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Abstract

This thesis is concerned with a new compensation model with a performance-based

benchmark. In earlier papers about optimal compensation problem, there are rela-

tively few papers engaged in studying optimal investment policy with a given com-

pensation form. Furthermore, the benchmarks in these papers are always assumed to

be fixed or have nothing to do with the industry’s performance. While the benchmark

in this thesis contains an expected form, which represents the industry’s performance.

Traditional methods will fail in this kind of problem. So we plan to make optimiza-

tion two times to deal with this changing-target compensation model. Besides, some

numerical examples will be given in this thesis to illustrate the solvability of the

problem.
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Chapter 1

Introduction

1.1 Background

In the daily life, almost everyone’s salary comprises two parts: basic salary and com-

pensation. Compensation can be a good incentive for managers to exert their efforts

and gain more profits for company shareholders. Appropriate compensation for man-

agers is an aspect of corporate governance that is quite controversial to shareholders,

institutional activists, and government regulator. Therefore many researches have

been inspired to study the appropriate incentive contract, the optimal strategy, the

impact the contract has on the manager’s risk appetite and so on.

Optimal compensation problem belongs to principal-agent problem (it will be

stated as agency problem for short below). In principal-agent relationship, one or

more principals will hire one or more agents to perform on the principals’ behalf,

meanwhile the agents will enjoy some decision-making authority. Agency problem

is quite general in the practical world. The principal-agent relationship could arise

between any kind of cooperation and employment, like fund manager and investor,

employer and employee, CEO and shareholder, even author and co-author etc. Be-

cause each party in this relationship will try to maximize his own utility, the agent

will behave for the best of his own interests, which may be in the cost of the princi-

pal’s interests. The conflict between these two parties incurs moral hazard and has

1



inspired plenty of researches. It was Wilson (1965), Ross (1973) and Mirrlees (1976)

who began to study agency problem first. Wilson (1965) discussed that diverse in-

dividuals in a productive organization would share in the consequence of a single

decision. Ross (1973) discussed the conditions when the fee schedule would lead to

Pareto Efficiency, and provided some micro foundation for further study. Mirrlees

(1976) assumed that implicitly or explicitly every party would exploit the contract

for his own interest. Moreover, Mirrlees (1976) studied two models for a productive

organization. In the first model, both production and rewards based on performance

could be perfectly observed. The second model concentrated on the imperfect obser-

vation about the performance. Jensen and Meckling (1976) defined the concept of

agency costs, which included “the efforts on the part of the principal to ‘control’ the

behavior of the agent through budget restrictions, compensation policies, operating

rules etc”. And related it to ‘separation and control’ issue. Since Holmstrom and

Milgrom (1987) shed light on the continuous-time agency model, many researches

have been done in the context of Brownian motion, see also Schaettler and Sung

(1993), Hellwig and Schmidt (2002), He (2011), Bushman and Smith (2001a), Jin

(2002), Haubrich (1994).

Although great achievement has been made on the contracting design in agency

problem, few researches are dedicated to the affects the compensation model will

have on the agent, in other words, the optimal policy the agent will take with a

given compensation model. In Carpenter (2000), the benchmark of the compensation

model is some call options of the assets under control. Furthermore, Carpenter

(2000) proved that if the agent was given some compensation that he can’t hedge,

he may not necessarily become more risk-seeking with the option compensation. On

the other hand, Grinblatt and Titman (1989) showed that, if a fund manager was

compensated with options that he can hedge, he would increase the volatility of the

assets as much as possible, which would harm the interests of the investors. These
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papers designed different forms of compensation model, all of which have specific

economic meanings. These papers made continuous implements to various research

areas of financial world, thus the relationship between compensation and manager’s

performance has been much clearer.

This thesis focuses on the relationship between the compensation model with

a benchmark depending on the industry’s average performance and the investment

strategy that manager will take. There exists a mean term, which represents the

industry’s average performance, in the benchmark of this compensation model. That

term makes this problem a mean-field problem and allows us to connect agency

problem with mean-field problem. Mean-field problem is a very popular research

direction recently, which is initiated by mean-variance model. Actually, as long as

there exists a mean term in the cost function or state process of the problem, it

belongs to mean-field problem. These years have witnessed a growing number of

researches in this field, and a lot of new methods have been developed along with

this new research direction. For instance, embedding method in Li and Ng (2000) and

Zhou and Li (2000), Lagrangian method in Li et al. (2002), mean-field formulation

in Cui et al. (2013). They all provided us with new technics and new perspectives

to deal with some related but much more difficult problems. Besides, the problem

in this thesis can be briefly stated as maximizing the expected utility of the final

wealth, which is an investment problem. For compensation model, as long as the

benchmark is based on a given random variable, the problem could be transferred

into traditional investment problem. And this kind of problem could be solved with

traditional methods, like dynamic programming and martingale method. While in

this model, the benchmark is unknown and depends on the investment policy. The

problem thus turns out to be time-inconsistant, so the traditional ways to solve

investment problem will fail in this situation. That is also the key point of this

thesis.
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1.2 The Standard Investment Problem

In essence, the optimal policy problem with a given compensation model could be

classified into portfolio choice problem or investment problem. The standard invest-

ment problem aims at maximizing the utility of terminal wealth, just as the optimal

policy problem. There are two traditional methods to solve the problem. Dynamic

programming method is introduced by Merton (1969) and Merton (1971), the other

martingale method is characterized by Karatzas et al. (1986) and Cox and Huang

(1989). The outline of the standard investment problem is as bellow [referring to

Carpenter (2000)],

max
XT

E[U(XT )],

s.t. E[ζTXT ] ≤ x0,

XT ≥ 0.

(1.1)

Here XT represents the whole wealth at time T , ζT denotes the state price, which

means the current price of one unit of payoff at time T , and U : (0,+∞) 7→ R

is a strictly increasing and strictly concave utility function with U ′(+∞) = 0. In

dynamic programming method, the optimal solution to standard investment problem

(1.1) could be found via solving a more extensive question in below form,

V (s, x) = max
π(·)

E

[∫ T

s

f(t,Xt, πt)dt+ h(XT )|Fs
]
,

s.t. Xs =x.

(1.2)

The problem can reduce to solving an Hamilton-Jacobi-Bellman equation (HJB equa-

tion) and then the optimal control π· will be derived.

