain energy function due to the deflections along two principle 

axes respectively, neglecting the shear strain, can be written as, 
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     ∫      
   

 ∫      
   

 

(4. 6) 

where, EA is the axial rigidity along x axis; EIy and EIz are the flexural rigidities 

about y- and z- axes respectively; GJ is the torsional rigidity;    ,    , Smy and Smz 

are the hinge rotations and stiffness at middle hinge at y- and z- axes respectively, 

can be obtained as, 

                 (4. 7) 

                 (4. 8) 

              (4. 9) 

              (4. 10) 

in which,     and     are the plasticity parameters related to the loading state. 

 

The external work done by applied forces and moments can be expressed as, 
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     𝑀𝑡   

     𝑀        𝑀             𝑀        𝑀        

     𝑀        𝑀             𝑀        𝑀        

(4. 11) 

 

The total potential energy function   is given by, 

         (4. 12) 

 

4.2.3 Bowing effects 

 

The bowing effects due to the lateral displacements can be calculated as, 
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(4. 13) 
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     [ 
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4.2.4 Secant relations 

 

The equilibrium condition can be obtained by the first variation of the potential 

energy function according to the minimum potential energy method as, 
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(4. 14) 
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(4. 24) 

 

The secant relation in torsional direction can be evaluated as, 

  𝑡  
  

 
 𝑥   (4. 25) 

in which,  𝑡 is the torsional moment;    is the torsional rigidity. 

 

4.2.5 Tangent stiffness matrix 

 

In the incremental-iterative numerical procedure, the tangent stiffness is required 

to be formulated for the prediction of displacement increment due to an increased 

load vector. The tangent stiffness matrix can be obtained by the second variation of 

the total potential energy function and expressed as, 

     
   

      
        

   

   
 

   

  

  

   
        and i,j=1 ~ 12 (4. 26) 
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where,    and    are the force and displacement vectors respectively, and expressed 

as follows, 

  { 𝑀   𝑀   𝑀𝑥 𝑀   𝑀       𝑀   𝑀   𝑀   𝑀   }  (4. 27) 

  {                                       }  (4. 28) 

 

Therefore, the tangent stiffness of the element is determined and can be written 

in terms of three parts as, 

                       (4. 29) 

in which,    is the tangent stiffness of the element;    is the linear stiffness matrix; 

   is the geometric stiffness matrix; and    is the spring stiffness matrix for the 

internal plastic hinge. 

 

The linear stiffness matrix    is given by, 

 

      

[
 
 
 
 
 
 
 
 
 
 
 
               

 B     B    B       
 C     C    C      

            
               

             
𝑌  G    G    G    

 H    H     H   
𝑀            

 J     J   

      
     ]

 
 
 
 
 
 
 
 
 
 
 

 (4. 30) 

where, 

      
  

 
 (4. 31)   B   

    

     
 (4. 32) 

  B   
    

     
 (4. 33)   B    

     
(     ) 

 (4. 34) 

  C   
    

     
 (4. 35)   C   

    
     

 (4. 36) 



 

Chapter 4 Advanced analysis and design of three-dimensional framed structures  

____________________________________________________________________ 

127 

  C    
     

(     ) 
 (4. 37)       

GJ

 
 (4. 38) 

      
    

     
 (4. 39)        

     
(     ) 

 (4. 40) 

      
    

     
 (4. 41)        

     
(     ) 

 (4. 42) 

  G    
     (      )

  (      ) 
 (4. 43)   G   

     

  (    ) 
 (4. 44) 

  G    
     

  (    ) 
 (4. 45)   H    

     (      )

  (      ) 
 (4. 46) 

  H    
     

  (    ) 
 (4. 47)   H    

     
  (    ) 

 (4. 48) 

      
    

     
 (4. 49)        

    

     
 (4. 50) 

  J    
    

     
 (4. 51)   J    

    
     

 (4. 52) 

       
    

     
 (4. 53)        

    
     

 (4. 54) 

 



 

 

 

Chapter 4 Advanced analysis and design of three-dimensional framed structures  

_______________________________________________________________________________________________________________ 

128 

Similarly, the geometric stiffness matrix can be obtained as, 

      

[
 
 
 
 
 
 
 
 
 
 
 
    G    G     G    G    G    G    G     G     G     G

 B G  B G   B G  B G  B G  B G  B G  B  G  B  G  B  G
 C G   C G  C G  C G  C G  C G  C  G  C  G  C  G

    G    G    G    G    G     G     G     G
    G    G    G    G    G     G     G     G

   G    G    G    G     G     G     G
𝑌  G G  G G  G G  G  G  G  G  G  G

 H G  H G  H  G  H  G  H  G
𝑀    G     G     G     G

 J  G  J  G  J  G

    G     G
    G]

 
 
 
 
 
 
 
 
 
 
 

 (4. 55) 

in which, 
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The internal spring stiffness matrix    can be expressed as, 

 

      

[
 
 
 
 
 
 
 
 
 
 
 
 
            

           
          

         
     R         R    

    R         R   

𝑌       
     

𝑀     R    

    R   

  
 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (4. 121) 

where, R  and R  are the plasticity parameters at the internal hinges at two principle 

axes respectively. 

 

4.2.6 Condensed stiffness matrix and generalized nodal forces 

 

Similar to the two-dimensional element as presented in Chapter 3, the internal 

degree of freedoms (DOFs) are needed to be condensed for the compatibility to the 

existing computer program as well as the numerical efficiency. Therefore, the 

internal and external DOFs and the corresponding forces can be expressed as. 

    {                    }  (4. 122) 

    {                   }  (4. 123) 

    {𝑀   𝑀       𝑀   𝑀   }  (4. 124) 

    { 𝑀   𝑀   𝑀𝑥 𝑀   𝑀   }  (4. 125) 

 

The condensed stiffness k
*
 and generalized force f can be expressed as, 
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      (4. 126) 
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where, 
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 (4. 130) 

 

The internal DOFs ui at hinge location can be decoupled by multiplying the 

incremental rotations at external DOFs, ue, as, 

       
  (        ) (4. 131) 

 

4.2.7 Incorporation of two end plastic hinges 

 

The plastic hinges at the element ends are needed to be incorporated into the 

formulations, and the derivation has been already given in Chapter 3. After the 

condensation of the internal DOFs, the stiffness matrix and the generalized load 

vector can be written as, 
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𝑌.             
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 (4. 132) 

   {  𝑀  
 𝑀  

 𝑀𝑥
 𝑀  

 𝑀  
 }  (4. 133) 

 

The incorporation of the two end hinges at two principle directions can be 

achieved by updating the stiffness matrix. The  

  ̃       
   

 (        )

   
 (4. 134) 

  ̃   
          

   
 (4. 135) 

  ̃       
   

 (        )

   
 (4. 136) 

  ̃       
   

 (        )

   
 (4. 137) 

  ̃   
          

   
 (4. 138) 

  ̃       
   

 (        )

   
 (4. 139) 

in which, 

     (        )(        )             (4. 140) 

     (        )(        )             (4. 141) 

where,      and     are the spring stiffness at y-axis for the left and right hinges, 

respectively; and     and     are the spring stiffness at z-axis for the left and right 

hinges, respectively. 
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Therefore, the member stiffness matrix can be eventually obtained as, 

    ̃  

[
 
 
 
 
 
                        

 ̃           ̃      

 .  ̃           ̃  
𝑌.             

𝑀.  ̃      

 ̃  ]
 
 
 
 
 

 (4. 142) 

 

And the rotations at the element ends can be calculated as, 
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}  [

            

            
]
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]  {

     

     
} (4. 143) 
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}  [

            

            
]
  

 [
    
    

]  {
     

     
} (4. 144) 

 

4.3. Kinematic descriptions of motion 

 

In order to consider large deflections of a beam-column element in a three-

dimensional space, three common kinematic descriptions of motion, such as total 

secant stiffness method, joint orientation matrix method and incremental secant 

stiffness method, are commonly introduced. Chan (1992) has conducted an extensive 

study on these three kinematic formulations and found the incremental secant 

stiffness method to be the most stability, efficient and suitable for nonlinear beam-

column finite element analysis. In the present study, the incremental secant stiffness 

method is adopted, which has been successfully used by numerous research and 

actual practice. Similar to the analytical approach given in Chapter 3, the updated 

Lagrangian description is also employed.  
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4.3.1 The incremental secant stiffness method 

 

The incremental secant stiffness method is similar to the total incremental secant 

counterpart, where the equilibrium conditions are established by the last-known 

configuration in the former approach and the original configuration in the latter 

method respectively. However, the incremental rotations in each step should be 

limited to be small, but the element can exhibit moderately large rotations by 

considering the infinitesimal rotations as vectorial quantities. Furthermore, the 

convergence speed of the incremental secant stiffness method is considerably better 

than the total secant stiffness approach. 

 

This method has been successfully adopted by numerous researchers and 

approved to be efficient and effective for large deflection and inelastic analysis. 

Chan (1989) used the incremental secant stiffness method for inelastic post-buckling 

analysis of the tubular member and found to be very stable and efficient in the 

numerical iterative procedure. Yang and Chiou (1987) utilized this approach for the 

large deflections of the planar frame. Argyris et al. (1978) extended this method to 

the three-dimensional frame with large member rotations. Chan and Zhou (1994, 

1995) also introduced this algorithm in their high-order beam-column element and 

proved it to be accurate and feasible. 

 

Therefore, the goal of the analysis at each load-increment is to find the resisting 

forces at the i+1
th
 position by referring to the last-known configuration at the i

th
 

position, as shown in Figure 4.5. The natural incremental rotations in an element can 

be calculated as, 
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                  (4. 145) 

                  (4. 146) 

                  (4. 147) 

                  (4. 148) 

in which,      ,      ,       and       are the incremental rotations about the last 

known configuration; and      and      are the rigid body rotations given by, 

      
         

  
 (4. 149) 

      
         

  
 (4. 150) 

where,    is the member length at the last known configuration;     ,     ,      

and      are the displacement at member local axes along z- and y- axes respectively. 

 

The relative incremental twist about the shear center can be simply evaluated as, 

   𝑥    𝑥     𝑥   (4. 151) 

 

The incremental axial lengthening can be determined as, 

      u       (4. 152) 

where, 

              (4. 153) 

and the  u  can be obtained by the first deviation of the expressions of u  as, 
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(4. 154) 
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The consideration of the incremental bowing effect is very vital for an accurate 

analysis by only one element per member, which is usually ignored by some 

researchers and more elements are needed for minimizing the corresponding errors. 

The comparison results of the included and excluded this incremental bowing effect 

has been reported by Chan (1992). 

 

Once the natural deformations are obtained, the incremental forces and moments 

can be evaluated as, 

  R           (4. 155) 

 R    R   R  (4. 156) 

where,       is the element stiffness matrix at the i
th

 configuration; and R is the 

internal resisting forces and given by 

 R  { 𝑀  𝑀  𝑀𝑥 𝑀  𝑀  }  (4. 157) 
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4.3.2 Transformation matrix [T] from member basic force/displacements to 

member local axes 

 

A three dimensional element contains six degree of freedoms at each ends in its 

member local axes as shown in Figure 4.6. The twelve forces and moments can be 

calculated by the six internal and independent member forces and moments by the 

transformation matrix [T] expressed as, 

  ̅       (4. 158) 

        ̅ (4. 159) 

     

[
 
 
 
 
 
 
 
 
 
 
 
       
          
            
       
      
      
      
            
          
      
      
      ]

 
 
 
 
 
 
 
 
 
 
 

 (4. 160) 

where,  ̅ and  ̅ are the forces and corresponding displacements at the member local 

axes as shown in Figure 4.6. 

 

4.3.3 Matrix [N] for the rigid body movement 

 

In the co-rotational formulation, the rigid body movement is extracted from the 

element derivation and can be calculated by introducing the matrix [N] as, 
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 (4. 161) 

where, 

    
𝑀  

   𝑀  
  

  
 (4. 162) 

    
𝑀  

   𝑀  
  

  
 (4. 163) 

    
  

 
 (4. 164) 

in which,   , 𝑀  
 
, 𝑀  

 
, 𝑀  

 
 and  𝑀  

 
 are the condensed member resisting forces 

and moments in the last known configuration. 

  

4.3.4 Transformation matrix [L] from member local to global axes 

 

The element formulations are given in a set of member local axes as shown in 

Figure 4.7, and needed to be transferred to the global axes before assembling. 

where, 

      

[
 
 
 
        

        

        

        ]
 
 
 

 (4. 166) 

 

                  (4. 165) 
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The initial transformation matrix can be obtained as, 

      

[
 
 
 
 
 C 

                

√C   C  

               

√C   C  

  √C   C       √C   C      

  
                

√C   C  

               

√C   C  ]
 
 
 
 
 

 (4. 167) 

where, 

    √(       )  (𝑌   𝑌  )  (       )  (4. 168) 

 C  
       

  
 (4. 169) 

 C  
𝑌   𝑌  

  
 (4. 170) 

 C  
       

  
 (4. 171) 

in which,    is the original member length; and    ,    , 𝑌  , 𝑌  ,     and     

are the coordinates in original position. 

 

For particular condition that Cx and Cz are both 0 that, the transformation 

matrix can be rewritten as, 

      [
              
    
         

] (4. 172) 
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 (4. 173) 

where, 
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 𝑌    𝑌  

  
 (4. 174) 

     
         

  
 (4. 175) 

     √  (   )  (   )  (4. 176) 

in which,    is the current member length at the ith iteration; and     ,     ,  𝑌  , 

 𝑌  ,      and      are the incremental displacements in global axes. 

 

4.3.5 Relations between member local axes and global axes 

 

With the availability of the above transformation matrix, the complete 12 by 12 

element stiffness matrix can be calculated by the following process as, 

in which,       is the rotated member stiffness matrix; and      is the element 

stiffness matrix in element local axes. 

 

Therefore, the global tangent stiffness matrix can be obtained by assembling the 

rotated element stiffness matrix as, 

where,       is the global tangent stiffness matrix of the whole system; and NELE is 

the total number of the element. 

 

The member incremental displacement in global axes is needed to be transferred 

to member local displacements as, 

          (               )     (4. 177) 

       ∑      
 

    

 
 (4. 178) 
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The element resisting forces are needed to transferred to global axes as, 

 

4.4. Verification examples 

 

The computer program as presented in Chapter 3 has been further extended to 

the analysis of three-dimensional problems. In order to give an extensive evaluation 

of the accuracy and validity on the proposed analytical model for large deflection 

and inelastic analysis of the space frames and members, several examples are 

constructed and presented in this section.  

 

4.4.1 Biaxially-loaded cantilever column 

 

In this example, the capacity for large deflection analysis of the proposed 

element is tested and verified. A cantilever column under a purely axial load, as 

shown in Figure 4.8, is analyzed by the second-order elastic analysis method. The 

section of this column is UB305   127   42, with the initial imperfections equaling 

to L/500 and L/400 along its minor and major axes respectively. The material of this 

column is S275, where the Young’s modulus is 2.05   10
8
 kN/m

2
 and the yield 

strength is 2.50   10
4
 kN/m

2
. The column is 10 meters long and a concentrated load 

along Z-axis as -18 kN is applied at the top of the column. 

 

   u                 (4. 179) 

 R          (4. 180) 
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To evaluate the accuracy of the proposed element in large deflection analysis 

and the simulations on initial member imperfections, the imperfect PEP (Pointwise 

Equilibrating Polynomial) element as proposed by Chan and Zhou (1995) is 

introduced for comparing purpose. The PEP element is possessed of high-order 

shape function and initial imperfections, which capable to simulate very large 

member deflections by one element per member and is widely recognized to be one 

of the best elements for second-order nonlinear analysis. In the second-order elastic 

analysis by the proposed element, the stiffness for the three hinges are set to be 

infinity and the internal hinge is assigned to be placed at the half length. 

 

This example is essential for testing the element formulations for second-order 

analysis and the use for the actual design purpose. The results by the proposed 

element and the PEP element (Chan & Zhou, 1995) are presented in Figure 4.9. 

From the comparisons, it shows that the two curves are closed and the maximum 

differences between the two elements are within 0.3%. This indicates the accuracy of 

the proposed element formulations and the kinematic descriptions for the large 

deflections. 

 

4.4.2 Two story space steel frame with I sections 

 

This example presents a two story and two bay space steel frame with I sections 

for both beams and columns, as shown in Figure 4.10, which is originally studied 

and analyzed by the Finite Element Method (FEM) by Cuong and Kim (2007). The 

section size of the steel frame is H150   160   10   6.5 and the yield stress, 

Young’s modulus and shear modulus are 350 MPa, 221 GPa and 85 GPa 
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respectively. The concentrated loads are applied at the nodes only, where P equals to 

80 kN. The out-of-plumpness imperfection is directly modeled by offsetting the 

coordinates of the nodes as tabulated in Table 4.1, and no member initial 

imperfections are included in analysis. The frame is fixed to the ground and all the 

members are rigidly connected. All the members are modeled by one element in the 

present study. 

