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Abstract 

Force identification is important in locating the vibration and noise sources 

of an operating machine. The forced vibration response of linearly 

vibrating structure is linear by definition. However, the energy distribution 

of linearly vibrating structures contains “coupled terms” in the modal 

decomposition of the response function. These coupled terms represent the 

cross-modal energy terms of a dynamic structure under forced vibration. In 

this research, it is proved analytically that certain cross-modal energy terms 

are highly correlated to the location of the external exciting force. Based on 

this finding, a new force localization method based on the cross-modal 

energy terms is developed, and a new index based on the suitably selected 

cross-modal energy terms to locate the force is developed. Numerical tests 

on beam structures under force excitation with different frequencies and 

locations have been carried out to test the effectiveness of the proposed 

force localization method. It is found that the proposed force localization 

method works well on vibrating beam structures even when random noise 

is taken into consideration. It is shown that the new method can identify the 

exciting force well. Experiments are done for verification of the proposed 

force localization method. 
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Nomenclature  

Most of the symbols used in this thesis have been defined in the text. The 

following list includes some of the more important symbols and those that 

have not been defined explicitly in the text. 

 

 

)(x,te  Energy density of a beam 

)(xE  Mean energy density of a beam 

)(xE jk  Modal energy density element 

The definition of )(xE jk  is 

When j  k  r, )(xErr  is the Diagonal-modal energy 

density element. When j k, )(xE jk  is the Cross-modal 

energy density element. 

)(Dia xE  Diagonal-modal energy density 

The definition of )(Dia xE  is 
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)(Cro_High xE  The high order terms of cross-modal energy density 

The definition of )(Cro_High xE  is 

 

 

)(Cro_High xE  is also the Force localization index. 

)(tEN  Total vibration energy of a beam  

)(x,tf  External exciting force 

0F  Magnitude of the external exciting force 
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Y  Young’s modulus 
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Chapter 1   Introduction 

This chapter begins with a review of the literatures on force identification 

methods and energy decomposition. The research motivation is then 

established based on the review. A methodology to conduct the research is 

described.  

 

1.1  Review of force identification methods 

Force identification is of great importance in locating the vibration and 

noise source of an operating machine. A large number of studies have been 

conducted about indirect determination of the dynamic loadings [1, 7, 11, 

23]. One typical method calculates the forces through Frequency Response 

Function (FRF) matrix and structural operational response as an inverse 

problem. Stevens [33] concluded the ill-conditioned problem occurred in 

force identification. Dobson and Rider [5] summarized different techniques 

used in the FRF matrix method and some applications. The method has 

been developed as a standard identification method [28], and applied to 

characterization of structure-borne sound sources [14, 15]. 

 

In order to solve the ill-conditioned problem involved in inverse problem 

of force identification, several studies have been conducted on improving 

the Least Squares Method (LSM), which was applied to solve the inverse 

problem. Karlsson [17] pointed out that spatial derivative in the inverse 
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problem amplifies the noise and makes the problem ill-conditioned. He 

further showed this amplification is closely related to FRF matrix, and can 

be improved by increasing the orthogonality between each columns of 

coefficient matrix. In order to improve the coefficient matrix, several 

studies were conducted in Singular Value Decomposition (SVD) [2, 32]. 

Fierro et al. [8] further introduced the truncated total least squares method 

and Liu et al. [21] analyzed the effect of applying regularization filter for 

SVD. Truncated singular value decomposition (TSVD) filter and the 

Tikhonov filter were studied in their work. 

 

In order to avoid measuring FRF matrix, a new force identification method, 

Force Analysis Technique (FAT), was proposed by Pezerat and Guyader 

[27]. This method directly calculates the external exciting force from 

operational response through vibration governing equation. It is possible to 

deal with different types of excitations, including point forces [18, 30], 

moments [31] and even turbulent boundary layer excitation [19]. It has 

been applied to beams [27, 31], plates [28, 29] and shells [3, 4]. This 

method is built on the vibration governing equation for general boundary 

condition. And, this makes FAT could be applied without knowing the 

exact boundary condition [29].  

 

Another approach using power flow, which has the similar advantage of 
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avoiding the calculation of FRF matrix, was applied to identify the force. 

Gavric and Pavic [10] initially presented the numerical calculation of 

power flow to indicate the vibration energy source and sinker based on the 

calculation method introduced by Noiseux [24] and Pavic [25]. The 

location of force is shown by the energy source. Gavirc et al. [9] conducted 

the experimental measurement to validate the method. It has been tested on 

some simple structures [10, 40] and even with some attempts on complex 

structures [9, 12]. The exact boundary condition can also be unknown in 

this method [39, 40].     

 

However, there are two major problems of both FAT and power flow 

method. The first one is that non-uniform structure can contaminate the 

detection of the force identification index in FAT and power flow pattern in 

power flow method. The local variation of the structure in mass and 

stiffness can also be designated as a force in FAT [38]. For the power flow 

method, the complexity of the structure can complicate the pattern of 

power flow and therefore make it difficult to locate the energy source [12, 

20].  

 

The other one is that both methods utilize the derivative to extract the 

information of exciting force from the high order derivative of measured 

signal. The noise may be amplified by the derivative operation, and 



4 

 

therefore, the accuracy may be questioned. A regularization approach 

named “RIFF” was applied to FAT by Pezerat and Guyader as an 

improvement of the original method [28, 29]. This approach requires 

spatial windowing and wavenumber filtering to reduce the noise. The 

cut-off wavenumber of filter needs to be chosen carefully. About the power 

flow method, similarly, Zhang and Mann Ⅲ [39, 40] also applied a 

two-dimensional Hanning window in spatial domain and an oval filter in 

wavenumber domain to the measured operational response. In 2006, Wang 

et al. [35] utilized B-spline approximation to reduce the noise in power 

flow measurement. Similarly, the cut-off wavenumber in these methods 

require to be chosen carefully to avoid filtering out the information of 

force.  

 

1.2  Energy decomposition and research motivation 

Based on the review of force identification methods, it can be found there 

are still two difficulties in the recently-developed methods: (1) the 

contamination of force identification index caused by non-uniform 

structure and (2) amplification of noise in the high order derivative of the 

vibration signal. Therefore, it is necessary to research a better method for 

locating the exciting force. 

 

Energy can be a possible choice for the improvement. As shown in the 
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power flow method [10], the vibration energy of a structure is related to the 

exciting force. In that method, the information of force is shown by the 

change of energy flow pattern, which is extracted through high order 

derivative. However, there is another way to show the information related 

to the change of energy distribution caused by exciting force, and that is to 

decompose the energy, separate the effect on energy distribution of exciting 

force from that of modal information of the structure and extract the part 

associated with the exciting force to form an index for force location. The 

index will be defined in Section 2.2.2. 

 

For energy decomposition, there are some literatures related to this topic, 

but few provides the insight about the physical meaning. In the studies of 

Kadambe, Boudreaus-Bartels [16] and Pei and Tsai [26], it is shown that 

cross elements, which are termed “cross terms”, arise naturally in 

time-frequency representations in signal analysis due to the non-linearity.  

Hu et al. [13] developed a Cross-Modal Strain Energy (CMSE) method to 

estimate damage. However, in their work, the CMSE does not represent a 

real mechanical energy but just an artificial term combining analytical and 

measured values. Therefore, its physical meaning is not clear. 