Until now papers about compensation model often adopt the following form,

max
XT

E[(U(XT − AT )+)],

s.t. E[ζTXT ] = x0,

(1.3)
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where AT is a prior given random variable and is FT -measurable, Xt should follow

the wealth process below,

{
dXt = (rtXt + π′tσtθt)dt+ π′tσtdWt,

X0 = x0,

where πt is the control variable, which also represents the investment strategy of the

manager at time t, σt is the volatility matrix at time t, rt represents the interest

rate of the riskless asset, and θt is the market price of risk at time t. In this kind

of problem, set AT as a target of the investment, then with Backward Stochastic

Differential Equation (BSDE) an optimal investment policy π∗t could be got to achieve

this target AT at time T . Take XT − AT as one part and denote it by YT , then the

original problem could be transferred into the following form,

max
YT

E[(U(YT )+)],

s.t. E[ζTYT ] = y0,

(1.4)

where Yt should follow the wealth process below,

{
dYt = (rtYt + (πt − π∗t )′σtθt)dt+ (πt − π∗t )σtdWt,

y0 = x0 − E[ζTAT ].

So problem (1.4) is actually same as the standard investment problem (1.1) and

could be solved by standard methods.

While in this thesis, the benchmark in our problem contains an expected term of

XT , which represents the industry’s average performance. Because the benchmark

is related to the distribution of XT , the BSDE will fail and the problem couldn’t be

transferred into the form like problem (1.4). The standard methods no longer apply

in our system, and a new approach should be introduced to solve it.
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1.3 Compensation Model

Executive compensation has been the subject of extensive prior researches. Ac-

cording to Antle and Smith (1986) and Jensen and Murphy (1999), three primary

mechanisms are used to provide executives with compensation and incentives:

• Flow compensation, which is the total of CEO’s salary, bonus, new equity

grants and other compensation;

• Increase in the value of the CEO’s portfolio of stock and options;

• The possibility that the market’s assessment of the CEO’s human capital will

decrease following termination due to poor performance or a change-in-control.

For managers below CEO, the possibility of promotion is an additional incen-

tive.

Although stock compensation will give executives more incentives compared to pay

and dismissal incentives, executives only hold quite small fractions of their firms’

ownership. Jensen and Murphy (1990) studied the pay-performance relation (PPS.

dollar-to-dollar measure) of executives, and also found the decline of the pay-performance

relation and pay level of executives since 1930s.

Moreover, different country-specific factors could lead to different compensation

structures that arise endogenously in those environments [see Bushman and Smith

(2001b)]. In some countries, like America, investors are well protected and every

firm is required to disclose its material information about its finance and contracts.

In these environments, a lot of firms have widely dispersed ownership, and managers

only own a small fraction of equity, so equity-based compensation can be a good

incentive for managers. While in some other countries, managers and their family

may hold most of the company’s ownership and explicit equity-based compensation

6



may not be attractive. All these factors result in different types of compensation

models, and all of them have certain practical significance.

The design of compensation model is virtually a kind of agency problem, in which

the agent enjoys some informational advantage over the principal. This asymmetry

of information between agent and principal causes moral hazard. Before the arise

of agency problem, it is traditional to proceed researches with the presumption that

market will mediate the outcomes efficiently, which actually departs from the reality

sometimes. With agency models, we can explain for non-market institutions and

contracting forms which received micro-economical theory can not account for. At

first, people began to pay attention to moral hazard [see Arrow (1974)], information

flows [see Marschak and Radner (1972)] and financial intermediaries in monetary

models. Then some people concluded a more general problem from these researches,

which is agency problem. Earlier works about agency problem has been done by

Wilson (1965), Ross (1973) and Mirrlees (1976). They gave the first further insight

into agency problem.

In the beginning, people focused on discrete-time often one-period agency prob-

lem, for example, Bhattacharya and Pfleiderer (1985), Dybvig and Spatt (1986),

Allen (1990), Stoughton (1993), Heinkel and Stoughton (1994) and so on. Among

them, Stoughton (1993) found that the linear contract would lead to under-investment

problem of manager, which can be well avoided by quadratic contract. Heinkel and

Stoughton (1994) examined the consequences of contracting over multi-period situ-

ation.

After several years, Holmstrom and Milgrom (1987) first applied continuous-time

model into agency problem in context of Brownian motion, provided important foun-

dation for the researches later. They found the optimal inter-temporal compensation

scheme should be a linear function of N independent accounts which represented the

aggregate number that observable events occur during the finite time periods. And
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they assumed that agent got paid at the end of each short time interval, and the

agent had exponential utility function. After that, further researches have been

done to extend the linear results of Holmstrom and Milgrom (1987). For example,

Schaettler and Sung (1993) developed sufficient conditions for validity of first-order

method to continuous-time agency model under moral hazard with exponential util-

ity; Hellwig and Schmidt (2002) showed the optimal incentive scheme in discrete-

time model of agency problem can converge to the result of Holmstrom and Milgrom

(1987); He (2011) solved for optimal contraction problem with private saving, and

applied his results into the Leland capital structure model. See also Bushman and

Smith (2001a), Jin (2002), Haubrich (1994) and Baiman (1990) for further general-

ization of Holmstrom and Milgrom (1987). Sannikov (2008) described a new flexible

continuous-time model of agency problem when the effort of agent can not be ob-

served directly. While his model will be vulnerable if the agent can save and borrow.

Carpenter (2000) used traditional dynamic programming to solve for optimal invest-

ment strategy of the manager who was compensated with call options over the assets

he controls. Moreover, they found that the option compensation didn’t necessarily

make the manager more risk-seeking.

Compared to these papers, this thesis engaged in deriving an optimal investment

policy with a specific compensation model. Furthermore, the compensation model

designed in this thesis has a benchmark which is a linear function of the assets

managed. That is the main point different from other papers about compensation

models.

