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Abstracts

Due to its potential for anonymous vehicle tracking, vehicle reidentification (VRI) has
emerged as an effective approach for directly estimating freeway travel time. As real-time
video of traffic scenes contains a wealth of vehicle information that may not be available
from conventional detectors (e.g. inductive loops), there is a growing interest in devel-
opment of vision-based VRI system. To further improve the robustness of VRI system
against the potential changes in traffic condition, a self-adaptive time window component
is also required. To this end, the thesis aims to contribute to the development of a self-
adaptive vision-based vehicle reidentification (VRI) system for dynamic freeway travel
time estimation.

As a preliminary investigation, the thesis first considers developing a basic vision-based
VRI system under static traffic conditions. Various vehicle feature data (e.g. color, length
and type) are extracted from the video record, and a data fusion approach is then intro-
duced to combine these features to generate a probabilistic measure for reidentification
decision. The vehicle-matching problem is then formulated as a combinatorial problem
and solved by a minimum-weight bipartite matching method.

The proposed basic vision-based VRI system is then extended and applied for automatic
incident detection under free condition. The relatively high matching accuracy of basic
VRI would allow for a prompt detection of the incident vehicle and, hence, reduce the
incident detection time. An enhanced vehicle feature matching technique is adopted in
the basic VRI component to explicitly calculate the matching probabilities for each pair
of vehicles. Also, a screening method, which is based on the ratios of the matching prob-
abilities, is introduced to reduce the false alarm rate.

The basic VRI is also extended to the static case where multiple video cameras exist.
A hierarchical Bayesian matching model is then proposed to consider vehicle reidenti-
fication over multiple detectors as an integrated process such that the overall matching
accuracy could be improved.

For the dynamic traffic conditions, the thesis introduces an additional self-adaptive time
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window component into the basic VRI system to improve its performance in terms of dy-
namic travel time estimation. Specifically, an iterative VRI system with temporal adap-
tive time window constraint is proposed. To capture the traffic dynamics in real-time, the
inter-period/temporal adjusting based on exponential smoothing technique is introduced
to define an appropriate time window constraint for the basic VRI. To handle the non-
predictable traffic congestions, the modified basic VRI is performed iteratively (i.e. itera-
tive VRI) such that the improved VRI is capable of adjusting its parameters automatically.

Finally, the thesis focuses on developing an integrated self-adaptive VRI system for a
freeway with multiple video cameras under dynamic traffic conditions. The spatial de-
pendencies between the travel time over different freeway segments are utilized for the
further adjustment of the time window constraint. An iterative VRI system with spatial-
temporal adaptive time window constraint is then proposed to cope with the purpose of
dynamic travel time estimation.
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Chapter 1

Introduction and overview

1.1 Research motivation

The rapid population growth and worldwide urbanization have substantially increased the
travel demand and resulted in serious traffic congestion, which could produce a number
of negative effects on the drivers, the environment and the economy. According to the
2012 Urban Mobility Report (Schrank et al., 2012), congestion caused urban Americans
to travel 5.5 billion hours more and to purchase an extra 2.9 billion gallons of fuel for a
congestion cost of $121 billion in 2011. In addition to the high travel demand (i.e. traffic
demand exceeding the roadway capacity), the non-recurring traffic accidents could also
lead to traffic congestion and injuries (Guner et al., 2012). Statistics also suggest the high
chance of a more severe secondary accident following the initial accident (Sheu et al.,
2001). In this case, expanding or building new traffic infrastructures (i.e. increasing the
traffic capacity) has been the natural and traditional response to the aforementioned con-
gestion problems (Beckmann, 2013). However, it is becoming increasingly difficult to
undertake in practice because of the funding constraints, as well as political and environ-
mental issues arising from the construction. Also, the unpredictable traffic accidents pose
series challenges to the maintenance and management of traffic networks.

Recently, Intelligent Transportation Systems (ITS) have received considerable attention
due to their abilities to alleviate traffic congestion and improve the safety for traffic net-
works (Chowdhury and Sadek, 2003). Simply put, ITS are strategies that aim to integrate
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1.1 Research motivation

modern communication and information technologies into transportation to make more
efficient utilization of the existing transportation facilities. Recognized as one of the most
widely used ITS applications, the Advanced Traveler Information Systems (ATIS) provide
travelers with updated traffic information (e.g. travel time on a freeway segment) to help
them make better route decisions and, hence, avoid the congested road segments (Toledo
and Beinhaker, 2006). In themeantime, by analyzing the real-time traffic information (e.g.
travel time, traffic flow), the Advanced Traffic Management Systems (ATMS) would al-
low the traffic operators to conduct efficient traffic incident management in the sense that
the traffic incident can be detected promptly and removed quickly, which could eventually
contribute to the alleviation of traffic congestion.

As illustrated above, one of the basic components of ITS applications (e.g. ATIS and
ATMS) would be the dynamic travel time estimation1. Unlike the traditional traffic pa-
rameters (e.g. vehicle speed, traffic flow, density), travel time cannot be directly mea-
sured through the pointer sensors (e.g. loop detector and magnetic sensor). In this case,
vehicle reidentification (VRI)2 has emerged as an alternative approach due to its potential
for effective tracking of the individual vehicles. As opposed to analyzing the macro-
scopic/aggregated traffic parameters (e.g. traffic flow, density and average speeds), vehi-
cle reidentification focuses on matching the vehicle signatures (e.g. vehicle length, color
and waveform) derived from the detectors so that each individual vehicle could be tracked
in traffic network. And accordingly the travel time could be easily obtained by calculating
the difference of the vehicle arrival times at different locations.

Based on the above-mentioned principle, various VRI systems have been developed by
using different kinds of sensing technologies (e.g. inductive signature systems, magnetic
sensors, intelligent video surveillance system). Due to its ease of implementation and rel-
atively low cost, the inductive loop is the most widely used sensing technology for the
development of VRI systems (Holt et al., 2003; Parkany and Xie, 2005). Only a limited
number of studies have been conducted to utilize the emerging sensing technologies (i.e.
intelligent video surveillance). Compared with the inductive signature system, intelligent
video surveillance (IVS)3 provides real-time and vivid image from which the human oper-
ators can gain better insight into the current traffic state. Moreover, IVS would also allow
for an automatic interpretation (e.g. vehicle detection, feature extraction) of the scenes by

1We will introduce the problem of dynamic travel time estimation in detail in Section 2.1.
2A more detailed introduction of VRI will be presented in Section 2.2.
3The overall framework of IVS can be found in Section 2.3, and a more detailed description of the image

processing techniques in IVS is presented in Chapter 3.
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using the advanced image processing techniques. In light of this, this study attempts to
investigate the feasibility of developing a vision (i.e. intelligent video surveillance) based
VRI system for freeway travel time estimation.

Regardless of the sensing technologies, the existing VRI systems still suffer from two in-
herent limitations. First, mismatches caused by the non-uniqueness of vehicle signatures
are inevitable, which suggests that the following task of travel time calculation may not
be straightforward. To overcome this problem, a great deal of effort has been devoted
to improving the matching accuracy (i.e. reducing mismatches) by imposing stringent
assumptions on vehicles' traveling behaviors (e.g. no overtaking and no lane-changing).
Although these studies are theoretically enlightening and valuable, they are still not prac-
tically feasible for real-world application. Second, the stochastic and dynamic nature of
traffic network (Watling and Cantarella, 2013) would eventually result in the dynamic
travel time, which also implies that the traffic condition may substantially change from
time to time (e.g. free flow to congested). However, most of the existing VRI systems
are specifically designed for a short time period (e.g. pre-defined time window, fixed sys-
tem initialization parameters) in which the traffic condition is relatively stable (i.e. static
condition)1. To sum up, most of the proposed VRI systems are concentrating on improv-
ing the vehicle matching accuracy and are subjected to adaptation at run-time due to the
potential changes in traffic conditions.

To this end, this dissertation research presents a self-adaptive vision-based VRI system for
dynamic freeway travel time estimation. From the viewpoint of travel time estimation,
the vehicle matching accuracy would not be the major concern. Therefore, this study
performs post-processing technique to filter out the erroneous travel time caused by the
mismatches. The self-adaptivity of this proposed system also allows it to automatically
adjust its initialization parameters (e.g. time window constraints and prior knowledge) in
response to the substantial changes in traffic conditions.

1.2 Research objectives

As explained previously, the ultimate goal of this dissertation is to develop a self-adaptive
vehicle reidentification system for freeway travel time estimation under dynamic traffic

1This will be further illustrated in Chapter 4.
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conditions. To bemore specific, this study focuses on utilizing the emerging video surveil-
lance technology and investigating the feasibility of implementing the vision-based VRI
system for dynamic travel time estimation along a freeway. As shown in Figure 1.1, a
typical freeway system would be equipped with multiple video surveillance cameras. At
each station, a gantry-mounted video camera, which is viewed in the upstream direction,
would collect the traffic video image for further processing.

Figure 1.1: A freeway system equipped with intelligent video surveillance system

Therefore, the preliminary part of this study is to develop an efficient (i.e. high matching
accuracy) vision-basedVRI system for the freeway system under static traffic conditions.
The detailed procedures can be described as follows:

I. Since the freeway segment between two consecutive camera stations is the basic
functional block of the freeway system (e.g. between 08A and 10A, the green sec-
tion in Figure 1.1), the first research objective would be to develop a basic VRI
subsystem by using the video surveillance technology.

II. As a further application and extension of the basic VRI subsystem, an automatic
incident detection algorithm (AID) is developed for free flow condition. The rela-
tively high matching accuracy of the basic VRI subsystem would allow for a prompt
detection of the incident vehicle and, hence, reduce the incident detection time.

III. For a freeway segmentwithmultiple video cameras, ahierarchical Bayesianmatch-
ing model is proposed for the development of VRI system so that the matching ac-
curacy can be further improved.

However, it is noteworthy that the high performance (i.e. high matching accuracy) of the
proposed VRI system is primarily due to the stable traffic condition (i.e. stead-state free
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flow or congestion). In order to handle the dynamic traffic conditions, we would further
develop an improved self-adaptive VRI system for dynamic travel time estimation, which
serves as the essential part of this study. The detailed procedures can be described as
follows:

IV. Based on the basic VRI subsystem developed in I, an iterative VRI subsystem
with temporal adaptive timewindow is proposed to improve its robustness against
the potential changes in traffic conditions. An appropriate strategy (e.g. post-
processing and adjustable time window) is devised to perform the basic VRI itera-
tively such that the new system is capable of adjusting its parameters automatically
under traffic demand and supply uncertainties (e.g. recurrent congestion, and non-
recurrent congestion).

V. For a freeway system withmultiple video cameras, we introduce a spatial-temporal
adaptive time window component to further improve the performance of the sys-
tem developed in IV, which eventually gives rise to the iterative VRI system with
spatial-temporal adaptive time window.

1.3 Organization of the thesis

More specifically the overall framework of the thesis is described in Figure 1.2, in which
the presentation is divided into three major parts. After the brief introduction to the re-
search in Chapter 1, we proceed to consider the foundations for the development of vision-
based VRI system. Chapter 2 describes the problem statements (e.g. travel time estima-
tion problem, vehicle reidentification, and automatic incident detection) and reviews the
relevant literatures on these problems. Since this study focuses on utilizing the emerg-
ing video surveillance system, a comprehensive introduction to this sensing technology is
presented in Chapter 3. The associated image processing techniques that used for traffic
data collection (e.g. vehicle detection, and vehicle feature extraction) are described, and
some preliminary results are also presented in this chapter. Note that this study focuses on
using the existing image processing techniques for further development of VRI system.
Therefore, a complete introduction of the underlying theory of image processing is out the
scope of this thesis.

Within the second part of this thesis, we would formally deal with the development of VRI
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Part Ⅰ: Foundations of the study

Chapter 2
Problem Statements and 

Literature Review

Chapter 3
Sensing Technology: Intelligent 

Video Surveillance

Part Ⅱ: VRI Development under Static Traffic Condition

Chapter 4
Basic VRI Subsystem

Chapter 5
VRI based Incident Detection for 

Free Flow Condition

Chapter 6
Hierarchical Bayesian Model for 

VRI on Multiple Segments

Part Ⅲ: Self-Adaptive VRI Development under Dynamic Traffic Condition

Chapter 7
Iterative VRI System with 
Temporal Adaptive Time 

Window

Chapter 8
Iterative VRI System with 

Spatial-Temporal Adaptive Time 
Window

Chapter 9
Conclusions and Future Works

Figure 1.2: Overall framework of the thesis

system under static traffic condition. The central goal of this part is to devise vision-based
VRI system with relatively high matching accuracy, through which a large percentage of
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individual vehicles could be re-identified. The potential benefits of high matching accu-
racy are huge and obvious: reliable travel time estimates and efficient vehicle tracking.
In light of this, a basic vision-based VRI subsystem is developed in Chapter 4. Various
detailed vehicle features (e.g. vehicle color, length, and type) are extracted for the further
development of vehicle matching method. Due to its capability of efficient vehicle track-
ing in the freeway system, the basic VRI subsystem is further designed and improved for
incident detection under free flow condition (see Chapter 5). Chapter 6 further proposes a
hierarchical Bayesian matchingmodel for vehicle reidentification by taking full advantage
of the vehicle feature data collected from multiple detectors.

For the dynamic traffic condition, a further improved self-adaptive VRI system is devel-
oped in the third part of this thesis. Chapter 7 presents a novel iterative VRI system with
temporal adaptive time window constraints. To capture the traffic dynamics in real-time,
the exponential smoothing technique (e.g. based on temporal traffic information) is uti-
lized to adjust the time window constraint from time period to time period. The additional
iterative process together with the post-processing technique is introduced to achieve re-
liable travel time estimates under non-predictable traffic condition (e.g. traffic incident).
In Chapter 8, a further improved iterative VRI system with spatial-temporal adaptive time
window is presented. This system is specifically designed for the freeway system with
multiple detectors. By utilizing the traffic information (e.g. spatial information) from
different pairs of detectors, we may obtain a more reliable time window constraint under
traffic demand and supply uncertainties.

Finally, Chapter 9 summarizes remarks and conclusions of this research. Some topics of
the future works are also highlighted in this chapter.

As a guide to the reader it should be remarked that the first part (see Figure 1.2) is the
building block of this research. Based on the emerging sensing technology (i.e. intelligent
video surveillance), we specifically design the self-adaptive VRI system to support the
ITS applications (e.g. ATIS and ATMS) under dynamic traffic conditions. Therefore, the
readers are firstly suggested to read Chapter 2 and Chapter 3 to get the major ideas of the
this study. The mutual dependencies and the logical connections between the three parts
will be further illustrated in Section 3.5 (also see Figure 3.7).
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1.4 Research contribution

In order to clarify the research contributions of this thesis, a brief overview of the main
methodologies and results presented in each of the different parts will be given.

Chapter 4

• A probabilistic fusion strategy is devised to integrate the various vehicle features
(e.g. color, length and type) obtained from intelligent video surveillance technology.
The logarithmic opinion pool (LOP) approach is utilized for generating an overall
posterior probability for vehicle matching decision-making.

• The vehicle matching problem is formulated as a combinatorial optimization prob-
lem and solved by the minimum-weight bipartite matching method.

• The proposed basic VRI system is tested on a 3.6-kilometer segment of the freeway
system in Bangkok, Thailand. The overall matching accuracy is about 54.75%. As
the developed vehicle matching algorithm dose not require lane sequence informa-
tion, it allows vehicle reidentification across multiple lanes.

Chapter 5

• An enhanced vehicle feature matching technique is adopted in the VRI component
for explicitly calculating the matching probability for each pair of vehicles.

• A screening method based on the matching probabilities is introduced for vehicle
matching decision-making such that the incident vehicle could be identified in a
timely and accurate manner.

• The proposed VRI based incident detection algorithm is tested on a 3.6-km segment
of a closed freeway in Bangkok, Thailand. The associated incident detection time
of the proposed method is substantially shorter than the traditional vehicle count
approach.

Chapter 6

• A hierarchical matching model is proposed such that vehicle matching over multiple
detectors is treated as an integrated process. A hierarchical tree structure is also
incorporated for representing the matching result over multiple detectors.
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• The associated hierarchical Bayesian model is introduced to describe the spatial
dependencies between vehicle feature distances, which would yield a more reliable
probabilistic measure for matching decision-making.

• The proposed method is tested on a 9.7-km freeway segment with three detectors.
The results show that the hierarchical matching method outperforms the pair-wise
VRI matching method.

Chapter 7

• The temporal adaptive time window component is introduced into the basic VRI
system for improving its robustness against the potential changes in traffic condi-
tions.

• A post-processing technique is performed on the raw results produced by basic VRI
system to rule out the erroneous travel time and, hence, obtain a more reliable mean
travel time estimator.

• An appropriate iterative process is developed to perform basic VRI iteratively (i.e.
iterative VRI) such that the non-recurrent traffic congestions can be captured.

• Several representative tests are carried out to evaluate the performance of the iter-
ative VRI system with temporal-adaptive time window. The results show that the
proposed method can perform well under dynamic traffic conditions.

Chapter 8

• An improved spatial-temporal adaptive timewindow component based on shrinkage-
thresholding method is proposed to consider the spatial and temporal correlations
in travel time over multiple segments.

• The improved iterative VRI system with spatial-temporal adaptive time window is
tested on a 9.7-km freeway with two consecutive segments. The results justify the
potential advantages of the proposed method for capturing serious non-recurrent
traffic congestions.

This thesis was typeset using LATEX.
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Part I

Foundations of the study
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Chapter 2

Problem statements and literature
review

This chapter presents a formal description of the travel time estimation problem and ex-
plores the literature on the associated estimation methods. As one of the alternative ap-
proaches, vehicle reidentification (VRI) has emerged due to its potential for effective
tracking of the individual vehicles. Therefore, a general overview of the VRI system (e.g.
the underlying principle of VRI and the detailed vehicle matching process) is provided in
this chapter. Since this study focuses on developing the vision-based VRI system, a brief
review of the sensing technology (i.e. intelligent video surveillance) is then conducted.
Last but not least, this chapter provides a comprehensive review of the traffic automatic
incident detection (AID) algorithms, which could be beneficial to the development of new
AID algorithm under free flow condition (see Research Objective II).

2.1 Travel time estimation problem

Travel time, a period of time spent traveling between any two nodes of interest in the
traffic network (Shao et al., 2013), is widely recognized as one of the best indicators of
the quality of traffic facilities, since it is easy for both the transportation engineers and the
travelers to understand. Traffic manager requires travel time to evaluate the performance
of the road network, while the individual traveler desires such information to make a better
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route decision for their journeys. Therefore, it is of great importance for us to estimate
the travel time in an accurate and robust manner, which is also essential for the successful
implementation of the advanced traveler information systems (ATIS) in the framework of
intelligent transportation system (ITS) (Dharia and Adeli, 2003).

2.1.1 Problem description

Travel time estimation is still a challenging problem for several reasons. One of which is
that travel time are by nature stochastic and dynamic (Quiroga and Bullock, 1998; Tam
and Lam, 2008) due to the traffic network uncertainty (Clark andWatling, 2005). As noted
in Luathep (2011), traffic networks are primarily exposed to two sources of uncertainty,
i.e. uncertainty in traffic demand and supply. The demand uncertainty arising from the
temporal variation (e.g. time of the day, day of the week) of travel demand can poten-
tially cause recurrent traffic congestion and, hence, lead to travel time variability (Chen
et al., 2011; Taylor, 2013). On the supply side, some unpredictable traffic scenarios (e.g.
accidents, illegal parking and adverse weather) could disrupt the normal traffic flow and,
consequently, affect the road capacity and lead to non-recurrent congestion (Chen et al.,
2002; Lo et al., 2006). Therefore, travel time are heavily dependent on current traffic,
physical, and environmental conditions that cause the travel time to exhibit stochastic and
time-variant (i.e. dynamic) behavior. Mathematically speaking, travel time are random
variables and the associated probability density distributions (PDF) vary with the time of
day (e.g. the particular time period). More specifically, the travel time can be modeled as
a discrete-/continuous-time stochastic process (Fu and Rilett, 1998). Let {𝑇 𝑇 (𝑡), 𝑡 ∈ 𝑁}
denote a discrete stochastic process, where 𝑇 𝑇 (𝑡) is the travel time for vehicles arriving at
the downstream station during time period 𝑡 (e.g. a 5-minute-period). For a specified time
period 𝑡, 𝑇 𝑇 (𝑡) is a continuous random variable with its PDF denoted by 𝑓(⋅, 𝑡). In view
of this, the dynamic travel time estimation problem would be to estimate the statistical
parameters of the travel time, i.e. {𝜇(𝑡), 𝑡 ∈ 𝑁}, where 𝜇(𝑡) is the mean value of vehicle
travel time during time period 𝑡. Because of the dynamic nature of travel time, the mean
value 𝜇(𝑡) may change substantially from time to time, which imposes a great challenge
on the development of estimation methods for real-time application.

Another critical issue is that travel time cannot be directly measured from the traditional
point sensors such as inductive loops and microwave sensors (Kwong et al., 2009). To
overcome this difficulty, a large number of studies focused on utilizing the macroscopic
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traffic parameters (e.g. traffic flow, density, and speed) to deduce the travel time be-
tween the discrete locations (which could be termed as indirect methods). These al-
gorithms could be roughly divided into two groups: spot-speed-based method (see Sec-
tion 2.1.2) and the flow-basedmethod (see Section 2.1.3). Recently, considerable attention
has been paid to using the emerging sensing technologies (e.g. Bluetooth, global position-
ing system, license plate recognition, and cellular phones) to directly track the individual
probe vehicle for travel time estimation purpose, which eventually gives rise to the probe-
vehicle-based method (see Section 2.1.4).

Before proceeding to discuss the detailed estimation methods, the following two com-
ments should be taken into account.

• First, it is necessary for us to briefly explain the terms "travel time estimation" and
"travel time prediction". Travel time estimation calculates travel time 𝜇(𝑡) based
on collected traffic information up to the current time point (i.e. period 𝑡), whereas
travel time prediction forecasts the travel time 𝜇(𝑡 + Δ𝑡) up to a time point (i.e.
𝑡 + Δ𝑡) in the future (Lint, 2004). In this study, we focus on travel time estimation
on freeway system, i.e. we estimate how long it takes vehicles to travel along a
freeway route when they arrive at the downstream station.

• Since this study attempts to estimate travel time along a freeway, the network-wide
(i.e. link) travel time estimation is then out the scope of this research. As a mat-
ter of fact, link travel time estimation is a highly under-specified problem, where
the number of traffic detectors is typically much less than the number of unknown
parameters (i.e. mean travel time on each link) of interest. We will investigate this
problem and present some preliminary results in the future work (see Section 9.2.2).
Also, a detailed review regarding network-wide travel time estimation can be found
in Chapter 9.

2.1.2 Spot-speed-based method

The rational behind this method is quite straightforward. Given the distance 𝐿 between
two consecutive detectors, the travel time is defined as

𝑇 = 𝐿
𝑣 (2.1)
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where 𝑣 is the average speed between the two detectors. In such a case, the derivation
of the average speed 𝑣 would be the major concern. As one of the most widely used
algorithm, the extrapolation method is then developed based on the assumption that spot-
speeds are representatives of the average travel speeds on the roadway segments (Turner
et al., 1998). However, in practice the vehicle speeds may not remain constant (espe-
cially on the urban road network). Thus, some improved methods were proposed such as
half-distance approach and minimum speed approach (Lindveld et al., 2000; Cortés et al.,
2002).

In a more complicated case (i.e. urban road network), stop-and-go situation usually oc-
curs and, hence, the vehicle speed would change dramatically in traveling. In this case,
the aforementioned extrapolation methods may not be applicable. To compensate for this,
the trajectory-based methods were proposed (Lint and Zijpp, 2003; Ni and Wang, 2008;
Sun et al., 2008). By utilizing some smoothing schemes (e.g. piecewise linear function,
quadratic function), it is possible for these approaches to reconstruct the hypothetical ve-
hicle speed trajectory as a function a space and time. The travel time of this vehicle can be
easily calculated through the associated vehicle speed trajectory (see Figure 2.1). The per-
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Figure 2.1: Demonstration of the trajectory-based method (source: (Ni and Wang, 2008))

formance of these methods is then heavily dependent on the accuracy of the collected spot
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speed and the adopted smoothing techniques. According to some literatures concerning
the vehicle speed estimation (Sun and Ritchie, 1999; Wang and Nihan, 2000), the accu-
racy of speed measurement from the inductive loops largely depends on the sampling rate
of the sensor and the length of the vehicle. Simply put, the traditional sensor (i.e. induc-
tive loops) may not be capable of measuring the speed of the "short" vehicles accurately.
In addition, some studies also suggested that the use of these spot-speed based methods
would result in large errors when it comes to a serious traffic congestion (Lindveld et al.,
2000; Li et al., 2006).

In light of the above-mentioned problems, some researchers tried to investigate the fea-
sibility of estimating travel time using other reliable macroscopic traffic parameters such
as traffic flow and volume. In the following part, the detailed review of the traffic flow-
based-method is presented.

2.1.3 Traffic-flow-based method

To handle the difficulties encountered by spot-speed-based methods, several studies were
conducted to estimate travel time by using the other traffic data (e.g. traffic flow and
density), which could also be readily extracted from the point sensors. An extensive liter-
ature review of these methods was conducted by Sisiopiku and Rouphail (1994). Coifman
(2002) utilized a linear approximation of the flow-density relationship to estimate travel
time from dual loop detector data. In addition, a rich body of research utilized the macro-
scopic traffic flow model to represent the propagation of the traffic stream through the
road network (Nam and Drew, 1996; Petty et al., 1998; Nam and Drew, 1999; Vanajakshi
et al., 2009). By applying the principal of FIFO and flow conservation, the aggregated
travel time information could be obtained. Although these approaches appear promising
when traffic congestion is present, the successes of these methods are based on the strin-
gent FIFO assumption. In practice overtaking between vehicles, however, may frequently
exist and, accordingly, these methods may not work well under these scenarios.

Recently, considerable attention has been focused on utilizing the emerging sensing tech-
nologies (e.g. Bluetooth, global positioning system, license plate recognition, and cellular
phones) to track the individual probe vehicle such that the associated travel time can be
easily calculated (which can be referred to as probe-vehicle-based method). In what fol-
lows, a brief review regarding these methods is presented.

15



2.1 Travel time estimation problem

2.1.4 Probe-vehicle-based method

As discussed previously, most of the indirect travel time estimation methods focused on
utilizing the traditional point sensors (e.g. inductive loops). In recent years, the rapid de-
velopment of information and communication technologies has provided us a chance to
measure the travel time of each probe vehicle directly. Various advanced sensing tech-
nologies, such as Bluetooth (Wasson et al., 2008; Haghani et al., 2010; Quayle et al.,
2010), global positioning system (Hofleitner et al., 2012), license plate recognition tech-
nique (Chang et al., 2004), and cellular phones (Rose, 2006), have been incorporated to
assign an unique identity (e.g. media access control address, plate number, and wifi ad-
dress) to the probe vehicle. By the accurate matching of vehicle identities, the travel time
of probe vehicles can be easily calculated. Moreover, many researchers have proposed
various models to use this new source of data (i.e. probe-vehicle data) for other transport
applications. Castillo et al. (2008) have included, in addition to link counts, the license
plate matching data for path flow estimation which was then formulated as a least square
problem. Zhou and Mahmassani (2006) extended the bi-level DTA approach for dynamic
OD estimation by using the probe-vehicle data.

Despite their theoretical simplicity and ease of practical implementation, the probe-vehicle-
based methods still suffer from two serious limitations. First, the low-level of market pen-
etration of the probe vehicles would potentially lead to biased estimation of themean travel
time (Dion and Rakha, 2006). The vehicles without proper probe equipment (e.g. GPS
receiver, Bluetooth and high-quality license plate image) cannot be tracked and, conse-
quently, a large amount of travel time data cannot be collected. In addition, the continuous
vehicle tracking based on the unique identity could also raise privacy concerns (Hoh et al.,
2012; Ohkubo et al., 2005).

In this case, the vehicle reidentification (VRI) scheme, which neither intrudes driver's
privacy, requires installation of on-board tag/equipment, nor needs permission to obtain
the identification, provides an alternative way for travel time estimation. As opposed to
using the unique vehicle identities, VRI focuses on utilizing the non-unique vehicle signa-
tures (e.g. waveform, vehicle length, and vehicle color), which allows for anonymously
tracking the vehicles. Also, the penetration rate would be 100% in principle, since no
in-vehicle equipment is required (i.e. non-intrusive). As this study concentrates on de-
veloping a self-adaptive VRI system for dynamic travel time estimation, an overview of a
typical VRI system is presented in Section 2.2.
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2.2 Overview of vehicle reidentification (VRI)

Generally speaking, VRI is the process of matching vehicle signatures from one traffic de-
tector to the next in the road network. Along with the identification of individual vehicles
across several traffic detectors, the associated vehicle signatures can also be extracted. As
opposites of the vehicle identities in the probe-vehicle-based method (Section 2.1.4), the
vehicle signatures within the VRI framework are not unique. Therefore a robust and ef-
ficient vehicle signature matching algorithm is required for the practical implementation
of VRI. To sum up, a typical VRI system usually consists of two parts: vehicle signature
extraction and vehicle signature matching.

2.2.1 Vehicle signature extraction

It is quite obvious that the process of vehicle signature extraction is closely related to the
traffic sensors. Different traffic surveillance systems may result in different vehicle sig-
natures. Coifman and Cassidy (2002) and Coifman and Krishnamurthy (2007) utilized
vehicle length measurement derived from inductive loops as the vehicle signature, while
Sun et al. (1999) directly used the inductive waveform for signature matching. Since the
length measurement as well as the waveforms from inductive loops is heavily dependent
on the vehicle velocity and sampling rate of loop detectors, the additional signature nor-
malization process is needed for eliminating the measurement errors1. In view of this,
Kwong et al. (2009) investigated the feasibility of utilizing the speed invariant data (i.e.
peak value of magnetic signal) frommagnetic wireless sensors for VRI.With the advance-
ment in image processing, several studies also developed VRI system based on the vehicle
color information (e.g. Kamijo et al., 2005; Sun et al., 2004). Due to the poor quality of
vehicle image and privacy concerns, some closely related research focused on utilizing
the partial number plate information for VRI purpose (Watling and Maher, 1992; Watling,
1994). Also, some other emerging traffic sensors, such as microwave based detectors and
axle sensors, have been utilized for vehicle matching (Cetin et al., 2011; Tawfik et al.,
2002).

By using the sensing technologies mentioned above, the associated vehicle signature (e.g.
1A more detailed review of the history and evolution of the inductive-loop-based VRI could be found in

Jeng (2007).
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length, color, axle space, and waveform) denoted as 𝑋, can be extracted. The following
task of VRI is then to make matching decision based on these vehicle signatures (i.e.
vehicle signature matching method).

2.2.2 Vehicle signature matching method

Consider a vehicle 𝑖 arrives at downstream station, and its associated vehicle signature
and arrival time are, respectively, denoted as 𝑋𝐷

𝑖 and 𝑡𝐷
𝑖 (see Figure 2.2). The vehicle

Downstream vehicle i 
(arrival time tDi )

Candidate upstream vehicles that arrive 
during the time interval: [t� Ub, t� Lb]

Time window constraints: [Lb, Ub]

Vehicle Signature Matching Method

Figure 2.2: Demonstration of the time window constraints in VRI system

signature matching method is then devised to find the corresponding vehicle (i.e. vehicle
with similar signature) at upstream station. For practical implementation, the timewindow
constraints are then introduced to rule out the unlikely candidate upstream vehicles for
improving the computational efficiency and matching accuracy. Based on the historical
travel time data, a time window, i.e. [𝐿𝑏, 𝑈𝑏], is derived for setting the upper and lower
bounds of the vehicle travel time. In such a case, the search space 𝒮𝑖 (i.e. the set of the
candidate upstream vehicles) can be well defined as shown in Figure 2.2, and the signature
matching process can be performed between 𝑋𝑈

𝑖 and its search space 𝒮𝑖. As a matter of
fact, the concept of time window (which is also referred to as search space reduction in
Jeng et al. (2010)) has been commonly adopted in the existing VRI systems.
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For the matching problemmentioned above, there already exists a broad field of well stud-
ied algorithms. Roughly speaking, vehicle signature matching algorithms can be divided
into two groups, i.e. distance-based methods and probabilistic methods. For the distance-
based methods, appropriate distance measures are incorporated to represent the similarity
𝑑(𝑖, 𝑗) between a pair of vehicle signatures {(𝑋𝑈

𝑖 , 𝑋𝐷
𝑗 )|𝑗 ∈ 𝒮𝑖}. The corresponding up-

stream vehicle for downstream vehicle 𝑖 is then given by

arg min
𝑗∈𝒮𝑖

𝑑(𝑖, 𝑗) (2.2)

In other words, the downstream vehicle is matched to the upstream one with the smallest
signature distance (e.g. Coifman, 1998; Sun et al., 2004; Kamijo et al., 2005). Because of
the non-uniqueness of the vehicle signatures, the distance-based methods, however, may
not work well under some circumstances, especially when the feature data is corrupted
by the potential noise. To account for the uncertainty involved in the vehicle signature,
the probabilistic approaches (e.g. Huang and Russell, 1998; Kwong et al., 2009; Cetin et
al., 2011) are developed, in which the signature data are treated as random variables and
a probabilistic measure is incorporated for the reidentification decision. Mathematically
speaking, the signature distance 𝑑(𝑖, 𝑗) is a random variable and the underlying statistical
model is built up from the training dataset. By applying Bayesian statistics, a matching
probability indicating the likelihood of each pair of signatures belonging to the same ve-
hicle, i.e. 𝑃 (𝑖 matches 𝑗|𝑑(𝑖, 𝑗)), is then provided and the result is given by

arg max
𝑗∈𝒮𝑖

𝑃 (𝑖 matches 𝑗|𝑑(𝑖, 𝑗)) (2.3)

Simply put, within the framework of statistical matching approaches, the downstream
vehicle is matched to the upstream one with the highest "chance" given the observed sig-
nature distance.

2.2.3 Discussion of the existing VRI systems

Table 2.1 compares different types of VRI systems in terms of the sensing technologies
they relied on and the associated vehicle signature matching methods1. A number of com-
ments should be made with respect to the existing VRI systems.

1The readers can refer to Section 4.1 for a more comprehensive review of the existing VRI systems.
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2.2 Overview of vehicle reidentification (VRI)

1. As explained in Section 2.2.2, the timewindow constraints are essential for the efficient
implementation of VRI system. However, it is noticed that normally the time window
is derived from historical travel time data (i.e. fixed time window), which cannot re-
ally reflect the current traffic condition. Under dynamic traffic condition, the recurrent
and non-recurrent traffic congestion may occur, which may eventually lead to the sub-
stantial changes in travel time. Therefore, a self-adaptive time window component is
required so that the VRI system can be applicable for dynamic travel time estimation
purpose (see Chapter 7).

2. It is also observed that most of the existing VRI systems are focusing on improving
the matching accuracy. Some research even imposed stringent assumptions on vehicle
traveling behavior (e.g. no overtaking and no lane-changing) so that the matching
accuracy can be improved. From the perspective of travel time estimation (i.e. mean
travel time), the matching accuracy, however, may not be the major concern. The mean
travel time can be obtained using a subset of vehicles that have "distinctive" signatures.
An appropriate selection strategy (e.g. sampling and thresholding) may potentially
contribute to the estimation accuracy.

3. Due to the worldwide deployment of inductive loop sensors, a large number of studies
focused on utilizing the measurements derived from the inductive loops. However, it
should be noted that the raw signature data obtained from loop detectors may be speed-
dependent, which means that a vehicle traveling at different speeds may generate dif-
ferent loop signatures. This phenomenon may potentially undermine the performance
of the VRI system.

To this end, this study aims to propose a VRI system based on the emerging intelligent
video surveillance technology (IVS), in which overtaking between vehicles as well as
the reidentification across multiple lanes are both allowed. With the development of the
image processing techniques and the network bandwidth, the intelligent video surveillance
technology plays a more and more important role in the transport applications for safety
and security purpose (e.g. Beymer et al., 1997; Tseng et al., 2002; Wang et al., 2007).
Compared with the traditional inductive loop sensors, IVS enjoys several advantages as
follows (Klein et al., 2006).

• First, IVS technology is capable of monitoring multiple lanes and can function as
zone detectors rather than point sensors (e.g. magnetic sensors and inductive loops).
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2.3 Framework of intelligent video surveillance

• IVS can provide us the speed-independent vehicle signature. Various detailed and
vivid vehicle features (e.g. vehicle color, length, and type), which are independent
of the vehicle speed, can be extracted. However, it should also be noted that the
above-mentioned vehicle features are not readily obtainable from the video camera.
Various image processing techniques are then employed and performed on the video
image data to extract the desired information.

Since IVS plays a fundamental role in our research and serves as the main building block
for our VRI system, a brief review regarding the framework of intelligent video surveil-
lance is presented in Section 2.3.

2.3 Framework of intelligent video surveillance

As the name suggests, intelligent video surveillance (IVS) aims to provide real-time and
automatic interpretation of scenes (e.g. detecting, tracking and recognizing objects of in-
terest) by analyzing the images acquired from the video cameras. Therefore, IVS can
be viewed as a multidisciplinary field closely related to information and communication,
signal/image processing, computer vision and pattern recognition (Dufour, 2013). The ad-
vances in information and communication technologies has led to the worldwide deploy-
ment of the camera networks which provide the possibility for remote manual monitoring
and surveillance. Moreover, the rapid development of image processing techniques en-
ables us to efficiently and automatically extract the useful information from huge amount
of video records. The following high-level processing based on computer vision and pat-
tern recognition technologies would allow for better understanding of the scenes (e.g. ac-
tivity analysis) in the video record.

Figure 2.3 shows the overall framework of the intelligent video surveillance system. In
general, a typical IVS consists of three critical components, i.e. video sensor networks,
low-level processing and high-level understanding. Video sensor networks are respon-
sible for real-time monitoring and collection of the raw video record, while low-level
processing focuses on digitalizing the collected image in a form suitable for further com-
puter processing, such as image enhancement, image denoising and image deblurring.
The video stream after preprocessing would be fed into the component of video analyt-
ics (see Figure 2.3) for high-level understanding. Single camera analytics, also referred
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High-level understandingLow-level processing
• Video capture & encoding
• Image digitalization & 

representation
• Image preprocessing

Sensor Networks
Digital video records (DVR)

Video Analytics & Framework

▪ Single camera analytics
- Object detection
- Feature extraction

▪ Multi camera analytics
- Object re-identification

 - Activity analysis (i.e., incident detection)  

Intelligent Video Surveillance System

Remote Client/User

Figure 2.3: General framework of IVS

to as intra-camera analytics, deal with the video stream within the single camera view.
Various image processing techniques are explored in an attempt to detect the object of
interest and its associated features. Since the view of single camera surveillance is finite
and limited, the multi camera analytics, which aim to monitor a wider area (e.g. tracking
vehicle/pedestrian across the traffic network), are required. Therefore, one of the essen-
tial capabilities of the multi camera analytics is being able to re-identify the object across
different cameras (i.e. object reidentification). The following activity analysis would en-
able us to gain a better understanding of the monitored area (e.g. travel time estimation,
incident detection).

It is noted that the introduced high-level IVS is closely related to our research topic, i.e.
vehicle reidentification based on video image data. As a matter of fact, the proposed VRI
system can be viewed as an application and variant of the object reidentification (ORI).
This section focuses on presenting a brief review of the first two components of IVS (i.e.
video sensor networks, and low-level processing). Amore detailed discussion on the high-
level IVS (e.g. image processing techniques used for vehicle feature extraction) can be
found in Chapter 3. Also, the readers can refer to two recent review papers, i.e. Valera
and Velastin (2005) and Wang (2013) for a more comprehensive review of the history and
evolution of IVS.
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2.3.1 Video sensor networks

As the basic component of IVS, the video sensor networks are devised to capture all pos-
sible information (i.e. raw video) from the physical environment at the key locations (i.e.
nodes) by utilizing the video cameras. In this sense, the video sensor networks are com-
monly comprised of a set of sensor nodes, and the communication infrastructures/devices
that are responsible for the transmission of video data between the nodes (Cordeiro and
Assuncao, 2012).

Generally speaking, a sensor node consists of a camera for video capturing and an as-
sociated video encoder to compress the video for transmission. Due to the advantages
in capturing high-quality image, the digital charge-coupled device (CCD) has been used
in the surveillance cameras (e.g. CCTV system (Dadashi et al., 2009) and Autoscope
(Michalopoulos, 1991)). However, it is worthwhile to notice that the CCD based cameras
are power consuming and relatively costly. Recently, the complementary metal-oxide
semiconductor (CMOS) image sensors (Spivak et al., 2011) have received considerable
attention because of the energy-savings opportunities and the economically feasibility they
present for large-scale application.

With the advancement of information and communication technologies, the communica-
tion rates between the sensor nodes increase dramatically, which eventually gives rise to
the development of the wireless video sensor network (e.g. Soro and Heinzelman, 2005;
Aghdasi et al., 2008). Therefore, the specific dedicated communication infrastructure may
not be absolutely necessary in the future. Nevertheless, it should be noted that a higher
communication rates would lead to a higher energy cost. In this case, how to improve the
energy efficiency would become the major concern for the video sensor networks.

To sum up, there are still two problems need to be tackled for the video sensor networks,
namely (1) the need of improving the video quality, and (2) the need of improving the
energy efficiency for large-scale application. Actually, these two problems are closely
related to each other. The high video image quality would inevitably lead to the transmis-
sion of massive video data and, hence, increase the energy cost. Note that this study does
not attempt to resolve these two problems since we aim to utilize the existing video sen-
sor networks. The main contribution of this study is developing the generic VRI system,
which would still be applicable when the video quality is poor.
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2.3.2 Low-level image processing

Upon completion of the collection of the raw video record from the video sensor net-
works (Section 2.3.1), a further low-level processing is performed so that the collected
image stream could be digitalized for computer processing (i.e. image digitalization) and
improved in terms of the image quality (e.g. image denoising and deblurring).

According to Jähne (2005), an image would constitute a spatial distribution of the irradi-
ance at the plane, which means that image digitalization is the process of measuring the
irradiance across the image plane. However, it is worthwhile to notice that computers
cannot deal with continuous images but only arrays of digital numbers, which eventually
leads to the concept of digital image (Ghosh, 2013). As shown in Figure 2.4, a digital
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Figure 2.4: Digital image representation

image is usually represented by a two-dimensional matrix of intensity samples, each of
which is represented by using a limited precision. A point on the two-dimensional (e.g.
𝑀 × 𝑁) grid (i.e. the left-hand-side of Figure 2.4) is called a pixel and the associated
pixel value is denoted as 𝑓𝑖𝑗 . In such a case, the gray digital image is then represented
by the intensity matrix 𝐹𝑀×𝑁 (i.e. the right-hand-side of Figure 2.4), where the element
value 𝑓𝑖𝑗 is quantized into 256 gray values (i.e. 1 ≤ 𝑓𝑖𝑗 ≤ 255). For a color digital image,
The RGB color model (Ladson, 2005) where red, green, and blue light are added together
to reproduce the colors, is utilized. Mathematically speaking, the color digital image is
then jointly represented by three matrix, i.e. {𝐹 (𝑅)

𝑀×𝑁 , 𝐹 (𝐺)
𝑀×𝑁 , 𝐹 (𝐵)

𝑀×𝑁}, where each of them
respectively represents the red, greed, and black channel of the image.

Before proceeding to the high-level understanding of the video image, various preprocess-
ing techniques (e.g. image contrast enhancement, image denoising and image deblurring)
need to be performed on the digitalized image in the hope of improving the overall image
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quality. Due to the reduced and perhaps nonlinear image amplitude range, the poor con-
trast between the foreground object (i.e. vehicle) and background often exists in the digital
image. In such a case, the necessary image enhancement, such as histogram equalization
(e.g. Saha et al., 2010; Acharya and Ray, 2005) would greatly contribute to the high-level
processing (e.g. object detection and feature extraction) at the later stages. Also the digital
image may tend to suffer from two inherent problems, namely (1) the occurrence of the
potential noise in the image (e.g. electrical sensor noise and channel transmission errors),
and (2) the presence of image blur (e.g. lens blur, Gaussian blur and motion blur caused by
subject movement) during the recording of a digital image. Therefore, the reconstruction
(i.e. image denoising and deblurring) of the original image 𝐼𝑀×𝑁 from the contaminated
measurement 𝐹𝑀×𝑁 plays an important role in the low-level IVS.

For the image denoising problem, the underlying mathematical model can be described
by

𝐹 = 𝐼 + 𝜖 (2.4)

where 𝐹 ∈ 𝑅𝑀𝑁 is the vectorized grayscale image and 𝐼 is the original image, whereas 𝜖
is the white noise. Since noise added to an image generally has a higher-spatial frequency
spectrum, the simple low-pass filtering technique (Abhari et al., 2012) is employed to re-
move the noise. Later on, the other filters (e.g. mean filter (Wang et al., 2012), winner
filter (Zhang et al., 2012) and adaptive filter (Nasri et al., 2013)) have also been intro-
duced for image denoising. With respect to the image deblurring problem, the underlying
mathematical model can be described by

𝐹 = 𝐾𝐼 + 𝜖 (2.5)

where the 𝐾 ∈ 𝑅𝑀𝑁×𝑀𝑁 represents the blurrring (i.e. convolution) operator. It is easily
observed that this is an inverse problem, which is to recover as much information (i.e. 𝐼)
as possible from the given data (i.e. 𝐹 ). As a matter of fact, this inverse problem has
been widely studied and solved as the large-scale (e.g. with extremely large image size)
optimization problem (e.g. Yuan et al., 2007; Dong et al., 2011). Figure 2.5 shows one
illustrative example of the traffic image deblurring. Due to the motion blur, the collected
traffic image may be of generally poor quality. The essential image preprocessing is then
required for eliminating the potential noise and image blurry (Figure 2.5).

