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ABSTRACT 

In both GIS and terrain analysis, drainage systems are important components. 

Owing to local topography and subsurface geology, a drainage system achieves a 

particular drainage pattern based on the form and texture of its network of stream 

channels and tributaries. The drainage pattern can reflect the geographical 

characteristics of a river network to a certain extent, because it depends on the 

topography and geology of the land. Although research has been done on the 

description of drainage patterns in geography and hydrology, automatic drainage 

pattern recognition in river networks is not well developed. In addition, whether 

in cartography or GIS, hydrography is one of the most important feature classes 

to generalize to produce representations at various levels of detail. There are 

many methods for river network generalization, but few of them consider the 

drainage pattern in the first place, and the generalized results are always 

inspected by expert cartographers visually. Therefore, this research focuses on 

the drainage pattern and its application to map generalization. 

First of all, this thesis introduces a new method for automatic classification of 

drainage systems in different patterns. The method applies to river networks and 

the terrain model is not required in the process. A set of geometric indicators 

describing each pattern are presented and the membership of a network is 

defined based on fuzzy logic. For each pattern, the fuzzy set membership is given 

by a defined IF-THEN rule composed of several indicators and logical operators.  

The method was implemented and experimental results are presented and 

discussed. 

Second, this thesis proposes a method that evaluates the quality of a river 

network generalization by assessing if drainage patterns are preserved. This 

method provides a quantitative value that estimates the membership of a river 

network in different drainage patterns. Assessing the quality of a generalization 

is done by comparing and analyzing the value before and after the network 
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generalization. This assessment method is tested with several river network 

generalization methods on different sets of networks. 

Finally, this thesis proposes a solution to deal with multiple factors at same 

time during the river network generalization. The multi-objective optimization 

problem is settled by the genetic algorithm with consideration of the drainage 

pattern. According the characteristic of each drainage pattern, the factors, such as 

drainage pattern membership, stream order and tributary balance, are considered 

and built into objective functions. In the multi-objective model, different weights 

are used to aggregate all objective functions into a fitness function. Then, the 

generalization is implemented by a designed genetic algorithm. 
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Chapter 1 Introduction 

1.1 Research background 

A natural drainage system is the pattern formed by streams, rivers and lakes in a 

drainage basin. The drainage system is an important component in Geographic 

Information System (GIS) and in terrain analysis as it provides a morphological 

partition of the terrain. In a drainage system, a stream or a river is a natural 

watercourse, usually freshwater, flowing towards an ocean, a lake, or another 

river. Apart from a few cases where a river simply flows into the ground or dries 

up completely before reaching another body of water, rivers always connect 

together to form networks, achieving a particular drainage pattern. The drainage 

pattern is ―the arrangement in which a stream erodes the channels of its network 

of tributaries‖ (Chernicoff & Whitney, 2006). It is different from the channel 

pattern which is used to ―describe the plan view of a reach of river as seen from 

an airplane‖ (Leopold & Wolman, 1957). The river pattern describes the 

morphological structure of a river network at the river basin scale and is different 

from the channel pattern which describes the river morphology at the river 

channel scale. 

There are several types of drainage patterns. They are commonly classified as 

dendritic, parallel, trellis, rectangular, radial, centripetal and reticulate patterns 

(Ritter, 2006). Dendritic patterns, also named tree-like patterns, can usually be 

found where there is no strong geological control (Charlton, 2008). Parallel, 

trellis and rectangular drainage patterns develop in areas with strong regional 

slopes but have their own specific characteristics. Streams radiating from a high 

central area form a pattern of radial drainage while streams forming a centripetal 

one gather in low-lying land. Reticulate drainage patterns are usually found on 



Chapter 1 Introduction 

2 

floodplains and deltas where rivers often interlace with each other (Fagan & 

Nanson, 2004). 

In GIS, the drainage system can be digitized manually or extracted from the 

Digital Elevation Model (DEM) by computing the flow direction and 

accumulation on the terrain (Florinsky, 2009; Nardi et al., 2008; O’Callaghan & 

Mark, 1984; Ortega & Rueda, 2010; Tarboton, Bras, & Rodriguez-Iturbe, 1991; 

Tarboton, 1997; Vogt, Colombo, & Bertolo, 2003) and is represented as a river 

network where each tributary stream is defined by a polyline connected to its 

main stream. Although semantic information can be added at the river level, no 

semantic information is computed and stored at the network level. Inside a 

network, different patterns can be observed and related to other geographical 

factors. In a drainage basin, a number of factors such as topography, soil type, 

bedrock type, climate and vegetation cover influence input, output and transport 

of sediment and water (Charlton, 2008). These factors also influence the nature 

of the pattern of water bodies (Twidale, 2004). As a consequence, to a certain 

extent, a drainage pattern can reflect the geographical characteristics of a river 

network. In structural geology, drainage patterns not only offer clues to 

geological structure, but also help to decode regional geological chronology 

(Hills, 1972). Moreover, drainage patterns are useful in the search for minerals 

(e.g. Binks & Hooper, 1984; De Wit, 1999). At present, much research has been 

done on the description of drainage patterns in geography and hydrology (e.g. 

Howard, 1967; Lambert, 2007; Pidwirny, 2006; Twidale, 2004). However, 

automatic drainage pattern recognition in river networks is not well developed.  

Automated map generalization is always an important issue and major 

challenge in the research of cartography and GIS. Regarded as the skeleton of 

terrain, the drainage system should be considered in research on automated map 

generalization in the first place. Further, as the most important component of the 

drainage system, generalization of rivers properly becomes a focal point. There 

are several reasons: (1) rivers are an important part of the land, and need to be 

represented in maps of any kind; (2) rivers are fundamental concepts used for 

various analyses in geo-science. For instance, geologists can get original slope 

and original structure from drainage patterns. As a set of line features, river 



1.2 Research objective and significance 

3 

networks are generalized from a large scale to a small scale by two main steps: 

selective omission and simplification of tributaries (Li, 2007). There are lots of 

existing methods for tributaries selective omission and simplification, but most 

research focuses on graph of river networks during its generalization and the 

generalized results are always inspected by expert cartographers visually. In fact, 

assessment of the quality of the generalized map is regarded as ―a forgotten 

consideration‖ (Muller, Weibel, Lagrange, & Salge, 1995) and received ―little 

attention‖ (Weibel & Dutton, 1999) in research. Until now scant work has been 

done on this aspect (Bard, 2004; Zhang, 2012). Considering map generalization 

from geographic level first (Ai, Liu, & Chen, 2006; Poorten & Jones, 2002), 

drainage patterns can be considered in the generalization process as patterns are 

important in generalization and should be explicitly measured and evaluated 

(Mackaness & Edwards, 2002). 

1.2 Research objective and significance 

The purposes of this research are to classify the drainage pattern of a river 

network automatically, and to apply this knowledge to river network 

generalization and evaluation. There are three objectives: 

(1) The first objective is to propose and implement a new method for 

automatic drainage pattern recognition of a river network. 

(2) The second one is to propose a quality evaluation method for river 

network generalization by assessing if the generalized river network 

preserves its original pattern. 

(3) The last one is to develop a method for river tributary selection with 

consideration of different factors. 

In GIS, such classification can be useful for terrain analysis as it can help 

provide a qualitative description of the terrain, or it can help with generalization 

as the process may be adapted to the type of network. At present, many 

researchers have started to pay attention to geographical features of river 

networks during the process of generalization (Ai et al., 2006; Buttenfield, 

Stanislawski, & Brewer, 2010; Stanislawski & Buttenfield, 2011; Stanislawski, 
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2009), which follows the idea that ―generalization is not a mere reduction of 

information – the challenge is one of preserving the geographic meaning‖ (Bard 

& Ruas, 2005). Considering drainage pattern as a geographical factor in river 

network generalization helps to retain geographical features of the networks. 

1.3 Structure of the dissertation 

The thesis is divided into 6 chapters. Apart from the introduction of the first 

chapter, a literature review is presented in Chapter 2. Chapter 3 introduces the 

new method for automatic drainage pattern recognition. An application to 

cartographical generalization of the method is proposed in Chapter 4 and Chapter 

5 presents a new method for tributary selection that makes use of the drainage 

information.  Chapters are organized as follows: 

(1) Chapter 2: the related work and definitions about drainage patterns 

classification and river network organization are first introduced. River 

network generalization and its qualitative evaluation are then reviewed in 

detail showing that geographical factors were not explicitly considered in 

the generalization process and the results evaluation.   

(2) Chapter 3: following conclusions from the previous chapter, a novel 

method for drainage pattern classification from a river network is 

introduced. Classification relies on different geometric indicators such as 

the junction angle, the tributary sinuosity and the shape of a catchment. A 

network belongs to a pattern if its indicators fall into some sets of values. 

Providing crisp sets as threshold values or intervals is not reliable. 

Therefore fuzzy sets are defined and thus pattern classification depends 

on the degree of membership of the network for each pattern. Moreover, a 

hierarchy is given to organize the drainage tree based on drainage 

patterns. 

(3) Chapter 4: an assessment method for networks generalized by selective 

omission of their tributaries is presented. The classification method of 

Chapter 3 is applied to check if the drainage pattern of a river network is 

preserved after generalization. The evaluation is based on the 

membership value obtained in the fuzzy logic process so that preservation 
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of the original meaning can be scored. In this chapter, several methods of 

river network generalization, such as the elimination based on stroke, 

length, and catchment area, are tested and evaluated. 

(4) Chapter 5 introduces a generalization method that takes into account the 

drainage information extracted from the pattern classification. A multi-

objective optimization problem is set up by mean of a genetic algorithm 

(GA) to generalize a river network with consideration of different factors. 

Each drainage pattern has its own characteristics, so river networks with 

different patterns should consider different factors during the 

generalization process. The factors, such as drainage pattern membership, 

stream order, and length, are considered and built into objective functions. 

In the multi-objective model, different weights are used to aggregate all 

objective functions into a fitness function. Then, a GA is designed to 

implement the generalization.  

(5) Chapter 6: conclusions of this research are summarized in the chapter 

discussing the contributions and limitations of the method. In addition, 

some perspective works are also presented, firstly in the domain of river 

network and DTM analysis, and secondly extending the application to 

other dataset modeled by network structures.  
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Chapter 2 Review of river network 

classification and generalization 

methods 

2.1 Introduction 

A river is a natural watercourse, usually freshwater, flowing towards an ocean, a 

lake, a sea, or another river. Small rivers may also be called by several other 

names, including stream, creek,  tributary and rill; there is no general rule that 

defines what can be called a river, although in some countries or communities a 

stream may be defined by its size. A river is part of the hydrological cycle and a 

vein of fluvial system. Schumm (1977) conceptualized the fluvial system to 

consist of three zones (see Figure 2.1): (1) production zone, (2) transfer zone, 

and (3) deposition zone. The reference is made to sediment process. 

 

Figure 2.1 Idealized fluvial system (Schumm, 1977, diagram modified from 

Charlton, 2008) 

ZONE 1 

(Production) 

ZONE 2  

(Transfer) 

ZONE 3  

(Deposition) 
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 Zone 1 is the upper portion of the system that is the watershed or drainage 

basin; this portion of the system functions as the sediment supply.  

 Zone 2 is the middle portion of the system that is the river; this portion of 

the system functions as the sediment transfer zone.  

 Zone 3 is the lower portion of the system and may be a delta, wetland, 

lake, or reservoir; this portion of the system functions as the area of 

deposition. 

With the passage of time, a drainage system achieves a particular drainage 

pattern where its network of stream channels and tributaries is determined by 

local geological factors. In order to recognize the drainage pattern of a river 

network and apply it to generalization, the works of the classification of drainage 

patterns, river network organization and generalization are reviewed respectively 

in following sections.    

2.2 Classification of drainage patterns and river networks 

Drainage patterns are classified on the basis of their form and texture according 

to the terrain slope and structure. Their shape or pattern develops in response to 

the local topography and subsurface geology. There are 7 basic types of drainage 

network patterns as follows (see Table 2.1). 
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Table 2.1 Drainage network patterns (diagrams modified from Ritter, 2006) 

Name 
Schematic 

Diagram 
Description 

Dendritic 

 

Dendritic pattern is the most common form of river 

system. In a dendritic river system, there are many 

contributing streams (analogous to the twigs of a 

tree), which join together and are the tributaries of a 

main river (Lambert, 2007). 

Parallel 

 

Parallel patterns form where there is a pronounced 

slope to the surface. Tributary streams tend to 

stretch out in a parallel-like fashion following the 

slope of the surface (Ritter, 2006). 

Trellis 

 

In a trellis pattern, as the river flows along a strike 

valley, smaller tributaries feed into it from the steep 

slopes on the sides of mountains. These tributaries 

enter the main river at approximately 90 degree 

angles, causing a trellis-like appearance of the river 

system (Ritter, 2006). 

Rectangular 

 

The rectangular pattern is found in regions that have 

undergone faulting. Movements of the surface due 

to faulting offset the direction of the stream. As a 

result, the tributary streams make sharp bends and 

enter the main stream at high angles (Ritter, 2006). 

Radial 

 

The radial pattern develops around a central peak or 

dome. This pattern is common to such conically 

shaped features as volcanoes. The tributary streams 

flow from the top downward to the bottom around a 

mountain (Ritter, 2006). 

Centripetal 

 

The centripetal pattern is just the opposite of the 

radial as streams flow toward a central depression. 

During wetter portions of the year, these streams 

feed ephemeral lakes, which evaporate away during 

dry periods (Ritter, 2006). 

Reticulate 

 

Reticulate drainage patterns usually occur on 

floodplains and deltas where rivers often interlace 

with each other forming a net (Fagan & Nanson, 

2004). 

 

According to the description of drainage patterns in Table 2.1, each drainage 

pattern has its own characteristics. Howard (1967) pointed out that dendritic 
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patterns appear in horizontal sediments or uniformly resistant crystalline rocks 

with a gentle regional slope at present or at time of drainage inception. In 

Schumm, Dumont, & Holbrook  (2002)’s book, parallel networks have moderate 

to steep slopes and appear in areas of parallel elongated landforms. Trellis 

patterns usually exist in dipping or folded sedimentary, volcanic, or low grade 

sedimentary rocks. A rectangular pattern is with joints and faults at right angles, 

in which streams and divides lack regional continuity.  

Some experimental works have been done concerning morphological 

dependencies of river channel patterns, such as straight, meandering and braid 

patterns. Schumm and Khan (1972) determined an experimental relationship 

between slope and sinuosity for a fluvial channel, which can show threshold 

changes between pattern types. Here, sinuosity is the ratio of channel length to 

valley length. Results show that braided patterns appear on steep low-sinuosity 

channels. Schumm (1977) improved his model and pointed out that pattern 

adjustments, measured as sinuosity variations, are closely related to the type, size, 

and amount of sediment load. Although these works (e.g. Knighton, 1998; Lewin 

& Brewer, 2001) about morphological dependencies apply to river channel 

patterns rather than river networks, some of the above relationships will be 

considered in this thesis.  

2.3 River network organization 

A river network is composed of several connected river segments stored as line 

entities in GIS. The end points of the river segments are the nodes. There are 

three types of node: the junction node connecting river segments, the source node 

corresponding to river springs and the outlet towards where the flow goes. A 

river network is located in a catchment, also called drainage basin. The 

catchment controlled by a tributary flowing into a main stream is called a sub-

catchment or sub-basin. All these features are illustrated in Figure 2.2. There are 

two kinds of organization for a river network. One is ordering scheme based on 

the hierarchical structure of river tributaries, and another is coding system also 

based on the hierarchical structure, but of drainage basin. 
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Figure 2.2 Features in a river network (modified from Li, 2007) 

2.3.1 Extraction of drainage networks from DEM 

In GIS, the drainage system can be extracted from the Digital Elevation Model 

(DEM) by computing the flow direction and accumulation on the terrain 

(Florinsky, 2009; O’Callaghan & Mark, 1984; Ortega & Rueda, 2010; Vogt et al., 

2003). Verdin & Verdin (1999)  presented a system, defined by topographic 

control of drainage and the topology of the resulting river networks, and 

implemented it with the North American portions of the GTOPO30 global DEM. 

Colombo et al. (2007) extracted river networks and catchment boundaries across 

the European continent from a medium resolution (250m) DEM. In the 

extraction process, flow directions determination from grid cells is the most 

important step. Much research on detecting the river flow direction of a river 

network with additional information from a digital elevation model has been 

done (e.g. Alves, 1993; Fairfield & Leymarie, 1991; O’Callaghan & Mark, 1984; 

Vogt et al., 2003). 

Moreover, there are several computer tools for extraction of drainage 

networks.  For example, the Watershed Modeling System (WMS) is a 

comprehensive graphical modeling environment for all phases of watershed 

hydrology and hydraulics; Topographic Parameterization (TOPAZ) is an 

automated digital landscape analysis tool for topographic evaluation, drainage 

identification, watershed segmentation and sub-catchment parameterization; in 

Node 

Catchment/Drainage basin 

Sub-catchment/Sub-basin 

Outlet 

River segment 

Source node Junction Node 
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addition, ArcGIS also has Arc Hydro Tools supporting hydrologic and hydraulic 

analysis with GIS. 

2.3.2 River network construction 

In order to build a hierarchical structure of a drainage system automatically, 

inference of the flow direction and main stream in river networks is a necessary 

process. Usually, information about river networks only consists of the 

connectivity of channels, lacking any explicit information about the flow 

direction of the network (Paiva & Egenhofer, 2000). Although many researches 

of river networks assume that the flow direction is already known (Coffman & 

Turner, 1971; Smart, 1970), it is necessary to detect the river flow direction and 

main stream of a river network automatically.  

Instead of using elevation information, a method based on the angles at 

which river segments connect in river networks has been put forward. The 

junction geometry describes the information among the related channels. The 

primary geometric concern is the information about the angles at which the 

channels flow together. Serres & Roy (1990) has found a set of inference rules 

(see Table 2.2) that match closely with dendritic river networks, and it is true for 

about 88% of the junctions in dendritic river networks empirically. Paiva & 

Egenhofer (2000) has presented an algorithm to find first the main branches of a 

network, from which it then infers the destination, based on the topology of 

channels and the angles at which river channels connect at junctions. 

For the main stream detection, Rusak Mazur & Castner (1990) set two rules 

to determine the main stream: ① It has the same direction as the lower river 

(without consideration of any other geographic conditions); ② It has the longest 

length if several streams have a similar direction as the lower river. In (Paiva & 

Egenhofer, 2000)’s paper, ―the 180° assumption‖ is similar as the first rule above. 

The assumption presumes that the predominant continuation of the flow direction 

is along the main channel. The upstream channel that forms an angle closest to 

180° with the downstream channel is considered to be part of the main channel.  
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Table 2.2 Decision table for network junctions based solely on angles 

 1 2 3 4 5 

Case 

     

1,3  = 180° = 180° = 180° < 180° < 180° 

1,2  = 90° < 90° > 90° ≤ 90° ≥ 90° 

2,3  = 90° > 90° < 90° ≥ 90° ≤ 90° 

Downstream  

channel 
C1 or C3 C3 C1 C3 C1 

(Continued) 

Table 2.2 (Continued) 

 6 7 8 9 

Case 

    

1,3  > 180° > 180° > 180° < 180° 

1,2  ≤ 90° ≥ 90° ≥ 90° < 90° 

2,3  ≥ 90° ≤ 90° ≥ 90° < 90° 

Downstream 

channel 
C3 C1 

C3 if 1,2 2,3   

C1 if
2,3 1,2   

C3 if 1,2 2,3   

C1 if
2,3 1,2   
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2.3.3 Ordering scheme for river tributaries 

Ordering schemes are built by assigning an order number to each tributary. 

Ordering starts by assigning order 1 to branchless tributaries. The order of a 

stream is always higher than the order of its tributaries so that the highest order is 

assigned to the segment connected to the outlet. In this procedure, the Horton-

Strahler scheme based on (Horton, 1945) and modified by Strahler (1957), and 

the Shreve scheme (Shreve, 1966) have been considered the most relevant 

schemes for the multi-scale representation of river networks (Rusak Mazur & 

Castner, 1990).  

The Horton-Strahler scheme assigns order 1 to all branchless tributaries, and 

higher order to those receiving tributaries following the river flow direction. This 

order scheme is illustrated in Figure 2.3A, and can be computed recursively 

(Gleyzer, Denisyuk, Rimmer, & Salingar, 2004).  In the Shreve scheme, the 

order of a downstream tributary is the sum of the orders of the upper streams, as 

shown in Figure 2.3B.  

  
A. Horton-Strahler order scheme B. Shreve order scheme 

Figure 2.3 Horton-Strahler and Shreve order scheme (from Li, 2007)  

2.3.4 Coding system for drainage basins 

In order to support GIS-based hydrological analyses, much research on coding 

drainage networks has been done, which are applied not only to a river network 

but also to its associated drainage basin.  
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Figure 2.4 Prafstetter codification (from Verdin & Verdin, 1999) 

Pfafstetter coding system, proposed by Otto Pfafstetter in 1989, is a 

subdivision and codification method for describing river basins based on the 

natural topology of the land surface (Verdin & Verdin, 1999). The system is built 

into a hierarchal structure from a whole basin to its sub-basins step by step 

recursively. For a basin, it can be divided into up to a maximum of 10 sub-basins, 

which are assigned a number from 0 to 9 based on their location and area 

(Furnans & Olivera, 2001). There is a sample of subdivisions of a basin by 

applying the Pfafstetter codification illustrated in Figure 2.4.   

The advantage of the Pfafstetter coding system is that the code can be used 

not only to obtain a sub-basin directly but also to decide the topological 

relationship in the whole basin. Much research has been done to modify and 

apply Pfafstetter codification method (Fürst & Hörhan, 2009; Jia et al., 2006; 

Shrestha, Kazama, & Newham, 2008; Verdin & Verdin, 1999).  

In order to overcome the weakness of the Pfafstetter method, which is not so 

effective applied in a large scale river network with high spatial resolutions, Li, 

Wang, & Chen (2010) proposed an efficient and effective codification method to 
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support a complex hydrological model. This new method is already integrated 

with the established Digital Yellow River Model (G. Wang, Wu, & Li, 2007). 

2.4 River network generalization 

In general, there are two typical operations in a river network generalization, one 

is selective omission, and the other is scale-driven generalization (Li, 2007). In 

Li’s book, ―The former eliminates the less important branches, and the latter 

makes the variation of the selected rivers simpler to suit representations at a 

smaller scale.‖  

2.4.1 Tributary selection 

Rusak Mazur & Castner (1990) have given four possible options for the 

elimination of river tributaries. They are shown in Figure 2.5, in which the x axis 

is the order of the tributaries and the y axis is the total number of tributaries at 

each order. The shadowed area indicates the portion to be eliminated. Richardson 

(1993) presents a method to selected rivers based on Horton order (Horton, 1945) 

and river length. Thomson & Brooks (2000) apply the Gestalt recognition 

principles in river network generalization judging the main channel and omitting 

less important channels. A mainstream is detected based on the strokes using 

their Horton order and their length. But, determining the main stream using the 

longest path on clipped river network causes big mistakes. Touya (2007) presents 

a method for river network selection that relies on the organization of river 

strokes in hierarchy. His work adds the management of river islands, irrigation 

zones and allows the building of strokes on a clipped area where some sources 

are not natural. But, it only focuses on the geometric graphs of river networks, 

and it does not select river network maintaining geomorphologic structures. 
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A. Constant proportion of low order 

streams preserved 

B. A smaller portion of lower order 

streams preserved 

  
C. Same number of low order streams 

preserved 
D. All low order streams not preserved 

Figure 2.5 Options for the elimination of river tributaries (from Li, 2007) 

Since the distribution of river network is associated with the terrain surface, 

Wolf  (1988) builds a weighted network data structure integrating the drainage, 

ridge, and peak and pit point. This data structure can determine the significance 

of a river. The river tree structures have various patterns leading to different 

generalization strategies. Wu (1997) investigates the characteristics of river tree 

and develops a method based on buffer spatial analysis to establish the river tree 

structure. Ai, Liu, & Chen (2006) present a method to focus on the decision of 

channel importance during the river network generalization applying the 

integrated hydro-graphic concept, namely watershed area to replace several 

geometric parameters of river feature. The parameters of density and the 

upstream drainage area are also used to prune the river network (Stanislawski, 

2008, 2009). For man-made ditches, Sandro, Massimo, & Matteo (2011) present 

a typification method for generalization of groups of ditches, which are 

represented as a regular pattern of straight lines. 

Number 

Order 

Number 

Order 

Number 

Order 

Number 

Order 
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For applying drainage patterns to river tributary selection, little research 

focuses on this aspect. Touya (2007) and Jiang et al. (2009) both acknowledge 

the drainage pattern as an important factor in river network generalization, but no 

details about how to apply them are described. In order to preserve the main 

hydrographical properties, Jiang et al. (2009) obtained a simple representation of 

river networks by keeping the same drainage pattern after a selection operation 

but they did not go further to explain how patterns are preserved. In different 

drainage patterns, different factors should be considered during the river network 

generalization. 

In order to consider different geographical factors, such as river length, river 

tributaries spacing, catchment area, and river network density, there is a multi-

objective optimization (also known as multi-criteria or multi-attribute 

optimization) process in river tributary selection. Zhai et al. (2006) have built a 

structure river data model facing the river system’s spatial knowledge, and 

selected the river tributaries automatically based on genetic multi-objective 

optimization algorithm. In his model, the indicators, such as length, interval and 

importance of a river, have been taken into account while selecting the rivers.  

2.4.2 Tributary simplification 

After river tributary selection, several operations can be applied to the selected 

tributaries to simplify the complexity of line features. For a line, there are many 

simplification algorithms which have been divided into hierarchical method and 

non-hierarchical method. The purpose of line generalization is to remove non-

relevant information on the line with the minimum point to keep emphasis on 

details of prime importance for visualization (Weibel & Dutton, 1999).  

Line generalization is often perceived as a point-reduction or smoothing 

process. In point-reduction approaches, the main methods take geometric 

parameters or function of these parameters as criteria (see Table 2.3).  
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Table 2.3 An overview of line point-reduction methods 

Algorithm Foundation Classification 

AEG algorithm (Lang, 1969)  Perpendicular distance Sequential algorithm 

Li algorithm (Li, 1988)  Minima and maxima 

Iterative algorithm 

Douglas-Peucker algorithm 

(Douglas & Peucker, 1973)  
Perpendicular distance 

Ansari-Delp algorithm (Ansari 

& Delp, 1991)  

Visvalingham-Whyatt 

algorithm (Visvalingam & 

Whyatt, 1993)  

Area 

Rosenfeld-Johnstion algorithm 

(Rosenfeld & Johnston, 1973)  
Cosine value 

Algorithm with 

functions of geometric 

parameters as criteria 

Teh-Chin algorithm (Teh & 

Chin, 1989)  
Distance/Chord ratio 

Nakos-Mitropoulos algorithm 

(Nakos & Miropoulos, 2003)  
Local length ratio 

 

In smoothing approaches, algorithms can be performed in the space domain 

or in the frequency domain. An overview of line smoothing methods is in Table 

2.4. 

Table 2.4 An overview of line smoothing methods 

Technique/Method Principle Performing 

domain 

B-spline (Guilbert & Lin, 2006; Saux, 1998)  

Curve fitting 
Space 

domain 
Snake (Burghardt & Meier, 1997; Kass, 

Witkin, & Terzopoulos, 1988; Steiniger & 

Meier, 2004)  

Empirical mode decomposition (Li et al., 

2004)  

Component 

exclusion 

Frequency 

domain 

Fourier transforms (Brenner, 1969; Cooley & 

Tukey, 1965)  
Frequency cutting 

Wavelet transforms (Balboa & López, 2000; 

Plazanet, Affholder, & Fritsch, 1995)  
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These researches above are applied to a single line transformation, but the 

selected rivers are a set of line features representing a network. Gutman & 

Weaver (2012) applied wavelet transforms to river network generalization, and 

the connectivity issue of a river network for all scales has been settled. However, 

generalization of a set of lines as a whole should consider more issues such as 

spatial conflicts (Li, 2007), which are complex problems. 

2.5 Generalized river network quality assessment 

From the literatures, little research drew attention to the aspect of the assessment 

of generalization (Muller et al., 1995; Weibel & Dutton, 1999). Traditionally, the 

generalization is evaluated by visual assessment by the cartographic experts to 

grade the quality by questionnaires (Weibel, 1995). This method is based on 

knowledge of experience of experts, and it is rather subjective (Joao, 1998; 

Mackaness & Ruas, 2007). But, generalization is important on map features and 

analysis, and the methods for quantify generalization results should be developed 

(Joao, 1998). Bard (2004) proposed a general method to evaluate the 

cartographic generalization. For the quality assessment of river network 

generalization, especially in the operation of selective omission, the related work 

is few. The most relative one is that a Coefficient of Line Correspondence (CLC) 

is calculated to evaluate the generalized data by comparing with the existing data 

(Buttenfield et al., 2010; Stanislawski, 2009). CLC is given based on length only, 

which cannot assess the generalized river network comprehensively. To the river 

tributaries simplification, only some related studies focus on line features as 

single geometric primitive (Joao, 1998; Skopeliti & Tsoulos, 2001). In general, 

the methods to evaluate river network generalization quality are not well 

developed, and visual assessment is still often used. 

