

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Parallel Analytics as a Service

WONG PETRIE KE FANG

M.Phil

The Hong Kong

Polytechnic University

2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Computing

Parallel Analytics as a Service

WONG Petrie Ke Fang

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

December 2013

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

.

WONG Petrie Ke Fang

i

ii

Abstract

Recently, massively parallel processing relational database systems (MPPDBs)

have gained much momentum in the big data analytic market. With the advent

of hosted cloud computing, this thesis envisions that the offering of MPPDB-as-

a-Service (MPPDBaaS) will become attractive for companies having analytical

tasks on only hundreds gigabytes to some ten terabytes of data because they can

enjoy high-end parallel analytics at a cheap cost. This thesis presents Thrifty,

a prototype implementation of MPPDB-as-a-service. The major research issue

is how to achieve a lower total cost of ownership by consolidating thousands of

MPPDB tenants on to a shared hardware infrastructure, with a performance

SLA that guarantees the tenants can obtain the query results as if they are

executing their queries on dedicated machines. Thrifty achieves the goal by using

a tenant-driven design that includes (1) a cluster design that carefully arranges

the nodes in the cluster into groups and creates an MPPDB for each group of

nodes, (2) a tenant placement that assigns each tenant to several MPPDBs (for

high availability service through replication), and (3) a query routing algorithm

that routes a tenant’s query to the proper MPPDB at run-time. Experiments

show that in a MPPDBaaS with 5000 tenants, where each tenant requests 2 to

32 nodes MPPDB to query against 200GB to 3.2TB of data, Thrifty can serve

all the tenants with a 99.9% performance SLA guarantee and a high availability

replication factor of 3, using only 18.7% of the nodes requested by the tenants.

iii

iv

Acknowledgements

First of All, I would like to express my deepest sense of gratitude to my

advisor, Dr. Eric Lo, for the guidance during my study. He is not only the

one who gives me the chance to come to the academic research world, but also

the one who gives me a lot of invaluable advices in different research projects.

Without him, I would not have the chance to complete this work.

Next, I would like to thank Prof. Benjamin Kao for giving me so many

advices on various research projects. All his advices in research direction and

problem solving skill are useful for completing this work.

Dr. Man-Lung Yiu has given me invaluable advices on programming and

algorithm design, for which I am extremely grateful.

I am grateful to Andy He for providing me with his opinion which open my

mind. He also gave me a lot of fun when I was bored with my work.

The comments and critiques on this work and throughout my study that

have been received from various other parties are also highly appreciated. Thanks

to Dr. Wilfred Lin, Duncan Yung, Cliz Sun, Yu Li, Qiang Zhang, Yifeng Luo,

Ziqiang Feng, Wenjian Xu, Jianguo Wang, Capital Li, Bo Tang, Tanya Aldyn-

v

vi

ool, Jeppe Thomsen, Evan Feng, Ho Leung Li et al. for their comments and

critiques on various parts of this work.

I thankfully remember Dr. Siu-Wai Lit, Red Hall Warden, for her love and

prayers. Besides, all my colleges in Red hall, Carol Lee, Kiki Hui, Alice Yao,

Sophie Huang, Wayne Wu, Erica Lam et al. gave me a memorable hall life.

I would like to thank Erica Zhang for her personal support and great patience

at all times. My mother, sister and Rex Chan have given me their unequivocal

support throughout, as always, for which my mere expression of thanks likewise

does not suffice. I sincerely thanks to Rose Wong and Jun Chen for their selfless

support, encouragement and advices to my personal development.

Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Introduction . 1

2 Related Work 9

2.1 DaaS . 9

vii

viii CONTENTS

2.2 Parallel Databases . 11

2.3 Optimization problems in cloud computing 12

2.4 Elastic resource scaling in cloud computing 12

3 System Overview 13

4 Tenant-Driven Design (TDD) 17

4.1 Cluster Design . 17

4.2 Tenant Placement . 19

4.3 Query Routing . 19

4.4 SLA Guarantee and Load Balancing 21

5 Serving thousands of tenants 23

5.1 Lightweight Elastic Scaling . 31

6 Manual Tuning 35

7 Evaluation 37

7.1 Generation of Tenant Logs . 37

7.2 Experimental Setting . 40

7.3 Consolidation Effectiveness under Different Tenant Characteristics 41

7.4 Consolidation Effectiveness under Higher Active Tenant Ratio . . 46

CONTENTS ix

7.5 Lightweight Elastic Scaling . 49

8 Future Work and Conclusion 51

Bibliography 53

9 Appendix 57

9.1 Formulation of the LIVBPwFC 57

x CONTENTS

List of Figures

1.1 Query performance in a commercial MPPDB with multi-tenants.

xT-SEQ means there are x tenants submitting queries sequen-

tially xT-CON means there are x active tenants submitting

queries concurrently. 3

3.1 The architecture of the Thrifty system. 15

4.1 A Toy Example . 18

4.2 Tenant Activities and Query Routing 20

5.1 Tenant Activities with Fixed-Width Time Epochs 26

5.2 Example Tenant Distribution . 26

5.3 Second Step of Tenant-Grouping (* means that tenant is chosen

in that iteration) . 27

7.1 Varying Epoch Size E . 42

xi

xii LIST OF FIGURES

7.2 Varying Number of Tenants T . 43

7.3 Varying Tenant Distribution θ . 44

7.4 Varying Replication Factor R . 45

7.5 Varying Performance SLA P . 46

7.6 Higher Active Tenant Ratio . 47

7.7 Lightweight Elastic Scaling in a Tenant Group 48

List of Tables

5.1 Starting and Bulk Loading a MPPDB 32

7.1 Evaluation Parameters . 41

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Recently, massively parallel processing relational database systems (MP-

PDBs) like Vertica, Microsoft SQL Server Parallel Database Warehouse, and

Greenplum have gained much momentum in the big data analytic market. These

MPPDBs feature SQL interface, fast data loading, easy scale-out, fast recovery,

and short analytical query processing time. With the advent of hosted cloud com-

puting, we envision that the offering of MPPDB-as-a-Service (MPPDBaaS)

will become attractive for companies having analytical tasks on hundreds giga-

bytes to some ten terabytes of data. From the viewpoint of tenants who rent

the service, they can enjoy parallel analytics on their “big” data, but the hard-

ware cost, the operation cost (e.g., administration), and especially the software

license (which costs about USD 15K per core or USD 50K per TB of data for a

commercial MPPDB we know) they pay for a share of the service are likely to be

1

2 1.1. INTRODUCTION

much lower than running everything themselves. From the viewpoint of the ser-

vice providers, they can achieve a lower total cost of ownership by consolidating

the tenants on to a shared hardware infrastructure, so that the service can be

run using far fewer machine nodes than the sum of the number of the machine

nodes requested by the tenants. When sharing resources among tenants, it is

challenging to ensure the service level agreements (SLA) for the tenants are met

after consolidation. Ideally, a tenant that rents a 4-node MPPDB should have

the feeling that the queries are really executed by a MPPDB that runs on four

dedicated machine nodes. Therefore, a service provider that offers MPPDB-as-a-

service should regard the query latency before consolidation as the performance

SLA.

One approach to offer database-as-a-service (DaaS) is based on the use of

virtual machines (VM) [25]. The VM approach offers hard isolation among ten-

ants and thus performance isolation among tenants could be easily achieved.

However, the VM approach incurs significant redundancy on the resources (e.g.,

multiple copies of the OS and DBMS, etc.) [8, 7]. Therefore, the recent trend

for DaaS is to use the shared-process multi-tenancy [13] model (i.e., sharing the

same database process among tenants). Relational Cloud [8, 7] and SQL Azure

[4] are using this model so that a much higher consolidation effectiveness could

be obtained. But so far they focus on tenants with transactional workloads.

Let us see some interesting results when applying the shared-process multi-

tenancy model to host tenants with parallel analytical workloads. Figures 1.1a

and b show the query performance of TPC-H Q1 on a commercial MPPDB. We

use this MPPDB to host multiple tenants using the same database process (the

detailed experimental setup is given in Chapter 7). Each tenant holds a TPC-H

CHAPTER 1. INTRODUCTION 3

0.0

2.0

4.0

6.0

8.0

1 2 4 6 8

S
pe

ed
up

nodes

A

B

C

E
F

1T
2T-SEQ
4T-SEQ
2T-CON
4T-CON

 0.1

 0.2

 0.3
 0.4

 1

 2

 4

 10

1 2 4 6 8

N
or

m
al

iz
ed

 r
un

ni
ng

 ti
m

e

nodes

A

B

C

E

F

1T
2T-SEQ
4T-SEQ
2T-CON
4T-CON

(a) TPC-H Q1 (Speed-up)(b) TPC-H Q1 (Query Latency)

 0.1

 0.2

 0.3
 0.4

 1

 2

 4

 10

1 2 4 6 8

N
or

m
al

iz
ed

 r
un

ni
ng

 ti
m

e

nodes

1T
2T-SEQ
4T-SEQ
2T-CON
4T-CON

(c) TPC-H Q19 (Query Latency)

Figure 1.1. Query performance in a commercial MPPDB with multi-tenants. xT-
SEQ means there are x tenants submitting queries sequentially xT-CON means
there are x active tenants submitting queries concurrently.

scale factor 100 dataset. In Figure 1.1a, the line 1T shows the speedup of Q1 in

a single-tenant setting. We can see that Q1 scales out linearly with the number

of nodes.

Transactional (OLTP) workloads generally touch a small amount of data

per transaction. So, OLTP-database-as-a-service using the shared-process model

could still support a large number of concurrent query executions after consoli-

dation [8, 7]. In contrast, analytical workloads are I/O-intensive, so concurrent

query executions on the same database instance easily increase the query latency

4 1.1. INTRODUCTION

and violate the SLA. In Figure 1.1a, the lines 2T-CON and 4T-CON show the

speedup of Q1 (with respect to 1-node) when there are respectively two tenants

and four tenants sharing the same database instance, and the tenants submit Q1

together. We can see that Q1’s performance are 2× (in 2-tenant setting) and 4×

slower (in 4-tenant setting). That is, once the tenants submit queries together,

none of their SLAs could be met. This is a challenge of using the shared-process

multi-tenancy model to serve analytical workloads.

