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Abstract

As a result of global climate change and oil price volatility, energy efficiency and

environmental sustainability have become top policy priorities around the world.

Meanwhile, the global energy demand may grow by more than one-third after

about twenty years, with the expectation that the global electricity demand will

continue to grow more strongly than any other final form of energy. So it is

crucial to find ways to achieve efficient capacity investments for electricity and

efficient environmental sustainability investments for products. On the other

hand, an efficient pricing mechanism of electricity can facilitate efficient capacity

investment for electricity, and reducing carbon emission is essential to achieve

environmental sustainability. Therefore, in this thesis we study capacity and

sustainability investments from the perspectives of pricing and carbon emission.

Three fundamental topics, which can be considered as foundations for future

research, are studied in this thesis.

In the first topic, we consider the determination of the optimal capacity and

pricing policies for an electricity company. The time of electricity usage consists of

two periods, namely the non-peak period and the peak period. Two technologies

are considered to generate electricity, where the first technology is used to gener-

ate electricity for the demands in both periods and the second technology is used

to generate electricity only for the demand in the peak period. The company of-

fers customers two tariffs, namely the flat rate (FR) tariff and time-of-use (TOU)

tariff. Under the FR tariff, customers pay a flat price for electricity consumption

in both periods. Under the TOU tariff, customers pay a high price and a low

price for electricity consumption in the peak period and non-peak period, respec-

tively. We first study a model with price inelasticity of total demand. Customers
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who use the TOU tariff may shift some electricity consumption from the peak

period to the non-peak period to take advantage of the lower price in the latter

period. We apply a Stackelberg game to study this model, where the electricity

company, acting as the Stackelberg leader, decides the capacity investment and

prices of electricity. The customers under the TOU tariff, acting as Stackelberg

followers, decide the amount of electricity consumption to shift from the peak

period to the non-peak period, given the prices of electricity. We then study a

model with price elasticity of demand. The optimal capacity and pricing policies

for the electricity company under both models are derived. By introducing the

TOU tariff to customers, the electricity company can obtain more profit while

customers can save electricity cost. We also analyze the effects of the proportion

of the customers using the TOU tariff and discuss the managerial implications of

the findings.

In the second topic, we study the time-of-use tariff for an electricity company

with stochastic shifted consumption. Similar to the first topic, the electricity

company uses two technologies to generate electricity and offers both the FR

tariff and TOU tariff to the customers. We consider a scenario that the amount

of shifted consumption is uncertain. The optimal capacity investment decisions

and the optimal pricing decisions for the electricity company are obtained. We

find that shifting too much consumption from the peak period to the non-peak

period may not be optimal to the electricity company. Furthermore, we study the

effects of the demands, market size, proportion of customers using the TOU tariff

and the cost parameters, and discuss the managerial implications of the findings.

Carbon emission abatement is a hot topic in environmental sustainability,

and cap-and-trade regulation is regarded as an effective way to reduce the carbon

emission. Besides, according to the real industrial practices, an environmental

sustainable product usually involves decreasing carbon emission in the produc-

tion process and increasing the market demand. Therefore, in the third topic,

we study the environmental sustainability investment in products with emission

regulation considerations. Decentralized and centralized supply chains are con-
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sidered. We first examine the order quantity of the retailer and sustainability

investment of the manufacturer for the decentralized supply chain with one re-

tailer and one manufacturer. Then, we study the centralized supply chain and

derive the optimal production quantity and optimal sustainability investment for

the whole supply chain. In both supply chains, the sustainability investment

efficiency has a significant impact on the optimal solutions. Furthermore, we

conduct numerical analyses and find surprisingly that the order quantity may be

increasing in the wholesale price, which is due to the effects of environmental

sustainability and carbon emission. Moreover, we investigate the achievability of

supply chain coordination by various contracts, and find that only revenue shar-

ing contract can coordinate the supply chain whereas the buyback contract and

two-part tariff contract cannot achieve the coordination.

iv



Publications Arising from the
Thesis

Dong, C. 2014. Electricity time-of-use tariff with stochastic shifted consumption.

Working paper (coauthored with C. T. Ng).

Dong, C., C. T. Ng, T. C. E. Cheng. 2014. Optimal capacity and pricing policies

for an electricity company with time-of-use tariff. Submitted for publication.

Dong, C., B. Shen, P. S. Chow, L. Yang, C. T. Ng. 2014. Sustainability investment

under cap-and-trade regulation. Annals of Operations Research. Forthcom-

ing. DOI: 10.1007/s10479-013-1514-1.

v



Acknowledgements

First, I would like to take this opportunity to express my deepest gratitude to

Dr Chi-to Daniel Ng, my Chief Supervisor, and Professor T. C. Edwin Cheng,

my Co-Supervisor, for their professional guidance, invaluable advice and close

support in various aspects throughout my PhD study. I am grateful to Dr Ng for

his supervision. His patient guidance has helped me overcome many difficulties in

my research, and his critical and rigorous thinking has inspired and enriched me

in my PhD study. I am sure that the experience would be beneficial to both my

work and life in the future. I am sincerely thankful to have Professor Cheng as

my Co-Supervisor. He is always willing to give me the vital encouragement and

great support to my research. His constructive feedback and suggestions have

significantly improved the quality of my research outputs. I am very impressed

by his quick responses to give me comments and advice on my research. I feel

truly fortunate to have both of them as my supervisors.

I gratefully acknowledge the professors in my Faculty and Department, who

have given me a lot of helps. I would like to thank Dr Pengfei Guo, who was

one of the examiners of my confirmation of registration. I am thankful for his

time spent on my confirmation and his helpful comments and suggestions. In

addition, I would also like to thank him for his supervision when I was the tutor

of his course LGT3105 Operations Management, from which I have learnt the

necessary knowledge and skills for teaching. Moreover, my thanks go to all other

professors who taught me lectures and gave me helps during the past three years.

Thanks to Dr Xiaowen Fu, Dr Pengfei Guo, Dr Li Jiang, Professor W. T. Eric

Ngai, and many others, for their lectures, from which I have learnt the essential

knowledge and skills for conducting research.

vi



I would also like to thank my friends and coauthors, Dr Liu Yang, Dr Bin

Shen and Dr Pui-Sze Chow, for their insightful suggestions and comments on the

thesis during several discussions. Meanwhile, they also gave me some valuable

suggestions on my academic career.

My special thanks go to my classmates and friends, Ms Wen Jiao, Mr Kin

Sang Lam, Ms Kou Ying, Mr Xiaofan Lai, Mr Ming Zhao, Ms Yujie Wang, Ms

Yefei Yang, Mr Jun Xia, and many others, for their helps and companion. They

have enriched my life in Hong Kong. In particular, I would like to thank Dr

Qingying Li. Many discussions with her have really benefited my research and

daily life a lot.

Finally, I would like to dedicate this thesis to my beloved parents and brothers,

as well as Dr Yanping Cheng and her family. Without their unconditional love

and consistent support, this thesis would not have been possible to finish.

vii



Table of Contents

Certificate of Originality i

Abstract ii

Publications Arising from the Thesis v

Acknowledgements vi

Table of Contents viii

List of Figures xi

List of Tables xii

1 Introduction 1

2 Optimal Capacity and Pricing Policies for an Electricity Com-

pany with Time-of-use Tariff 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The General Model Setting . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Price Inelasticity of Total Demand . . . . . . . . . . . . . . . . . 16

2.4.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Analysis and solution . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 The effects of proportion of customers using the TOU tariff 26

2.5 Price Elasticity of Demand . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



2.5.2 Analysis and solution . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 The effects of proportion of customers using the TOU tariff 33

2.5.4 The effects of price elasticity of demand . . . . . . . . . . 34

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Electricity Time-of-use Tariff with Stochastic Shifted Consump-

tion 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Analysis and Solution . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Impact of original total demand in the non-peak period . . 57

3.5.2 Impact of original total demand in the peak period . . . . 58

3.5.3 Impact of market size . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Impact of proportion of customers using the TOU tariff . . 60

3.5.5 Impact of cost parameters . . . . . . . . . . . . . . . . . . 62

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Environmental Sustainability Investment under Cap-and-trade

Regulation for Carbon Emission 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 The Decentralized Supply Chain . . . . . . . . . . . . . . . . . . . 71

4.3.1 Retailer’s problem . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Manufacturer’s problem . . . . . . . . . . . . . . . . . . . 75

4.4 The Centralized Supply Chain . . . . . . . . . . . . . . . . . . . . 76

4.5 The Comparison of Decentralized and Centralized Supply Chains 79

4.5.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . 80

4.6 Coordinating the Supply Chain . . . . . . . . . . . . . . . . . . . 83

4.6.1 Revenue sharing contract . . . . . . . . . . . . . . . . . . . 84

ix



4.6.2 Buyback contract . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.3 Two-part tariff contract . . . . . . . . . . . . . . . . . . . 85

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Summary and Future Research 89

Appendix A Proofs and Supplement for Chapter 2 92

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Supplement for Some Trivial Cases . . . . . . . . . . . . . . . . . 102

Appendix B Proofs for Chapter 3 104

Appendix C Proofs and Supplement for Chapter 4 119

C.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.2 Supplement for the Case of cI < 2cebβ . . . . . . . . . . . . . . . 125

