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Abstract 

Landslides leave discernable signatures related to form, shape and appearance 

of land surface, i.e. morphological features, which are important for analysis of 

landslide mechanism, activity state and landslide detection. For objective analysis 

of landslide morphology, an approach capable of providing quantitative 

expression of morphological features is required. In addition, the development of 

new technique, namely airborne Light Detection And Ranging (LiDAR), allows 

morphological analysis in great details. Therefore, the approach should be able to 

express landslide morphological features related to multiple scales. 

Despite a number of methods based on mathematical tools have been 

developed to highlight particular information associated with landslide 

morphology, few efforts were devoted to quantification of landslide 

morphological features based on their descriptions. In this research, an approach 

based on local measures of spatial association was developed to quantify landslide 

morphological features represented by dominant morphology or topographic 

variability in a particular pattern. The use of local measures enables quantification 

of distinctness of landslide morphological features in a statistical way so that 

distinct morphological features can be identified. For characterization of spatial 

patterns of topographic variability, a method constructing local measure plots was 

proposed. A local measure plot indicates scales and magnitudes of topographic 
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variations along a specified direction. Multi-scale patterns of topographic variability 

can be revealed based on the plots.  

Due to its capability of identifying landslide morphological features, the 

local-measure-based approach can be applied to landslide detection. In related 

researches of automated landslide detection, morphological features have not been 

thoroughly exploited, especially for detection of debris slides and flows. Thus a 

semi-automated landslide detection approach based on morphological features was 

proposed to identify locations of small size, shallow debris slides and flows. 

Landslide component candidates were extracted by identifying morphological 

features using the local-measure-based approach. Geometric and contextual 

analyses were subsequently conducted to discriminate landslide components from 

other terrain objects. The approach was applied to a test site containing both new 

and old landslides covered by dense vegetation. Owing to the vegetation penetration 

ability, airborne LiDAR was utilized. Almost all (93.6%) the new and a part 

(23.8%) of old landslides with distinct morphological features were detected.  

In this research, airborne LiDAR data was employed to generate 

high-resolution Digital Terrain Models (DTMs) utilized in landslide morphological 

analysis and landslide detection. Since land surface analysis is affected by the 

quality of DTM , the possibility of improving the filtering results of LiDAR point 

cloud using an integration scheme was explored. Through visual evaluation of the 
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integration result, this scheme was proved to be able to remove a part of filtering 

errors and increase the number of ground points. 
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CHAPTER 1 Introduction 

1.1 Background and Problems 

Landslides are a class of geohazards which have always been posing a great risk 

to human lives and infrastructures in many parts of the world. The risk has an 

increasing tendency primarily due to human behavior, e.g. the expansion of 

development and infrastructures into more hazard-prone areas (Hearn and Hart, 

2011). Therefore, a large amount of research efforts have been devoted to 

landslide studies so as to obtain comprehensive knowledge of landslides and put 

forward hazard mitigation strategies.  

 

The content of landslide studies include landslide characterization, landslide 

detection and mapping, assessment of landslide hazards, estimation of landslide 

susceptibility, construction of landslide models, and monitoring active landslides 

(Jaboyedoff et al., 2010). Landslide characterization and detection are 

fundamental to other landslide studies. Landslide characterization is through 

identification of morphological features (features related to the form, shape and 

appearance of land surface) and internal structure of landslide to analyze 

landslide mechanism, age and activity state, etc. The morphological features 

identified inside landslide are also important for landslide detection. Landslide 

detection is to identify landslide locations or delineate their boundaries so as to 

generate a landslide inventory which is a basis for other landslide studies (e.g. 

landslide susceptibility assessment). Landslides can be detected based on 

morphological features, vegetation and drainage patterns (Soeters and Van 

Westen, 1996). In landslide detection studies, landslides were usually detected 

solely based on vegetation contrast between landslide scars and stable areas. 

Vegetation information is especially effective for detecting newly triggered 

landslides. Old landslides covered by dense vegetation are difficult to identify 
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due to slight vegetation contrast. In such a situation, morphological features are 

the most effective signatures for landslide detection. Even for newly triggered 

landslides, morphological features can be utilized as supplementary evidence for 

further discrimination between landslides and stable areas (e.g. Martha et al., 

2010). Due to the importance of morphological features, this research focuses on 

developing approaches for expression and identification of landslide 

morphological features. 

 

Morphological information was usually extracted from Digital Terrain Models 

(DTM) and the derived products. The data sources available for generating 

DTMs mainly include field surveying and remote sensing data. Recently, 

airborne Light Detection And Ranging (LiDAR) has been widely employed to 

generate high-resolution DTMs. Airborne LiDAR system emits laser pulses to 

derive a three dimensional (3D) point cloud. The resultant LiDAR data contains 

spatial information (3D coordinates and intensity) of both ground surface and 

above-ground objects. Due to its high point density, airborne LiDAR can be 

utilized to generate high-resolution DTMs. The high-resolution DTMs and their 

derived products enable detailed morphological analysis. Moreover, the 

vegetation penetration ability of airborne LiDAR makes identification of 

landslide morphological features beneath dense vegetation possible. 

 

For objective analysis of landslide morphology, approaches which can provide 

quantitative expression of morphological features are required. Landslide 

morphological features may be represented by a dominant morphology or 

topographic variations in a particular spatial pattern. For instance, the concavity 

in depletion zone and convexity in accumulation zone refers to a dominant 

morphology, while the step-like slope morphology refers to topographic 

variability in a certain pattern. In addition, landslide morphological features are 

closely related to scales. On one hand, landslide morphological features may 

have different representations at different scales. The dominant morphology of a 
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landslide component may be more evident at large scales than at small scales, 

while the pattern of topographic variations may be only recognizable at small 

scales. On the other hand, the scale of topographic variations may vary over 

space, producing inhomogeneous patterns across the landslide area. This 

phenomenon was recognized by a number of studies which observed multiple 

dominant scales of topographic variability inside landslide (e.g. Booth et al., 

2009; Glenn et al., 2006). Therefore, the approaches for landslide morphological 

analysis should also be able to take into account the scale dependency. These 

requirements can be achieved by using local measures of spatial association 

(Anselin, 1995; Ord and Getis, 1995). 

 

Local measures of spatial association are a group of measures indicating 

localized patterns of spatial association (i.e. spatial autocorrelation or 

dependence) among spatially distributed observations. The dominant 

morphology and the topographic variability in a particular pattern can be 

expressed by clusters of similar or dissimilar morphometric values and 

identified using local measures of spatial association. Furthermore, due to their 

ability of indicating localized patterns, local measures of spatial association are 

suitable for analysis of inhomogeneous patterns of topographic variability. For 

these reasons, local measures of spatial association are employed in the 

approach of landslide morphological analysis. Local measures of spatial 

association have been utilized in a variety of fields to analyze a particular spatial 

phenomenon (e.g. Derksen et al., 1998; Steenberghen et al., 2004). However, the 

applications of local measures of spatial association to land surface analysis and 

landslide studies are scarce.  

 

Based on local measures of spatial association, an approach is proposed to 

express both dominant morphology of each landslide component and 

topographic variability in a particular pattern inside landslide. The approach also 

provides a way to quantify the distinctness of landslide morphological features 
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and thus the locations with distinct morphological features can be automatically 

extracted. Due to its ability of identifying landslide morphological features, the 

local-measure-based approach can be utilized for landslide detection. Focusing 

on shallow debris slides and flows, a semi-automated approach is proposed to 

first extract landslide component candidates by identifying their morphological 

features and then differentiate landslide components from other terrain objects 

under geometric and contextual rules. 

1.2 Research Objectives 

This research focuses on landslide morphological analysis and landslide 

detection using airborne LiDAR data. The primary objectives of this research 

are to: 

 

1) Develop an approach to express and identify landslide morphological 

features represented by either a dominant morphology or topographic 

variability in a particular pattern; 

2) Explore the potential of using local measures of spatial association for 

landslide morphological analysis; 

3) Develop an approach to automatically detect small size, shallow debris 

slides and flows by using the local-measure-based approach to identify 

landslide morphological features and geometric and contextual rules to 

distinguish landslides from other terrain objects.  

1.3 Organization of the Thesis 

The thesis is organized to present the work logically in order to fulfill the 

research objectives. Chapter 2 reviews some previous related researches. The 

contents of landslide studies and diagnostic features of landslide are firstly 

introduced. Then the system of airborne LiDAR and its working principle are 

briefly described. The applications of airborne LiDAR to landslide 
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characterization and detection are reviewed. Finally, concepts and applications 

of local measures of spatial association are introduced. 

 

Chapter 3 provides details of the study area and data set. The data set, which 

was utilized for tests in chapters 4 and 5, includes an airborne LiDAR data and a 

landslide inventory provided by Hong Kong government. Due to the 

dependency of land surface analysis on DTM quality, the possibility of 

improving the filtering results of LiDAR point cloud using an integration 

scheme is explored. Several profiles extracted from the study area are utilized to 

illustrate and evaluate the result of the suggested scheme. 

 

In chapter 4, an approach based on local measures of spatial association is 

proposed to quantify landslide morphological features represented by a 

dominant morphology or topographic variability in a particular spatial pattern. 

In order to characterize spatial patterns of topographic variability, a method is 

developed to construct local measure plots which indicate the scales and 

magnitudes of topographic variations along a specified direction. The 

local-measure-based approach was tested in an area containing a large-size old 

landslide. Two local measures are compared for their ability of identifying 

dominant morphology. The effect of changing scale of analysis on the 

identification results is also discussed. The method constructing local measure 

plots was tested in the same area to reveal the spatial patterns of topographic 

variability inside landslide and extract terrain objects characterized by 

significant topographic variations in a certain pattern. 

 

Chapter 5 presents a landslide detection approach which identifies landslide 

locations based on morphological features. The approach was applied to a test 

site within the study area. After analyzing the morphology of debris slides and 

flows in a sample area within the test site, two morphological features were 

selected for extraction of landslide component candidates. Four rules based on 
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geometric and contextual information were constructed to discriminate landslide 

components from other terrain objects. The detection result was verified using 

the landslide inventory. Subsequently, the effects of DTM resolution on 

extraction of landslide component candidates is discussed. Finally, the 

transferability of the thresholds defined at the test site to a new area containing 

the same type of landslides was tested. 

 

Chapter 6 summarizes the findings and limitations of this research. Further 

research directions are also suggested. 
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CHAPTER 2 Literature Review 

2.1 Landslides 

A landslide is the movement of a mass of rock, debris, or earth down a slope, 

under the effects of gravity (Cruden and Varnes, 1996). Mass movements vary in 

size and in speed. Rapid mass movements generally cause the greatest loss of 

life, while slower movements create significant economic costs (Keith, 2012). 

Landslides can be triggered by intense or prolonged rainfall, earthquake, 

snowmelt, volcanic activity, or anthropic interruption. According to the 

classification system of Varnes (1978) and Cruden and Varnes (1996), landslides 

can be classified based on two terms, namely material type and the mode of 

movement. Material types consist of rock, earth, soil, mud and debris. Modes of 

movement include falls, topples, slides, flows and spreads. 

2.1.1 Classification of Landslide Researches 

Jaboyedoff et al. (2010) classified landslide studies as four topics: (1) landslide 

detection and characterization; (2) hazard assessment and susceptibility mapping; 

(3) modeling; (4) monitoring. This study focuses on landslide characterization 

and detection. Thus the other three topics are only briefly reviewed. 

2.1.1.1 Landslide Detection and Characterization 

(a) Landslide Detection 

Through landslide detection and mapping, a landslide inventory can be created 

which is important for landslide hazard, risk and susceptibility assessments 

(Soeters and van Westen, 1996; Guzzetti et al., 2000; Ardizzone et al., 2002; 

McKean and Roering, 2004), determination of process rates in sediment budget 

studies (Hovius et al., 1997, 2000; Barlow et al., 2006), and studies on the 

evolution of landscapes dominated by mass-wasting processes (Guzzetti et al., 

2008; Parker et al., 2011). To detect landslides in an area, appropriate data and 



 

8 

 

methods should be selected according to the characteristics of landslides, the 

terrain and land cover in the area.  

 

Aerial photographs were commonly utilized for visual interpretation of 

landslides due to their high spatial resolution and stereo viewing capability (Van 

Westen et al., 1999; Metternicht et al., 2005; Van Den Eeckhaut et al., 2005). 

Satellite images were not widely employed in early studies due to their 

inadequate spatial resolutions. With the increasing availability of high resolution 

satellite images (e.g. QuickBird, IKONOS and SPOT-5 images), recent studies 

put much more emphasis on landslide detection based on satellite images. This 

trend is because satellite images are cost-effective and can be fast acquired over 

large area (Nichol and Wong, 2005; Nichol et al., 2006). Nichol and Wong (2005) 

proved that the visual quality of images obtained from Pan-sharpened IKONOS 

images was comparable to that of 1:10 000 scale air photographs. 

 

Vegetation has a great influence on landslide detection (Wills and McCrink, 

2002; Brardinoni et al., 2003). Landslides covered by dense vegetation are 

difficult to identify from aerial photos and satellite imagery (Ardizzone et al., 

2002; McKean and Roering, 2004). To detect landslides covered by vegetation, 

aerial photos and satellite imagery collected immediately following initial 

failures should be used, which are usually unavailable. Even landslides with 

fresh scars may be hidden by forest canopy. Brardinoni et al. (2003) compared 

landslide mapping results respectively from aerial photo interpretation and 

fieldworks. They found that up to 85% of the landslides in a densely forested 

region were invisible on aerial photographs. In contrast to aerial photo and 

satellite imagery, airborne Light Detection And Ranging (LiDAR) is an effective 

tool for landslide detection in forested area due to its vegetation penetration 

ability (Haugerud et al., 2003; Schulz, 2007; Van den Eeckhaut et al., 2007; 

Razak et al., 2011). The application of LiDAR in landslide detection will be 

reviewed in the following section. 
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Apart from mono-temporal data set collected after failures (e.g. Barlow et al., 

2003; Martha et al., 2010; Stumpf and Kerle, 2011), multi-temporal data sets 

collected pre- and post-failures (e.g. Singhroy et al., 1998; Nichol and Wong, 

2005; Khairunniza-Bejo et al., 2010) were also utilized. Nichol and Wong (2005) 

used multi-temporal, medium resolution SPOT XS images to detect 

approximately 70% of landslides. Khairunniza-Bejo et al. (2010) used pre- and 

post-failure satellite images, including IKONOS, Landsat ETM+ and ASTER, to 

detect landslides at different test sites. In addition to optical and multi-spectral 

image, airborne/satellite Synthetic Aperture Radar (SAR) techniques are 

powerful tools for providing multi-temporal images for landslide detection. 

Singhroy et al. (1998) used Radarsat-1 and C-HH airborne SAR data, coupling 

with Landsat TM imagery, to identify large landslides in Canada. 

 

The traditional landslide detection method is visual interpretation of aerial 

photos coupled with limited field work (Van Westen et al., 1999; Guzzetti et al., 

2000; Ardizzone et al., 2002; Brardinoni et al., 2003; Metternicht et al., 2005; 

Nichol and Wong, 2005). In Hong Kong, landslide inventory was generated 

through visual interpretation of multi-temporal aerial photographs on 

stereoscope (Evans et al., 1999). However, visual interpretation of remotely 

sensed data is usually time-consuming and subject to highly variable accuracy 

depending on the experience of the analyst (Guzzetti et al., 2000; Ardizzone et 

al., 2002; Van Den Eeckhaut et al., 2005; Barlow et al., 2006; Danneels et al., 

2007). In recent researches, automatic landslide detection methods are 

preferable over manual methods for obtaining quicker results over a large area 

(Martha et al. 2010).  

 

Automatic methods can be categorized as pixel-based and object-based. 

Pixel-based methods first perform classification of pixels and then cluster 

classified pixels to define the extents of objects, whereas object-based methods 
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firstly delineate objects and then classify them (Drăgut and Eisank, 2011).  

 

Borghuis et al. (2007) tested two automated classification methods (supervised 

and unsupervised classification) for mapping typhoon-triggered landslides from 

10m multi-spectral SPOT-5 imagery and compared them with manual 

delineation of satellite imagery. Chang et al. (2007) proposed a novel method, 

named as the generalized positive Boolean function, for supervised classification 

of multisource images to detect landslides triggered by earthquake. Danneels et 

al. (2007) applied a supervised pixel classification algorithm to multispectral 

images to derive a likelihood image. The image was segmented using 

thresholding techniques. Pixels with similar spectral values to landslides were 

filtered out by applying object-oriented classification rules. 

 

Nichol and Wong (2005) utilized a post-classification approach to detect 

landslides from multi-temporal satellite images. Images were pixel-by-pixel 

compared after applying maximum-likelihood classifier. Khairunniza-Bejo et al. 

(2010) proposed a landslide detection approach based on the use of local mutual 

information and image thresholding. In the resultant binary change image, a 

great number of isolated pixels and small pixel clusters were uniformly 

distributed. Only the large landslides could be identified due to a high 

concentration of changed pixels. Mondini et al. (2011) exploited pre- and 

post-event very high resolution panchromatic and high resolution multispectral 

satellite images to recognize and map recent rainfall induced shallow landslides. 

The outputs of three pixel-based classification models constructed in a training 

area were input into a combined model to derive the optimal result. 

 

The limitation of above pixel-based methods is that it ignores spatial continuity 

(Seijmonsbergen et al., 2011). Object-based methods were considered more 

suitable since they are capable of integrating more landslide diagnostic features, 

including texture and context information (Stumpf and Kerle, 2011; Martha et al. 
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2010; 2012). Object-based methods commonly include two steps: image 

segmentation and classification (Drăgut and Eisank, 2011). Image segmentation 

groups pixels into segments corresponding to terrain objects. The segments are 

subsequently classified relying on classification rules. 

 

Martin and Franklin (2005) performed object-based image analysis and 

classified landslide-related segments into soil-dominated and 

bedrock-dominated slides based on shape, texture and context information. 

Barlow et al. (2006) conducted a multi-resolution image segmentation and then 

constructed a hierarchical classification system that combined spectral 

information and geomorphometric data derived from a Digital Elevation Model 

(DEM) to eliminate areas unaffected by landslides and classify landslides. 

Martha et al. (2010) employed the object-based approach to detect and classify 

landslides using multispectral satellite imagery and a DEM generated from 

stereoscopic satellite data. Preprocessing procedures are required before the 

DEM is utilized. Ground control points obtained from differential GPS surveys 

were used to improve the DEM accuracy. Manual height correction of vegetated 

areas and erroneous areas were also conducted. Stumpf and Kerle (2011) 

proposed a supervised workflow taking advantage of object-based image 

analysis and random forest classification to map landslides from very high 

resolution satellite imagery. Aksoy and Ercanoglu (2012) identified rotational 

landslide locations based on object-based image analysis and fuzzy logic using 

Landsat ETM+ images and DEM derivatives.  

 

Using multi-temporal panchromatic satellite images, Martha et al. (2012) 

detected and classified landslides in an object-based environment. Lu et al. 

(2011) applied a multilevel segmentation optimization procedure proposed by 

Esch et al. (2008) to post-event imagery and change detection techniques were 

employed to identify landslide objects. Nevertheless, segmentation of landslides 

based on spectral information is usually challenging, since land cover variability 
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(e.g. partial vegetation) and illumination variations as a function of terrain 

characteristics may result in spectrally diverse features (Martha et al., 2010; Lu 

et al., 2011). 

(b) Landslide characterization 

The purpose of landslide characterization is through analyzing the surface 

morphology and internal structure of landslides to investigate failure mechanism, 

identify recent activities for active landslides, estimate landslide age, etc (e.g. 

McKean and Roering, 2004; Van Den Eeckhaut et al., 2007). The analysis of 

landslide morphology and internal structure was usually performed by filed 

investigation or visual interpretation of a digital surface model and its 

derivatives, e.g. slope or curvature image. Information obtained through 

landslide characterization can be employed in other landslide studies, e.g. 

landslide hazard assessment and monitoring. 

2.1.1.2 Hazard Mapping and Susceptibility Assessment 

Hearn and Hart (2011) gave different definitions for the terms "landslide 

susceptibility" and "landslide hazard". Landslide susceptibility is defined as the 

relative degree to which failures are more prone to occur on a hillslope than 

another. Landslide hazard is defined as the potential of causing damage or loss 

(economic and social) by an existing or possible future landslide. 

 

A variety of approaches are available to assess landslide susceptibility. Soeters 

and van Westen (1996) grouped methods for landslide susceptibility into 

inventory, heuristic (i.e. expert-driven), statistical and deterministic (i.e. 

process-based) approaches. Dai and Lee (2002) utilized a logistic multiple 

regression coupling various variables to estimate the susceptibility of landslides 

and evaluate the contribution of each variable to the landslide prediction. Tarolli 

and Tarboton (2006) introduced a new approach for determining the most likely 

landslide initiation points by identifying locations with low stability index from 
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a terrain stability model along flow paths from ridge to valley.  

 

Landslide hazard mapping was usually performed in combination with landslide 

modelling. Lan et al. (2010) discussed a hazard assessment strategy for rockfalls 

along a section of a Canadian railway using spatial modelling approaches. 

Rockfall source areas were first identified. The characteristics of rockfall 

physical processes, in terms of trajectory distance, velocity and energy, were 

modeled. The spatial distribution of rockfall frequency and energy provided 

information necessary for hazard control. 

 

A wide variety of data sources, e.g. topographical data, geology map, land use 

map, landslide inventory, have been utilized for landslide susceptibility 

assessment and hazard mapping. These data are acquired by either field work or 

remote sensing techniques. Recent studies (e.g. Dietrich et al., 2001; Jaboyedoff 

et al., 2008; Lan et al., 2010) demonstrate that the use of high-resolution 

LiDAR-derived DEM can greatly improve the results of landslide susceptibility 

assessment and hazard analysis by offering detailed topographic data. 

2.1.1.3 Modelling 

Landslide modelling refers to mathematically formulating the relationship 

between failure potential and factors contributing to slope failures, or 

constructing trajectory and propagation models. The former was usually 

performed based on empirical models calibrated from measurements, statistical 

methods or physically based slope stability models (Bathurst et al., 2010). The 

study of Bathurst et al. (2010) demonstrated the use of physically based 

landslide models for identifying the areas in a river basin which are most 

susceptible to shallow landslides and for quantifying the effect of different 

vegetation covers on landslide occurrence. Brenning (2005) reviewed predictive 

modelling approaches used for landslide susceptibility mapping, and compared 

three predictive models (logistic regression, support vector machine and 
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bootstrap-aggregated classification trees) in a case study. The latter is of primary 

importance for hazard mapping and dimensioning of mitigation measures 

(Jaboyedoff et al., 2010). Through numerical modelling of post-failure motion, 

one can estimate the extent of potential landslide hazard and derive parameters, 

e.g. velocity and flow distance, for the design of protective measures 

(McDougall and Hungr, 2005). Chen and Lee (2003) adopted a 

quasi-three-dimensional model to reproduce the mobility of a runout process 

and the aerial extent covered by the landslide. The consequence of potential 

landslide hazards to downslope development can thus be defined for the entire 

debris transportation track that extends from the source area to the deposition 

fan. McDougall and Hungr (2005) incorporated a simple material entrainment 

algorithm into a new model designed to simulate rapid landslide motion across 

3D terrain. 

2.1.1.4 Monitoring 

Landslide monitoring is through comparison of landslide areal extent, 

movement speed, surface topography, or soil humidity on different time points 

to assess landslide activity state (Mantovani et al., 1996). The traditional 

landslide monitoring method is based on single-point measurements acquired by 

GPS or total stations in field. Remote sensing techniques such as 

photogrammetry, Radar and LiDAR provide chances to obtain displacement 

information for the whole landslide, which is valuable for obtaining knowledge 

of landslide kinematics and failure mechanism (Jaboyedoff et al., 2010).  