As illustrated above, it is expected that the richness of traffic data provided by IVS (i.e.
vivid traffic image) could potentially contribute to the development of the vision-based
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Original image Blurry image Restored image

Figure 2.5: Illustrative example of image deblurring caused by motion blur

VRI system (see Chapter 4). Also, the proposed VRI method together with the video
surveillance technology enable us to handle the non-recurrent traffic incidents more effi-
ciently in the sense that the incidents can be promptly detected and validated through the
video image data (see Chapter 5). In what follows, we briefly review the traffic incident
detection algorithms.

2.4 Traffic incident detection algorithms

One major problem associated with the rapid growth of large cities is the increase in traffic
congestion and incidents. In these congested traffic networks, one minor incident could
cause serious traffic delays and have far-reaching consequences for safety, congestion and
pollution. In addition, statistics also suggested the high chance of a more sever secondary
accident following the initial incident (particularly on a high-speed network, e.g. free-
way). Therefore, in order to overcome the aforementioned difficulties, considerable effort
has been devoted to the development of an efficient traffic incident management system
(TIMS). The roles of TIMS are to efficiently detect the incident and then provide a series
of traffic information to drivers to alleviate the impact/delay caused by the incident. In
general, TIMS includes the following steps, i.e. i) incident detection, ii) incident response,
and iii) incident clearance (Chang and Su, 1995; Ozbay and Kachroo, 1999). As the first
step, incident detection plays a critical role in incident management. It affects consequent
actions of the following steps and determines the efficiency of the whole system. To this
end, this review focuses on the comparison and evaluation of available incident detection
algorithms for both congested traffic conditions and light traffic conditions.
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2.4.1 Incident detection system

An incident detection system primarily consists of two components: traffic data collec-
tion and data mining approach. Data collection is the process of measuring traffic pa-
rameters from the traffic surveillance technologies (e.g. loop detectors, magnetic sensor,
GPS-based sensor, intelligent video surveillance). Data mining approaches refer to the
algorithms that are utilized for detecting incidents through analyzing the traffic data col-
lected from the traffic sensors. It is quite obvious that the success of incident detection
system relies on the effectiveness of data collection and the robustness of the correspond-
ing data mining approaches. Therefore, a combined consideration of the available sensing
technologies and their corresponding data mining algorithms is necessary for the thorough
evaluation of the incident detection systems. In the following parts, the incident detection
algorithms regarding two specific traffic conditions (i.e. heavy and light traffic) will be
discussed.

2.4.2 Incident detection algorithms for congested traffic condition

Most existing algorithms were developed specifically for detecting incidents under heavy
traffic conditions (e.g. the California algorithm series). The assumption behind these algo-
rithms is that the traffic parameters (e.g. travel time, traffic flow, and traffic delay) would
change dramatically when incidents occur under congested traffic. Generally speaking,
these algorithms can be broadly into five groups: 1) comparative algorithms; 2) statistical
algorithms (e.g. Bayesian networks); 3) filtering algorithms; and 4) dynamic traffic mod-
eling algorithm. Because of the worldwide deployment of inductive loop sensors, most
studies focuses on detecting incidents using the data collected from the loop detectors.
Nevertheless, some other algorithms (e.g. image processing method) also consider the
emerging traffic surveillance technologies.

Owing to their computational and theoretical simplicity, California algorithms (Payne and
Tignor, 1978; Payne and Thompson, 1997) are the most widely known comparative al-
gorithms. The underlying assumption of these algorithms is that an incident would nor-
mally result in a substantial increase in upstream occupancy while simultaneously reduc-
ing downstream occupancy. Thus, a direct comparison between the upstream and down-
stream occupancy data obtained from the consecutive loop detectors would enable us to
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2.4 Traffic incident detection algorithms

determine the occurrence of an incident. An incident alarm is issued if the difference be-
tween the occupancy exceeds an predefined threshold. In order to reduce the false alarm
rate, the decision tree technologies were also introduced. Several occupancy differences
were discussed and analyzed in a decision tree structure (see Figure 2.6). It is quite obvi-

Absolute_Difference
>T1

Relative_Difference
>T2

Downstream_Occupancy
>T3

1 0

0

0

T

T
F

F

T1: the threshold value for the absolute
difference between the occupancies.

T2: the threshold value for the relative
difference between the occupancies.

T3: threshold value for downstream
occupancy

Figure 2.6: The basic California algorithms (source: (Payne and Tignor, 1978))

ous that the success of the comparative algorithms is heavily dependent on the accuracy
of the traffic sensor technologies. However, it is unavoidable that the traffic data contains
potential noise, especially under the congested conditions.

To compensate for this, the so-called statistical incident detection algorithms are proposed.
These approaches adopt standard statistical technique to determine whether the collected
traffic data (i.e. occupancy) differ "statistically" from the estimated traffic parameters.
Levin and Krause (1978) utilized Bayesian statistics to compute the likelihood of an in-
cident. Within the Bayesian framework, it is assumed that the collected traffic data is a
random variable and follows a statistical distribution. Some prior knowledge (prior distri-
bution) about the likelihood of an incident happening are also calibrated from the historical
data. Based on the aforementioned statistical model, a posterior probability regarding the
likelihood of an incident is then obtained.
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The filtering algorithms (e.g. Stephanedes and Chassiakos, 1993a; Stephanedes and Chas-
siakos, 1993b) are also designed to remove the noise from the collected traffic data. As
opposed to introducing a statistical model to represent the uncertainties of the traffic data,
these filtering algorithms use the typical filters (e.g. low-pass filter, Kalman filter) to
eliminate noises directly from the data. After the filtering process, some comparative
algorithms are utilized to determine the occurrence of incidents.

However, the accuracy of those algorithms stated above, relies on the availability and di-
versity of the incident data, which requires a dense deployment of the traffic sensors along
the traffic network. Besides, those approaches also fail to consider the temporal evolution
and temporal/spatial correlation of the collected traffic data. In order to overcome these
difficulties, several researches focused on the development of dynamic traffic modeling
algorithms for incident detection (e.g. Willsky et al., 1980; Lee and Taylor, 1999; Balke
et al., 2005). These algorithms utilize the dynamic traffic flow models (e.g. queue model,
cell transmission model (CTM)) to capture the dynamic nature of traffic and estimate the
traffic parameters (e.g. travel time, speed, traffic flow). By comparing the real-time mea-
surements and estimation of these traffic parameters, the abrupt changes may be identified
in real time and, hence, the incident occurrence may be recognized.

2.4.2.1 Incident detection algorithms for light traffic conditions

Incident detection under light traffic condition is difficult as a drop in the traffic capacity
due to an accident (e.g. one lane blocking) may not cause any delay for traffic passing
through that location. Therefore, it is not feasible to detect an incident under light traffic
condition based on measuring the abnormal delay or sudden change in traffic flow pattern.

To this end, some studies focused on utilizing the emerging traffic surveillance technolo-
gies (i.e. intelligent video surveillance) to detect a stationary or slow-moving vehicle (see
Figure 2.7) in the traffic network so as to detect the incident (e.g. Wu et al., 2008; Shehata
et al., 2008). These image processing algorithms, however, require an extensive deploy-
ment of video cameras at all key locations.

On the other hand, for a closed highway system if one can trace all vehicles along des-
ignated points on the highway, a disappearance of a certain vehicle movement from one
point to another can be detected and identified as a potential accident. Based on this prin-
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Figure 2.7: Image processing method

ciple, Fambro and Ritch (1979) designed an incident detection algorithm for low volume
traffic condition using vehicle count data obtained from the loop detectors. When a vehi-
cle passed the upstream detector, the corresponding speed and arrival time of the vehicle
is recorded. Accordingly, the projected arrival time of this vehicle at downstream site was
also calculated based on the assumption that the vehicle's speed remains constant over
short segment of freeway. Under incident-free condition, we can expect the appearance
of this vehicle during its arrival time interval at downstream site (i.e. the link counts would
increase during this time period). Thus a disappearance of this vehicle would imply a po-
tential accident. Owning to its computational efficiency and theoretical simplicity, this
algorithm works well under some special circumstances. However, the performance of
this approach is greatly dependent on the accuracy of the link count data and the estima-
tion of the projected arrival time. In general case, the unreliability of the traffic data and
the frequent overtaking between vehicles would seriously undermine the performance of
this incident detection algorithm in terms of the incident detection time.

In light of this, this study attempts to investigate the feasibility of utilizing the VRI scheme
(see Section 2.2) for tracking and identifying the "missing" vehicle such that the incident
could be detected promptly. The detailed work is presented in Chapter 5.
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Chapter 3

High-level intelligent video surveillance

In this chapter we introduce and explain the high-level intelligent video surveillance (IVS),
which consists of two critical components, i.e. single-camera analytics (Section 3.2) and
multi-camera analytics (Section 3.3). The detailed image processing techniques involved
in each component will be presented in the context of transportation analysis (e.g. vehicle
detection, tracking, and feature extraction). Section 3.4 further clarifies the relationship
between high-level IVS and the associated vision-based VRI system. As the ultimate
goal of this study is dynamic travel time estimation, Section 3.4 also explains the two
possible research directions in the development of VRI, which eventually lead to the work
presented in Part II and Part III of this thesis, respectively.

3.1 Introduction

High-level intelligent video surveillance not only provides real-time monitoring (e.g. traf-
fic data collection) by analyzing images from single camera, but also performs activity
analysis by utilizing continuous video sequences from adjacent/multiple cameras. In other
words, the high-level processing of IVS is comprised of two parts, i.e. single-camera an-
alytics and multi-camera analytics.

From the viewpoint of intelligent transportation system, the objects of interest in a video
record would be the vehicles. Therefore, the first step of single-camera analytics is the
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vehicle detection, which is also referred to as the foreground object detection in image
processing. Then the continuous detection of the very same vehicle (i.e. tracking) in the
single camera (Yilmaz et al., 2006) would allow for the further collection of the extrinsic
vehicle data, such as vehicle speed, and its arrival time. Also, following the vehicle de-
tection process, the intrinsic vehicle feature data (e.g. vehicle color, length, and type) can
also be extracted by applying various image processing techniques.

With regard to multi-camera analytics, the major task would be object reidentification
(ORI), which aims at re-identifying the same object appearing in adjacent cameras by only
using its visual features extracted from the single-camera analytics (Javed et al., 2005).
Following the concept of ORI, various studies have been conducted to match the individ-
ual pedestrians (i.e. people reidentification) in public places (e.g. airport and road net-
work) relating to safety and security (e.g. Farenzena et al., 2010; Mazzon and Cavallaro,
2012). In such cases, the matching accuracy associated with the multi-camera analytics
would be the major concern. The mismatches caused by the pose variations of objects and
illumination changes in different cameras could seriously undermine the performance of
multi-camera analytics in terms of safety and security.

Although vision based VRI and people reidentification (PRI) may share some common
features (e.g. feature extraction process, underlying matching method), there are still sev-
eral major differences between them. One of witch is that the ultimate goal of VRI is
to estimate dynamic travel time, whereas PRI only focuses on improving the matching
accuracy. From the perspective of travel time estimation, the high matching accuracy of
individual vehicles is sufficient but not necessary for obtaining reliable travel time esti-
mates1. This phenomenon provides us an alternative way to estimate travel time through
the "proper" usage of the VRI system. In other words, the proposed self-adaptive vision-
based VRI system, which can also be viewed as a variant of PRI, is specifically tailored
for dynamic travel time estimation purpose.

In what follows, the detailed introduction and explanation regarding each component of
high-level IVS will be presented. Section 3.2 introduces the various image processing
techniques that used for vehicle detection and feature extraction within the single-camera
environment. A further explanation of the tasks and the applications (PRI) ofmulti-camera
analytics is presented in Section 3.3. In Section 3.4, a preliminary comparison between

1Under some circumstances, a suitable post-processing on the individual travel time data can also enable
us to accurately estimate the mean travel time.
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PRI and VRI is conducted so that two possible research directions have been pointed out.
Finally, we close this chapter with conclusion remarks.

3.2 Single-camera analytics

In general single-camera analytics is performed in two stages, namely (1) object detection,
and (2) feature extraction. As the name suggests, object detection is responsible for iden-
tifying the object of interest from the video record (e.g. moving vehicle), whereas feature
extraction is the process of collecting the associated object features for further analysis in
multi-camera analytics.

3.2.1 Object detection

Object (e.g. vehicle) detection from video record plays a fundamental role in single-
camera analytics. The success of object detection largely depends on the degree to which
the moving object (e.g. vehicle) can be distinguished from its surroundings (i.e. back-
ground). Thus the first and foremost step is background estimation, which is completed by
calculating the median of a sequence of video frames (Zhou et al., 2007). The foreground
object (vehicle) can then be obtained by performing background subtraction and automatic
image segmentation (Otsu, 1979). Figure 3.1(a) shows the gray image of the background
of a freeway station, while Figure 3.1(b) demonstrates a video frame in which the detected
vehicles are surrounded by bounding boxes. Once the individual vehicle crosses the red
horizontal line (see Figure 3.1(b)), the vehicle image in the associated surrounding box
will be clipped from the video record and stored for further feature extraction.

Also, an additional vehicle tracking process based on Kalman filter (Patel and Thakore,
2013) will be employed such that the detected vehicle can be continuously tracked in the
single camera view. This tracking process would then allow for efficient collection of the
extrinsic vehicle data, such as vehicle speed, and its arrival time.

To sum up, the preliminary object detection provides us the detailed vehicle image1 𝐼 , its
1which can be jointly represented by three matrix (i.e. matrix representation of digital image) as ex-

plained in Section 2.3.2.
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(a) (b)

Figure 3.1: (a) Background estimation; (b) Effect of object detection

associated arrival time 𝑡 and the vehicle spot speed 𝑣. Moreover, the normalized height of
vehicle image can be adopted for representing vehicle length 𝐿.

3.2.2 Feature extraction

Upon completion of object detection, various image processing techniques can be applied
on the object image for feature extracting. It is noted that different objects of interest
may lead to totally different features. As this study focuses on utilizing high-level IVS
for transportation analysis, the vehicle feature extraction would be our major concern.
Generally speaking, vehicle features can be divided into two groups, i.e. global feature
and local feature. The global features characterize the overall appearance of the individual
vehicle (e.g. vehicle color, length, and type), while the local features (which can also be
referred to as interest point features) describe the appearance at distinctive locations (e.g.
conners and T-junctions of front window of the car) in the vehicle image.

3.2.2.1 Vehicle color recognition

Vehicle color is one of the most essential features for characterizing vehicles. However,
recognizing vehicle color from a given image is not a straightforward task because color
may vary dramatically in response to illumination and weather changes. To overcome
this difficulty, the hue saturation value (HSV) color space model, which is believed to be
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illumination invariant (Baek et al., 2007), is then utilized to represent the vehicle image.
In the HSV model, the hue and saturation values of a pixel remain almost constant un-
der different illumination conditions, making HSV representations more reliable and less
sensitive to lighting changes.

Vehicle color recognition is conducted in two steps. First, the general red-green-blue color
images (see Section 2.3.2) are converted into HSV color model-based images (Oleari et
al., 2013). Hue and saturation values are then exploited for color detection, and value
information is separated out from the color space. Second, a two-dimensional color his-
togram is formed to represent the distribution (frequency) of different colors across the
whole image. More specifically, the hue and saturation channels are divided into 36 and
10 bins, respectively. Thus, a color feature vector (𝐶) with 360 elements is obtained (see
e.g. Figure 3.2 and Figure 3.3).

Figure 3.2: Another example of vehicle color recognition
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Figure 3.3: Example of vehicle color recognition

3.2.2.2 Vehicle type recognition

Vehicle type feature also provides important information to describe a vehicle. In this part,
we adopt a template matching method (e.g. Thiang and Lim, 2001) to recognize vehicle
type. Thismethod uses𝐿2 distancemetric tomeasure the similarity between vehicle image
and template images. Specifically, vehicles are classified into six categories. And for each
category, the corresponding template image is built for each lane.

In order to remove the useless color information while preserving the structural properties
of a vehicle image, we first convert the image from RGB style to gray scale (𝐼). Then the
process of thresholding is fulfilled to subtract the background from the images (see Figure
3.4). Finally, the normalized similarity value for 𝑘th template image (𝑇 ) is given by

𝑆(𝑘) =

ℳ
∑

𝑚=1

𝒩
∑
𝑛=1

|𝐼(𝑚, 𝑛) − 𝑇 (𝑚, 𝑛)|2

𝒢ℳ𝒩 (3.1)

where 𝒢 denotes the maximum gray level (255);ℳ and𝒩 are dimensions of the template
images. Thus vehicle type 𝑆 is a 6-D vector that consists of the similarity score for each
template (see Figure 3.5).

To sum up, a vehicle signature, i.e. 𝑋 = {𝐶, 𝑆, 𝐿}, is generated for each detected vehicle,
where 𝐶 and 𝑆 are the normalized feature vector and type (shape) feature vector, respec-
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Figure 3.4: An illustration of vehicle shape extraction

Figure 3.5: Similarity score for each template

tively; 𝐿 denotes the vehicle length. As mentioned previously, the associated arrival time
𝑡 and spot speed 𝑣 are also obtained during the detection process. Therefore, the individual
vehicle record can then be represented as (𝑡, 𝑣, 𝑋). Table 3.1 summarizes the notations1

1which are used throughout the thesis unless otherwise specified.
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and the associated descriptions of the extracted vehicle data through IVS technology.

Table 3.1: Extracted vehicle data based on IVS

Notation Vehicle data description
𝑡 Arrival time of the vehicle Extrinsic vehicle data𝑣 Spot speed of the detected vehicle
𝐿 Normalized vehicle length

Intrinsic global features𝐶 Color distribution in the vehicle image
𝑆 Type vector of the detected vehicle

3.3 Multi-camera analytics

Since the video sensor networks in IVS could provide the real-time monitoring at discrete
locations (see Section 2.3), a further integration and analysis (i.e. multi-camera analyt-
ics) of these single-camera-information would allow for a more efficient network-wide
surveillance.

3.3.1 Object reidentification (ORI)

As one the most essential tasks in multi-camera analytics, object reidentification (ORI)
has received considerable attention during recent years. The basic idea, which is quite
straightforward, is to match objects of interest (e.g. pedestrians and vehicles) in different
camera views by only using the visual information extracted by single-camera analytics
(Wang, 2013). The underlying assumption of ORI is that the visual features (e.g. color,
length and type) of the observed objects in different camera views may remain unchanged.
By simply comparing these visual features (i.e. calculating the feature distances), the
matching results can then be obtained. In this sense, the selection of an appropriate feature
distance measure becomes critical for the development of ORI.

From the perspective of transportation analysis, the distance measure are specifically se-
lected based on the vehicle features (i.e. color, length, and type). Let (𝑋𝑈

𝑖 , 𝑋𝐷
𝑗 ) denote

a pair of vehicle signatures respectively observed at upstream and downstream stations,

39



3.3 Multi-camera analytics

where𝑋𝑈
𝑖 = {𝐶𝑈

𝑖 , 𝑆𝑈
𝑖 , 𝐿𝑈

𝑖 } and 𝑋𝐷
𝑗 = {𝐶𝐷

𝑗 , 𝑆𝐷
𝑗 , 𝐿𝐷

𝑗 } are upstream and downstream vehi-
cle feature data (see Table 3.1), respectively. For a pair of color feature vectors (𝐶𝑈

𝑖 , 𝐶𝐷
𝑗 )1,

the Bhattacharyya distance (Bhattacharyya, 1943), which has been widely used in research
of feature extraction (Choi and Lee, 2003) and image processing (Goudail et al., 2004), is
employed to calculate the degree of similarity between these two histograms2, i.e.

𝑑color(𝑖, 𝑗) =
[

1 −
360

∑
𝑘=1

√𝐶𝑈
𝑖 (𝑘).𝐶𝐷

𝑗 (𝑘)
]

1/2

(3.2)

where 𝑘 denotes the 𝑘th component of the color feature vector, and the value of 𝑑color(𝑖, 𝑗)
ranges from 0 to 1. The 𝐿1 distance measure is introduced to represent the difference
between the type feature vectors (𝑆𝑈

𝑖 , 𝑆𝐷
𝑗 ), i.e.

𝑑type(𝑖, 𝑗) =
6

∑
𝑘=1

|𝑆𝑈
𝑖 (𝑘) − 𝑆𝐷

𝑖 (𝑘)| (3.3)

The length difference is given by

𝑑length(𝑖, 𝑗) = |𝐿𝑈
𝑖 − 𝐿𝐷

𝑗 | (3.4)

Strictly speaking, the necessary camera calibration (normalization) should be performed
before the comparison between vehicle features. Different camera parameters (e.g. focal
length of camera, camera height and angle of camera view) may potentially lead to dif-
ferent properties of video record. In this thesis, however, the author would not explicitly
explain the camera calibration process for several reasons:

• The freeway in Bangkok, Thailand is equipped with Autoscope system, of which the
cameras follow the standard configuration (i.e. same intrinsic parameters, camera
angles and heights). Therefore, we did not strictly follow the normal calibration pro-
cedures. Instead, we are more concerned with the normalization of vehicle features
across different cameras.

• With respect to the detailed vehicle features (e.g. color, type and length), the nec-
essary normalization is carried out in the study:

1The vehicle feature 𝐶 is a 360-D vector (see Section 3.2.2.1).
2Since color histogram is robust to change in camera viewing angle and to partial occlusion, the differ-

ence between vehicle colors can be quantified by directly comparing the histograms (Shapiro and Stockman,
2001).
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– As color histogram is robust to change in camera viewing angle and to par-
tial occlusion (Shapiro and Stockman, 2001), the color normalization is not
necessary.

– To normalize the vehicle type vector, the template vehicle image is indepen-
dently built up for each camera (see Section 3.2.2.2). Therefore, the camera
angles and heights would not affect the type vectors (theoretically speaking).

Based on the aforementioned distance measures, one may make the final matching de-
cision in an "optimal" way (e.g. minimum feature distance). As illustrated above, ORI
attempts to match objects solely based on the visual features, which may not be practically
applicable when the feature information change dramatically due to the pose variations
and environmental changes (e.g. illumination changes). Also, the large candidate set to
be matched could impose a heavy burden on the computational resources (e.g. massive
computation of the distance measures). In this sense, the preliminary investigation of ORI
based on the visual features should be further integrated with spatial and temporal rea-
soning (e.g. time window constraint, prior knowledge on the activity model) at the later
stages to reduce the size of the candidate set and improve the overall computational ef-
ficiency. As a direct application of ORI, the problem of people reidentification (PRI1)
has been well-studied due to the increasing demand for video surveillance in public areas
where pedestrians are the objects of interest. In what follows, a brief review on PRI is
presented.

3.3.2 People reidentification (PRI)

As the name suggests, people reidentification (PRI) focuses onmatching pedestrians across
different cameras. Compared with the other objects of interest (e.g. vehicles), the pedes-
trians may have more "distinctive" features, such as clothes, shape, and facial features,
which could potentially lead to a higher matching accuracy. Therefore, a large amount
of studies (e.g. Javed et al., 2005; Farenzena et al., 2010; Nakajima et al., 2003; Gheis-
sari et al., 2006; Bird et al., 2005) have been conducted to re-identify people by simply
borrowing the idea from ORI (i.e. comparing the associated appearance-based features).

However, it is noted that the above-mentioned studies on PRI only utilized the visual
1which can also be viewed as an improved version of ORI.
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feature observed in the single-camera. In real-world application, the individual may walk
randomly in public areas, which makes it difficult and challenging to predict where and
when the same person will appear in the next camera. This phenomenon imposes a great
challenge on the matching process that solely based on visual feature. In this case, the
essential spatial (i.e. where) and temporal (i.e. when1) reasoning is required such that the
candidate set can be pruned and consequently the matching accuracy could be improved.
Mazzon and Cavallaro (2012) utilized the social force model to simulate the desire of
people traveling to specific interest point/camera station (which can be classified as spatial
reasoning), while Javed et al. (2003) introduced kernel density estimators to estimate the
probability of the objects arriving at the next camera station with a certain travel time
(which could be classified as temporal reasoning). By employing the spatial and temporal
constraints, the improved PRI is expected to outperform the ORI that solely based on the
appearance comparison.

Since PRI is mainly designed for the safety and security in public areas, the matching ac-
curacy of the system would be of utmost importance. As a variant of PRI, the vision based
vehicle reidentification (VRI) was originally designed to match the vehicles across differ-
ent cameras such that the associated travel time can be collected. Although vision based
VRI and PRI may share some common features such as visual appearance comparison and
time window constraints (Matei et al., 2011), there are still several major differences be-
tween them. In Section 3.4, a preliminary comparison between VRI and PRI is conducted,
and two possible research directions of the development of VRI for dynamic travel time
estimation are pointed out.

3.4 Vehicle reidentification: A variant of PRI

In this section, we will clarify the major differences between the classical PRI mentioned
in Section 3.3.2 and the VRI system we intend to propose in this study. As explained
previously, PRI systems are specifically designed for public safety and security and, con-
sequently, the matching accuracy of the individual pedestrian would be the major concern.
On the other hand, the ultimate goal of the development of VRI systems is to estimate the
dynamic travel time on freeway.

1Time window constraint
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In principle, the highmatching accuracy of the individual vehicle could eventually lead to a
reliable travel time estimator. In light of this, improving the matching accuracy would still
be a possible research direction of the development of VRI system. The methodologies
utilized in PRI (e.g. feature comparison, spatial and temporal reasoning mentioned in
Section 3.3.2) are also readily applicable to VRI. However, it is worthwhile to notice that
the matching accuracy of RPI is usually higher than that of VRI system for several reasons.

• First, in comparison with vehicle features (e.g. color, length, type), the visual fea-
tures of pedestrians (e.g. color, shape, and facial feature) are more "distinctive"1,
which allows for a better matching accuracy of PRI. With regard to VRI systems,
the mismatches are inevitable due to the potential noise (e.g. image blurry caused by
long-distance transmission) involved in data collection and the non-uniqueness of
the vehicle features. As shown in Figure 3.6, a large number of vehicles may share
similar features, which imposes a great challenge on the development of associated
matching method.

Downstream vehicle

Candidate vehicle set to be matched

Figure 3.6: Similar vehicle feature

• Second, compared with pedestrians, vehicles tend to travel at a much higher speed,
which could potentially result in larger variety of the travel time and, consequently,
yield a larger candidate vehicle set to be matched. Based on our experiments, the

1To some extent, the visual features can be viewed as unique (i.e. facial features).
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size of the candidate vehicle set would increase dramatically when the traffic condi-
tion changes from free flow to congested (i.e. dynamic situation). And accordingly,
the matching accuracy of VRI system is expected to decrease significantly regard-
less of the matching methodologies used (see Chapter 7). Therefore, additional data
processing is required to improve the performance of VRI in terms of mean travel
time estimation under dynamic traffic conditions.

From the viewpoint of travel time estimation, the high matching accuracy, however, is
sufficient but not necessary for obtaining reliable travel time estimates. A suitable post-
processing (e.g. thresholding and sampling) technique would allow us to select those
vehicles with "distinctive" features, which can then be "accurately" reidentified. To han-
dle the dynamic traffic conditions, the flexible time window constraints (i.e. temporal
reasoning) are also required such that the VRI system can adapt well against the potential
traffic changes. To sum up, the second research direction of the study would be to furnish
the basic VRI1 with additional post-processing component and self-adaptive time window
constraint for travel time estimation purpose.

3.5 Conclusion remarks

Following the two research directions illustrated in Section 3.4, two separate but closely
related tasks, namely the development of VRI under static and dynamic traffic conditions,
have been performed in this study. Figure 3.7 shows the overall thesis architecture focus-
ing on demonstrating the mutual dependencies and the logical connections between the
three parts in the thesis.

As the building blocks of this study, intelligent video surveillance systems provide the
real-time traffic data, which are essential for the further development of VRI systems.
Single camera analytics allows for the efficient vehicle detection and feature extraction,
whereas the multi camera analytics is responsible for the preliminary feature comparison
(e.g. feature distance calculation).

The first pillar of this study follows the traditional method for developing VRI system,
1which focuses on improving the vehicle matching accuracy, and is applicable under static traffic con-

ditions
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Basic VRI Subsystem on 
Single Segment
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Model for VRI on 
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Time Window 
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Figure 3.7: Thesis architecture demonstrating the mutual dependencies and the logical con-
nections between the three parts

which focuses on improving the vehicle matching accuracy. Basic vision based VRI sys-
tem has been developed by the statistical fusion of various vehicle features (Chapter 4).
Due to the capability of efficient vehicle tracking in the freeway system, the basic VRI
subsystem is then revised and improved for incident detection purpose (Chapter 5). In
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this case, the high matching accuracy of basic VRI system is beneficial to the prompt
and accurate detection of traffic incidents under free flow conditions. To further improve
the matching accuracy when there are multiple detectors along the freeway, the hierarchi-
cal Bayesian model is proposed (Chapter 6). Note that the aforementioned VRI systems
are designed under static traffic conditions, which suggests that they are only applicable
during a short/stable time period.

The second pillar of this study concentrates on improving the self-adaptivity of the basic
VRI in response to the dynamic traffic conditions. A novel iterative VRI system with
temporal adaptive time window constraints is proposed to capture the traffic dynamics in
real-time (Chapter 7). The additional iterative process together with the post-processing
technique is introduced to achieve reliable travel time estimates under non-predictable
traffic condition (e.g. traffic incident). A further improved iterative VRI system with
spatial-temporal adaptive time window is specifically designed for the freeway system
with multiple detectors (Chapter 8). By utilizing the traffic information (e.g. spatial in-
formation) from different pairs of detectors, we may obtain a more reliable time window
constraint under traffic demand and supply uncertainties.

Resting on these two pillars, the so-called self-adaptive VRI system could be developed
for dynamic freeway travel time estimation.
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VRI system under static traffic
conditions
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Chapter 4

Basic vision-based VRI system

This chapter aims to propose a probabilistic vehicle reidentification algorithm for estimat-
ing travel time using the video image data provided by traffic surveillance cameras. Each
vehicle is characterized by its color, type, and length, which are extracted from the video
record using image processing techniques. A data fusion rule is introduced to combine
these features to generate a probabilistic measure for reidentification (matching) decision.
The vehicle matching problem is then reformulated as a combinatorial problem and solved
by a minimum-weight bipartite matching method. To reduce the computational time, the
algorithm also utilizes the potential availability of the historical travel time data to define
a potential time-window for the vehicle reidentification.

This probabilistic approach does not require vehicle sequential information and, hence,
allows vehicle reidentification across multiple lanes. The algorithm is tested on a 3.6-
km-long section of the freeway system in Bangkok, Thailand. The travel time estimation
result is also compared with the manual observation data.

4.1 Introduction

Travel time is widely recognized as one of the best indicators of the quality of traffic
facilities as it is easy for both the transportation engineers and the travelers to understand.
However, travel time estimation is still a challenging issue. Traffic detectors can estimate
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traffic information at discrete points, but the detectors can not provide information about
the link between detectors, which means that the travel time cannot be measured directly.
Oh et al. (2002) also pointed out that the estimates from point detection of average speeds
are inaccurate when it comes to congested traffic conditions. Under this circumstance,
vehicle reidentification method may be a promising way to infer travel time between two
point detectors.

Generally speaking, vehicle reidentification is the process of matching vehicle signatures
from one point detector to the next one in road network. Once a vehicle detected at one
sensor is re-identified (i.e. matched) at another point, the travel time of the vehicle is
simply the difference between its arrival times at two consecutive detectors. In this case,
two key issues need to be considered during the development of an effective vehicle rei-
dentification system: first, a suitable traffic detection system that allows the accurate and
efficient extraction of traffic data is needed; second, a robust algorithm, which aims at
improving the vehicle matching accuracy, must be developed.

With respect to traffic detection system, various technologies have been investigated such
as image-based sensors, Bluetooth-based sensors, magnetic sensors, and inductive sig-
nature systems. Because of the worldwide deployment of inductive loop sensors, many
studies focused on re-identifying vehicles using the measurements from loop detectors.
Coifman and Cassidy (2002) explicitly compared vehicle lengths derived from loop de-
tectors. The length measurement resolution, however, largely depends on the vehicle ve-
locity and sampling rate of loop detector. Thus it would be impossible for single loop
detectors to measure the lengths of most passenger vehicles accurately under free flow
condition. To compensate for this, Coifman and Krishnamurthy (2007) tried to only re-
identify those vehicles with distinct length measurements (i.e. the long vehicles). Sun
et al. (1999) performed vehicle reidentification by utilizing the sensor waveforms from
inductive loops. The waveforms are first transformed to be speed invariant based on the
assumption that the vehicle speed is constant. Thus the measurement would be rather un-
reliable if a vehicle were accelerating or decelerating when it crossed the loop detectors.
Some researchers also investigated the feasibility of a vehicle reidentification scheme us-
ing the data from magnetic wireless sensors. Kwong et al. (2009) extracted the vehicle
signatures from the peak values of magnetic signal and the peak values are independent
of vehicle speed. Although this approach is relatively reliable, it requires the deployment
of a magnetic sensor at each lane, and hence monitoring a complete intersection is expen-
sive. An automatic license plate number reader system that provides the unique license
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number for each vehicle (Chang et al., 2004), could make the reidentification problem
trivial. However, this technique may not be applicable in some cases because of privacy
concerns and technical limitations in image processing. Quayle et al. (2010) estimated
travel time by utilizing the emerging Bluetooth detection technology. Since the Bluetooth
sensor would generate a unique 48 bit media access control (MAC) address for the vehi-
cle containing a Bluetooth device, the vehicle reidentification can be easily performed by
matching theMAC addresses. Although this technology appears promising for travel time
estimation, it requires an efficient deployment of in-vehicle Bluetooth devices. An alter-
native detection system is intelligent video surveillance system (IVS1). In this chapter, we
aim to investigate the feasibility of utilizing IVS for the development VRI system.

A variety of well-studied vehicle reidentification algorithms exist that can be broadly di-
vided into distance-based methods and probabilistic methods. Distance-based methods
incorporate distance measures (e.g. Bhattacharyya distance2 and 𝐿1 distance) to repre-
sent the similarity between each pair of vehicle signatures, and then an upstream vehicle
is matched to the most "similar" downstream vehicle (i.e. the vehicle with the minimum
vehicle signature distance). These approaches, however, have several weaknesses. First
and most significantly, the vehicle signature derived from the detector is not unique, and
hence the distance measure can not really reflect the similarities between the vehicles.
Second, it is unavoidable that traffic data contain potential noise, and thus uncertainty
from the vehicle signatures must be considered. To overcome these limitations and im-
prove the matching accuracy, some studies tried to reidentify a platoon of vehicles rather
than an individual vehicle. Coifman (1998) compared the lengths of vehicle platoons at
the consecutive detectors based on the assumption that platoons of five to ten vehicles do
not change lanes. Sun et al. (2004) utilized the data fusion technique to combine the mea-
surements from various traffic detectors and built one single similarity score to reidentify
vehicle platoons. However, these last twomethods would not be applicable in the presence
of vehicles that change lanes frequently. In probabilistic approaches, the vehicle signa-
ture is treated as a random variable, and a probabilistic measure is incorporated for the
reidentification decision. Kwong et al. (2009) proposed a probabilistic model to reiden-
tity vehicles with a maximum posterior probability. Their approach, however, is limited
to the case with only one lane arterial, and assumed no overtaking between vehicles.

This chapter presents a probabilistic vehicle matching approach to estimate the travel time
1A detailed introduction of IVS can be found in Section 2.3.
2Equation (3.2)
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distribution from video image data (i.e. basic vision-based VRI system). The method
extends the probabilistic framework for vehicle reidentification illustrated by Kwong et
al. (2009) to a more general case in which overtaking between vehicles as well as the
reidentification across multiple lanes are both allowed. Since various vehicle features
such as color, shape and size could be derived from the video image data using image
processing techniques, a probabilistic fusion technique of vehicle features is introduced to
provide a probabilistic measure (i.e. posterior probability) for reidentification decision.
The vehicle reidentification method illustrated in this chapter is performed in two stages.
In the first stage, a probabilistic measure based on probabilistic data fusion technique is
introduced to evaluate the likelihood of a vehicle being matched with the other vehicles
given their feature distances. In the second stage, a bipartite matchingmethod is adopted to
solve the vehicle reidentification as an assignment problem. The study also evaluates the
performance and accuracy of the probabilistic reidentification approach using the video
record data of a section of the expressway system in Bangkok, Thailand.

The rest of the chapter is organized as follows. Section 4.2 presents the overall framework
of basic VRI system using intelligent video surveillance technology. The description and
analysis of the vehicle reidentification methodology are proposed in the following two
sections (i.e. Section 4.3 and Section 4.4). Some test results regarding travel time esti-
mation and reidentification accuracy are discussed in Section 4.5. Finally, we close this
chapter with the conclusions (see Section 4.6).

4.2 Overall framework of the travel time estimation sys-
tem

This section presents the overall framework of the vision-based basic VRI system. Since
the travel time for each vehicle is simply the difference between arrival times at two con-
secutive sites, the success of our estimation system lies in the effectiveness of data collec-
tion (e.g. vehicle detection and feature extraction explained in Section 3.2) from intelligent
video surveillance technology and the robustness of vehicle reidentification algorithm.

The test site of our system is a 3.6-km section of the closed three-lane expressway system
in Bangkok, Thailand, as shown in Figure 4.1. At each station a gantry-mounted video
camera using upstream viewing functions as a traffic detector and two hours of video
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Figure 4.1: Test site in Bangkok, Thailand.

record data were collected between 10 a.m. and noon on March 15, 2011. The frame rate
of the video record is 25 FPS, and the still image size is 563 × 764.

Various traffic data such as vehicle color, type and length could be extracted from the
video record data (i.e. single-camera analytics). Traffic data collection from video im-
age data involves two main steps. First, the raw video record is digitized and stored in
the computer (i.e. low-level image processing explained in Section 2.3.2). Background
estimation technology is then utilized to detect the moving object (i.e. individual vehi-
cle) from the video. The still image regarding the individual vehicle is stored for further
application. Second, myriad image processing techniques such as equalization and tem-
plate matching are performed on the vehicle images to extract the feature vectors. Upon
completion of the traffic data collection, the length, color, and type feature vectors are
obtained for each vehicle. The probabilistic formalization of the vehicle reidentification
problem is described in detail below.

Consider a multi-lane link demonstrated in Figure 4.1. Let 𝑈 = {1, 2, … , 𝑁} denote the
𝑁 vehicles crossing the upstream site during a time interval. 𝐷 = {1, 2, … , 𝑀} is a set
of candidate downstream vehicles that are selected within a predefined time window (this
action is discussed in Section 4.3.1). Let 𝑋𝑈

𝑖 = {𝐶𝑈
𝑖 , 𝑆𝑈

𝑖 , 𝐿𝑈
𝑖 } denote the signature for

the 𝑖th upstream vehicle, where 𝐶𝑈
𝑖 and 𝑆𝑈

𝑖 are the normalized color feature vector and
type (shape) feature vector, respectively. 𝐿𝑈

𝑖 denotes the normalized length of vehicle 𝑖.
Accordingly, 𝑋𝐷

𝑗 = {𝐶𝐷
𝑗 , 𝑆𝐷

𝑗 , 𝐿𝐷
𝑗 } represents the signature for the 𝑗th downstream vehi-

cle. For each pair of signatures (𝑋𝑈
𝑖 , 𝑋𝐷

𝑗 ), distance measures are incorporated to represent
the similarities between the feature vectors (see Section 3.3). Thereby the difference be-
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tween the two signature sets 𝑋𝑈 and 𝑋𝐷 could be represented in the form of three 𝑁 × 𝑀
distance matrixes, i.e. 𝒟color, 𝒟type and 𝒟length.

In other words, the vehicle reidentification problem is to find the corresponding pairs be-
tween upstream vehicle set 𝑈 and downstream set 𝐷. Herein we introduce the assignment
function 𝜓 between the sets of 𝑈 and 𝐷 using the definition

𝜓 ∶
{

{1, 2, … , 𝑁} → {1, 2, … , 𝑀}
𝑖 ↦ 𝑗, 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑀

where 𝜓(𝑖) = 𝑗 indicates that upstream vehicle 𝑖 is the same as downstream vehicle 𝑗.
In practice, it is necessary to deal with complex situations in which the upstream vehicle
does not necessarily correspond to any downstream vehicle. Due to the detection error of
the IVS system or some other reasons (e.g. the existence of on/off-ramps), the upstream
vehicle 𝑖 may not be detected at the downstream site. In this case, the assignment function
𝜓 is modified as follows:

𝜓 ∶
{

{1, 2, … , 𝑁} → {1, 2, … , 𝑀, 𝜏}
𝑖 ↦ 𝑗, 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑀, 𝜏

(4.1)

where 𝜓(𝑖) = 𝜏 means that upstream vehicle 𝑖 does not match any downstream vehicle.
Therefore, the vehicle reidentification problem is equivalent to finding the assignment
function 𝜓 based on some decision rules.

In this research, the maximum a posterior probability (MAP) rule is used to estimate the
assignment function. The optimal solution to the vehicle reidentification problem is then
given by

𝜓∗ = arg max
𝜓

𝑃 (𝜓|𝒟color,𝒟type,𝒟length) (4.2)

A two-stage method for problem (4.2) is adopted. First, a probabilistic data fusion rule
is introduced to estimate the posterior probability of an assignment function 𝜓 being the
ground truth, i.e. 𝑃 (𝜓|𝒟color,𝒟type,𝒟length). In the second stage, the reidentification prob-
lem is formulated and solved by the bipartite matching method.

Figure 4.2 depicts a block diagram for the implementation of the basic VRI system. Note
that the traffic data acquisition component, which can also be referred to as the high-level
intelligent video surveillance, has already been discussed in Chapter 3. In what follows,
the vehicle signature matching method is explained in detail.
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Figure 4.2: Overall framework of travel time estimation system.

4.3 Probabilistic fusion of vehicle features

This section presents a probabilistic fusion strategy to integrate information from multi-
ple vehicle features (e.g. color, type and length). Three individual statistical models are
constructed corresponding to the three feature distances. Bayesian rule is then employed
to generate a posterior probability of the assignment function 𝜓 from the feature distance
matrix (i.e. 𝑃 (𝜓|𝒟color,𝒟type,𝒟length) ). In the concluding step the three posterior proba-
bilities are fused for the final vehicle reidentification (i.e. data fusion).

4.3.1 Time window constraint

Before proceeding to consider the vehicle features fusion strategy, it is necessary to ex-
plain the concept of time window constraint, which has been commonly utilized in the
existing VRI systems. As demonstrated in Section 4.2, three feature vectors regarding the
individual vehicle are extracted. To quantify the difference between each pair of upstream
and downstream vehicle signatures, i.e. the difference between 𝑋𝑈

𝑖 = {𝐶𝑈
𝑖 , 𝑆𝑈

𝑖 , 𝐿𝑈
𝑖 } and

𝑋𝐷
𝑗 = {𝐶𝐷

𝑗 , 𝑆𝐷
𝑗 , 𝐿𝐷

𝑗 }, several distance measures (e.g. Bhattacharyya distance and 𝐿1 dis-
tance) are then incorporated and the associated vehicle feature distances (i.e. 𝑑color(𝑖, 𝑗),
𝑑type(𝑖, 𝑗) and 𝑑length(𝑖, 𝑗)) can be calculated on the basis of Equations (3.2), (3.3), and (3.4).
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However, in practice, it is unnecessary to compute the distances between all pairs of up-
stream and downstream vehicle signatures. A time window constraint, which sets the
upper and lower bounds of travel time, is introduced to rule out the unlikely candidate
vehicles and improve the overall computational efficiency.

Given an upstream vehicle 𝑖, the available historical travel time is used to define a time-
window for it. This time-window constraint is used to identify the potential matches for
vehicle 𝑖 and rule out the vehicles with unreasonable travel times at downstream site.
Specifically, the set of potential matches at downstream site for vehicle 𝑖 is defined as
follows

𝐷𝑖 = {𝑗|𝑡𝑈
𝑖 + 𝑡min ≤ 𝑡𝐷

𝑗 ≤ 𝑡𝑈
𝑖 + 𝑡max} (4.3)

where 𝑡min and 𝑡max are the minimum and maximum vehicle travel time based on the histor-
ical data; 𝑡𝑈

𝑖 and 𝑡𝐷
𝑗 denote the arrival time at upstream and downstream site, respectively.

For a sequence of upstream vehicles 𝑈 = {1, 2, … , 𝑁}, the set of the candidate down-
stream vehicles is given by

𝐷 = {𝑗|𝑡𝑈
1 + 𝑡min ≤ 𝑡𝐷

𝑗 ≤ 𝑡𝑈
𝑁 + 𝑡max} (4.4)

Having selected the downstream set𝐷 = {1, 2, … 𝑀}, to each pair of signatures (𝑋𝑈
𝑖 , 𝑋𝐷

𝑗 )
the feature distance {𝑑color(𝑖, 𝑗), 𝑑type(𝑖, 𝑗), 𝑑length(𝑖, 𝑗)} can be assigned, obtaining three
𝑁 × 𝑀 distance matrices 𝒟color, 𝒟type and 𝒟length. Since the scales and distributions of
feature distances are unlikely to be the same, the three distance matrixes can not be com-
bined directly using linear combination method (Sun et al., 2004). To overcome this prob-
lem, the authors propose a probabilistic data fusion approach to integrate information from
multiple vehicle features.

4.3.2 Probabilistic modeling of feature distance

We start with the introduction of a statistical model which allows the probabilistic de-
scription of feature distance. Without loss of generality, we only describe the probabilistic
modeling of color feature distance.