 

Wang et al [36] and Wong et al [37] proposed a concept of “modal power 

flow” to identify the damage. In their papers, the energy was decomposed 
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based on the vibration modes under free vibration. However, the energy 

decomposition under forced vibration is not discussed.  

 

Thus, the motivation of this research is to: (1) derive the modal 

decomposition of vibration energy and explore its physical meaning for 

Euler–Bernoulli beam; (2) develop the Force Localization Index (FLI) by 

using the decomposed energy terms related to the exciting harmonic force; 

and (3) verify the proposed FLI by computer simulations and experiments. 

 

1.3  Methodology and arrangement of the following   

  chapters 

According to the three objectives proposed in Section 1.2, the research 

methodology is arranged into three parts: theory, simulation and 

experiment.  

 

The work aims to derive the new force localization method based on the 

decomposition of vibration energy and explain the physical meaning of the 

decomposition according to the derivation. In the theory part, the 

decomposition of vibration energy was illustrated. The vibration energy 

was first divided into static part and dynamic part. Then, the static part was 

further divided into diagonal part and cross part. The definition of each part 

will be illustrated in Chapter 2. After the energy decomposition, the FLI 

was proposed based on the cross part of static energy. The application of 
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proposed FLI was also studied. Since this is a preliminary study, in order to 

focus on the basic concept, only uniform Euler-Bernoulli beam with light 

damping excited by one concentrated force is adopted as the model for 

examination. The boundary conditions discussed in this research are 

confined to common standard boundary conditions.  

 

The simulation consists of Numerical Solution and Numerical Experiment. 

Numerical solution was calculated based on the theory in Chapter 2 for 

illustration of the theoretical prediction. Numerical experiment was 

conducted based on the experimental condition to study the effect of noise 

on the proposed method.  

 

Experimental test was conducted after the numerical experiment in order to 

validate the proposed method. The procedure of experimental test is the 

same as that of numerical experiment, except that the displacement 

response and mode shapes were obtained by measurement not by 

simulation. 
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Figure 1.1 Methodology and arrangement of chapters 

 

The following chapters are arranged accordingly to fulfill the motivation 

through the methodology as shown in Fig. 1.1. Chapter 2 contains the 

description of energy decomposition and discussion of the physical 

meaning to achieve motivation (1). The FLI is developed based on the 

energy decomposition to fulfill motivation (2). Motivation (3) is answered 

by Chapter 3 and Chapter 4. Chapter 3 shows the numerical solution; 

Chapter 4 contains the numerical experiment and the experimental test. 

Chapter 5 summaries the findings in this research. Then, the significance 

and limitations are discussed. Based on the discussions, some suggestions 

for future works are provided.  



9 

 

Chapter 2   Energy Decomposition and Force Localization      

Index for Cross-Modal Energy Method 

This chapter shows the derivation of FLI by decomposition of vibration 

energy for Euler-Bernoulli beam. The vibration energy decomposition is 

first illustrated. The physical meaning of decomposition is discussed. Then, 

based on the energy decomposition, the FLI is defined by the discovery of 

the accumulation phenomenon. Fig. 2.1 illustrates the outline of the 

procedure of energy decomposition and derivation of FLI. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.1 Illustration of the procedure of energy decomposition and 

extraction of FLI 

 

Vibration energy density 

)(x,te

Mean Lagrangian energy 

density 

 

)(xL

Mean energy density 

 

)(xE

Diagonal-modal energy 

density 

 

)(Dia xE )(Cro xE

Cross-modal energy 

density 

 

)(HighCro xE 

Force Localization Index 

(FLI) 

 



10 

 

2.1  Decomposition of vibration energy 

In this section, the decomposition of vibration energy for Euler-Bernoulli 

beam is illustrated, and the physical meaning of decomposition is 

discussed. 

 

2.1.1 Vibration energy of Euler-Bernoulli Beam 

For Euler-Bernoulli beam, the partial differential equation for free bending 

vibration is [22] 

 

Lx
x
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2

2

          (2.1) 

 

where )(x,tw  is the transverse displacement, )(xm  the mass per unit 

length, )(xYI  the flexural rigidity, in which Y  is the Young’s modulus and 

)(xI  the cross-sectional area moment of inertia about an axis passing 

through the center of the cross section, and L  the length of beam. 

 

The mode shape can be described by a general solution written as 

 

)cosh()sinh()cos()sin()( xDxCxBxAxW rrrrr       (2.2) 

 

where )(xWr  is the rth mode shape; A , B , C  and D  are constants to 

be determined by boundary conditions. And, r  is determined by 
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r

2
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                                            (2.3) 

 

where r  is the rth natural frequency. 

 

 

 

 

 

 

 

 

Figure 2.2 Illustration of a beam excited by a concentrated force 

 

 

When a concentrated external harmonic force is applied on the beam, as 

shown in Fig. 2.2, the partial differential equation is changed to 
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(2.4) 

where )(x,tf  is the external exciting force, 0F  the magnitude of 

the force, fx  the location of the force and fω  the driving frequency 

of the force. 

 

Assuming the excitation is a concentrated harmonic force, the displacement 

of the beam under such applied force, which is the solution for Eq. (2.4), 

x x
L

),( txw),( txf f
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may be written as 

 

             (2.5) 

 

where rη  is the rth modal ratio coefficient and defined by 
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The vibration energy of the beam can be written in terms of the 

displacement as [22] 
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where )(tEN  is the total energy of beam, )(tT  the kinetic energy and 

)(tV  the potential energy. Thus, the total energy of the beam under forced 

vibration can be acquired by substituting Eq. (2.5) into Eq. (2.7). 

 

However, when considering force localization, it is of great advantage to 

know the local information of energy rather than the global one. In order to 

obtain the local description of the energy, the energy density ),( txe  is 

defined 

 

 (2.8) 
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where x  is the length of an infinitesimal element, as shown in Fig. 2.2, 

and )(Δ x,tE  is the instantaneous energy of that element 

 

  

                                                    (2.9) 

Thus, the energy distribution along the beam is determined by energy 

density. By substituting Eq. (2.5) into Eq. (2.8), the energy distribution 

under forced vibration is obtained. 

 

2.1.2 Decomposition of energy 

The vibration energy of the beam can be treated as the summation of 

kinetic energy and potential energy, as shown by Eq. (2.7), and it can also 

be represented by a combination of static and dynamic components written 

as  

(2.10) 
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According to Eq. (2.10), the static part )(xE  is the mean energy density, 

whose integration along the beam is the total energy of beam. The 

amplitude of dynamic part )(xL  is the mean Lagrangian energy density 

[36].  

 

After decomposing the vibration energy density into static and dynamic 

parts, the mean energy density can be further decomposed through the 

modal decomposition of displacement. 
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)(xE jk  and jk  are named as Modal Energy Density Element and 

Amplification Coefficient, respectively. )(xEΓ jkjk   is named as 

Modal Energy Term. 

 

In Eq. (2.13), the mean energy density is divided into two parts. According 

to the position in matrix, the sum of all the diagonal-modal energy density 
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elements is named as diagonal-modal energy density )(Dia xE . And, the 

sum of all the cross-modal energy density elements is named as 

cross-modal energy density )(Cro xE . 

  

2.1.3 Physical meaning of energy decomposition 

In Eq. (2.13), static energy density is decomposed into diagonal-modal 

energy density and cross-modal energy density. This division separates the 

effect of exciting force on energy distribution from that of the structure.  