Yet, Figure 1.1a reveals a consolidation opportunity. In the figure, the

line 2T-SEQ shows the speedup of Q1 (with respect to 1-node) in a 2-tenant

setting where one tenant first submits an instance of Q1, and after that finishes,

another tenant then submits another instance of Q1; and the average query

latency of Q1 is calculated. Not surprisingly, as shared-process multi-tenancy

incurs little overhead [8], when two Q1 instances are executed one after the

other on a MPPDB with multiple tenants, their individual query latency is close

to that when running a single Q1 instance on a MPPDB with a single tenant.

This observation also holds at a higher degree of multi-tenancy with four tenants

(see the line 4T-SEQ in Figure 1.1a). The above shows that even for analytical

workloads, if the consolidated tenants are not active together, it is possible that

the tenants’ individual SLA could still be met.

The second consolidation opportunity can be observed by looking at Figure

1.1b, which shows the query latency of Q1. First, assume there are four tenants,

each rents a 2-node MPPDB to process a TPC-H scale factor 100 dataset. The

service provider basically requires a total of 4 × 2 = 8 separate nodes to host

them. The SLA of TPC-H Q1 for each tenant is then A seconds, as illustrated in

Figure 1.1b. What if the service provider uses a 6-node MPPDB to host all four

CHAPTER 1. INTRODUCTION 5

tenants (i.e., every tenant partitions their data on to those six nodes)? Let us

assume that only one out of the four tenants is active (e.g., submit a Q1 instance)

and the rest of them are inactive, i.e., not submitting any query. That active

tenant then can obtain the result of Q1 in B seconds — the SLA is met. When

two out of the four tenants are active together and they concurrently submit an

instance of Q1 to the 6-node MPPDB, each tenant can obtain the result of Q1 in

C seconds — their SLAs are also met. The above shows that it is a consolidation

opportunity that is more specific to parallel analytic workload.

This thesis presents the design, implementation, and experimental evalu-

ation of Thrifty, a system that offers MPPDB-as-a-service. Thrifty employs

shared-process multi-tenancy and exploits opportunities mentioned above to con-

solidate tenants on to a shared cluster. Low active tenant ratios are commonly

found in real multi-tenancy environments. For example, in IBM’s database-as-

a-service, the active tenant ratio is only 10% [21]. Such a low active tenant ratio

gives Thrifty many opportunities to meet the SLAs after consolidation. Never-

theless, there are still some challenges left. First, consider a production cluster

of 6000 nodes, a total of 4000 tenants, and each tenant requests a 2-node MP-

PDB. In this case, shall Thrifty put all 4000 tenants onto a 6000-node MPPDB

instance? Second, the above discussion has not yet covered the issue of high

availability, which is important for database-as-a-service. Third, Thrifty has to

avoid SLA violations like some cases above where many tenants become active

together. Fourth, notice that TPC-H Q1 is a linear scale-out query under our

experimental setting. Thrifty also has to consider other cases such as concurrent

execution of non-linear scale-out queries. Figure 1.1c shows the performance

of TPC-H Q19 in the same experimental environment. TPC-H Q19 does not

6 1.1. INTRODUCTION

scale out linearly in our setting. For those queries, the second consolidation

opportunity mentioned above cannot be easily applied.

In a nutshell, Thrifty aims to offer MPPDBaaS using few machines with the

following requirements:

R1) Supporting thousands of tenants and machine nodes.

R2) Offering high availability services.

R3) Offering query-latency based performance SLA guarantees.

R4) Each tenant requests a multi-node MPPDB that serves multiple users; some

user queries may linear scale-out but some may not.

R5) Tenants’ query templates may be known or unknown beforehand. For report

generating applications, the query templates could be found in the applications’

stored procedures. For interactive analysis, however, a data analyst may craft

and submit an ad-hoc query at any time.

R1 and R2 are two general cloud computing requirements. R3 is a DaaS re-

quirement specific to analytical workloads.1 R4 is specific to MPPDBaaS and R5

is necessary if we want to offer a real MPPDBaaS. These requirements together

make the design and implementation of Thrifty very challenging. For example,

sharing the database process among tenants (to enjoy higher consolidation ratio)

makes R3 challenging because there is no more hard isolation. While performance

prediction techniques for concurrent analytical workload [9, 1, 22, 16, 2] may help

there on the surface, these techniques require the knowledge of the query sets as

input, which contradicts with R5 above.

This thesis makes three principal contributions for this problem:

1DaaS supporting OLTP workloads defines their SLA based on the throughput before-and-
after consolidation [7].

CHAPTER 1. INTRODUCTION 7

1. Tenant-Driven Design (TDD) (Chapter 4) — the core framework to imple-

ment MPPDB-as-a-Service. TDD includes three parts: (a) [Cluster Design]

arrange the machine nodes in the cluster into groups and create an MPPDB

for each group of nodes, (b) [Tenant Placement] assign each tenant to several

MPPDBs (for replication), and (c) [Query Routing] route a tenant’s query to

a MPPDB containing that tenant’s data at run-time. We can show that the

use of TDD can tackle requirements R2 to R5 in a row. Furthermore, based

on TDD, we can show that solving R1 could be treated as solving a new vari-

ant of vector bin packing optimization problem. We then present heuristics

solutions that solve that problem effectively (Chapter 5).

2. Thrifty — a prototype implementation of MPPDB-as-a-service based on TDD.

The architecture design of Thrifty (Chapter 3) as well as system issues like

elastic scaling (Chapter 5.1) and system tuning (Chapter 6) are presented.

3. An experimental testbed to evaluate the consolidation effectiveness and the

performance guarantees of any MPPDBaaS. Experiments show that in a MP-

PDBaaS with 5000 tenants, where each tenant requests 2 to 32 nodes MPPDB

to query against 200GB to 3.2TB of data, Thrifty can serve all the tenants

with a 99.9% performance SLA guarantee and a high availability replication

factor of 3, using only 18.7% of the nodes requested by the tenants (Chapter

7).

After presenting the above, we discuss related work in Chapter 2 and con-

clude this work and outline some future work in Chapter 8.

8 1.1. INTRODUCTION

Chapter 2

Related Work

Thrifty [26] is the first work to discuss MPPDB-as-a-service and provides

a real implementation to support the stringent query-latency SLA for parallel

analytical workloads.

2.1 DaaS

There are several approaches to provide database-as-a-service [13]: (1) The

Virtual Machine approach, (2) the Shared Table Approach, and (3) the Shared

Process Approach.

(1) The VM approach is to pack each individual tenant’s database instance into

a virtual machine (VM) and multiple VMs on a single physical machine [25].

The VM approach achieves hard isolation. Therefore, the performance SLA of

individual tenants could be easily maintained. However, this approach incurs

significant redundancy among the tenants (e.g., multiple copies of the OS and

9

10 2.1. DAAS

DBMS) and thus [7] states that it is not cost-effective for DaaS.

(2) The Shared Table approach is to share a single database instance and the

same set of tables among all tenants. This approach requires the tenants’ schemas

are mostly identical or similar, which is common in software-as-a-service (e.g.,

Salesforce.com) with database as the backend. The Shared Table approach can

largely reduce the redundancy and thus thousands of small (data size) and mostly

inactive tenants can be packed onto a single server [3, 23, 12]. This approach is

orthogonal to Thrifty, as the tenants are autonomous and tenants’ schemas are

typically different.

(3) The Shared Process approach is to share a single database instance among

the tenants but each tenant can own its private set of tables. This approach

achieves a much higher consolidation effectiveness than the VM approach and

and it supports autonomous tenants with arbitrary schemas. MIT’s Relational

Cloud [8] is based on this approach. It includes a consolidation engine, Kairos [7],

to consolidate many centralized OLTP databases on to a shared hardware infras-

tructure. The SLA of consolidating OLTP workloads in Kairos is the database

throughput before-and-after consolidation.

Thrifty uses the Shared Process approach in order to attain a higher consol-

idation effectiveness. Different from Relational Cloud [8], the tenants (a) request

multiple-node MPPDBs and (b) issue analytical workloads. The former requires

a skillful cluster design that arranges the nodes in the cluster into groups of

MPPDBs and a corresponding tenant placement scheme that assigns a tenant to

R different MPPDBs. That is not an issue in Relational Cloud for which ten-

ants hosts only a single centralized database. The latter makes the consolidation

CHAPTER 2. RELATED WORK 11

concerns and methodology of Thrifty different from Relational Cloud: as men-

tioned, OLTP workloads generally touch a small amount of data per transaction.

So the same database instance could still support a large number of concurrent

query executions from different tenants after consolidation. Therefore, the con-

solidation concerns of Relational Cloud are (i) how to estimate the resource (e.g.,

CPU, RAM) of each OLTP-workload and (ii) how to compute the aggregated re-

source consumptions of multiple workloads. In contrast, analytical workloads are

mostly I/O intensive, so any concurrent query execution on the same database

instance would easily increase the query latency and cause SLA violation (see

Points E and F in Figure 1.1). Therefore, the consolidation concern is how to

avoid concurrent query execution when consolidating the tenants.

2.2 Parallel Databases

In parallel databases, performance speedup is brought by partitioning the

data across multiple machine nodes to maximize intra-query parallelism. Re-

cent research related to parallel database mostly focuses on finding a good data

partitioning strategy to minimize the overhead of shipping data across multiple

nodes [17, 6]. Temporal access skew was also used by a recent NewSQL system

to aid the data partitioning design [19]. Thrifty leverages temporal access skew,

i.e., low active tenant ratio, to aid the cluster design to deal with the SLA guar-

antee problem caused by concurrent executions of analytical queries in a shared

database process.

12 2.3. OPTIMIZATION PROBLEMS IN CLOUD COMPUTING

2.3 Optimization problems in cloud computing

VM-based tenant placement is a hot topic in cloud computing [10, 15]. Yet,

to the best of my knowledge, these works have not considered any MPPDBaaS-

specific requirements like query-latency performance SLA (R3) or requesting

multiple nodes by a single tenant (R4). In Thrifty, after using TDD, it forms a

Largest Item Vector Bin Packing Problem with Fuzzy Capacity (LIVBPwFC),

which is a variant of the classic vector bin packing (VBP) problem. The VBP

problem has been used to model many forms of VM placement problem recently

[15]: a VM is represented by a vector of resource demands 〈r1, r2, . . . , rd〉 (each

ri denotes the demand of a particular resource, say, RAM) and a machine is

represented by a vector of resource capacity 〈c1, c2, . . . , cd〉 (each ci denotes the

capacity of a particular resource, say, RAM, of a node). As LIVBPwFC is newer

and more general than VBP, a new heuristics is devised for it in this thesis.