For each pair of color feature vectors (𝐶𝑈
𝑖 , 𝐷𝐷

𝑗 ), the distance measure 𝑑color(𝑖, 𝑗) is as-
sumed to be a random variable. We also assume that conditional on knowing the ground
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truth 𝜓 , {𝑑color(𝑖, 𝑗), 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑀} are independent of each other. The
conditional probability of 𝑑color(𝑖, 𝑗) is then given by

𝑝(𝑑color(𝑖, 𝑗)|𝜓) =
{

𝑝1(𝑑color(𝑖, 𝑗)) if 𝜓(𝑖) = 𝑗
𝑝2(𝑑color(𝑖, 𝑗)) if 𝜓(𝑖) ≠ 𝑗 or 𝜓(𝑖) = 𝜏

(4.5)

where 𝑝1 and 𝑝2 are two probability density functions (pdf). 𝑝1 denotes the pdf of obtaining
distance 𝑑color(𝑖, 𝑗) when color feature vectors 𝐶𝑖 and 𝐷𝑗 belong to the same vehicle, while
𝑝2 is the pdf of obtaining distance 𝑑color(𝑖, 𝑗) between different vehicles.

Based on the independency assumption, the likelihood of obtaining the feature distance
matrix 𝒟color allows the following factorization:

𝑝(𝒟color|𝜓) =
𝑁

∏
𝑖=1

𝑀

∏
𝑙=1

𝑝(𝑑color(𝑖, 𝑙)|𝜓) =
𝑁

∏
𝑖=1

𝑀

∏
𝑙=1

𝑝(𝑑color(𝑖, 𝑙)|𝜓(𝑖)) (4.6)

From Equation (4.5), we have

𝑀

∏
𝑙=1

𝑝(𝑑color(𝑖, 𝑙)|𝜓(𝑖)) =
⎧⎪
⎪
⎨
⎪
⎪⎩

𝑝1(𝑑color(𝑖, 𝑗))
𝑝2(𝑑color(𝑖, 𝑗))

𝑀
∏
𝑘=1

𝑝2(𝑑color(𝑖, 𝑘)) if 𝜓(𝑖) = 𝑗, 𝑗 = 1, 2, … , 𝑀
𝑀
∏
𝑘=1

𝑝2(𝑑color(𝑖, 𝑘)) if 𝜓(𝑖) = 𝜏

Let 𝜆color(𝑖, 𝑗) = 𝑝1(𝑑color(𝑖, 𝑗))
𝑝2(𝑑color(𝑖, 𝑗))

𝑀
∏
𝑘=1

𝑝2(𝑑color(𝑖, 𝑘)) and 𝜆color(𝑖, 𝜏) =
𝑀
∏
𝑘=1

𝑝2(𝑑color(𝑖, 𝑘)), then
we may have

𝑀

∏
𝑙=1

𝑝(𝑑color(𝑖, 𝑙)|𝜓(𝑖)) =
{

𝜆color(𝑖, 𝑗) if 𝜓(𝑖) = 𝑗, 𝑗 = 1, 2, … , 𝑀
𝜆color(𝑖, 𝜏) if 𝜓(𝑖) = 𝜏

(4.7)

By substituting Equation (4.7) into Equation (4.6), we may calculate the pdf of obtain-
ing the color feature distance matrix. Similarly, we could also construct the probabilistic
models for the type feature distance and length feature distance. Since the calculation
of the likelihoods largely relies on pdfs 𝑝1 and 𝑝2, the estimation of the pdf's statistical
distribution is required.
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4.3.3 Probability distribution estimation

Here we are mainly concerned with the estimation of pdf 𝑝1 and 𝑝2 for the color feature
distance. Due to the complexity and flexibility of the probability distribution, we utilize
finite gaussian mixture model (e.g. Frühwirth-Schnatter, 2006) to approximate 𝑝1 and 𝑝2.
In gaussian mixture modeling, the pdf 𝑝2 can be written in the form

𝑝2(𝑑color) =
2

∑
𝑘=1

𝜋𝑘𝑔𝑘(𝑑color; 𝜃𝑘, 𝜎𝑘),
2

∑
𝑘=1

𝜋𝑘 = 1 (4.8)

where 𝑔𝑘(𝑑color; 𝜃𝑘, 𝜎𝑘) is the 𝑘th component gaussian density function, 𝜃𝑘 and 𝜎𝑘 are the
mean and standard variance, respectively. 𝜋𝑘 denotes the weight associated with the 𝑘th
component.

Collecting reliable training sample is amajor challenge for estimating the unknown param-
eters {(𝜋𝑘, 𝜃𝑘, 𝜎𝑘), 𝑘 = 1, 2}. In this study, the ground-truth matches (i.e. actual matching
result) were verified by the human operators viewing the video record frame by frame,
and a training dataset that contains a number of pairs of correctly matched vehicles is built
up. From this dataset we could obtain the feature distances (e.g. 𝑑color) between the cor-
rectly matched and mismatched vehicles, respectively. Then we apply the well-known
Expectation Maximization (EM) algorithm (e.g. McLachlan and Krishnan, 2008; Huang
and Russell, 1998) to solve the parameter estimation problem.

As shown in Figure 4.3, pdfs 𝑝1 and 𝑝2 are estimated by fitting gaussian mixture model to
a training dataset which contains 449 pairs of correctly matched vehicles.

4.3.4 Calculation of posterior probability

From the estimates of the likelihood, the posterior probability of the assignment function
𝜓 being the ground truth, i.e. 𝑃 (𝜓|𝒟color,𝒟type,𝒟length), could be calculated directly. By
applying the Bayesian rule, we have

𝑃 (𝜓|𝒟color,𝒟type,𝒟length) =
𝑝(𝒟color,𝒟type,𝒟length|𝜓)𝑃 (𝜓)

𝑝(𝒟color,𝒟type,𝒟length)
(4.9)
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Figure 4.3: The pdfs 𝑝1 and 𝑝2 estimated by gaussian mixture model

where 𝑝(𝒟color,𝒟type,𝒟length|𝜓) is the likelihood function; 𝑃 (𝜓) is the prior knowledge
about the assignment function without observing the detailed vehicle feature distances.
Based on Equation (4.9), it is easily observed that the calculation of the posterior proba-
bility is dependent on the deduction of the likelihood function and the definition of prior
probability (i.e. 𝑃 (𝜓)).

In the following we discuss the definition of the prior probability 𝑃 (𝜓). With the inde-
pendency assumption, we have

𝑃 (𝜓) =
𝑁

∏
𝑖=1

𝑃 (𝜓(𝑖)) (4.10)

For each 𝑖 ∈ {1, 2, … , 𝑁}, 𝑃 (𝜓(𝑖)) is a discrete probability distribution and the random
variable 𝜓(𝑖) can only take on the values 𝑗 = 1, 2, … , 𝑀 and 𝜏. 𝑃 (𝜓(𝑖) = 𝑗) denotes the
probability that upstream vehicle 𝑖 matches downstream vehicle 𝑗, whereas 𝑃 (𝜓(𝑖) = 𝜏)
is the probability that vehicle 𝑖 does not match any downstream vehicle. In this study,
we use the continuous historical travel time distribution 𝑓(⋅) to approximate discrete prior
probability 𝑃 (𝜓(𝑖)). Given a pair of vehicles (𝑖, 𝑗) and their arrival time difference 𝑡(𝑖, 𝑗),
if the values of 𝑓(𝑡(𝑖, 𝑗)) is sufficiently large, then we are more willing to believe that
vehicle 𝑖 matches vehicle 𝑗 (this is also referred to as the prior knowledge).

The remaining part is then to use 𝑓(𝑡(𝑖, 𝑗)) to approximate 𝑃 (𝜓(𝑖)) such that it satisfied

58



4.3 Probabilistic fusion of vehicle features

the definition of discrete probability definition, i.e.

⎧⎪
⎨
⎪⎩

𝑀
∑
𝑗=1

𝑃 (𝜓(𝑖) = 𝑗) + 𝑃 (𝜓(𝑖) = 𝜏) = 1

𝑃 (𝜓(𝑖) = 𝜏) = 𝜅
(4.11)

where 𝜅 is the pre-defined probability that vehicle 𝑖 does not match any candidate vehicles.
As explained in last paragraph, we also believe

𝑃 (𝜓(𝑖) = 𝑗)
𝑃 (𝜓(𝑖) = 𝑘) = 𝑓(𝑡(𝑖, 𝑗))

𝑓 (𝑡(𝑖, 𝑘)) , ∀𝑗, 𝑘 ∈ {1, 2, … , 𝑀} (4.12)

By simple mathematical manipulation, we may obtain the following equations regrading
the prior probability.

𝑃 (𝜓(𝑖) = 𝑗) = (1 − 𝜅)
𝜂 𝑓(𝑡(𝑖, 𝑗)), 𝑗 = 1, 2, … 𝑀; 𝜂 =

𝑀

∑
𝑗=1

𝑓(𝑡(𝑖, 𝑗)) (4.13)

𝑃 (𝜓(𝑖) = 𝜏) = 𝜅 (4.14)

It is noted that the definition of the prior probability varies with different strategies and
application scenarios. After all, prior probability stands for the prior knowledge (or "opin-
ion") on vehicle matching. Different people may have totally different "opinions" regard-
ing the matching result.

4.3.5 Data fusion rule

Since the ultimate goal is to calculate the posterior probability 𝑃 (𝜓|𝒟color,𝒟type,𝒟length)
in Equation (4.9), a data fusion technique is then required to combine the multiple vehicle
features such that the joint probability density function 𝑝(𝒟color,𝒟type,𝒟length|𝜓) could be
inferred. Assuming that the observed feature distance matrixes are conditionally statisti-
cally independent, we may have

𝑝(𝒟color,𝒟type,𝒟length|𝜓) = 𝑝(𝒟color|𝜓)𝑝(𝒟𝑡𝑦𝑝𝑒|𝜓)𝑝(𝒟𝑙𝑒𝑛𝑔𝑡ℎ|𝜓) (4.15)

where 𝑝(𝒟color|𝜓), 𝑝(𝒟type|𝜓), and 𝑝(𝒟length|𝜓) are the likelihood functions of observing
each feature distance matrix (see Section 4.3.2). Due to its theoretical simplicity, Equa-
tion (4.15), which is also referred to as the product rule (Kittler et al., 1998), has been
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4.3 Probabilistic fusion of vehicle features

widely used in research of data fusion. To further indicate the degree of contribution of
each probability measure, the logarithmic opinion pool (LOP) approach (e.g. Benedikts-
son and Swain, 1992; Smith et al., 2005) is applied in this study. The LOP is evaluated as
a weighted product of the probabilities and the fusion equation is given by

𝑝(𝒟color,𝒟type,𝒟length|𝜓) = 1
𝑍LOP

𝑝(𝒟color|𝜓)𝛼𝑝(𝒟type|𝜓)𝛽𝑝(𝒟length|𝜓)𝛾 ,

𝛼 + 𝛽 + 𝛾 = 1 (4.16)

where 𝛼, 𝛽 and 𝛾 are the fusion weights of the feature distances, which can also be cal-
ibrated from the training dataset; 𝑍LOP is the normalizing constant. One important and
desirable property of the LOP rule is that zeros in the logarithmic opinion pool are vetoes;
i.e. if any likelihood function of the feature distance is close to zero (e.g. 𝑝(𝒟type|𝜓) = 0),
then the overall likelihood is also zero (i.e. 𝑝(𝒟color,𝒟type,𝒟length|𝜓) = 0) regardless of the
likelihoods of other two feature distances. To be more specific, a low matching likelihood
of one vehicle feature will lower the overall matching probability, which could eventually
come to a conclusion that vehicle 𝑖 cannot be matched to vehicle 𝑗. This behavior of the
data fusion approach is exactly what we are expecting.

By substituting Equations (4.13), (4.14) and (4.16) into Equation (4.9), we have

𝑃 (𝜓|𝒟color,𝒟type,𝒟length) =
𝑝(𝒟color|𝜓)𝛼𝑝(𝒟type|𝜓)𝛽𝑝(𝒟length|𝜓)𝛾𝑃 (𝜓)

𝑍LOP 𝑝(𝒟color,𝒟type,𝒟length)
(4.17)

Therefore the optimization problem (4.2) can be reformulated as follows:

max
𝜓

𝑝(𝒟color|𝜓)𝛼𝑝(𝒟type|𝜓)𝛽𝑝(𝒟length|𝜓)𝛾𝑃 (𝜓) (4.18)

In practice it is more convenient to work with the negative logarithm of the objective
function in problem (4.18), i.e.

min
𝜓

[−𝛼 ln(𝑃 (𝒟color|𝜓)) − 𝛽 ln(𝑃 (𝒟type|𝜓)) − 𝛾 ln(𝑃 (𝒟length|𝜓)) − ln 𝑃 (𝜓)] (4.19)

On the basis of Equations (4.6) and (4.7), the term ln(𝑃 (𝒟color|𝜓)) in Problem (4.19) can
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be expressed as follows:

ln(𝑃 (𝒟color|𝜓)) = ∑
𝑖

∑
𝑗

ln(𝜆color(𝑖, 𝑗))𝛿(𝜓(𝑖) = 𝑗)

+ ∑
𝑖

ln(𝜆color(𝑖, 𝜏))𝛿(𝜓(𝑖) = 𝜏)
(4.20)

where 𝛿(⋅) is the indicator function, and 𝛿(𝜓(𝑖) = 𝑗) = 1 if upstream vehicle 𝑖 matches
downstream vehicle 𝑗. Likewise, the terms ln(𝑃 (𝒟type|𝜓)) and ln(𝑃 (𝒟length|𝜓)) can also
be obtained, and ln 𝑃 (𝜓) is given by

ln(𝑃 (𝜓)) = ∑
𝑖

∑
𝑗

ln((1 − 𝜅)
𝜂 𝑓(𝑡(𝑖, 𝑗)))𝛿(𝜓(𝑖) = 𝑗) + ∑

𝑖
ln(𝜅)𝛿(𝜓(𝑖) = 𝜏) (4.21)

By replacing the terms in Problem (4.19) with Equations (4.20) and (4.21), we obtain the
following optimization problem:

min
𝜓 ∑

𝑖
∑

𝑗
𝜛(𝑖, 𝑗)𝛿(𝜓(𝑖) = 𝑗) + ∑

𝑖
𝜛(𝑖, 𝜏)𝛿(𝜓(𝑖) = 𝜏) (4.22)

where 𝜛(𝑖, 𝑗) and 𝜛(𝑖, 𝜏) are the associated coefficients defined as follows:

𝜛(𝑖, 𝑗) = − 𝛼 ln(𝜆color(𝑖, 𝑗)) − 𝛽 ln(𝜆type(𝑖, 𝑗)) − 𝛾 ln(𝜆length(𝑖, 𝑗))

− ln((1 − 𝜅)
𝜂 𝑓(𝑡(𝑖, 𝑗)))

𝜛(𝑖, 𝜏) = −𝛼 ln(𝜆color(𝑖, 𝜏)) − 𝛽 ln(𝜆type(𝑖, 𝜏)) − 𝛾 ln(𝜆length(𝑖, 𝜏)) − ln(𝜅)

Vehicle reidentification problem (4.22) is an unconstrained combinatorial optimization
problem. The solution to Problem (4.22) might not be feasible in practice. For example,
two different upstream vehicles may be matched to the same downstream one. In this case,
some constraints should be introduced to guarantee a feasible solution, and a polynomial-
time algorithm is required to solve the constrained optimization problem. The next section
presents a bipartite matching method for Problem (4.22).
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4.4 Bipartite matching method

In this section a weighted bipartite graph representation for the feasible solution set of
the Problem (4.22) is proposed, and a well-known polynomial-time method based on
minimum-weight bipartite matching is also discussed.

4.4.1 Reduction to a weighted bipartite graph

We now consider a bipartite graph 𝐺 = (𝑈, 𝐷, 𝐸) (see Figure 4.4) whose vertices can
be divided into two disjoint sets 𝑈 and 𝐷 such that every edge connects a vertex in 𝑈
to one in 𝐷. Given the two sets of vehicles 𝑈 and 𝐷, a weighted graph representation



 
1M  M N

1 2 N

1 2 M 1 1

Figure 4.4: Bipartite graph representation

𝐺 = (𝑈, 𝐷, 𝐸) can be constructed as follows: the nodes in set𝑈 , indexed by 𝑖 = 1, 2, … 𝑁
denote the vehicles at the upstream site, whereas the first 𝑀 nodes in set 𝐷 denote the
vehicles at the downstream site and the next𝑁 nodes are the "dummy" vehicles. Each edge
𝑒(𝑖, 𝑗), 𝑖 = 1, … , 𝑁 ; 𝑗 = 1, … , 𝑀 , corresponds to a potential match between the upstream
vehicle 𝑖 and the downstream one 𝑗. The edge 𝑒(𝑖, 𝑗), 𝑖 = 1, … , 𝑁 ; 𝑗 = 𝑀 +1, … , 𝑀 +𝑁 ,
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4.4 Bipartite matching method

indicates that upstream vehicle 𝑖 does not match any downstream vehicle1. The weight
associated with each edge is defined as follows:

𝜔(𝑖, 𝑗) =
{

𝜛(𝑖, 𝑗) 𝑖 = 1, 2 … , 𝑁; 𝑗 = 1, 2 … , 𝑀
𝜛(𝑖, 𝜏) 𝑖 = 1, 2 … , 𝑁; 𝑗 = 𝑀 + 1, … , 𝑀 + 𝑁

(4.23)

Obviously, the graph structure arising in such a case is capable of representing the con-
straints on the vehicle matching problem (e.g. Sedgewick, 2002; Gao et al., 2011). In
practice, the matching allows no duplicate, which means that each vehicle can only have,
at most, one matched vehicle at downstream site. This bipartite graph matching is consid-
erably simpler, and can be solved in polynomial time.

4.4.2 Formulation as a minimum-weight bipartite matching problem

By substituting Equation (4.23) into Problem (4.22), the optimization problem can be
reformulated as follows:

min
𝜓

𝑁

∑
𝑖=1

𝑀+𝑁

∑
𝑗=1

𝜔(𝑖, 𝑗)𝛿(𝜓(𝑖) = 𝑗) (4.24)

s.t. 𝛿(𝜓(𝑖) = 𝑗) ∈ {0, 1}, ∀𝑖 ∈ {1, 2, … , 𝑁}, 𝑗 ∈ {1, 2, … , 𝑀 + 𝑁} (4.25)
𝑀+𝑁

∑
𝑗=1

𝛿(𝜓(𝑖) = 𝑗) = 1, ∀𝑖 ∈ {1, 2, … , 𝑁} (4.26)

𝑁

∑
𝑖=1

𝛿(𝜓(𝑖) = 𝑗) ≤ 1, ∀𝑗 ∈ {1, 2, … , 𝑀 + 𝑁} (4.27)

Objective (4.24) is to minimize the overall weight in the bipartite matching graph. Con-
straint (4.25) ensures that the 𝛿(⋅) are indicator variables (i.e. binary integers). Constraint
(4.26) requires that an upstream vehicle must be matched to a downstream vehicle or a
dummy vehicle (see Figure 4.4), whereas Constraint (4.27) guarantees that an downstream
vehicle, can have, at most, one matched upstream vehicle.

1Note that this situation may arise when the freeway segment has on/off-ramps. The vehicles detected at
upstream station may not necessarily arrive at downstream station. As there are no video cameras installed
at on/off-ramps, we use 𝜓(𝑖) = 𝜏 to represent this scenario (see Equation (4.1)). However, we show in Ap-
pendix 4.A that the bipartite graph representation can still be applied to this situation (i.e. freeway segment
with on/off-ramps under the surveillance of video cameras).
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The constrained optimization problem described above is equivalent to aminimum-weight
bipartite matching problem: given the weighted bipartite graph 𝐺 (see Figure 4.4), the
problem is solved by computing the max cardinality minimum weight matching (see Fig-
ure 4.5). The minimum-weight bipartite matching problem has been widely studied in the

Edge weight

1           2        … …i
1

2
.
.
.

.

.

.

j ( , )i j

 

 

Compute the max cardinality 
minimum weight matching

M N

1 2 i N

j21

 1 2 i N

 
M N

j21

M N

N

Figure 4.5: Bipartite matching procedure

field of computer science and a wealth of algorithms has been developed for it (e.g. Conte
et al., 2003; Belongie and Malik, 2000; Hsieh et al., 1995). In this research, we adopt the
successive shortest path algorithm which is an efficient method for solving the bipartite
matching problem (Ahuja et al., 1993), and the computation complexity is 𝑂(𝑁2𝑀).

4.5 Test results

In this section, the performance and accuracy of the basic vision-based VRI system is
presented. In order to validate the matching accuracy, the ground-truth matches were
determined by a human operator viewing the video record frame by frame.

Our system starts with the probability parameter estimation from the historical data. Here
we utilize a training dataset which contains 449 pairs of correctly matched vehicles to
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estimate the probability parameter as well as the historical travel time distribution (see
Figure 4.6(a)).
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Figure 4.6: Travel time distribution: (a) the pdf of historical travel time distribution; (b)
estimated and manual observed travel time distribution.

4.5.1 Travel time distribution

Upon completion of the vehicle detection, 574 vehicles are detected at upstream site in
10 minutes. By applying our vehicle reidentification method, 271 vehicles are correctly
matched, while 79 vehicles does not correspond to any downstream vehicle. Thus the
matching accuracy is 271/(574 − 79) = 54.75%. From the matched vehicles one could
obtain the travel time distribution. As shown in Figure 4.6(b), the measured travel time
histogram is computed directly from our system, while the manual observed distribution is
obtained by calculating the time differences between the 271 pairs of correctlymatched ve-
hicles. To validate the reliability of our travel time estimation system, Root Mean Square
(RMS) error is applied as performance index. The equation of RMS error is given by:

RMS error =
√√√
⎷

1
𝑛

𝑛

∑
𝑖=1 |

𝑌𝑖 − 𝑌 ∗
𝑖

𝑌 ∗
𝑖 |

2
= 0.2387 (4.28)

where 𝑛 indicates the number of the bins of the histogram, 𝑌𝑖 is the estimated frequency of
travel time and 𝑌 ∗

𝑖 is the manual observed (true) frequency. The relative small RMS error
suggests that these two travel time distributions are "statistically" similar. In addition to
the RMS error, we could also obtain the differences between the two means and the two
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stand deviations:

difference between the two mean travel times: |175.2934 − 177.4331| = 2.1397 secs
difference between the two standard deviations: |30.7744 − 33.7277| = 2.9533

Based on these performance indices, we can draw a conclusion that our travel time esti-
mation system is reliable.

4.5.2 Performance of probabilistic feature fusion approach

Table (4.1) shows the performance of our vehicle reidentification algorithm for different
features, namely, color, type and length individually, as well as for the probabilistic fusion
cases. The first three rows indicate that the reidentification accuracy of color, type and
length, when used individually, is 36.04%, 23.58% and 17.39%, respectively. From these
results, we observe that the performance for color feature is much better than the other two
features. This is reasonable due to several reasons. First, the color information regarding
each vehicle is represented by a 360-dimensional vector. Thus our system is very sensitive
to the difference between vehicle colors. Second, although the vehicle length measure-
ment is accurate, it is not enough for us to distinguish the vehicle from others. Actually,
we can only re-identify those "long vehicles" when only the length information is used.
Third, due to the limitation of image processing techniques, the vehicle type recognition
is not so successful, which results in the low reidentification accuracy.

The last two rows in Table (4.1) show that the reidentification accuracy after fusion in-
creased to 48.57% and 54.75%, respectively. Therefore, we could observe that the prob-
abilistic fusion approach clearly outperforms other three vehicle features.

Table 4.1: Performance of Vehicle Re-Identification Algorithm Regarding Different Fusion
Weights

Color weight 𝛼 Type weight 𝛽 Length weight 𝛾 Matching accuracy
1 0 0 36.04%
0 1 0 23.58%
0 0 1 17.39%

0.7143 0 0.2857 48.57%
0.4680 0.3062 0.2258 54.75%
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4.5.3 Vehicle reidentification across multiple lanes

As was previously mentioned, our system does not require vehicle platoon information to
perform reidentification. Therefore it can be applied across multiple lanes, which means
that the vehicles changing lanes can also be re-identified (see Figure 4.7). Among the 271

Figure 4.7: Vehicle matching across multiple lanes

pairs of correctly matched vehicles, there are 63 pairs of vehicles changing lanes. From
the test result we can conclude that the number of lane changes amounts for 25% of the
traffic. Since the length of the test section of the expressway system is only 3.6 kilometers,
it can be expected that lane changes will become more frequent on certain longer sections
of the roadway. Thus, the development of an algorithm that allows reidentification across
multiple lanes is of great importance.
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4.6 Conclusion remarks

This chapter examines the fusion of vehicle features in a probabilistic framework for ve-
hicle reidentification and travel time estimation. Three feature vectors are extracted from
the video image data based on various image processing techniques. Since the vehicle
reidentification algorithm does not require lane sequence information, it can be applied to
re-identify vehicle across multiple lanes. The approach is tested on a 3.6-kilometer seg-
ment of the freeway system in Bangkok, Thailand. The overall reidentification accuracy
is about 54.75%. For travel time estimation purpose, the result shows that the travel time
distribution estimated by our system is reliable.

For the proposed basic VRI system, the following two comments should be taken into
account.

• First, it is observed that the basic vision-based VRI heavily depends on the specifi-
cation of the time window constraint (Section 4.3.1) and the prior probability, both
of which are derived from the historical travel time data and remain unchanged dur-
ing the vehicle matching process. The above-mentioned phenomenon also implies
that the basic VRI system is specifically devised for a short time period in which
the traffic condition is relatively stable. And the travel time estimator is expected
to be reliable under static traffic condition, as the prior knowledge will not deviate
dramatically from the ground-truth traffic information. For travel time estimation
under dynamic traffic conditions, an improved self-adaptive VRI system is devel-
oped in Part III of the thesis.

• Second, the basic VRI focuses on improving the overall matching accuracy, which
could be potentially beneficial to the efficient traffic incident management (see
Chapter 5). As explained in this chapter, the performance of VRI system relies
on the quality of the feature data and the robustness of the matching method. The
high quality of feature data (e.g. high resolution of vehicle length) would greatly re-
lieve the burden of the matching method. And accordingly, a simple distance-based
method would satisfy the need for vehicle reidentification. However, the feature
data obtained from various sensing technologies may be of poor qualities in prac-
tical implementation. In our experience, IVS technology is subject to the effects
of inclement weather (e.g. rain, snow) and illumination changes. Under these cir-
cumstances, the quality of the video image will decrease dramatically and hence
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undermine the effectiveness of vehicle data extraction. Therefore, this study uti-
lizes the statistical matching method such that the uncertainties of the feature data
are explicitly considered (see Section 4.3.2).
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Appendix

4.A Freeway segment with entry/exit ramps

Consider a freeway segment with entry/exit ramps along which the video cameras are in-
stalled (see Figure 4.8). It is observed that a vehicle could enter this freeway segment
through the upstream station or the entry ramp. And accordingly, this very vehicle could
appear at downstream station or leave the freeway through the exit ramp. Therefore, the
associated VRI problem can be viewed as a network-wide matching of the vehicle sig-
natures. In this part, we would demonstrate that the proposed bipartite matching method
(Section 4.4) can still be applied to this network case.

1

2

3

Upstream Station Downstream Station

Entry

Exit

Figure 4.8: Conceptual test site

Specifically, all the nodes (i.e. the stations under the surveillance of video cameras) in the
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"network" can be divided into two parts, i.e. origins and destinations. In this particular
case, the set of origins 𝑂 consists of the upstream station and entry ramp, while the set
of destinations 𝐷 comprises of exit ramp and downstream station (see Figure 4.9). All
the vehicles detected at origins (e.g. node 1 and node 2) will be indexed based on their
arrival times and the origin vehicle set can still be defined as 𝑂 = {1, 2, …}. Likewise,
the candidate vehicle set 𝐷 can be derived based on the time window constraint. The
posterior probability between these two sets is then given by

𝑃 (𝜓|𝒟color,𝒟type,𝒟length) =
𝑝(𝒟color,𝒟type,𝒟length|𝜓)𝑃 (𝜓)

𝑝(𝒟color,𝒟type,𝒟length)
(4.29)

1 2

3 4

O

D

(a)

1M �

Upstream

1 2 N

1 2 M 1 1

1N �

1 1

Entry

Downstream Exit

(b)

Figure 4.9: (a) Topological structure; (b) Bipartite graph representation

In this case, the definition of the prior knowledge is of great importance to the success of
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network matching. Several additional factors should be considered for the formation of
the prior knowledge 𝑃 (𝜓):

• Time difference (i.e. historical travel time distribution): for each route (e.g. path
from node 1 to node 3), the historical travel time distribution can be utilized for
defining the prior probability (i.e. temporal reasoning), which can be found in Equa-
tions (4.13) and (4.14).

• Route choice model (e.g. historical origin-destination matrix): the presence of mul-
tiple origins/destinations would give rise to multiple routes. In such case, an appro-
priate route choice model (i.e. spatial reasoning mentioned in Section 3.3.2) would
allow for the efficient prediction of the vehicle's destination. We suggest utilizing
the historical origin-destination matrix to approximate the likelihood of traveling on
specific route.

Theoretically speaking, the bipartite matching method proposed in basic VRI is equally
applicable to the network case. However, it still suffers from two serious limitations.

• First, the computational time of vehicle matching would increase dramatically when
it comes to the network case. The size of the candidate vehicles would increase due
to the existence of multiple origins, and consequently lead to the massive computa-
tion in the process of bipartite matching.

• Second, the definition of the prior probability becomes much more difficult when it
comes to large network. The estimated route choice may deviate dramatically from
the actual route decision, which could eventually undermine the performance of the
vehicle matching.

To sum up, the network-widematching of vehicle signatures is still challenging in practical
implementation and the matching accuracy would decrease significantly with respect to
the increase in the size of the traffic network.
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Chapter 5

VRI based incident detection under free
flow condition

This chapter proposes a vehicle reidentification (VRI) based automatic incident algorithm
(AID) for freeway system under free flow condition. An enhanced vehicle feature match-
ing technique is adopted in the VRI component of the proposed system. In this study, ar-
rival time interval, which is estimated based on the historical database, is introduced into
the VRI component to improve the matching accuracy and reduce the incident detection
time. Also, a screening method, which is based on the ratios of the matching probabilities
and arrival time windows, is introduced to the VRI component to reduce false alarm rate.
The proposed AID algorithm is tested on a 3.6-km segment of a closed freeway system in
Bangkok, Thailand. The results show that in terms of incident detection time, the proposed
AID algorithm outperforms the traditional vehicle count approach.

5.1 Introduction

Traffic incidents have been widely recognized as a serious problem for its negative ef-
fects on traffic congestion and safety. Under heavy traffic condition, one minor incident
could result in gridlock and hence serious traffic congestion. In addition, traffic injuries
are likely to be more severe if incidents occur at higher speeds (e.g. free flow condition).
Statistics also suggest the high chance of a more sever secondary accident following the
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initial incident on freeway (e.g. Chou and Miller-Hooks, 2010; Fries et al., 2007; Vla-
hogianni et al., 2012). An ability to detect incident in a timely and accurate manner would
allow the traffic manager to efficiently remove the incident, to notify the follow-up traffic
of the incident and the corresponding impacts, and to better manage the traffic for mini-
mizing impact caused by the incident. Therefore, considerable research efforts have been
dedicated to the development of automatic incident detection (AID) algorithms by utilizing
the traditional detectors (i.e. inductive loops) over the past few decades (e.g. the Califor-
nia algorithm series (Payne and Tignor, 1978), McMaster algorithm (Hall et al., 1993)).
The underlying assumption of these algorithms is that the aggregated traffic parameters
(e.g. travel time, traffic flow) would change dramatically when incidents occur under con-
gested situation. By comparing the real-time traffic data with the incident-free data, one
can determine the likelihood that an incident has happened. Based on the above-mentioned
principle, various advanced data mining approaches (e.g. neural network, Bayesian net-
work, Kalman filter) are adopted for detecting the abnormal traffic delay or abrupt change
in traffic flow pattern (Srinivasan et al., 2004; Zhang and Taylor, 2006). However, most
of the existing incident detection algorithms are specifically designed for congested traffic
conditions1 and may not be applicable for free flow situations.

Detecting incidents under free flow condition is difficult as it faces the following two
major challenges. First, the conventional traffic sensors (i.e. single inductive loops) are
not able to provide traffic data with satisfactory quality under free flow condition. Due to
the limitation of the sampling rate of single inductive loops, the passenger vehicle data (e.g.
vehicle speed and vehicle length) cannot be collected accurately if a vehicle is traveling
at high speed (Coifman and Krishnamurthy, 2007). Such inaccurate traffic data causes a
serious problem for developing the aforementioned data mining based incident detection
algorithm. Second, under the free flow condition, a drop in traffic capacity due to an
incident (e.g. one lane blocking) may not cause any traffic delay or change in the traffic
flow pattern. Therefore, it is not feasible to detect the incident through analyzing the
macroscopic traffic parameters. To handle the aforementioned challenges, Shehata et al.
(2008) conducted a study to detect the incident by identifying non-moving vehicle (i.e.
caused by an incident) from vide records by using image processing techniques. Although
this method appears to be theoretically sound, the deployment of such system requires the
installations of camera at all key locations along the freeway, which is not practically
feasible for monitoring a long distance freeway. In this case, the approaches that focus

1Amore detailed review regarding the incident detection algorithms for congested traffic conditions can
be found in Section 2.4.2.
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on the continuous tracking of individual vehicles across consecutive detectors provide a
promising way for incident detection. The rational behind this idea is straightforward. For
a closed freeway system, if one can track all the vehicles along the designated points, a
disappearance of any vehicle movement between consecutive points can be classified as a
potential incident. Based on this principle, Fambro and Ritch (1980) designed a "vehicle
count approach" to trace and identify the "missing" vehicle through the vehicle count data
obtained from the loop detectors. Given the vehicle speed at upstream, the arrival time
window at downstream could be estimated. By comparing the vehicle counts in this arrival
time window with the corresponding vehicle counts in the upstream, one may be able to
identify the missing vehicle (if any) for incident detection. However, the performance
of this approach is largely dependent on the accuracy of the vehicle count data and the
estimated arrival time window. Also, the overlapping of arrival time windows of different
vehicles would lead to a significant increase in the detection time (this will be discussed in
more detail in Section 5.3). To further reduce the incident detection time, much attention
has been paid to track the vehicle by utilizing the emerging automatic vehicle identification
(AVI) systems1: automatic number plate recognition (Chang et al., 2004), or Bluetooth
identification technology (Quayle et al., 2010). Although the AVI technologies enable
a more efficient tracking of vehicles across multiple points by accurately matching their
unique identity (e.g. plate number, media access control address), the success of these
systems relies on the high level of market penetration of the AVI-equipped vehicles (in
principle 100% of penetration rate is required). Also, the AVI technologies may raise
privacy issues. In this case, the vehicle re-identification (VRI) scheme, which does not
intrude driver's privacy, provides a tool to devise a more practical and effective incident
detection algorithm under free flow condition.

Generally, vehicle re-identification is a process of matching vehicle signature (e.g. wave-
form, vehicle length, etc) from one detector to the next one in the traffic network. The
non-uniqueness of the vehicle signature would allow the VRI system to track the vehicle
anonymously (Cetin et al., 2011). During the past few years, extensive researches were
carried out to develop VRI systems based on conventional loop detectors (Coifman and
Cassidy, 2002; Coifman, 1998; Sun et al., 1999). As presented in Chapter 4, the basic VRI
system based on the emerging video surveillance technology (see Chapter 3) is developed.
Various detailed vehicle features (e.g. vehicle color, length and type) are extracted and a
probabilistic data fusion rule was then introduced to combine these features to generate a

1The AVI systems also contribute to the development of probe-vehicle-based methods introduced in
Section 2.1.4.
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matching probability for the re-identification purpose. To account for the large variance
in travel time, basic VRI also introduces a fixed time window constraint to reduce the
computational time of the vehicle matching problem. However, it is noteworthy that the
aforementioned VRI systems are specifically designed for the purpose of traffic data col-
lection (e.g. travel time). To our knowledge, very few studies were explicitly conducted to
investigate the potential feasibility of utilizing VRI system for incident detection. Also, as
the existing VRI system cannot guarantee an accurate matching due to the non-uniqueness
of the vehicle signatures, the mismatches between the upstream and downstream vehicles
may potentially lead to false alarms in the incident detection system.

To this end, this paper aims to propose a VRI-based automatic incident detection algorithm
under free flow condition. The revised VRI system adopted in the proposed incident al-
gorithm is based on basic VRI (see Chapter 4) with several major changes to cope with
the purpose of incident detection (i.e. incident-detection-oriented VRI).

• Note that in basic VRI a unified and fixed time window constraint (i.e. [𝑡min, 𝑡max] in
Section 4.3.1) is imposed on all the vehicles. However, the vehicle would maintain
a relatively stable speed under free flow condition, which allows for the estimation
of a flexible time window for each individual vehicle. Therefore, this incident-
detection-orientedVRIwould introduce a flexible timewindow to further improving
the matching accuracy and reduce the incident detection time.

• Rather than finding the matching results between two sets of vehicles (i.e. bipartite
matching method in Section 4.4), the incident-detection-oriented VRI attempts to
make an instant matching decision for each individual vehicle such that the "miss-
ing" vehicle can be identified promptly. In other words, the matching probability
for each pair of vehicle signatures is explicitly calculated.

• Last but not least, a screening method, which is based on the ratios of the matching
probabilities, is introduced to screen out the mismatched vehicles for reducing the
false alarm rate.

The rest of the chapter is organized as follows. Section 5.2 describes the traffic dataset
collected for the algorithm development and evaluation. In Section 5.3, the overall frame-
work of the proposed automatic incident detection system is introduced. The description
and analysis of the incident-detection-oriented VRI system under free flow condition are
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proposed in the following two sections (Section 5.4 and Section 5.5). In Section 5.6, sim-
ulated tests and real-world case studies are carried out to evaluate the performance of the
proposed AID system against the traditional vehicle count approach. Finally, we close
this chapter with the conclusion remarks.

5.2 Dataset for algorithm development and evaluation

The test site is a 3.6-km-long section of the closed three-lane freeway in Bangkok, Thai-
land (the green section in Figure 5.1). At each station (i.e. location 10B and 08B in
Figure 5.1) a gantry-mounted video camera, which is viewed in the upstream direction,
is installed and two hours of video record (10 a.m. and noon on March 15, 2011) was
collected. The frame rate of the video record is 25 FPS and the still image size is 563 ×
764.

Upstream detector

Downstream detector

Figure 5.1: Test site in Bangkok, Thailand

As the detailed traffic data (especially the individual vehicle data) are not readily obtain-
able from the raw video record, the intelligent video surveillance (IVS) is then employed
for extracting the required information (e.g. vehicle feature data and spot speed). De-
tailed implementation of the IVS for traffic data extraction can be found in Section 2.3
and Chapter 3. In the following, a formal description of the dataset obtained from IVS is
presented.
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5.2.1 Dataset description

IVS provides a large amount of traffic data to develop and validate the automatic inci-
dent detection algorithms proposed in this chapter. Let 𝑈 = {1, 2, … , 𝑁} denote the
𝑁 vehicles detected at upstream station during the time interval. 𝐷 = {1, 2, … , 𝑀} is
the set of downstream vehicles. In addition, 𝑡𝑈

𝑖 and 𝑣𝑈
𝑖 are the associated arrival time

and the spot speed of the 𝑖th upstream vehicle, respectively. Accordingly, 𝑡𝐷
𝑖 and 𝑣𝐷

𝑖 are
the corresponding arrival time and spot speed of the 𝑗th downstream vehicle. As dis-
cussed in Section 3.2, for each detected individual vehicle, the intrinsic feature data (e.g.
color, size, length) are also obtained. Let 𝑋𝑈

𝑖 = {𝐶𝑈
𝑖 , 𝑆𝑈

𝑖 , 𝐿𝑈
𝑖 } denote the signature of

the 𝑖th upstream vehicle, where 𝐶𝑈
𝑖 and 𝑆𝑈

𝑖 are the normalized color feature vector and
type (shape) feature vector, respectively. 𝐿𝑈

𝑖 denotes the normalized the length of ve-
hicle 𝑖. Similarly, 𝑋𝐷

𝑗 = {𝐶𝐷
𝑗 , 𝑆𝐷

𝑗 , 𝐿𝐷
𝑗 } is the signature of the 𝑗th downstream vehicle.

To sum up, dataset from the IVS during a time interval consists of the upstream vehicle
dataset {(𝑡𝑈

𝑖 ,𝑣𝑈
𝑖 ,𝑋𝑈

𝑖 ),𝑖 = 1, 2, … , 𝑁} and the downstream vehicle set {(𝑡𝐷
𝑗 ,𝑣𝐷

𝑗 ,𝑋𝐷
𝑗 ),𝑗 =

1,2 … 𝑀}. In order to quantify the difference between each pair of upstream and down-
stream vehicle signatures, several distance measures are then incorporated. Specifically,
for a pair of signatures (𝑋𝑈

𝑖 , 𝑋𝐷
𝑗 ), the Bhattacharyya distance is utilized to calculate the

degree of similarity between color features:

𝑑color(𝑖, 𝑗) =
[

1 −
360

∑
𝑘=1

√𝐶𝑈
𝑖 (𝑘).𝐶𝐷

𝑗 (𝑘)
]

1/2

(5.1)

where 𝑘 denoted the 𝑘th component of the color feature vector. The 𝐿1 distance measure
is introduced to represent the difference between the type feature vectors:

𝑑type(𝑖, 𝑗) =
𝑞

∑
𝑘=1

|𝑆𝑈
𝑖 (𝑘) − 𝑆𝐷

𝑗 (𝑘)| (5.2)

where 𝑞 is the number of vehicle type template and is taken as 6 in this study. The length
difference is given by

𝑑length(𝑖, 𝑗) = |𝐿𝑈
𝑖 − 𝐿𝐷

𝑗 | (5.3)

Based on the video record collected at the test site, 3,628 vehicles are detected at both
stations (10B and 08B) during the two-hour video record. For the purpose of the algo-
rithm development and evaluation, these 3,628 pairs of vehicles are manually matched
(i.e. re-identified) by the human operators viewing the video record frame by frame. In
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other words, the ground-truth matching results of the 3,628 pairs of vehicles are obtained
in advance. The mean travel time is 170.9 seconds. The first 800 pairs of vehicle data
are used for the model training and calibration (which are discussed in the following sec-
tions), while the rest of the vehicle dataset are used for the simulation test of the proposed
automatic incident detection algorithm.

5.3 Overall framework of automatic incident detection
system

The basic idea of incident detection under free flow condition is to track the individual
vehicle so as to identify the missing vehicle due to an incident. Owning to its compu-
tational and theoretical simplicity, the vehicle count approach (Fambro and Ritch, 1980)
is the most well-known free-flow incident detection algorithm. Thus, it is necessary to
revisit this method in detail.

5.3.1 Vehicle count approach

The basic operation of the vehicle count approach is illustrated in Figure 5.2. When
a vehicle 𝑈𝑖 arrives at upstream station at time 𝑡𝑈

𝑖 , the expected arrival time window
[𝑡𝑈

𝑖 + 𝐿𝑏𝑖, 𝑡𝑈
𝑖 + 𝑈𝑏𝑖] of this vehicle at downstream station is estimated, where 𝐿𝑏𝑖 and

𝑈𝑏𝑖 respectively represent the lower and upper bounds of the vehicle's travel time. If an-
other vehicle 𝑈𝑗 is detected at upstream station, the corresponding arrival time window
[𝑡𝑈

𝑗 + 𝐿𝑏𝑗 , 𝑡𝑈
𝑗 + 𝑈𝑏𝑗] can also be obtained. Unsurprisingly, there may be overlap between

these two time windows, and both of these two vehicles are likely to arrive at downstream
during time interval [𝑡𝑈

𝑗 + 𝐿𝑏𝑗 , 𝑡𝑈
𝑖 + 𝑈𝑏𝑖]. The incident would then be detected by com-

paring the collected vehicle count data to the expected number of vehicles in the time
interval. In the case that vehicle 𝑈𝑖 is missing, if vehicle 𝑈𝑗 arrives at downstream during
time interval [𝑡𝑈

𝑗 + 𝐿𝑏𝑗 , 𝑡𝑈
𝑖 + 𝑈𝑏𝑖], then the incident alarm will not be triggered until time

𝑡𝑈
𝑗 + 𝑈𝑏𝑗 , which is clearly later than the upper bound of the arrival time of vehicle 𝑈𝑖
(i.e. 𝑡𝑈

𝑖 + 𝑈𝑏𝑖). Because of the overlapping between the time windows, the vehicle count
approach, which is solely based on comparing the vehicle counts data, cannot promptly
detect the incident (i.e. delay in incident detection). In general, the incident detection time
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would significantly increase with respect to the increase in size of vehicle platoon at the
upstream detector, which increases the number of overlapping in arrival time intervals at
the downstream detector.

Distance

Upstream Downstream

Time

Upstream 
Platoon

Upstream vehicle 
dataset

(e.g., color 
distribution, type, 

length)

Modified VRI 
system

Ui

Uj tUi + Lbi

tUj + Ubj

tUi + Ubi

tUj + Lbj

Figure 5.2: Illustrative example of vehicle count approach

To reduce the detection time, this research proposes a noval incident detection algorithm
by incorporating the vision-based VRI system. As shown in Figure 5.2, vehicle 𝑈𝑖 and 𝑈𝑗
are detected and their detailed feature data (e.g. color, type and length) are also extracted.
Once a vehicle is detected at downstream site, the proposed VRI system is performed to
find a matched upstream vehicle based on the vehicle feature data. In the case that vehicle
𝑈𝑖 is missing, if the downstream vehicle could be matched to the vehicle 𝑈𝑗 based on the
vehicle feature, an incident alarm would be triggered at time 𝑡𝑈

𝑖 + 𝑈𝑏𝑖, as vehicle 𝑈𝑖 is not
re-identified during time window [𝑡𝑈

𝑖 + 𝐿𝑏𝑖, 𝑡𝑈
𝑖 + 𝑈𝑏𝑖]. As shown by this "toy" example,

the additional VRI component could potentially reduce the incident detection time to some
extent. However, it is also observed that the basic VRI proposed in Chapter 4 is not readily
transferable to the field of incident detection and several modifications should be made
regarding the vehicle matching process.