 

The integration of mean energy density can be written as 

 

 

 

 

    (2.16) 

 

The total energy of the beam is composed of the integration of 

diagonal-modal energy density and cross-modal energy density. Since 

diagonal-modal energy density element )(xErr  is positive, the integration 

of )(xErr  is positive. 
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For cross-modal energy density element kjxE jk  ),( , however, can be 

negative. It is important to notice that the integration of cross-modal energy 

density element is zero under the normal boundary conditions, including 

pin, fixed and free end. This is proved as follows.  

 

The normal boundary conditions make the system self-adjoint [34], and 

therefore, if the mode shapes are mass-normalized, the alternative 

companion orthonormality relations can be written as [22] 

 

                                                   (2.18) 

 

The orthonormality relations is 

 

                                                   (2.19)  

                                                

Using Eq. (2.18) and Eq. (2.19), the integration of cross-modal energy 

density element over the beam is  

(2.20) 
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(a) The physical meaning of diagonal-modal energy density element 

According to Eq. (2.14), diagonal-modal energy density element )(xErr  

shows the modal energy distribution based originally on the characteristic 

of structure, which is its mode shape. The integration of diagonal-modal 

energy density element means the total energy, which comes from external 

exciting force, stored in that mode. 

 

(b) The physical meaning of cross-modal energy density element 

Different from diagonal-modal energy density element, it is necessary to 

give a reasonable explanation for the negative energy shown in cross 

element. Since the integration of cross-modal energy density element over 

the beam is zero as shown in Eq. (2.20), which means that there is no 

energy gain or loss of the system, it probably means that energy is moved 

from negative place to the positive one inside the system. And so, the 

cross-modal energy density element )(xE jk  represents an energy shift or 

redistribution associated with jth and kth modal energy density. 

 

(c) The physical meaning of diagonal-modal energy density 

According to Eq. (2.13), diagonal-modal energy density )(Dia xE  is the 

sum of all diagonal-modal energy terms. )(Dia xE  represents the total 

energy stored inside the structure and its original distribution based on its 

mode shapes. 
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(d) The physical meaning of cross-modal energy density 

Cross-modal energy density )(Cro xE  is the sum of all cross-modal energy 

terms. )(Cro xE  represents the total energy shift caused by external 

exciting force that redistributes the modal energy distribution. 

 

In summary, the vibration energy density was decomposed into static part 

and dynamic part. Then, the static part of vibration energy was further 

divided into diagonal-modal energy density and cross-modal energy density.  

And, the decomposition of static energy by utilizing diagonal and 

cross-modal energy density may separate the effect of external exciting 

force on energy distribution from the original energy distribution based on 

the structure itself.  

 

According to Eq. (2.13), it could be found that this shift is related to jk , and 

from Eq. (2.15), jk  is related to the location and driving frequency of 

exciting force. Therefore, )(Cro xE  may be capable to show the location of 

exciting force. 

 

2.2  Force Localization Index 

In Section 2.1, the cross-modal energy density was extracted from mean 

energy density by decomposition. And, the cross-modal energy density 

shows the energy shift caused by exciting force. In this Section, an 

accumulation phenomenon of cross-modal energy term at the location of 
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exciting force is discovered in the high order terms of cross-modal energy 

density. Based on the discovery of accumulation phenomenon, the FLI is 

defined. 

 

2.2.1 Accumulation phenomenon of cross-modal energy   

  term 

Based on Eq. (2.15), the cross-modal energy term can be written as 
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It can be found that the value of )(xEΓ jkjk   in Eq. (2.21) is decided by 

the location x  and the order of modes j  and k . With the change of the 

order of mode, this value is uncertain, and thus can be positive or negative. 

However, at the location of exciting force fx , )(xEΓ jkjk   can be written 

as 
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It can be found that if just high order terms are considered, where 

frfi    , , the part before parenthesis in Eq. (2.22) is positive. 

The first component in parenthesis is also positive. So, the sign of 

)( fjkjk xEΓ   depends on the second component in parenthesis. Since 

the terms with subscript j or k have same structure, it is necessary just 

to consider component 
 

2

2 )(
)(

dx

xWd
xW

fr

fr   to determine the sign of 

high order cross-modal energy term at the location of exciting force. 

 

Since the location of exciting force fx  can be any position along the 

beam, the symbol fx  is substituted by x , which does not affect the result, 

in the following analysis. To investigate the sign of 
 

2

2 )(
)(

dx

xWd
xW r

r  , 

results are enumerated under all the combinations of common general 

boundary conditions (pin, fixed and free). By substituting the general 

solution of mode shape, Eq. (2.2), the component can be written as 

 

 
    222

2

2

)cosh()sinh()cos()sin(
)(

)( xDxCxBxA
dx

xWd
xW rrrrr

r
r  

 (2.23) 

 

Some of the relationships between coefficients in Eq. (2.23) can be 

determined through the boundary condition at the location 0x , as 

shown in Table 2.1. 
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It can be found that the coefficient relationships of fixed end and free end 

obtain the same result when the relationships shown in Table 2.1 are 

substituted into Eq. (2.23). So, there are just two groups of boundary 

conditions need to consider: pin end and fixed/free end. Since the change 

of sides does not affect the boundary condition, just half of the 

combinations (pin-pin, pin-free/fixed and free/fixed-free/fixed) are under 

consideration in the following analysis. 

 

 

Table 2.1 Boundary conditions and coefficient relationship 

 

Boundary condition Mathematics description Coefficient relationship 

Pin end 

0
0


x
w  0DB  

0

0

2

2






x
x

w
 0 DB  

Fixed end 

0
0


x
w  0DB  

0
0






xx

w
 0CA  

Free end 

0

0

2

2






x
x

w
 0 DB  

0

0

3

3






x
x

w
 0 CA  
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(a) Pin-pin and pin-free/fixed boundary conditions 

Since there is pin end at 0x , the value of B  and D  can be 

determined, and that is 0 DB . Eq. (2.23) is simplified as 

 

 
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
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 )(sinh)(sin
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)( 2
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2
222

2

2

x
A

C
xA

dx

xWd
xW rrr

r
r         (2.24) 

 

For pin-pin boundary condition, the pin end at Lx   results in 0C . 

Therefore, the sign of 
 

2

2 )(
)(

dx

xWd
xW r

r   is determined by trigonometric 

component )(sin2 xr  in Eq. (2.24), which is always be negative. 

 

For pin-free/fixed boundary condition, the hyperbolic component 

)(sinh2 xr  also has effect on the sign. The free/fixed end results in the 

coefficient relationship  

 

)(sinh

)(sin
2

2

2

2

L

L

A

C

r

r




                                      (2.25) 

 

The values of trigonometric and hyperbolic components in Eq. (2.24) along 

the beam is shown in Fig. 2.3, when the order of mode r  is increasing. 

 

It can be found that the hyperbolic component makes 
 

2

2 )(
)(

dx

xWd
xW r

r   

positive at the region right to the intersection point. However, with the 

increase of the order of mode r , the positive region caused by the 
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hyperbolic component is gradually shifted to the free/fixed end. This means 

when considering high order modes, the effect of the boundary condition 

can be neglected when the position is enough far away from the free/fixed 

end.  

 

 

 

 

 

(a) 1r  
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(b) 2r  

 

 

(c) 3r  

 

Figure 2.3 Values of trigonometric and hyperbolic components along the 

   beam (pin-free/fixed boundary condition) 
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(b) Free/fixed-free/fixed boundary conditions 

For the free/fixed end at 0x , the relationships between coefficients can 

be determined, and those are CADB      or CADB     . Eq. 

