

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

COMPUTATION PARTITIONING IN MOBILE CLOUD

APPLICATIONS: MODELING, OPTIMIZATION AND

EVALUATIONS

YANG Lei

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

January 2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

Abstract

The proliferation of sensors on mobile devices and ubiquitous network access to clouds

enable many mobile cloud applications such as augmented reality (e.g., Google Glass), voice

recognition (e.g., iPhone Siri), real time translation and so on. Computation partitioning

between the mobile device and the cloud for these applications is an important and chal-

lenging research topic. Although there are works done on some aspects of this study, how

to provide a systematic approach to support the partitioning for various models of applica-

tions and systems is yet to be addressed. In this thesis, we classify computation partitioning

into different models by considering two dimensional properties: application dimension and

system dimension. On application dimension, we do partitioning for two types of applica-

tions: computation dependent application and computation independent application. On

system dimension, we do the partitioning for two types of systems: single user system and

multiple users system. In this thesis, we focus on the study of three models: 1) computation

independent application and single user system, named as computation offloading, 2) com-

putation dependent application and single user system, named as single user computation

partitioning, 3) computation dependent application and multiple user system, named as

multiple user computation partitioning. The thesis contains three parts, which tackle the

most urgent and significant issues in terms of the thee models. The details are as follows.

First, we study the simplest model of computation partitioning, where the application is

composed of independent computations and the partitioning decision is done for one single

user. We take the RFID tracking as a case study, and demonstrate that computation par-

titioning can significantly improve the application performance. In particular, we consider

the RFID system that attaches the RFID reader on the moving object, and deploys passive

RFID tags in the environment. The moving object collects the noisy RFID readings, and

perform continuous estimation of its position in real time. Traditional approaches such as

Particle Filter (PF) can achieve high accuracy, but require a large amount of computations

i

on the device. The approaches are hard to be implemented on some mobile devices that

are constrained by the computing capabilities and battery. Other existing approaches such

as Weighted Centroid Localization (WCL) are cheap in computational cost, but yield bad

accuracy especially when the object’s speed is high. Thus, we propose an adaptive approach

to achieve accuracy and energy efficiency. Our approach can adaptively choose costly PF

and cheap WCL according to the estimated speed of the object, and adaptively partition

the computations between the mobile device and infrastructure servers or clouds based on

the quality of network connections. We evaluate our solution through real world experi-

ments, and show that our proposed approach with computation partitioning outperforms

other approaches in terms of both accuracy and efficiency.

Second, we study the model of single user computation partitioning, where the appli-

cation is composed of dependent computations and the partitioning decision is done for

one single user. We found that most existing works on computation partitioning pertains

to this model. We tackle two issues that are important but not solved in existing works.

One issue is partitioning of data streaming application. In this work, we aim at optimizing

the partition of a data stream application between mobile and cloud so that the applica-

tion has maximum speed/throughput in processing the streaming data. To the best of our

knowledge, ours is the first work to study the partitioning problem for mobile data stream

applications, where the optimization is placed on achieving high throughput of processing

the streaming data rather than minimizing the makespan of executions in other applica-

tions. We propose a framework to provide runtime support for the dynamic partitioning and

execution of the application. Different from existing works, the framework not only allows

the dynamic partitioning for a single user but also supports the multiple tenancy service

invocation in the cloud to achieve efficient utilization of the underlying cloud resources. The

framework is designed on the elastic cloud fabrics for better scalability. The optimization

of the partitioning for each single user is by using genetic algorithm. Through both exten-

sive simulations and experiments on real world applications, we show that our method can

achieve more than 2X better performance over the execution without partitioning.

The other issue is computation partitioning under dynamic mobile cloud environments.

Existing works assume that the computational and data transmission cost of each part

of the application remains the same as the application is running. This assumption does

not hold in dynamic mobile cloud environments, where the device and network connection

status may fluctuate, and thus affects the computational and transmission cost. In this case,

ii

the one time partitioning of the application may yield significant performance degradations.

Therefore, we consider updating the partition periodically during the course of application

execution, which is named as computation repartitioning in our thesis. We propose a

framework for run time computation repartitioning in dynamic mobile cloud environments.

Based on this framework, we take the dynamic network connection to clouds as a case study,

and design an online solution, Foreseer, to solve the mobile cloud application repartitioning

problem. We evaluate our solution based on real world data traces that are collected in a

campus WiFi hotspot testbed. The result shows that our method can achieve significantly

shorter completion time over previous approaches.

Third, we study the most complex model of computation partitioning, where the appli-

cation is composed of dependent computations, and the partitioning decision is made for

multiple users. In this model, the multiple users compete for the computing resources shared

by the users on the cloud. The users’ partitioning decisions are dependent with each other.

To achieve high system performance, the users’ partitioning decisions should be considered

jointly with the scheduling of computations on the shared cloud resources. To the best of

our knowledge, we are the first to study the Multiple user Computation Partitioning Prob-

lem (MCPP). We show that MCPP is different from and more difficult than the classical

job scheduling problems. In classical job scheduling problems, the computations are allowed

to schedule onto arbitrary resources including the mobile devices and cloud resources, while

in MCPP the users computations can not be scheduled to other usersdevices. We design an

offline heuristic algorithm, namely SearchAdjust, to solve MCPP. We demonstrate through

benchmarks that SearchAdjust outperforms the classical job scheduling approaches by 10%

on average in terms of application delay. Based on SearchAdjust, we also design an online

algorithm for MCPP that can be easily deployed in practical systems. We validate the

effectiveness of our online algorithm using real world load traces.

iii

iv

Publications

Journal Paper

1. Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji, “Multi-user Computation

Partitioning for Latency Sensitive Mobile Cloud Applications”, submitted to IEEE

Transaction on Computers (TC)

2. Lei Yang, Jiannong Cao, Weiping Zhu, Shaojie Tang, “Accurate and Efficient Ob-

ject Tracking based on Passive RFID”, submitted to IEEE Transaction on Mobile

Computing (TMC)

3. Lei Yang, Jiannong Cao, Shaojie Tang, Di Han, and Neeraj Suri, “Run Time Appli-

cation Repartitioning in Dynamic Mobile Cloud Environments”, submitted to IEEE

Transaction on Cloud Computing (TCC)

4. Weiping Zhu, Jiannong Cao, Yi Xu, Lei Yang, and Junjun Kong, “Fault-Tolerant

RFID Reader Localization Based on Passive RFID Tags”, accepted by IEEE Trans-

action on Parallel and Distributed Systems (TPDS)

5. Chao Ma, Jiannong Cao, Lei Yang, Jun Ma, and Yanxiang He, “Effective Social

Relationship Measurement based on User Trajectory Analysis”, Journal of Ambient

Intelligence and Humanized Computing (JAIHC), Vol.5, No.1, pp.39-50, 2014

6. Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, Alvin Chan “A Framework

for Partitioning and Execution of Data Stream Application in Mobile Cloud Comput-

ing”, ACM SigMetrics Performance Evaluation Review (PER), Vol.40, No.4, pp.23-32,

March, 2013

7. Lei Yang, Jiannong Cao, “Computation Partitioning in Mobile Cloud Computing: A

Survey”, ZTE Communication. Vol.11, No.4, pp.08-17, Dec., 2013

v

Conference Paper

1. Mike Jia, Jiannong Cao, Lei Yang, “Optimal Offloading of Concurrent Tasks for

Computation-Intensive Applications in Mobile Cloud Computing”, accepted by IN-

FOCOM 2014 Workshop on Mobile Cloud Computing

2. Lei Yang, Jiannong Cao, Shaojie Tang, Tao Li, and Alvin Chan, “A Framework for

Partitioning and Execution of Data Stream Application in Mobile Cloud Computing”,

in Proc. of IEEE International Conference on Cloud Computing (CLOUD), pp.794-

802, 2012

3. Lei Yang, Jiannong Cao, Weiping Zhu, and Shaojie Tang, “A Hybrid Method for

achieving High Accuracy and Efficiency in Object Tracking using Passive RFID”, in

Proc. of IEEE International Conference on Pervasive Computing and Communications

(PerCom), pp.109-115, 2012

4. Weiping Zhu, Jiannong Cao, Yi Xu, Lei Yang, and Junjun Kong, “Fault-Tolerant

RFID Reader Localization Based on Passive RFID Tags”, in Proc. of IEEE Interna-

tional Conference on Computer Communications (INFOCOM), pp.2183-2191, 2012

5. Chao Ma, Jiannong Cao, Lei Yang, Jun Ma, Tao Li, and Junjun Kong, “An Approach

to Measuring User Relationship Based on Location Trail”, in Proc. of Joint Conference

on Hormonious Human Man Evironment (HHME), pp.146-153, 2011

vi

Acknowledgements

Foremost, I would like to express my deepest gratitude to my supervisor Prof. Jian-

nong Cao for his systematical training of my Ph.D study and research. He has immense

knowledge, and show great enthusiasm to pursue impacts in research. I learn a lot from

him not only on how to think, write, and present, but also on how to do things carefully

and quickly. Besides an outstanding researcher, he is also an excellent leader and a good

person. His talent in leadership and strong personality influence me in many aspects of my

life. Working with him is the most beneficial and valuable experience in my life.

I would like to thank my wife Junjie Hou for her endless love during my days to pursue

the Ph.D degree. In most time, we were not staying together, but she was always there,

listening to my experiences, encouraging me and dreaming beautiful days with me. It was

her who takes away loneliness from and brings precious happiness to my Ph.D life.

My sincere thanks also goes to Prof. Neeraj Suri for offering me opportunity of four

months visiting research at Technical University Darmstadt (TUD), Germany. I thank the

colleagues Stefan, Habib, Tsveti, Thorsten, Daniel, Hamza, Jesus and all other members in

Deeds group at TUD, for their help in my research and life during my visiting.

I thank my colleagues Xuefeng Liu, Vaskar Raychoudhury, Joanna Siebert, Weiping

Zhu, Tao Li, Chisheng Zhang, Yang Liu, Gang Yao, Wei Feng, Jingjing Li, Jie Zhou, Miao

Xiong, Junjun Kong, Chao Yang, Xin Xiao, Liang Yang, Chao Ma, Jun Ma, Yin Yuan,

Zongjian He, Guanqing Liang, Peng Guo, Yaguang Huangfu, Wanyu Lin, Junhao Zheng,

Rui Liu and all other members of our research group at Hong Kong PolyU that I cannot

vii

enumerate here. We discuss research ideas, and share happiness and sadness in our daily

lives. Thanks for their helps.

Last but not least, I would like to thank my parents and my elder brother. Their love

is the most powerful strength that drives me to move forward.

viii

Table of Contents

Abstract i

Publications v

Acknowledgements vii

Table of Contents ix

List of Tables xii

List of Figures xiv

List of Abbreviations xix

1 Introduction 1

1.1 Mobile Cloud Computing . 1

1.2 Computation Offloading and Partitioning 3

1.2.1 Computation Offloading v.s. Computation Partitioning 3

1.2.2 Single User Computation Partitioning v.s. Multiple User Computa-
tion Partitioning . 4

1.3 Motivation of Our Work . 6

1.4 Contributions of the Thesis . 8

1.4.1 Contributions in Computation Offloading 8

1.4.2 Contributions in Single User Computation Partitioning 10

1.4.3 Contributions in Multiple User Computation Partitioning 11

1.5 Organization of the Thesis . 12

2 Literature Review 15

2.1 Computation Offloading . 15

2.2 Single User Computation Partitioning . 17

2.2.1 Application Modeling . 19

2.2.2 Profiling . 20

2.2.3 Optimization . 21

2.2.4 Distributed Execution . 23

2.3 Multiple User Computation Partitioning . 24

ix

2.4 Challenging Issues in Computation Partitioning 24

2.4.1 Energy Efficiency . 24

2.4.2 Mobile Access Management . 25

2.4.3 Workload Management . 27

2.4.4 Performance Modeling and Monitoring 29

3 Computation Offloading for Accurate and Efficient RFID Tracking 31

3.1 Overview . 31

3.2 Background . 35

3.3 Models . 37

3.3.1 System Model . 37

3.3.2 RFID Sensing Model . 37

3.4 The Hybrid Method for RFID Reader Tracking 40

3.4.1 Overview of Our Method . 40

3.4.2 Weighted Centroid Localization (WCL) 42

3.4.3 Particle Filtering . 46

3.4.4 Adaptive Algorithm Selection of WCL and PF 48

3.4.5 Computation Offloading . 50

3.5 Performance Evaluation through Simulations 53

3.5.1 Performance Comparison between WCL and Particle Filter 53

3.5.2 The Hybrid Method of WCL and PF 54

3.5.3 The Offloading Strategy . 55

3.6 Experiments . 58

3.6.1 Indoor Wheelchair Tracking . 59

3.6.2 LRV tracking in Hong Kong MTR depot 61

3.7 Summary . 63

4 Computation Partitioning for Data Stream Applications 65

4.1 Overview . 65

4.2 Preliminaries . 67

4.2.1 Mobile Data Stream Applications . 68

4.2.2 System Model . 69

4.2.3 Design Objectives . 70

4.3 Architectural Design . 72

4.3.1 Adaptivity of Partitioning . 73

4.3.2 Distributed Execution . 74

4.3.3 Multi-tenancy CaaS . 76

4.4 Optimal Partitioning Algorithm . 77

4.5 Numerical Evaluation . 82

4.5.1 Methodology . 82

4.5.2 Results . 83

4.6 Experimental Evaluation . 86

4.6.1 QR-code Recognition . 86

4.6.2 Experiment setup and Results . 86

4.7 Summary . 88

x

5 Computation Repartitioning in Dynamic Mobile Cloud Environments 91
5.1 Overview . 91
5.2 Terminologies and Application Repartitioning Framework 94

5.2.1 Terminologies . 94
5.2.2 Computation Repartitioning Framework 96

5.3 Case Study: Compuation Repartitioning under Network Bandwidth Fluctu-
ations . 101
5.3.1 Network Measurements . 101
5.3.2 Overview of Solution . 103
5.3.3 Network Status Prediction . 106
5.3.4 Compuation Repartitioning . 111

5.4 Evaluation . 116
5.4.1 Evaluation Setup . 116
5.4.2 Network Status Prediction . 118
5.4.3 Compuation repartitioning . 121

5.5 Summary . 126

6 Multiple User Computation Partitioning 127
6.1 Overview . 127
6.2 System model and Problem Formulation . 129

6.2.1 Application model . 129
6.2.2 Single user computation partitioning 132
6.2.3 Multiple users computation partitioning 133
6.2.4 Uniqueness of MCPP . 136

6.3 SearchAdjust . 138
6.3.1 Overview of SearchAdjust . 138
6.3.2 Details of SearchAdjust . 140
6.3.3 Theoretical Analysis . 147

6.4 Benchmark Offline Solutions . 148
6.4.1 List Scheduling (LS) based Solutions 148
6.4.2 Hybrid Method of SearchAdjust and List Scheduling 149

6.5 Online Solution . 150
6.6 Evaluation . 153

6.6.1 Evaluation of Offline Solutions . 154
6.6.2 Evaluation of Online Solution . 159

6.7 Summary . 161

7 Conclusions and Future Research 165
7.1 Conclusions . 165
7.2 Future Research . 168

Bibliography 171

xi

xii

List of Tables

2.1 Literature review on computation partitioning 18

3.1 Summary of terms and their definitions . 38

3.2 Local and remote computation cost . 51

3.3 Efficiency comparison between WCL and PF 54

3.4 Performance comparison between the three methods 56

3.5 Experiment results for wheelchair tracking 60

4.1 Configuration in each simulation . 83

4.2 Local computational time of components . 87

4.3 Transmission time between the components 87

4.4 Partitions under different bandwidths . 88

5.1 Application parameters . 118

6.1 Mathematical notations in this chapter . 130

6.2 Parameters setting up for online algorithm 159

xiii

xiv

List of Figures

1.1 System model: (a)(b)(c) are multiple user model, and (d) are single user model 5

1.2 The classification of models for computation partitioning 9

1.3 An outline of the contributions of this thesis 9

2.1 General Components of a Computation Partitioning System 17

3.1 RFID tracking . 32

3.2 System model . 38

3.3 Detection count and sensor model measured by experiments. 39

3.4 Work flow of the hybrid method . 41

3.5 The location error of WCL depending on the tags density 46

3.6 The data transmission between RFID device and server if particle filter is

executed remotely . 52

3.7 Simulation environment and results . 55

3.8 Network bandwidth trace . 57

3.9 Comparison of various methods in terms of accuracy and efficiency 58

3.10 Algorithm running time varies depending on the network bandwidth 59

3.11 The deployment of RFID system for indoor wheelchair navigation 59

3.12 The deployment of RFID system at one MTR depot 61

4.1 The operations involved in image based object recognition 68

4.2 The model for data stream applications . 69

4.3 Overview of the application framework . 72

4.4 Cooperation between the mobile client and the application master 74

4.5 Distributed dataflow execution . 75

4.6 Numerical evaluation results . 89

xv

4.7 FBP implementation of QR-code recognition 90

4.8 QR-Code recognition performance . 90

5.1 Architectural model of mobile cloud systems 94

5.2 Illustration: a) computation partitioning; b) computation repartitioning . . 96

5.3 Functional components for computation repartitioning 96

5.4 Program tree, legal partitions and the corresponding execution order. . . . 97

5.5 Execution cost in migration . 99

5.6 Network bandwidth fluctuation in temporal and spatial domain 102

5.7 Histogram of network bandwidth distribution respectively in stationary and

mobile scenarios . 103

5.8 Flow chart of Foreseer . 104

5.9 Examples for speed alignment . 109

5.10 How to calculate migration cost . 112

5.11 Execution progress . 114

5.12 Nodes sequence for NextNodeOf() . 115

5.13 APs deployment and Mobility Graph. 117

5.14 Program trees used in evaluation . 117

5.15 Performance of network status prediction varies depending on the walking

speed of user . 119

5.16 Performance of network status prediction varies depending on Hth 120

5.17 Performance of network status prediction varies depending on the data size 120

5.18 The completion time varies depending on: a)the predictable duration; b) Hth 122

5.19 The completion time varies depending on: a)the walking speed; b) application

workload . 123

5.20 Performance comparison between four methods: CloneCloud, Foreseer (Online

Algorithm), Foreseer (Offline Algorithm) and Local Execution without

partitioning. 125

6.1 The functional modules of image based object recognition 131

6.2 System model of multi-user computation partitioning 133

6.3 An example of SCPP solution . 142

6.4 Reward function . 146

6.5 Evaluation results of SearchAdjust . 162

xvi

6.6 Evaluation results of γ-Greedy . 163

6.7 One selected wikipedia load trace containing 3000 time slots. 163

6.8 The performance of online algorithm in term of the metrics: application delay

and cloud server utilization . 164

6.9 The performance of online algorithm in term of the metrics: SLA violation 164

xvii

xviii

List of Abbreviations

ADR: Application Delay Ratio

AP: Access Point

AR: Augmented Reality

CCR: Communication to Computation Ratio

DAG: Directed Acyclic Graph

DF: data flow

FBP: Flow Based Programming

HEFT: Heterogeneous Earliest Finish Time

HFS: Hybrid Flow Shop

LS: List Scheduling

MCC: Mobile Cloud Computing

MCP: Maximum Clique Problem

MCPP: Multiple user Computation Partitioning Problem

MEDLS: Minimum Extra Delay List Scheduling

MILP: Mixed Integer Linear Programming

PF: Particle Filter

PRL: Performance Resource Load

RFID: Radio Frequency Identification

SCPP: Single user Computation Partitioning Problem

SLA: Service Level Agreement

SPM: Sampled Pattern Matching

TSPHC: Task Scheduling Problem in Heterogeneous Computing

WCL: Weighted Centroid Localization

WSN: Wireless Sensor Network

xix

xx

Chapter 1

Introduction

This research investigates the requirements and presents the modeling, optimization

and evaluation of computation partitioning in mobile cloud applications. In this chapter,

we first describe the background of mobile cloud computing in Section 1.1. After that, we

explain the motivation of our work in Section 1.3. In Section 1.4, we summarize the main

contributions of this thesis. Finally, we outline the organization of this thesis in Section 1.5.

1.1 Mobile Cloud Computing

Cloud computing is an important transition and paradigm shift in IT service delivery

driven by economies of scale. It provides a computing paradigm that enables a shared pool

of virtualized, dynamically configurable, and managed computing resources to be delivered

on demand to customers over the Internet and other available networks. As such and

with the pay-as-you-go business model, cloud computing will also lead to changes and

transformation of many industries. On the other hand, with the advances in technologies

of wireless communications and portable devices, mobile computing has become integrated

into the fabric of our every day life. With increased mobility, users need to run stand-alone

and/or to access remote mobile applications on mobile devices.

The application of cloud services in the mobile ecosystem enables a newly emerging

mobile computing paradigm, namely Mobile Cloud Computing (MCC). MCC offers great

opportunities for mobile service industry, allowing mobile devices to utilize the elastic re-

sources offered by the cloud. It is predicted that MCC services will be the platforms of

1

choice of IT industry for the next 20 years and generate huge revenue. There exist three

approaches: 1) extending the access to cloud services to mobile devices; 2) enabling mobile

devices to work collaboratively as cloud resource providers; 3) developing next generation

mobile applications by leveraging cloud computing technologies, e.g., by offloading the com-

puting resources required by applications on mobile devices to the cloud so we can create

applications that far exceed traditional mobile device capabilities.

In the first approach, users use mobile devices, often through web browsers, to access

software/applications as services offered by cloud. The mobile cloud is most often viewed

as a Software-as-a-Service (SaaS) cloud, meaning that computation and data handling are

usually performed in the cloud. The second MCC approach makes use of the resource at

individual mobile devices to provide a virtual mobile cloud, which is useful in an ad hoc

networking environment without the access to Interne cloud [HCL10] [Mar09]. The third

MCC approach uses the cloud for storage and processing for applications running on mobile

devices. The mobile cloud is most considered as a Platform-as-a-Service (PaaS) cloud, which

is leveraged to augment the capability of mobile devices through offloading the computation

and data storage from the mobile devices [CBC10] [CIM+11].

In this thesis, we focus on the third approach, which sets the future trend and represents

the major effort in research. We aim to model, design and implement mobile cloud systems

that can achieve adaptive and elastic application execution between the mobile devices

and the cloud. This is motivated by the fact that many mobile devices like the iPhone

have been equipped with various kinds of sensors and multimedia capabilities. We foresee

that a lot of new mobile applications such as multimedia applications, object recognition,

location-based social networks and augmented reality, will become highly demanded. By

moving the computation to the cloud, these advanced mobile applications which could not

be accommodated before due to the lack of significant computing capability and energy

power of mobile devices, will be enabled and enjoyed by mobile users.

2

1.2 Computation Offloading and Partitioning

With great benefits of the third MCC approach, we face the problem of computation

partitioning which allocates the computations of the application between the mobile device

and the cloud, such that the execution cost is minimized. We classify the computation

partitioning by considering two dimensional properties: application dimension and sys-

tem dimension. On the application dimension, we consider the dependency relationship

between the computations involved in the application. We use two terminologies, com-

putation offloading and computation partitioning, respectively in term of the partitioning

of computation independent application and computation dependent application. On the

system dimension, we consider whether the partitioning decision is for one single user or for

multiple users. We use the terminologies, single user computation partitioning and multiple

user computation partitioning, respectively in terms of the partitioning for single user and

for multiple users. The detailed illustrations about the classification are as follows.

1.2.1 Computation Offloading v.s. Computation Partitioning

From the application dimension, we have two types of applications: computation in-

dependent application, where the application contains a set of computational modules that

have no data dependence between each other, and computation dependent application, where

the application is divided into a set of computational modules that have data dependence

between each other. In computation independent application, we treat each computational

module separately and make the decision for each computational module that whether it

should be executed on the mobile device or on the cloud. Note that the partitioning decision

of each computational module is independent with each other. In computation dependent

application, there exists data communications among the computational modules. We need

to make a optimal global decision for all the computational modules, that which modules

should be executed on the mobile devices and which modules should be executed on the

cloud. Partitioning of computation dependent application usually is more difficult than

partitioning of computation independent application.

3

Without loss of generality, throughput the following of this thesis, the terminology

computation partitioning particularly indicates the partitioning of computation dependent

application. We use the terminology computation offloading to indicate the partitioning of

computation independent application. There exist some applications that are not easy to

be divided into multiple computational modules. The whole application is treated as one

computational module. The partitioning problem is to decide whether the whole application

is executed on the device or on the cloud. We classify the partitioning of these undivided

applications into the category of computation offloading.

1.2.2 Single User Computation Partitioning v.s. Multiple User Compu-
tation Partitioning

From the system dimension, we have two models: single user computation partition-

ing and multiple user computation partitioning. In single user computation partitioning,

we consider the computation partitioning problem for each single user. The partitioning

decisions for the users are independent of each other. The user decides its optimal parti-

tioning decision by itself. In multiple user computation partitioning, the users’ partitioning

decisions are dependent on each other due to their competition on some shared resources

such as the network bandwidth, cloud computing resources and so on. The allocation of

these shared resources to the users and the partitioning decisions for the users should be

considered jointly. In multiple user computation partitioning, the partitioning decisions are

made based on the global information from all the users, with the aim of achieving the min-

imum of the total execution cost of all the users. We found that most state-of-arts [CBC10]

[CIM+11] [ZKJG09] [GRJ+09] [LWX09] [KAH+12] [RSM+11] [BSPO03] [YCY+13] pertain

to single user computation partitioning, while the multiple user partitioning model is first

studied in our recent works [YCCJ13].

Fig.1.1 illustrates the difference between single user computation partitioning and multi-

ple user computation partitioning. In single user computation partitioning, each user makes

its own partitioning decision. The optimization of partitioning can be performed at various

places of the mobile cloud system, i.e., on the device (Fig.1.1a), in the wireless network

4

S
P

P

P

... S ...P

P

P

S ...P

P

P

P
&
S

...
(a) (b)

(c) (d)

Fig. 1.1: System model: (a)(b)(c) are multiple user model, and (d) are single user model

(Fig.1.1b), and on the cloud(Fig.1.1c). Note that the block with ’P’ indicates the partition-

ing function. The block with ’S’ represents scheduling of the offloaded computations from

mobile users onto the shared cloud resources.

In multiple user computation partitioning, the partitioning and scheduling functions are

coupled together. The users’ partitionings are dependent on each other. This model is

suitable for the scenario where the users may compete for certain resources shared by the

users, e.g., the servers on the cloud. Due to the competition, the performance of one users’

partitioned execution not only depends on the partitioning itself, but also depends on the

availability of the resources. Thus, we need to consider the profiling information from all the

users, and make partitioning decisions that can guarantee the optimal average performance

over the users rather than the optimal performance for each single user. Fig.1.1d shows that

the partitioning is performed at the cloud side for all the users together with the scheduling

function. The block ’P&S’ in Fig.1.1d indicates the partitioning function coupled with

scheduling.

5

1.3 Motivation of Our Work

Computation partitioning between the mobile device and cloud is an important and chal-

lenging research topic in mobile cloud computing. There is significant complexity involved

in ensuring that the application can achieve adaptive and elastic computation partitioning

between the mobile device and the cloud under dynamic environments and variable loads.

Although some related issues are well solved, there are still many problems lacking suf-

ficient investigation. In this section, we identify the research problems that need further

investigation.

First, from the standpoint of end users, we need to optimize the trade-off between the

local computation and data transmission. The mobile cloud application collects data from

the mobile devices, and execute complex computations on the data. To reduce the resource

consumption on the device, we can move some complex computations from the mobile de-

vices onto the cloud. Although it speeds up the execution and reduces the computational

cost on the mobile device as well, it incurs extra cost in data transmission. It is important

to balance the trade-off between the reduced computational cost and the extra data trans-

mission cost. We name this trade-off as computation offloading. More importantly, the

optimal trade-off should be treated in practical applications together with the application

functions development. Thus, we take the RFID tracking as one typical application, and

apply the principle of the tradeoff into the RFID tracking algorithm design.

Second, if we consider complex applications, the trade-off between local computation

and data transmission becomes more challenging. Complex application usually can be

composed of a set of computations. The computations have data dependence between

each other. The trade-off for each computation is dependent on each other. We need

to achieve a global optimal trade-off for all the computations involved in the application.

We name this global trade-off as computation partitioning. We find that few works study

computation partitioning for data stream applications that are extremely popular in today’s

applications due to the proliferation of sensors attached to the mobile devices. Although

some works have been done for the partitioning of streaming application, they focus on the

6

optimization of make-span rather than the data processing speed/throughput. Throughput

is more significant in practical systems for the streaming application. It is urgent to develop

new models and partitioning approaches for the data streaming application.

Third, if we consider the time property, the mobile cloud environment including the

user’s device status and network connection to the cloud can change with time during

the course of application execution. We name it as dynamic mobile cloud environment.

The partitioning of application should be updated adaptively depending on the changing

of the dynamic mobile cloud environment. Most existing works assume that the users’

environment remains static during the course of the application execution. They have

one time partitioning when the application starts to run. The application sticks to the

partitioning until the application ends. The one time partitioning approach yields significant

performance degradation in dynamic mobile cloud environments. We need to develop online

partitioning approaches under dynamic mobile cloud environments that can update the

partitioning periodically during the course of application execution. To distinguish with

previous works, we name it as computation repartitioning.

Fourth, from the standpoint of system, it is important for cloud providers to offer

high performance partitioned execution to a large number of mobile users. The number

of users can scale up and down very quickly. The users’ partitioning should be able to

adapt to variant number of input users and the provisioned cloud resources. Therefore, it is

necessary to study the multiple user computation partitioning, where there exist a number

of users who request for partitioned execution and compete for cloud resources. Existing

works on computation partitioning study single user computation partitioning. These works

assume that there exists no competition for resources at the cloud among the users and the

cloud always has enough resources to execute the computations immediately when they

are offloaded to the cloud. However, this assumption does not hold for large scale mobile

cloud applications. In these applications, the offloaded computations may be executed with

certain scheduling delay on the cloud due to the competition for cloud resources. Single

user partitioning that does not take into account the scheduling delay on the cloud may

7

yield significant performance degradation. We need to study multiple user computation

partitioning, which considers the partitioning of each user’s computation jointly with the

scheduling of computation onto the shared cloud resources.

In this thesis, we will analyze aforementioned problems in detail and propose corre-

sponding solutions for them.

1.4 Contributions of the Thesis

The contributions of this thesis mainly lie in modeling, optimization and evaluation for

computation partitioning in mobile cloud applications. As shown in Fig.1.2, in this thesis,

we classify computation partitioning into different models by considering two dimensional

properties: application dimension and system dimension. On application dimension, we do

partitioning for two types of applications: computation dependent application and com-

putation independent application. On system dimension, we do the partitioning for two

types of systems: single user system and multiple users system. In this thesis, we focus on

the study of three models: 1) computation independent application and single user system,

named as computation offloading, 2) computation dependent application and single user

system, named as single user computation partitioning, 3) computation dependent applica-

tion and multiple user system, named as multiple user computation partitioning. The thesis

contains three parts, which tackle the most urgent and significant issues in terms of the

three models.

In the following, we will illustrate our contributions in detail one by one.

1.4.1 Contributions in Computation Offloading

Computation offloading is the simplest model of computation partitioning, where the

application is composed of independent computations and the partitioning decision is done

for one single user. In this part, we aim to optimize the trade-off between the local compu-

tation and data transmission. The trade-off should be integrated with the development of

application, and validated in real world systems. Existing works on computation offload-

ing focus on the models and algorithm design for one given application. However, in our

8

Application

System

Computation

Independent

Computation

Dependent

Single User

Multiple User

Part 1 Part 2

Part 3

Fig. 1.2: The classification of models for computation partitioning

Introduction

Background and Literature Review

Single User

Computation Partitioning

Multiple User

Computation Partitioning

Computation Offloading for

Accurate and Efficient RFID

Tracking

Computation

Partitioning for Data

Stream Applications

Computation

Repartitioning in

Dynamic Mobile

Cloud Environments

Multi-user Computation

Partitioning for Latency

Sensitive Applications

Conclusion and Future Work

Part 1 Part 2 Part 3

Computation

Offloading

Fig. 1.3: An outline of the contributions of this thesis

work, we study how to apply the principle of computation offloading into the application

development, and validate this principle through real world systems.

In particular, we take the RFID tracking as a case study. In the case study, we consider

the RFID system that attaches the RFID reader on the moving object, and deploys passive

9

RFID tags in the environment. The moving object collects the noisy RFID readings, and

perform continuous estimation of its position in real time. Traditional approaches such as

Particle Filter (PF) can achieve high accuracy, but require a large amount of computations

on the device. The approaches are hard to be implemented on some mobile devices that

are constrained by the computing capabilities and battery. Other existing approaches such

as Weighted Centroid Localization (WCL) are cheap in computational cost, but yield bad

accuracy specially when the object’s speed is high. Thus, we propose an adaptive approach

to achieve accuracy and energy efficiency. Our approach can adaptively choose costly PF and

cheap WCL according to the estimated speed of the object, and adaptively offload intensive

computations required by PF onto nearby infrastructures or clouds based on the quality of

network connections. We evaluate our solution through real world experiments, and show

that our proposed approach with computation offloading outperforms other approaches in

terms of both accuracy and efficiency.

1.4.2 Contributions in Single User Computation Partitioning

In single user computation partitioning, application is composed of dependent computa-

tions and the partitioning decision is done for one single user. We found that most existing

works on computation partitioning pertain to this model. We study two problems that are

important and not solved in existing works. The problems tackle the complexity involved in

computation partitioning respectively in application dimension and system dimension. One

problem is computation partitioning for data streaming application. The other problem is

computation repartitioning for dynamic mobile cloud environment.

For the first problem, we aim at optimizing the partition of a data stream application

between mobile and cloud such that the application has maximum speed/throughput in pro-

cessing the streaming data. To the best of our knowledge, it is the first work to study the

partitioning problem for mobile data stream applications, where the optimization is placed

on achieving high throughput of processing the streaming data rather than minimizing the

makespan of executions in other applications. We propose a framework to provide runtime

support for the dynamic partitioning and execution of the application. The framework is

10

designed on the elastic cloud fabrics for better scalability. The optimization of the partition-

ing for each single user is by using genetic algorithm. Through both extensive simulations

and experiments on real world applications, we show that our method can achieve more

than 2X better performance over the execution without partitioning.

For the second problem, we study computation repartitioning under dynamic mobile

cloud environments. Existing works with the one time partitioning of the application yield

significant performance degradations in dynamic mobile cloud environments. Therefore,

we consider application repartitioning problem which considers updating the partition pe-

riodically during the course of application execution. We first propose a framework for

run time application repartitioning in dynamic mobile cloud environments. Based on this

framework, we take the dynamic network connection to clouds as a case study, and design

an online solution, Foreseer, to solve the mobile cloud application repartitioning problem.