2.6 Summary 

From the literature review of previous work on drainage pattern classification, 

river network organization and generalization, the summaries are given as 

follows: 
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(1) At present, much research has been done on the definition, classification 

and description of drainage patterns in geography and hydrology. Many 

scholars work on predicting river channel patterns from in-channel 

characteristics, such as slope and discharge, but not drainage patterns. 

Although drainage pattern is recognized as an important element in GIS, 

its classification has not yet been considered. Therefore, this thesis 

studies the geometric and topologic characteristics of each type of 

drainage pattern to allow automatic river network classification.  

(2) The current methods on river networks generalization have been well 

developed, and much work has been done on river network selective 

omission and selected tributaries simplification. But the methods of 

quality assessment for generalized river network are few. Recently, many 

researchers have paid more attention on geospatial patterns in 

cartographic generalization (Mackaness & Edwards, 2002; Zhang, 2012). 

This thesis will provide an evaluation method to check how much the 

generalized river network preserves the drainage pattern. 

(3) For applications of drainage patterns, river network generalization is an 

important one. Much research on river network generalization focus on 

geometric properties only. Map generalization is the process of 

―information abstraction‖ rather than a ―data compression‖ (Ai et al., 

2006).  Drainage patterns can reflect the geographical features of river 

networks to some extent. So, this thesis will apply drainage patterns into 

river networks generalization. 
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Chapter 3 A new approach for 

automatic drainage pattern 

recognition  

3.1 Introduction  

As reviewed in Section 2.2, seven types of drainage pattern were introduced. 

Each drainage pattern has its own geometric and topological characteristics. 

Among them, the first five patterns (the dendritic, parallel, trellis, rectangular and 

reticulate patterns) are characterized by the geometric organization of the river 

segments inside the patterns while radial and centripetal patterns depend on the 

spatial organization of a group of networks. This chapter focuses on the 

description of individual networks, and addresses the identification of the first 

five patterns based on geometric characteristics identified inside a network. A 

new approach is proposed to recognize the drainage pattern of a given river 

network automatically. A reticulate pattern is identified by graph theory (Bondy 

& Murty, 2008). For others, according to the geometric characteristics of 

drainage patterns, geometric indicators are defined. A classical usage of 

indicators to distinguish objects is to set threshold value based on the knowledge 

and experience of users. However many networks would be unclassified or 

polymorphic if the threshold values are too restrictive or too loose. Therefore, as 

fuzzy logic (Zadeh, 1965) can provide an approximate way rather than fixed or 

exact threshold values to reflect the inherent vagueness of drainage patterns, it is 

more appropriate to be applied to this work. Eight predicates will be extracted 

from defined indicators and set as membership functions. Combing the 

predicates with fuzzy operators, each pattern is determined by a rule. Then, the 

drainage pattern can be recognized by a fuzzy process. In addition, as a river 
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network can be identified as a drainage pattern, inside sub-networks also can be 

classified as may be different patterns. A hierarchy of drainage tree is also 

provided to organize the river network based on drainage patterns in this chapter. 

The next sections of this chapter are organized as follows. Section 3.2 gives a 

summary of the characteristics of drainage patterns based on the literature review. 

Sections 3.3 and 3.4 introduce the methodologies of the drainage pattern 

classification based on graph theory and fuzzy logic respectively. Then, an 

organization of drainage tree for a river network according to pattern is given in 

Section 3.5. In Section 3.6, the methods are tested on a river network and results 

are discussed. Finally, summaries and conclusions are presented.  

3.2 Drainage pattern characteristics 

Based on the description of different types of drainage patterns, each pattern has 

its own geographical characteristics, which can be reflected in some quantifiable 

variable related to some topological and geometrical aspects. Therefore, each 

pattern can be characterized by a combination of different variables. In Table 2.1 

(p. 9), patterns are characterized by different geometric indicators measured on 

each segment of a network or describing the shape of the drainage while radial 

and centripetal patterns depend on the spatial organization of a group of 

networks. This work focuses on the description of individual patterns. A list of 

characteristics for each of them is proposed and shown in Table 3.1. 
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Table 3.1 Drainage pattern characteristic 

Drainage 

pattern 
Geometric and Topologic Characteristic 

Dendritic -Tributaries joining at acute angle 

Parallel 

- Parallel-like 

- Elongated catchment 

- Long straight tributaries 

- Tributaries joining at small acute angle 

Trellis 
- Short straight tributaries 

- Tributaries joining at almost right angle 

Rectangular 
- Tributary bends  

- Tributaries joining at almost right angle 

Reticulate - Tributaries cross together forming a cycle 

 

Non-reticulate river networks are represented by a hierarchical graph and are 

characterized by geometric parameters related to the length and angle measured 

in the network. The reticulate pattern is a specific pattern because rivers intersect 

and cross together like a net. Due to that, a river network would form a cycle 

instead of a tree. Therefore, reticulate networks are identified first. They are 

taken out of the graph and replaced by nodes. The remaining part forms a 

hierarchical network with the outlet as the root which can be characterized by 

one of the four remaining patterns. Recognition and removal of reticulate 

networks is discussed in the next section while identification of other patterns 

based on geometric indicators is introduced in Section 3.4. 

3.3 Reticulate pattern recognition based on graph 

Graph theory has a long history in the study of graphs (Biggs, Lloyd, & Wilson, 

1986). In mathematics and computer science, graphs are used to model relations 

between objects from a certain collection, where the objects are called vertices 

and relations that link some pairs of vertices are edges (Trudeau, 1994). Graphs 

are widely used in many areas, such as computer science, biology and GIS. In 

GIS, geometric networks are similar to graphs, and borrow many concepts from 

graph theory to perform spatial analysis on road networks or utility grids (e.g. 

Buyya, 2005; Porta, Crucitti, & Latora, 2006; Zhan & Noon, 1998).   
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In graph theory, a graph comprises a set V of vertices (or nodes) with a set E 

of edges (or links, lines), and is represented as G = (V, E). A cut-edge (also 

known as a bridge) is an edge removal of which produces a graph with more 

components than the original (Bondy & Murty, 2008). Equivalently, an edge is a 

bridge if, and only if, it is not contained in any cycle. Figure 3.1 illustrates the 

cut-edges in an undirected graph, where the dashed line is cut-edge and the solid 

line is an edge contained in a cycle.  

 

Figure 3.1 Cut-edges in an undirected graph 

Considering the river network as a graph by setting river segments as edges 

and nodes in river network as nodes in graph, all cut-edges are found using a 

bridge-finding algorithm (Tarjan, 1974). Edges which are not identified as cut-

edges are components of cycles and form reticulate patterns. 

3.4 Recognition of other patterns based on fuzzy logic 

In this section, some geometric quantitative indicators are defined to recognize 

dendritic, parallel, trellis and rectangular patterns. From the geometric 

characteristics of drainage patterns in Table 3.1, the most important variable is 

the angle formed by a tributary with its main stream at a junction node. The 

average junction angle of all angles in a catchment is one quantitative indicator. 

In order to distinguish rectangular pattern, the shape of a tributary is also needed. 

In this pattern, tributary streams make sharp bends almost at a right angle. The 

amount of bending of tributaries can be estimated by the sinuosity of the river 

segments. Another difference between parallel and trellis pattern is length: the 

tributaries in parallel pattern are long relative to trellis. The average length ratio 
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of tributaries to the main stream is the third indicator.  The fourth indicator is the 

catchment elongation used to identify parallel patterns in an elongated basin. The 

catchment elongation is characterized by the ratio of long edge to short edge of 

the Minimum Bounding Rectangle (MBR) of the catchment. If the catchment is 

elongated, this ratio is large. 

3.4.1 Geometric indicators 

(1) Junction angle 

The angle at a junction is a useful parameter that can be used in flow direction 

and main stream inference (Paiva & Egenhofer, 2000; Serres & Roy, 1990). In 

general, a tributary joins into a main stream (Figure 3.2a), or two tributaries 

gather together forming a new stream (Figure 3.2b). In this situation, the angle is 

easy to obtain. However, it is further complicated when several tributaries (more 

than three river segments join at a junction) flow into a main stream at the same 

place (Figure 3.2c and d). In Figure 3.2, the arrow refers to the flow direction, 

and river segments in bolder line are with a higher stream order. 

 

    
a b c d 

Figure 3.2 Different cases of river segments joining at a junction 

In the case of three river segments joining at one junction, the angle is 

formed by the two upper river segments (e.g. river segments r1 and r2 in Figure 

3.2a and b). In another case, where more than three river segments connect to a 

junction, the most important thing is to find the main stream in the upper river 

segments to measure the angles between the tributaries and the main stream. In 

order to get the main stream, the stream order is considered in the first place. The 

upper river segment with the highest order is the main stream. If there are two or 

more upper river segments with the same highest order, Rusak Mazur & Castner 

r1 r2 

r3 
r3 

r1 r2 

r1 

r2 
r3 r4 

r1 

r2 r3 r4 

r5 
r5 
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(1990) set two rules to determine the main stream: ① It has the same direction 

as the lower river (without consideration of any other geographic conditions); ② 

It has the longest length if several streams have a similar direction as the lower 

river.  

For example in Figure 3.2c, r1 is the main stream because it has the highest 

order of all four upper river segments r1, r2, r3 and r4. So angles are formed by r1 

with r2, r3 and r4 respectively. In Figure 3.2d, r1 and r2 have the same order, but r2 

is the main stream because it has the same direction from the junction with lower 

river r5. Three angles are computed in the average, which are formed by r2 with r1, 

r3 and r4 respectively. 

For a tributary joining a main stream at junction P1, supposing points P2 and 

P3 are the ―from‖ nodes of the upper stream and the tributary, the junction angle 

2 1 3P PP  can be computed by the law of cosines: 

 2 2 2

2 1 3 arccos
2

a b c
P PP

ab

  
   

  , 

(3.1) 

 

where a is the distance between P1 and P2, b is the distance between P1 and P3, 

and c is the distance between P2 and P3. 

The first parameter is the junction angle between the tributaries and the main 

stream. The parameter is given by the average value α of angles measured at all 

junctions. The dendritic pattern only requires that junction angles are acute, 

which can be translated by α < 90°. Parallel patterns are characterized by angles 

more acute than in dendritic patterns, therefore α << 90°. For trellis and 

rectangular patterns, tributaries join at a right angle and α ≈ 90°. 

(2) Sinuosity 

Schumm (1977) set the sinuosity variable of a stream as the ratio of the channel 

length to the valley length to quantify how much a river or stream meanders. In 

GIS, a stream is stored as a polyline. Then, the sinuosity can be approximately 

calculated as polyline length divided by length between end points (Figure 3.3).  
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Figure 3.3 River segment represented as a polyline 

Supposing a river segment is composed of N points Pi with P1 and PN the end 

points, the sinuosity ratio SI is  

 -1

1 1

1

( , ) ( , )
N

i i N

i

SI Dis P P Dis P P




,

 (3.2) 

 

where Dis() is the distance between two points. 

A perfect straight stream would have a sinuosity ratio of 1; while the higher 

this ratio is above 1, the more the stream meanders. If the sinuosity ratio is equal 

to or is greater than 1.5, the stream is considered to be meandering (Ritter, 2006). 

In both trellis and rectangular patterns, tributaries connect to the main stream at 

right angles. However, in trellis, tributaries are straight, while in rectangular 

pattern, most tributaries have sharp bends. A tributary is considered to have 

sharp bends if it has a high sinuosity. The indicator that is chosen is not the 

overall sinuosity of the network as a rectangular drainage can contain straight 

and sinuous streams which may yield a relatively low sinuosity value. Instead, 

the number of bended tributaries is considered. A parallel drainage or a trellis 

shall have very few bended tributaries in comparison to a rectangular drainage. A 

second indicator, the percentage of bended tributaries β is used. This parameter is 

calculated as the number of bended tributaries divided by the total number of 

tributaries, where a bended tributary has the sinuosity ratio ≥ 1.5. A rectangular 

pattern should yield a high value of β while, in trellis and parallel, β should tend 

towards 0. 

  

PN 

Pi 

P1 
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(3) Length ratio  

Long tributaries in a parallel pattern and short tributaries in a trellis pattern are 

relative concepts in geography. The river absolute length cannot be used to 

distinguish different drainage patterns directly. This work takes the length ratio 

between the tributaries and the main stream as an indicator. Here, the main 

stream is not only a river segment straight connected to the tributary, it is 

composed of several segments connected together with the same direction and 

same order. This is illustrated in Figure 3.4, where the arrow refers to the flow 

direction, and the river segments in dashed boxes are main streams. 

 

Figure 3.4 Main streams calculated in length ratio 

The parameter average length ratio γ is used to distinguish parallel and trellis 

patterns. In parallel patterns, tributaries have long length so γ > 1; otherwise, γ 

<< 1 indicates that most tributaries are shorter than the main stream, as expected 

in a trellis. 

(4) Catchment elongation  

The exact location of the catchment area is usually computed from the DEM 

which is not available. Approximations can be obtained from the river network 

such as the convex hull, the axis-aligned bounding box (AABB) or the oriented 

minimum bounding rectangle (MBR) (Figure 3.5). In this work, the objective is 

to estimate whether the catchment is elongated or not. The MBR of the river 

network is considered as it follows the orientation of the network. The breadth of 
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the river network is given by the length of the MBR side that forms the largest 

angle with the main stream. The length of the other side which is roughly aligned 

with the main stream corresponds to the depth. The elongation is defined by the 

ratio between its depth and breadth. For example, in Figure 3.5, the depth is less 

than the breadth. The catchment area is not elongated, so that the drainage cannot 

be considered as parallel. Parallel and trellis patterns form in elongated 

catchments and are therefore characterized by a high elongation δ. 

 

Figure 3.5 MBR of a river network. The edge e1 has a bigger angle with 

mainstream, ratio = e2/e1 < 1, it is not an elongated river basin. 

Geometric characteristics of different patterns presented in Table 3.1 are only 

defined qualitatively. In order to identify patterns based on these characteristics, 

statistical measures are obtained from the network and compared with threshold 

values. The different indicators are summarized in Table 3.2. They are expressed 

by qualitative predicates and are translated into geometric indicators. These 

indicators can be directly implemented and measured on a river network. Values 

associated with each pattern are vague as they represent qualitative properties, 

and classification into one pattern depends on several of these values. 

  

Outlet 

MBR 

e1 

e2 

Convex Hull 

AABB 
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Table 3.2 List of indicators 

Drainage 

Pattern 

Average Junction 

Angle (α) 

Bended 

Tributaries 

Percentage (β) 

Average Length  

Ratio () 

Catchment  

Elongation (δ) 

Dendritic 
Acute 

α < 90° 
- - 

Broad 

δ< 1or δ≈ 1 

Parallel 
Very acute 

α << 90° 

Not bended 

β → 0 

Long 

 ≈ 1or  > 1 

Elongated 

δ>> 1 

Trellis 
Right angle 

α ≈ 90° 

Not bended 

β → 0 

Short 

 << 1 

Elongated 

δ>> 1 

Rectangular 
Right angle 

α ≈ 90° 

Bended 

β → 100% 
- - 

 

Setting crisp threshold values defining the acuteness of an angle or the 

breadth of a catchment is an empirical task which relies on the user’s judgment 

and expertise and which does not reflect the inherent vagueness of drainage 

patterns. Furthermore, they do not provide a robust enough classification. Too 

restrictive threshold values will leave many networks unclassified while too 

loose values will end up in networks that may belong to different patterns. 

Therefore, assertion of each predicate is not defined by crisp sets of values but by 

fuzzy sets and the membership to a set is based on fuzzy logic (Zadeh, 1965). 

3.4.2 Fuzzy logic process 

3.4.2.1 Fuzzy logic fundaments 

Zadeh (1965) introduced fuzzy logic in the proposal of fuzzy set theory. Fuzzy 

logic has been applied to many fields, such as control theory (H. O. Wang, 

Tanaka, & Griffin, 1996; L.-X. Wang, 1993; Ying, Siler, & Buckley, 1990) and 

artificial intelligence (Fukuda & Shibata, 1992; Liao & Tsao, 2004; Yen & 

Langari, 1998). Fuzzy logic is composed of fuzzy sets, fuzzy operators and fuzzy 

rules.  

(1) Fuzzy set. A fuzzy set is a set whose membership is not defined by a 

binary value (an element belongs or not to a set) but by a value between 0 and 1 

corresponding to different grades of membership. A membership function (MF) 

associated with a given fuzzy set maps an input value to its appropriate 
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membership value. There are five common MFs in use as shown in Figure 3.6. 

Fuzzy set theory allows approximated reasoning on values which are imprecise 

or incomplete. 

   
a. Triangular MF b. Trapezoidal MF c. Gaussian MF 

  
d. Z curve MF e. S curve MF 

Figure 3.6 Five common MFs 

The Gaussian, Z and S curve MFs will be used in this work, and they are 

described mathematically as follows. 

The Gaussian function is given as 

 2

2

( )

2( ; )

x

g x e



 

 

, , 
(3.3) 

 

where x is input, σ is center and µ controls the width of the curve. 

The Z curve MF is a spline-based function of input x, 
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where a and b are the extremes of the sloped portion of the curve, and a b .   

The S curve MF is a mirror-image function of Z curve, 
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where a and b are the extremes of the sloped portion of the curve, and a b .   

(2) Fuzzy operator. In fuzzy logic, the truth of any statement is a matter of 

degree between 0 and 1. Zadeh (1965) suggested the minimum, maximum and 

complement methods for AND, OR and NOT operators respectively. For two 

fuzzy set values A and B within the range (0, 1), fuzzy logic operations are 

(Figure 3.7): 

 A AND B = min(A, B) (3.6) 

 
 A OR B = max(A, B) (3.7) 

 
 NOT A = 1 – A (3.8) 

 

  
(a) Original (b) A AND B 

  
(c) A OR B (d) NOT A 

Figure 3.7 AND, OR and NOT operations 

A B A B 

A AND B 

A B 

A OR B 
NOT A 

A 
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(3) Fuzzy rule. Fuzzy rules, also called IF-THEN rules, are used to represent 

the conditional statements with fuzzy sets and fuzzy operators. A single fuzzy IF-

THEN rule is like 

IF (a is X) AND (b is Y) THEN (c is Z), 

where a and b are input variables, c is output, and X, Y and Z are defined by 

fuzzy sets.  Here, it should be noted that there is no ELSE part in a fuzzy rule. 

Usually, there are several fuzzy rules for a fuzzy logic application. In the 

process, all rules should be evaluated, and the outputs can be aggregated to get a 

result, which is also a fuzzy set sometimes. Therefore, especially for a fuzzy 

control system, defuzzification is typically needed, which is a process of 

producing a quantifiable result from a fuzzy set (Leekwijck & Kerre, 1999). 

3.4.2.2 Fuzzy logic applied in drainage pattern recognition 

In this research, fuzzy set theory is used to perform classification with predicates 

that cannot be asserted as true or false in all cases but require gradual assessment. 

A total of eight predicates are extracted from indicators defined in Table 3.2. 

They are: 

 α IS acute 

 α IS very acute 

 α IS right 

 β IS bended 

 γ IS long  

 γ IS short 

  IS broad 

  IS elongated 

The degree of membership to each predicate is asserted by a MF. A MF is a 

curve that defines how each element in fuzzy set is mapped to a membership 

degree between 0 and 1. Membership degrees of the first two predicates are 

defined by Z curves, i.e. asymmetrical polynomial curves open to the left (Figure 

3.8) of the form z(α; a, b) where α is the junction angle and a and b locate the 
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extremes of the sloped portion of the curve. The degree of membership is 1 if α < 

a and 0 if α > b. If a < α < b, the degree is decreasing. Obviously, a very acute 

angle should be smaller than an acute angle so that a < a’ and b < b’ in Figure 

3.8. MFs can be non-zero for a same α value. That means that an angle may be 

considered as very acute, acute and right at different degrees. A Gaussian 

distribution curve g(α; σ, m) is used to define the degree of membership to the 

third predicate (Figure 3.8). The value m is the average angle on which the 

function is centered and is equal to 90°. Parameter σ controls the width of the 

curve; the larger it is, the broader the curve.  

 

Figure 3.8 MFs for very acute, acute and right angle, input is the junction angle α 

 

  
(a) MF for bended tributaries, input 

is bended tributaries percentage β 

(b) MF for short tributary, input is 

average length ratio γ 
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(c) MF for elongated catchment, input is catchment elongation  

Figure 3.9 MFs for bended tributaries, short tributary and elongated catchment 

The degree of membership to the bend, long tributaries and elongated 

catchment predicates are estimated by S curves, i.e. asymmetrical polynomial 

curves open to the right, of the forms s(β; a, b), s(γ; a', b') and s(δ; a, b) (Figure 

3.9a-c). The smaller the input value, the smaller the degree of membership. 

Finally, the degree of membership to the short tributaries and broad catchment 

predicates are characterized by a Z curve where a small ratio has a high degree 

(Figure 3.9b and c).  

Combining the predicates in more complex rules characterizing each 

drainage pattern is done by using fuzzy Boolean operators AND, OR and NOT. 

Each pattern of Table 3.2 is defined by the following IF-THEN rules based on 

fuzzy logic operations: 

(1) IF (α IS acute) AND (δ IS broad) THEN pattern IS dendritic 

(2) IF (α IS very acute) AND NOT (β IS bended) AND (γ IS long) AND ( 

IS elongated) THEN pattern IS parallel 

(3) IF (α IS right) AND NOT (β IS bended) AND (γ IS short) AND ( IS 

elongated) THEN pattern IS trellis 

(4) IF (α IS right) AND (β IS bended) THEN pattern IS rectangular 

In fuzzy logic, there is no ELSE rule and all the rules should be evaluated. 

Therefore, each network is given a degree of membership for each pattern. To 

get a crisp decision, the maximum-method is used to defuzzify the set of 

singletons and the pattern with the maximum degree of membership is chosen. 

The process is illustrated in Figure 3.10 and goes through the following steps: 
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Step 1: input the indicators α, β,  and  of a river network; 

Step 2: evaluate all rules according to fuzzy inputs by applying logic 

operations, and obtain the outputs of all rules;  

Step 3: defuzzify the results and get the final output as the pattern with 

maximum degree. 

 

Figure 3.10 The fuzzy logic process for drainage pattern recognition 
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3.5 Drainage tree construction 

The previous section analyzed the drainage pattern of a given river network by 

comparing the shape of a main stream with its tributaries. As the graph formed 

by the river network has a tree structure, sub-trees formed by tributaries can also 

be characterized with a drainage pattern, forming a drainage tree describing the 

network at different levels of detail. Two kinds of sub-networks are analyzed: 

reticulate networks and sub-trees formed by considering tributaries as main 

rivers with their own tributaries at a higher level of detail. 

Drainage patterns form a hierarchical structure following the river network 

structure however one river stream may not follow only one pattern but can go 

through different patterns along its course. Therefore, after recognition, adjacent 

patterns of the same type are merged in the drainage tree (Figure 3.12). The 

whole process includes 4 steps in sequence: 

(1) Identify reticulate patterns in the river network (Section 3.3); 

(2) Identify all sub-networks forming the drainage tree; 

(3) Characterize drainage patterns in the sub-tree (Section 3.4); 

(4) Merge adjacent patterns of the same type. 

Following Section 3.5.1 describes the process building the drainage tree (step 

2). Section 3.5.2 presents the merging process (step 4). 

3.5.1 Drainage tree construction based on patterns 

Construction of the drainage tree is done in two steps. First, all reticulate 

networks are identified as cycles and removed from the river network as 

described in Section 3.3. Second, the main stream of each sub-network is 

identified. Levels of representation are defined by the segment order following 

the Horton-Strahler scheme (Strahler, 1957). Each branchless segment is 

assigned an order 1. A segment is assigned an order equal to the highest order of 

its tributaries or to the highest order plus one if there are several tributaries of 

this order (Figure 3.11a). This order can be computed recursively (Gleyzer et al., 

2004). 
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In the process, a pattern is defined for each sub-network therefore the 

drainage tree is structured following the sub-networks. In the river network, 

streams are defined by adjacent segments sharing the same Horton-Strahler order. 

A sub-network is defined by one river stream and all its tributaries down to order 

1 segments. The set of all river streams forms a tree structure where the river 

stream of the highest order, connected to the outlet and representing the whole 

network, is the root. Reticulate networks which were extracted from the river 

network form sub-networks and are put back into the tree structure. A reticulate 

network is a sub-network connected to the closest river stream of highest order. 

The data structures of a stream and a river segment is illustrated in Appendix 

A, where the data structure of a junction is also provided. The features of 

junctions and river segments correspond to the features described in Figure 2.2. 

In a river segment, the ―from‖ and ―to‖ junctions show the direction of river flow.  

The drainage tree is built by starting from the outlet and, for each node of the 

tree, by adding the river streams or reticulate networks below. The algorithm 

Build(st, rs) building the hierarchy of sub-networks is described in Appendix B.1. 

This algorithm starts with a new stream as root and a river segment containing 

outlet node, and the river segment has been add to the stream. 

An example of drainage tree obtained from the river network of Figure 3.11a 

is shown in Figure 3.11b. Each sub-network is identified by the segments 

forming the main stream or by the list of segments forming a cycle. The stream 

defined by segment 27 contains the outlet and represents the whole network 

noted (27). Segments 25 and 26 form a reticulate network (25, 26) and, with sub-

networks (22, 23) and (24), are located under the root. That means that they form 

three sub-networks at the level below the main river network. A drainage pattern 

can be defined for each sub-network. 
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a. Initial river data. The marking beside the river is river segment ID. The 

table is river segment ID and its Horton-Strahler order. 

 
b. Result of sub-networks hierarchy. 

Figure 3.11 The drainage tree 

3.5.2 Merging drainages along a river stream 

The process yields a drainage tree where all existing sub-networks are 

characterized. However, a river stream can go through different types of terrain 

where its tributaries follow different patterns. Therefore, a river stream can be 

split in sections forming different drainage patterns. The algorithm starts from 

the root of the drainage pattern tree and moves down to the leaves. For each river 

stream, if two adjacent sub-networks are of the same pattern, they can be merged 

into a larger drainage. Two drainages are adjacent if they connect on the same 

node of a river segment or on two adjacent nodes on the same side of the 

segment. The algorithm is illustrated in Appendix B.2. The function of Merge(st) 

is used for merging the new hierarchy of river network according to drainage 

patterns, which is also a recursive function. 
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Sub-networks can also be merged to remove information seen as redundant: 

if all the sub-networks sharing the same parent in the tree have the same drainage 

pattern as their parent, the sub-networks can be removed as their pattern 

information is already defined at the parent level. The Remove(st) function  used 

for removing information is shown in Appendix B.3. 

Taking the river network in Figure 3.11 as an example, sub-networks (24), 

(17) and (18) are supposed dendritic, sub-networks (4,5) and (16,21) are parallel, 

and sub-network (19,20) is a trellis (Figure 3.12a). Networks (17) and (18) have 

the same pattern as their parent (24) therefore they hold redundant information 

and can be removed. Networks (4, 5) and (16, 21) share the same pattern and are 

both connected to segment 22 while trellis (19, 20) is connected to segment 23. 

Therefore, the stream (22, 23) goes through two drainage systems: first a trellis 

and second a parallel drainage. Therefore, network (22, 23) can be split into one 

parallel network (22) and one trellis (23). The resulting drainage tree is shown in 

Figure 3.12b. 

 

 

a. Drainage tree after splitting 22, 23 from stream 

(23, 22) 

b. Drainage tree after removal of 

sub-networks with same pattern 

Figure 3.12 Merged hierarchy of sub-network from Figure 3.11 

3.6 Experiments and results 

The method was implemented in C++ with the Boost Graph Library (BGL
1
) for 

cut-edge finding and indicator computation, and in MATLAB with Fuzzy Logic 

Toolbox
2
 for drainage pattern recognition. Software Graphviz

3
, which is a 

                                                      

 
1 http://www.boost.org/doc/libs/1_48_0/libs/graph/doc/index.html 
2 http://www.mathworks.com/products/fuzzy-logic/ 
3 http://www.graphviz.org/ 

27 

24 22,23 

17 18 16,21 4,5 19,20 

22 

25,26 

23 

27 

24 22,23 

23 22 

25,26 



3.6 Experiments and results 

43 

package of open source tools initiated by AT&T Labs Research
4
 for rendering 

graphs in DOT
5

 language scripts, was applied to display the result of the 

drainage tree.  

The experimental data set is the Russian river (Figure 3.13), California at the 

scale of 1:24,000 stored in a Shapefile from the Russian River Interactive 

Information System (RRIIS
6
). Original data set is composed of 5699 river 

segments. The bolder the line, the greater the Horton-Strahler order. The highest 

order in the network is equal to 6. In Figure 3.13, R1 to R9 are the regions of 

selected sub-networks for case studies. 