(2.23) can be simplified as 
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
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(2.26) 

 

For free/fixed-free/fixed boundary condition, the hyperbolic component 

2

)cosh()sinh( 







 x

A

B
x rr   also has effect on the sign. The free/fixed end 

results in the coefficient relationship  
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)sinh()sin(

LL

LL
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B

rr

rr
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


                               (2.27) 

 

The values of both of the trigonometric and hyperbolic components in 

Eq. (2.26) along the beam is shown in Fig. 2.4, when the order of 

mode r  is increasing. 
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(a) 1r  

 

 

(b) 2r  
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 (c) 3r  

 

Figure 2.4 Values of trigonometric and hyperbolic components along the 

   beam (free/fixed-free/fixed boundary conditions) 

 

Like the results in pin-free/fixed boundary condition, the effect of 

hyperbolic component caused by free/fixed end just affects the region near 

the boundary. With the increase of order, the region is becoming closer to 

the boundary. This means when considering high order modes, the sign of 

 
2

2 )(
)(

dx

xWd
xW r

r   can be consider as negative when the position is enough 

far away from the free/fixed end. 

 

To sum up, according to the results shown under all possible boundary 

conditions, it can be conclude that for high order modes, when x  is 
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enough far away from boundary, 
 

2

2 )(
)(

dx

xWd
xW r

r   is negative. This 

means that when the location of exciting force fx  is enough far away 

from boundary, the component 
 

2

2 )(
)(

dx

xWd
xW

fr

fr   is always negative. 

Thus, the second component in parenthesis in Eq. (2.22) is always positive. 

This means that cross-modal energy term )( fjkjk xEΓ   is always positive 

under some conditions, which can be described as 

 

0)(  fjkjk xEΓ , kj                                 (2.28) 

 

when frfi    ,  and fx  is enough far away from the 

boundary. 

 

Therefore, the value of cross-modal energy term )(xEΓ jkjk   is positive at 

the location of exciting force under some conditions, while at other 

locations the sign of this value is uncertain. By adding increasing number 

of high order cross-modal energy terms, at the position xf, the value of the 

summation is becoming larger, since the sign of each cross-modal energy 

term is positive at this position. However, at other positions, the values of 

high order cross-modal energy term are changed with the order. This means 

that after adding another high order cross-modal energy term, the value of 

summation may increase or decrease. Therefore, only at the location of 

exciting force, the value of summation of high order cross-modal energy 
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terms is always increasing. This phenomenon results in the accumulation 

phenomenon of the summation of high order cross-modal energy terms at 

the location of exciting when the number of the terms in summation is 

increasing.  

 

2.2.2 Definition of force localization index 

On the basis of the accumulation phenomenon of the summation of high 

order cross-modal energy terms at the location of exciting force, the FLI is 

defined by utilizing the summation of just high order cross-modal energy 

terms. 

 

                                                   (2.29)  

                                                

where rfr  1 ;   and n  control the number of high order 

cross-modal energy terms in the FLI. )(HighCro xE   is named as the high 

order terms of cross-modal energy density, respectively. 

 

2.3  Summary 

Section 2.1 illustrated the decomposition of vibration energy for 

Euler-Bernoulli beam, and the cross-modal energy density was obtained by 

the decomposition. The cross-modal energy density may have the physical 

meaning to show the energy shift caused by exciting force. Section 2.2 

showed the discovery of the accumulation phenomenon of the summation 
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of high order cross-modal energy terms at the location of exciting force. 

Based on this phenomenon, the FLI was defined accordingly. 
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Chapter 3   Numerical Solution for Energy Decomposition 

and Force Localization Index 

Chapter 3 contains the numerical solution for energy decomposition and 

FLI to illustrate the theoretical prediction shown in previous chapter. 

 

3.1  Numerical solution for energy decomposition 

In Chapter 2, the static part of vibration energy was decomposed into 

diagonal and cross-modal energy density. The FLI was obtained by further 

extracting the high order terms of cross-modal energy density. In order to 

illustrate this procedure of energy decomposition and extraction of location 

information of exciting force by this energy decomposition, a numerical 

solution is calculated as follows. 

 

A mild steel beam with rectangular cross section was modeled to simulate 

the beam. The length of it is L  = 0.3 m. The height and the width of the 

beam are h  = 0.0047 m and b  = 0.0191 m. The density and Young’s 

modulus were assumed to be  = 7740 kg/m3 and Y = 204 GPa. The 

external exciting force was applied on a pin-pin supported beam at 

Lx f 35.0 .The simulation was calculated in software Matlab. The 

calculated mean energy density, diagonal-modal energy density, 

cross-modal energy density and high order terms of cross-modal energy 

density are plotted in Fig. 3.1. 
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* This figure is normalized through division by the maximum value. 

 

Figure 3.1 Illustration of the procedure of energy decomposition and 

extraction of FLI (pin-pin boundary condition, Lx f 35.0 ) 

 

In Fig. 3.1, it can be found that it is difficult to find the location of force 

directly from the mean energy density )(xE . After decomposition, as 

discussed in Section 2.1.3, the diagonal-modal energy density )(Dia xE  

represents the energy distribution based on the modal information of the 

structure, and the cross-modal energy density )(Cro xE  shows the energy 

shift caused by external exciting force. By further decomposition, the FLI, 

high order terms of cross-modal energy density )(HighCro xE  , is extracted 

and shows the peak at the location of exciting force, and therefore indicates 

the location of force.  
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3.2  Numerical solution for force localization index  

In Section 2.2, it was discovered that an accumulation phenomenon of the 

summation of high order cross-modal energy terms could occur at the 

location of exciting force in FLI. In order to illustrate this predicted 

accumulation phenomenon, a numerical solution is calculated as follows. 

The beam model utilized in this section is the same as the one in Section 

3.1. In this simulation, both pin-pin and fixed-free boundary conditions 

were calculated. And, excitations with different locations and driving 

frequencies were applied on the beam. The parameter n , which controls 

the number of high order cross-modal energy terms in FLI, was increasing 

in some simulation to show the accumulation phenomenon. The FLI was 

calculated based on the theory (Eq. (2.21) and Eq. (2.29)).  

 

The driving frequency was chosen not close to the natural frequencies. This 

is because that structure usually is designed to vibrate at the frequency 

away from its natural frequencies. This can also avoid ill-condition in LSM 

so that the preliminary issues can be focused on. The results of numerical 

solution for FLI under pin-pin boundary condition are shown in Fig. 3.2, 

Fig. 3.3 and Fig. 3.4. 

 

(a) Accumulation phenomenon in FLI 

The external exciting force was applied at Lx f 35.0  with driving 
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frequency f = 600  rad/s. The parameter   in Eq. (2.29) was 0, and 

n  was increased from 3 to 7. The magnitude of exciting force 0F  was 

500 N in all the cases of numerical solution. The interval between two 

sample points was L01.0  through the numerical solution. 

 

 
* This figure is normalized through division by the maximum value. 

 

Figure 3.2 Accumulation phenomenon in FLI (pin-pin boundary condition,  

   Lx f 35.0 , f = 600  rad/s, 0F = 500 N and  = 0) 

 

(b) FLI under different driving frequencies of exciting force 

The exciting force was applied at Lx f 35.0  and 0 , n  = 7. The 

driving frequency f  changed across different natural frequencies. The 

natural frequencies are shown in Table 3.1. The FLI under different driving 

frequencies of exciting force are shown in Fig. 3.3. 
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(c) FLI under different locations of exciting force 

The driving frequency of exciting force was f = 600  rad/s and 0 , 

n  = 7. The location of exciting force varied along the beam. The FLI 

under different locations of exciting force are shown in Fig. 3.4. 