 

The comparison results are presented in Figure 4.11 and Figure 4.12 for the 

displacements at the roof and second floor levels respectively. The results by the 

proposed analytical model is only slightly stiffed than the FEM results and very 

closed. The ultimate load factors are 0.94 and 0.92 for the FEM and the proposed 

analytical model, respectively. This indicates the high accuracy can be achieved by 

adopting the proposed numerical method by using only one element per member for 

advanced inelastic analysis of space steel frames.  

 

4.4.3 Harrison’s space frame 

 

In this example, an equilateral triangular space frame is introduced as shown in 

Figure 4.13, which has been originally studied by Harrison (1965) by the 

experiments. All members in the frame are circular hollow sections with diameter 

and wall-thickness equaling to 42.72 mm and 4.47 mm, respectively. This frame has 

been latterly studied by Teh and Clarke (1999) by using the plastic-zone approach. 

All members in the proposed analytical method are modeled by one element only. 
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The comparison results are plotted in Figure 4.14, where the results from the 

experiment, plastic-zone analysis and the proposed analytical model are presented 

and compared. It can be seen that, the results among the three approaches are closed. 

The results from the proposed analytical model are identical as those from the 

plastic-zone analysis in the elastic range while a slightly different is noticed in the 

elasto-plastic range. Both the plastic zone method and the proposed analytical model 

are capable to reflect the inelastic and large deflections of the frame under increasing 

loads, however, the latter method is much more efficient and easily-formulated. 

 

4.4.4 Two story space steel frame with rectangular sections 

 

This example is firstly proposed and analyzed by Argyris et al. (1982) as 

presented in Figure 4.15, and later it was analyzed by the forced-based element 

proposed by De Souza (2000), which is introduced for the comparisons. The 

geometry of the two story space frame is illustrated in Figure 4.15, where the frame 

is with 400 cm width, 300cm depth and 400cm height at each floor respectively. The 

sections for both the beams and the columns are solid rectangular and the sizes are 

400 mm   200mm and 200mm   400mm, respectively. The Young’s modulus for 

the steel is 19613 MPa and yield stress is 98 MPa. Since two concentrated loads are 

applied at the mid-span of the two roof beams, these two beams are modeled by two 

elements and the other members are simulated by one element per member. 

 

The load vs. deflection along X-axis at the roof level is plotted in Figure 4.16. 

From the comparisons, it shows that the results from the two analytical methods are 
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closed, where the forced-based element is usually considered to be essentially 

suitable for inelastic analysis.  

 

4.4.5 Six story space steel frame 

 

This is a famous example and initially proposed by Orbison et al. (1982) by the 

conventional plastic hinge approach, which is one of the famous examples for 

calibrating and verifying the validity of the analytical method in practice. Liew et al. 

(2000a) introduced the improved plastic hinge analysis method for the advanced 

analysis of this frame. And later Jiang et al. (2002) proposed a spread-of-analysis 

approach for the inelastic analysis and also studied this example. More recently, Iu 

and Bradford (2012a, 2012b) used their high-order element associated with the 

refined plastic hinge method and selected this frame for calibrating their theories. 

 

The geometry of the six story frame is illustrated in Figure 4.17, where the 

overall width, depth and height of the frame is 14.63 m, 7.315 m and 21.948 m, 

respectively. The yield stress of all members is 250 MPa, while the Young’s 

modulus is 206850 MPa. Uniform floor loads equaling to 9.6 kN/m
2
 are converted 

into concentrated loads applied at the top of the columns. Wind loads are treated as 

joint loads as 51.376 kN and applied in the Y-direction at the beam-column joints. 

All the members are modeled by one element per member only. 

 

The comparison results are plotted in Figure 4.18 and Figure 4.19 for the load vs. 

deflection along Y-axis and X-axis, respectively. It can be noticed that, the 

differences from the three analytical approaches are slight in the load vs. deflection 
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curve in Y-axis direction. However, the differences are obvious in the deflections in 

X-direction. This might be properly induced by the miss-consideration of the shear 

deformation in the proposed element, which will be further improved in the later 

study. 

 

In the plastic zone analysis proposed by Jiang et al. (2002), all the sections are 

needed to discretized into three layers in the web and flanges respectively, and nine 

integral points along both the major and minor axes are required. Therefore, the 

computing expense for the plastic-zone analysis is huger than the required expense in 

the plastic hinge analysis approach. Although the spread-of-plastic behavior in the in 

the member locally cannot be accurately reflected by the plastic hinge approach, 

from the view of the overall structural system, the differences between the plastic-

zone and plastic-hinge methods are not significant. Therefore, the plastic hinge 

method is regarded to be the first choice in actual engineering practice. 

 

4.4.6 Twenty story space steel frame 

 

In this example, a twenty story space frame is selected and analyzed, which is 

firstly studied by Liew et al. (2000a), which is a large-scale size problem closed to 

reality. The geometry and the section assignments of this twenty story space frame 

are illustrated in Figure 4.20. There are totally 460 members and 210 joints in this 

frame. All the members are steel sections and A50 steel is used with the yield stress 

equaling to 344.8 MPa. The gravity loads on all the floors are 4.8 kN/m
2
 and 

concentrated into joints loads applied at the top of the columns. Wind loads of 0.96 
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kN/m
2
 are applied at the beam-column joints. All the members are modeled by one 

element per member in the proposed analytical model. 

 

The results obtained by the improved plastic hinge method from Liew et al. 

(2000a) are selected for the comparison and given in Figure 4.21. From the 

comparison, the two curves are identical in the elastic range, while the differences 

are noticed in the gradually yielding stage, which might be due to the disparities in 

the refined plastic hinge model in the two analytical approaches. The ultimate load 

factors are 1.022 and 1.032 from the present study and the improved plastic hinge 

model by Liew et al. (2000a), respectively. 

 

4.5. Concluding remarks 

 

In this chapter, the analytical model as presented in the previous chapter for 

planar frame analysis has been extended to three-dimensional space analysis. The 

element formulations are further derived and given in details. In order to consider the 

large deflections, the updated Lagrangian description associated with the incremental 

secant stiffness method is introduced and approved to be efficient and effective. 

Since the internal degrees of freedom have been condensed, the overall size of the 

global stiffness matrix has been dramatically reduced as well as the significant 

improvements on numerical efficiency. Finally, verification examples are given and 

the proposed analytical model is approved to be accurate and valid for advanced 

analysis of space frames. 
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Figures 

 
Original Position 

  
Intermediate Position Intermediate Position 

  
Final Position Final Position 

 

Figure 4.1 Non-vectorial property of large rotations in three-dimensional space 
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Figure 4.2 The element local coordinate system  

 

 

 

Figure 4.3 The inclination of principle axes 
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(a) Along y-axis 

 

(b) Along z-axis 

Figure 4.4 Relative member basic forces and deformations  



 

Chapter 4 Advanced analysis and design of three-dimensional framed structures  

____________________________________________________________________ 

158 

 

 

 

 

 

 

 

 

Figure 4.5 Incremental kinematics of an element in three-dimensional space 
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Figure 4.6 Member deformations and associated forces in local axes  
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Figure 4.7 Member deformations and associated forces in global axes 
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Figure 4.8 Geometry and loadings of the cantilever column 

 

 

Figure 4.9 Vertical displacement at the top node 
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(a) Dimensions and section layout 

 

(b) Loadings and boundary conditions 

Figure 4.10 Geometry and loadings of two story space frame with I section 
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Figure 4.11 Displacement along X-direction at the roof level 

 

 

 

Figure 4.12 Displacement along X-direction at the 2
nd

 floor level 
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Figure 4.13 Geometry and loadings of the Harrison’s space frame 

 

 

Figure 4.14 Horizontal sway of the Harrison’s space frame 
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(a) Dimensions and section layout 

 

(b) Loadings and boundary conditions 

Figure 4.15 Geometry and loadings of two story frame with rectangular section 
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Figure 4.16 Horizontal displacement of the two story frame 
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(a) Plan view 

 

(b) Perspective view 

Figure 4.17 Geometry of the six story space frame 
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Figure 4.18 Load vs. displacement along Y-axis of the six story space frame 

 

 

Figure 4.19 Load vs. displacement along X-axis of the six story space frame 
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(a) Plan view 

 

(b) Perspective view 

Figure 4.20 Geometry of the twenty story space frame 
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Figure 4.21 Roof displacement of the twenty story space frame 
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Tables 

 

Table 4.1 Out-of-plumpness imperfection of two story space frame 

Level 

Imperfection (mm) 

Column (1) Column (2) Column (3) Column (4) 

X Y X Y X Y X Y 

Roof 4.51 11.08 5.49 11.41 -8.17 6.58 -4.31 12.04 

Second Floor 1.39 6.88 -0.68 6.77 -5.11 2.11 -3.96 6.19 

Base 0 0 0 0 0 0 0 0 

Break 
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CHAPTER 5 SECTIONAL YIELD SURFACES FOR SECOND-ORDER DESIGN AND ADVANCED ANALYSIS 

SECTIONAL YIELD SURFACES FOR SECOND-ORDER 

DESIGN AND ADVANCED ANALYSIS 

 

 

This chapter discusses a proposed cross-section analysis technique for arbitrary 

sections in a hybrid steel and concrete frame. To calculate sectional capacity, a 

quasi-Newton iterative scheme is adopted in determining the neutral axis of a section. 

This study puts forward two types of stress resultant approaches for concrete 

components, namely, the equivalent stress block method and elaborated layer-

integration method. The former is limited to the ultimate limit state, whereas the 

latter is valid for any specified conditions. A structural steel component is 

automatically meshed into small fibers and each rebar is lumped into a point that 

occupies a certain area. The openings and voids occupied by other components are 

removed by the negative area approach. Three types of sectional yield surfaces, i.e. 

failure, initial yield and concrete fracture surfaces, are introduced for further use in 

the proposed second-order design and advanced analysis. This analysis technique is 

discussed in the succeeding chapters. Finally, the effectiveness of the cross-section 

analysis technique is verified on the basis of published works and design codes.  
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5.1. Introduction 

 

Sectional states are to be examined for both the second-order design and 

advanced analysis. To this end, the evaluation approach based on sectional yield 

surfaces is adopted. Sequentially, three types of strength interaction surfaces (Figure 

2.1) for a section of a beam-column element are introduced; these surfaces are the 

failure, initial yield and concrete fracture surfaces. A failure surface defines the 

ultimate limit state of a cross-section and can be easily found in conventional design 

charts; it is commonly used in elastic analysis to verify member strength. An initial 

yield surface is the controlling boundary condition that determines elastic limit. 

These two surfaces divide a loading space into elastic, elasto-plastic and plastic 

zones, which represent different states of sectional strength. These surfaces are also 

further used in the present refined plastic hinge model. A concrete fracture surface 

(Figure 5.2) is used to determine the limits for crushing or cracking fractures. Figure 

5.2 shows that the upper zone of the concrete fracture surface is controlled by 

concrete crushing, whereas the lower zone is the crack surface controlled by tensile 

fracture. 

 

The ultimate capacity of a section usually describes a failure surface, which is 

also usually called a full yield surface; this capacity is extensively adopted in design 

practice. The concept of a failure surface was proposed by Dafalias et al. (1975), 

who incorporated it into the construction of a model that describes material behavior 

under complex multi-axial loading. This model is particularly suitable for cyclic 

loading conditions and has been extended to soil analysis (Dafalias, 1979). 

Sfakianakis (1991; 1997, 1998), De Vivo et al. (1998) and El-Tawil et al. (2001a, 



 

Chapter 5 Sectional yield surfaces for second-order design and advanced analysis  

____________________________________________________________________ 

174 

2001b) used this concept as basis for constructing the failure surfaces of regular and 

irregular reinforced concrete sections. Their research shows that the sizes and shapes 

of failure surfaces are significantly influenced by reinforcing bar arrangement and 

sectional geometry. Attalla et al. (1994), Chan et al. (1997), Liew et al. (2000a) and 

Jiang et al. (2002) carried out beam-column finite element analysis to propose 

similar methods for the conventional design and advanced plastic analysis of 

structural steel sections associated with use of the failure surface. Moreover, Chen et 

al. (2001), Sfakianakis et al. (2002) and Charalampakis et al. (2008) developed 

several cross-section analysis techniques for irregular composite sections with 

arbitrarily arranged structural steels and reinforcing bars. 

  

In the present study, a quasi-Newton method is introduced to determine the 

height of the neutral axis of a section and the capacity of arbitrary cross-sections can 

be obtained. An entire steel section is meshed into small fibers for stress integration, 

and the openings and voids occupied by steel sections and reinforcing bars are 

removed by the negative area approach. To calculate the stress resultants of concrete 

components, either the equivalent stress block method or the elaborated layer 

integration method can be used. The first approach is simple and has been widely 

employed in concrete design codes, but is limited to the determination of ultimate 

sectional capacity. The second approach is more rigorous, accurate and suitable for 

use under any sectional state; this flexibility is attributed to the fact that the concrete 

zone is divided into parallel layers. Given that only a slight difference in derived 

ultimate sectional capacity occurs between these two approaches, the equivalent 

stress block method is recommended for failure surfaces because of its simplicity 
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and the elaborated layer-integration method is suggested for other limit states, such 

as initial yield or cracking onset. 

  

In this chapter, the cross-section analysis technique is presented in detail and the 

proposed sectional yield surfaces are briefly explained. Finally, the effectiveness of 

the proposed analysis technique for arbitrary sections is verified on the basis of 

published works. 

 

5.2. Assumptions 

 

For the cross-section analysis in this research, the following basic assumptions 

are adopted: 

 

1) Plane sections before deformation remain in plane after deformation, 

suggesting linear strain distribution across section depth. This observation 

corresponds to the classical Bernoulli–Navier hypothesis in line with the 

assumption for analysis by beam-column elements.  

2) The bond slip between concrete and steel is prevented and full strain 

compatibility between steel and surrounding concrete is assumed. 

3) Steel reinforcement embedded in concrete does not buckle under 

compression. 

4) Compressive stresses and strains are positive, as typically assumed in cross-

section analysis. 
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5) The tensile strength of concrete is considered only in the calculation of 

sectional strength before cracking. Except for this calculation, such tensile 

strength is disregarded. 

 

The definition of the positive direction of the axial compression in cross-section 

analysis contrasts with that in the beam-column element assumptions presented in 

the previous chapters. This assumption for the positive direction is commonly found 

in conventional design practice for cross-section analysis. Therefore, the forces and 

moments obtained from the analysis by beam-column elements should be revised in 

the section strength checks. Accordingly, tensile stress and strain are assumed 

negative in cross-section analysis. 

 

5.3. Cross-section analysis technique 

 

This segment of the thesis discusses the sectional analysis of arbitrarily shaped 

sections, which may consist of four components: unconfined and confined concrete, 

rebars, structural steels and openings. An arbitrarily shaped cross-section with 

arbitrarily arranged reinforcing bars and structural steels subjected to bi-axially 

eccentric loading is shown in Figure 5.3. All the concrete and opening components 

are inputted by the vertices, which have the coordinates Yi, Zi with respect to the 

global Y-, Z-axes. For curved or circular components, the boundary line is 

approximated as a polygon, in which accuracy depends on the number of vertices. 

The steel component is automatically meshed into a given number of small triangular 
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fibers, each treated in the same manner as an individual rebar in the analysis. The 

mesh algorithm proposed by Niceno (2002) for steel components is introduced. 

 

5.3.1 Referenced loading axes 

   

Figure 5.3 shows that the location of the neutral axis can be determined by two 

variables, i.e. orientation angle θn and the depth dn of the neutral axis. Brondum-

Nielsen (1985) and Yen (1991) used a quasi-Newton method to identify θn and dn; 

this method effectively and efficiently determines the neutral axes and failure 

surfaces of regularly shaped cross-sections. The authors adopted the geometric 

centroid as the origin of reference loading axes, which can be calculated as, 
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where Ac, Ar, As and Ao are the areas of concrete, reinforcing bars, structural steels 

and openings, respectively; Zc, Yc, Zr, Yr, Zs, Ys, Zo and Yo are the centroid 

coordinates of each component; and Zgc and Ygc are the coordinates of the geometric 

centroid of an entire section. 

 

Conversely, Chen et al. (2001) reported that this technique does not always 

converge when it is applied to irregularly shaped cross-sections, especially when the 

arrangement of reinforcing bars and structural steels is highly eccentric. Chen et al. 