 

Figure 3.13 Russian river provided by RRIIS 

                                                      

 
4 http://www.att.com/labs 
5 http://www.graphviz.org/content/dot-language 
6 http://www.rrwatershed.org/ 
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3.6.1 MF parameter settings for Russian river 

Drainage pattern classification depends on the definition of MFs. Parameters to 

be set are the values of a and b for the Z and S curves and the value of σ and m 

for the Gaussian distribution. These values are mostly defined based on sample 

assessments and expert advice. As shown in Figure 3.14, the distribution of 

indicator values α, β, γ, δ among all networks is continuous. Therefore, setting a 

crisp threshold value is difficult as a small change in one value can have a 

significant impact on the classification. Working with fuzzy sets appears to be 

more appropriate as MFs can have very large supports or overlapping supports. 

For example an angle can be considered acute and right or very acute and acute 

at the same time so that classification is based on a compromise between 

different degrees of membership. Furthermore, reasoning on fuzzy sets has the 

benefit of being more robust as a small variation of the MFs would have a 

limited impact on the classification. 

   
(a) Order 2 (b) Order 3 (c) Order 4 

A. Frequency of average junction angle (α) in different levels 

   
(a) Order 2 (b) Order 3 (c) Order 4 

B. Frequency of bended tributaries percentage (β) in different levels 
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(a) Order 2 (b) Order 3 (c) Order 4 

C. Frequency of average length ratio (γ) in different levels 

   
(a) Order 2 (b) Order 3 (c) Order 4 

D. Frequency of catchment elongation (δ) in different levels 

Figure 3.14 Frequency of indicators in different levels 

MFs used in this experiment are given in Table 3.3. For case I, the threshold 

values 30° and 60° are used to establish very acute MF. If the angle is smaller 

than 30°, it is definitely a very acute angle while if it is greater than 60°, it cannot 

be very acute. Between 30° and 60°, the greater the angle is, the smaller the 

membership. Similarly, angles are considered acute under 45°, and their degree 

of membership decreases when the angle increases. The standard deviation for 

right angles was set to 10°. The closer to 90°, the higher the membership value. 

MFs of bended tributaries and elongated catchment are both S curves. The closer 

to 1  is, the more tributaries bend.  
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Table 3.3 Specific settings of MFs 

Case I II III 

Very acute angle z(α;30°,60°) z(α;35°,65°) z(α;25°,55°) 

Acute angle z(α;45°,90°) z(α;50°,95°) z(α;40°,85°) 

Right angle g(α;10°,90°) g(α;12.5°,90°) g(α;7.5°,90°) 

Bended tributaries s(β;0,1) s(β;0,0.9) s(β;0.1,1) 

Long tributary s(γ;0,1) s(γ;0,0.8) s(γ;0.1,1.1) 

Short tributary z(γ;0,1) z(γ;0.2,1.2) z(γ;0,0.9) 

Broad catchment z(δ;1,3) z(δ;1.25,3.25) z(δ;0.8,2.8) 

Elongated catchment s(δ;1,3) s(δ;0.75,2.75) s(δ;1.2,3.2) 

 

Based on analyses of case studies, dendritic drainages had an elongation 

centered on 1 while trellis and parallel drainages had a much higher elongation 

(often greater than 2). Therefore, the elongated MF was set to s(δ;1,3) so that a 

network with an elongation up to 2 may still be considered as square. For the 

broad catchment, the MF is set opposite to elongated to z(δ;1,3). During the tests, 

short tributaries appeared to be a less relevant indicator than the elongation and 

the angle to characterize the networks. According to the rules given in Table 3.3, 

the MF for short tributaries should have a large support and thus is set to z(γ;0,1), 

and oppositely the MF for long tributaries is set to s(γ;0,1). 

In Table 3.3, two other cases are also presented. MFs in case II have a larger 

support than in case I, while in case III the support is smaller providing a stricter 

classification. As an example, an angle of 32° is definitely very acute in case II, 

but not in cases I and III. The degree of membership in case I would be higher 

than in case III though. These three cases were all tested in the experiment. 

Sensitivity to parameter values was assessed by fixing all the parameters but 

one to values defined for case I. The free parameter was tested with values 

presented in cases II and III. Table 3.4 shows the results of sensitivity analysis 

and results are compared with case I classification. It appears that the model is 

mostly sensitive to α and δ. MFs of parameters α and δ for very acute angle and 

broad catchment have a strong influence on the classification results. On the 

opposite, the value of β has limited influence as few streams are bent. 
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Table 3.4 Number of drainage patterns with a parameter changing 

 Test Dendritic Parallel Trellis Rectangular Unrecognized Changed 

 Case I 405 339 130 18 28 - 

α 

VAA → z(α;35°,65°) 382 370 122 18 28 31 

VAA → z(α;25°,55°) 424 306 142 18 30 33 

AA → z(α;50°,95°) 424 339 119 15 23 19 

AA → z(α;40°,85°) 378 339 140 28 35 27 

RA → g(α;12.5°,90°) 390 335 148 19 28 19 

RA → g(α;7.5°,90°) 412 342 120 18 28 10 

β 
BT → s(β;0,0.9) 403 339 129 21 28 3 

BT → s(β;0.1,1) 407 339 131 9 34 9 

γ 

LT → s(γ;0,0.8) 401 343 130 18 28 4 

LT → s(γ;0.1,1.1) 409 335 130 18 28 4 

ST → z(γ;0.2,1.2) 401 339 136 17 27 6 

ST → z(γ;0,0.9) 406 341 123 19 31 7 

δ 

BC → z(δ;1.25,3.25) 438 316 123 18 25 33 

BC → z(δ;0.8,2.8) 364 361 143 20 32 41 

EC → s(δ;0.75,2.75) 393 343 143 16 25 17 

EC → s(δ;1.2,3.2) 420 331 116 21 32 22 

(VAA, AA, RA, BT, LT, ST, BC and EC are short for very acute angle, acute angle, 

right angle, bended tributaries, long tributary, short tributary, broad catchment and 

elongated catchment respectively. ―→‖ presents that the parameter apply another setting.) 

 

3.6.2 Case studies in Russian river  

3.6.2.1 Reticulate pattern in river networks 

The cut-edge finding algorithm is used to identify all river segment parts of a 

reticulate pattern. Figure 3.15 shows a part of the network from region R1 of 

Figure 3.13 with its reticulate patterns. 
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Figure 3.15 Reticulate networks in bold 

3.6.2.2 Dendritic, parallel, trellis and rectangular pattern in river networks 

Selected sub-catchments are shown in Figure 3.16. Locations of sub-catchments 

in the whole river basin can be seen in Figure 3.13. Sub-catchments (a), (b), (c), 

(d), (e) and (f) have a highest Horton-Strahler order of 4, 4, 3, 3, 3 and 3 

respectively. 
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(a) Region R2 (b) Region R3 

 

 
(c) Region R4 (d) Region R5 

 

 
(e) Region R6 (f) Region R7 

Figure 3.16 Sub-catchments of Russian river basin, (a), (b), (c), (d), (e) and (f) 

corresponding to regions R2, R3, R4, R5, R6 and R7 in Figure 3.13 respectively 

Results from several sub-catchments from the Russian river basin are 

provided for discussion with values of indicators as well as membership degrees 

for all four rules in Table 3.5.   
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Table 3.5 Information of sub-catchments in Figure 3.16 

 
Indicator  

values 

MF degree  

Output Case rule 1 

(p1/p2)
*
 

rule 2 

(p1/p2/p3/p4)
*
 

rule 3 

(p1/p2/p3/p4)
*
 

rule 4 

(p1/p2)
*
 

(a) 

α=51.64° 

β=3.54% 

γ=0.74 

δ=0.87 

I 
0.957 

(0.957/1) 

0 

(0.155/0.998/ 

0.865/0) 

0 

(0.001/0.998/ 

0.135/0) 

0.001 

(0.001/0.003) dendritic 

II 
0.997 

(0.997/1) 

0.007 

(0.397/0.997/ 

0.989/0.007) 

0.007 

(0.009/0.997/ 

0.423/0.007) 

0.003 

(0.009/0.003) dendritic 

III 
0.866 

(0.866/0.998) 

0 

(0.025/1/ 

0.063/0) 

0 

(0/1/ 

0.063/0) 

0 

(0/0) dendritic 

(b) 

α=81.14° 

β=1.49% 

γ=0.74 

δ=3.17 

I 
0 

(0.078/0) 

0 

(0/0.999/ 

0.865/1) 

0.135 

(0.675/0.999/ 

0.135/1) 

0 

(0.675/0) trellis 

II 
0.003 

(0.189/0.003) 

0 

(0/0.999/ 

0.989/1) 

0.423 

(0.778/0.999/ 

0.423/1) 

0.001 

(0.778/0.001) trellis 

III 
0 

(0.015/0) 

0 

(0/1/ 

0.741/0.999) 

0.063 

(0.498/1/ 

0.063/0.999) 

0 

(0.498/0) trellis 

(c) 

α=21.52° 

β=0 

γ=1.28 

δ=3.53 

I 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

II 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

III 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

(d) 

α=22.88° 

β=0 

γ=1.55 

δ=5.13 

I 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

II 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

III 
0 

(1/0) 

1 

(1/1/1/1) 

0 

(0/1/0/1) 

0 

(0/0) 
parallel 

(e) 

α=85.43° 

β=9.76% 

γ=0.62 

δ=2.87 

I 
0.008 

(0.021/0.008) 

0 

(0/0.981/ 

0.711/0.992) 

0.289 

(0.901/0.981/ 

0.289/0.992) 

0.019 

(0.901/0.019) trellis 

II 
0.072 

(0.091/0.072) 

0 

(0/0.977/ 

0.898/1) 

0.647 

(0.935/0.977/ 

0.647/1) 

0.024 

(0.935/0.024) trellis 

III 
0 

(0/0) 

0 

(0/1/ 

0.539/0.946) 

0.194 

(0.831/1/ 

0.194/0.946) 

0 

(0.831/0) trellis 

(f) 

α=94.93° 

β=4.08% 

γ=0.33 

δ=0.87 

I 
0 

(0/1) 

0 

(0/0.997/ 

0.218/0) 

0 

(0.886/0.997/ 

0.782/0) 

0.003 

(0.886/0.003) rectangular 

II 
0 

(0/1) 

0 

(0/0.996/ 

0.340/0.007) 

0.007 

(0.925/0.996/ 

0.966/0.007) 

0.004 

(0.925/0.004) trellis 

III 
0 

(0/0.998) 

0 

(0/1/ 

0.106/0) 

0 

(0.806/1/ 

0.731/0) 

0 

(0.806/0) - 

*
 The content in the parenthesis is the degree of all predicates of each rule. 
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Based on indicators, network (a) has acute junction angles and is broad. The 

MF value of the first rule is the highest in all cases (0.957/0.997/0.866), meaning 

that (a) is dendritic. From Table 3.5, (b) and (e) have a highest membership value 

for the third rule and other membership values are very small, so they are 

classified as trellis pattern. Networks (c) and (d) are definitely parallel, because 

they both have very acute junction angles (21.52° and 22.88°), elongated 

catchments (3.53 and 5.13 both bigger than 3) and long tributaries (1.28 and 

1.55). Network (f) has average angle greater than 90°, so it is neither dendritic 

nor parallel. It is identified as rectangular in case I and trellis in case II, but 

cannot be recognized in case III. The membership value from rule 4, however, is 

only 0.003, which might be too small to consider (f) as rectangular. In case II, the 

membership value from rule 3 is 0.007, which is not large enough to consider (f) 

as trellis.  

The quantitative indicators and fuzzy logic method can characterize the 

drainage patterns of the river network. From the experiment, it is verified that a 

small variation of MFs has a limited impact on the classification result, but the 

MFs with a more tolerant setting can support more ambiguous situations. In 

addition, the maximum method for defuzzifying the fuzzy outputs may show 

some limitations in some cases. For example, sub-network (f) in Figure 3.16 has 

been output as a rectangular pattern as the final result in case I, but the degree of 

membership of the result is only 0.003 which is too farfetched to classify (f) as 

rectangular. In such a case, a solution may be not to use the maximum method 

but to obtain the final result by giving a threshold of the degree of membership. 

A few networks remained unclassified such as network (f) in case III of 

Figure 3.16, for which all membership degrees of all rules are 0. Some 

unclassified networks in case I are illustrated in Figure 3.17. Overall, 

unclassified networks are broad and have tributaries joining at obtuse angles. 

They also have few tributaries so that indicators computed as an average value 

from tributaries may not be objective. 
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(a) (b)
*
 (c) 

Figure 3.17 Some unclassified sub-networks in case I (*dendritic in case II) 

In Figure 3.17, sub-networks (a) and (b) have a junction angle (103.89°, 

91.62°) close to a right angle, but catchments are not elongated (δ both smaller 

than 1). Moreover, neither of them have bended tributaries, and their tributaries 

are not short. So, (a) and (b) cannot be classified. The junction angle of (c) is 

bigger than 90°, so it cannot be dendritic and parallel. Also, (c) cannot be 

identified as trellis because its catchment is not elongated (δ = 0.73), neither can 

it be rectangular because there are no bended tributaries (β = 0). However, (b) 

can be classified as dendritic in case II due to the wide support on MF of acute 

angle, and the membership value of rule 1 is 0.011. 

3.6.3 Drainage pattern recognition results and discussion 

In the previous section, some sub-networks from the Russian river are selected to 

show the results of case study. In this section, the method is applied to the whole 

network which can be decomposed in different sub-networks at different orders. 

In the experiment, different catchment units lead to different results. According 

to the Horton-Strahler order of its main stream, a catchment unit can belong to 

different orders from 2 to 4. Order 1 catchments were not considered as they 

correspond to single stream networks. On one hand, the smaller the order, the 

more catchment units. On the other hand, low order networks have fewer 

tributaries which may make average values less significant. Figure 3.18 shows 

the frequency of river segment numbers in a sub-catchment at different orders. 

α=103.89° 

β=0 

γ=2.20 

δ=0.90 
α=91.62° 

β=0 

γ=1.45 

δ=0.76 

α=116.74° 

β=0 

γ=0.71 

δ=0.73 
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(a) Order 2 (b) Order 3 (c) Order 4 

Figure 3.18 Frequency of river segment numbers in a catchment at different 

orders 

Frequency distributions vary for different stream orders. From Figure 3.18, 

most of the river sub-catchments in order 2 are composed of fewer than 5 river 

segments, and no sub-catchment in order 4 has fewer than 20 river segments. The 

number of river segments in a sub-catchment would influence the indicators such 

as average angle and catchment elongation. The percentage of bended tributaries 

indicator is not related with the river segments number because it depends more 

on the shape of each single river segment. Table 3.6 shows the number of 

drainages at each order for each pattern by the MFs settings in Table 3.3. 

Reticulate networks are identified in a preliminary step. 

Table 3.6 Number of drainage patterns 

 Case Dendritic Parallel Trellis Rectangular Unrecognized Total Reticulate 

Order 2 

I 253 320 107 9 25 

714 

12 

II 253 329 111 5 16 

III 247 300 114 10 43 

Order 3 

I 119 19 18 8 3 

167 II 119 21 19 7 1 

III 114 18 19 4 12 

Order 4 

I 33 0 5 1 0 

39 II 31 1 6 1 0 

III 32 0 5 0 2 

 

In Table 3.6, although cases I, II and III have different sets of values of MFs, 

there is little change in the number of drainages recognized for each pattern at a 

given order. This shows that the classification obtained with fuzzy logic is robust. 
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Case II recognizes the largest number of networks while case III recognizes the 

smallest number. The result is expected as MFs in case II have larger support. 

Therefore, changing the threshold values of MFs can help to avoid unclassified 

networks to some extent. The proportion of dendritic drainages increases with 

the order while the proportion of parallel drainages decreases. This variation may 

be linked to some geomorphological properties of the terrain but may also be due 

to the fact that MFs "Acute" and "Very Acute" partially overlap and for some 

networks, both MFs are equal to 1. In that case, the catchment elongation 

becomes the main indicator. A river network at a higher order tends to form a 

more complex network with a larger number of rivers spreading in various 

directions and eventually to exhibit a broader catchment, hence a larger 

proportion of dendritic patterns at order 4. Indeed, in some cases, networks at 

order 4 can represent very large systems where a main stream goes through 

different types of terrain and follows different patterns. The number of trellis 

remains stable in proportion because drainages identified as trellis tend to form 

less complex networks with a smaller number of sub-networks and so remain 

elongated. In general, all three MF settings provide reliable results. Drainages 

that change from one pattern to another have a low membership value in any 

case. They mainly belong to order 2 where the number of streams can be small, 

making the process more sensitive to indicator variations. In some cases, 

drainages that remain unclassified do not belong to any pattern because they do 

not satisfy any criterion.  

Statistics of average value of indicators for classified drainages is shown in 

Table 3.7. It can be noted that the junction angle of parallel drainages is close to 

30°, indicating that most of the parallel drainages had a junction angle far below 

the limit. Junction angle of trellis is around 85° meaning that many streams do 

not join at right angles. Therefore, the MF needs to be set with a rather large 

support. Trellis has a significantly smaller value γ than for other patterns for 

which it is twice as long as the main stream. This mostly relates to the way main 

streams are defined. Finally, it can be noted that the catchment elongation of 

parallel and trellis patterns is much larger than dendritic, which makes sense, but 

also that parallel drainages are on average more elongated than trellis. 
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Table 3.7 Statistics for each classified drainage 

 Case Average(α) Average(β) Average(γ) Average(δ) 

Dendritic 

I 58.97° 4.27% 2.09 1.57 

II 59.50° 4.26% 2.08 1.56 

III 57.90° 4.31% 1.99 1.57 

Parallel 

I 34.82° 3.48% 2.49 3.84 

II 35.45° 3.48% 2.49 3.80 

III 33.52° 3.62% 2.61 3.85 

Trellis 

I 85.50° 3.29% 0.43 2.65 

II 87.09° 3.74% 0.44 2.53 

III 81.47° 3.14% 0.41 2.83 

Rectangular 

I 94.01° 18.81% 2.64 1.76 

II 95.46° 17.52% 3.31 1.81 

III 97.30° 26.07% 1.91 1.24 

 

3.6.4 Drainage pattern hierarchy 

The whole Russian river is too large to show details of the drainage tree. Here, a 

sub-network of the Russian river is selected to illustrate the results in the process 

of the drainage tree construction. The selected river network corresponds to 

region R8 in Figure 3.13, which is illustrated in Figure 3.19. 

 

Figure 3.19 Selected river network from the Russian river 

In Figure 3.19, there are two reticulate parts in the river network, shown as 

red pieces. Inside the river network, each sub-network is located in a drainage 

Sub-networks starting from order 4 

Sub-networks starting from order 3 

Sub-networks starting from order 2 
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basin extracted by the method of the hierarchical watershed partitioning (Ai et al., 

2006). Each sub-network is assigned with a number. All sub-networks are 

identified and formed as a drainage tree for the selected experimental data, which 

is shown in Figure 3.20.  

 

Figure 3.20 Drainage tree of all sub-networks 

In the hierarchy graph, the root node is arranged at the top, and leaves are at 

the bottom. A node, which indicates a sub-network, is represented as a number 

that corresponds to the numbers of the sub-networks in Figure 3.19. The sub-

networks classified as reticulate are located in the nodes with red dashed box. 

These features of the hierarchy are followed not only in this sub-network 

hierarchy but also in the drainage tree in the following sections.  

In the sub-network hierarchy of the selected river network (Figure 3.20), 

there are 46 sub-networks. The whole river network is noted as (1), and two 

reticulate networks are (28) and (30) respectively. The DOT script result of the 

hierarchy in Figure 3.20 is detailed in Appendix C.1.  For characterizing drainage 

patterns in the sub-tree, the MFs adopt the setting of case I in Table 3.3, and the 

result is shown in Figure 3.21. In the result, red dashed boxes also indicate 

reticulate networks. In addition, boxes filled with sky blue, orange, yellow and 

tomato colors represent dendritic, parallel, trellis and rectangular networks 

respectively.  

 Reticulate  Unclassified 
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Figure 3.21 Drainage tree after pattern classification (Appendix C.2) 

In Figure 3.21, the selected river network is recognized as dendritic. Inside 

the network, 18 sub-networks are classified as dendritic and 21 sub-networks are 

parallel. Besides, there are 4 trellis networks and 1 rectangular network. Figure 

3.22 shows the drainage pattern classifications in the selected region divided by 

watershed and rendered with color.  

 

Figure 3.22 Sub-catchments with drainage patterns 

From Figure 3.22, we can see that some networks are adjacent. For example, 

sub-networks (2), (5) and (47) should be merged due to their locations on the 

  Reticulate   Dendritic   Parallel   Trellis   Rectangular 

Dendritic Parallel 

Trellis Rectangular 
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right side of the main stream. So, some nodes of the drainage tree should be split 

and merged. After this process, the drainage tree is illustrated in Figure 3.23. The 

DOT script is given in Appendix C.3. 

 

Figure 3.23 Drainage tree after merging and splitting 

In Figure 3.23, nodes with an asterisk (*) are new networks split from the 

main stream. The sub-networks (2), (5) and (47) have been merged, because all 

of them are parallel and located near each other. In network (6), along its main 

stream from outlet to source, (10), (11), (12), (13) and (14) are all on the right, so 

the main stream should be split for their merging. Although (7) and (9) are also 

on the same side, they cannot be merged because of the interruption of network 

(8). Networks (20) and (45) are placed on opposite sides of the main stream, but 

they also are merged because they both connect to the same river segment.  

The last process is to remove the redundant information in the drainage tree. 

Inside the network (49*), two sub-networks (23) and (24) are removed because 

both of them are identified as dendritic as their parent (49*). Networks (10), (11), 

(12), (13) and (14) are merged and noted as network (48*), under which all sub-

networks can be removed. Similarly, the sub-networks under networks (50*) and 

(51*) also should be removed. Although network (52*) and its direct sub-

networks are identified as dendritic, it cannot be simplified. Because there is a 

sub-network, (22), under (21) which is parallel. The final result of the drainage 

tree is provided in Figure 3.24. The detailed DOT script is shown in Appendix 

C.4. 

  Reticulate   Dendritic   Parallel   Trellis   Rectangular 
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Figure 3.24 Final result of drainage tree 

The selected river network is a typical dendritic drainage, where most of the 

tributaries flow into a larger one with an angle less than 90 degrees and the 

catchment is broad. The river network is in the upper course of the Russian river, 

which is a headwater region that collects and funnels water to the main stream. 

From the drainage tree in Figure 3.24, most of the sub-networks are classified as 

dendritic and parallel patterns. It is reasonable because the dendritic river 

network has many contributing streams that are used for collecting water. 

Parallel networks are formed where there is a pronounced slope, and they can be 

found in the upper course. As the upper course is steep, V-shaped valleys are 

formed by the prevailing downward erosion, and it is one of the landform with 

pronounced slopes.  

However, there are still some other patterns such as reticulate, trellis and 

rectangular patterns. In general, in the upper course, these patterns do not appear 

except for human intervention. The area is located in Figure 3.25, the Potter 

Valley, a census-designated place in Mendocino County, California. Man-made 

irrigation canals or ditches destroy the nature of the river network at the 

reticulate region to a certain extent. 

  Reticulate   Dendritic   Parallel   Trellis   Rectangular 
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Figure 3.25 Image of the selected experimental area (from Google Map) 

3.6.5 Multiple representation of drainage trees at different levels  

A drainage tree is used to organize a river network according to the drainage 

patterns. In a drainage tree, the sub-networks with the same drainage pattern 

have been clustered by the adjacent locations. Although some sub-networks in a 

drainage tree have been merged, in a large river network, the drainage tree might 

still be complex. For example, the drainage tree in Figure 3.24 looks complicated, 

because at the bottom, the sub-networks start from order 2. As discussed in the 

previous chapter, many catchments in order 2 have less than 5 tributaries, and 

usually only 3 tributaries. In a large river network, the sub-networks are not 

necessarily divided too small. In this experiment, an application of drainage trees 

to the problem of multi-levels representation based on the order is given. A sub-

network is selected from the Russian river for the case study. Figure 3.26 shows 

the selected river network for this experiment is in the region of R9 in the 

Russian river. The highest order of the network is 6. 

Potter Valley 
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Figure 3.26 Sub-network corresponding to the region R9 in Figure 3.13 

The drainage tree of the selected river network is illustrated in Figure 3.27.  

 

Figure 3.27 Result of drainage tree (Appendix B.5) 

In the drainage tree, 5 levels are generated from order 6 to 2. There are only 2 

sub-networks in level 1 less than last case but more sub-networks in level 2 to 4 

especially in level 4.  The drainage tree is more complicated. This network is 

identified as dendritic, and from level 1 to 3, most networks are classified as 

dendritic too. This is a typical dendritic network. However, in level 4, sub-

networks beginning at order 2 are classified as various patterns, and parallel 

networks are in majority. There is only one sub-network which is rectangular in 

  Dendritic   Parallel   Trellis   Rectangular 

  0        6 

Level Order 

  1        5 

  2        4 

  3        3 

  4        2 

Asterisk (*) represents a merged network 
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level 3, but not because the landform has undergone faulting. It is a coincidence 

that the network has some similar features of the rectangular pattern such as 

bended tributaries and the average angle close to 90 degree. Here, the rectangular 

sub-network is regarded as an exception.  

  
(a) level 4 (b) level 3 

  
(c) level 2 (d) level 1 

 

Figure 3.28 The selected network and representations at multiple levels for case 

2 

The multi-representations of the drainage tree at different levels based on the 

order are shown in Figure 3.28. In level 3 and 4, the results are similar with the 

last case. Adjacent sub-networks are usually classified as the same pattern. Inside 

dendritic networks in level 3, many sub-networks are identified as the parallel 

  Dendritic   Parallel   Trellis   Rectangular 
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pattern. This is because sub-networks starting from order 2 do not have enough 

tributaries. The fewer tributaries, the easier to form a long and narrow drainage 

basin. This is the key factor to distinguish a dendritic network from a parallel one, 

especially if both of them have an acute average angle. In level 1, all sub-

networks are classified as dendritic although there are many parallel sub-

networks at the leaves of the drainage tree.  

From the case study of multi-representations of the drainage tree at different 

levels, several conclusions can be given as follows: (1) Most river networks 

starting from order 3 and above are classified as dendritic; parallel sub-networks 

usually appear at the lower level especially in order 2. If river networks are 

extracted starting from 3 or above, this matches closely with the result that about 

88% of river networks are dendritic (Serres & Roy, 1990). (2) In general, 

adjacent river networks are classified in the same pattern due to the similar 

landform, and river networks sharing a drainage divide are also classified as the 

same pattern. (3) The reticulate and rectangular river networks rarely appear in 

the upper river course unless there are particular reasons. For reticulate pattern, 

the man-made channels can lead to the crossing of rivers.  

3.7 Summary 

The drainage pattern is an important geographic factor for a river basin. This 

study proposed a method for automatic recognition of drainage patterns in river 

networks. The method recognizes drainage patterns from a river network defined 

by a directed graph. The terrain model is not required for the classification. Five 

types of pattern are classified: dendritic, parallel, trellis, rectangular and 

reticulate patterns. The method is based on geometric indicators, such as the 

junction angle, sinuosity, and catchment elongation, to classify the patterns 

automatically. Different patterns in a river network were identified separately 

and correspond to more or less complex networks with different Horton-Strahler 

orders, and were organized into a hierarchical structure representing levels of 

description of the drainage pattern. The method was finally applied on a case 

study, the Russian river network, and the resulting classification was discussed.  
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The advantage of this work is that proposed geometric indicators are easy to 

obtain and calculate. They can easily be implemented in a GIS and applied to a 

river network defined in a Shapefile or extracted from DEMs. However, in this 

last case, the quality of the classification may depend on the quality of the 

extracted network from the DEM (Grimaldi et al., 2007; Nardi et al., 2008).  

As rules defining each pattern are vague and depend on a combination of 

indicators, classification made use of fuzzy logic to improve robustness of the 

result. Due to the tree-like characteristic of a river network, the hierarchical 

structure for drainage patterns is built based on a recursive method which can be 

stated shortly and clearly and implemented as shown in experiments. Such 

classification and organization can be useful for terrain analysis as it can help 

provide a qualitative description of the terrain or for generalization as river 

selection can be adapted to the type of network. 

Validation of the results is based on assessments done on case studies. Some 

networks still remained unclassified either because they could belong to several 

different patterns, or to none. They are usually networks at the low order where 

there are not enough tributaries. Classification depends on the MF definitions. 

Different definitions were tested and yielded consistent results. It appears that 

among the different indicators, the junction angle and the elongation are the most 

significant: parallel drainages are mainly characterized by very acute junction 

angles and elongated catchment, trellis are also elongated but with orthogonal 

junctions. Some networks were not classified because they do not belong to any 

of the defined patterns. However, distinguishing drainages which are 

misclassified from those which cannot be classified may require assistance from 

hydrologic experts to provide a finer tuning of membership function supports. 

In the experimentation, it appeared that the proportion of drainages in each 

pattern varied with the order. One explanation may be that drainages at the 

higher order tend to be broader and therefore more likely classified as dendritic. 

Further investigation is required in this direction, as large drainages may also be 

formed by clusters of drainages of different types as rivers go through different 

types of terrain. This evolution can be tracked by clustering adjacent drainages 
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showing similar patterns into larger drainages that do not necessarily form a 

hierarchical structure as in this work.  