 

Table 3.1  Natural frequencies obtained in numerical solution (pin-pin  

   boundary condition) 

 

Natural frequency 

(rad/s) 

1st 2nd 3rd 4th 

243  972  2188  3890  

5th 6th 7th 

 
6078  8753  11914  

 

 
* This figure is normalized through division by the maximum value. 

 

Figure 3.3  FLI under different driving frequencies of exciting force 

(pin-pin boundary condition, Lx f 35.0 , 0F = 500 N, 0  

and n  = 7)  
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* This figure is normalized through division by the maximum value. 

 

Figure 3.4 FLI under different locations of exciting force (pin-pin 

boundary condition, f = 600  rad/s, 0F = 500 N, 0  

and n  = 7) 

 

 

The results of numerical solution for FLI under fixed-free boundary 

condition are shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7. 

 

(a) Accumulation phenomenon in FLI 

The external exciting force was applied at Lx f 35.0  with driving 

frequency f = 300  rad/s. The parameter   in Eq. (2.29) was 1, and 

n  was increased from 4 to 8. 
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* This figure is normalized through division by the maximum value. 

 

Figure 3.5 Accumulation phenomenon in FLI (fixed-free boundary 

condition, Lx f 35.0 , f = 300  rad/s, 0F = 500 N and  = 

1) 

 

 

(b) FLI under different driving frequencies of exciting force 

The exciting force was applied at Lx f 35.0  and 1 , n  = 8. The 

natural frequencies are shown in Table 3.2. The FLI under different driving 

frequencies of exciting force are shown in Fig. 3.6. 

 

(c) FLI under different locations of exciting force 

The driving frequency of external exciting force is f = 300  rad/s and 

1 , 8n . The location of external exciting force varied along the beam. 

The FLI under different locations of exciting force are shown in Fig. 3.7. 

 



39 

 

Table 3.2 Natural frequencies obtained in numerical solution (fixed-free 

boundary condition) 

 

Natural frequency 

(rad/s) 

1st 2nd 3rd 4th 

87  543  1520  2978  

5th 6th 7th 8th 

4924  7355  10272  13676  

 

 

 

 
* This figure is normalized through division by the maximum value. 

 

Figure 3.6 FLI under different driving frequencies of exciting force 

(fixed-free boundary condition, Lx f 35.0 , 0F = 500 N, 

1  and n  = 8)  
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* This figure is normalized through division by the maximum value. 

 

Figure 3.7 FLI under different locations of exciting force (fixed-free 

boundary condition ( f = 300  rad/s, 0F = 500 N, 1  

and n  = 8) 

 

As mentioned in Section 1.3, the objective of numerical solution is to 

present the accumulation phenomenon predicted and proved in theoretical 

part.  

 

This accumulation phenomenon was first directly illustrated by Fig. 3.2 

and Fig. 3.5. Both figures depict two phenomena: a growth of FLI at the 

location of external exciting force and a convergence of the peak to the 

location, when the number of high order terms is increasing.  

 

The first phenomenon verifies the accumulation phenomenon proved in 
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Section 2.2. The second one, convergence, can be attributed to the shape of 

cross-modal energy density element. The low order energy density element, 

which has long wavelength, can only indicate the location with low 

accuracy. With the increasing of the parameter n  in Eq. (2.29), more high 

order elements, which can indicate more accurate location, are added into 

the FLI, and this result in the phenomenon that the next peak after adding is 

closer to the location. This convergence can give a reasonable prediction of 

adding higher order element, which is helpful when the high order data are 

not satisfactory.  

 

The next step is to examine whether this accumulation phenomenon is still 

valid when the driving frequency and location are different. In Fig. 3.3 and 

Fig. 3.6, the beam was excited by the force with different driving 

frequencies. Apart from the decreasing magnitude, which is caused by the 

decreasing number of cross-modal energy density elements contained in 

FLI, the location identified by the FLI varies little. This verifies the 

prediction of Eq. (2.28), which is not affected by the change of driving 

frequency. 

 

Fig. 3.4 and Fig. 3.7 depict the situation when the location of exciting force 

is changing. It can found that in Fig. 3.4 at some locations the FLI cannot 

indicate the location exactly, while in Fig. 3.7 the FLI works well at all 
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locations. The reason for this may be attributed to the low order 

cross-modal energy density elements that reduce the accuracy. In Fig. 3.4, 

the element 23E  was included in the FLI ( 0  in Eq. (2.29)), while in 

Fig. 3.7, the lowest order element was 34E  ( 1  in Eq. (2.29)). As 

described previously, the long wavelength of low order element may fail to 

give the prediction with high resolution.  

 

3.3  Summary 

This chapter calculated the numerical solution for the illustration of 

theoretical prediction made in Chapter 2. In Section 3.1, the procedure of 

energy decomposition and derivation of FLI were shown. It could be found 

that the decomposition may gradually extract the location information of 

exciting force. The numerical solution also showed that there is a peak at 

the location of force in the FLI. In Section 3.2, the numerical solution was 

calculated to illustrate the accumulation phenomenon of the summation of 

high order cross-modal energy terms in FLI at the location of exciting force. 

The simulation also showed that the FLI could localize the force with 

different driving frequencies and locations. 
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Chapter 4   Experiment of Cross-Modal Energy Method 

In this chapter, the inverse problem in application under experimental 

condition is presented first. The results of numerical experiment and 

experimental test are shown to discuss the influence of noise to 

cross-modal energy method and the verification of this method. 

 

4.1  Inverse problem in experiment 

The theory of cross-modal energy was derived in Chapter 2, and the 

numerical solution was conducted in Chapter 3. However, there is an 

inverse problem when this theory is applied under experimental condition 

as a force localization method.  

 

There are two major issues in the inverse problem. The first one is that the 

calculation of FLI in experiment is different from that in theoretical 

analysis. Since the location of external exciting force is unknown, the 

amplification coefficient in Eq. (2.15) cannot be determined through 

theoretical way. The second one, which often hinders the application of 

other methods, is the noise. The information to extract amplification 

coefficients in experiment can just be obtained through measurement, and 

therefore, the noise is inevitable. 

 

In order to extract the amplification coefficient only through measured 

mode shapes and operational response with more accuracy under the 
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influence of noise, the LSM was applied to obtain the FLI in experiment. 

This is because according to Eq. (2.5) the extraction of amplification 

coefficient is a typical inverse problem (See Appendix A). According to the 

references [2, 8, 17, 21, 32] in Section 1.1, LSM and its advanced 

application can effectively improve the ill-condition, and thus the influence 

of noise.  

 

After determining procedure of calculating the FLI under experiment 

condition, it is important to analyze the influence of noise on this method. 

According to the LSM and definition of the FLI, the noise can influence 

the FLI in two ways: affecting the extraction of amplification coefficient 

and derivative of mode shapes. The details can be found in Fig. 4.13. 

 

Numerical experiment was conducted to simulate the experiment test and 

investigate the influence of noise on FLI. Following the numerical 

experiment, an experimental test was performed to verify the method under 

experimental condition. 