(2001) proposed that the aforementioned convergence problem can be overcome by 

using the plastic centroid as the origin of reference loading axes; meanwhile, the 
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number of iterations for convergence can be reduced. For an arbitrarily shaped 

composite cross-section, the plastic centroid may be determined thus (Roik & 

Bergmann, 1990): 
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in which fc, fr and fs denote the characteristic strengths of concrete, reinforcing bars 

and structural steels, respectively; γc, γr and γs represent the corresponding partial 

safety factors; and Zpc and Ypc are the coordinates of the plastic centroid of the entire 

section. 

 

Given the Euler–Bernoulli hypothesis in beam-column finite element analysis, 

the generalized force and moments should correspond to the origin of the geometric 

centroid. To ensure consistency, the moment capacities calculated at the plastic 

centroid should be converted into values by corresponding to the geometric centroid. 

The conversion of moments is described in the succeeding sections. 

 

5.3.2 Coordinate systems 

 

Three coordinate systems, namely ZCY, zoy and uov, are used to describe the 

analysis procedure. The ZCY system is intended to describe a cross-section defined 

by designers. The zoy and uov systems have the same origin as the plastic centroid 

of the cross-section. The geometric and plastic centroid can be readily determined. 

Thus, the entire iterative process involves only two rounds of coordinate conversion: 
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conversion from the global ZCY system to the load reference zoy system and that 

from the zoy system to the uov system, in which the u-axis is parallel to the neutral 

axis. 

 

The coordinate conversion equations are written as, 

 pcz Z Z    (5. 5) 

 pcy Y Y 
 

(5. 6) 

 cos sinn nu z y    (5. 7) 

 cos sinn nv y z  
 

(5. 8) 

where Z and Y, z and y and u and v are the coordinates in the ZCY, zoy and uov 

systems, respectively. 

 

5.3.3 Stress resultants in concrete by equivalent stress block method 

 

In calculating the stress resultant of concrete under ultimate crushing, Whitney’s 

stress block (1965) (Figure 5.4) is introduced in the integration of parabola stress 

distribution, which is widely adopted in many national concrete codes. The strain of 

the most externally located fiber is taken as crushing strain εcu and tensile strength is 

usually disregarded at the ultimate state. 

 

The equivalent stress block method is limited to the generation of stress 

resultants under the ultimate failure state. The stress resultants of other limit states 

can be obtained by more comprehensively elaborated layer-integration approaches. 

The difference between these two methods is minimal under ultimate limit state, as 
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demonstrated in the verification examples. The equivalent stress block method is 

more suitable for calculating the stress resultant of concrete under the ultimate limit 

state. The mathematical expressions for such calculation are as follows: 
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where nc is the number of vertices of the compression zone; ( )v u is the linear 

equation of the boundary line equal to v(u) – vn, with vn being the coordinate of the 

neutral axis in the v-axis;  is equal to +1 when 0zcN  and –1 when 0zcN . 

 

5.3.4 Stress resultants in concrete by elaborated integration method 

 

As previously stated, the concrete zone is divided into several layer segments 

(Figure 5.5) for a more accurate integration of stress in concrete components. Given 

that stress and strain distributions are the same under identical vertical levels in a 

local rotation axis, the fibers in each layer segment are of the same strain value and 

the method for dividing layer segments involves less computation, making it more 

efficient than conventional sectional fiber discretization. Except for the generation of 

the concrete fracture surface of a section, the entire concrete zone should be divided 

into sub-zones; the tension zone of concrete is disregarded. 
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The proposed approach for layer segment integration is applicable to the 

generation of any yield or control surface, with the approach implemented through 

adjustments in strain value at the most externally located fiber. A stress vs. strain 

model should be used to determine stress distribution. Adequate segments are 

required for acceptable accuracy. The mathematical formulae are as follows: 
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where nL is the number of sectional layers and nv(i) denotes the number of 

intersection points in the corresponding layers.  

 

5.3.5 Stress resultants in steel 

 

Each rebar is treated as an individual fiber as structural steel is meshed into 

fibers with rectangular areas. The stress resultants of steel sections and 

reinforcements can be computed thus: 
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where Arj and Ask are the areas of discrete fibers and reinforcing bar respectively; 

and σrj and σsk are the corresponding stress values. 

 

5.3.6 Opening area 

 

The negative area approach is used to remove the voids occupied by the steel 

components and openings in a section. 

 

5.3.7 Total force and moments 

 

The bending moments obtained from the above-mentioned equations are 

summed and then converted into the xoy system by the transformations below. The 

moments generated from the cross-section analysis are based on the origin of the 

plastic centroid, which should be converted into reference loading axes, i.e. the 

origin of the geometric centroid: 

 x xc xs xoN N N N    (5. 18) 

 u uc us uoM M M M      (5. 19) 

 v vc vs voM M M M    (5. 20) 

 cos sinpz u n v nM M M      (5. 21) 

 sin cospy u n v nM M M    (5. 22) 

 ( )z pz x gc pcM M N Z Z    (5. 23) 

 ( )y py x gc pcM M N Y Y    (5. 24) 
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where Nx, Mu and Mv are the axial force and bending moments with reference to uov 

axes; Mpy and Mpz are the bending moments in relation to local yoz axes with the 

origin of the plastic centroid; and My and Mz are the output moments with reference 

to the geometric centroid. 

 

5.3.8 Iteration scheme 

 

Section capacity can be precisely determined by rotating the orientation θn of the 

neutral axis from 0° to 360°
 
 with changing depth dn. The Regula–Falsi numerical 

method is used to derive equilibrium, compatibility and constitutive relationships. 

The procedure for sectional analysis is illustrated in Figure 5.6. 

 

Axial force capacity Nx is iterated with respect to dn by the following equation, 

with θn kept constant: 

 

'

, '
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n k n xd x

x x

d d
d d N N

N N


  


 (5. 25) 

where dn,k is the depth of the updated neutral axis; dn and dn’ are the  depths of the 

neutral axis with axial capacity being smaller and greater than the design value, 

respectively; Nx and Nx’ are the axial force capacities calculated at  dn and dn’; and 

Nxd is the current design axial loading. 

 

5.4. Sectional yield surfaces 

 

Any specified bending moment capacity under a given axial force can be 

obtained by adopting the cross-section analysis technique presented in the above-
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mentioned section. Thus, tri-axial strength interaction surfaces are introduced in the 

second-order design and advanced analysis. These surfaces, also called the sectional 

yield surfaces of a cross-section, are defined by axial loads and corresponding 

moments. Three section yield surfaces are introduced: failure, initial yield and 

concrete fracture surfaces (Figure 2.1). 

 

5.4.1 Failure surface 

 

The outermost surface in Figure 2.1 is a failure surface. The points in the figure 

define the ultimate limit state of a cross-section to which the loads at these points 

cause sectional damage by either concrete crushing or steel fracture. This surface is 

essential for determining individual load-bearing states in conventional designs. 

 

Many national codes provide the basic formulae for generating failure surfaces 

under normal situations. A uni-axial bending condition can be treated as a specific 

plane that intersects the sectional yield surface. Some researchers have put forward 

simplified equations that describe these planar failure surfaces to avoid complexity 

and save on computational time in generating failure surfaces for bi-axial analysis. 

Such avoidance is not adopted in the present research because yield surfaces can be 

pre-constructed and interaction points are specifically indexed by the proposed 

indexing method, thereby dramatically reducing computational time. 

 

5.4.2 Initial yield surface 
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Apart from the failure surface, the initial yield surface is also a fundamental 

strength control criterion for the plastic hinge method proposed in this study. The 

initial yield surface is the boundary surface within a particular load combination; it 

has no material yielding and its cross-section remains elastic. This elastic limit is an 

approximate assumption for numerical analysis, causing slight deviations in the 

tracing of load versus deflection path in a gradual yield range. In this study, the 

elastic limit strains of concrete and steel are ɛce and ɛse, respectively.  

 

In generating initial yield surfaces, all sectional fibers are monitored and the 

onset of the strain of either concrete or steel components exceeding their elastic 

limits is detected. Sectional capacity is obtained from the state at initial yield and the 

stress along the cross-section is integrated to compute the internal force and 

moments. The upper limit of the initial yield surface is therefore controlled by 

concrete, whereas the lower limit is governed by steel. 

 

5.4.3 Concrete fracture surface 

 

In contrast to metal materials, which have isotropic properties, concrete weakens 

under tension and cracks under low tensile stress. In the inelastic analysis of RC and 

SCC members or frames, therefore, cracking-induced influence on the flexural 

stiffness of members should be considered. This incorporation into the analysis can 

be realized by reducing moments of inertia (discussed in the subsequent chapters). 

 

As an extension of initial yield surface application, the fracture surface of 

concrete is first introduced in the consideration of cracking in beam-column element 
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analysis. The cracking surface is illustrated in Figure 5.2, which shows that the upper 

zone of the concrete fracture surface is controlled by concrete crushing, thereby 

causing overlap with the failure surface given that the same controlling criteria are 

used. The lower zone is the crack surface controlled by tensile fracture strain ɛtu. 

 

5.4.4 Index of surfaces 

 

This type of cross-section analysis has been criticized as more complicated and 

time consuming than the use of simplified equations in codes or certain studies. 

However, completely generating all yield surfaces in every iteration is impossible 

because such operation involves huge computational time. These two methods can 

be combined for optimally efficient and accurate design and analysis. One approach 

is to pre-generate failure surfaces prior to frame analysis and design. The other 

approach is to index interaction points to accelerate search speed, with minimal 

storage required for recording strength interaction surfaces. The index approach and 

search technique are discussed in this section.  

 

The index vector is denoted as ( , )   and the position coordinates   and   

are expressed as, 

 /i xiN N    (5. 26) 

 
1tan ( / ) /i yi ziM M    (5. 27) 

Here, N  is the axial load increment of the yield surfaces and   is the 

rotation increment of the moment capacity curve under axial force Nxi. Then the 

strength of interaction surfaces can be expressed as follows: 
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  ( , ),    m  and  m=1,2,3 
(5. 28) 

where Ω is the indexed strength interaction surface and the failure, initial yield and 

concrete fracture surfaces can be written as Ωf, Ωe and Ωc respectively. The 

corresponding axial force and moments can be obtained, thus:  

  ( , ),1xi i iN     
(5. 29) 

  ( , ),2yi i iM     
(5. 30) 

  ( , ),3zi i iM     
(5. 31) 

 

The applied force vector is expressed as (Nxa, Mya, Mza)
T
 and converted into the 

index vector as ( a , a )
T
 using the equations above. Intersection point (Nxn, Myn, 

Mzn)
T
 can be obtained by the following equations: 

xn xaN N  (5. 32) 
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5.5. Verifications of the cross-section analysis technique 
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Computer software with a completely user-friendly interface (called RCD-2013) 

is developed on the basis of the analytical algorithm presented in this chapter. The 

core and user interface of the software are written using Fortran-90/95 and C#/C++, 

respectively (Figure 5.8). To illustrate the accuracy and efficiency of the analytical 

method and software, several benchmark examples are presented and compared. 

 

5.5.1 Bi-axially loaded and doubly symmetric steel sections 

 

In this example, three typical steel sections (i.e. wide flange, double web and 

circular hollow sections) subjected to bi-axial loading are analyzed. The results are 

compared with the benchmark solutions reported by Chen and Atsuta (1972). The 

steel grade and design yield stress adopted in the current work are A36 and 250 MPa, 

respectively. The steel sections are meshed into small fibers, a task that can be 

automatically executed in RCD-2013. The dimensions and meshed fibers are 

illustrated in Figure 5.9(a, b)–Figure 5.11(a, b). Because the sections are doubly 

symmetric, only a quarter of strength interaction curves are plotted.  

 

The analysis results are shown in Figure 5.9(c)–Figure 5.11(c). The solid lines 

represent exact solutions and the dotted lines are the results obtained by the proposed 

analytical method. The findings exhibit minimal differences, which may be 

attributed to the length of the sectional fibers. In practice, fiber length is usually 

assumed as one-fifth of plate thickness, so that sufficient accuracy is guaranteed. The 

three sections are representative of other types of steel sections and can therefore be 

analyzed in the same manner. 
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The comparison of the results for the three sections confirms the feasibility and 

accuracy of the proposed method for complex loading conditions associated with 

axial loading and bi-axial bending. In design codes, bi-axial interactions are usually 

idealized as linear interpolation, leading to an overly conservative design in some 

instances. The proposed method generates more economical and safe designs. 

 

5.5.2 Bi-axial analysis of an irregular composite cross-section 

 

The bi-axial analysis of irregular composite cross-sections is another benchmark 

example given by Chen et al. (2001). Such complex composite cross-sections 

comprise an opening and structural steel section in an irregular concrete component 

(Figure 5.12). This example is useful for demonstrating the analytical performance 

and feasibility of the method for arbitrarily shaped sections. Obtaining a converged 

analysis result necessitates the use of the iteration scheme based on the reference 

point taken as the plastic centroid. 

 

Figure 5.12 indicates that the complex cross-section consists of a polygonal 

concrete, a circular opening, 15 reinforcement bars of 18-mm diameter and a 

structural steel I-section. The characteristic strengths of concrete, reinforcing bars 

and structural steels are fc=30, fr=460 and fs=355 N/mm
2
, respectively, and the 

corresponding partial safety factors of the material are γc 1.50, γr 1.15 and γs=1.10, 

respectively. For easy comparison, the presents study uses the concrete stress vs. 

strain curve used by Chen et al. (2001): 

 
2
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  c cf , for 0 cu     (5. 38) 

where  c  is the concrete compressive stress;   is the concrete compressive strain; 

0  and  cu  represent the initial yield and fracture strains of concrete, respectively; 

and cf  denotes the design compressive stress of concrete. 

 

Given the high irregularity of the present composite section, the plastic centroid 

is regarded as the origin of the reference loading axis in the iterative scheme to 

reduce the number of iterations and improve numerical convergence, as discussed by 

Chen et al. (2001) . The My-Mz interaction curve under a given axial load Nx=4120 

kN is shown in Figure 5.13. 

 

Figure 5.13 shows that the proposed method can produce almost the same 

results as those of Chen et al. (2001), indicating the accuracy of the proposed method 

for highly irregular composite sections. The complete three-dimensional view of the 

failure surface of the section is shown in Figure 5.14. Any loading point outside the 

surface reflects the failure of the section to resist applied load. 

 

5.5.3 Rectangular reinforced concrete section analyzed by Eurocode 2 

 

To demonstrate the advantages of the proposed analytical approach in 

conventional design practice, a typical rectangular reinforced concrete section is 

selected and designed in accordance with Eurocode 2 (2004) (Figure 5.15). In 

calculating the stress resultant by the proposed method, both the equivalent stress 

block method and elaborated layer-integration method are used. The failure surfaces 
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of the major and minor axes obtained by the proposed method are compared with 

those designed using Eurocode 2 (2004) (Figure 5.16 and Figure 5.17). The stress vs. 

strain curves of concrete and steel, as specified in Eurocode 2 (2004), are adopted in 

the proposed sectional analysis. 

 

As shown in Figure 5.16, the proposed method produces almost the same results 

as those derived by manual calculation using the RC design code. The slight 

difference is due to the concrete area occupied by reinforcing bars: this area is 

commonly disregarded in manual calculation, but is considered in the proposed 

approach through the removal of voids. Thus, the latter generates more accurate 

results. Furthermore, the equivalent stress block method (Figure 5.16) and elaborated 

layer-integration approach (Figure 5.17) exhibit small differences at the ultimate 

failure state. Because the equivalent stress block method is much simpler and 

requires less computation time, it is recommended for design under the ultimate limit 

state. 

 

5.5.4 Extensive testing of six typical RC sections 

 

To validate the effectiveness of the proposed algorithms, six typical RC sections 

are extensively investigated. These sections are rectangular, T-shaped, L-shaped, C-

shaped, G-shaped and multi-cell sections, which represent most of the commonly 

used sections in actual practice. The analysis results are compared with the data 

reported by De Vivo and Rosati (1998). The dimensions of each section are 

presented in Figure 5.18 to Figure 5.23, which indicate that the failure surfaces 

obtained by the proposed analysis method are close to the reported values. Moreover, 
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the iterative procedure is highly stable and no divergence amongst the sections 

occurs. 

 

5.5.5 Typical composite sections analyzed by Eurocode 4 

 

Two typical SCC sections, namely, concrete-encased and rectangular concrete-

filled sections, are used to verify the accuracy of the proposed approach. The 

dimensions and material properties of these sections are shown in Figure 5.24 and 

Figure 5.26, respectively. The failure surfaces of the major and minor axes obtained 

by the proposed method are compared with those designed on the basis of Eurocode 

4 (2004) (Figure 5.25 and Figure 5.27). 