We evaluate our solution based on real world data traces that are collected in a campus

WiFi hotspot testbed. The result shows that our method can achieve significantly shorter

completion time over previous approaches.

1.4.3 Contributions in Multiple User Computation Partitioning

Multiple user computation partitioning is the most complex model of computation parti-

tioning, where the application is composed of dependent computations, and the partitioning

decision is made for multiple users. In this model, the multiple users compete for the com-

puting resources shared by the users on the cloud. The users’ partitioning decisions are

dependent with each other.

We particularly study the Multiple user Computation Partitioning Problem (MCPP).

We consider the partitioning of multiple userscomputations together with the scheduling of

offloaded computations on the cloud resources. Instead of pursuing the minimum applica-

tion completion time for every single user, we aim to achieve minimum average completion

time for all the users, based on the number of provisioned resources on the cloud. We show

that MCPP is different from and more difficult than the classical job scheduling problems.

11

In classical job scheduling problems, the computations are allowed to schedule onto arbi-

trary resources including the mobile devices and cloud resources, while in MCPP the users

computations can not be scheduled to other users’ devices. We design an offline heuris-

tic algorithm, namely SearchAdjust, to solve MCPP. We demonstrate through benchmarks

that SearchAdjust outperforms both the single user partitioning approaches and classical job

scheduling approaches by 10% on average in terms of application delay. Based on SearchAd-

just, we also design an online algorithm for MCPP that can be easily deployed in practical

systems. We validate the effectiveness of our online algorithm using real world load traces.

1.5 Organization of the Thesis

The structure of this thesis is shown in Fig.1.3. Chapter 1 is the introduction to this

thesis. Chapter 2 reviews related works in the literature. The main body of this thesis is

divided into three parts from Chapter 3 to Chapter 6. The details are presented as follows.

In the first part, we present our work in computation offloading. In Chapter 3, we study

how to use computation offloading into the development of applications. We take RFID

tracking as an typical application, and design an accurate and efficient RFID tracking

method using computation offloading.

In the second part, we present our work in single user computation partitioning. This

part consists of two chapters. In Chapter 4, we study the computation partitioning for data

stream applications. We propose a framework for partitioning and execution of data stream

applications that includes the design of the architecture and algorithms. In Chapter 5, we

study the computation repartitioning in dynamic mobile cloud environments. We design

an online solution, Foreseer, for computation repartitioning that updates the partitioning

periodically during the course of application execution.

In the third part, we present our work in multiple user computation partitioning. In

Chapter 6, we study the multiple user computation partitioning for latency sensitive mobile

cloud applications. We propose both offline and online algorithms to solve the problem,

and evaluates the algorithms through benchmarks.

12

Finally, we conclude the thesis and discuss the directions of future works in Chapter 7.

13

14

Chapter 2

Literature Review

In this chapter, we present the literatures review on computation partitioning in mobile

cloud applications. As introduced in Section 1.4, the contribution of this thesis contains

three parts, computation offloading, single user computation partitioning, and multiple user

computation partitioning. We discuss the related literatures in terms of the three parts

from Section 2.1 to Section 2.3. In particular, most existing literatures on computation

partitioning pertains to the single user computation partitioning. We spend most spaces to

discuss the single user computation partitioning in details. In Section 2.4, we present the

open issues on computation partitioning. The purpose of this chapter is to provide readers

a broad view of the state of the arts and open issues that the researchers are focusing on in

this area.

2.1 Computation Offloading

The mobile cloud system contains three parts, mobile devices, wireless access and clouds.

The mobile devices can offload some computations of the application to the clouds. Ob-

viously, offloading can reduce the computational cost (e.g., execution time or energy con-

sumption) of the mobile device. Meanwhile, offloading causes additional overhead in data

transmissions that are required by the remote execution on clouds. If we treat the applica-

tion as a black box which has computational cost if executed locally, and data transmission

cost if executed remotely, we can decide whether the application should be executed locally

or remotely. However, this level of offloading decision for the application is too coarse.

15

For some complex applications which can be divided into a set of parts, we need to make

offloading decisions for every part of the application.

Now we are interested in the question: what affects the offloading decisions. First, the

offloading decision depends on the device information such as the execution speed of the

device, and the workloads on the device when the application is running. For example, if the

device computes very slowly and the aim is to reduce the execution time, it is better to of-

fload the computations onto clouds. Second, the offloading decision depends on the network

bandwidths. This factor affects the cost in data transmission for remote execution. For in-

stance, if the bandwidth is high, the cost on data transmission will be low. In this case, it is

better to offload the computation onto clouds. Third, the partitioning decision also depends

on the application itself. The application requires computations and data transmission if

offloaded to the cloud. We name the ratio between the amount of computations (in term of

execution instructions) and data transmitted as Compute to Communication Ratio (CCR).

If CCR is high, this application is compute intensive, and is better to be executed remotely;

otherwise the CCR is low, the application is data intensive, and may be inherently suitable

to be executed locally. Unlike the device and network information, CCR is a static factor

that influences the offloading decision. Different applications normally have various CCR

values. The device information and network information usually change with time. The

collection and estimation of device and network parameters in real time is called profiling.

Profiling is a challenging issue, and will be discussed in next section. With profiling infor-

mation about the device and network parameters, we will compare the computational cost

of local execution and data transmission cost caused by remote execution, and choose the

less costly one.

Computation offloading is the most widely used technique to solve the resource poverty

problem of mobile devices in mobile cloud computing [WGKN08] [YOC08]. Karthik et. al

[KL08] argues that cloud computing could potentially save energy for mobile user, but not

all applications are energy efficient when migrated to the cloud. It depends on whether

the computation saved due to offloading outperforms the communication cost. According

16

Mobile
Devices Cloud

Profiling

Optimization (of partitioning decisions)

Network

Distributed Execution

Application
Modelling

Fig. 2.1: General Components of a Computation Partitioning System

to the cost model, the offloading will bring benefit to energy saving if the application

has a large computation-to-communication ratio and runs in a networking environment

with good connectivity. M. Satyanarayanan [SBCD09] presents a computing model that

enables a mobile user to exploit VMs to rapidly instantiate customized service software on

a nearby cloudlet and uses the service over WLAN. A cloudlet is a trusted, resource rich

computer or a cluster of computers well connected to the Internet and available for use by

nearby mobile devices. Rather relying on a distant cloud, the cloudlets eliminate the long

latency introduced by wide-area networks for accessing the cloud resources. As a result, the

responsiveness and interactivity on the device are increased by low-latency, one-hop, high

bandwidth wireless access to the cloudlet.

2.2 Single User Computation Partitioning

In this section, we introduce the literatures in terms of four general components in

single user computation partitioning: application modeling, profiling, optimization and

distributed execution. Application modeling aims to represent the dependence relationship

among the divided computational modules in the application. Partitioning of the application

depends on a few factors such as the device capability and workload, network bandwidth,

and the application itself. The device information and network bandwidth are dynamic, and

can vary with time in practical systems. Profiling is to collect and estimate the dynamic

17

Table 2.1: Literature review on computation partitioning

App. Modeling Profiling Optimization Distributed Exec.

Proc.
Call
Model

Service
Invoc.
Model

Data
Flow
Model

Predi.
based
Pro-
filing

Model
based
Pro-
filing

Online Offline Client
Server
Comm.

VM
Mi-
gra-
tion

Mobile
Agent

MAUI
[CBC10]

√ √ √ √

CloneCloud
[CIM+11]

√ √ √ √

Odessay
[RSM+11]

√ √ √ √

Giurgiu
et.al.
[GRJ+09]

√ √ √ √

Zhang
et.al
[ZKJG09]

√ √ √ √

Yang
et.al
[YCY+13]

√ √ √ √

Spectra
[FPS02]

√ √ √ √

Chroma
[BSPO03]

√ √ √ √

Scavenger
[Kri09]

√ √ √ √

information of device and network connections to the cloud. Given the profiling information,

the core part of the system is to optimize the partitioning of the application, such that the

execution cost for each single user is minimized. According to the partitioning results, the

system will launch an distributed execution of the application between the mobile device

and the cloud. Fig.2.1 illustrates the three components a computation partitioning system.

Table 2.1 summarizes the literatures on the four components. In the following, we will

describe the details in term of the four components

18

2.2.1 Application Modeling

Application model refers to two meanings: 1) the programming model according to

which the programmers develop the application; 2) the mathematical model that represents

the structure of the application. The former one is to provide programming abstractions for

the application development, while the latter one provides the formal representation of the

application that is to be partitioned. The latter one usually depends on the programming

model. Thus, we describe the application model from the perspective of programming.

According to our survey, there exist three application models: procedure call model, service

invocation model, and dataflow model. In the following, we discuss the models and related

literatures.

Procedure call model. In [CBC10] [CIM+11] [KAH+12], the application is repre-

sented by a set of procedures. Each procedure can call other ones. Thus, we can use a

procedure call tree or graph to model the structure of the application. In the tree/graph,

the node represents the procedure, and the edge represents the call relationship. The

programmers write the application by the principle of procedure oriented paradigm. The

partitioning problem is to decide for each procedure whether it should be offloaded or not.

Procedure call model is used for the procedure/method level partitioning of application.

The partitioning of application is fine-grained. The model can be applied to represent most

applications.

Service invocation model. Under service invocation model, the application is com-

posed of a set of services. We usually use a service invocation graph to model the application,

in which the node indicates the service, and the edge indicates the service The program-

mers need to program the application using the service oriented methodology. [ZKJG09]

and [GRJ+09] pertain to the application model. [ZKJG09] decomposes the application with

of a set of ’weblets’. The weblet is actually a kind of web service, and can be executed at

either the mobile side or the cloud side. [GRJ+09] build their partitioning system based

on a distributed service computing platform, named as AlfredO [RRA08], which have been

traditionally used to decompose and couple Java application into software modules.

19

Note the service invocation model and procedure call model decompose the application

at different granularity. Service invocation model supports the module-level partitioning

of application, and decomposes the application according to the functional modules. The

decomposed modules are loosely coupled. The procedure call model decomposes the ap-

plication according to the structure of the code. The decomposed procedures are tightly

coupled with each other, which brings programming difficulties in distributed execution.

, Compared with procedure call model, service invocation model is more coarse-grained.

However, from the perspective of representation methodology for the application, service

invocation model and procedure call model are the same. They use very similar graph to

model the application.

Dataflow model. Dataflow is suitable to model most media applications that have

continuous in-coming data to process. In this model, the application is composed of a set of

dependable stages. Data flows between the stages. The output data of the stage becomes

the input data of the next stage. Each stage performs one particular function onto the

in-coming data. Dataflow can be represented with a directed acyclic graph in which each

node is the stage, and each edge indicates the data dependence between the two connecting

stages. In [RSM+11] and [YCY+13], the application to be partitioned is modeled as dataflow

graphs. Fig.3 shows the dataflow graph of the face recognition application.

2.2.2 Profiling

The profiling is the estimation of the execution cost of each part of the application.

There exists two profiling approaches: prediction based profiling and model based profiling.

Prediction based profiling is estimating the execution cost from the records of execution

cost in past execution instances. Execution instance is defined as one-time execution of the

application. In prediction based profile, we record the execution cost in every execution

instance, and predict the current execution cost from the historical records. Model based

profiling is estimating the execution cost based on a model or function, which takes the

application information such as the workload of the computations and size of data trans-

mission between two dependent computations, device status and network status as input,

20

and the execution costs as output. In model based profiling, we do not directly measure

the execution cost. Instead we measure the device and network status, and calculate the

execution cost from these measurements.

Odessay [RSM+11] uses the prediction based profiling approach. The execution time of

each computation is updated once the application is executed again. The execution time

in the latest execution instance is used as the cost to determine the optimal partition. The

most recent works on computation partitioning [ZKJG09] [KAH+12] have the same profiling

approach with Odessay. Prediction based profiling approach avoids the overhead of real time

measurement of network and device status. The accuracy depends on the freshness of the

latest execution instance.

MAUI [CBC10] uses the model based profiling approach. MAUI [CBC10] estimates the

energy consumption of each part of the application based on a model that represents the

energy consumption as a function of the CPU cycles. The model is learned offline through

real measurements. The authors of MAUI evaluate the accuracy of the model, and show

that the error produced by the model is less than 6%. MAUI [CBC10] estimates the remote

execution time of each part of the application through an online measurement of the network

bandwidth. It estimates the bandwidth by observing the size of data transmission in recent

offloading and the time spent in the transmission. If there is no offloading recently, the

system transfers one 10K file to the server to test the network bandwidth. CloneCloud

[CIM+11] also pertains to model based profiling approach. However, the paper does not

discuss how to estimate device status and network bandwidth in real time. Model based

profiling approach requires the online estimation of the device and network status. This

online estimation may cause additional overhead on mobile devices. However, it has better

accuracy than the prediction based profiling approach, especially in the dynamic mobile

cloud environment.

2.2.3 Optimization

The computation partitioning requires the optimization of partitions based on the profil-

ing execution cost of each part of the application. The objective is to determine an optimal

21

partition to minimize the total execution cost. The execution cost can be in terms of exe-

cution time, data processing throughput, energy consumption. MAUI [CBC10] aims to op-

timize the energy consumption on devices. CloneCloud [CIM+11] and ThinkAir [KAH+12]

support the optimization of either the execution time or the energy consumption, which

depends on the programmers’ choices. Odessay [RSM+11] aims to optimize the makespan

for data streaming application, while [YCY+13] first propose to optimize the processing

speed/throught for streaming application. [ZKJG09] has a hybrid optimization objective

that can be customized by the end users.

According the time that the optimization is performed, we classify existing literatures

into two categories: offline optimization and online optimization. Offline optimization de-

termines the optimal partitions for various execution conditions at offline phase. Execution

condition includes the device computing capability and network bandwidth. The execution

conditions and corresponding optimal partitions are stored in the database. During online

phase, one of the partitions is selected from the database according to the estimation of cur-

rent execution condition. Online optimization solves the optimization on the fly according

to the profiling cost. The online approach has good accuracy, but it brings overhead caused

by the optimization. [CIM+11] and [ZKJG09] adopts the offline approach, while [CBC10]

[RSM+11] [YCY+13] use the online approach.

For the online approach, the place of optimization can be at the mobile side, or the cloud

side. Most existing works [CBC10] [CIM+11] [BKMS13] [RSM+11] place the optimization

on the mobile device, while [YCY+13] supports the optimization on the cloud side. The

optimization on the mobile device does not require the profiled parameters transmission

over network. It causes additional compute overhead on the device. The optimization

at the cloud side can avoid the compute overhead on the device, but requires continuous

connection with the mobile device to transmit the profiled parameters. It is suitable for the

partitioning of complex applications.

22

2.2.4 Distributed Execution

We classify the approaches of distributed execution into three categories: client-server

communication, VMs migration, and mobile agent. In client-server communication method

requires the pre-installation of the program codes on the cloud servers. When one function

of the application is decided to offload onto the cloud, this function is usually performed

through the protocol of Remote Procedure Call (RPC) or Remote Method In-vocation

(RMI). [FPS02] and [BSPO03] use the client-server communication method to implement

the partitioned execution. The method’s disadvantages are that it is prone to fail under

network disconnection. The codes on the cloud/server side need to be changed from the

original codes on the mobile device. The deployment of the partitioning system is not

convenient.

[CBC10] [CIM+11] [SBCD09] [KAH+12] propose to implement the partitioned execution

by Virtual Machine migration. At the mobile side, the application is running on a virtual

machine. When some part of the application is decided to offload onto the cloud, the whole

virtual machine would migrate to the cloud side. The virtual machine would migrate back

to the mobile side, when the part of application is finished on the cloud. The method does

not require pre-installation of application on the cloud side. However, the VM migration

could incur more overhead than remote procedure call method, due to the transmission of

execution state of the virtual machine such as the memory and registers state.

Scavenger [Kri09] is the early work that uses the approach of mobile agent to implement

the remote execution. It provides a platform that can help users easily programming and

de-ploy partitioning enabled applications. Dynamic deployment of application is realized

in this approach. However, it needs agent management that causes overhead on the mobile

devices.

23

2.3 Multiple User Computation Partitioning

Most existing works pertain to single user computation model [CBC10] [CIM+11] [ZKJG09]

[GRJ+09] [LWX09] [KAH+12] [RSM+11] [BSPO03] [YCY+13]. A critical assumption be-

hind this model is that the resources shared by the users are always enough, such that

the allocation of the resources does not influence the execution of application that has been

partitioned in advance. For instance, it is assumed that the cloud always has enough servers

to accommodate the computations offloaded from the mobile device. Suppose the metric

to be optimize is execution time. The offloaded computations should be executed on the

servers without any delay; otherwise, the performance of the partitioned execution will be

sacrificed. This assumption holds in the cases where the clouds have nearly unlimited com-

puting resources, or the number of mobile users that can offload computation onto clouds

do not exceed to the clouds’ capacity. The single user model is suitable to apply into the

system that serves for small or predictable number of users. The cloud always guarantees

optimal partition for each single user.

Multiple user computation partitioning model is first proposed in our previous work

[YCCJ13]. The multiple user model applies into the scenario that the workloads/computations

from mobile users exceed the capacity of the cloud, such that the users need to compete for

the resources at the cloud side. In this scenario, instead of achieving optimal performance

for each single user in multiple user model, the objective is to achieve the optimum of the

overall performance. We argue that single user model is suitable to be used in large scale

system with unpredictable workloads. The coupling between partitioning and allocation of

shared resources makes the partitioning problem under single user model more challenging.

2.4 Challenging Issues in Computation Partitioning

2.4.1 Energy Efficiency

As the mobile device has increasing processing capability, the energy consumption be-

comes the major issue for mobile applications. Most device vendors look for approaches

to increase the battery life. Besides inventing new battery technologies, there are a lot of

24

methods to save the energy consumption at the system and application layer. Computation

partitioning is considered as an important approach to save energy consumption on devices.

By using the approach, the components of the application that consumes a lot energy, e.g.,

compute-intensive algorithms, are offloaded onto clouds. However, the difficulty in this

approach is to design effective mechanisms to monitor and profile the energy consumption

for the applications on mobile devices. Designing the models for the estimation of energy

consumption in data transmission is not easy as well. Both the profiled information and

models are critical to partitioning the application for energy saving.

We need to design the light-weight and energy efficient supporting softwares for the

partitioning of application. The costly function in a computation partitioning system is

optimization. The optimization can be performed offline. The partitions that are generated

from the offline optimization are stored on the mobile devices. Whenever the execution

environment changes, the application will be configured with the optimal partition from all

the back-up partitions. The offline optimization can save the energy overhead. [?] is the

early work that proposes to implement the offline optimization. Another implementation

method for energy saving is to perform the optimization on the cloud. [YCY+13] proposes

a partitioning framework that implements the optimization on clouds by using the genetic

algorithm.

Other researchers look for techniques to optimize the energy consumption in data trans-

mission. Offloading computations onto clouds require transmissions of the input data of the

computations. The issues on energy consumption in data transmission need to be tackled

in computation partitioning. E. Uysal Biyikoglu et.al [UBG04] design an energy efficient

data transmission mechanism. The mechanism monitors the network quality, and transmit

the data based on network quality. If the network quality is good, data is transmitted;

otherwise, no data is transmitted for saving energy.

2.4.2 Mobile Access Management

In the mobile cloud partitioning system, the mobile access networks such as 3G/4G cel-

lular networks and Wireless Local Area Networks (WLANs) are important part to connect

25

the mobile devices and the cloud. The quality or bandwidth of the user’s connection to

clouds will directly determine the partitioning of the application.

Network intermittence

One practical issue is how to partition the application under intermittent network con-

nections. As described in last section, the application is usually partitioned based on a cost

model that contains computational cost respectively on mobile side and cloud side, and

offloading cost, e.g. data transmission cost. Most works assume that the offloading cost

does not change during the run time of application. This is not practical in mobile envi-

ronment. In reality, the network connectivity can fail due to wireless network holes, which

is defined as places where there is no signal or signal is too weak to maintain a connection.

Even when the network is connected, the throughput or bandwidth can fluctuate because

of user’s mobility. The fluctuant network status leads to varying offloading cost.

C. Shi al.et. [SAZN12] consider the intermittent connectivity of the network, they

solve the problem by assuming the future network connectivity is perfectly known. They

designed an offline algorithm to calculate the optimal partition given the future network

bandwidth. In practical systems, we need to design online algorithm to partition the ap-

plication [YCT+13]. The algorithm can update the partition of application from time to

time during the course of the application execution, according to the prediction of future

network status. The prediction of network bandwidth is also a critical issue we need to

tackle.

Several previous works predict future network status based historical mobility observa-

tions. The mobility prediction based approaches have been used in other applications and

systems. The first application domain is in WSN data delivery. [KLW+09] achieve gains in

routing performance using a mobility prediction algorithm. [LWK+10] study the problem

of delivery data from data source nodes to the mobile sink. It predicts the nodes that the

mobile sink is likely to pass by, and then stashing data on these in advance. There exists as

well a lot of early works on mobility prediction in cellular/Wifi networks that aim to improve

the network hand-off performance by predicting the next cells/APs [LBC98] [LBC06].

26

Network resource allocation

Another issue is network resource/bandwidths allocation for multiple user computation

partitioning. Consider that the mobile users offload computations onto clouds through

the same access networks. The resources or bandwidths of the networks are limited. We

need to allocate the resources to the mobile users. The user who is allocated with more

bandwidth has less offloading cost, while the user allocated with less bandwidth will has high

cost in computation offloading. The users’ partitioning decisions are dependent with each

other because of their competition for the shared network resources. Thus, the partitioning

problem needs to be solved jointly with the network resource allocation.

The network resources may contain both the cellular networks and WLANs. The re-

search problem can be in different ways. One ways is that, given the cellular network and

WLANs resources, we need to allocate the cellular and WLAN networks resources to mobile

users, such that the overall system performance is maximized. Another way is that, given

the mobile users, we need to determine how much each type of network resources should be

leased by the application provider, and how to allocate the resources to mobile users, such

that the performance with lowest cost is achieved.

2.4.3 Workload Management

Workload management is another important issue in computation partitioning. The

work-load refers to the computations offloaded from mobile users onto clouds. The mobile

cloud application needs to have the ability to server a large number of mobile users. When

the application scale increases, how to manage the offloaded workload from mobile users at

the cloud clusters is essential to the cloud resource usage efficiency and system performance.

In single user computation partitioning model, the workload management issue is unrelated

to the computation partition of each user. Traditional workload scheduling and balancing

mechanisms [HGSZ10] [FWG10] [MSY12] can be used to tackle the problem. Next we

discuss the workload management issue in multiple user computation partitioning.

27

Workload scheduling in centralized cloud

In multiple user computation partitioning, the workload management is correlated with

the application partition of each user. To achieve good system performance, it is better to

consider the computation partitioning and cloud workload management together. We first

considers the problem under a simple system model [27]. The application is modeled as a

sequence of dependent tasks. The mobile users run the same application. On the centralized

cloud there exists a set of server nodes that accommodate the workload (tasks) offloaded

from the users. The objective is to schedule the tasks for all the users onto their mobile

devices and the cloud servers. Each user’s device can only execute the task from itself, and

it can not execute tasks from other users. The problem is abstracted as a job scheduling

problem which is similar to but more difficult than traditional job scheduling problems in

parallel computing.

Workload scheduling in distributed clouds

The workload scheduling in multiple user computation partitioning becomes more chal-

lenging when we consider that the cloud consists of geographically distributed data centers.

Under this model, there exists a set of mobile users from different regions. Each user has a

partitioned execution of the application. The cloud contains a set of data centers that are

distributed in different regions. Each data center has certain capacity in term of comput-

ing resources. For each user, offloading the same component onto various data centers can

lead to different offloading cost, since the network connection to data centers has different

delay and/or bandwidth. We need to partition the application for the mobile users, and

as well allocate the offloaded computation onto the computing resources at different data

centers. We have two types of workload scheduling, i.e, inter data center scheduling, and

intra data center scheduling. Both the two scheduling should be considered jointly with the

partitioning of application for each user, such that the overall system performance, e.g., the

application execution time, is maximized.

Several recent works [GCWK12] [WLZ+12] [WLC12] in cloud computing have been done

28

to solve the scheduling problem for distributed clouds. P. Gao et.al [GCWK12] develops an

optimization framework to schedule the data accessing requests/workloads from users onto

distributed data centers. The scheduling problem is studied with the aim to minimize the

energy consumption on the clouds. Y. Wu et.al [WLZ+12] studies the scheduling of Video-

on-Demand accessing re-quests/workloads onto the geographically distributed clouds. The

scheduling problem is studied together with the video placement problem. The objective

is to minimize the operational cost while satisfying the delay constraints for the video

accessing requests. [WLC12] also studies the requests scheduling problem for live video

streaming application. However the existing works [GCWK12] [WLZ+12] [WLC12] can not

be applied into the workload scheduling in computation partitioning systems, because the

scheduling and partitioning are coupled in multiple user computation partitioning and can

not be treated separately.

2.4.4 Performance Modeling and Monitoring

An important issue we face is how to design the performance model for various mo-

bile cloud applications. We consider three different types of mobile cloud applications,

content delivery centric application, sensing delivery centric application and user interac-

tive application. These types of applications have different performance requirements from

the perspective of both end-users and systems. We need to design an accurate performance

model which can illustrate both the end-user and system related performance requirements.

To solve the issue involved in performance model development, we have investigated a

lot of works and ISO standards [Raj91] in the area of software engineering that proposed

appropriate performance models for various software systems. In Jain’s model [Raj91], the

system is supposed to have three outcomes for a given request. It may perform the request

correctly or incorrectly, or it may refuse to perform the request. Three concepts on the

performance have been correspondingly defined: 1) speed, 2) reliability, and 3) availability.

It is needed to develop the performance model of mobile-cloud partitioning system by adding

more practical factors such as SLA, time behavior of the system, utilization, capacity and

recoverability and so on.

29

Another issue we face is how to detect the anomalies or performance degradations for

mo-bile-cloud partitioning system. In traditional Internet applications, anomaly detection

is done by manually analyzing the logs [NKSH09]. This method is not feasible for large-

scale cloud system. Some researchers apply pattern recognition approach [KM09] [LB99] to

automate the analysis of massive volumes of system logs. Since complex computational cost

in the analysis, this approach is not feasible for the system that requires real time anomalies

detection and recovery. Besides, the logs analysis based methods are not enough to detect

the anomalies or performance degradations for mobile cloud application. Usually, the per-

formance of mobile cloud application depends on more complex factors which could include

the failures or inefficiency at mobile devices, wireless networks as well as clouds. Collecting

logs from mobile devices for analysis may not be possible due to high cost or privacy issues.

Faced with these difficulties, we need to develop suitable anomly/performance degradation

detection approaches for mobile cloud applications.

To solve the anomly/performance anomaly detection problem, one possible way is to use

a hybrid method that integrates the logs analyzing technique and real time performance

monitoring technique. At the cloud side, we detect anomalies by analyzing the system

logs, while at the mobile side we will design lightweight performance monitors. We need to

design network protocols for the interactions between mobile and cloud for the performance

monitoring.

30

Chapter 3

Computation Offloading for
Accurate and Efficient RFID
Tracking

In this chapter, we study how to apply computation offloading into the design of ac-

curate and efficient RFID tracking algorithm. This chapter is organized as follows. We

present an overview of this work in Section 3.1, and the background on RFID localization

and tracking in Section 3.2. We describe the system model and RFID sensing model in

Section 3.3. Section 3.4 presents the hybrid method for object tracking. The computation

offloading for RFID tracking application is described in Section 3.4.5. The simulation re-

sults is presented in Section 3.5. In Section 3.6, we validate the performance results of our

method by implementing it in two real systems. We conclude this chapter in Section 3.7.

3.1 Overview

As one of the most challenging problems in the area of mobile service, localization has

been extensively studied over the past decade. Compared with existing solutions using

laser scanners, cameras, or ultrasound, Radio Frequency Identification (RFID) technique

has attracted a lot of interest in recent years due to its wide adoption by the industry.

According to the types of the used tags, the techniques are classified into two categories,

31

(b) reader tracking(a) tag tracking

reader

tag

Fig. 3.1: RFID tracking

active tags based technique [NLLP03][HJG06][HJG07][YTH04] and passive tags based tech-

nique [HBF+04][JPB09][GM10][HLL07][PH09][SV07][VZ08][LCS06]. Passive tags are more

attractive than active tags because of its low cost and convenience for large-scale deploy-

ments [BT08].

In this chapter we study the problem of location tracking using passive RFID tags. For

convenience, the tags refer to the passive RFID tags throughout this chapter. RFID based

location tracking can be classified into tag tracking and reader tracking [NLLP03]. In tag

tracking as illustrated in Fig.3.1(a), the object to be located is attached with a tag. The

RFID readers are deployed in the environment. As the object moves in the environment, the

readers collect the data. The readers can either deliver the data to a centralized server that

calculates the position, or cooperate with each other to estimate the position by themselves.

The positioning result is then returned to the object. In reader tracking as illustrated in

Fig.3.1(b), each object to be located carries an RFID reader as well as an antenna integrated

with the reader. The RFID tags are deployed in the environment. The reader obtains the

data and calculate its own position. Compared with tag tracking, reader tracking reduces

infrastructure cost by using cheap tags instead of expensive readers. We focus on reader

tracking in this chapter.

The RFID reader tracking has three challenges. First, we focus on the tracking of

32

mobile objects rather than locating of stationary objects. It is more challenging because

the algorithm to estimate the object’s current location must be executed before a deadline

in order to meet the accuracy requirement. Second, the RFID readings gathered from real

world are noisy. It means that each tag in the reading range of the RFID reader is not

certainly but possibly to be detected. Detection failure of tags is normal. This assumption

is demonstrated in Section 3.3 by the RFID sensing model measured from experimental

data. Third, in the RFID reader based tracking system, the continuous and real time

estimation of object’s location on the embedded RFID device requires very computation

efficient tracking algorithm.

Existing methods for tracking mobile objects using noisy RFID readings are often based

on using Kalman filter, and Particle Filter (PF) [HBF+04][GM10][SV07][VZ08], also known

as Sequential Monte Carlo Method [TFBD00]. Kalman filter is suitable to be used in lin-

ear system with Gaussian noise. However, in many practical RFID tracking systems, the

location evolves none-linearly over time, and the noise may not be Gaussian. In these none-

linear none Gaussian systems, particle filter can get more accurate solution than Kalman

filter. In particle filter, the object’s position is represented by a set of weighted samples

(called particles). Two procedures, sampling and filtering, are executed repeatedly. During

the sampling, the particles are sampled randomly from an area which is usually predicted

according to the motion model of the mobile object. During the filtering, each particle is

first assigned a weight according to the sensing model. The particles with low weight are

then filtered out. However, continuous execution of particle filter suffers from high com-

putational cost on a resource constrained RFID enabled device. Other existing approaches

[BT08] [BGGT07] [BHE10] such as Weighted Centroid Localization (WCL) are cheap in

computational cost, but yield bad accuracy specially when the object’s speed is high.

In this chapter, we propose a hybrid method for tracking mobile objects with high

33

accuracy and low computational cost. This method particularly uses two critical techniques.

First, it adaptively chooses costly PF and cheap WCL according to the estimated speed of

the object. If the mobile object’s velocity is less than a threshold, WCL is used; otherwise,

the particle filter is used. This is because of our observation that, when the object’s speed

is low, WCL is able to achieve at least the same accuracy with particle filter while costing

much less computation. Oppositely, when the object’s speed is high, the accuracy of WCL

is much worse than particle filter. Furthermore, the motion pattern of the moving object

(e.g. orientation) becomes stable under high velocity. This stable pattern could be taken

advantage of to improve the sampling efficiency, if particle filter is used, and thus to reduce

the computational cost. The complementary property of PF and WCL in term of accuracy

and efficiency motivates us to integrate them together.

Second, our hybrid method can adaptively offload intensive computations required by

PF onto nearby infrastructures or clouds based on the quality of network connections. We

evaluate our solution through real world experiments, and show that our proposed approach

with computation offloading outperforms other approaches in terms of both accuracy and

efficiency. We summarize the contribution of this chapter as follows:

• We propose a hybrid method for object tracking using noisy passive RFID readings.

Compared with existing particle filter method, it saves a lot of computational cost

while achieving the same accuracy.

• We design a fast and cheap method to estimate mobile object’s velocity from the

RFID readings. It is not necessarily applied in our proposed hybrid method for object

tracking, but can be used separately in other application scenarios which require the

measurement object’s speed.

34

• Besides extensive simulations, we have validated the method in two real systems,

indoor wheelchair tracking and LRVs (Light Rail Vehicles) tracking in one of Hong

Kong MTR depots.

3.2 Background

There is a variety of approaches to RFID-based localization, which can be characterized

by the type of devices that have been used. One is RFID localization based on active

tags. Most of the early systems use active tags due to its similarity in principle with

other RF localization approaches, such as WLAN and WSN localization. Lionel et al.

[NLLP03] present LANDMARC that uses kNN technique for localizing unknown active

tags. Reference tags with known positions are deployed regularly on the covered area.

The approach consists of selecting the k nearest reference tags from the unknown tag by

comparing the signal strength of tags at unknown location with signal strengths received

at reference node. Similarly by deploying reference active tags and readers in environment,

Huang et al. [HJG06] utilize Bayesian inference to calculate the target position. The RF

propagation parameters are firstly calibrated using on-site reference tags, and then the

distance between the targeted tag and the readers is estimated with a probabilistic RSS

model. Wang et al [HJG07] applies a different method to estimate the distance between

the reader and target tag. For localizing a tag, the readers start with lower power level

and gradually increase the transmission power until they receive the response from the tag.

The distance between a reader and a tag is then estimated by averaging the distances from

the reader to all reference tags detected in the same power level. The simplex method is

finally used to compute the target location given its distances with readers. Yamano et al.

[YTH04] demonstrates how support vector machine could be used to learn robot location.

Feature vectors are generated out of signal strength information gained from active RFID

35

tags.

Another type of RFID localization approach is based on passive tags. This approach

becomes widely used for target localization due to its cheapness. However, unlike the

active tags, passive tags do not provide any information about signal strength. Also, the

communication between the passive tags and the reader is more sensitive to environment

settings such as the tagged materials. Therefore, localization using passive RFID tags is

generally more challenging. Han et al. [HLL07] present localization scheme for an indoor

mobile robot using passive RFID tags. A triangular pattern of arranging the RFID tags on

the floor is adopted to reduce the estimation error of the conventional square pattern. Park

et al. [PH09] propose a method using read-time of IC tags to reduce the localization error

of an RFID navigation system. Both of these two literatures assume a binary sensor model

and do not consider detection failure of passive tags.