 

In numerical experiment, in order to analyze the noise resistance of the 

proposed method, two different levels of random noise, 3% and 30%, were 

added to the theoretically calculated mode shapes and operational response 

of forced vibration displacement. To investigate the effects of amplification 

of noise due to the derivative of mode shapes during the procedure, a noise 
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reduction method was applied to reduce only the amplification of noise 

caused by derivative. 

4.2  Numerical experiment 

In this section, the results of numerical experiment for different boundary 

conditions, different noise levels and different noise reduction methods are 

shown to analyze the influence of noise on the proposed method. 

 

The beam model examined in the numerical experiment is the same as that 

in the numerical solution. The results in numerical experiment can make a 

comparison with those in numerical solution. And, the numerical 

experiment may also give a reasonable prediction of experimental test. The 

random noise in operational displacement response and mode shapes was 

added by Matlab command rand. In order to simulate the experimental 

condition and obtain better results, before applying LSM, the noised data 

was averaged by 500 times. The reason for averaging 500 times is to 

simulate the magnitude average function in laser vibrometer used in the 

experimental test.  

 

The results of numerical experiment under pin-pin and fixed-free boundary 

conditions are shown respectively by the following figures.  
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(a) 3% random noise under pin-pin boundary condition 

The external exciting force was applied at Lx f 35.0  with driving 

frequency f = 600  rad/s between 1st and 2nd modes, when the beam 

was in pin-pin boundary condition. The parameter   in Eq. (2.29) was 0, 

and n  was increased from 3 to 7. The magnitude of external exciting 

force 0F  was 500 N in all the cases of numerical experiment. The interval 

between two measured points was L01.0 . The displacement response and 

mode shapes of the beam with 3% random noise are shown by Fig. 4.1 and 

Fig. 4.2, where the mode shapes are mass-normalized.  

 

 

 
 

Figure 4.1 Displacement response with 3% random noise (pin-pin 

boundary condition) 
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Figure 4.2 Mode shapes with 3% random noise (pin-pin boundary 

condition) 

 

On the basis of displacement response and mode shapes, the modal ratio 

coefficient rη  was extracted through LSM as illustrated in Appendix A. 

All the modal ratio coefficients in different modes are listed in Table 4.1 

with the theoretical values which was calculated through Eq. (2.6). 

 

Table 4.1 Extracted and theoretical modal ratio coefficients (pin-pin  

   boundary condition) 

 

Order r (Extracted) r (Theoretical) Error (%) 

1 -4.6470e-4 -4.6535e-4 0.14 

2 2.1669e-4 2.1586e-4 0.38 

3 -5.5432e-6 -6.7273e-6 17.60 

4 -1.0102e-5 -1.0948e-5 7.73 

5 -3.0327e-6 -4.0122e-6 24.41 

6 6.3591e-7 1.6077e-7 295.54 

7 1.0947e-6 7.3594e-7 48.75 
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By substituting the calculated modal ratio coefficients into Eq. (2.29), the 

FLI was obtained. The calculated FLIs with varying n  are shown in Fig. 

4.3.  

 

 
* This figure is normalized through division by the maximum value. 

 

Figure 4.3 FLI calculated in numerical experiment (pin-pin boundary 

condition, Lx f 35.0 , f = 600  rad/s, 0F = 500 N and  = 

0) 

 

 

(b) 3% random noise under fixed-free boundary condition 

In this case, the same beam model was under fixed-free boundary condition. 

The external exciting force was applied at Lx f 35.0  with driving 

frequency f = 300  rad/s. The parameter   in Eq. (2.29) was 1, and 

n  was increased from 4 to 8. The interval between two measured points 

was L01.0 . 
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As the same procedure in case (a), the displacement response with 3% 

random noise is shown by Fig. 4.4. The mass-normalized mode shapes 

with 3% random noise are shown in Fig. 4.5. All the extracted modal ratio 

coefficients in different modes are listed in Table 4.2 with the theoretical 

values. The calculated FLIs with varying n  are shown in Fig. 4.6. 

 

 

 

 
 

Figure 4.4 Displacement response with 3% random noise (fixed-free 

boundary condition) 
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Figure 4.5 Mode shapes with 3% random noise (fixed-free boundary 

condition) 

 

 

 

Table 4.2 Extracted and theoretical modal ratio coefficients (fixed-free 

   boundary condition) 

 

Order r ( Extracted) r (Theoretical) Error (%) 

1 -4.0559e-4 -4.0558e-4 0.002 

2 5.5826e-4 5.5829e-4 0.005 

3 5.7239e-5 5.7330e-5 0.16 

4 1.4635e-6 1.3849e-6 5.68 

5 -4.7274e-6 -4.5902e-6 2.99 

6 -2.0825e-6 -2.0611e-6 1.04 

7 1.5506e-7 9.8671e-8 57.15 

8 6.6776e-7 6.4651e-7 3.29 
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* This figure is normalized through division by the maximum value. 

 

Figure 4.6 FLI calculated in numerical experiment (fixed-free boundary 

   condition, Lx f 35.0 , f = 300  rad/s, 0F = 500 N and  = 1) 

     

 

(c) 30% random noise under pin-pin and fixed-free boundary conditions 

In order to examine the noise resistance of cross-modal energy method and 

simulate the operational condition where the random noise is significantly 

high, 30% random noise were added into the theoretical displacement 

response, while the mode shapes were still at 3% level. Before applying 

LSM, the noised data for both displacement response and mode shapes was 

averaged by 500 times. The displacement response under pin-pin boundary 

condition with 30% random noise and the corresponding FLI were 

simulated and are shown in Fig. 4.7 and Fig. 4.8. The interval between two 
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measured points was L01.0 . 

For the fixed-free boundary condition, the displacement response with 30% 

random noise and the corresponding FLI were simulated and are shown in 

Fig. 4.9 and Fig. 4.10. The interval between two measured points was 

L01.0 . 

 

(d) Reduction in noise caused by high order derivative 

By reasonably increasing the interval between measured points applied in 

the simulation, the noise amplified by high order derivative, which is 

calculated through finite-difference method, can be considerably reduced 

with acceptable filtering of information in the original function [38]. In this 

case, interval between two measured points was changed from L01.0  to 

L02.0  during the calculation of derivative, while the modal ratio 

coefficients were still calculated under the interval of L01.0 . The FLIs 

calculated with 30% random noise after applying this noise reduction 

method are shown in Fig. 4.11 and Fig. 4.12. 
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Figure 4.7 Displacement response with 30% random noise (pin-pin 

boundary condition) 

 

 

* This figure is normalized through division by the maximum value. 

 

Figure 4.8 FLI calculated with 30% random noise (pin-pin boundary 

condition, Lx f 35.0 , f = 600  rad/s, 0F = 500 N and  = 

0)  
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Figure 4.9 Displacement response with 30% random noise (fixed-free 

boundary condition) 

 

 

 
* This figure is normalized through division by the maximum value. 

 

Figure 4.10 FLI calculated with 30% random noise (fixed-free boundary 

   condition, Lx f 35.0 , f = 300 rad/s, 0F = 500 N and  = 1) 
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* This figure is normalized through division by the maximum value. 

 

Figure 4.11 FLI calculated with 30% random  noise after reducing the 

noise amplified by derivative (pin-pin boundary condition, 

Lx f 35.0 , f = 600  rad/s, 0F = 500 N and  = 0) 

 
* This figure is normalized through division by the maximum value. 