 

In recent landslide monitoring studies, satellite Synthetic Aperture Radar (SAR) 

is the most used remote sensing technique, since small (millimeter-level) 

displacements of land surface over a large area can be measured using satellite 

SAR data (Roering et al., 2009). However, satellite SAR cannot detect fast 

movement (e.g. 1.8m per hour) and is affected by dense vegetation. Thus the 

application of satellite SAR is limited to extremely slow landslide movements 
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that effect areas with sparse vegetation (Metternicht et al., 2005). Both terrestrial 

and airborne LiDAR were also applied to landslide monitoring in recent studies 

(e.g. Oppikofer et al., 2009; Baldo et al., 2009). In contrast to terrestrial LiDAR, 

airborne LiDAR with decimeter-level vertical accuracy is suitable for landslide 

monitoring during a longer time interval rather than measuring small 

displacement that occurred within a short period (Jaboyedoff et al., 2010). 

 

Apart from landslide monitoring based on land surface displacement, movement 

of trees also indicates landslide deformation. Roering et al. (2009) mapped 

cumulative displacement of trees on the landslide surface through comparing 

historical aerial photos and unfiltered LiDAR data. The resulting displacement 

map coupled with InSAR-derived deformation pattern revealed temporal and 

spatial variations in sliding velocity. 

2.1.2 Diagnostic Features of Landslides 

Landslides leave discernable signatures, including morphological, vegetation 

and drainage features (Soeters and Van Westen, 1996). Morphological features 

of a landslide refer to the features related to the form, shape and appearance of 

the land surface (Guzzetti et al, 2012). A landslide, regardless of its type, can be 

divided into a couple of components with different morphological 

representations. For instance, Van Den Eeckhaut et al. (2007) gave descriptions 

of morphological features for several landslide components. Landslide main 

scarp is represented by steep slope gradient, concave planform, semicircular 

shape, and a main direction perpendicular to the slope direction. Landslide 

flanks characterized by abrupt elevation changes constitute the border of the 

depletion area. Displaced material in the depletion area and accumulation area is 

characterized by a high surface roughness, but the roughness pattern may be 

variable within landslide area. Moreover, the accumulation area is convex in 

plan and profile. Vegetation is an important signature to distinguish new or 

active landslides from stable areas. New or active landslides are usually 
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characterized by disordered and partly dead vegetation (Soeters and Van Westen, 

1996). However, vegetation information is less effective for old landslides 

re-covered by vegetation (Paudel et al., 2007). Inside landslides, drainage 

patterns are usually disturbed by mass movement (Schulz, 2004; 2007; Van Den 

Eeckhaut et al, 2007). Original drainage lines would be broken and zones of 

stagnated water, e.g. a pond, may form (Soeters and Van Westen, 1996). When 

landslide movement slows or stops, new drainage lines may develop on the 

landslide scars (Mackey & Roering, 2011).  

 

Landslide diagnostic features are closely related to landslide types (Varnes, 1978; 

Cruden and Varnes, 1996; Soeters and Van Westen, 1996; Dikau et al.,1996; 

Abdallah et al., 2007; Martha et al., 2010; Guzzetti et al, 2012). The same type 

of landslides are characterized by similar features (Guzzetti et al, 2012). 

Descriptions of landslide features for different landslide types were given in 

literature (e.g. Cruden and Varnes, 1996; Soeters and Van Westen, 1996; Dikau 

et al.,1996). Landslides can be further classified as translational and rotational 

movements according to the form of rupture surfaces. Rotational slides involve 

upwards concave rupture surfaces in the sources, while translational slides occur 

on near-planar surfaces (Cruden and Varnes, 1996). A rotational slide is usually 

characterized by a sub-rounded and steep main scarp, concave depletion zone, 

convex accumulation zone, intermediate benches and depressions due to the 

backward tilting of slide blocks, and disturbed drainage patterns (Soeters and 

Van Westen, 1996). Debris slides are failures of unconsolidated material that 

mostly involves colluviums and weathered portions of densely fractured rock 

masses (Dikau et al.,1996). They usually move along a relatively shallow failure 

surface and characterized by steep main scarps in the head and hummocky 

topography in the accumulation zone. A flow is a landslide in which the 

individual particles travel separately within the moving mass (Dikau et al.,1996). 

Earth flows involve fin-grained material with a degree of deformation or flow 

and behave in a plastic or visco-plastic manner (Mackey & Roering, 2011). 
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Characteristic features of earth flows include amphitheater-like source zone, an 

elongated narrow transport zone and a lobate convex frontal part. Debris flows 

are a type of landslides characterized by relatively long runouts, water-saturated 

debris, high flow velocity, and strong scouring effect (Martha et al., 2010). They 

may be initiated as slides and evolve into flows moving along open slopes or 

pre-existing channels. The trail of a debris flow typically has a high length/width 

ratio and V-shaped or rectangular cross-sections (Dikau et al., 1996). The debris 

mixing with a great amount of coarser material such as boulders and logs may 

deposit along transportation zone and on lateral boundaries forming debris 

levees. 

 

Landslide features are also associated with the age and state of landslides. The 

scars of recent active landslides are usually clearly recognizable and the 

boundaries between landslide areas and stable areas are distinct (Guzzetti et al, 

2012; Mackey and Roering, 2011). As soon as the landslide is dormant, 

landslide features become increasingly indistinct with the age of the landslide 

under the effects of a variety of surface processes and land cover changes 

(Ardizzone et al., 2007; Malamud et al., 2004). Berti et al. (2013) observed fresh 

deposits, tension cracks, steep main scarps, pressure ridges, recent flows in the 

transportation track, and unvegetated or poorly vegetated slopes for recent active 

earth flows. Historical dormant earth flows, in contrast, are characterized by 

densely vegetated slopes, eroded main scarps, and no fresh deposits. Through 

comparing the quantified morphologic features of deep-seated landslides at 

various stages of evolution, Kasai et al. (2009) pointed out that as landslides 

become more mature and eventually dormant, rough surface features are 

weathered away, and the surface becomes gently undulating. The debris below a 

main scarp, the clearest evidence that a landslide has occurred, would be 

removed or reworked by the subsequent surface processes (Parry et al., 2006). 

Landslide scarps tend to degrade over time although this may be affected by 

subsequent minor failures of the over-steepened scarp area.  
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2.2 Application of Airborne LiDAR to Landslide Detection and 

Characterization 

In landslide studies, LiDAR was used to provide 3D point clouds with a high 

density of information and create high-resolution digital surface models 

(Jaboyedoff et al., 2010). A LiDAR system can be mounted on three platforms: 

terrestrial, airborne and spaceborne. This review focuses on the application of 

airborne LiDAR technique in landslide characterization and detection. 

2.2.1 Airborne LiDAR 

Airborne LiDAR, also referred to airborne laser scanning, represents a new and 

independent technology for the highly automated generation of surface models 

(Ackerman, 1999). It is an active remote sensing technique with the basic 

principle of measuring distances between the sensor device and the target 

surface (Jelalian, 1992; Hӧfle and Rutzinger, 2011). An airborne LiDAR system 

mainly consists of a laser scanner, a Global Positioning System (GPS), a Inertial 

Measurement Unit (IMU), and a control unit, all of which are mounted on an 

aircraft or a helicopter (Wehr and Lohr, 1999; Wehr, 2008). During flight, the 

laser scanner sends out laser pulses and records the returning signals that are 

scattered by various objects, including ground objects and objects in sky. The 

GPS and the IMU provide carrier phase information and orientation data 

respectively. At the same time, on-ground GPS stations gather GPS data and 

GPS carrier phase data at know positions for the following calculation of 

differential GPS (DGPS) position of the airborne platform. Using DGPS 

position, orientation data, GPS time, and laser scanner-recorded data, 3D 

coordinates of LiDAR point cloud can be derived. 

 

Due to its ability of vegetation penetration and high data density, LiDAR 

technique provides opportunities to analyze fine-scale topographical information 

even in densely forested areas (Kraus and Pfeifer, 1998; Ackerman, 1999; Slatton 

et al., 2007; Pfeifer and Mandlberger, 2008). Furthermore, because LiDAR data 
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are gathered over a narrow vertical swath angle (often less than 20º off nadir), it is 

usually not affected by topographical shadowing, unlike other remote sensing 

techniques such as SAR (Metternicht et al., 2005). Potential drawbacks of 

airborne LiDAR are relatively high acquisition costs and the tremendous data 

volume for large areas, which is a limiting factor for wide area applications (Hӧfle 

and Rutzinger, 2011; Guzzetti et al., 2012). 

 

With the rapid development of LiDAR techniques, processing of LiDAR data 

has always been a challenging topic. Before generating a Digital Terrain Model 

(DTM), non-ground LiDAR points should be first removed, i.e. filtering (Pfeifer 

and Mandlberger, 2008). Due to the complexity of terrain and above-ground 

object, LiDAR data filtering is accompanied by a certain degree of uncertainty. 

Errors resulted from LiDAR data filtering make land surface analysis unreliable. 

In addition, dense vegetation reduces the number of laser pulses arriving at 

ground and hence has adverse influence on land surface analysis. Schulz (2004; 

2007) pointed out that low points (incorrect measurements that are significantly 

lower than surrounding points) in LiDAR data result in removal of surrounding 

valid ground points when creating bare-earth DEM; vertical accuracy decreases 

in the areas covered by dense vegetation due to reduced ground-surface 

measurements; false ground-surface roughness was created and increased with 

the increased land cover; interpolation in areas with low-return density produced 

a faceted texture in the DEM. 

2.2.2 Landslide Characterization 

Currently, airborne LiDAR is one of the most effective techniques for land 

surface analysis due to its high point density, vegetation penetration ability and 

large-scale coverage (Haugerud et al., 2003; Schulz, 2007; Van den Eeckhaut et 

al., 2007; Razak et al., 2011). The application of airborne LiDAR technique to 

landslide characterization allows accurate estimation of landslide volumes, 

identification of detailed morphologic features of landslides, and analysis of 
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multi-scale spatial patterns in morphology within landslide areas. 

 

McKean and Roering (2004) adopted eigenvalue ratio (one technique to measure 

the local variability in slope and aspect), Laplacian curvature, and 

two-dimensional spectral analysis to quantify local topographic surface 

roughness so as to delineate the whole landslide area and internal deformation 

features. According to the eigenvalue ratio map and curvature map, four 

kinematic units with different morphological features could be identified. The 

two-dimensional spectral analysis was able to reveal the characteristic pattern of 

topographic variability, e.g. regularly spaced folds. The results indicated that the 

contrasts in roughness can be exploited to identify and map bedrock landslides 

and investigate landslide internal kinematics. Varying scales and degrees of 

roughness within a landslide indicate changes in material properties, movement 

mechanics and level of activity. 

 

Glenn et al. (2006) investigated the morphology of two landslides (one active 

and one older and larger) by visual interpretation and numerical analysis of local 

topographic variability using airborne LiDAR data. The local topographic 

variability was represented by measures of local surface roughness, slope 

semivariances and fractal dimension. The study results indicate that different 

morphological components of landslides have different surface characteristics, 

and high resolution LiDAR data has the capability to differentiate failure zones 

inside a landslide and provide insights into the movement and material type. 

 

Van Den Eeckhaut et al. (2007) created a geomorphological map for a 

representative large deep-seated landslide based on airborne LiDAR-derived 

hillshade and contour maps in combination with detailed field surveys in order 

to delineate landslide internal structure and determine the landslide age. The 

geomorphological map clearly indicated three zones with significant differences 

in topography within the landslide area. Due to the dense vegetation above the 
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landslide, the density of LiDAR ground points is low (1 point per 20 m2) and 

only large-scale landslide features can be shown. 

 

Kasai et al. (2009) utilized the surface roughness measure "eigenvalue ratio" and 

slope gradient to quantify the geomorphologic features of deep-seated landslides 

at various stages of evolution and activity in a steep and rocky mountainous 

terrain in Japan. The relationship between different terrain features and 

corresponding value ranges of the two filters (eigenvalue ratio and slope 

gradient), and between the spatial patterns of two filters and the on-going 

geomorphic processes were analyzed. Such relationship can be utilized to locate 

recently active landslides. 

 

Kalbermatten et al. (2012) proposed a wavelet coefficients filtering procedure 

for the analysis of multi-scale geomorphological structures. This approach was 

tested on a DEM derived from the airborne LiDAR data collected in a place 

where a landslide occurred ten days before the data acquisition. Multi-scale 

topographic variability of seven zones delimitated within the landslide were 

analyzed based on the high-pass reconstructed images created at eight 

decomposition levels. From the micro-scale toward the macro-scale, landslide 

morphological features corresponding to different scales can be recognized. 

 

Apart from the applications of mono-temporal LiDAR data acquired on a time 

point after initial failure, in some researches multi-temporal LiDAR data sets or 

a combination of LiDAR data and other topographical data sets acquired on 

different time points were utilized to investigate landslide characteristics. In the 

study of Bull et al. (2010), LiDAR data sets flown prior to and following a 

debris flow event were differenced. Through the analysis of elevation changes 

within the debris fan, the distribution of debris and major sediment pathways 

were identified.  
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2.2.3 Landslide Detection 

Recent studies of landslide detection have put much emphasis on high resolution 

satellite images. However, landslide detection solely based on spectral 

information obtained from aerial photos or satellite images was regarded 

unreliable, and morphological information derived from DTMs was usually 

utilized as a supplement to spectral information (Barlow et al., 2003; Martha et 

al. 2010). Furthermore, in forested areas, landslides are obstructed by vegetation 

and hence are difficult to detect from aerial photos and satellite images. 

 

Airborne LiDAR is a valuable technique for landslide detection due to its 

capability of vegetation penetration and its high data density (Haugerud et al., 

2003; Schulz, 2007; Van den Eeckhaut et al., 2007; Razak et al., 2011). 

High-resolution DTMs derived from LiDAR data benefit identification of 

landslide morphologic features that are critical for indicating landslide locations. 

A collective usage of LiDAR data and aerial photos/satellite images may lead to 

improved landslide detection results (e.g. Rau et al., 2012). The possibility of 

landslide detection using LiDAR data alone was also explored in researches, 

especially when spectral information is ineffective. 

 

Visual interpretation of a high resolution DTM and its derived products (e.g. 

shaded relief image, slope and curvature) for detecting and mapping landslides 

remains the most common and promising application of LiDAR data (Guzzetti 

et al., 2012). McKean and Roering (2004) and Glenn et al. (2006) suggested to 

detect and map deep-seated landslides based on terrain roughness, since the land 

surface inside landslide was observed to be rougher than surrounding unfailed 

slopes. However, differences in terrain roughness usually exist among various 

parts of a landslide, which makes landslide detection based on terrain roughness 

difficult (Van Den Eeckhaut et al., 2007).  
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Ardizzone et al. (2007) visually interpreted airborne LiDAR derivatives to 

improve an inventory of recent rainfall-induced landslides derived by 

reconnaissance field survey. Three topographic maps, including shaded relief 

image, slope map and contour map, were generated from the LiDAR-derived 

DEM for identifying the morphological features of landslides of variable types 

and depths. The revised inventory showed 27% more landslide and 39% less 

total landslide area. In addition, through comparing the LiDAR-derived DEM 

and a coarser resolution DEM, the improved topographic information provided 

by the high resolution DEM were proved to be more effective in identifying 

recent rainfall-induced landslides. 

 

In the study of Schulz (2007), airborne LiDAR-derived imageries (shaded relief, 

slope, and topographic contour maps) were used to visually map 

landslide-related features such as headscarps, landslide deposits and denuded 

slopes. Through comparing mapped features and the historical landslide 

inventory, susceptibility of landslides can be assessed. 

 

Razak et al. (2011) displayed a geomorphological map created by expert 

interpretation of airborne LiDAR derivatives, which indicated both location and 

classification of landslides. DTMs produced by different LiDAR filtering 

parameterizations were compared for the interpretability of landslides based on 

these DTMs. In addition, different visualization techniques in 2D (shaded relief 

map, color composite map, openness map, and red relief image) and in 3D 

(stereocopic model and 3D point cloud visualization) were also compared for 

landslide interpretability. 

 

Automatic or semi-automatic methods have been proposed for rapid and 

objective landslide detection using LiDAR data. Booth et al. (2009) applied 

two-dimensional Fourier and continuous wavelet transform to a DEM derived 

from airborne LiDAR in order to automatically extract old deep-seated 
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landslides. Both transforms can quantify various topographical patterns and 

landscape-scaling properties. They were used by Booth et al. (2009) to 

determine characteristic wavelengths of landslide morphological features, 

including hummocky topography and slumped blocks, and then to map the 

locations where the spectra of these features are strong. This method still 

misclassifies topographic features with sharp edges (abrupt change in elevation 

e.g. road) or overlooks old landslides with subdued features due to erosion. 

 

Tarolli et al. (2012) proposed a method to extract landslide crowns and features 

related to bank erosion based on thresholds of landform curvature which were 

defined by statistical analysis of curvature values. The preliminary extraction 

results were filtered using a slope threshold. The impacts of various threshold 

definitions and scales for curvature calculation on feature extraction were 

investigated through an accuracy assessment. Landslide crowns and features 

related to bank erosions were clearly extracted using the optimal combination of 

thresholds, but in areas with complex morphology the method also extracted 

surface features unrelated to landslides. Tarolli et al. (2012) considered this 

method useful to facilitate the visual detection of particular terrain features. 

 

Van Den Eeckhaut et al. (2012) adopted an object-based method to detect 

forested landslides based on airborne LiDAR data. The DTM derivatives, e.g. 

slope, roughness and curvature image, were segmented through a 

multi-resolution segmentation in combination with image binarization. Different 

landslide parts, e.g. main scarp and landslide body, were separately segmented 

in that different parts have their respective characteristics. All segments were 

subsequently classified using the algorithm of support vector machine with 

DTM derivatives as inputs. The object-based method performed worse for 

shallow landslides than for deep-seated landslides. Thus it is suitable for 

detection of deep-seated landslides, at least in forested soil-covered low to 

moderate relief areas. 
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Berti et al. (2013) proposed a semi-automatic method to detect active landslides 

using roughness maps under the assumption that active landslides have rougher 

surfaces than stable slopes. Cells with roughness values larger than a cutoff 

value are categorized as landslide cells. The ROC curve method (Green and 

Swets, 1966) was used to determine the optimal cutoff value. Active landslides 

covered by sparse vegetation can be successfully mapped using roughness, 

whereas in densely forested areas uncertainties were increased owing to the 

presence of tree root buttresses and the accumulation of fallen trees. 

Furthermore, rough topography also existed in non-slide areas, e.g. steep banks 

of main tributaries and man-made features. 

 

So far, the efforts of landslide detection using mono-temporal LiDAR data alone 

are limited to deep-seated or/and recent landslides. Van Den Eeckhaut et al. 

(2005) pointed out that shallow landslides are easier to detect from aerial 

photographs, while deep-seated landslides are easier to detect on 

LiDAR-derived hillshade maps. Morphologic features of shallow landslides are 

less distinctive than those of deep-seated landslides. Additionally, the detection 

of old landslides is more difficult than recent landslides and the difficulty 

increases with the age of landslide. This is because the morphologic features of 

old landslides tend to be less distinctive under effects of surface processes. 

Original rough surface and steep slopes within landslides are gradually 

smoothed and depositions are removed. Tarolli et al. (2012) analyzed the field 

survey data and found that small, shallow debris-flow scars heal rapidly so that 

they are difficult to detect after as few as 3-4 years.  

 

Furthermore, despite the canopy penetration ability of LiDAR, dense vegetation 

may also influence the detection of old landslides. In densely forested area, the 

number of LiDAR pulses arriving at the ground is usually low (e.g. 20% of all 

LiDAR pulses) and the low ground point density degrades the quality of 
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LiDAR-derived DEM (Kasai et al., 2009). Fine-scale features under dense 

vegetation may not be accurately identified. 

 

Another way to detect landslides is using multi-temporal LiDAR data sets 

collected pre- and post-failures and change detection techniques. Burns et al. 

(2010) detected and mapped active landslides by applying thresholds to a 

differential DEM obtained from pre- and post-event LiDAR data sets. 

Contiguous negative elevation changes present in an upslope area (depletion 

zone) accompanied by contiguous positive elevation changes immediately 

downslope (deposition zone) provided evidence for landslide identification. 

However, the threshold determination is problematic owing to the spurious 

elevation changes caused by different levels of laser penetration, point densities 

and interpolation of elevations of the two successive LiDAR data sets collected 

at leaf-on and leaf-off time.  

2.3 Local Measures of Spatial Autocorrelation 

Observations of a random variable recorded on spatial locations have a certain 

relationship among one another. Tobler's first law summarized that 'Everything 

is related to everything else, but near things are more related than distant things' 

(Tobler, 1970, p. 234). Such relationship has been called 'spatial autocorrelation', 

'spatial dependence', 'spatial association', etc. The presence of spatial 

autocorrelation has numerous interpretations in spatial data analysis (Griffith, 

1992). One fundamental interpretation is spatial autocorrelation is an indicator 

of spatial patterns (Boots and Tiefelsdorf, 2000). 

 

Measures of spatial autocorrelation have been developed to describe 

characteristics of spatial association among observations. Measures of spatial 

autocorrelation can be separated into 'global' and 'local' categories. Global 

measures take into consideration all associations between observations on 
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different locations, whereas local measures usually focus on the spatial 

autocorrelation associated with one particular spatial location (Getis, 2010). 

Global measures calculated within small sub-regions are not regarded as local 

measures. Global measures can be used to identify an overall spatial pattern 

within an entire region. In contrast, local measures of spatial autocorrelation are 

used to examine the nature of the relationship between the observation at a 

specific location and observations in its neighborhood (Boots and Tiefelsdorf, 

2000). Spatial heterogeneity (non-uniform spatial autocorrelation) within the 

entire data set, spatial clusters, outliers, and area boundaries can be identified by 

using local measures. 

 

The most common local measures of spatial autocorrelation include the local G 

statistics (Gi and Gi*) developed by Getis and Ord (1992), local Moran's I and 

local Geary's c introduced by Anselin (1995). The four local measures have their 

respective global counterparts. The sum of local Moran's I or local Geary's c on 

all locations is proportional to its global counterpart, while the local G statistics 

have no such properties. Significance tests of these local measures can be 

conducted to determine whether the spatial autocorrelation is statistically 

significant or not at a particular location, although there is still a need to explore 

the statistical properties of the local measures (Leung et al., 2003; Getis, 2010). 

The local measures were usually calculated within a user-defined local area 

around each target location and multi-scale patterns of spatial dependence can 

be identified by changing the size of the local area. 

 

Local measures of spatial autocorrelation were originally created for vector data 

such as points, lines and polygons (e.g. Anselin, 1995; Getis and Ord, 1992; Ord 

and Getis, 1995), and have been applied in various research fields. Boots (2001) 

developed an exploratory spatial data analysis procedure using local statistics 

(Gi*) for characterizing the strength (distinctiveness) of polygon boundaries and 

tested this procedure using both an artificial and a forest stand data set. Flahaut 
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et al. (2003) and Steenberghen et al. (2004) applied a linear clustering approach 

based on local Moran's I to car accident data (number of accidents per 

hectometer) aiming to identify road sections characterized by congregation of 

road accidents (black zones). Premo (2004) analyzed an archaeological data set 

(points with attributes) from the southern Maya Lowlands based on a 

combination of local Moran's I and the Gi* statistic. The local spatial statistics 

were calculated at multiple scales for the terminal dates of monuments so that 

the archaeological phenomenon can be analyzed in a multi-scale context. Julian 

et al. (2009) evaluated the potential of improving a model for predicting the 

presence of standing water associated with ponds by including information on 

local spatial autocorrelation among intensity values of airborne LiDAR points. 

Local Moran's I was employed to characterize local spatial association in return 

intensity. The inclusion of local indicator of spatial association were proved to 

significantly improve the predictive model by reducing classification errors. Lu 

et al. (2012) introduced an innovative approach for detecting extremely 

slow-moving landslides using the persistent scatterers interferometry technique. 

The approach based on the Gi* statistic can automatically detect clustering of 

persistent scatterers (point targets) with locally high velocity which highlight 

areas preferentially affected by extremely slow-moving landslides.   

 

Recent researches indicated that local measures of spatial autocorrelation can be 

successfully applied to the analysis of data in raster format, e.g. remotely sensed 

imagery. Wulder and Boots (1998) assessed the spatial dependence 

characteristics of a Landsat TM image of a managed forest region using the Gi* 

statistic. The local statistic was calculated within four different window sizes. 