2.4 Elastic resource scaling in cloud computing

Finally, substantial research in cloud computing has looked at the problem

of elastic resource scaling (e.g., [24]). Thrifty follows those reactive approaches

with the unique challenges that the scaling of MPPDB is a heavyweight opera-

tion, comparing with the elastic scaling of hardware resources like the memory

allocated to a virtual machine.

Chapter 3

System Overview

Thrifty adopts a pricing model that charges a tenant based on the number of

requested nodes (the degree of parallelism) and its active usage. It begins with a

set of independent MPPDB tenants running parallel analytical workloads, where

each tenant runs a MPPDB on a disjoint set of machine nodes. Figure 3.1 shows

the architecture of Thrifty. The components of Thrifty are:

(a) Tenant Activity Monitor : The Tenant Activity Monitor automatically collects

the query logs of the deployed MPPDBs, derives the tenant activities, and

summarizes the query characteristics of individual tenants. For example, it

continuously monitors the active tenant ratio of all tenants in the past 30

days. These information is passed to the Deployment Advisor for further

processing, and is available to the system administrator for advanced system

tuning.

(b) Deployment Advisor : The Deployment Advisor takes as inputs the tenant

activity statistics, the individual tenant information (e.g., number of nodes

13

14

requested), a replication factor R (specified by a system administrator for

high availability), and a performance SLA guarantee P (also specified by the

system administrator which ensures that, after consolidation, the tenants can

still meet their SLA for a P%, e.g., 99.9%, of time). It returns as output a

deployment plan. The deployment plan consists of two parts: cluster design

and tenant placement. The cluster design details how the machine nodes in

the cluster are arranged into groups. Each group of nodes then runs a single

MPPDB instance. The tenant placement specifies which MPPDB instances

a tenant should be deployed on; and a tenant is deployed on R MPPDB in-

stances. At run-time, the Deployment Advisor may fine-tune the deployment

plan according to the live-updated tenant activities supplied by the Tenant

Activity Monitor. Currently, Thrifty assumes all nodes in the cluster are

identical in configurations (e.g., CPU, RAM).

(c) Deployment Master : The Deployment Master follows the deployment plan

devised by the Deployment Advisor to start the MPPDB instances and deploy

the tenants onto them. It also switches off/hibernates nodes that are not listed

in the deployment plan. The deployment is supposed to be static for days.

A (re)-consolidation process is expected to be executed periodically, because

it is expected that there are new tenants register with and existing tenants

de-register with the service.

(d) Query Router : The Query Router accepts queries from tenants and routes the

queries to the proper MPPDB instance according to the tenant placement.

The crux of Thrifty is to devise a good deployment plan to serve thousands

of tenants using fewer machine nodes. Thrifty targets on tenants with temporal

CHAPTER 3. SYSTEM OVERVIEW 15

!"#$%&'()&*+*#$,-$.,'
/%+-+$#'

!"#$%&&&
'()&

**&

+,"-.(/0&&
1(.#&023450433&

67789&1(.#&0:50;&
<#0=0-&<:5<:3&

67789&1(.#&023:50234&
<#0=0-&<:335<::3&

**&

8#>?(%@#0-&7?=0&

<"0A0)&

8#>?(%@#0-&
B.CAD($&

<#0=0-&
BEFCA-%&
6(0A-($&

!"#$%&
G("-#$&

8#>?(%@#0-&
6=D-#$&

8#>?(%@#0-&
7?=0&

!"#$%&'()&
G#>?AE=F(0&
H=E-($&0'

!"#$%& !"#$%&

!"#$%&'
+'B&&
I"=$=0-##&1&

/%+-+$'(234*$"'

**&

*&

677893&

**&

67789:& 67789:33&

**& 67789&1(.#&0J:50JJ&
<#0=0-&<KK5<J3&

**&

**&

Figure 3.1. The architecture of the Thrifty system.

skew [19] analytical workloads, e.g, tenants from different time zones and mostly

submit queries within a certain period (e.g., 9am to 5pm) but not in a 24 × 7

fashion. That type of temporal skew workload is not uncommon in today’s

data analytical market [5]. The target tenants are supposed to have up to only

some tens terabytes of data but hope to enjoy the parallel speedup offered by the

expensive MPPDB products. These are what enable consolidation. Tenants that

are always active and/or with more than terabytes of data could be detected by

Thrifty and they will be excluded from consolidation.1

1Those tenants offer little room for consolidation, and they are served by dedicated nodes
under another service plan.

16

Chapter 4

Tenant-Driven Design (TDD)

The principle of Tenant-Driven Design (TDD) is to exploit the low active

tenant ratio found in real multi-tenant cloud environments to design a deploy-

ment plan that lets each active tenant exclusively use an MPPDB that just fits

(or, over-fits) its parallelism requirement. By using TDD, it can be shown that

requirements R2 to R5 (Chapter 1.1) are all tackled in a row.

The whole Tenant-Driven Design consists of three parts: (1) Cluster De-

sign (Chapter 4.1), (2) Tenant Placement (Chapter 4.2), and (3) Query Routing

(Chapter 4.3).

4.1 Cluster Design

The cluster design of TDD is to divide a set of machine nodes into A groups

(we will discuss how to set the value of A later). Then, each group of nodes

form a separate MPPDB. Let T be the number of tenants, ni be the number of

17

18 4.1. CLUSTER DESIGN

Tenant T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

ni 6 6 5 5 5 4 4 3 2 2

(a) Tenant Characteristics (42 nodes requested)

Group G0 G1 G2

MPPDB MPPDB0 MPPDB1 MPPDB2

Parallelism 6-node 6-node 6-node

(b) Cluster Design (18 nodes)

MPPDB MPPDB0 MPPDB1 MPPDB2

Hosting T1 – T10 T1 – T10 T1 – T10
(c) Tenant Placement

Figure 4.1. A Toy Example

nodes requested by tenant Ti, and N be the total number of nodes requested by

all T tenants (i.e., N =
∑T

1 ni). Without loss of generality, we assumes ni ≤ nj

if i > j. Then, the tenant-driven design assigns n1 nodes to groups G1, G2, ...,

GA−1. Group G0 is a special group. The tenant-driven design assigns a variable

of U nodes to G0, where n1 ≤ U ≤ (N − (A − 1)n1). In this thesis, we call

the MPPDB created from group G0 as the “tuning MPPDB”, which is used for

system tuning. We will discuss more about the choice of U in Chapter 6 and

now we assumes U = n1.

As a toy example, assume that there are T = 10 tenants and the number of

nodes requested by each tenant is listed in Figure 4.1a. In this toy example, the

service provider requires a total of N = 42 nodes to host these tenants before

consolidation. So, assume that A = 3, there are three groups and TDD results

in a 18-node cluster design as listed in Figure 4.1b.

CHAPTER 4. TENANT-DRIVEN DESIGN (TDD) 19

4.2 Tenant Placement

The tenant placement of TDD is very simple. Specifically, each MPPDB is

assigned to host all tenants. Figure 4.1c illustrates the tenant placement for the

example. From the above discussion, it observes the Property 1.

Property 1 The tenant-driven design enforces a replication factor of A for each

tenant.

Replication is a standard way to ensure high availability and load balancing.

Usually, the replication factor is around two to four[20].

4.3 Query Routing

Algorithm 1 presents the query routing algorithm based on the tenant-driven

design. The idea is to “route an active tenant” (compare with the concept of

“route a query”) to one MPPDB and let that MPPDB exclusively process all

that tenant’s (concurrent) queries until that tenant becomes inactive. Here, we

use a strong notion of inactive — as long as a tenant does not have any queries

being executed by any MPPDB, that tenant is inactive at that moment.

We explain the query routing by walking through an example of tenant ac-

tivities listed in Figure 4.2. In the example, the maximum number of concurrent

active tenants is three. In the beginning, tenant T4 becomes active and submits

a query Q1. As all MPPDBs in the cluster are initially free (not serving any

queries), Q1 gets routed to MPPDB0 (Line 5). Next, tenant T2 becomes ac-

tive and submits a query Q2. As MPPDB0 is currently busy (serving T4’s Q1),

20 4.3. QUERY ROUTING

Tenant	
 T4	

Reques,ng	

5-­‐node	

Tenant	
 T2	

Reques,ng	

6-­‐node	

Tenant	
 T9	

Reques,ng	

2-­‐node	

Tenant	
 T1	

Reques,ng	

6-­‐node	

Number	
 of	

Ac,ve	
 Tenants	
 0 1 2 3 2	
 1 2 3 2 3 2	
 1

Served	
 by	
 MPPDB0	

Q1	

Q3	

Served	
 by	
 MPPDB1	

Q7	

Served	
 by	
 MPPDB1	

Q2	
 Q4	

Served	
 by	
 MPPDB2	

	
 Q5	

Served	
 by	
 MPPDB0	

Q6	

Served	
 by	
 MPPDB0	

Q8	

Time	
 Inac,ve	

2
Figure 4.2. Tenant Activities and Query Routing

Q2 is routed to MPPDB1, which is free (Line 8). Next, tenant T4 has a query

Q3 submitted while Q1 is still running on MPPDB0. So, Q3 is also routed to

MPPDB0 (Line 2). Continuing the example, Q4 is the next query arriving to

the system. As Q4 is submitted by T2 and MPPDB1 is still serving a query of

tenant T2, Q4 is routed to MPPDB1 as well (Line 2). Tenant T9 becomes active

next and submits a query Q5. In this case, Q5 is routed to MPPDB2, which is

free (Line 8). Next, tenant T1 becomes active and submits query Q6, since T4

has just finished Q1 and Q3, Q6 is routed to MPPDB0 (Line 5). Q7 is the next

query submitted by tenant T4 after Q1 and Q3. Since Q1 and Q3 have already

finished, Q7 of T4 is not necessary be routed to MPPDB0. It is thus routed to

MPPDB1 because MPPDB0 is busy serving tenant T1. Q8 of tenant T1 is the

last query in this example. Although Q8 is submitted almost right after Q6 (e.g.,

with a short “think-time” during a user’s interactive analysis session), tenant T1

is still regarded as inactive for a short while. Therefore, it is not necessary for

Q8 to follow Q6 to go to MPPDB0. In this example, however, it is still routed

CHAPTER 4. TENANT-DRIVEN DESIGN (TDD) 21

Algorithm 1: TDD Query Routing Algorithm

Input: Tenant Ti, Query Q
1 if Ti has queries running on MPPDBx then
2 route Q to MPPDBx;

3 else
4 if MPPDB0 currently is free then
5 route Q to MPPDB0;
6 else
7 if there is any free MPPDB then
8 route Q to a free MPPDBj ;
9 else

10 route Q to MPPDB0 for concurrent processing;

to MPPDB0 because all other MPPDBs are busy.