C.2.1 The decentralized supply chain . . . . . . . . . . . . . . . 125

C.2.2 The centralized supply chain . . . . . . . . . . . . . . . . . 126

C.2.3 The comparison of decentralized and centralized supply

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

References 131

x



List of Figures

2.1 Capacity in the two periods . . . . . . . . . . . . . . . . . . . . . 15

2.2 Three cases of the model with price inelasticity of total demand . 22

2.3 Optimal prices when g′(0) ≤ pD2 ≤ θ . . . . . . . . . . . . . . . . . 25

2.4 Three cases of the model with price elasticity of demand . . . . . 31

2.5 Effects of price elasticity of demand associated with changes in bF1. 35

2.6 Effects of price elasticity of demand associated with changes in bF2. 36

2.7 Effects of price elasticity of demand associated with changes in bT1. 37

2.8 Effects of price elasticity of demand associated with changes in bT2. 37

4.1 Effects of the wholesale price on the optimal solutions and the

profits for the uniform distribution of the demand. . . . . . . . . . 81

4.2 Effects of the wholesale price on the optimal solutions and the

profits for the normal distribution of the demand . . . . . . . . . 82

xi



List of Tables

2.1 Tariffs of the electricity company for Chapter 2 . . . . . . . . . . 14

2.2 Notation of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Demand in the model with price inelasticity of total demand . . . 18

2.4 Optimal prices and shifted consumption for the model with price

inelasticity of total demand . . . . . . . . . . . . . . . . . . . . . 24

2.5 Optimal prices and shifted consumption with a quadratic shift cost

for the model with price inelasticity of total demand . . . . . . . . 27

2.6 The effects of α on p∗1, p
∗
2, q

∗
s ,Πg, and ∆Πc for the model with price

inelasticity of total demand . . . . . . . . . . . . . . . . . . . . . 27

2.7 Demand in the model with price elasticity of demand . . . . . . . 29

3.1 Tariffs of the electricity company for Chapter 3 . . . . . . . . . . 50

3.2 Electricity demand after introducing the TOU tariff . . . . . . . . 51

3.3 Notation of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 The effects of the cost parameters on the optimal solutions . . . . 62

4.1 The literature positioning of Chapter 4 . . . . . . . . . . . . . . . 71

4.2 Notation of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 Five cases for the capacity values . . . . . . . . . . . . . . . . . . 94

A.2 Two sub-cases for the capacity values . . . . . . . . . . . . . . . . 94

A.3 Optimal prices and shifted consumption for the case of

∆Πc|(p1=0,p2=g′(0)) ≤ 0 and g′(0) ≥ γ . . . . . . . . . . . . . . . . . 102

A.4 Optimal prices and shifted consumption for the case of g′(0) ≤ γ

and ∆Πc|(p1=0,p2=g′(0)) ≤ 0 < ∆Πc|(p1=0,p2=θ) . . . . . . . . . . . . . 102

xii



Chapter 1

Introduction

According to a report by the International Energy Agency (IEA 2010), the global

energy demand may grow by more than one-third between 2008 and 2035, with

the expectation that the global electricity demand will continue to grow more

strongly than any other final form of energy. Electricity demand will grow by

around 80% by 2035, requiring an extra 5,900 GW of total capacity, and its

share of total energy consumption grows from 17% to 23% (IEA 2010). So it is

crucial to find ways to achieve energy efficiency for the electricity generation and

consumption (IEA 2010, ACEEE 2014). Meanwhile, there exists a peak period

for the electricity usage by customers, in which the electricity demand is higher

than that in the non-peak period. Reducing the electricity usage in the peak

period can save huge cost for the electricity company, and may also yield energy

save and improve the energy efficiency (The Electropaedia 2005, Faruqui et al.

2007, York et al. 2007, EPA 2008, WiseGEEK 2013). And it is essential to

have an efficient pricing mechanism for a smart grid future (Chao 2011a). Only

under an efficient pricing mechanism of electricity, can the customers have the

incentive to use the electricity wisely and reduce the electricity usage in the peak

period. So an efficient pricing mechanism of electricity can facilitate efficient

capacity investment for electricity.

On the other hand, environmental sustainability is receiving more and more

public awareness all around the globe, and increasing attention in operations man-

agement research. Meanwhile, carbon emission accelerates global warming, and

reducing carbon emission is essential to achieving environmental sustainability.
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So it is important to study the investment in the environmental sustainability,

with the consideration of carbon emission.

Therefore, in this thesis, we study the capacity investment for an electricity

company and the environmental sustainability investment in products. In partic-

ular, regarding the capacity investment for an electricity company, our study will

focus on the pricing of electricity; and regarding the environmental sustainability

investment in products, our study will focus on the effects of the carbon emission.

The thesis is comprised of three topics. The first and second topics study the

capacity investment and pricing policies for an electricity company. The third

topic studies the environmental sustainability investment under a cap-and-trade

regulation of carbon emission.

In Chapter 2, we determine the optimal capacity and pricing policies for an

electricity company with time-of-use (TOU) tariff. Currently, electricity cus-

tomers in many countries pay the same flat rate (FR) for each unit of electricity

they use during a year. Under this pricing mechanism, the customers have no

incentive to use the electricity wisely and reduce electricity consumption from

the peak period. Motivated by this fundamental problem of in-efficient pricing

mechanism for electricity, we then consider introducing another pricing mecha-

nism, i.e., the TOU tariff, under which the electricity price varies with the time.

Customers pay a high price for electricity consumption in the peak period and a

low price for electricity consumption in the non-peak period. We consider that

the company offers FR and TOU tariffs to the customers simultaneously. The

company is regulated under the price-cap regulation, which, as its name implies,

sets an upper bound on an index of the regulated company’s price. Two tech-

nologies are considered to generate electricity, where the first technology is used

to generate electricity for the demands in both periods and the second technology

is used to generate electricity only for the demand in the peak period. We first

study a model with price inelasticity of total demand, where the total demand of

electricity will not be affected by prices. Customers using the TOU tariff have the

incentive to shift some electricity consumption from the peak period to the non-
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peak period, to take advantage of the lower price in the non-peak period. Here,

shifting electricity consumption means that the customers change the time to use

electricity for some activities, such as doing the laundry, from the peak period

to the non-peak period. We apply a Stackelberg game to model the situation,

where the electricity company, acting as the Stackelberg leader, decides the ca-

pacity investment and prices of electricity. The customers under the TOU tariff,

acting as Stackelberg followers, decide the amount of electricity consumption to

shift from the peak period to the non-peak period, given the prices of electricity.

We find that the optimal shifted consumption of customers is determined by the

marginal shift cost. There are several cases for the optimal capacity, depending

on the costs of the technologies and customers’ shifted consumption. The price-

cap regulation plays an important role in determining the optimal prices. In

order to achieve a win-win outcome, where the company obtains more profit by

introducing the TOU tariff and the customers save electricity cost by using the

TOU tariff, the government that acts as the regulator should not set the price-cap

for the electricity price in the peak period too high. We then study a model with

price elasticity of demand, where demands are functions of the prices. We also

derive the optimal capacity and pricing policies for the electricity company under

this model.

In Chapter 3, we focus on the capacity investment and pricing of the TOU

tariff with stochastic shifted consumption. Similar to the setting in Chapter 2, the

electricity company uses two technologies to generate electricity and offers both

the FR and TOU tariffs to the customers, and the company is also regulated

under the price-cap regulation. In order to get an in-depth understanding of the

TOU tariff, we further investigate the optimal capacity investment and the pricing

for the electricity company, whereas we consider that the shifted consumption by

customers is uncertain in this chapter. We derive the optimal capacity investment

and pricing decisions for the company. The costs play critical roles in rationing the

capacities to meet the demands in the non-peak and peak periods. The capacity

of the second technology and the total capacity for the peak period demand both
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increase in the price for the non-peak period and decrease in the price for the

peak period, for the TOU tariff. Regarding the optimal prices for the TOU tariff,

there is a unique optimal solution for the price in the non-peak period, while there

are three possible optimal solutions for the price in the peak period, depending

on the price sensitivity parameters and the price-cap for the price in the peak

period. We find that shifting too much consumption from the peak period to the

non-peak period may not be optimal to the electricity company. Furthermore,

we study the effects of the demands, market size, proportion of customers using

the TOU tariff and the cost parameters, and discuss the managerial implications

of the findings.

In Chapter 4, we turn to study the environmental sustainability investment

with the consideration of carbon emission. Carbon emission abatement is a hot

topic in environmental sustainability. Many countries have designed or adopted

carbon trading mechanism, such as cap-and-trade regulation, to reduce the car-

bon emission (Stavins 2008, Zhang and Xu 2013). On the other hand, the

investment in cleaner technologies is another way to reduce the carbon emis-

sion and achieve the environmental sustainability. Therefore, in this chapter, we

study the environmental sustainability investment in sustainable products under

cap-and-trade regulation of carbon emission. Here, environmental sustainable

products usually involve decreasing carbon emission in the production process

and increasing the market demand. For example, it will produce less carbon

emissions if the company invests in cleaner technologies to produce the prod-

ucts in the production process, or the products will be more favourable to the

customers if the company invests in more advanced technologies to promote the

energy efficiency for the products. Then, from the perspective of the environ-

ment, investing in the environmental sustainability on products could reduce the

carbon emission and is beneficial to the environment; and from the perspective of

marketing, it could stimulate the market demand. We consider both the decen-

tralized and centralized supply chains with one manufacturer and one retailer in

this chapter. For the decentralized supply chain, we consider that the manufac-
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turer, acting as the Stackelberg leader, determines the sustainability investment,

and the retailer, acting as the Stackelberg follower, determines its order quantity.

We derive the optimal sustainability investment for the manufacturer and optimal

order quantity for the retailer. For the centralized supply chain, we consider that

the manufacturer and the retailer are fully aligned to achieve the channel’s maxi-

mal profit by determining the sustainability investment and production quantity.