The influence of scale shall also be studied. Results were discussed on a large 

scale model. However, the scale may affect the number of tributaries represented 

in the network and the computation of indicators. As the drainage system is often 

extracted from the terrain model, the accuracy of drainage pattern classification 

at different orders may be related to the resolution of the terrain model. 

In terms of future research, in the short term, the first aspect for further work 

is the addition of other parameters for further pattern descriptions. On top of 

geometric indicators computed in a single network, other topologic indicators 

expressing relationships between networks can be considered. This would allow 

the study of the structure of the river network according to stream order and 

location inside the network. Drainage patterns such as radial and centripetal 

patterns have not been addressed in this work. Their identification requires the 

characterization of spatial relationships between networks rather than geometric 

indicators.  

In the longer term, the drainage pattern can be considered for applications in 

terrain analysis and cartography. In cartography, drainage patterns provide 

information about the network structure and can be used in river tributary 

selection for map generalization (Touya, 2007). It may also be used in map 

updating to check the existence of inconsistencies between terrain elements and 

the streams and to correct the conflicts (Chen et al., 2007). The drainage pattern 

can be used to analyze and correlate the drainage patterns with the catchment 

areas extracted from a terrain model. As the drainage pattern is related to the 

morphology of a terrain, it can be used to enrich the terrain model and 

characterize morphologic features. Other physiologic and morphologic 

information may be overlaid on the river network to perform statistical analysis 

and improve the classification by adding other factors. 
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Chapter 4 Evaluation of 

generalization methods in 

preserving the drainage pattern 

4.1 Introduction 

In the previous chapter, the drainage patterns are recognized automatically for a 

river network in a fuzzy logic process. The drainage pattern of a river network 

can be applied to assess a generalized river network by checking whether its 

pattern has changed or not. In the drainage pattern recognition, for a river 

network, all rules established for all drainage patterns are estimated, and the 

pattern is determined by the highest membership value of all rules. For quality 

assessment, the membership values of the original and generalized river network 

are compared. As reticulate pattern is identified by bridge finding algorithm in 

graph theory, it is not considered yet here. Four drainage patterns are addressed 

in this study: dendritic, parallel, trellis and rectangular patterns. 

There are two steps in river network generalization: selective omission and 

selected tributaries simplification (Li, 2007). In general, ―feature selection is 

normally the first step to any generalization project, independent of the 

generalization model being employed‖ (Wilmer & Brewer, 2010). The 

simplification step has limited influence to the drainage pattern of a generalized 

river network. This research focuses on selective omission for river network 

generalization. In this chapter, in Section 4.2, the tributary selection problem is 

presented first, and several existing methods are introduced. The evaluation 

method is proposed in Section 4.3. Section 4.4 provides a design of experiments. 

In Section 4.5, case studies are performed on the Russian river, and in Section 
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4.6, the evaluation method is applied to a large amount of networks in the 

Russian river basin. The conclusion is given in Section 4.7. 

4.2 Tributary selection techniques 

Two questions are raised for selective omission of tributaries in a river network, 

they are:  

(1) How many river tributaries are selected?  

(2) Which river tributaries are selected? 

The first question is answered by applying the ―Radical Law‖ to determine 

how many river tributaries are selected in a specific map scale. For the second 

question, several tributary selection methods are introduced including selection 

by order and length and by watershed partitioning. 

4.2.1 Tributary selection amount 

The problem addressed in this section is to decide how many river tributaries 

should be removed (or retained) from a large map scale to a smaller one. In map 

generalization, a classical principle of selection (Topfer & Pillewizer, 1966), 

which is the so-called ―Radical Law‖, was discovered by F. Topfer in 1961. The 

method is given as follows: 
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where nf is the number of objects shown at the smaller scale Mf, and na is the 

number of objects shown at the larger scale Ma. 

This method is a basic principle, however, it may be not applicable 

everywhere. In Topfer & Pillewizer’s (1966) work, as equation (4.1) is not so 

useful to small scale maps, a modified equation is also provided as 

 
a

f a b z

f

M
n n C C

M


,

 (4.2) 

 



4.2 Tributary selection techniques 

69 

where Cb is the ―Constant of Symbolic Exaggeration‖ and Cz is the ―Constant of 

Symbolic Form‖. 

For a specific situation, new factors should be taken into consideration in 

hydrologic map generalization. In Wilmer & Brewer’s (2010) work, a factor 

called ―Constant of Flowlines‖ (Cf) is added to the basic equation. The modified 

equation is 
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To apply the ―Radical Law‖ in NHD, the constant Cf in the equation has three 

possible values: 1, 1.7 and 0.6. The value 1 is for large scale (24K) to medium 

scale (100K), 1.7 is for local scale (5K) to other scale, and 0.6 for comparisons to 

small scale (2M). The constant of 1 are used in the experiment. 

4.2.2 Tributary selection modeling 

Tributary selection methods are reviewed in Section 2.4.1. In this section, some 

of them are applied to obtain generalized river networks, which are used to be 

assessed by the evaluation method. The selection methods based on stroke and 

watershed partitioning are introduced in detail. 

4.2.2.1 By stroke and length  

Thomson & Brooks (2000) proposed a ―stroke‖ concept and applied it to 

generalization and analysis for geographic networks such as road and river 

networks. In his work, for river networks, the Horton stream ordering after 

upstream routine is used to build the strokes of a river network. The Horton-

Strahler order scheme is first performed, and then an upstream routine is applied 

to determine the main stream. Here, in a river network, the main stream is 

referred to as a ―stroke‖. Figure 4.1 shows the strokes of a river network. 
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A. Horton-Strahler order scheme B. After upstream routine (―stroke‖) 

Figure 4.1 ―Strokes‖ of a river network (from Li, 2007) 

Tributary selection based on order can be done in four possible ways (Rusak 

Mazur & Castner, 1990) as listed in Figure 2.5 (p. 17). The easy way is to 

eliminate all low order tributaries and preserve high order tributaries in the first 

place (Figure 2.5D). The shortage is that all tributaries in an order will be 

removed in a step. Sometimes, in a specific scale, some tributaries should be 

preserved in an order. So the length is a factor taken into consideration.  

Similarly, taking a stroke as an entity, there are two steps in the 

generalization process: (1) remove the low order stroke first; (2) remove the 

shorter strokes if they are in the same order. 

4.2.2.2 By watershed partitioning 

Ai et al. (2006) proposed a method by constructing a hierarchy of different level 

watersheds. It focuses on the channel importance during the river network 

generalization replacing several geometric parameters of river feature by the 

watershed area. The watershed area is not obtained from the DEM but 

constructed on spatial competition by triangulations of the network. Obviously, 

tributaries should not be crossed over in the construction; they are constrained 

edges in the TIN. The selection method is to eliminate tributaries according to 

the catchment area. The tributary with smaller catchment area will be removed 

first.  An example of the hierarchical watershed partitioning is shown in Figure 

4.2. 
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Figure 4.2 Hierarchical partitioning of river catchments 

Consequently, the catchment area is the area of the watershed polygon. For a 

simple polygon with n vertices (xi, yi) (1≤i≤n), the first and last vertices are the 

same, i.e. xn=x1, and yn=y1. The area is given by the Surveyor’s formula (Braden, 

1986): 
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where A is the area of the polygon. If the vertices are stored sequentially in the 

counterclockwise direction, the absolute value sign in the formula can be omitted. 

4.3 Evaluation method for each drainage pattern 

The indicators used for drainage pattern recognition are introduced in Section 

3.4.1; they are average junction angle (α), bended tributaries percentage (β), 

average length ratio (γ) and catchment elongation (δ). These indicators are also 

applied in the evaluation. The degree of a rule is used to assess the generalized 

river network quantitatively. In Section 3.4.2, the common MFs are introduced. 

Here, the evaluation methods for each pattern are described mathematically. 
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4.3.1 Dendritic pattern 

In the fuzzy logic process, the rule defined for the dendritic pattern is 

IF (α IS acute) AND (δ IS broad) THEN pattern IS dendritic. 

Therefore, the degree of a dendritic network can be calculated as ―(α IS acute) 

AND (δ IS broad)‖, which can be represented in the following formula. 

 ( , ) min( ( ; , ), ( ; , ))f z a b z a b      ,
  (4.5) 

 

where α and δ are inputs, z(α;a,b) and z(δ;a',b') are defined MFs for an acute 

angle and a broad catchment respectively. 

4.3.2 Parallel pattern 

The rule for parallel pattern is given by 

IF (α IS very acute) AND NOT (β IS bended) AND (γ IS long) AND ( IS 

elongated) THEN pattern IS parallel. 

The degree of a parallel network is given as  

  ( , , , ) min ( ; , ),1 ( ; , ), ( ; , ), ( ; , )f z a b s a b s a b s a b             
,
  (4.6) 

 

where α, β, γ and δ are inputs, z(α;a,b), s(β;a',b'), s(γ;a'',b''), and s(δ;a''',b''') are 

MFs for a very acute angle, bended tributaries, a long tributary and an elongated 

catchment respectively. 

4.3.3 Trellis pattern 

For the trellis pattern, the rule is defined as  

IF (α IS right) AND NOT (β IS bended) AND (γ IS short) AND ( IS elongated) 

THEN pattern IS trellis. 

Then, the degree of a trellis network can be calculated as 

  ( , , , ) min ( ; , ),1 ( ; , ), ( ; , ), ( ; , )f g a b s a b z a b s a b             
,
  (4.7) 
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where α, β, γ and δ are inputs, g(α;a,b), s(β;a',b'), z(γ;a'',b''), and s(δ;a''',b''') are 

MFs for a right angle, bended tributaries, a short tributary and an elongated 

catchment respectively. 

4.3.4 Rectangular pattern  

The rule for the rectangular pattern is set as  

IF (α IS right) AND (β IS bended) THEN pattern IS rectangular. 

Therefore, the degree of a rectangular network is formulated as 

 ( , ) min( ( ; , ), ( ; , ))f g a b s a b      ,
  (4.8) 

 

where α and β are inputs, g(α;a,b) and s(β;a',b') are MFs for a right angle, 

bended tributaries respectively. 

4.4 Experiment design 

4.4.1 Testing data 

Russian river datasets are tested in the experiment. Two different scales are used: 

1:24,000-scale (1:24K) and 1:100,000-scale (1:100K). The large scale data is the 

one tested in Chapter 3. Small scale data is provided by the National 

Hydrography Dataset (NHD
7
) of the USA. From the history of the establishment 

of the NHD, the medium resolution data is built first, and then a conflation tool is 

used to help generate the 1:24K hydrological data from the medium resolution 

data. The medium resolution in the NHD data is at 1:100K. Therefore, the 

1:100K data is not generalized from 1:24K, it is built manually. The Horton-

Strahler order scheme was then computed. The testing data are illustrated in 

Figure 4.3. 

                                                      

 
7 http://nhd.usgs.gov/data.html 
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Figure 4.3 Experiment datasets 

In the experiment, in order to assess a river network maintains the same 

drainage pattern after generalization, three generalization methods are tested 

(Table 4.1). The first two are automatic, and the last one is the manually 

generalized data. The detailed methods are introduced in Section 4.2.2. 

Table 4.1 Testing on three generalization methods 

No. Approaches Methods 

I 
Hierarchy 

Stroke + Length 

II Watershed partitioning (Catchment) 

III Manual  

 

4.4.2 MF parameter settings for testing 

From the four defined rules for predicting the drainage pattern of river networks, 

eight predicates are applied into MFs. For the testing, they are set as in Table 4.2. 

This setting is the same as case I of MFs in the previous chapter. 

1:24K scale 1:100K scale 
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Table 4.2 MF parameter settings for testing 

Predicate MF Setting 

α IS acute 

( ; , )z x a b  

( ;45 ,90 )z      

α IS very acute ( ;30 ,60 )z      

γ IS short ( ;0,1)z    

δ IS broad ( ;1,3)z    

α IS right ( ; , )g x a b  ( ;10 ,90 )g      

β IS bended 

( ; , )s x a b  

( ;0,1)s    

γ IS long ( ;0,1)s    

δ IS elongated ( ;1,3)s    

 

4.5 Case studies in Russian river 

4.5.1 Case 1: a dendritic river network 

Figure 4.4(a) shows the tested river network for this case, which is selected from 

the Russian river corresponding to the region R2 in Figure 3.13. The bolder the 

river tributary, the greater the Horton-Strahler order.  It is a typical dendritic 

network with membership value of 0.933. The river network with Horton-

Strahler order after upstream routine is illustrated in Figure 4.4(b), which is used 

to select tributaries by stroke and length.  

  

(a) Horton-Strahler order (b) After upstream routine 

Figure 4.4 Tested river network for dendritic case 
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Generalized river networks by the three methods are illustrated in Figure 4.5. 

The manual generalized river network at 100K scale from the NHD is shown in 

Figure 4.5(III). It is generalized overly and does not follow the selection 

principle of ―Radical Law‖. Tributaries are eliminated by stroke and catchment 

according to the amount of the manual one, so that they can be compared at the 

same level. River networks generalized by stroke and catchment are shown in 

Figure 4.5 (I) and (II) respectively. 

   

(I) Stroke + Length (II) Catchment (III) Manual 

Figure 4.5 Generalized networks by three methods for dendritic case 

In Figure 4.5, all generalized networks are good with visual assessment. 

However, the manual one is better than others in some details. For example, the 

tributary in the dashed circle in network (I) is short with a twist that should be 

eliminated. It is preserved in network (I) because its order is greater than other 

longer tributaries. There are some short tributaries maintained in network (II) 

generalized by catchment which are shown in dashed boxes. Network (I) is better 

than (II), and (III) is the best one.  

Table 4.3 Assessment result of generalized networks in Figure 4.5 

Method  Indicator Membership Value 

  α β γ δ D P T R 

Stroke + Length (I) 59.19° 4.00% 1.10 1.20 0.801 0.002 0 0.003 

Catchment (II) 61.52° 8.57% 0.58 1.16 0.730 0 0.013 0.015 

Manual (III) 56.52° 10.34% 0.64 0.99 0.869 0 0 0.004 

 

Table 4.3 shows the assessment result of generalized river networks by the 

three methods. From the table, the membership value of manual network is 0.869, 
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which is the greatest among all generalized networks. Membership values of 

network (I) and (II) are 0.801 and 0.730 respectively. Network (I) is better than 

(II) from the membership, and that is also confirmed by visual assessment.   

Table 4.4 shows generalized networks by stroke and catchment at different 

scales. In this case study, 1:100K, 1:250K, 1:500K, 1:1M and 1:5M scales are 

tested. In the table, the river network (a) is the original data at 24K-scale used for 

comparison. All generalized results are good, but in general, the stroke and 

length method provides better results by visual checking. At 1:100K scale, 

network (c) has more short tributaries due to the shortage of the method, and (b) 

has better details in the dashed box than (c). At 1:250K, 1:500K and 1:1M scales, 

networks (d), (f) and (h) look more balanced than (e), (g) and (i) respectively. 

The first method eliminates tributaries based on strokes that keep the tributaries 

straighter and longer than the second method. It can be verified visually from the 

results of (e), (g) and (i) compared to (d), (f) and (h) respectively. At 1:5M scale, 

network (j) has better shape than (k) as the skeleton of the original network is 

maintained well in network (j). Obviously, network (j) is better than (k) at this 

scale. 

Table 4.4 Generalized river network for dendritic case at different scales 

1:24K Method 
Scale 

1:100K 1:250K 

 

Stroke + 

Length 

  

Catchment 

  

(Continued) 

(a) 

(b) (d) 

(c) (e) 
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Table 4.4 (Continued) 

Method 
Scale 

1:500K 1:1M 1:5M 

Stroke + 

Length 

   

Catchment 

   

 

The assessment result for the generalized river networks by different methods 

at different scales during the generalization process is listed in Table 4.5, and it 

shows the same findings with the visual assessment. At 1:100K, 1:250K, 1:500K, 

1:1M and 1:5M scales, the membership values of the generalized networks by 

stroke are 0.869, 0.884, 0.762, 0.801 and 0.561 respectively, and they are greater 

than the values by catchment at each scale. At 1:100K scale, the difference of the 

memberships between the two methods is very small, which is also confirmed 

visually that river network (b) and (c) in Table 4.4 are both acceptable. From the 

membership value of network (k), it changed the pattern from dendritic to 

rectangular. So network (j) is much better than (k) at 1:5M scale, which also 

corresponded to the visual assessment. Overall, the stroke method brings better 

results than the catchment method in this case study from the membership values.  

  

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 
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Table 4.5 Assessment result of dendritic case at different scales 

Scale Method  Indicator Membership Value 

   α β γ δ D P T R 

1:24K  (a) 53.24° 3.68% 0.69 1.14 0.933 0.010 0.001 0.001 

1:100K 
I (b) 55.53° 2.53% 0.68 1.15 0.869 0.011 0.004 0.001 

II (c) 55.85° 3.61% 0.86 1.21 0.861 0.022 0.004 0.001 

1:250K 
I (d) 57.55° 4.08% 0.90 1.20 0.844 0.013 0.005 0.003 

II (e) 59.26° 6.38% 0.62 1.10 0.799 0.001 0.006 0.008 

1:500K 
I (f) 60.51° 2.86% 0.88 1.20 0.762 0 0.013 0.002 

II (g) 63.76° 6.45% 0.48 1.16 0.653 0 0.014 0.008 

1:1M 
I (h) 59.19° 4.00% 1.10 1.20 0.801 0.002 0 0.003 

II (i) 65.16° 4.76% 0.63 1.16 0.599 0 0.014 0.005 

1:5M 
I (j) 66.08° 11.11% 1.29 1.23 0.561 0 0 0.025 

II (k) 76.83° 42.86% 0.63 1.18 0.171 0 0.017 0.367 

 

4.5.2 Case 2: a trellis river network 

The selected experimental data for this case is a trellis river network in the region 

of R3 of the Russian river. It is shown in Figure 4.6(a), and it is arranged as trellis. 

Figure 4.6(b) illustrates the Horton order after upstream routine. 

  
(a) Horton-Strahler order (b) After upstream routine 

Figure 4.6 Tested river network for trellis case 

In the automatic drainage pattern recognition, the Horton-Strahler order is 

used for classification. Here, as the river network is already classified as a trellis, 

the order after upstream routine is used to evaluate generalized results. This is in 

order to obtain the value of length ratio indicator based on the same main streams. 

Because the method of stroke and length builds strokes first that is according to 
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the Horton-Strahler after upstream routine. The length ratio values will be higher 

if other methods do not follow the upstream routine as main streams are shorter. 

An example of the difference is shown by the dashed polygons in Figure 4.6, 

where the main stream is obtained owing to different order schemes.  

Figure 4.7 shows generalized results by the three methods. In the figure, (III) 

shows the trellis river network from NHD at 100K scale. It also did not meet the 

requirement of ―Radical Law‖ as too many tributaries are eliminated at this scale 

in comparison with 1:24K scale network. Networks (I) and (II) are generalized 

according to the amount left by the manual one. By checking visually, network 

(III) is well distributed as it is more balance than other results, and tributaries do 

not gather together as tributaries in the dashed circle in network (I). Network (I) 

is better than (II) because some short tributaries are preserved by the catchment 

method such as tributaries in the dashed boxes. Network (III) is still the best 

result among all generalized networks. 

   
(I) Stroke + Length (II) Catchment (III) Manual 

Figure 4.7 Generalized networks by three methods for trellis case 

The evaluation result is shown in Table 4.6 which corresponds to the 

outcome by visual assessment. The manual network obtains a maximum 

membership value of all generalized networks. Its membership is 0.842, which is 

greater than both 0.684 of network (I) and 0.396 of network (II). From 

membership values, network (I) generalized by stroke and length is better than 

(II) by catchment, which is also confirmed by visual checking. 
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Table 4.6 Assessment result of generalized networks in Figure 4.7 

Method  Indicator Membership Value 

  α β γ δ D P T R 

Stroke + Length (I) 98.73° 8.33% 0.21 3.03 0 0 0.684 0.014 

Catchment (II) 103.61° 5.00% 0.29 3.29 0 0 0.396 0.005 

Manual (III) 86.67° 4.35% 0.28 3.65 0 0 0.842 0.004 

 

During the generalization process, the trellis river network is handled to 

generalize from 1:24K scale to 1:100K, 1:250K, 1:500K, 1:1M and 1:2M scales 

in this case. The results of this case study are listed in Table 4.7, where network 

(a) is the original trellis river network at 1:24K scale.  

Table 4.7 Generalized river network for trellis case at different scales 

1:24K Method 
Scale 

1:100K 1:250K 

 

Stroke + 

Length 

  

Catchment 

  

(Continued) 

 

  

(a) 

(b) 
(d) 

(c) (e) 
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Table 4.7 (Continued) 

Method Scale 

 1:500K 1:1M 1:2M 

Stroke + 

Length 

   

Catchment 

   

 

In Table 4.7, visually, at 1:100K scale, network (c) is better than (b) as (c) 

looks more balanced, but (b) is still an acceptable result. Network (e) preserves 

more short tributaries and (d) has more long ones due to stroke establishment. 

From the aspect of length, network (d) is better than (e), because short tributaries 

should be removed after generalization especially by manual network. The 

catchment of a tributary receives all catchment of its upper stream, so the 

catchment area would be large even if its length is short. That is why short 

tributaries are preserved in networks (e), (g) and (i). Networks (d), (f) and (h) are 

more satisfied than (e), (g) and (i) respectively. For the generalized results at 

1:2M scale, they are both trellis pattern as the tributaries are short and straight 

and all junction angle are large. But the tributaries are too few to discuss pattern 

issue. As a result, most of the generalized networks are better by stroke and 

length than by catchment at each scale except at 1:100K scale.  

  

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 
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Table 4.8 Assessment result of trellis case at different scales 

Scale Method  Indicator Membership Value 

   α β γ δ D P T R 

24K  (a) 81.14° 1.49% 0.20 3.17 0 0 0.675 0 

100K 
I (b) 84.72° 1.56% 0.20 3.35 0 0 0.870 0.001 

II (c) 88.25° 1.67% 0.14 3.17 0 0 0.961 0.001 

250K 
I (d) 84.28° 2.50% 0.27 3.35 0 0 0.849 0.001 

II (e) 95.83° 2.94% 0.17 3.09 0 0 0.844 0.002 

500K 
I (f) 96.61° 3.57% 0.23 3.35 0 0 0.896 0.003 

II (g) 100.63° 4.55% 0.27 3.09 0 0 0.568 0.004 

1M 
I (h) 94.13° 5.00% 0.22 3.65 0 0 0.907 0.005 

II (i) 112.24° 6.25% 0.31 3.29 0 0 0.843 0.008 

2M 
I (j) 98.80° 8.33% 0.25 3.65 0 0 0.679 0.014 

II (k) 99.87° 0 0.29 4.13 0 0 0.615 0 

 

Table 4.8 shows the assessment result of the trellis river network during the 

generalization process. In the table, from the assessment, all generalized 

networks are preserved as the trellis pattern. At 1:100K scale the membership of 

(c) is 0.961, which is greater than 0.870 of network (b), and is confirmed by 

visual assessment. The membership values of networks (d) and (e) are almost the 

same at 0.849 and 0.844 respectively. But network (d) is better than (e), which 

also corresponds to the results visually. For other scales, the method of stroke 

and length brings higher membership values than by catchment as they are 0.896 > 

0.568, 0.907 > 0.843 and 0.679 > 0.615 at 1:500K, 1:1M and 1:2M scales 

respectively.  

4.5.3 Case 3: a parallel river network 

The river network tested in this experiment is a parallel river network. It is 

illustrated in Figure 4.8(a), and the river network built after upstream routine 

with Horton-Strahler order is shown in Figure 4.8(b). 
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(a) Horton-Strahler order (b) After upstream routine 

Figure 4.8 Tested river network for parallel case 

Figure 4.9 illustrates generalized networks by the three methods. In the figure, 

network (III) is the manual river network at 1:100K scale from the NHD. It does 

not correspond to the selection principle in that it has more tributaries than the 

network generalized after ―Radical Law‖. So, networks (I) and (II) are 

generalized to the same level of tributary amount of network (III). From the 

figure, network (II) is not as good as the others because tributaries in the dashed 

box are short and twist. Networks (I) and (III) are the same results after 

generalization; however, tributaries in the dashed circles of network (III) are 

smoother than (I). Although they are the same selection results, the membership 

values would be a little different. In general, all generalized networks are 

acceptable by preserving the parallel pattern.  

  

 

 
(I) Stroke + Length (II) Catchment (III) Manual 

Figure 4.9 Generalized networks by three methods for parallel case 

The assessment result for generalized networks by three methods is shown in 

Table 4.9. Although network (III) from the NHD is nearly the same as (I) 

simplified by stroke and length, their membership values are a little different: (III) 

is 0.926 and (I) is 0.930. The smoothed tributaries influenced the calculation of 

indicators α and β. However, memberships of networks (I) and (III) show the 

result is better than (II). The result is confirmed by visual assessment. 
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Table 4.9 Assessment result of generalized networks in Figure 4.9 

Method  Indicator Membership Value 

  α β γ δ D P T R 

Stroke + Length (I) 34.02° 15.38% 0.81 3.86 0 0.930 0 0 

Catchment (II) 41.15° 15.38% 0.57 3.44 0 0.632 0 0 

Manual (III) 27.63° 0% 0.81 4.84 0 0.926 0 0 

 

There are not so many tributaries in the parallel network, so only three map 

scales are involved in the generalization process: 1:50K, 1:100K and 1:250K 

scales. The scales smaller than 250K are not necessary to be tested as there are 

only 5 river segments left at 1:250K scale. Table 4.10 shows the generalized 

results for this case in different scales. Network (a) is the original parallel river 

network, and its membership value is 0.792.  

Table 4.10 Generalized river network for parallel case at different scales 

1:24K Method 
Scale 

1:50K 

 

Stroke + Length 

 

Catchment 

 

(Continued) 

 

  

(a) 

(b) 

(c) 
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Table 4.10 (Continued) 

Method 
Scale 

1:100K 1:250K 

Stroke + Length 

 
 

Catchment 

 
 

 

In Table 4.10, visually, all generalized river networks maintained the parallel 

pattern. At 1:50K scale, network (b) and (c) are both acceptable, but (b) is better 

than (c) because the junction angle in the dashed box of (b) is smaller, which is 

in keeping with characteristics of the parallel pattern, and tributary in the dashed 

circle of network (c) is not as straight as the same place in (b). At 1:100K scale, 

junction angles in both network (d) and (e) are the same, under which 

circumstance the network with longer and straight tributaries is more satisfactory. 

So, (d) looks like a parallel network more than (e). By visual checking, network 

(g) looks more parallel than (f) because (g) preserves a longer tributary in the 

dashed box of (g) although its order is only 1. 

Table 4.11 Assessment result of parallel case at different scales 

Scale Method  Indicator Membership Value 

   α β γ δ D P T R 

1:24K  (a) 39.67° 10.53% 0.69 3.14 0 0.792 0 0 

1:50K 
I (b) 34.02° 15.38% 0.81 3.86 0 0.930 0 0 

II (c) 41.15° 15.38% 0.57 3.44 0 0.632 0 0 

1:100K 
I (d) 41.80° 22.22% 0.34 3.86 0 0.225 0 0 

II (e) 41.80° 22.22% 0.29 3.71 0 0.165 0 0 

1:250K 
I (f) 47.58° 20.00% 0.34 4.09 0 0.235 0 0 

II (g) 35.27° 20.00% 0.47 3.71 0 0.439 0 0 

 

(d) (f) 

(g) (e) 
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The assessment result of the parallel network is shown in Table 4.11. From 

the table, membership values of the network generalized by stroke and length are 

0.930 and 0.225 at 1:50K and 1:100K scales, respectively. They are greater than 

the generalized network by catchment at both scales, which is confirmed by 

visual checking. At 1:250K scale, the membership value of network (g) is greater 

than (f) (0.439 > 0.235), which reflects (g) looks more parallel than (f). This 

result is confirmed by visual assessment. 

4.5.4 Case 4: a rectangular river network 

This testing network for the rectangular case is selected from the Russian river 

corresponding to the region R2. Figure 4.10(a) illustrates the river network with 

Horton-Strahler order, and (b) shows it after upstream routine with the order.  

  
(a) Horton-Strahler order (b) After upstream routine  

Figure 4.10 Tested river network for rectangular case 

Figure 4.11 shows generalized river networks by the three methods. Network 

(III) is the manual one from NHD at 1:100K scale. All river networks are 

generalized to the same level on tributary amount. Networks (I) and (II) are 

generalized by stroke and length and by catchment respectively. Visually, all 

networks are acceptable by preserving the rectangular pattern, and they are 

almost the same. Network (III) generalized manually has more bended tributaries 

than others (see dashed boxes). The manual one is better than the others.  
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(I) Stroke + Length (II) Catchment (III) Manual 

Figure 4.11 Generalized networks by three methods for rectangular case 

The assessment result in Table 4.12 shows the same conclusion with visual 

assessment. The membership of network (III) is 0.037, which is slightly greater 

than the others. Membership values of networks (I) and (II) are 0.030 and 0.028, 

respectively, which are almost the same. The result corresponds to the visual 

assessment. 