4.4 SLA Guarantee and Load Balancing

Guarantee 1 No matter a tenant’s queries are linear-scale-out, non-linear-

scale-out, submitted sequentially and possibly in an ad-hoc manner (interactive

analysis), or submitted in a batch for concurrent execution (report generation)

at any multi-programming-level (MPL). Tenant-Driven Design ensures the SLAs

of a maximum of A active tenants are met.

Although simple, TDD can obtain a strong performance SLA guarantee

under a general and practical MPPDB-as-a-service setting. In essence, TDD has

tackled requirements R2 to R5 in a row. In the example above, all tenants’ SLA

are met because their queries are served by dedicated MPPDBs with exact (e.g.,

Q2, Q4, Q6, Q8) or higher degree of parallelism (e.g., Q1, Q3, Q5, Q7).

TDD achieves load balancing among tenants implicitly. That is because

22 4.4. SLA GUARANTEE AND LOAD BALANCING

TDD uses a strong notion of inactive and it applies replication on the tenant

data, therefore the tenants can be quickly served by an available MPPDB. Thrifty

remarks that load balancing within a tenant is not TDD’s but the tenant’s own

issue. The pricing model of Thrifty is to charge a tenant based on the number of

nodes it requested. Therefore, if a tenant rents only a 2-node MPPDB instance

to serve many concurrent users (e.g., MPL=100), the possibly slow down of

the tenant’s performance due to the high load is brought by the tenant’s own

node-choice — TDD is just offering what the tenant should get.

Node failure is handled directly by the MPPDB. All Major MPPDB prod-

ucts can still stay online even with (some) node failure. Thrifty will replace a

failed node by starting a new node upon receiving node failure notification from

the underlying MPPDB. Node failure, or having more than A active tenants at

run-time may cause performance delay and thus SLA violations. We will address

this in the next two sections.

Chapter 5

Serving thousands of tenants

With the use of TDD, Thrifty is able to handle a general type of MPPDBaaS

tenants (R4 and R5) while offering high availability services (R2) with perfor-

mance SLA guarantees (R3). However, the discussion so far has only considered

a small number of tenants and the total cluster size (i.e., the total number of

nodes involved) is small. If there are a lot of tenants, say T = 5000, and if

the (average) active tenant ratio is 10%, the average number of active tenants

at a certain point may reach 500 and the maximum number of active tenants

could be even larger. According to Guarantee 1, in order to ensure all that 500+

active tenants can meet their SLAs together, it needs to set A > 500. That

would enforce each tenant’s data get replicated more than 500 times, according

to Property 1. Thrifty approaches this issue (R1) by grouping the tenants into

tenant-groups so that there are only some tens tenants in each tenant-group.

There are two considerations when grouping the tenants. First, we want to

group the tenants in a way that can minimize the total number of nodes used

23

24

after consolidation. Second, we want to ensure the active tenant ratio in each

tenant-group is low enough to meet the replication factor R. For example, if

Thrifty puts 30 tenants that are always active together into the same tenant-

group, Thrifty still needs to set A = 30 for that tenant-group in order to meet

all tenant’s SLA.

Finding an optimal tenant-group formation that can address the two con-

siderations above, unfortunately, is NP-hard. To explain, consider a simple

scenario that R = 3 and six tenants, whose activities are divided into sequences

of d fix-width time epochs like in Figure 5.1. Based on that representation, find-

ing the optimal tenant-group formation is equivalent to a Largest Item Vector

Bin Packing Problem with Fuzzy Capacity (LIVBPwFC), which is a new

variant of the classic vector bin packing problem. Specifically, a tenant (item)

Ti is charactered by a tuple (~Ai, ni), where ni denotes the number of nodes re-

quested by Ti, and ~Ai = 〈a1, a2, · · · , ad〉 depicts the activity of Ti: ak = 1 if Ti is

active in the k-th epoch or ak = 0 otherwise. For example, in Figure 5.1, there

are 10 epochs. Tenant T1’s activity ~A1 is represented as 〈1, 1, 1, 1, 1, 1, 0, 0, 0, 0〉,

meaning that it was active from t1 to t6 and inactive from t7 to t10. Each tenant

group (bin) TGj is charactered by a tuple (~Bj , P), where ~Bj is a d-dimensional

vector ~Bj = 〈R,R, · · · , R〉. ~Bj and P together characterize the fuzzy capacity

constraint of a bin such that it is not full as long as the set of items S that are

packed in this bin have more than or equal to P% of epochs having less than

R active tenants. In other words, a set S of tenants (items) fits into a TGj

(bin) if COUNT≤R(
∑

Ti∈S
~Ai)/d ≥ P%, where COUNT≤R(~Vi) is a function

that counts the number of dimensions in a vector ~Vi whose values are less than

or equal to R. For example, consider S = {T1, T4, T5, T6} in Figure 5.1.
∑

Ti∈S
~Ai

CHAPTER 5. SERVING THOUSANDS OF TENANTS 25

results in a vector 〈2, 2, 2, 2, 4, 3, 2, 1, 2, 1〉 and COUNT≤R(
∑

Ti∈S
~Ai) returns 9

if R = 3.

Concerning the optimization goal, recall that for T tenants, the tenant-

driven design uses at least A ·n1 nodes. That is, the total number of nodes used

is dominated by the largest tenant that requests the most number of nodes. For

the example in Figure 4.1, T1 is the largest tenant and it requests six nodes, so a

total of A · n1 = 3 ∗ 6 = 18 nodes is required. Therefore, the optimization goal is

to minimize the total of number of nodes requested by the largest item (tenant)

in each created bin.

The classic vector bin packing problem is a special case of the LIVBP-

wFC problem in which only ~Ai and ~Bj are considered (i.e., ni are ignored and

P = 100%). The classic vector bin packing problem is NP-hard and recent

work [18] states that First-Fit-Decreasing (FFD) is a practical heuristic to get

approximate solutions. FFD suggests to sort all items according to a scalar value

and inserts the items into a bin according to that order. An item is inserted into

a new bin if the current bin is full. In order to get a single scalar value for a

d-dimensional item, one heuristic is to take the product of the dimension values.

However, FFD was not especially designed for the LIVBPwFC problem and it

did not take into account the fuzzy capacity constraint and the largest item.

Another direction is to phrase the problem as a mixed integer non-linear opti-

mization problem (MINLP). Appendix 9.1 details such a formulation. However,

the formulation contains non-linear constraints and many local minima. There-

fore, only general-purpose global optimization algorithms/solvers (e.g., DIRECT

[14]) could be used. Unfortunately, these general-purpose global optimization al-

gorithms/solvers run extremely slow for more than 20 variables.

26

!"#
!$#
!%#
!&#
!'#
!(#

)"#)$#)"*#)%#)&#)'#)(#)+#),#)-# !"#$%

Q

./01234#

Figure 5.1. Tenant Activities with Fixed-Width Time Epochs

Figure 5.2. Example Tenant Distribution
Num. of Tenants 900 800 700 600 500 400 300 200 100

Parallelism 2 3 4 5 6 7 8 9 10

As recent work [18] suggests using heuristics to solve vector bin packing style

problems is more practical, we have developed our own heuristic algorithm that

exploits properties of TDD. The algorithm works by solving the two considera-

tions separately. Specifically, it first looks at what kind of grouping can generate

a cluster design that can save more nodes? Recall that the total number of nodes

used by a cluster design is dictated by the largest tenant that requests the most

number of nodes. In Figure 4.1, T1 is the largest tenant and it requests six nodes,

so that cluster design saves 42 − 3 ∗ 6 = 24 nodes. If it groups ten tenants of

equal size, each requests six nodes, the resulting cluster design would still be the

same, but that could save a total of 6× 10− 18 = 42 nodes. Therefore, the first

intuition is that it should put tenants of the same size (i.e., requesting the same

number of nodes) into the same tenant-group.

CHAPTER 5. SERVING THOUSANDS OF TENANTS 27

TG1 = 1-active 2-active
{T3}

+ T1? 30% → 30% 0% → 30%
+ T2? 30% → 70% 0% → 0% *
+ T4? 30% → 80% 0% → 0%
+ T5? 30% → 50% 0% → 10%
+ T6? 30% → 50% 0% → 20%

(a) T2 is chosen
↓

TG1 = 1-active 2-active 3-active
{T3, T2}
+ T1? 70% → 70% 0% → 30% 0% → 0%
+ T4? 70% → 60% 0% → 30% 0% → 0%
+ T5? 70% → 90% 0% → 10% 0% → 0% *
+ T6? 70% → 30% 0% → 50% 0% → 0%

(b) T5 is chosen
↓

TG1 = 1-active 2-active 3-active
{T3, T2, T5}

+ T1? 90% → 40% 10% → 50% 0% → 10%
+ T4? 90% → 40% 10% → 60% 0% → 0% *
+ T6? 90% → 30% 10% → 70% 0% → 0%

(c) T4 is chosen
↓

TG1 = 1-active 2-active 3-active 4-active
{T2 – T5}

+ T1? 40% → 10% † 60% → 60% 0% → 30% 0% → 0%
+ T6? 40% → 10% 60% → 60% 0% → 30% 0% → 0% *

(d) All ties; T6 is chosen
↓

TG1 = 1-active 2-active 3-active 4-active
{T2 – T6}

+ T1? 10% → 0% 60% → 30% 30% → 60% 0% → 10%

(e)

TTP (for R ≤ 3) before adding T1: 10% + 60% + 30% = 100%
TTP (for R ≤ 3) if T1 is added: 0% + 30% + 60% = 90%
†: Explanation: With T2–T5 only, epochs t1, t3, t4, and t8 have 1 active tenant (40%).