We derive the optimal sustainability investment and optimal production quantity

for the whole supply chain. By conducting numerical studies, we find that the

order quantity may be surprisingly increasing in the wholesale price, which is due

to the effects of environmental sustainability and carbon emission. Furthermore,

we study the coordination of the supply chain under several contracts. We find

that only revenue sharing contract can coordinate the supply chain whereas the

buyback contract and two-part tariff contract cannot coordinate it.
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Chapter 2

Optimal Capacity and Pricing
Policies for an Electricity
Company with Time-of-use Tariff

2.1 Introduction

Facing growing complexity in the electricity market, it is essential to have an

efficient pricing mechanism for a smart grid future (Chao 2011a). Currently,

the majority of electricity customers in many countries, such as China, pay the

same flat rate (FR) for each unit of electricity they use during a year. Under

this pricing mechanism, they have no incentive to reduce electricity use during

the peak period or to use electricity wisely. These are fundamental problems

that need to be addressed in order to reduce the required capacity for electricity

generation during the peak period.

The time-of-use (TOU) tariff is another pricing mechanism under which the

price varies with time. In contrast to the flat rate, the TOU tariff requires

customers to pay a high price for electricity consumption in the peak period and

a low price in the non-peak period. With the TOU tariff, customers have the

incentive to actively change the way in which they use electricity, which helps

achieve the goals of reducing the peak period capacity.

The TOU tariff has been adopted in some states of the U.S. and some countries

in Europe. In China, the TOU tariff has been adopted for industrial customers in

some cities, such as Beijing, since the last century. Currently, the TOU tariff has
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been adopted for residential customers in some cities, such as Shanghai, in China

(The World Bank 2005, Pepper 2010). Several papers have studied the benefits

of the TOU tariff (see, e.g., Henley and Peirson 1994, Faruqui and George 2005,

Spees and Lave 2007, Faruqui 2010). For example, after California’s power cri-

sis in 2000 and 2001, California’s three investor-owned utilities conducted an

experiment, in concert with the two regulatory commissions, to evaluate the im-

pacts of the TOU tariff and dynamic pricing on residential, and small commercial

and industrial (C&I) customers. The experiment demonstrated that, under the

TOU tariff, reduction in peak-period energy use could be up to 5.9% for residen-

tial customers and 8.6% for C&I customers (Faruqui and George 2005). Earlier

work has shown that even a 5% reduction in the peak electricity demand in the

U.S., i.e., 757, 056 MW, is worth US$ 3 billion per year, by avoiding the instal-

lation and energy costs associated with peak-period generation, as a result of a

reduced peak load, and a reduction in the transmission and distribution capacity

(Faruqui et al. 2007).

Many electricity markets are considering implementing the TOU tariff for

some customers, without making it mandatory for all the customers in the whole

electricity market. Examples can be found in Australia, Canada, England, the

U.S. etc. (Prins 2012, DEWS 2014). Consequently, there is a mixed tariff struc-

ture under which some customers use the TOU tariff while the others pay a flat

rate for electricity consumption (i.e., the so-called FR tariff). In the Operations

Management (OM) literature, pricing for electricity under the TOU tariff has

received little research attention. One exception is Yang et al. (2013), which

investigates the TOU tariff for electricity consumption with consumer behaviour

consideration. However, Yang et al. (2013) do not consider the mixed tariff

structure in their study.

In this chapter we study the electricity capacity and pricing policies for an

electricity company that offers a mixed tariff structure under which a proportion

of the customers use the TOU tariff and the rest of the customers use the FR

tariff. We first examine the optimal policies for the electricity company, given
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the proportion of customers using the TOU tariff, and then we study the effects

of the proportion of customers using the TOU tariff on the optimal policies.

It is because that in some countries or cities, the TOU tariff is mandatory to

the customers. For example, Toronto Hydro is the first North American utility

company that mandates the TOU tariff in a major city in Canada. The results of

different pricing mechanisms in the electricity market have been mixed (Tweed

2011, CEA 2009). So, we first study the capacity investment and pricing policies

for a given proportion of customers using the TOU tariff. On the other hand,

even the TOU tariff is mandatory to some customers, the proportion of customers

may be changed in the succeeding years. Examples can be found as follows:

In 2006, the Department of Public Utility Control in Connecticut in the U.S.

directed all the utility companies to phase in the mandatory TOU tariff for all the

customers (in each succeeding year, the mandatory TOU tariff would be applied

to additional customers based on declining levels of consumption) (Friedman

2011, Jessoe and Rapson 2014); and some countries in Asia have also dabbled

with the TOU tariff, e.g., China has decided to gradually move to the TOU tariff

(RAP 2008). So, we further examine the impact of the proportion on the optimal

capacity and pricing decisions.

In some countries, electricity companies are subject to the monitoring and

control of regulators. We consider that the electricity company is regulated

under the price-cap regulation. Developed in Britain in the 1980s, the price-

cap regulation has been adopted globally to regulate monopolistic electricity

firms, which, as its title implies, sets an upper bound on an index of the regu-

lated firm’s prices (Sappington and Sibley 1992, Braeutigam and Panzar 1993,

Regulationbodyofknowledge.org 2014). We consider a vertically integrated elec-

tricity company that not only owns the generation capacity, but is also responsible

for meeting the market demand for electricity. Two technologies are considered

to be installed for generating electricity to meet the demands in two periods,

namely the peak period and the non-peak period, respectively. The second tech-

nology will be installed only if the first technology cannot meet the demand in

8



the peak period. We address the following key research issues in this chapter: 1)

How much electricity capacity should the electricity company install? 2) What

should be the electricity prices under the TOU tariff and the FR tariff? 3) What

is the reaction of the customers and how much demand in the peak period will be

reduced under the TOU tariff? 4) What is the benefit for the electricity company

to introduce the TOU tariff?

Many prior studies have revealed that time-varying prices of electricity can

reduce the peak-period demand for electricity. However, some studies show that

time-varying prices may not reduce the total electricity consumption over the

whole period. For example, upon analyzing the data from a British TOU pricing

experiment, Henley and Peirson (1994) concluded that the widespread introduc-

tion of TOU pricing in Britain did not result in a significant reduction in electric-

ity consumption. Faruqui and George (2005) found that there was essentially no

change in the total energy use across the entire year based on the average price

of the TOU tariff and dynamic pricing in the experiment of Statewide Pricing

Pilot in California. Therefore, we first consider in this chapter a model with price

inelasticity of total demand, i.e., the total demand for electricity is not affected

by the prices of the TOU and FR tariffs. However, given that the price in the

peak period is higher than that in the non-peak period under the TOU tariff,

customers under the TOU tariff may save their electricity bills by shifting some

electricity consumption from the peak period to the non-peak period. We apply

a Stackelberg game to study this model, where the electricity company that de-

cides the capacity investment and electricity prices acts as the Stackelberg leader,

and customers under the TOU tariff who decide the amount of electricity con-

sumption to shift from the peak period to the non-peak period act as Stackelberg

followers, given the prices of electricity.

On the other hand, there are many empirical studies on the price elasticity of

demand for electricity, which produce different results. For the non-TOU price

elasticity, the results of price elasticity of demand from different studies are not

very consistent. Under the residential sector, the numbers that come up most of-
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ten are around −0.2 and −0.9 for the short run and the long run, respectively. It

implies that a ten percent price increase would reduce consumption by two percent

in the short run and nine percent in the long run (Bohi and Zimmerman 1984,

Lafferty et al. 2001, Fan and Hyndman 2011). Under the commercial and in-

dustrial sectors, the results are even less consistent. For the TOU price elasticity,

Filippini (1995) shows that the price elasticity of demand would be −1.5 for the

peak period and −2.57 for the non-peak period. Besides, many researchers treat

electricity demand as a function of price in their models (see, e.g., Chao 1983,

Crew et al. 1995, Borenstein and Holland 2005, Chao 2011a,b, Greer 2012).

It is therefore necessary to consider both models with price inelasticity of total

demand and with price elasticity of demand. So we also consider a model with

price elasticity of electricity demand in Section 2.5 and derive the corresponding

optimal capacity and pricing policies for the electricity company.

For the model with price inelasticity of total demand, we find that the optimal

shifted consumption of customers is determined by the marginal shift cost. If the

cost is neither too high nor too low, the optimal shifted consumption is such

that the marginal shift cost is equal to the marginal shift profit. The total

consumption of electricity over the whole period is unchanged, so customers’

shifted consumption under the TOU tariff amounts to the reduction in electricity

usage in the peak period that is shifted to the non-peak period. The optimal

capacity is divided into several cases, depending on the costs of the technologies

and customers’ shifted consumption under the TOU tariff. The second technology

will be installed only if its cost and customers’ shifted consumption are small. The

price-cap regulation plays an important role in determining the optimal prices.

If the upper bound on the price in the peak period is large, then the company

would set the prices such that customers cannot save electricity cost by using

the TOU tariff. Otherwise, customers can save some electricity cost by using the

TOU tariff. By studying the effects of the proportion of the customers using the

TOU tariff, we find that the company’s profit can increase when the TOU tariff

is offered to the customers. Therefore, in order to achieve a win-win outcome,
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where the company obtains more profit by introducing the TOU tariff and the

customers save electricity cost by using the TOU tariff, the government that acts

as the regulator should not set too high an upper bound on the electricity price

in the peak period.

For the model with price elasticity of demand, we derive that the optimal

capacity is similarly divided into several cases. We show that the company’s

profit function in each case is jointly concave in the prices, so the optimal pricing

decisions are uniquely determined.