The largest Gi* value calculated for any window size represents a maximization 

of local association. The analysis of local spatial dependence provides insights 

into image spatial structure, which may allow for the creation of fuzzy 

boundaries around image objects. Derksen et al. (1998) acquired spatial 

dependence information in the form of the Gi* statistic from a 
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passive-microwave derived snow water equivalent (SWE) imagery in order to 

identify the dominant patterns of clustering of snow cover. The Gi* statistic was 

also calculated in four increasing-size windows centered on each image pixel 

and the maximum value of the Gi* statistic was recorded. The resultant image of 

the Gi* statistic coupling with atmospheric data indicate the spatial orientation 

and magnitude of snow cover clusters are affected by atmospheric airflow and 

temperature. Pearson (2002) assessed the applicability of local spatial statistics 

(local Geary's c in the study) for modeling and quantifying spatial structure in 

northern Australian savanna landscapes where boundaries between landscape 

patches are difficult to determine. Local spatial association among spectral 

values on pixels of aerial imagery was analyzed and the impact of changing 

scales of analysis on the analysis results was conducted by changing sizes of 

pixels and windows. Bannari et al. (2005), based on multi-temporal SPOT 

multispectral images, analyzed the potential of the Gi* statistic for the study of 

the radiometric spatial uniformity and temporal stability of a test site used for 

calibration of satellite sensors. The Gi* statistic showed good performance for 

the extraction of radiometric heterogeneities of a land surface. Wulder et al. 

(2007) studied the changes of outputs of a calibrated physiological model for 

predicting forest growth attributes by varying model input parameters. Through 

the analysis of local spatial autocorrelation of the differences between model 

outputs based on the Gi* statistic, areas that have systematic sensitivity to 

specific model inputs can be identified. The Gi* statistic was also calculated 

within incrementally sized windows centered on each pixel and the largest Gi* 

value was recorded. Salati et al. (2011) applied an Rotation Variant Template 

Matching algorithm to ASTER imagery in order to detect lithological 

boundaries. The algorithm generated rotation variance images which were 

processed with the Gi* statistic to infer boundaries represented by clusters of 

pixels with high values of rotation variance. Lanorte et al. (2013) utilized pre- 

and post-fire satellite images to generate a burn index difference image and 

processed the image with global Moran's I and the Gi statistic to detect burned 
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area and assess fire severity. 

 

Digital imagery captured by airborne or satellite sensors are the main data 

sources in raster format. Another important type of rater format data is grid 

DEMs or DTMs generated from topographical maps or remote sensing data, e.g. 

air photogrammetry, radar and LiDAR. Despite the popularity of grid 

DEMs/DTMs, the applications of local measures to grid DEMs/DTMs are 

scarce. In the study of Erdogan (2010), the errors in DEMs generated by 

different interpolation algorithms were assessed in detail using multiple 

statistical approaches. Local Moran's I and the Gi* statistic were utilized to 

indicate the spatial patterns of clustering of elevation errors and evaluate error 

models that relate DEM errors and terrain parameters and data density. 

2.4 Summary 

From the above literature review, the following conclusions can be drawn: 

1) A great number of efforts have been devoted to landslide studies. Landslide 

characterization and detection are fundamental to other landslide studies.  

2) A wide variety of data acquiring techniques, mainly remote sensing 

techniques, have been applied to landslide studies. 

3) Landslides leave various discernable signatures which can be utilized in 

landslide detection and other landslide studies. 

4) Airborne LiDAR technique is a valuable tool for providing high resolution 

topographic information. Terrain objects beneath dense vegetation can be 

investigated using airborne LiDAR data, due to the vegetation penetration 

ability of LiDAR. This technique can be applied to landslide 

characterization and detection. 

5) Local measures of spatial association are a class of mathematical tools for 

analyzing localized patterns. They have been widely applied to a great 

number of research field, but their applications to land surface analysis and 
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landslide studies are scarce. 
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CHAPTER 3 Study Area and Data  

3.1 Introduction 

In this research, a study area on Lantau Island of Hong Kong was selected to test 

the approaches proposed in chapters 4 and 5. This area is covered by hybrid 

types of vegetation and contains a great amount of new and old landslides. In 

addition, scarce mankind activity exists in this area. All these conditions are 

advantageous to the investigations of natural terrain landslides and of the effects 

of different types of vegetation on landslide detection. In sections 3.2, the 

environment of the study area is briefly described and characteristics of the 

landslides that occurred in this area are introduced. The data sets utilized in this 

study include an airborne LiDAR (Light Detection And Ranging) data and a 

landslide inventory. The details of both data sets will be given in section 3.3. 

 

In this research, land surface analysis was performed on Digital Terrain Models 

(DTM) generated from airborne LiDAR data. Thus the analysis results are subject 

to the DTM quality. In order to generate a DTM from LiDAR data, LiDAR point 

cloud should be filtered to remove non-ground points (Wehr and Lohr, 1999). The 

filtering accuracy and the final ground point density collaboratively affect the 

DTM quality and thus land surface analysis results. Non-ground points retained 

after the filtering procedure may lead to fake rough terrain, while inadequate point 

density in vegetated terrain may lead to fake smooth terrain. 

 

LiDAR point cloud filtering remains a challenging problem, especially in 

mountainous area (Lu et al., 2009). A variety of filter algorithms have been 

developed and algorithm comparisons were conducted in researches (e.g. Sithole 

and Vosselman, 2004; Meng et al., 2010). The selection of an appropriate filter 

algorithm depends on the type and complexity of landscape (Sithole and 

Vosselman, 2004; James et al., 2007; Slatton et al., 2007). Each filter algorithm 



 

33 

 

has its own advantages and limitations. There is no filter algorithm outperforming 

other algorithms in all circumstance. In addition, different parameterizations of 

the same filter algorithm may lead to disparate filtering results. In order to explore 

the possibility of improving LiDAR filtering results, a scheme is proposed to 

integrate the results of different filter algorithms or different parameterizations so 

that filtering errors can be eliminated and more ground points are retained. 

Filtering errors refer to non-ground points retained in the result or ground points 

mistakenly removed. 

 

The integration scheme is detailed In section 3.4. Two filter algorithms utilized for 

exemplifying the integration scheme are briefly described. The scheme integrating 

the filtering results of the two algorithms was then applied at a test site. The 

filtering results of the two filter algorithms and the final integration result were 

visually evaluated by examining result samples with the assistance of an aerial 

photo. 

3.2 Study Area 

3.2.1 Environment of Study Area 

The study area is located at the west coast of Lantau Island in Hong Kong 

(figure 3.1(a)). Lantau Island, the largest outlying island in the territory of Hong 

Kong, is characterized by hilly and steep terrain with most slope gradients being 

between 25º and 40º (Dai et al., 1999).  

 

The study area is composed of three test sites as shown in figure 3.1(b). In the 

background of figure 3.1(b) is an aerial photo of 0.5 m resolution acquired on 

November 2008. Test site A was employed to test the integration scheme 

introduced in section 3.4 and the approach for quantitative landslide 

morphological analysis in chapter 4. Test site B was used to test the 

semi-automatic landslide detection approach developed in chapter 5, and test 
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site C was used to validate the applicability of those thresholds defined in test 

site B to another area.  

 

 

Figure 3.1 Location of study area on Lantau Island, Hong Kong. 

 

According to the simplified geological map of Lantau Island shown in Dai and 

Lee (2002), the bedrock geology within the study area is primarily volcanic 

rocks, intercalated by small areas of sedimentary rocks. The foot slopes in the 

study area are mainly covered by natural woody forest, and the mid-slopes are 

covered by bushes and grass. Bedrock outcrops occur on some steep hillslopes. 

The entire area is characterized by rugged terrain with elevation ranging from 
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1.5 to 373.8 m. 

3.2.2 Landslides in Study Area 

In Hong Kong, rainfall is the main cause of landslides (Chen and Lee, 2003). 

Frequent showers, rainstorms and typhoons have caused a large number of 

landslides all over Hong Kong. Most landslides on natural hillslopes in Hong 

Kong are shallow (<3m in depth) debris slides and flows with short runout 

distances (Evans et al., 1999). Such landslides occasionally develop into 

hazardous events with long runouts. Deep-seated, slow movements are less 

common in Hong Kong.   

 

In the study area, the most recent swarm of landslides occurred in 2008. A 

severe rainstorm on 7 June 2008 triggered over 2400 landslides on Lantau Island 

resulting in numerous road links being severed and many homes being 

temporarily evacuated (Parry, 2011). The failures that occurred in the study area 

are mainly debris slides and debris flows. The debris slides are of small sizes 

and shallow. A number of debris flows, which travelled first along hillslope and 

then into channels or valleys, have long trails. The scars of the landslides that 

occurred within five years are recognizable from aerial photograph due to a 

partial regrowth of vegetation on their scars. Those landslides that occurred 

more than ten years ago in this area are difficult to recognize due to both a high 

degree of vegetation regrowth and smoothed landslide morphological features 

under long-term effects of various surface processes. 

3.3 Data Specifications 

3.3.1 LiDAR Data 

An airborne LiDAR survey was conducted by the Hong Kong government 

between December 2010 and January 2011, covering the whole territory of 

Hong Kong of about 1,100 km2 (Lai et al., 2012). An Optech ALTM Gemini 



 

36 

 

LiDAR system, with scan frequency of 47 Hz and field of view of +/-20º, was 

mounted on an aircraft to collect LiDAR data. The project was flown with a 

nominal 50% overlap between swaths of adjacent flight lines. At most 4 returns 

can be recorded for each laser pulse. Apart from the LiDAR data with maximum 

point spacing of 0.5 m, the data producer also provided a classification of 

LiDAR point cloud as ground points and non-ground points. The classification 

was performed by experts in the software Terrasolid using the automated 

routines and visual inspection.  

 

The accuracy of LiDAR data was estimated using ground survey data obtained 

by static GPS and total station in 15 sample areas all over the Hong Kong 

territory. Points on flat open ground were collected to quantify the vertical 

accuracy, and hard detail features, e.g. building corners, were used to quantify 

the horizontal accuracy. The vertical and horizontal accuracy of the LiDAR data 

were estimated to be 0.059 and 0.288 m at 95% confidence respectively. 

Additional ground points were collected in vegetated areas to further verify the 

vertical accuracy of LiDAR in vegetated terrain. Three vegetation classes, 

low-vegetation, medium-vegetation and high-vegetation, were defined according 

to their above-ground heights. Through comparing the ground-survey heights of 

reference points with the heights extracted from LiDAR-derived terrain model, 

the vertical accuracies for three vegetation classes were estimated and the results 

are shown in Table 3.1. 

 

Table 3.1 Vertical accuracy of LiDAR data in vegetated terrain. 

 Low vegetation Medium vegetation High vegetation 

Number of points 78 44 250 

Accuracy at 95% 

confidence level 

0.629 0.210 0.182 
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3.3.2 Landslide Inventory 

An existing landslide inventory, namely Enhanced Natural Terrain Landslide 

Inventory (ENTLI), was used in our study. This inventory, provided by Hong 

Kong government, recorded those landslides that occurred on the natural terrain 

all over Hong Kong. It was compiled by experts using available high-level and 

low-level aerial photographs (ranging from 550 to 6100 m flight-height) and 

reported on a 1:5,000 scale map sheet basis. In this study, the latest version of 

ENTLI updated to year 2009 was used. During the compilation of ENTLI, 

landslides were detected based on morphological and vegetation features 

observed from stereo aerial photographs (Evans et al., 1999). All landslides were 

classified as recent and old ones. Recent landslides can be easily identified since 

the scars are bare of vegetation and debris deposits are distinctive. They showed 

up as light-tone areas on aerial photographs. Old landslides were generally 

represented by a spoon-shaped depression, and a sharp main scarp either visible 

or inferred from vegetation characteristics, or relatively sharp boundaries along 

one or both sides of the depression. 

 

In ENTLI, the location of each identified natural terrain landslide was recorded 

by a point extracted from the crown and the center line of the debris trail. Some 

digitized trails of old landslides indicate only the possible lengths of the source 

areas rather than the total debris trail lengths. Attributes such as source area 

width and source area length were also recorded together with the location 

information. ENTLI did not provide a landslide classification using a detailed 

classification system like the one of Varnes (1978). Landslides with distinct 

morphological features were only simply classified as open-hillslope landslides, 

channelized debris flows and coastal failures. On the aerial photos, 

open-hillslope landslides were observed to extend directly downslope, with no 

evidence of deviation or redirection caused by local channelization. Landslide 

scars and/or debris of channelized landslides could be observed to deviate from 
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a vertical trajectory due to the influence of local topographic features such as 

depressions and/or streams. Coastal landslides are failures that are considered to 

be caused by under-cutting from wave erosion. 

3.4 Integration of Different Filtering Results of LiDAR Data 

3.4.1 Integration Procedures 

In order to explore the possibility of improving LiDAR filtering results, a 

scheme integrating filtering results of different algorithms or different 

parameterizations of the same algorithm is developed. The scheme was also 

reported in Deng and Shi (2013). The proposed scheme is based on an 

assumption that the vast majority of non-ground LiDAR points have been 

filtered out by the algorithms and the remaining non-ground points account for 

only a small percentage of the points derived by the filter algorithms. In addition, 

the discrepancies between the filtering results of different algorithms are 

assumed to be not large. 

 

For a LiDAR data set after filtering, each point is labeled as ground or 

non-ground. If two filtering results are integrated, let G1=(G11, … , Gm1) be the 

ground point set of the first filtering result, and G2=(G12, … , Gn2) be the ground 

point set of the second filtering result, where m and n are the numbers of ground 

points in each filtering result. It is assumed that the ground point sets include 

both actual ground points and non-ground points. The integration scheme 

involves following procedures: 

(1) generate two regular grid DTMs (M1 and M2) using G1 and G2, 

respectively; 

(2) calculate height differences between G1 and M1, and remove those ground 

points with height difference values larger than a specified threshold; 

(3) calculate height differences between G2 and M2, and remove those ground 
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points with height difference values larger than a specified threshold; 

(4) combine remaining ground points in G1 and G2 and generate a new regular 

grid DTM (M3);  

(5) calculate height differences between original G1 (G2) and M3, and add 

points with height difference values smaller than a specified threshold to the 

final result. 

The steps (4) and (5) can be iterated until no more points are added. However, 

the iteration leads to a high risk that non-ground points removed by step (3) or 

(4) are accepted again during the iteration. 

 

Two key issues relevant to this integration scheme are calculation of height 

differences and specification of thresholds of height differences. The height 

difference between a ground point i and a DTM can be defined as 

),f( iiii yxzD −=
                         (3.1)

 

where zi is the elevation of the ground point i and f(·) represents an interpolation 

function for deriving the elevation on the location (xi, yi) from the land surface 

represented by the DTM. The interpolation value for a ground point is usually 

calculated within a fixed-size window, involving a specific number of 

neighboring DTM nodes. In this study a quartic model devised by Zevenbergen 

and Thorne (1987) is adopted to approximate the ground surface: 

khygxfxyeydxcxyybxyaxz ++++++++=
222222

          (3.2)
 

DTM nodes surrounding the ground point i are used to derive the nine 

coefficients. If the nodes in a 3×3 window are utilized, the quartic function 

passes exactly through the nine nodes surrounding the ground point i.  

 

Two types of height difference thresholds need to be defined for the integration 

scheme: the thresholds for removal of non-ground points and thresholds for 

acceptance of ground points removed in previous steps. The former correspond 
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to the thresholds in step (2) and (3) and the latter correspond to the threshold in 

step (5). This study utilizes a simple method to define the thresholds: firstly the 

statistics (standard deviation and mean value) of height differences between one 

set of ground points and the DTM generated by the other set of ground points 

are calculated; then the thresholds are defined as  

DmD σ⋅+
                              (3.3)

 

where the first term represents the mean value of height differences, m is a real 

number, and σD is the standard deviation of height differences. For removal of 

non-ground points, m is assigned a positive value and the points with positive 

height difference values larger than the threshold are eliminated. Points with 

negative height difference values are not processed since the potential of points 

with negative height difference values being non-ground points is relatively low. 

For integrating ground points removed in previous steps, m is set to a positive 

value and the points with height differences smaller than the threshold and not 

present in the result of step (4) are added. The specification of multiplier m may 

vary in different steps. 

3.4.2 Filter Algorithms for Tests 

In order to test the proposed integration scheme, filtering results of two popular 

algorithms, namely progressive TIN densification (PTD) and hierarchical robust 

interpolation (HRI), were integrated. Both Sithole and Vosselman (2004) and 

Razak et al. (2011) qualitatively and quantitatively compared the two filter 

algorithms. In Sithole and Vosselman (2004), the qualitative comparison 

indicated that HRI performed better in filtering low points and vegetation on 

slopes than PTD, whereas the quantitative comparison indicated that HRI 

produced more Type I errors (rejection of bare-earth points) and less Type II 

errors (accept object points) than PTD. Razak et al. (2011) evaluated several 

LiDAR-derived DTMs for mapping landslides and for identifying landslide 

morphological features in forested area. The DTMs were generated from 
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different filtering results. The vertical accuracy of the DTM derived from the 

result of PTD algorithm was slightly higher than the three DTMs from the 

results of different parameterizations of HRI filter. The point density of ground 

points extracted by different parameterizations of HRI filter was two times or 

three times higher than that of PTD filter. 

3.4.2.1 Progressive TIN Densification 

The algorithm is an iterative process where a coarse TIN (Triangulated Irregular 

Network) consisting of initial seed points is gradually densified (Axelsson, 

2000). Three main steps are included in the process: (1) estimation of initial 

thresholds using all LiDAR data, (2) selection of seed points, and (3) iterative 

densification of TIN until all points are classified as ground or non-ground. This 

algorithm was originally developed by Axelsson (2000) and has been 

implemented in the module Terrascan of the software Terrasolid. Several 

parameters should be defined by users in Terrascan, including maximum 

building size, maximum terrain angle, iteration angle, iteration distance and 

edge length. The maximum building size is used for selection of seed points. 

The maximum terrain angle is the steepest allowed slope in the terrain. The 

iteration angle parameter is the maximum angle between a point, its projection 

on triangle facet and the closest triangle vertex. The iteration distance parameter 

is the maximum distance to the TIN facet during each iteration. The edge length 

parameter is used to avoid adding unnecessary point density to the terrain model. 

If each edge of triangle is shorter than the specified edge length, the triangle will 

not be further processed. 

3.4.2.2 Hierarchy Robust Interpolation 

Kraus and Pfeifer (1998) originally introduced an iterative robust interpolation 

algorithm for generation of terrain models in wooded areas using airborne 

LiDAR data. The iterative robust interpolation algorithm was extended to a 

hierarchical approach since the iterative robust interpolation relies on a "good 
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mixture" of ground and above-ground points (Pfeifer et al., 2001). The 

hierarchical approach contains three main steps: (1) creating coarser resolution 

data sets (i.e. thinning out), (2) filtering the data and generating a DTM, and (3) 

comparing the DTM with finer resolution data and adding points within a 

certain interval. The approach proceeds from coarser resolution to finer 

resolution. Steps (2) and (3) are repeated for each level. When comparing a 

DTM with finer resolution data, distances between points in finer resolution data 

and the DTM are calculated. If the distances are within a specified interval (e.g. 

-1 ~ 1m), the points are included for the following filtering step. The 

hierarchical approach has been realized in the software SCOP++. 

3.4.3 Test Site 

A test site with an area of about 0.043 km2 on the west coast of Lantau Island, 

Hong Kong was selected to evaluate the filtering results of the two filter 

algorithms and the integration result of the proposed scheme. The test site 

(figure 3.2) is characterized by rugged terrain covered by woods, shrub and 

grass. The elevation ranges from 1.33 to 88.76 m in Hong Kong Principle 

Datum. The mean slope gradient is 27º and the maximum slope gradient is 75º. 

 

 

Figure 3.2 Locations of vertical slices of LiDAR point cloud at the test site. 
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3.4.4 Comparison of Two Filter Algorithms 

Before filtering the point cloud, LiDAR data was first processed to remove low 

points that are significantly much lower than neighboring points so that the 

effects of low points on point cloud filtering could be eliminated. For the 

algorithm of progressive TIN densification (PTD), we set the maximum slope 

angle to 65º, the iteration angle to 15º, and the iteration distance to 1.0 m. Other 

parameters were left with their default values. These parameters were defined 

according to the characteristics of terrain and land cover within the test site. For 

the algorithm of hierarchical robust interpolation (HRI), a predefined 

parameterization embedded in SCOP++, called forest filter, was utilized, which 

was devised for forested areas. These two algorithms were separately applied to 

the LiDAR data within the test area. The PTD algorithm filtered out 74% of 

167465 LiDAR points, whereas the HRI algorithm filtered out 59% of all points. 

It should be noted that the parameters specified in this test may be not optimal 

for this data. Thus the filtering results possibly do not represent the best 

performance that can be achieved by the algorithms. Nevertheless, this study 

focuses on integrating filtering results of different algorithms or different 

parameterizations of the same algorithm, but not on optimization of parameters. 

 

The filtering results of the two algorithms were visually evaluated and the 

evaluation was performed on a number of filtering result samples. It is 

impossible to perform a quantitative accuracy assessment due to a lack of 

ground truth data as a reference. Ground surveying is difficult to conduct on 

those steep slopes covered by dense vegetation and point-by-point inspection for 

the LiDAR data set is impossible. An aerial photo of 0.5m resolution was 

available to facilitate the visual evaluation. According to the aerial photo, the 

area is covered by vegetation of variable heights, including trees, bushes and 

grass, and there is no man-made object except for a lane winding along the coast. 

Therefore, all LiDAR points can be classified as either ground or vegetation 



 

44 

 

points. The points filtered out by the algorithms were classified as vegetation 

points, whereas the remaining points were classified as ground points. A number 

of vertical slices of classified point cloud were extracted on different locations to 

visually evaluate the results of two filter algorithms based on the scattering 

pattern of points in 3D space and the land cover information provided by the 

aerial photo. The extraction of vertical slices of LiDAR points utilized a 

buffering zone of 3 m width. Three vertical slices (figure 3.2) were selected to 

indicate the performance of two algorithms in different terrain and vegetation 

conditions. 

 

 

Figure 3.3 Filtering results of two algorithms (PTD and HRI) for three vertical 

slices extracted from LiDAR point cloud. 

 

The classified LiDAR points of three vertical slices are displayed in Figures 3.3. 

PTD HRI 
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The terrain of slice 1 and 3 is more gentle than the terrain of slice 2. According 

to the distribution of LiDAR points in 3D space and the land cover information 

provided by aerial photo, the slope at the location of slice 1 is considered to be 

covered by trees of about three to five meters high and the slice is perpendicular 

to the lane along the coast. A cross section of the lane can be recognized in 

Figure 3.3(a) and 3.3(b). The filtering and classification result in figure 3.3(a) 

indicates that the PTD algorithm did not filter out all LiDAR points striking on 

tree crowns and a part of vegetation points (shown by arrow) were misclassified 

as ground points. In contrast, the HRI algorithm filtered out all vegetation points 

and a large point gap appears on the slope where no laser pulses arrive at the 

ground (figure 3.3(b)). Figures 3.3(c) and 3.3(d) indicate a steep slope covered 

by bushes and trees of about one to three meters high. The aerial photo also 

reveals small patches of grassland and bare earth within slice 2. Even though 

more LiDAR points were classified as ground points by HRI algorithm than by 

PTD algorithm, a number of points (shown by arrow) located on low-height 

vegetation were not filtered out by HRI algorithm and were misclassified as 

ground points. Figure 3.3(e) and 3.3(f) show an undulating terrain connected to 

the beach. LiDAR points located on a mound (shown by arrow) were correctly 

classified as ground points by PTD algorithm (figure 3.3(e)) but were filtered 

out by HRI algorithm and were misclassified as vegetation points (figure 3.3(f)). 

 

The results shown in figure 3.3 indicate that it is difficult to determine which 

filter algorithm performed better in such an area with a rugged terrain covered 

by hybrid types of vegetation. The HRI algorithm extracted much more ground 

points than the PTD algorithm. However, neither algorithm can filter out all 

vegetation points and the vegetation points misclassified as ground points may 

result in fake rugged terrain. Furthermore, despite the smaller number of ground 

points extracted by PTD algorithm, ground points related to some terrain 

features (e.g. a mound) were filtered out by HRI algorithm but were retained by 

PTD algorithm. 
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3.4.5 Integration Result 

After deriving filtering results of the two filter algorithms, the proposed scheme 

was applied. Firstly two regular grid DTMs were generated based on the ground 

points extracted by PTD and HRI algorithm. This study used kriging to create 

two DTMs of 1 m resolution. Secondly, height differences between one ground 

point set and the DTM generated from the other ground point set were 

calculated. A quartic model (equation (3.2)) was applied to the DTM to obtain 

interpolated elevation. For each ground point, a 3×3 node window centering on 

the node nearest to the ground point was used to construct the quartic model. 