• First, instead of finding the matching result for upstream vehicle, the incident-detection-
oriented VRI attempts to match the vehicles at downstream site such that proposed AID
algorithm can be implemented in real-time.

• Second, once a vehicle passes the downstream station, the incident-detection-oriented
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VRI should be capable of making matching decision immediately such that the missing
vehicle (i.e. the vehicle does not appear at downstream) could be promptly identified,
which means that the bipartite matching method may not be applicable. Therefore,
this study calculates the matching probability for each pair of vehicles on which the
following screening method could be imposed to further reduce the false alarm rate.

The overall framework of the proposed algorithm is presented in the following subsection.

5.3.2 AID algorithm based on VRI system

The detailed implementation of the VRI-based incident detection system is summarized
in the following flowchart (Figure 5.3). First, the system will initialize the timestamp,
𝑡, and check whether a vehicle is detected at the upstream and/or downstream station.
If a vehicle is detected at upstream detector, the expected arrival time window of this
vehicle at downstream station will be estimated based on the historical data. The record
of the detected vehicle at upstream will be stored in the database as unmatched upstream
vehicle. On the other hand, if a vehicle is captured at the downstream station, the system
will perform the incident-detection-orientedVRI subsystem to checkwhether this detected
vehicle match with any of the unmatched upstream vehicle. The time window constraint
is utilized to identify the potential matches for this vehicle detected at downstream station.
Once the match is found, the matched vehicle data will be removed from the list of the
unmatched upstream vehicles.

After the previous two steps for handling the detected vehicles at upstream and down-
stream stations, the system will proceed to determine whether there is an incident occurs
on the monitored segment. For incident detection, the system will screen through the list
of unmatched vehicles. If the current time (𝑡) is out of the expected arrival time window
(i.e. greater than the upper bound of the arrival time interval) of the unmatched vehicle,
an incident alarm will be issued. If not, 𝑡 will be set to 𝑡 + 1 and the system will move
forward to the next time step. It could be easily observed that the performance of the inci-
dent detection system is heavily dependent on two critical components, i.e. flexible time
window constraint and incident-detection-oriented VRI system.

For the aforementioned framework, the following three comments should be taken into
account.
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Figure 5.3: Overall framework of AID system

• First, the detection error is not considered in this study. In other words, it is assumed
that all the vehicles cross the video cameras will be detected. This is achievable under
free flow condition, as there is no occlusion between the vehicles and, consequently,
IVS performs generally well and are able to detect most of the individual vehicles.

• Second, under free flow condition, the traveling behavior of the individual vehicle is
more predictable. This phenomenon enables the estimation of the flexible arrival time
window for each individual vehicle based on the current spot speed and the historical
data. It is expected that the accurate estimation of the arrival time window could poten-
tially lead to an improved matching accuracy of the VRI method, and hence reduce the
incident detection time.

• Third, it should be noted that the proposed VRI cannot guarantee an accurate matching
because of the non-uniqueness of the vehicle signatures. Instead, the proposed VRI
scheme in this paper can only provide thematching probability between the downstream
and upstream vehicles. Therefore, some of the mismatches resulted from the matching
probability could potentially lead to false alarms. To handle this, a ration method is
introduced to screen out those mismatches for reducing the false alarms.
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5.4 Flexible time window estimation

Under free flow condition, each individual vehicle would maintain in a relatively stable
speed (i.e. low variance in travel time). In this case, the arrival time of the vehicle at
downstream station could be estimated based on the spot speed and historical data. Let 𝑈𝑖
represent an upstream vehicle detected at time 𝑡𝑈

𝑖 , and the associated upstream spot speed
is denoted as 𝑣𝑈

𝑖 . The expected arrival time 𝐴𝑟𝑟 of vehicle 𝑈𝑖 is given by

𝐴𝑟𝑟 = 𝑡𝑈
𝑖 + 𝑙

0.5(𝑣𝑈
𝑖 + 𝑣𝐷

𝑖 )
(5.4)

where 𝑙 is the distance between the upstream and downstream detectors; 𝑣𝐷
𝑖 is the estimated

vehicle speed at downstream detector based on the historical speed database. To account
for the error in estimating the downstream spot speed, the upper and lower bounds of 𝑣𝐷

𝑖
are provided by the following equations

𝑣𝐷
𝑢𝑏 = 𝜎𝑢𝑏 × 𝑉 𝐷

ℎ𝑖𝑠𝑡(𝑡
′
) ×

𝑣𝑈
𝑖

𝑉 𝑈 (5.5)

𝑣𝐷
𝑙𝑏 = 𝜎𝑙𝑏 × 𝑉 𝐷

ℎ𝑖𝑠𝑡(𝑡
′
) ×

𝑣𝑈
𝑖

𝑉 𝑈 (5.6)

where 𝑣𝐷
𝑢𝑏 and 𝑣𝐷

𝑙𝑏 are respectively the upper and lower bounds of the vehicle at downstream
detector; 𝑉 𝑈 is the current average speed of the upstream detector; 𝜎𝑢𝑏 ≥ 1 and 𝜎𝑙𝑏 ≤ 1 are
respectively the associated upper and lower bound factors; 𝑉 𝐷

ℎ𝑖𝑠𝑡 is the historical average
speed of the downstream detector at time 𝑡

′
. The time 𝑡

′
is chosen such that it is matched

with the arrival time, which is estimated by a linear speed profile of the modeled section,
at the downstream detector. The estimation of downstream spot speeds can be viewed
as a prediction-correction process. First, the historical average speed 𝑉 𝐷

ℎ𝑖𝑠𝑡(𝑡
′
) is adopted

to predict the speed of this vehicle at downstream site. Then this prediction is corrected
by the factor 𝑣𝑈

𝑖 /𝑉 𝑈 for the better representation of the current traffic condition. Finally,
the upper and lower bound factors (𝜎𝑢𝑏 and 𝜎𝑙𝑏) are applied for determining the upper of
lower bounds of the downstream spot speed. With the estimated downstream speeds, the
corresponding upper and lower bounds of the travel time of vehicle 𝑈𝑖 can be calculated
as follows:

𝑈𝑏𝑖 = 𝑙
0.5(𝑣𝑈

𝑖 + 𝑣𝐷
𝑙𝑏)

(5.7)

𝐿𝑏𝑖 = 𝑙
0.5(𝑣𝑈

𝑖 + 𝑣𝐷
𝑢𝑏)

(5.8)
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However, it should be noted that the proposed incident detection system is not confined
to the above method for estimating the time window. Any other estimation methods are
equally applicable to the proposed AID algorithm. With the estimated time windows,
vehicles on the monitored freeway section could be "partially" tracked and re-identified
in a timely and accurate manner.

5.5 Incident-detection-oriented VRI

As explained previously, the proposed VRI system is devised based on the video image
data provided by IVS technology. By applying myriad image processing techniques, the
detailed vehicle feature data (e.g. color, type and length) could be obtained. The vehi-
cle matching process is then performed by comparing these vehicle feature data. In this
section, the methodologies involved in the incident-detection-oriented VRI system are
presented.

5.5.1 Reidentification problem

For a vehicle 𝐷𝑘 arrives at downstream station at time 𝑡𝐷
𝑘 , the vehicle signature, denoted

as 𝑋𝐷
𝑘 = {𝐶𝐷

𝑘 , 𝑆𝐷
𝑘 , 𝐿𝐷

𝑘 }, is then obtained from the IVS. A search space, 𝒮(𝑘), which
represents the potential matches at upstream station for vehicle 𝐷𝑘, is determined based
on the calculated arrival time window. Specifically, 𝒮(𝑘) is given by

𝒮(𝑘) = {𝑈𝑖 ∈ 𝑈 |𝑡𝑈
𝑖 + 𝐿𝑏𝑖 ≤ 𝑡𝐷

𝑘 ≤ 𝑡𝑈
𝑖 + 𝑈𝑏𝑖 } (5.9)

where 𝑈𝑖 represents the vehicle detected at upstream station; [𝐿𝑏𝑖, 𝑈𝑏𝑖] is the associated
travel time window. The vehicle reidentification problem is to find the corresponding up-
stream vehicle for 𝐷𝑘 through the search space 𝒮(𝑘). Herein we introduce the assignment
function 𝜓 to represent the matching result, i.e.

𝜓(𝑘) ∶
{

𝐷𝑘 → {𝑈𝑖 ∈ 𝒮(𝑘) |𝑖 = 1,2, … 𝑁}
𝑘 ↦ 𝑖, 𝑖 = 1, 2, … , 𝑁

(5.10)

where 𝜓(𝑘) = 𝑖 indicates that vehicle 𝐷𝑘 is the same as 𝑈𝑖. Recall that for each vehicle
𝑈𝑖 ∈ 𝒮(𝑘), one may assign to the pair of signatures (𝑋𝑈

𝑖 , 𝑋𝐷
𝑘 ) the distances 𝑑color(𝑖, 𝑘),
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𝑑type(𝑖, 𝑘) and 𝑑length(𝑖, 𝑘) based on Equations (5.1), (5.2) and (5.3). In this case, one sim-
ple method (i.e. distance-based method) is to find the matched upstream vehicle with
the minimum feature distance. However, it should be noted that the vehicle signatures
derived from IVS contain noise and are not unique. Therefore the distance measure can-
not really reflect the similarities between the vehicles. Instead of directly comparing the
feature distances, this study utilizes the statistical matching method. Based on the calcu-
lated feature distances, i.e. 𝑑color(𝑖, 𝑘), 𝑑type(𝑖, 𝑘) and 𝑑length(𝑖, 𝑘), a matching probability
𝑃 (𝜓(𝑘) = 𝑖|𝑑color, 𝑑type, 𝑑length) between vehicles 𝑈𝑖 and 𝐷𝑘 is provided for the matching
decision making.

5.5.2 Calculation of matching probability

Thematching probability, also referred to as the posterior probability, plays a fundamental
role in the proposed VRI system. By applying the Bayesian rule, we have

𝑃 (𝜓(𝑘) = 𝑖|𝑑color, 𝑑type, 𝑑length) =
𝑝(𝑑color, 𝑑type, 𝑑length|𝜓(𝑘) = 𝑖)𝑃 (𝜓(𝑘) = 𝑖)

𝑝(𝑑color, 𝑑type, 𝑑length)
(5.11)

where 𝑝(𝑑color, 𝑑type, 𝑑length |𝜓(𝑘) = 𝑖) is the likelihood function; 𝑃 (𝜓(𝑘) = 𝑖) is the prior
knowledge of the assignment function. To obtain the explicit matching probability, the
denominator in Equation (5.11) can further be expressed as

𝑝(𝑑color, 𝑑type, 𝑑length) = 𝑝(𝑑color, 𝑑type, 𝑑length|𝜓(𝑘) = 𝑖)𝑃 (𝜓𝑘 = 𝑖)
+ 𝑝(𝑑color, 𝑑type, 𝑑length|𝜓(𝑘) ≠ 𝑖)𝑃 (𝜓𝑘 ≠ 𝑖)

(5.12)

On the basis of Equations (5.11) and (5.12), it is easily observed that the calculation of the
matching probability is dependent on the deduction of the likelihood function and the prior
probability. In this particular case, the prior probability is defined as 𝑃 (𝜓(𝑘) = 𝑖) = 0.5,
which suggests that the matching is solely based on the comparison between the vehicle
feature data. The calculation of the likelihood function is completed in two steps.

• First, individual statistical models for the three feature distances are constructed
and the corresponding likelihood functions are also obtained (i.e. 𝑝(𝑑color|𝜓(𝑘)),
𝑝(𝑑type|𝜓(𝑘)) and 𝑝(𝑑length|𝜓(𝑘))).

• Second, a data fusion rule is employed to provide the overall likelihood functions
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(i.e. 𝑝(𝑑color, 𝑑type, 𝑑length|𝜓(𝑘))) in Equations (5.11) and (5.12).

5.5.2.1 Statistical modeling of feature distance

Without loss of generality, only the probabilistic modeling of color feature distance is de-
scribed. In the framework of statistical modeling, the distance measure is assumed to be a
random variable. Thus, for a pair of color feature vectors (𝐶𝑈

𝑖 , 𝐶𝐷
𝑘 ), the distance 𝑑color(𝑖, 𝑘)

follows a certain statistical distribution. The conditional probability (i.e. likelihood func-
tion) of 𝑑color(𝑖, 𝑘) is then given by

𝑝 (𝑑color(𝑖, 𝑘)|𝜓 (𝑘)) =
{

𝑝1(𝑑color(𝑖, 𝑘)) if 𝜓(𝑘) = 𝑖
𝑝2(𝑑color(𝑖, 𝑘)) if 𝜓(𝑖) ≠ 𝑖

(5.13)

where 𝑝1 denotes the probability density function (pdf) of distance 𝑑color(𝑖, 𝑘) when color
feature vectors 𝐶𝑈

𝑖 and 𝐶𝐷
𝑘 belong to the same vehicle, while 𝑝2 is the pdf of the distance

𝑑color(𝑖, 𝑘) between different vehicles. A historical training dataset that contains a number
of pairs of correctly matched vehicles is built up for estimating the pdfs 𝑝1 and 𝑝2. Finite
Gaussian mixture model is used to approximate the pdfs and the well-known Expecta-
tion Maximization (EM) algorithm is applied to solve the associated parameter estimation
problem1. Likewise, the likelihood functions for the type and length distances can also be
obtained in a similar manner.

5.5.2.2 Data fusion rule

In this study, the logarithmic opinion pool (LOP) approach (see Section 4.3.5) is employed
to fuse the individual likelihood functions. The LOP is evaluated as a weighted product
of the probabilities and the equation is given by

𝑝(𝑑color, 𝑑type, 𝑑length|𝜓(𝑘)) = 1
𝑍LOP

𝑝(𝑑color|𝜓(𝑘))𝛼𝑝(𝑑type|𝜓(𝑘))𝛽𝑝(𝑑length|𝜓(𝑘))𝛾 ,

𝛼 + 𝛽 + 𝛾 = 1 (5.14)

where the fusion weights, 𝛼, 𝛽 and 𝛾 are used to indicate the degree of contribution of
each likelihood function. The weights can also be calibrated from the training dataset. By

1A detailed explanation on Finite Gaussian mixture model can be found in Section 4.3.2.

86



5.5 Incident-detection-oriented VRI

substituting Equations (5.12), (5.13) and (5.14) into (5.11), the desired matching proba-
bility for each pair of vehicles (𝑈𝑖, 𝐷𝑘) could be obtained. For the sake of simplicity, let
𝑃𝑖𝑘 denote the matching probability between the vehicle 𝑈𝑖 and 𝐷𝑘. In this case, we may
obtain a set of probabilistic measures {𝑃𝑖𝑘|𝑖 = 1, 2, … , 𝑁} to represent the likelihood of
a correct match between 𝐷𝑘 and the vehicles in the search space 𝒮(𝑘). The final matching
decision-making based on these matching probabilities, becomes the major concern in the
following subsection.

5.5.3 Ratio method for final matching decision

An intuitive decision-making process (i.e. the greedymethod) is to sort thematches via the
matching probability {𝑃𝑖𝑘|𝑖 = 1, 2, … , 𝑁} and choose the vehicle 𝑈𝑖 with the maximum
matching likelihood, i.e.

𝜓(𝑘) = 𝑖, if 𝑃𝑗𝑘 ≤ 𝑃𝑖𝑘 ∀𝑗 ∈ {1, 2, … , 𝑁} (5.15)

However, it is noteworthy that the proposed VRI system is utilized for incident detection
purpose, the final matching decision would produce significant impacts on the perfor-
mance of the AID system. Based on the greedy method (5.15), the potential false alarms
would be triggered. As shown in Figure 5.4, the downstream vehicle 𝐷𝑘 arrives at time
10:39:39 a.m. 𝑈𝑗 and 𝑈𝑖 are respectively the two candidate vehicles with the largest and
second largest matching probabilities with the downstream vehicle 𝐷𝑘 (i.e. 𝑃𝑗𝑘 = 0.9295
and 𝑃𝑖𝑘 = 0.8392). Although vehicle 𝐷𝑘 actually matches with vehicle 𝑈𝑖 (based on the
manual matching), the greedy method yields the matching result 𝜓(𝑘) = 𝑗, which could
lead to a false alarm at time 𝑡𝑈

𝑖 + 𝑈𝑏𝑖.

To reduce the false alarms mentioned above, a ratio method is then introduced for the final
matching decision-making. Let {𝑃𝑖|𝑖 = 1, 2, … , 𝑁} denote the set of matching probabil-
ities in descending order. The ratio method proposed in this study involves two major
steps. First, by imposing a threshold 𝜏 on the value of the ratio between the neighboring
probabilities in the ordered set {𝑃𝑖|𝑖 = 1, 2, … , 𝑁}, one may be able to screen through
the search space and rule out those unlikely matches. The screening process is described
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Figure 5.4: Illustrative example of a false alarm

as follows.

Procedure 5.1: Screening process
Input: A finite set {𝑃𝑖|𝑖 = 1, 2, … , 𝑁} of matching probabilities in descending

order
Output: The set of unlikely matches for downstream vehicle 𝐷𝑘

1 𝑖 ← 1;
2 while 𝑖 ≤ 𝑁 − 1 ∧ 𝑃𝑖/𝑃𝑖+1 ≤ 𝜏 do
3 𝑖 ← 𝑖 + 1;
4 return {𝑖 + 1, 𝑖 + 2, … , 𝑁};

The underlying implication of Procedure 5.1 is that if the ratio (i.e. 𝑃𝑖/𝑃𝑖+1) is sufficiently
large, then it could come to a conclusion that vehicles {𝑖 + 1, 𝑖 + 2, … , 𝑁} are the un-
likely matches due to their relatively smaller matching probabilities. Otherwise, if the
ratio 𝑃𝑖/𝑃𝑖+1 ≤ 𝜏, then we may declare that vehicle 𝑖 and 𝑖+1 are not distinctive from each
other and a matching decision cannot be made at current stage.

Upon the completion of the above screening process, unlikely matches could be ruled
out and the search space is further reduced. The second step is then to make a matching
decision based on the remaining search space 𝒮𝑅(𝑘). Let 𝒮𝑅(𝑘) = {𝑈𝑚|𝑚 = 1, 2, … , 𝑖}
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(clearly 𝑖 ≤ 𝑁), the matching result is then given by

𝜓(𝑘) = 𝑚∗, if 𝑡𝑈
𝑙 + 𝑈𝑏𝑙 ≥ 𝑡𝑈

𝑚∗ + 𝑈𝑏𝑚∗ , ∀𝑙 ∈ {1, 2, … , 𝑖} (5.16)

It is obvious that vehicle 𝐷𝑘 is matched to the vehicle in 𝒮𝑅(𝑘) with the smallest upper
bound in the predicted arrival time window. The rational behind this approach is that a
matching decision could not be made based on the matching probabilities (as the matching
probabilities for vehicles in 𝒮𝑅(𝑘) are not significantly different from each other). In this
case, the vehicle 𝐷𝑘 is matched to upstream vehicle with smallest upper bound in the
predicted arrival time window to avoid the potential false alarms. As a matter of fact, the
second step could be viewed as a standard vehicle count approach in which only the counts
data is utilized.

To sum up, the matching decision-making process of the incident-detection-oriented VRI
is a hybrid of the vehicle feature comparison and the classic vehicle count approach. The
overall procedure for the matching decision-making is given by

Procedure 5.2: Final matching decision-making
Input: A set {𝑃𝑖|𝑖 = 1, 2, … , 𝑁} of matching probabilities and the set

{𝑡𝑈
𝑖 + 𝑈𝑏𝑖|𝑖 = 1, 2, … , 𝑁} of upper bounds in arrival time interval

Output: The final matching decision for vehicle 𝐷𝑘..
1 𝑖 ← 1..;
2 while 𝑖 ≤ 𝑁 − 1 ∧ 𝑃𝑖/𝑃𝑖+1 ≤ 𝜏 do
3 𝑖 ← 𝑖 + 1;
4 𝒮𝑅(𝑘) ←{1, 2, … 𝑖}..;
5 𝑚∗←arg min

𝑙
{𝑡𝑈

𝑙 + 𝑈𝑏𝑙|𝑙 ∈ 𝒮𝑅(𝑘)}..;

6 return 𝜓(𝑘) = 𝑚∗..;

..

Screening
Method

..

Vehicle Count
Approach

5.6 Test results

In this section, the performance of the proposed AID algorithm is evaluated against the
classical vehicle count approach in terms of mean time-to-detect and false alarm rate (i.e.
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false alarms per hour). As the performance of the proposed AID system relies on its two
critical components (i.e. flexible time window estimation and incident-detection-oriented
VRI), different sizes of time window and thresholds for final matching decision are tested
in this section. The dataset described in Section 5.2 are used to perform the simulated
tests for the algorithm evaluation. Also, the real-world case studies are carried out in this
section.

5.6.1 Simulated tests

For calibrating and testing the proposed AID system, the 3,682 pairs of vehicle matching
results from the collected dataset are divided into two parts. First, a dataset of 800 pairs
of correctly matched vehicles are used for model calibration and training. The upper and
lower bound factors for time window estimation (i.e. 𝜎𝑢𝑏 and 𝜎𝑙𝑏) are calibrated by the us-
ing the travel time data of the 800 vehicles and the historical averaging speed on Thursday,
which is the same as the test day (i.e. 16/2/2012, 23/2/2012, 1/3/2012 and 8/3/2012). In
addition, the parameters of the statistical model (i.e. 𝑝1 and 𝑝2) are estimated by utilizing
the feature data extracted from the captured images of these 800 pairs of vehicles. Second,
the remaining 2,828 pairs of vehicles detected at both upstream and downstream detectors
are fed into the calibrated AID system for model evaluation. In order to mimic an incident
between the upstream and downstream detectors, the record of vehicle at downstream site
is intentionally removed to simulate the situation that the vehicle has passed the upstream
detector but not the downstream one. In the testing of the proposed AID system, the AID
algorithm is run for 2,828 times, which for each run the record of one of the 2,828 vehicles
at downstream detector is removed, for determining the mean detection time. Specifically,
the incident detection time is defined as

𝑇𝐷 = 𝑡incident − 𝑡𝑈 (5.17)

Since we do not know the exact time when the incident happened, the incident detection
time is then defined as the difference between the timewhen an alarm is issued (i.e. 𝑡incident)
and the arrival time of incident vehicle at upstream station (i.e. 𝑡𝑈 ).

By setting the threshold value equals to 2 (i.e. 𝜏 = 2), the mean detection time of the
proposed AID algorithm is 203.2 seconds, whereas the mean detection time of the classi-
cal vehicle count approach is 644.1 seconds. As it is expected, the mean detection time
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is reduced substantially by incorporating the modified VRI system. Figure 5.5 shows the
performance of the VRI-based incident detection algorithm for different threshold values
adopted in final matching decision. It could be observed that the false alarm rate reduces
as the threshold value increases. When the threshold value equals to one, the VRI system
will always match the downstream vehicle to the upstream one with the largest matching
probability. Therefore, it would lead to a large number of false alarms (see Section 5.5.3).
With the increase in threshold value, the modified VRI system is more relied on the tra-
ditional vehicle count approach, and results in a decrease in the false alarm rate. On the
other hand, as the proposed VRI system is more relied on the traditional vehicle count ap-
proach (e.g. 𝜏 → ∞), the mean detection time also increases (see Section 5.3.1). To sum
up, for the proposed VRI system, the lowering of the false alarm rates is at the expense
of incident detection time. Thus, a balance should be struck between the rapid incident
detection and low false alarm rate.
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Figure 5.5: Mean detection time and false alarm rate

The estimation of arrival time window also has a significant impact on the performance
of the proposed AID algorithm. It is not difficult to understand that a small time window
size would result in faster incident detection. To test the performance of the proposed AID
algorithm under different time window sizes, a time windowwith fixed size is assigned for
each individual vehicle. Figure 5.6 shows the mean detection of the algorithm for different
time window sizes. The mean detection time of the vehicle count approach increases
dramatically as the size of the time window grows. It is also observed that the vehicle
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count approach is not capable of detecting the missing vehicle as the size of time window
is larger than 50 seconds. To sum up, for the simulation that a large arrival time window
is applied, the proposed AID algorithm clearly outperforms the vehicle count approach.
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Figure 5.6: Comparison between the proposed AID algorithm and vehicle count approach

5.6.2 Real-world case study

Apart from the above-mentioned simulation tests, two real-world case studies are also
carried out. Based on the record from the freeway authority, the first incident is reported
on 13-Jun-2012 at 16:03. The reported incident location is at 20+600 westbound, which
is in the section between camera 7A/8A and 9A/10A (see Figure 5.1). Based on this
information, the research team has screened through the captured videos for identifying
the incident vehicle. It is found out that on 13-Jun-2012, the incident vehicle has passed the
upstream detector (7A/8A) at 15:55 (Figure 5.7(a)) and has an incident before it reaches the
downstream detector (9A/10A). Four minutes later, a tow-truck, which is probably called
by the driver of the incident vehicle, has passed the upstream detector (Figure 5.7(b)) and
towed the incident vehicle to pass the downstream detector at 16:09 (Figure 5.7(c)).

According to the above information of the incident vehicle, a 35-minutes video record data
(from 15:33 to 16:08 on 13-Jun-2012) of locations 8A and 10A are extracted and input
into the proposed AID system for free flow condition. In this case, apart from the incident
vehicle, 739 vehicles are detected at both stations during the 35-minute video record. By
setting the threshold value of the ratio of matching probabilities equals to 8.5, the time of
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(a) (b) (c)

Figure 5.7: Real-world case study #1: (a) Incident vehicle passes the upstream detector; (b)
Tow truck passes the upstream detector; (c) Incident vehicle and truck passes through the
downstream detector

incident detection and the false alarm rate for this case study are found to be 15:58:22,
and 3.42 false alarms per hour, respectively. Compared with the classic vehicle count
approach, which would trigger an incident alarm at 16:01:28, the proposed AID system
performs better in terms of the incident detection time.

The incident vehicle of the second real-world case study is shown in Figure 5.8. This

(a) (b)

Figure 5.8: Real-world case study #2: (a) Incident vehicle passes the upstream detector; (b)
Incident vehicle and truck passes through the downstream detector

incident is reported on 17-Jun-2012 at 10:31 a.m. and its detailed location is at 19+300A
westbound (between 7A/8A and 9A/10A). By setting the threshold value of the ratio of
matching probabilities equals to 8.5, the time of incident detection and the false alarm rate
for this case study are found to be 10:28:22, and 2 false alarms per hour, respectively.
Compared with the classic vehicle count approach, which would trigger an incident alarm
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at 10:33:50, the proposed AID system still performs better in terms of the incident detec-
tion time.

On the basis of these two real-world studies, we may observe that the time of incident
detection of the proposed AID algorithm is largely dependent on the actual information
associated with the incident vehicle (e.g. distinctiveness of the incident vehicle feature
and the size of the vehicle platoon). In real-world case study #2, the incident vehicle
has "distinctive" vehicle color distribution (see Figure 5.8(a)), and consequently, the dis-
appearance of this very vehicle can be identified earlier than the classical vehicle count
approach. The size of vehicle platoon may also have significant impact on the perfor-
mance of the AID algorithm. The larger the platoon size is, the more likely it is that the
arrival arrival time windows of these vehicles may overlap each other at the downstream
site and, hence, leads to the significant increase in incident detection time.

5.7 Conclusion remarks

This chapter investigates the feasibility of utilizing the vehicle reidentification system for
incident detection on a closed freeway section under the free flow condition. A modified
vision-based VRI system is proposed to partially track the individual vehicle for identify-
ing the "missing" vehicle due to an incident. A flexible arrival time window is estimated
for each of the individual vehicle at upstream station to improve the matching accuracy.
To reduce the potential false alarms, a screening method, which is based on the ratios of
the matching probabilities and arrival time windows, is introduced to rule out the potential
mismatches.

The proposedAID algorithm is tested on a 3.6-km segment of a closed freeway in Bangkok,
Thailand. Based on the test results, it is found out that the detection time of the proposed
AID algorithm is substantially shorter than the traditional vehicle count approach. Also,
there is a tradeoff between the false alarms rate and detection time for the proposed AID
algorithm. Therefore, a balance should be struck between the rapid incident detection
and low false alarm rate by adjusting the thresholding value 𝜏. As demonstrated in Pro-
cedure 5.2, the proposed AID algorithm is a hybrid of the vehicle feature comparison
method and the classical vehicle count approach, and the threshold value 𝜏 can be viewed
as a switch between these two methods. Therefore, the selection of 𝜏 may be of great
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importance to the proposed AID algorithm. In this study, we adjust the threshold value
manually based on the reliability of VRI system (the performance of the VRI system in
different time period may be slightly different due to the changes in outdoor environment,
and the threshold value 𝜏 should be adjusted accordingly). Some other automatic thresh-
olding processes (e.g. Otsu, 1979) will be investigated in our future works.

Note that the proposed AID algorithm is specifically devised to detection incident on
closed freeway system under free-flow conditions. As a natural and necessary extension,
the ability of detecting incidents on freeway segment with entry/exit ramps is required for
the further development of incident detection system. We would show in Appendix 5.A
that the AID algorithm proposed in this chapter is equally applicable to the case where the
freeway has entry/exit ramps.
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Appendix

5.A Incident detection on freeway segmentwith entry/exit
ramps

As demonstrated in Appendix 4.A, the basic VRI system (i.e. probabilistic vehicle feature
fusion and bipartite matching method) could be readily extended to the "small" network
case where the freeway segment may have entry/exit ramps (see Figure 5.9). In this part,
we would illustrate that the incident-detection-oriented VRI proposed in Chapter 5 can
also be applied to this particular case for incident detection purpose.

1

2

3

Upstream Station Downstream Station

Entry

Exit

Figure 5.9: Conceptual test site

Assume that the freeway segment in Figure 5.9 can be represented by a link-node formu-
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lation, as depicted in Figure 5.10. Denote the upstream station as node 1, and the entry as
node 2. Likewise, node 3 and node 4, respectively, represent the exit and downstream sta-
tion. The basic principle of incident detection is then to "partially" track and identify the
"missing" vehicle across this camera "network". Unlike the incident-detection-oriented
VRI proposed in Chapter 5, the vehicle feature comparison should be performed simulta-
neously across the network. In other words, all the vehicles detected at the source nodes
(i.e. node 1 and node 2) will be labeled as the upstream vehicle, whereas the vehicles
detected at the destination nodes (i.e. node 3 and node 4) will be categorized as the down-
stream vehicles. In this case, the matching probability for each pair of vehicle signatures
can be obtained based on the method proposed in Section 5.5.2, and the final matching
decision-making can follow the same procedure as described in Procedure 5.2. The con-
ceptual framework for incident detection on freeway segment with entry/exit ramps is
illustrated as follows.

1 2

3 4

S

D

Upstream station Entry

Exit Downstream station

Figure 5.10: Topological structure

First, the system will initialize the timestamp, 𝑡, to check whether a vehicle is detected
at the sources (node 1 and node 2, etc) and/or destinations (node 3 and node 4, etc). If a
vehicle 𝑖 is detected at source detectors, the expected arrival time window of this vehicle
at the destinations will be estimated based on the historical data and current spot speed.
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Let [𝐿𝑏𝑁(3)
𝑖 , 𝑈𝑏𝑁(3)

𝑖 ] and [𝐿𝑏𝑁(4)
𝑖 , 𝑈𝑏𝑁(4)

𝑖 ] respectively denote the arrival time at node 3
and node 4. The record of vehicle 𝑖 (e.g. color, type and length) will then be stored in
the database as unmatched upstream vehicle. On the other hand, if a vehicle 𝑘 is cap-
tured at the destinations (node 3 and/or node 4), the system will perform the Vision-based
VRI subsystem to check whether this detected vehicle match with any of the unmatched
upstream vehicle. Once the decision is made, the matched vehicle data will be removed
from the list of the unmatched upstream vehicles. In particular, a search space, 𝒮(𝑘),
which represents the potential matches, is determined based on the time window. The
matching probability, 𝑃 (𝜓(𝑘) = 𝑖|𝑑color, 𝑑type, 𝑑length), which indicates the likelihood of
vehicle 𝑖 ∈ 𝒮(𝑘) matching with vehicle 𝑘, is obtained from the VRI system. The associ-
ated ratio method is performed to reach a final matching decision. After performing the
vehicle feature comparison, the system will screen through the list of unmatched vehicles.
If current time (𝑡) is out of the expected arrival time window of the unmatched vehicle 𝑖
(i.e. max{𝑈𝑏𝑁(3)

𝑖 , 𝑈𝑏𝑁(4)
𝑖 ) < 𝑡}, an incident alarm will be issued. For the aforementioned

framework, two comments should be taken into account.

• First, it is expected that the incident detection time should be longer than that for
closed corridor case. Give a vehicle 𝑖 detected at the source nodes (e.g. node 1 or
node 2), the arrival time of this vehicle at the possible destinations can be denoted
as [𝐿𝑏𝑁(3)

𝑖 , 𝑈𝑏𝑁(3)
𝑖 ] and [𝐿𝑏𝑁(4)

𝑖 , 𝑈𝑏𝑁(4)
𝑖 ], respectively. In the case the vehicle 𝑖 is

missing, the incident alarm will not be issued until time max{𝑈𝑏𝑁(3)
𝑖 , 𝑈𝑏𝑁(4)

𝑖 }.

• Second, the false alarm rate would also increase accordingly due to the complex
topological structure of the traffic network. Since we do not know the actual route
choice for each vehicle, the size the search space𝒮(𝑘)would bemuch larger than that
for closed corridor case and, consequently, leads to a large number of mismatches.
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Chapter 6

Hierarchical Bayesian model for VRI
on freeway with multiple detectors

This chapter proposes a hierarchical Bayesian model for vehicle reidentification on free-
way with multiple detectors. To take full advantage of the traffic information (e.g. vehicle
color, length, and type) obtained at multiple detectors, a hierarchical matching model is
proposed such that vehicle matching over multiple detectors is treated as an integrated pro-
cess. To further improve the vehicle matching accuracy, a hierarchical Bayesian model is
introduced to describe the spatial dependencies between feature distances. The posterior
probability in the hierarchical structure is then calculated for the final matching decision-
making. The proposed method is tested on a 9.7-km segment of a freeway system in
Bangkok, Thailand. The results show that hierarchical Bayesian matching method could
further improve the matching accuracy on the freeway segment with multiple detectors.

6.1 Introduction

The continuous tracking of individual vehicles is potentially beneficial to the development
of intelligent transportation systems (Sivaraman and Trivedi, 2013). The extrinsic vehicle
data such as vehicle speed and its arrival time at different locations are considered essential
in advanced traveller information system (ATIS) for providing the updated traffic infor-
mation (e.g. traffic flow, speed and travel time). Moreover, the additional intrinsic vehicle
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data (e.g. vehicle color, type and length) would contribute to the development of efficient
traffic incident detection algorithms (see Chapter 5), which is recognized one of the crit-
ical components of advanced traffic management systems (ATMS). In light of this, the
basic vision-based VRI (Chapter 4) is devised to re-identify the individual vehicles across
two consecutive detectors (i.e. video camera stations). Despite the encouraging results
and its ease of implementation, the basic VRI still suffers from two serious problems.

First, the performance (i.e. matching accuracy) of basic VRI is heavily dependent on the
quality of vehicle feature data extracted from the IVS technology. Although the statistical
approach has been adopted to explicitly consider the uncertainties of vehicle feature data,
the matching accuracy still may not be satisfactory when the outdoor environment (e.g.
weather condition and illumination conditions) changes significantly. Second, the com-
plex topological structure may also impose a great challenge on the performance of the
basic VRI. As explained in Appendix 4.A, the vehicle matching accuracy may decrease
on a freeway segment with on/off-ramps due to vehicles' unobservable route choices and
the potentially large set of candidate vehicles. The above-mentioned two problems may
get worse when the distance between the two consecutive detectors becomes extremely
long.

For a long-distance freeway segment, the outdoor environment (i.e. illumination condi-
tions) at two detectors may be different from each other, which may result in high variance
in the feature distance1 (Song and Roy-Chowdhury, 2008) and, consequently, undermine
the performance (i.e. decrease the matching accuracy) of the VRI system. Also, a much
larger time window is imposed to cope with the purpose of vehicle matching on long-
distance freeway and, accordingly, the size of the candidate vehicle set would increase
dramatically, which eventually leads to the significant decrease in matching accuracy (e.g.
Ndoye et al., 2011; Lin and Tong, 2011). To deal with truck reidentification over long
distances, Cetin et al. (2011) introduced an additional screening/thresholding process to
match the trucks with distinctive features (e.g. axle weight and axle spacing) without con-
sidering the other vehicles. Although this approach may be applicable for some specific
purposes (e.g. estimation of truck travel time over long distance), it still can not solve the
basic problems arising from the vehicle matching over long distance (i.e. large variance
in feature distances and large size of candidate vehicle set). In this case, an alternative
approach to the long-distance VRI would be to install additional video cameras at the

1The variance in the feature distance indicates the degree of uncertainty associated with the feature data
(see Figure 4.3).
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intermediate locations along the freeway segment (e.g. camera station B in Figure 6.1),
which eventually gives rise to the problem of vehicle reidentification (VRI) on freeway
corridor with multiple detectors. A natural and straightforward response to this problem is
to apply the basic VRI to each individual detector pair (i.e. pair-wise vehicle matching pro-
cess). For the freeway segment demonstrated in Figure 6.1, there are three detector pairs,
i.e. A-to-B, B-to-C, and A-to-C. As we explained before, the direct vehicle matching on
pair A-to-C is not practically applicable due to the long distance from A to C. Therefore,
by performing the basic VRI method independently to detector pairs A-to-B and B-to-C1,
we may still "efficiently" track/reidentify the individual vehicle on the freeway segment.
Although the aforementioned detector-pair-wise matching process appears promising for

A B C

A-to-B B-to-C

Figure 6.1: Freeway segment with multiple detectors

reidentification over long distance, it tends to suffer from two inherent problems.

• First, the pair-wise matching process is highly sensitive to the mismatches gener-
ated by each basic VRI component2. Once a vehicle is mismatched over a detector
pair, the final matching result regarding this vehicle would not be correct even if this
vehicle is correctly matched over the other detector pairs. As the basic VRI for each
detector pair is performed independently, the matching results of the same vehicle
over different detector pairs may be totally irrelevant and, hence, results in the de-
crease in matching accuracy on the freeway segment. In view of this, an additional
hierarchical matching model is proposed in this study to simultaneously match the
vehicle across the multiple detectors.

• Second, the pair-wise VRI method fails to consider the interdependence of the fea-
ture distances between different detector pairs (i.e. interdependence of feature dis-
tance over space). As shown in Figure 6.1, the detector pairs A-to-B and B-to-C
share a common camera station (i.e. station B), at which the vehicle feature data are
extracted and utilized for both basic VRI systems (i.e. VRI on A-to-B and B-to-C).

1These two detector pairs have relatively shorter distance, and accordingly the matching accuracy on
these two pairs would be relatively higher.

2This will be further discussed and illustrated in Section 6.2.
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Therefore, the associated feature distances on these two detector pairs should be
correlated with each other. Mathematically speaking, a statistical model consider-
ing the interdependence of feature distances over space (i.e. consecutive segments)
is required.

To sum up, this study attempts to deal with the aforementioned problems arising from the
pair-wise VRI matching process. To be more specific, we furnish the pair-wise VRI with
additional hierarchical Bayesianmatchingmodel in the hope of refining and improving the
matching results. Rather than performing basic VRI independently, the proposed method
considers the vehicle matching over multiple detectors as a integrated process in which a
more suitable statistical model is introduced to describe the spatial dependencies between
the vehicle feature distances.

The remainder of this chapter is organized as follows. Section 6.2 presents the overall
framework of the pair-wise VRI process. The problems arising from this process are fur-
ther illustrated. The formal description and analysis regarding the hierarchical matching
model are then proposed in Section 6.3. Section 6.4 explains the underlying hierarchical
Bayesian model of feature distances. Some preliminary test results regarding the vehi-
cle matching accuracy are discussed in Section 6.5. Finally, we close this chapter with
conclusion remarks.

6.2 Pair-wise VRI process

As the name suggests, pair-wise VRI aims to apply basic VRI independently to each de-
tector pair. In this sense, the task would be considered "trivial" due to basic VRI's ease of
implementation. However, it is noteworthy that pair-wise VRI provides preliminary in-
sight into the tacking/reidentification of vehicles across the multiple detectors, which may
be beneficial for the following hierarchical matching model. Therefore, it is necessary to
present a formal description of pair-wise VRI model. To facilitate the presentation of the
essential ideas without loss of generality, we consider the case where the freeway segment
has three detectors (i.e. two consecutive detector pairs).
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6.2.1 Basic VRI subsystem

Consider a freeway corridor with three traffic detectors (i.e. video cameras) demonstrated
in Figure 6.2. The associated pair-wise VRI model is comprised of two independently
operated basic VRI subsystems, i.e. basic VRI on A-to-B and B-to-C. Each basic VRI
subsystem is performed such that the vehicles at the downstream stations (i.e. station C of
pair B-to-C and station B of pair A-to-B) are reidentified at the corresponding upstream
stations. Without loss of generality, only the basic VRI subsystem for detector pair of
B-to-C is described.

A B C

Vehicle k Vehicle j Vehicle i

A-to-B B-to-C

Figure 6.2: Conceptual freeway corridor

For a vehicle 𝑖 arrives at downstream station (i.e. station C) at time 𝑡𝐷
𝑖 (Figure 6.2), the

vehicle signature, denoted as 𝑋𝐷
𝑖 = {𝐶𝐷

𝑖 , 𝑆𝐷
𝑖 , 𝐿𝐷

𝑖 }, is then obtained from IVS1. A search
space, 𝒮(𝑖), which represents the potential matches at upstream station (i.e. station B) for
vehicle 𝑖, is determined based on the pre-defined time window. Given a candidate vehicle
𝑗 ∈ 𝒮(𝑖), we may compute the associated feature distance vector, which can be denoted
as (𝑑color(𝑗, 𝑖), 𝑑type(𝑗, 𝑖), 𝑑length(𝑗, 𝑖)). Also, we introduce an indicator variable to represent
the matching result between each pair of vehicle signatures, i.e.

𝑥𝑗𝑖 =
{

1, downstream vehicle 𝑖 matches upstream vehicle 𝑗 ∈ 𝒮(𝑖)
0, otherwise

(6.1)

The matching probability, also referred to as the posterior probability, is then calculated
to represent the possibility of each pair of vehicles being the same one given their feature

1The detailed explanation on the extraction of vehicle signature data (𝐶𝐷
𝑖 and 𝑆𝐷

𝑖 are the normalized
color feature vector and type feature vector, respectively; 𝐿𝐷

𝑖 denotes the vehicle length) can be found in
Section 3.2.
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distances. By applying the Bayesian rule, we may have

𝑃 (𝑥𝑗𝑖 = 1|𝑑color, 𝑑type, 𝑑length) =
𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑗𝑖 = 1)𝑃 (𝑥𝑗𝑖 = 1)

𝑝(𝑑color, 𝑑type, 𝑑length)
(6.2)

To obtain the explicit matching probability, the denominator in Equation (6.2) can be fur-
ther expressed as

𝑝(𝑑color, 𝑑type, 𝑑length) = 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑗𝑖 = 1)𝑃 (𝑥𝑗𝑖 = 1)
+ 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑗𝑖 = 0)𝑃 (𝑥𝑗𝑖 = 0)

(6.3)

The prior probability, i.e. 𝑃 (𝑥𝑗𝑖), is approximated by the historical travel time distribution

𝑃 (𝑥𝑗𝑖 = 1) = 𝑓(𝑡(𝑗, 𝑖))
𝜂 × 0.5 (6.4)

𝑃 (𝑥𝑗𝑖 = 0) = 1 − 𝑓(𝑡(𝑗, 𝑖))
𝜂 × 0.5 (6.5)

where 𝑓(.) denotes the historical travel time distribution, 𝑡(𝑗, 𝑖) is the time difference be-
tween upstream vehicle 𝑖 and downstream vehicle 𝑗, and 𝜂 is the normalizing factor. Note
that the deducing of the matching probability in this chapter is slightly different from that
in Chapter 4. In this chapter, we attempt to "explicitly" calculate the matching probability
based on the observation of the feature distances of only one pair of vehicle signatures,
which may be more suitable for the following processing (e.g. bipartite matching and
thresholding).

The calculation of the likelihood function, i.e. 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑗𝑖 = 1), generally
follows the same procedure described in Chapter 4. First the statistical model for each
feature distance over the detector pair is built up. For example, the conditional probability
of 𝑑color(𝑗, 𝑖) is given by

𝑝(𝑑color(𝑗, 𝑖)|𝑥𝑗𝑖) =
{

𝑝1(𝑑color(𝑗, 𝑖)), if 𝑥𝑗𝑖 = 1
𝑝2(𝑑color(𝑗, 𝑖)), if 𝑥𝑗𝑖 = 0

(6.6)

where 𝑝1 denotes the probability density function (pdf) of distance 𝑑color(𝑗, 𝑖) when the
color feature vectors belong to the same vehicle, whereas 𝑝2 is the pdf of the distance
between different vehicles. Second, the logarithmic opinion pool (LOP) is employed to
fuse the individual likelihood functions in Equation (6.6), and the fusion equation is given
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by

𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑗𝑖) = 1
𝑍LOP

𝑝(𝑑color|𝑥𝑗𝑖)𝛼𝑝(𝑑type|𝑥𝑗𝑖)𝛽𝑝(𝑑length|𝑥𝑗𝑖)𝛾 ,

𝛼 + 𝛽 + 𝛾 = 1 (6.7)

where the fusion weights 𝛼, 𝛽 and 𝛾 are used to indicate the degree of contribution of each
likelihood function, and𝑍LOP is the normalizing constant. By substituting Equations (6.7)
and (6.3) into Equation (6.2), the desired matching probability can be obtained. In com-
mon with the basic VRI, the bipartite matching method (see Section 4.4) is introduced to
find the matching result (i.e. 𝑥𝑗𝑖) such that the overall matching probability between the
downstream and upstream vehicles is maximized.