With T1 added, epoch t8 has 1 active tenant (10%).

Figure 5.3. Second Step of Tenant-Grouping (* means that tenant is chosen in that
iteration)

28

Next, we look at the second consideration, i.e., how to ensure a low active

tenant ratio within each tenant-group? A natural intuition is that it should

analyze the tenants’ activities, and put a tenant into a tenant-group that (a)

minimizes the increase in the maximum number of active tenants of that tenant-

group and (b) ensures that fuzzy capacity constraint of each resulting tenant-group

is not violated.

Based on the intuitions above, we have developed a two-step tenant grouping

heuristic algorithm. In the first step, it puts all tenants with homogenous node-

size into the same tenant-group (we call those initial-groups). Consider the

tenant distribution in Figure 5.2, there would be nine initial-groups (e.g., all 300

tenants that request 8-node MPPDBs are in the same initial-group).

In the second step, it further splits the tenant in each initial group into

tenant-groups. Specifically, for all tenants in the same initial group, it first

inserts the least active tenant into a tenant-group. Next, it picks the tenant

Tbest that minimizes the increase in time percentage (measured in terms of the

number of time epochs) of the maximum number of active tenants. Take the

tenant activities in Figure 5.1 as an example. Assume tenant T3 is put as the

first member of the first tenant-group TG1. So, when putting T1 into TG1, the

total time percentage that has two active tenants, is increased from 0% to 30%

(i.e., there are three epochs, t2, t3, t4, out of ten, have two active tenants). If

putting T2 into TG1, the total time percentage of having two active tenants does

not increase. Figure 5.3a shows the potential time percentage changes of different

numbers of active tenants when adding a tenant into the tenant-group TG1 (with

T3 there). In the example, both T2 and T4 can keep the maximum number of

active tenant to be one if any one of them is added to TG1. So, we break the tie

CHAPTER 5. SERVING THOUSANDS OF TENANTS 29

by examining the increase of the total time percentage time of having one active

tenants — T2 is then chosen and added to TG1. Figure 5.3b shows the potential

time percentage changes of different number of active tenants if adding either

T1, T4, T5, or T6 to the tenant-group TG1, which now contains T3 and T2. T5

is chosen because it incurs the least increase in the total time percentage of the

maximum number of active tenants. The process continues by adding T4 (Figure

5.3c) and T6 to TG1 (Figure 5.3d), one-by-one. Note that after TG1 has five

tenants T2, T3, T4, T5, and T6, the maximum number of active tenants is only

three (see Figure 5.1).

Let TTP be the total time percentage that the number of active tenants is

smaller than or equal to R in a tenant-group, and recall that P be a performance

SLA guarantee that is specified by the system administrator, who wants to ensure

that for a P% of time the tenants can meet their SLA. So, the adding of a tenant

to a tenant-group stops only when that would result in TTP < P . In this

example, assume the system administrator specifies R = 3 and she wants to

ensure that for a 99.9% of time the tenants can meet their SLA. From Figure

5.3e, it shows that if T1 is added into the tenant-group, the total time percentage

that the number of active tenants is smaller than or equal to R = 3 will drop from

100% to 90%. That in contrast means there is 10% of time that there would be

more than three active tenants. So, if A = 3, Thrifty may violate those tenants’

SLA guarantee at those epochs. Therefore, T1 would not add to tenant-group

TG1 and the tenant-grouping process starts a new iteration by creating a new

tenant-group TG2. The two-step tenant grouping algorithm is summarized in

Algorithm 2. The first step takes O(T) time to form initial groups. For each

initial group of size gi, it searches from the gi tenants the tenant Tbest with the

30

least increase in TTP and add it to a tenant group TGj . The process repeats for

the remaining gi−1 tenants, gi−2 tenants, so on and so forth and thus it requires

O(g2i) searches for each initial group. Nevertheless, the algorithm running time

is not a major issue because tenant-grouping is an offline process, triggered only

occasionally, the number of tenants involved is usually in the order of thousands,

and most importantly this experiments show that it yields deployment plans

that save more than 3.6% to 11.1% nodes than standard heuristic. After tenant

grouping, the resulting tenant-groups follow the tenant-driven design to generate

the cluster design and tenant placement, using A = R.

Algorithm 2: 2-Step Tenant Grouping Algorithm

Input: Tenants T , Replication Factor R, SLA Guarantee P%
// First Step

1 Put tenants requesting the same number of nodes into the same initial groups
// Second Step

2 for each initial groups do
3 i = 1;
4 Create tenant group TGi;
5 Identify the tenant Tbest ∈ T that will minimize the increase of time

percentage of the maximum number of active tenants in TGi;
6 if adding Tbest to TGi, and TGi’s TTP is still ≥ P% then
7 Remove Tbest from T and add Tbest to TGi;
8 Goto Line 5; BTry to add another tenant into this group

9 else
10 i++;
11 Goto Line 4; B Create another tenant-group

The epoch size has an influence on the grouping quality. For example, Query

Q of T6 in Figure 5.1 actually only spans a very small portion of epoch t5. If

the epoch size is halved, T6 can be added to the tenant group TG1 as well.

Empirically, we found that epoch sizes of 10 seconds to 30 seconds could achieve

the best consolidation effectiveness.

Before we go to the next section, it remarks that the two-step tenant-

CHAPTER 5. SERVING THOUSANDS OF TENANTS 31

grouping method relies on the assumption that “the tenant history repeats itself”,

which has been proven in realistic DaaS environments [8, 21]. So, when the TTP

of a tenant-group at R = 3 is 99.9%, it has a high confidence that the number

of active tenants is less than or equal to three at run-time. Of course, it is still

possible that the number of active tenants exceeds three at run-time (e.g., 0.08%

of time having four active tenants and 0.04% of time having five active tenants,

which results in a 0.12% of time having more than three active tenants). Thrifty

uses a reactive approach that elastically adds more nodes for that tenant group

to handle those situations (will discuss this in the next section). This approach

is pragmatic and makes good use of the elastic nature of cloud computing.

5.1 Lightweight Elastic Scaling

At run-time, tenants’ activities may deviate from the history. Consider a

tenant-group having a TTP of 99.95% during tenant-grouping. At run-time,

some tenants in that group may become more active than what the past tenant

activities have indicated, and that will result in a lower run-time TTP (RT-TTP).

When the RT-TTP drops to, say 98%, that implies there is 2% of time the ten-

ants are not exclusively served by dedicated MPPDBs and some of their queries

may not meet the SLA. Thrifty handles this issue using a standard elastic scaling

approach as in other cloud systems. The Tenant Activity Monitor monitors the

RT-TTP of each tenant-group using a time window (e.g., 24-hour). When it de-

tects the RT-TTP of a tenant-group of the past 24 hours has just dropped below

the performance SLA guarantee P , Thrifty will call the Deployment Advisor to

take action.

32 5.1. LIGHTWEIGHT ELASTIC SCALING

Tenant / Data Size Node Starting & Bulk Loading
MPPDB Initialization

2-node / 200GB 462s 10172s

4-node / 400GB 850s 20302s

6-node / 600GB 1248s 30121s

8-node / 800GB 1504s 40853s

10-node / 1TB 1779s 50446s

Table 5.1. Starting and Bulk Loading a MPPDB

One possible action is to elastically scale up A by one, i.e., adding one more

MPPDB. In MPPDBaaS, however, scaling up A is not as simple and efficient as

scaling resources (e.g., RAM) in VM-based cloud environment. Specifically, it

takes hours to start a new MPPDB and bulk load all tenants’ data before it is

ready to use. Table 5.1 shows the time of starting up a MPPDB and bulk loading

tenant data into a MPPDB in this environment. It shows that the data loading

time dominates the times of starting the machines and creating the MPPDB

instances, although it has already achieved a reasonable loading rate (about

1.2GB/min). Take starting a 10-node MPPDB that contains 1TB of tenant data

as an example. After detecting the RT-TTP of a tenant-group of the past 24

hours has dropped below the, say, 99.9% performance SLA guarantee threshold,

Thrifty needs about 14.5 hours (50446s+1779s) to prepare the new MPPDB.

Assume that the RT-TTP of the tenant group is consistently 98% during those

14.5 hours, that would result in about 17.4 minutes (14.5 hours × 2%) having

concurrent query processing at MPPDB0. Consider a reasonable time frame of,

say, one month, Thrifty has about 43 minutes (1 month × 0.1%) of “grace period”

for not meeting the SLA guarantee of a tenant group.1 So, that grace period is

barely enough to tolerate the scaling of A twice. Therefore, we look for a more

1That 43 minutes is only an optimistic estimate because some tenants should have already
consumed some of that grace period before Thrifty takes action.

CHAPTER 5. SERVING THOUSANDS OF TENANTS 33

lightweight approach to implement the elastic scale-up operation such that it can

be tolerated more scale-up operations or possibly other performance-influencing

operations (e.g., node failure) in the grace period.

The lightweight approach is to identify the “over-active” tenant(s) in that

tenant group and add a new MPPDB to serve only those tenant(s), instead of

adding a MPPDB that serves the whole tenant-group. Table 5.1 shows that the

data loading time scales linearly with the data size. As the data size of a tenant in

a tenant-group must always be less than the data size of all tenants in that group,

the elastic scale-up operation that starts a new MPPDB and loads data for only

the over-active tenants would be more efficient. Specifically, on detecting the RT-

TTP of a tenant-group of the past 24 hours has dropped below P , Thrifty will

run an over-active-tenant-identification algorithm to identify the tenant(s) that

are more active than the history indicated, and create a new MPPDB to serve

them. The over-active-tenant-identification algorithm is similar to the tenant-

grouping algorithm presented in Algorithm 2, with the only change that takes

only the tenants of a particular tenant-group as inputs. It is expected some

tenant(s) cannot join the same tenant group anymore, and they are identified as

over-active and their data are bulk loaded2 to a new MPPDB. When the new

MPPDB is ready, the Deployment Advisor will notify the Query Router to route

queries from the over-active tenant(s) to the new MPPDB.

For any tenant-group that has ever gone through the above elastic scaling

process, Thrifty will add tenants in those tenant-groups to a re-consolidation

list. Those tenants, together with new tenants, over-active tenants, and tenants

2For MPPDB products that support parallel data loading, this system would enable that
option.