The remainder of this chapter is organized as follows: In Section 2.2 we review

the related literature. In Section 2.3 we present the general model setting of this

chapter. In Section 2.4 we study a model with price inelasticity of total demand.

In Section 2.5 we extend the study to a model with price elasticity of demand. In

Section 2.6 we conclude this chapter. We provide all the proofs in Appendix A.

2.2 Literature Review

Our work is closely related to studies on strategic technology choice and ca-

pacity investment in the Operations Management/Operations Research litera-

ture. Goyal and Netessine (2007) study the impact of competition on a firm’s

decisions of technology and capacity investments under demand uncertainty.

Boyabatli and Toktay (2011) investigate the technology choice and capacity level

for a monopolistic firm that is budget-constrained and can relax its budget con-

straint by borrowing money from a creditor. Yang et al. (2011) conduct a com-

parative analysis of five possible production strategies for flexible technology and

flexible capacity investments. Kashefi (2012) examines the effect of salvage mar-

ket on the strategic technology choices and capacity investment decisions of two

firms in a competitive market. Recently, there is growing literature on sustain-

able operations that consider technology choice and capacity investment. For

instance, Drake et al. (2012) analyze the impacts of emissions tax and emissions

cap-and-trade regulations on a firm’s technology choice and capacity portfolios.

Through modelling the trade-off between renewable and nonrenewable technolo-
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gies, Aflaki and Netessine (2012) explore the incentives to invest in renewable

electricity generating capacity. One important feature distinguishing our work

from these studies is that we consider the pricing issues associated with a time-

varying electricity pricing mechanism.

On the other hand, there are papers that study time-varying electricity prices

without considering technology choice and capacity investment. Garcia et al.

(2005) study dynamic pricing and learning in an infinite-horizon oligopoly model,

in which hydroelectric generators are engaged in dynamic price-base competition.

Triki and Violi (2009) analyze a dynamic and flexible tariff structure for a dis-

tribution company that protects retail consumers against excessive fluctuations

in wholesale market prices. In the Economics and Electricity literature, some

papers consider the problem of time-varying prices in an electricity market, in-

cluding Henley and Peirson (1994), Borenstein (2005), Borenstein and Holland

(2005), and Holland and Mansur (2005).

Recently, a few papers have considered the issues of electricity generation port-

folio, pricing, and investment in the electricity market, but are from perspectives

different from our work. Banal-Estañol and Micola (2009) examine by simulation

the impact of diversification of the electricity generation portfolio on wholesale

price. Chao (2011a) presents an economic model of pricing and investment in the

electricity market with intermittent resources. In the setting of intermittent re-

sources, it is indeed a problem similar to making pricing and investment decisions

under supply uncertainty. However, most of these papers neglect the customer

behaviour of shifting electricity consumption from the peak period to the non-

peak period under time-varying prices. Yang et al. (2013) investigate the TOU

tariff in an electricity market that takes customer behaviour into consideration.

Our work differs from their paper in the following fundamental ways. First, their

paper adopts the TOU tariff without considering other tariffs that may co-exist,

while our work considers a mixed tariff structure under which some customers

use the TOU tariff and the rest of the customers use the FR tariff. Second, their

paper only considers a model with price inelasticity of total demand, while our
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work takes both price inelasticity of total demand and elasticity of demand into

consideration.

In the Economics literature, significant research attention was paid to ca-

pacity choice and peak-load pricing in electricity markets in the 1970s and

1980s, as reviewed by Crew et al. (1995). Central to the problem is to ad-

dress the pricing and capacity planning issues under stochastic demand when

there are diverse technologies with different cost characteristics. For instance,

Crew and Kleindorfer (1976) study the problems of capacity choice and pricing

when several technologies are available and demand is stochastic, which Chao

(1983) extends to the case with supply uncertainty. However, their demand mod-

els are basically different from ours. Our work considers the problem from the

electricity company’s perspective, while the other studies consider the problems

from the social welfare perspective.

2.3 The General Model Setting

For nearly a century the electricity sector has been regarded as a natural

monopoly, in which all the four primary elements of electricity supply, i.e., gen-

eration, transmission, distribution, and retailing, are organized as a vertically

integrated company (Aflaki and Netessine 2012). In this chapter we consider

a vertically integrated electricity company that not only owns the generation

capacity, but is also responsible for meeting the market demand for electricity.

The time of electricity usage spans two periods, namely the non-peak pe-

riod and the peak period. We consider the scenario under which the electricity

company offers customers two tariffs, namely the FR tariff and the TOU tar-

iff. A fraction α ∈ (0, 1] of the customers use the TOU tariff while the rest of

the customers use the FR tariff. We assume that α is given. A similar setting

can be found in Borenstein and Holland (2005). We assume that there are N

customers in the market, so αN customers use the TOU tariff. Under the FR

tariff, customers pay a flat price p0 ∈ [0, p̄0] for electricity consumption in both

the non-peak period and the peak period. Under the TOU tariff, customers pay
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a price p1 ≥ 0 for electricity consumption in the non-peak period and pay a

price p2 ∈ [0, p̄2] for electricity consumption in the peak period. We assume that

p1 ≤ p2. Here, p̄0 and p̄2 are upper bounds on p0 and p2, respectively, which may

be imposed by the regulator under the price-cap regulation. It is reasonable to

assume that p̄0 ≤ p̄2. We also assume that p1 ≤ p0 ≤ p2. Otherwise, no customer

will be willing to use the TOU tariff if p1 > p0 and no customer will be willing

to use the FR tariff if p2 < p0. Table 2.1 summarizes the tariffs for Chapter 2.

Table 2.1: Tariffs of the electricity company for Chapter 2

Tariff Proportion Price
FR tariff 1− α p0
TOU tariff α p1, p2

We consider deterministic demand that spreads evenly throughout each pe-

riod. Let D1 ≥ 0 and D2 ≥ 0 denote the demands in the non-peak and peak

periods, respectively. Let T denote the total period time, e.g., one day. Without

loss of generality, we let T = 1. Let t1 and t2 denote the start time and end

time of the peak period, respectively. We define τ = t2 − t1 as the percentage

of time of the peak period over the whole period. Two technologies are available

for generating electricity, i.e., Technology i, i ∈ {1, 2}. Let ki ≥ 0 denote the in-

stalled capacity for Technology i. Similar to the setting in Pineau and Zaccour

(2007), we consider that the capacity of Technology 1 is used throughout the

whole period, while the capacity of Technology 2 is installed in the peak period

only when the capacity of Technology 1 cannot meet the demand. The capacity

is pictorially shown in Figure 2.1.

The installed capacity is restricted by the following constraints:

0 ≤ D1/(1− τ) ≤ k1; (2.1)

0 ≤ D2/τ ≤ k1 + k2; (2.2)

k2

{

= 0 if D2 ≤ τk1;

> 0 if D2 > τk1.
(2.3)

Constraints (2.1) and (2.2) are the capacity constraints for the non-peak period
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Figure 2.1: Capacity in the two periods

and the peak period, respectively; and Constraints (2.3) ensures that the capacity

of Technology 2 will be installed only when Technology 1 cannot satisfy the

demand in the peak period.

Let ci and βi denote the unit capacity cost and unit production cost of Technol-

ogy i, respectively. We assume that c1+β1 ≤ c2+β2; otherwise, Technology 2 will

be used in the non-peak period. Let γ = min{(β2+c2/τ−β1−c1))/(1−τ), c1/τ}.
If τβ2+ c2 ≥ τβ1+ c1, then γ = c1/τ ; otherwise, γ = (β2+ c2/τ −β1− c1)/(1−τ).

Here, the conditions τβ2 + c2 ≥ τβ1 + c1 and τβ2 + c2 < τβ1 + c1 will be used for

different cases of the optimal solutions in Section 2.4.

The electricity company’s cost function Cg(k1, k2, D1, D2) is given by

Cg(k1, k2, D1, D2) = c1k1 + c2k2 + β1D1 + β1min{D2, τk1}

+β2(D2 − τk1)
+, (2.4)

where (D2 − τk1)
+ = max{0, D2 − τk1}. In the cost function (2.4), c1k1 and

c2k2 are the capacity costs of Technologies 1 and 2, respectively; β1D1 is the

production cost in the non-peak period; β1min{D2, τk1} + β2(D2 − τk1)
+ is the

production cost in the peak period; and if the capacity of Technology 1 can meet

the demand in the peak period, i.e., D2 ≤ τk1, then the production cost in the

peak period is equal to β1D2; otherwise, it is equal to β1τk1 + β2(D2 − τk1).
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Let DF1 and DF2 denote the demands in the non-peak and peak periods,

respectively, under the FR tariff. Let DT1 and DT2 denote the demands in the

non-peak and peak periods, respectively, under the TOU tariff. Then D1 =

DT1 +DF1 and D2 = DT2 +DF2. The company’s objective is to determine the

optimal capacity of the two technologies, i.e., (k1, k2), and the optimal prices for

the two tariffs, i.e., (p0, p1, p2), so as to maximize its profit:

max
k,p

Πg(k,p) = p1DT1 + p2DT2 + p0(DF1 +DF2)− Cg(k1, k2, D1, D2),(2.5)

s.t.

0 ≤ p1 ≤ p0 ≤ p2 ≤ p̄2; (2.6)

0 ≤ p0 ≤ p̄0; (2.7)

0 ≤ D1 = DT1 +DF1 ≤ (1− τ)k1;

0 ≤ D2 = DT2 +DF2 ≤ τ(k1 + k2);

k2

{

= 0 if D2 ≤ τk1;

> 0 if D2 > τk1.