6.2.2 A discussion on pair-wise VRI

Basically, pair-wise VRI is simply the combination of multiple basic VRI systems. Each
basic VRI subsystemwould generate its ownmatching result, e.g. 𝑥(BC)

𝑗𝑖 = 1 and 𝑥(AB)
𝑘𝑗 = 1,

which respectively indicate that vehicle 𝑗 matches vehicle 𝑖 over B-to-C, and vehicle 𝑖
matches 𝑘 over A-to-B as shown in Figure 6.2. The connection between these two basic
VRI subsystems can be built up by screening through the vehicle records detected at the
common station (i.e. camera station B) and the final vehicle matching result across the
multiple detectors can be obtained (i.e. 𝑥(AC)

𝑘𝑖 ≜ 𝑥(AB)
𝑘𝑗 𝑥(BC)

𝑗𝑖 = 1). The detailed screening
procedure is given as follows

Procedure 6.1: Screening process
Input: Index 𝑖 and 𝑘; matching results 𝐱(AB) and 𝐱(BC) from basic VRI
Output: Matching result 𝑥(AC)

𝑘𝑖
1 𝒮(𝑖) ←{1, 2, … 𝑀} /* Search space at station B */;
2 𝑗 ← 1;
3 while 𝑗 ≤ 𝑀 ∧ 𝑥(AB)

𝑘𝑗 𝑥(BC)
𝑗𝑖 == 0 do

4 𝑗 ← 𝑗 + 1;
5 return 𝑥(AC)

𝑘𝑖 ≜ 𝑥(AB)
𝑘𝑗 𝑥(BC)

𝑗𝑖 ;

For the aforementioned pair-wise VRI, the following two comments should be taken into
account.
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• As the basic VRI subsystem (e.g. basic VRI over A-to-B and B-to-C) is performed
independently, the associated matching results (e.g. 𝐱(AB) and 𝐱(BC)) may be incon-
sistent. Given the vehicle feature vector 𝐅𝑖 = {𝐶𝑖, 𝑆𝑖, 𝐿𝑖} of vehicle 𝑖 detected at
station C, basic VRI over B-to-C may match it to vehicle 𝑗 (with feature vector
𝐅𝑗 = {𝐶𝑗 , 𝑆𝑗 , 𝐿𝑗}) at station B (i.e. 𝑥(BC)

𝑗𝑖 = 1), whereas basic VRI over A-to-B
may wrongly match vehicle 𝑗 to vehicle 𝑘 (with feature vector 𝐅𝑘 = {𝐶𝑘, 𝑆𝑘, 𝐿𝑘})
at station A (i.e. 𝑥(AB)

𝑘𝑗 = 1). According to the screening process described in Pro-
cedure 6.1, we may come to the wrong conclusion that vehicle 𝑖 matches vehicle
𝑘, i.e. 𝑥(AC)

𝑘𝑖 ≜ 𝑥(AB)
𝑘𝑗 𝑥(BC)

𝑗𝑖 = 1. This inconsistency arising from the pair-wise VRI
process may frequently exist when the matching accuracy of basic VRI over some
detector pairs decreases significantly. In other words, the pair-wise VRI is highly
sensitive to the mismatches generated by each basic VRI subsystem. To this end,
we propose an additional hierarchical matching model in which the VRI processes
over multiple detector pairs are considered simultaneously and the matching result
of basic VRI is further adjusted/refined to improve the overall matching accuracy
along the freeway segment.

• The pair-wise VRI method also fails to consider the interdependence of the feature
distances between different detector pairs. It is noticed that the consecutive freeway
segments (e.g. A-to-B and B-to-C) may share a common camera station, at which
the extracted vehicle feature data are utilized by both basic VRI subsystems. Let 𝐅𝑖,
𝐅𝑗 and 𝐅𝑘, respectively, denote the feature vectors extracted at the stations A, B, and
C. The corresponding feature distance vectors, e.g. 𝐝(𝑖, 𝑗) and 𝐝(𝑗, 𝑘), are expected
to be correlated with other. Within the framework of hierarchical matching model,
we may gain additional benefits (i.e. improving the matching accuracy) by further
considering the spatial correlation of feature distances.

To sum up, this chapter aims to propose an additional hierarchical Bayesian matching
model to further refine the preliminary matching results generated by basic VRI subsys-
tem. Also, a novel statistical model considering the interdependence of feature distances
over space is built up for further improving the matching accuracy. In what follows, the
detailed introduction regarding hierarchical matching model will be presented.
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6.3 Hierarchical matching model

In order to analyze all the detector pairs simultaneously, an integrated framework (i.e.
hierarchical matching model) is developed such that each individual vehicle can be rei-
dentified across multiple detectors. As a matter of fact, the idea of hierarchical matching
has already been evaluated with several other applications in the field of computer vision
(e.g. Borgefors, 1988; Stenger et al., 2006). In this section, the presentation of the hierar-
chical matching model is completed in three steps. First, a new hierarchical structure for
representing the vehicle matching result is built up (Section 6.3.1). Second, the detailed
methodologies for constructing the vehicle tree structure is introduced (Section 6.3.2).
Last but not least, the unified statistical framework is proposed to calculate the overall
posterior probability based on the observation of a sequence of feature distances along
the freeway segment (Section 6.3.3).

6.3.1 Hierarchical structure for vehicle matching

It is easy to understand that the matching results of VRI over multiple detectors can be
represented by a hierarchical tree structure demonstrated in Figure 6.3. Given a vehi-
cle 𝑖 detected at station C, the associated vehicle record (i.e. 𝐅𝑖 = {𝐶𝑖, 𝑆𝑖, 𝐿𝑖}) is then
represented as a root node in the tree (Figure 6.3). By imposing the time window con-
straint based on the arrival time of vehicle 𝑖, its corresponding search space 𝒮(𝑖) at the
intermediate station B can be obtained and, accordingly, all the vehicle records in search
space 𝒮(𝑖) are classified as the children nodes (i.e. level 1 nodes) of the root in the tree
structure. For a vehicle 𝑗 ∈ 𝒮(𝑖) at station B, several distance measures can be incorpo-
rated to calculate the difference between feature data 𝐅𝑗 and its father node's feature 𝐅𝑖.
Let 𝐝1 = {𝑑color(𝑗, 𝑖), 𝑑type(𝑗, 𝑖), 𝑑length(𝑗, 𝑖)} denote the feature distance vector at level 1
of the tree structure. Likewise, the level 2 of the tree structure in Figure 6.3 can also be
established. This process will continue until it reaches the first camera station (i.e. station
A/level 2 in Figure 6.3).

In such a case, the problem of VRI over multiple detectors is equivalent to finding a path
from the root (i.e. vehicle 𝑖) to the leaf level node (i.e. the node at level 2) in the tree
structure (Figure 6.3). In other words, each path in the tree structure corresponds to a
potential matching result for vehicle 𝑖, and different path searching strategies may result
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Station C, Level 0

Station B, Level 1

Station A, Level 2

Vehicle i

Vehicle j

Vehicle k

d1

d2

Figure 6.3: A hierarchical structure of vehicle matching across multiple detectors

in different VRI methods. The pair-wise VRI method proposed in Section 6.2 attempts to
find the path level by level from top to bottom in the tree structure. Rather than making
a matching decision instantly and independently on each level, this study proposes a new
path searching algorithm based on the hierarchical structure such that the observations of
a sequence of feature distances (e.g. 𝐝1 and 𝐝2) are considered simultaneously.

6.3.2 Construction of vehicle tree structure: Preliminary clustering

Before proceeding to introduce the detailed path searching algorithm, it is essential to
refine the vehicle tree structure in Figure 6.3 so that the overall computational and search-
ing efficiency of hierarchical vehicle matching can be improved. Note that the number
of the nodes in the tree structure would increase dramatically with respect to the increase
in the number of detectors (i.e. the number of levels in the tree), which may undermine
the efficiency of the searching algorithm. Therefore, this study incorporates a preliminary
clustering/thresholding approach based on the pair-wise VRI to further refine the vehicle
tree.
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As the name suggests, the refinement of vehicle tree is completed by reducing the size of
the candidate vehicle size (i.e. the size of the associated search space 𝒮). In this sense, a
preliminary clustering/thresholding method based on the matching probabilities obtained
from pair-wiseVRI is then introduced to eliminate those unlikelymatches. Given a vehicle
𝑖 and its search space 𝒮(𝑖) = {1, 2, … , 𝑁}, the associatedmatching probabilities are calcu-
lated on the basis of Equations (6.2), (6.3) and (6.7)1. Let {𝑃𝑗|𝑗 = 1, 2, … , 𝑁} denote the
set of matching probabilities in descending order. By imposing a threshold 𝜏 on the value
of the ratio between the neighboring probabilities in the ordered set {𝑃𝑗|𝑗 = 1, 2, … , 𝑁},
one may be able to screen through the search space and rule out those unlikely matches.
The screening process is described as follows.

Procedure 6.2: Preliminary clustering based on pair-wise VRI
Input: A finite set {𝑃𝑗|𝑗 = 1, 2, … , 𝑁} of matching probabilities in descending

order
Output: The set of remaining matches for vehicle 𝑖, i.e. 𝒮𝑅(𝑖)

1 𝑗 ← 1;
2 while 𝑗 ≤ 𝑁 − 1 ∧ 𝑃𝑗/𝑃𝑗+1 ≤ 𝜏 do
3 𝑗 ← 𝑗 + 1;
4 return 𝒮𝑅(𝑖) ≜ {1, 2, … , 𝑗};

Figure 6.4 shows the overall framework for the construction of the vehicle tree struc-
ture, which is of great importance to the following development of hierarchical matching
method. On one hand, the proposed hierarchical matching method serves as a correction
step on the matching results generated by pair-wise VRI. On the other hand, the pair-wise
VRI provides preliminary insight (e.g. refined candidate vehicle set) into the task of VRI
over multiple detectors.

6.3.3 Statistical framework for hierarchical matching

As previously explained, the task of VRI over multiple detectors is equivalent to find the
"optimal" path from root node to the leaf level node. One natural approachwould be to find
the pathwith theminimum feature distance, which can also be referred to as distance-based
method. Consider a vehicle tree structure (see Figure 6.4), where the root node represents

1The readers can refer to Section 6.2.1 for a more detailed explanation on the calculation of the matching
probabilities.
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Figure 6.4: Illustrative example of the construction of vehicle tree

the record of vehicle 𝑖, and the set of leaf nodes is denoted as ℒ = {1, 2, … , 𝑀}, which
implies that there are 𝑀 paths from top level to bottom level. In addition, we may also
obtain a sequence of feature distances (𝐝(𝑘)

1 , 𝐝(𝑘)
2 , …) for each vehicle 𝑘 ∈ ℒ. Within the

framework of distance-based method, the final matching result for vehicle 𝑖 is then given
by

arg min
𝑘∈ℒ ∑

𝑙
𝐝(𝑘)

𝑙 (6.8)

where 𝑘 denotes the index of the vehicle in the leaf level and 𝐝(𝑘)
𝑙 is the associated feature

distance observed at 𝑙th level. Despite its computational efficiency and ease of imple-
mentation, distance based method fails to consider the uncertainty of the feature distance
and the interdependence of feature distances over space (i.e. different levels in the vehicle
tree). In view of this, this study proposes a Bayesian framework for hierarchical matching
decision-making.

For each node (vehicle 𝑗 at level 𝑙) in the tree structure, a binary state random variable
𝑥(𝑗)

𝑙 ∈ {1, 0} is introduced to represent the matching results:

𝑥(𝑗)
𝑙 =

{
1, the vehicle matches the root vehicle 𝑖
0, otherwise

(6.9)

Given a specific vehicle 𝑗 at level 𝑙, the corresponding path from root node (i.e. vehicle
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𝑖) to this node is also obtained. For simplicity, let 𝐝(𝑗)
1∶𝑙 ≜ {𝐝(𝑗)

𝜔 }𝑙
𝜔=1 denote the associated

measurements of feature distances from top level to level 𝑙 along this particular path. By
building up appropriate statistical models for feature distances over space, we may be able
to calculate the posterior probability (i.e. 𝑃 (𝑥(𝑗)

𝑙 = 1|𝐝(𝑗)
1∶𝑙)) of vehicle 𝑗 being matched to

the root node (i.e. vehicle 𝑖) given the observations of a sequence of feature distances
𝐝(𝑗)

1∶𝑙. Likewise the posterior probability for other nodes can also be obtained. Within the
framework of statistical matching method, the matching result is then given by

arg max
𝑘∈ℒ

𝑃 (𝑥(𝑘)
𝑙 = 1|𝐝(𝑘)

1∶𝑙) (6.10)

In other words, the hierarchical matching problem is solved by finding the "optimal" path
from the root to the leaf level node, such that the a posterior probability of a correct match
(i.e. 𝑥(𝑘)

𝑙 = 1) at particular leaf node, given the feature distances along the path, is max-
imized. In the remainder of this study, a hierarchical Bayesian framework is introduced
for calculating the posterior probability in Equation (6.10).

6.4 Hierarchical Bayesian modeling on feature distances

For the sake of simplicity, let 𝐝1∶𝑙 = {𝐝𝜔}𝑙
𝜔=1 denote a sequence of feature distance mea-

surements along a particular path (i.e. the path from the root node to the node of interest
at level 𝑙) in the tree structure. Also, the matching result of the node of interest at level 𝑙
is denoted as 𝑥𝑙. By applying Bayes rule on Equation (6.10), we may have

𝑃 (𝑥𝑙 = 1|𝐝1∶𝑙) = 𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1)
𝑝(𝐝1∶𝑙)

(6.11)

where 𝑥𝑙 = 1 indicates that the node of interest at level 𝑙 matches the root node (i.e.
vehicle 𝑖). To obtain the explicit posterior probability, the denominator in Equation (6.11)
can further be expressed as

𝑝(𝐝1∶𝑙) = 𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) + 𝑃 (𝑥𝑙 = 0)𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) (6.12)
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6.4 Hierarchical Bayesian modeling on feature distances

By substituting Equation (6.12) into Equation (6.11), we may obtain

𝑃 (𝑥𝑙 = 1|𝐝1∶𝑙) = 𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1)
𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) + 𝑃 (𝑥𝑙 = 0)𝑝(𝐝1∶𝑙|𝑥𝑙 = 0)

= 1

1 + 𝑃 (𝑥𝑙 = 0)𝑝(𝐝1∶𝑙|𝑥𝑙 = 0)
𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1)

(6.13)

As illustrated in Equation (6.13), the calculation of the posterior probability is dependent
on the deducing of the likelihood function (i.e. 𝑝(𝐝1∶𝑙|𝑥𝑙)) and the prior probability (i.e.
𝑃 (𝑥𝑙)). In what follows, the calculation of the likelihood function would become themajor
concern.

6.4.1 Hierarchical model of a sequence of feature distances

Within the framework of hierarchical modeling, the joint distribution of observing a se-
quence of feature distances 𝐝1∶𝑙 can be represented as products of conditionals, i.e.

𝑝(𝐝1∶𝑙|𝑥𝑙) = ∏
𝜔

𝑝(𝑑𝜔|𝐝1∶𝜔−1, 𝑥𝑙) (6.14)

where 𝑑𝜔 is the observed feature distance at level 𝑤. The implication of Equation (6.14)
is that the feature distances observed at different levels are correlated with each other
(i.e. spatial dependencies exist), and it is mathematically tractable to express full joint
probability (i.e. left-hand side of Equation (6.14)) with the hierarchical model.

To further simplify the hierarchical model mentioned above, an assumption of Markov
property of the feature distances along the path from the root to the node of interest is
imposed. Specifically, the observation of a sequence of feature distances 𝐝1∶𝑙 is considered
as a first order homogeneous Markov process (RiÌos Insua et al., 2012), and it has the
following property

𝑝(𝑑𝜔|𝐝1∶𝜔−1) = 𝑝(𝑑𝜔|𝑑𝜔−1) ∀𝜔 ∈ {1, 2, … , 𝑙} (6.15)

which means that the observation of the feature distance 𝑑𝜔 at level 𝜔 is only dependent
on the distance 𝑑𝜔−1 at level 𝜔 − 1. The physical interpretation of Equation (6.15) is that
only the feature distances observed at two consecutive segments are considered correlated
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with other1.

According to the law of total probability, we may obtain

𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) = 𝑝(𝐝1∶𝑙|𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 1)
+ 𝑝(𝐝1∶𝑙|𝑥𝑙 = 1, 𝑥𝑙−1 = 0)𝑃 (𝑥𝑙−1 = 0|𝑥𝑙 = 1)

(6.16)

Also, we have 𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 1) = 1, which suggests that if a child node at level 𝑙 is a
correct match to the root node (i.e. 𝑥𝑙 = 1), then its parent node at level 𝑙 − 1 should also
match the root node (i.e. 𝑥𝑙−1 = 1). Therefore, Equation (6.16) can be reformulated as

𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) = 𝑝(𝐝1∶𝑙|𝑥𝑙 = 1, 𝑥𝑙−1 = 1)
= 𝑝(𝑑𝑙|𝐝1∶𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1|𝑥𝑙−1 = 1)

(6.17)

Based on the above-mentioned Markov assumptions (Equation (6.15)), we may have

𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) = 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1|𝑥𝑙−1 = 1) (6.18)

By applying Bayes rule, we may further obtain

𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) = 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙−1 = 1)

= 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙−1 = 1) 𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1)

(6.19)

where 𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1) is a posterior probability of the its parent node at level 𝑙 −
1 being matched to the root node, given a sequence of feature distance measurements
𝐝1∶𝑙−1; 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1) is the conditional probability, which is introduced for
characterizing the spatial dependencies of the feature distances. Given 𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 =
1) = 1, we get

𝑃 (𝑥𝑙−1 = 1) = 𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 1)𝑃 (𝑥𝑙 = 1)
𝑃 (𝑥𝑙 = 1|𝑥𝑙−1 = 1) = 𝑃 (𝑥𝑙 = 1)

𝑃 (𝑥𝑙 = 1|𝑥𝑙−1 = 1) (6.20)

On the basis of Equations (6.19) and (6.20), the term 𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) in Equa-
1The two consecutive segmentsmay share the common camera station (detailed explanation can be found

in Section 6.2.2.)
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tion (6.13) can be expressed as

𝑃 (𝑥𝑙 = 1)𝑝(𝐝1∶𝑙|𝑥𝑙 = 1) =𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1)𝑃 (𝑥𝑙 = 1|𝑥𝑙−1 = 1)
𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1)

(6.21)

Likewise, 𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) can also be calculated as follows:

𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) = 𝑝(𝐝1∶𝑙|𝑥𝑙 = 0, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 0)
+ 𝑝(𝐝1∶𝑙|𝑥𝑙 = 0, 𝑥𝑙−1 = 0)𝑃 (𝑥𝑙−1 = 0|𝑥𝑙 = 0)

= 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1|𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 0)
+ 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 0)𝑝(𝐝1∶𝑙−1|𝑥𝑙−1 = 0)𝑃 (𝑥𝑙−1 = 0|𝑥𝑙 = 0)

By applying Bayes rule, we may obtain

𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) = 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙−1 = 1) 𝑃 (𝑥𝑙−1 = 1|𝑥𝑙 = 0)

𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1) + 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 0)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙−1 = 0)

𝑃 (𝑥𝑙−1 = 0|𝑥𝑙 = 0)𝑃 (𝑥𝑙−1 = 0|𝐝1∶𝑙−1)

(6.22)

Then, the term 𝑃 (𝑥𝑙 = 0)𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) in Equation (6.13) can be reformulated as

𝑃 (𝑥𝑙 = 0)𝑝(𝐝1∶𝑙|𝑥𝑙 = 0) =𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 1)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙 = 0|𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1)
+ 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 0)𝑝(𝐝1∶𝑙−1)
𝑃 (𝑥𝑙−1 = 0|𝐝1∶𝑙−1)

(6.23)

Therefore, by substituting Equations (6.21) and (6.23) into Equation (6.13), we may get

𝑃 (𝑥𝑙 = 1|𝐝1∶𝑙) = 1
1 + 𝜉𝑙

(6.24)

where 𝜉𝑙 is defined as

𝜉𝑙 ≜𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙 = 0|𝑥𝑙−1 = 1)
𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙 = 1|𝑥𝑙−1 = 1)

+ 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 0, 𝑥𝑙−1 = 0)𝑃 (𝑥𝑙−1 = 0|𝐝1∶𝑙−1)
𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙 = 1, 𝑥𝑙−1 = 1)𝑃 (𝑥𝑙 = 1|𝑥𝑙−1 = 1)𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1)

(6.25)
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It is easily observed that 𝜉𝑙 is the function of 𝑃 (𝑥𝑙−1 = 1|𝐝1∶𝑙−1) and the associated condi-
tional probability density function 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙, 𝑥𝑙−1). Therefore, the posterior probability
along a particular path (i.e. the path from the root node at top level to the node of interest
at level 𝑙) can be recursively calculated using the recursion Equations (6.24) and (6.25).
For the aforementioned recursion equations, the following four comments should be taken
into account.

• The term 𝑃 (𝑥𝑙|𝑥𝑙−1) in Equation (6.25) can be viewed as the prior knowledge for
conducting hierarchical vehicle matching. In this study, the prior probability is de-
fined as 𝑃 (𝑥𝑙|𝑥𝑙−1) = 0.5, which suggests that the hierarchical matching is solely
based on the comparison between the vehicle feature data. Since the set of candi-
date vehicles has already been refined by performing pair-wise VRI (Section 6.3.2),
the additional prior knowledge may not be beneficial for the hierarchical matching
process.

• The term 𝑃 (𝑥𝑙−1|𝐝1∶𝑙−1) in Equation (6.25) indicates that the matching probability
at current level 𝑙 is dependent on the probability at previous level in the vehicle tree,
which also implies that the vehicle matching across multiple detectors is considered
simultaneously.

• Although the recursion equations are derived based on the assumption of first or-
der Markov property of the feature distances (see Equation (6.15)), a higher order
Markov model is equally applicable to the hierarchical matching process.

• The conditional probability density function 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙, 𝑥𝑙−1) is another critical
component in the hierarchical Bayesian modeling. By considering the spatial de-
pendencies between feature distances, the proposed hierarchical model is expected
to outperform the pair-wise VRI method in terms of the matching accuracy. In what
follows, a statistical model, which allows the probabilistic description of feature
distances over space, is introduced.

6.4.2 Probabilistic modeling of feature distances over space

By applying Bayes rule, the conditional probability 𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙, 𝑥𝑙−1) can be expressed as

𝑝(𝑑𝑙|𝑑𝑙−1, 𝑥𝑙, 𝑥𝑙−1) = 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙, 𝑥𝑙−1)
𝑝(𝑑𝑙−1|𝑥𝑙, 𝑥𝑙−1) = 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙, 𝑥𝑙−1)

𝑝(𝑑𝑙−1|𝑥𝑙−1) (6.26)
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For the denominator (i.e. 𝑝(𝑑𝑙−1|𝑥𝑙−1)) in the right-hand side of Equation (6.26), we utilize
the same statistical model (see Equation (6.6)) that proposed in Section 6.2.1. The readers
can also refer to Section 4.3.3 for a more detailed explanation on the calibration of this
statistical model (e.g. finite Gaussian mixture model and estimation of the model parame-
ters). In this case, the estimation of the joint probability density function 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙, 𝑥𝑙−1)
would become the major concern.

As the feature distance 𝑑𝑙 consists of multiple vehicle feature distances (e.g. color, length,
type), the logarithmic opinion pool (same as Equation (6.7)) is then employed to fuse the
information and, accordingly, the joint probability can be reformulated as

𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙, 𝑥𝑙−1) = 1
𝑍LOP

𝑝(𝑑(𝑙)
color, 𝑑(𝑙−1)

color |𝑥𝑙, 𝑥𝑙−1)𝛼𝑝(𝑑(𝑙)
type, 𝑑(𝑙−1)

type |𝑥𝑙, 𝑥𝑙−1)𝛽

𝑝(𝑑(𝑙)
length, 𝑑(𝑙−1)

length|𝑥𝑙, 𝑥𝑙−1)𝛾 , 𝛼 + 𝛽 + 𝛾 = 1
(6.27)

where 𝑑(𝑙)
color and 𝑑(𝑙−1)

color denote the observed color feature distance at level 𝑙 and level 𝑙 − 1,
respectively; the fusion weights 𝛼, 𝛽 and 𝛾 are used to indicate the degree of contribution
of each joint probability function, and 𝑍LOP is the normalizing constant. To facilitate
the presentation of the essential ideas without loss of generality, we only consider the
estimation of joint probability for color feature distance. For the sake of simplicity, denote
𝑑𝑙 as the color feature distance 𝑑(𝑙)

color.

First, let us consider the definition of the joint probability 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙 = 1, 𝑥𝑙−1 = 1) by
revisiting the framework of hierarchical matching (Figure 6.4). Assume that vehicles 𝑖, 𝑗
and 𝑘 are the same vehicle appearing at three stations. Therefore the associated distance
measures 𝑑1 and 𝑑2 can be obtained and the multivariate statistical model (i.e. multivariate
normal distribution) can be calibrated from these training data. To be more specific, a
training database containing sequential records of 600 vehicles is built up. Figure 6.5
shows the calibration result of the joint probability density function (pdf of multivariate
normal distribution) of 𝑑1 and 𝑑2. Mathematically speaking, the formula can be expressed
as follows:

𝑓(𝐝, 𝜇, Σ) = 1
√2𝜋|Σ|

𝑒− 1
2 (𝐝−𝜇)𝑇 Σ−1(𝐝−𝜇) (6.28)

where 𝐝 = (𝑑1, 𝑑2)𝑇 is the random color feature vector and 𝜇 = (𝜇1, 𝜇2)𝑇 is the associated
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Figure 6.5: Multivariate histogram and the fitted normal distribution

the mean value. By applying the maximum likelihood estimation method, we may have:

𝜇 =
(

0.3032
0.2925 )

and Σ =
(

0.0074 0.0020
0.0020 0.0056 )

(6.29)

The correlation coefficient 𝜌12 is then given by:

𝜌12 = 𝑐𝑜𝑣(𝑑1, 𝑑2)
𝜎1𝜎2

= 0.0020
√0.0074 × 0.0056

= 0.3107 (6.30)

where 𝜎1 and 𝜎2 are the standard deviations of 𝑑1 and 𝑑2, respectively. The fact that
𝜌12 ≠ 0 indicates that the color feature distances 𝑑1 and 𝑑2 are actually correlated with
each other. Similarly, the other joint probabilities, such as 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙 = 0, 𝑥𝑙−1 = 1)
and 𝑝(𝑑𝑙, 𝑑𝑙−1|𝑥𝑙 = 0, 𝑥𝑙−1 = 0) in Equation (6.25), can also estimated. On the basis of
the calibrated statistical model of feature distances over space, the posterior probability
at each node along a particular path in the vehicle tree could be calculated. The final
solution for the hierarchical matching can then be obtained by solving the optimization
Problem (6.10). In the next section, we will present the preliminary test results regarding
the performance of the hierarchical Bayesian matching model.

6.5 Test results

In this research, the performance of the proposed hierarchical Bayesian matching model
is evaluated against the pair-wise VRI method in terms of the matching accuracy over
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multiple camera detectors.

6.5.1 Dataset for algorithm evaluation

Before presenting the experimental results, a brief introduction of the dataset that are uti-
lized for algorithm evaluation is presented. The test site is a 34.9-kilometer-long three-lane
freeway segment in Bangkok, Thailand (see Figure 6.6). At each station a gantry-mounted
video camera, which is viewed in the upstream direction, is installed, and two hours of
video record were collected between 10 a.m. and noon on June 20, 2012. The frame rate
of the video record is 25 FPS, and the still image size is 563 × 764. Two consecutive
segments (i.e. the green section in Figure 6.6) are chosen for algorithm evaluation: 1) a
4.2-kilometer-long segment (i.e. between 02A and 04A); 2) a 5.5-kilometer-long segment
(i.e. between 04A and 06A). As the detailed vehicle feature data are not readily obtainable
from the raw video record, the intelligent video surveillance (IVS) is then employed for
extracting the required information1. Based on the video record collected at the test site,

Figure 6.6: Test site in Bangkok, Thailand

1406 vehicles are detected at there camera stations (i.e. 02A, 04A and 06A) during the
two-hour video record. For the purpose of model calibration and algorithm evaluation,
these 1406 vehicles are manually matched/reidentified by the human operators viewing
the video record frame by frame. In other words, the ground-truth matching results of
the 1406 vehicles are obtained in advance. Sequential records of the first 600 vehicles
are used for model training and calibration (see Section 6.4.2), while the rest of vehicle

1Detailed implementation of the IVS for traffic data extraction can be found in Section 2.3 and Chapter 3.
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dataset are utilized for the test of the proposed hierarchical Bayesian matching model.

6.5.2 Comparison between pair-wise VRI and the improved method

As discussed in Section 6.2, the fundamental component of the pair-wise VRI is the basic
VRI subsystem. In this particular case, two basic VRI subsystems are applied indepen-
dently such that the matching result on each segment can be obtained and, consequently,
the matching accuracy of pair-wise VRI over three detectors can be easily calculated.
Meanwhile, the construction of vehicle tree structure (threshold value 𝜏 = 3) can be com-
pleted based on the results of basic VRI subsystem (see Section 6.3.2). By performing
the hierarchical matching method on the vehicle tree structure (see Equations (6.24) and
(6.25)), the improved matching results are then obtained.

Table 6.1: Comparison between pair-wise VRI and the improved method

Matching method
Detector pair 06A-04Aa 04A-02A 06A-02Ab 06A-04A-02A

Basic VRI 44.91%c 62.28% 28.98% ---
Pair-wise VRI --- --- --- 34%

Improved methodd --- --- --- 41.19%
a Match vehicle from 06A to 04A.
b Match vehicle from 06A to 02A regardless of the information obtained at intermediate point (i.e. 04A).
c Matching accuracy of the proposed method.
d Hierarchical Bayesian matching method.

Table 6.1 compares the performances (i.e. matching accuracies) of different vehiclematch-
ing methods. The first row of Table 6.1 indicates that the performance of basic VRI sub-
system would gradually decrease with respect to the increase in the length of freeway
segment (which has already been explained in Section 6.1). The primary reason for low
matching accuracy (i.e. 28.98%) of basic VRI over 06A-to-02A is that we did not take
full advantage of the vehicle feature data observed at the intermediate station (i.e. sta-
tion 04A). By applying pair-wise VRI, the connection between two basic VRI subsystems
(e.g. VRI over 06A-04A and 04A-02A) can be built up (see Procedure 6.1) and, hence, a
higher matching accuracy over multiple detectors can be expected (i.e. 34% in the second
row of Table 6.1). The proposed hierarchical Bayesian matching method further considers
the vehicle matching over multiple detectors as a integrated process, and proposes a suit-
able statistical model to describe the spatial dependencies between the feature distances.
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Therefore, the matching accuracy is further improved to 41.19%.

Figure 6.7 shows the matching results for a vehicle at station 06A by respectively applying
the pair-wise VRI and hierarchical matching method. Note that basic VRI subsystem over

06A 04A 02A

Hierarchical Bayesian Matching

Pair-wise VRI

06A 04A 02A

Figure 6.7: Illustrative matching example

04A-02A produces a mismatch1. As pair-wise VRI performs basic VRI independently,
the mismatches of a single subsystem could fail the whole system. On the other hand,
the proposed hierarchical Bayesian matching method could correct/refine the matching
results by considering the spatial correlations between the feature distances.

1The reason for generating this mismatch is still unknown. The most likely explanation is that the vehicle
image at 04A becomes extremely blurry and, hence, the calculated feature distance is less reliable, which
eventually leads to the mismatch.
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6.6 Conclusion remarks

6.6 Conclusion remarks

This chapter aims to develop an additional hierarchical Bayesian model for vehicle rei-
dentification on freeway segment with multiple detectors. A hierarchical matching com-
ponent is introduced so that vehicle matching over multiple segments is treated as an in-
tegrated process. By utilizing the preliminary information (i.e. refined candidate vehicle
set) obtained from basic VRI, the hierarchical tree structure is built up. A statistical model
considering the spatial dependencies between feature distances is also incorporated to fur-
ther improve the matching accuracy. The hierarchical matching problem is then solved by
finding the optimal path in the hierarchical tree structure, such that the posterior probabil-
ity of a correct match given a sequence of feature distances along this path, is maximized.
This novel method is further evaluated against the pair-wise VRI in terms of matching
accuracy over multiple detectors.
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Part III

Self-adaptive VRI system under
dynamic traffic conditions
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Chapter 7

Iterative VRI system with temporal
adaptive time window

This chapter proposes an iterative vehicle reidentification (VRI) system with temporal
adaptive time window to estimate the mean travel time for each time period on the freeway
under traffic demand and supply uncertainty. To capture the traffic dynamics in real-time
application, inter-period adjusting based on the exponential smoothing technique is intro-
duced to define an appropriate time window constraint for each time period (i.e. temporal
adaptive time window). In addition, an intra-period adjusting technique (i.e. iterative
VRI) is also employed to handle the non-predictable traffic congestions. To further re-
duce the negative effect caused by the mismatches, a post-processing technique including
the thresholding and stratified sampling, is performed on the travel time data derived from
the VRI system. Several representative tests are carried out to evaluate the performance of
the proposed VRI against the potential changes in traffic conditions, e.g. recurrent traffic
congestion, freeway bottlenecks and traffic incidents. The results show that this method
can perform well under traffic demand and supply uncertainty.

7.1 Introduction

As one of the best indicators for evaluation of the performance of traffic system, accu-
rate travel time data are crucial for efficient traffic management and transport planning.
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Therefore, it is of great importance to estimate the mean travel time in a robust and accu-
rate manner. Because of the worldwide deployment of inductive loops, a large number of
studies focused on utilizing the traffic data (e.g. spot speed, traffic flow) obtained from the
traditional sensors to indirectlymeasure themean travel time1 (e.g. Soriguera and Robuste,
2011; Celikoglu, 2013). Despite their computational efficiency and analytical simplicity,
these indirect methods based on traditional sensors would result in large errors when it
comes to serious traffic congestion (Li et al., 2006). To overcome this difficulty, consid-
erable attention has been paid to use the emerging sensing technologies to directly track
the individual probe vehicle and hence collect the associated travel time (which could be
termed as probe-vehicle-based method2). Various advanced technologies, such as Blue-
tooth (Quayle et al., 2010), Global Positioning System technologies (Hofleitner et al.,
2012), license plate recognition technique (Chang et al., 2004) and cellular phones (Rose,
2006) have been incorporated to assign a unique identity (e.g. plate number, media access
control address and radio frequency identification tag) to the probe vehicle. By the accu-
rate matching of the vehicle identities, the travel time of probe vehicle can be measured
directly. Although these probe-vehicle-based approaches appear promising for travel time
estimation, their successes rely on a high penetration rate of probe vehicles. Also, vehicle
tracking based on the unique identity could raise privacy concerns. In this case, the ve-
hicle reidentification (VRI) scheme, which does not intrude driver's privacy, provides an
alternative way to measure the travel time.

As explained in Chapter 4, VRI is a process of matching vehicle signatures (e.g. wave-
form (Sun and Ritchie, 1999), vehicle length (Coifman, 2002), vehicle color (Kamijo et
al., 2005), and partial plate number (Watling and Maher, 1992)) from one detector to the
next one in the traffic network. On one hand, the non-uniqueness of the vehicle signature
would allow the VRI system to track the vehicle anonymously. Also, the penetration rate
is 100% in principle as no in-vehicle equipment is required. On the other hand, this prop-
erty of very non-uniqueness imposes a great challenge on the development of the vehicle
signature matching method. To improve the matching accuracy, Coifman (1998) com-
pared the lengths of vehicle platoons (i.e. vehicle platoon matching method). To further
consider the noise as well as the non-uniqueness of vehicle signature, Kwong et al. (2010)
proposed a statistical matching method in which the vehicle signature is treated as random
variable and a probabilistic measure is introduced for matching decision-making. The
aforementioned approaches, however, are limited to the case with only one lane arterial,

1The readers can refer to Section 2.1.2 and 2.1.3 for a more comprehensive review of indirect travel time
estimation methods.

2A detailed introduction regarding this method can be found in Section 2.1.4
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and have a set of stringent assumptions on vehicle traveling behaviors (e.g. no overtaking,
no lane-changing). The basic vision-based VRI proposed in Chapter 4 extends the statis-
tical signature matching method to a more practical case in which overtaking between
vehicles as well as the vehicle matching across multiple lanes are both allowed. A prob-
abilistic data fusion rule is then introduced to combine these features derived from IVS
systems to generate a matching probability (posterior probability) for matching decision-
making. Basic VRI system also introduces a prior (fixed) time window, which sets the
upper and lower bounds of the travel time in the hope of ruling out the unlikely candidate
vehicles and, hence, improving the matching accuracy, which, in turn, would yield a more
reliable travel time estimator. However, it is noteworthy that this basic VRI was specif-
ically designed for a short time period in which the traffic condition is relatively stable
(i.e. steady-state condition) and may not be applicable for "real-time" application under
dynamic traffic conditions (see Section 4.6).

The development of VRI system for "real-time" implementation under dynamic traffic
conditions is still difficult as it faces the following two major challenges. First, due to
the traffic demand and supply uncertainty (e.g. fluctuation in travel demand, bottleneck
effect and traffic incidents), the traffic conditions may substantially change from period
to period (i.e. free flow to congested). Under these circumstances, the fixed time-window
constraint may compromise the performance of the basic VRI system. Thus, instead of
explicitly incorporating the time window, Lin and Tong (2011) utilized the travel time in-
formation estimated from the spot speed data and proposed a combined estimation model
to reidentify the vehicles. As previously discussed that the travel time estimated from
spot speed data is not reliable, this approach may not perform well under demand and
supply uncertainty. Second, vehicle mismatches, which are caused by the non-uniqueness
of vehicle signatures and the complex topological structure of the traffic network, are to
be expected. This situation could get worse when a traffic incident happens. Therefore, a
robust post-processing technique regarding the individual travel time obtained from VRI
system is required. Ndoye et al. (2011) suggested a data clustering method to filter out
the erroneous individual travel time caused by the mismatches. For practical implemen-
tation, however, it may still be difficult to distinguish between the correct and erroneous
travel time under "abnormal" traffic conditions (e.g. the occurrence of an incident or the
bottleneck effect).

To this end, the objective of this chapter is to propose an improved self-adaptive VRI
system to cope with the purpose of real-time travel time estimation under dynamic traffic
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conditions. Specifically, this study aims to estimate the mean travel time for each time pe-
riod (e.g. 5-min period) on the freeway under traffic demand and supply uncertainty. The
proposed VRI system is based on basic vision-based VRI with two major improvements
as follows.

• First, to filter out the erroneous travel time caused by the mismatches, a threshold-
ing process based on the matching probability1 is performed. A stratified sampling
technique based on vehicle type is then introduced to reduce the bias in the mean
travel time estimates.

• Second, a self-adaptive time window component (i.e. inter-period and intra-period
adjusting) is introduced into the basic VRI system to improve its robustness against
potential changes in traffic conditions. Inter-period adjusting of time window (i.e.
temporal adaptive timewindow) based on exponential smoothing technique is adopted
to capture the traffic dynamics from period to period (Lo and Sumalee, 2013),
whereas the intra-period adjusting (i.e. iterative VRI) is employed to handle the
non-predictable traffic congestion (e.g. caused by traffic incidents or the bottleneck
effect).

After the theoretical development, various numerical tests are conducted to demonstrate
the application of the improved VRI system. The first simulation test investigates the
feasibility of utilizing the improved VRI system to estimate the mean travel time for a
closed freeway segment containing recurrent congestions due to exceeding traffic demand.
In the second simulations, the method is evaluated on a freeway corridor with on- and off-
ramps. A freeway bottleneck then arises due to the high merging demand and lane drops.
The simulation results show that the proposed method performs well under bottleneck
effect. The third simulation test is then conducted to test the performance of the algorithm
under non-recurrent congestions (caused by traffic incidents).

The rest of the chapter is organized as follows. Section 7.2 presents a brief review on the
simplified version of basic VRI system. In Section 7.3, the post-processing technique (e.g.
thresholding and stratified sampling) regarding the individual travel time obtained from
the VRI system is introduced. The detailed description and analysis of the self-adaptive
time window component is proposed in the following section. In Section 7.5, simulated

1The matching probability is this chapter is explicitly calculated for each pair of vehicle signatures (see
Section 7.2.2), which is slightly different from that in Chapter 4.
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tests are carried out to evaluate the performance of the proposed system. Finally, we close
this chapter with the conclusions and future works.

7.2 Simplified version of basic VRI

The basic vision-based VRI with fixed time window is devised to estimate the mean travel
time under static traffic conditions (e.g. a steady-state of free flow/congestion). In line
with the other traditional VRI schemes, the basic vision-based VRI also involves two ma-
jor steps: 1) vehicle feature extraction; 2) vehicle signature matching method. As the
detailed traffic data (especially the vehicle feature data) are not readily obtainable from
the raw video record, the intelligent video surveillance (IVS) system is then employed for
extracting the required information (e.g. various vehicle feature data). Detailed imple-
mentation of the IVS for traffic data extraction can be found in Section 2.3 and Chapter
3. In what follows, a formal description of vehicle feature data obtained from IVS is
presented.

7.2.1 Vehicle feature data

IVS provides a large amount of vehicle feature data (e.g. vehicle color, length, and type)
for system development and evaluation. The intrinsic vehicle signature, 𝑋 = {𝐶, 𝑆, 𝐿},
is generated for each detected vehicle, where 𝐶 and 𝑆 are the normalized color feature
vector and type (shape) feature vector, respectively; 𝐿 denotes the vehicle length. To be
more specific, the color feature (i.e. frequencies of different colors across the vehicle
image) is represented by a 360-dimensional vector 𝐶 , the type/shape feature 𝑆 is a 6-
dimensional vector that consists of the similarity score for each template, and vehicle
length 𝐿 is simply represented by the height of vehicle image. Also, the extrinsic vehicle
data, such as the vehicle's arrival time 𝑡 and spot speed 𝑣, are obtained during the detection
process. Therefore, the individual vehicle record can then be represented as (𝑡, 𝑣, 𝑋).

For practical implementation, the vehicle records detected at upstream station will be
stored in the upstream database. Let 𝑈𝑖 = (𝑡𝑈

𝑖 , 𝑣𝑈
𝑖 , 𝑋𝑈

𝑖 ) denote the record of the 𝑖th
upstream vehicle, where 𝑋𝑈

𝑖 = {𝐶𝑈
𝑖 , 𝑆𝑈

𝑖 , 𝐿𝑈
𝑖 } represents the associated vehicle signa-

tures (i.e. color, type, and length). In this case, the upstream database is denoted as
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𝑈 = {𝑈𝑖|𝑖 = 1, 2, …}, which could be updated with time propagation. Let𝐷 = {𝐷𝑗|𝐷𝑗 =
(𝑡𝐷

𝑗 , 𝑣𝐷
𝑗 , 𝑋𝐷

𝑗 ), 𝑗 = 1, 2, … 𝑀} denote the 𝑀 vehicle records generated at downstream sta-
tion during a specific time period (e.g. 5-min period). The VRI is to find the correspond-
ing upstream vehicles for these 𝑀 downstream vehicles based on the generated vehicle
signatures.

In order to quantify the difference between each pair of upstream and downstream vehi-
cle signatures, several distance measures are then incorporated. Specifically, for a pair
of signatures (𝑋𝑈

𝑖 , 𝑋𝐷
𝑗 ), the Bhattacharyya distance is utilized to calculate the degree of

similarity between color features, i.e.

𝑑color(𝑖, 𝑗) =
[

1 −
360

∑
𝑘=1

√𝐶𝑈
𝑖 (𝑘).𝐶𝐷

𝑗 (𝑘)
]

1/2

(7.1)

where 𝑘 denotes the 𝑘th component of the color feature vector. The 𝐿1 distance measure
is introduced to represent the difference between the type feature vectors, i.e.

𝑑type(𝑖, 𝑗) =
6

∑
𝑘=1

|𝑆𝑈
𝑖 (𝑘) − 𝑆𝐷

𝑖 (𝑘)| (7.2)

The length difference is given by

𝑑length(𝑖, 𝑗) = |𝐿𝑈
𝑖 − 𝐿𝐷

𝑗 | (7.3)

However, in practice it is unnecessary to compute the distances between all pairs of up-
stream and downstream vehicle signatures. To rule out the unlikely candidate vehicles
at upstream database and improve the overall computational efficiency, a time window
constraint is then introduced for vehicle signature matching.

7.2.2 Vehicle signature matching method

7.2.2.1 Time window constraint

A time window, which sets the upper and lower bounds of travel time, is introduced to
define the search space (i.e. set of potential upstreammatches) for the downstream vehicle.
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Given a downstream vehicle 𝑗 ∈ {1, 2, … 𝑀}, its search space, 𝒮(𝑗), is given by:

𝒮(𝑗) = {𝑖|𝑡𝐷
𝑗 − 𝑡𝑚𝑎𝑥 ≤ 𝑡𝑈

𝑖 ≤ 𝑡𝐷
𝑗 − 𝑡𝑚𝑖𝑛} (7.4)

where 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛 are, respectively, the upper and lower bounds of the time window. For a
sequence of downstream vehicles {1, 2, … 𝑀}, the set of the candidate upstream vehicles,
i.e. 𝒮 is defined as

𝒮 =
𝑀

⋃
𝑗=1
𝒮(𝑗) (7.5)

Under static traffic condition, the time window [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] can be calibrated from the avail-
able historical travel time data.