Table 4.12 Assessment result of generalized networks in Figure 4.11 

Method  Indicator Membership Value 

  α β γ δ D P T R 

Stroke + Length (I) 116.54° 13.33% 0.32 0.87 0 0 0 0.030 

Catchment (II) 115.33° 11.76% 0.25 1.12 0 0 0.007 0.028 

Manual (III) 115.74° 20.00% 0.35 0.80 0 0 0 0.037 

 

In this case, 1:100K, 1:250K and 1:1M scales take part in the experiment. 

Table 4.13 shows the generalized results by stroke and catchment from 1:24K 

scale to 1:1M scale. Network (a) is the original data. Networks (b), (d) and (f) are 

given by stroke and length at 1:100K, 1:250K and 1:1M scales respectively, and 

catchment method provides (c), (e) and (g) at each scale.  

In Table 4.13, all generalized river networks look rectangular more than the 

original one (a) because (a) has more straight tributaries. At 1:100K scale, 

network (b) preserves more bended tributaries than (c), from which aspect, (b) is 

better than (c). With network (d) and (e) it is hard to tell which is better, but 

tributaries in (d) are longer than (e). In fact, they are both acceptable visually. At 
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1:1M scale, there are few tributaries left in networks (f) and (g), and they are 

both good.  

Table 4.13 Generalized river network for rectangular case at different scales 

1:24K Method 
Scale 

1:100K 

 

Stroke + Length 

 

Catchment 

 

(Continued) 

 

  

(a) 

(b) 

(c) 
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Table 4.13 (Continued) 

Method 
Scale 

1:250K 1:1M 

Stroke + Length 

  

Catchment 

  

 

The assessment result of this case is shown in Table 4.14. From the table, we 

can see the membership value of the original network (a) is 0.003 for the 

rectangular pattern only. As membership values of other patterns are 0, it can 

only be classified as rectangular. However, generalized networks are better than 

the original one.  At 1:100K scale, the membership of (b) is 0.034, which is 

greater than 0.013 of (c). From the assessment, at 1:250K scale, membership 

values of networks (d) and (e) are 0.030 and 0.028 respectively. They are so 

close that it is difficult to evaluate visually. Networks (f) and (g) have the same 

membership value of the rectangular pattern and also corresponded with visual 

assessment. 

  

(d) (f) 

(g) (e) 
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Table 4.14 Assessment result of rectangular case at different scales 

Scale Method  Indicator Membership Value 

   α β γ δ D P T R 

1:24K  (a) 94.93° 4.08% 0.33 0.87 0 0 0 0.003 

1:100K 
I (b) 105.93° 13.04% 0.61 0.87 0 0 0 0.034 

II (c) 106.89° 8.00% 0.47 0.97 0 0 0 0.013 

1:250K 
I (d) 116.54° 13.33% 0.32 0.87 0 0 0 0.030 

II (e) 115.33° 11.76% 0.25 1.12 0 0 0.007 0.028 

1:1M 
I (f) 120.58° 28.57% 0.80 0.61 0 0 0 0.009 

II (g) 120.58° 28.57% 0.66 0.93 0 0 0 0.009 

 

4.6 Evaluation results in Russian river 

The evaluation method is applied to the Russian river to assess generalized river 

networks by the three methods: stroke and length, catchment and manual work. 

The data process is as follows:  

(1) According to the river data from NHD at 1:100K scale, eliminate 

tributaries in the Russian river to get the generalized river network by 

manual work; rebuild the network by combining river segments and 

reassign the Horton-Strahler order, then establish the drainage tree for the 

network. 

(2) According to the river segment IDs, get the corresponding sub-networks 

from the Russian river at 1:24K scale. 

(3) Generalize the sub-networks by stroke and catchment method to the same 

level amount of river segments with manual generalized networks. 

(4) Assess each generalized river network by the evaluation method. 

Table 4.15 lists the number of preserved or changed drainage patterns after 

river network generalization.  
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Table 4.15 Number of drainage patterns after generalization 

 
Manual Catchment Stroke + Length 

 
Order 2 Order 3 Order 4 Order 2 Order 3 Order 4 Order 2 Order 3 Order 4 

Dendritic 15 29 13 14 34 17 13 29 15 

Parallel 14 4 0 17 6 0 16 5 0 

Trellis 2 6 2 3 7 4 3 6 3 

Rectangular 0 2 1 0 3 0 0 3 1 

Unclassified 2 0 0 2 1 0 2 0 0 

D→P 16 0 0 15 2 0 19 0 0 

D→T 15 2 1 13 2 1 9 5 1 

D→R 9 4 1 5 5 1 9 3 1 

D→U 4 1 0 1 0 0 6 0 0 

P→D 2 1 0 1 0 0 2 0 0 

P→T 3 0 0 0 0 0 1 0 0 

P→R 0 0 0 0 0 0 0 0 0 

P→U 0 0 0 0 0 0 0 0 0 

T→D 0 0 0 0 0 0 0 0 0 

T→P 5 0 0 2 0 0 3 0 0 

T→R 1 0 0 0 0 0 0 0 0 

T→U 1 1 0 2 0 0 3 0 0 

R→D 0 0 0 0 0 0 0 0 0 

R→P 1 0 0 0 0 0 0 0 0 

R→T 3 0 0 3 1 0 3 0 0 

R→U 0 0 0 0 0 0 0 0 0 

U→D 1 0 0 0 0 0 1 0 0 

U→P 0 0 0 1 0 0 0 0 0 

U→T 1 0 0 0 0 0 1 0 0 

U→R 1 0 0 1 0 0 1 0 0 

Total 164 164 164 

* ―D‖ – Dendritic, ―P‖ – Parallel, ―T‖ – Trellis, ―R‖ – Rectangular, ―U‖ – Unclassified; 

―→‖ means that one pattern changes to another. 

 

In Table 4.15, the first five rows give the number of preserved patterns, and 

following rows are the changed numbers of each pattern in detail. There are 164 

river networks at different orders that are extracted and evaluated. From the table, 

many of the generalized river networks are preserved drainage patterns by the 

three methods. There are 90, 108, and 96 generalized river networks that 

preserve their patterns by manual work, catchment and stroke respectively. 

Although patterns of many networks are changed after generalization, it happens 

in order 2. In manual work, 74 generalized networks alter patterns, but 85% 

(63/74) of them are in order 2. Similarly, 79% (44/56) and 85% (58/68) of 
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changed patterns by catchment and stroke respectively are in order 2. The 

possible reason is that indicators from a river network are statistic values, which 

rely on the amount of river segments. If there are few river segments in a river 

network, the indicators would be not so robust to reflect the pattern of the river 

network. From the result of the previous chapter in Figure 3.18 (p. 53), most of 

the river networks in order 2 have less than 5 river segments. Therefore, if a river 

network in order 2 is generalized from the network in order 3 or a higher order, 

two situations would arise: one is that the pattern does change after 

generalization, and another is that the evaluation method is not available due to 

insufficient river segments. In addition, from the table, most patterns change 

from dendritic to parallel, trellis and rectangular. 

Table 4.16 shows average membership values of all generalized river 

networks where their patterns are preserved. From the table, the average 

membership value of river networks generalized by manual work is 0.59, which 

is slightly greater than by catchment (0.52) and by stroke and length (0.57). It 

indicates that, from the aspect of drainage patterns, river networks generalized by 

manual work are better than by catchment and stroke, which corresponds to the 

result from case studies. The average value given by the stroke and length 

method is close to the manual generalized river networks. Here the stroke is 

established based on the Horton-Strahler order after upstream routine, which has 

been considered as the one that ―most closely approximates the generalisation 

decisions made by a human cartographer‖ (Thomson & Brooks, 2000). 

Table 4.16 Average membership value of preserved patterns 

Method Stroke + Length Catchment  Manual 

Average 

membership value 
0.57 0.52 0.59 
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(a-1) Original (a-2) Stroke + Length 

  
(a-3) Catchment (a-4) Manual 

  
(b-1) Original (b-2) Stroke + Length 

  
(b-3) Catchment (b-4) Manual 

Figure 4.12 Some generalized river networks with changed patterns 

Some examples of river networks that change their patterns after 

generalization are illustrated in Figure 4.12. In the figure, (a-1) and (b-1) are 

original networks; (a/b-2), (a/b-3) and (a/b-4) are generalized river networks by 

stroke and length, catchment and manual work. Table 4.17 shows the assessment 

Dendritic Rectangular 

Rectangular Rectangular 

Dendritic Dendritic 

Dendritic Rectangular 
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results of the generalized river networks. From the table, network (a-1) is 

dendritic, but generalized networks (a-2), (a-3) and (a-4) are changed to 

rectangular. For another example, network (b-4) generalized by manual work 

alters the pattern from dendritic to rectangular, and networks (b-2) and (b-3) still 

maintain the pattern.  

Table 4.17 Assessment for river networks in Figure 4.12 

Network Indicator Membership Value 

 α β γ δ D P T R 

(a-1) 83.52° 10% 1.43 1.42 0.041 0 0 0.020 

(a-2) 108.65° 29% 0.84 1.42 0 0 0.053 0.169 

(a-3) 100.80° 22% 0.95 1.55 0 0 0.004 0.093 

(a-4) 104.98° 23% 0.97 1.46 0 0 0.001 0.102 

(b-1) 73.15° 10% 1.38 1.45 0.281 0 0 0.018 

(b-2) 72.56° 27% 0.89 1.58 0.300 0 0.025 0.149 

(b-3) 75.21° 21% 0.60 1.61 0.216 0 0.188 0.089 

(b-4) 76.40° 45% 0.97 1.59 0.183 0 0.001 0.396 

 

From Table 4.17, the membership value of each river network is not so large. 

Therefore, we check the membership values of river networks that preserved or 

changed their patterns. For river networks that preserved their patterns after 

generalization, the average membership value of original river networks is 0.57; 

the average value is 0.30 only for river networks that changed patterns. It 

indicates that, in general, if the source river network has high membership value 

of a pattern, which has a significant characteristic of a pattern, it would be easier 

to preserve its pattern after generalization than a river network with low 

membership value.  

4.7 Conclusion 

From the experiment results, several conclusions can be given as follows. 

(1) In general, the evaluation method based on the membership degree of a 

fuzzy rule for a drainage pattern is useful. From a large scale to a small 

scale, to a generalized river network, the drainage pattern preserves better 
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if the membership value is high. However, sometimes, the membership 

value will be not so robust at small scales especially when there are not 

enough river segments left because proposed indicators, such as average 

junction angle (α), bended tributaries percentage (β), average length ratio 

(γ), are statistical features. 

(2) By evaluating generalized river networks from the point of drainage 

patterns, the method based on stroke and length is better than based on 

watershed partitioning. In addition, networks generalized manually are 

always with high membership values and preserve a good drainage 

pattern. A good generalized result does not only depend on one or two 

factors; many factors such as tributary spacing and balance are involved 

in manual generalization process.  

(3) One limitation of the proposed evaluation method is focused on the 

drainage pattern only. Some other aspects simply cannot be assessed by 

the membership value. For example, for network (f) in Table 4.7 at 

1:500K scale, although the membership value is 0.896 that is much 

greater than (g), it is not an ideal result as the tributaries in the dashed 

circle are crowded together. 

(4) Another limitation is that the evaluation method is more available and 

accurate in source river networks with order 3 or higher, but not the 

higher the better because sub-networks can be classified as different 

patterns inside a large river network. A small river network with order 2 

does not have enough river segments to provide robust indicators.  

4.8 Summary 

In this chapter, a quality assessment method based on fuzzy logic is provided to 

evaluate a generalized river network by the tributary selection operation. The 

quality evaluation is by checking a membership value from a fuzzy rule for a 

drainage pattern. Four drainage patterns are evaluated in this study: dendritic, 

trellis, parallel and rectangular. The method was applied to evaluate different 

tributary selection methods, such as by stroke and length, by watershed 
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portioning and by manual work. The experimental data is the Russian river from 

the RRIIS at 1:24K scale, and the NHD at 1:100K scale.  

From the experimental results, when the membership value is higher, the 

generalized river network is better. During the generalization, the membership of 

generalized river networks can be higher than the original. That is because a 

generalized river network can have more characteristics of the pattern than the 

original network after generalization. This method is appropriate for evaluating a 

generalized river network from the aspect of drainage patterns. The advantage of 

this research is that evaluating a generalized river network based on fuzzy logic 

is easy to understand and implement. The limitations of the research are: (1) 

evaluation is focused on the drainage pattern only according to the membership 

value, other criteria may also be proposed; (2) the method is more suitable for a 

river network with order 3 and 4 as a small network does not have enough river 

segments and a large network can have many sub-networks with different 

patterns inside. 

The existing methods of tributary selection do not consider the pattern in the 

first place, although they can preserve the pattern of a generalized river network 

sometimes. Considering the pattern is an important factor in river networks, it 

should be taken into account in river network generalization. In order to provide 

a better generalized river network, the next chapter proposes a tributary selection 

method with consideration of drainage patterns. From the experiment of this 

work, only focusing on drainage patterns cannot generalize a river network as 

good as manual work. The indicators influencing the drainage pattern can be 

considered in the generalization, however, other factors are also needed, such as 

tributaries balance and spacing. The next chapter proposes a solution to deal with 

multiple factors at the same time during the river network generalization. 
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Chapter 5 A genetic algorithm for 

tributary selection with 

consideration of different factors 

5.1 Introduction 

The drainage pattern can reflect the characteristics of a river network to a certain 

extent. Therefore, drainage pattern preservation should be integrated in the river 

network generalization process. Each drainage pattern has its own characteristics, 

so different factors may be considered according to the drainage pattern. Existing 

methods such as those presented in the previous chapter are based on the 

consideration of different factors, among which the tributary length and the order 

are the most important.  

Optimizing river selection according to different factors at the same time is a 

multi-objective optimization problem. In recent years, genetic algorithms (GAs) 

have been applied in multi-objective optimization problems (e.g. Coello, Lamont, 

& Van Veldhuizen, 2007; Hajela & Lin, 1992; Konak, Coit, & Smith, 2006). A 

genetic algorithm is a class of adaptive stochastic optimization algorithms that 

simulates the process of natural evolution, and usually it is used to create 

available solutions to optimization and search problems (Mitchell, 1996). GA is a 

sub-class of evolutionary algorithms (EAs), which are inspired by Darwin’s 

theory about evolution and widely noticed since 1960s (Rechenberg, 1973). GAs 

were proposed by John Holland in the early 1970s (Holland, 1975), and 

developed by him and his students (Holland, 1992). Research in GAs stayed in 

the theoretical realm until the mid-1980s, then GAs started to be applied in many 

fields such as bioinformatics (e.g. Kikuchi et al., 2003; Kosakovsky Pond et al., 
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2006; Notredame, 1996), computational science (e.g. Deb et al., 2002; Della 

Croce, Tadei, & Volta, 1995; Goldberg, 1989), and engineering (e.g. Gen & 

Cheng, 1999; Johnson & Rahmat-Samii, 1997; Shopova & Vaklieva-Bancheva, 

2006). Van Dijk, Thierens, & De Berg (2002) use GAs to resolve GIS problems, 

such as map labeling and generalization while preserving the data structure, and 

line simplification; Ware, Wilson, & Ware (2003) focus on spatial conflict 

between objects after scaling achieving near optimal solutions within practical 

time constraints.  

River network generalization is usually conducted in two steps: first is the 

selective omission of river segments; second, line simplification and typification 

is performed. In this chapter, only selective omission is discussed. In order to get 

a better generalized river network, several factors are considered and introduced. 

For different drainage patterns, considered factors are different. A genetic 

algorithm is designed and implemented for tributary selection, and the method is 

implemented and tested in the Russian river. The chapter is organized as follows: 

Section 5.2 introduces basic concepts of GA and explains how they are applied 

to omissive selection of tributaries. Section 5.3 presents the different factors 

assessed in our experiments and the objective function evaluating the 

generalization. In Section 5.4, the selection method is applied for each type of 

patterns and results showing the importance of different factors are analyzed. 

The last section provides recommendations for each pattern and discusses the 

performances of the method. 

5.2 Tributary selection using a genetic algorithm 

5.2.1 Fundaments of genetic algorithm 

To apply a GA, the solution (called individual) to the problem should be 

represented by a chromosome (or genome). Usually, a solution is represented by 

series of ones and zeros, but there are also other possible encodings (Whitley, 

1994). Then, a set of solutions called population is generated, and genetic 

operators such as selection, crossover and mutation are applied to evolve the 

solutions in order to find the best one(s) by evaluating the fitness of every 
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individual in the population. In general, a GA has 5 elemental components as 

follows: encoding, population initialization, fitness evaluation, genetic operators, 

and parameters setting (population size, probabilities of applying genetic 

operators, etc.). 

(1) Encoding. The encoding of chromosomes depends on the problem. There 

are some common encoding types: binary, ordered, and valued encodings. The 

most common one is the binary encoding represented as an array of bits, 0 or 1. 

The ordered encoding is a string of numbers which is useful for ordering 

problems. In the valued encoding, every chromosome is permutation of real 

values, which can be related to special problems represented as real numbers, 

characters, or some objects. Examples of chromosomal encoding with 

applications are illustrated in Table 5.1. 

Table 5.1 Examples of chromosomal encodings  

Type Encoding example Application 

Binary 
A: 100101010101010 

B: 011101011110101 
Knapsack problem 

Ordered 
A: 132547689 

B: 145236798 

Travelling salesman 

problem (TSP) 

Valued 
A: 1.23 4.35 6.89 4.56 

B: ABDEJEIFJLSIEJD 

C: (red), (yellow), (green) 

Finding weights for 

neural networks 

 

(2) Population initialization. A population is a group of candidate solutions, 

and the initial population is the first generation. Traditionally, the initial 

population to a problem is generated randomly from the entire search space 

containing all possible solutions.    

(3) Fitness evaluation. It is a process evaluating all potential solutions by a 

fitness function that returns a ―fitness‖ value which can reflect how optimal a 

solution is. Usually, the higher the ―fitness‖, the better the solution. ―Fitness‖ 

plays an important role in the generation of new populations.  

(4) Genetic operators. Selection, crossover, and mutation are three basic 

genetic operators of GAs, which are used to create new offspring forming the 

next generation. The selection operation selects good chromosomes to be parents 
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to multiply offspring according to their fitness. There are several methods to 

select chromosomes, such as roulette wheel selection, rank selection and elitism. 

These methods are following the rule of ―survival of the fittest‖. In crossover 

operation, a new offspring is created by two partial genes from parents.  

Mutation randomly changes a gene in the new offspring, which can prevent a 

new generation falling into a local optimum. Figure 5.1 shows the simplest way 

of crossover and mutation to binary chromosomes, the symbol ―|‖ represents a 

crossover point. 

 

Figure 5.1 Crossover and mutation operation 

(5) Parameters setting. ① Crossover probability (pc) is the chance of 

crossover happening. If pc is 0%, the new generation is an exact copy of the last 

one. If it is 100%, all offspring are created by crossover. ② Mutation probability 

(pm) is the probability of a gene in a chromosome is mutated. If pm is 100%, all 

genes in a chromosome are changed, if it is 0%, no gene is changed. ③ 

Population size indicates the number of chromosomes in a population.   

The process of a basic GA is shown in the figure as follows. 

 

Figure 5.2 A basic GA process 

Parents 

01100|101 

10101|110 

Offspring 

01100110 

10101101 

Offspring 

01110110 

10001111 

Crossover Mutation 
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Population initialization 
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Stop? 
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Crossover 

Mutation 

N 
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5.2.2 Encoding of a river network 

The binary encoding method is adopted as it is easy to indicate that 0 is omission 

and 1 is selection for a tributary.  The Horton-Strahler order scheme after 

upstream routine, which is used to establish strokes in a river network by the 

method in Section 4.2.2.1 (p. 69), is regarded as the closest generalization 

decisions made by a human cartographer. Therefore, strokes are applied to build 

a chromosome. The length of a chromosome is the number of all strokes in a 

river network. In order to preserve the topology of a river network, a stroke 

cannot be omitted if its upper rivers are selected.  

Figure 5.3 shows a river network and some examples of chromosomes with 

binary encoding of a river network. 

 

Stroke ID 1 2 3 4 5 6 7 8 9 

Chromosome 1  1 1 1 1 1 1 1 1 1 

Chromosome 2 0 0 0 0 0 0 0 0 0 

Chromosome 3 1 0 1 1 0 1 0 0 0 
 

(a) A river network (b) Binary encoding examples 

Figure 5.3 Examples of chromosomes with binary encoding of a river network 

In Figure 5.3(a), a simulated river network is illustrated, where the number is 

the ID of a stroke. In Figure 5.3(b), in chromosome 1, all strokes are selected, 

while all strokes are omitted in chromosome 2. In chromosome 3, only strokes 

with IDs 1, 3, 4 and 6 are selected, and others are omitted.  

1 

4 

8 
9 

7 

2 

3 

6 

5 
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5.2.3 Initialization 

In the initialization process, the number of selected strokes (marked as Ns) can 

be calculated by the ―Radical Law‖ or other methods. Some rules should be 

followed: 

(1) The number of genes set to 1 in a chromosome is equal to Ns. 

(2) A gene cannot be assigned 0 if it breaks the topology of a river network, 

that is to say, a stroke cannot be omitted if its upper strokes are selected. 

(3) Strokes with the higher order have priority to be selected; otherwise, 

strokes with lower order will be omitted first. 

The steps of initialization are given as follows. 

Step 1: Set a list Ls storing all strokes,  

   Na is the number of all strokes, 

No is the omitted number given by Na – Ns, 

Nc is current omitted number initialized as 0,  

and a candidate list Lc storing omitted strokes. 

Step 2: Randomly choose a stroke Rs from Ls (strokes with lower order have 

high priority to be chosen), the number of its upper strokes is Ns (including 

Rs). 

Step 3: If Nc + Ns > No, then remove Rs from Ls, and go back to step 2;  

otherwise,   

Nc += Ns,  

add Rs and its upper strokes into Lc, 

and remove Rs and its upper strokes from Ls. 

Step 4: Repeat from step 2 until Nc = No. 

Step 5: All strokes in Lc are omitted ones, assign their corresponding genes 

in the chromosome as 0, and others are 1. 

5.2.4 Selection 

In this work, the elitist model is used for the selection operation in the GA. 

Elitism directly copies the best chromosome to a new population without any 
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other reproduction operations. This method can rapidly increase the performance 

of the GA, and it preserves the best solution all the time. 

5.2.5 Reproduction 

The reproduction for tributary selection using GA should be customized 

following similar rules to initialization. They are: 

(1) After reproduction, the number of selected genes must be equal to Ns. 

(2) The reproduction cannot break the topology of a river network, which 

cannot omit a stroke if it has upper strokes. 

5.2.5.1 Crossover 

In order to obey the rules of the reproduction for the tributary selection using GA, 

the crossover operation cannot be applied normally as one-point-crossover or 

two-point-crossover. The information exchange between the two parent 

chromosomes should be controlled to follow the rules. Here, a mask, which is 

represented as a chromosome with same length, is used to determine which genes 

are inherited from which parents. An offspring is generated as indicated in the 

mask: a gene is from the first parent chromosome if the mask gene is 1 and from 

the second parent if it is 2.  

The steps of crossover are described as follows. 

Step 1: Determine the parent chromosomes C1 and C2;  

   Set a mask M with all genes with 1. 

Step 2: Search C1 and C2, and find positions that the allelic genes are 

different and store them in a list Lp.  

Step 3: Do list traversal in Lp, for each position P, if the genes change in this 

position, the network topology would be broken, then remove P from Lp. 

Step 4: The M is set as paired genes are exchanged between C1 and C2: one 

is from 0 to 1, and another should be from 1 to 0. 

Step 5: According to M, generate a new offspring O. 

Step 6: Loop to step 2 until two different offspring are generated. 
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(a) a river network (b) crossover process 

Figure 5.4 An example of crossover 

Figure 5.4 shows an example of crossover process with two chromosomes. 

The solution is to select six strokes from a river network in Figure 5.4(a). In 

Figure 5.4(b), C1 and C2 are parents, and six alleles are different. However, the 

allelic genes in positions 4 and 5 are invalid. If genes exchange in position 4 or 5, 

stroke 5 would be separated from the river network in C2 or C1 respectively. In 

order to keep the number of genes with 1 value after the crossover, only positions 

2 and 7 in the chromosome are marked to exchange information between the 

parents. So, a new offspring is generated by taking genes in positions 2 and 7 

from C2. The rest is from C1. 

5.2.5.2 Mutation 

The mutation operation is to change a gene in a chromosome in order to make a 

solution jump out of a local optimum. Here, only a gene to be changed cannot 

satisfy the rule 1 of the reproduction. If a gene is changed from 0 to 1, another 

gene needs to be changed from 0 to 1. In the process, only one paired genes are 

supposed to be changed.  

The modified mutation for selecting tributaries is given as follows. 

Step 1: For a chromosome C,  

1 

4 

8 
9 

7 

2 

3 

6 

5 

 1 2 3 4 5 6 7 8 9 

C1  1 1 1 0 0 1 0 0 1 

C2 1 0 1 1 1 0 1 0 0 

          

M 1 2 1 1 1 1 2 1 1 

          

O 1 0 1 0 0 1 1 0 1 
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set a list L1 that stores all gene positions of 1, 

set a list L0 that stores all gene positions of 0. 

Step 2: Do list traversal in L1, some positions cannot be changed to 0 

because their upper stokes are selected, remove these position from L1. 

Step 3: Randomly choose a position P1 from L1, change the gene to 0.  

Step 4: Do list traversal in L0, some positions cannot be changed to 1 

because their lower strokes are omitted, remove these positions from L0.  

Step 5: Randomly choose a position P0 from L0, change the gene to 1. 

 

 

(a) a river network (b) mutation process  

Figure 5.5 An example of mutation 

In Figure 5.5, an example of mutation is illustrated. C is a chromosome that 

represents a solution of selecting six strokes for the river network in Figure 

5.5(a). After the step 1, L1 and L0 are established. In the step 2, stroke 1 is 

removed from L1. Step 3 chooses stroke 3 to be changed from 1 to 0. Then, in 

the step 4, stroke 5, which cannot be omitted, is removed from L0. Finally, stroke 

4 is chosen to be changed from 0 to 1. The C’ is the chromosome after the 

mutation.  

1 

4 

8 
9 

7 

2 

3 

6 

5  1 2 3 4 5 6 7 8 9 

C 1 0 1 0 0 1 1 1 1 

Step 1   
L1: 1 3 6 7 8 9 

L0: 2 4 5 

Step 2 
L1: 3 6 7 8 9 

L0: 2 4 5 

Step 3 1 0 0 0 0 1 1 1 1 

Step 4 
L1: 3 6 7 8 9 

L0: 2 4 

C’ 1 0 0 1 0 1 1 1 1 
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5.2.6 Termination 

The GA process does not stop until a termination condition has been satisfied. 

For the termination of this problem, there are two methods used. The first one is 

to set the number of generations. Another one is number of generations that the 

best chromosome is not changing. In the experiments, both termination 

conditions are set for stopping the GA process. 

5.3 Tributary selection modeling 

5.3.1 Geometric factors and objective functions 

(1) Drainage pattern membership 

In drainage pattern recognition, the membership degree is applied to classify the 

pattern of a river network. The higher it is, the more characteristic the pattern is. 

In order to consider the drainage pattern in tributary selection in the first place, 

the pattern membership can be regarded as an important factor. Before 

generalization, the pattern of a river network or a sub-network can be identified 

first. Then, as an objective function, the membership degree can be applied to the 

generalization according to its pattern. 

The membership values of dendritic, parallel, trellis and rectangular patterns 

were introduced in the previous chapter. Equations (4.5), (4.6), (4.7) and (4.8) 

(pp. 72-73) are used to calculate the values for dendritic, parallel, trellis and 

rectangular patterns respectively. The pattern membership is defined to get a 

degree from 0 to 1 to describe how much a river network belongs to a pattern. 

Therefore, for different drainage patterns, the objective functions are different. 

Here, the used MFs in each pattern are going to apply the settings in Table 4.2 (p. 

75). The objective function of the drainage pattern membership can be given as 

follows:  
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where , , ,  and     are the average junction angle, the bended tributaries 

percentage, the average length ratio and the catchment elongation respectively, 

and [0,1]MF  . 

(2) Stream order 

The stream order is a way to define the size of perennial and recurring streams 

based on a hierarchy of tributaries. As reviewed in Chapter 2, there are several 

ordering schemes, and the Horton-Strahler scheme (Strahler, 1957) and the 

Shreve scheme (Shreve, 1966) are the famous ones. In this chapter, the Horton-

Strahler order after upstream routine will be used for tributary selective omission 

as it can provide a generalized river network close to a decision made by human 

(Rusak Mazur & Castner, 1990). 

In river network generalization, the selective omission operation, in general, 

starts from the tributaries with small order. The tributaries with large order have 

more opportunity to be shown in a map after selection omission. So, the 

objective function of the stream order is designed as 
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,

 (5.2) 

 

where Fo is the total order of selected tributaries; Oi is the order of the selected 

tributary i. 