Hahnel et al. [HBF+04] first obtained a probabilistic sensor model for their RFID reader

which indicates the likelihood of detecting an RFID tag given its relative position to the

antenna. This model is used to localize the tags and then to localize a mobile antenna

given the tag map. Many literatures in localization with passive tags follow in this way

[HBF+04][GM10][SV07][LCS06]. Vorst et al. [HBF+04] designed a method to learn a

tag detection sensor model in a semi-autonomous fashion. Joho et al. [JPB09] proposed

probabilistic sensor model that characterizes the received signal strength as well as the tag

detection in order to achieve a higher modeling accuracy. However, in these literatures, the

RFID reader used to localize object has a large reading range, as long as several meters,

making it difficult to obtain a close-grained sensor model. The positioning accuracy is

limited by this coarse-grained sensor model.

36

3.3 Models

3.3.1 System Model

The RFID reader based tracking system contains three components: RFID reader, a

number of passive RFID tags, and the environment infrastructures, which are shown in

Fig.3.1(b). The reader is attached on the object to be tracked. The infrastructures include

the servers deployed in the area where the object is moving. The RFID reader can commu-

nicate with the server through wireless networks such as WLAN. We assume that the RFID

reader is integrated with a circularly polarized antenna. Fig.3.2 illustrates the geometrical

relationship of the reader and tags. The reader has a height of H above the ground, and a

circular reading range tr. The number of passive tags deployed in the tracking area is K.

Each tag’s location, denoted as Ti, is stored in advance at the reader in association with its

tag ID. Whenever the reader detects a tag, it can access the tag’s location through the tag

ID. The target moves with a velocity of v. The RFID readings are obtained in a frequency

of f .

It is assumed that detection failure could happen even when the tag appears in the

reader’s reading range. (Actually this failure always happens in real word because of either

the hardware failure or wireless environment inference). Let RFID reading at time k be

zk = {rik}Ki=1 , where rik indicates whether or not tag i has been detected at the time k;

if it has been detected, then rik = 1; otherwise rik = 0. The objective is to estimate the

continuous location of the mobile object using the uncertain RFID reading. The following

section describes a RFID sensing model in order to capture this uncertainty of RFID reading.

3.3.2 RFID Sensing Model

Previous works [HLL07][PH09] in RFID localization assume that a perfect binary sensor

model exists. The reader is capable of detecting the tags that lie within its sensing range

37

Fig. 3.2: System model

Table 3.1: Summary of terms and their definitions

Term Definition

p(r) RFID sensor model

tr Reading range of RFID reader

f Observation frequency of the RFID reader

K The number of tags

Ti The location of i-th tag

vth Threshold of the velocity

Nth Threshold of the maximum duration

rik Detection status of tag i at time k.If detect,

rik = 0; otherwise,rik = 1

zk The RFID reading at time k, zk = {rik}Ki=1

lk Location of target at time k

βi The spatial weight of tag i

λt(k) Temporal weight in Extended WCL. k is

historical time, t is current time

and not the tags beyond it. In reality, the successful detection of a specific tag depends on

a large number of parameters: 1) relative position of a tag from the reader; 2) absorbing

and reflecting materials in the environment; 3) noise existing in the environment. These

parameters lead to uncertainty of successful detection of tags by the reader. To ensure

that our algorithm is as true to reality as possible, we assume a probabilistic sensing model

by Equation (3.1), which is motivated by the existing sensor model proposed in WSN

38

Fig. 3.3: Detection count and sensor model measured by experiments.

[BHE08][ZC04].

p(r) =

λe
−βrα , r < tr

0, r > tr
(3.1)

All tags that lie beyond the distance tr have a probability of 0 to be detected and all

tags lying within the range tr has a detection probability that exponentially decreases as

the distance r increases. λ, α and β are parameters that measure detection probability

when a target is within a distance of r.

We conduct an experiment to obtain the sensor model in a classroom with enough

open space. The RFID device is RRU1861, an UHF RFID integrated with a circularly

polarized antenna. The reader is placed at a height of 35cm from the floor while the tags

are uniformly distributed onto the floor, which is portioned into 11×11 grids with each tag

occupying a grid. The size of grid is 7.5 cm. The detection count of each tag among a total

of 2000 scans is recorded. It is found that distance is much more significant in affecting

the successful detection than orientation of the tag with respect to the antenna. That is

39

why only distance is considered in our model. The measurement is repeated by rotating

the antenna a bit each time and the results are averaged over different orientations of the

antenna with respect to fixed tags. Fig.3.3 shows a visualized probabilistic sensor model.

Through a model based fitting using the experimental data, we also obtain the parameters

in Equation (3.1), α = 2.3374 , β = 0.0011, λ = 0.7921.

3.4 The Hybrid Method for RFID Reader Tracking

3.4.1 Overview of Our Method

The objective in this chapter is to design an accurate and efficient method for object

tracking using the passive RFID. Tracking is continuous localization of the moving object.

The frequency of localization is usually determined by the application. Given the local-

ization frequency, the accuracy is measured by the average localization error over the time

slots. The efficiency is measured by the average computational time of the localization algo-

rithm in one time slot. The computation time should be less than the required localization

period; otherwise, it can not satisfy the real time property of the tracking application. The

less the computation time is, the better efficiency the algorithm has. Traditional methods in

tracking mainly use two methods, namely Weighted Centroid Localization (WCL) and Par-

ticle Filter (PF). WCL is cheap but yields bad accuracy in many application scenario, while

PF has good accuracy, but it costs much computational cost. We aims to design a RFID

tracking method which has better performance than traditional WCL and PF methods.

Our method includes two simple ideas. In the following, we briefly explain them and

illustrate the intuition behind them.

•Integration of WCL and PF. We study the accuracy of WCL and PF when they

are used in RFID reader tracking. We observe that, one one hand, the accuracy of WCL

depends on the velocity of the object. If the velocity is relatively slow, WCL has satisfactory

40

Speed Estimation

Algorithm
Selection

Network Quality
Esitmation

Offloading
DecisionWCL Particle

Filter

Local Execution

Remote
Execution

RFID Device

Server

Start

Fig. 3.4: Work flow of the hybrid method

accuracy; otherwise the accuracy becomes very bad. On the other hand, the accuracy of

PF is much better, and does not change much with the velocity of moving object. Thus,

we ask the question, if we can estimate the velocity of the moving object, can we replace

the PF by WCL when the velocity is relatively small in order to save the computation cost,

while not sacrificing the accuracy?

•Computation Offloading. The mobile RFID device inherently has limited comput-

ing capability, and can cause very high computation cost on the device. However, as more

and more computation power is integrated into the environmental infrastructures, and there

exist abundant wireless techniques connecting the RFID device and infrastructures, can we

offload the complex computation involved in PF onto the infrastructures?

With these two questions, we design a hybrid tracking method for better accuracy and

efficiency. Fig.3.4 shows the work flow of our method. At each time slot, the RFID devices

first estimate the speed of the moving object based on recent RFID readings. After the

speed estimation, the component of algorithm selection is performed. This component

is responsible for choosing the better algorithm from WCL and PF according to current

speed. We have a threshold of speed for the algorithm selection. If the speed is large than

the threshold, PF is selected to estimate the location in current time slot; otherwise, WCL

41

is selected. As WCL is very cheap in computation, if WCL is selected, the algorithm is

then executed locally on the RFID device. However, if the PF is selected, the algorithm

seeks to offload the computations onto the nearby servers based on the network quality.

The component of network quality estimation is performed periodically.

The following subsections explains the details on: 1) how to use WCL and PF into the

RFID tracking; 2) how to estimate the velocity of moving object simply using the RFID

readings; 3) how to determine the velocity threshold for algorithm selection; 3) and what is

principle of offloading computations in PF to the infrastructures.

3.4.2 Weighted Centroid Localization (WCL)

The Centroid Localization (CL) is proposed at first in the outdoor localization for wire-

less devices [BHE00]. The device to be localized calculates its own position by a centroid

determination from all the positions of the beacons in range. Similarly, the CL scheme can

be easily used for the indoor RFID positioning system. The target position is estimated by

a centroid calculation of all the positions of the tags that have been successfully detected.

However, the CL has two limitations when it is used in RFID positioning system. First,

as described in the previous section some tags may be missed even when it is within the

reading range. Second, CL method inherently results in a coarse estimation. For limitation

one, the failure of identification of tags can be avoided by multiple detection attempts.

For limitation two, a weighted CL (WCL) method [BT08][BGGT07][BHE10] is applied to

improve the accuracy. The key idea of WCL is to assign greater weight to those tags which

are estimated to be closer to the target and less weight to the farther tags. The target

position is estimated according to the following equation:

l =

∑n
i=1(βiTi)∑n
i=1 βi

(3.2)

where βi represents the weight assigned to tag i. The weight should be determined by the

42

distance of tags from the target according to geometrical rules. In our method, the weight

is simply approximated by the count of successful detection during a number of detection

attempts. This may be explained by the fact that the detection probability is inversely

proportional to the distance. The weight of tag i is given by βi =
∑

k r
i
k.

The key idea of WCL is that multiple observations are performed at the target position

at the aim of increasing the accuracy. The successful detection count indicates the distance

of tag from the target and thus is used to weigh the coordinates of the detected tags.

However, the WCL may result in an increasing error when it is applied into tracking mobile

object. This is because the target keeps moving when the reader is gathering data. To

overcome the above issue, we extend WCL method in time domain for tracking a moving

object.

Extend WCL Method in Time Domain

In specific, the current location is estimated by smoothing RFID reading of recent N

observations. Historical RFID reading are assigned different weights in estimating current

position at time t. Intuitively, the latest RFID reading should be given largest weight in this

context. For convenience, these weights are named temporal weights in order to distinguish

from weights introduced previously, which are in space domain and called spatial weights.

Therefore, the spatial weights of tag i at time t are calculated according to

βi(t) =

t∑
k=t−N

λt(k)rik, (3.3)

where λt(k) is temporal weight of RFID reading at time k. In our method, temporal weights

are determined by intersection of reading range at time k and that of time t.

λt(k) =
Area(St ∩ Sk)

Area(St)
, k = t−N, t−N + 1, · · · , t− 1, t (3.4)

43

Through some geometric rules, Equation (3.4) can be simplified by the following equation:

λt(k) = f [
(t− k)v

2f · tr
], (3.5)

where

f(α) =

2[arccosα− (1− α)
√

2α− α2]/π, 0 < α < 1;

0, α >= 1
(3.6)

v is the current average moving speed. f is the observation frequency of RFID reader. tr

presents the reading range of the reader. Equation (3.5)(3.6) shows that, given f and tr,

the temporal weight is a decreasing function in terms of the time difference (t − k) and

the speed v. The reason by including v into this function is that the faster an object is

moving the sooner previous readings will expire. Then the next challenging problem is how

to estimate the average moving speed of the object?

How to estimate the object’s speed

In this work, we first calculate the time duration di(N) that each tag i stays in the

reader’s reading range in the last N time slots (assume N > di∀i). Then we select the

maximum one dmax(N) = max di to roughly estimate average moving speed as follows:

v =
2tr · c

dmax(N)
(3.7)

In Equation (3.7), 2tr is the diameter of the reading range and 0 < c ≤ 1 is scaling

constant depending on the tag density. Above speed calculation is motivated by the follow-

ing observation: the tag with largest di tends to be the one which is closest to the object’s

actual moving path. Theoretically, if a tag is right on the moving path, it should stay

in reader’s reading range until the object traveling distance 2tr. The probability that the

closest tag is right on the object’s moving path is clearly increased as the density of the

tags increases. Therefore c is an increasing function of tag density.

44

Considerations for Transmission Range tr and Tag Density

Most RFID readers in current market are able to adjust their power level. Assume the

reader antenna was circularly polarized, the transmission range tr usually increases as the

power level increases. The larger tr is, the more tags will be included into the centroid

estimation of the object each time WCL is performed. The question is what is the optimal

tr when using WCL method in object tracking. Intuitively, the optimal tr depends on the

tag density. Another question is how the tag density affects the accuracy of WCL. Is it

true that the more densely the tags are deployed, the more accurate results will be obtained

through WCL?

We analyze WCL by numerical simulations featuring a variety of tag densities. The tags

are uniformly distributed onto a two-dimension plan according to a regular pattern. Only

triangular pattern and square pattern are considered. The tag density is defined as the size

of spacing between tags. Spacing in triangular pattern is normalized into that of square

pattern, following the rule that the node number per square meter remains the same. The

transmission range of the reader tr is preset to a constant value. The speed of the moving

object is also preset to a constant, satisfying v = 2tr · f
60 . The tag density increases from 0.2tr

to a upper bound of 1.4tr, beyond which there exists blind zone where the object detects no

tag. The sensing model of Equation (3.1) is used to generate the simulated RFID readings.

The location error is defined as the distance between the exact position and the estimated

position of the reader.

Fig.3.5 shows that the location error depends on the tags density. We can have the

follow conclusions. (1) The optimal density for WCL algorithm is located in the interval of

(0.8tr, 0.9tr). Increasing tag density under the spacing size of 0.8tr nearly does not improve

the accuracy. However, a sparser density upper the spacing size of 0.9tr leads to serious

degeneracy of the accuracy. (2) The necessary tr of the RFID reader should be as large

45

Fig. 3.5: The location error of WCL depending on the tags density

as 1.1a, where a is the average spacing size between two tags, indicating the deployment

density of tags. (3) The deployment pattern of tags, either square pattern or triangular

patter, does not affect the accuracy.

3.4.3 Particle Filtering

In this subsection, we solve this object tracking problem through a Bayesian approach

[AMGC02]. Using this approach, two models are generally required: first, a model describ-

ing the evolution of the object’s location with time (the system model); second, a model

relating the noisy RFID readings (the measurement model). These models are presented in

a probabilistic form. Considering the evolution of the position sequence of a moving object,

lk = (xk, yk, θk), k = 1, 2, 3, · · ·, we have the following system model

xk = xk−1 +
v

f
cos θk−1 (3.8)

yk = yk−1 +
v

f
sin θk−1 (3.9)

θk = θk−1 + U(−∆θ,∆θ) (3.10)

46

where xk, yk are two coordinates of the object’s location, θk is the heading orientation of

the object, U(−∆θ,∆θ) is an increase angle of the heading direction which yields a uniform

distribution, v is the velocity of the object, f is the observation frequency of the reader.

The measurement model is given by

p(zk|lk) =

K∏
i=1

p(rik|lk) (3.11)

p(rik|lk) = rikp(di) + (1− rik)(1− p(di)), (3.12)

where di is the distance of tag i from target and p(di) is the RFID sensor model described

in Section 3.3. The objective is to recursively estimate lk from the RFID readings, denoted

as zk = {rik}Ki=1.

From a Bayesian perspective, the tracking problem is to recursively calculate some

degree of belief in the state lk at time k, given the data z1:k up to time k. It is required to

construct the posterior pdf , usually in two stages: prediction and update.

A particle filter approximates the posterior pdf at time k by a set of M particles. Each

particle contains a position hypothesis lik = (xik, y
i
k, θ

i
k) and a weight wik. w

i
k indicates the

importance of the i-th particle. A position estimate l̂k can be obtained by l̂k =
∑M

i=1w
i
kl
i
k

. The particle filtering algorithm takes the following steps in a recursive fashion:

• Prediction The target position at time k is predicated by propagating all particle

positions at time k − 1 according to system model, Equation(3.8-3.10).

lik ∼ p(lk|lik−1, v,∆θ)

We assume that v has a Gaussian distribution, N(vk, σ
2
k). The model probabilistically

describes the transition of system from old state for a given measurement vk.

47

• Updating Particles are reweighted according to the latest RFID reading zk and the

measurement model, Equation(3.11- 3.12).

wik = wik−1p(zk|lik)

The weighted is then normalized by wik = wik/
∑M

i=1w
i
k.

• Resampling A new set of n particles with equal weights 1/n is obtained from the

old set of particles. The possibility of choosing particle i is proportional to its weight

wik. The objective of resampling is to reduce the effects of degeneracy. The basic idea

is to eliminate the particles that have small weights and to concentrate on particles

with large weights.

The particle filter turns out to be a robust numerical method for the solution of optimal

estimation, especially in case of non-Gaussian noisy observations. Before the recursive steps,

initial particles are chosen to be uniformly distributed in state space. An increasing particle

number usually leads to more accurate estimation. However, particle filter method becomes

computationally expensive as particle number increases.

3.4.4 Adaptive Algorithm Selection of WCL and PF

Limitation of WCL

WCL faces two weaknesses in object tracking. First, if the tags are deployed sparsely

onto the ground, it is possible that tr can not achieve the necessary value, 1.1a, even when

the Reader’s power reaches the maximum level. In this case, the accuracy of WCL will

be degenerated seriously, as shown by Fig.3. Second, the observation frequency of RFID

f always has an up-bound in order not to affect the detection rate of tags. Given this

up-bound of f , if the object moves in a high speed, most of the measurements in the past

become invalidate to calculate the current location. Therefore, the accuracy will decrease

as the speed of the object increases, which is also demonstrated by Fig.3.7c in Section 3.5.

48

Limitation of Particle Filter

Although Particle Filter (PF) has been widely used in object tracking for its satisfactory

accuracy, the biggest limitation of PF comes from its high computational cost. Table 3.3

demonstrates its costliness in computation. Since mobile objects are usually equipped with

resource constrained devices, continuously running PF on these devices may not be possible.

The hybrid method to integrate WCL with PF

Aware of limitations of both WCL and PF, the question here is, can we combine these

two methods together in order to achieve both high accuracy and efficiency in object track-

ing? To realize this objective, our strategy is that in any case WCL do not has worse

accuracy than PF, WCL will be adopted to replace PF in object tracking. These cases are

formulated by the following conditions: trmax >= 1.1a and v <= vth = 2tr · f
Nth

, where vth is

the velocity threshold, Nth is the required duration (denoted as the number of time slots)

by WCL that a tag can stay in the reading range of a moving object.

Usually with the known density of deployed tags, the first condition, trmax >= 1.1a,

can be easily judged before the runtime. If this condition is satisfied, the power of the

reader will be tuned to the level, in which case tr = 1.1a. During the runtime, the moving

speed of the object is estimated according to Equation (3.7). If the estimated speed is

less than vth, WCL will be executed; otherwise, PF will be performed. Instead of deciding

which method should be performed before the runtime, we integrate WCL with PF by an

adaptive execution of these two methods in the runtime according to the estimated speed

of the moving object. This complies with most practical situations that the object moves

with a varying speed rather than a constant speed.

Another potential benefit of the hybrid method is that PF is always guaranteed to

perform in a relatively high speed. High speed ensures that the system status transition

49

model is stable. It means, the increase of the heading orientation of the object, presented in

Equation (3.10), can be limited into a small interval. It helps increase the particle sampling

efficiency by narrowing the area where candidate particles are selected.

Note that Nth can affect a lot the performance of the hybrid method. If Nth is set

too high, that means the threshold of the speed vth is too low, the hybrid method has

little improvement on the computational cost compared with particle filter. Oppositely,

if Nth is set too low, the hybrid method sacrifices the accuracy too much. It is hard to

prove theoretically the optimal value of Nth. However, we can acquire an optimal value of

Nth from the numerical simulations. Section V demonstrates an optimal value of Nth in a

simulated scenario.

3.4.5 Computation Offloading

To further reduce the computation complexity on the RFID device, our method can

offload the compute-complex part of the tracking algorithm to nearby server. Although

offloading computation onto the service can lower the computational cost on the RFID

device, it brings additional communication cost due to the transmission of required data

between the RFID device and server. The principle of the offloading decision is that, given

the algorithm function, if reduced computation cost by remote execution is large than the

incurred communication cost, then it is better to offload this function onto the server;

otherwise the function is better to be executed locally.

•Offloading Principle. Assume the estimation of location at time t with the RFID

readings zt needs time τl if it is performed locally on the RFID device, and needs time τr if

it is executed remotely on the server. Let ds denote the size of transmission data in remote

execution. Let B denote the bandwidth of the wireless connection between the RFID device

and the server. We have the following offloading decision. If τm − τr > ds
B , the algorithm

is then offloaded to the server at this time k; otherwise, the algorithm is executed on the

50

Table 3.2: Local and remote computation cost

Execution time τl τr

WCL 2.7 ms 0.12 ms

Particle filter 215 ms 6.8 ms

RFID device. In the following, we describe how to collect τr, τl, ds and B in real systems.

In the hybrid method, the WCL and PF algorithms are adaptively executed according

to the object’s velocity. We collect both the local and remote computation cost of WCL and

PF from our experimental implementation, which is described in details in Section 3.6. The

main processing platform of the RFID device in our implementation is the Mica2 sensor

mote. The remote server is the Fujitsu LifeBook S Series. Table 3.2 shows the one time

computational cost of WCL and PF respectively in location and remote execution. Both

the local execution of WCL cause very litter computation cost, i.e., 16.4 ms. For simplicity

in our system, in our method we only consider the offloading of PF. Note that the execution

time of PF varies depending on the number of particles. In Table 3.2, the execution time

of PF is measured when the number of particles is 2000.

To make the optimal offloading decision, we need to estimate the communication cost

of PF when it is executed remotely. At each time of location estimation, the PF needs to

predict the state of the particles according to the mobility model of the object, and then

update the weights of the particles based on the RFID readings in this time slot. Fig.3.6

shows the data transmission between the RFID device and the server when PF is performed

remotely. At the beginning of the time slot t, the RFID device uploads the RFID readings

zt to the server. The server does the prediction and resampling, and returns the state of

particles as well as the estimated location at time t. The data required to transferred on

the network mainly includes the observed RFID readings zt, the state of particles, i.e., the

51

RFID Readings at time t

Particles state and
result at time t

RFID Readings at time t+1

Particles state and
result at time t+1

...

RFID Device Server

Fig. 3.6: The data transmission between RFID device and server if particle filter is executed
remotely

parameters wik and lik. The reason why the state of particles need to be returned to the

RFID device is that the wireless network connection may be intermittent. We need to

backup the state on the RFID device. In case the network connection is down, the PF can

be continued locally with the backup particles state. Note that the size of transmission

data increases as the the number of particles in PF increases.

With the size of transmission data, we need to measure the bandwidth of the wireless

network, in order to estimate the communication cost. In our method, we periodically

estimate the network bandwidth by transferring a 10K file between the device and server.

The bandwidth is the testing file size divided by the transmission time. In our experiment,

the RFID connects the server through ZigBee motes. We measure the bandwidth fluctuation

through carrying with the RFID device and walking around in one classroom. We found

that the bandwidth indeed fluctuates. The fluctuation period is on the order of several

seconds.

52

3.5 Performance Evaluation through Simulations

In this section we evaluate the performance of the proposed hybrid method. We consider

the following metrics: location error (accuracy) and computational cost (efficiency). First,

we evaluate respectively and compare the performance of WCL and Particle Filter (PF).

The parameter we consider in the comparison is velocity because it is the main factor that

distinguishes the performance of these two methods. Then, we evaluate how much the

hybrid method can improve the performance by considering a trajectory along which the

object moves with a varying speed.

3.5.1 Performance Comparison between WCL and Particle Filter

The simulated environment is a 4m × 4m plan. The RFID tags are densely deployed

onto the plan. The spacing size of tags a is 0.27m. The reading range of the reader tr is

0.3m. The observation frequency f is 10Hz. Assume that the object moves with a constant

speed around a rectangle trajectory in the 2-Dimension plan. The RFID model described

in Section 3.3 is used to generate the simulated RFID readings. The location is estimated

continuously during one trajectory through different tracking methods. The accuracy is

presented by an average of the location error at each time slot.

Fig.3.7c compares the location error of WCL and PF under different velocities. We can

see that the location error of WCL increases as the velocity increases while the accuracy

of particle filter has no association with the velocity. Better accuracy is achieved by PF

than WCL when the velocity exceeds 0.2m/s. Less then the value of 0.2m/s both the

two methods have almost the same accuracy. Table 3.3 compares the execution time of

these two methods. Simulations for both algorithms are run on the same platform (Matlab

Environment on a Fujitsu LifeBook S Series). To compare the computational efficiency

among the cases of different velocity, the number of trajectories are tuned for each velocity

53

Table 3.3: Efficiency comparison between WCL and PF

v(m/s) 0.1 0.2 0.3 0.4 0.5 0.6

WCL(ms) 119 86 75 64 65 66

PF(ms) 7593 8484 10568 9792 9260 9276

so that the tracking time in all the cases keeps the same. From Table 3.3, we can see that

WCL is obviously more efficient than PF whatever the target’s velocity is.

Fig.3.7a and Fig.3.7b shows the location error at each time slot as well as the estimated

trajectory when the object’s velocity is 0.6m/s. We can see that the location error of WCL

is larger than that of PF. It is interesting to note that the location deviation of WCL is along

the trajectory while the location deviation of PF is perpendicular to the trajectory. This is

because that executing the WCL periodically for object tracking has a critical limitation. If

no tag is detected in current time slot, the tags detected in the past time slot will dominate

the centroid estimation of the current position. Therefore, the result at current time is very

likely to be the real location in the past time slot. In specific, this location error becomes

very serious when the object’s speed is high.

3.5.2 The Hybrid Method of WCL and PF

We compare the performance of the hybrid method with that of other two methods,

WCL and Particle Filter, by considering a more practical scenario where the object’s velocity

varies during the trajectory. Fig.3.7d shows a simple case that the object circulates around

the rectangle with two different velocities alternatively. Around four corners the object

moves with a slow velocity, v = 0.15m/s. In other intervals the object runs with a fast

velocity, v = 0.6m/s.

How to select the threshold vth and Nth when the hybrid method is performed in the

scenario? It has been shown in Fig.3.7c that the optimal vth is 0.2m/s. Below this threshold,

54

(a) WCL (b) Particle Filter

(c) Accuracy depending on the velocity (d) A Trajectory

Fig. 3.7: Simulation environment and results

WCL has the same accuracy with PF, but above it WCL has much worse accuracy than

PF. The Nth is computed by Nth = 2tr · f
vth

= 30.

Table 3.4 presents the location error and execution time of the three methods. It shows

that hybrid method leads to much lower location error than WCL. Moreover, compared

with particle filter, the hybrid method saves about 75% computational cost while achieving

the same accuracy.

3.5.3 The Offloading Strategy

In this section, we evaluate the influence of offloading strategy onto performance, partic-

ularly in term of the efficiency. We compare the performance of the following five tracking

55

Table 3.4: Performance comparison between the three methods

Schemes WCL PF HybridMethod

LocationError(m) 0.187 0.068 0.062

ExecutionTime(s) 0.08 4.53 1.26

methods.

•WCL-Local. In this method, the tracking algorithm is WCL. The algorithm is exe-

cuted on the RFID device.

•PF-Local. In this method, the tracking algorithm is Particle Filter (PF). The algo-

rithm is executed on the RFID device.

•PF-Offloading. In this method, the tracking algorithm is Particle Filter (PF). The

execution of PF can be offloaded onto the server at each time slot.

•Hybrid-Local. In this method, the tracking algorithm is adaptively selected from

WCL and PF according to the estimated velocity. The algorithm is executed on the RFID

device.

•Hybrid-Local. In this method, the tracking algorithm is adaptively selected from

WCL and PF. The algorithm can be offloaded onto the server.

In this evaluation, the object’s moving trajectory and velocity have the same setting

with Fig.3.7d. The time used in this trajectory is 8
0.15 + 8

0.6 = 66.7s. As the sampling

frequency is 10 Hz, we have about 667 time slots in the whole trajectory. The number of

particles in all PF executions is set as 2000. Table 3.2 shows that profiling computational

cost of WCL and PF in each step (or time slot) respectively on the RFID device and the

server. Since the WCL runs very fast on local device, we do not consider the offloading of

WCL. When PF is offloaded onto the server, we measure that the size of transmitted data

between the RFID device and the service is 5.2 kB.

56

0 20 40 60 80 100
0

50

100

150

200

Time (s)
B

an
dw

id
th

 (
K

B
/s

)

High power
Low power

Fig. 3.8: Network bandwidth trace

We collect real network bandwidth traces from one classroom. In the classroom, one

notebook is deployed as the server. The notebook is connected with a TelosB mote. The

RFID device attached with Mica2 mote communicates with the server through ZigBee. We

carry the device and move randomly around the classroom. The network bandwidth is

measured by transferring one 10kB testing file. The measurement is done every 5 seconds.

Fig.3.8 shows two network traces when the transmission power of the ZigBee motes is set

with various levels. In high power setting, both motes have level 256 in transmission power,

while in low power setting, both motes have level 128 in transmission power. We use the

network trace in high power setting to evaluate the performance with offloading strategy.

Note that only the first 66.7s of the whole network trace is used in the evaluation.

Fig.3.9a compares the efficiency of the five tracking methods under this evaluation set-

ting. We can see that both the PF and the hybrid method with the offloading strategy have

better efficiency than the corresponding methods without offloading. In particular, the PF-

Offloading needs 42.3 ms running time on average at each time slot, while the PF-Local

needs 215 ms running time. The offloading strategy brings about 5X efficiency improvement

to the PF. The Hybrid-Offloading needs 7.9 ms running time, and is more than 5X better

than Hybrid-Local that has 45.2 ms running time per time slot. Among the five track-

ing methods, WCL and Hybrid-Offloading have much less execution cost than other three

methods. Taking the accuracy into account, as shown in Fig.3.9b, the Hybrid-Offloading

57

WCL PF−Local PF−Offloading Hybrid−Local Hybrid−Offloading
0

50

100

150

200

250

E
ffi

ci
en

cy
 (

m
s)

(a) Efficiency/Algorithm running time

WCL PF−Local PF−Offloading Hybrid−Local Hybrid−Offloading
0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y/
Lo

ca
tio

n
E

rr
or

 (
m

)

(b) Accuracy/Location error

Fig. 3.9: Comparison of various methods in terms of accuracy and efficiency

has the best performance among the five methods.

We then evaluate how the computational efficiency of the methods changes depending

on the bandwidth of wireless connection between the RFID device and the server. Fig.3.10

plots the efficiency as the bandwidth increases from zero to 300kB. The two methods with

offloading strategy, Hybrid-Offloading and PF-Offloading, have decreasing execution cost

as the bandwidth increases. This is because under the offloading strategy, large bandwidth

leads to short time in the data transmission between the device and server. When the

bandwidth is as little as zero, the methods with offloading strategy have the same execution

cost with the methods running locally on the device.

3.6 Experiments

We have implemented the RFID based tracking system in two application scenarios,

indoor wheelchair tracking, and LRV tracking at one Hong Kong MTR spot. The results

are presented as follows.

58

0 50 100 150 200 250 300
0

50

100

150

200

250

Wireless bandwidth (KB/s)

A
lg

or
ith

m
 R

un
ni

ng
 T

im
e

(m
s)

Hybrid−Local
Hybrid−Offloading
PF−Local
PF−Offloading

Fig. 3.10: Algorithm running time varies depending on the network bandwidth

(a) (b)

Fig. 3.11: The deployment of RFID system for indoor wheelchair navigation

3.6.1 Indoor Wheelchair Tracking

In the scenario of wheelchair tracking, the RFID tags are densely deployed on the ground

in a 4m × 6m classroom, shown in Fig.5. The spacing size of tags (density) is 50cm. The

RFID device we attached on the chassis of the wheelchair is an integrated UHF RFID reader

with a circularly polarized antenna. The reader contains 18 discrete power levels. We tune

the power on level 12 so that the reading range tr is as far as 60cm, satisfying the equation

tr >= 1.1a, where a = 50cm.

The wheelchair can be controlled with a joystick controller. We attach an extension unit

to the joystick for controlling the output signal. This unit is connected to a Mica2 Mote

through serial port. The speed of the wheelchair is controlled by a pair of output voltage

59

Table 3.5: Experiment results for wheelchair tracking

Methods WCL PF-O Hybrid-O Hybrid-L

Location error (m) 0.482 0.186 0.195 0.193

Time per step (ms) 3.6 89.2 19.4 95.7

values. These voltage values can be set through the Mica2 Mote. In our experiment,

the wheelchair moves along a line with a varying speed. During the first half of the entire

trajectory, the wheelchair’s speed is set to 0.1m/s. In the second half, the speed is increased

to 0.6m/s. The observation frequency f is 10Hz. By selecting Nth = 40, the threshold of

the speed for the hybrid method is set to vth = 2tr · f
Nth

= 0.3m/s. In the classroom, we deploy

a laptop as the server. The laptop is connected with a TelosB mote through the USB, such

that the Mica2 mote on the RFID reader can offload computations onto the server through

ZigBee protocol. The bandwidth of the ZigBee connection between the RFID reader and

server is measured every 5 seconds.

To evaluate the location error, the real location is calculated through the integral of

the preset speed. The location is computed periodically using the four tracking meth-

ods, WCL-Local (WCL), PL-Offloading (PL-O), Hybrid-Local (Hybrid-L) and Hybrid-

Offloading (Hybrid-O). For each method, we repeat the experiment 10 times by choosing

different trajectories in the classroom. The result is averaged over the 10 experiments. Table

3.5 presents the average location error and execution time per step of the three methods. It

shows that the hybrid method (Hybrid-O) almost achieve the same accuracy as PF (PF-O),

but outperforms PF a lot in term of computational cost.

60

(a) (b)

Fig. 3.12: The deployment of RFID system at one MTR depot

3.6.2 LRV tracking in Hong Kong MTR depot

In the scenario of LRV tracking, we installed an RFID reader below the LRV, shown in

Fig.3.12. Note that our RRU1861 URF RFID reader/attenna does not have computation

and networking capability. To use it in location estimation, we usually need to attach it

with external devices. In the wheelchair tracking experiment, we attach it with the Mica2

mote, while in this experiment, we attach it with one Sharp SH631W smart phone. We

deploy our self-made mesh routers along the rail such that all the testing areas are covered

by the mesh network. The location can be either calculated locally by the smart phone

which is physically connect with the RFID reader, or calculated by the server on the mesh

networks.

We deploy a total of 42 RFID tags along the track. When the LRV is moving along

the tagged rail, the RFID reader keeps querying for the tags. The observation frequency of

the reader f is 20Hz. We have tested two tracks. On one track, the train is moving at the

speed of 15km/h. On the other track, the train is moving at 35km/h. We adjust the power

level of the reader to the maximum level, level 18, so that the reading range, tr = 0.8m,

can satisfy the condition required by WCL, which is tr > 1.1a, where a is about 0.7m.

The duration Nd (measured by the number of time slots) that a tag is able to stay in the

reading range of the reader is respectively 3 and 7 in case of v = 35km/h and v = 15km/h.

61

For one tag, if all the N detections are failed, this tag will definitely fails to be detected; if

any one of the Nd detections is successful, this tag will be detected successfully. We found

that the detection rate of tags in the two tests is quite different. The detection rate is about

70% when v = 15km/h. When v = 35km/h, the detection rate decreases to 45%.