With the associated search space 𝒮, the vehicle signature matching method is equivalent to
finding the correspondence between {1, 2, … 𝑀} and 𝒮. Herein we introduce an indicator
variable to represent the matching result, i.e.

𝑥𝑖𝑗 =
{

1, downstream vehicle 𝑗 matches upstream vehicle 𝑖 ∈ 𝒮
0, otherwise

(7.6)

Recall that for each pair of vehicle signatures, (𝑋𝑈
𝑖 , 𝑋𝐷

𝑗 ), 𝑖 ∈ 𝒮, 𝑗 ∈ {1, 2, … 𝑀}, onemay
compute the distance (𝑑color(𝑖, 𝑗), 𝑑type(𝑖, 𝑗), 𝑑length(𝑖, 𝑗)) based on Equations (7.1), (7.2)
and (7.3). A simple solution (i.e. distance-based method) is then to find the matching
result 𝑥𝑖𝑗 with the minimum feature distance. However, it should be noted that the vehi-
cle signatures contain potential noise and are not unique. Therefore the distance measure
cannot really reflect the similarities between the vehicles. Instead of directly compar-
ing the feature distances, this study utilizes the statistical matching method. Based on
the calculated feature distance (𝑑color(𝑖, 𝑗), 𝑑type(𝑖, 𝑗), 𝑑length(𝑖, 𝑗)), a matching probability
𝑃 (𝑥𝑖𝑗 = 1|𝑑color, 𝑑type, 𝑑length) is provided for the matching decision-making.

7.2.2.2 Calculation of matching probability

Thematching probability, also referred to as the posterior probability, plays a fundamental
role in the proposed VRI system. By applying the Bayesian rule, one may have

𝑃 (𝑥𝑖𝑗 = 1|𝑑color, 𝑑type, 𝑑length) =
𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑖𝑗 = 1)𝑃 (𝑥𝑖𝑗 = 1)

𝑝(𝑑color, 𝑑type, 𝑑length)
(7.7)
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where 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑖𝑗 = 1) is the likelihood function; 𝑃 (𝑥𝑖𝑗 = 1) is the prior
knowledge about the matching result without observing the detailed vehicle feature data.
In addition, one may also have

𝑝(𝑑color, 𝑑type, 𝑑length) = 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑖𝑗 = 1)𝑃 (𝑥𝑖𝑗 = 1)
+ 𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑖𝑗 = 0)𝑃 (𝑥𝑖𝑗 = 0)

(7.8)

On the basis of Equations (7.7) and (7.8), it is observed that the calculation of the matching
probability is dependent on the deduction of the likelihood function and the prior proba-
bility. In this particular case, the prior probability is approximated by the historical travel
time distribution

𝑃 (𝑥𝑖𝑗 = 1) = 𝑓(𝑡(𝑖, 𝑗))
𝜂 × 0.5 (7.9)

𝑃 (𝑥𝑖𝑗 = 0) = 1 − 𝑓(𝑡(𝑖, 𝑗))
𝜂 × 0.5 (7.10)

where 𝑓(.) denotes the historical travel time distribution, 𝑡(𝑖, 𝑗) is the time difference be-
tween upstream vehicle 𝑖 and downstream vehicle 𝑗, and 𝜂 is the normalizing factor.

The calculation of the likelihood function is completed in two steps. First, individual sta-
tistical models for the three feature distances are constructed and the corresponding likeli-
hood functions are also obtained (i.e. 𝑝(𝑑color|𝑥𝑖𝑗 = 1), 𝑝(𝑑type|𝑥𝑖𝑗 = 1), and 𝑝(𝑑length|𝑥𝑖𝑗 =
1)). Then a data fusion rule is employed to provide an overall likelihood function used in
the posterior probability (7.7).

7.2.2.3 Statistical modeling of feature distance

Without loss of generality, only the probabilistic modeling of color feature distance is de-
scribed. In the framework of statistical modeling, the distance measure is assumed to be a
random variable. Thus, for a pair of color feature vectors (𝐶𝑈

𝑖 , 𝐶𝐷
𝑗 ), the distance 𝑑color(𝑖, 𝑗)

follows a certain statistical distribution. The conditional probability (i.e. likelihood func-
tion) of 𝑑color(𝑖, 𝑗) is then given by

𝑝(𝑑color(𝑖, 𝑗)|𝑥𝑖𝑗) =
{

𝑝1(𝑑color(𝑖, 𝑗)), if 𝑥𝑖𝑗 = 1
𝑝2(𝑑color(𝑖, 𝑗)), if 𝑥𝑖𝑗 = 0

(7.11)
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where 𝑝1 denotes the probability density function (pdf) of distance 𝑑color(𝑖, 𝑗) when color
feature vectors𝐶𝑈

𝑖 and𝐶𝐷
𝑗 belong to the same vehicle, whereas 𝑝2 is the pdf of the distance

𝑑color(𝑖, 𝑗) between different vehicles. A historical training dataset that contains a number
of pairs of correctly matched vehicles are utilized for estimating the pdfs 𝑝1 and 𝑝2. Like-
wise, the likelihood functions for the type and length distances can also be obtained in a
similar manner.

7.2.2.4 Data fusion rule

In this study the logarithmic opinion pool (LOP) approach is employed to fuse the individ-
ual likelihood functions. The LOP is evaluated as a weighted product of the probabilities
and the equation is given by

𝑝(𝑑color, 𝑑type, 𝑑length|𝑥𝑖𝑗) = 1
𝑍LOP

𝑝(𝑑color|𝑥𝑖𝑗)𝛼𝑝(𝑑type|𝑥𝑖𝑗)𝛽𝑝(𝑑length|𝑥𝑖𝑗)𝛾 ,

𝛼 + 𝛽 + 𝛾 = 1 (7.12)

where the fusion weights 𝛼, 𝛽 and 𝛾 are used to indicate the degree of contribution of
each likelihood function, and 𝑍LOP is the normalizing constant. The weights can also be
calibrated from the training dataset. By substituting Equations (7.8), (7.9) and (7.12) into
(7.7), the desired matching probability can be obtained. For the sake of simplicity, let 𝑃𝑖𝑗
denote the matching probability between upstream vehicle 𝑖 ∈ 𝒮 and downstream vehicle
𝑗.

Note that the aforementioned matching probability in Equation (7.7) is slightly different
from that (see Equation (4.9)) in chapter 4. In this chapter, we attempt to "explicitly"
calculate the posterior probability based on the observation of the feature distances of
only one pair of vehicle signatures, whereas the basic VRI is trying to calculate an over-
all posterior probability based on the observations of feature distances between two sets
of vehicles (i.e. upstream set and downstream set). Therefore, the simplified equation
(Equation (7.7)) could provide an explicit matching probability for each individual pair of
vehicles, which may be more suitable for the following processing (i.e. post-processing
in Section 7.3).

131



7.2 Simplified version of basic VRI

7.2.2.5 Bipartite matching method

Recall that the basic VRI system is to find the matching result 𝑥𝑖𝑗 between the downstream
vehicle set {1, 2, … 𝑀} and its search space𝒮 (assume that there are𝑁 candidate vehicles)
simultaneously based on matching probability {𝑃𝑖𝑗|𝑖 = 1, 2, … 𝑁; 𝑗 = 1, 2, … 𝑀}. The
signature matching problem is then formulated as

min
𝐱

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

−𝑃𝑖𝑗𝑥𝑖𝑗 (7.13)

s.t. 𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝒮, 𝑗 ∈ {1, 2, … , 𝑀} (7.14)
𝑁

∑
𝑖=1

𝑥𝑖𝑗 = 1, ∀𝑗 ∈ {1, 2, … 𝑀} (7.15)

𝑀

∑
𝑗=1

𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝒮 (7.16)

Objective (7.13) is to maximize the overall matching probabilities between the two sets.
Constraint (7.14) ensures that the decision variables are binary integers. Constraint (7.15)
requires that a downstream vehicle can have one matched vehicle at upstream station,
whereas constraint (7.16) guarantees that an upstream vehicle can have, at most, one
matched vehicle at downstream (normally 𝑁 > 𝑀). This combinatorial optimization
problem is equivalent to a minimum-weight bipartite matching problem, which has al-
ready been widely studied and can be efficiently solved by the successive shortest path
algorithm with computational complexity of 𝑂(𝑀2𝑁). This optimization problem is also
different from the original one (Equation (4.22)) in Chapter 4. The formulation of the
original optimization problem is strictly based on the MAP (i.e. maximum a posterior
probability) rule, whereas the simplified problem just intuitively maximize the overall
matching probability. Although the basic VRI is simplified to some extent, it provides
essentially the same results (i.e. matching accuracy) as our original work in Chapter 4.
The potential benefits for the simplification is presented in Section 7.3.

7.2.2.6 A discussion on the application of the basic VRI system

The detailed implementation of the basic VRI for mean travel time estimation (e.g. from
10:00 a.m. to 10:05 a.m.) is summarized in the following flowchart (Figure 7.1). First, the
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system will initialize the time stamp 𝑡 and check whether a vehicle is detected at the up-
stream and/or downstream stations. The generated upstream vehicle records are stored in
upstream vehicle database. Once a vehicle is detected at downstream station, the candidate
vehicle set will be selected based on the time window constraint. Meanwhile, the match-
ing probability for each pair of vehicles is calculated. When the current time 𝑡 reaches
10:05 a.m., the bipartite matching process based on matching probability will begin and
the travel time data can be obtained. Detailed implementation of this system can be found
in Chapter 4. For the aforementioned framework, the following four comments should be

Start (t=10:00 AM)

Detection of vehicle at

upstream at time t

Detection of vehicle at

downstream at time t

Matching probability

(posterior probability)

Upstream

vehicle sets

Yes

Add

Current time t=10:05AM?
Yes

No

Bipartite Matching

Method (raw matching

result)

Time window constraint

Set t=t+1

Figure 7.1: Illustrative example of the basic VRI system for real-time implementation

taken into account.

• First, it is noteworthy that the calculation of matching probability can be simulta-
neously performed along with the vehicle detection process at downstream site (i.e.
during the 5-min time period). In addition, the bipartite matching process can be
carried out efficiently as explained before. Thus, the basic VRI can be implemented
in real time (which will be explained in detail in Section 7.5.1).

• Second, it is observed that the basic VRI heavily depends on the specification of
the time window. When a large time window is applied, search space 𝒮 would
include too many candidate vehicles, which could lead to a significant increase in
computational time. On the other hand, a relatively smaller timewindowmay enable
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the algorithm to find the corresponding vehicle more efficiently, but it may also
wrongly exclude the correct match from search space 𝒮.

• Third, by using the historical travel time distribution to approximate the prior knowl-
edge (𝑃 (𝑥𝑖𝑗 = 1)), one may obtain a more reliable matching probability. In a word,
the basic VRI accepts the predefined time window and the historical travel time dis-
tribution as exogenous inputs and then perform the vehicle matching method. Both
of these two inputs can be derived from the mean travel time data (which will be
explained in Section 7.4).

• Fourth, the basic VRI cannot work well under traffic demand and supply uncer-
tainty, as the time window and prior knowledge may not be well-defined. From
the perspective of mean travel time estimation, two novel components (i.e. post-
processing and self-adaptive time window) can be incorporated to improve the over-
all performance.

7.3 Post-processing technique

Upon completion of the basic VRI system, the raw travel time for the 𝑗th, 𝑗 ∈ {1, 2, … 𝑀}
downstream vehicle during the evaluation period can be obtained and denoted as 𝑡𝑟

𝑗 . Thus
the mean travel time without post-processing is given by

𝜇𝑟 = 1
𝑀

𝑀

∑
𝑗=1

𝑡𝑟
𝑗 (7.17)

As the mismatches due to the non-uniqueness of vehicle signature are inevitable, the raw
travel time may include erroneous information. Hence, accordingly, the estimator 𝜇𝑟 may
not be reliable in practice.

7.3.1 Stratified sampling technique

One natural method is to perform thresholding on the raw travel time data based on the
explicit matching probability (which is provided by the simplified basic VRI) in an at-
tempt to rule out the mismatches. However, another problem (i.e. biased estimation) may
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7.3 Post-processing technique

arise along with this thresholding process. It is commonly believed that the travel time of
vehicles of different types (e.g. small cars, long trucks) are significantly different. Figure
7.2 shows the travel time of different vehicle types fitted by a normal distribution, where
vehicle type 1 denotes the smaller cars and vehicle type 2 represents the long trucks. These
ground truth travel time data are collected from a freeway segment in Bangkok, Thailand.
The authors also conducted various hypothesis tests (i.e. t-tests) to validate this assump-
tion:

𝐻0 ∶ 𝜇type1 = 𝜇type2 vs. 𝐻𝛼 ∶ 𝜇type1 ≠ 𝜇type2

where 𝜇type1 and 𝜇type2 are respectively the mean travel time of small cars and long trucks.
The results show that the null hypothesis should be rejected, which means that the travel
times of different types of vehicles are "statistically" different. In view of this, to further
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Figure 7.2: Travel time for different vehicle types.

reduce the bias in mean travel time estimation, the stratified sampling technique (Hellinga
and Fu, 2002) based on vehicle type is proposed. Specifically, the raw travel time data
{𝑡𝑟

𝑗|𝑗 = 1, 2, … 𝑀} are divided into two strata (i.e. small car stratum and long truck
stratum). The thresholding processes are performed independently on these two stratums.
The final mean travel time 𝜇 is then computed as the weighted average of the mean travel
time over all vehicle type strata. The equation is then given as

𝜇 =
2

∑
𝑘=1

𝑀𝑘
𝑀 ( 1

𝑛𝑘

𝑛𝑘

∑
𝑗=1

𝑡𝑗𝑘) (7.18)
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where 𝑀𝑘 is the number of vehicles of type 𝑘; 𝑛𝑘 denotes the sample size of vehicles of
type 𝑘 after the thresholding process; 𝑡𝑗𝑘 is the travel time of the 𝑗th vehicle of type 𝑘 after
thresholding process. The design of thresholding process becomes the major concern in
the following section.

7.3.2 Thresholding process

For each individual vehicle stratum, the thresholding process is performed independently.
As explained before, one of the outputs of basic VRI is the matching result 𝑥𝑖𝑗 , whereas the
other output is the associatedmatching probability𝑃𝑖𝑗 . The overall idea of the thresholding
is to apply a certain rule to these outputs (i.e. 𝑥𝑖𝑗 and 𝑃𝑖𝑗) in order to identify the associated
erroneous travel time. For a downstream vehicle 𝑗 in vehicle stratum 𝑘, the matched
upstream vehicle 𝑖∗ = {𝑖 ∈ 𝒮|𝑥𝑖𝑗 = 1} and the associated matching probability is 𝑃𝑖∗𝑗 .
One naive approach to rule out those mismatches would be to impose a threshold value
on the matching probability. If 𝑃𝑖∗𝑗 is greater than the threshold value, then the travel time
data regarding this vehicle 𝑗 would be retained for the following stratified sampling (see
Equation (7.18)). However, in practical implementation, we find that the single matching
probability cannot really reflect the correctness of the matching. It is quite possible that
the other matching probability 𝑃𝑙𝑗 ≈ 𝑃𝑖∗𝑗 , 𝑙 ∈ 𝒮; 𝑙 ≠ 𝑖∗, which means that the VRI system
cannot distinguish between the candidate vehicles. To account for this problem, this study
proposes a new measure to represent the distinctiveness of the vehicle. For this specific
vehicle 𝑗, the distinctiveness value is defined as follows

𝑃𝑖∗𝑗

𝑃 (2)
𝑗

, 𝑃 (2)
𝑗 is the second largest matching probability of {𝑃𝑖𝑗|∀𝑖 ∈ 𝒮} (7.19)

Recall that the proposed bipartite matching method finds the matching result with the
overall maximum probability (see Equation (7.13)). In this case, for certain downstream
vehicle, it may not be matched to the upstream vehicle with the maximum likelihood.
Therefore by calculating the distinctiveness value, one may get more information about
the matching result, i.e.

𝑃𝑖∗𝑗

𝑃 (2)
𝑗

=
⎧⎪
⎨
⎪⎩

≥ 1, vehicle 𝑗 matches upstream vehicle with maximum probability
= 1, vehicle 𝑗 matches upstream vehicle with the second largest probability
< 1, vehicle 𝑗 matches the other ones
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7.4 Self-adaptive time window constraint

If vehicle 𝑗 and upstream vehicle 𝑖∗ are true matches, then the ratio between 𝑃𝑖∗𝑗 and 𝑃 (2)
𝑗

are expected to be relatively larger. Based on this basic idea, a predefined threshold value
𝜏 > 1 is then imposed on this distinctiveness value, i.e.

{
𝑃𝑖∗𝑗/𝑃

(2)
𝑗 > 𝜏, travel time 𝑡𝑗𝑘 is retained for stratified sampling

Otherwise, travel time 𝑡𝑗𝑘 is discarded
(7.20)

By applying the rule (7.20), the erroneous individual travel time data are expected to be
identified and ruled out.

7.4 Self-adaptive time window constraint

Although the basic VRI is improved to some extent by imposing the post-processing tech-
nique on the raw travel time data (see Section 7.3), it still cannot performwell under traffic
demand and supply uncertainty (some preliminary results are presented in Section 7.5).
As mentioned in Section 7.2, the basic VRI heavily depends on the specification of two
exogenous inputs, i.e. time window and prior knowledge. Therefore, to further improve
the robustness of VRI system against the potential changes in traffic conditions, these two
inputs should be adjusted accordingly (i.e. self-adaptive).

Intuitively, the time window can be derived from the travel time data (i.e. travel time
distribution). Given the mean value 𝜇𝑡 and the variance 𝜎2

𝑡 of the travel time distribution
during time period 𝑡, a suitable time window [𝐿𝑏𝑡, 𝑈𝑏𝑡] could be easily obtained. Assume
that the travel time follows normal distribution 𝑁(𝜇𝑡, 𝜎𝑡), then the tolerance interval with
95% confidence level can be utilized to define the time window, i.e.

[𝐿𝑏𝑡, 𝑈𝑏𝑡] = [𝜇𝑡 − 1.96𝜎𝑡, 𝜇𝑡 + 1.96𝜎𝑡] (7.21)

Given the coefficient of variation (CV) 𝜙, the time window constraint can be rewritten as

[𝐿𝑏𝑡, 𝑈𝑏𝑡] = [(1 − 1.96𝜙)𝜇𝑡, (1 + 1.96𝜙)𝜇𝑡] (7.22)

Moreover, the prior knowledge can be approximated by the normal distribution𝑁(𝜇𝑡, 𝜙𝜇𝑡).
Therefore, both of these two critical inputs of basic VRI can be derived from the predic-
tion of the mean travel time in time period 𝑡. In other words, the self-adjusting of the
time window as well as the prior knowledge can be completed by iteratively predicting
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7.4 Self-adaptive time window constraint

the mean travel time for each time period. In this research, the self-adjusting of the time
window for real-time application involves two major steps as follows.

• Inter-period adjusting: Based on current traffic information (e.g. average spot speed)
and the mean travel time value in previous time period (i.e. obtained from VRI
system), one may predict the mean travel time value for the next time period (i.e.
inter-period adjusting), from which the time window is derived. The exponential
forecasting technique integrated with the average spot speed information is adopted
during the inter-period adjusting process (i.e. temporal adaptive time window).

• Intra-period adjusting: Since the non-recurrent traffic congestion (e.g. caused by
incident) is not predictable, the additional intra-period adjustment (i.e. iterative
process) is required for providing an appropriate time window under these extreme
circumstances. An iterative bipartite matching method is proposed for adjusting the
time window, in which the basic VRI is iteratively solved (i.e. iterative VRI).

Note that the purpose of predicting the mean travel time is to derive an appropriate time
window, and the accuracy of the prediction is not our major concern. As a matter of fact,
the estimated mean travel time is obtained from the VRI system with post-processing
technique.

7.4.1 Inter-period adjusting: Temporal adaptive time window

We introduce time series theory for short-term travel time prediction. As a classical sta-
tistical approach, time series forecasting has already been evaluated with several other
applications in transportation, such as short-term traffic flow prediction (Tan et al., 2009)
and traffic speed forecasting (Ye et al., 2012).

In this chapter, the underlying model equation for the mean travel time data is assumed
as:

𝜇𝑡 = 𝜇∗
𝑡 + 𝜀𝑡 (7.23)

where 𝜇𝑡 is the mean travel time calculated from the VRI system, 𝜇∗
𝑡 represents the ground

truth data and 𝜀𝑡 is the white noise error term. Our goal is to roughly forecast the mean
travel time in period 𝑡 + 1 (i.e. short-term prediction). Therefore, the exponential smooth-
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ing technique integrated with spot speed information is employed for this particular pur-
pose.

7.4.1.1 Exponential smoothing technique

The smoothing (forecasting) equation is given as follows:

⌣𝜇𝑡+1 = ̃𝜇𝑡 + 𝜑(𝜇𝑡 − ̃𝜇𝑡) (7.24)

̃𝜇𝑡+1 = 𝑉 𝑈
𝑡 + 𝑉 𝐷

𝑡

𝑉 𝑈
𝑡+1 + 𝑉 𝐷

𝑡+1

⌣𝜇𝑡+1 (7.25)

where ̃𝜇𝑡+1 and ̃𝜇𝑡 denote the forecasters of the mean travel time in time period 𝑡 + 1
and period 𝑡, respectively; 𝜑 represents the smoothing parameter that is calibrated from
the historical data; 𝑉 𝑈

𝑡 and 𝑉 𝐷
𝑡 are the average speed at upstream and downstream sta-

tions, respectively, during time period 𝑡; and likewise, 𝑉 𝑈
𝑡+1 and 𝑉 𝐷

𝑡+1 are the average speed
at upstream and downstream stations, respectively, during time period 𝑡 + 1. Equation
(7.24) serves as a simple exponential estimation based on the estimates from previous
steps, whereas Equation (7.25) is a correction step by utilizing the average spot speed.
The rationale behind (7.25) is as follows. If the average spot speeds at both stations (i.e.
upstream and downstream) decrease from period 𝑡 to period 𝑡 + 1, the mean travel time
during time period 𝑡 + 1 is expected to be larger. Following the prediction of ̃𝜇𝑡+1, the time
window for period 𝑡 + 1 is given by:

[𝐿𝑏𝑡+1, 𝑈𝑏𝑡+1] = [(1 − 1.96𝜙) ̃𝜇𝑡+1, (1 + 1.96𝜙) ̃𝜇𝑡+1] (7.26)

Based on these recursive formulas, one may be able to predict the mean travel time as well
as the time window from period to period (i.e. inter-period/temporal adjusting). However,
it should be noted that a "bad" prediction could potentially lead to low matching accuracy
of VRI system and, hence, unreliable travel time estimates. Thus, the additional intra-
period adjusting method (i.e. iterative process) should be developed.

7.4.2 Intra-period adjusting: Iterative VRI

From time period 𝑡 + 1, the predicted time window [𝐿𝑏𝑡+1, 𝑈𝑏𝑡+1] and ̃𝜇𝑡+1 are derived
during the inter-period adjusting process and then fed into the basic VRI system, from
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Figure 7.3: Detailed implementation of the improved VRI system.

which the raw travel time data can be obtained. By performing the post-processing tech-
nique (e.g. thresholding and stratified sampling), an improved mean travel time estimator,
i.e. ̂𝜇(1)

𝑡+1, is then calculated. In practice, the initial prediction of time window may not be
reliable (especially when incident happens), which could significantly decrease the per-
formance of the VRI system. Thus it is expected that ̂𝜇(1)

𝑡+1 would not be accurate. In light
of this, an iterative process is devised to solve the basic VRI problems iteratively with dif-
ferent exogenous inputs (i.e. time window and prior probability). To be more specific, a
new time window, [(1 − 1.96𝜙) ̂𝜇(1)

𝑡+1, (1 + 1.96𝜙) ̂𝜇(1)
𝑡+1], is calculated based on the estimated

mean travel time ̂𝜇(1)
𝑡+1. Then the basic VRI and the associated post-processing technique

are performed again using this new time window. This iterative process will continue until
the relative change of the estimated mean travel time is sufficiently small. In this research,
the error for stopping tolerance of the convergence is given by:

| ̂𝜇(𝑛)
𝑡+1 − ̂𝜇(𝑛−1)

𝑡+1 | ≤ 𝜏 (7.27)
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where the superscript 𝑛 represents the iteration number and 𝜏 is the stopping tolerance
(See Figure 7.3).

To sum up, the inter-period/temporal adjusting is designed to capture the traffic dynamics
from period to period, whereas the intra-period adjusting (i.e. iterative process) is intro-
duced to handle the non-predictable traffic conditions (e.g. traffic incidents and bottleneck
effect).

7.5 Experimental results

To verify the effectiveness and feasibility of the proposed improved VRI system, various
simulation-based experiments are conducted. In this research, a VISSIM-based simulation
model is devised to simulate freeway system operations under traffic demand and supply
uncertainty (e.g. free flow, congestion, bottleneck effect and traffic incident)

7.5.1 Simulation model configuration and calibration

Figure 7.4: Test site in Bangkok, Thailand.

Before presenting the experimental results, the detailed procedures for simulation model
development and calibration are introduced. The test site for this research is 34.9-kilometer-
long three lane freeway system in Bangkok, Thailand (see Figure 7.4). At each station a
gantry-mounted video camera, which is viewed in the upstream direction, is installed, and
the associated video record are collected. Two segments are chosen for simulation model
development: 1) 3.6-kilometer-long closed segment (i.e. between 08A and 10A, the green
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section in Figure 7.4); 2) a 4.2-kilometer-long corridor with on-/off-ramps (i.e. between
02A and 04A). The simulation model is then configured based on the exact roadway ge-
ometric feature, including the length of the segment, location of on-/off-ramps, and the
number of lanes.

To guarantee realistic representations of the simulated experiments, model calibration is
required. With the video record collected at the test site, the individual vehicle can be
detected and manually reidentified across multiple stations. Accordingly, the ground truth
data, such as vehicle counts, traffic demand and travel time data can be obtained for model
calibration. The correctly matched pairs of vehicle images are stored in the image database
for further application.

Upon completion of the simulation model configuration and calibration, the travel be-
havior and characteristic of each individual vehicle (e.g. speed, vehicle type, and arrival
time at each station) can be collected. As the very heart of the proposed method is the
vision-based VRI, a vehicle image, which is randomly selected from the image database,
is assigned to the vehicle record generated from the simulation model. These newly cre-
ated vehicle records are then fed into the improved VRI system.

To sum up, we simulate all traffic conditions (recurrent and non-recurrent traffic con-
gestion) using VISSIM and implement the proposed method in MATLAB. To be more
specific, the experiments are performed under Windows 7 Home Premium and MATLAB
v7.14 (R2012a) running on a Dell desktop with an Intel(R) Core(TM) i3 CPU at 3.20GHz
and with 4.00 GB of memory. It is easily observed that the computational time of the pro-
posed method largely depends on the number of intra-period iteration steps and the CPU
time of the basic VRI system (see Figure 7.3). Some preliminary experiments also show
that the average CPU time used by bipartite matching method in basic VRI under free flow
condition is 0.0896 seconds, whereas the average CPU time under congested situation is
about 0.3294 seconds. Therefore, it is reasonable to believe that the improved VRI system
can be implemented for real time application.

7.5.2 Preliminary comparison between basic VRI and improved VRI

To conduct the comparison of the basic VRI and the improved VRI system, a Vissim-based
simulation model is designed for the closed segment between 08A and 10A (Westbound).
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During the 4-h simulation time period, approximately 16,000 pairs of vehicle records are
generated. These vehicles can roughly be categorized into two types (see Section 7.3):
70% of small cars and 30% of long vehicles. For this specific segment, the associated
image database, which includes 6,280 pairs of vehicle images, is built up. Therefore, a
complete record for vehicle 𝑖 can be denoted as (ID𝑖, 𝑡𝑖, 𝑣𝑖, 𝑋𝑖), where ID𝑖 is the unique
identity derived from the simulation model; 𝑡𝑖 and 𝑣𝑖 are, respectively, the arrival time
and spot speed of vehicle 𝑖; and 𝑋𝑖 represents vehicle feature data extracted from the
vehicle image. Based on these simulation data, the proposed VRI system is performed
and evaluated in terms of the matching accuracy and the effectiveness of mean travel time
estimation.

For the closed freeway segment, each vehicle can be detected at both stations. There-
fore, it is expected that the matching accuracy should be relatively higher, especially for
a static time period (i.e. 5-min interval). However, for real-time application, the potential
changes in traffic condition would lead to dramatic decrease/increase in matching accu-
racy. Figure 7.5 shows the effectiveness of the basic VRI by employing the temporal-
adaptive time window. As the traffic volume increases significantly during the second
hour of the simulation experiment, the corresponding traffic condition changes from free-
flow to congested case. It is quite obvious that the fixed time window cannot handle this
complicated situation (i.e. significant drop in matching accuracy from period 12 to 26),
whereas the VRI system with temporal-adaptive time window can maintain a relatively
stable matching accuracy (around 60% of matching accuracy).
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Figure 7.5: Effectiveness of temporal-adaptive time window.

On the other hand, given the fixed time window, a proper post-processing technique (i.e.
thresholding and stratified sampling) can still improve the model performance from the
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travel time estimation purpose. As shown in Figure 7.6, the performance of the basic VRI
decays significantly under congested case due to the decrease in matching accuracy. How-
ever, it is worthwhile to notice that the accuracy in mean travel time estimation improves
a lot by imposing the post-processing technique.
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Figure 7.6: Effectiveness of post-processing technique under fixed time window.

7.5.3 Performance evaluation under recurrent traffic congestion

To further evaluate the performance of the improvedVRI system (i.e. with post-processing
and self-adaptive timewindow) under recurrent traffic congestion (due to exceeding traffic
demand), the three-lane closed segment (between 08A and 10A) is chosen for test site. The
stochastic vehicle inputs of the VISSIM-based simulation model are defined as

𝑄 =

⎧⎪
⎪
⎨
⎪
⎪⎩

4000 veh/h, 0 ≤ 𝑡 ≤ 60 min;
7000 veh/h, 60 ≤ 𝑡 ≤ 120 min;
8000 veh/h, 120 ≤ 𝑡 ≤ 180 min;
4000 veh/h, 180 ≤ 𝑡 ≤ 240 min;

(7.28)

The vehicle inputs are chosen such that all the traffic states ranging from free-flow to
congested can be activated. The freeway segment operates under free-flow condition in the
first stage (i.e. first hour). Congestion may be observed when the vehicle inputs switch to
the second stage. Then the traffic tends to a steady-state of congestion during the following
two hours. In the fourth stage, congestion dissolve will be observed and the traffic will
gradually be cleared from the freeway system. Table 7.1 shows descriptive statistics for
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the outputs from the vissim-based simulation model. To validate the overall performance

Table 7.1: Descriptive statistics from simulation outputs

Time: Simulation outputs
Vehicle Inputs No. of small No. of long Upstream mean Downstream mean

(0 min - 240 min) (veh/h) vehicles vehicles speed (km/h) speed (km/h)
First hour 3982 2786 1196 82.7 73.3
Second hour 5964 4203 1761 68.0 69.1
Third hour 6214 4390 1824 47.3 65.1
Fourth hour 3934 2746 1188 80.7 72.7

of the improved VRI system, we run the method 50 times based on the simulation outputs.
For each run, the vehicle image is randomly selected from the database and assigned to the
vehicle record generated from the simulation model. The root mean square error (RMSE)
and the mean absolute percentage error (MAPE) are applied as performance indices. The
equation of RMSE is given by

RMSE =
√√√
⎷

1
50

50

∑
𝑠=1

𝐼

∑
𝑖=1

(𝜇𝑖(𝑠) − 𝜇∗
𝑖 )2

𝐼 (7.29)

where 𝜇𝑖(𝑠) is the estimate for the 𝑖th time period and the 𝑠th run; 𝐼 indicates the total
number of time periods; 𝜇∗

𝑖 represents the 𝑖th ground truth data. The MAPE is calculated
as follows:

MAPE = 1
50 × 𝐼

50

∑
𝑠=1

𝐼

∑
𝑖=1

[|
𝜇𝑖(𝑠) − 𝜇∗

𝑖

𝜇∗
𝑖

| × 100] (7.30)

By simple calculation, the RMSE and MAPE of the improved VRI system for 5-min ag-
gregation interval are 3.28 seconds and 1.0%, respectively, while the RMSE of the basic
VRI is 14.61 seconds. It is observed that the improved VRI clearly outperforms the basic
VRI. Figure 7.7 shows the mean travel time estimates from one experiment. By integrat-
ing the average spot speed information (see Table 7.1), the inter-period/temporal adjusting
can capture the traffic dynamics well, which could contribute to the following intra-period
adjusting (i.e. less intra-period iteration steps).

7.5.4 Performance evaluation under bottleneck effect

As one of the major causes for freeway traffic congestion, the freeway bottleneck can arise
from many conditions, such as high merging and diverging demand at on-/off-ramps and
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Figure 7.7: Performance of the proposed method with exceeding traffic demand

lane drops. In this part, we will evaluate the performance of the proposed method under
bottleneck effect. A 4.6-kilometer-long three-lane freeway segment between 02A and
04A (see Figure 7.4) is chosen as the test site. As shown in Figure 7.8, one two-lane on-
ramp (2 kilometers away from upstream station) and one two-lane off-ramp are distributed
along this segment. We will ignore the off-ramp at this location since it does not affect the
bottleneck area. The vehicle inputs at upstream station are the same as Equation (7.28)
and we assume the following distribution of vehicle flows

• 02A to 04A: 100%.

• Off-ramp: 15% of the vehicle flow will exit from the two-lane off-ramp.

• On-ramp to the freeway segment: 25% of the vehicle flow will enter the freeway
system through on-ramp (different flow distribution will be tested in the experi-
ment).

With respect to the above simulation outputs, we run the proposed method 50 times. Fig-
ure 7.9 shows the estimation results from one experiment. Compared with the basic VRI,
the proposed method provides more reliable estimates of the mean travel time. In general,
the bottleneck effect cannot be detected through the average speed at upstream and down-
stream stations, which means that the inter-period/temporal adjusting cannot capture the
traffic dynamics (congestion) well. Therefore the number of iteration steps of iterative
VRI would increase accordingly (see Figure 7.9).
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Figure 7.8: Merge and Diverge along the freeway segment
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Figure 7.9: Performance of the proposed method (on-ramp vehicle flow distribution: 25%)

Table 7.2 also shows the performance of the improved VRI system under different vehicle
flow distributions (i.e. on-ramp vehicle flow distribution). Since the test site is a freeway
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corridor with on-/off-ramps, the vehicle arrives at upstream station may not necessarily
appear at downstream. Also, some vehicles may enter this corridor through the on-ramp.
Thus, it is expected that the matching accuracy of the proposed method is relatively lower.
With the increase in the vehicle flow from on-ramp, the performance would gradually
decay. However, it should be noted that the proposedmethod can still performwell against
the bottleneck effect.

Table 7.2: Performance of the proposed method with different vehicle flow distributions

On-ramp vehicle flow distribution (%) Performance indices
RMSE (secs) MAPE (%)

15% 3.62 1.3%
25% 5.50 1.9%
35% 5.54 1.8%
50% 9.42 2.8%

7.5.5 Performance evaluation under non-recurrent traffic congestion

As the non-recurrent congestion is largely produced by traffic incidents, this research will
investigate the performance of the proposed method under traffic incidents. The test site is
also a three-lane closed segment (between 08A and 10A) and with the same vehicle inputs
as Equation (7.28). To mimic the situation of incident happening, a parking lot locating
at lane 1 (2 kilometers away from the upstream station) is utilized to simulate the incident
vehicle (see Figure 7.10). When incident happens (i.e. incident starts from 90 minutes),
a vehicle would stop in the parking lot and the partial route is activated to simulate the
driving behavior under incident condition.

The proposed algorithm is further tested with different incident durations (e.g. 10 min, 15
min, 20 min and 30 min). Due to the unpredictability of the traffic incidents, the inter-
period adjusting cannot generate a suitable time window. Therefore, it is expected that
the steps of intra-period/temporal iteration would increase significantly, especially when
traffic incident occurs. Figure 7.11 shows the mean travel time estimates from one ex-
periment when incident duration is 10 minutes. It is observed that the mean travel time
increases sharply during time period 20 (i.e. from 100 min to 105 min). And accordingly,
the number of iteration steps of iterative VRI during this time period increases signifi-
cantly. Figure 7.12 also illustrates the adjustment of the time window constraint for each
iteration step. On the other hand, the basic VRI system cannot adapt well to the sudden
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Parking Lot

Partial Route

Figure 7.10: Incident simulation

changes in traffic condition when incident happens (See Figure 7.11). Due to the fixed
time window constraint, the matching accuracy of basic VRI drops to 0% during time pe-
riod 20, which eventually leads to a totally unreliable estimate of the mean travel time.
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Figure 7.11: Performance of the proposed method (incident duration: 10 min; starts from 90
min)

Parallel to the previous experiments, we also run the method 50 times based on the sim-
ulation outputs for different incident durations (e.g. 10 min, 20 min and 30 min). The
detailed estimation results are shown in Table 7.3. With the increase in incident durations,
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Figure 7.12: Adjustment of time window constraint

the RMSE and MAPE increase as well. With the time propagation, it is also observed
that the variance of travel time increases dramatically (period 21 and 22). The "abnormal"
vehicle (seriously delayed by the incident at lane 1) and those normal vehicles may arrive
at downstream during the same time period. In this case, it renders a heavy burden on the
processing of the improved VRI system (e.g. larger time window, more candidate vehi-
cles and of course low matching accuracy). Therefore the results shown in Table 7.3 are
reasonable.

Table 7.3: Performance of the proposed method with different incident durations

Incident durations (min) (%) Performance indices
RMSE (secs) MAPE (%)

10 min 5.61 1.5%
20 min 22.41 2.3%
30 min 25.63 2.8%

7.6 Conclusion remarks

This chapter aims to develop an improved VRI system based on the basic VRI to estimate
the real-time travel time under traffic demand and supply uncertainty. A self-adaptive
time window component (e.g. temporal adaptive time window and iterative VRI) is intro-
duced into the basic VRI system to improve its adaptability against the potential significant
changes in traffic conditions. Also, the associated post-processing technique (i.e. thresh-
olding based on matching probability and stratified sampling based on vehicle type) is
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employed to identify and rule out the erroneous travel time data. The proposed method
is evaluated by conducting various representative simulation tests. Some performance in-
dices such as RMSE and MAPE are also introduced to quantify the performance of this
method.

Further research will be focused on the real-world application of this proposed method.
It is undeniable that the video image processing (VIP) systems are subject to the effects
of inclement weather (e.g. rain, snow) and illumination changes. Under these circum-
stances, the quality of the video image will decrease dramatically and hence compromise
the effectiveness of vehicle feature extraction. During evening hours, the vehicle may
still be partially identified by detecting the vehicle headlight and taillight. But the color
information and vehicle type may not be obtained from the image. In this case, improving
the external lighting condition at each station may be a promising way for vehicle feature
extraction.

As validated by the simulated tests, the proposed VRI system for travel time estimation
performs well under different scenarios (e.g. recurrent traffic congestions, freeway bot-
tlenecks and minor traffic accidents). However, it is noteworthy that the proposed method
may not work well under extremely abnormal traffic conditions (e.g. severe traffic ac-
cident with longer incident duration). As explained in Section 7.5.5, the longer incident
duration would inevitably lead to a larger time window, low matching accuracy of the
proposed VRI system, and hence unreliable travel time estimator. Therefore, future ef-
forts should be dedicated to overcome these drawbacks. As the lane blocking caused by
incidents would produce significant impact on the travel time experienced by the vehicles
at different lanes, one possible way is then to perform stratified sampling based on vehicle
lane position.
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Chapter 8

Iterative VRI system with
spatial-temporal adaptive time window

This chapter aims to propose an improved iterative VRI system with spatial-temporal
adaptive time window to estimate the dynamic travel time for each time period on the
freeway with multiple segments. By fully utilizing the spatial and temporal traffic infor-
mation along the freeway system, the time window for each segment could be adjusted
in a more efficient and timely manner. In addition to exploring the temporal changes in
traffic information, the shrinkage-thresholding method is employed to further integrate
the spatial traffic information from other freeway segments (e.g. sudden changes in travel
time estimators on other freeway segments). The proposed iterative VRI system with
spatial-temporal adaptive time window is tested on a freeway with two consecutive seg-
ments in Bangkok, Thailand. The preliminary results justify the potential advantages of
the proposed VRI system over the original one proposed in Chapter 7 for capturing serious
non-recurrent traffic congestions.

8.1 Introduction

Due to the stochastic and dynamic nature of traffic network (Fu and Rilett, 1998), travel
timemay exhibit stochastic and time-variant (dynamic) behavior (see Section 2.1.1), which
imposes a great challenge on the development of a robust VRI system for dynamic travel
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time estimation. Since travel time is by nature stochastic, the mean value of travel time
during a time period (e.g. 5-min period) would be the desired information for the develop-
ment of advanced traveller information systems (ATIS) and advanced traffic management
systems (ATMS). In this sense, the high matching accuracy of VRI would not be the ma-
jor concern. A suitable post-processing (e.g. thresholding and sampling) technique would
allow us to select those vehicles with "distinctive" features, from which a reliable mean
travel time estimator could be obtained. To handle the time-variant travel time arising from
the dynamic traffic conditions (e.g. recurrent and non-recurrent congestion), the flexible
time window constraint is required for improving the self-adaptivity of basic VRI system.
Based on the above-mentioned principles, an iterative VRI system with temporal adaptive
time window constraint is proposed in Chapter 7. Despite its encouraging experimental
results (see Section 7.5), the proposed VRI system still suffers from two limitations.

First, the proposed VRI system is specifically designed for a single freeway segment with
two consecutive detectors. And accordingly, the time window adjustment is completed
by exploring the temporal changes of traffic information (e.g. average traffic speed) ob-
served on the single segment (i.e. temporal adaptive time window). For a freeway with
multiple detectors (i.e. multiple segments), the strategy of time window adjustment may
not be suitable as it fails to consider the additional spatial traffic information (e.g. traffic
information on other freeway segments). Second, the proposed VRI system in Chapter 7
still cannot perform well for serious non-recurrent traffic congestions (i.e. caused by se-
rious traffic incident with long duration). Although the iterative process (i.e. intra-period
adjusting) of VRI is designed to capture the sudden changes in traffic conditions, the ex-
tremely long incident duration would disrupt the normal traffic flow and, hence, lead to
an unreliable travel time estimator (see Section 7.5.5). The primary reason for this failure
is that the temporal adjustment of time window cannot provide a suitable prediction of the
mean travel time when serious traffic congestion occurs. Therefore, the strategy of time
window constraint should be redesigned so that the derived VRI system can be practically
applicable to the freeway with multiple detectors.

For a freeway with multiple detectors demonstrated in Figure 8.1, there are two consecu-
tive detector pairs (two freeway segments), i.e. A-to-B and B-to-C. Naturally, the dynamic
travel time on these two segments (i.e. segment AB and BC) can be obtained by perform-
ing the VRI system proposed in Chapter 7 independently to the associated detector pairs
(e.g. detector pairs A-to-B and B-to-C). In this case, the adjustments of time window of
VRI system for each detector pair are also independent. Although this approach appears
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A B C

A-to-B B-to-C

Figure 8.1: Freeway with multiple detectors

to be simple and straightforward, it fails to consider the temporal and spatial dynamics
of travel time (Pan, 2012; Min and Wynter, 2011), which may provide potential advan-
tages for time window adjustment. Due to the spatial-temporal evolution of traffic flow
(e.g. freely flowing to congested conditions), travel time may be correlated (i.e. interde-
pendent) in both space and time domains. A serious traffic congestion on segment BC
in Figure 8.1 would incur a backward propagating congestion wave (Laval and Leclercq,
2010; Gentile et al., 2007; Zhang and Gao, 2012), which may eventually lead to the in-
crease in travel time on segment AB in the future time period. In this case, the traffic
information (e.g. sudden change in travel time) derived from VRI system on detector pair
B-to-C may be potentially useful for the VRI system on detector pair A-to-B. A better
mean travel time prediction may be achieved by considering the additional spatial infor-
mation, which would yield a more reliable time window constraint and prior knowledge1,
and eventually improve the performance (i.e. the accuracy of mean travel time estimation)
of the proposed VRI system under serious non-recurrent traffic congestions.

To sum up, this chapter aims to propose an enhanced self-adaptive VRI system for es-
timating dynamic travel time on freeway with multiple detectors. To be more specific,
a spatial-temporal adaptive time window component is introduced to take full advantage
of both temporal and spatial traffic information (e.g. vehicle spot speed and travel time
estimators from spatially distributed VRI system). By exploring the temporal changes
in vehicle's average speed, a preliminary prediction regarding the mean travel time for
each time period is obtained. By integrating spatial information from other VRI system
(e.g. sudden changes in travel time estimators), the time window constraint is further
adjusted based on the shrinkage-thresholding method. The proposed iterative VRI sys-
tem with spatial-temporal adaptive time window is then evaluated against the VRI system
presented in Chapter 7 under serious non-recurrent traffic congestions.

The rest of the chapter is organized as follows. Section 8.2 briefly review the strategy of
1The time window constraint and the prior knowledge can be derived from the prediction of mean travel

time for each time period (see Section 7.4).
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temporal adjustment of time window, which serves as the building blocks for this research.
Section 8.3 presents the improved spatial-temporal adaptive time window component in
which the detailed methodology, i.e. shrinkage-thresholding method, is described. In
Section 8.4, simulated testes are carried out to evaluate the performance of the proposed
system. Finally, we conclude this chapter in Section 8.5.