(3) Stream length  

In digital map, a stream is stored as a set of points, and the length can be 

calculated approximately by the additive value of all distance of these points.  
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where L is the length of a stream composed of n points (xi, yi) (1≤i≤n). 

For the stream length factor, in a certain extent a tributary with longer length 

implies that this one is more important.  In order to select longer tributaries 

preferentially, the follow objective function goes after the purpose for 

maximizing the length value of all selected rivers. This objective function FL is 

as follows,  
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 (5.4) 

 

where FL is the total length of selected tributaries, n is the selected number of 

tributaries, which should not be bigger than the original number of tributaries N 

and Li is the length of selected tributary i. 

(4)  Balance coefficient 

Balance coefficient is the difference between the total length of streams on the 

left side of the mainstream and the total length on the right side. It shows the 

uneven degree of a drainage system. The larger the value, the more balanced the 

water quantities flowing from two sides of the mainstream. The balance 

coefficient B is calculated as: 
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 (5.5) 

 

where m, n are the numbers of the left and right side of the mainstream 

respectively; Li is the length of stream i on the left side (1≤i≤m), and Lj is the 

length of stream j on the right side (1≤j≤n). 
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From the calculation of the balance coefficient, we can know that  0,1B . 

B = 1 is an ideal status that the river is in balance of receiving the water from 

both side. The objective of balance coefficient is to maintain the balance after 

generalization. Therefore, for the objective function of balance coefficient, it is 

defined by the Gaussian function, equation (3.3) (p. 33), as follows, 

 

1
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i
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where m is the number of streams with the order > 1 (a stream should have upper 

streams); Bi is the balance coefficient of stream i before generalization, B'i is the 

balance coefficient of stream i after generalization; and [0,1]BF  . In the 

Gaussian function, the center is Bi, and the standard deviation is set to 0.1. So, 

the closer B'i to the center, the greater the value to 1. 

(5) Tributary spacing 

Tributary spacing is the distance between two adjacent tributaries which are on 

the same side of a main stream. It can reflect the local distribution of a river 

network, and it is an important factor for river networks generalization. As the 

adjacent tributaries are not parallel in general, the calculation of the distance is 

complicated. For two polygonal curves, the distance can be given by the Frechet 

distance (Alt & Godau, 1995). Ai et al. (2006) proposed a weighted distance 

computation method. Here, the application of the tributary spacing is more 

relevant to the trellis and parallel pattern, where the tributaries are more or less 

parallel. The shortest distance between two tributaries is used for tributary 

spacing. The advantage of using the shortest distance is that it prevents 

tributaries from being too close when the scale becomes smaller and so is 

preferred to other distances. 

If two polygonal curves A and B are at some distance from each other, for 

any point a of A and any point b of B, the distance D, which is similarly regarded 

as the spacing S, between A and B is defined by: 
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where d(a, b) is the distance between a and b. 

As to the objective function of the tributary spacing, it is given as 

 maximize min( ),

1,2,...

s iF S

i k



 ,

 (5.8) 

 

where k is the number of spacing of tributaries after selection, and Si is the 

tributary spacing i. This function is to maximize the smallest spacing between 

tributaries. 

5.3.2 Multi-objective modeling with consideration of drainage 

pattern 

For multi-objective problems, the weighted sum method is the most convenient 

and simplest approach, which aggregates a number of objective functions into a 

single one by multiplying each function with a weight value (Deb, 2001). It can 

be written as (Hajela & Lin, 1992),  
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where k is number of objective functions; Wi is the weight of each objective 

function Fi, and the weights should satisfy the requirement of 
1

1
k

i

i

W
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magnitude of each objective function might be different, the fitness function 

scaling should be applied, and the final formula is as follows: 
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where *

iF are the scaled objective functions. Usually, the normalization method is 

used for function scaling, and *

iF  is given by 
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For all objective functions, the multi-objective functions are aggregated for 

the fitness in the GA process. It is given as follows. 

 * * *( ) ( ) ( ) ( ) ( ) ( )M M O O L L B B S SF X w F X w F X w F X w F X w F X     , (5.12) 

 

where 1M O L B Sw w w w w     . 

In the fitness function, X is a solution for the tributary selection represented 

as a chromosome. wM, wO, wL, wB, and wS are the weight values for the objectives 

of pattern membership, stream order, stream length, balance coefficient, and 

tributary spacing respectively. Magnitudes of objective functions are different, so 

the objective functions are scaled to [0, 1].  

5.4 Experiments and results 

In the experiment, the approach was implemented in C# language. AForge.NET
8
, 

which is an open source C# framework designed for developers and researchers 

in the field of computer vision and artificial intelligence, was used to establish 

the experiment platform. The evolution programming library - ―AForge.Genetic‖ 

was used to implement the generalization process of the tributary selection. 

There are several datasets tested in this experiment, such as the Russian river 

used in Chapter 3, and the NHD of USA in Chapter 4. The Russian river was 

tested to show the generalized results of river networks after the selection 

omission by the GA, and the NHD was used to assess the results. 

The river flow dataset from the NHD at 1:100K scale is not generalized 

automatically from a small scale data. It is regarded as an ideal generalized result 

by manual work. Therefore, the NHD data at 1:100K scale is used as a standard 

to check generalized river networks from Russian river by comparing the 

similarity, which is calculated by an overlap ratio. Supposing a river network 

from the NHD is composed of N river segments and an automatic generalized 

river network has M river segments overlapped with the NHD data, the overlap 

ratio is calculated as 

                                                      

 
8 http://www.aforgenet.com/ 



Chapter 5 A genetic algorithm for tributary selection with consideration of different factors 

114 

 

1 1

100%
M N

i j

i j

Similarity Len Len
 

 
  
 
 

,

 (5.13) 

 

where Lenx is the length of a river segment. 

In Figure 5.6, supposing network (a) is a generalized network and network (b) 

is a network from the NHD, the overlapped river segments are shown in bold 

gray shadow in (c). So, the similarity is the length of segments in shadow divided 

by the total length of network (b).  

   

(a) (b) (c) 

Figure 5.6 An example of overlap 

The experiment process is as follows: 

(1) Get a sub-network from Russian river, and identify its drainage pattern. 

(2) Get the same river network from the NHD, and build strokes to obtain the 

number of selected strokes. 

(3) According to the pattern, set weights for the fitness function. 

(4) Get a generalized river network by applying GA. 

(5) Calculate the similarity with the river network from the NHD. 

(6) Repeat above steps for all sub-networks. 

In the experiment, the used parameters are set as follows: the population size 

is set to 100; for termination, the total number of generation is 500, and the 

iteration would stop if the best solution does not change during 20 generations. 

These settings are empirical values. A small population size will easily lead to a 

local optimal solution, but the algorithm runs faster; otherwise, chromosomes are 

various due to a large population size, but it needs more time to execute the 
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algorithm. However, an overpopulated setting cannot get a better solution from 

the experiment process. 

There are several objectives to achieve in the experiment: one is to test the 

availability of each factor, and another is to rank the factors in the order of 

importance for the multi-objective function according to different drainage 

patterns. So, different weights are set up to test in the GA process. Two group 

tests are needed to be done for each drainage pattern. The first one is to set a 

weight of a factor to 0.6 and others to 0.1, and the second one is to set a weight 

to 0 and others are 0.25. The importance of a factor can be validated through 

these tests. Then, according to tested results, other schemes of weights setting 

can be examined to obtain a feasible setting for a drainage pattern. For each 

pattern, a case study will be used to show the results of different weight settings, 

and then these settings are tested in all sub-networks in the Russian river. 

5.4.1 Dendritic networks in Russian river 

(1) Dendritic case study  

The tested dendritic river network from Russian river at 1:24K scale is shown in 

Figure 5.7(a), and the network from the NHD at 1:100K scale is illustrated in 

Figure 5.7(b). The network in Figure 5.7(c) is the generalized result by the 

method of stroke and length. It has the same number of strokes with the network 

from the NHD, and the similarity between them is 73.2%. The result of this case 

study is given in Table 5.2. 

 

  

(a) 1:24K from Russian river (b) 1:100K from NHD (c) By stroke and Length 

Figure 5.7 Tested network for dendritic case 
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Table 5.2 Generalized results for dendritic case 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.6/0.1/ 

0.1/0.1/0.1) 

  

66.2% 

(0.1/0.6/ 

0.1/0.1/0.1) 

  

65.6% 

(0.1/0.1/ 

0.6/0.1/0.1) 

  

81.0% 

(0.1/0.1/ 

0.1/0.6/0.1) 

  

60.7% 

(0.1/0.1/ 

0.1/0.1/0.6) 

  

61.7% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.2 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0/0.25/0.25/ 

0.25/0.25) 

  

65.6% 

(0.25/0/0.25/ 

0.25/0.25) 

  

60.6% 

(0.25/0.25/0/ 

0.25/0.25) 

  

61.7% 

(0.25/0.25/ 

0.25/0/0.25) 

  

73.9% 

(0.25/0.25/ 

0.25/0.25/0) 

  

69.9% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.2 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.2/0.1/ 

0.5/0.1/0.1) 

  

81.0% 

(0.1/0.2/ 

0.5/0.1/0.1) 

  

81.0% 

(0.2/0.1/ 

0.6/0/0.1) 

  

83.5% 

(0.1/0.2/ 

0.6/0/0.1) 

  

83.5% 

(0.15/0.15/ 

0.6/0/0.1) 

  

83.5% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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In Table 5.2, the weights settings are shown in the first column. In the table, 

the column of the GA process records the value of fitness function and all 

participated objective functions at each generation during the process. The value 

of stream order function is decreasing, and others are increasing. This is because 

a selection solution is initialized based on stream order. The lower order streams 

are chosen to be eliminated first, and then, after the GA operations, some streams 

with the lower order would be resumed to be selected due to the influence of 

other factors. The pattern membership value is increasing which can guarantee 

the pattern is preserved during the process.  

From Table 5.2, the similarities of generalized networks (A) to (E) are 66.2%, 

65.6%, 81.0%, 60.7% and 61.7% respectively. Network (C) is the result of 

setting the weight of the length factor with 0.6, and it has the greatest similarity 

among the group tests, which is also bigger than the similarity of the generalized 

network by the method of the stroke and length (81.0% > 73.2%). The 

similarities with the manual generalized network at 1:100K scale of other 

networks are fairly low. Then, we can see, the length is an important factor to a 

dendritic pattern. After the second group test, without considering the length, 

network (H) is generalized by setting wL = 0, and the similarity decreases to 61.7% 

from 81.0%. For other factors, without the membership or the order, similarities 

of networks (F) and (G) also decrease from 66.2% to 65.6% and from 65.6% to 

60.6% respectively. However, without factors of the balance coefficient or the 

tributary spacing, the increased similarities indicate that these two factors are not 

so important to the dendritic pattern. From the result, the preliminary rank of the 

factors is wL > wM , wO > wS, wB, the length is definitely the most important one.  

In the following tests, wL is set as a high value to 0.5 or 0.6, and other factors 

are given by different values to fix the importance between wM and wO, and 

between wS and wB. From networks (K) and (M) in Table 5.2, although wM and 

wO are different similarities are the same. It is hard to say which factor has 

priority between wM and wO. However, with these two weight settings, 

similarities are still not greater than network (C). For the reason, considering wB 

has influenced the similarity a lot, it is set as 0 to get networks (N), (O) and (P). 

The results show that wS > wB because all similarities of (N), (O) and (P) have 
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been improved. From this case study, the importance between wM and wO cannot 

be told. It should be fixed by testing in all dendritic river networks in the Russian 

river. 

(2) Generalized dendritic networks 

The setting of weights for the fitness function used in case study is also tested on 

all dendritic river networks in the Russian river. The statistic result is listed in 

Table 5.3. 

Table 5.3 Generalized dendritic networks results 

Weights Setting 

 (wM/wO/wL/wB/wS) 

Average Similarity Average Membership 

Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

(0.6/0.1/0.1/0.1/0.1) 71.8% 76.2% 70.4% 72.6% 0.50 0.71 0.59 0.55 

(0.1/0.6/0.1/0.1/0.1) 74.7% 82.5% 74.0% 76.1% 0.33 0.56 0.42 0.38 

(0.1/0.1/0.6/0.1/0.1) 77.4% 87.3% 81.1% 79.4% 0.32 0.53 0.48 0.37 

(0.1/0.1/0.1/0.6/0.1) 70.9% 70.1% 63.3% 70.4% 0.28 0.47 0.44 0.33 

(0.1/0.1/0.1/0.1/0.6) 73.2% 77.5% 70.3% 73.9% 0.34 0.64 0.53 0.41 

(0/0.25/0.25/0.25/0.25) 73.9% 82.5% 72.8% 75.4% 0.27 0.49 0.19 0.31 

(0.25/0/0.25/0.25/0.25) 73.4% 78.9% 69.6% 74.3% 0.40 0.68 0.63 0.46 

(0.25/0.25/0/0.25/0.25) 69.9% 72.0% 64.5% 70.0% 0.37 0.66 0.50 0.43 

(0.25/0.25/0.25/0/0.25) 74.4% 81.6% 77.3% 75.9% 0.39 0.67 0.52 0.44 

(0.25/0.25/0.25/0.25/0) 75.4% 80.8% 73.2% 76.3% 0.36 0.64 0.55 0.42 

(0.2/0.1/0.5/0.1/0.1) 78.1% 86.2% 80.0% 79.7% 0.35 0.61 0.53 0.40 

(0.1/0.2/0.5/0.1/0.1) 78.0% 87.5% 79.6% 79.8% 0.32 0.54 0.41 0.36 

(0.2/0.1/0.6/0/0.1) 78.2% 86.6% 83.1% 79.9% 0.35 0.60 0.56 0.41 

(0.1/0.2/0.6/0/0.1) 78.3% 87.8% 82.7% 80.3% 0.32 0.52 0.47 0.36 

(0.15/0.15/0.6/0/0.1) 78.4% 88.4% 83.0% 80.4% 0.33 0.53 0.48 0.37 

Stroke + Length 77.5% 86.4% 78.4% 79.2% 0.25 0.48 0.28 0.29 

River networks at 1:24K scale from the Russian river 0.46 0.53 0.38 0.47 

River networks at 1:100K scale from the NHD 0.28 0.43 0.27 0.31 

 

From Table 5.3, comparing the first five and the second five tests, it shows 

the same conclusions with the dendritic case study except for the factor of 

drainage pattern membership. Without considering the drainage pattern, the 

average similarity increases from 72.6% to 75.4%. The similarity is computed by 
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comparing with the manual work, so it can illustrate that the manual river 

networks are not generalized with consideration of the dendritic pattern to some 

extent. From the results, the similarities can be improved by setting wL with high 

values. It shows that the length is the most important factor among all five 

proposed factors. Weight settings for wM, wO, wL, wB and wS with 0.15, 0.15, 0.6, 

0 and 0.1 get the greatest average similarity (80.4%) among all settings. It 

confirms that the settings are more appropriate for dendritic river networks. For 

the pattern membership value, the average membership of all dendritic networks 

before generalization at 1:24K scale is 0.47. After generalization, although the 

average membership of networks generalized by the setting of 

(0.15/0.15/0.6/0/0.1) only is 0.37, which is smaller than 0.47, it is greater than 

the value of manual generalized river networks (0.31). Only the average 

membership of generalized networks in order 2 is smaller than the original one 

(0.33 < 0.46) because many generalized networks in order 2 do not have enough 

tributaries for the computation of the drainage pattern membership. So, with 

consideration of the drainage pattern, the drainage pattern membership value is 

even increased after generalization. In addition, sub-networks in order 3 and 4 

have higher average similarities than in order 2, so do average memberships. It 

illustrates that, to some extent, networks in lower order do not have enough 

tributaries to calculate each factor value in the fitness function, and there is no 

need to apply a complicated generalization method to a network with few 

tributaries.  

5.4.2 Trellis networks in Russian river 

(1) Trellis case study  

Figure 5.8(a) shows the tested trellis river network from the Russian river at 

1:24K scale. Figure 5.8(b) is the network from the NHD at 1:100K scale, and 

Figure 5.8(c) illustrates the generalized network by stroke and length, which has 

a similarity of 74.3% with the network in (b).  
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(a) 1:24K from Russian river (b) 1:100K from NHD (c) By stroke and Length 

Figure 5.8 Tested network for trellis case 

In Table 5.4, from the first ten tests, the similarity varies between 84.5% 

(network C) to 68.3% (network H). Without considering the factor of length, the 

generalized network is far from the manual one. Length is again the most 

important factor in the generalization. The same situation happens on factors of 

the order and the tributary spacing, so these two factors are also considerable in 

the process. Drainage pattern and balance coefficient have limited consideration 

from the case of the trellis network. However, they do influence the 

generalization process when they are highly participated. The membership trend 

line is almost close to 1 after almost 25 generations for network (A). In network 

(D), the tributaries of the right side of the main stream (in the dashed box) are 

preserved to balance the network, and in the GA process, the trend line of the 

balance coefficient is almost close to 1 after 20 generations. From these two 

group tests, the ranking of the five factors by importance is wL > wO, wS > wM, wB 

according to changes in similarities. 

In order to consider the drainage pattern, wM is assigned with a low value (0.1 

or 0.2) to take part in the GA process in the following tests. In Table 5.4, among 

generalized networks (K), (M) and (N), network (N) has the greatest similarity 

(83.8%) which is generalized by assigning wS bigger than other weights except 

for wM. So, tributary spacing is better considered in the trellis pattern than other 

factors. The similarity of network (K) is larger than (M) (81.3% > 80.1%). It 

indicates that the pattern membership may be more considerable than the factor 

of order. In addition, the factor balance possibly has no contribution to improve 

the similarity. Therefore, wM, wO, wL, wB and wS are assigned with 0.2, 0.1, 0.5, 0 

and 0.2 respectively to try to prove the hypothesis. The similarity of network (O) 
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is 81.6% which is smaller than 83.8% of network (N). This setting is not a 

suitable one to get a higher similarity network with the manual one. Considering 

that the similarity of network (C) is 84.5%, the length factor should be assigned 

with a higher value (wL> 0.5). Network (P) confirms that assigning 0.6 to wL is 

preferable. Weight settings of 0.1, 0.1, 0.6, 0 and 0.2 to wM, wO, wL, wB and wS 

respectively are suitable. 
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Table 5.4 Generalized results for trellis case 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.6/0.1/ 

0.1/0.1/0.1) 

  

68.3% 

(0.1/0.6/ 

0.1/0.1/0.1) 

  

74.3% 

(0.1/0.1/ 

0.6/0.1/0.1) 

  

84.5% 

(0.1/0.1/ 

0.1/0.6/0.1) 

  

69.6% 

(0.1/0.1/ 

0.1/0.1/0.6) 

  

77.9% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.4 (Continued)  

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0/0.25/0.25/ 

0.25/0.25) 

  

78.0% 

(0.25/0/0.25/ 

0.25/0.25) 

  

69.6% 

(0.25/0.25/0/ 

0.25/0.25) 

  

68.3% 

(0.25/0.25/ 

0.25/0/0.25) 

  

74.3% 

(0.25/0.25/ 

0.25/0.25/0) 

  

76.9% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.4 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.2/0.1/ 

0.5/0.1/0.1) 

  

81.3% 

(0.1/0.2/ 

0.5/0.1/0.1) 

  

80.1% 

(0.1/0.1/ 

0.5/0.1/0.2) 

  

83.8% 

(0.2/0.1/ 

0.5/0/0.2) 

  

81.6% 

(0.1/0.1/ 

0.6/0.0/0.2) 

  

85.3% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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(2) Generalized trellis networks 

For all trellis river networks in Russian river, the statistic results which are tested 

by the weight settings used in case study are listed in Table 5.5. 

Table 5.5 Generalized trellis networks results 

Weights Setting 

 (wM/wO/wL/wB/wS) 

Average Similarity Average Membership 

Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

(0.6/0.1/0.1/0.1/0.1) 62.9% 73.0% 67.7% 65.7% 0.74 0.76 0.96 0.76 

(0.1/0.6/0.1/0.1/0.1) 74.3% 82.2% 76.5% 76.4% 0.32 0.42 0.93 0.37 

(0.1/0.1/0.6/0.1/0.1) 79.7% 84.8% 81.2% 81.0% 0.28 0.49 0.89 0.36 

(0.1/0.1/0.1/0.6/0.1) 64.3% 64.6% 67.9% 64.5% 0.35 0.65 0.90 0.45 

(0.1/0.1/0.1/0.1/0.6) 73.7% 79.7% 73.2% 75.1% 0.29 0.66 0.91 0.41 

(0/0.25/0.25/0.25/0.25) 74.9% 80.3% 76.7% 76.3% 0.24 0.33 0.86 0.29 

(0.25/0/0.25/0.25/0.25) 73.3% 79.4% 70.7% 74.7% 0.38 0.68 0.95 0.49 

(0.25/0.25/0/0.25/0.25) 66.6% 76.2% 66.9% 69.0% 0.45 0.72 0.92 0.54 

(0.25/0.25/0.25/0/0.25) 75.9% 80.7% 77.6% 77.2% 0.33 0.66 0.93 0.44 

(0.25/0.25/0.25/0.25/0) 75.0% 78.6% 75.0% 75.9% 0.35 0.67 0.93 0.46 

(0.2/0.1/0.5/0.1/0.1) 79.1% 84.3% 80.6% 80.5% 0.29 0.66 0.92 0.41 

(0.1/0.2/0.5/0.1/0.1) 78.5% 83.1% 80.9% 79.8% 0.27 0.66 0.90 0.40 

(0.1/0.1/0.5/0.1/0.2) 80.3% 83.1% 82.8% 81.1% 0.28 0.58 0.89 0.39 

(0.2/0.1/0.5/0/0.2) 77.3% 85.9% 79.0% 79.5% 0.32 0.65 0.92 0.43 

(0.1/0.1/0.6/0.0/0.2) 79.7% 89.2% 82.2% 82.2% 0.26 0.52 0.87 0.35 

Stroke + Length 78.0% 82.2% 84.0% 79.4% 0.20 0.40 0.86 0.28 

River networks at 1:24K scale from the Russian river 0.21 0.18 0.03 0.19 

River networks at 1:100K scale from the NHD 0.12 0.15 0.002 0.12 

 

From Table 5.5, statistical results support the conclusions in the case study. 

Without considering the length, the average similarity reduces from 81.0% to 

69.0% (the decreasing amplitude is 14.8 points). The length factor influences the 

similarity a lot. The first test shows that pattern membership has been raised after 

generalization by assigning wM with 0.6 and others with 0.1. Although the 

average similarity is low, the pattern has been preserved a lot. So, it is useful to 

take the factor of membership into consideration to preserve or even improve the 

drainage pattern during the generalization process. From the last five tests, the 
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average similarity is bigger than the method of the stroke and length. The multi-

objective method is better than the stroke and length method especially in the 

preservation of the drainage pattern. The weight settings for wM, wO, wL, wB and 

wS with 0.1, 0.1, 0.6, 0 and 0.2 respectively are the most proper settings from the 

statistic results. In addition, generalized networks in order 3 have better 

similarity and membership than others. The order 3 can be recommended for 

working.   

5.4.3 Parallel networks in Russian river 

(1) Parallel case study  

From the experiment results in Chapter 3, most of the parallel networks are in 

order 2 and few in order 3. The number of tributaries in the parallel networks is 

small, so the population size is changed to 50 to accelerate the algorithm. The 

tested parallel river network from Russian river at 1:24K scale is shown in Figure 

5.9(a), and the network from the NHD at 1:100K scale is illustrated in Figure 

5.9(b). Figure 5.9(c) shows the generalized network by stroke and length, and its 

similarity with (b) is 100%. 

 
  

(a) 1:24K from Russian river (b) 1:100K from NHD (c) By stroke and Length 

Figure 5.9 Tested network for parallel case 

Table 5.6 shows the results for the case study of the parallel pattern.  
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Table 5.6 Generalized results for parallel case 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.6/0.1/ 

0.1/0.1/0.1) 

 

 

100.0% 

(0.1/0.6/ 

0.1/0.1/0.1) 

 

 

100.0% 

(0.1/0.1/ 

0.6/0.1/0.1) 

 

 

100.0% 

(0.1/0.1/ 

0.1/0.6/0.1) 

 

 

87.0% 

(0.1/0.1/ 

0.1/0.1/0.6) 

 

 

93.7% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  

 
(Continued) 

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 6 11 16 21

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 6 11 16 21

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 6 11 16 21

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21

Length Balance Spacing Order Membership 

Fitness 

(D) 

(C) 

(B) 

(A) 

(E) 



Chapter 5 A genetic algorithm for tributary selection with consideration of different factors 

130 

Table 5.6 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0/0.25/0.25/ 

0.25/0.25) 

 

 

88.8% 

(0.25/0/0.25/ 

0.25/0.25) 

 

 

87.5% 

(0.25/0.25/0/ 

0.25/0.25) 

 

 

72.2% 

(0.25/0.25/ 

0.25/0/0.25) 

 

 

100.0% 

(0.25/0.25/ 

0.25/0.25/0) 

 

 

100.0% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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In Table 5.6, similarities of many generalized network are 100.0% due to the 

limited number of stokes in the network at 1:24K scale. If there are not enough 

tributaries in a river network, the result would be not so robust to draw a 

conclusion. Even so, from the tests, without considering the factor of length, 

network (H) has the lowest similarity of 72.2% among all tests. The similarity of 

network (C) is 100%, which assigns the length (wL) with a high weight (0.6). 

Then, the factor of length is important during the generalization.  Comparing 

networks (A) and (F), similarities reduce from 100% to 88.8%. From the tests, 

the order factor also should be considered. From the GA processes, we can see, a 

generalized network can reach the similarity of 100% if value of objective 

functions of the length and order were 1. The pattern membership is also 

important because it can preserve the network with the characteristics of the 

parallel pattern such as very acute junction angles and a long elongation. For 

factors of the balance coefficient and the tributary spacing, they are not as 

important as other factors due to the increased similarities without the 

consideration of them. So, from the tests in the table, the preliminary rank of the 

factor importance is: wL > wM, wO > wB, wS.   

The number of strokes in the network is only 10. It is easily generalized as 

the same as the manual network at 1:100K scale so that it cannot tell the different 

importance of all factors. Therefore, the following tests are run on all parallel 

networks in the Russian river.  

(2) Generalized parallel networks 

In the experiment, there are no parallel networks in order 4, and most networks 

are in order 2. The statistic result is listed inTable 5.7. 
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Table 5.7 Generalized parallel networks results 

Weights Setting 

 (wM/wO/wL/wB/wS) 

Average Similarity Average Membership 

Order 2 Order 3 Total Order 2 Order 3 Total 

(0.6/0.1/0.1/0.1/0.1) 61.5% 82.3% 63.2% 0.54 0.90 0.57 

(0.1/0.6/0.1/0.1/0.1) 62.9% 79.4% 64.3% 0.49 0.69 0.51 

(0.1/0.1/0.6/0.1/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

(0.1/0.1/0.1/0.6/0.1) 63.6% 85.1% 65.4% 0.48 0.58 0.49 

(0.1/0.1/0.1/0.1/0.6) 61.8% 76.3% 63.0% 0.48 0.67 0.49 

(0/0.25/0.25/0.25/0.25) 60.0% 73.8% 61.2% 0.45 0.26 0.43 

(0.25/0/0.25/0.25/0.25) 62.9% 73.2% 63.8% 0.49 0.64 0.50 

(0.25/0.25/0/0.25/0.25) 60.2% 60.5% 60.2% 0.51 0.52 0.51 

(0.25/0.25/0.25/0/0.25) 62.9% 79.4% 64.3% 0.49 0.69 0.51 

(0.25/0.25/0.25/0.25/0) 63.8% 91.6% 66.1% 0.49 0.73 0.51 

(0.2/0.1/0.5/0.1/0.1) 64.7% 91.6% 66.9% 0.47 0.73 0.50 

(0.1/0.2/0.5/0.1/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

(0.1/0.1/0.5/0.2/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

(0.1/0.1/0.5/0.1/0.2) 62.2% 91.6% 64.6% 0.45 0.73 0.47 

(0.3/0.1/0.5/0.1/0) 64.0% 91.6% 66.3% 0.48 0.73 0.50 

Stroke + Length 62.9% 91.6% 65.3% 0.44 0.73 0.47 

River networks at 1:24K scale from the Russian river 0.56 0.66 0.56 

River networks at 1:100K scale from the NHD 0.64 0.46 0.63 

 

In Table 5.7, from the first ten tests, it corresponds to the case study except 

for the balance coefficient. Comparing with the result by assigning wB with 0.6, 

the average similarity reduces to 64.3% from 65.4% by assigning wB with 0.  It 

shows that the factor of balance has contribution to the similarity. The length is 

still the most important factor during the generalization as the average 

similarities would decrease (65.3% to 60.2%) if the length is not considered. By 

assigning wL with 0.5 and adjusting weights of other factors, the pattern 

membership should be set up as the second important factor. Because the average 

similarity is the greatest by assigning wM = 0.2, wO = 0.1, wL = 0.5, wB = 0.1 and 

wS = 0.1. It is a suitable setting for weights to get a higher similarity with manual 

generalized networks. The average similarity is not larger than 70% due to the 

influence of low similarities of networks in order 2. The average similarity of 
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generalized networks in order 3 is 91.6%. The same situation happens in the 

average membership in order 3.   