Here, Cg(k1, k2, D1, D2) is the company’s cost function, which is determined by

Equation (2.4). Constraints (2.6) and (2.7) are the price constraints. The other

three constraints are the same as Constraints (2.1), (2.2), and (2.3).

In this chapter we consider two models, namely price inelasticity of total

demand and price elasticity of demand. They are presented in Sections 2.4 and

2.5, respectively. Table 2.2 summarizes the major notation for the general model

setting in this chapter, and we will introduce and define additional notation when

needed. In Table 2.2, i ∈ {1, 2} indicates Technology i.

2.4 Price Inelasticity of Total Demand

In this section we consider a model with price inelasticity of total demand. We

assume that the prices do not affect the total demand for electricity. This as-

sumption is supported by some studies in the electricity literature (see, e.g.,

Henley and Peirson 1994, Faruqui and George 2005). In addition, as a flat price

is charged under the FR tariff, we assume that the demands in both periods are
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Table 2.2: Notation of Chapter 2

ki installed capacity of Technology i;
τ percentage of time of the peak period;
βi unit production cost of Technology i;
ci unit capacity cost of Technology i;
Cg(·) the electricity company’s cost function;
α the proportion of customers who use the TOU tariff, α ∈ (0, 1];
N total numbers of customer in the market, so the number of cus-

tomers using the TOU tariff is αN ;
p0 electricity price for the FR tariff;
p1, p2 electricity prices in the non-peak and peak periods, respectively,

for the TOU tariff;
DF1, DF2 demands in the non-peak and peak periods, respectively, under the

FR tariff;
DT1, DT2 demands in the non-peak and peak periods, respectively, under the

TOU tariff;
D1, D2 total demands in the non-peak and peak periods, respectively.

fixed under the FR tariff. However, the prices in the non-peak and peak periods

may affect the demands under the TOU tariff. Under the TOU tariff, the price

in the non-peak period is lower than that in the peak period, so customers who

use the TOU tariff may shift some electricity consumption from the peak period

to the non-peak period.

2.4.1 Modelling

First, we let q1 and q2 denote the demands in the non-peak and peak periods,

respectively, if the company only offers the FR tariff. When the company offers

the TOU tariff, the total demand will be the same as the total demand when

only the FR tariff is offered. The fraction of customers still using the FR tariff is

1−α, so the customer demands in the non-peak and peak periods under the FR

tariff are equal to (1−α)q1 and (1−α)q2, respectively, i.e., DF1 = (1−α)q1 and

DF2 = (1−α)q2. The customer demands in the non-peak and peak periods under

the TOU tariff are equal to αq1 and αq2, respectively, if no consumption shifting

behaviour occurs. Let q0 = τ(1−τ)(q2/τ −q1/(1−τ)), where q2/τ and q1/(1−τ)

are the average demands for the peak and non-peak periods, respectively, if there

is no consumption shifting. It is reasonable to assume that the average demand
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in the peak period is not less than that in the non-peak period, so we set q0 ≥ 0.

A flat price is charged to customers under the FR tariff, so customers have

no incentive to shift consumption from the peak period to the non-peak period.

However, customers under the TOU tariff have an incentive to shift consumption

if it can save their electricity bills. For example, under the TOU tariff, cus-

tomers may turn off the electric water heater during the peak period, do most

of the laundry and only run the dryer in the non-peak period etc. Let qis be the

amount of shifted consumption from the peak period to the non-peak period by

an individual TOU customer, given p1 and p2. And we define qs = αNqis as the

shifted consumption by all the customers under the TOU tariff. Note that the

total amount of the shifted consumption will not exceed the total demand under

the TOU tariff, i.e, qs ≤ αq2. Then, after shifting, the customer demands in the

non-peak and the peak period under the TOU tariff are equal to αq1 + qs and

αq2 − qs, respectively, i.e., DT1 = αq1 + qs and DT2 = αq2 − qs. Then the total

demands in non-peak period and the peak period are determined by D1 = q1+ qs

and D2 = q2− qs, respectively. Table 2.3 presents customers’ electricity demands

under the two tariffs after consumption shifting.

Table 2.3: Demand in the model with price inelasticity of total demand

Tariff
Demand in the
non-peak period

Demand in
the peak period

FR tariff (1− α)q1 (1− α)q2
TOU tariff αq1 + qs αq2 − qs

Total q1 + qs q2 − qs

Meanwhile, there is inconvenience for customers to shift electricity consump-

tion from the peak period to the non-peak period. We refer to such inconvenience

as the shift cost. Let g(qis) denote the function of the shift cost for a TOU cus-

tomer. We assume that g(0) = 0, which indicates that no shift cost will incur if

there is no shifted consumption. It is reasonable to assume that the shift cost is a

convex increasing function in the amount of shifted consumption by a customer,

so we have g′(qis) > 0 and g′′(qis) > 0. For technical convenience, we further as-
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sume g′′′(qis) ≥ 0. Let Πc(qs) be the function of the electricity cost for a customer

under the TOU tariff, i.e.,

Πc(q
i
s) = p1(

q1
N

+ qis) + p2(
q2
N

− qis) + g(qis).

Let ∆Πc be the difference in the electricity cost between a customer under the

TOU tariff and the customer that still uses the FR tariff, i.e.,

∆Πc = p1(
q1
N

+ qis) + p2(
q2
N

− qis) + g(qis)− p0(
q1
N

+
q2
N
)

=
1

N

{

p1q1 + p2q2 − p0(q1 + q2)
}

− (p2 − p1)q
i
s + g(qis). (2.8)

Let θ = min{γ, g′(q0/(αN))}. To avoid trivial outcomes, we assume g′(0) ≤ γ

and ∆Πc|(p1=0,p2=θ) ≤ 02.1. Here, the assumption g′(0) ≤ γ ensures that the

marginal shift cost is not too large; otherwise, no shifting is optimal to customers;

∆Πc|(p1=0,p2=θ) ≤ 0 ensures that customers can save some electricity cost if the

price in the non-peak period is equal to zero (i.e., p1 = 0) and the price in the

peak period is equal to the marginal shift cost or a cost that is related to the

average production or capacity cost (i.e., p2 = θ = min{g′(q0/(αN)), γ}).

We apply a Stackelberg game to study the model with price inelasticity of

total demand in this chapter. The electricity company, acting as the Stackelberg

leader, decides the capacity, i.e., (k1, k2), and the electricity prices, i.e., (p0, p1, p2).

The customer under the TOU tariff, acting as Stackelberg followers, decides the

amount of electricity consumption to shift from the peak period to the non-peak

period, i.e., qis, given the prices of electricity.

2.4.2 Analysis and solution

We apply the backward sequential decision-making approach to solve our prob-

lems. First, we assume that the prices are given and known to the customers,

under which we model the customer’s problem and obtain the optimal re-

sponse of shifted consumption, i.e., qis(p1, p2), for a customer under the TOU

tariff. Note that the total shifted consumption qs(p1, p2) will be determined

2.1See Appendix A for the optimal results of these trivial cases
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at the same time, as we consider homogenous TOU customers and we have

qs(p1, p2) = αNqis(p1, p2). Given the optimal response of shifted consumption,

we then solve the electricity company’s problem and obtain its optimal capacity

and pricing decisions.

Customer’s problem

We analyze and solve the customer’s problem in this subsection. As a flat tariff is

charged to customers under the FR tariff, the objective of the customer’s problem

is to minimize the customer’s electricity cost under the TOU tariff by optimally

setting the shifted consumption qis:

min
qis∈[0,q2/N ]

Πc(q
i
s).

By minimizing the objective function Πc(q
i
s) over q

i
s, we obtain the following

results.

Proposition 2.1 Given p1 and p2, the customer’s optimal response of shifted

consumption is as follows: if g′(0) ≥ p2 − p1, then qis(p1, p2) = 0; if g′(q2/N) ≤
p2 − p1, then qis(p1, p2) = q2/N ; otherwise, it is uniquely determined by

g′(qis) = p2 − p1. (2.9)

Proposition 2.1 indicates that if the marginal shift cost is too high, i.e., g′(0) ≥
p2 − p1, then there is no shifting; if it is too low, i.e., g′(q2/N) ≤ p2 − p1, then

customers will shift all consumption from the peak period to the non-peak period;

otherwise, it is determined by the first-order condition of the customer’s cost

function, where the marginal shift cost is equal to the marginal profit, i.e., g′(qis) =

p2 − p1. It can be shown that the optimal solutions for the other two cases lie

on the boundary of the case where g′(qis) = p2 − p1, implying that the global

optimal solutions are obtained from the case where g′(qis) = p2 − p1. For such

a scenario, we say that the case where g′(qis) = p2 − p1 dominates the other

two trivial cases. So, in the sequel, we only present the analysis and results
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for the case g′(0) ≤ p2 − p1 ≤ g′(q2/N) such that g′(qis) = p2 − p1. Next, we

consider the company’s problem, given the customer’s optimal response of shifted

consumption.

Company’s problem

Knowing the customer’s optimal response of shifted consumption, i.e., qis(p1, p2)

(and then qs(p1, p2) = αNqis(p1, p2)), the company’s problem is to maximize its

profit by optimally determining the capacity decisions, i.e., k = (k1, k2), and

prices, i.e., p = (p0, p1, p2). The objective function is derived from (2.5) and

Πg(k,p) = p1(αq1 + qs(p1, p2)) + p2(αq2 − qs(p1, p2)) + p0(1− α)(q1 + q2)

−Cg(k1, k2, q1 + qs(p1, p2), q2 − qs(p1, p2)).