Mean value and standard deviation of height differences were calculated to 

derive thresholds for removal of non-ground points (equation (3.3)). A large 

multiplier of standard deviation results in less LiDAR points being filtered out 

than a small multiplier. According to the theory of statistics, for a data set 

following a normal distribution, about 15.87% of the data are larger than the 

standard deviation and only about 0.14% of the data are larger than three-times 

standard deviation. This study adopted a threshold of two-times standard 

deviation so that most vegetation points can be removed and few ground points 

are removed together with vegetation points. After removing possible vegetation 

points from original ground point sets, both sets were combined to create a 

single ground point set and a new DTM was generated. This DTM is considered 

to be more approximating to the real ground surface than the initially generated 

DTMs. Because some ground points might be removed in previous steps, 

heights differences between the original ground point sets and the newly 

generated DTM were calculated and thresholds were specified to integrate those 

ground points which were removed in previous steps. This threshold should be 

more strict that the threshold for removing vegetation points so as to avoid 

accepting vegetation points. Thus a threshold equaling to the newly calculated 

standard deviation was used. In the following paragraphs, the DTM generated 

from the ground points derived by PTD algorithm is named PTD-DTM, while 
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the DTM generated from the ground points derived by HRI algorithm is named 

HRI-DTM. The visual evaluation method adopted in section 3.4.4 was also 

utilized to evaluate the integration result. 

 

Figure 3.4(a) indicates the distribution of height differences between ground 

points derived by PTD algorithm and the DTM generated from the ground 

points derived by HRI algorithm. Figure 3.4(b) indicates the distribution of 

height differences between ground points derived by HRI algorithm and the 

DTM generated from the ground points derived by PTD algorithm. Both 

histograms are right skewed and have long tails on the right side of the mean. 

The histogram on the left has a larger skewness (5.09) than the histogram on the 

right (2.92).  

 

 

Figure 3.4 Histograms of height differences between ground points and DTM. 

 

The statistics of height differences are shown in table 3.2. For both filtering 

results, the mean value of height differences is positive. More than two thirds of 

ground points derived by HRI algorithm have positive height differences, 

whereas only one third of ground points derived by PTD algorithm have positive 

height differences. Moreover, ground points derived by PTD algorithm has a 
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much larger standard deviation and a larger span of height differences than the 

HRI algorithm. These statistics indicate that most ground points derived by HRI 

algorithm are located above the PTD-DTM, but the height differences are not 

large. In contrast, although most ground points derived by PTD algorithm lie 

below the HRI-DTM, a number of ground points derived by PTD algorithm 

have rather large positive height differences, which lead to the large standard 

deviation of height differences. These ground points with extraordinary large 

positive height differences may be vegetation points that were not filtered out by 

PTD algorithm.  

 

Table 3.2 Filtering results of PTD and HRI algorithm and the statistics of height 

differences. 

Filter algorithm PTD HRI 

Number of all points 167465 167465 

Number of ground points 44186 67988 

Mean of height differences (m) 0.11 0.09 

SD of height differences (m) 0.66 0.18 

Max of height differences (m) 7.10 2.49 

Min of height differences (m) -2.30 -0.86 

Positive height differences (%) 35.03 69.89 

 

The thresholds for removal of vegetation points and for adding ground points 

removed in previous steps were specified based on the statistics shown in table 

3.2. Different thresholds were specified for the ground point sets derived by 

PTD and HRI algorithm. For removal of vegetation points, thresholds of 1.43m 

and 0.45m were utilized for the PTD and HRI algorithm respectively. For adding 

ground points removed in previous steps, thresholds of 0.77m and 0.27m were 

applied for the PTD and HRI algorithms respectively. The integration scheme 

produced a final ground point set containing 67886 points. A total of 1605 points 
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were removed from the ground point set derived by PTD algorithm, whereas 

2829 points were removed from the ground point set derived by HRI algorithm. 

The integration results of the three vertical slices of LiDAR point cloud (see 

figure 3.3) are given in figure 3.5. 

 

 

Figure 3.5 Integration results of three vertical slices extracted from LiDAR point 

cloud. 

 

In comparison with the filtering results in figures 3.3(a) and 3.3(b), the 

integration result of slice 1 (figure 3.5(a)) is almost the same as the filtering 

result of HRI algorithm. The vegetation points contained in the ground point set 

derived by PTD algorithm were removed by using the integration scheme and 

hence did not appear in the final result. The integration result of slice 2 (figure 

3.5(b)) indicates a combination of the ground points of both filtering results and 

the removal of vegetation points (shown by arrow in figure 3.3(d)) contained in 

the ground point set derived by HRI algorithm. As for slice 3 (figure 3.5(c)), a 
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number of ground points located on a mound (shown by arrow in figure 3.3(f)) 

that were filtered out by HRI algorithm are present in the final ground point set, 

although not all ground points on the mound were integrated. All the results 

indicate the potential of improving the filtering results of LiDAR data by 

applying the integration scheme. A number of vegetation points unfiltered out by 

the two filter algorithms can be identified and removed, and ground points 

contained in both filtering results can be combined.  

 

Even though the samples (point cloud slices) of the integration result indicate an 

improved filtering result, the proposed integration scheme has limitations. In 

this study, the definition of the thresholds for removal of vegetation points and 

for acceptance of ground points was more or less subjective. Vegetation points 

were detected under the assumption that the height differences of ground points 

follow a normal distribution and the height differences of vegetation points 

significantly deviate from the mean. However, it is difficult to determine a 

threshold that can clearly differentiate ground points from vegetation points. At 

the test site the slopes are covered by vegetation of variable heights. The height 

difference values of the points located on low-height vegetation are probably 

smaller than those of the points on the ground surface. This may occur when the 

points on rugged land surface are filtered out by one filter algorithm but are 

retained by the other filter algorithm. For instance, in figure 3.5(c), on the small 

mound a number of ground points initially retained by PTD algorithm were not 

present in the final ground point set due to large vertical distances to the 

HRI-DTM. In contrast, the vegetation points (shown by arrow) on a gentle slope 

close to the beach were added to the final result owing to small height 

differences. In addition, the thresholds were defined based on the mean and the 

standard deviation. However, the standard deviation of height differences are 

easily affected by vegetation points with large height differences, e.g. the 

standard deviation for the PTD algorithm (table 3.2). Using such a biased 

standard deviation, the confidence for the integration scheme is lowered. Apart 
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from considering other statistical methods for defining thresholds, more 

evidence can be added to the integration scheme. Spectral information from 

aerial photo or satellite imagery can be used to indicate vegetation condition, 

and the scattering pattern of points in 3D space may be also considered. 

3.4.6 Conclusion 

In this study a simple scheme is proposed to integrate results of different filter 

algorithms or different parameterizations of the same algorithm. Because the 

ground point sets derived by different filter algorithms contained both ground 

points and non-ground points unfiltered out by filter algorithms, a statistical 

method was adopted to identify and remove the non-ground points. The 

remaining points in each ground point set were then combined to generate a new 

ground point set. The proposed scheme was tested in an area with rugged terrain 

covered by dense vegetation of variable heights. The filtering results of two 

popular filter algorithms, namely progressive TIN densification (PTD) and 

hierarchical robust interpolation (HRI), were integrated. A visual evaluation of 

the filtering results of the two algorithms and the integration result was 

performed by examining result samples according to the scattering pattern of 

LiDAR points in three-dimensional space and land cover information provided 

by a high-resolution aerial photo. The HRI algorithm extracted much more 

ground points (41% of all LiDAR points) than the PTD algorithm (26% of all 

LiDAR points), although in some circumstances (e.g. on a mound) the HRI 

algorithm filtered out the ground points which were retained by PTD algorithm. 

Both ground point sets contained vegetation points unfiltered out by the filter 

algorithms. Samples of the integration result indicated that the proposed 

integration scheme removed most vegetation points contained in the filtering 

results, and combined ground points from both filtering results. No quantitative 

assessment was conducted due to a lack of ground truth reference data. 

 

The result of the proposed integration scheme indicates a potential of improving 
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the filtering results of different algorithms. However, not all vegetation points 

contained in the filtering results can be identified and removed and some ground 

points in rugged terrain may be removed. This is due to the limitations of the 

integration scheme which relies only on elevation values and utilizes thresholds 

defined based on a normal distribution and biased statistics (affected by 

non-ground points). Further studies should investigate the feasibility of other 

statistical methods for threshold definition and consider incorporation of land 

cover information into the integration scheme. Nevertheless, this study indicates 

the potential of improving filtering results by integration and provides a way to 

inspect the filtering results in that large height differences between two filtering 

results commonly represent filtering errors. 
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CHAPTER 4 Quantitative analysis of Landslide 

Morphology Based on Local Measures of Spatial 

Association 

4.1 Introduction 

Landslides leave discernable signatures related to the form, shape and 

appearance of the topographic surface, i.e. morphological features (Guzzetti et 

al., 2012). Through analysis of the morphology of landslides, information 

associated with landslide age, state of activity and failure mechanism can be 

obtained and evidence for distinguishing landslide areas from surrounding stable 

areas can be collected (McKean and Roering, 2004; Glenn et al., 2006; Van Den 

Eeckhaut et al., 2007; Kasai et al. 2009; Mackey and Roering, 2011). 

 

For objective analysis of landslide morphology, quantitative approaches are 

required which can provide quantitative expression of landslide morphological 

features and have multi-scale analysis capability so as to take into account the 

scale dependency of landslide morphology (Kalbermatten et al., 2012). In 

literature, a variety of descriptions of landslide morphological features have 

been given for each type of landslides. These descriptions can be divided into 

two categories: descriptions of dominant morphology and of topographic 

variability in a spatial pattern. The former refers to the shape and appearance of 

a landslide component, e.g. concave depletion zone and convex deposit zone of 

a landslide (Soeters and Van Westen, 1996). The latter refers to the variation of 

morphology inside a landslide component or between components, such as 

abrupt change in slope morphology from concave depletion zone to convex 

accumulation zone (Martha et al., 2010) or hummocky and irregular slope 

morphology of landslide body (Soeters and Van Westen, 1996). Both categories 

of landslide morphological features can be expressed by groups of 
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morphometric values that are spatially distributed in a certain pattern. Landslide 

morphological features are related to the scale of analysis. At a specified scale, 

not all morphological features are prominent. For example, at a large scale of 

analysis, the dominant morphology of a landslide component is more prominent 

than the small-scale topographic variability inside the component. In addition, 

the spatial patterns of topographic variability inside a landslide are usually 

inhomogeneous, represented by variable scales (frequencies) of undulations. 

 

The most common way to quantitatively analyze landslide morphology is using 

surface roughness measures which indicate the magnitude of topographic 

variability within local areas. A variety of surface roughness measures have been 

proposed (Grohmann et al., 2011; Berti et al., 2013) and applied to landslide 

morphological analysis, e.g. eigenvalue ratio (McKean and Roering, 2004) and 

standard deviation of residual topography (Glenn et al., 2006). Other methods 

employed to quantitatively analyze landslide morphology include spectral 

domain analysis (Booth et al., 2009; Kalbermatten et al., 2012), fractal 

dimension (Glenn et al., 2006), and geostatistics (Trevisani et al., 2009). Almost 

all these methods can capture the scale dependency of landslide morphology by 

varying the size of the calculation window or by modeling the relationship 

between spatial patterns and scales in spatial/spectral domain. However, these 

methods commonly highlight particular information associated with landslide 

morphology, e.g. magnitude of topographic variability or scales of undulations. 

Few efforts have been devoted to quantification of landslide morphological 

features based on the descriptions. 

 

In this study, the potential of using local measures of spatial association to 

quantitatively analyze landslide morphology is explored. Spatial association, 

also named spatial autocorrelation or spatial dependency, has been recognized in 

spatial data sets since the beginning of the last century (Griffith, 1992). Spatial 

association can be expressed by global and local measures (Boots and 
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Tiefelsdorf, 2000; Boots, 2002; Getis, 2010). In contrast to global measures that 

identify an overall spatial pattern for the entire data set, local measures were 

introduced to reveal local patterns of spatial association which may be different 

from the overall spatial pattern (Getis and Ord, 1992; Anselin, 1995; Ord and 

Getis, 1995; Boots and Tiefelsdorf, 2000; Boots, 2002; Getis, 2010). Local 

measures of spatial association have been applied in a variety of research fields 

for analyzing vector data (Boots, 2001; Premo, 2004; Steenberghen et al., 2004; 

Julian et al., 2009; Lu et al., 2012) or raster-based data (Derksen et al., 1998; 

Wulder and Boots, 1998; Pearson, 2002; Bannari et al., 2005; Wulder et al., 

2007; Salati et al., 2011; Lanorte et al., 2013). Despite the widespread 

application, the employment of local measures of spatial association in 

investigation of land surface morphology, especially for analysis of landslide 

morphology, is rare.  

 

This study aims to develop an approach based on local measures of spatial 

association to express and identify (1) the dominant morphology of each 

landslide component and (2) the topographic variability in a particular spatial 

pattern. The dominant morphology (e.g. planarity or concavity) can be 

expressed by clustering of similar morphometric values, whereas the 

topographic variability (e.g. step-like appearance of rotational landslides) by 

clustering of dissimilar values. Clusters of similar or dissimilar values can be 

identified using local measures of spatial association. Therefore, local measures 

of spatial association are utilized to express and identify landslide 

morphological features. Additionally, due to the scale dependency and 

inhomogeneous patterns of topographic variability, a method is proposed to 

construct local measure plots from which both scales and magnitudes of 

topographic variations in local areas can be recognized. By using local measures 

of spatial association, distinctness of landslide morphological features is 

quantified from a statistical perspective. Thus landslide components 

characterized by distinct morphological features can be extracted under 
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statistical significance tests. 

 

Digital Terrain Models (DTMs) in regular grid form have been widely used in 

quantitative land surface analysis. In this study, a grid DTM generated from 

airborne LiDAR (Light Detection And Ranging) data is employed for 

quantitative analysis of landslide morphology. In comparison with other remote 

sensing techniques, airborne LiDAR has two advantages: capability of 

generating ground point set of high density (e.g. more than 1 point/m2) and 

penetrating vegetation (Slatton et al., 2007). The two advantages benefit analysis 

of fine-scale morphological features even in densely forested area where 

landslides are hidden beneath vegetation. Therefore, LiDAR-derived DTMs 

have been utilized in related researches for characterization of landslide 

morphology (McKean and Roering, 2004; Glenn et al., 2006; Van Den Eeckhaut 

et al., 2007; Kasai et al., 2009; Kalbermatten et al., 2012).  

 

The following sections are organized as follows. In section 4.2, a brief 

introduction to the test site and data sets is given. Then the system of local 

measures of spatial association and the approach of quantifying landslide 

morphological features based on local measures are introduced in section 4.3. In 

section 4.4, the approach was applied to the test site containing a large-size 

landslide. Some important issues related to the approach and the test results are 

discussed in section 4.5. Conclusions are finally derived in section 4.6. 

4.2 Test Site and Data 

A test site (indicated in Figure 4.1) was selected to test the approach of 

quantifying landslide morphological features. The test site (i.e. test site A in 

figure 3.1) is located on the west coast of Lantau Island, Hong Kong. It covers 

an area of 0.043 km2 with elevation ranging from 1.33 to 88.76 m. The mean 

slope gradient is 27º and the maximum slope gradient is 75º. The rugged land 
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surface of the test site is covered by a variety of vegetation, including grass, 

shrub and woods. 

 

 

Figure 4.1 Test site for testing the approach of quantifying landslide 

morphological features. 

 

At the test site, the Hong Kong landslide inventory ENTLI (see section 3.3.2) 

recorded a relatively large size, old landslide with main scarp width of 69 m and 

source area length of 31 m. Although the exact failure time was unavailable, the 

landslide was ascertained to occur before year 1963 since it was recognizable on 

the aerial photo collected in 1963. The landslide was initiated from a hillslope 

near the beach and was possibly caused by undercutting of sea waves. 

 

A DTM of 1 m resolution was generated from the airborne LiDAR data 

introduced in section 3.3.1. The LiDAR data producer provided a classification 

of LiDAR point cloud as ground and non-ground points. The ground points with 

an average point density of 1.5 points/m2 across the site were utilized to generate 

the DTM. The integration scheme introduced in section 3.4 was not applied 

since the accuracy of the entire integration result cannot be guaranteed by visual 

evaluation of result samples. The 1 m DTM resolution was selected according to 
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the average ground point density. However, the ground points extracted from 

LiDAR data are not evenly distributed within this area. In densely vegetated 

regions, the point density may be lower than 1 point/m2. 

 

Figure 4.2 displays a shaded relief image of 1 m resolution covered by contour 

lines with 2 m interval. Both products were generated from the LiDAR-derived 

DTM. Since the landslide inventory recorded the location of the large size 

landslide only using a point from the crown area and the center line of the 

landslide trail, the possible boundary of the landslide (red solid line and red dash 

lines in figure 4.2) was delineated on the basis of the shaded relief image and 

contour lines. The entire landslide area constitutes of a source area and a 

deposition zone. The main scarp with height varying between 10 and 20 m can 

be clearly recognized based on the shaded relief image and contour lines. A 

small-size depression (highlighted by a red dash curve near the main scarp) 

interrupts the upper border (red solid line) of the main scarp. It was probably 

caused by erosion after the failure or existed before the initial failure. The 

landslide source area is upwards concave and has a bowl-like shape. The 

possible lateral boundaries of the landslide source area are indicated by two red 

dash lines connected to the upper border of main scarp. The land surface inside 

the source area is relatively rough. The bottom of the source area is represented 

by a blue dash line in the figure and the arrow indicates the downslope direction. 

Downslope of the source area, a hummocky topography (the area enclosed by 

red dash line), which was probably formed by deposited debris, is recognizable. 

In the rest of the test area, the terrain upslope of the main scarp is relatively 

smooth, whereas the region to the north of the landslide contains a section of a 

channel extending from east to west and has a rough topography. 
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Figure 4.2 Possible landslide boundary overlying a shaded relief image and 

contour lines with 2 m interval.  

4.3 Methodology 

4.3.1 Quantification of Landslide Morphological Features  

A landslide can be divided into several components characterized by different 

morphological features. The morphological features may be represented by a 

dominant morphology or topographic variability in a particular spatial pattern. 

The dominant morphology of a landslide component can be expressed by 

clustering of similar morphometric values in a local area. In contrast, 

topographic variability can be expressed by clustering of dissimilar 

morphometric values. The spatial pattern of topographic variability is closely 

associated with the landslide type and failure mechanism. For instance, the main 

body of a rotational slide is usually characterized by step-like morphology 
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caused by backward tilting of slide blocks (Soeters and Van Westen, 1996), 

whereas a debris flow is characterized by an almost empty source and irregular 

depositions of rocks and boulders along the trail. Furthermore, the pattern of 

topographic variability inside a landslide is highly related to direction since the 

landslide material moves downslope under the influence of gravity. The 

topographic variations inside a landslide may follow a pattern along a specific 

direction, e.g. the slope direction (direction of maximum rate of change in 

altitude) or the direction perpendicular to the slope direction. Therefore, 

direction should be taken into account in the method for analysis of spatial 

patterns of topographic variability. 

 

In order to express landslide morphological features, the topographic variable 

"curvature" is utilized to quantify the land surface shape on each spatial location. 

Curvature is associated with the second derivatives of land surface and can be 

defined in various ways (Schmidt et al., 2003). Three popular definitions of 

curvature for hillslope and landslide studies are profile, plan and tangential 

curvature, which measure the shape of slope profiles in three different directions 

(Dikau, 1989; Moore et al., 1993). Profile curvature measures the rate of change 

of slope gradient in the direction of maximum change, i.e. slope direction 

(Schmidt et al., 2003). It affects flow acceleration and deceleration and therefore 

influences aggradation and degradation (Zevenbergen and Thorne, 1987), and 

helps identify breaks of slope (Grohmann et al., 2011). Plan curvature represents 

the rate of change of direction of a contour drawn through a point on the land 

surface (Schmidt et al., 2003). It is related to convergence and divergence of 

flow across the slope direction and hence affects erosion and runoff processes 

(Shary et al., 2002). Tangential curvature, the land surface curvature defined in 

the direction normal to the slope direction, likewise influences the flow 

convergence and divergence (Zevenbergen and Thorne, 1987). Krcho (1991) 

and Mitasova and Hofierka (1993) considered tangential curvature to be more 

appropriate for flow studies than plan curvature. In contrast to tangential and 
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profile curvature, plan curvature needs one more parameter which is directly 

related to slope and adds additional sensitivity to the calculation (Mitasova and 

Hofierka, 1993). Moreover, plan curvature has a weak relation to profile 

curvature (Evans and Cox, 1999), whereas tangential curvature is orthogonal to 

profile curvature and therefore is preferred (Schmidt et al., 2003). Therefore, 

tangential curvature instead of plan curvature is utilized in this study as a 

counterpart of profile curvature to quantify the slope morphology. 

 

Profile curvature is defined as (Evans, 1972) 
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where fx and fy are first-order partial derivatives; fxx, fyy, and fxy are second-order 

partial derivatives. A positive/negative profile curvature indicates the surface is 

convex/concave in slope direction. 

 

Tangential curvature is defined as (Krcho, 1991) 
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using the same notation as before. A positive/negative tangential curvature 

indicates the surface is convex/concave in the direction perpendicular to slope 

direction (named as tangential direction in the following sections). 

 

Numerous methods can be used to calculate the first-order and second-order 

derivatives, e.g. fitting a polynomial function to the terrain surface (Schmidt et 

al., 2003; Shary, 1995; Zevenbergen & Thorne, 1987). 

 

Since inside a landslide morphometric values tend to be distributed in a certain 

pattern, a particular spatial association (similarity or dissimilarity) exists among 

morphometric values in local areas. Through identifying the local spatial 

association, landslide morphological features can be quantitatively analyzed. A 
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class of statistical tools, namely local measures of spatial association, are 

utilized to quantify and identify landslide morphological features. The 

employment of such tools is also due to their capability of deriving statistical 

significances of spatial patterns. The significances of spatial patterns imply the 

distinctness of landslide morphological features. 

4.3.2 Local Measures of Spatial Association 

The most common local measures of spatial association are local G statistics, 

local Moran's I and local Geary's c. Local G statistics are composed of two 

statistics, Gi and Gi*, and were introduced by Getis and Ord (1992) for the study 

of local patterns in spatial data. Local G statistics are additive in that the focus is 

on the sum of the observations in the vicinity of a target location (Getis, 2010). 

The two statistics, Gi and Gi*, differ only in the role of the observation on the 

target location (Gi* include the observation on the target location, whereas Gi 

not). Let {z1, z2, …, zn} be a set of observations of a random variable acquired 

on different locations (xi, yi) (i=1, 2, …, n) over space. Gi is defined as (Ord and 

Getis, 1995) 
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where W represents a n-by-n matrix with 
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and z  and s are the mean and standard deviation of observations, respectively. 

 

Gi* is formulated as (Ord and Getis, 1995) 
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where  
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iiii WWW +=
*

  and  ∑
=

=
n

j
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1 W   for all j 

 

The matrix W is a spatial weight matrix (Getis and Ord, 1992) which defines 

spatial links among observations. Within the weight matrix W, elements with 

non-zero values correspond to the observations involved in the calculation of the 

statistic. A number of schemes have been suggested to formulate the weight 

matrix, e.g. spatial contiguous neighbors, inverse distances, lengths of shared 

borders divided by the perimeter, and Gaussian distance decline (Getis and 

Aldstadt, 2004). A common way to formulate the weight matrix is assigning a 

weight of one to the neighbors of the target location, and zero to all others. Each 

row of the weight matrix corresponds to a target location. The weight matrix 

defined based on neighbors is commonly row-standardized so that the row 

elements sum to one (Getis, 2010). The performance of local measures of spatial 

autocorrelation greatly depends on the definition of weight matrix (Boots, 2002; 

Getis, 2010). Both the size and the shape of the neighborhood have a great 

impact on the values of local measures. Furthermore, multi-scale patterns of 

spatial association can be revealed by local measures through changing the size 

of the neighborhood (e.g. Wulder and Boots, 1998; Derksen et al., 1998). The 

size of the neighborhood determines the scale at which the spatial association is 

analyzed.  