5.4.4 Rectangular networks in Russian river 

(1) Rectangular case study  

There are few rectangular river networks in the Russian river. The tested 

rectangular river network from Russian river at 1:24K scale is shown in Figure 

5.10(a), and the network from the NHD at 1:100K scale is illustrated in Figure 

5.10 (b). Figure 5.10(c) illustrates the network generalized by stroke and length, 

and its similarity is 93.6% compared with the network from the NHD. 

 

  

(a) 1:24K from Russian river (b) 1:100K from NHD (c) By stroke and Length 

Figure 5.10 Tested network for rectangular case 

Table 5.8 shows the generalized results for the rectangular case. The 

membership of the network in Figure 5.10(a) is only 0.003. The characteristic of 

the rectangular pattern is not so obvious. From the result, the membership value 

increases by assigning wM with values.  Network (A) in the table looks more like 

a rectangular river network. However, the similarity is only 75.0% which is 

smaller than the network generalized by stroke and length (93.6%). So, during 

the generalization by human work, the order and length are more considered. 

  



Chapter 5 A genetic algorithm for tributary selection with consideration of different factors 

134 

Table 5.8 Generalized results for rectangular case 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.6/0.1/ 

0.1/0.1/0.1) 

  

75.0% 

(0.1/0.6/ 

0.1/0.1/0.1) 

  

82.6% 

(0.1/0.1/ 

0.6/0.1/0.1) 

  

93.6% 

(0.1/0.1/ 

0.1/0.6/0.1) 

  

81.2% 

(0.1/0.1/ 

0.1/0.1/0.6) 

  

75.0% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.8 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0/0.25/0.25/ 

0.25/0.25) 

   

82.6% 

(0.25/0/0.25/ 

0.25/0.25) 

  

75.0% 

(0.25/0.25/0/ 

0.25/0.25) 

  

75.0% 

(0.25/0.25/ 

0.25/0/0.25) 

   

88.0% 

(0.25/0.25/ 

0.25/0.25/0) 

  

82.6% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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Table 5.8 (Continued) 

Weights 

(wM/wO/ 

wL/wB/wS) 

Generalized network GA process
*
 Similarity 

(0.2/0.1/ 

0.5/0.1/0.1) 

  

93.6% 

(0.1/0.2/ 

0.5/0.1/0.1) 

  

93.6% 

(0.1/0.1/ 

0.5/0.2/0.1) 

  

88.0% 

(0.1/0.1/ 

0.5/0.1/0.2) 

   

93.6% 

(0.1/0.1/ 

0.7/0/0.1) 

  

93.6% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  

The legend is  
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From Table 5.8, length and order factors contribute to the similarity a lot 

because similarities of network (G) and (H) decreased (82.6% to 75.0% and 93.6% 

to 75.0%) by setting wO = 0 and wL = 0 respectively. Moreover, similarities 

increased without considering other factors. So length and order are important to 

generalize a rectangular network as well as manually. However, the drainage 

pattern is not considered during the generalization. Assigning wM = 0.2, network 

(K) still gets a similarity of 93.6%. So, the factor of membership can help to 

preserve the drainage pattern and do not reduce the value of similarity. From 

generalized network (K) to (P), similarities are the same and so we cannot rank 

all factors. From the case study, the preliminary importance rank of factors is:  

wO, wL > wM, wS > wB.  

(2) Generalized rectangular networks 

Setting of weights is also tested on all rectangular river networks in Russian river, 

although only seven rectangular networks were characterized which may be too 

few to draw a robust conclusion. Results are listed in Table 5.9. For the average 

membership, all weight settings are acceptable because they are all bigger than 

the original average membership. The problem here is that the original 

membership value is too low to classify a network as the rectangular pattern. 

Whatever, from the results, the highest average similarity is 88.8% by setting wM 

= 0.1, wO = 0.1, wL = 0.6, wB = 0.1 and wS = 0.1. It is larger than the average 

similarity (86.7%) of network generalized by stroke and length. Although the 

similarity is not improved much, it also indicates that the generalized river 

networks are more like manually generalized networks by considering factors of 

the membership, the length, the order, the balance and the tributary spacing. 
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Table 5.9 Generalized rectangular networks results 

Weights Setting 

(wM/wO/wL/wB/wS) 

Average Similarity Average Membership 

Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

(0.6/0.1/0.1/0.1/0.1) 87.9% 83.9% 64.9% 83.5% 0.38 0.11 0.27 0.29 

(0.1/0.6/0.1/0.1/0.1) 88.5% 78.7% 71.1% 83.2% 0.36 0.04 0.09 0.23 

(0.1/0.1/0.6/0.1/0.1) 91.8% 88.3% 77.5% 88.8% 0.32 0.02 0.05 0.20 

(0.1/0.1/0.1/0.6/0.1) 88.5% 78.0% 61.8% 81.7% 0.36 0.03 0.09 0.23 

(0.1/0.1/0.1/0.1/0.6) 86.0% 71.9% 58.2% 78.0% 0.34 0.04 0.05 0.21 

(0/0.25/0.25/0.25/0.25) 90.0% 78.7% 71.1% 84.0% 0.32 0.04 0.09 0.21 

(0.25/0/0.25/0.25/0.25) 88.5% 71.9% 67.1% 80.7% 0.36 0.05 0.27 0.26 

(0.25/0.25/0/0.25/0.25) 86.8% 74.9% 58.0% 79.3% 0.38 0.03 0.14 0.25 

(0.25/0.25/0.25/0/0.25) 88.3% 78.4% 71.1% 83.0% 0.38 0.04 0.05 0.24 

(0.25/0.25/0.25/0.25/0) 88.5% 78.7% 71.1% 83.2% 0.36 0.04 0.20 0.25 

(0.2/0.1/0.5/0.1/0.1) 86.3% 91.2% 83.3% 87.2% 0.32 0.09 0.22 0.24 

(0.1/0.2/0.5/0.1/0.1) 91.8% 88.3% 71.1% 87.9% 0.32 0.02 0.09 0.20 

(0.1/0.1/0.5/0.2/0.1) 90.0% 85.5% 72.0% 86.1% 0.34 0.03 0.09 0.21 

(0.1/0.1/0.5/0.1/0.2) 91.8% 84.2% 72.0% 86.8% 0.32 0.05 0.09 0.21 

(0.1/0.1/0.7/0/0.1) 91.8% 81.2% 78.9% 87.0% 0.32 0.05 0.05 0.21 

Stroke + Length 91.8% 84.2% 71.1% 86.7% 0.32 0.05 0.09 0.21 

River networks at 1:24K scale from the Russian river 0.06 0.004 0.01 0.03 

River networks at 1:100K scale from the NHD 0.01 0.15 0.14 0.07 

 

5.5 Conclusion 

In this chapter, we introduced a new genetic algorithm for river selection where 

the objective function includes different factors weighted according to their 

importance. Five factors corresponding to geographic characteristics of the 

networks were chosen (drainage pattern membership, order, tributary length, 

tributary balance and spacing between tributaries). Different results can be 

obtained by adjusting the weights of the multi-objective function. For example, 

the drainage pattern can be preserved by assigning more weight to wM. If wO was 

set to a higher value, the tributaries in lower order would be eliminated first. The 

length factor can preserve longer tributaries; the balance coefficient can keep the 

original balance of a tributary along a river; and the tributary spacing can let the 

tributaries not cluster together. 
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The method is used to assess the influence of different factors in the 

generalization process for each type of drainage. It was applied to the Russian 

river data and results were compared with manually generalized data with the 

goal to achieve similar results. The most important factor is the length. In general, 

during the manual generalization, the length is indeed the most considerable 

factor. For the manually generalized river networks, the drainage pattern is not 

considered well by comparing the pattern membership value before and after the 

generalization. The drainage pattern can be preserved better if the pattern 

membership participates in the GA process.  

For each pattern, a proper setting for weights is given to achieve a greater 

similarity with the manual generalized river networks. One limitation is that not 

all settings of weights are tested. The obtained setting is an experimental 

approximation for a drainage pattern. First of all, for all patterns, the length is the 

most important factor. In the dendritic pattern, the pattern membership and the 

order are the second important factors; the factor of balance is not so important 

and even cannot be considered. For the trellis pattern, the tributary spacing is the 

second important factor, and the balance is also not important. Trellis tributaries 

are usually short streams of order 1. As a consequence, giving too much 

importance to the order tends to eliminate these tributaries first and loose the 

character of the network. As a consequence, the order should not be considered 

as an important factor for the preservation of trellis.  In the parallel pattern, the 

membership factor is more important than others except the length. Table 5.10 

illustrates the approximate settings for weights. 

A river network in order 3 is more recommended for the practical application. 

No matter in the average similarity or the average pattern membership, river 

networks in order 3 perform better than in other orders. 
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Table 5.10 The approximate weight settings for each drainage pattern 

 Dendritic Parallel  Trellis  Rectangular  

Pattern membership (wM) ● ● □ □ 

Stream order (wO) ● ● □ □ 

Stream length (wL) ★ ★ ★ ★ 

Balance coefficient (wB) × □ × □ 

Tributary spacing (wS) □ □ ● □ 

★ - more important    ● - important  

□ - not important        × - not considered 

 

From the experiment, the order factor seems not so important because of the 

initialization of a chromosome. A new chromosome is created based on the order. 

The lower order strokes are removed first. So, in the GA process, the value of the 

order objective function always starts from 1. The initialization provides a good 

start for the GA. The advantage is that it can save the time for the GA to some 

extent. However, the order still needs to add to the objective function. If the 

order is not considered, some higher order strokes expected to be preserved 

would be removed in the GA process.   

One limitation of the research is that the similarity is not improved obviously. 

There are some reasons. ① The GA is implemented by encoding the network 

with strokes. Correct strokes will help to increase the similarity, but sometimes 

strokes are not built as expected. As an example, in Figure 5.11, network (a) is 

from the Russian river at 1:24K scale and (b) is from the NHD at 1:100K scale. 

The bold line is the main stream obtained by the stroke. In the dashed box, the 

stroke is not the same as the stroke in network (b). So, no matter how to adjust 

the weights, network (a) cannot be generalized as (b).  ② Some manual networks 

are not generalized as expected: some tributaries are short and in lower order, but 

they are still selected after generalization. It may happen that the tributary has 

some significant meanings on geography and should be preserved whatever it is 

short or long.  In Figure 5.11, network (c) is a generalized network, where 

dashed tributaries are eliminated by considering the length. However, in the 

dashed circle, network (d), which is from the NHD, selects a shortest tributary.  
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(a) 1:24K scale from the Russian river (b) 1:100K scale from the NHD 

 
 

(c) 1:24K scale from the Russian river (d) 1:100K scale from the NHD 

Figure 5.11 Unexpected situations, dashed lines are eliminated tributaries. 

Another limitation is that the involved map scales are 1:24K scale and 

1:100K scale. The 1:100K scale dataset is used for the evaluation. In the Russian 

river, the parallel and rectangular networks are not so many. So, other datasets 

and other scales data should be used to do the test in the feature work. 

In addition, the GA is useful in the multi-objective problem of the global 

optimization for the river network generalization. It can provide a fast method to 

get a solution. From the experiment, a solution is gained not more than 100 

generations and sometimes less than 10 generations in the GA process. However, 

some faults of the GA itself bring some problems in the research. First, 

parameters should be set properly such as the population size and the terminal 

condition. In the research, these settings are empirical values. Second, solution is 

not unique sometimes. A group of solutions can be obtained to satisfy the 

requirements. Third, a local optimal solution might be received in the GA 

process. 
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Chapter 6 Summary and 

perspective 

6.1 Summary 

Drainage pattern is an important factor to describe the morphological structure of 

a drainage system and reflects the geographic and topological characteristics of a 

river network extracted from the drainage system. As a kind of semantic 

information about the river network at basin scale, it can be considered in river 

network generalization, terrain analysis or other aspects. However, automatic 

classification of drainage patterns is not well studied and so received limited 

interest in GIS applications. Therefore, the objective of this thesis is to develop 

an original drainage classification method for river networks. Knowledge about 

drainage patterns is used to enrich the generalization process and to evaluate the 

quality of generalized river networks, following the idea that map generalization 

is ―not a mere reduction of information‖ but one of the challenges to preserve 

―the geographic meaning‖ (Bard & Ruas, 2005). This research focuses on river 

network generalization where the network is considered as a geographical entity 

whose meaning should be preserved. It is therefore a novel work in explicitly 

considering the geographical and hydrographical aspects of the cartographical 

data. It looks at the quality of river network generalization in geo-spatial analysis 

with the consideration of drainage pattern. It also participates to a research trend 

in map generalization (and more globally in GIS) to include on the top of the 

geometric aspect, geographical one as map generalization is the process of 

―information abstraction‖ rather than ―data compression‖(Ai et al., 2006). In this 

thesis, three original contributions are introduced.  
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The first and most important contribution is the development of a method for 

drainage pattern recognition. Chapter 3 proposed a new method based on 

geometric indicators, such as the junction angle, sinuosity and catchment 

elongation, to recognize the pattern of a river network automatically. In the 

method, fuzzy logic was applied to improve the robustness of the classification. 

Five patterns are classified in the research: dendritic, parallel, trellis, rectangular 

and reticulate pattern. From the result, the drainage pattern of a river network can 

be classified successfully, and the junction angle and the elongation are most 

significant. Some unclassified networks happened either because they could 

belong to several different patterns, or to none. In addition, a hierarchical 

structure is implemented to store a river network by the drainage patterns of its 

sub-networks at different levels. Such classification and organization can be used 

for generalization to select river tributaries according to the pattern of network. 

There are still some limitations in this research. ①  Validation on the 

classification of drainage pattern is done by visual assessment of case studies, 

because there was no such information as a drainage classification in existing 

datasets. ② Currently, only five drainage patterns are addressed in the research. 

More patterns such as radial and centripetal patterns could be considered in 

further work. ③ The influence of quality and resolution of source data is not 

studied, but they may affect the number of tributaries represented in the network 

and the computation of indicators. 

The second contribution concerns the evaluation of river selection methods in 

generalization. Chapter 4 provided a quality evaluation method to check whether 

a generalized river network preserves the drainage pattern or not. In the method, 

the membership value from a fuzzy rule for a drainage pattern is obtained and 

evaluated. Four drainage patterns are addressed: dendritic, trellis, parallel and 

rectangular as these four patterns are classified by fuzzy logic. The evaluation 

method quantifies pattern preservation. The generalized river network better 

preserves the pattern when the membership value is higher. Manually 

generalized networks are always better than other generalized networks in terms 

of pattern preservation. However, if there are not enough tributaries in the 

network, the membership value could be misleading because average junction 

angle, bended tributaries percentage and average length ratio are statistical 
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parameters. Therefore, this method is more adapted for river networks at order 3 

and 4. However, the membership value only can be used for the evaluation of the 

drainage pattern. It can be a supplement for the evaluation of river network 

generalization which can be used with other measures specific to river segments.  

The third contribution is the development of a generalization method with 

consideration of different geographic and geometric factors. Chapter 5 

introduced a multi-objective optimization method made use of genetic algorithm. 

Only selective omission is considered. The GA process is designed appropriately 

for tributary selection including the encoding, initialization, crossover and 

mutation stages. For the encoding, chromosomes are defined by strokes of the 

river network. Fitness of an individual is obtained by a multi-objective model 

where five factors are proposed: drainage pattern membership, stream order, 

length, balance coefficient and tributary spacing. Each factor is built as an 

objective function, and the multi-objective function aggregates all objective 

functions to compute the fitness of a chromosome. In the model, different 

weights are assigned and tested and the importance of each factor is evaluated. 

From the result, the most important factor yielding similar results to manually 

generalized network for all patterns is the length. With consideration of pattern 

membership, the drainage pattern can be preserved well in the GA process. In the 

dendritic pattern, the pattern membership and the order are the second most 

important factors. Tributary spacing is the second most important factor in trellis. 

For parallel drainages, the membership factor is more important than all others 

except length. In addition, river networks in order 3 are more recommended for 

practical application. However, considering several factors in the GA process at 

same time, the similarity between the generalized network and the manual 

network is not improved obviously. In this study, only two scales 1:24K and 

1:100K datasets of the Russian river are tested, other datasets at different scales 

should be tested to confirm conclusions. The weights of different factors in the 

multi-objective function are not fixed, and only approximate weight settings are 

provided through the tests in the experiment. 
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6.2 Perspective 

Although drainage basin and river are both elements which attracted a lot of 

attention in GIS, consideration for river networks as objects of their own and 

their organization in different patterns did not receive as much consideration. 

The drainage pattern recognition method and application to generalization 

presented in this thesis provided new concepts and original knowledge mainly 

applied to cartographic processes. As limited analyses have been conducted so 

far in this direction, we believe that further research can be done at both 

conceptual and application level.  

In short term perspectives, some work can be done to improve the study in 

this thesis:  

 Automatic drainage pattern recognition. A first direction is to develop 

additional indicators for the recognition of other drainage patterns such as 

radial and centripetal patterns. Such patterns depend on the spatial 

organization of a group of networks and topologic indicators expressing 

relationships between networks should be considered. The second one is 

to test the method on more dataset at different scales from different data 

sources (e.g. DTM or DEM). The computation of indicators, such as 

average junction angle, bended tributary percentage and average length 

ratio, relies on the number of tributaries represented in a network, which 

can be influenced by the map scale. More river networks from a micro 

scale to a macro scale should be tested. It can find out the influence of 

quality and resolution of source data on the drainage pattern classification. 

The fuzzy logic approach presented in our work was appropriate for 

dealing with geometric indicators. If other indicators relating with 

topology or semantic are to be introduced, other approaches such as 

neural networks or machine learning may be considered. These 

approaches need more river data, in which the pattern information is 

already known, to do the parameter fitting or the training. Validation is 

done visually by assessing classified river networks. A further validation 

can be conducted by experts such as cartographers and geographers 

through questionnaires or other survey methods. Indeed, knowledge of 
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experts could also contribute in the fine-tuning of membership functions, 

improving classification results and helping distinguishing misclassified 

from unclassifiable networks. 

 Evaluation of pattern preservation. The main further work is to develop 

the method to cover more drainage patterns, such as reticulate, radial, and 

centripetal patterns, in the quality assessment.  

 Multi-objective optimization in river network generalization. The first 

one is that other factors can be considered. The five factors proposed in 

the thesis are logical to some extent but that was an empirical choice. 

Some semantic factors such as the name and geographical meanings of 

tributaries are not considered. The name of tributaries can help to 

establish correct strokes. Some tributaries have priorities to be preserved 

in the process of the selection omission according to their geographical 

meanings. Another one is to provide a method to calculate the weights of 

objective functions. This work needs more data of river networks at 

different scales to achieve. 

In long term perspectives, more work can be done to develop the research to 

other applications:  

 First, the concept of fuzzy logic can be applied to the classification of 

other patterns, such as road patterns or building patterns where a 

classification can also be established (Heinzle, Anders, & Sester, 2006).  

 Then, the drainage pattern information can be used for terrain analysis or 

classification, either as a direct application or by integrating this with 

other DTM/DEM information (Nardi et al., 2008). Different types of 

terrain information about e.g. the physiology and geology of the terrain 

can be added in a GIS and, overlaying them with the river data, assist in 

providing more knowledge about the river system and non-geometric 

indicators for a more accurate classification. 

 For the quality of the generalization, only considering the drainage 

pattern in river network generalization is obviously not enough and more 

aspects should be taken into account in the evaluation system for 

generalization methods, such as the tributary balance and the spacing 

between two paralleled tributaries. In addition, spatial relationships with 
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other objects in cartography, e.g. roads or buildings, can also be 

considered into the evaluation system. 

 Furthermore, the drainage pattern can be used in the simplification of 

river segments to add constrains for cartographic generalization at 

different scales (Gutman & Weaver, 2012) or to integrate rivers with 

other field or object data such as terrain or buildings (Gaffuri, 2007). 

Geometric indicators can also be used to caricature or exaggerate 

characteristics of a network to provide a schematic representation of the 

drainage (Nijssen, Lettenmaier, Liang, Wetzel, & Wood, 1997).  
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APPENDIXES  

A. Data structures 

Junction 

# Number id 

# JunctionType type 

# GeoPoint geometry 

#  List<RiverSegment> connected_river_segment_list 

+ AddRiverSegment(RiverSegment) 

+ Boolean Equals(Junction) 

 

 

RiverSegment 

# Number id 

# Number order 

# Junction from 

# Junction to 

# GeoLineString geometry 

+ Boolean Equals(RiverSegment) 

 

 

Stream 

# Number id 

# Number order 

# DrainagePattern pattern 

# GeoLinearRing catchment 

# Stream lower_stream 

# List<RiverSegment> inside_river_segment_list 

# List<Stream> upper_stream_list 

+ Number GetLength() 

+ Boolean Equals(Stream) 
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B. Algorithms 

1. Algorithm for building the hierarchy of sub-networks. 

 

Input : A stream and a handling river segment  

Output : The root of the drainage tree 

 

void Build(Stream st, RiverSegment rs)        

    for each connected river segment rs' to rs       

        if rs' in a reticulate part then         

            set this reticulate part as a new reticulate network rn  

            locate rn under root           

            for each river segment rs'' connecting to this reticulate  

                self-call Build(st, rs'')           

            end for               

        else if rs'.order = rs.order then         

                add rs' to st             

                self-call Build(st, rs')           

        else if rs'.order ≠ 1 then           

                new a stream st'            

                add rs' to st'             

                locate st' under st           

                self-call Build(st',rs')           

        end if                

    end for                

end                 

2. Algorithm for merging sub-networks according to their drainage pattern along a river 

stream. 

 

Input : The root of the drainage tree before merging 

Output : The root of the new drainage tree 

 

void Merge(Stream st)              

    if st is a leaf or st.pattern = reticulate then return      

    if  st has same pattern with its sub-networks’ then return     

    for each sub-network st' of st            

        self-call Merge(st')              

    end for                  
    set N as the count of river segments {rs1, rs2…rsN} in st     

    set i as 1                 

    while i ≤ N                  

        if all connected sub-networks have same pattern p then    

            new a stream st''              

            locate st'' under st              

            set st'' pattern as p              

            add river segment rsi to st''           

            for j = i+1 to N              

                for each sub-network st* connecting to rsj       
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                    if st* is on the same side of st'' and st*.pattern = p then  

                        add rsj to st''             

                        locate st* under st''           

                        set break = false            

                    else                

                        set break = true            

                    end if                

                end for                

                if break = true then exit for          

            end for                 

        else                  

                i++                 

        end if                        

    end while                  

end                   

3. Algorithm for removing redundant information in the drainage tree. 

 

Input : The root of the drainage tree before removing 

Output : The root of the new drainage tree 

 

void Remove(Stream st)            

    if st is a leaf or st.pattern = reticulate then  return    

    if all sub-networks have same drainage pattern with st then  

        remove sub-networks information        

    else                 

        for each connected stream st' of rs        

            self-call Remove(st')           

        end for               

    end if                

end                 
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C. DOT scripts for the drainage tree 

1. The DOT script for Figure 3.20: 
graph {  

graph[nodesep=".05"]; 

node[margin=".01" shape=box color=black width=.1 height=.1 fontsize=10]; 

28[style=dashed,color=red]; 30[style=dashed,color=red]; 

1--2; 1--5; 1--6; 1--15; 1--20; 1--21; 1--25; 1--26; 1--27; 1--28;  

1--30; 1--33; 1--37; 1--40; 1--43; 1--44; 1--45; 1--46; 1--47; 2--3;  

2--4; 6--7; 6--8; 6--9; 6--10; 6--11; 6--12; 6--13; 6--14; 15--16;  

15--17; 15--18; 15--19; 21--22; 21--23; 21--24; 27--29; 27--31; 27--32; 33--34;  

33--35; 33--36; 37--38; 37--39; 40--41; 40--42;  

} 

 

 

2. The DOT script for Figure 3.21: 
graph {  

graph[nodesep=".05"]; 

node[margin=".01" shape=box color=black width=.1 height=.1 fontsize=10]; 

28[style=dashed,color=red]; 30[style=dashed,color=red];  

1[style=filled,color=skyblue]; 2[style=filled,color=orange];  

5[style=filled,color=orange]; 6[style=filled,color=yellow];  

15[style=filled,color=skyblue]; 20[style=filled,color=orange];  

21[style=filled,color=skyblue]; 25[style=filled,color=skyblue];  

26[style=filled,color=orange]; 27[style=filled,color=skyblue];  

33[style=filled,color=yellow]; 37[style=filled,color=skyblue];  

40[style=filled,color=tomato]; 43[style=filled,color=skyblue];  

44[style=filled,color=skyblue]; 45[style=filled,color=orange];  

46[style=filled,color=orange]; 47[style=filled,color=orange];  

3[style=filled,color=orange]; 4[style=filled,color=orange];  

7[style=filled,color=skyblue]; 8[style=filled,color=orange];  

9[style=filled,color=skyblue]; 10[style=filled,color=orange];  

11[style=filled,color=orange]; 12[style=filled,color=orange];  

13[style=filled,color=orange]; 14[style=filled,color=orange];  

16[style=filled,color=orange]; 17[style=filled,color=skyblue];  

18[style=filled,color=orange]; 19[style=filled,color=skyblue];  

22[style=filled,color=orange]; 23[style=filled,color=skyblue];  

24[style=filled,color=skyblue]; 29[style=filled,color=yellow];  

31[style=filled,color=skyblue]; 32[style=filled,color=orange];  

34[style=filled,color=skyblue]; 35[style=filled,color=orange];  

36[style=filled,color=yellow]; 38[style=filled,color=skyblue];  

39[style=filled,color=orange]; 41[style=filled,color=skyblue];  

42[style=filled,color=skyblue];  

1--2; 1--5; 1--6; 1--15; 1--20; 1--21; 1--25; 1--26; 1--27; 1--28;  

1--30; 1--33; 1--37; 1--40; 1--43; 1--44; 1--45; 1--46; 1--47; 2--3;  

2--4; 6--7; 6--8; 6--9; 6--10; 6--11; 6--12; 6--13; 6--14; 15--16;  

15--17; 15--18; 15--19; 21--22; 21--23; 21--24; 27--29; 27--31; 27--32; 33--34;  

33--35; 33--36; 37--38; 37--39; 40--41; 40--42;  

} 

 

3. The DOT script for Figure 3.23: 
graph {  

graph[ranksep="0.25" nodesep=".05"]; 

node[margin=".01" shape=box color=black width=.1 height=.1 fontsize=10]; 
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28[style=dashed,color=red]; 30[style=dashed,color=red];  

1[style=filled,color=skyblue]; 6[style=filled,color=yellow];  

15[style=filled,color=skyblue]; 26[style=filled,color=orange];  

27[style=filled,color=skyblue];33[style=filled,color=yellow];  

37[style=filled,color=skyblue]; 40[style=filled,color=tomato];  

46[style=filled,color=orange]; 50[label="50*",style=filled,color=orange];  

51[label="51*",style=filled,color=orange]; 

52[label="52*",style=filled,color=skyblue];  

7[style=filled,color=skyblue]; 8[style=filled,color=orange];  

9[style=filled,color=skyblue]; 48[label="48*",style=filled,color=orange];  

14[style=filled,color=orange]; 13[style=filled,color=orange];  

12[style=filled,color=orange]; 11[style=filled,color=orange];  

10[style=filled,color=orange]; 16[style=filled,color=orange];  

17[style=filled,color=skyblue]; 18[style=filled,color=orange];  

19[style=filled,color=skyblue]; 29[style=filled,color=yellow];  

31[style=filled,color=skyblue]; 32[style=filled,color=orange];  

34[style=filled,color=skyblue]; 35[style=filled,color=orange];  

36[style=filled,color=yellow]; 38[style=filled,color=skyblue];  

39[style=filled,color=orange]; 41[style=filled,color=skyblue];  

42[style=filled,color=skyblue]; 2[style=filled,color=orange];  

5[style=filled,color=orange]; 47[style=filled,color=orange];  

3[style=filled,color=orange]; 4[style=filled,color=orange];  

20[style=filled,color=orange]; 45[style=filled,color=orange];  

21[style=filled,color=skyblue]; 44[style=filled,color=skyblue];  

43[style=filled,color=skyblue]; 25[style=filled,color=skyblue];  

22[style=filled,color=orange]; 49[label="49*",style=filled,color=skyblue];  

24[style=filled,color=skyblue]; 23[style=filled,color=skyblue];  

{rank=same;1;} 

{rank=same;50;52;} 

{rank=same;6;15;27;28;30;33;37;40;2;21;} 

{rank=same;48;51;49;} 

{rank=same;7;8;9;14;13;12;11;10;16;17;18;19;26;29;31;32;34;35;36;38;39;41;42;46

;3;4;5;47;20;45;22;24;23;44;43;25;} 

1--6; 1--15; 1--26; 1--27; 1--28; 1--30; 1--33; 1--37; 1--40; 1--46;  

1--50; 1--51; 1--52; 6--7; 6--8; 6--9; 6--48; 48--14; 48--13; 48--12;  

48--11; 48--10; 15--16; 15--17; 15--18; 15--19; 27--29; 27--31; 27--32; 33--34;  