Besides the Constraints (2.1), (2.2), (2.3), (2.6), and (2.7), we need to ensure that

the customers will not be hurt if the TOU tariff is offered, i.e., ∆Πc ≤ 0, where

∆Πc is expressed in Equation (2.8).

We use the sequential decision-making approach to solve the company’s prob-

lem. Under this approach, the company’s problem can be reduced to an opti-

mization problem over the decision variables p by first solving for the optimal

values of k as functions of p, and then substituting the results back to Πg(k,p).

Thus, we solve the company’s problem by two steps. First, we assume that the

prices are given, under which we solve the company’s problem and obtain the

optimal responses of capacities, i.e., k(p). In the second step, we obtain the

optimal prices, i.e., p∗, given the optimal responses of capacities. This approach

can guarantee the optimality of the solution, and is widely used in the literature,

such as Petruzzi and Dada (1999) and Wang et al. (2004).

(1) Capacity decisions

By analyzing the objective function of the company’s problem, we find the

optimal response of capacity as presented in Theorem 2.1.
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Theorem 2.1 The optimal capacity (k1(p), k2(p)) is determined as follows:

(

k1(p), k2(p)
)

=































( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

) if qs(p1, p2) ≤ q0

and τβ2 + c2 < τβ1 + c1;

( q2−qs(p1,p2)
τ

, 0) if qs(p1, p2) ≤ q0

and τβ2 + c2 ≥ τβ1 + c1;

( q1+qs(p1,p2)
1−τ

, 0) if qs(p1, p2) ≥ q0.

Theorem 2.1 gives the optimal capacity for the company. Since we have

qs = αNqis, it is straightforward to see that the optimal capacity decisions will

be affected by the proportion of customers using the TOU tariff. We define three

cases of the optimal capacity, which are pictorially shown in Figure 2.2.

Figure 2.2: Three cases of the model with price inelasticity of total demand

Case I: (k1(p), k2(p)
)

= ( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

). In this case, the company

installs both technologies to generate electricity for customers. This case happens

when the shifted consumption and production cost of Technology 2 are small, i.e.,

qs(p1, p2) < q0 and τβ2 + c2 < τβ1 + c1.

Case II: (k1(p), k2(p)
)

= ( q2−qs(p1,p2)
τ

, 0). In this case, the company only

installs Technology 1 to generate electricity, which can meet the demands in both

the non-peak period and the peak period. This case happens when the shifted

consumption is small, i.e., qs(p1, p2) < q0, but the production cost of Technology

2 is large, i.e., τβ2 + c2 ≥ τβ1 + c1.

Case III: (k1(p), k2(p)
)

= ( q1+qs(p1,p2)
1−τ

, 0). In this case, the company also

only installs Technology 1 to generate electricity. This case happens when the
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shifted consumption is large, i.e., qs(p1, p2) > q0.

The results are intuitive. When the shifted consumption is large, the remain-

ing consumption in the peak period will be small, so the electricity generated

by Technology 1 can meet the demand in the peak period. Then the com-

pany does not need to install Technology 2 (Case III happens). If the shifted

consumption is small, then the installation of Technology 2 is determined by

the costs of the technologies. If the cost of Technology 2 is too large, then

the optimal strategy for the company is not to install this technology and only

use Technology 1 to generate electricity (Case II happens); otherwise, the com-

pany will install both technologies with total capacity (q2−qs(p1, p2))/τ (because

k1(p1, p2)+ k2(p1, p2) = (q2− qs(p1, p2))/τ) in this situation and Case I happens).

Remark 2.1 In Figure 2.2, we assume that q0 ≤ αq2. If q0 > αq2, then only

Cases I and II are possible.

Remark 2.2 The optimal capacity is continuous in qs, which means that the

capacity values for the three cases are equal when qs(p1, p2) = q0. Regarding the

horizontal axis in Figure 2.2, we have Πg(k,p) = α(p1q1 + p2q2) + (1−α)p0(q1 +

q2)−(p2−p1+β1−β2)qs(p1, p2)−β1q1−β2q2−c2(k1+k2) when τβ2+c2 = τβ1+c1,

where the values of c2(k1 + k2) are equal for Cases II and III.

(2) Price decisions

With the substitution of the optimal response of capacity into the company’s

profit function, our objective is to maximize the profit function by optimally

setting the prices of electricity. The company’s profit function can be expressed

as follows:

Πg(p) =























Π0 −
(

p2 − p1 − 1
1−τ

(β2 +
c2
τ
− β1 − c1)

)

qs(p1, p2)− (β1+c1)q1+(β2+
c2
τ
)q0

1−τ

for Case I;

Π0 − (p2 − p1 − c1
τ
)qs(p1, p2)− β1(q1 + q2)− c1

q2
τ

for Case II;

Π0 − (p2 − p1 +
c1
1−τ

)qs(p1, p2)− β1(q1 + q2)− c1
q1
1−τ

for Case III,

where Π0 = α(p1q1 + p2q2) + (1− α)p0(q1 + q2).

23



Note that qs(p1, p2) is a function of p1 and p2, and it is not affected by changes

in p0. So it is straightforward to see that Πg(p) is increasing in p0. Thus, the

upper bound on p0 is optimal for the company, i.e., p∗0 = p̄0. As Constraints (2.6)

and (2.7) indicate, there is a condition for p0 such that p0 ≤ min{p2, p̄0}. Then,
in fact, we have two cases here: one is p∗0 = p̄0 and the other is p∗0 = p2, but it

can be shown that the latter case is dominated by the former one.

Lemma 2.1 Case III is dominated by Case I or Case II.

Lemma 2.1 indicates that the optimal solution for Case III lies on the bound-

ary of Case I or Case II. Then we can solve the problem by analyzing Cases I and

II, thus obtaining Theorem 2.2.

Theorem 2.2 The optimal prices in the non-peak and peak periods, and the op-

timal shifted consumption by the customers are shown in Table 2.4.

Table 2.4: Optimal prices and shifted consumption for the model with price
inelasticity of total demand
Case Sub-case p∗1 p∗2 q∗s ∆Πc

If pD2
≤ g′(0)

If p̄2 ≥ pB2 pB2 − θ pB2 αNg′−1(θ) = 0
If pA2 ≤ p̄2 ≤ pB2 pE1 p̄2 αNg′−1(p̄2 − pE1 ) = 0
If p̄2 ≤ pA2 p̄2 − g′(0) p̄2 0 < 0

If g′(0)
≤ pD2 ≤ θ

If p̄2 ≥ pB2 pB2 − θ pB2 αNg′−1(θ) = 0
If pC2 ≤ p̄2 ≤ pB2 pE1 p̄2 αNg′−1(p̄2 − pE1 ) = 0
If pD2 ≤ p̄2 ≤ pC2 pF1 p̄2 αNg′−1(p̄2 − pF1 ) < 0
If p̄2 ≤ pD2 0 p̄2 αNg′−1(p̄2) < 0

If pD2 ≥ θ
If p̄2 ≥ pB2 pB2 − g′(q0/(αN)) pB2 q0 = 0
If g′(q0/(αN))
≤ p̄2 ≤ pB2

p̄2 − g′(q0/(αN)) p̄2 q0 < 0

If p̄2 ≤ g′(q0/(αN)) 0 p̄2 αNg′−1(p̄2) < 0

Here, θ = min{γ, g′(q0/(αN))}; pA2 = p̄0 + q1
q1+q2

g′(0); pB2 = p̄0 +

θ(Ng′−1(θ)+q1)−Ng(g′−1(θ))
q1+q2

; pC2 is the unique solution of p2 for the equations: ∆Πc =

0, ∂Πg(p)
∂p1

= 0, and g′(qs/(αN)) = p2 − p1; p
D
2 is the unique solution of p2 for the

equations: ∂Πg(p)
∂p1

|p1=0 = 0 and g′(qs/(αN)) = p2; p
E
1 is the unique solution of p1

for the equations: ∆Πc|p2=p̄2 = 0 and g′(qs/(αN)) = p̄2 − p1; pF1 is the unique

solution of p1 for the equations: ∂Πg(p)
∂p1

|p2=p̄2 = 0 and g′(qs/(αN)) = p̄2 − p1; and

∂Πg(p)
∂p1

= αq1 + qs + (p2 − p1 − γ) αN
g′′(qs/(αN))

= 0.
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As shown in Table 2.4, there are three cases for the optimal solutions, de-

pending on the value of pD2 . The price-cap regulation plays an important role in

determining the optimal price decisions. In any of these cases, if p̄2 is large, i.e.,

p̄2 ≥ pB2 , then p∗2 = pB2 , p
∗
1 = pB2 − θ, qs = αNg′−1(θ), and ∆Πc ≡ 0. This implies

that, if the price in the peak period is below its upper bound (i.e., pB2 < p̄2), then

the company will set the prices such that there is no difference in the electricity

cost between customers under the TOU tariff and customers still using the FR

tariff (i.e., ∆Πc = 0, and we say that customers cannot save electricity cost by

using the TOU tariff). Figure 2.3 illustrates the optimal solutions for the case

Figure 2.3: Optimal prices when g′(0) ≤ pD2 ≤ θ. Note: A = {(x1, x2)|∆Πc =
0 and p2 − p1 = g′(0)}, B = {(x1, x2)|∆Πc = 0 and p2 − p1 = θ}, C =

{(x1, x2)|∆Πc = 0 and ∂Πg(p)
∂p1

= 0}, D = {(x1, x2)|∂Πg(p)
∂p1

= 0 and p1 = 0},
E = {(x1, x2)|∆Πc = 0 and p2 = p̄2}, F = {(x1, x2)|∂Πg(p)

∂p1
= 0 and p2 =

p̄2}, G = {(x1, x2)|p1 = 0 and p2 = p̄2}.

where g′(0) ≤ pD2 ≤ θ. If p2 = p̄2 is above Point C, then Point B or E is optimal

for the electricity company, under which customers cannot save electricity cost by

using the TOU tariff. If p2 = p̄2 is below Point C, then Point F or G is optimal for

the electricity company, under which customers can save some electricity cost by

using the TOU tariff. Therefore, the implication of the price-cap regulation is as

follows: in order to achieve a win-win situation, where the company can get more

profit by introducing the TOU tariff (we will show this result in Subsection 2.4.3)

and customers can save electricity cost by using the TOU tariff, the government

that acts as the regulator should not set too high an upper bound on the price
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in the peak period.