8.2 Basic temporal adaptive time window

Before proceeding to discuss the detailed spatial-temporal adaptive time window compo-
nent, it is necessary to briefly review the strategy of temporal adjustment of time win-
dow. Mathematically speaking, a freeway with multiple detectors can be divided into
𝑖 = 1, 2, … , 𝐼 sections, where 𝐼 is the most downstream section, and 𝜇𝑖(𝑡) is the desired
mean travel time of freeway section 𝑖 for time period 𝑡. A natural response to this problem
is to apply the original VRI system presented in Chapter 7 independently to each free-
way section 𝑖 and, accordingly, the mean travel time estimator 𝜇𝑖(𝑡) can be obtained. The
original VRI is comprised of two critical components, i.e. iterative process of basic VRI
and the temporal adaptive time window constraint (see Figure 8.2). Given the mean value
𝜇𝑖(𝑡) and the variance 𝜎𝑖(𝑡)2 of the travel time distribution on freeway section 𝑖 during time
period 𝑡, a suitable travel time window [𝐿𝑏𝑖(𝑡), 𝑈𝑏𝑖(𝑡)] could be easily obtained. Assume
that the travel time follows normal distribution 𝑁(𝜇𝑖(𝑡), 𝜎𝑖(𝑡)), then the tolerance interval
with 95% confidence level can be utilized to define the time window, i.e.

[𝐿𝑏𝑖(𝑡), 𝑈𝑏𝑖(𝑡)] ≜ [𝜇𝑖(𝑡) − 1.96𝜎𝑖(𝑡), 𝜇𝑖(𝑡) + 1.96𝜎𝑖(𝑡)] (8.1)

By feeding the above-mentioned travel time window into the iterative VRI component
(i.e. the block of intra-period time window adjusting in Figure 8.2), the basic VRI is
performed iteratively in the hope of capturing the non-recurrent traffic congestions. Also,
it is noteworthy that the success of iterative VRI is highly dependent on the initialization
of time window (i.e. the block of temporal time window adjusting in Figure 8.2) for each
time period. In this case, the temporal adaptive time window component is introduced as
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Figure 8.2: Temporal adjustment of time window

follows1

⌣𝜇𝑖(𝑡 + 1) = ̃𝜇𝑖(𝑡) + 𝜑(𝜇𝑖(𝑡) − ̃𝜇𝑖(𝑡)) (8.2)

̃𝜇𝑖(𝑡 + 1) =
𝑉 𝑈

𝑖 (𝑡) + 𝑉 𝐷
𝑖 (𝑡)

𝑉 𝑈
𝑖 (𝑡 + 1) + 𝑉 𝐷

𝑖 (𝑡 + 1)
⌣𝜇𝑖(𝑡 + 1) (8.3)

where ̃𝜇𝑖(𝑡 + 1) and ̃𝜇𝑖(𝑡) denote the forecasters of the mean travel time in time period 𝑡+1
and period 𝑡, respectively; 𝜑 represents the smoothing parameter which is calibrated from
the historical data; 𝑉 𝑈

𝑖 (𝑡) and 𝑉 𝐷
𝑖 (𝑡) are respectively the average spot speed at upstream

and downstream stations on freeway section 𝑖 during time period 𝑡; likewise, 𝑉 𝑈
𝑖 (𝑡 + 1)

and𝑉 𝐷
𝑖 (𝑡 + 1) are respectively the average spot speed at upstream and downstream stations

during time period 𝑡+1. Equation (8.2) serves as a simple exponential prediction based on
the estimates from previous steps, whereas Equation (8.3) is a correction step by exploring

1The readers can refer to Section 7.4 for a more detailed explanation regarding the temporal adaptive
time window constraint.
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the temporal changes in the average spot speed.

This adjustment strategy based on the temporal information is proven to be effective for
capturing recurrent traffic congestions due to exceeding traffic demand. For those un-
predictable traffic scenarios (e.g. serious traffic incident), the time window may not be
able to adjust in an efficient and timely manner (see Section 8.1). The primary reason
is that the original VRI is performed independently (i.e. the system is isolated) for each
freeway section without considering/utilizing the spatial traffic information on its neigh-
boring freeway sections. In what follows, a novel spatial-temporal adaptive time window
component is introduced such that the isolated VRI system on each freeway section can
be connected and, hence, the performance of the proposed VRI system could be further
improved.

8.3 Spatial-temporal adaptive time window

In this section, we first recall some basic facts on exploring the spatial and temporal cor-
relations in travel time, which serves as the motivation for this research direction. Then
we propose a shrinkage-thresholding method to integrate the spatial information such that
a spatial-temporal adaptive time window constraint is generated. Finally, we present the
overall framework of the improved iterative VRI system with spatial-temporal adaptive
time window.

8.3.1 Spatial and temporal correlation in travel time

Over the last decades, a rich variety of traffic flow theories, such as car following model
(Chandler et al., 1958), kinematic wave theory (Lighthill and Whitham, 1955), cell trans-
mission model (Daganzo, 1994) and stochastic cell transmission model (Sumalee et al.,
2011), have been developed towards modeling the propagation of traffic flow on a trans-
port network, which eventually governs the network performance in terms of travel time
(Szeto and Lo, 2006). In this sense, the spatial-temporal dependency of traffic flow (Yue,
2006) may give rise to the spatio-temporally correlated travel time. Based on the above-
mentioned principle, several studies were also conducted to predict link travel time by
utilizing the spatial-temporal correlation (e.g. Lam et al., 2005; Pan et al., 2013). As ex-
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plained in Section 8.2, the adjustment of time window is completed by roughly predicting
the mean travel time for each time period. Therefore, a "better" prediction of travel time
could be obtained by exploring the spatial-temporal correlation.

However, it should be noted that this research does not attempt to propose any traffic flow
model to accurately predict the travel time. Instead we just revisit some basic facts on the
propagation of traffic flow (i.e. especially the propagation of congestion wave), which
may potentially contribute to our development of spatial-temporal adaptive time window:

• Backward propagation of congestion waves: In a traffic network, it is observed
that traffic congestion (e.g. recurrent and non-recurrent) on freeway segment 𝑖 may
propagate backward to its upstream segment 𝑖 − 1. Due to traffic queue build-up,
the traffic flow may propagate backward with a certain speed (i.e. backward speed),
which means that the travel time on segment 𝑖 − 1 may increase in the near future.
Figure 8.3 shows that ground truth travel time on two consecutive segments when
incident occurs on segment 2. It is observed that the peak value of mean travel time
on segment 2 occurs during time period 19, whereas the peak value on segment 1
appears after time period 20. In such a case, the time window on segment 1 can be
adjusted in a more efficient and timely manner based on the traffic information (e.g.
occurrence of congestion) on segment2.
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Figure 8.3: Ground truth travel time on two consecutive segments with incident happening
on segment2 (incident duration: 10 minutes)
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• Dissipation of traffic congestion: Roughly speaking, traffic congestion dissolve will
be observed through the decrease in the travel time. As shown in Figure 8.3, the
traffic congestion on freeway segment 2 is gradually cleared from time period 20,
whereas the traffic congestion on segment 1 is cleared from period 22. Therefore,
this addition spatial information on segment 2 (e.g. clearance of congestion) can
also be utilized for adjusting the time window on segment 1.

• Forward propagation of traffic flow with free-flow speed: Since the existing VRI
system can perform well under free flow condition, we may not benefit from this
information. Therefore, we will not consider the forward wave in the development
of time window adjustment.

On the basis of the factsmentioned above, a heuristic approach (i.e. shrinkage-thresholding
method) is then introduced to integrate the spatial information for generating a spatial-
temporal adaptive time window constraint.

8.3.2 Shrinkage-thresholding method

The shrinkage/soft-thresholding method has already been widely studied and used in the
field of image processing (e.g. Chambolle et al., 1998; Daubechies et al., 2004; Figueiredo
and Nowak, 2003). In this chapter, the shrinkage-thresholding operator is employed for
integrating the spatial information (i.e. spatial adaptive time window).

For each freeway segment 𝑖, the mean travel time 𝜇𝑖(𝑡 + 1) during time period 𝑡 + 1 is
affected by the past traffic conditions on its neighboring segments (correlated in spatial
domain), i.e. the traffic conditions on segment 𝑖+1 during time period 𝑡 (see Section 8.3.1).
In addition, mean travel time 𝜇𝑖(𝑡 + 1) is also dependent on its previous state (correlated
in temporal domain). Therefore, the associated spatial and temporal adjusting factors, i.e.
ℱsp and ℱtm, are introduced into the spatial-temporal adaptive time window component.

First, the equations (i.e. Equations (8.2) and (8.3)) for temporal adaptive time window are
reformulated as follows

⌣𝜇𝑖(𝑡 + 1) = ̃𝜇𝑖(𝑡) + 𝜑(𝜇𝑖(𝑡) − ̃𝜇𝑖(𝑡)) (8.4)

̃𝜇𝑖(𝑡 + 1) = ℱtm⌣𝜇𝑖(𝑡 + 1) (8.5)
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where ℱtm = 𝑉 𝑈
𝑖 (𝑡)+𝑉 𝐷

𝑖 (𝑡)
𝑉 𝑈

𝑖 (𝑡+1)+𝑉 𝐷
𝑖 (𝑡+1)

is the temporal adjusting factor. Second, the additional spatial
factor ℱsp is then introduced based on a shrinkage-thresholding operator:

ℱsp = 1 + Φ𝜅 (
𝜇𝑖+1(𝑡)

𝜇𝑖+1(𝑡 − 1) − 1) (8.6)

where 𝜅 is the appropriate shrinkage value, and Φ𝜅 ∶ ℝ → ℝ is the shrinkage operator
defined by

Φ𝜅(𝑥) = sgn(𝑥) max(|𝑥| − 𝜅, 0) (8.7)

where sgn(𝑥) is the sign function defined as follows:

sgn(𝑥) =
⎧⎪
⎨
⎪⎩

−1 if x<0
0 if x=0
1 if x>0

(8.8)

The rational behind Equation (8.6) is as follows. If the mean travel time on segment
𝑖 + 1 in current time period 𝑡 is larger than that during the previous time period 𝑡 − 1 (i.e.
𝜇𝑖+1(𝑡)/𝜇𝑖+1(𝑡 − 1) > 1), then traffic congestion may potentially be generated and, conse-
quently, be propagated backward, which also suggests that travel time on segment 𝑖 will
increase in near future, i.e. time period 𝑡+1. In such a case, the shrinkage and thresholding
process is performed (i.e. max(|𝑥| − 𝜅, 0) in Equation (8.7)). Since the congestion wave
may have a relatively slower backward speed, the shrinkage step mentioned above is nec-
essary. On the other hand, if the mean travel time on segment 𝑖 + 1 in current time period
𝑡 is smaller than that during the previous time period 𝑡 − 1 (i.e. 𝜇𝑖+1(𝑡)/𝜇𝑖+1(𝑡 − 1) < 1),
the dissipation of traffic congestion on segment 𝑖 + 1 may be observed and, accordingly,
the travel time on segment 𝜇𝑖(𝑡 + 1) will decrease.

To sum up, the spatial-temporal adaptive time window for segment 𝑖 is expressed by the
following equations:

⌣𝜇𝑖(𝑡 + 1) = ̃𝜇𝑖(𝑡) + 𝜑(𝜇𝑖(𝑡) − ̃𝜇𝑖(𝑡)) (8.9)

̃𝜇𝑖(𝑡 + 1) = ℱspℱtm⌣𝜇𝑖(𝑡 + 1) (8.10)

The overall framework for the proposed iterative VRI system with spatial-temporal adap-
tive time window constraint on freeway segment 𝑖 is illustrated in Figure 8.4. First,
the system will initialize a time period 𝑡, the associated travel time window constraint
[𝐿𝑏𝑖(𝑡), 𝑈𝑏𝑖(𝑡)], and the corresponding prior probability. Then the iterative VRI com-
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Figure 8.4: Overall framework of the proposed VRI system

ponent in Figure 8.4 will accept these initialized exogenous inputs and perform vehicle
matching method repeatedly until the satisfactory travel time estimator 𝜇𝑖(𝑡) for time pe-
riod 𝑡 is obtained. By applying the proposed spatial-temporal adaptive time component, a
new prediction regarding the mean travel time for time period 𝑡 + 1 is obtained and, ac-
cordingly, the iterative VRI component will be activated again such that the mean travel
time estimator 𝜇𝑖(𝑡 + 1) will be produced.

8.4 Preliminary Results

To verify the effectiveness and feasibility of the proposed spatial spatial-temporal adaptive
time window component, various simulation-based experiments are conducted. In this
research VISSIM-based simulation model is devised to simulate freeway system (i.e. with
two consecutive segments) operations under serious non-recurrent traffic congestions.

8.4.1 Simulation model configuration and calibration

Before presenting the experiments, the detailed procedures for simulation model develop-
ment and calibration are introduced. The test site for this research is 34.9-kilometer-long
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three lane freeway system in Bangkok, Thailand (see Figure 8.5). At each station a gantry-
mounted video camera, which is viewed in the upstream direction, is installed, and two
hours of video record were collected between 10 a.m. and noon on June 20, 2012. The
frame rate of the video record is 25 FPS, and the still image size is 563×764. Two consecu-
tive segments (i.e. the green section in Figure 8.5) are chosen for simulation model devel-
opment: i) a 4.2-kilometer-long corridor with on-/off-ramps (i.e. between 02A to 04A),
which is referred to as segment 1; ii) a 5.5-kilometer-long corridor with on-/off-ramps
(i.e. between 04A to 06A), which is referred to as segment 2. The simulation model is
then configured based on the exact roadway geometric feature, including the length of the
segment, location of on/off-ramps, and the number of lanes. To guarantee realistic repre-

Figure 8.5: Test site in Bangkok, Thailand

sentation of the simulated experiments, the model calibration is required. As the detailed
vehicle feature data are not readily obtainable from the raw video record, the intelligent
video surveillance (IVS) is then employed fro extracting the required information. Based
on the video record collected at the test site, 1406 vehicles are detected at three camera
stations (i.e. 02A, 04A and 06A) during the two-hour video record. These 1406 vehicles
are then manually matched/reidentified by the human operators viewing the video record
frame by frame. In other words, the sequential records of 1406 correctly matched vehicles
are obtained and stored in the image database for further application.

8.4.2 Performance evaluation under serious non-recurrent traffic con-
gestion

As this study is specifically designed to capture the non-recurrent traffic congestions
caused by serious traffic incidents on freeway with multiple detectors (i.e. multiple seg-
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ments), we will investigate the performance of the proposedmethod under traffic incidents
with long incident durations. To mimic the situation of incident happening and the back-
ward propagation of the congestion wave, a parking lot locating at lane 1 of Segment 2
(2 kilometers away from station 04A) is utilized to simulate the incident vehicle1. When
incident happens (i.e. incident starts from 90 minutes), a vehicle would stop in the park-
ing lot and the partial route is activated to simulate the driving behavior under incident
condition. The stochastic vehicle inputs of VISSIM-based simulation model are defined
as follows:

𝑄 =

⎧⎪
⎪
⎨
⎪
⎪⎩

4000 veh/h, 0 ≤ 𝑡 ≤ 60 min;
7000 veh/h, 60 ≤ 𝑡 ≤ 120 min;
8000 veh/h, 120 ≤ 𝑡 ≤ 180 min
4000 veh/h, 180 ≤ 𝑡 ≤ 240 min;

(8.11)

The vehicle inputs are chosen such that all the traffic sates ranging from free-flow to con-
gested can be activated. The proposed method is further tested with different incident
durations (e.g. 10 min, 20 min, 30 min).

As demonstrated in Section 7.5.5, the performance of the original method (i.e. temporal
adaptive time window) would gradually decrease with the increase in incident durations
(see Table 7.3). By incorporating the improved spatial-temporal adaptive time window
component, it is expected that the proposed VRI may produce a more accurate travel time
estimator. Figure 8.6 shows the mean travel time estimates of segment 1 from one ex-
periment when incident duration is 20 minutes. It is evident that the original method
(see Chapter 7), which is solely based on the temporal adjustment of time window, cannot
adapt well against the dramatic change of traffic conditions, whereas the proposed method
with spatial-temporal adaptive time window can still perform well. The additional spatial
information of its downstream segment (i.e. segment 2) enable us to obtain a "better" pre-
diction of the mean travel time for segment 1, which eventually lead to a more accurate
travel time estimator. The similar results can also be found when the incident duration is
10 minutes (see Figure 8.7). Note that the primary advantage of the proposed VRI in this
chapter over the original one in Chapter 7 is that it can capture the serious non-recurrent
traffic congestion during the congestion period (e.g. time period 22 in Figure 8.6, and time
period 21 in Figure 8.7). For the other time periods in which the traffic conditions remain
stable, the performances of the methods proposed in Part III of this thesis are "equally"
good. Therefore, the potential advantages of the prosed VRI system in this chapter can-

1The readers can refer to Section 7.5.5 for a more detailed introduction regarding the simulation model
for traffic incident.
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Figure 8.6: Performance of spatial-temporal adaptive time window (incident duration: 20
minutes; Segment 1)
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Figure 8.7: Performance of spatial-temporal adaptive time window (incident duration: 10
minutes; Segment 1)

not not reflected in the root mean square error (RMSE) and the mean absolute percentage
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error (MAPE)1.

In contrast to segment 1, segment 2 does not have its own downstream segment, which
means that there is no available spatial information that can be utilized. In this case,
the spatial-temporal adaptive time window component is equivalent to the original one
proposed in Chapter 7 and may not work well for segment 2 (see Figure 8.8).
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Figure 8.8: Performance of spatial-temporal adaptive time window (incident duration: 20
minutes; Segment 2)

8.5 Conclusion remarks

This chapter extends the self-adaptive VRI system proposed in Chapter 7 to a more general
case where multiple detectors exist. An improved spatial-temporal adaptive time window
component is introduced to take full advantage of both temporal and spatial traffic infor-
mation such that the time window can be adjusted in a more efficient and timely man-
ner. In addition to exploring the temporal changes in traffic information, the shrinkage-
thresholding method is employed to further integrate the spatial traffic information from
other freeway segments (e.g. sudden changes in travel time estimators on other freeway

1The detailed definition of RMSE and MAPE can be found in Section 7.5.3.
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segments). The proposed iterative VRI system with spatial-temporal adaptive time win-
dow is tested on a 9.7-kilometer-long freeway with two consecutive segments in Bangkok,
Thailand. The preliminary results justify the potential advantages of the proposed method
for capturing serious non-recurrent traffic congestions.
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Part IV

Conclusions and future works

167



Chapter 9

Summary of the thesis and future
research topics

9.1 Summary of the thesis

The main objective of this study were to develop a self-adaptive vision-based vehicle
reidentification system for dynamic freeway travel time estimation. A brief summary of
this thesis is given as follows.

Chapter 2 described the basic problem statements (e.g. travel time estimation problem,
vehicle reidentification and automatic incident detection) and reviewed the relevant liter-
atures on these problems.

As this study focused on utilizing the emerging video surveillance system, a compre-
hensive review on this sensing technology was presented in Chapter 3. Various image
processing techniques involved in intelligent video surveillance (IVS) for vehicle feature
extraction (e.g. vehicle color, length and type) were also discussed. Two research direc-
tions (e.g. improving the matching accuracy, and introducing self-adaptive time window
component) were pointed out, which eventually lead to the work presented in Part II and
Part III.

Within the second part of this thesis, a basic vision-basedVRI systemwas developed under

168



9.1 Summary of the thesis

static traffic condition. Chapter 4 provided a comprehensive framework regarding the
basic VRI system. The main contributions of this chapter were as follows. First, IVS was
investigated for the purpose of extracting a rich body of disaggregate data such as vehicle
color, type, and size. Second, a probabilistic fusion strategy was devised to integrate the
obtained vehicle feature data. Specifically, the logarithmic opinion pool (LOP) approach
was utilized for generating an overall posterior probability for vehicle matching decision-
making. Third, the vehicle signature matching was then formulated as a combinatorial
optimization problem and solved by the minimum-weight bipartite matching method. As
a by-product of the basic VRI system, various traffic data including vehicle counts, speed,
and travel time, could be derived. The approach was tested on a 3.6-kilometer segment
of the freeway system in Bangkok, Thailand. The overall reidentification accuracy was
about 54.75%. For travel time estimation purpose, the result shows that the travel time
distribution estimated by our system is reliable under static traffic conditions.

Due to its potential for efficient vehicle tracking in the freeway system, the basic VRI
system was further designed and improved for automatic incident detection purpose. A
VRI based incident detection algorithm under free flow conditionwas presented in Chapter
5. The main contributions of this chapter were as follows. First, an enhanced vehicle
feature matching technique was adopted in the VRI component for explicitly calculating
the matching probability for each pair of vehicles. Second, A screening method based on
ratio of the matching probabilities was introduced for vehicle matching decision-making
such that the incident vehicle could be identified in a timely and accurate manner. The
performance of the proposed algorithm was evaluated against the classical vehicle count
approach in terms of mean time-to-detect and false alarm rate. Also, the real-world case
studies were carried out to demonstrate the potential advantages of the proposed algorithm
for reducing the incident detection time.

To handle the task of vehicle reidentification over multiple detectors, an additional hier-
archical Bayesian matching model was proposed such that the vehicle matching accuracy
could be further improved (see Chapter 6). The main contributions of this chapter were
as follows. First, a hierarchical matching model was proposed such that vehicle match-
ing over multiple detectors could be treated as an integrated process. A hierarchical tree
structure was also employed for representing the matching result over multiple detectors.
Second, the associated hierarchical Bayesian model was introduced to describe the spatial
dependencies between vehicle feature distances, which would yield a more realiable prob-
abilistic measure for matching decision-making. The proposed method was then tested on
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a 9.7-km freeway segment with three detectors. The results suggested that the hierarchical
matching method outperforms the pair-wise VRI matching method.

For the dynamic traffic conditions (i.e. the third part of this thesis), an iterative VRI
system with temporal adaptive time window constraint was proposed to improve its self-
adaptivity in response to the substantial changes in traffic conditions (see Chapter 7). The
main contributions of this chapter were as follows. First, a temporal adaptive time window
component was introduced into the basic VRI system. Also, the post-processing technique
was performed on the raw results produced by basic VRI to rule out the erroneous travel
time and, hence, obtain a more reliable mean travel time estimator. Second, an appropriate
iterative process was developed to perform basic VRI iteratively with different exogenous
(e.g. time window constraint and prior knowledge) such that the non-recurrent traffic
congestions can be captured. Various numerical tests were conducted to demonstrate the
application of the proposed VRI system under dynamic traffic conditions. The first sim-
ulation test investigated the feasibility of utilizing the proposed VRI to estimate the mean
travel time for a closed freeway segment containing recurrent traffic congestions. In the
second simulation was evaluated on a freeway corridor with on- and off-ramps. The exper-
imental results suggested that the proposed method performs well under bottleneck effect.
The third simulation test was then conducted to test the performance of the algorithm under
non-recurrent congestions.

In Chapter 8, a further improved self-adaptive VRI system with spatial-temporal adaptive
time window constraint was proposed to handle the serious non-recurrent traffic conges-
tions (e.g. occurrence of a traffic accident with extremely long incident duration) on a
freeway system with multiple segments. By fully utilizing the spatial and temporal traffic
information along the freeway system, the time window for each segment could be ad-
justed in a more efficient and timelymanner. In addition to exploring the temporal changes
in traffic information, the shrinkage-thresholding method was employed to further inte-
grate the spatial traffic information from other freeway segments (e.g. sudden changes
in travel time estimators on other freeway segments). The proposed iterative VRI system
with spatial-temporal adaptive time windowwas tested on a freeway with two consecutive
segments in Bangkok, Thailand. The preliminary results justified the potential advantages
of the proposed VRI system for capturing serious non-recurrent traffic congestions.
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9.2 Future works

The future works will concentrate on the following aspects with special attention paid to
the network-wide travel time estimation using partial VRI data.

9.2.1 Extension of the VRI system to a network case

As explained in Chapter 4 and Appendix 4.A, the complexity of the vehicle matching
problem would increase dramatically when it comes to the network case where multiple
video cameras exist. Although the typical bipartite matching method still can be applied
to reidentify the vehicles simultaneously across the whole network, the extremely long
computational time would render it impractical for application in large-scale network.

In view of the above mentioned problems, we will propose a priority-based searching
scheme for solving the VRI problem in a network with multiple cameras. Unlike the
corridor case, each upstream camera has a number of corresponding downstream cameras
(one-to-many) in the network. The priority-based searching scheme serves as a strategy to
perform VRI iteratively across each pair of cameras. For the one-to-many (downstream)
camera network, we will assign a priority value to each downstream camera based on the
historical travel time (camera-to-camera) data and covariance information (e.g. path-flow
information). In general, the camera with a shorter travel time will be assigned a relatively
higher priority value. To be specific, once a group of vehicles are detected ad upstream
camera, the proposed search method will be utilized to find the downstream camera with
the highest priority value. The the basic VRI system (see Chapter 4) will be preformed
on this pair of detectors. The matching result together with the matching accuracy will be
generated. By comparing the matching accuracy with the predefined threshold value (i.e.
typical threshold accepting mechanism), we will be able to determine whether vehicles
are re-identified at the downstream site. After eliminating the matched vehicles and the
respective downstream camera, the priority value of the remaining downstream cameras
will be updated according to the matching result.

By performing the proposed searching method iteratively, we would be able to handle the
network case with multiple detectors more efficiently.
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9.2.2 Network-wide travel time estimation using partial VRI data

It is noteworthy that the proposed self-adaptive VRI systems in this thesis were devel-
oped to estimate detector-to-detector journey time. As a natural and necessary extension,
the network-wide/link travel time estimation is required for the further development of
Intelligent Transportation Systems (ITS). However, the task of network-wide travel time
estimation is far from straightforward. The primary reason is that the network-wide travel
time estimation is a highly under-specified problem, where the number of traffic detec-
tors (e.g. AVI detector, image-based sensors) is typically much less than the number of
unknown parameters of interest (Castillo et al., 2013). Due to the complex topological
structure of the traffic network and the limitation of resources in practice, it is not possible
for us to install the detectors at all key locations. Therefore, in order resolve this identifia-
bility problem, an equilibrium assignment component is included and the link travel time
estimation is formulated as a bi-level optimization problem (e.g. Lam et al., 2005; Lam
et al., 2010). In these models, the upper level model is generally a least square problem for
fitting the model outputs with the observed journey times on partial links/paths, whereas
the lower level models are various kinds of equilibrium assignments. Tam and Lam (2008)
estimated the network-wide travel times with AVI data on partial links by exploring the
variance-covariance relationships between the link travel times. It should be noted that
the success of the above mentioned algorithms relies on knowing the exact travel times
on partial links and/or paths. However, in practice, there could be multiple paths between
two detectors and thus the specific path travel time cannot be deducted directly from the
AVI system.

In view of this, we attempt to address these issues using the maximum likelihood based
approach to estimate the static link travel time from the VRI data (i.e. detector-to-detector
journey time data). The proposed algorithm dose not require the additional traffic infor-
mation on specific links/paths (i.e. partial link/path travel time) and, hence, is expected
to be more suitable for real-world application. As a classical statistical approach, maxi-
mum likelihood estimation (MLE) has also been evaluated with several other applications,
such as the OD estimation in transport networks (e.g. Hazelton, 2000; Parry and Hazelton,
2012) and communication network tomography (e.g. Castro et al., 2004; Vardi, 1996). The
basic principle of MLE is quite straightforward. Given a set of detector-to-detector travel
times (obtained from VRI data), a statistical model is proposed to describe the uncertainty
of these observed data. The MLE problem is then formulated as to find the underlying
parameter values (i.e. mean/variance of the link travel time) which would be most likely
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(i.e. maximum likelihood) to give rise to the detector-to-detector travel times. Although
the theoretic basis is simple, a number of detailed issues need to be carefully considered
during the development of MLE method.

Principal amongst them is that we should propose an appropriate and flexible statistical
model to represent the detector-to-detector travel times. As a matter of fact, different
topological structures of the network requires different statistical models. For the most
simple corridor case, an univariate normal distribution would be able to represent the
random journey times. However in practice multiple routes may exist between the two
detectors (i.e. two-detectors-parallel-routes situation), and the route travel time cannot be
observed directly without knowing the detailed routing information. To this end, an indi-
cator ("missing data") variable will be introduced to represent the actual route choice of
each vehicle, and the joint distribution of the missing data and observed journey time data
will be derived.

Following the model formulation, we should also consider the identifiability problem
when it comes to the network case. As one of the most simple network, i.e. two-detector-
with-common-link, the link travel times are unidentifiable (i.e. non-unique) by solely
using the detector-to-detector travel time. This lack of identifiability is partially due to
the rank deficiency of the incidence matrix, and there is no unique mapping of the route
travel time to the link travel time. The other reason is that we haven't fully exploited the
available VRI data (i.e. vehicle arrival time). As part of the VRI data, the arrival time of
each vehicle provides an opportunity to collect more informative statistics, and to some
extent it could resolve the problem of identifiability.

9.2.2.1 Notation and model assumption

To facilitate the representation of the basic idea, the notations are listed as follows unless
otherwise specified:
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𝐆 = (𝒩,𝒜) A traffic road network in which𝒩 is the node sets and 𝒜 the
link (arc) set.

𝑁 Total number of DD journey times that could be observed dur-
ing a predefined observational time window.

𝑦𝑖, 𝑖 = 1, 2, ⋯ , 𝑁 The observed detector-to-detector travel times of vehicle 𝑖.
𝑡𝑖, 𝑖 = 1, 2, ⋯ , 𝑁 The observed arrival time of vehicle 𝑖 at the upstream detector.
𝝁 = {𝜇1, 𝜇2, ⋯ , 𝜇𝑅} The vector of mean travel time on each route between two de-

tectors.
𝝃 = {𝜉1, 𝜉2, ⋯ , 𝜉𝐴} The mean travel time on each link in a road network.
𝛽 The parameter of the logit route choice model.

In general, we make the following assumptions:

A1. The link travel time estimation problem is considered in a static framework. In other
words, the common length of the observed time period is sufficient long so that we
may ignore the possibility of journeys that is only partially completed during the
observational time window.

A2. Vehicles travelling from Detector A to Detector B choose independently of one an-
other which of the 𝑅 available routes to follow. Given the 𝑁 vehicles observed at de-
tector A, the probability of any randomly selected vehicle choosing to travel on route
𝑟 is given by a discrete choice model based on the so-called route choice parameter
𝛽. To simplify the model formulation, we specifically assume that this probability
of a given vehicle choosing route 𝑟 between two detectors is given by a logit model
solely based on the mean route travel times 𝝁 = {𝜇1, 𝜇2, ⋯ , 𝜇𝑅}:

𝑝𝑟(𝝁; 𝛽) = exp(−𝛽𝜇𝑟)
𝑅
∑
𝑠=1

exp(−𝛽𝜇𝑠)
(𝛽 > 0; 𝑟 = 1, 2, ..., 𝑅) (9.1)

A3. The detector-to-detector journey times for vehicles using route 𝑟 follows a normal
distribution (independent between routes), which is independent of the arrival time
at the Detector A. By introducing an additional assumption on mean-variance rela-
tionship: 𝜎2

𝑟 = 𝜃𝜇𝑟, we may obtain this probability density function:

𝑓(𝑦𝑖; 𝜇𝑟) = 1
√2𝜋𝜃𝜇𝑟

exp (−1
2

(𝑦𝑖 − 𝜇𝑟)2

𝜃𝜇𝑟 ) (9.2)
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9.2.2.2 Two-detector-parallel-route situation

Consider a two-detector-parallel-route network (as shown in Figure 9.1), in which two
camera detectors are mounted at location A and B, respectively. 𝑅 is denoted as the num-
ber of parallel routes that exist between the two detectors. Let 𝐲 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁 ) repre-
sent the random vector of observed detector-to-detector journey times. Without knowing
the exact routing information of each vehicle, it is difficult for us to propose a statistical
model to describe the stochastic behavior of random vector 𝐲. In view of this, we introduce

 

Detector A Detector B 
Route 1 

Route 3 

Route 2 

Figure 9.1: Conceptual network

the following unknown indicator variables to represent the actual route choice:

𝑧𝑖𝑟 =
{

1 if 𝑖𝑡ℎ vehicle used route r
0 if this vehicle used a route other than r

(9.3)

where 𝑖 ∈ {1, 2, ⋯ , 𝑁}, and 𝑟 ∈ {1, 2, ⋯ , 𝑅}. Therefore we can think of there being
two kinds of random variables, i.e., the random vector 𝐳𝐢 = (𝑧𝑖𝑟, 𝑟 = 1, 2, ⋯ , 𝑅) that tells
us which route vehicle 𝑖 travels on, and the 𝑦𝑖 variable which tells us the journey time
experienced by vehicle 𝑖 between detectors. The joint knowledge of all the (𝑦𝑖, 𝐳𝐢) vari-
ables provides an opportunity to track all the vehicles along the routes. Let (𝑦𝑖, 𝐳𝐢) denote
the "complete information" of each vehicle. Therefore, the joint probability density/mass
function (pdf) of the "complete information" (𝑦𝑖, 𝐳𝐢), given the model parameters which
we collect together in vector form as (𝛽, 𝜃, 𝝁), is given by:

𝑞(𝑦𝑖, 𝐳𝐢 ; 𝛽, 𝜃, 𝝁) =
𝑅

∏
𝑟=1 {

𝑝𝑟(𝝁; 𝛽) 1
√2𝜋𝜃𝜇𝑟

exp (−1
2

(𝑦𝑖 − 𝜇𝑟)2

𝜃𝜇𝑟 )}

𝑧𝑖𝑟

(9.4)

It should be noted that the indicator variable 𝑧𝑖𝑟 is not observable in practice. By summing
this probability distribution over all possible combinations 𝐳𝐢 would yield the probability
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density function of observing the "incomplete data" 𝑦𝑖:

𝑃 (𝑦𝑖; 𝛽, 𝜃, 𝝁) = ∑
𝐳𝑖

𝑞(𝑦𝑖, 𝐳𝐢 ; 𝛽, 𝜃, 𝝁) (9.5)

In this parallel-route situation, we assume that the observation of each individual detector-
to-detector journey time {𝑦𝑖, 𝑖 = 1, 2, ⋯ , 𝑛} ismutually independent. Thus the incomplete-
data likelihood of observing the random sample {𝑦𝑖, 𝑖 = 1, 2, ⋯ , 𝑛} is given by:

𝐿(𝛽, 𝜃, 𝝁; 𝐲) =
𝑁

∏
𝑖=1

𝑃 (𝑦𝑖; 𝛽, 𝜃, 𝝁) (9.6)

Within the framework ofmaximum likelihood estimation, this estimation problem is equiv-
alent to findind the parameter values which maximize the likelihood function (9.6), i.e.

max
(𝛽,𝜃,𝝁)

𝐿(𝛽, 𝜃, 𝝁; 𝐲) =
𝑁

∏
𝑖=1

𝑃 (𝑦𝑖; 𝛽, 𝜃, 𝝁) (9.7)

Obviously, the directmaximization of (9.6) would yield the estimator (𝛽, 𝜃, 𝝁). To improve
the computational efficiency, the well-known expectation and maximization (E&M) al-
gorithm will be utilized to solve this MLE problem.

Since our ultimate goal is to estimate the link travel time in a network, we need to gen-
eralize the model formulation so as to apply to a link-based specification as opposed to a
route-based one. A natural first step would be to assume that the travel time on link 𝑎 fol-
lows a Normal distribution 𝑁(𝜉𝑎, 𝜃𝜉𝑎), for 𝑎 = 1, 2, ⋯ , 𝐴 (mutually independent between
links). If the 0/1 indicator 𝛿𝑎𝑟 takes the value 1 if link 𝑎 is part of route 𝑟, and 0 other-
wise, then this amounts to assuming that the travel time on any route 𝑟 is also a normal
distribution, with

mean value 𝜇𝑟 =
𝐴

∑
𝑎=1

𝛿𝑎𝑟𝜉𝑎, variance 𝜎𝑟 =
𝐴

∑
𝑎=1

𝜃𝛿𝑎𝑟𝜉𝑎. (9.8)

By substituting (9.8) into the incomplete-data likelihood function, we may also obtain a
likelihood function of new parameters, as 𝐿(𝛽, 𝜃, 𝝃; 𝐲). Accordingly, the link travel time
estimator can be obtained by maximizing this new likelihood function.

Although this simple extension appears to be sound at first glance, the problem of identifi-
ability (i.e. non-uniqueness) of the parameter estimates arises under this statistical model.
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For the parallel route situation mentioned above, this problem is trivial since there is a
unique mapping of the route travel time to link travel time. However, for a more compli-
cated network case (see Figure 9.2), there will be an infinity of solutions for the maximum
likelihood estimation. Note that we can still treat it as a parallel-route situation and hence
estimate the associated route travel time. Unfortunately, this model is incapable of esti-
mating the link travel time due to the rank deficiency of incidence matrix. As shown in
Figure 9.2, link 1 is a common link between the two routes. It is quite reasonable for us
to assume that the travel times on these two routes are correlated with each other because
of the common link. Nevertheless, the statistical model mentioned above fails to take into
account the correlation factor between the routes. To overcome this difficulty and fully
exploit the collected VRI data, the additional platoon information (i.e. arrival time data)
will be utilized for the purpose of link travel time estimation.

 

Link 2 

Detector A 
Detector B 

Link 1 

Link 3 

Route 1 

Route 2 

Figure 9.2: Two-detectors-with-common-links network

9.2.2.3 Two-detector-with-common-link situation

In this part, we are going to estimate the link travel time by explicitly considering the
correlation (i.e. covariance) factor between the route travel times. Recall that the VRI
data consists of two parts: a set of journey times {𝑦𝑖 ∶ 𝑖 = 1, 2, ⋯ , 𝑛} and their associated
arrival time {𝑡𝑖 ∶ 𝑖 = 1, 2, ⋯ , 𝑛}. As a matter of fact, the arrival time data also provide
an opportunity to collect more informative statistics. By our observation, a number of
vehicles tend to travel in a platoon. Accordingly, it is expected that the vehicles in the same
platoon would experience the same travel time on the common link (where covariance
arises).
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To be more specific, for a given interval of time, detector A in Figure 9.2 captures a
number of vehicles at certain time {𝑡𝑖 ∶ 𝑖 = 1, 2, ⋯ , 𝑛} (see e.g. Figure 9.3). Based
on their arrival time, we may calculate the time-headway between the vehicles and hence
define the associated vehicle platoons. In this case, the measured VRI data will be divided
into two groups: the individual observation (e.g. 𝑦𝑖, 𝑦𝑗) and the platoon observation (e.g.
(𝑦𝑘, 𝑦𝑚)).

Vehicle Platoon

Arrival time at 
detector A

iy

2iy � 1iy �

3iy �

Figure 9.3: Vehicle platoon information

For the individual observation, the independency assumption is still reasonable because
of the sufficiently large time-headway between the vehicles. And we can still utilize the
statistical model proposed in Section 9.2.2.2. Therefore,the joint probability density func-
tion (pdf) of (𝑦𝑖, 𝐳𝐢) is given by:

𝑞1(𝑦𝑖, 𝐳𝐢 ; 𝛽, 𝜃, 𝝃) =
𝑅

∏
𝑟=1 {

𝑝𝑟(𝝁; 𝛽) 1
√2𝜋𝜃𝜇𝑟

exp (−1
2

(𝑦𝑖 − 𝜇𝑟)2

𝜃𝜇𝑟 )}

𝑧𝑖𝑟

(9.9)

where 𝜇𝑟 =
𝐴
∑
𝑎=1

𝛿𝑎𝑟𝜉𝑎. By summing this probability distribution over all possible combi-

nations 𝐳𝐢 would yield the probability density function of observing the "incomplete data"
𝑦𝑖:

𝑃1(𝑦𝑖; 𝛽, 𝜃, 𝝃) = ∑
𝐳𝑖

𝑞(𝑦𝑖, 𝐳𝐢 ; 𝛽, 𝜃, 𝝃) (9.10)

And accordingly, the likelihood function of the individual observation is given as follows:

𝐿1(𝛽, 𝜃, 𝝃; 𝐲) =
𝑁1

∏
𝑖=1

𝑃1(𝑦𝑖; 𝛽, 𝜃, 𝝃) (9.11)

in which 𝑁1 represents the number of the individual observations.
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With respect to the vehicle platoon observation (𝑦𝑘, 𝑦𝑚), as explained above they are not
independent but following a multivariate normal distribution (MVN). In our particular
case shown in Figure 9.2, knowing the routing information(𝐳𝐤, 𝐳𝐦), the platoon observation

(𝑦𝑘, 𝑦𝑚) ∼ 𝑀𝑉 𝑁(𝝁, ∑) (9.12)

For example, assuming that vehicle 𝑘 and 𝑚 are traveling on route 1 and route 2, respec-
tively, then we may have:

(𝑦𝑘, 𝑦𝑚) ∼ 𝑀𝑉 𝑁
(

(𝜉1 + 𝜉2, 𝜉1 + 𝜉3),
(

𝜃𝜉1 + 𝜃𝜉2 𝜃𝜉1
𝜃𝜉1 𝜃𝜉1 + 𝜃𝜉3 ))

In this case, the joint probability density function (pdf) of (𝑦𝑘, 𝐳𝐤; 𝑦𝑚, 𝐳𝐦) is given by:

𝑞2(𝑦𝑘, 𝐳𝐤, 𝑦𝑚, 𝐳𝐦; 𝛽, 𝜃, 𝝃) =
𝑅

∏
𝑟𝑘=1

𝑅

∏
𝑟𝑚=1

{𝑝𝑟𝑘
(𝝁; 𝛽)𝑝𝑟𝑚

(𝝁; 𝛽)𝑀𝑉 𝑁(𝝁, ∑)}
𝑧𝑘𝑟𝑘 𝑧𝑚𝑟𝑚 (9.13)

By summing this probability distribution over all possible combinations 𝐳𝐤 and 𝐳𝐦 would
yield the probability density function of observing the "incomplete data" (𝑦𝑘, 𝑦𝑚):

𝑃2(𝑦𝑘, 𝑦𝑚; 𝛽, 𝜃, 𝝃) = ∑
𝐳𝑘

∑
𝐳𝑚

𝑞2(𝑦𝑘, 𝐳𝐤, 𝑦𝑚, 𝐳𝐦; 𝛽, 𝜃, 𝝃) (9.14)

Again, we may obtain the likelihood function of the platoon information, 𝐿2(𝛽, 𝜃, 𝝃; 𝐲).
The overall likelihood function is then given by:

𝐿(𝛽, 𝜃, 𝝃; 𝐲) = 𝐿1(𝛽, 𝜃, 𝝃; 𝐲) ∗ 𝐿2(𝛽, 𝜃, 𝝃; 𝐲) (9.15)

Upon completion of the statistical model formulation, the upcoming task is estimate the
link travel times by maximizing the likelihood function (9.6) and/or (9.15). As discussed
earlier, the direct optimization method may not be mathematical tractable because of the
potentially massive computational load. In the following part, we would apply the expec-
tation and maximization (E&M) algorithm to solve the MLE problem.
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9.2.2.4 Preliminary numerical results

To demonstrate the properties of the model formulation, we perform a series of simulation
tests using the conceptual network in Figure 9.1 and Figure 9.2.

The test network shown in Figure 9.1 consists of three parallel routes and two VRI detec-
tors. In this case, our goal is to estimate the unknown parameters (𝜇1, 𝜇2, 𝜇3, 𝛽, 𝜃) through
the observed the VRI data. In this research, we utilize Monte Carlo simulation approach
to generate the VRI data using the statistical model described in Section 9.2.2.2. In our
simulation test, the actual mean route travel time is 𝝁 = (30, 32, 34). The actual route
choice parameter 𝛽 = 0.5, whereas the mean-variance parameter 𝜃 = 0.1. As mentioned
before, the performance of proposed EM algorithm is highly dependent on the initial pa-
rameter. Therefore, we utilize the random initialization technique to generate a number of
initial points.

Table 9.1: Performance of random initialization technique

Initial parameters Estimated parameters log-likelihood𝜇1 𝜇2 𝜇3 𝛽 𝜃 𝜇1 𝜇2 𝜇3 𝛽 𝜃
29.46 32.07 34.31 0 0.07 29.93 31.35 33.84 0.39 0.10 -2190.6
29.87 33.09 35.36 0.11 0.06 29.93 31.36 33.84 0.39 0.10 -2190.6
29.82 32.82 35.03 0.41 0.07 30.11 32.20 34.29 0.56 0.10 -2190.5
29.51 32.55 36.38 0.31 0.08 30.03 31.96 34.19 0.50 0.10 -2190.4

As shown in Table 9.1, the EM algorithm starting at different initial points would give rise
to different solutions. The major reason for this phenomena is that the objective function
is non-concave. In this case, the global maxima may not be guaranteed. By applying
the proposed random initialization technique, we may achieve a "sub-optimal" estimate.
The last row in Table 9.1 shows that a more reasonable estimate with relatively larger
incomplete-data log-likelihood is obtained. We also calculate the scaled rootmean squared
error to indicate the accuracy the estimation. To be more specific, we first generate 50 sets
of VRI data (the sample size of each set of data is 1000) using Monte Carlo simulation
approach. Then the scaled root mean squared error is given by:

SRMSE = 1
||𝝁||1

√√√
⎷

1
50

50

∑
𝑖=1

3

∑
𝑗=1

( ̂𝜇(𝑖)
𝑗 − 𝜇𝑗)2 = 0.0125 (9.16)
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where ̂𝜇(𝑖)
𝑗 denotes the estimate for the 𝑗th route based on the 𝑖th data set.