 

The results derived on the basis of the design code (Figure 5.25 and Figure 5.27) 

are obtained by the simplified design equations in Eurocode 4 (2004); such equations 

are limited to simple cases, including regular sections with doubly symmetrical 

structural steel. The proposed method, similar to the general method in Eurocode 4 

(2004), can be applied to any composite sections characterized by arbitrary shapes, 

as well as arbitrary structural steel and rebar arrangements. The main difference 

between the two approaches lies in the assumption on the cross-sectional ultimate 

limit state. In the general method, the failure of the cross-section is controlled by 

concrete crushing; i.e. when the most externally located fiber of concrete reaches its 

crushing strain, the section is assumed failed. By contrast, the simplified method 

assumes that all components can reach their ultimate strains towards developing 

fully plastic moment capacity—a phenomenon that rarely occurs. This assumption 

also causes the over-estimation of moment capacity. Figure 5.25 and Figure 5.27 
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show that the moment capacities obtained by the simplified method are larger than 

those derived by the proposed method. For the encased composite section, the two 

curves exhibit a small difference under major bending but a large difference under 

minor bending. For the concrete-filled rectangular hollow section, the two results are 

very close because the confinement effect enlarges the concrete crushing strain. The 

discussion above demonstrates that the proposed cross-sectional analysis technique 

is accurate and efficient. 

 

5.6. Concluding remarks 

 

The cross-section technique with a divergence-proof iterative procedure 

precisely calculates the sectional yield surfaces of arbitrary sections subjected to bi-

axial bending. Initial yield, failure and concrete fracture surfaces are analyzed and 

discussed. At the end of this chapter, several benchmarks and examples are presented, 

and the proposed cross-section analysis method is validated as accurate, efficient and 

reliable for any types of hybrid steel and concrete sections. 
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Figures 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 Illustration of failure, initial yield, concrete fracture surfaces 
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Figure 5.2 Illustration of concrete fracture surface 
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Figure 5.3 Arbitrarily shaped composite cross-section 
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Figure 5.4 Stress resultants by the equivalent stress block method 
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Figure 5.5 Stress resultants by the elaborated layer-integration method 
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Figure 5.6 Flowchart of generating the yield surfaces under given axial load 
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Figure 5.7 Indexed interaction strength suface 
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Figure 5.8 Screenshots of RCD 2013 
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(a) Dimensions 

 

(b) Sectional fibres 

 

 

 

(c) Interaction curve for a wide flange section 

Figure 5.9 Comparison results for a wide flange steel section 
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(a) Dimensions 

 

(b) Sectional fibres 

 

 

 

(c) Interaction curve for a double web steel section 

Figure 5.10 Comparison results for a double web steel section 
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(a) Dimensions 

 

(b) Sectional fibres 

 

 

 

(c) Interaction curve for a circular hollow steel section 

Figure 5.11 Comparison results for a circular hollow steel section 
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Figure 5.12 Irregular composite cross-section 
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Figure 5.13 My vs. Mz interaction curve under axial load Nx=4120kN 

 

 

Figure 5.14 Three dimensional yield surface of the irregular composite section  
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Concrete: fck=40 MPa ; ϒc=1.5 

 

Reinforcement Bars: fy=355 MPa; ; ϒb=1.15 

(ϕ20 at corners; ϕ20 on faces ; Cover is 50 mm) 

Stress vs. strain curve of concrete: 

 

 
 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

Figure 5.15 Typical rectangular reinforced concrete section 
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Figure 5.16 Results of the RC section by equivalent stress block method 

 

Figure 5.17 Results of the RC section by elaborated layer-integration method  
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Concrete: fck=20.75 MPa ; ϒc=1.6 

 

Reinforcement Bars: fyk=375 MPa; ; ϒb=1.15 

(ϕ20 at corners; ϕ14 on faces ; Cover is 30 mm) 

Stress vs. strain curve of concrete: 

 

 
 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

 

 

 
 

(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
 

(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
 

(g) Comparison results – Group 5 

Figure 5.18 Comparison results of Rosati’s RC Section - Rectangular  
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Concrete: fck=20.75 MPa ; ϒc=1.6 

 

Reinforcement Bars:  

fyk=375 MPa; ; ϒb=1.15 

(ϕ20 at corners; ϕ14 on faces ;  

Cover is 30 mm) 

Stress vs. strain curve of concrete: 

 

 
 

(a) Overview of section 

 

 

(b) Concrete Properties  

 

 

 
 

(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
 

(g) Comparison results – Group 5 

Figure 5.19 Comparison results of Rosati’s RC Section – T Shaped Section  
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Concrete: fck=20.75 MPa ;ϒc=1.6 ; Cover is 30 mm 

Reinforcement Bars:  fyk=375 MPa; ; ϒb=1.15(ϕ24 at corners; ϕ20 on faces ) 

 

Stress vs. strain curve : 

 

 

 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

 

 
(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
 

(g) Comparison results – Group 5 

Figure 5.20 Comparison results of Rosati’s RC Section – L Shaped Section 
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Concrete: fck=20.75 MPa ;ϒc=1.6 ; Cover is 30 mm 

Reinforcement Bars:  fyk=375 MPa; ; ϒb=1.15(ϕ20 at corners; ϕ20 on faces ) 

 

Stress vs. strain curve of 

concrete: 

 

 

 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

 

 
(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
(g) Comparison results – Group 5 

Figure 5.21 Comparison results of Rosati’s RC Section – C Shaped Section 
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Concrete: fck=20.75 MPa ;ϒc=1.6 ; Cover is 30 mm 

Reinforcement Bars:  fyk=375 MPa; ; ϒb=1.15(ϕ24 at corners; ϕ24 on faces ) 

 

Stress vs. strain curve of 

concrete: 

 

 

 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

 

 
(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
(g) Comparison results – Group 5 

Figure 5.22 Comparison results of Rosati’s  RC Section – G Shaped Section  
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Concrete: fck=20.75 MPa ;ϒc=1.6 ; Cover is 30 mm 

Reinforcement Bars:  fyk=375 MPa; ; ϒb=1.15(ϕ20 at corners; ϕ20 on faces ) 

 

Stress vs. strain curve of 

concrete: 

 

 

 

(a) Overview of section 

 

 

(b) Concrete Properties 

 

 

 
 

(c) Comparison results – Group 1 
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(d) Comparison results – Group 2 

 

 

 
 

(e) Comparison results – Group 3 
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(f) Comparison results – Group 4 

 

 

 
(g) Comparison results – Group 5 

Figure 5.23 Comparison results of Rosati’s RC Section – Multicell Section  
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Concrete:  

   fck=40 MPa ;  

   Ecm=34 GPa ; 

   ϒc=1.5 

 

Reinforcement bars:  

fy=460 MPa; 

    Es=205 GPa ; 

    ϒb=1.15 

(ϕ32 at corners; ϕ32 on 

faces ; Cover is 50 mm) 

 

Structural Steel:  

   fy=355 MPa ;  

   Es=200 GPa ; 

   ϒs=1.05 

 

 

(a) Overview of section 

 

(b) Material Properties 

Figure 5.24 Typical encased composite section 

 

 

Figure 5.25 Comparison results of typical encased composite section 
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Concrete:  

   fck=40 MPa ;  

   Ecm=34 GPa ; 

   ϒc=1.5 

 

Structural Steel:  

   fy=355 MPa ;  

   Es=200 GPa ; 

   ϒs=1.05 

 

Note: confinement effect is 

considered. 

 

 

(a) Overview of section 

 

 

(b) Material Properties 

 

Figure 5.26 Typical concrete filled rectangular hollow section 

 

 

Figure 5.27 Comparison results of concrete filled rectangular hollow section 

Break 
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CHAPTER 6 SECOND-ORDER DESIGN OF HYBRID STEEL AND CONCRETE FRAMES 

SECOND-ORDER DESIGN OF HYBRID STEEL AND 

CONCRETE FRAMES 

 

 

This chapter proposes a unified design approach for hybrid steel and concrete 

members and frames. By adopting the curved ALH (Arbitrarily located hinge) 

element previously discussed in Chapters 3 and 4, the P-- effects and initial 

imperfections can be explicitly reflected in analysis, and then member strength 

checks can be easily conducted by examining the failure surfaces at critical locations. 

Thus, a unified design method is materialized and tedious and redundant 

formulations for considering column buckling based on linear analysis can be 

avoided. To clarify the design philosophy, this chapter elaborates on the major 

design principles. Additionally, effective flexural stiffness modeling of members 

with concrete components is investigated. Finally, a series of individual columns and 

several simple portal frames are selected, analyzed and designed by the proposed 

approach with the results compared with those obtained by codified methods based 

on linear analysis.  
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6.1 Introduction 

 

Apart from verifying member strength, examining the local and overall stability 

of framed structures is always a concern in design practice. The conventional 

approach, which is primarily based on the linear analysis method, requires additional 

complementary evaluations for the stability of axially compressed members. Given 

the variations in the corresponding provisions in codes for the second-order analysis 

of members of different materials, the design process is cumbersome and tedious as 

illustrated in Figure 6.1. 

 

Generally speaking, the conventional linear analysis approach idealizes a 

structural model by assuming that members and the entire frame are perfect in 

geometry and their deformations are small. Therefore, the second-order effects 

associated with actual nonlinear behaviors cannot be directly reflected in analysis. In 

design of columns with moderate or high slenderness ratios, two common methods, 

namely as the effective length approach and moment amplification methods, are used. 

The former reduces column axial strength, whereas the latter enlarges first-order 

linear moments. Both methods can be adopted for the design of BS and SCC 

members in accordance with Eurocodes 3 (2005) and Eurocodes 4 (2004), 

respectively. The moment amplification method, in which nominal stiffness is 

adopted, can also be used to carry out the second-order design of RC columns, as 

indicated in Eurocode 2 (2004). 

 

Despite the simplicities offered by the approximate methods for the second-

order design of axially compressive members, these approaches are derived on the 
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basis of ideally isolated columns. When applied to framed structures that comprise 

hundreds of members, the assumptions drawn by the methods may be invalid. For 

example, the effective length method is theoretically accurate in the design of 

individual columns, but it assumes that all the columns in a frame simultaneously 

buckle, which seems improper in most actual situations. Moreover, due to the 

absence of P-Δ and P-δ moments, connection and foundation designs may be unsafe. 

Another example is a cantilever column under a concentric pure axial load. Although 

the moment amplification method is used, the design moment at the footing remains 

zero. 

 

When designing a frame that comprises various types of members, therefore, 

existing approaches are tedious and involve irrational assumptions, which may 

present difficulties in generating safe and reliable design results. As an alternative, 

the current work puts forward a unified second-order nonlinear analysis and design 

approach for hybrid steel and concrete framed structures. The approach is illustrated 

in Figure 6.2. 

 

Unlike conventional design approaches, which require different codes associated 

with cumbersome and tedious formulations for stability design, the proposed method 

is simple and unified for various types of members. The basic concept behind this 

method is the accurate simulation of structural behavior, through which local and 

overall stability problems can be directly reflected in analysis. Thus, the need for the 

approximated second-order designs based on codes and the unreliable assumptions 

can be eliminated. Accordingly, the curved ALH element and analytical model 
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presented in Chapters 3 and 4 are adopted for simulation-based nonlinear analysis, in 

which initial member imperfections can be explicitly modeled. 

 

Sequentially, the member strength check can be easily conducted by evaluating 

section capacities at critical locations (Chan & Zhou, 2000). Most codes provide 

simplified equations for calculating the capacities of simple and regular sections. To 

develop a generalized method for evaluating the arbitrary sections in a hybrid steel 

and concrete framed structure, the failure surface generated by the analysis technique 

discussed in Chapter 5 is introduced. A section capacity factor used with this 

sectional yield surface is also proposed to facilitate strength evaluation of a cross 

section. 

 

The second-order analysis method of design is currently extensively used in the 

design of slender and complex steel framed structures in some places like Hong 

Kong, and many design codes recommend this method, such codes include AS4100 

(1998), AISC (2010), Eurocode 3 (2005), and Hong Kong Steel Code (2011). 

Moreover, recently published composite codes, e.g., Eurocode 4 (2004), permit the 

use of the second-order nonlinear analysis method for the design of composite 

columns. Although the second-order design of slender RC columns is required in 

concrete codes such as Eurocode 2 (2004), a similar method for the direct second-

order analysis of RC members and frames has not been well-documented.  

 

Although codified methods for the second-order design of BS, RC and SCC 

members may differ, the considerations for P-Δ-δ effects and initial imperfections 

are theoretically and conceptually the same because these effects objectively exist in 
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all types of structures. In this thesis, the analytical model based on the curved ALH 

element is used in nonlinear analysis, and the failure surface generated by the 

proposed cross-section analysis in Chapter 5 is adopted in the evaluation of member 

strength. A unified design approach for various members and frames can be 

accordingly developed. 

 

This chapter mainly focuses on illustrating the major design principles 

underlying the proposed design method. To appropriately reflect concrete cracking 

effects, effective flexural stiffness modeling is discussed. Finally, a series of 

individual columns and several portal frames are designed by the proposed second-

order analysis approach, and the results are compared with those obtained by 

codified methods based on the linear analysis. 

 

6.2 Unified second-order design method 

 

The philosophy of the proposed second-order analysis method is the accurate 

simulation of crucial factors that affect structural and member stability. These factors 

include P-δ and P-Δ effects, initial imperfections and so on. In this section, the major 

design principles of the proposed method are elaborated and the verification of 

member strength is discussed. 

 

6.2.1 P-Δ and P-δ effects 

 

Both P-Δ and P-δ effects are essential in second-order nonlinear analysis 

because they represent influence on the geometric changes of a structure and the 
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deflection of members under applied loads (Figure 6.3). These effects are significant 

in the analysis of slender members and framed structures, in which large induced 

moments could affect stability. 

 

The P-Δ effect, also called the frame side-sway effect, is the overall effect 

caused by the horizontal deflection of a structure. In this study, an additional 

moment is accordingly induced as the P-Δ moment. This effect is critical to the 

design of high-rise buildings, which are exposed to heavy vertical forces and strong 

lateral wind loads. In the present study, the P-Δ effect is considered through a 

numerical incremental-iterative procedure, in which the geometrical changes of the 

analytical model are continuously updated in iterations. 

 

The P-δ effects refer to local member effects that are due to the deflection 

associated with axial loads, wherein an additional moment is induced as the P-δ 

moment. This moment influences member stiffness and sectional stress at critical 

locations. If initial member imperfections are not directly simulated in the analytical 

model, the analysis of these effects is inaccurate. For example, no P-δ moment 

occurs in a perfectly straight and slender column under purely axial loads, where a 

situation that does not happen in reality. Furthermore, tedious formulation related 

complementary check of member buckling is required. In this thesis, the initial 

curved ALH element is introduced to represent the P-δ effect. 

 

6.2.2 Initial member imperfection 
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The initial member imperfections unavoidably exist in all kinds of members that 

stem from fabrication, construction, transportation and other activities like welding; 

these imperfections significantly affect member strength and stiffness under applied 

loads. Codes, such as Eurocode 3 (2005), therefore require the consideration of 

member imperfections in second-order nonlinear analysis. Most conventional 

analyses assume perfectly straight beam-column members, which may cause 

improper estimations on the member strength. 

 

Two alternative methods for modeling member imperfections are indicated in 

Eurocode 3 (2005): the direct modeling approach and equivalent horizontal force 

method (Figure 6.4). The former explicitly simulates initial curvature by assuming a 

sine function, whereas the latter introduces an equivalent distributed load that 

represents the influence of the induced effect due to initial member curvature. Both 

methods are theoretically valid for analyzing individual members. Nevertheless, 

using the equivalent distributed load method necessitates the removal of additional 

forces and moments at boundaries; otherwise, foundation design may be cost-

ineffective. This situation prompts the use of the direct modeling method, which may 

be more suitable and efficient for actual applications. 

 

In direct simulation of initial member curvature, two or more conventional 

straight elements are usually required. This approach not only dramatically increases 

computational expense, but also causes difficulties in the identification of critical 

sections along a member. To address this problem, the curved beam-column element 

discussed in Chapters 3 and 4 is introduced in the simulation of initial member 

imperfections, in which one element per member is adequate. 
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Initial member curvatures vary with respect to member types, making accurate 

modeling highly challenging. As a solution, codes accordingly provide conservative 

imperfection values for various member types. For example, Eurocode 3 (2005) 

provides different types of imperfection values for section types as in Table 6. 1 and 

Eurocode 4 (2004) presents a table of imperfection values for several types of 

composite sections as in Table 6. 2. For RC members, a value of L/200 is adopted. 