 

Anselin (1995) introduced local Moran's I (LMI) and local Geary's c (LGc) for 

the purpose of identifying spatial clusters of similar observation values or local 

instability within a spatial region. The sum of LMI or LGc on all spatial 

locations is proportional to its global counterpart (global Moran's I or Geary's c). 

LMI is defined as 
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where z  is the mean of observations {z1, z2, …, zn} and W represents the 

weight matrix as described in above paragraph. 

 

The LGc is defined as 
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using the same notations as equation (4.5). 

 

The four local measures have different properties and scope of application. 

Local G statistics are capable of identifying areas characterized by very high or 

very low values, and are only concerned with the sum of the observations in the 

neighborhood of a target location (either including the observation at the target 

location or not). They do not consider whether or not the observation at the 

target location is similar to neighboring observations. LMI is capable of 

detecting either positive or negative local spatial autocorrelation in the 

neighborhood of the target location (Boots and Tiefelsdorf, 2000; Boots, 2002). 

Positive local spatial autocorrelation refers to similarity between observation 

values at the target location and in the neighborhood, whereas negative local 

spatial autocorrelation is present when neighboring values are dissimilar to the 

observation at the target location. A positive and a negative LMI indicate 

positive and negative local spatial autocorrelation, respectively. LMI cannot 

make a distinction between positive spatial autocorrelation among observation 

values above mean value and positive spatial autocorrelation among observation 

values below mean value (Boots and Tiefelsdorf, 2000). Furthermore, the 

significance of spatial autocorrelation (either positive or negative) revealed by 

LMI is closely related to the degree of deviation of observation values from the 

mean value (Sokal et al., 1998; Boots, 2002). In contrast, LGc is not affected by 

the degree of deviation from the mean value. Substantial differences between 

observation values at the target location and in the neighborhood lead to a high 
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value of LGc, whereas small differences lead to a low LGc value. LGc enables 

identification of edges and areas characterized by high variability between an 

observation and its neighboring values (Lasaponara et al., 2010). 

 

For comparison among the four local measures (LMI, LGc, Gi and Gi*), Table 

4.1 lists the most possible results of these local measures in different 

circumstances. An observation subtracted by the mean value of all observations 

possibly falls into one of four categories: large positive, medium positive 

(positive and close to the mean value), large negative (negative and large 

absolute values), and medium negative (negative and close to the mean value). 

The results of the local measures for nine combinations of the observation 

values on the target location and in the neighborhood are given in table 4.1. The 

first column in table 4.1 represents the observation value at the target location i, 

the second column represents observation values in the neighborhood of the 

target location, and the last four columns indicate the most possible results of the 

local measures. 

 

Table 4.1 The performance of local measures for different combinations of 

observation values. 

 Obsi Obsj LMI LGc Gi Gi* 

1 large positive large positive High Unknown High High 

2 large positive medium positive Weak High Weak Unknown 

3 medium positive large positive Weak High High High 

4 large negative large negative High Unknown Low Low 

5 large negative medium negative Weak High Weak Unknown 

6 medium negative large negative Weak High Low Low 

7 large positive large negative Low High Low Unknown 

8 large negative large positive Low High High Unknown 

9 medium positive medium negative Weak Low Weak Weak 

 

The table does not display all combinations of observation values, since some 

combinations lead to similar results. Four possible local measure values, namely 

high, low, weak, and unknown, are present in the table. Both high and low local 



 

66 

 

measure values may indicate significant local spatial association, whereas a 

weak value denotes a weak or no local spatial association. A local measure value 

is unknown when more than one possible result can be derived. For instance, the 

combination of a large positive observation value on the target location and 

large positive observation values in the neighborhood may result in either a low 

or a high LGc value depending on the differences between observation values on 

the target location and in the neighborhood.  

 

The results displayed in table 4.1 denote that the performance of these local 

measures may differ in each situation. Since these local measures express local 

spatial association from disparate aspects, various local measures should be used 

collectively so that more comprehensive knowledge of the spatial association 

among observations can be obtained than using individual local measure. 

 

Whether or not a local spatial association is significant is determined through a 

statistical significance test. Significance tests are usually conducted based on 

theoretical moments or using a random permutation approach which randomly 

permutes values on the locations in the data set and repetitively calculates the 

statistic to derive empirical significance levels (Anselin, 1995). The derivation 

of theoretical moments were demonstrated in Anselin (1995) and Sokal et al. 

(1998) for LMI and in Sokal et al. (1998) for LGc. Equations (4.3) and (4.4) 

give standardized formulas of local G statistics by subtracting the expectation 

from the statistic and then dividing the difference by the square root of the 

variance (Ord and Getis, 1995). Significance tests based on theoretical moments 

commonly adopts a normal distribution to approximate the distributions of local 

measures, despite the knowledge of the distributions is still inadequate (Boots, 

2002). Since the random permutation approach requires a larger amount of 

computation, the normality approximation is utilized in this study for simplicity. 

4.3.3 Expression of Dominant Morphology 
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The dominant morphology of a landslide component can be expressed by 

clustering of similar morphometric values. All the four local measures of spatial 

association are capable of identifying clusters of similar values. In this study, the 

topographic variable "curvature" is utilized to quantify terrain morphology and 

provide morphometric values. The spatial association (similarity) among 

curvature values in local areas is investigated using the local measures.  

 

One of the most important issues for calculation of local measures is the 

construction of the spatial weight matrix W. A common method is assigning a 

weight of one to observations within a pre-defined neighborhood of each target 

location, while a weight of zero to others. The neighborhood is usually defined 

based on a distance threshold. For a data set containing n observations, the 

spatial weight matrix under a distance constraint is formulated as  



 ≤

=
else0

if1 Dd ij

ijW  i, j = 1,…, n              (4.7) 

where dij represents the distance between the target spatial location i and the 

neighboring location j, and D is the specified distance threshold. For a curvature 

image, Euclidean distances between cells are calculated. The cells with distances 

to the target cell smaller than the distance threshold constitute the neighborhood 

of the target cell. Only the curvature values in the neighborhood are involved in 

the calculation of local measures.  

 

To calculate local measures, a fixed-size search circle (the radius equals to the 

distance threshold) is put on each cell of the curvature image and curvature 

values within this circle are used in the calculation. Statistical tests under a null 

hypothesis of no local spatial association are conducted at a specific significance 

level (e.g. 5%) for all local measures. A rejection of the null hypothesis indicates 

significant local spatial association existing among the curvature values in the 

neighborhood (Anselin, 1995; Ord and Getis, 1995). A statistically significant 

local G statistic, which may be high (large positive) or low (large negative), 
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indicates clustering of high or low curvature values. For LMI, a significant 

positive LMI indicates positive spatial autocorrelation, whereas a significant 

negative LMI indicates negative spatial autocorrelation. The former represents 

clustering of similar curvature values. However, LMI cannot distinguish 

clustering of positive curvature values from clustering of negative curvature 

values. The approach proposed in this study calculates local measures for 

positive and negative curvature values separately. A significant positive LMI 

derived on a cell with positive curvature value indicates clustering of similar 

positive curvature values around this cell. LGc can derive similar results to LMI. 

A low value (close to zero) of LGc indicates clustering of similar values, while a 

high value indicates substantial dissimilarity among values. However, LGc 

cannot distinguish differences in signs of observations, which means when a low 

LGc value is derived the signs of the observations in the neighborhood may be 

different.  

 

Through changing the distance threshold in the neighborhood definition, 

multi-scale patterns of local spatial association can be revealed (Wulder and 

Boots, 1998; Derksen et al., 1998; Wulder et al., 2007). The significances of 

local spatial association, which indicate distinctness of landslide morphological 

features, may vary with the scale of analysis. The determination of distance 

threshold, i.e. scale of analysis, depends on the terrain and the sizes of the terrain 

objects to be investigated. Furthermore, the neighborhood definition determines 

the number of values involved in the calculation of each local measure. The 

number should be large enough so that the local measures are statistically 

meaningful. 

4.3.4 Expression of Topographic Variability 

Topographic variability inside a landslide can be expressed by clustering of 

dissimilar morphometric values. Both LMI and LGc are capable of expressing 

topographic variability due to their capability of identifying clustering of 
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dissimilar values. Since topographic variations inside a landslide usually follow 

a pattern along a specific direction, e.g. slope direction, a direction constraint is 

added to the spatial weight definition in equation (4.7). The spatial weight 

matrix is constructed as 



 ≤=

=
else0

andif1 DdA ijiij

ij

θ
W i, j = 1,…, n         (4.8) 

In the equation, Aij is the azimuth from the target location i to a neighboring 

location j, θi is the specified direction of analysis (e.g. slope direction), and D is 

a distance threshold. Similarly, the distance threshold determines the scale of 

analysis. To apply the direction constraint to a grid data (e.g. a curvature image), 

a scheme for local measure calculation is required. One way is to select those 

cells with azimuths close to the specified direction. A direction tolerance can be 

specified (e.g. slope direction ± 5º) so that all the cells with azimuths falling into 

the direction range are included in the calculation. Another way is constructing a 

set of points by interpolation along the specified direction and using the 

interpolated values to calculate local measures.  

 

Landslide is usually characterized by an inhomogeneous pattern of topographic 

variability which is caused by changes in material properties, movement 

mechanics and level of activity (Mckean and Roering, 2004). In related studies 

analyzing spatial patterns of topographic variability (e.g. Booth et al., 2009; 

Mckean and Roering, 2004), the power spectra constructed for landslide 

components indicated more than one peak corresponding to multiple scales of 

topographic variability. In this study, a method based on local measures of 

spatial association is proposed to construct local measure plots. On the basis of 

the plots, multi-scale patterns of topographic variability can be analyzed and 

landslide morphological features represented by topographic variability can be 

identified. The method constructs a local measure plot in following steps: 

(1) specification of direction of analysis and selection of a series of lag 

distances (horizontal distance to the target location); 
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(2) calculating local measures on each lag distance along the specified 

direction ; 

(3) plotting statistical significances of local measures against lag distances. 

 

These steps are repeated for each spatial location and the specified direction of 

analysis may vary over spatial locations. To calculate local measures on the lag 

distances, the spatial weight matrix for the kth lag distance is defined as 



 ≤≤=

=
else0

andif1 21

)(

kijkiij

kij

DdDA θ
W i, j = 1,…, n         (4.9) 

with [Dk1, Dk2] being a distance range for the kth lag distance and other items 

same as equation (4.8).  

 

To illustrate the method, two target cells were selected from the profile curvature 

image covering the test area and profiles downslope of the cells were extracted. 

Profile 1 represents a slope with a topographic variation from convex to concave 

morphology, whereas profile 2 represents topographic variations at smaller 

scales than profile 1. Along each profile, 26 points (including the central point of 

the target cell) with 1 m horizontal interval were localized on the terrain surface 

expressed by the DTM. Elevations and profile curvature values on these points 

were obtained by interpolation of DTM and profile curvature image. All the 

elevation and curvature plots are displayed in figure 4.3. As indicated by the 

curvature plot of profile 1, the highest and the lowest profile curvature value are 

located at the target DTM cell and between 10 and 15 m distance to target cell, 

respectively. In the curvature plot of profile 2, the highest and the lowest profile 

curvature value are located at the target DTM cell and between 5 and 10 m 

distance to target cell, respectively. A group of lag distances ranging from 3 to 

23 m with 1 m horizontal interval were specified. LMI was calculated on each 

lag distance using profile curvature values on five interpolation points around 

the lag distance. The interpolation points involved in the LMI calculation on a 
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lag distance constitute a neighborhood of the target cell. The selection of 

interpolation points is exemplified in figure 4.4. For the lag distance of 3 m, 

profile curvature values on the five points with distances to the target cell 

between 1 and 5 m were used to calculate LMI. Under such specifications, a 

total of 21 LMI statistics corresponding to lag distances from 3 to 23 m were 

obtained for both target cells. These LMI statistics quantify the similarity or 

dissimilarity between the profile curvature value on the target cell and curvature 

values within a certain distance range along the slope direction. For a target cell 

with positive profile curvature value (convexity), a negative LMI is derived on 

the lag distance where the terrain morphology becomes concave. The magnitude 

of topographic variation from convexity to concavity is reflected by the 

significance of LMI. Using a normality approximation, each LMI was 

standardized using theoretical moments (Anselin, 1995), and the standardized 

statistics (z-scores) of LMI were plotted against lag distances (figure 4.3). The 

z-scores were then compared with a critical value defined at a specific 

significance level (a cutoff probability value used for indicating the extremeness 

of an observed statistic). In this example, a critical value of 2.326 corresponding 

to a significance level of 1% was used. A z-score smaller than -2.326 or larger 

than 2.326 is regarded significant. The former indicates a distinct topographic 

variation which is significantly different from randomness. In contrast, the latter 

indicates that the slope morphology on the specific lag distance is similar to that 

at the target cell. 
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Figure 4.3 Elevation, profile curvature and local Moran's I plots for two slope 

profiles extracted from the test site. 

 

The valleys (locally lowest negative z-score) in the LMI plots in figure 4.3 

indicate locally maximum topographic variations. The presence of a peak 

(locally highest positive z-score) immediately after a valley represents multiple 

topographic variations, i.e. terrain undulations. The distance between 
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neighboring peak and valley represents the scale of the topographic variation. 

For the purpose of identification of landslide morphological features, the 

insignificant valleys and peaks can be neglected, since they were possibly 

induced by DTM noises rather than actual topographic variations. The LMI plot 

of profile 1 has only one significant valley, corresponding to the topographic 

variation of profile 1 from convexity to concavity. In contrast, the significant 

valley and peak in the LMI plot of profile 2 indicate surface undulation along 

the profile at relatively small scales. This is consistent with the topographic 

variations of profile 2 shown by the elevation plot in figure 4.3.  

 

 

Figure 4.4 An example of calculating local measure of spatial association on a 

lag distance. 

 

Using the same data set and a different definition of neighborhood (9 

interpolation points around each lag distance), LMI statistics were calculated on 

a group of lag distances ranging from 5 to 21 m with 1 m horizontal interval 

(figure 4.5). In comparison with the LMI plots in figure 4.3, a larger size 

neighborhood has greater influence on the LMI plot of profile 2 than on the LMI 

plot of profile 1. The positions of the significant valley and peak in the LMI plot 

of profile 2 deviated 3 m and 2 m respectively from their initial positions in 
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figure 4.3, and obviously disagree with the positions of locally maximum 

topographic variations shown by the elevation plot. In contrast, the significant 

valley in the LMI plot of profile 1 derived using an increased neighborhood size 

is coincident with the position of locally maximum topographic variation. 

Therefore, for topographic variations at small scales, a small-size neighborhood 

is more appropriate. 

 

Figure 4.5 Local Moran's I plots for two profiles derived using a larger 

neighborhood size. 

 

This method is not only suitable for landslide morphology characterization, but 

also applicable to the analysis of other terrain features represented by 

topographic variability. Furthermore, apart from curvature, any topographic 

variable capable of representing surface morphology can be used. The 

application of this method has several relevant issues, including specification of 

lag distances, definition of neighborhood, selection of significance level, and 

performing statistical significance tests. For the specification of lag distances, 

the distance interval and the maximum lag distance should be cautiously 

determined according to the resolution of the data set and the characteristics of 

morphological features of interest. For topographic variability in a large-scale 

spatial pattern, a large maximum lag distance is required and a small distance 

interval is inappropriate for expressing the large-scale topographic variations. 

On each lag distance, the neighborhood composed of a group of spatial locations 
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is defined (e.g. figure 4.4). It should be noted that the size of neighborhood 

should be large enough to include adequate number of observations for the 

calculation of a statistically meaningful local measure. Finally, a statistical test 

at a specified significance level is conducted so that distinct topographic 

variations can be identified. The selection of an appropriate statistical test has 

always been a challenging problem in that the knowledge of the distributions of 

local measures of spatial association is still inadequate. Therefore, the problem 

is usually simplified by using a normality approximation. The selection of 

significance level should be cautious. A higher significance level, e.g. 99%, 

leads to a more restrictive result, whereas the use of a lower significance level, 

e.g. 95%, extracts more topographic variations that are regarded statistically 

significant.  

4.4 Results 

4.4.1 Dominant Morphology of Landslide Components 

The quantitative analysis of landslide morphology based on local measures of 

spatial association was conducted at the test site. Profile and tangential curvature 

images were generated from airborne LiDAR-derived DTM to express land 

surface morphology in two different directions. Since both local G and LMI are 

capable of identifying clusters of similar values, the Gi* statistic and LMI were 

applied to the curvature images to express and identify dominant morphology of 

landslide components. The purpose of applying the two local measures is to 

explore how much difference will be brought for the result by using different 

local measures both of which can express dominant morphology. The utilization 

of Gi* statistic instead of Gi is because the target location should be included in 

the calculation for the purpose of identifying clusters of similar values. The Gi* 

statistic can directly distinguish clustering of positive curvature values from 

clustering of negative curvature values. In contrast, LMI statistics should be 

calculated on the cells with positive and negative curvature values separately so 
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as to discriminate between clustering of positive and negative values. LGc was 

not employed because it cannot indicate whether or not most curvature values in 

a local area have the same signs, whereas the expression of dominant 

morphology of landslide components should consider the signs of morphometric 

values. 

 

The local measures (Gi* and LMI) calculated on each spatial location were 

standardized by theoretical moments (Anselin, 1995; Ord and Getis, 1995) and 

were then compared with the critical values corresponding to a significance 

level of 1%. The standardized local measures beyond the critical value were 

regarded as statistically significant. For the construction of the spatial weight 

matrix W, a neighborhood was defined for each target cell using a specified 

distance threshold (equation (4.7)). In this study, a 5 m and a 10 m distance 

threshold were utilized to investigate the effects of neighborhood definition on 

identification of dominant morphology.  

 

The standardized Gi* statistics calculated for the profile curvature image using a 

5 m distance threshold are shown in figure 4.6. All the cells with statistically 

significant Gi* values (larger than the critical value of 2.326 or smaller than 

-2.326 at the significance level of 1%) were extracted. Figures 4.6(a) and 4.6(b) 

display significant high (>2.326) and significant low (<-2.326) Gi* statistics, 

respectively. In the areas covered by significant high Gi* statistics, positive 

profile curvature values are clustered, indicating a morphology that is convex in 

slope direction. In the areas covered by significant low Gi* statistics, negative 

profile curvature values are clustered, indicating a morphology that is concave in 

slope direction. Moreover, the color of each cell corresponds to the significance 

of the Gi* statistic on that cell. A dark color represents a larger value of the sum 

of profile curvature values in the neighborhood than a light color.  
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Figure 4.6 Significant Gi* statistics at the significance level of 1% calculated for 

profile curvature image using a 5 m distance threshold. 

 

From figure 4.6(a) we can find that a great amount of significant high Gi* 

statistics congregate in the area upslope of the main scarp, along the upper 

border of the main scarp, within the deposition zone, and in the areas outside the 

lateral boundaries of landslide source area. The congregation of significant high 

Gi* statistics implies that these areas are dominated by a morphology that is 

convex in slope direction. The significances of the Gi* statistics along the upper 

border of main scarp and within the deposition zone are higher than those in the 

rest of the test area. The high significance indicates clustering of large positive 

profile curvature values in these areas. Significant low Gi* statistics, as indicated 

by figure 4.6(b), congregate downslope of the upper border of main scarp, 

around the deposition zone, along the coast and the channel in the north, 

indicating a dominant morphology that is concave in slope direction. The 
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significant low Gi* statistics downslope of the upper border of main scarp 

indicate the location of the lower border of main scarp. 

 

 

Figure 4.7 Significant Gi* statistics at the significance level of 1% calculated for 

profile curvature image using a 10 m distance threshold. 

 

Figures 4.7 displays significant Gi* statistics derived using a larger distance 

threshold (10 m). The extents of some large size clusters of significant Gi* 

statistics in figure 4.6 enlarge in figure 4.7 due to an aggregation of clusters into 

larger ones. A number of small size clusters of significant Gi* statistics 

disappeared when the 10 m distance threshold was used. The disappearing 

clusters imply that the spatial association among profile curvature values in 

these areas is significant only at small scales. Along with enlargement of the 

neighborhood size, the dissimilarity among neighboring curvature values 

increases and the Gi* statistic becomes insignificant.  
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Figure 4.8 Significant Gi* statistics at the significance level of 1% calculated for 

tangential curvature image using a 5 m distance threshold. 

 

Figures 4.8 displays standardized Gi* statistics calculated for the tangential 

curvature image using a 5 m distance threshold. The Gi* statistics larger than 

2.326 (critical value) or smaller than -2.326 at the significance level of 1% were 

extracted and were displayed in different colors corresponding to the 

significances of Gi* statistics. Clusters of significant high Gi* statistics, which 

indicate a dominant morphology that is convex in tangential direction, are 

present in the area upslope of the main scarp, along the lateral boundaries of 

landslide source area, and within the deposition zone. The clusters of significant 

high Gi* statistics in the south of the test site indicate the locations of ridges. 

Clustering of significant low Gi* statistics indicates a dominant morphology that 

is concave in tangential direction. Such clusters are found inside the small 
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depression interrupting the upper border of main scarp, within the source area, 

around the deposition zone, and along the channel in the north. The clusters of 

significant low Gi* statistics in the south of the test site indicate the locations of 

valleys. Similar to the results of the profile curvature image, a larger distance 

threshold (10 m) resulted in enlarging extents of large size clusters of significant 

Gi* statistics (see figure 4.9). Some small size clusters disappeared when a 10 m 

distance threshold was used, owing to a small-scale pattern of similarity among 

neighboring tangential curvature values.  

 

 

Figure 4.9 Significant Gi* statistics at the significance level of 1% calculated for 

tangential curvature image using a 10 m distance threshold. 

 

The figures of significant Gi* statistics clearly indicate the dominant 

morphology of landslide components. The deposition zone is convex in both 

directions (slope and tangential direction). The source area can be divided into 
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two parts. The north part of source area is covered by small size clusters of 

significant Gi* statistics for profile and tangential curvature, while the south part 

is mostly covered by significant low Gi* statistics for both profile and tangential 

curvature. The congregation of significant low Gi* statistics denotes that the 

south part of source area is dominantly concave in the slope and tangential 

directions. Apart from the landslide area, the dominant morphology of other 

terrain objects, including the channel in the north, the coast, the ridges and 

valleys, is also clearly indicated by significant Gi* statistics. In some areas, as 

indicated by figures 4.6, 4.7, 4.8 and 4.9, neither significant high nor significant 

low Gi* statistics are present. The absence of significant Gi* statistics is 

probably due to a rough terrain characterized by a sum of curvature values close 

to zero, or a smooth terrain covered by curvature values close to the mean value. 

 

LMI statistics were also calculated for the profile and tangential curvature 

images. In order to distinguish clustering of positive curvature values from 

clustering of negative curvature values, LMI statistics were calculated on the 

cells with positive and negative curvature values separately. Local positive and 

negative spatial autocorrelation can be differentiated based on LMI. Local 

positive spatial autocorrelation is indicated by a positive LMI statistic, while 

local negative spatial autocorrelation is indicated by a negative LMI statistic. 

Since the dominant morphology is only related to positive spatial 

autocorrelation, each standardized LMI was compared with the critical value of 

2.326 corresponding to the significance level of 1% and cells with LMI values 

larger than 2.326 were extracted.  

 

Figures 4.10(a) and 4.11(a) display significant positive LMI statistics calculated 

using different distance thresholds (5 m and 10 m) for positive profile curvature. 