To verify the asymptotic properties of the estimators, we apply this statistical estimation
approach to a number of VRI data sets with different sample sizes. Assume that all the
EM procedures start at the same initial point (𝜇(0)

1 , 𝜇(0)
2 , 𝜇(0)

3 , 𝛽(0), 𝜃(0)), then we may obtain
the following results:

Table 9.2: Asymptotic properties of the estimators

Estimated parameters Sample size𝜇1 𝜇2 𝜇3 𝛽 𝜃
29.4720 31.7402 34.3533 0.3484 0.0549 100
30.1222 32.3078 35.2306 0.5451 0.1107 200
30.0192 31.4881 33.5846 0.4541 0.0982 500
30.0310 31.9604 34.1854 0.5005 0.1003 1000

As shown in Table 9.2, the estimates become more and more accurate with the increasing
of the sample size of the observed VRI data. This phenomena is quite reasonable as the
maximum likelihood estimator is asymptotically unbiased and efficient.

Another test network shown in Figure 9.2 consists of 3 links and two routes. link 1 is
the common link between the two routes. In our experiment, the actual mean link travel
time is 𝝃 = (20, 10, 14). The actual route choice parameter 𝛽 = 0.5, whereas the mean-
variance parameter 𝜃 = 0.1. By adopting the statistical model proposed in Section 9.2.2.3,
we may generate the observed data through Monte Carlo simulation. Recall that by solely
utilizing the individual observation, we may not achieve an unique solution. Therefore,
two sources of data are explored: individual information and platoon information. In
this test, the sample size of individual information is denoted by 𝑁1 while the platoon
information (i.e. number of pairs of vehicles) is 𝑁2.

Table 9.3: Performance of the link travel time estimation

Estimated parameters 𝐍𝟏 𝐍𝟐𝜉1 𝜉2 𝜉3 𝛽 𝜃
18.9620 11.4027 16.0387 0.4084 0.0849 900 100
19.2482 9.3078 15.6732 0.5687 0.0845 800 200
19.8702 10.6504 14.2408 0.5402 0.1003 500 500
20.0271 9.98464 14.1002 0.4995 0.0981 200 800
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Table 9.3 demonstrates the performance of our estimation approach by utilizing two sources
of VRI data. It is evident that the unique solution can be obtained by incorporating the pla-
toon information. With respect to the increase of𝑁2, the estimates are becoming more and
more accurate. This result is expectable, since the platoon information provide us more
informative statistics. One interpretation for this result is that the individual information
enable us to estimate the statistically independent route travel times, whereas the supple-
mentary platoon information describe the covariance between different routes (here we
assume the covariance results from the overlapping between routes). The combined us-
age of these two sources of data provide us a chance to resolve the identifiability problem.
However, it should also be noted that incorporation of the platoon information would in-
evitably increase the complexity of the objective function (see Equation (9.13)) and hence
the computational time. In other words, there is a trade-off between the estimation accu-
racy and computational efficiency.

9.2.2.5 A discussion on the proposed method

Several comments should bemade on the proposedmethod. First, due to the non-concavity
of the incomplete likelihood function (Equation (9.6)), we may not be able to obtain an
"optimal" estimate. In this case, we suggest starting the E&M algorithms at a number of
random initial points to avoid being "trapped" at the local maxima. Second, when it comes
to a network case with multiple detectors, the growing complexity of the complete-data
likelihood function and the large number of parameters to be estimated will be the ma-
jor computational consideration. Third, in practice we may not achieve perfect matching
through the VRI system. Thus, we should also consider the possible random error of the
Detector-to-Detector journey time produced by this VRI system. Recall that the VRI sys-
tem would also provide us a probability measure to represent the matching accuracy (see
Chapter 4). In such case, we suggest that the joint likelihood function proposed earlier
should also be modified by multiplying this additional factor (i.e. matching accuracy) to
represent the reliability of the observed travel time data.

182



References

Abhari, K., Marsousi, M., Babyn, P., Alirezaie, J., 2012. Medical image denoising us-
ing low pass filtering in sparse domain. In: Proceedings of Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, 114–117 (cit. on
p. 26).

Acharya, T., Ray, A.K., 2005. Image Processing: Principles and Applications. Hoboken,
N.J.: John Wiley (cit. on p. 26).

Aghdasi, H.S., Abbaspour, M., Moghadam, M.E., Samei, Y., 2008. An energy-efficient
and high-quality video transmission architecture in wireless video-based sensor net-
works. Sensors 8 (8), 4529–4559 (cit. on p. 24).

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall (cit. on p. 64).

Baek, N., Park, S.M., Kim, K.J., Park, S.B., 2007. Vehicle Color Classification Based on
the Support Vector Machine Method. In: Advanced Intelligent Computing Theories
and Applications. With Aspects of Contemporary Intelligent Computing Techniques.
Ed. by D.-S. Huang, L. Heutte, M. Loog. Vol. 2. Communications in Computer and
Information Science. Springer Berlin Heidelberg, 1133–1139 (cit. on p. 36).

Balke, K.N., Chaudhary, N., Chu, C.L., Kunchangi, S., Nelson, P., Songhitruksa, P., Sunkari,
S., Swaroop, D., Tyagi, V., 2005. Dynamic traffic flowmodeling for incident detection
and short-term congestion prediction. Tech. rep. (cit. on p. 30).

Beckmann, M.J., 2013. Traffic congestion and what to do about it. Transportmetrica B:
Transport Dynamics 1 (1), 103–109 (cit. on p. 1).

183



REFERENCES

Belongie, S., Malik, J., 2000. Matching with shape contexts. In: Proceedings of IEEE
Workshop on Content-based Access of Image and Video Libraries, 20–26 (cit. on
p. 64).

Benediktsson, J., Swain, P., 1992. Consensus theoretic classificationmethods. IEEETrans-
actions on Systems, Man and Cybernetics 22 (4), 688–704 (cit. on p. 60).

Beymer, D., McLauchlan, P., Coifman, B., Malik, J., 1997. A real-time computer vision
system for measuring traffic parameters. In: Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 495–501 (cit. on p. 21).

Bhattacharyya, A., 1943. On a measure of divergence between two statistical populations
defined by their probability distributions. Bulletin of the Calcutta Mathematical Soci-
ety 35, 99–109 (cit. on p. 40).

Bird, N.D., Masoud, O., Papanikolopoulos, N.P., Isaacs, A., 2005. Detection of loitering
individuals in public transportation areas. IEEETransactions on Intelligent Transporta-
tion System 6 (2), 167–177 (cit. on p. 41).

Borgefors, G., 1988. Hierarchical chamfer matching: A parametric edge matching algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (6), 849–
865 (cit. on p. 107).

Castillo, E., Menéndez, J.M., Jiménez, P., 2008. Trip matrix and path flow reconstruction
and estimation based on plate scanning and link observations. Transportation Research
Part B: Methodological 42 (5), 455–481 (cit. on p. 16).

Castillo, E., Nogal, M., Rivas, A., Sánchez-Cambronero, S., 2013. Observability of traffic
networks. Optimal location of counting and scanning devices. Transportmetrica B:
Transport Dynamics 1 (1), 68–102 (cit. on p. 172).

Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B., 2004. Network tomography: recent
developments. Statistical Science 19 (3), 499–517 (cit. on p. 172).

Celikoglu, H.B., 2013. Flow-based freeway travel-time estimation: A comparative eval-
uation within dynamic path loading. IEEE Transactions on Intelligent Transportation
Systems 14 (2), 772–781 (cit. on p. 124).

Cetin, M., Monsere, C.M., Nichols, A.P., 2011. Bayesian models for reidentification of
trucks over long distances on the basis of axle measurement data. Journal of Intelli-

184



REFERENCES

gent Transportation Systems: Technology, Planning, and Operations 15, 1–12 (cit. on
pp. 17, 19, 20, 75, 100).

Chambolle, A., DeVore, R., Lee, N.Y., Lucier, B., 1998. Nonlinear wavelet image process-
ing: Variational problems, compression, and noise removal through wavelet shrinkage.
IEEE Transactions on Image Processing 7 (3), 319–335 (cit. on p. 159).

Chandler, R.E., Herman, R., Montroll, E.W., 1958. Traffic dynamics: Studies in car fol-
lowing. Operations research 6 (2), 165–184 (cit. on p. 157).

Chang, G.L., Su, C.C., 1995. Predicting intersection queue with neural network models.
Transportation Research Part C: Emerging Technologies 3 (3), 175–191 (cit. on p. 27).

Chang, S.L., Chen, L.S., Chung, Y.C., Chen, S.W., 2004. Automatic license plate recogni-
tion. IEEE Transactions on Intelligent Transportation Systems 5, 42–53 (cit. on pp. 16,
50, 75, 124).

Chen, A., Yang, H., Lo, H.K., Tang, W.H., 2002. Capacity reliability of a road network:
an assessment methodology and numerical results. Transportation Research Part B:
Methodological 36 (3), 225–252 (cit. on p. 12).

Chen, A., Zhou, Z., Chootinan, P., Ryu, S., Yang, C., Wong, S.C., 2011. Transport network
design problem under uncertainty: a review and new developments. Transport Reviews
31 (6), 743–768 (cit. on p. 12).

Choi, E., Lee, C., 2003. Feature extraction based on the Bhattacharyya distance. Pattern
Recognition 36 (8), 1703–1709 (cit. on p. 40).

Chou, C.S.,Miller-Hooks, E., 2010. Simulation-based secondary incident filteringmethod.
Journal of Transportation Engineering 136 (8), 746–754 (cit. on p. 74).

Chowdhury, M.A., Sadek, A.W., 2003. Fundamentals of Intelligent Transportation Sys-
tems Planning. Boston, MA: Artech House (cit. on p. 1).

Clark, S., Watling, D., 2005. Modelling network travel time reliability under stochastic de-
mand. Transportation Research Part B: Methodological 39 (2), 119–140 (cit. on p. 12).

Coifman, B., 2002. Estimating travel times and vehicle trajectories on freeways using dual
loop detectors. Transportation Research Part A: Policy and Practice 36 (4), 351–364
(cit. on pp. 15, 124).

185



REFERENCES

Coifman, B., 1998. Vehicle re-identification and travel time measurement in real-time on
freeways using existing loop detector infrastructure. Transportation Research Record
1643, 181–191 (cit. on pp. 19, 20, 50, 75, 124).

Coifman, B., Cassidy, M., 2002. Vehicle reidentification and travel time measurement on
congested freeways. Transportation Research Part A: Policy and Practice 36 (10), 899–
917 (cit. on pp. 17, 20, 49, 75).

Coifman, B., Krishnamurthy, S., 2007. Vehicle reidentification and travel time measure-
ment across freeway junctions using the existing detector infrastructure. Transporta-
tion Research Part C: Emerging Technologies 15 (3), 135–153 (cit. on pp. 17, 20, 49,
74).

Conte, D., Foggia, P., Sansone, C., Vento, M., 2003. Graph matching applications in pat-
tern recognition and image processing. In: Proceedings of International Conference on
Image Processing (cit. on p. 64).

Cordeiro, P.J., Assuncao, P., 2012. Distributed coding/decoding complexity in video sen-
sor networks. Sensors 12 (3), 2693–2709 (cit. on p. 24).

Cortés, C.E., Lavanya, R., Oh, J.-S., Jayakrishnan, R., 2002. General-purpose methodol-
ogy for estimating link travel time with multiple-point detection of traffic. Transporta-
tion Research Record 1802 (1), 181–189 (cit. on p. 14).

Dadashi, N., Stedmon, A., Pridmore, T., 2009. Automatic components of integrated CCTV
surveillance systems: functionality, accuracy and confidence. In: Proceedings of Sixth
IEEE International Conference on Advanced Video and Signal Based Surveillance,
376–381 (cit. on p. 24).

Daganzo, C.F., 1994. The cell transmission model: A dynamic representation of high-
way traffic consistent with the hydrodynamic theory. Transportation Research Part B:
Methodological 28 (4), 269–287 (cit. on p. 157).

Daubechies, I., Defrise, M., De Mol, C., 2004. An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics 57 (11), 1413–1457 (cit. on p. 159).

Dharia, A., Adeli, H., 2003. Neural network model for rapid forecasting of freeway link
travel time. Engineering Applications of Artificial Intelligence 16 (7-8), 607–613 (cit.
on p. 12).

186



REFERENCES

Dion, F., Rakha, H., 2006. Estimating dynamic roadway travel times using automatic vehi-
cle identification data for low sampling rates. Transportation Research Part B:Method-
ological 40 (9), 745–766 (cit. on p. 16).

Dong,W.S., Zhang, L., Shi, G.M.,Wu,X.L., 2011. ImageDeblurring and Super-Resolution
by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Transac-
tions on Image Processing 20 (7), 1838–1857 (cit. on p. 26).

Dufour, J.Y., 2013. Intelligent Video Surveillance Systems. London: ISTE (cit. on p. 22).

Fambro, D.B., Ritch, G.P., 1979. Automatic detection of freeway incidents during low
volume conditions. Tech. rep. FHWA/TX-79/23-210-1 (cit. on p. 31).

Fambro, D.B., Ritch, G.P., 1980. Evaluation of an algorithm for detecting urban freeway
incidents during low-volume conditions. Transportation Research Record 773, 31–39
(cit. on pp. 75, 79).

Farenzena,M., Bazzani, L., Perina, A.,Murino, V., Cristani,M., 2010. Person re-identification
by symmetry-driven accumulation of local features. In: Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2360–2367 (cit. on pp. 33,
41).

Figueiredo, M.A.T., Nowak, R., 2003. An EM algorithm for wavelet-based image restora-
tion. IEEE Transactions on Image Processing 12 (8), 906–916 (cit. on p. 159).

Fries, R., Chowdhury, M., Ma, Y., 2007. Accelerated incident detection and verification:
A benefit to cost analysis of traffic cameras. Journal of Intelligent Transportation Sys-
tems: Technology, Planning, and Operations 11 (4), 191–203 (cit. on p. 74).

Frühwirth-Schnatter, S., 2006. FiniteMixture andMarkov SwitchingModels. 1st ed. Springer
(cit. on p. 57).

Fu, L., Rilett, L.R., 1998. Expected shortest paths in dynamic and stochastic traffic net-
works. TransportationResearch Part B:Methodological 32 (7), 499–516 (cit. on pp. 12,
152).

Gao, Y., Dai, Q., Wang, M., Zhang, N., 2011. 3D model retrieval using weighted bipar-
tite graph matching. Signal Processing: Image Communication 26 (1), 39–47 (cit. on
p. 63).

187



REFERENCES

Gentile, G., Meschini, L., Papola, N., 2007. Spillback congestion in dynamic traffic as-
signment: A macroscopic flow model with time-varying bottlenecks. Transportation
Research Part B: Methodological 41 (10), 1114–1138 (cit. on p. 154).

Gheissari, N., Sebastian, T.B., Hartley, R., 2006. Person reidentification using spatiotem-
poral appearance. In: Proceedings of IEEEComputer Society Conference onComputer
Vision and Pattern Recognition (CVPR). Vol. 2, 1528–1535 (cit. on p. 41).

Ghosh, S.K., 2013. Digital Image Processing. Oxford: Alpha Science International Ltd
(cit. on p. 25).

Goudail, F., Réfrégier, P., Delyon, G., 2004. Bhattacharyya distance as a contrast parameter
for statistical processing of noisy optical images. Journal of the Optical Society of
America A 21 (7), 1231–1240 (cit. on p. 40).

Guner, A.R., Murat, A., Chinnam, R.B., 2012. Dynamic routing under recurrent and non-
recurrent congestion using real-time ITS information. Computers & Operations Re-
search 39 (2), 358–373 (cit. on p. 1).

Haghani, A., Hamedi, M., Sadabadi, K.F., Young, S., Tarnoff, P., 2010. Data collection
of freeway travel time ground truth with bluetooth sensors. Transportation Research
Record 2160, 60–68 (cit. on p. 16).

Hall, F.L., Shi, Y., Atala, G., 1993. On-line testing of the McMaster incident detection
algorithm under recurrent congestion. Transportation Research Record 1394, 1–7 (cit.
on p. 74).

Hazelton, M.L., 2000. Estimation of origin-destination matrices from link flows on un-
congested networks. Transportation Research Part B: Methodological 34 (7), 549–566
(cit. on p. 172).

Hellinga, B.R., Fu, L., 2002. Reducing bias in probe-based arterial link travel time esti-
mates. Transportation Research Part C: Emerging Technologies 10 (4), 257–273 (cit.
on p. 135).

Hofleitner, A., Herring, R., Abbeel, P., Bayen, A., 2012. Learning the dynamics of arte-
rial traffic from probe data using a dynamic Bayesian network. IEEE Transactions on
Intelligent Transportation Systems 13 (4), 1679–1693 (cit. on pp. 16, 124).

Hoh, B., Iwuchukwu, T., Jacobson, Q., Work, D., Bayen, A.M., Herring, R., Herrera, J.C.,
Gruteser, M., Annavaram, M., Ban, J., 2012. Enhancing privacy and accuracy in probe

188



REFERENCES

vehicle-based traffic monitoring via virtual trip lines. IEEE Transactions on Mobile
Computing 11 (5), 849–864 (cit. on p. 16).

Holt, R.B., Smith, B.L., Park, B., 2003. An Investigation of travel time estimation based
on point sensors. Tech. rep. Smart Travel Laboratory (cit. on p. 2).

Hsieh, A.J., Fan, K.C., Fan, T.I., 1995. Bipartite weighted matching for on-line handwrit-
ten Chinese character recognition. Pattern Recognition 28 (2), 143–151 (cit. on p. 64).

Huang, T., Russell, S., 1998. Object identification: a Bayesian analysis with application
to traffic surveillance. Artificial Intelligence 103 (1-2), 77–93 (cit. on pp. 19, 57).

Jähne, B., 2005. Digital Image Processing. Berlin: Springer (cit. on p. 25).

Javed, O., Rasheed, Z., Shafique, K., Shah, M., 2003. Tracking across multiple cameras
with disjoint views. In: Proceedings of Ninth IEEE International Conference on Com-
puter Vision, 952–957 (cit. on p. 42).

Javed, O., Shafique, K., Shah, M., 2005. Appearance modeling for tracking in multiple
non- overlapping cameras. In: Proceedings of 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition. Vol. 2, 26–33 (cit. on pp. 33, 41).

Jeng, S.T., 2007. Real-time vehicle reidentification system for freeway performance mea-
surements. PhD Thesis. University of California, Irvine (cit. on p. 17).

Jeng, S.-T., Tok, Y., Ritchie, S., 2010. Freeway corridor performance measurement based
on vehicle reidentification. IEEE Transactions on Intelligent Transportation Systems
11 (3), 639–646 (cit. on p. 18).

Kamijo, S., Kawahara, T., Sakauchi,M., 2005. Vehicle sequence imagematching for travel
time measurement between intersections. In: Proceedings of IEEE International Con-
ference on Systems, Man and Cybernetics. Vol. 2, 1359–1364 (cit. on pp. 17, 19, 20,
124).

Kittler, J., Hatef, M., Duin, R.P.W., Matas, J., 1998. On combining classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20 (3), 226–239 (cit. on p. 59).

Klein, L.A., Mills, M.K., Gibson, D.R.P., 2006. Traffic detector handbook. English. 3rd
ed. Washington, DC, USA: Federal Highway Administration (cit. on p. 21).

189



REFERENCES

Kwong, K., Kavaler, R., Rajagopal, R., Varaiya, P., 2010. Real-time measurement of link
vehicle count and travel time in a road network. IEEE Transactions on Intelligent
Transportation Systems 11 (4), 814–825 (cit. on p. 124).

Kwong, K., Kavaler, R., Rajagopal, R., Varaiya, P., 2009. Arterial travel time estimation
based on vehicle re-identification using wireless magnetic sensors. Transportation Re-
search Part C: Emerging Technologies 17 (6), 586–606 (cit. on pp. 12, 17, 19, 20, 49–
51).

Ladson, J.A., 2005. The reproduction of colour. Color Research & Application 30 (6),
466–467 (cit. on p. 25).

Lam, W., Chan, K., Tam, M., Shi, J., 2005. Short-term travel time forecasts for transport
information system in Hong Kong. Journal of Advanced Transportation 39 (3), 289–
306 (cit. on pp. 157, 172).

Lam, W.H.K., Shao, H., Chen, A., 2010. Journey time estimator for assessment of road
network performance under demand uncertainty. In: Proceedings of 4th International
Symposium on Transportation Network Reliability. University of Minnesota (cit. on
p. 172).

Laval, J.A., Leclercq, L., 2010. A mechanism to describe the formation and propagation
of stop-and-go waves in congested freeway traffic. Physical and Engineering Sciences
368 (1928), 4519–4541 (cit. on p. 154).

Lee, J., Taylor, W., 1999. Application of a dynamic model for arterial street incident de-
tection. Journal of Intelligent Transportation Systems: Technology, Planning, and Op-
erations 5 (1), 53–70 (cit. on p. 30).

Levin, M., Krause, G.M., 1978. Incident detection: a Bayesian approach. Transportation
Research Record 682, 52–58 (cit. on p. 29).

Li, R., Rose, G., Sarvi, M., 2006. Evaluation of speed-based travel time estimation models
RID A-2397-2009. Journal of Transportation Engineering 132 (7), 540–547 (cit. on
pp. 15, 124).

Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves. II. A theory of traffic flow
on long crowded roads. In: Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences. Vol. 229. 1178, 317–345 (cit. on p. 157).

190



REFERENCES

Lin, W.H., Tong, D., 2011. Vehicle re-identification with dynamic time windows for vehi-
cle passage time estimation. IEEE Transactions on Intelligent Transportation Systems
12 (4), 1057–1063 (cit. on pp. 20, 100, 125).

Lindveld, C.D., Thijs, R., Bovy, P., Zijpp Van, der, 2000. Evaluation of online travel time
estimators and predictors. Transportation Research Record 1719 (1), 45–53 (cit. on
pp. 14, 15).

Lint, J.W.C. van, 2004. Reliable travel time prediction for freeways. PhD Thesis. Delft
University of Technology, Delft, The Netherlands. (cit. on p. 13).

Lint, J., Zijpp, N., 2003. Improving a travel time estimation algorithm by using dual loop
detectors. Transportation Research Record 1855, 41 (cit. on p. 14).

Lo, H.K., Luo, X.W., Siu, B., 2006. Degradable transport network: Travel time budget of
travelers with heterogeneous risk aversion. Transportation Research Part B: Method-
ological 40 (9), 792–806 (cit. on p. 12).

Lo, H.K., Sumalee, A., 2013. Transport dynamics: its time has come! Transportmetrica B:
Transport Dynamics 1 (1), 1–2 (cit. on p. 126).

Luathep, P., 2011. Stochastic transport network model and optimization for reliability and
vulnerability analysis. PhD Thesis. The Hong Kong Polytechnic University. (cit. on
p. 12).

Matei, B.C., Sawhney, H.S., Samarasekera, S., 2011. Vehicle tracking across nonoverlap-
ping cameras using joint kinematic and appearance features. In: Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
3465–3472 (cit. on p. 42).

Mazzon, R., Cavallaro, A., 2012. Multi-camera tracking using a multi-goal social force
model. Neurocomputing 100, 41–50 (cit. on pp. 33, 42).

McLachlan, G., Krishnan, T., 2008. The EM Algorithm and Extensions. Wiley series in
probability and statistics. Wiley-Interscience (cit. on p. 57).

Michalopoulos, P.G., 1991. Vehicle detection video through image-processing - the Au-
toscope system. IEEE Transactions on Vehicular Technology 40 (1), 21–29 (cit. on
p. 24).

191



REFERENCES

Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correla-
tions. Transportation Research Part C: Emerging Technologies 19 (4), 606–616 (cit. on
p. 154).

Nakajima, C., Pontil, M., Heisele, B., Poggio, T., 2003. Full-body person recognition sys-
tem. Pattern Recognition 36 (9), 1997–2006 (cit. on p. 41).

Nam, D.H., Drew, D.R., 1999. Automatic measurement of traffic variables for intelligent
transportation systems applications. Transportation Research Part B: Methodological
33 (6), 437–457 (cit. on p. 15).

Nam, D.H., Drew, D.R., 1996. Traffic dynamics: method for estimating freeway travel
times in real time from flow measurements. Journal of Transportation Engineering
122 (3), 185–197 (cit. on p. 15).

Nasri, M., Saryazdi, S., Nezamabadi-pour, H., 2013. A Fast Adaptive Salt and Pepper
Noise Reduction Method in Images. Circuits, Systems, and Signal Processing 32 (4),
1839–1857 (cit. on p. 26).

Ndoye, M., Totten, V.F., Krogmeier, J.V., Bullock, D.M., 2011. Sensing and signal pro-
cessing for vehicle reidentification and travel time estimation. IEEE Transactions on
Intelligent Transportation Systems 12 (1), 119–131 (cit. on pp. 100, 125).

Ni, D., Wang, H., 2008. Trajectory reconstruction for travel time estimation. Journal of
Intelligent Transportation Systems: Technology, Planning, andOperations 12 (3), 113–
125 (cit. on p. 14).

Oh, C., Ritchie, S.G., Jeng, S.T., 2007. Anonymous vehicle reidentification using hetero-
geneous detection systems. IEEE Transactions on Intelligent Transportation Systems
8 (3), 460–469 (cit. on p. 20).

Oh, J.S., Jayakrishnan, R., Recker, W., 2002. Section travel time estimation from point
detection data. Tech. rep. California PATH Research Report: UCI-ITS-WP-02-11 (cit.
on p. 49).

Ohkubo, M., Suzuki, K., Kinoshita, S., 2005. RFID privacy issues and technical chal-
lenges. Communications of the ACM 48 (9), 66–71 (cit. on p. 16).

Oleari, C., Fermi, F., UAakar, A., 2013. Digital image-color conversion between different
illuminants by color-constancy actuation in a color-vision model based on the OSA-
UCS system. Color Research & Application 38 (6), 412–422 (cit. on p. 36).

192



REFERENCES

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Transac-
tions on Systems, Man and Cybernetics 9 (1), 62–66 (cit. on pp. 34, 95).

Ozbay, K., Kachroo, P., 1999. IncidentManagement in Intelligent Transportation Systems.
Boston Mass.: Artech House (cit. on p. 27).

Pan, T., 2012. The stochastic dynamic journey time reliability analysis by considering the
spatial and temporal correlation. M.Phil. Thesis. The Hong Kong Polytechnic Univer-
sity. (cit. on p. 154).

Pan, T., Sumalee, A., Zhong, R., Indra-Payoong, N., 2013. Short-term traffic state pre-
diction based on temporal-spatial correlation. IEEE Transactions on Intelligent Trans-
portation Systems 14 (3), 1242–1254 (cit. on p. 157).

Parkany, E., Xie, C., 2005. A Complete review of incident detection algorithms and their
deployment: What works and what doesn't. Tech. rep. University of Massachusetts
Transportation Center (cit. on p. 2).

Parry, K., Hazelton,M.L., 2012. Estimation of origin-destinationmatrices from link counts
and sporadic routing data. Transportation Research Part B: Methodological 46 (1),
175–188 (cit. on p. 172).

Patel, H.A., Thakore, D.G., 2013. Moving object tracking using Kalman filter. Interna-
tional Journal of Computer Science and Mobile Computing 2 (4), 326–332 (cit. on
p. 34).

Payne, H.J., Thompson, S.M., 1997. Development and testing of operational incident de-
tection algorithms. Tech. rep. BSEO Report No. R-009-97. (cit. on p. 28).

Payne, H.J., Tignor, S.C., 1978. Freeway incident detection algorithms based on decision
tree with states. Transportation Research Record 682, 30–37 (cit. on pp. 28, 29, 74).

Petty, K.F., Bickel, P., Ostland, M., Rice, J., Schoenberg, F., Jiang, J., Ritov, Y., 1998. Ac-
curate estimation of travel times from single-loop detectors. Transportation Research
Part A: Policy and Practice 32 (1), 1–17 (cit. on p. 15).

Quayle, S.M., Koonce, P., DePencier, D., Bullock, D.M., 2010. Arterial performance mea-
sures with media access control readers, Portland, Oregon, pilot study. Transportation
Research Record 2192, 185–193 (cit. on pp. 16, 50, 75, 124).

193



REFERENCES

Quiroga, C., Bullock, D., 1998. Travel time studies with global positioning and geo-
graphic information systems: an integratedmethodology. Transportation Research Part
C: Emerging Technologies 6 (1-2), 101–127 (cit. on p. 12).

RiÌos Insua, D., Ruggeri, F., Wiper, M.P., 2012. Bayesian Analysis of Stochastic Process
Models. Wiley (cit. on p. 112).

Rose, G., 2006. Mobile phones as traffic probes: Practices, prospects and issues. Transport
Reviews 26 (3), 275–291 (cit. on pp. 16, 124).

Saha, S., Basu, S., Nasipuri, M., Basu, D.K., 2010. A novel scheme for binarization of
vehicle images using hierarchical histogram equalization technique (cit. on p. 26).

Schrank, D., Lomax, T., Eisele, B., 2012. The 2012 urban mobility report. Tech. rep. Texas
Transportation Institute (cit. on p. 1).

Sedgewick, R., 2002. Algorithms in C++, part 5: Graph Algorithms. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc (cit. on p. 63).

Shao, H., Lam, W.H.K., Sumalee, A., Chen, A., 2013. Journey time estimator for as-
sessment of road network performance under demand uncertainty. Transportation Re-
search Part C: Emerging Technologies 35, 244–262 (cit. on p. 11).

Shapiro, L.G., Stockman, G.C., 2001. Computer Vision. Upper Saddle River, N.J.: Pren-
tice Hall, 580 (cit. on pp. 40, 41).

Shehata, M.S., Cai, J., Badawy, W.M., Burr, T.W., Pervez, M.S., Johannesson, R.J., Rad-
manesh, A., 2008. Video-based automatic incident detection for smart roads: the out-
door environmental challenges regarding false alarms. IEEE Transactions on Intelli-
gent Transportation Systems 9 (2), 349–360 (cit. on pp. 30, 74).

Sheu, J.B., Chou, Y.H., Shen, L.J., 2001. A stochastic estimation approach to real-time
prediction of incident effects on freeway traffic congestion. Transportation Research
Part B: Methodological 35 (6), 575–592 (cit. on p. 1).

Sisiopiku, V.P., Rouphail, N.M., 1994. Toward the Use of Detector Output for Arterial
Link Travel Time Estimation: A Literature Review. Transportation Research Record
1457, 158–165 (cit. on p. 15).

194



REFERENCES

Sivaraman, S., Trivedi, M.M., 2013. Looking at vehicles on the road: A survey of vision-
based vehicle detection, tracking, and behavior analysis. IEEE Transactions on Intel-
ligent Transportation Systems 14 (4), 1773–1795 (cit. on p. 99).

Smith, A., Cohn, T., Osborne, M., 2005. Logarithmic opinion pools for conditional ran-
dom fields. In: Proceedings of the 43rd Annual Meeting on Association for Compu-
tational Linguistics. ACL '05. Ann Arbor, Michigan: Association for Computational
Linguistics, 18–25 (cit. on p. 60).

Song, B., Roy-Chowdhury, A., 2008. Robust tracking in a camera network: A multi-
objective optimization framework. IEEE Journal of Selected Topics in Signal Pro-
cessing 2 (4), 582–596 (cit. on p. 100).

Soriguera, F., Robuste, F., 2011. Requiem for freeway travel time estimation methods
based on blind speed interpolations between point measurements. IEEE Transactions
on Intelligent Transportation Systems 12 (1), 291–297 (cit. on p. 124).

Soro, S., Heinzelman, W.B., 2005. On the coverage problem in video-based wireless sen-
sor networks. In: Proceedings of 2nd International Conference on Broadband Net-
works, 932–939 (cit. on p. 24).

Spivak, A., Belenky, A., Fish, A., Yadid-Pecht, O., 2011. A Wide-dynamic-range CMOS
image sensor with gating for night vision systems. IEEE Transactions on Vehicular
Technology 58 (2), 85–89 (cit. on p. 24).

Srinivasan, D., Jin, X., Cheu, R., 2004. Evaluation of adaptive neural network models for
freeway incident detection. IEEE Transactions on Intelligent Transportation Systems
5 (1), 1–11 (cit. on p. 74).

Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R., 2006. Model-based hand track-
ing using a hierarchical Bayesian filter. IEEE Transactions on Pattern Analysis and
Machine Intelligence 28 (9), 1372–1384 (cit. on p. 107).

Stephanedes, Y.J., Chassiakos, A.P., 1993a. Application of filtering techniques for incident
detection. Journal of Transportation Engineering 119 (1), 13–26 (cit. on p. 30).

Stephanedes, Y.J., Chassiakos, A.P., 1993b. Freeway incident detection through filtering.
Transportation Research Part C: Emerging Technologies 1 (3), 219–233 (cit. on p. 30).

Sumalee, A., Zhong, R.X., Pan, T.L., Szeto, W.Y., 2011. Stochastic cell transmission
model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and

195



REFERENCES

assignment. Transportation Research Part B: Methodological 45 (3), 507–533 (cit. on
p. 157).

Sun, C.C., Arr, G.S., Ramachandran, R.P., Ritchie, S.G., 2004. Vehicle reidentification
using multidetector fusion. IEEE Transactions on Intelligent Transportation Systems
5 (3), 155–164 (cit. on pp. 17, 19, 20, 50, 55).

Sun, C., Ritchie, S.G., 1999. Individual vehicle speed estimation using single loop in-
ductive waveforms. Journal of Transportation Engineering 125 (6), 531–538 (cit. on
pp. 15, 124).

Sun, C., Ritchie, S.G., Tsai, W., Jayakrishnan, R., 1999. Use of vehicle signature analysis
and lexicographic optimization for vehicle reidentification on freeways. Transporta-
tion Research Part C: Emerging Technologies 7, 167–185 (cit. on pp. 17, 20, 49, 75).

Sun, L., Yang, J., Mahmassani, H., 2008. Travel time estimation based on piecewise trun-
cated quadratic speed trajectory. Transportation Research Part A: Policy and Practice
42 (1), 173–186 (cit. on p. 14).

Szeto,W.Y., Lo, H.K., 2006. Dynamic traffic assignment: Properties and extensions. Trans-
portmetrica 2 (1), 31–52 (cit. on p. 157).

Tam, M.L., Lam, W., 2008. Using automatic vehicle identification data for travel time
estimation in Hong Kong. Transportmetrica 4 (3), 179–194 (cit. on pp. 12, 172).

Tan, M.C., Wong, S.C., Xu, J.M., Guan, Z.R., Zhang, P., 2009. An aggregation approach
to short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation
Systems 10 (1), 60–69 (cit. on p. 138).

Tawfik, A.Y., Peng, A., Tabib, S.M., Abdulhai, B., 2002. Learning spatio-temporal context
for vehicle reidentification. In: Proceedings of 2nd IEEE International Symposium on
Signal Processing and Information Technology. Marrakesh, Morocco (cit. on p. 17).

Taylor, M.A., 2013. Travel through time: the story of research on travel time reliability.
Transportmetrica B: Transport Dynamics 1 (3), 174–194 (cit. on p. 12).

Thiang, A.T.G., Lim, R., 2001. Type of vehicle recognition using templatematchingmethod.
In: Proceedings of International Conference on Electrical, Electronics, Communica-
tion and Information. Jakarta, Indonesia (cit. on p. 37).

196



REFERENCES

Toledo, T., Beinhaker, R., 2006. Evaluation of the potential benefits of advanced trav-
eler information systems. Journal of Intelligent Transportation Systems: Technology,
Planning, and Operations 10 (4), 173–183 (cit. on p. 2).

Tseng, B.L., Lin, C.Y., Smith, J.R., 2002. Real-time video surveillance for traffic monitor-
ing using virtual line analysis. In: Proceedings of IEEE International Conference on
Multimedia and Expo. Vol. 2, 541–544 (cit. on p. 21).

Turner, S.M., Eisele, W.L., Benz, R.J., Holdener, D.J., 1998. Travel time data collection
handbook. Tech. rep. FHWA-PL-98-035 (cit. on p. 14).

Valera, M., Velastin, S.A., 2005. Intelligent distributed surveillance systems: a review. IEE
Proceedings-Vision Image and Signal Processing 152 (2), 192–204 (cit. on p. 23).

Vanajakshi, L.D., Williams, B.M., Rilett, L.R., 2009. Improved flow-based travel time
estimation method from point detector data for freeways. Journal of Transportation
Engineering 135 (1), 26–36 (cit. on p. 15).

Vardi, Y., 1996. Network tomography: estimating source-destination traffic intensities
from link data. Journal of the American Statistical Association 91 (433), 365–377 (cit.
on p. 172).

Vlahogianni, E.I., Karlaftis, M.G., Orfanou, F.P., 2012. Modeling the effects of weather
and traffic on the risk of secondary incidents. Journal of Intelligent Transportation
Systems: Technology, Planning, and Operations 16 (3), 109–117 (cit. on p. 74).

Wang, K., Zhenjiang, Yao, Q., Huang,W.,Wang, F.-Y., 2007. An automated vehicle count-
ing system for traffic surveillance. In: Proceedings of IEEE International Conference
on Vehicular Electronics and Safety, 1–6 (cit. on p. 21).

Wang, S.S., Xia, Y., Liu, Q.G., Luo, J.H., Zhu, Y.M., Feng, D.D., 2012. Gabor feature
based nonlocal means filter for textured image denoising. Journal of Visual Commu-
nication and Image Representation 23 (7), 1008–1018 (cit. on p. 26).

Wang, X., 2013. Intelligent multi-camera video surveillance: A review. Pattern Recogni-
tion Letters 34 (1), 3–19 (cit. on pp. 23, 39).

Wang, Y., Nihan, N., 2000. Freeway traffic speed estimation with single-loop outputs.
Transportation Research Record 1727 (1), 120–126 (cit. on p. 15).

197



REFERENCES

Wasson, J.S., Sturdevant, J.R., Bullock, D.M., 2008. Real-time travel time estimates using
media access control address matching. Journal of Transportation Engineers 78 (6),
20–23 (cit. on p. 16).

Watling, D.P., 1994. Maximum likelihood estimation of an origin-destination matrix from
a partial registration plate survey. Transportation Research Part B: Methodological 28
(4), 289–314 (cit. on p. 17).

Watling, D.P., Cantarella, G.E., 2013. Modelling sources of variation in transportation
systems: theoretical foundations of day-to-day dynamic models. Transportmetrica B:
Transport Dynamics 1 (1), 3–32 (cit. on p. 3).

Watling, D.P., Maher, M.J., 1992. A statistical procedure for estimating a mean origin-
destination matrix from a partial registration plate survey. Transportation Research
Part B: Methodological 26 (3), 171–193 (cit. on pp. 17, 124).

Willsky, A., Chow, E., Gershwin, S., Greene, C., Houpt, P., Kurkjian, A., 1980. Dynamic
model-based techniques for the detection of incidents on freeways. IEEE Transactions
on Automatic Control 25 (3), 347–360 (cit. on p. 30).

Wu, B.F., Kao, C.C., Liu, C.C., Fan, C.J., Chen, C.J., 2008. The vision-based vehicle
detection and incident detection system inHsueh-Shan tunnel. In: Proceedings of IEEE
International Symposium on Industrial Electronics, 1394–1399 (cit. on p. 30).

Ye, Q., Szeto, W.Y., Wong, S.C., 2012. Short-term traffic speed forecasting based on data
recorded at irregular intervals. IEEE Transactions on Intelligent Transportation Sys-
tems 13 (4), 1727–1737 (cit. on p. 138).

Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: A survey. ACM Computing Sur-
veys 38 (4), 13 (cit. on p. 33).

Yuan, L., Sun, J., Quan, L., Shum, H.Y., 2007. Image deblurring with blurred/noisy image
pairs. ACM Transactions on Graphics 26 (3) (cit. on p. 26).

Yue, Y., 2006. Spatial-temporal dependency of traffic flow and its implications for short-
term traffic forecasting. PhD Thesis. The University of Hong Kong. (cit. on p. 157).

Zhang, A., Gao, Z., 2012. Effect of ATIS information under incident-based congestion
propagation. Procedia - Social and Behavioral Sciences 43, 628–637 (cit. on p. 154).

198



REFERENCES

Zhang, K., Taylor, M.A.P., 2006. Effective arterial road incident detection: A Bayesian
network based algorithm. Transportation Research Part C: Emerging Technologies 14
(6), 403–417 (cit. on p. 74).

Zhang, X., Feng, X., Wang, W., Zhang, S., Dong, Q., 2012. Gradient-based Wiener filter
for image denoising. Computers and Electrical Engineering 39 (3), 934–944 (cit. on
p. 26).

Zhou, J., Gao, D., Zhang, D., 2007. Moving vehicle detection for automatic traffic moni-
toring. IEEE Transactions on Vehicular Technology 56 (1), 51–59 (cit. on p. 34).

Zhou, X., Mahmassani, H., 2006. Dynamic origin-destination demand estimation using
automatic vehicle identification data. IEEE Transactions on Intelligent Transportation
Systems 7 (1), 105–114 (cit. on p. 16).

199


	Certificate of originality
	Dedication
	Abstracts
	Publications arising from the thesis
	Acknowledgements
	Table of contents
	1 Introduction and overview
	1.1 Research motivation
	1.2 Research objectives
	1.3 Organization of the thesis
	1.4 Research contribution

	I Foundations of the study
	2 Problem statements and literature review
	2.1 Travel time estimation problem
	2.1.1 Problem description
	2.1.2 Spot-speed-based method
	2.1.3 Traffic-flow-based method
	2.1.4 Probe-vehicle-based method

	2.2 Overview of vehicle reidentification (VRI)
	2.2.1 Vehicle signature extraction
	2.2.2 Vehicle signature matching method
	2.2.3 Discussion of the existing VRI systems

	2.3 Framework of intelligent video surveillance
	2.3.1 Video sensor networks
	2.3.2 Low-level image processing

	2.4 Traffic incident detection algorithms
	2.4.1 Incident detection system
	2.4.2 Incident detection algorithms for congested traffic condition


	3 High-level intelligent video surveillance
	3.1 Introduction
	3.2 Single-camera analytics
	3.2.1 Object detection
	3.2.2 Feature extraction

	3.3 Multi-camera analytics
	3.3.1 Object reidentification (ORI)
	3.3.2 People reidentification (PRI)

	3.4 Vehicle reidentification: A variant of PRI
	3.5 Conclusion remarks


	II VRI system under static traffic conditions
	4 Basic vision-based VRI system
	4.1 Introduction
	4.2 Overall framework of the travel time estimation system
	4.3 Probabilistic fusion of vehicle features
	4.3.1 Time window constraint
	4.3.2 Probabilistic modeling of feature distance
	4.3.3 Probability distribution estimation
	4.3.4 Calculation of posterior probability
	4.3.5 Data fusion rule

	4.4 Bipartite matching method
	4.4.1 Reduction to a weighted bipartite graph
	4.4.2 Formulation as a minimum-weight bipartite matching problem

	4.5 Test results
	4.5.1 Travel time distribution
	4.5.2 Performance of probabilistic feature fusion approach
	4.5.3 Vehicle reidentification across multiple lanes

	4.6 Conclusion remarks

	Appendices
	4.A Freeway segment with entry/exit ramps

	5 VRI based incident detection under free flow condition
	5.1 Introduction
	5.2 Dataset for algorithm development and evaluation
	5.2.1 Dataset description

	5.3 Overall framework of automatic incident detection system
	5.3.1 Vehicle count approach
	5.3.2 AID algorithm based on VRI system

	5.4 Flexible time window estimation
	5.5 Incident-detection-oriented VRI
	5.5.1 Reidentification problem
	5.5.2 Calculation of matching probability
	5.5.3 Ratio method for final matching decision

	5.6 Test results
	5.6.1 Simulated tests
	5.6.2 Real-world case study

	5.7 Conclusion remarks

	Appendices
	5.A Incident detection on freeway segment with entry/exit ramps

	6 Hierarchical Bayesian model for VRI on freeway with multiple detectors
	6.1 Introduction
	6.2 Pair-wise VRI process
	6.2.1 Basic VRI subsystem
	6.2.2 A discussion on pair-wise VRI

	6.3 Hierarchical matching model
	6.3.1 Hierarchical structure for vehicle matching
	6.3.2 Construction of vehicle tree structure: Preliminary clustering
	6.3.3 Statistical framework for hierarchical matching

	6.4 Hierarchical Bayesian modeling on feature distances
	6.4.1 Hierarchical model of a sequence of feature distances
	6.4.2 Probabilistic modeling of feature distances over space

	6.5 Test results
	6.5.1 Dataset for algorithm evaluation
	6.5.2 Comparison between pair-wise VRI and the improved method

	6.6 Conclusion remarks


	III Self-adaptive VRI system under dynamic traffic conditions
	7 Iterative VRI system with temporal adaptive time window
	7.1 Introduction
	7.2 Simplified version of basic VRI
	7.2.1 Vehicle feature data
	7.2.2 Vehicle signature matching method

	7.3 Post-processing technique
	7.3.1 Stratified sampling technique
	7.3.2 Thresholding process

	7.4 Self-adaptive time window constraint
	7.4.1 Inter-period adjusting: Temporal adaptive time window
	7.4.2 Intra-period adjusting: Iterative VRI

	7.5 Experimental results
	7.5.1 Simulation model configuration and calibration
	7.5.2 Preliminary comparison between basic VRI and improved VRI
	7.5.3 Performance evaluation under recurrent traffic congestion
	7.5.4 Performance evaluation under bottleneck effect
	7.5.5 Performance evaluation under non-recurrent traffic congestion

	7.6 Conclusion remarks

	8 Iterative VRI system with spatial-temporal adaptive time window
	8.1 Introduction
	8.2 Basic temporal adaptive time window
	8.3 Spatial-temporal adaptive time window
	8.3.1 Spatial and temporal correlation in travel time
	8.3.2 Shrinkage-thresholding method

	8.4 Preliminary Results
	8.4.1 Simulation model configuration and calibration
	8.4.2 Performance evaluation under serious non-recurrent traffic congestion

	8.5 Conclusion remarks


	IV Conclusions and future works
	9 Summary of the thesis and future research topics
	9.1 Summary of the thesis
	9.2 Future works
	9.2.1 Extension of the VRI system to a network case
	9.2.2 Network-wide travel time estimation using partial VRI data


	References