 

6.2.3 Initial frame imperfection 

 

Initial frame imperfections are caused by out-of-plumpness of a structure, which 

inevitability occurs during construction. These imperfections can affect the lateral 

stability of an entire structural system and induce additional P-Δ moments. With the 

absence of global imperfections, the ultimate loads of a framed structure may be 

over-estimated.  Fong et al. (2012) conducted numerical and experimental study on 

the snap-through buckling behaviors of shallow domes, and reveals that the failure 

load of a perfect dome is more than 150% larger than the ultimate strength of an 

imperfect dome. This finding indicates the necessity of considering these global 

effects for reliable and safe designs for shallow domes and other forms of structures. 

 

Similarly, two types of modeling methods are discussed in Eurocode 3 (2005): 

the direct modeling approach and equivalent nodal force method as in Figure 6.5. 

Both methods are simple and efficient. Direct modeling requires the offsetting of 

beam-column nodes, whereas the equivalent nodal force method requires the 

calculation and application of additional joint loads. This study employs the former. 
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Most of the codes require taking into account overall geometric imperfections. A 

unified sway imperfection for RC, BS and SCC frames is given in Eurocodes 2 

(2004), 3 (2005) and 4 (2004), respectively. This imperfection is expressed as 

in which    is the basic value of initial frame imperfections (recommended value is 

1/200);    denotes a reduction factor associated with the overall height h of the 

frame equal to      √  but         ; and    represents another reduction 

factor for the number of columns in each row in a vertical plane. This reduction 

factor is written as follows: 

where, m represents the number of columns in a row, which carries the forces in the 

vertical direction larger than 50%. 

 

6.2.4 Member strength check 

 

The conventional design method based on linear elastic analysis evaluates 

stability member by member; this method utilizes cumbersome effective length 

assumptions and related formulations. Different codes are selected in the evaluation 

of various members; thus, the design procedure for hybrid steel and concrete framed 

structures is tedious. In the second-order design approach, member strength can be 

conveniently evaluated by cross-section capacities at critical locations because P-Δ 

          (6. 1) 

    √ . (  
 

 
) (6. 2) 
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and P-δ effects, as well as initial member and frame imperfections, are directly 

reflected in analysis. 

 

Due to the complexities of arbitrary sections, formulating a simple capacity 

equation for various types of sections is impossible and tedious calculation of 

ultimate capacities is unavoidable in conventional design. Therefore, the failure 

surface discussed in Chapter 5 is introduced for a unified verification of arbitrary 

section strength. Herein, a section capacity factor φf is defined as, 

where Nx, My and Mz are the currently applied forces at section locations; Δy and Δz 

are the global displacements due to applied loads, including the effects of initial 

frame out-of-plumpness; δy and δz denote the local member deflections caused by 

bowing and curvature induced by end forces and initial imperfections; φf is the 

proposed section capacity factor for evaluating a cross-section; and pM 
 represents 

the plastic moment capacity with the same orientation angle aligned with applied 

moments under the same axial forces. 

 

In design practice based on the first-plastic hinge method, the ultimate load is 

determined by the loads that cause the formation of the first plastic hinge, which is 

detected by calculating the section capacity factor φf along a member when it is 

greater than unity. Therefore, any member that reaches a section capacity factor φf 

larger than 1.0 is considered failed and the corresponding forces are taken as the 

resistant design loads. 

 

2 2( ) ( )y x y x y z x z x z

f

p

M N N M N N

M 

 


      
  (6. 3) 
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6.2.5 Summary 

 

The major design philosophy inherent to the proposed second-order design 

method for various members is presented and discussed in this section. Geometric 

nonlinearity including the P-Δ and P-δ effects is essential to nonlinear analysis. 

Apart from this factor, initial member and frame imperfections are crucial to second-

order design. Two alternative methods are indicated in the design codes, and the 

direct modeling method is more suitable for this research. Therefore, the curved 

ALH element proposed in the previous chapters is introduced in the direct simulation 

of initial member curvature. Moreover, the cross-section analysis technique in 

Chapter 5 is used to calculate the failure surfaces of arbitrary sections. A section 

capacity factor is put forward for the easy evaluation of member strength. On this 

basis, the unified second-order design approach can then be formulated. 

 

6.3 Effective flexural stiffness modeling 

 

Concrete is a brittle material that easily cracks under tensile forces, which 

influence the force distribution and overall deflection of a framed structure. The 

accurate simulation of a member composing of concrete components involves many 

factors; an example includes the load versus deflection behaviors of a cantilever 

column under eccentric loads as illustrated in Figure 6.6. To accurately simulate this 

behavior, the advanced analysis approach needs to be adopted and explained in the 

next chapter. In conventional design practice, only the final deflections and member 
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forces under ultimate limit states are required, regardless of intermediate load 

deflection history; and efficiency is always concerned. 

 

To resolve the aforementioned issues, an effective flexural stiffness modelling 

approach is employed, in which the moment of inertia is reduced and used in 

designing the approximate reflection of concrete cracking effects. Several design 

codes and guidelines provide the related reduction factor for RC members. For 

example, the gross moments of inertia of highly and moderately loaded columns are 

reduced to 30% and 50% of the gross moment of inertia of non-cracked concrete, 

respectively, as recommended in FEMA 356 (2000). Moreover, New Zealand codes 

(1995) provide a detailed table for estimating the effective flexural stiffness of RC 

members under different loading conditions. In analyzing cracking effects in this 

work, the following models from Eurocodes 2 (2004) and Eurocodes 4 (2004) are 

adopted as, 

where, Ecd, Er and Es are the Young’s modulus of concrete, reinforcing bars and 

structural steel respectively; Ic, Ir and Is are the second moments of area for concrete, 

reinforcing bars and structural steel, respectively; k1 denotes the factor related to 

concrete strength; and k2 is a factor that depends on axial load and slenderness ratio. 

k1 and k2 can be calculated as, 

For RC members  

 (  )                   (6. 4) 

For composite members  

 (  )     . ( .                ) (6. 5) 

    √       (6. 6) 
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in which     is the characteristic concrete strength; n represents the dimensionless 

factor equal to   (     );     is the concrete design strength; and   denotes the 

slenderness ratio. 

 

The concrete fracture surface proposed in Chapter 5 can also be used for a 

reasonable estimation of concrete cracking within members. When a member does 

not crack under all the load combinations, the reduction factors for concrete 

components can be eliminated. Such a condition yields an economic and accurate 

design. 

 

6.4 Verification examples 

 

The unified second-order design approach for various members is demonstrated 

and verified in accordance with design codes. All the members in the examples are 

modeled by a single element, and the member strength checks are based on the 

failure surface. A series of individual members and several portal frames are 

designed by the proposed method, and the results are compared with those derived 

by codified linear design methods. 

 

6.4.1 Buckling strength of steel columns vs. codified buckling curves 

 

To evaluate the effectiveness of the proposed method against that of a 

conventional design, a series of steel columns is selected; the design strengths under 

both approaches are compared on the basis of Eurocode 3 (2005). All the cross-

             .   (6. 7) 
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section sizes are selected from standard section tables, and 20 columns with different 

non-dimensional slenderness values   ( √       ) ranging from 0.2 to 3.0 are 

used for each selected group. All the columns are made of S355 material, with 

design strength of 355 MPa. The results are compared with the buckling curves in 

the design codes, derived on the basis of initial imperfections. The buckling curves 

from “a” to “c” and their corresponding initial curvature values are shown in Table 6. 

3. 

 

The proposed method for conventional second-order design is comprehensively 

investigated, for which six groups of sections are selected as tabulated in Table 6. 4. 

This study analyses 4320 columns, which cover most of the typical sections in 

conventional practice as shown in Figure 6.7 to Figure 6.12. The moderate and large 

slenderness ratios obtained by the proposed method are close to the buckling curves 

in Eurocode 3 (2005), whereas the small slenderness ratio is slightly conservative. 

These findings are crucial for applying the current approach to practical second-

order design. Using this method automatically reflects the buckling strengths of 

individual members and eliminates the need for assumptions on effective column 

length. 

 

6.4.2 Design of an RC portal frame 

 

In this example, a typical RC portal frame is selected for demonstrating and 

validating the proposed design approach as illustrated in Figure 6.13. The frame is 

10 m wide and 6 m high. Two concentrated joint loads as100 and 1200 kN are 

applied in the vertical and horizontal directions, respectively. All the beam and 
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columns are rectangular reinforced concrete members that comprise reinforcing bars, 

and the diameter of the rebar is 32 mm. The characteristic compressive strength fck 

and Young’s modulus Ecm of the concrete are 30 MPa and 33 GPa, respectively. The 

yield strength of the rebar is 460 MPa and its Young’s modulus is 200 GPa. The 

partial factors for the concrete and rebar are 1.5 and 1.15, respectively. The 

conventional design method in Eurocode 2 (2004) is introduced for comparison. 

 

Eurocode 2 (2004) provides two methods for carrying out a second-order design 

of RC columns as the nominal stiffness method and nominal curvature method. The 

former is suitable for individual members and entire structures, whereas the latter is 

limited to isolated members. Therefore, the method based on nominal stiffness is 

used to design the frame and linear analysis is introduced. The design procedure is 

briefly illustrated in Table 6. 5, which shows that the design process is tedious and 

inefficient. The effective length for the compressive member needed to be calculated 

in relation to the K-factors and the slenderness criterion should be checked. 

 

The frame is also designed by the proposed second-order design method, and the 

comparison results are presented in Table 6. 6. The design results of the two 

approaches are very close, but the design procedure of the proposed method is 

simple and efficient. It also does not require assumptions on effective length. 

 

6.4.3 Design of a SCC portal frame 

 

A similar portal frame with geometry and loading pattern identical to those of 

the previous example is illustrated in Figure 6.14, where the beam and columns are 
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both SCC sections with embedded structural steel members. The diameter of the 

reinforcing bars is 20 mm. The yield strength of the structural steel is 355 MPa and 

its Young’s modulus is 205 GPa. The Young’s modulus of the concrete is 33 GPa 

and its characteristic compressive strength is 30 MPa. The yield strength of the 

reinforcing bar is 460 MPa, with a Young’s modulus of 200 GPa. The partial factors 

for the concrete, rebar and structural steel are 1.5, 1.15 and 1.15, respectively.  

 

The simplified second-order design method from Eurocode 4 (2004) is selected 

for the design of this SCC portal frame. The moment amplification method based on 

the effective flexural stiffness method is adopted in analyzing second-order effects. 

The design procedure is detailed in Table 6. 7. The design method for the composite 

columns also involves assumptions on effective member length. The overall design 

approach is similar to the counterpart in steel code as Eurocode 3 (2005). 

 

The results from the proposed method are illustrated in Table 6. 8. And the 

difference between the results is slight. The direct second-order design approach has 

been recommended in Eurocode 4 (2004), and the elaborated cross section analysis 

method for the failure surface has also been allowed. Therefore, the design 

philosophy of the proposed method is in line with the approaches in Eurocode 4 

(2004).  

 

6.5 Concluding remarks 

 

In this chapter, the unified design approach for hybrid steel and concrete 

members and framed structures is proposed. Using the ALH element enables the 
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direct reflection of P-Δ-δ effects and initial member curvature, as well as the 

convenient examination of member strength through the evaluation of section 

capacities at critical locations. The failure surface generated by the analysis 

technique proposed in Chapter 5 is introduced to accurately verify the arbitrary 

sections in a generalized manner. Accordingly, a section capacity factor is proposed 

for the easy evaluation for the utilization of member strength. The major design 

principles of the proposed design method are also explained, and the effective 

flexural stiffness modeling methods for reflecting concrete cracking effects are 

discussed. Finally, a series of individual columns and several portal frames are 

designed and compared with codified methods, which is proven to be efficient and 

reliable effective. 

Break  
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Figures 

 

 

Figure 6.1 The conventional second-order design method 

 

 

 

Figure 6.2 The proposed second-order design approach 
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Figure 6.3 The P-Δ and P-δ Effects 
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(a) Direct modeling approach (b) Equivalent horizontal forces method 

Figure 6.4 Modeling initial member imperfections 

 

  
(a) Direct modeling approach (b) Equivalent horizontal forces method 

Figure 6.5 Modeling initial frame imperfections 
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(a) Cantilever column subjected to eccentric axial load 

 

 

 

(b) Flexural behaviour at the section level 

 

Figure 6.6 Behaviour of concrete component in flexure 
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Figure 6.7 Comparison results of buckling curve for Group 1  

(Circular hollow section columns with buckling curve a – 340 columns analyzed) 

 

Figure 6.8 Comparison results of buckling curve for Group 2  

(Rectangular hollow section columns with buckling curve a  – 680 columns analyzed) 
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Figure 6.9 Comparison results of buckling curve for Group 3  

(Rolled I/H Section columns with buckling curve a – 1520 columns analyzed) 

 

Figure 6.10 Comparison results of buckling curve for Group 4  

(Rolled I/H Section columns with buckling curve b – 620 columns analyzed) 
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Figure 6.11 Comparison results of buckling curve for Group 5  

(Angle section columns with buckling curve b – 840 columns analyzed) 

 

Figure 6.12 Comparison results of buckling curve for Group 6  

(Channel section columns with buckling curve c– 320 columns analyzed) 
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(a) RC Beam Section (b) RC Column Section 

 

(c) Geometry and loading pattern 

Figure 6.13 Properties of the RC portal frame 
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(a) RC Beam Section (b) RC Column Section 

 

(c) Geometry and loading pattern 

Figure 6.14 Properties of the SCC portal frame  
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Tables 

Table 6. 1 Member imperfections for steel members in Eurocode 3 (2005) 

Section Types Limits Buckling 

Axis 

Imperfections 

S235 to S420 S460 
 

Rolled I-sections h/b>12 

tf≤40mm 

Major L/300 L/350 

Minor L/250 L/350 

h/b>12 

40˂tf≤40mm 

Major L/250 L/300 

Minor L/200 L.300 

h/b≤12 

tf≤100mm 

Major L/250 L/300 

Minor L/200 L/300 

h/b≤12 

tf>100mm 

Major L/150 L/200 

Minor L/150 L/200 

Welded I-

sections 

tf≤40mm Major L/250 L/250 

Minor L/200 L/200 

tf>40mm Major L/200 L/200 

Minor L/150 L/150 

Hollow Sections Hot Finished Any L/300 L/350 

Cold Formed Any L/200 L/200 

Welded Box 

Sections 

Generally (except 

as below) 

Any L/250 L/250 

Thick Welds: 

a>0.5 tf 

b/tf<30 , h/tw<30 

Any L/200 L/200 

U-, T- and Solid 

Sections 

 Any L/200 L/200 

L-Sections  Any L/200 L/200 

Notes: h is the section height; b is the section width; tf is the flange thickness; tw is 

the web thickness 
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Table 6. 2 Member imperfections for composite members in Eurocode 4 (2004) 

Section Types Reinforcing Ratio Buckling Axis Imperfection 

ρs   

Concrete Encased 

Sections 

 

 

Major L/200 

Minor L/150 

Partially Concrete 

Encased Sections 

 

 

Major L/200 

Minor L/150 

Circular and 

Rectangular Hollow 

Steel Sections 

      Any L/300 

         Any L/200 

Circular Hollow 

Steel Sections with 

additional I sections 

 Major L/200 

 Minor L/200 

Partially Concrete 

Encased Section 

with I-sections 

 

 

 

 

 

Any 

 

 

L/200 

 

Table 6. 3 Design value of initial imperfection e0/L for members 

Buckling Curve Type      

a 1/300 

b 1/250 

c 1/200 
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Table 6. 4 Selected groups of the columns to be analyzed 

ID Section 

Type 

About 

Axis 

Buckling 

Curve 

Section Sizes 

1 Circular 

Hollow 

Section 

any a    

CHS508.0x32.0 CHS457.0x25.0 CHS406.4x20.0 

CHS355.6x25.0 CHS323.9x16.0 CHS273.0x20.0 

CHS244.5x25.0 CHS219.1x16.0 CHS193.7x16.0 

CHS168.3x10.0 CHS139.7x8.0 CHS114.3x6.3 

CHS88.9x6.3 CHS76.1x4.0 CHS60.3x4.0 

CHS48.3x5.0 CHS33.7x4.0  

   
 

2 Rectangula

r Hollow 

Section 

major 

axis 

a    

SHS400x20.0 SHS350x16.0 SHS300x16.0 

SHS250x16.0 SHS200x16.0 SHS180x12.5 

SHS160x12.5 SHS150x10.0 SHS140x8.0 

SHS120x10.0 SHS100x8.0 SHS90x6.3 

SHS80x8.0 SHS70x8.0 SHS60x6.3 

SHS50x6.3 RHS500x300x20.