1.4 Mean-Field Problem

The theory of mean-field stochastic differential equation (MF-SDE) is first intro-

duced by Kac (1956), who presented a special case MF-SDE, called McKean-Vlasov
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stochastic differential equation, which was motivated by a stochastic toy model for

the Vlasov kinetic equation of plasma. After that, McKean Jr (1966) started the

research in mean-field problem. Since then, mean-field problem has been applied in

various areas, including engineering, financial management and economics, see also

Spohn (1980), Chan (1994), Sznitman (1991), Dawson (1983), Pardoux (1999) and

references cited therein. In fact, mean-field problem represents a variety of problems

which involve state process as well as their expected values in their cost functions

or underlying dynamic systems. And It has been a most popular research direction

recently, many research areas are using it to extend their general framework.

Since mean-field problem is rich in content, here we only introduce a special and

significant case of the mean-field LQ control problem (MF-LQ control problem),

namely mean-variance problem. It is first introduced by Markowitz (1952), which

provided a fundamental basis for portfolio construction in a single period. The most

important contribution of this paper is that it provides people a method to con-

trol their risk within an acceptable level by using the variance to quantify the risk.

Markowitz (1952) also found the solution scheme and solved for the optimal portfolio

strategy under the assumption that shorting was prohibited. Later Merton (1972)

solved for the optimal portfolio strategy when shorting was allowed and covariance

matrix was positive definite. Furthermore, Perold (1984) developed a general tech-

nique to locate the efficient frontier under the condition that the covariance matrix

was nonnegative definite. After that, mean-variance model was extended to multi-

period portfolio selection model, see Mossin (1968), Samuelson (1969), Hakansson

(1971). The analytical results of Markowitz (1952) and Merton (1972) have been

extended into multi-period portfolio selection by Li and Ng (2000) and continuous

time portfolio selection by Zhou and Li (2000).

The following equation is an abstract form for the dynamic multi-period mean-
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variance portfolio selection problem [see Li and Ng (2000)],

max E(xT )− ωVar(xT ),

s.t. xt+1 = e0tx0 + Pt
′
ut,

t = 0, 1...T − 1,

(1.5)

where the tradeoff parameter ω ∈ [0,∞), xt represents the wealth of the investor

at the beginning of tth period, eit denotes the random return of ith security at

the beginning of the tth period, investment strategy ut = [u0t , u
1
t , ..., u

n
t ]
′
and the ith

component of the ut represents the amount of the wealth invested in the ith security,

and Pt = [(e1t − e0t ), (e2t − e0t ), ..., (ent − e0t )]
′
. Below is an abstract form for continuous

time mean-variance portfolio selection problem [see Zhou and Li (2000)],

min − E(xT ) + µVar(xT ),

s.t. u(·) ∈ L2
F(0, T ;Rm),

(1.6)

where the tradeoff parameter µ ∈ [0,∞), xt represents the value of the whole portfolio

at time t, u(t) denotes the investment policy at time t.

Problem (1.5) and problem (1.6) above are not standard stochastic control prob-

lems, because these dynamic optimization problems can’t be decomposed by a stage-

wise backward recursion, which means they are non-separate in the sense of dynamic

programming. The existence of the variance term in the cost function causes the

non-separate situation. Since the principle of optimality will fail in this non-separate

situation, all the traditional dynamic programming-based optimal stochastic control

solution methods no longer apply. In Li and Ng (2000) and Zhou and Li (2000),

they managed to achieve the analytical result of the portfolio selection and locate

the efficient frontiers by using a new developed method, which is called embedding

method. The general principle of the embedding method is that, firstly they try to

embed the original problem into a auxiliary problem which is proved to be a stochas-

tic optimal LQ problem, then by using the newly developed general stochastic LQ
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theory [see Chen et al. (1998)], the auxiliary problem could be solved, and solution

to the original problem is found finally via the auxiliary problem’s solution. Below

is the form the auxiliary problem in Li and Ng (2000),

A(λ, ω) : max E{λxT − ωx2T},

s.t. xt+1 = e0tx0 + Pt
′
ut,

t = 0, 1...T − 1,

which is a separable LQ stochastic control formulation and can be solved analytically.

And the auxiliary problem in Zhou and Li (2000) is as following,

A(µ, λ) : min E{−λxT + µx2T},

s.t. u(·) ∈ L2
F(0, T ;Rm).

Later some researches have been done to extend the embedding method, see Zhou

and Yin (2003), Bielecki et al. (2005), Li et al. (2002), Lim and Zhou (2002).

Some other methods have been developed to solve the mean-variance problem.

For example, Yong (2013) used two Riccati equations to solve the non-separate prob-

lem. And Li et al. (2002) came up with Lagrangian formulation. Besides Yong (2013)

illustrated some interesting motivation to contain the variance term in the cost func-

tion. And framework of mean-field formulation was initially proposed by Cui et al.

(2013), under which the mean-variance problem can be solved directly and analyti-

cally.

The compensation model in this thesis connects mean-field problem with com-

pensation problem by introducing a mean term of the wealth in the benchmark,

which represents the average industry’s performance. That makes the problem in

this thesis a mean-field problem, and extend the application of mean-field problem

into compensation area.
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1.5 Summary of Contributions of the Thesis

The original contributions of this thesis are as follows:

• This thesis is the first to introduce a compensation model whose benchmark

contains an expected term of the wealth process to represent the average in-

dustry’s performance. This improvement makes this compensation model more

conform to the reality, but also brings us much difficulty in solving it. Besides

this thesis is devoted into studying the relationship between the optimal strat-

egy and this given compensation model, which few papers are dedicated to do

so.

• Using two-step optimization method, an expression of the optimal final wealth

X(T ) is derived for the problem.This thesis succeeds to simplify the original

random variable optmization problem into a three-dimension scalar optimiza-

tion problem. And then a numerical experiment is conducted under the as-

sumption that ρ(T ) is two-point distributed. The successful settlement of the

numerical examples, to a certain extent, shows solvability and rationality of

this compensation model. Besides DRRA utility, CRRA utility and HRRA

utility are used respectively in these numerical examples, which indicates the

generality of the model.

1.6 Organization of the Thesis

The thesis is structured as follows.

• Chap.2 focuses on the formulation and solution of this mean-field target com-

pensation model. Firstly, it illustrates the setups of the whole market that

this thesis is based on and the assets are invested in. Specific forms of the

asset price processes and wealth process are presented. Secondly, the detailed
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economic meaning of this compensation model is introduced, which explains

the reason why we promote this mean-field target compensation model. Then,

a novel two-step optimization method is proposed to solve the problem, and

finally an expression of the optimal wealth is derived. All the lemmas and basic

theorem are introduced in this chapter.