 

Figure 4.12 FLI calculated with 30% random  noise after reducing the 

noise amplified by derivative (pin-pin boundary condition, 

Lx f 35.0 , f = 300  rad/s, 0F = 500 N and  = 0)    
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The numerical experiment aims to investigate the influence of noise on 

cross-modal energy method. As shown in Fig. 4.13, the noise can 

contaminate the result in two different ways during the procedure of 

cross-modal energy method: (1) modal ratio coefficient and (2) 

cross-modal energy density element. 

 

Tables 4.1 and 4.2 show the influence of noise on the extraction of modal 

ratio coefficient. The 3% noise in mode shapes and operational response, 

although averaged by 500 times, still caused some errors in the extracted 

modal ratio coefficients. The error is related to the value of modal ratio 

coefficient. The larger value may suffer less error, while the smaller one 

can contain more error. By comparing the calculated FLI in numerical 

experiment (Fig. 4.3 and Fig. 4.6) with the theoretical one in numerical 

solution (Fig. 3.2 and Fig. 3.5), it can be found that although some 

considerably large errors were in the coefficients (like 295.54% in Table 

4.1) little deviation from the exact location of force was caused. This 

suggests that the cross-modal energy method is not very sensitive to the 

noise in the extracted modal ratio coefficient. 

 

Another part of the FLI suffering from noise is the cross-modal energy 

density element, where the noise is amplified by the high order 

differentiation process. This effect can be found through the serious 
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fluctuation in Fig. 4.3 and Fig. 4.6. 

 

It has to be emphasized that the modal ratio coefficient and cross-modal 

energy density element have different importance in FLI. As shown in Eq. 

(2.6), the important information about the location of external exciting 

force is contained in modal ratio coefficient. This suggests that: (1) the 

noise in modal ratio coefficient should be reduced carefully (in case of 

losing the useful information), but is not serious; (2) the noise in 

cross-modal energy density element is serious (since amplified by high 

order derivative), but has limited effect on the accuracy of FLI. 

 

These suggestions provide a certain advantage of the proposed method 

over the FAT method, which directly based on the fourth order derivative 

of response. Since the noise amplified by high order derivative do not 

contain location information and can be filtered separately in cross-modal 

energy method, the well-designed filter used in FAT can be avoided in the 

new method. 

 

In order to investigate the ability to cope with high level noise 30% noise 

(instead of 3%) was assumed in the operational response, as shown in Fig. 

4.8 and Fig. 4.10. After averaging, the FLI shows slight difference from 

that for 3% noise. This implies that the problem caused by random noise 

can be handled by enough averaging. 
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In another experiment, a noise reduction method was applied in order to 

moderate the noise amplified by high order derivative. Fig. 4.11 and Fig. 

4.12 show the improved FLI. It can be found that the noise in cross-modal 

energy density elements is considerably smoothed with slight change of the 

indicated location. This proves that the amplified noise in cross-modal 

energy density element has limited effects on localizing the force and can 

be filtered out thoroughly without obvious harm to FLI. 

 

 

Figure 4.13 Influence of noise on cross-modal energy method 
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4.3  Experimental test of the cross-modal energy method  

In this section, the experimental set-up, procedure and results are illustrated 

to verify the cross-modal energy method in determining the location of 

exciting harmonic force. 

 

4.3.1 Experimental set-up 

A uniform beam in the fixed-free boundary condition was examined. The 

beam is made of mild steel with the same geometric parameters described 

in numerical solution and numerical experiment. The density and Young’s 

modulus of mild steel were assumed to be  = 7740 kg/m3 and Y = 204 

GPa.  

 

The beam was excited by a concentrated force applied by the shaker (B&K 

Type 4809) powered by power amplifier (B&K Type 2706). The force 

transducer (B&K Type 8203) was connected between the beam and shaker 

with glue. Modal parameters and operational response were measure by 

using laser vibrometer (Polytec PSV-400). The signal obtained from the 

force transducer was amplified by the charge amplifier (B&K Type 2635). 

Fig. 4.14 shows the experimental set-up. 
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(a) Laser vibrometer 

 

 

(b) Beam and excitation 

 

Figure 4.14 Set-up of experimental test  
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In order to calculate the FLI and find the location of exciting force, both 

the mode shapes and operational response are required. The mode shapes 

were measured by exciting the fixed-free beam at the free end with the 

corresponding natural frequencies. The natural frequencies were obtained 

from the peaks in point mobility FRF through modal testing. The velocity 

response was measured under the operational condition, where the beam 

was excited by the shaker at the location to identify. The measurement 

procedure is illustrated by Fig. 4.15. 

 

 

 

(a) Measurement of point mobility FRF 
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(b) Measurement of mode shapes 

 

 

 

(c) Measurement of operational velocity response 

 

Figure 4.15 Measurement procedures in experimental test 
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As shown in Fig. 4.15(a), the excitation and measurement points for 

measuring point mobility FRF were chosen at the location 0.01 m away 

from the free end. White noise was applied to obtain the result in a broad 

frequency band. In Fig. 4.15(b), the beam was excited by the external force 

under the natural frequency r  at the same location to get the Operational 

Detection Shape (ODS) as the corresponding mode shape. The laser 

vibrometer swept from the point 0.02 m away from the fixed end to the one 

0.01 m away from the free end, and the interval between two measured 

points is 005.0 m. In Fig. 4.15(c), the setting of the sweeping range was 

the same as that in Fig. 4.15(b), and the external exciting force was applied 

at the location Lx f 35.0  with the driving frequency f = 300  rad/s, 

while the magnitude 0F  was not under control. The reason that only 7 

mode shapes were measured is that higher mode shapes are with less 

accuracy and in practice only limited mode shapes are available. 

 

In the experiment, the point mobility FRF was approximated by 2H  with 

500-times complex average [6]. The measured mode shapes and 

operational displacement response were measured with 500-times 

magnitude averaging. 

 

4.3.2 Results of experiment 

The point mobility FRF measured by the procedure illustrated in Fig. 
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4.15(a) is shown in Fig. 4.16. 

 

 
 

Figure 4.16 Point mobility FRF using white noise 

 

 

 

The measured natural frequencies obtained from the peaks in Fig. 4.16 are 

listed in Table 4.3 as well as the theoretical values simulated in numerical 

solution. (The values are changed to circular frequencies) 

 

As illustrated in Fig. 4.15(b), the mode shapes were measured by exciting 

the beam with the corresponding natural frequencies. The measured 

mass-normalized mode shapes are shown in Fig. 4.17 with the theoretical 

ones. 
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Table 4.3 Measured natural frequencies with theoretical values 

 

Order  r (Measured, rad/s) r (Theoretical, rad/s) Difference (%) 

1 88  87  1.15 

2 524  543  3.50 

3 1432  1520  5.79 

4 2700  2978  9.33 

5 5036  4924  2.27 

6 8266  7355  12.39 

7 10060  10272  2.06 

 

 

 

 
 

(a) 1st mode shape 
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(b) 2nd mode shape 

 

 
 

(c) 3rd mode shape 
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(d) 4th mode shape 

 

 
 

(e) 5th mode shape 
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(f) 6th mode shape 

 

 
 

(g) 7th mode shape 

 

Figure 4.17 Mass-normalized measured and theoretical mode shapes 
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Under the procedure shown in Fig. 4.15(c), the operational velocity was 

measured and shown in Fig. 4.18.  

 

 
 

Figure 4.18 Measured operational velocity response 

 

On the basis of the measured mode shapes and operational response, the 

modal ratio coefficient rη  was extracted through LSM. All the modal 

ratio coefficients in different modes are listed in Table 4.4. 