The congregation of significant positive LMI statistics along the upper border of 

main scarp and inside the deposition zone indicates the dominant morphology of 

these areas is convex in slope direction. A larger distance threshold (10 m) 
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resulted in enlarging extents of clusters of significant positive LMI statistics in 

the area upslope of the main scarp and emergence of clusters. A few clusters of 

significant positive LMI statistics in figure 4.10(a) shrunk or vanished in figure 

4.11(a) when the 10 m distance threshold was used. Figures 4.10(b) and 4.11(b) 

display significant positive LMI statistics for negative profile curvature. Similar 

to the results of Gi* statistic, significant positive LMI statistics for negative 

profile curvature congregate along the lower border of main scarp, around the 

deposition zone, along the coast and the channel in the north. 

 

 

Figure 4.10 Significant positive LMI at the significance level of 1% calculated 

for profile curvature image using a 5 m distance threshold. 
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Figure 4.11 Significant positive LMI at the significance level of 1% calculated 

for profile curvature image using a 10 m distance threshold. 

 

In comparison with the results of Gi*, the cells with significant positive LMI 

values are much fewer than the cells with significant high or low Gi* values. 

This is because LMI is related to the product of curvature values at the target 

location and in the neighborhood. Whether or not these curvature values 

markedly deviate from the mean curvature value has a great influence on the 

significance of LMI (Sokal et al., 1998; Boots, 2000). Gi*, in contrast, is only 

associated with the sum of profile curvature values at the target location and in 

the neighborhood. Thus in the area covered by significant Gi* statistics but no 

significant positive LMI statistics, most curvature values are expected to be 

close to the mean curvature value. Moreover, inside the channel to the north of 

the landslide, cells with significant positive LMI values for negative profile 
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curvature are discontinuous for both distance thresholds. The discontinuity 

indicates topographic variations along slope direction inside the channel. 

 

 

Figure 4.12 Significant positive LMI at the significance level of 1% calculated 

for tangential curvature image using a 5 m distance threshold. 
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Figure 4.13 Significant positive LMI at the significance level of 1% calculated 

for tangential curvature image using a 10 m distance threshold. 

 

Figures 4.12(a) and 4.13(a) display significant positive LMI statistics calculated 

using two distance thresholds, 5 m and 10 m, for positive tangential curvature. 

Significant positive LMI statistics mainly concentrate along the lateral 

boundaries of landslide source area, inside the deposition zone and along the 

ridges in the south, indicating a dominant morphology of convexity in tangential 

direction. When using a 5 m distance threshold, less area upslope of the main 

scarp is covered by significant positive LMI statistics than using a 10 m distance 

threshold. Figures 4.12(b) and 4.13(b) display significant positive LMI statistics 

calculated for negative tangential curvature. Significant positive LMI statistics 

are present inside the small size depression interrupting the main scarp, within 

the south part of landslide source area, around the deposition zone, along the 
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valleys in the south and the channel in the north. In comparison with the results 

of the Gi* statistic, the cells with significant positive LMI values for both 

positive and negative tangential curvature are much fewer. This is also due to the 

different properties of the two local measures. 

4.4.2 Spatial Patterns of Topographic Variability inside Landslide 

Landslide morphology is usually characterized by topographic variability in 

multi-scale patterns. Due to its capability of identifying local negative spatial 

autocorrelation, LMI was utilized in combination with the method introduced in 

section 4.3.4 to characterize the spatial patterns of topographic variability inside 

landslide at the test site. LMI plots were constructed for both profile and 

tangential curvature images. Profile curvature measures the land surface shape 

in slope direction and the direction of analysis in equation (4.9) is specified as 

the slope direction derived at each target cell. Tangential curvature measures the 

land surface shape in the direction perpendicular to slope direction (tangential 

direction) and the direction of analysis is specified as the tangential direction 

derived at each target cell. For the profile curvature image, 25 points with 1 m 

horizontal interval were interpolated along the slope direction derived at each 

target cell. For the tangential curvature image, 25 points were interpolated along 

the tangential direction on both sides of each target cell. The curvature values on 

these points were derived by interpolation using curvature values on 

surrounding cells. A set of lag distances ranging from 3 to 23 m with 1 m 

horizontal interval were used and a neighborhood composed of 5 adjacent points 

around each lag distance was adopted. 
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Figure 4.14 Z-scores extracted from LMI plots constructed for profile curvature 

image. 

 

Various information can be extracted from LMI plots. Figure 4.14(a) displays 

the z-scores corresponding to the first valley in each LMI plot constructed using 

profile curvature values. The cells without negative z-scores in their plots or too 

close (<25 m in slope direction) to the test area edges are assigned a value of 0. 

Since a valley is defined as the locally lowest negative z-score, it indicates the 

distance at which the topography variation from convexity (concavity) to 

concavity (convexity) is locally maximum. The first valley in a plot constructed 

for the profile curvature image thus represents the locally maximum topographic 

variation in slope direction nearest to the target cell. In the figure the darker 
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color represents lower negative z-scores and thus larger magnitudes of 

topographic variations. Z-scores lower than -3 mainly concentrate within the 

landslide area (source area and deposition zone) and along the channel in the 

north of the test site. Inside the landslide source area, more z-scores lower than 

-3 are present in the north part of the source area than in the south part, 

indicating larger magnitudes of topographic variations along slope direction in 

the north part and relatively smooth terrain in the south part. Figure 4.14(b) 

displays the lowest negative z-scores between the lag distances 3 and 10 m in 

LMI plots, corresponding to the maximum topographic variations at relatively 

small distances (≤ 10 m). By visual comparison, the results in figure 4.14(a) and 

figure 4.14(b) are similar. However, the number of cells (36288 cells) assigned 

z-scores corresponding to the first valleys of LMI plots is larger than the number 

of cells (31042 cells) assigned the lowest negative z-scores within 3-10 m 

distance range. The difference in number of cells indicates that downslope of 

5246 cells (36288-31042=5246), the topographic variations nearest to these cells 

occur at relatively large distances (>10 m). Figure 4.14(c) displays the lowest 

negative z-scores within the whole lag distance range (3-23 m). Through 

comparing the three results in figure 4.14, it can be found that on a number of 

cells the lowest negative z-scores within the whole lag distance range are lower 

than those within the lag distance range 3-10 m and z-scores corresponding to 

the first valleys. This implies that downslope of these cells the slopes are 

undulate (more than one topographic variation) along slope direction, and the 

topographic variations nearest to these cells or on small lag distances (< 10 m) 

are not the most distinct.  
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Figure 4.15 Z-scores extracted from LMI plots constructed for tangential 

curvature image. 

 

Figure 4.15 displays the results derived in three ways from LMI plots 

constructed using tangential curvature values along tangential directions. The 

cells without negative z-scores in their plots or too close (<25 m in tangential 

direction) to the test area edges are assigned a value of 0. Since LMI was 

calculated using interpolated points on both sides of each target cell, the distance 

along tangential direction to the test area edges was inspected on both sides. By 

visual comparison of the results in figure 4.15, the distribution patterns of 

z-scores corresponding to the first valleys and the patterns of lowest negative 

z-scores between 3 and 10 m lag distance are similar. The number of cells 
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(31051 cells) extracted by identifying first valleys is larger than the number of 

cells (25479 cells) extracted by identifying lowest negative z-scores within 3-10 

m lag distance range. On a great amount of cells, the lowest negative z-scores 

within the whole lag distance range are lower than both the z-scores 

corresponding to the first valleys and the lowest negative z-scores between 3 and 

10 m lag distance. In comparison with the results for profile curvature image in 

figure 4.14, the distribution patterns of negative z-scores shown in figure 4.15 

are more homogeneous. Z-scores of large absolute values (<-3) are evenly 

distributed inside landslide, along the channel in the north and on the hillslopes 

outside the lateral boundaries of landslide. The difference between the north part 

and the south part of the source area is not prominent. 

4.4.3 Identification of Distinct Morphological Features Represented 

by Topographic Variability 

From LMI plots, both scales and magnitudes of topographic variations can be 

recognized. The results in section 4.4.2 show the spatial patterns of topographic 

variability inside and outside the landslide. In this section the method 

constructing local measure plots was tested for identifying distinct landslide 

morphological features characterized by topographic variability in a particular 

pattern. Landslide components can be automatically extracted by identifying 

distinct morphological features. 

 

According to the analysis of dominant morphology inside the landslide in 

previous section, the main scarp is composed of an upper border covered by 

clusters of large positive profile curvature values, a lower border covered by 

clusters of large negative profile curvature values, and a steep slope surface in 

between. The main scarp is thus characterized by topographic variations from 

convexity to concavity in slope direction. In order to extract the main scarp, 

LMI plots were constructed on all the cells with positive profile curvature 

values . Due to the variable span of the main scarp, the lag distances ranging 
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from 3 to 23 m were adopted. Twenty five points were interpolated along the 

slope direction derived at each cell with positive curvature value, and a 

definition of neighborhood composed of 5 adjacent interpolation points around 

each lag distance was employed. Since the curvature of main scarp is expected 

to vary gradually from large positive to large negative values in slope direction, 

the similarity in profile curvature value between the target cell at the upper 

border and the cells in a neighborhood is expected to decrease as lag distance 

increases, whereas the dissimilarity is expected to increase. This tendency of 

spatial association variation can be expressed by a LMI plot with a decreasing 

trend before the first valley. A statistically significant valley indicates an intense 

topographic variation. At the significance level of 1%, all the cells on which the 

LMI plots display such a significant topographic variation were extracted. The 

extraction result is displayed in figure 4.16. Isolated single cells have been 

removed from the result. 

 

As shown in figure 4.16, cells are clustered along the upper border of main scarp, 

except the section interrupted by a small size depression (red dash curve above 

the upper border). The coincidence between the upper border and the cell 

clusters indicates that the proposed method is able to extract landslide 

components characterized by topographic variability in a certain pattern, 

although only the boundary was extracted here. The scales of topographic 

variations have no impact on the main scarp extraction since only the variation 

tendency is considered. When considering the scales, the proposed method can 

also extract terrain objects characterized by topographic variations at a specific 

or a group of scales. Apart from the main scarp, the extracted cells are also 

clustered in the landslide source area and the deposition zone. More clusters are 

present in the north part of the landslide source area than in the south part, 

indicating an undulate terrain in the north part. The cell clusters present along 

the coast and the banks of the channel in the north of the test site highlight the 

locations of boundaries of coast and channel banks.  
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Figure 4.16 Cells extracted by identifying significant topographic variations 

from convexity to concavity in slope direction from LMI plots constructed for 

profile curvature image. 

 

For further test, the method was also applied to the tangential curvature image. 

LMI plots were constructed on all the cells with negative tangential curvature 

values in order to extract terrain objects characterized by topographic variations 

from concavity to convexity in tangential direction. Lag distances ranging from 

3 to 23 m with 1 m interval were employed and 25 points were interpolated 

along the tangential direction on both sides of each target cell. The 

neighborhood composed of 5 adjacent points was defined for each lag distance. 

All the cells on which the LMI plots have at least one statistically significant 

valley were extracted and shown in figure 4.17. 

 

As indicated by figure 4.17, the cell clusters are mainly present in the landslide 
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source area, on the hillslopes to the south of the landslide, and along the channel 

in the north of the test site. Within the landslide source area, cell clusters are 

distributed in the north part of source area and near the upper border of main 

scarp. The clusters on the hillslopes to the south of the landslide highlight the 

valleys located between ridges. Along the channel in the north of the test site, 

the extracted cells are clustered along the center line of channel and on the bank 

slopes, indicating a terrain that is undulate in tangential direction. 

 

 

Figure 4.17 Cells extracted by identifying significant topographic variations 

from concavity to convexity in tangential direction from LMI plots constructed 

for tangential curvature image. 

4.5 Discussion 

In this study, local measures of spatial association were utilized to quantify 

landslide morphological features represented by a dominant morphology or 

topographic variability in a particular pattern. Due to the different principles of 
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local measures, disparate results were produced by the local measures for the 

same local spatial pattern. Local G statistics do not consider the relationship 

between the values on the target location and on neighboring locations. A 

high/low G statistic value can be obtained when the target location is surrounded 

either by similar high/low values or by values close to the mean mixed with 

rather high/low values. Nevertheless, local G statistics are sensitive when 

distinguishing smooth terrain from rough terrain. This is because the sum of 

similar values tends to be high/low, whereas the sum of highly varying values 

tends to be close to zero. Both local Moran's I (LMI) and local Geary's c (LGc) 

focus on the relationship between the values on the target location and in the 

neighborhood. Significant high LMI or low LGc values can be obtained in 

smooth terrain, whereas significant low LMI or high LGc values may be 

obtained in areas characterized by intense topographic variability. The difference 

between the two local measures is that the significance of LMI depends on the 

magnitudes and signs of the values on the target location and in the 

neighborhood, whereas LGc not. If the values on the target location and in the 

neighborhood are around the mean, the statistic of LMI is insignificant but a 

significant low value of LGc may be obtained. However, we cannot consider 

LGc better than LMI, since the two local measures define the similarity and 

dissimilarity in different ways. LMI regard values with same signs as similar 

and values with different signs as dissimilar, whereas LGc regard values with 

minor difference among them as similar, irrespective of the signs of the values. 

The morphology of land surface can be comprehensively analyzed if these local 

measures are used collectively. For instance, in an area covered by similar 

values mixed with several outliers, local G statistics are possibly high or low, 

but significant negative LMI statistics or significant high LGc statistics may be 

obtained on the locations of the outliers indicating large dissimilarity.  

 

At the test site, the dominant morphology of each landslide component was 

clearly indicated by clusters of significant high or low Gi* statistics or 
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significant positive LMI statistics. However, the dominant morphology indicated 

by the Gi* statistic is more or less different from that indicated by the LMI 

statistic. Cells with significant positive LMI values are much fewer than the 

cells with significant high or low Gi* values. The sizes of clusters of significant 

positive LMI statistics for profile or tangential curvature are markedly smaller 

than the sizes of clusters of significant Gi* statistics in the same areas. This is 

because the Gi* statistic focuses on the sum of values in an local area, whereas 

LMI is significant only if the values on the target location and in the 

neighborhood have same signs and deviate strongly from the mean value. 

Considering the purpose of identifying dominant morphology rather than 

extracting clusters of large morphometric values, the Gi* statistic is more 

appropriate than LMI. 

 

A LMI plot indicates both scales and magnitudes of topographic variations 

within a specified distance to the target location and along a certain direction. 

Disparate patterns of topographic variations can be revealed based on LMI plots, 

e.g. the pattern of topographic variations nearest to each target location or the 

pattern of maximum topographic variations within a specified distance. The test 

results indicate that the north part of the landslide source area, the deposition 

zone and the region along the channel in the north of the test site are 

characterized by intense topographic variations, while the terrain upslope of the 

main scarp is smooth. The pattern of topographic variations along tangential 

direction is relatively homogeneous in comparison with the pattern of 

topographic variations in slope direction. The spatial patterns revealed by LMI 

plots provide rich information related to the topographic variability inside and 

outside landslide. This indicates that local measure plots can be utilized to 

facilitate visual analysis of landslide morphology by revealing the spatial 

patterns of topographic variability. The proposed method constructing local 

measure plots was also used to automatically extract terrain objects 

characterized by significant topographic variability in a particular pattern. The 
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upper border of landslide main scarp together with sections of the boundaries of 

coast and channel banks were extracted from the profile curvature image (figure 

4.16), while the valleys between ridges were extracted from the tangential 

curvature image (figure 4.17).  

 

Spectral domain methods, e.g. Fourier and wavelet transform, were usually used 

to characterize spatial patterns of topographic variability in undulate terrain. The 

dominant scale of topographic variability in a local area can be derived by 

identifying the peak in the power spectrum constructed for the area. For an 

undulate terrain with non-uniform wavelengths, multiple peaks or one peak with 

a large band width corresponding to a series of scales are present in power 

spectra (e.g. Booth et al., 2009). In addition to spectral domain methods, 

geostatistical measures, e.g. variogram, were also employed to analyze the 

spatial patterns of topographic variability (Glenn et al., 2006; Trevisani et al., 

2009). Taking the two-dimensional variogram as an example, a large-size 

window is put on a target location and all pairs of values with a specified 

distance apart in the window are used to calculate the semivariance at that lag 

distance and construct the variogram (Carr, 1995). The variogram plot describes 

the relationship between spatial autocorrelation and lag distances, and the 

semivariance on each lag distance indicates the average magnitude of the 

similarity or dissimilarity between neighboring values at a specific scale. Both 

spectral domain methods and geostatistical measures reveal the overall spatial 

pattern in an area and provide specific information such as the dominant scale or 

average dissimilarity. In contrast, the approach proposed in this study is based 

on local measures of spatial association which indicate spatial patterns of values 

in local areas. Due to the capability of local measures of spatial association for 

analyzing localized patterns, this approach is suitable for rugged terrain 

characterized by inhomogeneous patterns of topographic variability. 

Nevertheless, the proposed approach cannot substitute for other multi-scale 

analysis approaches (e.g. spectral domain methods and geostatistical measures). 
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The main purpose for developing this approach is to quantify landslide 

morphological features based on their descriptions so as to quantitatively 

analyze landslide morphology. It can be utilized as a complement to other 

approaches. 

 

Even though local measures of spatial association were proved effective for 

identifying dominant morphology and spatial patterns of topographic variability, 

their application has limitations. First of all, the global spatial autocorrelation 

has an influence on significance tests. It is difficult to determine whether a 

significant local spatial autocorrelation identified by local measures is caused by 

global spatial autocorrelation or not (Anselin, 1995). In reality, the existence of 

global spatial autocorrelation is common. Both the profile and tangential 

curvature images covering the test site contain a negative global spatial 

autocorrelation, which may exert more influence on the analysis of topographic 

variability than on the identification of dominant morphology. Secondly, in 

contrast to local G statistics, the distributions of LMI and LGc under the null 

hypothesis were considered to be not asymptotically normal (Getis and Ord, 

1992; Anselin, 1995; Sokal et al., 1998). Distributions of local measures are 

affected by the statistical characteristics of underlying spatial process, the total 

number of values and the neighborhood definition (Ord and Getis, 1995). It is 

difficult to derive the exact distributions of local measures and the inference of 

distribution in researches was conducted under certain assumptions (e.g. Leung 

et al., 2003). In applications, for the purpose of simplicity, a normality 

approximation was usually utilized in significance tests. The impact of using a 

normality approximation or other significance testing approaches on the 

quantification of distinctness of morphological features needs further 

investigation. 

 

It should be noted that the LiDAR-derived DTM is greatly affected by ground 

point density. Due to the obstruction of dense vegetation, points striking on the 
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ground in densely vegetated areas are sparse. Fake smooth terrain may be 

produced in areas with low density of LiDAR points. Moreover, the dense 

vegetation makes the filtering (removal of non-ground points) of LiDAR point 

cloud difficult. Some LiDAR points striking on vegetation may be mistakenly 

classified as ground points and a fake rough terrain could be produced. The 

analysis of landslide morphology in fake smooth or rough terrain is thus 

inaccurate. Apart from improvement of airborne LiDAR technique, LiDAR 

point cloud filtering should be cautiously performed and manual inspection is 

needed. 

4.6 Conclusion 

In this chapter, the potential of using local measures of spatial association to 

quantitatively analyze landslide morphology was investigated. An approach 

based on local measures of spatial association was proposed for quantifying and 

identifying landslide morphological features represented by either a dominant 

morphology or topographic variability in a particular pattern. In the approach, 

dominant morphology is expressed by clustering of similar morphometric values 

in local areas. All the local measures of spatial association can be utilized to 

identify the similarity among morphometric values so as to reveal the dominant 

morphology. Topographic variability is expressed by dissimilarity among 

neighboring values, which can be identified using either local Moran's I (LMI) 

or local Geary's c (LGc). To identify multi-scale patterns of topographic 

variability, a method was developed to construct a local measure plot on each 

spatial location. According to the positions and significances of peaks and 

valleys in each plot, the spatial patterns of topographic variability can be 

revealed.  

 

The local-measure-based approach was tested in an area containing a relatively 

large size, old landslide. Profile and tangential curvature images were generated 
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from airborne LiDAR data to provide morphometric values. The dominant 

morphology of landslide components (source area and deposition zone) was 

clearly revealed by the Gi* statistic and LMI which clustered in each component. 

The landslide source area can be divided into two parts. The south part of the 

source area contains the lower border of the main scarp and was shown to be 

primarily concave in both the slope and tangential directions (the direction 

perpendicular to the slope direction). The north part of the source area was 

covered by small size clusters of significant Gi* and LMI statistics and no 

dominant morphology was identified. The deposition zone was shown to be 

convex along both the slope and tangential directions. In additional to the 

landslide, the concave morphology of the channel located in the north of the test 

site, the concavity of valleys and the convexity of ridges were also clearly 

revealed. 

 

The results derived by Gi* and LMI showed differences in the extents of clusters 

of significant statistics due to disparate principles of the two local measures. The 

Gi* statistic outperformed LMI when highlighting the dominant morphology. 

The neighborhood size defined for local measure calculation determines the 

scale of analysis and had an influence on the representation of dominant 

morphology. For both Gi* and LMI, the dominant morphology of relatively 

large size terrain objects became more distinct as the neighborhood size 

increased.  

 

Various information relevant to topographic variability can be extracted based 

on the number, positions and significances of peaks and valleys in LMI plots. 

From each LMI plot constructed on a cell of the profile or tangential curvature 

image, the topographic variation nearest to the cell, the maximum topographic 

variation on a small lag distance, and the maximum topographic variation within 

a large distance range were derived. The magnitudes of these topographic 

variations were simultaneously obtained. For the profile curvature image, the 
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results indicate that significant topographic variations in slope direction 

concentrate within the landslide area and along the channel in the north of the 

test site. For the tangential curvature image, the distribution pattern of 

significant topographic variations in tangential direction is relatively 

homogeneous. 

 

Terrain objects with distinct morphological features represented by topographic 

variability in a certain pattern can be automatically extracted based on LMI plots. 

By identifying significant topographic variations from convexity to concavity, 

the upper border of landslide main scarp and sections of the boundaries of other 

terrain objects with similar morphological features to main scarp were 

simultaneously extracted from the profile curvature image. By identifying 

distinct morphological features represented by undulations in tangential 

direction, terrain objects such as valleys between ridges were extracted from the 

tangential curvature image. 
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CHAPTER 5 Semi-Automatic Detection of Shallow Debris 

Slide/Flow Locations Based on Morphological Features 

5.1 Introduction 

Landslide detection has always been an important topic in the landslide research 

field as it enables the construction of a landslide inventory which facilitates 

landslide hazard zonation and susceptibility assessment or investigation of the 

evolution of landscapes dominated by mass-wasting processes (Guzzetti et al., 

2012; Malamud et al., 2004; Mantovani et al., 1996). Recent landslides need to 

be identified and monitored due to their great threats to human. Localizing old 

landslides is likewise important because the areas in which landslides have 

occurred are more susceptible to future landslides (Van Den Eeckhaut et al., 

2007; Schulz, 2004). In comparison with recent landslides with distinct 

diagnostic features, detection of old landslides is more challenging due to the 

re-growth of vegetation on the landslide scar and degradation of landslide 

features. 

 

For landslide detection in an area, the traditional methods of visual 

interpretation of remote sensing data and field mapping are time-consuming and 

require solid expert knowledge (Guzzetti et al., 2012). A great amount of studies 

were thus dedicated to developing automatic approaches capable of objectively 

detecting landslides.  

 

Most automatic landslide detection approaches rely on spectral information 

derived from aerial photographs or multi-spectral satellite images, as landslide 

scars usually have high spectral contrast to surrounding stable areas (Soeters and 

Van Westen, 1996; Abdallah et al., 2007). Since spectral information is not 

unique for landslide scars, information from other data sources, e.g. a digital 
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elevation terrain model, has been integrated to improve the landslide detection 

result (Aksoy and Ercanoglu, 2012; Martha et al., 2012; 2010; Stumpf and Kerle, 

2011; Chang et al., 2007; Barlow et al., 2006). However, the approaches based 

on multi-source data commonly utilized spectral information as main signature 

for landslide scar identification, with only limited information (e.g. mean slope 

or curvature of a patch) being extracted from other data sources. Morphological 

features as an important signature for landslide detection (Guzzetti et al., 2012; 

Soeters and Van Westen, 1996) have not been thoroughly exploited in these 

approaches. Additionally, spectral information is less effective for the landslides 

totally covered by vegetation. Landslide detection approaches relying on 

morphological features are required as alternatives to methods based on spectral 

information (Van Den Eeckhaut et al., 2012).  