• Chap.3 is devoted on numerical examples of this compensation model. CRRA

utility, DRRA utility and HRRA utility are used respectively in these three

examples. With the help of MATLAB, numerical results of these three ex-

amples are all achieved. The successful solving of these examples, in some

extent, shows the solvability of this compensation model. Besides, figures of

the examples will be placed in this chapter.

• Chap.4 concludes the whole thesis and plans for the future work.
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Chapter 2

Compensation Model with A

Mean-Field Benchmark

Before introducing the compensation model in this thesis, some basic setups will

be introduced first. A better understanding of preliminaries and assumptions is

of significant help for us to grasp the core content of this chapter. Hereby the

manager’s preference U(X) and opportunity set will be described, as well as some

basic features of the market where the assets will be invested. Various types of

assets that exist in this market, price processes of these assets and wealth process

the manager follows will all be introduced. After that, the thesis will turn to the

construction of the fundamental compensation model, and how to simplify it. This

chapter illustrates the formulation of this mean-field compensation model in detail,

and explains specifically the economic meaning of every part of this model. Besides,

some figures will be provided to show the specific characteristics of the model. With

the help of concave envelope, the original problem will be transformed into a more

tractable form. Then the final expression of the optimal wealth will be derived finally.

Many lemmas and basic theorem will be showed and proved in detail in this chapter.
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2.1 Preliminaries and Assumptions

Suppose there arem+1 assets which are traded continuously in a complete, arbitrage-

free market. One of the assets is riskless, like bond, whose price process P0(t) follows{
dP0(t) = r(t)P0(t)dt, t ∈ [0, T ],

P0(0) = p0, p0 > 0,

where r(t) > 0 is the interest rate of the riskless asset. And it is an Ft-progressively

measurable, scalar-valued stochastic process. Other m assets are stocks, whose price

processes P1(t), ..., Pm(t) satisfydPi(t) = Pi(t){µi(t)dt+
m∑
j=1

σi,j(t)dWj(t)}, t ∈ [0, T ], i = 1...m,

Pi(0) = pi, pi > 0,

where W (t) denotes an m-dimensional standard Brownian motion defined on some

fixed filtered complete probability space (Ω,F , {Ft}t≥0,P), µi(t) : [0, T ] × Ω → R1

and σi(t) : [0, T ] × Ω → Rm stand for the appreciation rate and the volatility rates

of ith asset, respectively. Furthermore, they are Ft-progressively measurable, scalar-

valued stochastic processes. Set the excess rate of return vector process

B(t) := (µ1(t)− r(t), · · · , µm(t)− r(t))′

and define the positive definite volatility matrix process σ(t) = (σi,j(t))m×m.

Assume that the trading of assets takes place continuously in a self-financing

fashion and there are no transaction fees. Denote the total value of the assets that

the manager controls at time t by X(t), and the initial endowment is x0 > 0 (fixed

through the project). Then X(t) follows wealth process [see Karatzas and Shreve

(1998)]

{
dX(t) = (r(t)X(t) + π(t)′σ(t)θ(t))dt+ π(t)′σ(t)dW (t),

X(0) = x0,
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where π(t) ≡ (π1(t), ..., πm(t))′ is the control variable, which also represents the

investment strategy of the manager. πi(t) is the total market value of the holdings

of asset i at time t, where i = 1, ...,m. And θ(t) ≡ σ(t)−1B(t) is the market price

of risk. Assume r(·), σ(·) and θ(·) are bounded. We will only consider admissible

controls π(·), such that E
∫ T
0
|π(t)′σ(t)|2dt < +∞ and X(·) ≥ 0.

2.2 Problem Formulation

At time T , the total basic salary of the manager is denoted by a constant c. Then

the wealth of the manager at time T comprises c and the compensation based on

some kind of benchmark. In this thesis, compensation is based on the industry’s

average performance. The benchmark here is assumed to be aE[X(T )] + b, where

E[X(T )] represents average performance of the whole industry. Hence, the utility of

the manager at time T is

U
(
(X(T )− aE[X(T )]− b)+ + c

)
.

Here U : (0,+∞) 7→ R is a (strictly increasing and strictly concave) utility function

with U ′(+∞) = 0, and a > 0, b ≥ 0, c > 0 are scalars. Given the specific compen-

sation form, the manager will choose an investment strategy to maximize his own

expected utility. Hence, his objective is to maximize

E
[
U
(
(X(T )− aE[X(T )]− b)+ + c

)]
(2.1)

over all possible controls π(·) under which the wealth process is nonnegative.

Define the state price density process{
dρ(t) = ρ(t)(−r(t)dt− θ(t)′dW (t)),

ρ(0) = 1.
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Then it can be obtained that

ρ(t) = exp

(∫ t

0

(
−r(s)− 1

2
|θ(s)|2

)
ds−

∫ t

0

θ(s)′dW (s)

)
.

Applying the Itô’s lemma, we have

d(ρ(t)X(t)) = (ρ(t)π(t)′σ(t)−X(t)ρ(t)θ(t)′)dW (t).

It means ρ(t)X(t) is a martingale, and we can obtain E[ρ(T )X(T )] = ρ(0)X(0) = x0.

Denote ρ = ρ(T ) and X = X(T ) for simplicity. The problem reduces to a static

optimization problem

max
X

E[U((X − aE[X]− b)+ + c)],

s.t. E[ρX] = x0, X ≥ 0.

(2.2)

If we have solved the above problem and found the optimal X∗, we can use the theory

of Backward Stochastic Differential Equation (BSDE) to find a control π(·).

2.3 Solving the Problem

Check problem (2.2), we can see that it is hard to solve it by the standard dynamic

programming or martingale approach. The objective function of problem (2.2) is

not concave and its benchmark is not fixed. So our target is to transform it to a

more tractable form. First, let’s study a related problem P (α, β), which has a fixed

benchmark α,

max
X

E[U((X − α)+ + c)],

s.t. E[ρX] = x0, E[X] = β, X ≥ 0.