0 

RHS500x200x16.0 

RHS450x250x16.0 RHS400x200x12.

5 

RHS300x100x10.0 

RHS250x150x12.5 RHS200x150x10.

0 

RHS200x120x8.0 

RHS200x100x12.5 RHS160x80x10.0 RHS150x100x10.0 

RHS120x80x8.0 RHS100x60x8.0 RHS100x50x10.0 

RHS90x50x6.3 RHS80x40x6.3 RHS70x70x3.0 

RHS60x40x6.3   

   
 

3 Rolled I/H 

Section 

(D/B>1.2) 

major 

axis 

a    

UB1016x305x31

4 

UB1016x305x27

2 

UB1016x305x24

9 

UB1016x305x22

2 
UB914x419x388 UB914x419x343 

UB914x305x289 UB914x305x253 UB914x305x224 

UB914x305x201 UB838x292x226 UB838x292x194 

UB838x292x176 UB762x267x197 UB762x267x173 

UB762x267x147 UB762x267x134 UB686x254x170 

UB686x254x152 UB686x254x140 UB686x254x125 

UB610x305x238 UB610x305x179 UB610x305x149 

UB610x229x140 UB610x229x125 UB610x229x113 

UB610x229x101 UB533x210x122 UB533x210x109 

UB533x210x101 UB533x210x92 UB533x210x82 

UB457x191x98 UB457x191x89 UB457x191x82 

UB457x191x74 UB457x191x67 UB457x152x82 

UB457x152x74 UB457x152x67 UB457x152x60 

UB457x152x52 UB406x178x74 UB406x178x67 

UB406x178x60 UB406x178x54 UB406x140x46 

UB406x140x39 UB356x171x67 UB356x171x57 

UB356x171x51 UB356x171x45 UB356x127x39 

UB356x127x33 UB305x165x54 UB305x165x46 

UB305x165x40 UB305x127x48 UB305x127x42 

UB305x127x37 UB305x102x33 UB305x102x28 

UB305x102x25 UB254x146x43 UB254x146x37 

UB254x146x31 UB254x102x28 UB254x102x25 

UB254x102x22 UB203x133x30 UB203x133x25 

UB203x102x23 UB178x102x19 UB152x89x16 

   
 

4 Rolled I/H major b    

UC356x406x634 UC356x406x551 UC356x406x467 
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Section 

(D/B<1.2) 

axis UC356x406x393 UC356x406x340 UC356x406x287 

UC356x406x235 UC356x368x202 UC356x368x177 

UC356x368x153 UC356x368x129 UC305x305x283 

UC305x305x240 UC305x305x198 UC305x305x158 

UC305x305x137 UC305x305x118 UC305x305x97 

UC254x254x167 UC254x254x132 UC254x254x107 

UC254x254x89 UC254x254x73 UC203x203x86 

UC203x203x71 UC203x203x60 UC203x203x52 

UC203x203x46 UC152x152x37 UC152x152x30 

UC152x152x23   

   
 

5 Angle 

Section 

y-y 

axis 

b    

L200x200x24 L200x200x20 L200x200x18 

L200x200x16 L150x150x18 L150x150x15 

L150x150x12 L150x150x10 L120x120x15 

L120x120x12 L120x120x10 L120x120x8 

L100x100x15 L100x100x12 L100x100x10 

L100x100x8 L90x90x12 L90x90x10 

L90x90x8 L90x90x7 L80x80x10 

L80x80x8 L75x75x8 L75x75x6 

L70x70x7 L70x70x6 L65x65x7 

L60x60x8 L60x60x6 L60x60x5 

L50x50x6 L50x50x5 L50x50x4 

L45x45x4.5 L40x40x5 L40x40x4 

L35x35x4 L30x30x4 L30x30x3 

L25x25x4 L25x25x3 L20x20x3 

   
 

6 Channel 

Section 

major 

axis 

c    

[430x100x64 [380x100x54 [300x100x46 

[300x90x41 [260x90x35 [260x75x28 

[230x90x32 [230x75x26 [200x90x30 

[200x75x23 [180x90x26 [180x75x20 

[150x90x24 [150x75x18 [125x65x15 

[100x50x10   
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Table 6. 5 Linear design of the RC portal frame 

The nominal stiffness of the members: 

     Beam    : (EI)nom   = 4.20x10
5
   kNm

2
 

     Column : (EI)nom  = 3.61 x10
4
  kNm

2 

 

Internal forces from linear analysis: 

     N = 1260kN, M1=300kN.m 

 

Effective length l0 of the column: 

     l0= 2.06*l = 2.06*6000=12360mm 

 

Slenderness ratio of the column λcol: 

     i = 115.47 mm , λcol= l0/i=107.04 

 

Limiting slenderness ratio λlim: 

     For unbraced column λlim=87.51  

( <107.04 ) 

     This is a slender column. 

Buckling load based on nominal 

stiffness 

     NB =π
2
(EI)norm/l0

2
= 2331.25 kN 

 

The first order design moment: 

     M0Ed=0.6M01+M02=180 kN.m 

 

The total design moment: 

     MEd= M0Ed/(1-N/NB)= 391.7 kN.m 

 

Section capacity factor: 

     φ   0.897 

 

Table 6. 6 Design results of the RC portal frame 

 First-order 

analysis & design 

Second-order analysis & 

design 

Design load   

    Compressive force 1260kN 1270kN 

    Design Bending Moment 300kN.m 370.0kN.m 

Max. Section capacity factor 0.897 0.847 
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Table 6. 7 Linear design of the SCC portal frame 

The effective flexural stiffness (EI)eff: 

     Beam    : (EI)eff = 4.78 x10
5
 kNm

2
 

     Column : (EI)eff= 4.85 x10
4
 kNm

2
 

 

The effective flexural stiffness (EI)eff,II: 

     Beam    : (EI)eff,II  = 3.89 x10
5
 kNm

2
 

     Column : (EI)eff,II  = 4.03 x10
4
 kNm

2
 

 

Internal forces from linear analysis: 

     N =1260 kN, M1=300kN.m 

 

Effective length l0 of the column: 

     l0= 2.10*l = 2.10*6000=12600 mm 

 

Plastic compressive resistance: 

    Npl,Rk = Ar*fyr+0.85fcd*Ac+As*fys 

             = 6253.8 kN 

 

Elastic critical normal force Ncr,eff: 

     Ncr     = π
2
(EI)eff/lo

2 
=  3.012 x10

3
kN 

     Ncr,eff= π
2
(EI)eff,II/l

2
= 1.104 x10

4
kN 

The relative slenderness ratio: 

     
,

/
pl Rk cr

N N   = 1.441 

 

The reduction factor for moment 

capacity: 

    μd = 0.6603 

 

Moment amplification factor k: 

    β  0.66 

    k  β/(1- N/ Ncr,eff)=0.745 

 

The total design moment: 

    Mtol=k*M1=223.5 kN.m 

 

Plastic bending resistance: 

    Mpl,Rd = 463.3 kN.m 

 

Section capacity factor: 

   αM = 0.9 for S355 steel 

   φ   Mtol/(μd*αM*Mpl,Rd)=0.812 

 

Table 6. 8 Design results of the SCC portal frame 

 First-order 

analysis & design 

Second-order analysis & 

design 

Design load   

    Compressive force 1260kN 1274kN 

    Design Bending Moment 300kN.m 363.0kN.m 

Max. Section capacity factor 0.812 0.804 



 

Chapter 7 Advanced analysis of hybrid steel and concrete frames  

____________________________________________________________________ 

261 

CHAPTER 7 ADVANCED ANALYSIS OF HYRBID STEEL AND CONCRETE FRAMES 

ADVANCED ANALYSIS OF HYBRID STEEL AND 

CONCRETE FRAMES 

 

 

This chapter discusses the proposed advanced analysis approach for hybrid steel 

and concrete members and frames. The curved ALH (Arbitrarily Located Hinge) 

element, which has one arbitrarily located hinge and two end plastic hinges, is 

adopted to simulate various effects, such as initial imperfections, as well as 

geometric and material nonlinearities. Cracking in concrete components significantly 

influences structural deformation and internal force distribution; thus, it is 

considered by the effective flexural stiffness approach based on Branson’s model, 

which is also associated with the use of concrete fracture surfaces as proposed in 

Chapter 5. A refined plastic hinge model, in which sectional yield surfaces are 

incorporated, is proposed to simulate the inelastic behavior of hybrid steel and 

concrete members. Moreover, since material properties are a crucial requirement in 

an accurate analysis, the constitutive models recommended in Eurocodes and 

available literature are illustrated. The application of high-strength concrete (HSC) in 

concrete-filled composite columns is not documented in the corresponding codes, 

and therefore, an experimental investigation is conducted. Finally, several calibrated 

examples are presented to illustrate the accuracy and validity of the proposed method. 
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7.1 Introduction 

 

Advanced analysis is regarded as an accurate simulation-based technique for 

studying the ultimate behaviors of members or framed structures under extreme 

conditions, such as seismic attacks, super typhoons, and progressive collapse and so 

on. In order to obtain reliable analysis results, it necessitates the consideration of 

various significant effects inherent to actual structures, such as initial imperfections, 

geometric and material nonlinearities, residual stress and concrete cracking. 

 

However, a unified advanced analysis approach for hybrid steel and concrete 

framed structures cannot be easily obtained due to the mechanical characteristics of 

various structural members substantially vary. Bare steel (BS) members are usually 

slender and present an apparently stability problem, especially for columns with high 

slenderness ratios. In reinforced concrete (RC) members, material nonlinearity is 

visibly observed. Meanwhile, steel-concrete composite (SCC) members suffer from 

both stability and nonlinearity issues. Consequentially, advanced analysis should 

cater for both geometric and material nonlinearities in different types of structural 

members in framed structures. Other considerations, including initial member and 

frame imperfections and concrete cracking, should also be covered in analysis. An 

incomprehensive consideration of these factors may result in inaccurate results. 

 

To these ends, the curved ALH element is introduced in the analysis in this 

research work, since it is directly derived for the arbitrary members in hybrid steel 

and concrete frames. The element is initially curved and the P-δ effect due to 

member imperfection can be reflected. One arbitrarily located hinge and two end 
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hinges are fabricated in an element, indicating that this element is also suitable for 

simulations of high material nonlinearity. The updated Lagrangian method 

associated with the tangent stiffness approach is also introduced in the reflections of 

large deflections. Furthermore, using only one element per member in the proposed 

analytical model is sufficient, which is to significantly improve numerical efficiency 

and minimize the efforts required for data manipulation. 

 

In considering material yielding, the plastic hinge approach is recognized to be 

more efficient and practical for actual use, as discussed in Chapter 2. The refined 

plastic hinge method, which has been extensively studied by Chan et al. (1997) for 

the second-order inelastic analysis of BS members, is adopted in this thesis. In the 

current work, this method is also extended to the inelastic analysis of RC and SCC 

members to facilitate the advanced analysis method of hybrid steel and concrete 

framed structures.  

 

Monitoring the yield conditions of a section at plastic hinge locations is 

generally required during analysis, in which initial yield and failure conditions are 

needed to be defined. On the basis of these conditions, the plasticization of a section 

is then modeled through the gradual reduction of pseudo-spring stiffness in line with 

external load. Most analyses assume over-conservative and simplified linear 

interpolation equations in calculating the capacities of steel sections under initial 

yield and ultimate limit states. Due to the nonlinear properties of concrete, the initial 

yield and failure criteria for typical RC and SCC sections may lead to cost-

ineffective or sometimes unsafe designs if the simplified equations are used. As an 

alternative, the cross-section analysis technique presented in Chapter 5 is introduced 
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in calculating the initial yield and failure capacities of arbitrary sections, and a 

generalized refined plastic hinge model that incorporates these sectional yield 

surfaces is proposed.  

 

Concrete is a brittle material with cracking induced by low tensile fracture stress, 

which affects the load-deflection response derived in the nonlinear analysis of 

related members in hybrid steel and concrete frames. Conventionally, the cracking 

effects of concrete on the stiffness of individual members are considered by 

assigning reduced moments of inertia. In examining these effects, some researchers 

have proposed a simplified formula for modifying the effective moment of inertia of 

concrete components. For example, Branson (1963) proposed an approximated 

formula for cracked concrete and Ibrahim (2004) suggested a modeling approach for 

the effective flexural stiffness of concrete. Tikka et al. (2005) developed an EI 

equation for slender reinforced concrete columns. In this thesis, Branson’s (1963) 

formula is introduced in the calculation of the effective moment of inertia of cracked 

concrete members, so that the effects of gradual cracking can be considered in the 

analysis. This technique is simple and effective, providing a reliable estimation for 

conventional engineering purposes. 

 

In this study, constitutive models are necessary since they significantly influence 

the accuracy in analysis. To appropriately input material properties into the 

analytical model, the material constitutive models recommended in Eurocodes are 

discussed. Conventionally, the tensile strength of concrete is usually ignored. In the 

generation of a concrete fracture surface, which is combined with the use of 

Branson’s model (1963) to reflect concrete cracking effects, the strain softening 
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model of Bazant (1983) is adopted as the tensile part of the constitutive relationship 

of concrete. 

 

Concrete-filled tubular (CFT) columns are the most economical and structurally 

efficient among all composite members in terms of resistance to heavily compressive 

loads. The steel tubes not only assist in carrying axial load, but also enable 

confinement to the concrete core, thereby increasing the compressive strength and 

ductility of the core; these advantages are supported by experimental results and the 

findings of Knowles and Park (1969). Owing to these advantages, a considerable 

increment in load bearing capacity is achieved and column size can be reduced. 

Additionally, the concrete core delays the local buckling of steel tubes and increases 

column stiffness. Ellobody et al. (2006) and Young and Ellobody (2006) concluded 

that concrete confinement depends on many factors, such as the sectional shape, 

column diameter, thickness, concrete strength and yield stress of steel tubes. 

Susantha  et al. (2001) investigated the Hyogoken-Nanbu earthquake in Japan and 

found other advantages of CFT columns; that is, they exhibit better ductility 

performance and larger energy absorption than the conventional reinforced concrete 

and steel columns. CFT columns are therefore favorable structural components for 

buildings constructed in high-density urban areas or earthquake-sensitive regions. 

 

HSC (fcu ≥ 60 MPa) has become an increasingly economic and readily available 

material, presenting greater stiffness and strength than the normal-strength concrete. 

However, modern design codes, such as Hong Kong Steel Code (2011) and 

Eurocode 4 (2004), are applicable only to the design of composite columns made of 

concrete with normal strength ranging from C25 to C60. Maximizing the benefits of 
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using HSC to construct CFT columns necessitates figuring out the material 

properties of confined concrete. This research experimentally explores the material 

properties of HSC confined in circular and octagonal steel tubes. 

 

In this chapter, the effective flexural stiffness approach based on Branson’s 

model is proposed for simulating concrete cracking effects. A generalized refined 

plastic hinge model, which incorporates sectional yield surfaces, is put forward to 

reflect the inelastic behaviors of various material types of members. The material 

constitutive models are critical in accurate analysis, which prompts the discussion of 

the constitutive models recommended in Eurocodes and available literature. With 

HSC in concrete-filled circular and octagonal composite columns, an experimental 

investigation is established. Finally, several calibrated examples are presented to 

demonstrate the accuracy and validity of the proposed method. 

 

7.2 Assumptions 

 

For beam-column element and cross-section analyses, the following basic 

assumptions are adopted: 

1) Euler-Bernoulli hypothesis is valid and the second-order effect due to 

axial loads is considered.  

2) Strains are small but the deformations can be large.  

3) Plane sections before deformation remain plane after deformation which 

implies a linear strain distribution exists across the section depth.  

4) The bond-slip between the concrete and steel is disregarded and full strain 

compatibility between the steel and the surrounding concrete is assumed. 
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5) Material nonlinearity is considered by plastic hinge springs while the 

element is elastic.  

6) The steel reinforcement embedded in concrete does not buckle under 

compression. 

7) The applied loads are nodal and conservative, which are assumed to be 

independent of the load path and proportional increased. 

8) Warping deformation, shear deformation as well as twisting effect are not 

considered.  

9) Tensile strength of concrete is only considered in calculating the sectional 

strength before cracking, after that, the tensile strength of concrete is 

neglected. 

 

7.3 Flexural stiffness modeling 

 

As previously stated, concrete easily cracks, thereby affecting the flexural 

stiffness of members and possibly enlarging the deflections in an entire structure. 

Mehanny et al. (1999) discussed the importance of considering concrete cracking 

effects; and these affect the internal force distribution, member deformation and 

dynamic response of a structure. These effects should therefore be appropriately 

reflected in advanced analysis. 