 

Airborne Light Detection and Ranging (LiDAR) has the ability to penetrate 

dense vegetation and obtain high-resolution ground information (Slatton et al., 

2007). This technique has proven useful for identification of morphological 

features and detection of landslides in vegetated terrain (Burns et al., 2010; Van 

Den Eeckhaut et al., 2007). In comparison with the extensive application of 

visual interpretation of LiDAR derivatives (Ardizzone et al., 2007; Schulz, 2007; 

2004; Van Den Eeckhaut et al., 2007; Gold, 2004; Mckean and Roering, 2004), 

studies on automatic landslide detection using LiDAR data are insufficient. For 

old deep-seated landslides, Booth et al. (2009) introduced an automated 

approach to extract landslide bodies represented by particular pattern of 

topographic variability. The topographic variability was expressed in spectral 

domain through Fourier or Wavelet transforms and distinct peaks in power 

spectrum were selected to represent the dominant scales of topographic 

variability. Tarolli et al. (2012) applied thresholds to a landform curvature map 

and a slope image to extract landslide crowns under the assumption that the 

topographic variable values of landslide main scarp are higher than the rest of 

the study area. Van Den Eeckhaut et al. (2012) adopted object-oriented analysis 
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procedures, i.e. firstly segmentation and then classification, to detect large 

deep-seated earth slides in low to moderate relief areas using LiDAR data. 

Segments representing main scarps, flanks and bodies were separately extracted 

by different segmentation methods. Since this study focuses on identification of 

small-size shallow debris slides and debris flows in mountainous area, both the 

spectral domain and object-oriented approaches exploited by previous studies 

are inappropriate. The spectral domain approach in Booth et al. (2009) is 

suitable for identifying the morphological features like hummocky topography 

and slumped blocks, which are not signatures of debris slides and flows. The 

object-oriented approach in Van Den Eeckhaut et al. (2012) was designed for 

extraction of deep-seated earth slides. It is difficult to derive segments of debris 

slides and flows based on morphological information given their shallow scars 

and irregular patterns of roughness. The thresholding approach of Tarolli et al. 

(2012) is a direct and simple method for identification of shallow landslides. 

However, in mountainous regions, landslide components do not necessarily have 

larger curvature or slope values than landslide-free area and the thresholds are 

thus difficult to define. 

 

In this chapter, a semi-automated approach is proposed to detect small-size 

shallow debris slides and flows using airborne LiDAR data. This approach was 

also reported in Deng and Shi (2014). The approach contains two main steps: 1) 

generating landslide component candidates and 2) eliminating terrain objects 

unrelated to landslides. In the first step, landslide component candidates are 

extracted by identifying their morphological features using the approach 

introduced in chapter 4. In the approach, landslide morphological features 

represented by a dominant morphology or topographic variability in a particular 

spatial pattern are expressed by clustering of similar or dissimilar morphometric 

values, which are identified using local measures of spatial association. By 

taking into account the spatial pattern (similarity or dissimilarity among 

neighboring values) of morphometric values, landslide components can be 
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extracted without considering whether or not they are characterized by large 

morphometric values. However, in the first step, terrain objects unrelated to 

landslides may be extracted together with landslide components due to their 

similar morphological features. Thus in the second step geometric and 

contextual analysis is performed on the extracted candidates so as to distinguish 

the landslide components from other terrain objects. 

 

The proposed landslide detection approach was applied to a test site on Lautau 

Island of Hong Kong to detect small size, shallow debris slides and flows. 

Through analysis of the morphology of debris slides and flows in a sample area 

within the test site, morphological features corresponding to two landslide 

components were identified and four rules based on geometric and contextual 

information were constructed to discriminate between landslide components and 

other terrain objects. 

5.2 Test Site and Data 

In chapter 3, the study area composed of three test sites has been introduced. 

Amongst the three test sites, test site B (see figure 3.1) was utilized to test the 

landslide detection approach proposed in this chapter. Test site B covers an area 

of approximately 0.8 km2, with elevation ranging from 1.5 to 373.8 m and mean 

slope gradient of 28°. The vegetation covering this area include grass, bushes 

and trees. A large number of debris slides and flows have occurred in this area. 

The most recent failures occurred in 2008 and are still recognizable as light 

color regions in high-resolution satellite imagery collected on January 2011 (the 

same month as LiDAR data acquisition).  

 

The airborne LiDAR data introduced in section 3.3 was utilized for landslide 

detection based on morphological features. LiDAR points were classified into 

ground and non-ground points using the classification result provided by the 
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LiDAR data producer. The ground points within the test area were interpolated 

to create a grid Digital Terrain Model (DTM) with 1 m interval. The selection of 

1 m resolution is due to the small sizes of the landslides in this area. Figure 5.1 

shows the LiDAR-derived shaded relief image with 1 m resolution. 

 

The Enhanced Natural Terrain Landslide Inventory (ENTLI) introduced in 

section 3.3 was used to validate the detection results of the proposed approach. 

Even though ENTLI has not been verified in field, it was produced by experts 

through repetitive visual examination. Moreover, it is the only comprehensive 

landslide inventory in Hong Kong. Therefore, ENTLI was utilized as a reference 

data for evaluation of landslide detection result. Figure 5.1 displays 

ENTLI-recorded landslides distributed in the test area. It should be noted that 

some digitized trails of historical landslides only indicate possible length of 

source area rather than the total debris trail.  

 

Figure 5.1 LiDAR-derived shaded relief image and landslides recorded by 

Enhanced Natural Terrain Landslide Inventory in the test area. 

 

A total of 177 landslides were recorded by ENTLI in the test area, amongst 
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which 45 ones occurred in the year 2008, two occurred between 2006 and 2007, 

and the rest occurred before 2000. The oldest failures occurred more than 65 

years ago. In the year 2008, a great number of debris slides and flows occurred 

all over Lantau Island due to intense rainstorms. At the time of LiDAR data 

acquisition (December 2010 - January 2011 ), the landslides that occurred in 

2008 and one landslide that occurred in 2007 are subject to a small-degree 

vegetation recovery. Other landslide scars are either totally covered by 

vegetation or have been obliterated by subsequent landslides. Most landslides 

within the test area are of small sizes. The minimum, maximum, and mean 

widths of landslide scars or source areas within this area are respectively 2 m, 69 

m, and 12 m. 56 landslides have source area widths less than 10 m, while 105 

landslides have source area widths of between 10 m and 20 m.  

5.3 Analysis of Landslide Features 

Landslides were commonly detected based on morphological, vegetation and 

drainage features (Soeters and Van Westen, 1996). These diagnostic features are 

closely related to landslide types and vary with the age of landslides (Varnes, 

1978; Cruden and Varnes, 1996; Soeters and Van Westen, 1996; Dikau et 

al.,1996; Abdallah et al., 2007; Martha et al., 2010). During the previous efforts 

of creating a landslide inventory by aerial photo interpretation in Hong Kong, 

features characteristic of landslides included steep main scarps, debris levees 

and/or lobes, spoon-shaped depressions surrounded by scarps, drainage and 

vegetation disruption (Parry et al., 2006; Evans et al., 1999). Recent landslides 

are commonly characterized by steep main scarps, debris levees and/or lobes, 

and vegetation contrast to surrounding unaffected area. Old landslides, of which 

the morphological features have been subdued by various surface processes, are 

commonly characterized by relatively steep main scarps, occasional debris lobes 

or levees, and depressions surrounded by scarps. In this chapter, landslides that 

occurred after year 2000 are regarded as recent landslides and the remainder 
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(before 2000) as old landslides.  

 

 

Figure 5.2 Cross-sectional and longitudinal profile graphs generated from 

LiDAR-derived DTM. 

 

Before landslide detection, profiles extracted from landslide scars in a sample 
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area (figure 5.2(a)) at the test site were analyzed. Figures 5.2(b) and 5.2(c) show 

profiles extracted from main scarps, whereas figures 5.2(d), 5.2(e) and 5.2(f) 

display profiles extracted from landslide trails. Although the main scarp of old 

landslide (e.g. figure 5.2(c)) seems smoother than that of recent landslide (e.g. 

figure 5.2(b)), both recent and old landslides are characterized by main scarps 

with convex upper border and concave lower border (convexity and concavity 

are defined in the downslope direction). The main scarp sizes, measured by 

height and horizontal distance between upper and lower borders, are usually 

small. The profiles extracted from landslide trails indicate that even though 

exposed bedrock and debris remaining within landslide trails may lead to rugged 

surface (e.g. figure 5.2(d)), most parts of the landslide trails in the sample area 

are concave in cross-sectional direction. Accordingly, the landslides in the test 

area are considered to be characterized by trails that are mostly concave in 

cross-sectional direction. The difference between profiles extracted from trails 

of recent (figures 5.2(d) and 5.2(e)) and old landslides (figure 5.2(f)) is that the 

trail boundary of old landslide is smoother than that of recent landslide.  

5.4 Landslide Detection Approach 

The proposed landslide detection approach includes two main steps: (1) 

generating landslide component candidates and (2) distinguishing landslide 

components from terrain objects unrelated to landslides. Figure 5.3 displays the 

flow chart of the landslide detection approach. Landslide component candidates 

are generated based on their morphological features. What landslide 

morphological features will be identified is determined by the characteristics of 

landslides in the test area. The local-measure-based approach introduced in 

chapter 4 is utilized to quantify landslide morphological features and extract 

cells possibly belonging to the landslide components. The extracted cells related 

to the same component tend to congregate and form clusters, i.e. candidates of 

landslide components. However, these clusters are not only related to landslide 



 

109 

 

components, but also correspond to other terrain objects with similar 

morphological features, e.g. rock outcrops. In order to distinguish 

landslide-related clusters from those unrelated to landslides, a cluster-level 

analysis is conducted based on geometric properties (e.g. cluster shape) of each 

cluster and contextual information (e.g. relative location between clusters). The 

remaining clusters representing landslide components indicate possible landslide 

locations. 

 

 

Figure 5.3 Flow chart of landslide detection approach. 

5.4.1 Extraction of Cells Possibly Belonging to Landslide Components  

According to the morphological analysis in section 5.3, landslides (debris 

slides/flows) in the test area are characterized by main scarps with convex upper 

border and concave lower border (both convexity and concavity are measured in 

slope direction) and trails with concave cross sections. The convexity or 

concavity of main scarp borders in slope direction is quantified by profile 
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curvature (defined in equation (4.1)). The concavity of landslide trail cross 

sections is quantified by tangential curvature (defined in equation (4.2)). 

 

The profiles extracted from landslide scars in a sample area (figure 5.2) indicate 

that the profile curvature of a main scarp changes in a particular manner from 

the upper border to the lower border. This spatial pattern of profile curvature 

values is illustrated in figure 5.4. The crown (zone A in figure 5.4) in most cases 

has no abrupt slope changes, hence profile curvature values of the crown area 

are relatively small unless rock outcrops appear. The upper border of the main 

scarp (zone B in figure 5.4) has relatively large positive profile curvature values 

due to abrupt slope changes from crown to main scarp. The profile curvature of 

the rupture floor (zone D in figure 5.4) is close to zero (translational landslide) 

and the border (zone C in figure 5.4) between the main scarp and the floor has 

relatively large negative profile curvature values. Moreover, landslide trails were 

observed to be mostly concave in cross-sectional direction (e.g. figure 5.2). 

Negative tangential curvature values are expected to be clustered within trails.  

 

 

Figure 5.4 Simplified map of landslide components and their morphological 

features. 

 

The variation of profile curvature of main scarp and the congregation of similar 

tangential curvature values in trails can be expressed and identified by either 

local Moran's I (LMI) or local Geary's c (LGC). The difference between the two 
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measures is that LMI is statistically significant only when the observation values 

have same signs and deviate strongly from the mean value, whereas the 

significance of LGC is not related to the signs and magnitudes of observation 

values (Boots, 2002; Sokal et al., 1998). For the purpose of landslide detection, 

LMI is employed since relatively large morphometric values are usually present 

inside landslides in comparison with surrounding area and the signs of 

morphometric values should be considered.  

 

In order to extract landslide components, profile and tangential curvature values 

are taken as observations and LMI statistics are calculated on the cells of 

curvature images using the definition in equation (4.5). As described above, 

profile curvature values of a main scarp change in a particular manner from the 

upper border to the lower border. The neighborhood for each target cell is 

therefore defined as cells within a specified distance downslope from the target 

cell. By combining a distance threshold with a direction constraint, the weight 

matrix is constructed using the formula given by equation (4.8). With such 

specifications, negative LMI should be derived on the cells along the upper 

border of the main scarp due to the variation of profile curvature values from the 

upper border to the lower border in slope direction. Because the upper border of 

main scarp is convex in slope direction, the calculation of LMI is restricted to 

the cells with positive profile curvature values. In contrast, along landslide trails, 

negative tangential curvature values are expected to be clustered owing to the 

concave cross sections of trails. Since the trails of debris flows usually have a 

large length/width ratio, the neighborhood is also defined under a direction 

constraint rather than in all directions. The weight matrix is constructed in the 

same way as equation (4.8). LMI statistics are calculated on all the cells with 

negative tangential curvature values. 

 

Since the variation of profile curvature values and the congregation of similar 

tangential curvature values are expected to be more distinct than landslide-free 
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areas, such significant spatial patterns are extracted by means of statistical 

significance tests. The tests can be conducted either based on an approximate 

distribution (e.g. a normal distribution) or using a random permutation approach 

(Anselin, 1995). Although a number of studies on the distribution of LMI have 

been done (e.g. Anselin, 1995; Sokal et al., 1998; Leung et al., 2003), the 

knowledge of the distribution is still incomplete. In order to simplify the 

problem, significance tests based on a normality approximation are conducted in 

this study. Each LMI is standardized by theoretical moments and then compared 

with a critical value at a specified significance level. Standardized LMI larger 

than a positive critical value or smaller than a negative critical values is regarded 

significant. Under the conditional randomization assumption, the expected value 

of LMI (Ii) is (Sokal et al., 1998) 

2
2

/)1/()(][ mnwzzIE iii −−−=    nzzm
n

i

i /)(
1

2

2 ∑
=

−=      (5.1) 

with wi as the sum of row elements of weight matrix, i.e. wi = ΣjWij, and other 

notations same as equation (4.5). The variance of LMI (Ii) is given as (Sokal et 

al., 1998) 

[ ] [ ] [ ])1()()1()2()()var( 2

2

2

1

22

2 −−−







−−−−= ∑

=

nzzmnwnnmzzI ii

n

j

ijii W   

(5.2) 

with notations same as equation (5.1). The standardized LMI (z-score) is derived 

by subtracting the expected value in equation (5.1) from LMI and dividing the 

difference by the standard deviation (square root of the variance in equation 

(5.2)). At a specified significance level, the cells with significant negative LMI 

values for profile curvature are regarded as possibly related to main scarps and 

are extracted, while cells with significant positive LMI values for tangential 

curvature are regarded as possibly related to trails and are extracted. 

5.4.2 Distinction between Landslide-Related and -Unrelated Cell 

Clusters 
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The cells extracted from tangential and profile curvature images are not only 

related to landslide components, but also correspond to other terrain objects with 

similar morphological features to landslide components. For instance, rock 

outcrops and cliffs are also characterized by steep slopes and large slope 

variations like main scarps. Thus it is necessary to further distinguish 

landslide-related cells from those related to other terrain objects. Adjacent cells 

representing the same terrain object tend to be clustered. The discrimination is 

thus conducted at cluster level. In this study, four rules for further discrimination 

are constructed based on cluster shape, slope gradients downslope of cluster, 

relative location between two clusters, and difference in mean slope direction 

between clusters. Only clusters extracted from profile curvature image, as main 

scarp candidates, are classified and filtered under the four discrimination rules. 

All clusters extracted from tangential curvature image are retained, although 

they may also represent channels or valleys apart from landslide trails. The 

reason for not processing tangential curvature clusters is that the debris may 

have flown along existing channels or valleys and landslide scars are usually 

connected with channels or valleys. It is difficult to clearly differentiate trails 

from channels and valleys. 

 

 

Figure 5.5 Simplified map of main scarp fitted by a parabola on the horizontal 

plane. 
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Main scarps are steep surfaces with semicircular shape (Soeters and Van Westen, 

1996) and are usually arcuate back in the upslope direction (Abdallah et al., 

2007). In other words, the shape of the main scarp is convex towards the 

upslope direction when projected onto the horizontal plane. To mathematically 

model the shape of the main scarp, a parabola is fitted to each cell cluster 

extracted from the profile curvature image (figure 5.5).  

 

The parabola vertex, i.e. the turning point of parabola curve, is placed on one 

cell of a cluster. To simplify the parabola equation, a coordinate transformation 

is applied to the cells of this cluster. Original coordinates are transformed into a 

new coordinate system whose origin is located at the target cell and the y-axis is 

in the slope direction derived at the target cell. The symmetry axis , i.e. the line 

splitting the parabola through the middle, is specified in the direction parallel to 

the new y-axis. The parabola equation and the coordinate transform are given as 
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where [x, y] are coordinates in the original coordinate system, [x', y'] are 

coordinates after transformation, A11, A12, A21, and A22 are elements in the 

transformation matrix. The quadratic coefficient a in equation (5.3) indicates the 

open direction of the parabola and controls the speed of increase/decrease from 

the vertex. A positive a represents a parabola with the open direction towards the 

positive y-axis, i.e. in slope direction.  

 

A least squares adjustment is applied to derive estimates of coefficients. If the 

open direction of the parabola is towards the downslope direction (i.e. a positive 

coefficient a), the cell cluster fitted by this parabola is regarded as possibly 

related to a main scarp. One problem of the shape analysis method is that cells 

associated with the main scarps of adjacent landslides occasionally connect 
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together (i.e. one cluster represents multiple main scarps) to form a complex 

cluster. In this case, the entire cluster is firstly segmented and then the parabola 

is fitted to each segment. The segmentation procedure is problematic because 

landslide sizes vary greatly and the segment number is unknown. Our approach 

puts a specified-size window on each cell of a cluster and the cells within the 

window constitute a segment. The window size should be small enough so that 

one segment represents only one terrain object. Then the parabola is fitted to 

each segment and coefficients are estimated. The segments meeting the shape 

rule are regarded as possibly related to main scarps, while segments with 

inappropriate shape are removed from the result. 

 

Since the cells extracted from profile curvature image are expected to be located 

along the upper borders of main scarps, the cell clusters should be adjacent to 

the main scarp slope surfaces with relatively large slope values. For a cluster 

extracted from profile curvature image, the cells immediately downslope of the 

cluster are extracted and the mean slope value of these cells is derived as the 

slope gradient of the surface downslope of this cluster. This mean slope value is 

only calculated for those cell clusters fitted by a parabola with open direction 

towards downslope direction. A slope threshold is then specified. If the slope 

gradient of the surface downslope of a cell cluster is smaller than the slope 

threshold, the cluster extracted from the profile curvature image is regarded as 

unrelated to main scarp and is removed. 

 

The third discrimination rule is dependent on the relative location between 

clusters. All clusters extracted from tangential and profile curvature images are 

projected onto one layer for the analysis of their relative locations. Because a 

landslide trail is always located below a main scarp, a cluster extracted from 

tangential curvature image is searched downslope from the cluster extracted 

from profile curvature image. A distance threshold should be specified so that 

the search is limited within a specific distance. If no corresponding 
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tangential-curvature cluster is found, the cluster extracted from profile curvature 

image is regarded as unrelated to main scarp and is removed. 

 

The fourth rule is constructed under the assumption that the mean slope 

directions of a main scarp and its corresponding trail should be identical. 

However, the trails of debris flows are usually long and flow directions change 

with local topography. Thus the mean slope direction of a trail is not calculated 

for the whole cluster extracted from the tangential curvature image, but using a 

segment adjacent to the related cluster extracted from the profile curvature 

image. Two thresholds should be specified: 1) segment length and 2) maximum 

difference of mean slope direction between a main scarp and its corresponding 

trail. If the difference in mean slope direction between two clusters surpasses the 

threshold, the cluster extracted from the profile curvature image is regarded as 

unrelated to main scarp and is removed. 

5.5 Test Results 

5.5.1 Generation of Landslide Component Candidates 

Due to the sensitivity of curvature calculation to DTM noise (Shary et al. 2002), 

the LiDAR-derived DTM with 1 m resolution was processed using a 

two-dimensional Gaussian filter. After testing several Gaussian filters with 

different standard deviations, the filter of 2 m standard deviation was selected 

because it can effectively filter out noise and simultaneously highlight the 

morphological features at the scales of the landslides in the test area. The 

distance threshold in the neighborhood definition (see equation (4.8)) was 

determined through analyzing the characteristics of main scarps and trails in a 

sample area (figure 5.2(a)). A 6 m distance threshold was defined for both 

extraction of main scarp and trail candidates. Statistical tests at a 99% 

significance level were conducted to extract cells with significant negative LMI 

values from the profile curvature image or significant positive LMI values from 
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the tangential curvature image. 

 

From the profile curvature image a total of 36128 cells (about 4.7% of all image 

cells), which congregated into 1620 clusters, were extracted. Isolated cells and 

clusters smaller than 4 cells were removed from the result since the parabola 

fitting needs at least four cells to perform least squares adjustment. A part of the 

extraction result is shown in figure 5.6, with all extracted cells projected onto 

the aerial photo acquired in year 2008. The landslides (black and red dots in 

figure 5.6) recorded in the landslide inventory ENTLI are also displayed in the 

figure.  

 

 

Figure 5.6 A sample of the extraction result from profile curvature image. 

 

The area shown in figure 5.6 is mainly covered by grass and shrub. The 

light-color regions in the aerial photo correspond to scars of landslides that 

occurred in year 2008. Other ENTLI-recorded landslides in this small area are 

more than 50 years old and are unrecognizable from the aerial photo due to a 

total re-vegetation. A comparison between the extracted cells and ENTLI 

landslide records reveals that all recent landslides except one and three old 

landslides highlighted by circles in figure 5.6 have related cell clusters at their 
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main scarp locations. The old landslides situated within main scarp areas of 

recent landslides (rectangles in figure 5.6) share the same clusters with the 

recent landslides. However, these clusters shared by recent and old landslides 

may be unrelated to the old landslides since the morphological features of these 

old landslides possibly have been obliterated by the recent landslides. The 

method also extracted clusters along the lateral boundaries of landslide trails, e.g. 

those highlighted by arrows in figure 5.6, or within landslide trails, e.g. those 

within the trail in the lower left corner of the figure. The clusters inside landslide 

trails possibly represent the rugged surface within the landslide trail caused by 

exposed bedrock or deposited large rocks. 

 

 

Figure 5.7 A sample of the extraction result from tangential curvature image. 

 

From the tangential curvature image, the LMI-based approach extracted 81462 

cells (about 10.7% of all cells) which congregated into 757 clusters. The 

extracted cells in the same area as figure 5.6 are displayed in figure 5.7. Almost 

all ENTLI-recorded landslides in this small area have related clusters along their 

trails. The relationship between landslide trails and related clusters is not 

necessarily one-to-one. Multiple clusters may correspond to one ENTLI 

landslide trail, such as the landslide with a bifurcated trail in the upper left 
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corner of the figure, whereas one cluster could be related to several ENTLI 

landslide trails. The recent landslide highlighted by a circle in figure 5.7 has a 

relatively wide trail before it turns into a channelized flow, but only a small part 

of this wide trail is covered by cell clusters. The profiles extracted across the 

wide trail (e.g. Profile 3 in figure 5.2(d)) reveal that this section of trail has a 

rugged surface and negative tangential curvature values are mainly clustered 

along the south margin of the trail. In general, the extraction result shown in 

figure 5.7 is consistent with the observation in section 5.3 that the landslide 

trails in the test area are mostly concave in cross-sectional direction. 

5.5.2 Discrimination between Landslide Components and Other 

Terrain Objects 

The cell clusters extracted from the profile and tangential curvature images are 

regarded as candidates of main scarps and landslide tails. To distinguish clusters 

related to landslide components from those representing other terrain objects, 

geometric and contextual analysis was conducted for all clusters. In the 

following paragraphs, clusters extracted from the profile curvature image and 

tangential curvature image are named PCI clusters and TCI clusters respectively. 

The discrimination only removed PCI clusters that are considered unrelated to 

main scarps. All TCI clusters were retained. 