In our experiment, Nth is set to an experience value, 30. The LVR’s speed in both

the two tests are above the threshold. According to the rules of the hybrid method, the

location should be estimated by particle filter. In order to evaluate the location error, the

real location is also approximated by the integral of the LRV’s speed. By performing the

PF algorithm based on the data set, we obtains that the location error is 0.45m when v =

15km/h. However, when v increases to 35km/h, the location error increases to 1.2m. We

also evaluate the computational cost of the PF algorithm in this LRV tracking application.

We compare the computation cost of PF in the case the algorithm is performed locally

on the smart phone and the case the algorithm is offloaded onto the server on the mesh

network. We find the offloading strategy reduce the computation cost per time slot from

137 ms to 24.8 ms.

This chapter not only provides a hybrid method of object tracking, but also provides a

guide for user to deploy the RFID based tracking system under different performance re-

quirements. A tradeoff between the accuracy and efficiency can be achieved by dynamically

adjusting vth or Nth in the runtime. If the computational cost is critical in the system, a

low value of Nth is preferred. If high accuracy is desired, a high value of Nth is chosen.

In real world, the RFID sensing model will be quite different when the device is per-

formed in different environments. As the sensing model in Section 3.3 is measured in the

same configured classroom, it is able to be used into the experiment of wheelchair naviga-

tion. However, in the LRV tracking experiment, a more general sensing model, shown in

Equation (3.13), is applied into the PF algorithm instead, where p0 is a constant. Only

62

when one tag has been detected, the step of filtering out the invalidate particles will be

executed according to the sensing model. In other times, the prediction step based on the

estimated speed will be executed.

p(r) =

p0, r < tr;

0, r > tr
(3.13)

As shown in the LRVs tracking experiment, neither the PF or the hybrid method is

suitable for tracking high speed moving objects cases, the tags detection rate is usually

low. The detection rate is as low as 45% when the LVR’s speed is v = 35km/h. The bad

accuracy in this scenario can be explained as follows: 1) when the speed is too high, which

also means the value of Nd is too low, our method to estimate the speed will not work.

Without information of the speed, the efficiency of particle sampling decreases seriously.

2) The invalidate particles are not filtered out until the next tag is successfully detected.

Thus, when the detection rate is low, these unfiltered invalidates particles will leads to large

location error.

3.7 Summary

In this chapter we have studied the problem of tracking mobile objects that are able to

detect the presence of passive RFID tags at known position of the ground when traveling in

their proximity. We proposed a hybrid method for achieving high accuracy and efficiency

in object tracking. Through numerical evaluations our method is demonstrated to be more

computational efficient than PF while guaranteing the same accuracy with PF. We also

implemented two real RFID based tracking systems using our proposed method in two

applications, namely, the wheelchair navigation and LRVs tracking at one of the Hong

Kong MTR depots. For the former application, our method can achieve better performance

than both PF and WCL in either efficiency or accuracy. For the latter application, in most

63

cases our method can achieve good accuracy, but in some case the LRV moves in a very

high speed our method do not perform well due to the low detection rate of the RFID tags.

64

Chapter 4

Computation Partitioning for Data
Stream Applications

In this chapter, we study computation partitioning for data stream application. This

chapter is organized as follows. We present an overview of this work in Section 4.1. In

Section 4.2, we describe the applications and design requirements. We then present the

architectural design in Section 4.3. The application partitioning problem and solutions are

presented with details in Section 4.4. Numerical evaluation and real world experiment are

presented in Section 4.5 and Section 4.6. Section 4.7 concludes the chapter.

4.1 Overview

By moving the computation to the cloud, many applications which could not be ac-

commodated before due to the lack of significant computation capability and energy power

of mobile devices, will be made possible, while leveraging the stable and ample capacity

of cloud. We focus on one class of these applications, namely mobile data stream applica-

tions. These applications usually use camera and/or other high data rate sensors to perform

perception related tasks, like face or object recognition, to enable augmented-reality expe-

riences on mobile devices. Specifically, these applications have two characteristics. First,

they require continuous processing of high data rate sensors such as camera to maintain

65

the accuracy. For example, a low frame rate may miss intermediate object poses or human

gestures. Second, the computer vision and machine learning algorithms used to process

streaming data are often computation-intensive.

However, to make sure that the MCC approach can really bring benefits to both the

end users and application providers, we need to address the following two problems.

(1)Application partitioning problem: given a mobile application which consists of a set

of computational tasks, which tasks should be offloaded to the clouds so that the mobile

end users could experience the maximal performance? For data stream application, one

important performance metric is the speed/throughput that the application processes the

streaming data.

(2) Load scheduling problem: for the cloud-scale applications, it is possible that a large

number of mobile users offload the computational tasks onto cloud at the same time. So how

to schedule the offloaded tasks in the cloud so that the utilization of cloud resources

is minimized? It is critical for the application provider to save their operational cost.

Although the two problems are posed respectively from the requirements of the end users

and the application provider, they need to be solved within one system framework. So far,

there is no work that treats these two problems jointly. Existing systems [CBC10] [CIM+11]

[ZKJG09] [GRJ+09] [RSM+11] that support the application partitioning are only suitable

for traditional mobile Internet computing, and do not give any solution on how to use the

resources efficiently in clouds to make the applications scalable in cases of serving a large

number of mobile users. Other efforts [AAB+05] [CBB+03] [CCD+03] [DG08] [IBY+07] in

facilitating large scale cloud applications do not fit well in the MCC applications because

they do not support adaptive partitioning of the application between the client and clouds.

In this chapter, we propose a framework for partitioning and execution of the data

stream applications under the third MCC approach. The framework contains a novel system

66

architecture and algorithm which solves the fore-mentioned problem, aiming at achieving

maximal performance experienced by the end users and minimal cost in cloud resources

favored by the mobile application providers. The main contributions of this chapter are

described as follows:

• We design a system architecture for the advanced MCC applications. The design is

placed on existing mobile platforms and cloud fabrics. The architecture contains two

critical mechanisms. First, through online profiling of the characteristics of mobile

devices and wireless bandwidth at mobile side, and the back-up of the partitioning

results at cloud side, a mechanism is designed to enable fast and adaptive partitioning

of the application. Second, a multi-tenancy mechanism is adopted in clouds so that

the offloaded computational instances can be shared by multiple mobile users in case

they offload the same tasks onto clouds.

• We propose an optimal partitioning algorithm for mobile data stream applica-

tions. To the best of our knowledge, it is the first work to study the partitioning

problem for data stream applications which require parallel execution of different op-

erations onto the streaming data to achieve high processing speed.

• We demonstrate the efficiency of the proposed algorithm through extensive simula-

tions. More importantly, we develop a representative, real world application namely

QR-code recognition, and validate the effectiveness of our design through experimental

tests on the application.

4.2 Preliminaries

Before describing the design of the MCC system architecture, we first discuss the appli-

cation that the system can support. The infrastructures that the system is designed based

on are then presented. We also point out the design requirements and key methods.

67

Grayscale

Down

Sampling

Gaussian Blur

DoG

Computation

Extrama

Detection

Low Contrast

Removal

Edge

Elimination

Orientation

Assignment

Description

Generation

Magn. &Orien.

Comp

Matching

Classification

Fig. 4.1: The operations involved in image based object recognition

4.2.1 Mobile Data Stream Applications

Our system targets for the mobile data streaming applications. These applications take

the streaming data as input, perform a series of operations onto the data, and then out-

put the results. The input data are sampled periodically from the sensors on the mobile

device. Mobile augmented reality is considered as one killer streaming application. The

application use the camera and/or other sensors to percept the user’s environment/scene,

and then augment the original scene with relevant information in the display. The per-

ception is done continuously. The core part of AR applications is the image based object

recognition. Fig.4.1 shows the operations involved in the whole process of imaged based

object recognition. Note that the SIFT algorithm is used to extract the features [Low04].

68

Input Data Output Data

Component

Input Port

Output Port

Channel

... ...

Fig. 4.2: The model for data stream applications

We use a dataflow graph to model the data stream application. The dataflow graph is

composed of a set of components and a set of channels as shown in Fig.4.2. The components

run concurrently with each one performing its own functional operations onto the data.

The component has input ports and output ports. Each port is associated with a specific

data type. The channel’s capacity is defined as the maximum number of units of data the

channel is able to hold. The channel also indicates the precedence constraint between the

operations/components for processing one unit of data, which means the component can not

process the data until all of its precedent components complete the operation on that data.

The component processing the input data of the application is called the entry node. The

component generating the output data is called the exit node. In real implementations, the

components are mapped into threads or processes. The channels are usually implemented

by means of TCP sockets, or shared memory or persistent storage. The dataflow model is

based on a data centric approach and usually takes advantage of pipeline to accelerate data

processing.

4.2.2 System Model

The MCC system model consists of three parts: mobile clients (devices), wireless net-

works and the cloud (data centers). The mobile client accesses to the Internet cloud services

69

through wireless networks with limited bandwidth. In the cloud are clusters of commod-

ity servers which are interconnected to each other through high-speed switches. In the

following, we describe the terminologies which will be used through this chapter.

End-users and Application Providers. End-users refer to the person who consumes the

service through their mobile devices that the application provide. Application providers

refer to the person/organization who develops, deploys and operates the applications.

Application Instances. Application instance means one execution of the application by

one particular end-user. Multiple end-users can run the same application, but each user

has its own application instance. Application instances of end-users are different in term

of the places hosting the application in the system. For example, assuming an application

consisting of three components, c1, c2 and c3, end-user A may run the components c1

and c2 locally, and offloads the component c3 to the cloud, while end-user B may run the

component c2 locally and components c1 and c3 remotely. In this case, we say user A and

user B have different application instances. Application instance of an end-user may change

temporally in the execution place of its components as the mobile device’s load and wireless

bandwidth varies.

4.2.3 Design Objectives

We have identified the following three requirements for the MCC system design.

High Performance. Two measures are commonly used to evaluate the performance of

data stream applications, makespan and throughput. Makespan is the time used to process

a single unit of data. It represents the responsiveness of the application. Throughput is

the rate at which the input data is processed, and it determines the quality of result of

the application. Taking an example of the gesture recognition application, the recognition

accuracy will be better if the application can process more frames in one second. The MCC

system is expected to provide maximal throughput for each end-user while satisfying the

70

constraint of make-span.

Low Operational Cost. In a MCC system, the resources are provisioned at clouds

to accommodate the computation offloaded from the end-users. The resource cost for op-

erations is another critical factor we need to consider in the system design. Assuming that

the application provider leases the cloud resources to host the application, the operational

cost is measured by the amount of the leased cloud resources. It is required that the MCC

system guarantees the minimal cost under given loads from end-users.

Adaptivity and Elasticity. The key benefit of the mobile cloud system is its combina-

tional property of adaptivity and elasticity. Adaptivity means computations (or loads) that

are offloaded from the end-user’s mobile device to the cloud are adaptive to the end-user’s

changing mobile environment. For example, when the end-user’s device has a high CPU

load and good networking bandwidth, most computations may be offloaded onto clouds;

conversely, when the end-user’s device has an idle CPU and its networking bandwidth is

low, most computation may be executed locally. Elasticity means the cloud resources can

be provisioned cost-efficiently to meet the end-users’ offloading loads. The two properties

make our proposed MCC system unique compared with existing system providing mobile

services or cloud services.

To achieve the above goals we develop two key techniques, namely Adaptive Computa-

tion Partitioning and Multi-tenancy Component as a Service (CaaS). In the first technique,

the device characteristics and networking bandwidth are profiled online on the user’s device.

The partitioning algorithm is triggered on cloud as long as the variance of these profiling

parameters exceed the threshold. The technique enables the mobile user to achieve an op-

timal partitioning whenever the user’s environment changes. The second techniques allow

the application instances of different users to share the same component on cloud. Because

of the component sharing, we do not need to separately allocate resources for each user

71

Node
Manager

App Mstr

App Mstr
Comp
Slaver

Comp
Mstr

Comp
 Slaver

Comp
 Slaver

Comp
Mstr

Comp
Slaver

Mobile
Client

Node
Manager

App Mstr

Resource
Manager

Mobile
Client

Mobile
Client

Mobile
Client

App Mstr

Node
Manager

Node
Manager

Node
Manager

Component Invocation
Mobile Client Request

Resource Request
Node status
Task execution status

Fig. 4.3: Overview of the application framework

to accommodate everyone’s peak data rate, but only need to allocate the resources such

that it can serve the peak of the total data rate. Besides, this technique can avoid the

frequent loading and unloading of some ’hot’ components. Hot means those components

are offloaded onto cloud by a majority of the mobile users.

4.3 Architectural Design

Fig.4.3 shows the overview of a dataflow execution framework in mobile cloud computing.

The runtime framework consists of software modules on both the mobile side and the cloud

side. The client side monitors the CPU workload and networking bandwidth. When the

application is launched on the mobile client, an request is sent to the Resource Manager in

cloud for augmented execution. The resource manager then assigns an Application Master

to handle the request. The application master first asks the mobile client for its device

characteristics such as CPU capability p, its workload η, and the current network bandwidth

B. Using these dynamic information from mobile device as well as the static application

properties stored in cloud, the application master then generates an optimal partitioning

72

result, which is presented in Section 4.4. The components assigned to the client are initiated

as threads on the mobile device. Other components assigned to the cloud are invoked as

services, namely Component-as-a-Service (CaaS). The application master is also in charge

of the data transmission between the mobile client and cloud.

In the framework, every mobile application has an Application Master in cloud to aug-

ment its execution. The components are shared and invoked by applications as a service

in cloud. Resource Manager and the per-machine Node Manager, which monitors the pro-

cesses on that machine, constitute the computation fabric in the cloud. Resource Manager

manages the global assignment of computing resources to Application Masters and CaaSs

through cooperation with Node Managers.

4.3.1 Adaptivity of Partitioning

The application master, in the middle of the mobile clients and the cloud CaaSs, has

two distinct functionalities: (a) to determine an optimal partition results and make the

partitioning adaptive to the mobile client’s varying environment (local CPU load and wire-

less networking bandwidth); (b) to coordinate the distributed execution of the dataflow

application.

Fig.4.4 shows the software modules on both the mobile client and application master,

which provides support for the adaptive partitioning. It is assumed that two logical commu-

nication connections exist between both sides: an ”always-on” connection but low data rate

wireless connection which is for transmitting the control message; another wireless connec-

tion with bandwidth B, which is to pipeline the data streams between the mobile client and

cloud. The profiler on the mobile client measures the device’s characteristics at startup and

continuously monitors its CPU workload and wireless network bandwidth. The controller

on mobile client side maintains some thresholds on the variance of the profiling parameters.

If any of the parameters increases/decreases by a value exceeding the threshold, a request

73

Profiler

Controller

DF Execution

Solver

Controller

DF Execution

Control
Message

Data
Transmission

Mobile Client App Master

Fig. 4.4: Cooperation between the mobile client and the application master

for updating the partitioning result will be sent to the controller on the application master.

The controller of application master calls optimization solver to generate a new partitioning

result. The optimal partitioning algorithm will be described in Section 4.4. Taking the

result as the input, the underlying module DF Execution provide runtime support for the

distributed execution of the dataflow application.

In the design of our framework, we make sure that the runtime software will not bring

much burden onto the mobile device and should be as lightweight as possible. So we put the

optimization solver on the cloud rather than the mobile device to reduce the local resource

utilization. Although the design feature requires an always-on connectivity, it is reasonable

because unless there is wireless connectivity, all the components of the dataflow application

is executed locally by default without the need to call the optimization solver.

Besides, the partitioning results for different mobile environments are able to be backed

up in the cloud storage. If the request for updating the partitioning has similar input

parameters as previous ones, the partitioning result will be directly queried from the back

up storage instead of being computed by the optimization solver. The back up mechanism

reduces the latency of the partitioning.

4.3.2 Distributed Execution

Fig.4.5 shows the distributed execution of dataflow example withtwo partitioning cases.

In the framework, the local components run as threads on mobile device while the remote

74

TCP Pipes

3 4 7

1 2 3 4 5 6

C
lo

u
d

 Sto
rage

 Se
rvice

C
lo

u
d

 Sto
rage

 Se
rvice

5 6

Shared-Memory FIFO

7

1 9

2 8

Shared-Memory FIFO

TCP Pipes

TCP Pipes

3 6 9

7 8

Shared-Memory FIFO

1 4

2 5

Shared-Memory FIFO

TCP Pipes

8 9

Data Transmission

Mobile Client

App Master App Master

Component-as-a-Service

1 2
3

4

6

5

7

8 9
1 2

3

4

6

5

7

8 9

Mobile Client

Dataflow Graph

Lo
cal Sto

rage

Lo
cal Sto

rage

(a) (b)

Fig. 4.5: Distributed dataflow execution

components are executed through the invocation of CaaSs. In a partitioned dataflow appli-

cation, we name the component allocated onto mobile device as local component, and the

one offloaded onto cloud as remote component. The application master has one thread for

every remote component. These threads are responsible for data transmission as well as

CaaS invocation. Since the threads serve as the images of the remote components, we call

them as image components.

In a partitioned dataflow graph, the shaded node represents the remote component; the

blank one is the local component. The channels are classified into two categories, crossing

channel and internal channel. The crossing channel, e.g. (2, 3), (2, 4), (7, 8) in graph (a),

refers to the edge in the graph which connects a local component and remote component

while the internal channel connects two local components, e.g., (1, 2) in graph (a), or two

remote components, e.g. , (4, 5) in graph (a). The crossing channels are implemented by

TCP pipes. Through the TCP pipe, the data is pushed from one component to its successor.

75

Each TCP pipe has one in-memory FIFO at the receiver side to buffer the data that may

not be processed. The internal channels are implemented by shared memory FIFOs. As a

result of the FIFOs on all the channels, our framework enables an asynchronous and loosely

decoupled way to execute the concurrent components.

4.3.3 Multi-tenancy CaaS

We realize multi-tenancy feature for the CaaSs to allow multiple tenants or application

instances to share the component. As shown in Fig.4.3, the multi-tenancy CaaSs implemen-

tation adopt a master and slave architecture, in which Component Slaves are real entities to

do the computation and Component Master takes charge of scheduling tenants’ loads onto

the component slaves. Specifically, Component Master negotiates resources from Resource

Manager and work with Node Managers to launch/terminate component slaves according

to the current request load. The purpose of the multi-tenancy CaaS is to guarantee an

elastic utilization of underlying resources to accommodate the scalable CaaS requests.

In our framework, the end users have different application instances even when they

run the same application. Each application instance consists of a set of components. The

CaaS at the cloud side is usually shared by multiple application instances. According to

the partitioning mechanism, application instances have various load requirements on one

specific CaaS. The load requirements mean how fast the CaaS is required to process the

input data stream.

In order to save the resources, we need to solve the load scheduling problem. The

problem is to schedule various loads from the application instances onto the component

slaves, such that the number of utilized component slaves are minimized. We assume that

the component slaves have the same capacity. The load scheduling problem can be modeled

as a Online Bin Packing Problem [SR02].

76

4.4 Optimal Partitioning Algorithm

In this section, we describe the models, formulation and algorithm for solving the com-

putation partitioning problem. The problem is formulated as an optimization problem, and

the proposed algorithm is executed online by the Application Master shown in Fig.4.3.

Application Model. The application is modeled as a specific dataflow graph G =

(V,E), where V = {i|i = 1, 2, ...v} represents its components and E = {(i, j)|i, j ∈ V }

represents the dependency between the components. si is the average number of CPU

instructions required by component i to process one unit of data. di,j presents the amount

of data required to be transmitted on the channel (i, j) for one unit of data. The weight

on a node i, denoted as wi, represents the computational cost (time). The weight on an

edge denoted as ci,j is the communication cost (time). Both wi and ci,j are measured by

one unit of data.

Throughput Model. Here, the throughput of the application is the objective for opti-

mization. We define critical component/channel, which represents the component/channel

that has the greatest weight among all the components/channels. Assuming that all the

channels’ capacity is unlimited and whatever level of pipeline parallelism is allowed, the

throughput of the dataflow application is determined by the critical component/channel,

which have the slowest speed to compute/transfer the data. So we have the formula for

throughput TP = 1
tp

, where

tp = max{max
i∈V

(wi), max
(i,j)∈E

(ci,j)}. (4.1)

Offloading Model. The offloading decision is made mainly depending on the local

computing resources and the wireless networking quality. A few parameters are introduced

to model these properties. p is the CPU’s capability of the mobile device, measured by

the number of performed instructions per second. η is the percentage of the ideal CPU

77

resource. It also indicates the current working load on the mobile device. So the available

CPU resource on the mobile device is ηp. B is the bandwidth of the wireless network for

the mobile device to access the Internet cloud. We have the following assumptions in our

system model. i) The components running concurrently on the mobile devices are allocated

equal CPU resources. ii) If a component is offloaded onto cloud, other components running

on the mobile client will speed up because of the acquisition of the released CPU resources.

The speedup factor is N
N−1 , where N is the number of components on the mobile device

before the offloading event. iii) The cloud always has abundant resources to accommodate

the offloaded components such that they will not become the critical component in the

dataflow graph. iv) The total wireless bandwidth B are shared by all the crossing channels,

where crossing channel in the dataflow graph is defined as the one which connects two

components residing two sides of different resources. It is possible allowed for the mobile

device to allocate disparate bandwidth to different crossing channels. We do not distinguish

between the uplink and downlink bandwidth in our model. v) If interdependent components

are offloaded onto cloud, the channels connecting between them in the cloud will not become

the critical channel. vi) The input data of the application is acquired from the sensors on

the mobile device, and output data should also be delivered to the mobile device.

Problem Formulation. Given the dataflow application {G(V,E), si, di,j}, the mobile

device properties {p, η}, and the wireless network bandwidth B, the partitioning problem

in this study is the problem of allocating a set of v components of the dataflow graph to the

resources (the mobile client and the cloud) and allocating the limited wireless bandwidth B

to the potential crossing channels such that the throughput of the data stream application

78

is maximized. The optimization problem is formulated in Equation 4.2.

max
xi,yi,j

TP =
1

tp
, i, j ∈ {0, 1, · · · , v + 1}, where

tp = max{max
i∈V

(xi ·
si
ηp

∑
i∈V

xi), max
(i,j)∈E

(
di,j(xi − xj)2

yi,j
)},

s.t.



∑
(i,j)∈E

yi,j(xi − xj)2 = B,

yi,j > 0,

x0 = 1,

xv+1 = 1,

xi = 0 or 1, i ∈ {1, 2, · · · , v}

(4.2)

The core variables are xi and yi,j . xi is either 0 or 1 integer, indicating the offloading

decision for component i. If xi equals to 1, component i is executed on the mobile device;

otherwise xi = 0 means running on the cloud. yi,j is the wireless bandwidth allocated to

the channel (i, j). Note that two virtual nodes, 0 and v + 1, are created to satisfy the

constraint that the input/output data of the application should be from/delivered to the

mobile device. Two edges (0, 1) and (v, v + 1) are added into the set of edges E of the

dataflow graph, where node 1 is the entry node and node v is the exit node. Accordingly,

d0,1 is the size of an unit of input data. dv,v+1 is the size of an unit of output data.

Algorithm Design. The objective function shown in Equation 4.2 depends on two

variables, xi and yi,j . We first study the problem of allocating the wireless bandwidth B to

the crossing edges given a specific partition. It is not difficult to prove theorem 1.

Theorem 1: Given a partition X = {xi|i = 1, 2, · · · , v}, the throughput is maximized

79

when yi,j satisfies the condition that

yi,j =
di,j

tcomm(X) ,∀(i, j) ∈ E and xi 6= xj ,

yi,j = 0,∀(i, j) ∈ E and xi = xj ,

y0,1 = (1− x1)
d0,1

tcomm(X) ,

yv,v+1 = (1− xv) dv,v+1

tcomm(X) ,

(4.3)

where tcomm(X) is the communication cost/time that each crossing channel needs to transfer

a unit of data,

tcomm(X) =
1

B
[(1− x1)d0,1 + (1− xv)dv,v+1

+
∑

(i,j)∈E

(xi − xj)2di,j].
(4.4)

So, the original problem can be reduced into

max
X

TP =
1

max{tcomp(X), tcomm(X)}
, (4.5)

where tcomp(X) = maxxi∈X{xi
si
ηp

∑v
i=1 xi} and X is an v-dimension vector of 0 and 1. The

application throughput is constrained either by the speed that the local components process

the data or by the speed the crossing channels transfer data.

We then propose a genetic algorithm to solve the reduced partition problem as shown

in Algorithm 1. Essentially, we treat different partitions as a population of individuals with

different chromosomes. Individuals with higher fitness as defined by Equation 4.2 in this

work are more likely to survive and multiply. A partition X is represented by binary string

X = {x1, x2, · · · , xv}. The encoding method successfully identifies the allocation of either

on the mobile device side or otherwise. For example, if xi equals to 1, component i is

executed on the mobile device; otherwise it should be put in the cloud.

The evolution starts from a randomly generated population (line 1). NIND represents

the number of the individuals of the population. In each generation, the fitness of every

individual in the population is evaluated (line 4-5). Individuals are probabilistically selected

from the current population for breeding according to their fitness (line 6). We use roulette

80

Algorithm 1: The genetic algorithm for partitioning
Input : NIND, GGAP , MUTR, MAXGEN
Output: The optimal partition

1 Chrom← RandomlyCreatePopulation(NIND);
2 Gen← 0;
3 while Gen < MAXGEN do
4 ObjV ← GetThroughputOf(Chrom);
5 FitnV ← Normalize(ObjV);
6 SelCh← RouletteWheelSelect(Chrom,F itnV,GGAP);
7 i← 1;
8 while i < GGAP ∗NIND do
9 CrossingOver(SelCh[i], SelCh[i+ 1]);

10 i← i+ 2;

11 end
12 for i← 1 to GGAP ∗NIND do
13 SelCh[i]← Mutation(SelCh[i],MUTR);
14 end
15 ObjV Sel← GetThroughputOf(SelCh);
16 Chrom← Reinsert(Chrom, SelCh,ObjV,ObjV Sel);
17 Gen← Gen+ 1;

18 end
19 ObjV ← GetThroughputOf(Chrom);
20 i← GetIndexOfMaximum(ObjV);
21 return Chrom[i];

wheel selection in our algorithm. The probability that each individual is selected is propor-

tional to its fitness. Generation gap GGAP is a control parameter of our algorithm, which

represents the number of selected individual divided by the current population size. The

selected individuals are modified through crossover (line 7-11) and mutation (line 12-14),

and added into the current population. Our generic algorithm evaluates the fitness of all

individuals and selects the best ones with constant size of population (line 16). The best

individuals serve as the new generation of partitions, which is then used in the next itera-

tion of the algorithm. The algorithm terminates when the number of generations has reach

certain upper bound MAXGEN . In the last generation, the partition with the highest

throughput is chosen as the final partition (line 19-21).

Recall that in each round, our algorithm modifies current individuals using crossover

and mutation. Crossover generates new individuals by combining two randomly selected

individuals (partitions), say A and B. During crossover, a randomly chosen gene position

81

divides the binary string of A and B in two parts. One new individual obtains the first

section of string from A and the second section of string from B. The second new individual

obtains the inverse genes. Mutation takes the string of an individual and randomly changes

one or multiple values. The mutation rate MUTR is defined by the ratio of the amount of

the changed bits to the total amount of bits in one chromosome.

4.5 Numerical Evaluation

We evaluate the proposed partition algorithm in this section. The performance metric

we consider in the evaluation is the throughput of the data stream application.

4.5.1 Methodology

First, we evaluate how the controlling parameters of the algorithms, NIND and GGAP ,

affect the performance. Second, we study the effect of the input parameters of our algo-

rithms including application graphs, the wireless networking bandwidth B and the available

computing resource at mobile device ηp. At last, we demonstrate the factor that can affect

the computational cost of our algorithm.

The input application graph we consider is the randomly generated application graphs.

We have implemented a graph generator to generate the weighted streaming application

graphs. We use the level-by-level method to create the graph which was proposed by Tobita

and Kasahara[BHE02]. We could control the graph that we want to generate through the

following parameters: 1) number of nodes; 2) average out-degree; and 3) communication-to-

computation ratio (CCR), where CCR is defined as the ratio of the average communication

time to the average computation time as shown in equation (6). If an application graph’s

CCR is high, it can be considered as a communication-intensive application; otherwise, it

82

Table 4.1: Configuration in each simulation

No. NIND GGAP MUTR G(v, dout, CCR) B ηp

1 30 * 0.02 G(30, 3, 1) 1 1

2 * 0.8 0.02 G(30, 3, 1) 1 1

3 80 0.9 0.02 G(*, 3, 1) 1 1

4 80 0.9 0.02 G(50, 3, *) 1 1

5 80 0.9 0.02 G(50, 3, 1) * 1

6 80 0.9 0.02 G(50, 3, 1) 1 *

is an computation-intensive application.

CCR =
[d0,1 + dv,v+1 +

∑
(i,j)∈E di,j]/[(e+ 2)×B]

(
∑

i∈V si)/(v × ηp)
(4.6)

We have done a group of simulation to evaluate the effect of both controlling parameters

and input parameters to the performance. Table 4.1 shows the configuration of our simu-

lations. In each simulation, we choose one parameter as the variable, which is indicated by

’*’, while assigning other parameters as constant values. For example, in No. 5 experiment,

we study the effect of wireless bandwidth B onto the performance. In our configuration,

we treat ηp as one single parameter which indicates the available CPU resources on mobile

device. Note that B and ηp shown in the table is a normalized value.

4.5.2 Results

We first presents the result of how the controlling parameters, NIND and GGAP ,

affect both the throughput and the number of iterations that the genetic algorithm needs

to converge. Fig.4.6a shows the throughput value in each iteration of our algorithm for

different NINDs. The configuration of other parameters is shown in Table I under row

No.1. We can see that larger NIND value leads to better result. The algorithm takes fewer

iterations to converge to the final throughput in case of higher NIND value. Fig.4.6b shows

the effect of GGAP on the performance. Larger GGAP value has both better convergence

83

speed and the final throughput. It indicates that if more individuals are selected from the

population for breeding in each iteration, the genetic algorithm will take fewer iterations to

find the optimal individual.

We then present the effect of the input parameters on the performance. It contains

the application graph properties (graph size v and CCR), ηp and B. The results are

compared with other two intuitive strategies with no partitioning: 1) running all the nodes

of the application graph on the cloud; 2) running all locally on the mobile device. At

first, we study the relationship between the throughput and application graph size v. The

configuration parameters are shown in Table 4.1 under No.3 Row. We increase v while

keeping the average node’s computational cost and communication cost of the edges not

variable. So v actually indicates the overall computational complexity of the application.

Fig.4.6c shows that our algorithms can typically achieve more than 2X better throughput

than other two strategies. It also shows that given the resources B and ηp, the application

performance of the partitioning scheme goes down as the application size rises up. When the

application size becomes very large, our method tends to have the same performance with

the all-cloud method. It is because when the application becomes extremely computational

complex, offloading all the nodes of the application graph onto cloud can save much more

computational cost than the overhead of communication, while partitioning method has

little improvement on the performance in this case.

Fig.4.6d and Fig.4.6e respectively shows the influence of networking resource B and

computing resources of the mobile device ηp. It is interesting to find that our method

always achieve better performance as B increases while on the other hand, increasing ηp

does not necessarily lead to better performance. The different results can be explained as

follows. For an optimal partition, the total throughput of the application is either limited

by the computation or the communication as explained in Equation 4.5. In the former case

84

we say the bottleneck is at computation while in the latter case we say the bottleneck is

at communication. If the bottleneck is at communication, increasing bandwidth B is defi-

nitely able to improve the performance; otherwise, we could always reduce the computation

overhead tcomp by moving one node from mobile to cloud. Normally this moving operation

is likely to increase the communication overhead tcomm, but we have the increasing B to

accommodate the extra communication overhead. That’s why the increase of B usually

leads to the raising of the overall throughput. However, it is not guaranteed to reduce the

communication overhead tcomm by moving one node from cloud to mobile when the bottle-

neck is at communication. So in this case the increase of ηp can not improve the overall

throughput. Fig.4.6e indicates only in the case where ηp is large enough, the throughput of

our method sensitively increases as the ηp increases, because in this case the result of our

method approximates the ’all-mobile’ method.

Fig.4.6f shows how CCR affects the performance. We obtain different CCRs in our

simulation by changing si/dij while keeping B and ηp as constant. It shows as the CCR

rises the performance of our method first goes down and then rebounds. When CCR is large,

running all nodes on the mobile side approaches the optimal performance. Fig.4.6g presents

the number of nodes allocated onto mobiles device by our method in case of different CCRs.

Obviously more nodes are executed on the mobile device when the CCR increases.

At last, we study the computational cost of our algorithms. Given the internal pa-

rameters such as NIND and GGAP , the computation cost is measured by the number of

generations that our algorithm demands to converge. In practice it is not necessary, if not

impossible, to cost a lot of computation to achieve the theoretical optimal throughput. We

usually take a critical point, for example 90 percentage of the optimal value, as the actual

convergence point. Fig.4.6h shows the generations required to achieve the convergence point

for different application graph size v. Our algorithms have larger computational cost as the

85

application graph size increases.

4.6 Experimental Evaluation

We conduct a series of experimental tests on real-world applications to validate the

results. We take one simple application as our test examples: QR code recognition. The

application is re-written using the Flow-based Programming (FBP) model [PM10], in which

application is modeled as a set of functional components running in parallel and a set of

channels streaming data from one component to another.

4.6.1 QR-code Recognition

We spend more than one month to program the QR-code recognition application with

the FBP model. The application consists of three phases: image capturing, image pre-

processing, and QR-code decoding. In the program, we decompose the three phases into

9 functional components, which are shown in Fig.4.7. For convenience of description, we

label each component with a circled number. 0© and 8© are respectively the entry and exit

component of the program. We measure the size of data that are transferred between the

components with a 640 × 480 (300K Bytes) input image. The results are shown by the

labels on the edges in Fig.4.7. Note that the size of data transferred between components

depends on the size of input image. In our experiment, all the tests use the 300K Bytes

input image.

4.6.2 Experiment setup and Results

In the experiment environment, we use the Motorola MB510 Android phone as the

mobile device. The cloud resources contain a cluster of PCs in our lab. The wireless

connections between mobile and cloud are through WLAN or 3G. The open source runtimes

JavaFBP [PM10] are deployed on both the Android phone and cloud nodes to support

86

Table 4.2: Local computational time of components

Component No. 1© 2© 3© 4© 5© 6© 7©

Time (ms) 80 130 110 50 40 30 280

Table 4.3: Transmission time between the components

Edges Trans. Time Edges Trans. Time

0© → 1© 10240 ms 3© → 6© 427 ms

1© → 2© 1280 ms 4© → 7© 10 ms

2© → 3© 427 ms 5© → 7© 2 ms

3© → 4© 427 ms 6© → 7© 2 ms

3© → 5© 427 ms 7© → 8© 1 ms

the execution of the FBP programs. Java Message Service (JMS), a Message-oriented

Middleware, is also installed together with JavaFBP on both the mobile and cloud nodes

to take charge of the data transmission between the distributed components.