Remark 2.3 It is worth noting that, in our model setting, the electricity cost

for a customer, i.e., Πc, consists of two parts: one is the actual amount charged

in the electricity bill and the other one is the shift cost due to the inconvenience

incurred for the customer to shift electricity consumption. Thus, even for the

cases where ∆Πc = 0, the customers can save on their electricity bills by using

the TOU tariff.

Remark 2.4 Instead of the price-cap regulation, if we consider an alternative

regulation where the government imposes a lower bound on customers’ electricity

cost saving, i.e., ∆Πc ≤ −δ for δ ≥ 0, then the optimal prices can be obtained

by solving the equations: ∆Πc = −δ and p2 − p1 = θ. The result shows that

customers will always benefit from adopting the TOU tariff. On the other hand,

we can also show that the company can get more profit by introducing the TOU

tariff. Therefore, introducing the TOU tariff under this alternative regulation

can achieve Pareto improvement. Comparing with the results under the price-

cap regulation, we find that these two regulations are similar, but this alternative

regulation rules out the case where the customers cannot save electricity cost by

using the TOU tariff.

2.4.3 The effects of proportion of customers using the
TOU tariff

In this subsection we consider the effects of the proportion of customers who use

the TOU tariff on the company’s optimal decisions, customers’ shifted consump-

tion, and the company’s profit.

Note that the optimal price in the non-peak period under the TOU tariff may

be implicitly determined by the first-order condition for the company’s profit

function. In order to keep the results neat and generate some managerial insights,

we consider a quadratic shift cost for the customers here, i.e., g(qis) = cs(q
i
s)

2,

where cs > 0. Then g′(qis) = 2csq
i
s, g

′′(qis) = 2cs, and g′′′(qis) = 0. We obtain

that pA2 = p̄0 + q1g
′(0)/(q1 + q2) = p̄0 ≤ p̄2 and pD2 = γ/2 − csq1/N < θ, so the
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cases where (p∗1, p
∗
2) = (p̄2 − C ′

s(0), p̄2) and (p∗1, p
∗
2) = (p̄2 − g′(q0/(αN)), p̄2) will

not happen, and we have four cases for the optimal solutions as shown in Table

2.5.

Table 2.5: Optimal prices and shifted consumption with a quadratic shift cost
for the model with price inelasticity of total demand

Cases (p∗1, p
∗
2) q∗s ∆Πc

p̄2 ≥ pB2 (pB2 − θ, pB2 )
αNθ
2cs

= 0

(pA2 ≤ p̄2 ≤ pB2 and pD2 ≤ 0)
(pE1 , p̄2)

−2csq1+
√

(2csq1)2+4csNw

2cs
α = 0

or (pC2 ≤ p̄2 ≤ pB2 and pD2 ≥ 0)
pD2 ≤ p̄2 ≤ pC2 and pD2 ≥ 0 (pF1 , p̄2)

αN
2cs

(γ
2
− csq1

N
) < 0

p̄2 ≤ pD2 and pD2 ≥ 0 (0, p̄2)
αN
2cs

p̄2 < 0

Here, w = (p̄2 − p̄0)(q1 + q2), pB2 = p̄0 + θ(Nθ + 4csq1)/(4cs(q1 + q2)),

pE1 = p̄2 − (−2csq1 +
√

(2csq1)2 + 4csNw)/N , pC2 = p̄0 + (N(γ/2− csq1/N)(γ/2+

3csq1/N))/(4cs(q1 + q2)), and pF1 = p̄2 − (γ/2− csq1/N) .

Proposition 2.2 The effects of α on (p∗1, p
∗
2), q∗s , Πg, and ∆Πc are presented

in Table 2.6, where T1 = (−2csq1 +
√

(2csq1)2 + 4csNw)/(2cs) and T2 = w −
p̄2(2csq1 + (p̄2 − γ)N)/(2cs). For all four cases, dk∗

1/dα = −(1/τ)(dq∗s/dα) ≤ 0

Table 2.6: The effects of α on p∗1, p
∗
2, q

∗
s ,Πg, and ∆Πc for the model with price

inelasticity of total demand

(p∗1, p
∗
2)

dp∗1
dα

dp∗2
dα

dq∗s
dα

dΠg

dα
d∆Πc

dα

(pB2 − θ, pB2 ) 0 0 Nθ
2cs

≥ 0 1
2
N θ

2cs
(2γ − θ) ≥ 0 0

(pE1 , p̄2) 0 0 T1 ≥ 0 dq∗s
dα

(γ − cs
N

dq∗s
dα

) ≥ 0 0
(pF1 , p̄2) 0 0 N

2cs
(γ
2
− csq1

N
) ≥ 0 w + N

2cs
(γ
2
− csq1

N
)2 ≥ 0 0

(0, p̄2) 0 0 N
2cs

p̄2 ≥ 0 T2 ≥ 0 0

and dk∗
2/dα = 0 if τβ2 + c2 < τβ1 + c1, dk

∗
1/dα = (1/(1 − τ))(dq∗s/dα) ≥ 0 and

dk∗
2/dα = −(1/(τ(1−τ)))(dq∗s/dα) ≤ 0 if τβ2+c2 ≥ τβ1+c1, and d(k∗

1+k∗
2)/dα =

−(1/τ)(dq∗s/dα) ≤ 0.

One might expect that the company will increase the price in the non-peak

period for customers under the TOU tariff if more customers use the TOU tariff,

as the customers under the TOU tariff have the incentive to shift some consump-

tion from the peak period to the non-peak period. However, our results show
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that the company will keep the prices unchanged when more customers use the

TOU tariff, so the amount of shifted consumption by a customer is fixed. Con-

sequently, while more consumption will be shifted from the peak period to the

non-peak period as more customers use the TOU tariff, the company needs to

install less capacity for the second technology, which is dedicated for the peak

period demand, resulting in less total capacity for the peak period demand. From

the customers’ perspective, the customers who already use the TOU tariff will

neither be hurt nor obtain additional benefit when more customers use the TOU

tariff, as the prices for the TOU tariff are unchanged and the amount of shifted

consumption by a customer is fixed if more customers use the TOU tariff. The

customers who change to use the TOU tariff from the FR tariff may save elec-

tricity cost, as we have imposed the constraint ∆Πc ≤ 0. The customers who

still use the FR tariff will not be hurt either, as the price for FR tariff is also

unchanged. From the company’s perspective, we have the following finding:

Corollary 2.1 The company can get more profit if more customers use the TOU

tariff.

2.5 Price Elasticity of Demand

There are some empirical studies on the price elasticity of demand for electricity

(e.g., Filippini 1995, Fan and Hyndman 2011). And some researchers treat elec-

tricity demand as a function of the price in their models, such as Chao (2011a,b)

and Greer (2012). In this section we consider a model with price elasticity of

demand, i.e., the demand for electricity depends on prices.

2.5.1 Modelling

Recall that in the model with price inelasticity of total demand, we consider both

the customer’s problem and the company’s problem, and we determine the shifted

consumption for the customer’s problem. However, the scenario is different here.

In the model with price elasticity of demand, we do not consider the customer’s

problem. Alternatively, the electricity consumption in the non-peak and peak

28



periods is directly reflected by the demand functions.

Let DT1(p1, p2) and DT2(p1, p2) be the demands in the non-peak period and

the peak period, respectively, under the TOU tariff. Under the FR tariff, they

are DF1(p0) and DF2(p0), respectively. We consider a linear demand function

here, i.e., an additive demand function (e.g., D(p) = a − bp) is adopted. Ex-

amples of linear demand functions for electricity consumption can be found in

Chao (2011a,b) and Greer (2012). Specifically, we let DF1(p0) = aF1 − bF1p0,

DF2(p0) = aF2 − bF2p0, DT1(p1, p2) = aT1 − bT1p1 + r1p2, and DT2(p1, p2) =

aT2− bT2p2+ r2p1. It is reasonable to model that for the FR tariff, the electricity

demands are decreasing in the price. It is also reasonable to model that for the

TOU tariff, the electricity demand in the non-peak period is decreasing in the

price in the non-peak period and increasing in the price in the peak period. The

electricity demand in the peak period is decreasing in the price in the peak period

and increasing in the price in the non-peak period. Table 2.7 presents customers’

electricity demands under the two tariffs.

Table 2.7: Demand in the model with price elasticity of demand

Tariff
Demand in

the non-peak period
Demand in

the peak period
FR tariff DF1(p0) = aF1 − bF1p0 DF2(p0) = aF2 − bF2p0
TOU tariff DT1(p1, p2) = aT1 − bT1p1 + r1p2 DT2(p1, p2) = aT2 − bT2p2 + r2p1

Assumption 2.1 (a) bT1 ≥ r1 and bT2 ≥ r2; (b) bT1 ≥ r2 and bT2 ≥ r1.