 

The four rules introduced in section 5.4.2 were constructed. Several thresholds 

need to be determined to construct these rules. In this study the thresholds were 

determined based on the characteristics of landslides in the test area and 

empirical analysis in a sample area. Table 5.1 display the thresholds defined for 

the discrimination rules. The threshold of slope gradients downslope of a cluster 

(column 2 in table 5.1) was specified as the average of all the slope gradients of 

surfaces downslope of the cell clusters that are fitted by a parabola with opening 

direction towards downslope direction. The other three thresholds in table 5.1 

were defined through analyzing the PCI and TCI clusters in the area shown in 
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figure 5.2(a). 

 

Table 5.1 Thresholds for construction of discrimination rules. 

Searching 

distance (m) 

Slope (degree) Segment length 

(m) 

Maximum difference of mean 

slope direction (degree) 

2.0 36.0 5.0 40.0 

 

Using above specifications, the cluster-based discrimination removed 1295 PCI 

clusters from the initial 1620 clusters. The remaining 325 PCI clusters in 

combination with the corresponding TCI clusters indicate possible locations of 

landslides. This result was verified by ENTLI, the only comprehensive landslide 

inventory in Hong Kong. A location indicated by a pair of PCI and TCI clusters 

is regarded as corresponding to an ENTLI landslide if the distance between the 

PCI cluster and the ENTLI crown point falls within 1 m and the TCI cluster 

overlaps with the ENTLI trail line. Such an ENTLI landslide is considered to be 

identified by the proposed approach. Other locations, at which PCI clusters 

and/or TCI clusters do not coincide with ENTLI crown points and trail lines, are 

regarded as unrelated to landslides.  

 

Table 5.2 Quality assessment of landslide identification result. True positives: 

ENTLI landslides identified by the proposed approach. False negatives: ENTLI 

landslides missed by the proposed approach. False positives: PCI clusters that 

do not correspond to ENTLI landslide records. 

Total number 

of PCI clusters 

Number of True 

positives 

Number of False 

negatives 

Number of False 

positives 

Recent Old Recent  Old 

325 44 31 3 99 258 

 

An assessment of the detection result is reported in table 5.2. A total of 44 recent 
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landslides (93.6% of all recent landslides) and 31 old landslides (23.8% of all 

old landslides) have related clusters both at main scarps and along trails. These 

75 landslides have distinct morphological features and were identified by the 

proposed approach. There are a great number of PCI clusters (79.4% of 325 PCI 

clusters) remaining after cluster-level discrimination, which do not correspond 

to any ENTLI landslide records. These PCI clusters are possibly related to 

terrain objects with similar morphology to debris slides or flows. 

 

The final result in the entire test area is displayed in figure 5.8, in which the 

remaining PCI clusters are projected onto the aerial photo acquired in 2008 

(figure 5.8(a)) and LiDAR-derived shaded relief image (figure 5.8(b)) 

respectively. ENTLI-recorded landslides concentrate on slopes covered by grass 

(light green color in figure 5.8(a)) and in transition regions from grassland to 

woodland (dark green color in figure 5.8(a)). Most PCI clusters that do not 

correspond to ENTLI landslides are located in woodland or scatter along debris 

flow trails. The clusters along debris flow trails possibly represent the lateral 

boundaries of trails or indicate rugged surface within these trails. According to 

figure 5.8(b), PCI clusters without corresponding ENTLI landslide records 

mainly concentrate in relatively rough terrain. This implies that the 

discrimination between landslide components and other terrain objects is more 

difficult in rough terrain than in smooth terrain and additional evidence is 

required. 
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Figure 5.8 Landslide detection result in the test area. 

 

A sample of the final result (rectangle in figure 5.8(a)) is displayed in figure 5.9. 

In comparison with figure 5.6, most PCI clusters in figure 5.6, including those 

along the lateral boundaries of landslide trails, inside trails, and in surrounding 

stable areas, have been removed by the cluster-based discrimination. A number 

Grassland 

Woodland 
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of PCI clusters along trail boundaries and within trails were retained. It should 

be noted that three old landslides (arrows in figure 5.9), which share the same 

PCI and TCI clusters with adjacent recent landslides, were considered to be 

identified by the proposed approach. It is difficult to ascertain that the PCI and 

TCI clusters represent the components of both old and recent landslides or just 

the recent landslides. Moreover, two TCI clusters coincide with the trails of two 

old landslides but the two landslides were unidentified by the proposed approach 

due to a lack of corresponding PCI clusters. This situation indicates landslides 

with single distinct morphological feature. 

 

 

Figure 5.9 A sample of the landslide detection result. 

5.6 Discussion 

The test results indicate that the proposed approach is able to detect small-size and 

shallow debris slides/flows with distinct morphological features, regardless of the 

ages of these failures. The small sizes and shallowness refer to the sizes and 

depths of source areas. Almost all (93.6%) ENTLI recent landslides were 

identified by the proposed approach. The high proportion of identifiable recent 

landslides is due to a small degree of smoothing by surface processes in a short 

period (within five years). The unidentifiability of the remaining three recent 
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landslides are because of the extreme shallowness or small sizes of their source 

areas. In contrast, only 23.8% of the old landslides were identified by the 

proposed approach. This is because the morphological features of most old 

landslides have been smoothed under long-term effects of surface processes and 

are no more distinct.  

 

It should be noted that in the final result, a large number of PCI clusters (clusters 

extracted from profile curvature image) that were regarded as unrelated to 

landslides through verification were retained. As indicated by figure 5.8, these 

clusters are mostly located along the boundaries of debris flow trails, inside trails 

or in woodland. The presence of PCI clusters inside trails may indicate a rough 

terrain within these trails. In contrast, the PCI clusters present in woodland 

possibly indicate an actual rough terrain or a fake rough terrain caused by LiDAR 

point cloud filtering errors (i.e. misclassification of non-ground points as ground 

points). The verification of the PCI clusters in woodland needs a ground truth 

topographic data which is not available in this research. Moreover, a number of 

PCI and TCI cluster (cluster extracted from tangential curvature image) pairs are 

close to but do not coincide with the crown points and trail center lines utilized by 

ENTLI to record landslide locations. Detailed information of landslide boundaries 

is required to verify such PCI and TCI clusters. The large number of PCI clusters 

is also possibly due to inadequate evidence for discrimination between landslide 

components and other terrain objects. More diagnostic features can be considered 

in further research. 

 

The classical landslide detection method is using aerial photos or satellite imagery, 

which is especially effective for identification of recent landslides (e.g. Stumpf 

and Kerle, 2011; Martha et al., 2010). The disadvantages of landslide detection 

based on airborne LiDAR data include relatively high cost of repetitive data 

acquisition and tremendous data volume for large areas (Hӧfle and Rutzinger, 

2011; Guzzetti et al., 2012). However, the approach proposed in this study 
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provided detailed information related to landslide morphological features, which 

can be combined with spectral information to improve the detection result solely 

based on spectral information. In addition, the test results indicate that landslides 

that occurred within five years (2006-2010) still have distinct morphological 

features and therefore there is no need to acquire LiDAR data in a high temporal 

frequency. For old landslides covered by dense vegetation, the proposed approach 

detected the ones with relatively distinct morphological features. Thus given 

adequate point density in densely vegetated areas, landslides beneath dense 

vegetation can be identified using the proposed approach, whereas other remote 

sensing techniques are ineffective in such a situation. 

5.6.1 Effects of DTM Resolution on Landslide Detection 

In this study, landslide locations were identified using a LiDAR-derived DTM of 

1 m resolution. The selection of 1 m resolution is due to the small sizes of 

landslides in the test area. In order to evaluate the effects of DTM resolution on 

landslide detection, the DTM of 1 m resolution was resampled to cell sizes of 2 

and 4 m using bilinear interpolation. Using the DTMs of 2 and 4 m resolution, 

landslide component candidates were extracted from profile and tangential 

curvature images by LMI-based approach. The results are shown in figures 5.10 

and 5.12. The distance thresholds were specified by testing a series of thresholds 

and selecting the optimal one. A 10 m distance threshold was utilized for the 

DTM of 2 m resolution, while a 20 m distance threshold for the DTM of 4 m 

resolution. Statistical tests were conducted at a 99% significance level. 

 

In comparison with the extraction results in figure 5.6, fewer ENTLI landslides in 

this area have corresponding PCI clusters at main scarp locations as DTM 

resolution decreased. In figure 5.10(a), the clusters corresponding to main scarps 

still represent the main scarp shape that is arcuate back towards upslope direction. 

To illustrate the effects of DTM resolution on the representation of main scarp 

morphology, a profile was extracted from a main scarp and graphs of the profile 
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indicated by an arrow in figure 5.10(a) were generated from DTMs of 1, 2 and 4 

m resolution. 

 

 

Figure 5.10 Effects of DTM resolution on extraction result from profile curvature 

image by LMI-based approach. 

 

Figure 5.11 display the elevation and curvature plots of the profile. The peak of a 

curvature plot indicates the location of upper border of main scarp, and the valley 

indicates the lower border. The horizontal distance between peak and valley 

(a) 2 m DTM 

(b) 4 m DTM 

Profile from 

main scarp 
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increases with cell size. Additionally, absolute curvature values of the profile 

decrease as cell size increases. The smoothing effect of upscaling DTM leads to 

extraction of fewer clusters at main scarp locations. Therefore, a high-resolution 

DTM is necessary for extraction of main scarps of small size, shallow debris 

slides or flows at the test site. 

 

 

Figure 5.11 Graphs of the profile across main scarp generated from DTMs of 

different resolutions. 

 

The extraction results of tangential curvature image shown in figure 5.12 indicate 

less effect of DTM resolution on the extraction of trail candidates. Small size 

clusters disappear as grid interval increases and two ENTLI recent landslides 

(circles in figure 5.12(b)) have no corresponding clusters along their trails when a 

4 m DEM was utilized. 

Elevation 
Profile curvature 

Distance (m) 

E
le

v
a
ti

o
n

 (
m

) C
u

rv
a

tu
re

 

C
u

rv
a
tu

re
 

Distance (m) 

Elevation 
Profile curvature 

E
le

v
a
ti

o
n

 (
m

) 

Distance (m) 

Elevation 
Profile curvature 

(a) 1 m DTM 

(c) 4 m DTM 

(b) 2 m DTM 



 

128 

 

 

 

Figure 5.12 Effects of DTM resolution on extraction result from tangential 

curvature image by LMI-based approach. 

 

Across the trail of one recent landslide, a profile was extracted and its graphs 

generated from DTMs of 1, 2 and 4 m resolution are shown in figure 5.13. As 

indicated by figure 5.13, the terrain is smoothed and the absolute values of 

tangential curvature of the profile decrease as cell size increases. Thus a 

high-resolution DTM is also necessary for extraction of landslide trails, especially 

for those debris slides/flows with narrow trails. 

(a) 2 m DTM 

Profile 

from trail 

(b) 4 m DTM 

Landslides 

before 2008

Landslides in 

2008
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Cells extracted 

from tangential 

curvature image 



 

129 

 

 

 

Figure 5.13 Graphs of the profile across landslide trail generated from DTMs of 

different resolutions. 

5.6.2 Transferability of Thresholds to Another Area 

In the proposed approach, the thresholds, including the ones utilized for landslide 

component candidate extraction and cluster-based discrimination, were defined in 

an empirical way. The threshold definition was based on the characteristics of 

landslides in the test area and analysis of test results in a sample area. To verify 

the suitability of the thresholds for other areas with similar environment and 

landslide types, the same group of thresholds defined in section 5.5 were applied 

to a small area (i.e. test site C in figure 3.1) in the neighborhood of the test site. In 

this area, 11 landslides occurred in 2008, one in 2007, one in 2005, and 66 

landslides are more than 10 years old. The ENTLI-recorded landslides overlying 

the aerial photo acquired in 2008 are displayed in figure 5.14. This area is 
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composed of both grassland and woodland in rugged terrain, which is similar to 

the test site. A patch of rock outcrop is present in the central part of this area. 

 

 

Figure 5.14 A small area adjacent to the test site, in which the thresholds defined 

for the test site were applied. 

 

The proposed approach derived 142 PCI clusters in the final result. A total of 12 

recent landslides (92.3% of all recent landslides) and 15 old landslides (22.7% of 

all old landslides) were identified. Twenty five PCI clusters are related to the 

identified landslides, and the remaining PCI clusters do not correspond to ENTLI 

landslide records. The identification result is similar to the result described in 

section 5.5. This indicates that the defined thresholds have a certain degree of 

transferability to areas with similar vegetation and terrain. However, the definition 

of thresholds in this study was more or less arbitrary. The relationship between the 

thresholds and landslide characteristics, terrain and vegetation types needs to be 

investigated in further research. Automated or semi-automated methods of 

threshold definition should be developed to improve the flexibility of the landslide 

detection approach. 

5.7 Conclusion 

Rock outcrop 
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In this chapter, a semi-automated landslide detection approach was proposed to 

identify locations of small-size shallow debris slides and flows in vegetated 

mountainous area using airborne LiDAR data. The local-measure-based 

approach presented in chapter 4 was utilized to extract cell clusters possibly 

belonging to landslide components characterized by particular morphological 

features. Geometric and contextual analyses were subsequently performed at 

cluster level to discriminate clusters related to landslide components from those 

related to other terrain objects. The landslide detection approach was tested in an 

area on Lantau Island, Hong Kong. An existing landslide inventory was utilized 

to verify the detection result. Locations of 93.6% of recent (2000-2010) 

landslides and 23.8% of old (before 2000) landslides were identified. 79.4% of 

clusters in the final result were regarded as unrelated to landslides through 

verification. The identification result in grassland is better than the result in 

woodland due to few clusters unrelated to landslide components present in 

grassland. More clusters unrelated to landslide components are present in rough 

terrain than in smooth terrain. 

 

The test result proves that the proposed approach is able to identify locations of 

small-size and shallow debris slides/flows characterized by distinct 

morphological features, regardless of the ages of these failures. The landslide 

morphological features extracted by the proposed approach can be combined 

with spectral information from aerial photos or satellite imagery to improve the 

detection result solely based on spectral information. Moreover, given adequate 

LiDAR point density, landslides covered by dense vegetation can be identified 

by the proposed approach, whereas the approaches based on spectral 

information are ineffective in such a situation. The proposed approach also 

resulted in a large number of clusters that were regarded as unrelated to 

landslides through verification. This was possibly due to the rugged terrain in 

the test area, fake rough terrain caused by LiDAR point cloud filtering errors, 

the limitation of landslide inventory for verification, or inadequate evidence for 
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discrimination. 

 

The effects of DTM resolution on landslide detection result were also 

investigated. The local-measure-based approach was applied to DTMs of 

different resolutions and cell clusters possibly presenting landslide components 

were extracted. The results indicate that a high-resolution DTM (at least 1 m) is 

necessary for detection of small size, shallow debris slides and flows in the test 

area. In addition, the thresholds in the proposed approach were determined in an 

empirical way. Whether or not these thresholds can be applied to areas with 

different terrain and vegetation needs further investigation. 
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CHAPTER 6 Conclusions and Future Work 

6.1 Conclusions 

The purpose of this research is to develop effective approaches to 1) objectively 

analyze landslide morphology and 2) automatically detect landslide locations 

based on morphological features. The potential of using local measures of 

spatial association for landslide morphological analysis and morphological 

feature identification was investigated. Airborne Light Detection And Ranging 

(LiDAR) technique was utilized to generate high-resolution land surface models 

in vegetated area and provide fine-scale topographical information. 

 

In chapter 3, to explore the possibility of improving the filtering results of 

LiDAR point cloud, a simple scheme was developed to integrate the results of 

different filtering algorithms. The scheme was tested in an area with rugged 

terrain covered by dense vegetation of variable heights. The filtering results of 

two popular filter algorithms were integrated. The filtering results and the 

integration result were visually evaluated by examining result samples extracted 

from areas in different terrain and vegetation conditions. Both ground point sets 

derived by the two filter algorithms contained vegetation points unfiltered out by 

the filter algorithms. The proposed scheme can remove most vegetation points 

contained in both ground point sets, and combine ground points from each 

filtering result. 

 

In chapter 4, an innovative approach based on local measures of spatial 

association, including local G statistics (Gi* and Gi), local Moran's I (LMI) and 

local Geary's c (LGc), was proposed to quantify landslide morphological 

features. The principle of the approach is that landslide morphological features 

may refer to either a dominant morphology or topographic variability in a 

particular pattern. Both types of morphological features can be quantified and 
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identified using local measures of spatial association. In order to identify 

multi-scale patterns of topographic variability, a method constructing local 

measure plots was introduced. A local measure plot constructed on a spatial 

location indicates both scales and magnitudes of topographic variations along a 

specific direction. On the basis of local measure plots, multi-scale patterns of 

topographic variations can be revealed.  

 

The proposed approach and the method constructing local measure plots were 

tested at a test site containing a large size, old landslide. Profile and tangential 

curvature images were generated from LiDAR data to provide morphometric 

values.  

 

The test results lead to the following findings and conclusions: 

(1) The dominant morphology of each landslide component was clearly revealed 

by statistically significant Gi* and LMI statistics which congregated in each 

component. In addition to the landslide, the dominant morphology of other 

terrain objects, including the channel to the north of the landslide, the coast, the 

valleys and ridges in the south of the test site, was also indicated. 

 

(2) The dominant morphology indicated by Gi* and LMI was different. The cells 

with significant positive LMI values were much fewer than the cells with 

significant high or low Gi* values. Significant positive LMI statistics indicated 

areas covered by similar large morphometric values, whereas the Gi* statistic is 

more appropriate for highlighting dominant morphology.  

 

(3) The size of the neighborhood defined for the local measure calculation has 

an influence on the result of morphological analysis. Neighborhood size 

determines the scale of analysis. As the neighborhood size increased, large-scale 

dominant morphology was more prominent, while small-scale dominant 

morphology became unidentifiable.  
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(4) Various spatial patterns of topographic variability can be indicated based on 

LMI plots. The patterns of topographic variations nearest to each cell, maximum 

topographic variations within a relatively small distance (≤10 m) to each cell 

and maximum topographic variations within a large distance range (≤23 m) 

were revealed. Locations of small-scale and large-scale topographic variations 

were recognizable through comparing the three results. The areas characterized 

by concentrated significant topographic variations were also indicated. 

 

(5) Terrain objects with distinct morphological features represented by 

topographic variations in a particular pattern can be extracted based on LMI 

plots. The upper border of landslide main scarp together with sections of the 

boundaries of coast and channel banks were extracted by identification of 

significant topographic variations in slope direction, while the valleys between 

ridges were extracted by identifying undulations in the direction normal to slope 

direction. 

 

In chapter 5, a semi-automated landslide detection approach was proposed to 

identify locations of small size, shallow debris slides and flows in vegetated 

mountainous terrain using airborne LiDAR data. Cell clusters possibly 

representing main scarps and trails of debris slides/flows were extracted by 

identifying landslide morphological features using the local-measure-based 

approach presented in chapter 4. Four discrimination rules based on geometric 

and contextual information were then constructed to remove clusters unrelated 

to landslide components. 

 

The approach was tested in an area on Lantau Island, Hong Kong. An existing 

landslide inventory, namely ENTLI (Enhanced Natural Terrain Landslide 

Inventory), was utilized to verify the detection result. The following findings 

and conclusions can be drawn: 
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(1) The proposed approach is able to identify small size, shallow debris 

slides/flows with distinct morphological features, regardless of the ages of these 

failures. Locations of 93.6% of recent (≤ 5 years) landslides and 23.8% of old (> 

10 years) landslides recorded by ENTLI were identified. The identification 

result in grassland was better than the result in woodland due to few clusters 

unrelated to landslide components present in grassland. More clusters unrelated 

to landslide components were present in rough terrain than in smooth terrain. 

 

(2) In the final result, a relatively large number of clusters that were regarded as 

unrelated to landslides by verification were retained. This was possibly due to 

the rugged terrain in the test area, fake rough terrain caused by LiDAR data 

filtering errors, the limitation of landslide inventory for verification, and 

inadequate evidence for discrimination. 

 

(3) By applying the detection approach to land surface models of different 

resolutions, a high-resolution (1 m grid interval) land surface model generated 

from LiDAR data was proved necessary for detection of small size, shallow 

debris slides/flows at the test site. 

6.2 Contributions of the Research 

This research explored the potential of using local measures of spatial 

association for landslide morphological analysis. The local-measure-based 

approach proposed in this research quantified landslide morphological features 

(dominant morphology and topographic variability in a pattern) based on their 

description. It provides an objective way to analyze landslide morphology. A 

collective use of different local measures enables deriving information related to 

landslide morphology from various aspects. 
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The method proposed for analysis of spatial patterns of topographic variability 

expresses topographic variations along a specified direction using a local 

measure plot. The plot indicates both scales and magnitudes of topographic 

variations and hence multi-scale patterns of topographic variability can be 

revealed. Due to the ability of local measures of spatial association for 

indicating localized patterns, this method is suitable for rugged terrain 

characterized by inhomogeneous patterns of topographic variability. It can be 

utilized as a complement to other land surface analysis approaches (e.g. spectral 

domain methods and geostatistical measures) that reveal an overall pattern in a 

specified-size area.  

 

The local-measure-based approach for quantification of landslide morphological 

features can be also utilized for landslide detection. Based on the 

local-measure-based approach and four cluster-level discrimination rules, a 

semi-automatic approach was designed for identification of locations of small 

size, shallow debris slides and flows. Both recent and old landslides with 

distinct morphological features can be detected and added to a landslide 

inventory which is useful for landslide susceptibility assessment, hazard 

zonation and land use planning. The landslide morphological features identified 

by the approach can be not only utilized to improve the detection result derived 

solely based on spectral information, but also facilitate investigations of 

landslide mechanism and activity state in Hong Kong. 

6.3 Limitations and Future Works 

In this research, the possibility of improving LiDAR point cloud filtering results 

by integrating the results of different filter algorithms was explore. Through 

visual evaluation of the results, it was proved that the proposed integration 

scheme enables derivation of a more accurate filtering result. However, due to a 

lack of ground truth data as reference, the integration result cannot be 
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quantitatively assessed. In further work, if a ground truth data is available, a 

quantitative assessment should be performed so as to quantify the improvement 

resulting from the integration scheme. 

 

Two issues relevant to the use of local measures of spatial association should be 

taken into account, including the influence of global spatial autocorrelation on 

significance tests and the suitability of using a normality approximation in 

significance tests. In reality, the presence of global spatial autocorrelation is a 

common phenomenon for spatial variables, which may result in inaccurate 

significance tests for local spatial association. It is necessary to understand the 

magnitude of the influence of global spatial autocorrelation on morphological 

analysis. The knowledge of the distributions of local measures is still inadequate. 

In applications, for the purpose of simplicity, a normality approximation was 

usually utilized in significance tests. The suitability of using a normality 

approximation or other significance testing approaches for identification of 

distinct morphological features needs further investigation. 

 

The study on landslide detection utilized only two morphological features. In the 

final result a great number of clusters regarded as unrelated to landslides were 

retained. To further discriminate these clusters, additional evidence is needed. 

Consequently, morphological features, vegetation and drainage patterns can be 

integrated into the landslide detection approach and other data sources can be 

utilized in combination with airborne LiDAR data. The application of the 

proposed approach to different types of landslides and to multi-source data 

fusion should be discussed in further research. In addition, the definition of the 

thresholds in the proposed approach was based on empirical analysis and was 

more or less arbitrary. Despite the defined thresholds were proved transferable to 

areas characterized by similar terrain and vegetation, whether or not these 

thresholds can be applied in different terrain and different vegetation zones 

needs further investigation. The relationship between the thresholds and 
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landslide characteristics, terrain and vegetation types should be investigated in 

future study to facilitate the development of automated threshold definition 

method. 

 

In this research, airborne LiDAR data was utilized for landslide morphological 

analysis and detection. The handling of large volume data has always been a 

challenge for LiDAR technique (Hӧfle and Rutzinger, 2011; Guzzetti et al., 

2012). However, since the study area in this research is not large, the problem of 

data storage and processing was not considered. In future research, this problem 

should be considered if the approaches for landslide morphological analysis and 

detection are applied to large areas. The technology such as distributed data 

storage and parallel processing can be adopted. 
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