34 5.1. LIGHTWEIGHT ELASTIC SCALING

in tenant-groups with de-registered tenants, will get re-consolidated in the next

(re)-consolidation cycle. Finally, tenants with regular bursts in tenant activity

(e.g., there are usually bursts near the end of a fiscal year) could be identified by

Thrifty’s regular activity monitoring and they would be excluded from consoli-

dation before the bursts arrive.

We regard its approach as a reactive approach to maintain the SLA per-

formance guarantee. A pessimistic approach is to use A + 1 MPPDBs upfront

to serve a tenant group, which is not cost-effective. A proactive approach is to

predict at run-time whether the RT-TTP will soon drop below P and proactively

trigger lightweight elastic scaling if so. That approach, however, is subjected to

prediction error and spikes (e.g, sharp drop of RT-TTP followed by sharp rise)

in tenant activities.

Chapter 6

Manual Tuning

The elastic scaling operation of Thrifty automatically adds a MPPDB to

serve the over-active tenants when the RT-TTP of a tenant-group of the past

24 hours stays below the SLA performance guarantee P . That MPPDB will be

there until the next re-consolidation cycle (to minimize the overhead of scaling

up and down). A system administrator may override this action. Consider a

performance SLA guarantee of 99.9%, and a tenant-group of tenants served by

three 10-node MPPDBs (A = R = 3). If there is a minor increase of active

tenant ratio of that group, resulting in a RT-TTP of, say, 99.8%, in the past 24

hours, and if a system administrator realizes from the Tenant Activity Monitor

that the RT-TTP of that group is not continuously dropping but stays flat, she

may think that Thrifty’s elastic scaling that starts a new 10-node MPPDB for

the over-active tenants is overkilling (because there is only 99.9%−99.8%=0.1%

of tiny time percentage of possibly SLA violations).

In situations like this, the system administrator may instead use the param-

35

36

eter U to manually tune the performance SLA guarantee of that tenant-group.

Recall that the tenant-driven design reserves a parameter U to control the num-

ber of nodes used by the MPPDB0 (Chapter 4). In the example above, the

system administrator may override Thrifty’s elastic scaling but increase U from

10 to, say, 12. Recall that the query routing algorithm of Thrifty routes a query

to MPPDB0 if all MPPDBs are busy (Algorithm 1 Line 10). Whenever the

0.2% of time the fourth (or the fifth...) active tenant submits a query, that is

routed to MPPDB0 for concurrent processing. So, it is possible that the 99.9%

SLAs can be met empirically by having a higher degree of parallelism and more

computation power (U+2) in MPPDB0 (like Point C in Figure 1.1b).

Chapter 7

Evaluation

Multi-tenancy is an important topic in cloud database research. However,

due to privacy, tenant logs are seldom available to the public. In view of this, we

begin by describing a methodology to create close-to-realistic multi-tenant DaaS

tenant logs. Next, we study the consolidation effectiveness of Thrifty based

on those generated tenants. Finally, we evaluate the lightweight elastic scaling

feature of Thrifty.

7.1 Generation of Tenant Logs

The objective of this section is to describe a methodology to generate close-

to-realistic MPPDBaaS tenant activity logs . The resulting logs are useful to

validate the consolidation effectiveness of the two-step tenant grouping algorithm.

To imitate the realistic scenarios, the log generation process has two steps:

(1) Real Query Log Collection and (2) Multi-Tenant Log Composition. In the

37

38 7.1. GENERATION OF TENANT LOGS

first step, we imitate the activity of different kinds of tenants, submit queries

to MPPDBs, and collect the corresponding real query logs from the MPPDBs.

In the second step, we compose activity logs of a large number of tenants from

those real query logs.

Step 1: Real Query Log Collection We use TPC-H and TPC-DS data and

queries in this step. A commercial MPPDB product is used to create five MPPDB

instances: 2-node, 4-node, 8-node, 16-node, 32-node. We assumes a tenant has

more data if it requests more nodes. A tenant may either hold TPC-H data or

TPC-DS data (with equal probability). So, the 2-node, 4-node, 8-node, 16-node,

and 32-node MPPDB instances respectively hold 200GB, 400GB, 800GB, 1.6TB

and 3.2TB of TPC-H/TPC-DS data (each node gets a 100GB data partition).

We then imitate a tenant and submit queries to each MPPDB by following

the procedure below: Each tenant has at most S autonomous users, where S is

a random integer between 1 and 5. Each user follows a probability distribution

P to carry out the following: (a) either submits a random TPC-H/DS query

to a MPPDB, or (b) submits a batch of M random TPC-H/DS queries to a

MPPDB, where M is a random integer between 1 and 10. The user will not

take any action until the single query (for (a)) or the query batch (for (b)) is

complete. A batch of queries is complete only when all its submitted queries

have finished. After the completion of a query/query batch, a user will pause

for W seconds before the next event takes place, where W is a random integer

from 3 to 600. We have repeated the above procedure 100 times. Each time

the above procedure is carried out for 3 hours, on the 2-node, 4-node, 8-node,

16-node, and 32-node MPPDBs, using a uniform distribution as P . The query

CHAPTER 7. EVALUATION 39

logs of the above executions are collected. Each query log collected is essentially

a 3-hour real query log of an artificial tenant, which requests, say, a 16-node

MPPDB with a maximum of 4 active users.

Step 2: Multi-Tenant Log Composition There are two inputs in this step:

(i) the total number of tenants T ; and (ii) the skewness of the tenant size dis-

tribution. The skewness of the tenant size is chosen by sampling from the CDF

of a Zipf distribution with a parameter 0 < θ < 1, where a smaller θ tends to

uniform whereas a larger θ tends to skew. The default θ is 0.8.1 An example

input in this step looks like Figure 5.2, where T = 5400 but the tenant can only

request 2/4/8/16/32-node MPPDB instances because only it have been prepared

in Step (1).

Given the tenant characteristics, the next step is to generate the tenant

activity log of each tenant. We illustrate this by giving an example of generating

a one-day activity log of a tenant that requests a 4-node MPPDB instance. In

the beginning, the tenant first gets a random time offset O from the following:

Offset O +0 +3 +5 +8 +16 +17 +19

Example Seattle New York Sao Paulo London Beijing Japan Sydney

Next, the tenant randomly picks a 4-node 3-hour query log from the logs

prepared in Step 1, and copies that into its activity log but with the time offset

O added. That offset is used to imitate the start of the office hour of that tenant

in a particular time zone. After that, the tenant randomly picks another 4-node

3-hour query log from the logs prepared in Step 1, and copies into its activity

1According to [11], the database sizes (measured in terms of amount of data) of different
companies follow a skew distribution. Among the parallel database user community, a company
tends to determine the number of nodes based on the data size. So, the tenant size also follows
a skew distribution.

40 7.2. EXPERIMENTAL SETTING

log but with the time offset O + 3 + 2 added. That offset is used to imitate

the start of the afternoon office hour after three hours of morning office hour

plus two hours of lunch. Finally, the tenant randomly picks yet another 3-hour

query log, and copies into its activity log but with the time offset O + 3 + 2 + 9

added. That offset is used to imitate some report generation activities scheduled

6 hours after the office hour and some queries posed by users in remote offices

(in different time zones).

We generate 30-day query activities for each tenant. In each week, each

tenant is active for five (week)days and then inactive two days (for the weekend).

Within the 30 days, each tenant is inactive in two weekdays to imitate two days

of public holiday. That two days are randomly chosen, but they are the same for

the tenants in the same time zone.

7.2 Experimental Setting

All the experiments are done on Amazon EC2 Extra Large Instance (15 GB

memory and 8 EC2 Compute Units) running a commercial MPPDB on Linux.

It follows the physical design suggested by the accompanied tuning advisor of

the MPPDB to do the partitioning and create the indexes. The MPPDB prod-

uct used in this experiment supports parallel loading, so it enables that option.

Thrifty is implemented using Python and it uses U = n1.

CHAPTER 7. EVALUATION 41

7.3 Consolidation Effectiveness under Different Ten-

ant Characteristics

This first set of simulation experiments is to evaluate the consolidation effec-

tiveness of the two-step tenant-grouping algorithm under different tenant charac-

teristics. The consolidation effectiveness is measured as the percentage of nodes

saved. For example, a 80% consolidation effectiveness means that if the tenants

all together request 10000 machine nodes, Thrifty can serve all of them using

2000 nodes only, meaning 8000 machine nodes are saved.

Table 7.1 shows the parameters varied in this part of experiments. The

default values are in bold face. The generated logs according to these parameters

have average active tenant ratios range from 8.9% to 12%, which is close to the

real 10% in DaaS [21]. The active tenant ratio under the default parameter value

is 11.9%. An optimal tenant-grouping solution based on solving the MINLP

formulation (Appendix 9.1) using DIRECT [14] is implemented but it has taken

about 12 days to compute the optimal solution for only 20 tenants. Therefore,

this experiments only compare with the FFD heuristic. In this experiments, the

2-step heuristic algorithm always generates better deployment plans by saving

3.6% to 11.1% more nodes than FFD.