First, we profile the computational cost of each component on the mobile device. We

run the QR-code recognition program on the Android phone for 30 times. Table 4.2 shows

the average time that each component needs to process one 300K Bytes image. Then, we

measure the communication cost between the components. It is equal to the data size

between two components divided by the wireless bandwidths. Table 4.3 shows the data

transmission time between two dependent components under the bandwidth 240 Kbps.

Now we start the system, and demonstrate how the partition changes as the wireless

bandwidth varies. Table 4.4 records the partitions under various wireless bandwidths. We

can see that when the network bandwidth is as low as 40Kpbs, all the components except

7© are executed on the Android phone. As the bandwidth increases, the optimal partition

includes more components running on the cloud side.

We also compare the performance of the partitioned application with other two strategies

without partitioning. From the results shown in Fig.4.8, we conclude that for the QR-code

87

Table 4.4: Partitions under different bandwidths

Bandwidth Partitions

40 Kbps Mobile:{ 1©, 2©, 3©, 4©, 5©, 6©}, Cloud:{ 7©}

240 Kbps Mobile:{ 1©, 2©}, Cloud:{ 3©, 4©, 5©, 6©, 7©}

1.2 Mbps Mobile:{ 1©}, Cloud:{ 2©, 3©, 4©, 5©, 6©, 7©}

recognition application, the partitioned execution can achieve at least 2X better throughput

in reality than the executions without partitioning. For example, when the bandwidth is

240Kbps, the application with optimal partition can process 2.4 images per second, while

the application throughput is 0.5 images per second if all the components are executed on

the mobile device, and approximates to 0.1 if all the components are executed on the cloud.

4.7 Summary

In this chapter we study the computation partitioning problem for mobile data stream

applications. We have designed a cloud-based framework to provide runtime support for the

adaptive partitioning and distributed execution of such advanced mobile cloud applications.

The framework is able to serve large number of mobile users by leveraging the elastic

resources in existing cloud infrastructures. Under this framework, we also have designed a

genetic algorithm to solve the partition problem. Both numerical evaluation and real world

experiment results show that our method can provide more than 2X improvement in the

application performance over the methods without partitioning.

88

0 50 100 150 200 250 300
4

6

8

10

12

14

16

18

20

22

Number of generation

T
hr

ou
gh

pu
t

NIND=80
NIND=30
NIND=10

GGAP = 0.8

(a) Throughput - NIND

0 50 100 150 200 250 300
4

6

8

10

12

14

16

18

Number of generation

T
hr

ou
gh

pu
t

GGAP=0.2
GGAP=0.4
GGAP=0.6

NIND = 30

(b) Throughput - GGAP

20 30 40 50 60 70
0

5

10

15

20

25

30

35

Size of the application graph

T
hr

ou
gh

pu
t

Partition
All−Cloud
All−Mobile

(c) Throughput - v

1/4 1/2 1 2 4 8 16
0

20

40

60

80

100

The wireless bandwidth

T
hr

ou
gh

pu
t

Partition
All−Cloud
All−Mobile

(d) Throughput - B

1/4 1/2 1 2 4 8 16
0

5

10

15

20

25

30

The available CPU resouce on mobile device

T
hr

ou
gh

pu
t

Partition
All−Cloud
All−Mobile

(e) Throughput - ηp

0.2 0.4 0.6 0.8 1 2 5 10
0

5

10

15

20

CCR

T
hr

ou
gh

pu
t

Partition
All−Cloud
All−Mobile

(f) Throughput - CCR

0.2 0.4 0.6 0.8 1 2 5 10
0

5

10

15

20

25

30

35

40

45

CCR

N
um

be
r

of
 n

od
es

 r
un

ni
ng

 o
n

m
ob

ile The number of nodes = 50

(g) The number of nodes on mobile

0 50 100 150 200 250 300
2

4

6

8

10

12

14

16

Number of generation

T
hr

ou
gh

pu
t

GraphSize=30
GraphSize=50
GraphSize=70

(62, 90%TP)

(37, 90%TP)

(117,
90%TP)

(h) Computational cost

Fig. 4.6: Numerical evaluation results

89

300K

37.5K

12.5K

12.5K

12.5K

12.5K 50

2150

292

Thresholding

Component

QR-Code

Positioning

Component

ImageRotating

&Correcting

Component

ActivityData

Componoent

CharacterSet

Component

DecodeFormat

Component

DecodeThread

Component

Image

pre-processing QR code Decoding

ImageCapture

ShowResult

0 1

2

3

4

5

6

7 8

Fig. 4.7: FBP implementation of QR-code recognition

40K 240K 1.2M
0

0.5

1

1.5

2

2.5

3

3.5

4

Bandwidth (bps)

T
hr

ou
gh

pu
t (

Im
ag

es
/s

)

Partition
All−Mobile
All−Cloud

Fig. 4.8: QR-Code recognition performance

90

Chapter 5

Computation Repartitioning in
Dynamic Mobile Cloud
Environments

In this chapter, we study the computation repartitioning in dynamic mobile cloud envi-

ronments, where the device and network status can vary during the execution time of the

application. This chapter is organized as follows. Section 5.1 gives the overview of this

chapter. In Section 5.2, we present a framework for computation repartitioning in dynamic

mobile cloud environments. We take the dynamic network connectivity to clouds as a case

study, and solve the computation repartitioning problem in Section 5.3. In Section 5.4, the

evaluation results are presented. Section 5.5 concludes this chapter.

5.1 Overview

In recent years, the proliferation of sensors on mobile devices enable a couple of new

advanced mobile applications such as augmented reality, collaborative learning, multimedia

recognition and retrieval, mobile social gaming and so on. The applications often require

intensive and continuous processing of the sensory data. Although the hardware’s comput-

ing capability increases a lot, running the applications on mobile devices still face problems

arising from the constraint on computing capability and/or battery of the device.

91

On the other hand, the ubiquity and increasing bandwidth of wireless access available

to mobile users, and the richness of cloud infrastructures, provide opportunities to develop

mobile applications using cloud computing technologies. The most efficient technique used

to solve the computing constraints on mobile devices is to offload computations from the

device side to the cloud side [KL08] [WGKN08] [YOC08] [BKMS13]. By using computation

offloading technique, we need to solve the computation partitioning problem, which is to

partition the application execution between the device side and the cloud side, such that the

execution cost such as the latency is minimized. The partition of the application usually

depends on the execution environment including the network connection status and the

device status.

The computation partitioning problem has been extensively studied in previous re-

search [CBC10] [CIM+11] [ZKJG09] [GRJ+09] [LWX09] [KAH+12] [RSM+11] [BSPO03]

[YCY+13]. These works assume the stable/static execution environments during the life

cycle of the application, and thus perform one time partitioning according to the execution

environment when the application is initiated. The life cycle is defined as the execution

time of the application that lasts from the start to termination. However, this assumption

does not hold in reality. For instance, the network connectivity can fail when there is no

wireless signal or the signal is too weak to maintain a connection. Even when the network

is connected, the bandwidth can fluctuate because of user’s mobility. Besides the network

status, the device status such as the CPU load may vary during the course of the application

execution. With the varying network and device status, one time compuation partitioning

may yield performance degradation.

In this chapter, we propose the technique of computation repartitioning in the dynamic

mobile cloud environment, where the network connection to the cloud and device status can

vary with time. Computation repartitioning updates the partition of application from time

92

to time during its life cycle, according to the estimation and/or the prediction of parameters

of the execution environment including the network connection status and device status.

More specifically, we first design a framework for run time computation repartitioning in

dynamic mobile cloud environments. The framework provides models and mechanisms to

conduct the repartitioning of application at the run time. Based on this framework, we

conduct a case study for the computation repartitioning, where the network connection to

the cloud fluctuate frequently while the device status is relatively stable. In the case study,

we develop an online computation repartitioning method, named as Foreseer. It exploits

the knowledge of user’s mobility pattern to predict the network status, and then updates

the partitioning based on the prediction. We evaluate Foreseer using the data traces that

are collected from our campus WiFi testbed. We compare Foreseer against the approach

in CloneCloud [CIM+11]. It is shown that Foreseer has 35% better performance in term of

the completion time. In the case of more frequent network fluctuations, e.g. walking faster

in the campus WiFi environment, Foreseer can perform much better than CloneCloud.

In summary, our contributions in this chapter are three folds. First, to the best of our

knowledge, we are the first to design a framework for run time computation repartitioning

in dynamic mobile cloud environments. The framework provides models and mechanisms

to solve the performance degradation issue arising from dynamic network and device status.

Second, as a case study, we develop an online method, Foreseer, to solve the computation

repartitioning problem under the network status fluctuation. We evaluate our method based

on real world data traces from our campus WiFi testbed. The result shows that our method

can reduce the application completion time by 35% compared with previous approaches.

93

Fig. 5.1: Architectural model of mobile cloud systems

5.2 Terminologies and Application Repartitioning Framework

In this section, we describe the terminologies and our proposed framework for run time

computation repartitioning in dynamic mobile cloud environments.

5.2.1 Terminologies

• Partition, Optimal Partition and Compuation Partitioning. Fig.5.1 shows the archi-

tectural model for the mobile cloud system. It contains three parts, mobile devices, wireless

access network and clouds. The mobile devices can offload some computations of the appli-

cation to the cloud. Obviously, offloading can reduce the computational cost (e.g., execution

time or energy consumption) on the mobile device. Meanwhile, offloading causes additional

overhead in data transmissions that are required by the remote execution on clouds. There-

fore, in order to minimize the execution cost such as the overall executions latency, it is

critical to solve the offloading problem, i.e., to decide whether the application should be

offloaded to the cloud or not. For some complex applications which can be divided into a

set of dependable parts, we need to make offloading decisions for every part of the applica-

tion. Note that the decisions for each part are dependent with each other. We name the

offloading decisions for all the parts as a partition of application. The partition that leads

94

to the minimum execution cost is named as optimal partition. The optimization of com-

puation partitioning according to the network and device status is named as compuation

partitioning. Computation partitioning changes the execution model of mobile applications,

from single machine execution on the mobile device to distributed execution over the device

and the cloud.

Now we are interested in the following question: what factors may affect the optimal

partition depend on. First, a good partition must take into account the device status such

as the execution speed of the device and the workload on the device. For example, if the

computing speed of the device is extremely slow or the workload on the device is high, it

is better to offload more computations onto the cloud. Second, a good partition should

depend on the network bandwidth, which decides the cost in data transmission for remote

execution. Third, the optimal partition depends on the properties of the application itself.

The application properties are static, while the device and network status usually change

with time.

• Application Life Cycle and Run Time Computation Repartitioning. Application life

cycle is defined as the period that the execution of application spans. We also name the

period as run time. In previous works on compuation partitioning, when the application

starts, an optimal partition of the application is determined based on the network and de-

vice status at the start time. The partition remains the same during the whole life cycle.

Run time computation repartitioning is defined as periodically updating of partition of ap-

plication during its life cycle, based on the changing network and device status, with the

aim to reduce the execution cost. Fig.5.2 illustrates the difference between compuation par-

titioning and computation repartitioning. The strip with various color represents different

partitions. The length of strip indicates the execution time. In compuation partitioning,

the application execution sticks to one partition during its life cycle, while in computation

95

App. life cycle

App. life cycle
(a)

(b)

Fig. 5.2: Illustration: a) computation partitioning; b) computation repartitioning

Application
Parameters

(Static)Device Workload

Network Bandwidth

Estimation/
Prediction Repartitioning

Exec. Enviro. Parameters
(Dynamic)

TerminationStart

App. Modeling

Fig. 5.3: Functional components for computation repartitioning

repartitioning, the application runs with different partitions.

5.2.2 Computation Repartitioning Framework

We now describe the computation repartitioning framework as shown in Fig.5.3. When

the the application is initiated, the prediction component is activated to predict the execu-

tion environment parameters, including the device workload and network bandwidth. The

repartitioning component outputs a partition based on the predicted environment param-

eters, and its current execution state. The prediction and repartitioning is alternatively

performed during the application life cycle, until the application terminates. The objective

of periodical repartitioning is to minimize the total execution cost during the application’s

life cycle. Our framework provides methodologies for application modeling, dynamic mo-

bile cloud environment abstraction, and formulation of the repartitioning procedure. We

describe the details in the following.

96

m

a b

c d e f g

 (1) aR->e->fR->g->b->m

m

a b

c d e f g

(2) cR->dR->a->e->fR->g->b->m

m

a b

c d e f g

(3) aR->bR->m

m

a b

c d e f g

(4) unallowable parition

void m()
{
 a() {

 c();
 d();

 };
 b() {

 e();
 f();
 g();

 };
}

Fig. 5.4: Program tree, legal partitions and the corresponding execution order.

Application Modeling

In our framework, we focus on the method level partitioning of an application. We

apply the virtual machine migration to realize the remote execution of application[CIM+11]

[GJM+12]. Each method can be migrated to the cloud. During the migration procedure,

the system first captures the runtime state at the mobile device, and then transfers the state

to the cloud, and finally reintegrates it back after the execution is finished at the cloud. For

simplicity, migration points and reintegration points are restricted to the entry and exit of

a method.

We use the method call tree to model the application. In this chapter, we interchange-

ably use the two names, method call tree and program tree. Fig.5.4 illustrates an example of

the program tree. The tree node represents the method and the edge represents the method

invocation. For instance, the edge (i, j) indicates that the method i calls the method j.

Suppose the methods are executed sequentially between the device and the cloud. Without

loss of generality, we require that the program tree is constructed in a way such that the

nodes are executed according to the post-order traversal. Note that nested migration is

forbidden. It means that if one node is migrated onto cloud, all its child nodes should be

97

executed at the cloud. Fig.5.4(1)(2)(3) shows the legal partitions and the corresponding

execution order of the methods, where Fig.5.4(4) shows an unallowable partition, because

when the method ’a’ is migrated to the cloud, all the children nodes of ’a’ should be exe-

cuted remotely since they are forbidden to migrate back to the mobile side. Note that the

colored node means remote execution in cloud, while the others are executed locally. In the

execution order, aR means method a is executed remotely.

We define the following variables for a program tree.

• Cm(i) - The execution cost of method i on the device.

• Cc(i) - The execution cost of method i on the cloud.

• C ′m(i) - The residual cost of method i. Normally the cost of the parent node i is larger

than the summation of the costs of all its child nodes, because node i contains the cost of

running the body of code excluding the costs of the methods called by it. We define residual

cost for each non-leaf node i by C ′m(i) = Cm(i)−
∑

j∈ChildOf(i)Cm(j).

• Su(i) - The size of VM state that needs to be transmitted to the cloud when the

method i is migrated onto the cloud.

• Sd(i) - The size of VM state that needs to be transmitted back to the device when

the method i is re-integrated from the cloud to the device.

• Cs(i) - The migration cost of method i. Fig.5.5 shows that the whole migration

procedure contains five phases: suspension, state transfer (uplink), remote computation,

state transfer (downlink) and resuming. We assume that the suspension cost Csusp and

resuming cost Cresm are constants for all the methods.

Given the variables above, we can easily obtain the optimal partition, i.e., to decide

which methods are executed on the device, and which methods are migrated to the cloud,

such that the total execution cost is minimized. The snapshot partitioning problem has

been well formulated and solved in [CBC10] [CIM+11]. In practical systems, the execution

98

Suspension

State transfer
(Uplink)

Computation

State transfer
(Downlink)

Resume

time

Mobile

Cloud
()cC i

suspC resmC

Fig. 5.5: Execution cost in migration

cost Cm(i) and migration cost Cs(i) can change during the life cycle of the application in

dynamic mobile cloud environments. We need to update the partition accordingly during

the application life cycle such that the total execution cost over the life cycle is minimized.

Dynamic Environment Modeling

We present a simple model of the dynamic mobile cloud environment which includes the

device status and network status. The device status affects the execution cost on devices

Cm(i). In specific, Cm(i) depends on the computing capability and workload of the device.

It is formulated by

Cm(i) ∝ P × (1− η), 0 ≤ η < 1, (5.1)

where P denotes the computing capability, i.e., the speed that the device processes the

program. η denotes the normalized workloads on the device. It represents the percentages

of CPU that have been occupied, where η = 0 indicates that the CPU is totally idle. The

computing capability P is static while the workload η is dynamic.

The network status affects the migration cost Cs(i). In specific, Cs(i) depends on the

bandwidth of the network connection to the cloud. If we denote the uplink bandwidth by

Bul, and the downlink bandwidth by Bdl, Cs(i) is calculated by

Cs(i) = Su(i)/Bul + Sd(i)/Bdl + Cc(i) + Csusp + Cresm (5.2)

In summary, the dynamic parameters of mobile cloud environment that we consider in

99

this chapter are device workload η, and network bandwidth (Bul, Bdl). In our framework,

to guarantee the accuracy, we need to periodically update the estimation and/or prediction

of the parameters.

Formulation of Compuation Repartitioning

We formulate the repartitioning as a stochastic dynamic decision process. The decision

is made every time the execution environment parameters are predicted. We use n =

{0, 1, 2, ..., N} to denote the decision epoch. The whole life cycle of the application is

divided into N decision epoches. We use Tn to represent the length of epoch n. n = 0

represents the initial time when the application is launched. The decisions are made at the

beginning of every epoch.

System state : The system state is characterized by the joint knowledge of the program

execution status xn and the execution environment status yn, i.e., the device workload η and

the network bandwidth (Bul, Bdl). At each decision epoch n, execution status xn reflects the

snapshot information of the program. It contains three parameters xn = (mn, pn, qn): 1)

the method mn that the program is running at, 2) a binary variable pn indicating whether

it is migrated or not, pn = 1 if the method is being in migration, otherwise pn = 0, and 3)

qn indicating how much computation has been done for this method. If the method runs

locally, qn is assigned with the time that the method has been executed; otherwise if the

method is in migration, qn is assigned with: i) the phase that the migration is in, as shown

in Fig.5.5; ii) and the corresponding data size that has been sent to or received from the

cloud if the migration is in the phase of state transfer.

We treat zn = (xn, yn, Tn) as the system state at the decision epoch n. We add another

state zn = T to denote the application has been finished. The decision process is terminated

when the system enters into state T .

Decision : At each epoch n, after observing the system state zn, a decision µn(zn) has

100

to be made. The decision at each epoch n contains: 1) whether or not to terminate the

migration procedure if the application is in state of migration; 2)updating the migration

points for the methods to be started.

Cost Functions and Optimal Partitioning Policy : The objective of the problem

is to minimize the execution time of the application. We define the cost function at each

epoch g(zn) = Tn if the program is not completed zn 6= T ; otherwise g(zn) = 0. The

objective function is given by ρ =
∑N

n=0 g(zn). The sequence of decisions φ = {µ0(z0),

µ1(z1), ..., µN (zN)} is considered as the policy for the dynamic decision process. Let ρφ

be the execution time of the application under the partitioning policy φ. The optimal

partitioning policy φ∗ is obtained by φ∗ = argminφρφ.

5.3 Case Study: Compuation Repartitioning under Network
Bandwidth Fluctuations

In this section, as a case study, we consider the compuation repartitioning problem

under the scenario where the network status encounters connectivity losses and bandwidth

fluctuation while the device status is relatively stable.

5.3.1 Network Measurements

The network parameter we are concerned about is the user’s bandwidth, because it

affects the migration cost of the program. Throughout the chapter, we exchangeably use the

terminologies bandwidth, throughput, data transfer rate and network status. We consider a

wireless network where users access the network through Base Stations (BSs)/Access Points

(APs), and roam from one BS/AP to another to remain connected while they move. There

exist some places where the wireless signal is too weak to maintain a connection with the

AP, or where there is no signal, because this place is not covered by the BSs/APs or the

signal is blocked by surrounding obstacles. We define these places as ’holes’. Inside holes

101

10 20 30 40 50 60 70 80
0

1000

2000

3000

No. of measurement

B
an

dw
id

th
 (

kb
/s

)

Uplink

Downlink

(a) Stationary Scenario

10 20 30 40 50 60 70 80
0

1000

2000

3000

No. of measurement

B
an

dw
id

th
 (

kb
/s

)

downlink
uplink

(b) Mobile Scenario

Fig. 5.6: Network bandwidth fluctuation in temporal and spatial domain

the user encounters connectivity loss. Outside the holes, the bandwidth can vary as the

user moves.

To learn how the network status fluctuates in temporal and spatial domain, we compare

the network fluctuation between the stationary scenario and mobile scenario. The mea-

surements are done in our campus WIFI testbed with 23 APs deployed. Both scenarios

have 86 times of measurements. The measurements are recorded every 20 seconds. Note

that in mobile scenario we intentionally avoid the network ’holes’. Fig.5.6 shows that in

stationary scenario the network status is relatively stable with time, while in spatial domain

networks become more fluctuant as the user’s location changes. The distribution histograms

of the measurements shown in Fig.5.7 as well illustrates the difference. It is shown that

the variance of spatial fluctuation is much larger than that of temporal fluctuation. From

above measurements, we make an abstraction that the dominating factor that affects the

102

0 1000 2000 3000
0

5

10

15

20

Bandwidth (kb/s)

C
ou

nt

(a) Uplink (stationary)

0 1000 2000 3000
0

5

10

Bandwidth (kb/s)

C
ou

nt

(b) Uplink (mobile)

0 500 1000 1500 2000
0

5

10

15

20

Bandwidth (kb/s)

C
ou

nt

(c) Downlink (stationary)

0 500 1000 1500 2000
0

5

10

15

20

Bandwidth (kb/s)

C
ou

nt

(d) Downlink (mobile)

Fig. 5.7: Histogram of network bandwidth distribution respectively in stationary and mobile
scenarios

user’s bandwidth is the user’s geographical location. The reason is that the life cycle of an

application usually lasts a few seconds to several minutes at most. If we look at this short

period, the bandwidth fluctuation for one user is dominated by the user’s mobility.

5.3.2 Overview of Solution

In Foreseer, we exploit the historical knowledge about the user’s mobility to predict the

network status. The partitioning of application is then updated based on the predicted

network status. In particular, we solve the following problems in the design of Foreseer.

At first, we find that it is extremely hard to accurately measure the network bandwidth

in real time through single mobile device. One common approach to measure the bandwidth

is by uploading or downloading a large file to or from the server. The uplink or downlink

bandwidth will be the size of the file divided by the time used for the uploading or down-

loading. This measurement itself takes several seconds at least, which is not acceptable

for our case. In addition, the high overhead that is incurred during the measurement, e.g.,

103

Historical
Trajectory
Database

Location-
Throughput
Database

Network
Status Query Mapping

Mobile device Trajectory
Matching

Predictability
Checking

Clustering

Partition
Updating

Program
Finished ?

Start

End
Yes

No

Network Server

Fig. 5.8: Flow chart of Foreseer

additional data transmission and battery consumption, makes it infeasible to conduct such

bandwidth measurement via single mobile device. In Foreseer, we leverage the crowdsourc-

ing to collect the users’ bandwidth together with their locations, and learn the probabilistic

model of network bandwidth conditioned on the location. The user can query the network

bandwidth with its location.

Second, we need to accurately predict the future network bandwidth from the user’s

mobility. In Foreseer, we deploy a centralized server on the mobile network, named as

network server throughout the chapter, for: (1) providing the service that allows the mobile

users to share location-bandwidth pairs; (2) collecting the users’ historical trajectories;

(3) performing online trajectory matching and network status prediction. To improve the

prediction accuracy, we only predict the network status up to certain point in the future,

which we name as predictable duration. The uncertainty of the network status is relatively

low in the predictable duration, while beyond the predictable duration the network status

becomes highly uncertain. The network status for one particular user can be predicted

based on either the historical trajectories by individuals, or the historical trajectories by all

the users. We realize that a centralized server may become the bottleneck of the system

when the users scale up. The challenge of designing scalable architectures is inherent to all

distributed systems and beyond the scope of this chapter.

104

With the predicted network status, the core of our problem is to develop an online

decision policy for the dynamic repartitioning process. We design an online algorithm that

can work efficiently in real systems. Our solution is to make the decision that maximizes the

execution progress in the predictable duration. Execution progress is defined as the position

of the program counter while the application is in execution. In the following, we present

a high level description of the protocol which shows how the components work together in

our system. Fig.5.8 shows the detailed flow chart of Foreseer.

1. Network Status Query. When the mobile user enters the network, it receives the

beacons from the surrounding APs periodically. It measures the signal strength of the

beacons, and labels its location with a sequence of AP IDs, which are sorted in a descending

order of their signal strength. The location label is null when the user is in ’holes’. When the

application is launched, the mobile user sends a series of recorded locations to the network

server, and queries for its network status.

2. Network Status Prediction. With the series of locations, the network server searches

the historical trajectories from the database whose prefixes match with the query. All the

matched trajectories are mapped into sequences of network bandwidth values, based on the

location-bandwidth fingerprint database. Usually, the longer future we attempt to predict,

the more uncertain the network bandwidth will be. The network bandwidth sequences are

cut off at some time in future, called as predictable duration, such that the uncertainty

about the network status is low enough. The most likely sequence is returned as the result.

3. Partition Initializing/Updating. Upon receiving the network status, the user deter-

mines/updates the partitioning decision such that the execution progress is maximized in

this predictable duration. Towards the end of the predictable duration, the mobile user will

send the network status query again for the next partition updating.

The three steps are performed iteratively until the program is finished. If the user

105

happens to be in ’holes’ when it sends the network status query, the query will be postponed

until the user moves out of the ’holes’. The application sticks on the previous partition.

5.3.3 Network Status Prediction

We describe the details on network status prediction in the following.

Trajectory Representation

We represent the user location with a set of AP IDs from which the mobile user is able to

detect the beacon signal. The APs are sorted by a descending order of the signal strength.

For example, a legal representation of location is ’abc’, in which case the signal from AP ’a’

is the strongest, ’b’ is less strong and ’c’ is the weakest. If the user is located at the holes,

the location is labeled as ’N’. There are two cases that the hole ’N’ is labeled. The first case

is that no AP signal is detected by the user. Second, the signal from the detected AP is too

weak to maintain the connection. We have done experiments to learn the threshold of the

signal strength, below which the network connection is not possible. We found a threshold

of 90 db as an empirical value. The trajectory is represented as a time series of locations.

One example of a trajectory is: ”ab ab abc bc c c d d N N N f”. In the string, we use the

space to isolate two locations.

Trajectory Matching

We do not have any requirement on the length of the recorded trajectory. For conve-

nience of description, we can abstract all the trajectories at the database as one virtual

string, by joining them together with special isolated symbols. We name the virtual string

as historical string or history, and the string that the user sends for querying the network

status as contextual string or context. The trajectory matching is to find the positions at

which the context occurs in the historical string. The substrings of the history, which occur

immediately after the context, will be returned as the possible trajectories that the user

106

will pass by.

In a practical solution, we need to determine a proper length of the context in the string

matching. If the context is too long, we may not have enough samples to estimate the

probabilistic distribution of the future trajectory. Oppositely, short contexts can not fully

capture the feature of the user’s input trajectory. In our system, we use the approach in

Sampled Pattern Matching (SPM) algorithm [JSA00] to determine the length of the context.

In contrast to k-order Markov predictor, which uses a fixed length of the context, the length

of context in SPM is decided by a fixed fraction α of the longest context that occurs in the

history, where 0 < α < 1. The method is appropriate to be used in the prediction based

on large diverse data sources (in our case, the trajectory traces are from various users at

different times).

Speed Alignment

We note that two recorded trajectories are not necessarily identical for the same spatial

trajectory. That is because of the diversity of the user’s moving speed. For example, the

two strings ”a a bc bc N N N cd cd” and ”a bc N N cd” are likely to be from the same

spatial trajectory. Since location sampling frequency has the same influence with speed,

we do not separately discuss the case that the frequency is different for users. We onwards

assume that all the trajectories have the same sampling frequency.

To estimate the speed difference between the context and history, we generate new

trajectories by only recording the location changes. For example, given the original string

”ab ab bc bc bc b b N N N c c c”, the new string ”ab bc b N c” is generated. For convenience

of description, we name this operation as differentiation which is denoted as N (·), and use

the terms original string and differential string to distinguish the two strings before and

after the operation. The differential string does not contain any speed information. Consider

the case that the location sampling frequency is large enough, if two uses move along the

107

same actual spatial trajectory, their recorded strings should be the same. In our system,

the location is sampled once every two seconds. The sampling frequency is high enough to

capture all the changes of sensed APs/BSs set along the trajectory, either when the user

walks in the WiFi environment or when the user commutes in the cellular network.

We match the differential strings, rather than their original strings, between the context

and history. After we find the matched sequence, we compare the length of time that the

matched sequence spans in the two original strings, which indicates the speed ratio of the

two trajectories. Fig.5.9 illustrates how to calculate the speed ratio of the strings A and

B. We first obtain their differential strings N (A) = ”d dc c N ab a” and N (B) = ”b bc

c N ab a f fe”. After finding that the matched sequence is ”c N ab a”, we get back to the

two original strings and respectively count the duration of the matched sequence. In this

example, we can see that A takes 5 time slots to finish the matched trajectory, while B

takes 8 time slots. The speed ratio of A and B is 8 : 5.

We estimate the speed ratio for each substring of the history that matches with the

context. The next string to be predicted after the context is selected from the history based

on the speed ratio. For example, if we consider A is the context and B is the history, then

the following sequence after the context will be the next [2× 8
5], [3× 8

5], [4× 8
5], ... element

after the matched sequence, which is ”f f fe ...”, where [X] represents rounding X to the

nearest integer. Note that we choose the element that changes most recently as the origin

point, and count the positions of future elements from the origin point. For example, the

origin point is the first ’a’ in Fig.5.9. The first element to be predicated has the position 2

in the context, and correspondingly the position 2× 8
5 = 3 in the history. The 3-rd element

in the history from the origin point, e.g., ’f’, is chosen as the first predicated element.

108

b bc c N ab a f fe

d dc c N ab ad d cd c c N ab ab a a

b b b bc bc c c c N N ab ab ab a a a f f f fe fe

5

8

A:

B:

Fig. 5.9: Examples for speed alignment

Mapping

In our system, we build a location-throughput database on the network server. There

exists many efficient ways to construct the fingerprint database[HPALP09]. In our system,

we use the most intuitive yet efficient method. The database is directly indexed using

the location (of string type). For each indexed location, we determine the corresponding

throughput simply by averaging of the samples at that location. The throughput for each

indexed location is updated as new samples are added. Based on the database, we can map

all the possible trajectories into sequences of network throughput values. Note that the

location labels ’N’ for the network holes are directly mapped into zeros.

Clustering

Suppose that we have M sequences and the length of each sequence is N . Let bi =

(bi,1, bi,2, ..., bi,N), 1 ≤ i ≤ M denote the sequence i. We perform the clustering for the M

sequences. The sequences that are similar to each other will be grouped into one cluster.

We measure the similarity between two sequences by their Euclidean distance

d(bi, bj) =
1

N

√√√√ N∑
k=1

(bi,k − bj,k)2. (5.3)

If the distance of two sequences is lower than a given threshold, we say that the two

sequences are similar to each other. In the clustering, we construct a graph for all the M

sequences, in which the nodes represent individual sequences, the edge represents that the

two connected nodes are similar to each other. The clustering is to iteratively find the

109

maximum clique from the graph. A lot of heuristics have been proposed for the Maximum

Clique Problem (MCP) [BB99]. We will not describe the details in our chapter. The cluster

that has the largest size is selected to represent the predictable result. In our solution, since

the sequences within the cluster are highly similar to each other, we randomly choose one

from the cluster as the future network throughput sequence.

Predictability Checking

We define predictability by the entropy of the network throughput distribution in future

time. Suppose we get K clusters after the clustering for the M throughput sequences.

Let Ck denotes the cluster, where 1 ≤ k ≤ K, and S(Ck) denote the size of the cluster,

where
∑K

k=1 S(Ck) = M . The probability that the actual result is from the cluster Ck

is p(Ck) = S(Ck)
M . With the probabilistic distribution of the clusters, the predictability is

defined by the entropy H = −p(Ck) log2 p(Ck). Entropy reflects the uncertainty of the future

network status. Greater entropy indicates the lower predicability. Generally, the longer the

network status to be predicted is, the lower the predictability is.

In our solution, we start from a small prediction duration and check the entropy. If the

entropy is lower than a threshold Hth, we continue to extend the prediction duration in

future. The prediction procedure is terminated until the entropy of the network through-

put distribution exceeds Hth. We name the length of the period as predictable duration.

In the computation repartitioning problem, the length of the decision epoch is the pre-

dictable duration. Note that we distinguish the uplink and downlink in our system, since

our real measurements show the two are quite different. In our solution, we treat them as

two independent variables. After we obtain the possible trajectories, we predict the uplink

throughput and downlink throughput independently. It is possible that the two have dif-

ferent predictable durations. In this case, we choose the smaller value as the predictable

duration, without affecting the predictability of the other one.

110

5.3.4 Compuation Repartitioning

We first describe the solution for the offline partitioning problem, where the future

network status is perfectly known. By using our offline solution, we further design an

online algorithm for the compuation repartitioning problem.

Offline Algorithm

The offline problem is to determine an optimal partition of the application, assuming

that the network status in the future is known, such that the completion time of the applica-

tion is minimized. The offline partitioning problem is different with snapshot partitioning

problem. In snapshot partitioning problem, the migration cost Cs(i) of each method is

constant, while in offline partitioning problem the migration cost depends on when the mi-

gration happens. Existing works [CBC10] [CIM+11] aim to solve the snapshot partitioning

problem, but can not solve the offline partitioning problem.

Algorithm 2: The offline algorithm
Offline Algorithm: FindOptimalPartion(i, t)

1 tc ← t;
2 if i ∈ LeafNodes then
3 tnmgr(i)← Cm(i);
4 else
5 tnmgr(i)← C′m(i);
6 end
7 while j ∈ ChildrenOf(i) do
8 tnmgr(i)← tnmgr(i) + FindOptimalPartion(j, tc);
9 tc ← tc + FindOptimalPartion(j, tc);

10 end
11 if tnmgr(i) > Cs(i, t0) then
12 Y (i)← 1; // Method i is migrated into cloud;
13 topt(i)← Cs(i, t0);

14 else
15 Y (i)← 0; //Method i is executed locally;
16 topt(i)← tnmgr(i);

17 end
18 return topt(i);

We develop a recursive algorithm for the offline partitioning problem as shown in Algo-

rithm 2. The input variables includes the local execution cost of each node Cm(i), and the

111

0t suspC
resmC()cC i

upd

downd
()d

ny t

()u

ny t

t

t0

0

Fig. 5.10: How to calculate migration cost

migration cost related variables such as Csusp, Cresm, Cc(i), Su(i), Sd(i), and the dynamic

network uplink and downlink bandwidth, denoted as Bul(t) and Bdl(t). Note that the net-

work bandwidth during the time period (0,∞) is known. The application is launched at

some time point t. The algorithm outputs the optimal partition. Let Y (i) represent the

partition. Y (i) = 1 if node i is migrated onto the cloud, otherwise Y (i) = 0. Algorithm 2

can optimize the partition for any program subtree i that is going to start at time t, and

return the corresponding completion time. Since the network bandwidth is changing over

time, the migration cost of node i depends on the time it is started. In the algorithm,

Cs(i, t0) represents the migration cost of node i if the migration procedure starts at time t0.