33--35; 33--36; 37--38; 37--39; 40--41; 40--42; 50--2; 50--5; 50--47; 2--3;  

2--4; 51--20; 51--45; 52--21; 52--44; 52--43; 52--25; 21--22; 21--49; 49--24;  

49--23;  

} 
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4. The DOT script for Figure 3.24: 
graph {  

graph[ranksep=".05"  nodesep=".05"]; 

node[margin=".01" shape=box color=black width=.1 height=.1 fontsize=10]; 

28[style=dashed,color=red]; 30[style=dashed,color=red];  

1[style=filled,color=skyblue]; 6[style=filled,color=yellow];  

15[style=filled,color=skyblue]; 26[style=filled,color=orange];  

27[style=filled,color=skyblue];33[style=filled,color=yellow];  

37[style=filled,color=skyblue]; 40[style=filled,color=tomato];  

46[style=filled,color=orange]; 50[label="50*",style=filled,color=orange];  

51[label="51*",style=filled,color=orange]; 

52[label="52*",style=filled,color=skyblue];  

7[style=filled,color=skyblue]; 8[style=filled,color=orange];  

9[style=filled,color=skyblue]; 48[label="*",style=filled,color=orange];  

16[style=filled,color=orange]; 17[style=filled,color=skyblue];  

18[style=filled,color=orange]; 19[style=filled,color=skyblue];  

29[style=filled,color=yellow]; 31[style=filled,color=skyblue];  

32[style=filled,color=orange]; 34[style=filled,color=skyblue];  

35[style=filled,color=orange]; 36[style=filled,color=yellow];  

38[style=filled,color=skyblue]; 39[style=filled,color=orange];  

41[style=filled,color=skyblue]; 42[style=filled,color=skyblue];  

21[style=filled,color=skyblue]; 44[style=filled,color=skyblue];  

43[style=filled,color=skyblue]; 25[style=filled,color=skyblue];  

22[style=filled,color=orange]; 49[label="49*",style=filled,color=skyblue];  

{rank=same;1;} 

{rank=same;50;52;} 

{rank=same;6;15;27;28;30;33;37;40;21;} 

{rank=same;48;51;49;} 

{rank=same;7;8;9;16;17;18;19;26;29;31;32;34;35;36;38;39;41;42;46;22;44;43;25;} 

1--6; 1--15; 1--26; 1--27; 1--28; 1--30; 1--33; 1--37; 1--40; 1--46;  

1--50; 1--51; 1--52; 6--7; 6--8; 6--9; 6--48; 15--16; 15--17; 15--18;  

15--19; 27--29; 27--31; 27--32; 33--34; 33--35; 33--36; 37--38; 37--39; 40--41;  

40--42; 52--21; 52--44; 52--43; 52--25; 21--22; 21--49;  

} 

 

 

5. The DOT script for Figure 3.27: 
graph {  

{ 

node[margin=.01, width=.1, height=.1, shape=plaintext, fontsize=6]; 

a--b--c--d--e--f--g; 

} 

graph[ranksep=".25" nodesep=".03"]; 

node[margin=".01" shape=box color=black width=.1 height=.1 fontsize=6, label=""]; 

1[style=filled,color=skyblue]; 2[style=filled,color=skyblue];  

3[style=filled,color=skyblue]; 86[style=filled,color=skyblue];  

7[style=filled,color=skyblue]; 43[style=filled,color=yellow];  

44[style=filled,color=skyblue]; 47[style=filled,color=tomato];  

57[style=filled,color=orange]; 58[style=filled,color=skyblue];  

67[style=filled,color=skyblue]; 79[style=filled,color=orange];  

80[style=filled,color=skyblue]; 84[style=filled,color=yellow];  

85[style=filled,color=orange]; 130[label="*",style=filled,color=orange];  

8[style=filled,color=orange]; 17[style=filled,color=skyblue];  

22[style=filled,color=orange]; 23[style=filled,color=skyblue];  

121[label="*",style=filled,color=skyblue]; 122[label="*",style=filled,color=orange];  
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123[label="*",style=filled,color=skyblue]; 124[label="*",style=filled,color=orange];  

125[label="*",style=filled,color=skyblue]; 21[style=filled,color=skyblue];  

117[label="*",style=filled,color=orange]; 25[style=filled,color=skyblue];  

118[label="*",style=filled,color=orange]; 41[style=filled,color=skyblue];  

38[style=filled,color=skyblue]; 37[style=filled,color=skyblue];  

15[style=filled,color=skyblue]; 36[style=filled,color=skyblue];  

39[style=filled,color=skyblue]; 40[style=filled,color=orange];  

32[style=filled,color=skyblue]; 27[style=filled,color=skyblue];  

33[style=filled,color=skyblue]; 34[style=filled,color=yellow];  

119[label="*",style=filled,color=orange]; 120[label="*",style=filled,color=skyblue];  

45[style=filled,color=orange]; 46[style=filled,color=skyblue];  

48[style=filled,color=yellow]; 49[style=filled,color=orange];  

52[style=filled,color=yellow]; 126[label="*",style=filled,color=skyblue];  

59[style=filled,color=skyblue]; 63[style=filled,color=skyblue];  

66[style=filled,color=yellow]; 60[style=filled,color=orange];  

61[style=filled,color=orange]; 62[style=filled,color=skyblue];  

64[style=filled,color=orange]; 65[style=filled,color=skyblue];  

68[style=filled,color=skyblue]; 76[style=filled,color=skyblue];  

71[style=filled,color=orange]; 72[style=filled,color=skyblue];  

127[label="*",style=filled,color=orange]; 128[label="*",style=filled,color=skyblue];  

77[style=filled,color=orange]; 78[style=filled,color=skyblue];  

82[style=filled,color=orange]; 129[label="*",style=filled,color=skyblue];  

87[style=filled,color=skyblue]; 97[style=filled,color=skyblue];  

116[style=filled,color=skyblue]; 88[style=filled,color=orange];  

89[style=filled,color=skyblue]; 93[style=filled,color=skyblue];  

96[style=filled,color=skyblue]; 92[style=filled,color=yellow];  

131[label="*",style=filled,color=orange]; 94[style=filled,color=skyblue];  

95[style=filled,color=orange]; 107[style=filled,color=skyblue];  

133[label="*",style=filled,color=orange]; 134[label="*",style=filled,color=skyblue];  

108[style=filled,color=skyblue]; 109[style=filled,color=skyblue];  

110[style=filled,color=orange]; 104[style=filled,color=skyblue];  

111[style=filled,color=skyblue]; 105[style=filled,color=orange];  

106[style=filled,color=skyblue]; 113[style=filled,color=orange];  

114[style=filled,color=orange]; 132[label="*",style=filled,color=orange];  

{rank=same;a;1;} 

{rank=same;b;3;86;} 

{rank=same;c;7;58;67;87;97;} 

{rank=same;d;123;125;130;134;} 

{rank=same;e;17;23;38;32;27;44;47;59;63;68;76;80;89;93;107;104;111;} 

{rank=same;f;117;118;121;122;124;119;120;126;127;128;129;131;133;132;} 

{rank=same;g;2;8;21;22;25;41;39;40;37;15;36;33;34;43;45;46;48;49;52;57;60;61;62

;64;65;66;71;72;77;78;79;82;84;85;88;92;94;95;96;108;109;110;105;106;113;114;11

6;} 

1--2; 1--3; 1--86; 3--7; 3--43; 3--44; 3--47; 3--57; 3--58; 3--67;  

3--79; 3--80; 3--84; 3--85; 3--130; 7--8; 7--17; 7--22; 7--23; 7--121;  

7--122; 7--123; 7--124; 7--125; 17--21; 17--117; 23--25; 23--118; 123--41; 123--38;  

123--37; 123--15; 123--36; 38--39; 38--40; 125--32; 125--27; 32--33; 32--34; 27--119;  

27--120; 44--45; 44--46; 47--48; 47--49; 47--52; 47--126; 58--59; 58--63; 58--66;  

59--60; 59--61; 59--62; 63--64; 63--65; 67--68; 67--76; 68--71; 68--72; 68--127;  

68--128; 76--77; 76--78; 80--82; 80--129; 86--87; 86--97; 86--116; 87--88; 87--89;  

87--93; 87--96; 89--92; 89--131; 93--94; 93--95; 97--107; 97--133; 97--134; 107--108;  

107--109; 107--110; 134--104; 134--111; 104--105; 104--106; 111--113; 111--114; 

111--132;  

} 

 





 

157 

REFERENCES 

Ai, T., Liu, Y., & Chen, J. (2006). The Hierarchical Watershed Partitioning and 

Data Simplification of River Network. In A. Riedl, W. Kainz, & G. A. 

Elmes (Eds.), Progress in Spatial Data Handling (pp. 617–632). Springer 

Berlin Heidelberg. 

Alt, H., & Godau, M. (1995). Computing the Frechet distance between two 

polygonal curves. International Journal of Computational Geometry & 

Applications, 5(01n02), 75–91. 

Alves, D. S. (1993). The Amazonia information system. INTERNATIONAL 

ARCHIVES OF PHOTOGRAMMETRY AND REMOTE SENSING, 29, 259. 

Ansari, N., & Delp, E. J. (1991). On detecting dominant points. Pattern 

Recognition, 24(5), 441–451. 

Balboa, J. L. G., & López, F. J. A. (2000). Frequency filtering of linear features 

by means of wavelets. A method and an example. The Cartographic 

Journal, 37(1), 39–49. 

Bard, S. (2004). Quality Assessment of Cartographic Generalisation. 

Transactions in GIS, 8(1), 63–81. 

Bard, S., & Ruas, A. (2005). Why and how evaluating generalised data? In 

Developments in Spatial Data Handling. Berlin Heidelberg: Springer. 

Biggs, N., Lloyd, E. K., & Wilson, R. J. (1986). Graph Theory, 1736-1936. 

Clarendon Press New York, NY, USA. 

Binks, P. J., & Hooper, G. J. (1984). Uranium in Tertiary palaeochannels, ―West 

Coast Area‖, South Australia. In Australasian Institute of Mining and 

Metallurgy (Vol. 289, pp. 271–275). Darwin, N. T. 

Bondy, J. A., & Murty, U. S. R. (2008). Graph theory. London: Springer. 

Braden, B. (1986). The Surveyor’s Area Formula. The College Mathematics 

Journal, 17(4), 326–337. 



References 

158 

Brenner, N. (1969). Fast Fourier transform of externally stored data. Audio and 

Electroacoustics, IEEE Transactions on, 17(2), 128–132. 

Burghardt, D., & Meier, S. (1997). Cartographic displacement using the snakes 

concept. Semantic Modeling for the Acquisition of Topografic Information 

from Images and Maps, Birkhaeuser Verlag, 59–71. 

Buttenfield, B. P., Stanislawski, L. V, & Brewer, C. A. (2010). Multiscale 

representations of water: Tailoring generalization sequences to specific 

physiographic regimes. In Proceedings of GIScience 2010 (pp. 14–17). 

Buyya, R. (2005). Cost-Based Scheduling of Scientific Workflow Application on 

Utility Grids. In First International Conference on e-Science and Grid 

Computing (e-Science’05) (pp. 140–147). IEEE. 

Charlton, R. (2008). Fundamentals of fluvial geomorphology. Psychology Press. 

Chen, J., Liu, W., Li, Z., Zhao, R., & Cheng, T. (2007). Detection of spatial 

conflicts between rivers and contours in digital map updating. International 

Journal of Geographical Information Science, 21(10), 1093–1114. 

Chernicoff, S., & Whitney, D. (2006). Geology (4th Edition) (p. 744). Prentice 

Hall. 

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary 

algorithms for solving multi-objective problems. Springer. 

Coffman, D. M., & Turner, A. K. (1971). Computer Determination of the 

geometry and topology of stream networks. Water Resources Research, 7(2), 

419–423. 

Colombo, R., Vogt, J. V., Soille, P., Paracchini, M. L., & de Jager, A. (2007). 

Deriving river networks and catchments at the European scale from medium 

resolution digital elevation data. CATENA, 70(3), 296–305. 

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation 

of complex Fourier series. Math. Comput, 19(90), 297–301. 

De Wit, M. C. J. (1999). Post-Gondwana drainage and the development of 

diamond placers in western South Africa. Economic Geology, 94(5), 721–

740. 

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. 

Wiley. 



References 

159 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist 

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on 

Evolutionary Computation, 6(2), 182–197. 

Della Croce, F., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job 

shop problem. Computers & Operations Research, 22(1), 15–24. 

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the 

number of points required to represent a digitized line or its caricature. 

Cartographica: The International Journal for Geographic Information and 

Geovisualization, 10(2), 112–122. 

Fagan, S. D., & Nanson, G. C. (2004). The morphology and formation of 

floodplain-surface channels, Cooper Creek, Australia. Geomorphology, 

60(1), 107–126. 

Fairfield, J., & Leymarie, P. (1991). Drainage networks from grid digital 

elevation models. Water Resources Research, 27(5), 709–717. 

Florinsky, I. V. (2009). Computation of the third‐order partial derivatives from 

a digital elevation model. International Journal of Geographical 

Information Science, 23(2), 213–231. 

Fukuda, T., & Shibata, T. (1992). Hierarchical intelligent control for robotic 

motion by using fuzzy, artificial intelligence, and neural network. In 

[Proceedings 1992] IJCNN International Joint Conference on Neural 

Networks (Vol. 1, pp. 269–274). IEEE. 

Furnans, J., & Olivera, F. (2001). Watershed Topology - The Pfafstetter System. 

In ESRI USER CONFERENCE (p. Vol. 21). 

Fürst, J., & Hörhan, T. (2009). Coding of watershed and river hierarchy to 

support GIS-based hydrological analyses at different scales. Computers & 

Geosciences, 35(3), 688–696. 

Gaffuri, J. (2007). Outflow preservation of the hydrographic network on the 

relief in map generalisation. In International Cartographic Conference,. 

Moscow. 

Gen, M., & Cheng, R. (1999). Genetic algorithms and engineering optimization. 

Wiley-interscience. 

Gleyzer, A., Denisyuk, M., Rimmer, A., & Salingar, Y. (2004). A fast recursive 

GIS algorithem for computing StarHler stream order in braided and 



References 

160 

nonbraided networks. JAWRA Journal of the American Water Resources 

Association, 40(4), 937–946. 

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine 

Learning (1st ed.). Addison-Wesley Professional. 

Grimaldi, S., Nardi, F., Benedetto, F. Di, Istanbulluoglu, E., & Bras, R. L. (2007). 

A physically-based method for removing pits in digital elevation models. 

Advances in Water Resources, 30(10), 2151–2158. 

Guilbert, E., & Lin, H. (2006). B-Spline curve smoothing under position 

constraints for line generalisation. In In Proceedings of the ACM GIS’06 (pp. 

3–10). ACM. 

Gutman, M., & Weaver, C. (2012). Wavelet-based Automated River Network 

Generalization Categories and Subject Descriptors. In Proceedings of the 

3rd International Conference on Computing for Geospatial Research and 

Applications (p. 12). ACM. 

Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion 

optimal design. Structural and Multidisciplinary Optimization, 4(2), 99–107. 

Heinzle, F., Anders, K., & Sester, M. (2006). Pattern recognition in road 

networks on the example of circular road detection. Geographic 

Information Science, 4197, 153–167. 

Hills, E. S. (1972). Elements of structural geology. Chapman and Hall. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: 

University of Michigan Press. 

Holland, J. H. (1992). Adaptation in natural and artificial systems: an 

introductory analysis with applications to biology, control, and artificial 

intelligence. Cambridge, MA: MIT Press. 

Horton, R. E. (1945). Erosional development of streams and their drainage basins; 

hydrophysical approach to quantitative morphology. Geological Society of 

America Bulletin, 56(3), 275–370. 

Howard, A. D. (1967). Drainage analysis in geologic interpretation: a summation. 

American Association of Petroleum Geologists Bulletin, 51(11), 2246–2259. 

Jia, Y., Wang, H., Zhou, Z., Qiu, Y., Luo, X., Wang, J., … Qin, D. (2006). 

Development of the WEP-L distributed hydrological model and dynamic 



References 

161 

assessment of water resources in the Yellow River basin. Journal of 

Hydrology, 331(3-4), 606–629. 

Jiang, L., Qi, Q., & Zhang, A. (2009). How to decide the units of drainage 

pattern of generalization (Vol. 2, pp. II–658–II–661). IEEE. 

Joao, E. (1998). Causes and consequences of map generalisation. London: 

Taylor & Francis. 

Johnson, J. M., & Rahmat-Samii, V. (1997). Genetic algorithms in engineering 

electromagnetics. IEEE Antennas and Propagation Magazine, 39(4), 7–21. 

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. 

International Journal of Computer Vision, 1(4), 321–331. 

Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., & Tomita, M. (2003). 

Dynamic modeling of genetic networks using genetic algorithm and S-

system. Bioinformatics, 19(5), 643–650. 

Knighton, D. (1998). Fluvial forms and processes: a new perspective. Arnold, 

Hodder Headline, PLC. 

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization 

using genetic algorithms: A tutorial. Reliability Engineering & System 

Safety, 91(9), 992–1007. 

Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., & Frost, S. 

D. W. (2006). GARD: a genetic algorithm for recombination detection. 

Bioinformatics, 22(24), 3096–8. 

Lambert, D. (2007). The field guide to geology. Checkmark Books. 

Lang, T. (1969). Rules for robot draughtsmen. Geographical Magazine, 42(1), 

50–51. 

Leekwijck, W. Van, & Kerre, E. E. (1999). Defuzzification: criteria and 

classification. Fuzzy Sets and Systems, 108(2), 159–178. 

Leopold, L. B., & Wolman, M. G. (1957). River Channel Patterns: Braided, 

Meandering and Straight. Washington (DC): US Government Printing 

Office. 

Lewin, J., & Brewer, P. A. (2001). Predicting channel patterns. Geomorphology, 

40(3), 329–339. 



References 

162 

Li, T., Wang, G., & Chen, J. (2010). A modified binary tree codification of 

drainage networks to support complex hydrological models. Computers & 

Geosciences, 36(11), 1427–1435. 

Li, Z. (1988). An algorithm for compressing digital contour data. Cartographic 

Journal, The, 25(2), 143–146. 

Li, Z. (2007). Algorithmic foundation of multi-scale spatial representation. CRC. 

Li, Z., Yan, H., Ai, T., & Chen, J. (2004). Automated building generalization 

based on urban morphology and Gestalt theory. International Journal of 

Geographical Information Science, 18(5), 513–534. 

Liao, G.-C., & Tsao, T.-P. (2004). Application of fuzzy neural networks and 

artificial intelligence for load forecasting. Electric Power Systems Research, 

70(3), 237–244. 

Mackaness, W., & Edwards, G. (2002). The importance of modelling pattern and 

structure in automated map generalisation. In Joint Workshop on Multi-

Scale Representations of Spatial Data. Ottawa. 

Mackaness, W., & Ruas, A. (2007). Evaluation in the map generalisation process. 

In Generalisation of Geographic Information : Cartographic Modelling and 

Applications (pp. 89–111). Amsterdam: Elsevier. 

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: 

MIT Press. 

Muller, J., Weibel, R., Lagrange, J., & Salge, F. (1995). Generalization: State of 

the art and issues. In GIS and Generalization: Methodology and Practice. 

(pp. 3–17). London: Taylor & Francis. 

Nakos, B., & Miropoulos, V. (2003). Local length ratio as a measure of critical 

points detection for line simplification. In 5th ICA Workshop on Pregress in 

Automated Map Generalisation (pp. 28–30). Paris: Citeseer. 

Nardi, F., Grimaldi, S., Santini, M., Petroselli, A., & Ubertini, L. (2008). 

Hydrogeomorphic properties of simulated drainage patterns using digital 

elevation models: the flat area issue. Hydrological Sciences Journal, 53(6), 

1176–1193. 

Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., & Wood, E. F. (1997). 

Streamflow simulation for continental-scale river basins. Water Resources 

Research, 33(4), 711–724. 



References 

163 

Notredame, C. (1996). SAGA: sequence alignment by genetic algorithm. Nucleic 

Acids Research, 24(8), 1515–1524. 

O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks 

from digital elevation data. Computer vision, graphics, and image 

processing, 28(3), 323–344. 

Ortega, L., & Rueda, A. (2010). Parallel drainage network computation on 

CUDA. Computers & Geosciences, 36(2), 171–178. 

Paiva, J., & Egenhofer, M. J. (2000). Robust inference of the flow direction in 

river networks. Algorithmica, 26(2), 315–333. 

Pidwirny, M. (2006). The drainage basin concept. Fundamentals of Physical 

Geography, 2nd Edition. 

Plazanet, C., Affholder, J. G., & Fritsch, E. (1995). The importance of geometric 

modeling in linear feature generalization. Cartography and Geographic 

Information Science, 22(4), 291–305. 

Poorten, P. M. Van Der, & Jones, C. B. (2002). Characterisation and 

generalisation of cartographic lines using Delaunay triangulation. 

International Journal of Geographical Information Science, 16(8), 773–794. 

Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: 

A dual approach. Physica A: Statistical Mechanics and its Applications, 

369(2), 853–866. 

Rechenberg, I. (1973). Evolutionsstrategie. Stuttgart: Holzmann-Froboog. 

Richardson, D. E. (1993). Automated Spatial and Thematic Generalization Using 

a Context Transformation Model: Integrating Steering Parameters, 

Classification and Aggregation Hierarchies, Reduction Factors, and 

Topological Structures for Multiple Abstractions. R&B Publications. 

Ritter, M. E. (2006). The physical environment: An introduction to physical 

geography. 

Rosenfeld, A., & Johnston, E. (1973). Angle detection on digital curves. 

Computers, IEEE Transactions on, 100(9), 875–878. 

Rusak Mazur, E., & Castner, H. W. (1990). Horton’s ordering scheme and the 

generalisation of river networks. Cartographic Journal, 27(2), 104–112. 



References 

164 

Sandro, S., Massimo, R., & Matteo, Z. (2011). Pattern Recognition and 

Typification of Ditches. (A. Ruas, Ed.)Advances in Cartography and 

GIScience, 1, 425–437. 

Saux, E. (1998). B-spline curve fitting: Application to cartographic 

generalization of maritime lines. In In Proceedings of the 8th International 

Conference on Computer Graphics and Visualization (pp. 196–203). 

Keldysh Institute of Applied Mathematics. 

Schumm, S. A. (1977). The fluvial system. Publ. by: Wiley-Interscience. 

Schumm, S. A., Dumont, J. F., & Holbrook, J. M. (2002). Active tectonics and 

alluvial rivers. Cambridge Univ Pr. 

Schumm, S. A., & Khan, H. R. (1972). Experimental study of channel patterns. 

Geological Society of America Bulletin, 83(6), 1755–1770. 

Serres, B., & Roy, A. G. (1990). FLOW DIRECTION AND BRANCHING 

GEOMETRY AT JUNCTIONS IN DENDRITIC RIVER NETWORKS*. 

The Professional Geographer, 42(2), 194–201. 

Shopova, E. G., & Vaklieva-Bancheva, N. G. (2006). BASIC—A genetic 

algorithm for engineering problems solution. Computers & Chemical 

Engineering, 30(8), 1293–1309. 

Shrestha, S., Kazama, F., & Newham, L. T. H. (2008). A framework for 

estimating pollutant export coefficients from long-term in-stream water 

quality monitoring data. Environmental Modelling & Software, 23(2), 182–

194. 

Shreve, R. L. (1966). Statistical law of stream numbers. The Journal of Geology, 

17–37. 

Skopeliti, A., & Tsoulos, L. (2001). A methodology for the assessment of 

generalization quality. In The Fourth ACI Workshop on Progress in 

Automated Map Generalization. Beijing, China. 

Smart, J. S. (1970). Use of topologic information in processing data for channel 

networks. Water Resources Research, 6(3), 932–936. 

Stanislawski, L. V. (2008). Development of a knowledge-based network pruning 

strategy for automated generalisation of the United States National 

Hydrography Dataset. In The 11th ICA Workshop on Generalization and 

Multiple Representation. Montpellier, France. 



References 

165 

Stanislawski, L. V. (2009). Feature pruning by upstream drainage area to support 

automated generalization of the United States National Hydrography 

Dataset. Computers, Environment and Urban Systems, 33(5), 325–333. 

Stanislawski, L. V, & Buttenfield, B. P. (2011). Hydrographic Generalization 

Tailored to Dry Mountainous Regions. Cartography and Geographic 

Information Science, 38(2), 117–125. 

Steiniger, S., & Meier, S. (2004). Snakes: a technique for line smoothing and 

displacement in map generalisation. 

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. 

Transactions of the American Geophysical Union, 38(6), 913–920. 

Tarboton, D. G. (1997). A new method for the determination of flow directions 

and upslope areas in grid digital elevation models. Water Resources 

Research, 33(2), 309. 

Tarboton, D. G., Bras, R. L., & Rodriguez-Iturbe, I. (1991). On the extraction of 

channel networks from digital elevation data. Hydrological Processes, 5(1), 

81–100. 

Tarjan, R. E. (1974). A note on finding the bridges of a graph. Information 

Processing Letters, 2(6), 160–161. 

Teh, C. H., & Chin, R. T. (1989). On the detection of dominant points on digital 

curves. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 

11(8), 859–872. 

Thomson, R. C., & Brooks, R. (2000). Efficient generalization and abstraction of 

network data using perceptual grouping. In 5th Int Conf on Geo-

Computation (pp. 23–25). University of Greenwich, UK. 

Topfer, F., & Pillewizer, W. (1966). The Principles of Selection. Cartographic 

Journal, 3(1), 10–16. 

Touya, G. (2007). River Network Selection based on Structure and Pattern 

Recognition. In ICC2007 (pp. 4–9). Moscow. 

Trudeau, R. J. (1994). Introduction to graph theory. Dover Publications. 

Twidale, C. R. (2004). River patterns and their meaning. Earth-Science Reviews, 

67(3–4), 159–218. 



References 

166 

Van Dijk, S., Thierens, D., & De Berg, M. (2002). Using genetic algorithms for 

solving hard problems in GIS. GeoInformatica, 6(4), 381–413. 

Verdin, K. ., & Verdin, J. . (1999). A topological system for delineation and 

codification of the Earth’s river basins. Journal of Hydrology, 218(1-2), 1–

12. 

Visvalingam, M., & Whyatt, J. D. (1993). Line generalisation by repeated 

elimination of points. Cartographic Journal, The, 30(1), 46–51. 

Vogt, J. V, Colombo, R., & Bertolo, F. (2003). Deriving drainage networks and 

catchment boundaries: a new methodology combining digital elevation data 

and environmental characteristics. Geomorphology, 53(3-4), 281–298. 

Wang, G., Wu, B., & Li, T. (2007). Digital Yellow River Model. Journal of 

Hydro-environment Research, 1(1), 1–11. 

Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control 

of nonlinear systems: stability and design issues. IEEE Transactions on 

Fuzzy Systems, 4(1), 14–23. 

Wang, L.-X. (1993). Stable adaptive fuzzy control of nonlinear systems. IEEE 

Transactions on Fuzzy Systems, 1(2), 146–155. 

Ware, J. M., Wilson, I. D., & Ware, J. A. (2003). A knowledge based genetic 

algorithm approach to automating cartographic generalisation. Knowledge-

Based Systems, 16(5), 295–303. 

Weibel, R. (1995). Three essential building blocks for automated generalization. 

In GIS and Generalization: Methodology and Practice. (pp. 56–69). 

London: Taylor & Francis. 

Weibel, R., & Dutton, G. (1999). Generalising spatial data and dealing with 

multiple representations. In P. Longley, M. Goodchild, D. Maguire, & D. 

Rhind (Eds.), Geographical Information Systems: Principles, techniques, 

management and applications (pp. 125–155). 

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 

65–85. 

Wilmer, J., & Brewer, C. (2010). Application of the Radical Law in 

Generalization of National Hydrography Data for Multiscale Mapping. In A 

special joint symposium of ISPRS Technical Commission IV & AutoCarto. 

Orlando, Florida. 



References 

167 

Wolf, G. W. (1988). Weighted surface networks and their application to 

cartographic generalization. In Visualisierungstechniken und Algorithmen 

(Vol. 182, pp. 199–212). Springer-Verlag. 

Wu, H. (1997). Structured Approach to Implementing Automatic Cartographic 

Generalization. 18th ICC. Stockholm, Sweden. 

Yen, J., & Langari, R. (1998). Fuzzy logic: intelligence, control, and information. 

Ying, H., Siler, W., & Buckley, J. J. (1990). Fuzzy control theory: A nonlinear 

case. Automatica, 26(3), 513–520. 

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. 

Zhai, R. J., Wu, F., Deng, H., & Tan, X. (2006). Automated Elimination of River 

Based on Multi-Objective Optimization Using Genetic Algorithm. Journal 

of China University of Mining & Technology, 35(3), 403–408. 

Zhan, F. B., & Noon, C. E. (1998). Shortest Path Algorithms: An Evaluation 

Using Real Road Networks. Transportation Science, 32(1), 65–73. 

Zhang, X. (2012). Automated evaluation of generalized topographic maps. The 

University of Twente. 

 