Parameter Ranges

Epoch Size (E) 0.1s, 1s, 10s, 30s, 90s, 600s, 1800s

Number of Tenants (T) 1000, 5000, 10000

Tenant Distribution (θ) 0.1, 0.2, 0.5 0.8, 0.99

Replication Factor (R) 1, 2, 3, 4

Performance SLA (P) 95%, 99% 99.9%, 99.99%

Table 7.1. Evaluation Parameters

42
7.3. CONSOLIDATION EFFECTIVENESS UNDER DIFFERENT TENANT

CHARACTERISTICS

 65

 70

 75

 80

 85

0.11.01030906001800%
 o

f
no

de
s

sa
ve

d

(a) Epoch Size(s)

2-Step
FFD

 8

 10

 12

 14

 16

 18

0.11.01030906001800av
g

gr
ou

p
si

ze

(b) Epoch Size(s)

2-Step
FFD

1K

0.11.01030906001800

tim
e

(s
)

(c) Epoch Size(s)

2-Step
FFD

Figure 7.1. Varying Epoch Size E

Varying Epoch Size Recall from Chapter 5 that the consolidation effectiveness

of Thrifty is influenced by the choice of epoch size E in the tenant-grouping

algorithm. This experiment is to evaluate the influence of that parameter and

let us choose a suitable one for the rest of the experiments. Figure 7.1a shows

the consolidation effectiveness of Thrifty under different choices of E. When

the epoch size is large, 1800s, the consolidation effectiveness of FFD and the

2-step heuristic are about 68.0% and 73.1%, respectively. The consolidation

effectiveness increases with the use of smaller epoch size. For the 2-step heuristic,

the consolidation effectiveness is high up to 81.5% when a 10s epoch size is used,

where smaller epoch size does not yield further improvement. Figure 7.1c shows

the execution time of running FFD and the 2-step heuristic algorithms. FFD is

efficient because it just spends O(T log T) time to sort the tenants. Although

slower, the 2-step heuristic algorithm consistently generates deployment plans

that save 5.1% to 9.4% more nodes than FFD over all epoch sizes and it finishes

CHAPTER 7. EVALUATION 43

 65

 70

 75

 80

 85

1000 5000 10000%
 o

f
no

de
s

sa
ve

d
(a) Number of Tenants

2-Step
FFD

 8
 10
 12
 14
 16
 18

1000 5000 10000av
g

gr
ou

p
si

ze

(b) Number of Tenants

2-Step
FFD

0
1K
2K
3K
4K
5K
6K

1000 5000 10000

tim
e

(s
)

(c) Number of Tenants

2-Step
FFD

Figure 7.2. Varying Number of Tenants T

in 30 minutes even with the finest 0.1s epoch size is used. So, I adopt 10s as the

default epoch size. Figure 7.1b shows the average size of the resulting tenant-

groups. Tenant-groups formed by the 2-step heuristic algorithm can pack more

tenants than FFD.

Varying Number of Tenants Figure 7.2a shows that Thrifty’s consolidation

effectiveness is not significantly influenced by the number of tenants. When the

number of tenants increases from 1000 to 10000, consolidation effectiveness of the

2-step heuristic is increased from 79.3% to 83.3%. The minor increase is brought

by giving more choices to the algorithm to pick when inserting a tenant into a

tenant-group. Figure 7.2b supports the observation by showing that the average

tenant-group size also slightly increases with the number of tenants. Figure 7.2c

shows that the execution time of the 2-step heuristics algorithm. Overall, the 2-

step heuristic spends about two hours to find a deployment plan that saves 83.3%

of nodes for 10000 tenants. In contrast, although the FFD heuristic spends only

about 6 minutes, it finds a deployment plan that can only save 73.4% of nodes

44
7.3. CONSOLIDATION EFFECTIVENESS UNDER DIFFERENT TENANT

CHARACTERISTICS

 70

 75

 80

 85

0.1 0.2 0.5 0.8 0.99%
 o

f
no

de
s

sa
ve

d

(a) Tenant Distribution

2-Step
FFD

 10

 12

 14

 16

 18

0.1 0.2 0.5 0.8 0.99av
g

gr
ou

p
si

ze

(b) Tenant Distribution

2-Step
FFD

1K

0.1 0.2 0.5 0.8 0.99

tim
e

(s
)

(c) Tenant Distribution

2-Step
FFD

Figure 7.3. Varying Tenant Distribution θ

for 10000 tenants.

Varying Tenant Distribution Figure 7.3a shows that the consolidation ef-

fectiveness of the 2-step heuristic is not influenced by the tenant distribution as

significant as FFD does. Figure 7.3b supports the observation. Figure 7.3c shows

that the tenant distribution has a small influence on running time of the 2-step

heuristic, because the second step of this heuristic scans the list of tenants once

per insertion of a tenant into a tenant-group and thus an initial group with more

tenants takes more time to finish the grouping.

Varying Replication Factor This experiment is to evaluate the consolidation

effectiveness under different replication factors R. As one of the considerations

of the two-step tenant-group algorithm is to ensure that the maximum number

of active tenants in the resulting tenant-group does not exceed R for P% of time,

a higher replication factor would put more tenants into a tenant-group. Figure

7.4b shows that the average tenant-group size of 2-step heuristic is increased from

CHAPTER 7. EVALUATION 45

 70

 75

 80

 85

1 2 3 4%
 o

f
no

de
s

sa
ve

d
(a) Replication Factor

2-Step
FFD

 0
 5

 10
 15
 20
 25

1 2 3 4av
g

gr
ou

p
si

ze

(b) Replication Factor

2-Step
FFD

1K

2K

1 2 3 4
tim

e
(s

)
(c) Replication Factor

2-Step
FFD

Figure 7.4. Varying Replication Factor R

4.7 to 22.2 , when R is increased from 1 to 4. Figure 7.4a shows that 2-step’s

consolidation effectiveness is increased from 78.8% to 82.0% accordingly. The

increase of consolidation effectiveness is not as significant as the increase of the

average tenant-group size because when R is 4, more machines are used, and that

waters down the number of machines saved. Figure 7.4c shows that the running

time of the 2-step heuristic increases with R because more tenants can be tried

when inserting a tenant into a tenant-group.

Varying Performance SLA guarantee This experiment is to evaluate the

consolidation effectiveness under different performance SLA guarantees. Figure

7.5a shows that the consolidation effectiveness of the 2-step heuristic can be as

high as 86.5% if only a 95% performance guarantee is required, and it drops

back to 81.6% and 81.3%, respectively, when more stringent performance SLA

guarantees, 99.9% and 99.99%, are required. The experimental results show

that 99.9% is stringent enough such that an even more stringent performance

46
7.4. CONSOLIDATION EFFECTIVENESS UNDER HIGHER ACTIVE

TENANT RATIO

 70

 75

 80

 85

 90

95% 99% 99.9%%
 o

f
no

de
s

sa
ve

d

(a) Performance SLA

2-Step
FFD

 10

 15

 20

 25

95% 99% 99.9%av
g

gr
ou

p
si

ze

(b) Performance SLA

2-Step
FFD 1K

2K

95% 99% 99.9%

tim
e

(s
)

(c) Performance SLA

2-Step
FFD

Figure 7.5. Varying Performance SLA P

SLA guarantee of 99.99% does not reduce the consolidation effectiveness further.

When the performance guarantee is not so stringent (95%), Figure 7.5b shows

that both heuristics can pack more tenants into the same tenant group, and

Figure 7.5c shows that the 2-step heuristics has a higher running time than FFD

because more tenants can be tried to be inserted into a tenant-group.

7.4 Consolidation Effectiveness under Higher Active

Tenant Ratio

This second set of experiments is mainly used to get a feeling of the con-

solidation effectiveness under some unusual scenarios where the active tenant

ratio is much higher than 10%. We generate tenant logs that with higher active

tenant ratios by using the default parameter values listed in Table 7.1 but with

the following modifications in Step 2 (Multi-Tenant Log Composition) of the log

generation process:

CHAPTER 7. EVALUATION 47

 20
 30
 40
 50
 60
 70
 80
 90

12% 25% 31% 34%%
 o

f
no

de
s

sa
ve

d

(a) Active Tenant Ratio

2-Step
FFD

 0

 5

 10

 15

 20

12% 25% 31% 34%av
g

gr
ou

p
si

ze

(b) Active Tenant Ratio

2-Step
FFD

1K

12% 25% 31% 34%
tim

e
(s

)
(c) Active Tenant Ratio

2-Step
FFD

Figure 7.6. Higher Active Tenant Ratio

Modification Made & Meaning Resulting Active Tenant

Ratio

- 11.9%

(1) Tenants get either +0 or +3 offsets only

(imitating tenants are all from North

America)

25.1%

(2) Tenants of (1) but with no lunch hour 30.7%

(3) All tenants get the same +0 offset (im-

itating tenants are all from the west

coast) and with no lunch hour

34.4%

Figure 7.6a shows the consolidation effectiveness of the 2-step heuristic al-

gorithm drops from 81.3% to 34.8% when the active tenant ratio increases from

11.9% to 34.4%. That makes sense because when the history shows that many

tenants have been very active, the tenant-grouping algorithm cannot put many

tenants into the same tenant group. When the active tenant ratio is high up

48
7.4. CONSOLIDATION EFFECTIVENESS UNDER HIGHER ACTIVE

TENANT RATIO

 96

 97
 98

 99
 100

00:00 06:00 12:00 18:00 24:00

R
T

-T
T

P

Timeline

X Y Z U
99.9

 0

 1

 2

00:00 06:00 12:00 18:00 24:00

P
e
rf

o
rm

a
n
c
e

Timeline

X Y Z U

(a) RT-TTP (w/o elastic scaling) (b) Query performance (w/o elastic scaling)

 96

 97
 98

 99
 100

00:00 06:00 12:00 18:00 24:00

R
T

-T
T

P

Timeline

X Y Z U
99.9

 0

 1

 2

00:00 06:00 12:00 18:00 24:00

P
e

rf
o
rm

a
n
c
e

Timeline

X Y Z U

(c) RT-TTP (w elastic scaling) (d) Query performance (w elastic scaling)

Figure 7.7. Lightweight Elastic Scaling in a Tenant Group

to 34.4%, Figure 7.6b shows that a tenant-group can contain only five tenants

on average. In this experiment, R = 3, so it means Thrifty has to use three

MPPDBs to serve five tenants and thus only nodes requested by two tenants

could be saved, resulting in a 34.8% consolidation effectiveness.

Generally the active tenant ratio in a realistic DaaS has active tenant ratio

as low as 10% [21]. For tenants that have high active tenant ratio, as mentioned,

Thrifty could detect them easily and exclude them from consolidation. Even

when the active tenant ratio is high up to 30.7% and 34.4%, respectively, the

2-step heuristic can still save 47.6% and 34.8% of the requested nodes, and not to

forget that includes three replicas for each tenant as a high availability service.

CHAPTER 7. EVALUATION 49

7.5 Lightweight Elastic Scaling

In this section, we aim to take a look at how Thrifty’s lightweight elastic

scaling takes action in practice. It chooses to present some real production

information about a tenant-group generated from the previous tenant-grouping

experiment that uses the default values (Table 7.1). That tenant-group consists

of 14 tenants that request 4-node MPPDBs (R = 3; deploy on EC2 clusters).