(2.3)

Remark 2.1. In particular, we are interested in P(aβ + b, β). Because when α =

aβ + b = aE[X] + b, problem (2.3) is turned into the original problem (2.2).
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To further simplify the model, we let u(x) = U((x − α)+ + c), then the above

problem (2.3) reads

max
X

E[u(X)],

s.t. E[ρX] = x0, E[X] = β, X ≥ 0.

(2.4)

Remark 2.2. Now the model gets a quite simple form, and it is seemingly similar

with the traditional investment problem. However we should note that u is not a

concave function. It is a constant on (−∞, α] and concave on [α, +∞).
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Figure 2.1: x-u&U plane

Figure 2.1 is a picture of u&U , which is used to illustrate specifically the shape of

the function u. It is not concave, so the Lagrangian method can’t be applied directly.

To overcome the difficulty, it is important to make the objective function concave

first, so the following lemma is introduced.

Lemma 2.1. Let û be the concave envelope of u on [0, +∞), that is the smallest

concave function dominating u on [0, +∞). Then

û(x) =


u′(x)x+ u(0), 0 ≤ x < x,

u(x), x ≥ x,

(2.5)
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where x is the unique root of

u′(x) =
u(x)− u(0)

x
(2.6)

on (α, +∞). Moreover, û ∈ C1(0,+∞).

Following is a picture of û(x). And referring to Aumann and Perles (1965), we
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Figure 2.2: x-û plane

know that û(x) is the smallest concave function domination u on [0, +∞), which is

concave envelope.

Now consider the following concave optimization problem,

max
X

E[û(X)],

s.t. E[ρX] = x0, E[X] = β, X ≥ 0.

(2.7)

Using Lagrangian method, the result of problem (2.7) is derived in the theorem

below.

Theorem 2.1. The optimal solution of problem (2.7) is given by

X∗ = (û′)−1(λρ+ µ), (2.8)

where λ and µ are determined by

E[ρX∗] = x0, E[X∗] = β.
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And (û′)−1 is denoted as the left-continuous inverse function of û′, that is

(û′)−1(x) = inf{y ≥ 0 : û′(y) ≤ x} ∨ 0. (2.9)

Proof. Since the cost function is concave, we can introduce two Lagrangian param-

eters λ and µ to solve the problem. Then we have

L(λ, µ) =E[û(X)]− λ(E[ρX]− x0)− µ(E[X]− β),

X ≥0.

Differentiate L(λ, µ) corresponding to X, λ and µ, we can derive the following equa-

tions, 
∂L(λ,µ)
∂X

= E[û′(X)− λρ− µ] = 0,
∂L(λ,µ)
∂λ

= E[ρX]− x0 = 0,
∂L(λ,µ)
∂µ

= E[X]− β = 0.

The solution is determined by the equation as below,

û′(X) = λρ+ µ, (2.10)

where X ≥ 0. With the equation (2.5), we have following definition for û′(x),

û′(x) =


u′(x), 0 ≤ x < x,

u′(x), x ≥ x.

(2.11)

The characteristics of û′(x) can be clearly observed from Figure 2.3. Compared with

Figure 2.3 of U ′((x−α)+ + c), we can see that the only different part between these

two figures is when 0 < x ≤ x.

When x ≥ x, û′(x) = u′(x) = U ′((x − α)+ + c) and in this interval u is strictly

increasing and strictly concave, with u′(+∞) = 0. So u′(x) ≥ u′(x) ≥ 0. With

definition (2.11), we know û′(X) must be no smaller than 0. So λρ + µ should be

larger than or equal to 0, which means that λ ≥ 0 and µ ≥ 0. Furthermore, û′(X) is
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Figure 2.3: x-û′(x) plane

Figure 2.4: x-U ′((x− α)+ + c) plane

not one-to-one function. To make the inverse function of û′(X) reasonable, we define

(û′)−1(x) as 2.9.

Then from (2.10), it is apparent that,

X∗ = (û′)−1(λρ+ µ).

With the definition of (û′)−1(x) and the equation (2.11), X∗ could be expressed in
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an another way,

X∗ =

{
0 λρ+ µ ≥ u′(x),

U ′−1(λρ+ µ) + α− c λρ+ µ < u′(x).
(2.12)

Lemma 2.2. One has u
(
(û′)−1 (x)

)
= û

(
(û′)−1 (x)

)
for all x ≥ 0.

Proof. For any x ∈ (u′ (+∞) , u′(x)), because u′ is strictly decreasing, there is a

unique y ∈ (x, +∞) such that u′(y) = x. Because y ∈ (x, +∞), by Lemma 2.1,

u(y) = û(y), û′(y) = u′(y) = x, y = (û′)−1(x) and u((û′)−1(x)) = u(y) = û(y) =

û((û′)−1(x)). For any x ∈ [u′(x), +∞), (û′−1)(x) = 0, so u((û′−1(x))) = u(0) =

û(0) = û((û′)−1(x)).

Theorem 2.2. The X∗ defined in the equation (2.8) is also an optimal solution to

problems (2.3) and (2.4).

Proof. For any feasible solution X of problem (2.7), it is also a feasible solution of

the problems (2.4) and (2.3).

Because X∗ is an optimal solution of (2.7),

E[u(X)] ≤ E[û(X)] ≤ E[û(X∗)] = E[û((û′)−1(λρ+µ))] = E[u((û′)−1(λρ+µ))] = E[u(X∗)],

where the second last equality is due to Lemma 2.2. This proves that X∗ is an

optimal solution to problems (2.3) and (2.4).

Now we have solved problems (2.3) and (2.4), in which the benchmark α and

expected wealth β are all fixed. However, in problem P(αβ + b, β) that we really

concern, β should not be fixed. And both the objective function and the optimal

solution X∗ depend on β in problem P(αβ + b, β). To solve the original problem

(2.2), we need to find an optimal β to maximize its objective function.
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Lemma 2.3. Denote υ = u′(x). Then υ ∈ (0, U ′(c)) and

x =
1

υ

(
U
(

(U ′)
−1

(υ)
)
− U(c)

)
:= f(υ), (2.13)

α =
1

υ

(
U
(

(U ′)
−1

(υ)
)
− U (c)

)
− (U ′)

−1
(υ) + c := g(υ) + c. (2.14)

Moreover, f is one-to-one decreasing mapping from (0, U ′ (c)) to (0,+∞) and g is

one-to-one decreasing mapping from (0, U ′ (c)) to (−c,+∞).