 

The influence of concrete cracking on the stiffness of individual members is 

generally evaluated by assigning reduced moments of inertia. Due to numerous 

uncertainties involved, however, the accurate reflection of concrete cracking is 
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difficult to quantify. For cracked concrete, Branson (1963) recommended an 

effective moment of inertia, which is an empirical expression later adopted in 

various forms by the American Concrete Institute (ACI) (1995), Canadian Standards 

Association (1994) and Standards Association of Australia (1994) in their building 

codes. This technique is simple and effective, providing a reasonable estimation of 

member deflection. The equation proposed by Branson (1963) is revised to model 

the gradual cracking effects on individual members; specifically, the effective 

moment of inertia is reduced as follows: 
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 for Ma ≥ Mcr  (7. 1) 

 e unI I  for Ma < Mcr (7. 2) 

where, Icr is equal to the initial slope of the bending moment-curvature for zero axial 

load with no tensile stress in concrete; Ie is the effective moment of inertia as 

adopted in the analysis; Iun is the moment of inertia of the uncracked section in 

elastic state; and Mcr is the moment at the intersecting point by the loading path and 

concrete fracture surface which is kept unchanged after intersection. 

 

7.4 Plastic hinge formulations 

 

Elastic limit and failure criteria should be defined in the refined plastic hinge 

analysis approach. Therefore, the initial yield and failure surfaces of the arbitrary 

sections discussed in Chapter 5 are introduced. The two yield surfaces divide a 

loading space into three zones: the elastic, elasto-plastic and plastic hardening zones 

(Figure 7.2). If the loads are within the initial yield surface, a section can be ideally 
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treated as elastic without in the need to reduce either strength or stiffness. If the load 

coordinates fall into the elasto-plastic zone, the section is under gradual yielding 

stage and its strength and stiffness are discussed in the followings. Once the load 

exceeds the failure surface, the sectional hardening is activated with stiffness 

reduced to the residual cross sectional capacity. 

 

Section spring stiffness S can be computed by the following equations, 
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where EI(ζ)/L is the flexural stiffness under current load level, L is the member 

length and erM 
  and prM 

 denote the initial yield and failure moments, respectively, 

reduced due to the presence of current axial force and ρ represents the strain-

hardening parameter. Based on this equation, the section stiffness varies from 

infinity to a small strain-hardening value that represents three sectional stages as the 

elastic, partially plastic and fully plastic stages with strain-hardening. 

 

7.5 Material constitutive models 

 

Various constitutive models in codes or obtained from laboratory can be adopted 

in the analysis. When without prescribed statements; the following material 

constitutive models are adopted.  
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7.5.1 Constitutive model for structural steel and rebar 

 

For the structural steel and reinforcing bars, the stress vs. strain relationship is 

assumed to be elastic-perfectly-plastic, as plotted in Figure 7.1(a). Alternatively, it is 

expressed in mathematical forms as, 

       for           (7. 6) 

        for            (7. 7) 

        for             (7. 8) 

where,    is the design stress of steel;     and     are the elastic-limit and ultimate 

fracture strain  respectively;    is the Young’s modulus of steel. 

 

7.5.2 Constitutive model for the compression of unconfined concrete 

 

The complete stress–strain relationship of concrete is plotted in Figure 7.1(b), in 

which the compressive component of the constitutive relationship of concrete is 

taken from Eurocode 2 (2004) and can be expressed as,  
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 c cf 
 

for 0c c cu   
 

(7. 10) 

where fc is the peak compressive design strength of concrete; ɛ0 and ɛcu are the strain 

at reaching the maximum strength and the ultimate respectively; n represents the 

exponent that can be conventionally taken as 2.0 for normal-strength concrete. 
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The constitutive model of concrete is highly nonlinear, but an elastic limit strain 

ɛce should be artificially assumed in the proposed numerical solution, which defines 

the stress vs. strain relationship prior to this strain as linear. Such idealization and 

simplification are widely adopted. For example, Izzuddin et al. (2000) assumed the 

elastic limit strain to be the strain at the onset of peak compression strength. In the 

present study, the elastic limit strain of concrete is 

 /ce c cf E 
  or  , , ,/ce c c c c cf E 

 
  (7. 11) 

where ɛce and ɛce,c are the elastic limit strains of unconfined and confined concrete 

respectively, fc and fc,c are the compressive strengths of unconfined and confined 

concrete respectively; and Ec,c is the Young’s modulus of confined concrete. 

 

7.5.3 Constitutive model for the tension of concrete 

 

The strain softening model proposed by Bazant (1983) is adopted as the tensile 

part of the constitutive relationship of concrete. It is described as follows: 

 c c cE  
 

for 0 0t c  
 

(7. 12) 
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(7. 13) 

 70 / (57 145 )t c tE E f 
 

  (7. 14) 

where σc is the stress of concrete at specific strain ɛc; Ec and Et are the Young’s 

modulus and tangent tensile strain softening modulus, respectively; and ɛt0 and ɛtu 

denote the strains at peak tensile strength and tensile fracture, respectively. 

 

7.5.4 Constitutive model for the compression of confined concrete 
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The confinement effect of concrete can be taken into account by modifying the 

stress–strain relationship indicated in Eurocode 2 (2004) thus: 

 , 2(1.000 5.0 / )c c c ckf f f 
 

for 2 0.05 cf 
 

(7. 15) 
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  (7. 18) 

in which σ2 is the effective lateral compression due to confinement; fc,c is the peak 

compressive strength of confined concrete; and ɛ0,c and ɛcu,c represent the confined 

concrete strains at the maximum and ultimate strengths, respectively. The effective 

lateral confining stress can be obtained by experimentation or empirical formula, as 

discussed in the next section. 

 

7.6  Experiment on high-strength concrete (HSC) in steel tubes 

 

7.6.1 Introduction 

 

The use of CFT columns in modern structures is becoming an increasingly 

popular selection, especially for high-rise buildings. Nevertheless, their applications 

are commonly limited to typical sectional shapes, such as rectangular and circular 

sections. Concrete-filled circular tubular sections are extensively used. The concrete 

core can be effectively confined in a circular steel tube, thereby significantly 

increasing not only concrete compressive strength, but also concrete ductility. 

Despite these advantages, difficulties occur in the fabrication of large circular 

sections with thick steel plates, and therefore, the octagonal shape seems more 
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practical and feasible for construction. In designing octagonal composite columns, 

existing codes (e.g. Eurocode 4 (2004)) do not provide a specific design formula or 

corresponding specifications. 

 

The typical stress vs. strain curves of normal-strength concrete and HSC are 

shown in Figure 7.3. HSC is an extremely brittle material, with strength that abruptly 

diminishes once collapse occurs. When the concrete is confined, however, its 

strength increases and its ductility significantly improves. Therefore, the best 

application of HSC is to be integrated the use in steel tubes.  

 

In the proposed method, material constitutive relations are the only necessary 

parameters for design and analysis. With the absence of available material models, 

an experiment on identifying material properties can be conducted. This section 

describes the experimental investigation into the material properties of HSC confined 

in circular and octagonal steel tubes.  

 

The experiment introduces two groups that contain two circular and octagonal 

specimens with the same reasonable depth-to-thickness (d/t) ratio (38.74). The axial 

load versus the strain of the concrete, as well as the axial and hoop strains of the steel 

tubes, are measured. The measurements are used in determining the stress vs. stain 

relationship of confined concrete. Another group of unconfined specimens, which 

are of the same size as the concrete core in the confined specimens, is also tested.  

 

7.6.2 Dimensions of specimens 
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The experimental investigation is intended to study the material characteristics 

of HSC confined in circular and octagonal steel tubes. To this end, a series of uni-

axial and tri-axial compression tests on HSC specimens are designed. The specimens 

discussed in the preceding section are shown in Figure 7.5. For comparison, a group 

of unconfined specimens are tested (Figure 7.6). The dimensions of the two groups 

of confined specimens, namely CHS 194 and OHS 194, are presented in Table 7.1 

and Table 7.2, respectively. 

 

7.6.3 Material properties of high strength concrete 

 

To derive the fundamental material characteristics of the HSC, standard cube 

and cylinder concrete specimens are tested. The dimensions of the cube and cylinder 

specimens are 100 mm   100 mm   100 mm and 150 mm (diameter)   300 mm 

(height), respectively. Then, the concrete cubes and cylinders are crushed to fail to 

determine actual compressive strength, where a compression machine is used 

operated at loading rates of 2 kN/second and 0.13 mm/min, respectively. The test 

machine is shown in Figure 7.4 and the results are provided in Table 7.3 and Table 

7.4. 

 

7.6.4 Material properties of steel 

 

The material properties of the steel tubes are determined by conducting tension 

tests on cut coupons, which are machined from the walls of the tubes from the two 

specimen groups (i.e., CHS 194 and OHS 194). The specimens are prepared 

according to BS EN 10002 (2001), and four specimens are tested for each group. 
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Standard experimental procedure is followed with the loading rate as 0.002mm per 

minute. The results are summarized in Table 7.5. 

 

7.6.5 Experimental design 

 

The experimental program is designed to study the material characteristics of 

HSC confined in steel tubes. Thus, vertical load is applied only on the concrete core. 

To facilitate the alignment of vertical load and avoid the direct exertion of stress on 

the steel tubes, a 32-mm thick loading pad is placed on top of the specimens, which 

are slightly smaller than the concrete core (Figure 7.7). 

 

Theoretically, the confinement effect does not occur at the early stage of loading 

owing to the fact that the Poisson ratio of concrete is lower than that of steel at this 

stage. The core of the specimen is then axially loaded, generating Poisson-type 

lateral expansion that reacts with the steel tubes to produce confinement. This 

phenomenon is also called the passive confinement effect. As axial load increases, 

however, the lateral expansion of concrete gradually exceeds that of steel due to the 

change in the Poisson ratio of concrete. Therefore, radial pressure develops at the 

concrete–steel interface. At this stage, the confinement of the concrete core is 

achieved and the steel is in the hoop tension state. The lateral pressure levels of the 

circular and octagonal tubes can be calculated by equilibrium relations as follows: 

    
 𝑡

   𝑡
     (7. 19) 

where,    is the confinement stress; t is the thickness of the steel tubes; and D is the 

overall diameter. 
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Although vertical load is applied only on the concrete core, the vertical shear 

force caused by friction is transferred across the steel tubes to the concrete core 

interface. Besides the hoop stress induced by concrete expansion, the stress state is 

determined by the Mohr–Coulomb failure criterion: 

   √    
 

√ 
√         . (     )       (7. 20) 

where,    is the vertical stress induced by the friction between the steel and concrete 

interface; and    is the resultant stress. 

 

Strain gages are attached to the outer surface of the steel tubes to enable the 

evaluation of actual stresses. The gages are used to measure the hoop and axial 

strains of the outer surface of the steel tubes at two diametrically opposite points at 

the mid-height of each specimen. The specimen setup is illustrated in Figure 7.8. The 

vertical strain on the concrete core is measured by direct deformation measurements 

using linear variable displacement transducers. The experimental setup is shown in 

Figure 7.9. 

 

7.6.6 Experimental results 

 

The axial stress–strain relationships of the confined concrete core are illustrated 

in Figure 7.10. The effects of confinement are highly apparent both as the axial 

strength and ductility of the specimens increase. As previously mentioned, another 

comparison groups with the unconfined specimens are also tested. The experimental 
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results for the CHS 194 group and OHS 194 group specimens are plotted in Figure 

7.11 and Figure 7.12, respectively. 

 

7.6.7 Discussions 

 

The results for the two groups are shown in Table 7.6. Some of the experimental 

findings are discussed as follows. (1) Although HSC is brittle, its ductility in the 

circular and octagonal tubes significantly increases. (2) The strength enhancement of 

HSC is also observed in the two comparison groups, in which ultimate compressive 

strength increases to 69% and 45% in the circular and octagonal groups, respectively. 

(3) An apparent confinement effect is observed in the core of the octagonal tubes at 

no less than 85% of the counterpart in circular tubes. Once the material constitutive 

relations are determined from available codes or through experimental investigation, 

analysis and design using the proposed method can be conducted. 

 

7.7 Verification examples 

 

The computer program proposed in this research is further developed and 

combined with the proposed cross-section analysis program (RCD 2013) for the 

advanced analysis of hybrid steel and concrete members and frames. The sectional 

yield surfaces are pre-generated and indexed by the proposed cross-section analysis 

technique. The analytical model based on the curved ALH element is introduced for 

the simulation of the large deflections and inelastic behaviors of individual members 

and frames. To verify the accuracy and feasibility of this method, several 
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experimental examples from published works are selected and analyzed using the 

proposed approach. 

 

7.7.1 Foure’s RC column 

 

In verifying the validity and accuracy of the analysis method for RC members 

and structures, an eccentrically loaded RC column experimentally tested by Espion 

(1993) is selected. This column was also recommended by Bratina (2004) as a 

benchmark. The dimensions and section properties of this column are provided in 

Figure 7.13. 

 

An eccentric load is applied on top of the column; this load slowly increases 

until column failure. Three material properties are reported by Espion (1993): the 

compressive strength of concrete fc (38.3 MPa), the elastic modulus of concrete Ec 

(33.6 GPa) and the strength of steel fy (465 MPa). The other material properties are 

obtained from Eurocode 2 (2004). The Young’s modulus of steel Es is 200 GPa and 

the tensile strength of concrete ft is 2.92 MPa. The initial imperfection of the column 

is assumed to be L/1000. 

 

The comparison of the results derived by the proposed method and previous 

experiments is illustrated in Figure 7.14. The ultimate load applied in the proposed 

analysis method is 461.9 kN, which is close to the failure load measured in the 

experiment. The analysis results show a satisfactory capacity of the method in 

tracing the nonlinear behavior of an individual RC column. These findings also 

indicate that the proposed method can be used to effectively simulate the behavior of 
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a simple RC column and can therefore be used in the advanced analysis of RC 

structures under ultimate limit loads. 

 

7.7.2 Concrete-filled steel tubular columns 

 

In this example, eight pin-ended concrete-filled square steel tubes subjected to 

eccentric loads are analyzed and compared with the results of Bridge (1976). These 

columns have been studied by many researchers, such as Lakshmi et al. (2002), 

Valipour et al. (2009) and Fong et al. (2010) to verify their analytical methods. The 

current study focuses on predicting both failure load and experimental load versus 

deflection curves. The cross-sectional properties and load conditions are shown in 

Figure 7.15, and the geometrical dimensions and material properties are listed in 

Table 7.7 and Table 7.8, respectively.  

 

In these examples, all the columns are assumed to contain initial imperfections 

equal to L/1000. The minimum residual displacement method (Chan, 1988) is used 

to trace the equilibrium path in elastic and inelastic ranges. The applied loads and 

total displacement at the mid-span of the eight columns are shown in Figure 7.16 to 

Figure 7.23. 

 

The ultimate and observed maximum loads of the eight columns are compared 

and tabulated in Table 7.9. The comparison shows that the proposed approach 

accurately predicts the load versus deflection path of individual CFT columns until 

the loads applied reach failure levels. The numerical results show good agreement 

with the test results for uni-axial and bi-axial bending cases. The initial yield, failure 
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loads and deflections derived by the proposed theory agree well with the test results. 

Note that the cracking effects in these columns should be considered; otherwise, the 

predicted ultimate loads will be significantly higher than the test results, leading to 

the creation of a non-conservative design. 

 

7.7.3 Concrete-filled circular hollow steel columns 

 

In this example, 10 steel tubular columns filled with normal-strength concrete 

tested by Neogi and Sen (1969) are analyzed and compared. The material properties 

and geometric data of the specimens are listed in Table 7.10. Specimens M1 to M10, 

which are made of hot-finished seamless mild steel tubes, are pinned at both ends in 

the bending plane. Neogi and Sen (1969) did not provide the elasticity modulus of 

concrete; thus, this value is taken from the ACI codes (1995). Given that the initial 

geometric imperfections of specimens M1 to M7 are not measured, they are assumed 

sinusoidal with amplitudes equal to L/1000 at mid-height. For specimens M8, M9 

and M10, the initial deflections at mid-height are determined as 5.69, 3.73 and 1.016 

mm. To ascertain the accuracy of the proposed method, the load versus deflection 

response of specimen M5 (the only specimen for which Neogi and Sen (1969) 

provided deflection data) is analyzed and compared (Figure 7.24). The numerical 

load deflection responses of these columns are shown in Figure 7.25 to Figure 7.27. 

 

The ultimate axial loads of specimens M1 to M10 are presented in Table 7.11 

for direct comparison. Figure 7.24 indicates that the load versus deflection curve is 

identical to the experimental results, with less than 1% difference at ultimate loads. 