Figure 7.7a shows an excerpt of run-time tenant-activities of that tenant-group

with Thrifty’s elastic scaling disabled. In the beginning of the excerpt, the RT-

TTP of that tenant-group is 100%, meaning there were at most three active

tenants in the past 24 hours. At time X, the RT-TTP of that tenant-group

slightly dropped to 99.92%. We checked the query log and found that there was

once a fourth tenant active and MPPDB0 had concurrently processed two queries

for a very short duration. Figure 7.7b shows the corresponding excerpt of the

performance of queries in Thrifty. The performance is normalized, so 1.0 means a

query has finished execution as quick as it should be when measured in an isolated

environment. A performance, say, 1.2 means a query has finished execution 1.2

time slower than it should be when measured in an isolated environment. At

time X where there were two queries concurrently processed by MPPDB0, that

two queries respectively obtained 50% and 80% query latency delay. However,

that was the first such event in the past 24 hours and the duration of that event

was short. Thus no elastic scaling took place — this showcases how Thrifty’s

reactive scaling approach can deal with some one-off spikes.

In order to study the effect of Thrifty’s elastic scaling, we manually took

over a tenant at time Y and continuously submitted queries to the system on

50 7.5. LIGHTWEIGHT ELASTIC SCALING

behalf of that tenant. Figure 7.7c shows the run-time tenant-activities of that

tenant-group with Thrifty’s elastic scaling enabled. From time Y to time Z, only

two tenants were active concurrently and thus nothing happened even though

it was submitting queries continuously as being the third tenant. At time Z,

three other tenants became concurrently active and this time the tenant-group

had accumulated more than 0.1% of time more than three active tenants in the

past 24 hours. Therefore, Thrifty carried out elastic scaling. Thrifty took about

2 seconds to identify the over-active tenant and it spent about 5000 seconds to

load the data of the over-active tenant. At time U , the new MPPDB was ready.

Since then, Thrifty routed all the queries to the new MPPDB and the tenant-

group excluded all the activities of the removed tenant. Therefore, the RT-TTP

of that tenant group returned back to 99.9% and above. Figure 7.7d shows

the corresponding excerpt of the performance of queries in Thrifty with elastic

scaling enabled. As multiple queries were concurrently processed by MPPDB0

at time Z, they exhibited performance delay. However, after scaling up, Thrifty

had been able to deal with the subsequent over-active scenarios. In contrast,

Figure 7.7b shows the expected scenarios where some subsequent queries cannot

meet the performance SLA as it kept on submitting queries to the system while

the elastic scaling option was disabled. These together showcase how Thrifty’s

elastic scaling approach can deal with over-active tenants that deviate from the

history.

Chapter 8

Future Work and Conclusion

This thesis presents Thrifty, a prototype that offers massively parallel pro-

cessing relational database system as a service (MPPDBaaS). The technologies

associated with Thrifty include the cluster design that details the arrangement of

thousands of machines nodes to form MPPDBs of different degree of parallelism,

the tenant-placement that details the tenant-to-MPPDB assignment, the query

routing algorithm that routes tenant queries to a proper MPPDB for processing,

the implementation of elastic scaling, and the system tuning methodologies. Ex-

perimental results show that Thrifty can save around 73.1% to 86.5% of nodes

in a wide range of usual settings.

Thrifty is currently a research prototype and there are a lot of interesting fu-

ture work. First, Thrifty currently assumes the machine nodes in the cluster are

homogeneous, extending Thrifty to deal with a cluster of heterogeneous machines

is thus an important yet challenging task. Second, data privacy is an important

issue in DaaS. Fortunately, privacy-aware query processing techniques have no

51

52

significant difference between centralized databases and parallel databases. We

plan to incorporate techniques like adjustable security (e.g., [7]) into Thrifty.

Third, currently Thrifty targets a very general setting where some tenants may

submit ad-hoc queries. Our plan is to separate the tenants in Thrifty into two

classes in the future, where tenants that would not submit ad-hoc queries (e.g.,

those only run reporting generation applications and agree to let us extract their

query templates) are treated as a special class (they will get another service

plan). For tenants in that class, it will be hosted using a specialized tenant-

driven divergent design that uses U > n1 nodes for MPPDB0 upfront and use

different partition schemes for different MPPDBs [6] in order to deal with the

non-linear scale-out problem. That would be a special case of the tenant-driven

design. Although only applicable to a restricted type of tenants, that design

would incur fewer elastic scalings and with a higher consolidation effectiveness.

The crux of that specialized design is to identify the minimum value of U that

can afford different degrees of concurrent query processing on MPPDB0 with-

out performance SLA violations, which requires extending concurrent workload

performance prediction techniques to parallel databases.

Bibliography

[1] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu.

Predicting completion times of batch query workloads using interaction-

aware models and simulation. In EDBT, pages 449–460, 2011.

[2] M. Akdere, U. etintemel, M. Riondato, E. Upfal, and S.B. Zdonik. Learning-

based query performance modeling and prediction. In ICDE, pages 390 –

401, 2012.

[3] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rit-

tinger. Multi-tenant databases for software as a service: schema-mapping

techniques. In SIGMOD, pages 1195–1206, 2008.

[4] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan,

Gopal Kakivaya, David B. Lomet, Ramesh Manne, Lev Novik, and Tomas

Talius. Adapting Microsoft SQL server for cloud computing. In ICDE, pages

1255–1263, 2011.

[5] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. Interactive analytical

processing in big data systems: A cross-industry study of mapreduce work-

loads. PVLDB, 5(12):1802–1813, 2012.

53

54 BIBLIOGRAPHY

[6] Mariano P. Consens, Kleoni Ioannidou, Jeff LeFevre, and Neoklis Polyzotis.

Divergent physical design tuning for replicated databases. In SIGMOD,

pages 49–60, 2012.

[7] Carlo Curino, Evan P. C. Jones, Samuel Madden, and Hari Balakrishnan.

Workload-aware database monitoring and consolidation. In SIGMOD, pages

313–324, 2011.

[8] Carlo Curino, Evan P. C. Jones, Raluca A. Popa, Nirmesh Malviya, Eugene

Wu, Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational

cloud: a database service for the cloud. In CIDR, pages 235–240, 2011.

[9] Jennie Duggan, Ugur etintemel, Olga Papaemmanouil, and Eli Upfal. Per-

formance prediction for concurrent database workloads. In SIGMOD, pages

337–348, 2011.

[10] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper.

An integrated approach to resource pool management: Policies, efficiency

and quality metrics. In DSN, pages 326 –335, 2008.

[11] Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and

Peter J. Weinberger. Quickly generating billion-record synthetic databases.

In SIGMOD, pages 243–252, 1994.

[12] Mei Hui, Dawei Jiang, Guoliang Li, and Yuan Zhou. Supporting database

applications as a service. In ICDE, pages 832 –843, 2009.

[13] Dean Jacobs and Stefan Aulbach. Ruminations on multi-tenant databases.

In BTW Proceedings, pages 514–521, 2007.

BIBLIOGRAPHY 55

[14] Donald R. Jones. Direct global optimization algorithm. Encyclopedia of

Optimization, pages 725–735, 2009.

[15] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Rama-

subramanian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating

heuristics for virtual machines consolidation. In Microsoft Research Techni-

cal Report, 2011.

[16] Gang Luo, Jeffrey F. Naughton, and Philip S. Yu. Multi-query SQL progress

indicators. In EDBT, pages 921–941. Springer, 2006.

[17] Rimma V. Nehme and Nicolas Bruno. Automated partitioning design in

parallel database systems. In SIGMOD, pages 1137–1148, 2011.

[18] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics

for vector bin packing. In Microsoft Research Technical Report, 2011.

[19] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP systems. In SIG-

MOD, pages 61–72, 2012.

[20] Jun Rao, Eugene J Shekita, and Sandeep Tata. Using paxos to build a

scalable, consistent, and highly available datastore. Proceedings of the VLDB

Endowment, 4(4):243–254, 2011.

[21] Berthold Reinwald. Multitenancy. University of Washington and Microsoft

Research Summer Institute, 2010.

[22] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner, and A. Zeier.

Predicting in-memory database performance for automating cluster man-

agement tasks. In ICDE, pages 1264 –1275, 2011.

56 BIBLIOGRAPHY

[23] Oliver Schiller, Benjamin Schiller, Andreas Brodt, and Bernhard Mitschang.

Native support of multi-tenancy in RDBMS for software as a service. In

EDBT, pages 117–128, 2011.

[24] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloud-

scale: elastic resource scaling for multi-tenant cloud systems. In SOCC,

pages 5:1–5:14, 2011.

[25] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,

Peter Kokosielis, and Sunil Kamath. Automatic virtual machine configura-

tion for database workloads. ACM TODS, 35(1), 2010.

[26] Petrie Wong, Zhian He, and Eric Lo. Parallel analytics as a service. In

SIGMOD, pages 25–36, 2013.

Chapter 9

Appendix

9.1 Formulation of the LIVBPwFC

Minimize
∑d T

R e
j=1 max

i
(R ∗ ni ∗ xij) (9.1)

Subject to
∑d

k=1H[R−
∑T

i=1
~Ai[k] ∗ xij] ≥ P% ∗ d,∀j (9.2)∑d T

R e
j=1 xij = 1,∀i (9.3)

xij ∈ {0, 1},∀i,∀j (9.4)

where i ∈ [1, · · · , T], j ∈ [1, · · · , dTRe] and H[n] is the discretization format of the

Heaviside step function:

H[n] =


0, if n < 0,

1, otherwise.

Variable xij = 1 if tenant Ti is packed to tenant-group TGj or xij = 0 otherwise.

57

58 9.1. FORMULATION OF THE LIVBPWFC

Objective function: There are T tenants. Each tenant-group has R replicas and can

support R concurrently active tenants. So, there are at most dTRe tenant-groups. Each

tenant-group TGj requires R ∗ ni machines, where i is the largest tenant that requests

the most nodes in that tenant-group.

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction

	Related Work
	DaaS
	Parallel Databases
	Optimization problems in cloud computing
	Elastic resource scaling in cloud computing

	System Overview
	Tenant-Driven Design (TDD)
	Cluster Design
	Tenant Placement
	Query Routing
	SLA Guarantee and Load Balancing

	Serving thousands of tenants
	Lightweight Elastic Scaling

	Manual Tuning
	Evaluation
	Generation of Tenant Logs
	Experimental Setting
	Consolidation Effectiveness under Different Tenant Characteristics
	Consolidation Effectiveness under Higher Active Tenant Ratio
	Lightweight Elastic Scaling

	Future Work and Conclusion
	Bibliography
	Appendix
	Formulation of the LIVBPwFC