Proof. Note υ = u′(x) = U ′(x − α + c), x > α and U is strictly concave, hence

υ < U ′(c) and x = (U ′)−1(υ) + α − c. On the other hand, u(x)−u(0)
x

= u′(x) = υ,

so x = 1
υ

(u (x)− u (0)) = 1
υ

(U (x− α + c)− U (c)) = 1
υ

(
U
(
(U ′)−1 (υ)

)
− U (c)

)
.

Moreover, α = x− (U ′)−1(υ) + c = 1
υ

(
U
(
(U ′)−1 (υ)

)
− U (c)

)
− (U ′)−1(υ) + c. Note

g′(υ) = − 1
υ2

(
U
(
(U ′)−1 (υ)

)
− U (c)

)
< 0, so g is decreasing. Because g(υ) and

(U ′)−1(υ) are both decreasing, f(υ) = g(υ) + (U ′)−1(υ) is decreasing as well.

Remark 2.3. From the above Lemma 2.3 we can use υ as a parameter to determine

the relationship between x and α. So use υ as a bridge, we can rewrite the equation

(2.8).

Lemma 2.4. The X∗ defined in the equation (2.8) is same as

X∗ =


0, if ρ ≥ η,

(U ′)−1(λ(ρ− η) + υ) + g(υ), if ρ < η,

(2.15)

where υ and g are defined in Lemma 2.3, and constants λ and η are determined by

E[ρX∗] = E[ρ(U ′)−1(λ(ρ− η) + υ)1ρ<η] + g(υ)E[ρ1ρ<η] = x0,

E[X∗] = E[(U ′)−1(λ(ρ− η) + υ)1ρ<η] + g(υ)P(ρ < η) = β.
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Proof. If x ≥ u′(x), then (û′)−1(x) = 0 by definition. If x < u′(x), (û′)−1(x) =

(u′)−1(x) by definition. Then

X∗ =


0, if λρ+ µ ≥ u′(x),

(u′)−1(λρ+ µ), if λρ+ µ < u′(x).

(2.16)

It is evident that (u′)−1(x) = (U ′)−1(x) + α − c on (0, û(x)). From Lemma 2.3,

υ = û(x). Hence the equation (2.16) can be turned into

X∗ =


0, if λρ+ µ ≥ υ,

(U ′)−1(λρ+ µ) + g(υ), if λρ+ µ < υ,

(2.17)

Define η = υ−µ
λ

. We can obtain the equation (2.15) immediately.

The equation (2.15) is actually the result of problem (2.3) with benchmark α.

What we are really interested in is the case when α = aβ + b = g(υ) + c. Regarding

to problem P(α, (α−b)/a), the above Lemma 2.4 reads P(g(υ)+c, (g(υ)+c−b)/a).

Lemma 2.5. For problem P(g(υ) + c, (g(υ) + c− b)/a), the optimal solution is

X∗ =
[
(U ′)−1(λ(ρ− η) + υ) + g(υ)

]
1ρ<η, (2.18)

where λ and η are determined by

E[ρ(U ′)−1(λ(ρ− η) + υ)1ρ<η] + g(υ)E[ρ1ρ<η] = x0, (2.19)

E[(U ′)−1(λ(ρ− η) + υ)1ρ<η] + g(υ)P(ρ < η) = (g(υ) + c− b)/a. (2.20)

The optimal value is

E
[
U((U ′)−1(λ(ρ− η) + υ)1ρ<η)

]
. (2.21)

24



Now the original random variable optimization problem (2.2) is simplified into a

scalar optimization problem in Lemma 2.5, which is much easier than the original

one. The target turns to find a υ to maximize the value of (2.21) where λ and η

are determined by (2.19) and (2.20). This is a three-dimensional scalar optimization

problem. However the objective function is not concave, it is very hard to prove its

solvability analytically. So numerical method will be used to solve it in the following

section.
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Chapter 3

Numerical Examples

The purpose of this chapter is to give simulation on this compensation model. Three

examples are used to illustrate how this model works, in which CARA (Constant

Absolute Risk Aversion) utility, DARA (Decreasing Absolute Risk Aversion) utility

and HARA (Hyperbolic Absolute Risk Aversion) utility are used respectively. The

reason that these three utility forms are adopted in this thesis is that they are the

most widely used utility forms in both research area and industry practice, which

will show the generality of the model. Here the distribution of ρ is characterized as

a two-point distribution, and the value of all parameters are assigned. It will follow

the same route, when ρ is three-point or four-point distributed. The experiments are

done under MATLAB using its Optimization Toolbox, and mostly through “fmincon”

function. And numerical results are all derived in these three examples, which are

also checked to be true. The examples show us the effectiveness and solvability of

this compensation model in the above setting.

As showed in Lemma 2.5, the compensation problem in this thesis is actually an
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optimization problem as below,

max
λ,υ,µ

E
[
U((U ′)−1(λ · ρ+ µ)1λ·ρ+µ<υ)

]
,

s.t.

E[ρ(U ′)−1(λ · ρ+ µ)1λ·ρ+µ<υ] + g(υ)E[ρ1λ·ρ+µ<υ] = x0,

E[(U ′)−1(λ · ρ+ µ)1λ·ρ+µ<υ] + g(υ)P(λ · ρ+ µ < υ) = (g(υ) + c− b)/a.

In these three examples, ρ is set to be distributed as following,

ρ =

m p,

n 1− p,

where m > n > 0. To make the problem reasonable, there are some constraints for

random variables υ, µ and λ,


λ > 0,

µ > 0,

0 < υ < U ′(c).

3.1 DARA Utility Case

In this case, utility function is set to be U = ln(x), which is a DARA utility function.

Because there exists an indicative function in the objective function, we should solve

the optimization problem in three different scopes. The whole problem could be

simplified into following optimization problem.
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In the first scope,

F = max
λ,µ,υ
−p ln(mλ+ µ)− (1− p) ln(nλ+ µ),

s.t.



pm

mλ+ µ
+

(1− p)n
nλ+ µ

+ (mp+ n(1− p))g(υ) = x0,

p

mλ+ µ
+

1− p
nλ+ µ

+ g(υ) =
g(υ) + c− b

a
,

g(υ) = −1 + ln(cυ)

υ
,

0 < υ < 1/c,

mλ+ µ < υ,

λ, µ > 0.