Fig.5.10 shows the migration cost as given by Cs(i, t0) = Csusp+dup+Cc(i)+ddown+Cresm,

where dup and ddown are the state transfer time that satisfy:

∫ t0+Csusp+dup

t0+Csusp

yu(t)dt = Su(i), (5.4)

∫ t0+Csusp+dup+Cc(i)+ddown

t0+Csusp+dup+Cc(i)
yd(t)dt = Sd(i). (5.5)

112

Online Algorithm

We first define application execution progress and then describe the online algorithm.

Execution progress is defined as the position of the program counter while the application

is in execution. In particular, if the program is being in migration, execution progress

is defined as the position of the migration point, although it is possible that the actual

program counter at the cloud side is in advance of the migration point. Note that execution

progress is different with the execution status defined in Section 5.2. Fig.5.11 illustrate

execution progress given the application execution status. Suppose that the application is

totally completed at mobile device, we can construct a progress bar that shows the start

time and end time of each method. In this example, the progress bar is in the order of {1,

2, ..., 8}. Note that the length of execution time of the non-leaf node is its residual cost

C ′m(i), which represents the cost of running the body of code excluding the costs of the

methods called by it. In our solution, we simplify that the body of code of the non-leaf

node is executed after all its children nodes. After the progress bar is constructed, for any

feasible application execution status, we can shows its progress on the bar. The left tree

shows that method ’7’ is being in migration. The execution progress is the migration point

of ’7’, which is right after the completion time of method ’3’. The tree in the middle shows

that method ’7’ is being executed on the mobile device. The progress is located at some

position of ’7’ on the bar. In the right tree, method ’5’ is being in migration, thus the

execution progress is at the end of ’4’ on the bar.

In the online solution, we maximize the application execution progress at each decision

epoch. According to the definition of execution progress above, if and only if the method

in migration can be returned before the end of the current epoch, it will contribute to

the execution progress. Oppositely if the method is migrated but not re-integrated in this

epoch, the time that is spent on the method migration has no contribution to the execution

113

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

Execute LocallyIn Migration

Progess Progess Progess

Fig. 5.11: Execution progress

progress. This is because of our pessimistic estimation about the network status beyond

the predictable duration. The worst case that the communication is fully disconnected

would happen beyond the epoch. Thus, we have a conservative migration policy in our

online solution: if the method is able to re-integrate back to the device in the epoch, the

migration of the method is allowed; otherwise the migration is not allowed, because in this

case we can always obtain more progress by executing the method locally. We conclude that

the problem of finding the partition that maximizes execution progress at current decision

epoch is equivalent to the problem of finding the partition, that minimizes the completion

time of the application, given that the network throughput beyond the predictable duration

is zero.

Algorithm 3 shows the online algorithm of the compuation repartitioning problem. The

algorithm first checks the execution state xn = (mn, pn, qn). If the method mn is being

in migration procedure, the algorithm makes the decision Xn of whether to terminate the

migration or not, by comparing the time tcont that the subtree mn needs to be finished if the

migration continues, and the time tterm if mn terminates the migration and seeks a different

partition. Note that the overhead of switching to different partition is Cresm. tcont can be

estimated based on the application execution status and network status. As the network

throughput beyond the this epoch is assigned with zero, if the migration is still not finished

in this epoch, we have tcont =∞. Line 13 to 20 is to update the partition for the nodes not

114

Algorithm 3: The online algorithm
Online Algorithm: µn(zn)

1 if The program is being in migration pn = 1 then
2 tcont ← EstimateF inishT imeOf(mn);
3 tterm ← Cresm + FindOptimalPartition(mn, Cresm);
4 if tcont < tterm then
5 Xn ← 0; t← tcont;
6 else
7 Xn ← 1; t← tterm;
8 end

9 else
10 t = EstimateF inishT imeOf(mn);
11 end
12 i← mn;
13 while j ← NextNodeOf(i) do
14 if j = ParentOf(i) then
15 t = t+ C′m(j);
16 else
17 FindOptimalPartition(j, t);
18 end
19 i← j;

20 end

8

3 7

1 2 4 5 6 2

7

4 5 63 8

Nodes sequence after Node 1

Fig. 5.12: Nodes sequence for NextNodeOf()

started. When we search the next node to be started, we always search the subtree that

includes as more children that are not started as possible. Fig.5.12, for example, shows the

next node after 1 is nodes 2, 3, 7, 8 rather than 2, 3, 4, 5, 6, 7, 8.

The predicted network status is not ideally the same with the reality, so the program is

likely to end up at each epoch with a method being in progress of migration. In this case,

the decision on whether or not to terminate the migration procedure is necessary. At each

epoch, we make the partition for all the nodes to be started rather than the nodes that are

likely to be started in current epoch. It causes more overhead but it is reliable to handle the

case in which the network throughput happens to be much better than what we predicted,

115

and some nodes that were not considered to start in the epoch start eventually.

5.4 Evaluation

5.4.1 Evaluation Setup

We collect the network bandwidth traces from our campus WiFi network testbed. We

deploy 23 WiFi access points in the test area. Note that in the Fig.5.13 only the nodes

labeled with figures are deployed with APs. The 23 APs are densely deployed at the four

buildings. Some buildings with APs deployed start from the first floor, so people can

freely pass through them on the ground. The maximum length and width of the erea are

approximately 500 meters and 700 meters. The APs are mainly deployed at four buildings.

Since APs are not intentionally deployed to cover the whole test area, there exists a few

network holes both in the buildings and in the open space of the campus. Our prediction

method needs the database of historical trajectories. Before collecting the trajectories,

we have built a mobility graph that constrains the user’s mobility due to the environment

restrictions. The users’ trajectories correspond to pathes in the graph. Fig.5.13 shows

the AP deployment and mobility graph in our test area. We have collected data for 30

trajectories for six users. The trajectories are not totally different, but have a few overlaps

between each other. The locations are recorded every two seconds along the trajectory, but

each trajectory has different speed that ranges from approximately 1.0 m/s to 2.5 m/s. The

time length of each trajectory is about 10 minutes.

In order to build a snapshot map of location-throughput, we have selected 200 positions

to measure the network bandwidth which covers the whole test area. At each position

we have ten measurements of both the downlink and uplink bandwidth. The average on

the 10 measurements is recorded as network status at that position. The measurements

are collected from 10:00 am to 12:00 am on Mar 2nd, 2013. Note that the positions we

116

1

2

3

4

5

6
7

8 9

10

11

13

12

14

15 16

19
17

18

20

21

22
23

Fig. 5.13: APs deployment and Mobility Graph.

Main Function

Pre-Processing

QR-Code

Decoding

Thresholding

QR-Code

Positioning

ImageRotating

&Correcting

ActivityData

Generation

CharacterSet

Generation

DecodeFormat

Generation

1

2

3

4

5

68

7

9

D
etectA

n
d

E
x

tractF
aces

In
itializeF

aceR
eco

g
n

izer

F
in

d
M

atch

1 2

3

(a) Face Recognition (b) QR-code Recognition

Fig. 5.14: Program trees used in evaluation

selected do not include network holes, because the network bandwidth in holes can be

directly mapped into zero. In real systems, the snapshot map of location/throughput varies

depending on workloads on APs, traffic on the backbone and so on. It needs to be updated

periodically, e.g., one update per hour. In our evaluation, we simply collect the snapshot

map once and use it all the time.

We evaluate our repartitioning algorithm using two applications: face recognition and

117

Table 5.1: Application parameters

Application Methods Cm(i) C ′m(i) Cc(i) Su(i) Sd(i)

Face 1© 7.1 s 7.1 s 0.71 s 2.3MB 2.3MB

Recognition 2© 19.6 s 19.6 s 1.96 s 6.9MB 6.9MB

3© 28.1 s 1.4 s 0.14 s 91kB 91kB

QR-Code 1© 800 ms 800 ms 80 ms 350KB 87.5KB

Recognition 2© 1300 ms 1300 ms 130 ms 87.5KB 62.5KB

3© 110 ms 110 ms 11 ms 62.5KB 87.5KB

4© 2210 ms 0 ms 221 ms 350KB 87.5KB

5© 500 ms 500 ms 50 ms 62.5KB 50.3KB

6© 400 ms 400 ms 300 ms 62.5KB 50.1KB

7© 300 ms 300 ms 30 ms 62.5KB 50.1KB

8© 1480 ms 280 ms 148 ms 87.5KB 63KB

9© 3690 ms 0 ms 369 ms 350KB 52KB

QR-code recognition. These two applications are also used in most related works [CBC10]

[CIM+11] [YCY+13]. Fig.5.14 shows the method level graph of the two applications. The

details about the application parameters are shown in Table 5.1, where the data of face

recognition are from [CBC10] and the data of QR-code recognition are from [YCY+13]. Note

that the computation in cloud is 10 times faster than on mobile devices. The suspension

cost Csusp and resuming cost Cresm are set as 1 second. These are typical values used in

[CIM+11].

5.4.2 Network Status Prediction

We first evaluate our approach for network status prediction. We concern on two metrics:

accuracy and predictable duration. The accuracy is measured by the number of successful

prediction over the total number of predictions. Successful prediction means that the pre-

dicted result is similar to the ground truth according to Equation 5.3. The predicted result

is obtained through mapping the predicted trajectory into network bandwidth sequence

by using the location-bandwidth map. However, to obtain the ground truth, we first map

the real trajectory into network status sequence. Considering the stochastic property of

118

1 1.5 2 2.5
0

5

10

15

20

Speed (m/s)

P
re

di
ct

ab
le

 D
ur

at
io

n

(a) Prediction accuracy

1 1.5 2 2.5
0

20

40

60

80

100

Speed (m/s)

P
re

di
ct

io
n

ac
cu

ra
cy

(%
)

(b) Predictable duration

Fig. 5.15: Performance of network status prediction varies depending on the walking speed
of user

bandwidth in temporal domain (shown in Fig.5.6a), the ground truth are then added with

a simulated Gaussian noise. The mean and variance of the noise added for uplink and

downlink bandwidth are respectively set as (0, 400kbps) and (0, 100kbps).

We evaluate the overall performance of the prediction method. We choose one of the 30

trajectories as test trajectory, and the left as the historical trajectories. We simulate the

online predictions with the test trajectory. We repeat this evaluation on all 30 trajectories.

Finally, we have 1123 times of prediction, where each trajectory has 1123/30 = 37 times of

predictions on average. Among those predictions, 912 predictions are successful, thus the

overall accuracy of our method is 81.2%. The average predictable duration is 15.7 seconds.

The result shows we can accurately predict the network status in future 15.7 seconds with

our prediction method.

Next, we evaluate how the walking speed affects the prediction performance. We classify

the trajectories into four categories according to the speed: slow (about 1m/s), medium (

about 1.5m/s), fast (about 2.0m/s), and very fast (about 2.5 m/s). For the test trajectories

which belong to the same speed category, we count the the total number of online predictions

the number of successful predictions, and the average predictable duration. Fig.5.15 shows

predictable duration decreases as the speed increases, while the accuracy almost remains

the same. The reason that the predictable duration changes is, that the length of future

119

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

Entropy threshold

(a) Prediction accuracy

1 1.2 1.4 1.6 1.8 2
0

10

20

30

P
re

di
ct

ab
le

 d
ur

at
io

n

Entropy threshold

(b) Predictable duration

Fig. 5.16: Performance of network status prediction varies depending on Hth

20 40 60 80 100 120
0

20

40

60

80

100

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

Size of dataset

(a) Prediction accuracy

20 40 60 80 100 120
0

10

20

30

P
re

di
ct

io
n

D
ur

at
io

n

Size of dataset

(b) Predictable duration

Fig. 5.17: Performance of network status prediction varies depending on the data size

spatial trajectory that we are able to predict is constrained. If the users move fast, the

time that user passes by the predictable area will be short. The speed does not affect the

accuracy because of the threshold Hth that is applied to stop prediction if the network

status becomes high uncertain in further future.

We further evaluate the effect of parameter Hth on the prediction accuracy. Increasing

Hth means allowing prediction in uncertain network status distribution. In this case, al-

though the predictable duration could be increased, the prediction is more likely to deviate

from the ground truth. Fig.5.16 shows prediction accuracy decreases as we increase the

threshold Hth. We will report how Hth influences the performance of program partitioning

in next subsection.

Finally, we explore the impact of the trajectory data size on the prediction performance.

120

First, we discard some of the 30 trajectories data set. As shown in Fig.5.17, we find both

the accuracy and predictable duration decrease significantly. The reason is that the test

trajectory may have some spatial intervals that never appear in the historical trajectory

database. In this case, it is difficult to find the matched trajectory from the database, or

even when matched trajectories are searched from the database, but the successive part of

the test trajectory appears to be different from all the matched trajectories. Second, we

increase the data size by simulating more trajectories. The new trajectories are generated

by randomly picking up the intervals from the 30 real trajectories and joining them together.

Fig.5.17 shows that both prediction accuracy and predictable duration increases as the data

size increases. In particular, the increase of predictable duration is very obvious. Overall,

this evaluation implies that the performance of our prediction method highly relies on the

data size. If we want to be able to predict more time in future or more accurately, we should

have more samples in the historical database.

5.4.3 Compuation repartitioning

Metric: Completion Time. We compare the online compuation repartitioning method

(Algorithm 3) respectively with CloneCloud, which runs the application with one time par-

titioning based on the current network status when the application is launched, the offline

partitioning method (Algorithm 2) and the baseline case that the application is totally

executed on the mobile device. The main performance metric is completion time of the pro-

gram. The performance of the offline partitioning algorithm actually reflects the upbound

that the online algorithm can achieve. The algorithms are evaluated using the network

traces we have collected.

First, we evaluate the overall performance of the partitioning methods. We have col-

lected 30 network traces. For each network trace, we repeatedly run the application 50 times

121

6 8 10 12 14 16 18
0

5

10

15

20

Predictable duration (s)

P
ro

gr
am

 c
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Online
Offline

(a) Stationary Scenario

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

Entropy threshold

(b) Mobile Scenario

Fig. 5.18: The completion time varies depending on: a)the predictable duration; b) Hth

by randomly selecting the application launching time along the trajectory. Thus, the appli-

cation runs 50×30 = 1500 times for each method. We obtain the average completion time

for the online algorithm, CloneCloud, offline algorithm and the baseline method. Fig.5.20a

and Fig.5.20b respectively show the program completion time under the four methods for

the two applications. For face recognition, Foreseer can reduce the completion time by 41%

over CloneCloud. For QR-code recognition, Foreseer can reduce the completion time by

35% over CloneCloud.

We analyze how predictable duration affects the online predictive method. Note that we

run the program for 1500 times to obtain the overall performance of the predictive method.

Each running of the program requires multiple times of prediction on the network status.

We record the average predictable duration as well the program completion time during

each running of the program. We analyze the 1500 samples of the predictable duration

and program completion time, and find that program completion time decreases as the

predictable duration increase, which is shown in Fig.5.18a. This result implies that if we

can predict more time in future about the network status, we will achieve better performance.

To evaluate how the performance of predictive partitioning algorithm changes depending

on the prediction parameter Hth, we assign Hth with different values, and repeat 1500 runs

122

1 1.5 2 2.5
10

15

20

25

30

Walking speed (m/s)

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Local Exec.
CloneCloud
Online
Offline

(a) walking speed

20 40 60 80 100 120
0

20

40

60

80

100

120

Workload of application (seconds)

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Local Exec.
CloneCloud
Online
Offline

(b) application workload

Fig. 5.19: The completion time varies depending on: a)the walking speed; b) application
workload

of the algorithm. Fig.5.18b shows that the performance is not good either when Hth is too

low or Hth is too high. The reason is that when Hth is too low, although the network status

can be predicted accurately (shown in Fig.5.16a), the predictable duration is quite short

which degrades the performance. Oppositely when Hth is too large, the network prediction

is not accurate, which leads to bad performance of the predictive method.

We then evaluate how the walking speed affects the performance of the three partitioning

methods. We conduct the test under four speeds 0.5 m/s, 1.0 m/s, 1.5 m/s, and 2.0 m/s. For

each speed, we select one trajectory, and also repeat the application 50 times by randomly

choosing the application launching time. Fig.5.19a shows the three methods’ performance

under different walking speeds. The performance of both the online method and CloneCloud

degrades as the walking speed increases. The faster the user walks, the more unstable the

networks status is, in which case CloneCloud that assumes the stable network has lower

performance. The reason that our online algorithm has lower performance as the speed

increases is that the predictable duration becomes short when user moves faster. This

evaluation shows that Foreseer always outperforms Clone Cloud, specially when the user

moves relatively fast in the network.

123

We evaluate the effect of application workload on performance of the partitioning meth-

ods. The workload is defined as the completion time if the program is totally executed on

the mobile device. In this evaluation, we still use the face application, but we simulate large

workload by assuming that the same application is executed on a very slow device. Fig.5.19b

shows the completion time of the three methods vary depending on the program workload.

We can see that the more the program workload is, the better performance our predictive

online algorithm has over CloneCloud. This evaluation implies that Foreseer is suitable to

be used in compute-intensive applications, while for small application, it is enough to use

current bandwidth to partition the program.

Other Metrics: Energy Consumption and Bandwidth Usage. Although Fore-

seer is designed with the objective of minimizing program completion time, we also measure

other metrics of Foreseer such as energy consumption and bandwidth usage. The energy

consumption of Foreseer contains the application execution itself and overhead of network

status prediction. To measure the energy consumption of application itself, we use the same

energy model with [CIM+11] in our evaluation. For the overhead of Foreseer, we mainly con-

sider the energy consumed on the periodic location sensing. Therefore, we have the following

equation to model the energy consumption of Foreseer: EC = Pcputcomp+Pnetttrans+Esense.

Pcpu and Pnet are constants. Esense is calculated by the total energy consumed in location

sensing among the whole trajectory divided by the run times of the program on this trajec-

tory. The bandwidth usage indicates the data amount that are transferred over the wireless

networks. This metric is usually concerned by the users who have limited data traffic

budget.

Fig.5.20 shows the energy consumption and bandwidth usage for the two applications.

All measurements are the average of 1500 runs of the application. We can see that Fore-

seer outperforms CloneCloud in term of energy consumption for the application of face

124

Local Exec. CloneCloud Online Offline
0

5

10

15

20

25

30

C
om

pl
et

io
n

T
im

e
(s

)

(a) FR - Completion Time

Local Exec. CloneCloud Online Offline
0

0.5

1

1.5

2

2.5

3

3.5

4

C
om

pl
et

io
n

T
im

e
(s

)

(b) QR - Program Completion Time

Local Exec. CloneCloud Online Offline
0

5

10

15

20

25

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

(c) FR - Energy Consumption

Local Exec. CloneCloud Online Offline
0

2

4

6

8

10

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

(d) QR - Energy Consumption

Local Exec. CloneCloud Online Offline
0

50

100

150

200

B
an

dw
id

th
 U

sa
ge

 (
kB

)

(e) FR - Bandwidth Usage

Local Exec. CloneCloud Online Offline
0

50

100

150

200

250

300

B
an

dw
id

th
 U

sa
ge

 (
kB

)

(f) QR - Bandwidth Usage

Fig. 5.20: Performance comparison between four methods: CloneCloud, Foreseer (Online
Algorithm), Foreseer (Offline Algorithm) and Local Execution without partitioning.

125

recognition, while for QR-code recognition, Foreseer consumes the same amount of energy

with CloneCloud. This is because face recognition has much larger workload then QR-code

recognition. Usually Foreseer can save energy through reducing the completion time. rela-

tively large workload programs can benefit from the Foreseer in term of energy consumption.

The bandwidth usage for CloneCloud and Foreseer(offline) are almost the same for the two

applications. However, Foreseer (online) causes a litter bit higher bandwidth usage than

the other two schemes. This is because the online algorithm of Foreseer can terminate the

method migration if it predicts that future network bandwidth is not good. In this sense,

the bandwidth used to transmitting data in the terminated migration procedure is a waster.

5.5 Summary

In this chapter, we proposed a framework for run time compuation repartitioning in

dynamic mobile environments. Based on the framework, we take the dynamic network

connection to the cloud as a case study, and design an online solution for compuation

repartitioning under network fluctuations. Our solution exploits the knowledge of user’s

mobility to predict the future network status. According to the network prediction, we

designed the online repartitioning algorithm that aims to maximize the execution progress

during current the predictable duration. To evaluate our solution, we collected data set from

our campus Wifi testbed that contains the user’s walking trajectories and measurements of

spatial distribution of network throughput. The evaluation results show that our solution

can reduce the completion time of program by at least 35%.

126

Chapter 6

Multiple User Computation
Partitioning

In this chapter, we study the multiple user computation partitioning problem. This

chapter is organized as follows. In Section 6.1, we give the overview of this work. In Section

6.2, we present the system model and problem statement. We present our offline algorithm,

SearchAdjust, in Section 6.3, and a set of benchmark offline solutions in Section 6.4. The

online solution for MCPP is presented in Section 6.5. We evaluate both the offline and

online solutions in Section 6.6. In Section 6.7, we conclude the chapter.

6.1 Overview

Computation partitioning between the mobile device and the cloud has been studied

a lot in mobile cloud computing. Existing work mainly focus on single user computation

partitioning, in which the computations are partitioned for one single user without regard

to the partitioning results of other users [YCT+12] [CBC10] [CIM+11] [ZKJG09] [GRJ+09]

[KL08] [LWX09] [RSM+11]. It is assumed that the cloud always has enough resources to

accommodate without delaying the offloaded tasks, no matter how many other users offload

the computations on the cloud. However, from the standpoint of the application provider,

the assumption is not practical due to the following two reasons. First, the application

127

providers need to balance the number of resources leased from cloud IaaS providers and

the application performance, in order to lower their operational cost [SSSS11]. Second, due

to the unpredictable number of mobile users in large scale cloud applications, the applica-

tion provider can not guarantee all the times to have enough resources to host the mobile

users’ offloading requests. Therefore, it is necessary to place the computation partitioning

problem on constrained number of cloud resources. We name this problem as Multi-user

Computation Partitioning Problem (MCPP).

MCPP is much more challenging than the existing computation partitioning problems.

In MCPP, the users’ partitioning results are dependent with each other because of their

competition for the cloud resources. For example, one user’s decision on whether to offload

the task not only depends on its saved computational cost and communication overhead,

but also depends on how many other users offload the tasks onto cloud. The number of

users who offload the tasks onto cloud represents the load on the cloud. If the load is high,

the time spent in waiting for available cloud resources may sacrifice the benefit of offloading.

An optimal solution for MCPP requires a unified schedule of all the users’ computations

onto their mobile devices and cloud resources.

In this chapter, we study the MCPP for latency sensitive mobile cloud application. The

problem is to schedule the offloaded computations on a constrained number of cloud re-

sources as well as to partition the computations between mobile side and cloud side for

all the users, such that the average application delay is minimized. The selected perfor-

mance metric is average application delay/latency sine it is the most critical one for latency

sensitive mobile cloud applications. Moreover, we study how the application performance

changes with the provisioned cloud resources and the load on the system, and thus construct

a Performance-Resource-Load (PRL) model. The PRL model provides an optimal tradeoff

between the application performance and the cost of cloud resources. We believe the model

128

can help the application provider to achieve a cost-efficient utilization of the cloud resources,

and hence save their operational cost. The main contributions of this work are as follows:

• To the best of our knowledge, this work is the first one to study the Multi-user Compu-

tation Partitioning Problem (MCPP), from the standpoint of application providers.

The problem jointly considers the partitioning of computations for each user and

the scheduling of offloaded computations on the cloud resources. It could help the

application provider to achieve optimal application performance when faced with un-

predictable number of users.

• We show that our MCPP is different from and more difficult than the existing job

scheduling problems, such as Task Scheduling Problem in Heterogeneous Computing

(TSPHC) and Hybrid Flow Shop (HFS) scheduling problems.

• We systematically solve the offline MCPP by proposing a set of competitive algo-

rithms. Through the benchmarks, we show that our proposed algorithm, SearchAd-

just, has better performance than the existing list scheduling algorithms by 10 percents

in term of application delay.

• We design an online algorithm for MCPP that can be deployed in practical systems,

and demonstrate its effectiveness using real world load traces.

6.2 System model and Problem Formulation

6.2.1 Application model

We target for the Latency Sensitive Mobile Cloud Applications, which requires low la-

tency for good user experiences. The applications often take sensory data as input, perform

a sequence of operations onto the data, and then output the results. Mobile augmented re-

ality is considered as one typical application. The application uses the camera and/or other

129

Table 6.1: Mathematical notations in this chapter

j index of module of the application;

n total number of modules that the application contains;

cj execution time of module j at the cloud side;

wj execution time of module j at the mobile device;

πj data transmission time between module j and module j + 1;

xj decision variables in SCPP that indicate whether module j is offloaded onto
cloud;

λ number of user’s requests;

r number of cloud servers;

i index of the user;

k index of the machine that could be the mobile device or the cloud server;

T the length of time interval;

δi release time of user i’s request;

wi,j execution time of module j on the mobile device of user i;

πi,j data transmission time from module j to j + 1 for user i;

ti,j the completion time of module (i, j);

xi,j,k binary variable that indicates if module (i, j) is executed on server k;

yi,j binary variable that indicates if module j and j + 1 of user i are executed
on different sides k;

zi,i′,j,j′ binary variable that indicates if the execution of module (i, j) precedes mod-
ule (i′, j′);

∆t the length of time slot;

η the index of time slot;

λη the number of user’s requests at time slot η;

λ the expectation value of λη over all time slots;

var the variance value of λη over all time slots;

rη the number of cloud servers allocated to server user’s requests at time η;

sensors to perceive the user’s environment/scene, and then augment the original scene with

relevant information. The perception is done frequently which is driven by the user’s in-

put. The core part of augmented reality applications is the image based object recognition.

Fig.6.1 shows the operations involved in the whole process of image based object recognition.

Note that the SIFT algorithm is used to extract the features [Low04].

In our work, the applications are modeled as a sequence of processing modules (shown

as vertex in Fig.6.1). The module represents a kind of operation onto the data. The

130

Local Extrama

Detection

Keypoint

Localization

Orientation

Assignment

Descriptor

Generation

Grayscale

Similarity

Caculation

Classification

Input Image

Output Result

SIFT

Fig. 6.1: The functional modules of image based object recognition

131

directed edges represent the dependency between the modules. It means that a module

can not start to run until its precedent module completes. Each module is allowed to run

either locally on the mobile device or remotely on the cloud. Also the input data of the

application is supposed to be from the sensors of the mobile device, and the output data

should be delivered back to the mobile device. The performance metric is the execution

time of the application. As the execution time represents the responsive delay/latency for

the application, we simply use the term delay or latency in the chapter. The delay is the

summation of the computational time of all the modules and the data transmission time

between the modules.

6.2.2 Single user computation partitioning

We first describe the Single user Computation Partitioning Problem(SCPP), in which

one single user runs the application and requests the cloud for computation offloading.

Table 6.1 shows the mathematical notions that we use throughout this chapter. Suppose

the application consists of a sequence of n modules. Each module can be executed either at

the mobile side or at the cloud side. The execution time of module j is cj if it is offloaded

onto cloud (1 ≤ j ≤ n); otherwise, it is wj , where wj > cj . If two adjacent modules j and

j+1 run on different sides, the data transmission time is πj ; otherwise the data transmission

time between j and j + 1 becomes zero when they run on the same side. To model that

the input/output data of the application should be from/to the mobile device, we add two

virtual modules 0 and n+ 1 as the entry and exit modules.

Definition 1 Single user Computation Partitioning Problem(SCPP): Given the com-

putation cost cj and wj (1 ≤ j ≤ n), and communication cost πj (0 ≤ j ≤ n), the SCPP is

to determine which modules should be offloaded onto cloud such that the application delay

132

Partitioning

Cloud Layer

Mobile Layer

Fig. 6.2: System model of multi-user computation partitioning

is minimized. It is formulated by

min
xj

d =

n∑
j=1

[(1− xj)wj + xjcj] +

n∑
j=0

|xj − xj+1|πj , (6.1)

where xj is a binary decision variable. xj = 1 if the module j is offloaded onto cloud,

otherwise xj = 0; and x0 = xn+1 = 0.

6.2.3 Multiple users computation partitioning

Next, we illustrate the system model of multiple users computation partitioning which

is shown in Fig.6.2. The system consists of two layers: cloud layer and mobile layer. At

mobile layer, we have a set of users that send requests to cloud for partitioned execution of

the application. Upon receiving users’ requests, the cloud needs to partition the application

for each user, i.e., to decide which modules of the application are executed on the mobile

device and which modules are offloaded to the cloud, and also to schedule the offloaded

modules onto the cloud servers. In our model, we assume that the users are requesting

for partitioned execution of the same application. However, we can extend the model by

considering that the users request for various applications, and easily apply the methods in

the following sections into the extended model.

133

We consider a fixed time period (0, T), during which a total number λ of requests are

sent to the cloud. Let i denote a particular request and δi denote the release time for request

i, where 1 ≤ i ≤ λ and 0 ≤ δi ≤ T . For convenience of description, when we mention user i

or i-th user in this chapter, we refer to the user who emits request i.

We model cloud resources as a set of servers/VMs. The number of cloud resources is

denoted as r. As mentioned in the SCPP, cj represents remote computation cost (time)

of the j-th module of the application. Usually the mobile users have different processing

capabilities and networking bandwidth. Thus, we use a λ× n matrix W to represent local

computation cost in which each wi,j gives the execution time to complete the module j on

the i-th user’s mobile device. Π is a λ× (n+ 1) communication cost matrix in which each

πi,j (0 ≤ j ≤ n) represents the data transmission time from the module j to j + 1 for the

user i.

We first study the offline multi-user partitioning problem, in which we assume perfect

knowledge on the requests released from time 0 to T . We develop an offline algorithm as

well as a set of competitive benchmark algorithms in Section 6.3 and Section 6.4. Based on

the offline solutions, we design an online solution in Section 6.5.

Definition 2 Multi-user Computation Partitioning Problem(MCPP): Given λ, r, δi, cj ,

Wλ×n and Πλ×(n+1), the problem is to determine for all the users at which machine (in-

cluding the mobile device and the cloud servers) and at what time each module is executed,

such that the average application delay of the users is minimized.

We formulate MCPP as a Mixed Integer Linear Programming(MILP) problem. For the

convenience of description, we use (i, j) to represent the j-th module for the user i. In this

formulation, we define one continuous variable ti,j and three 0-1 discrete variables xi,j,k,

yi,j , zi,i′,j,j′ as follows. ti,j represents the time that the module (i, j) is finished. xi,j,k = 1

if the module (i, j) is executed on the machine k, and otherwise xi,j,k = 0. Note that

134

k = 1, 2, ..., r represents the servers at the cloud side, and k = 0 represents the mobile

device. yi,j = 1 if the two dependent modules, (i, j) and (i, j+ 1), are executed on different

sides, and otherwise yi,j = 0 if the two modules are on the same side; zi,i′,j,j′ = 1 if the

execution of module (i, j) precedes the module (i′, j′), and otherwise zi,i′,j,j′ = 0. We also

define a positive constant IN which is as great as infinity. The MILP formulation can be

written by Equation 6.2.

Min
1

λ

λ∑
i=1

(ti,n+1 − ti,0);

Subject to:

(a)
r∑

k=0

xi,j,k = 1,∀i ∈ [1, λ], ∀j ∈ [0, n+ 1];

(b) ti,j+1 ≥ ti,j + πi,j · yi,j + wi,j+1 ·xi,j+1,0 + cj+1 · (1− xi,j+1,0),∀i ∈ [1, λ],∀j ∈ [0, n];

(c) ti′,j′ ≥ ti,j + cj′ − IN × (1− zi,i′,j,j′)− IN × (2− xi,j,k − xi′,j′,k),

∀i, j, (i, j) 6= (i′, j′), ∀k ∈ [1, r];

(d) yi,j ≥ xi,j,0 − xi,j+1,0,∀i ∈ [1, λ],∀j ∈ [0, n];

(e) yi,j ≥ xi,j+1,0 − xi,j,0,∀i ∈ [1, λ], ∀j ∈ [0, n];

(f) yi,j ≤ xi,j,0 + xi,j+1,0,∀i ∈ [1, λ],∀j ∈ [0, n];

(g) yi,j ≤ 2− xi,j,0 − xi,j+1,0, ∀i ∈ [1, λ], ∀j ∈ [0, n];

(h) zi,i′,j,j′ > (ti′,j′ − ti,j)/IN,∀i, j, (i, j) 6= (i′, j′);

(i) zi,i′,j,j′ ≤ 1 + (ti′,j′ − ti,j)/IN,∀i, j, (i, j) 6= (i′, j′);

(j) xi,j,k, yi,j , zi,j,i′,j′ ∈ {0, 1}, ti,j ≥ 0,∀i, j, k, i′, j′

(k) xi,0,0 = 1, xi,n+1,0 = 1, ti,0 = δi,∀i ∈ [1, λ].

(6.2)

Constraint (b) guarantees the temporal order for the execution of two dependent mod-

ules. Constraint (c) indicates that each cloud server can and only can process one module at

135

one time. In another word, if two modules are scheduled to the same machine, one module

will not be started until the other one is finished. Since yi,j and zi,i′,j,j′ are two auxiliary

variables, constraints (d)-(g) show that variables yi,j is determined by xi,j,k, and constraints

(h)-(i) indicate the value of zi,i′,j,j′ depends on the value of ti,j and ti′,j′ . According to our

system model, the input data of the application is from mobile device, so we have xi,0,0 = 1

for all i in constraint (k). Note that ti,0 represents the release time of request i. Thus, we

have ti,0 = δi in constraint (k).

6.2.4 Uniqueness of MCPP

We compare the MCPP with classical job scheduling problems and discuss their differ-

ences.