 

Table 4.4 Modal ratio coefficients in experimental test 

 

rη  

1st 2nd 3rd 4th  

-1.1962e-6 1.6566e-6 1.8329e-7 -8.6184e-9  

5th 6th 7th 

 
1.5549e-8 -9.0791e-9 -6.0299e-10 
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Since the magnitude of the excitation force was not controlled, in order to 

compare the values with those in numerical solution and numerical 

experiment, the modal ratio coefficients are normalized by 1η , so that the 

proportion of each coefficients can be compared. The normalized modal 

ratio coefficients are shown in Table 4.5. 

 

By using Eq. (2.29), the FLI was calculated, where   was 1. The result is 

shown in Fig. 4.19. The FLI after noise reduction is shown in Fig. 4.20. 

  

 

 

Table 4.5 Normalized modal ratio coefficients in experimental test, 

numerical experiment and numerical solution (fixed-free 

boundary condition) 

 

Order r (ET) r (NE) r (NS) 

1 1 1 1 

2 -1.3849 -1.3764 -1.3765 

3 -0.1532 -0.1411 -0.1414 

4 0.0072 -0.0036 -0.0034 

5 -0.0130 0.0117 0.0113 

6 0.0076 0.0051 0.0051 

7 5.0409e-4 -3.8231e-4 -2.4328e-4 

*ET: Experimental Test; NE: Numerical Experiment; NS: Numerical Solution. 
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* This figure is normalized through division by the maximum value. 

 

Figure 4.19 FLI calculated in experimental test (fixed-free boundary 

condition, Lx f 35.0 , f = 300  rad/s and  = 1)   

 

 

* This figure is normalized through division by the maximum value. 

 

Figure 4.20 FLI calculated in experimetnal test after noise reduction 

(fixed-free boundary condition, Lx f 35.0 , f = 300  rad/s 

and  = 1) 
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Experimental test is to investigate the application of cross-modal energy 

method under experimental environment to localize the exciting harmonic 

force.  

 

Table 4.3 and Fig. 4.17 show the measured natural frequencies and mode 

shapes with their theoretical values. Although it is necessary to point out 

that the set-up of experimental test can be different from theoretical model, 

the results still imply a trend that more errors occur in the measurement of 

higher order modes.  

 

As analyzed in numerical experiment, averaging is effective to handle the 

influence of noise on the calculation of modal ratio coefficient. According 

to Fig. 4.11 and Fig. 4.12, the 500-times averaging largely reduced the 

random noise and produced smooth measured mode shapes and operational 

response. Table 4.5 shows the normalized modal ratio coefficients 

calculated from the well averaged mode shapes and operational response. It 

can be found that the proportion of coefficients, which decides the location, 

is almost the same as that in numerical solution and numerical experiment 

except for the 7th modal ratio coefficient. This verifies the prediction in 

numerical experiment that just enough averaging can satisfactorily handle 

the problem caused by random noise in calculating modal ratio coefficient. 

 

Fig. 4.19 depicts the FLI calculated based on the measurement. Although 
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with the noise in cross-modal energy density elements, the FLI still 

indicates possible location of external exciting force at about L325.0 , 

which is slightly different from real location L35.0 . Fig. 3.20 gives the 

result after reducing the noise in cross-modal energy density elements. This 

improved FLI shows a better indication of the location of exciting force. 

By comparing the FLI in Fig. 4.19 and Fig. 4.20, it could also be illustrated 

that the amplification of noise caused by the derivative in cross-modal 

energy density element has limited effect on the accuracy of FLI. 

 

The reason for the slight difference between the identified location and real 

location may be mainly attributed to the random noise and the connection 

between excitation and beam. The influence of noise has been shown in 

Table 4.5. For the connection, as illustrated in Fig. 4.14, the excitation 

force was connected with beam through a force transducer. The noticeable 

size of transducer, which is about 0.01 m, can make the real location a bit 

different from L35.0 .  

 

4.4  Summary 

In this chapter, LSM was applied to reduce the influence of noise caused by 

the ill-condition of inverse problem in cross-modal energy method. The 

influence of noise in measurement can be shown in obtaining modal ratio 

coefficient and cross-modal energy density element. The results of 
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numerical experiment suggest that the influence of noise on modal ratio 

coefficients can be controlled just by enough averaging and the errors in 

obtaining modal ratio coefficients do not affect the location prediction 

seriously. On the other hand, the amplified noise caused by the derivative 

in cross-modal energy density element has limited effect on the accuracy of 

FLI. And, since cross-modal energy density element does not contain the 

information of the location of exciting force, the noise in cross-modal 

energy density element may be reduced without using carefully-designed 

filter. The cross-modal energy method was successfully verified by 

experimental test. 
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Chapter 5   Conclusions and Suggestions for Future Work 

This chapter concludes the major findings in this research, mentions the 

limitations and proposes the suggestions. 

 

5.1  Conclusions  

This research shows that mechanical vibration energy can be decomposed 

into two parts: diagonal-modal energy density and cross-modal energy 

density. The diagonal-modal energy density represents the modal energy 

distribution, while the cross-modal energy density shows the energy shift 

caused by external exciting force. 

 

As stated in the Section 1.2, the previous study about energy 

decomposition is limited. The energy decomposition based on the vibration 

modes and its physical meaning were first studied in this research. The 

cross-modal energy density represents the effect of external exciting force 

on the energy distribution.  

 

It is also found that the summation of high order cross-modal energy terms 

shows an accumulation phenomenon at the location of exciting force. A 

FLI is constructed based on the discovery of this accumulation 

phenomenon. Both numerical and experimental tests are carried out to test 

the effectiveness of the proposed FLI for force localization. 
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As mentioned in Section 1.1, the amplification of noise caused by high 

order derivative occurs in other force identification methods including FAT 

and the power flow method. The proposed force localization method does 

not depend on the derivative of the vibration signal. Therefore, the 

proposed method may have the ability to cope with higher signal to noise 

ratios than FAT and the power flow methods. 

 

5.2  Limitations and suggestions for future work 

There are a few limitations in this research. One is that a more generalized 

model for the structure and excitation should be applied to examine the 

proposed method. Another one is that the study of the influence of noise 

needs further theoretical analysis about the least number of measured 

points and comparison with other methods.. 

 

In order to generalize the model, there are three possible improvements. A 

plate model can be applied. And, it is also possible to examine the proposed 

method under non-uniform beam model. A further study can be conducted 

on the situation for multiple force excitation. 

 

In order to further investigate the influence of noise, there are two possible 

methods. The first one is to study the relationship between the number of 

measured points and the influence of noise. The other one is to compare the 

effectiveness of proposed method with other force identification methods. 
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kjjk 

Appendix A 

Extraction of amplification coefficients through Least 

Squares Method  

In the numerical experiment and experimental test, the operational 

response and mode shapes are measured at a finite number of discrete 

points. Eq. (2.5), thus, can be rewritten by the measured values 

 

ηWηWWWw  )](    )(  )([)( n21 xxxx       (A.1) 

 

where )(xw  and )(xrW  are both 1m  matrixes. Here, m  is the 

number of measured points and n  is the number of included modes. The 

truncation error is neglected. 

 

In order to minimize difference between the extracted coefficients and the 

theoretical ones, the LSM is applied to obtain the solution. The modal ratio 

coefficients can be estimated as 

 

)()( 1 xTT wWWWη   .                               (A.2) 

 

The amplification coefficients, then, can be calculated through Eq. 

(A.3) 

(A.3) 
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