(3.1)

After several transformations, the objective function of problem (3.1) could be sim-

plified to an equation, which is only related to υ. The new objective function is as

following,

F = max
λ,µ,υ
− p ln(

(mp+ n(1− p) + n
a
− n)g(υ) + c−b

a
n− x0

p(n−m)
)

− (1− p) ln(
x0 − c−b

a
m− (mp+ n(1− p) + m

a
−m)g(υ)

(1− p)(n−m)
).

(3.2)
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In the second scope,

F = max
λ,µ,υ
−(1− p) ln(nλ+ µ),

s.t.



(1− p)n
nλ+ µ

+ n(1− p)g(υ) = x0,

1− p
nλ+ µ

+ (1− p)g(υ) =
g(υ) + c− b

a
,

g(υ) = −1 + ln(cυ)

υ
,

mλ+ µ > υ, nλ+ µ < υ,

0 < υ < 1/c,

λ, µ > 0.

(3.3)

With the restriction functions of problem (3.3), υ could be solved directly

g(υ) =
a

n
x0 + b− c.

Then the objective function of problem (3.3) could reduce to

F = max
λ,µ,υ

(1− p){ln[(
1

a
+ p− 1)g(υ) +

c− b
a

]− ln(1− p)}. (3.4)

In the third scope where nλ+ µ > υ, the optimization problem is meaningless.

Set x0 = 1, a = 0.2, b = 0.1, c = 0.1, m = 0.8, n = 0.5, p = 0.5, and substitute

them into the above problem. With MATLAB, we got the numerical result of the

problem. In the first scope thatmλ+µ < υ, with λ = 1.0000, µ = 0.1625, υ = 1.9664,

objective function (3.2) could achieve the optimal value F = 0.2250. Figure 3.1

describes the objective function (3.2), and illustrates the relationship between υ and

F (υ). It is easy to see that in the significant interval, (3.2) is a concave function,

which means the global maximum exists in this situation. In the second situation

that mλ+µ > υ, nλ+µ < υ, only one admissible υ is got, which is υ = 1.7946. The
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Figure 3.1: υ-F (υ) plane in DARA case

corresponding value of the objective function (3.4) is F = 0.6405, which is larger than

the optimal value of the objective function in the first situation. In summary, the

optimal value of this optimization problem should be F = 0.6405, with υ = 1.7946,

0.8λ+ µ > 1.7946, λ > 0, µ > 0.

3.2 CARA Utility Case

In this case, utility function is set to be U = 1 − e−x, which is a CARA utility

function. Because there exists an indicative function in the objective function, we

should solve the optimization problem in three different scopes. The whole problem

could be simplified to following optimization problem,
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In the first scope,

F = max
λ,υ,µ

1− (mp+ n(1− p))λ− µ,

s.t.



−mp ln(mλ+ µ)− n(1− p) ln(nλ+ µ) + (mp+ n(1− p))g(υ) = x0,

− p ln(mλ+ µ)− (1− p) ln(nλ+ µ) + g(υ) =
g(υ) + c− b

a
,

g(υ) = −1 +
1

υ
e−c + ln(υ),

mλ+ µ < υ,

0 < υ < e−c,

λ, µ > 0.

(3.5)

After several transformations, the objective function of problem (3.5) could be sim-

plified to an equation, which is only related to υ. The new objective function is as

following,

F = max
υ

p(1− exp(A(υ))) + (1− p)(1− exp(B(υ))),

A(υ) =−
(mp+ n(1− p) + n

a
− n)g(υ) + c−b

a
n− x0

p(n−m)
,

B(υ) =−
x0 − c−b

a
m− (mp+ n(1− p) + m

a
−m)g(υ)

(1− p)(n−m)
.

(3.6)
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In the second scope,

F = max
λ,µ,υ

(1− p)(1− nλ− µ),

s.t.



− (1− p)n ln(nλ+ µ) + n(1− p)g(υ) = x0,

− (1− p) ln(nλ+ µ) + (1− p)g(υ) =
g(υ) + c− b

a
,

g(υ) = −1 + ln(cυ)

υ
,

mλ+ µ > υ, nλ+ µ < υ,

0 < υ < e−c,

λ, µ > 0.

(3.7)

With the restriction functions of problem (3.7), we could solve υ directly

g(υ) =
a

n
x0 + b− c.

Then the objective function of problem (3.7) could reduce to

F = max
λ,µ,υ

(1− p)(1− exp(− x0
n(1− p)

+ g(υ))). (3.8)

In the third scope where nλ+ µ > υ, the optimization problem is meaningless.

Set x0 = 1, a = 0.2, b = 0.1, c = 0.1, m = 0.8, n = 0.5, p = 0.5, and substitute

them into the above problem. With MATLAB, the numerical result of the problem

above is got. In the first scope that mλ + µ < υ, with λ = 0.3534, µ = 0.0574,

υ = 0.4097, objective function (3.6) could achieve optimal value F = 0.7129. Figure

3.2 describes the objective function F (υ), and illustrates the relationship between

υ and F (υ). It is easy to see that in the significant interval, F (υ) is a concave

function, which means the global maximum exists in this situation. In the second

situation that mλ + µ > υ, nλ + µ < υ, we have only one admissible υ, which is
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Figure 3.2: υ-F (υ) plane in CARA case

υ = 0.3838. The corresponding value of the objective function (3.8) is F = 0.4863,

which is smaller than the optimal value of the objective function in the first situation.

In summary, the optimal value of this optimization problem should be F = 0.7129,

with λ = 0.3534, µ = 0.0574, υ = 0.4097.

3.3 HARA Utility Case

In this case, utility function is set to be U = 2
√
x, which is a HARA utility function.

Because there exists an indicative function in the objective function, we should solve

the optimization problem in three different scopes. The whole problem could be

simplified to following optimization problem,
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In the first scope,

F = max
λ,υ,µ

1
mλ+µ

+ 1
nλ+µ

,

s.t.



mp

(mλ+ µ)2
+

np

(nλ+ µ)2
+ (mp+ n(1− p))g(υ) = x0,

p

(mλ+ µ)2
+

1− p
(nλ+ µ)2

+ g(υ) =
g(υ) + c− b

a
,

g(υ) =
1

υ2
− 2
√
c

υ
,

mλ+ µ < υ,

0 < υ <
1√
c
, λ, µ > 0.