Comparison with TSPHC. The first classical scheduling problem similar to MCPP

is Tasks Scheduling Problem for Heterogeneous Computing(TSPHC) [THW02]. In this

problem, an application is represented by a Directed Acyclic Graph (DAG) in which nodes

represent application tasks and edges represent intertask data dependencies. Given a het-

erogeneous machine environment, where the machines have different processing speeds, and

the data transfer rate between machines are different, the objective of the problem is to map

tasks onto the machines and order their executions so that task-precedence requirements

are satisfied and a minimum completion time is obtained. The TSPHC is NP-complete

in general case, and various efficient heuristics were proposed in the literatures [THW02]

[LZ08].

Intuitively, we may model our problem as similar to MCPP as possible. In our problem,

we have λ × n tasks, where the precedence dependence exists among the tasks from the

same users. The machines can be abstracted as a set of r cloud servers/VMs and one

mobile device. Note that the sole mobile device in our model, unlike the machines in

TSPHC, is able to execute more than one task simultaneously. The data transfer rate is

136

infinite between the cloud VMs , while being constrained between any pair of the mobile

device and cloud VM. The problem is to map the tasks onto the (r + 1) machines such

that the precedence constraints are satisfied, and the weighted summation of all the tasks’

completion time is minimized. The tasks that appear in the last position of the application

flow are assigned the weight of one, and others are assigned the weight of zero.

The key difference between MCPP and TSPHC is the optimization objective. In TSPHC

the optimizion objective is the makespan which is the maximum completion time of all

the tasks, while in MCPP the objective is the total weighted completion time. Although

various efficient heuristics were proposed for TSPHC to optimize the makespan, there were

few solutions on optimizing the total weighted completion time. We can only find some

early efforts to minimize the total weighted completion time on single machine or on parallel

machine without considering the communications. Even these simplified versions for MCPP

have been proved to be NP-hard [HSW96].

Comparison with HFS. The second classical scheduling problem is Hybrid Flow Shop

(HFS) scheduling [BB02]. In this problem, the job is divided into a series of stages. There

are a number of identical machines in parallel at each stage. Each job has to be processed

first at Stage 1, then Stage 2, and so on. At each stage, the job requires processing on only

one machine and any machine can do. Assuming all the jobs are released at the beginning,

the problem is to find a schedule to minimize the makespan. We note that the application

and its functional modules in our problem are analogous to a job and stages in HFS. The

mobile devices and cloud VMs may be modeled as the machines in HFS. However, our

MCPP is far different from HFS in terms of the following aspects. 1) In MCPP, there

exists communication overhead between stages, which makes the problem more complex

than HFS; 2) in MCPP, since both cloud VM and mobile device are able to execute any

module of the application, the set of machines are not partitioned into subsets according to

137

the stages; 3) the objective in MCPP is the total completion time rather than the makespan.

6.3 SearchAdjust

The most widely used method for solving MILP problems is branch and bound [LW02].

It transfers the MILP problem into standard Linear Programming (LP) problem by relaxing

the integral variables. Based on the optimal solution obtained using LP, the MILP problem

is then divided into subproblems by restricting the range of the integral variables. The

subproblem is solved using LP, and then divided into sub-subproblems. This process is

done recursively until a feasible and satisfactory solution is found.

Unfortunately the LP-based solution is not practical for the MCPP, because it contains

an exploding number of variables and constraints when the problem scales up. From equa-

tion (2), we can see that the number of variables zi,i′,j,j′ achieves the magnitude of λ2n2,

and the number of constraints (c) is λ2n2r. Although we can express the model by deleting

all the auxiliary variables zi,i′,j,j′ and yi,j , the number of variables xi,j,k remains a large

magnitude of λnr. Thus, in this section, we design a greedy heuristic algorithm, named as

SearchAdjust, to solve the MCPP.

6.3.1 Overview of SearchAdjust

The idea of SearchAdjust is that we first relax the resources constraints in the MCPP.

For each user, we can have an optimal partitioning by using the solution of SCPP. Under

these optimal partitions, we search the time intervals during which the resources constraints

are violated. We then adjust the schedule in a greedy way that can release as long resources

occupation period as possible at these time intervals, and meanwhile increase the average

application delay as little as possible. The searching and adjusting are done alternatively

until the resource constraints are satisfied for all the time. The algorithm is designed due to

the observation that the SCPP initiated solution is optimal but not feasible in the solution

138

space of MCPP. Hence, we can adjust the initial solution iteratively to make it feasible,

while not sacrificing the objective function (average application delay) too much.

Before describing the algorithm, we first introduce three important data structures as

below.

• Execution Schedule S: For each user i, we can create a n×3 table to store its execution

schedule in which each row is a three-tuple (xi,j,0, τi,j , ti,j), where xi,j,0 indicates at which

side the module (i, j) is scheduled, and τi,j , ti,j are respectively the start time and completion

time of the module (i, j).

• Cloud Resource Occupation List Lcro: The list records the number of occupied servers

at each time interval. Each element e of the list is denoted as (start, end, num), where

start/end represents the start/end point of the time interval, and num is the number of

occupied server at the interval. The time intervals in the list have no overlapping with each

other, and are able to constitute a continuous time interval. The elements are stored in

the list according to the ascending order of the time intervals. Thus, we have ek.end =

ek+1.start and ek.start < ek+1.start, ∀k ≥ 1. Note that the length of each interval is not

necessary to be the same.

• Module Adjustment List Ladj : The list records the modules which could release the

cloud resource occupation period by waiting to execute later on or changing to run at

mobile side, their rewards, and corresponding released cloud resource occupation period for

the adjustment. We denote each item as (i, j, reward,Drel), where i, j indicates the module,

reward represents the reward of the adjustment on this module and Drel is the released

cloud resource occupation period. The modules are stored in the list by a descending order

of reward.

Algorithm 4 gives the pseudo code of the greedy heuristic. First, we get the optimal

partitioning and corresponding execution schedule for each user without considering the

139

cloud resource constraint (line 1). Second, we compute the cloud resource occupation list

Lcro (line 2). It records the number of the occupied/in-use servers at each time interval.

Then, we find the earliest interval that the number of occupied servers exceeds the up-bound

r (line 3). We name the start of the interval as critical point tcri on the time axis, as

before it the resource constraint is satisfied, and after it the constraint is violated. Next, for

each user we look for the module that was scheduled at the cloud side, and the execution

time of which spans the critical point. In order to release the cloud resource immediately

after the critical point, we adjust the schedule of this module by moving it back to mobile

side or delaying its execution for some time. The adjustments are scored based on a reward

function (which represents the greedy strategy in our algorithm) (line 6). The modules with

positive score/reward are added into the module adjustment list Ladj (line 7-9). After the

searching for all the users, α modules with largest rewards are selected from the list Ladj

to adjust (line 12). In each iteration, the critical point tcri would be moved forward along

the time axis. The algorithm stops until the resource constraint is satisfied at all the times

(line 3).

6.3.2 Details of SearchAdjust

In the following, we present details of SearchAdjust: 1) how to obtain the initial optimal

but infeasible solution; 2) how to compute the cloud resource occupation list Lcro and search

the critical point; 3) the reward function of SearchAdjust; 4) how to determine the number

of modules α to adjust in each iteration.

Initial Solution

Consider the SCPP shown in Definition 1, suppose that the completion time of module

j is denoted as tj . As every module can be completed either at mobile side or at the cloud

side, we use notation t
(c)
j to represent the completion time of module j if it is scheduled

140

Algorithm 4: The Greedy Heuristic for MCPP

Input : A set of λ users, and a set of r cloud servers
Output: The execution schedule (xi,j,0, τi,j , ti,j)

1 Compute the initial execution schedule using SCPP solution;
2 Compute the cloud resource occupation list Lcro ;
3 while search the critical point from Lcro do
4 for each user do
5 if find the module that is scheduled onto cloud, and its execution time cover

the critical point then
6 Compute the reward of adjusting the module;
7 if Reward > 0 then
8 Insert this module into list Ladj by a descending order of its reward;
9 end

10 end

11 end
12 Select the first α modules from list Ladj to adjust;
13 Update the execution schedule of the selected modules;
14 Re-compute the cloud resource occupation list Lcro;

15 end
16 return the execution schedule for all the users;

at the cloud side. Correspondingly, notation t
(m)
j is the completion time of module j if

scheduled at mobile side. Then, we have a recursive formulation of tj :

t
(c)
j = min{t(c)j−1 + cj , t

(m)
j−1 + wj + πj−1,j}, (6.3)

t
(m)
j = min{t(m)

j−1 + wj , t
(c)
j−1 + cj + πj−1,j}, (6.4)

where j = 1, 2, ..., n, n+ 1. The module 0 and module n+ 1 are respectively the entry and

exit module we have added virtually into the application graph. The computation time of

these two modules are zero.

In order to determine the optimal partitioning, we construct a graph which contains

2× (n+ 1) nodes. Each node is denoted as v
(p)
j , and labeled with its completion time t

(p)
j ,

where 0 ≤ j ≤ n + 1 and p ∈ {c,m}. Since the input data of the application is from the

mobile device, we let t
(m)
0 = 0 and t

(c)
0 =∞. Starting from the nodes v

(m)
0 and v

(c)
0 , and we

can recursively compute the labels of all the nodes by Equation (6.3)(6.4). For each node,

141

1

1 2

2

3

3

4

4 50

Cloud

Mobile

{c1, c2, c3, c4} = {0.1, 0.2, 0.2, 0.1};

{w1, w2, w3, w4} = {0.4, 0.8, 0.8, 0.4};

{π0,1, π1,2, π2,3, π3,4, π4,5}={1.0, 0.6, 0.5, 0.5, 0.4}.

1.1

0.4

1.2

1.2 2.0

1.4 1.5

2.3 1.90

Fig. 6.3: An example of SCPP solution

for example, v
(m)
j , there are two possible edges from its precedent nodes to it, v

(c)
j−1 and

v
(m)
j−1. The edge that leads to less value of t

(m)
j according to Equation (6.4) is added into

the graph. The partitioning result is actually a path from node v
(m)
0 to node v

(m)
n+1. Fig.6.3

shows an example of the method. There are four modules in the application. The colored

nodes indicate the places that the modules are scheduled to. For the MCPP, with the

optimal partitions xi,j,0 for each user i, we can easily obtain the initial execution schedule

S = {(xi,j,0, τi,j , ti,j)}.

Computation of Cloud Resources Occupation List and Critical Point

The cloud resource occupation list Lcro records the number of occupied server at each

time interval. In each iteration of Algorithm 4, Lcro needs to be re-computed. We design

an algorithm to calculate Lcro which is shown in Algorithm 5. The input of the algorithm

is the execution schedule of each user {(xi,j,0, τi,j , ti,j)|1 ≤ j ≤ n, 1 ≤ i ≤ λ}. In Algorithm

2, Lcro is first initialized by the time interval (0,∞), with the number of occupied server

at this interval being zero. For each module (i, j) that is allocated onto cloud side (line 4),

we first respectively search the intervals from Lcro in which the start and completion time

of the module’s execution period are located (line 5-6). The interval covering the start or

the completion point is split into new sub-interval, which are then inserted into Lcro (line

12,15,21). For the interval which is entirely covered by modules (i, j)’s execution period,

142

we increase the number of its occupied server by one (line 9). The algorithm stop until all

the modules on cloud are finished. After finishing one module, the length of Lcro increases

at most by 2. The length of Lcro returned by Algorithm 5 would be at most 2λn. The time

complexity of the algorithm is on the order of O(λ).

Algorithm 5: The Algorithm for Computation of Cloud Resource Occupa-
tion List

Input : {(xi,j,0, τi,j , ti,j)|1 ≤ j ≤ n, 1 ≤ i ≤ λ}
Output: Lcro

1 Lcro ← {(0,∞, 0)};
2 for each user i do
3 for each module j do
4 if xi,j,0 == 1 then
5 Search the element es in Lcro such that es.start < τi,j ≤ es.end;
6 Search the element ev such that ev.start ≤ ti,j < ev.end;
7 if s < v then
8 for k-th element in Lcro, s < k < v do
9 ek.num← ek.num+ 1;

10 end
11 if τi,j 6= es.end then
12 Insert element (τi,j , es.end, es.num+ 1) into Lcro after es;
13 end
14 if ti,j 6= ev.start then
15 Insert element (ev.start, ti,j , ev.num+ 1) into Lcro before ev;
16 end
17 es.end← τi,j ;
18 ev.start← ti,j ;

19 end
20 else
21 Insert elements (τi,j , ti,j , es.num+ 1) and (ti,j , es.end, es.num) into

Lcro after es;
22 es.end← τi,j ;

23 end

24 end

25 end

26 end
27 return Lcro;

Critical point tcri is defined as the start time of the first time interval in Lcro during

which the number of occupied servers exceed the up-bound r. Based on the Lcro, it is easy

to find the critical point tcri. The whole time axis are divided into two periods by tcri. In

the period before the time tcri, the number of occupied servers is lower then the up-bound

143

r, while during the period after Lcro the number of occupied servers exceed the up-bound

r. In Algorithm 4, tcri is put forward on the time axis in each iteration until no tcri is found

from Lcro.

Reward Functions/Greedy Strategies

The reward function is to evaluate the reward of adjusting the schedule of one module.

It is defined by the released cloud resource occupation period, denoted as Drel, minus the

extra delay caused by this adjustment, denoted as Ddelay,

Reward = Drel −Ddelay. (6.5)

The reward function is defined due to the motivation that we always prefer to select the

module to adjust which can release as a long cloud resources occupation period as possible,

and meanwhile causing as short extra delay as possible. Next we describe the definition of

Drel and Ddelay.

Released Cloud Resource Occupation Period. Note that only the modules satisfy-

ing the following two conditions could be adjusted: (a) the module is executed at the cloud

side, xi,j,0 = 0; and (b) its execution duration covers the critical point, τi,j < tcri < ti,j .

For one user i, assuming the module j0 is the candidate module which cloud be moved to

mobile side. To distinguish with the original execution schedule of user i, we use τ ′i,j and t′i,j

to respectively represent the start time and completion time after the movement of module

j0. The released cloud resource occupation period due to the adjustment of module (i, j0) is

defined by

Drel(i, j0) = min{τ ′i,jc , ti,jm−1} − tcri (6.6)

where jc, jm ∈ [j0 + 1, n+ 1]. jc represents the first successor of module j0 that is scheduled

144

to the cloud; if no successor of module j is at the cloud side, then τ ′i,jc =∞. jm is the first

successor of module j0 that is scheduled onto the mobile side; if no successor of module j0

is at mobile side, then jm = n+ 1.

Extra Delay. The extra delay caused by the adjustment of module (i, j0) is defined by

Ddelay(i, j0) = τ ′i,j0+1 − τi,j0+1 (6.7)

The reward of adjustment of one module could be positive or negative. Fig.6.4(a)

indicates that Drel > Ddelay, hence the reward of the adjustment is positive; while in

Fig.6.4(b) the reward of the adjustment is negative. In each iteration of algorithm, we only

select the modules with positive and as large as possible reward to adjust.

Remember that we actually have two adjusting options to release the resources which

have been occupied at the critical point, i.e., waiting and movement. Waiting means

to purely delay the execution of the modules at the cloud side, while movement means to

change the execution place of the module. However, as shown in Fig.6.4(c), we can see that

waiting adjustment always has a non-positive reward. Hence, in our algorithm we do not

consider the waiting adjustment.

Other Reward Functions. Now we pose another question: do we have other reward

functions? Actually there exist two typical functions: (a) Reward = −Ddelay, and (b)

Reward = Drel. The former function means that the modules with as small extra delay as

possible are selected despite of its released cloud resource occupation duration. The latter

function prefers to select the module that could release longer cloud resource occupation

duration. We evaluate the two functions in Section 6.6. We find that function (a) obtains

good average application delay, but requires a long time to converge, while function (b)

leads to bad average application delay. The reward function in Equation 6.5 is able to

achieve good average delay and fast convergence speed.

145

jj-1 j+1

j-1 j+1j

jj-1 j+1

j-1 j+1j

jj-1 j+1

jj-1 j+1Delay

Drel

Ddelay

j+2

j+2

j+2

j+2

j+2

j+2

Drel

Ddelay

Ddelay

Drel

Exec. on Cloud

Exec. on Mobile

Data Trans.(a) Movement: Drel > Ddelay

(b) Movement: Drel < Ddelay

(c) Waiting

Fig. 6.4: Reward function

Number of modules to adjust α

Now we answer the question: how many modules are adjusted in each iteration? Note

that in Algorithm 4, only the modules with positive rewards are put into the Ladj . First,

we get average Drel of all the modules in Ladj , which is denoted as D
(avg)
rel . Then, from the

cloud resource occupation list Lcro, we compute the average number of occupied servers in

the period from tcri to tcri +D
(avg)
rel , which is denoted as num(avg). The number of modules

to adjust α is given by Equation (6.8-6.10):

α = min{LengthOf(Ladj), num
(avg) − r}, (6.8)

num(avg) =

∑
e∈L(sub)

cro
(e.end− e.start)× e.num∑

e∈Sub{Lcro} (e.end− e.start)
, (6.9)

where L
(sub)
cro is the subset of Lcro, which includes all the time intervals located at [tcri, tcri+

D
(avg)
rel],

L(sub)
cro = {e ∈ Lcro|e.start, e.end ∈ [tcri, tcri +D

(avg)
rel]}. (6.10)

In our algorithm, the adjustment on the schedule usually leads to the decreasing of

application performance. We avoid the case that excessive modules are moved back to

146

mobile side, so that the cloud servers are not utilized completely. So α is constrained by an

up-bound num(avg) − r as shown in Equation (6.8).

6.3.3 Theoretical Analysis

In Algorithm 4, the execution schedules indicate if each module is executed at mobile

side or at the cloud side. However, for the modules that are allocated to the cloud, the

results do not specify which cloud server hosts the offloaded module. We may question:

could the completion time of each module ti,j be delayed when allocating the offloaded

modules onto the cloud servers?

Theorem 1 (Feasibility) For the execution schedule S = {(xi,j,0, τi,j , ti,j)} generated

by Algorithm 4, we can always find a feasible schedule S′ = {(x′i,j,k, τ ′i,j , t′i,j)} of MCPP

by assigning the offloaded modules onto the cloud servers, such that each module (i, j) is

completed no later than ti,j , t
′
i,j ≤ ti,j .

Proof. Consider a simple case where the offloaded modules are scheduled online to the
cloud servers with the policy of ’first-come-first-serve’. τi,j can be taken as the time that
the module (i, j) comes to the cloud. We can prove using mathematical induction, by the
’first-come-first-serve’ policy every offloaded module (i, j) can start exactly at time τi,j and
be completed by the time ti,j on the cloud servers. For the new schedule S′, we have
τ ′i,j = τi,j , and t′i,j = ti,j .

The offloaded modules are ordered according to their arriving time τi,j . For the 1-st
module which comes to the cloud earliest, obviously it is able to start at its arriving time
τi1,j1 . For the s-th module which comes to the cloud in s-earliest time, we can prove if 1-st,
2-nd, ... , (s− 1)-th modules start to run at their arriving time, then the s-th module can
also be executed at the cloud servers at its arriving time τis,js . The proof is as follows.

Up to the time when the s-th module comes, we can conclude: 1) at least one cloud
server is idle at τi,j ; 2) if the cloud server is idle at time τis,js , it must be idle all the
time [τis,js ,+∞). The first conclusion is due to the fact, that our algorithm guarantees the
number of occupied cloud servers does not exceed the constraint r at all the times if each
module is executed according to the schedule S. The second conclusion is proved in this
way: if 2) does not hold, which means that up to the time τis,js , some module which arrives
at the cloud earlier than the s-th module has already been allocated to the cloud server. It
contradicts with the ’first-come-first-serve’ policy. Because of the two conclusions, the s-th
module can start on the cloud server at its arriving time. If multiple idle servers exist, we
randomly allocate the module to one of them.

147

Theorem 2 (Complexity) For a given application graph, the complexity of Algorithm

4 is O(λ2).

Proof. In Algorithm 4, the evaluation of the reward for adjusting each offloaded module
is the most time costly operation. In each iteration, at most λ × n modules need to be
evaluated. The question is how many iterations Algorithm 4 needs to stop. The worst case
is that the resources constraints r = 0, and only one module is moved to the mobile side
in each iteration. In this case, Algorithm 4 needs at most λ × n iterations, such that the
offloaded modules are all moved to the mobile side. By neglecting the constant n for a given
application graph, the worst time complexity of Algorithm 4 is on the order of O(λ2).

6.4 Benchmark Offline Solutions

6.4.1 List Scheduling (LS) based Solutions

List scheduling is considered as an efficient method to solve existing job scheduling

problems [BB02] [LZ11] [AK96] [DA98]. Although MCPP is different from existing job

scheduling problems, we are still interested to know how list scheduling based algorithms

perform when used to solve the MCPP. We have two ways to solve the MCPP using list

scheduling method. One way is, as described in 3.4, we can fit the MCPP into the TSPHC

model by abstracting both the mobile devices and cloud servers as the processors. The

problem can be solved by Heterogeneous-Earliest-Finish-Time (HEFT) algorithm, which is

demonstrated to be an accurate and efficient list scheduling algorithm for TSPHC [THW02].

The time complexity of HEFT is on the order of O(λ×r). We will evaluate the performance

of HEFT algorithm when it is used to solve the MCPP in Section 6.6.

The other way is that we divide the MCPP into two phases. In the first phase, named

as partitioning, we simply decide for each user which modules are executed at mobile side

and which others are scheduled at the cloud side. The partitioning phase is done using the

SCPP method, which is introduced in Section 6.3. In the second phase, the list scheduling

method is applied to allocate the offloaded modules onto the cloud servers or to move the

offloaded modules to the mobile side. Based on the generated execution schedule from the

148

Algorithm 6: The MEDLS Heuristic

Input : The execution schedule (xi,j,0, τi,j , ti,j)
Output: The execution schedule xi,j,k, τi,j , ti,j

1 for each user i do
2 Insert the first offloaded module of the user into a scheduling list Ls;
3 end
4 Sort the modules in Ls by non-increasing order of their ready time τi,j ;
5 while there are unscheduled tasks in the list Ls do
6 Select the first module (i0, j0) from the list for scheduling;
7 for each machine k, including cloud servers and the user’s mobile device do
8 Compute the extra delay of module (i0, j0) on machine k. // If k = 0, the

extra delay is obtained by Equation(7), otherwise the extra delay is
calculated by the earliest time that the module can actually start on the
cloud server minus the module’s ready time τi,j ;

9 end
10 Assign task (i0, j0) to the machine that minimizes the extra delay;
11 Update the execution schedule for user i0, (xi0,j,k, τi0,j , ti0,j);
12 Remove the module (i0, j0) from Ls, and add the first successive offloaded

module of (i0, j0) into Ls;

13 end
14 return the execution schedule xi,j,k, τi,j , ti,j ;

first phase, the task that is ready to start earliest is assigned with the highest priority. Each

selected task will be scheduled to the machine (including the cloud servers and the mobile

device) which leads to a minimum extra delay. We name the method as Minimum Extra

Delay List Scheduling (MEDLS). Algorithm 6 gives the pseudo code of the MEDLS. The

time complexity of the algorithm is also O(λ× r).

6.4.2 Hybrid Method of SearchAdjust and List Scheduling

In the greedy heuristic algorithm, SearchAdjust, by an iterative adjustment on the SCPP

initialized execution schedule, the number of occupied resources et each time does not exceed

the resources constraint r. In MEDLS algorithm, the SCPP initialized execution schedule

is also adjusted by the list scheduling method. Both algorithms generate feasible schedules

by doing the adjustments on the SCPP initialized solution. However, greedy heuristics

is by doing the user-oriented adjustment, while MEDLS is through the machine-oriented

adjustment. Intuitively, the two types of adjustment can be combined in the way: first, the

149

user-oriented adjustment by Algorithm 4 is performed by relaxing the resource constraint

r to (1 + γ)r; then, the machine-oriented adjustment by Algorithm 6 is performed. We call

the combined method as γ-Greedy algorithm. We will evaluate the performance of this

algorithm under different parameter of γ.

6.5 Online Solution

In contrast to the offline solutions, an online solution only knows the release time of

past requests and current requests but have no knowledge about the future requests. The

partitioning for one user’s request can not be determined before the request is released. In

this section, we present the design, and analyze the performance of our online solution.

In our online solution, we do not partition user’s requests one by one. Instead, we divide

the whole time interval (0, T) into small time slots, and do the partitioning every time slot.

Let η denotes the index of the time slot, and ∆t denotes the length of the time slot. We

do the partitioning at the end of each time slot for all the requests that are released during

that time slot. For each partitioning, we first select a number of idle servers from all the

r cloud servers, and then use our offline solution to do the partitioning with the selected

cloud servers. The offline solution is performed repeatedly every ∆t. Note that ∆t is small

enough relative to the completion time of the application.

Now the question here is that how many servers are allocated to the load at each time

slot η, such that the overall delay for the requests during (0, T) is as low as possible. If we

allocate too many servers to current load, it is possible that there is no enough idle cloud

servers to accommodate the load in future time slots. If we always try to reserve more servers

to future load, the performance of current load would yield to significant degradation. The

online algorithm tries to balance a tradeoff between provisioning enough servers for current

load, and reserving enough servers for future load, through a control parameter Λ.

150

Let λη denote the number of requests that arrive at the system during time slot η. Let

rη denote the number of servers that are allocated to the requests at the end of time slot

η. The overall delay of the λη requests are obtained by our PRL model dη = F(
rη
λη

), which

is numerically analyzed in Section 6.6. Suppose dη is normalized by the length of the time

slot ∆t. Think in the way that in order to accommodate the load λη, rη servers will be

occupied for dη time slots. Therefore, we define workload size Wη that arrives at the cloud

servers at the end of time slot η by Wη = rη × dη = rη × F(
rη
λη

). Note that the workload

size Wη reduces by rη at the end of time slot η + 1. Let Qη denote the total backlogged

workload size of the cloud servers at the end of time slot η, before any other loads arrive.

Let Dη denote the number of servers that are busy/occupied at the end of time slot η, where

0 ≤ Dη ≤ r. Then the dynamic of Qη+1 can be described as

Qη+1 = Qη +Wη −Dη. (6.11)

Without loss of generality, we assume load λη is a stochastic process across time slot

η. Let λ and var respectively denote the expectation value and variance of load sequence

λη. We say that the system is stable if limη→∞E(Qη) <∞, i.e., the amount of backlogged

workload size is bounded. The arriving load λη is said to be supportable if there exists a

resource allocation mechanism under which the system is stable.

Theorem 3 For any given λ and r, the expectation of application delay of the arriving

load λη is up-bounded by dopt, where

dopt = min
r∗≥0
F(

r∗

λ
),

s.t. r∗ ×F(
r∗

λ
) < r.

(6.12)

Proof. In order to support the arriving load, it should be satisfied that limη→∞E(Qη) <∞.
Thus, from Equation (6.11), we have E(Wη) = E[rη × F(

rη
rη

)] ≤ Dη. Dη represents the
workload size that the cloud can finish in time slot η. The maximum of Dη is equal to r,

151

and can be achieved if and only if all the r cloud servers are busy to process the workload
during time slot η. Thus, we have E[rη×F(

rη
rη

)] ≤ r. Let E(rη) = r∗, we then get Equation

(6.12).

The key aspect of our algorithm is that it manages a pool of idle servers. At each time

slot, some servers are removed from the pool to accommodate the coming load, meanwhile

some new servers become idle and are added into the pool. Suppose Iη is the number of idle

servers at the end of time slot η before allocating the servers for load λη. The parameter

Iη can be obtained by the recursive equation

Iη+1 = Iη − rη +Rη+1, (6.13)

where rη are the number of servers that are allocated to load λη, and Rη+1 are the number

of servers which are newly added into the pool of idle servers at the end of time slot η + 1.

Note that we have I1 = r at the initial time slot.

The online algorithm first calculates the optimal overall delay dopt and corresponding

number of allocated servers ropt at each time slot according to Equation (6.12), where

ropt = argminr∗≥0F(r
∗

λ
). At the end of each time slot η, the algorithm does the following:

• Compute the number of idle servers Iη by Equation (6.13).

• Compute the number of released servers in next time slot Rη+1 according to the delay

of previous load dη−1, dη−2, dη−3 ...

• Determine the number of servers to be allocated rη. We are trying to guarantee that

the delay of the load λη achieves dopt. Thus, intuitively we would allocate
ropt
λ
× λη servers

to the current load. If the number of idle servers is not enough to guarantee the delay dopt,

i.e., Iη <
ropt
λ
× λη, we would allocate all the idle servers to current load, i.e., rη = Iη;

otherwise, we would consider the following rules:

• Rule 1 Allocating more servers to improve the performance at current time slot, i.e.,

rη ≥ ropt
λ
× λη.

152

• Rule 2 Reserving enough servers for next time slot. The idle servers in next time slot

η+ 1 would be enough to accommodate (1 + Λ)λ load, i.e., rη < Iη +Rη+1− (1 + Λ)λ.

• Rule 3 Avoiding over-provisioning servers for current load, i.e., rη ≤ Cmaxλη, where

Cmax is a constant of our PRL model. If and only if
rη
λη
< Cmax, increasing the number

of allocated servers rη would lower the delay of current load (see Fig.6.5f); otherwise

if
rη
λη
≥ Cmax, increasing rη would not improve the performance of current load.

• If Rule 1 contradicts with Rule 2, i.e.,
ropt
λ
× λη > Iη + Rη+1 − (1 + Λ)λ, then we

give priority to Rule 1, in which case we have rη =
ropt
λ
× λη; otherwise we have rη =

min{Iη +Rη+1− (1+Λ)λ,Cmaxλη, Iη}. Note that Rule 1 and Rule 3 never contradicts with

each other, because
ropt
λ
≤ Cmax.

6.6 Evaluation

We will respectively evaluate the performance of the offline solutions and online solu-

tions. Our online solution divides the time axis into a number of small time slots, in each of

which the offline solution is applied to partition all the requests that arrive during that time

slot. Since the time slot is small enough, the release time of all the requests in each time slot

is the same. Therefore, for simplicity, in the evaluation of offline solution, the release time

of all the requests are assigned as zero. Through the evaluation of various offline solutions,

we aim to answer two questions: 1) which solution performs best; 2) how the application

performance (delay) varies depending on the number of cloud resources and the load, i.e.,

Performance-Resource-Load (PRL) Model. The evaluation of online solution is then based

on the PRL model and the real world wikipedia load traces [UPS09].

153

6.6.1 Evaluation of Offline Solutions

We use the application of image based object recognition as shown in Fig.6.1 in our

evaluation. It contains seven modules, therefore we have n = 7. We profile manually the

execution time of each module on our laboratory server, and the data size that needs to

be transferred between two connective modules. We assume that the processing time of

each module on the mobile devices is F times greater than that on the server. Since the

users’ mobile devices have different processing capability, the users have various factor F .

In our experiments, the local computation cost is generated by Wλ×7 = [F1, F2, ..., Fλ]T ×C,

where C is a 1 × 7 vector of the profiled execution time of each module on the server and

Fi yields a uniform distribution in the interval [1, 6]. The communication cost is generated

by Πλ×8 = [1
B1
, 1
B2
, ..., 1

Bλ
]T ×D, where D is a 1× 8 vector of the profiled data size, and Bi

(1 ≤ i ≤ λ) is the communication bandwidth which also yields a uniform distribution. We

have generated more than 2000 test cases by changing the number of cloud servers r or the

number of users (load) λ. Whenever λ is changed, Wλ×7 and Πλ×8 need to be re-generated.

The comparison of various algorithms are based on the following two metrics:

• Metric 1: Application Delay Ratio (ADR). The main performance measure

of the algorithms is the average application delay that is experienced by the mobile users.

Since a large set of tests are performed under different load λ and resources r, it is necessary

to normalize the application delay to a lower bound, which is called the Application Delay

Ratio (ADR). The ADR value of an algorithm is defined by

ADR =
application delay

dscpp
. (6.14)

The denominator is the application delay under the SCPP solution. In SCPP, the cloud

resources are assumed to be unconstrained, and each user’s execution schedule is generated

independently by SCPP method. The ADR of the MCPP algorithms can not be less than

154

one since the dominator is the lower bound. The MCPP algorithm that gives the lowest

ADR is the best algorithm with respect to performance.

• Metric 2: Running Time of the Algorithm. The running time of an algorithm

is its execution time for outputting the schedule. The metric gives the average cost of the

algorithm. For the algorithms which have very close ADR values, the one with minimum

running time is considered as the best one.

Performance of SearchAdjust

We compare the ADR performance of the greedy heuristic, SearchAdjust (Algorithm 4),

under three different greedy strategies, with two list scheduling algorithms, HEFT [THW02]

and MEDLS (Algorithm 6). A concise description about the algorithms is as follows.

• G-MaxREL. G-MaxREL is the greedy heuristic with the strategy to maximize the

Released Cloud Resource Occupied Period. The reward function in the algorithm is

Reward = Drel.

• G-MinED. G-MinED is the greedy heuristic with the strategy to minimize the Extra

Delay. The reward function is Reward = −Ddelay.

• G-MaxRME. G-MaxRME is the greedy heuristic with the strategy to maximize

Released Cloud Resource Occupied Period minus Extra delay. The reward function

is Reward = Drel −Ddelay.

• HEFT. HEFT is a well-known list scheduling algorithm specifically for TSPHC prob-

lems. We can also use the algorithm to solve our MCP problem.

• MEDLS. MEDLS is a list scheduling algorithm which is designed to solve the MCP

problem [THW02]. In this algorithm, each module is scheduled to the machine which

causes the Minimum Extra Delay.

155

In the first experiment, the number of users is fixed at λ = 2000. The ADR-based per-

formance of the algorithms are compared with respect to various number of cloud servers

(see Fig.6.5a). Among the three greedy heuristics, G-MaxRME and G-MinED achieve bet-

ter performance than G-MaxREL. Compared with HEFT, the performance of our proposed

greedy heuristics (G-MaxRME and G-MinED) is better for any number of cloud servers.

Compared with MEDLS, the greedy heuristics (G-MaxRME and G-MinED) have better

performance when the cloud resources is relatively tight (r < 800). When the cloud re-

sources increase to r > 800, the greedy heuristics have the same performance with MEDLS,

because in this case the SCPP solution used as the initial solution in both the greedy

heuristics and MEDLS becomes feasible for MCPP. The average ADR value of the greedy

heuristic (G-MaxRME or G-MinED) on all the numbers of cloud servers is better than

the HEFT algorithm by 11 percent, and the MEDLS algorithm by 10 percent. It is also

shown that, for all these five algorithms, the performance increases as the number of the

cloud servers increases. It demonstrates the application providers can increase the overall

application performance by leasing more cloud resources.

Next, we fix the number of cloud servers, r = 200, and compare the ADR performance

of the five algorithms when the number of users λ varies (see Fig.6.5b). The two proposed

greedy heuristics (G-MaxRME and G-MinED) outperform other algorithms in terms of the

overall ADR performance under various number of users. For the greedy heuristics and

MEDLS, there exists a threshold, λ = 400, below which the performance is not affected

by the number of users. It is because in this case the cloud always has enough resources

to accommodate the offloaded modules, such that each user can realize its SCPP based

optimal partitions. However, when the number of users exceeds the threshold, it is shown

that the performance degrades quickly as λ increases.