The results shown in Table 7.11 indicate the high prediction accuracy of the 
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proposed method. The load versus deflection responses of all the specimens are also 

presented in Figure 7.25 to Figure 7.27, which show the highly nonlinear behavior of 

slender concrete-filled columns. 

 

7.7.4 Cranston’s portal frame 

 

A simply supported RC portal frame, originally tested by Cranston (1965), is 

selected and tested in this example. The frame is pinned to the ground and two 

concentrated loads are applied (Figure 7.28). This frame has been studied by several 

researchers, including Lazaro and Richards (1973), Bazant et al. (1987), Sun et al. 

(1994) and Bratina et al. (2004). 

 

Cranston (1965) provided only two material properties: the compressive strength 

of concrete fc (36.5 MPa) and the tensile strength of steel fy (293 MPa). The other 

material properties are taken from Eurocode 2 (2004). The analysis results derived 

by the proposed method are compared with the experimental results of Cranston 

(1965). The analysis results of Sun et al. (1994) are also introduced for comparison. 

The comparison results are plotted in Figure 7.29. 

 

The comparison of the present and previously published results shows that the 

proposed method accurately captures the highly nonlinear behavior of a simple RC 

portal frame. Adopting the proposed method also enables the accurate prediction of 

initial yielding load (Figure 7.29), indicating a similarity in trends between the 

proposed theory and previous experiments. The cracking effects of reinforced 

concrete members are modeled by the described technique. Furthermore, this gradual 
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cracking can be accurately simulated via the numerical analysis. The analysis results 

derived by the proposed approach are slightly higher than previous experimental 

results, where a discrepancy that might be result from the indirect consideration of 

concrete cracking. 

 

7.8 Concluding remarks 

 

In this chapter, an advanced analysis approach for hybrid steel and concrete 

members and frames is proposed. Adopting the ALH element proposed in Chapter 3 

and Chapter 4, as well as the cross-section analysis technique as presented in Chapter 

5, results in a unified analysis approach, for which only fundamental material 

constitutive models are required. To analyze concrete cracking effects, the flexural 

stiffness modeling approach based on Branson’s model is introduced. Moreover, a 

generalized plastic hinge model is put forward for the simulation of gradual yielding 

in various members. Material constitutive models are crucial to accurate analysis, 

prompting the discussion of the constitutive models recommended in Eurocodes and 

literature. An experiment is carried out on HSC confined in concrete-filled 

composite members. Finally, several calibrated examples are presented to illustrate 

the accuracy and validity of the proposed method. 
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Figures 

 

(a) Steel 

 

(b) Concrete 

Figure 7.1 Constitutive relations of steel and concrete 
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Figure 7.2 Initial and failure yield surfaces under praticular axial force 
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Figure 7.3 Typical stress vs. strain curves for normal and high strength concrete 

 

 

  

 

    

Figure 7.4 Tests for the cube and cylinder specimens 
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 (a) Circular confined specimen (b) Octagonal confined specimen  

Figure 7.5 Confined specimens with same d/t ratio 

 

 

 

  

 

 (a) Circular unconfined specimen (b) Octagonal unconfined specimen  

Figure 7.6 Unconfined specimens with the same size of concrete core 
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Figure 7.7 Schematic of specimen setup 

 

 

 

 

  

 

 (a) Circular tube (b) Octagonal tube  

Figure 7.8 Strain gages setup for confined specimens 
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 (a) Experimental setup for circular confined specimens 

 

 

 

 

  

 

 (b) Experimental setup for octagonal confined specimens 

 

 

Figure 7.9 Experimental setup for confined specimens 
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Figure 7.10 Stress vs. strain curves of confined specimens 
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Figure 7.11 Results between the circular confined and unconfined specimens 

 

 

Figure 7.12 Results between the octagonal confined and unconfined specimens 
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(a) Evaluation 

Concrete: 

fc = 38.3 MPa , Ec = 33600 MPa 

Reinforcement: 

fy = 465 MPa , Es = 200000 MPa 

 

(b) Cross section 

Figure 7.13 Foure’s column 
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Figure 7.14 Load vs. deflection curve of the Foure’s column 
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(a) SHC -1 & SHC -2 

 

(b) SHC -3 & SHC -5 

 

(c) SHC -4 & SHC -6 

 

(d) SHC -7 & SHC -8 

Figure 7.15 Cross section properties and eccentricity of loading 
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Figure 7.16 Comparison results of SHC -1 

 

 

Figure 7.17 Comparison results of SHC -2 
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Figure 7.18 Comparison results of SHC -3 

 

 

Figure 7.19 Comparison results of SHC -4 
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Figure 7.20 Comparison results of SHC -5 

 

 

Figure 7.21 Comparison results of SHC -6 
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Figure 7.22 Comparison results of SHC -7 

 

 

Figure 7.23 Comparison results of SHC -8 
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Figure 7.24 Comparison between experiment and present study (M5) 

 

 

Figure 7.25 Load vs. deflection curves for specimens of M1 to M3 
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Figure 7.26 Load vs. deflection curves for specimens of M4, M6 and M7 

 

 

Figure 7.27 Load vs. deflection curves for specimens of M8 to M10 
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(a) General dimension 

 

(b) Section properties 

Figure 7.28 Cranston’s portal frame 

 

 

Figure 7.29 Horizontal deflection of Cranston’s portal frame 
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Tables 
 

Table 7.1. Dimensions of confined specimens in CHS 194 group 

Specimen Tube 

Thickness 

External 

Diameter 

Height Concrete 

Area 

Steel 

Area 

mm mm mm mm
2
 mm

2
 

C1-B 5.00 193.80 369.04 26532.67 2965.66 

C1-C 4.99 193.36 368.48 26411.55 2952.99 

 

Table 7.2. Dimensions of confined specimens in OHS 194 group 

Specimen Tube 

Thickness 

Edge Length Height Concrete 

Area 

Steel 

Area 

mm mm mm mm
2
 mm

2
 

O1-A 5.01 73.73 369.72 23375.95 2871.92 

O1-B 5.00 73.81 368.30 23435.31 2869.56 

 

Table 7.3. Compressive strength of concrete obtained from cube and cylinder test 

Test day Cube Strength fcu Cylinder Strength fc fcu/fc 

N/mm
2
 N/mm

2
  

28 days 98.40 76.23 0.77 

32 days 115.16   

50 days 125.74 95.67 0.76 
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Table 7.4. Concrete properties obtained from cylinder test 

Test day fc Ec ε0 εcu 

MPa GPa mm/mm mm/mm 

28 days 76.23 38.70 0.002332 0.002332 

50 days 95.67 43.60 0.002704 0.002704 

 

Table 7.5. Steel properties obtained from coupon test 

 

Table 7.6. Summarized experimental results 

Confined 

shape 

D/t ratio Yield 

strength 

of steel 

Unconfined 

concrete 

strength 

Confined 

concrete 

strength 

Concrete 

strength 

increased 

MPa MPa MPa  

Circular 38.75 379.25 80.85 136.62 69% 

Octagonal 38.52 289.50 82.74 120.15 45% 

 

 

  

Group fy fu Es εe Eu Possion’s Ratio 

MPa MPa GPa mm/mm GPa  

CHS-194 379.25 514.65 206.50 0.0170 1.24 0.3 

OCT-194 289.50 455.46 202.46 0.0096 1.21 0.3 
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Table 7.7. Geometrical dimension 

 

Table 7.8. Material Properties 

Column No. fcu ftu Ec fy Es 

MPa MPa GPa MPa MPa 

SHC - 1 29.9 3.0 23 300 291 205 000 

SHC - 2 31.1 2.9 23 720 290 205 000 

SHC - 3 37.2 4.1 26 410 313 205 000 

SHC - 4 39.2 4.1 27 850 317 205 000 

SHC - 5 44.3 4.4 28 330 319 205 000 

SHC - 6 36.1 3.9 27 090 317 205 000 

SHC - 7 31.1 3.3 24 060 254 205 000 

SHC - 8 31.1 3.3 24 060 254 205 000 

 

 

Column 

No. 

Width Depth Thickness Length Loading Angle Ecc 

mm mm mm mm deg. mm 

SHC - 1 203.7 203.9 9.96 2130 0 38 

SHC - 2 204.0 203.3 10.01 3050 0 0 

SHC - 3 203.3 202.8 10.03 2130 30 38 

SHC - 4 202.8 203.4 9.88 2130 45 38 

SHC - 5 202.6 203.2 10.01 3050 30 38 

SHC - 6 203.2 202.1 9.78 3050 45 64 

SHC - 7 152.5 152.3 6.48 3050 0 38 

SHC - 8 152.5 152.3 6.48 3050 0 64 
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Table 7.9. Summary of comparisons 

Column No. Obs. Max load Present Study Exp./Pres. 

kN   

SHC - 1 1956 1889 1.04 

SHC - 2 2869 3029 0.95 

SHC - 3 2180 2101 1.04 

SHC - 4 2162 2121 1.02 

SHC - 5 2037 1910 1.07 

SHC - 6 1623 1587 1.02 

SHC - 7 680 707 0.96 

SHC - 8 513 554 0.93 

Mean 1.00 

Standard Deviation 0.050 

 

Table 7.10. Geometrical layout and material properties 

Specimen 

No. 

Tube Length D t e fy Es fcu 

mm mm mm mm MPa GPa MPa 

M1 3048 169.4 5.11 47.6 309 207 55.53 

M2 3048 169.2 5.26 38.1 309 207 54.00 

M3 3048 168.9 5.66 47.6 295 207 42.47 

M4 3048 168.4 6.55 47.6 298 207 38.00 

M5 3048 169.4 7.19 47.6 312 207 32.00 

M6 3048 169.4 7.29 38.1 312 207 33.18 

M7 3022.6 168.9 8.81 47.6 323 207 33.06 

M8 3048 140.2 9.53 31.8 273 211 41.53 

M9 3048 140.2 9.75 31.8 273 211 27.06 

M10 3048 121 5.00 31.8 293 207 42.59 
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Table 7.11. Comparisons between the experiment and proposed approach 

Specimen No. 
Experiment Proposed Ratio 

kN kN  

M1 622 636 0.98 

M2 702 720 0.98 

M3 600 590 1.02 

M4 625 609 1.03 

M5 653 648 1.01 

M6 739 739 1.00 

M7 758 751 1.01 

M8 548 577 0.95 

M9 548 548 1.00 

M10 417 394 1.06 

Mean 1.00 

Standard Deviation 0.03 

Break 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

In this chapter, the findings of this thesis are summarized and presented, and the 

recommendations for the future work are also given. 

 

8.1. Conclusions  

 

A four-year research project is presented in this thesis, detailing the unified 

second-order design and practical advanced analysis of a hybrid steel and concrete 

framed structure. A new beam column element with an arbitrarily located plastic 

hinge is proposed for second-order elastic and advanced plastic analyses, in which 

derivations are illustrated in detail. The element is extended to three-dimensional 

spaces, and the incremental secant stiffness method associated with the updated 

Lagrangian description is adopted for considering large deflections. A robust cross-

section analysis technique based on the quasi-Newton numerical scheme is 

developed for arbitrary sections. Three types of sectional yield surfaces are generated, 

for which a refined plastic hinge model associated with the use of these surfaces is 

also proposed. The use of high-strength concrete (HSC) in concrete-filled composite 

constructions is experimentally investigated. Additionally, extensive examples from 

available literature and previously published experiments are used to verify the 

accuracy and feasibility of the proposed analytical methods. Moreover, major design 
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principles for second-order design are investigated and several design cases are 

demonstrated. 

 

The research findings and contributions of this work are summarized as follows: 

 

1) An analytical model that uses one element per member for second-order 

design and advanced analysis is proposed. The model enables the 

simulations of various effects as initial imperfections, as well as geometric 

and material nonlinearities. A new beam column element with consideration 

for an arbitrarily located plastic hinge and initial member curvature is 

derived. In this element, the initial imperfections of a member are explicitly 

modeled so that the P-δ effect can be directly reflected in the analysis. 

Aside from the conventional element that requires two or more elements to 

capture plastic behavior along member length, an internal plastic hinge can 

be arbitrarily formed along the member. To improve numerical efficiency 

and the easy incorporation into existing software, internal degrees of 

freedom are condensed. Therefore, using one element per member in the 

proposed analytical model is sufficient and high numerical efficiency can be 

achieved. This approach consequently brings considerable savings in terms 

of computing time and data manipulation efforts. 

 

2) An analytical model for the advanced analysis of three-dimensional framed 

structures is proposed. The model is developed by extending the planar 

ALH element to three-dimensional spaces. A simplified approach, which 

assumes a space frame with finite but small rotations, is adopted in deriving 
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element formulations. The updated Lagrangian description and the 

incremental secant stiffness method are used for considering large 

deflections; which are found to be accurate and efficient in iterative 

convergence rates. Condensing the internal degrees of freedom significantly 

reduces the size of the global stiffness matrix and improves numerical 

efficiency. The efficiency and accuracy of the proposed method are verified 

on the basis of illustrated benchmarking examples. 

 

3) A cross-section analysis technique for arbitrary sections in a hybrid steel 

and concrete frame is also proposed. A quasi-Newton iterative scheme is 

adopted in determining the neutral axis of a section and then sectional 

capacities are computed. Two types of stress-resultant approaches for 

concrete components are provided as the equivalent stress block and 

elaborated layer-integration methods. The former is limited to ultimate limit 

states, whereas the latter is valid for any specified conditions. A structural 

steel component is automatically meshed into small fibers and each rebar is 

lumped into a point that occupies a certain area. The openings and voids 

occupied by other components are removed by the negative area approach. 

 

4) Three types of sectional yield surfaces are put forward as the initial yield, 

failure, and concrete fracture surfaces. The initial yield and failure surfaces 

define the elastic and ultimate limit states, whereas the concrete fracture 

surface is established for combined use with Branson’s model in reflecting 

concrete cracking in the advanced analysis. A refined plastic hinge model 
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associated with these sectional yield surfaces is also proposed for 

simulations of the inelastic behavior of various members. 

 

5) This work likewise proposes a unified and practical second-order design 

approach for hybrid steel and concrete framed structures. Most national 

codes and design guidelines gradually permit and recommend the use of 

second-order analysis, and an investigation on the use of Eurocodes for the 

second-order design of RC, BS, and SCC members and frames is conducted. 

Furthermore, several simple design examples are presented and the design 

results obtained by the proposed method are compared with those from the 

conventional approach. 

 

6) Another contribution is that a practical and efficient advanced analysis for 

hybrid steel and concrete framed structures has been proposed. This 

technique enables the simulations of the various effects inherent to actual 

structures, such as initial imperfections and geometric and material 

nonlinearities. By adopting the proposed curved ALH element associated 

with the accurate cross-section analysis, a unified analysis approach can be 

achieved. Moreover, using only one element per member in the proposed 

analytical model is sufficient, resulting in considerable savings in terms of 

computing time and data manipulation efforts. A series of benchmarking 

examples from literatures and experiments are selected and used as bases in 

validating the accuracy and feasibility of the proposed method. 
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7) The use of HSC in circular and octagonal steel tubes is experimentally 

investigated, on whose basis corresponding constitutive models are obtained 

and studied. Additionally, the selections of the available constitutive models 

in Eurocodes are investigated. 

 

8.2. Recommendations for future work 

 

This thesis presents unified analytical models for the second-order design and 

advanced analysis of hybrid steel and concrete framed structures. The research is 

limited to static analysis with idealized member connectivity under normal 

temperature conditions. Recommended research directions are outlined below. 

 

a) In this study, all member connections are assumed pinned or rigid. In 

certain situations, however, the connections between adjacent members are 

usually partially restrained; therefore, semi-rigid connection springs can be 

integrated into the proposed analytical model. A more sophisticated analysis 

approach with consideration for semi-rigid connection springs can be 

developed. 

 

b) The proposed element formulations can be extended to allow for the shear 

deformation. For most practical engineering applications, shear deformation 

is negligible, but for the stocky members with a slenderness ratio of less 

than 10, shear deformation should not be disregarded. Therefore, shear 

strain energy can be incorporated into total potential formulations and the 

corresponding secant relations and tangent stiffness can be obtained. 
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c) In this work, the analysis is limited to static conditions. Extending the 

propose method to dynamic seismic engineering applications (e.g., time–

history analysis) necessitates the use of mass and damping matrix as well as 

hysteric behavior in connections, which are needed to be derived. 

 

d) To extend the proposed numerical approach to fire limit state analysis, the 

axial spring should be derived in the element formulations and thermal 

expansion should be reflected. Moreover, the cross-section analysis 

approach should be revised to enable the consideration of decreases in 

sectional capacities under high temperatures. A corresponding plastic hinge 

formulation should accordingly be developed. 

Break 
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