(3.9)

After several transformations, the objective function of problem (3.9) could be sim-

plified to an equation, which is only related to variable υ. The new objective function

is as following,

F = max
υ

√
A(υ) +

√
B(υ),

A(υ) =
(mp+ n(1− p) + n

a
− n)g(υ) + c−b

a
n− x0

p(n−m)
,

B(υ) =
x0 − c−b

a
m− (mp+ n(1− p) + m

a
−m)g(υ)

(1− p)(n−m)
.

(3.10)
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In the second scope,

F = max
λ,µ,υ

2(1−p)
nλ+µ

,

s.t.



n(1− p)
(nλ+ µ)2

+ n(1− p)g(υ) = x0,

1− p
(nλ+ µ)2

+ (1− p)g(υ) =
g(υ) + c− b

a
,

g(υ) =
1

υ2
− 2
√
c

υ
,

mλ+ µ > υ, nλ+ µ < υ,

0 < υ <
1√
c
, λ, µ > 0.

(3.11)

With the restriction functions of problem (3.11), we could solve υ directly

g(υ) =
a

n
x0 + b− c.

Then the objective function of problem (3.11) could reduce to

F = max
λ,µ,υ

2(1− p)
√

x0
n(1− p)

− g(υ). (3.12)

In the third scope where nλ+ µ > υ, the optimization problem is meaningless.

Set x0 = 1, a = 0.2, b = 0.1, c = 0.1, m = 0.8, n = 0.5, p = 0.5, and substitute

them into the above problem. With MATLAB, the numerical result of the problem

above is got. In the first scope that mλ + µ < υ, with λ = 0.8564, µ = 0.3483,

υ = 1.0334, objective function achieve the highest point F = 2.2555. Figure 3.3

describes the objective function (3.10), and illustrates the relationship between υ

and F (υ). It is easy to see that in the significant interval, F (υ) is a concave function,

which means the global maximum exists in this problem. In the second situation

that mλ + µ > υ, nλ + µ < υ, only one admissible υ is got, which is υ = 0.9772.
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Figure 3.3: υ-F (υ) plane in HARA case

The corresponding value of the objective function (3.12) is F = 1.8974, which is

smaller than the optimal value of the objective function in the first situation. In

summary, the optimal value of this optimization problem should be F = 2.2555,

with λ = 0.8564, µ = 0.3483, υ = 1.0334.
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Chapter 4

Conclusions and Future Work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

4.1 Conclusions

This thesis introduces a new form of compensation model which makes significant

changes to the compensation models before. Many works about compensation, like

Carpenter (2000), always have their benchmarks fixed or unrelated with the average

industry’s performance. However fixed benchmark is not prevalent in the practical

world, people mostly set benchmarks much more dynamic in consideration of the

whole industry and their own conditions. Compared to them, this thesis’s benchmark

aE[X(T )]+b is based on the average industry’s performance E[X(T )] and is changing

all the time. That makes this model more practical and reasonable. However, this

changing benchmark that is related with X(T ) also brings us some difficulty in

solving the problem.

As the objective function in this model is not concave and also changing with

X(T ), this thesis is prepared to solve the problem with two steps.

1. Fix the benchmark by making E[X(T )] equivalent to a parameter β and let-

ting α represent the benchmark. So the problem could be regarded as a normal
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compensation problem P(α, β) with fixed benchmark. After some transfor-

mations, the original random variable optimization problem is turned into a

general, concave optimization problem. It could be solved easily with tradi-

tional optimization method.

2. Make the benchmark be changing again by turning problem P(α, β) into prob-

lem P(g(υ) + c, (g(υ) + c− b)/a) and letting υ be a changing parameter. Now

the problem is simplified into a three-dimensional scalar optimization problem.

It turns out to find an optimal υ to maximize the objective function next,

which is actually a second-time optimization. And this is what we are doing

now. Although the existence of solution to this optimization problem has not

been proved analytically yet, some particular examples have been listed, and

solved numerically with MATLAB. These examples, in some extent, show the

solvability of this model.

4.2 Future Work

Related topics for the future research work are listed below.

1. This thesis only solved the problem in some particular examples numerically

with a concrete ρ. Next we will further complete the numerical experiment

by using a continuous ρ, which follows Geometric Brownian Motion. Some

specific characteristics of the final optimal wealth and objective function will

be showed with figures. With the hints numerical results will show us, proving

the existence of the solution analytically will be considered. After that, optimal

investment strategy π will be achieved with BSDE method.

2. Some other improvements will be made on this model. The introduction of

probability distortion function will make the problem closer to real practice [re-
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ferring to Wyner and Ziv (1976), Abdellaoui (2000), Gonzalez and Wu (1999)

and so on]. When using probability distortion function, events at extremes

of the range of the outcomes are likely to be ‘overweight’. In such cases, at

least some ‘intermediate’ outcomes, perhaps with the same objective probabil-

ity, must be underweight. While this characteristic makes anticipated utility

more conform to the real situation. According to behavioral finance, people

always put more weights on the things that can hardly happen, such as lottery,

earthquake and so on. That is why probability distortion function needs to be

introduced. And same work will be done as the problem without distortion.
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bilités de Saint-Flour XIX—1989, pp. 165–251, Springer.

Wilson, R. (1965), “On the theory of syndicates,” .

Wyner, A. D. and Ziv, J. (1976), “The rate-distortion function for source coding
with side information at the decoder,” Information Theory, IEEE Transactions
on, 22, 1–10.

Yong, J. (2013), “Linear-Quadratic optimal control problems for mean-field
stochastic differential equations—time-consistent solutions,” arXiv preprint
arXiv:1304.3964.

Zhou, X. Y. and Li, D. (2000), “Continuous-time mean-variance portfolio selection:
A stochastic LQ framework,” Applied Mathematics and Optimization, 42, 19–33.

43



Zhou, X. Y. and Yin, G. (2003), “Markowitz’s mean-variance portfolio selection
with regime switching: A continuous-time model,” SIAM Journal on Control and
Optimization, 42, 1466–1482.

44