156

We compare the cost of the algorithms by using the metric of the algorithm running time

(see Fig.5c). MIDLS is the most costly one among the five algorithms. For the two greedy

heuristics (G-MaxRME and G-MinED) which have the best ADR-based performance, it

is shown that G-MaxRME is more costly than G-MinED. This is because G-MaxRME

includes the released cloud resource occupation time into the reward function, and hence

needs fewer iterations than G-MinED. We conclude that G-MaxRME is the best one among

all the five algorithms in terms of both ADR based performance and running time. Another

interesting thing we can observe from Fig.5c is that, our proposed greedy heuristics have

less running time as the cloud resources increase, while HEFT has longer running time as

the cloud resources increase. This is because the greedy heuristics need more iterations to

adjust the SCPP initial solution as the cloud resources constraint is lower. However, as the

cloud resources increase, the running time of HEFT increases because more time is spent

in machine selection with an insertion-based policy.

Performance of γ-Greedy

In this experiment, we evaluate the effect of parameter γ to performance of the hybrid

algorithm, γ-Greedy. Fig.6.6a shows the effect of parameter γ onto ADR-performance of

the algorithm. It is shown that the optimal value of γ for the ADR performance of the

algorithm is typically in [0, 0.5], which depends on the number of provisioned cloud servers.

Considering the average ADR performance with respect to various number cloud resources,

the optimal γ is 0.2. It is also observed that the more the provisioning cloud resources are,

the less impact the parameter γ has onto the algorithms. To explain the rationale behind

this observation, it is worth noting the fact that the hybrid algorithm is the combination of

our proposed SearchAdjust and MEDLS. There are two special cases for the value of γ. The

first case is when γ = 0, the hybrid algorithm is actually the same as the SearchAdjust. The

other case is when γ becomes large enough, the hybrid algorithm is the same as MEDLS.

157

It has been demonstrated in Fig.6.5a that as the cloud resources increases, the difference

between the SearchAdjust and MEDLS is reduced in term of both the ADR performance.

We compare the hybrid algorithm γ-Greedy with SearchAdjust, HEFT and MEDLS.

In this evaluation, the ’MaxRME’ strategy is applied in both SearchAdjust and the hybrid

algorithm. The parameter γ is assigned with the value 0.2 for the hybrid algorithm, because

it is demonstrated to be optimal for the ADR performance. Fig.6.6c and Fig.6.6d are results

for the comparison in terms of ADR performance and running time. The figures show that,

the hybrid algorithm has little improvement in ADR performance over SearchAdjust, but it

is less costly than SearchAdjust by 27 percents.

Performance-Resource-Load (PRL) Model

Finally, we evaluate how the ADR-based performance changes with the provisioning

cloud resources r and load λ on the system by using our proposed greedy heuristic (G-

MaxRME). We have measured the ADR value of G-MaxRME algorithm in about 2000 test

cases, where the number of cloud servers r varies in [10, 2000] and the number of users λ

varies in [200, 2000]. Fig.6.5d and Fig.6.5e show a 3-dimension visual PRL curve and its

corresponding contour lines. Note the contour line contains the (r, λ) points which has the

same ADR value. The straight contour lines approximately from the origin (0, 0) show that

the ADR based performance depends on the ratio of r and λ. Based on this observation,

we construct a mathematical PRL model d = F(rλ). Fig.6.5f shows the fitting curve of

ADR and r
λ values from our simulation results. The greater the r/λ value is, the better

the performance is. When r/λ is more than about 1/2, the performance is not affected by

the increase of r/λ, because the number of cloud resources is equivalent to unlimited with

respect to the number of requesting users.

158

Table 6.2: Parameters setting up for online algorithm

Parameters Values

Length of time slot ∆t 100 ms

Length of load trace N 3000 time slots

The expectation value of load
trace λ

305

The variance of load trace var (5, 50)

The number of cloud servers r 3000

Control parameter of online al-
gorithm Λ

0, 0.4

6.6.2 Evaluation of Online Solution

To realistically evaluate the performance of our online solution, we use the wikipedia

request traces [UPS09] to do the simulations. The whole data set contains 10% of all the

requests directed to Wikipedia server from September 19, 2007 to January 2, 2008. The

total number of the requests are 20.6 billion. Each request in the data set includes a time

stamp which is recorded in milliseconds. From the whole data set we select 10 traces, each

of which has a length of 5 minutes. For each trace, we count the number of requests every

one time slot (we set the length of time slot ∆t = 100ms in this simulation). Thus, each

trace contains 3000 time slots. Note that to evaluate how the variance of the load trace

influences our online algorithm, we select the 10 traces which have the same expectation

value (λ = 305) but different variances (5 ≤ var ≤ 50). Fig.6.7 shows one of the 10 selected

traces. The expectation value and variance of this trace are λ = 305, var = 12. Table 6.2

shows the setting up of the parameters in our simulation.

We evaluate our online algorithm in terms of the three metrics: (i) application delay,

(ii) server utilization, and (iii) Service Level Agreement (SLA) violation. Application delay

indicates the average delay of all the requests in the load trace. Server utilization is defined

by U =
∑N
η=1(Iη−rη)

rN , where N = T
∆t is the length of load trace in time slots and Iη − rη

represents the number of servers that are spare during time slot η. SLA violation is defined

159

as the percentages of requests that do not meet the delay requirements. For latency sensitive

applications, the application provider requires that the delay of each request should be less

than a constraint. If and only if the delay of all the requests meet the delay requirement,

we say the SLA are satisfied, in which case the value of SLA violation is zero. Note the

difference between metric (i) and metric (iii). The two metrics are not positively correlated.

If the input load trace has low application delay, it does not necessarily have low SLA

violation; and vice versa.

Fig.6.8 shows the evaluation results for multiple load trace variances and two values of Λ.

It is shown that as the variance of input load trace var increases, the application delay and

SLA violation generally increases and server utilization generally decreases. The reason is

that as var increases, the load fluctuation over time has greater magnitude, resulting more

time slots in which the cloud servers are either overloaded or mostly spare. In particular,

Fig.6.8a demonstrates that the application delay of our online algorithm is very close to

the optimum dopt (shown as dash line) when the variance is small. For example, the ratio

between the application delay (var = 20, Λ = 0.4) and dopt is 1.08. The smaller var is,

the closer the ratio value is to 1. We analyze the whole wikipedia request data set during

October 2007, we found that more than 90% of the traces (3000 time slots length) has

var ≤ 20. This evaluation implies that our online algorithm can achieve a delay of 1.08dopt

at most time, i.e. 90% time of the whole month in October 2007 for wikipedia requests data

set.

The trade-off between reserving more servers for future time slots (Λ = 0.4) and allo-

cating more servers for current time slot (Λ = 0) is also interesting. Fig.6.8a shows that

when the load trace has small variance, it is better to allocate more servers for current time;

while the load trace has large variance, it is better to reserve more servers for future time.

Although reserving more server for future time slots always leads to lower server utilization

160

than allocating more servers for current time (shown in Fig.6.8b), it can achieve better

performance in term of SLA violation (shown in Fig.6.9).

6.7 Summary

In this chapter, we have focused on the Multi-user Computation Partitioning Problem

(MCPP). We have designed an offine algorithm, SearchAdjust, and a set of competitive

benchmark algorithms to solve the problem, and conducted extensive simulations to com-

pare their performance. SearchAdjust was demonstrated to outperform the list scheduling

algorithms, HEFT and MEDLS, by 10 percent in term of the application delay. From the

simulations, we also draw a Performance-Resource-Load (PRL) model to show how the per-

formance (application delay) varies depending on the load and provisioned cloud resources.

Based on the PRL model and offline algorithm, we further design an online algorithm that

can be deployed in practical mobile cloud systems. We show our online algorithm can

achieve satisfactory application delay by real trace driven simulations.

161

0 200 400 600 800 1000 1200 1400
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

No. of cloud servers

A
D

R

G−MaxRME
G−MinED
G−MaxREL
HEFT
MEDLS

(a) Comparison of ADR based performance under var-
ious number of cloud servers (λ = 2000)

0 200 400 600 800 1000 1200 1400 1600 1800
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

No. of users

A
D

R

G−MaxRME
G−MinED
G−MaxREL
HEFT
MEDLS

(b) Comparison of ADR based performance under var-
ious load (r = 200)

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

No. of cloud servers

R
un

ni
ng

 o
f t

he
 A

lg
or

ith
m

 (
s)

G−MaxRME
G−MinED
G−MaxREL
HEFT
MEDLS

(c) Comparison of the algorithm running time

0
200

400
600

800
1000

0

500

1000

1500

2000
0.8

1

1.2

1.4

1.6

1.8

No. of cloud serversNo. of users

A
D

R

(d) The 3D Performance-Resource-Load (PRL) curve

No. of cloud servers

N
o.

 o
f

us
er

s

1.0
09

6

1.0
29

7

1.
05

57

1.
08

64

1.
12

35

1.
17

21

1.
24

05

1.
34

02

1.
49

62

100 200 300 400 500 600 700 800 900 1000
200

400

600

800

1000

1200

1400

1600

1800

2000

(e) Contour lines of of PRL model

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

r/γ

A
D

R

0.5

(f) The ADR performance varies depending on r/λ

Fig. 6.5: Evaluation results of SearchAdjust

162

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

γ

A
D

R

r=200
r=300
r=400
r=500
r=600
r=700
r=800

No. of users = 2000

(a) The effect of γ to the ADR performance

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

γ

R
un

ni
ng

 T
im

e
of

 th
e

A
lg

or
ith

m
 (

s)

r=200
r=300
r=400
r=500
r=600
r=700
r=800

No. of users = 2000

(b) The effect of γ to the algorithm running time

200 400 600 800 1000 1200
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

No. of cloud servers

A
D

R

Greedy
γ−Greedy
HEFT
MEDLS

(c) ADR comparison of γ-Greedy

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

No. of cloud servers

R
un

ni
ng

 o
f t

he
 A

lg
or

ith
m

 (
s)

Greedy
γ−Greedy
HEFT
MEDLS

(d) Running time comparison of γ-Greedy with other
heuristics

Fig. 6.6: Evaluation results of γ-Greedy

0 500 1000 1500 2000 2500 3000
250

300

350

time (× 100 ms)

th
e

nu
m

be
r

of
 r

eq
ue

st
s

Fig. 6.7: One selected wikipedia load trace containing 3000 time slots.

163

10 20 30 40 50
20

25

30

35

40

45

50

var

ap
pl

ic
at

io
n

de
la

y
(t

im
e

sl
ot

s)

Λ = 0
Λ = 0.4

(a) The overall application delay increases as load vari-
ance var increases

10 20 30 40 50
40

50

60

70

80

90

100

var
se

rv
er

 u
til

iz
at

io
n

(%
)

Λ = 0

Λ = 0.4

(b) The cloud server utilization varies depending on
var

Fig. 6.8: The performance of online algorithm in term of the metrics: application delay and
cloud server utilization

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

var

SL
A

 v
io

la
tio

n
(%

)

Λ = 0

Λ = 0.4

Fig. 6.9: The performance of online algorithm in term of the metrics: SLA violation

164

Chapter 7

Conclusions and Future Research

In this chapter, we conclude this thesis in Section 7.1 and present future research direc-

tion in Section 7.2.

7.1 Conclusions

Computation partitioning is a widely used technique for implementing high performance

mobile cloud applications on today’s resource constrained mobile devices. From the mobile

side, it provides opportunities to augment the execution of applications on the mobile

devices, by offloading intensive computations onto more powerful clouds. From the cloud

provider side, it utilizes the sensing and computing capability of the mobile devices to

provision new and more efficient services to the end users. Coming with great benefits of this

technique, we face new challenges in ensuring high performance computation partitioning

under complex properties of the applications and systems. The computation partitioning

need to meet the requirement of various applications and system models.

In this thesis, we have a systematical investigation and study on computation partition-

ing under three models of applications and systems: computation offloading, single user

computation partitioning and multiple user computation partitioning. In each model, we

identified the problems which are important and not well addressed, and proposed corre-

sponding solutions. We conclude these works as follows.

165

For computation offloading, we studied how to apply the principle of computation of-

floading into the design of accurate and efficient RFID tracking method. We proposed a

hybrid method for achieving high accuracy and efficiency in object tracking based on pas-

sive RFID tags. The method can adaptively switching between using WCL and Particle

Filter (PF) according to the estimated speed of the object. The method can offload com-

plex computations involved in the particle filtering onto the nearby servers or the cloud.

The offloading decisions can adjust according to the parameter of the algorithm such as the

number of particles, and the network connection qualities. Through extensive simulations

and two real world experiments, we showed that the hybrid RFID tracking method with

computation offloading outperforms the existing methods WCL and PF, and the hybrid

method without computation offloading.

For single user computation partitioning, we studied how to tackle the complexity re-

spectively in the dimension of application and system. We focused on two problems. One

problem was partitioning for data streaming applications and aimed to maximize the data

processing speed (or throughput). The other problem was partitioning applications under

dynamic mobile cloud environment, in which the device and network status can fluctuate

during the life cycle of the application.

With respect to the first problem, we designed a framework for partitioning and execu-

tion of data streaming application in mobile cloud computing. The framework contains the

application modeling, architectural design and algorithm design. We provided a component

based programming model to allow developers programming data application. We proposed

a genetic algorithm to optimize the throughput in the partitioning of applications. At the

cloud side, we proposed multi-tenancy Component-as-a-Service (CaaS) to achieve efficient

utilization of cloud fabric resources. We demonstrated our proposed algorithm through sim-

ulation and one real world application, namely, QR-code recognition. The results show that

166

the partitioned execution with our proposed algorithm can achieve 2X throughput than the

execution without partitioning.

With respect to the second problem, we proposed a framework for computation parti-

tioning under dynamic mobile cloud environment. Based on the framework, we particularly

studies the computation repartitioning problem under network fluctuations. We took a lot

of measurements of the WiFi network bandwidth, and found that the bandwidth fluctuates

extremely depending on the mobile user’s location. We then exploited mobility prediction to

estimate the user’s future network quality, and designed an online algorithm to periodically

update the partitioning during the application life cycle. The algorithm aims to minimize

the total execution cost over the application life cycle. We collected network traces from

our WiFi network testbed, and evaluated the online repartitioning algorithm with two ap-

plications. The results show that our online repartitioning algorithm can achieve at least

35% better performance than existing approaches under the real world network traces.

For multiple user computation partitioning, we focused on the model under which there

exists a number of users offloading the computations onto a set of cloud servers. The users

may compete for the resources on the cloud, so the offloaded computations can not be

executed on the cloud immediately. We first illustrated that the Multi-user Computation

Partitioning Problem (MCPP) is more difficult than traditional job scheduling problem in

parallel computing. We then proposed a offline heuristic algorithm, namely SearchAdjust,

to solve MCPP. Based on SearchAdjust, we further developed an online algorithm that can

be deployed easily in practical systems. We evaluated the offline and online algorithm using

the wikipedia traces, and showed through benchmarks that both algorithms have better

performance than existing classical job scheduling algorithms in term of application delay.

In summary, computation partitioning is a useful technique to enhance the performance

of mobile cloud applications. We identified several important and challenging problems in

167

computation partitioning under different models of application and system: computation

offloading, single user computation partitioning, and multiple user computation partition-

ing. The evaluation results show that our approaches can increase both the end-user and

system performances.

7.2 Future Research

We close this thesis by providing some suggestions for future research. Specifically, we

believe that the following aspects are worth further investigations.

First, in Chapter 3, we study computation offloading for accurate and efficient RFID

tracking. In the system model, we assume the period of collecting the RFID reading is

fixed. It is interesting to involve the sampling period into the tracking algorithm design

and the offloading decision. Another direction is to learn the RFID sensing model on the

fly rather than through offline experiments. Furthermore, in this work, we focus on the two

performance metrics: accuracy and algorithm running time. Energy consumption can be

one important metric in many application and systems. It is interesting to study how the

computation offloading can save energy for mobile devices.

Second, in Chapter 4, we develop a framework for partitioning and execution of data

stream applications. The application contains a set of components. The partitioning prob-

lem is to decide which components are executed on mobile devices and which components

are executed on the cloud. It is assumed that the component has one execution instance.

However, in future work, we can consider that one component can have multiple instances

as long as the input data of this component has parallelism and can be partitioned. The

computation partitioning problem needs to decide the number of instances for each compo-

nent, and the execution places for every instances. In Chapter 5, we study the computation

168

repartitioning in dynamic mobile cloud environment. To make it simple, we take the fluc-

tuate network bandwidth as a case study. During the application life cycle, the workload

of the device can also vary with time. In future work, we can study the computation

repartitioning problem under both the device workload fluctuation and network bandwidth

fluctuation.

Finally, in Chapter 6, we study multiple user computation partitioning problem when

the mobile users complete for the computation resources on the cloud. The first direction

for future research is to study the provisioning of computation offloading as a service to the

end users from the standpoint of service provider. The economic cost on the cloud resource

should be taken into account. Furthermore, we simplify that the users access to the cloud

via separate wireless networks. In practical systems, the users may access to the cloud

through the same wireless networks. The users can share and compete for the bandwidth

resources. The allocation of network resources to the users should be considered together

with the partitioning decision of each user. In future work, it is interesting to study the

joint network resource allocation and computation partitioning problem.

169

170

Bibliography

[AAB+05] D. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. Hwang, W. Lindner,

A. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The

design of the borealis stream processing engine. In Proc. of CIDR, pages 277–

289. ACM Press, 2005.

[AK96] I. Ahmad and Y. Kwok. Dynamic critical-path scheduling: an effective tech-

nique for allocating task graphs to multi-processors. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 7(5):506–521, 1996.

[AMGC02] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions

on Signal Processing, 50(2):174C188, 2002.

[BB99] M. Bomze and M. Budinich. Handbook of Combinatorial Optimization.

Springer, 1999.

[BB02] M. Bomze and M. Budinich. Scheduling Theory, Algorithms, and Systems (2nd

Edition). Prentice Hall, 2002.

[BGGT07] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann. Weighted

centroid localization in zigbee-based sensor networks. In Proc. of IEEE Inter-

national Symposium on Intelligent Signal Processing, pages 1–6, 2007.

171

[BHE00] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization

for very small devices. IEEE Personal Communications Magazine, 7(5):28–34,

2000.

[BHE02] N. Bulusu, J. Heidemann, and D. Estrin. A standard task graph set for fair

evaluation of multiprocessor scheduling algorithms. Journal of Scheduling,

5(5):379–394, 2002.

[BHE08] N. Bulusu, J. Heidemann, and D. Estrin. Coverage and connectivity issues in

wireless sensor networks: A survey. Pervasive and Mobile Computing, 4(3):303–

334, 2008.

[BHE10] N. Bulusu, J. Heidemann, and D. Estrin. Centroid localization of uncooperative

nodes in wireless networks using a relative span weighting method. EURASIP

Journal on Wireless Communications and Networking, 10(11):1–11, 2010.

[BKMS13] M. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to offload? the

bandwidth and energy costs of mobile cloud computing. In Proc. of INFOCOM,

pages 1285–1293, 2013.

[BSPO03] R. Balan, M. Satyanarayanan, S. Park, and T. Okoshi. Tactics based remote

execution for mobile computing. In Proc. of MobiSys, pages 945–953. ACM

Press, 2003.

[BT08] R. Behnke and D. Timmermann. Awcl: Adaptive weighted centroid localiza-

tion as an efficient improvement of coarse grained localization. In Proc. of

5th Workshop on Positioning, Navigation and Communication, pages 243–250,

2008.

172

[CBB+03] M. Cherniack, H. Balakrishnan, M. Balazinska, D Carney, U. Cetintemel,

Y. Xing, and S. Zdonik. Scalable distributed stream processing. In Proc.

of CIDR, pages 422–440. ACM Press, 2003.

[CBC10] E. Cuervoy, A. Balasubramanianz, and D. Cho. Maui: Making smartphones

last longer with code offload. In Proc. of MobiSys, pages 277–289. ACM Press,

2010.

[CCD+03] S. Chandrasekaran, O Cooper, A. Deshpande, M. Franklin, and et.al. Tele-

graphcq: Continuous dataflow processing for an uncertain world. In Proc. of

SIGMOD, pages 668–668. ACM Press, 2003.

[CIM+11] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: Elastic

execution between mobile device and cloud. In Proc. of EuroSys, pages 301–

314, 2011.

[DA98] S. Darbha and D. Agrawal. Optimal scheduling algorithm for distributed-

memory machines. IEEE Transactions on Parallel and Distributed Systems

(TPDS), 9(1):87–95, 1998.

[DG08] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large

clusters. ACM Communication Magzine, 51(1):107–113, 2008.

[FPS02] J. Flinn, S. Park, and M. Satyanarayanan. Balancing performance, energy, and

quality in pervasive computing. In Proc. of ICDCS, page 217, 2002.

[FWG10] Y. Fang, F. Wang, and J. Ge. A task scheduling algorithm based on load

balancing in cloud computing. Web Information System and Mining Lecture

Notes in Computer Science, 6318(1):271–277, 2010.

173

[GCWK12] P. Gao, A. Curtis, B. Wong, and S. Keshav. It is not easy being green. In Proc.

of SIGCOMM, pages 211–222. ACM Press, 2012.

[GJM+12] M. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and X. Chen. Cometcode offload

by migrating execution transparently. In Proc. of OSDI, pages 93–106, 2012.

[GM10] E. Giampaolo and F. Martinelli. Robot localization by sparse and passive rfid

tags. In Proc. of IEEE International Symposium on Industrial Electronics,

page 1937C1942, 2010.

[GRJ+09] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling the cloud:

Enabling mobile phones as interfaces to cloud applications. In Proc. of Mid-

dleware, pages 1–20. ACM Press, 2009.

[HBF+04] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and

localization with rfid technology. In Proc. of IEEE International Conference

on Robotics and Automation, pages 1015–1021, 2004.

[HCL10] G. Huerta-Canepa and G. Lee. A virtual cloud computing provider for mobile

devices. In Proc. of MCS, pages 3756–3761. ACM Press, 2010.

[HGSZ10] J. Hu, J. Gu, G. Sun, and T. Zhao. A scheduling strategy on load balancing of

virtual machine resources in cloud computing environment. In Proc. of Inter-

national Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), pages 89–96, 2010.

[HJG06] X. Huang, R. Janaswamy, and A. Ganz. Scout: Outdoor localization using

active rfid technology. In Proc. of BROADNETS, pages 1–10, 2006.

[HJG07] X. Huang, R. Janaswamy, and A. Ganz. Rfid-based 3-d postioning schemes.

In Proc. of INFOCOM, page 1235C1243, 2007.

174

[HLL07] S. Han, H. Lim, and J. Lee. An efficient localization scheme for a differential-

drive mobile robot based on rfid system. IEEE Transaction on Industrial Elec-

tronics, 54(6):362C369, 2007.

[HPALP09] V. Hoonkavirta, T. Perala, S. Ali-Loytty, and R. Piche. A comparative survey

of wlan location fingerprinting methods. In Proc. of WPNC, pages 243–251,

2009.

[HSW96] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion

time: offline and on-line algorithms. In Proc. of ACM-SIAM Symposium on

Discrete Algorithms, pages 142–151, 1996.

[IBY+07] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed

data-parallel programs from sequential building blocks. In Proc. of EuroSys,

pages 59–72. ACM Press, 2007.

[JPB09] D. Joho, C. Plagemann, and W. Burgard. Modeling rfid signal strength and

tag detection for localization and mappingy. In Proc. of IEEE International

Conference on Robotics and Automation, pages 1015–1021, 2009.

[JSA00] P. Jacquet, W. Szpankowski, and I. Apostol. An universal predictor based on

pattern matching, preliminary results. Mathematics and Computer Science:

Algorithms, Trees, Combinatorics and Probabilities, pages 75–85, 2000.

[KAH+12] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic

resource allocation and parallel execution in cloud for mobile code offloading.

In Proc. of INFOCOM, pages 945–953, 2012.

[KL08] K. Kumar and Y. Lu. Cloud computing for mobile users: Can offloading

computation save energy. Computer, 43(4):51–56, 2008.

175

[KLW+09] B. Kusy, H. Lee, M. Wicke, N. Milosavljevic, and L. Guibas. Predictive qos

routing to mobile sinks in wireless sensor networks. In Proc. of IPSN, pages

109–120. ACM Press, 2009.

[KM09] K. Killourhy and R. Maxion. Comparing anomaly-detection algorithms for

keystroke dynamics. In Proc. of DSN, pages 125–134, 2009.

[Kri09] M. Kristensen. Scavenger: Transparent development of efficient cyber foraging

applications. In Proc. of PerCom, pages 217–226, 2009.

[LB99] T. Lane and C. Brodley. Temporal sequence learning and data reduction for

anomaly detection. ACM Transactions on Information and System Security,

2(3):295–331, 1999.

[LBC98] T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, location tracking, and

trajectory prediction in wireless atm networks. IEEE Journal on Selected Area

in Communications, 16(6):922–936, 1998.

[LBC06] T. Liu, P. Bahl, and I. Chlamtac. Evaluating next-cell predictors with extensive

wi-fi mobility data. IEEE Transaction on Mobile Computing, 5(12):1633–1649,

2006.

[LCS06] X. Liu, M. Corner, and P. Shenoy. Ferret: Rfid localization for pervasive

multimedia. In Proc. of UbiComp, page 422C440, 2006.

[Low04] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[LW02] E. Lawler and D. Wood. Branch-and-bound methods: A survey. Operations

Research, 14(1):699–719, 2002.

176

[LWK+10] H. Lee, M. Wicke, B. Kusy, O. Gnawali, and L. Guibas. Data stashing: Energy-

efficient information delivery to mobile sinks through trajectory prediction. In

Proc. of IPSN, pages 291–302. ACM Press, 2010.

[LWX09] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld

devices: a partition scheme. IEEE Pervasive Computing, 8(4):14–23, 2009.

[LZ08] Y. Lee and A. Zomaya. A novel state transition method for metaheuristic-

based scheduling in heterogeneous computing systems. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 19(9):1215–1223, 2008.

[LZ11] Y. Lee and A. Zomaya. Energy conscious scheduling for distributed computing

systems under different operating conditions. IEEE Transactions on Parallel

and Distributed Systems (TPDS), 22(8):1374–1381, 2011.

[Mar09] E. Marinelli. Hyrax: Cloud computing on mobile devices using mapreduce. In

Master Thesis, Carnegie Mellon Universtiy, pages 277–289, 2009.

[MSY12] S. Maguluri, R. Srikant, and L. Ying. Stochastic models of load balancing and

scheduling in cloud computing clusters. In Proc. of INFOCOM, pages 702–710,

2012.

[NKSH09] S. Nousiainen, J. Kilpi, P. Silvonen, and M. Hiirsalmi. Anomaly detection from

server log data: A case study. VTT Tiedotteita Research Notes, 2480, 2009.

[NLLP03] L. Ni, Y. Liu, Y. Lau, and A. Patil. Landmarc: indoor location sensing using

active rfid. In Proc. of PerCom, page 407C415, 2003.

[PH09] S. Park and S. Hashimoto. Autonomous mobile robot navigation using pas-

sive rfid in indoor environment. IEEE Transactions on Industrial Electronics,

7(56):2366C2373, 2009.

177

[PM10] J. Paul Morrision. Flow-Based Programming: A New Approach to Application

Development (2nd Edition). CreateSpace, 2010.

[Raj91] J. Raj. The art of computer systems performance analysis: Techniques

for experimental design, meas-urement, simulation, and modeling. Wiley-

Interscience, 1991.

[RRA08] J. Rellermeyer, O. Riva, and G. Alonso. Alfredo: An architecture for flexible

interaction with electronic devices. In Proc. of Middleware, pages 22–41. ACM

Press, 2008.

[RSM+11] M. Ra, A. Sheth, L. Mummert, P. Pillai, and D. Wetherall. Odessa: enabling

interactive perception applications on mobile devices. In Proc. of MobiSys,

pages 43–56. ACM Press, 2011.

[SAZN12] C. Shi, M. Ammar, E. Zegura, and M. Naik. Computing in cirrus clouds: The

challenge of intermittent connectivity. In Proc. of MCC, pages 23–28. ACM

Press, 2012.

[SBCD09] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 6(4):12–23, 2009.

[SR02] S. Seiden and B. Rouge. On the online bin packing problem. Journal of the

ACM (JACM), 49(5):640–671, 2002.

[SSSS11] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity provi-

sioning system for the cloud. In Proc. of ICDCS, pages 559–570, 2011.

[SV07] S. Schneegans and P. Vorst. Using rfid snapshots for mobile robot self-

localization. In Proc. of European Conference on Mobile Robots, pages 1–6,

2007.

178

[TFBD00] S. Thrun, D. Fox, W. Bugard, and F. Dellaert. Robust monte carlo localization

for mobile robots. Artificial Intelligence, 128(1):99–141, 2000.

[THW02] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel

and Distributed Systems (TPDS), 13(3):260–274, 2002.

[UBG04] E. Uysal-Biyikoglu and A. Gamal. On adaptive transmission for energy effi-

ciency in wireless data networks. IEEE Transaction on Information Theory,

50(12):3081–3094, 2004.

[UPS09] G. Urdaneta, G. Pierre, and M. Steen. Wikipedia workload analysis for decen-

tralized hosting. Operations Research, 53(11):1830–1845, 2009.

[VZ08] P. Vorst and A. Zell. Semi-autonomous learning of an rfid sensor model for

mobile robot self-localization. In Proc. of European Robotics Symposium, page

273C282, 2008.

[WGKN08] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make

computation offloading decisions. In Proc. of IPDPS, pages 1–8, 2008.

[WLC12] F. Wang, J. Liu, and M. Chen. Calms: Cloud-assised live media streaming for

globalized demands with time/region diversities. In Proc. of INFOCOM, pages

199–207, 2012.

[WLZ+12] Y. Wu, B. Li, L. Zhang, Z. Li, and F. Lau. Scaling social media applications

into geo-distributed clouds. In Proc. of INFOCOM, pages 211–222, 2012.

[YCCJ13] L. Yang, J. Cao, H. Cheng, and Y. Ji. Multi-user computation partitioning

for latency sensitive mobile cloud applications. In Technical Report. Dept. of

Computing, Hong Kong Polytechnic University, 2013.

179

[YCT+12] L. Yang, J. Cao, S. Tang, T. Li, and A. Chan. A framework for partitioning

and execution of data stream applications in mobile cloud computing. In Proc.

of CLOUD, pages 794–802, 2012.

[YCT+13] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri. Foreseer: Predictive mobile-

cloud program partitioning under network fluctuations. In Technical Report.

Dept. of Computing, Hong Kong Polytechnic University, 2013.

[YCY+13] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework for parti-

tioning and execution of data stream applications in mobile cloud computing.

ACM SigMetrics Performance Evaluation Review, 40(4):23–32, 2013.

[YOC08] K. Yang, S. Ou, and H. Chen. On effective offloading services for resource-

constrained mobile devices running heavier mobile internet applications. IEEE

Communication Magazine, 46(1):56–63, 2008.

[YTH04] K. Yamano, K. Tanaka, and M. Hirayama. Self-localization of mobile robots

with rfid system by using support vector machine. In Proc. of IEEE/RSJ

International Conference on Intelligent Robots and Systems, page 3756C3761,

2004.

[ZC04] Y. Zou and K. Chakrabarty. Sensor deployment and target localization in

distributed sensor networks. IEEE Transaction on Embedded Computing and

System, 3(1):61–91, 2004.

[ZKJG09] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs. Towards an elastic

application model for augmenting the computing capabilities of mobile devices

with cloud computing. Mobile Networks and Applications, 16(3):379–394, 2009.

180

	Abstract
	Publications
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Mobile Cloud Computing
	Computation Offloading and Partitioning
	Computation Offloading v.s. Computation Partitioning
	Single User Computation Partitioning v.s. Multiple User Computation Partitioning

	Motivation of Our Work
	Contributions of the Thesis
	Contributions in Computation Offloading
	Contributions in Single User Computation Partitioning
	Contributions in Multiple User Computation Partitioning

	Organization of the Thesis

	Literature Review
	Computation Offloading
	Single User Computation Partitioning
	Application Modeling
	Profiling
	Optimization
	Distributed Execution

	Multiple User Computation Partitioning
	Challenging Issues in Computation Partitioning
	Energy Efficiency
	Mobile Access Management
	Workload Management
	Performance Modeling and Monitoring

	Computation Offloading for Accurate and Efficient RFID Tracking
	Overview
	Background
	Models
	System Model
	RFID Sensing Model

	The Hybrid Method for RFID Reader Tracking
	Overview of Our Method
	Weighted Centroid Localization (WCL)
	Particle Filtering
	Adaptive Algorithm Selection of WCL and PF
	Computation Offloading

	Performance Evaluation through Simulations
	Performance Comparison between WCL and Particle Filter
	The Hybrid Method of WCL and PF
	The Offloading Strategy

	Experiments
	Indoor Wheelchair Tracking
	LRV tracking in Hong Kong MTR depot

	Summary

	Computation Partitioning for Data Stream Applications
	Overview
	Preliminaries
	Mobile Data Stream Applications
	System Model
	Design Objectives

	Architectural Design
	Adaptivity of Partitioning
	Distributed Execution
	Multi-tenancy CaaS

	Optimal Partitioning Algorithm
	Numerical Evaluation
	Methodology
	Results

	Experimental Evaluation
	QR-code Recognition
	Experiment setup and Results

	Summary

	Computation Repartitioning in Dynamic Mobile Cloud Environments
	Overview
	Terminologies and Application Repartitioning Framework
	Terminologies
	Computation Repartitioning Framework

	Case Study: Compuation Repartitioning under Network Bandwidth Fluctuations
	Network Measurements
	Overview of Solution
	Network Status Prediction
	Compuation Repartitioning

	Evaluation
	Evaluation Setup
	Network Status Prediction
	Compuation repartitioning

	Summary

	Multiple User Computation Partitioning
	Overview
	System model and Problem Formulation
	Application model
	Single user computation partitioning
	Multiple users computation partitioning
	Uniqueness of MCPP

	SearchAdjust
	Overview of SearchAdjust
	Details of SearchAdjust
	Theoretical Analysis

	Benchmark Offline Solutions
	List Scheduling (LS) based Solutions
	Hybrid Method of SearchAdjust and List Scheduling

	Online Solution
	Evaluation
	Evaluation of Offline Solutions
	Evaluation of Online Solution

	Summary

	Conclusions and Future Research
	Conclusions
	Future Research

	Bibliography