Part (a) of Assumption 2.1 is the dominant assumption. It stipulates the

relationships among the price and cross-price sensitivity parameters, which are

treated as common constraints in the literature (e.g., Maglaras and Meissner

2006). The assumption states that the demand in each period is more sensitive

to a change in its own price than it is to a simultaneous change in the prices of

the other period. Part (b) indicates that the reduced demand from one period

due to the price increase in this period is no less than the increased demand in

the other period.
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Note that the price elasticity of demand is determined by Ed = pD′(p)/D(p).

Here, the price elasticity of customer demands in the non-peak and peak periods

under the FR tariff are determined by −bF1p0/(aF1 − bF1p0) and −bF2p0/(aF2 −
bF2p0), respectively. If bF1 = 0 (bF2 = 0), then the customer demand under

the FR tariff in the non-peak (peak) period is perfectly inelastic; otherwise, it

exhibits some elasticity.

Define D1(p0, p1, p2) = αDT1(p1, p2) + (1 − α)DF1(p0) and D2(p0, p1, p2) =

αDT2(p1, p2) + (1− α)DF2(p0) as the aggregate demands in the non-peak period

and the peak period, respectively. Similar forms of the aggregated demand func-

tion for the two tariffs can be found in Borenstein and Holland (2005). As shown

in Equation (2.5), the objective function of the company’s problem in this model

is given by

Πg(k,p) = α
(

p1DT1(p1, p2) + p2DT2(p1, p2)
)

+ (1− α)p0

(

DF1(p0) +DF2(p0)
)

−Cg

(

k1, k2, D1(p0, p1, p2), D2(p0, p1, p2)
)

.

2.5.2 Analysis and solution

As before, we use the sequential decision-making approach to solve the problem

under this model. First, we assume that the prices are given, under which we solve

the problem and obtain the optimal responses of capacities, i.e., (k1(p), k2(p)). In

the second step, we obtain the optimal prices, i.e., (p∗0, p
∗
1, p

∗
2), given the optimal

responses of capacities.

(1) Capacity decisions

By analyzing the objective function, we obtain the optimal responses of ca-

pacities, which are presented in Theorem 2.3.

Theorem 2.3 The optimal responses of capacities (k1(p), k2(p)) are determined

as follows:

(

k1(p), k2(p)
)

=































(D1(p0,p1,p2)
1−τ

, D2(p0,p1,p2)
τ

− D1(p0,p1,p2)
1−τ

) if D1(p0,p1,p2)
1−τ

≤ D2(p0,p1,p2)
τ

and τβ2 + c2 < τβ1 + c1;

(D2(p0,p1,p2)
τ

, 0) if D1(p0,p1,p2)
1−τ

≤ D2(p0,p1,p2)
τ

and τβ2 + c2 ≥ τβ1 + c1;

(D1(p0,p1,p2)
1−τ

, 0) if D1(p0,p1,p2)
1−τ

> D2(p0,p1,p2)
τ

.
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Theorem 2.3 gives the optimal capacities for the company. The proportion

of customers using the TOU tariff will affect the capacity decisions in the model

with price elasticity of demand because different types of customers have differ-

ent demand functions, which affect capacity investment. If the total demand in

the peak period is small, i.e., D2(p0, p1, p2) < τD1(p0, p1, p2)/(1 − τ), then the

company only needs to install Technology 1, which can meet the demands in both

the non-peak period and the peak period. Even if the total demand in the peak

period is large, i.e., D2(p0, p1, p2) ≥ τD1(p0, p1, p2)/(1 − τ), then the company

may still not install Technology 2 because of its high cost. If the cost of Technol-

ogy 2 is low, then the company will install both technologies with total capacity

D2(p0, p1, p2)/τ . Similar to the model with price inelasticity of total demand, in

this model, we define three cases for the optimal capacities, which are pictorially

shown in Figure 2.4 (where D̄2 is an upper bound on D2, which can be obtained

when the prices reach the lower bound).

Figure 2.4: Three cases of the model with price elasticity of demand

Case I: (k1(p), k2(p)
)

= (D1(p0,p1,p2)
1−τ

, D2(p0,p1,p2)
τ

− D1(p0,p1,p2)
1−τ

). In this case,

the company installs both technologies to generate electricity. This case hap-

pens when the total demand in the peak period is large, i.e., D2(p0, p1, p2) ≥
τD1(p0, p1, p2)/(1 − τ), and the cost of Technology 2 is small, i.e., τβ2 + c2 <

τβ1 + c1.

Case II: (k1(p), k2(p)
)

= (D2(p0,p1,p2)
τ

, 0). In this case, the company only
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installs Technology 1 to generate electricity, which can meet the consumption

in both the non-peak period and the peak period. This case happens when the

total demand in the peak period and the cost of Technology 2 are large, i.e.,

D2(p0, p1, p2) ≥ τD1(p0, p1, p2)/(1− τ) and τβ2 + c2 ≥ τβ1 + c1, respectively.

Case III: (k1(p), k2(p)
)

= (D1(p0,p1,p2)
1−τ

, 0). In this case, the company still only

installs Technology 1 to generate electricity. This case happens when the total

demand in the peak period is small, i.e., D2(p0, p1, p2) < τD1(p0, p1, p2)/(1− τ).

(2) Price decisions

After obtaining the optimal responses of capacities, we solve the problem and

obtain the optimal prices for the three cases. With the substitution of the optimal

responses of capacities into the company’s profit function, our objective becomes

maximizing the profit function by optimally setting the electricity prices. By

analyzing the objective functions of three cases, we obtain the optimal prices,

which are presented in Theorem 2.4.

Theorem 2.4 The optimal values of prices p are determined by p∗0 =

min{max{p̂0, 0}, p̄0}, p∗1 = min{max{p̂1, 0}, p∗0}, and p∗2 = min{max{p̂2, p∗0}, p̄2},
where

p̂0 =



























1
2(bF1+bF2)

(

aF1 + aF2 +
1

1−τ

(

β1 + c1 − τβ2 − c2
)

bF1 + (β2 +
c2
τ
)bF2

)

for Case I;
1

2(bF1+bF2)

(

aF1 + aF2 + β1(bF1 + bF2) +
c1
τ
bF2

)

for Case II;

1
2(bF1+bF2)

(

aF1 + aF2 + β1(bF1 + bF2) +
c1
1−τ

bF1

)

for Case III.

p̂1 =



















1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A6 + 2bT2A5

)

for Case I;

1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A4 + 2bT2A3

)

for Case II;

1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A2 + 2bT2A1

)

for Case III.

p̂2 =



















1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A5 + 2bT1A6

)

for Case I;

1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A3 + 2bT1A4

)

for Case II;

1
4bT1bT2−(r1+r2)2

(

(r1 + r2)A1 + 2bT1A2

)

for Case III.

A1 = aT1 + (β1 +
c1

1− τ
)bT1 − β1r2, A2 = aT2 + β1bT2 − (β1 +

c1
1− τ

)r1,

A3 = aT1 + β1bT1 − (β1 +
c1
τ
)r2, A4 = aT2 + (β1 +

c1
τ
)bT2 − β1r1,
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A5 = aT1 +
1

1− τ

(

β1 + c1 − τβ2 − c2
)

bT1 − (β2 +
c2
τ
)r2,

A6 = aT2 + (β2 +
c2
τ
)bT2 −

1

1− τ

(

β1 + c1 − τβ2 − c2
)

r1.

Theorem 2.4 shows the optimal prices for the company under the three cases.

In any case, the optimal interior solutions are uniquely determined by the first-

order condition of the company’s profit function. These results are very different

from those for the model with price inelasticity of total demand.

We can solve the problem under the model with price elasticity of demand by

the following procedures: Given the parameters such as the unit production and

capacity costs, we determine the optimal capacities and prices for the company

according to Theorems 2.3 and 2.4. We then examine the solutions to see whether

they satisfy the conditions of the cases. If the results satisfy the conditions of

more than two cases, then we pick the solution that generates the most profit for

the company.

2.5.3 The effects of proportion of customers using the

TOU tariff

In this subsection we consider the effects of the proportion of customers who use

the TOU tariff on the optimal decisions and the company’s profit. For notational

simplicity, we define D∗
1 = D1(p

∗
0, p

∗
1, p

∗
2), D

∗
2 = D2(p

∗
0, p

∗
1, p

∗
2), D

∗
F1 = DF1(p

∗
0),

D∗
F2 = DF2(p

∗
0), D

∗
T1 = DT1(p

∗
1, p

∗
2), and D∗

T2 = DT2(p
∗
1, p

∗
2).

Proposition 2.3 The effects of α on (k∗
1, k

∗
2), (p

∗
0, p

∗
1, p

∗
2), and Πg are as follows:











dk∗1
dα

=
D∗

T1−D∗

F1

1−τ
,
dk∗2
dα

=
D∗

T2−D∗

F2

τ
− D∗

T1−D∗

F1

1−τ
for Case I;

dk∗1
dα

=
D∗

T2−D∗

F2

τ
,
dk∗2
dα

= 0 for Case II;
dk∗1
dα

=
D∗

T1−D∗

F1

1−τ
,
dk∗2
dα

= 0 for Case III.

dΠg

dα
= p∗1D

∗
T1 + p∗2D

∗
T2 − p∗0(D

∗
F1 +D∗

F2)

−



















(

β1+c1−τβ2−c2
1−τ

(D∗
T1 −D∗

F1) + (β2 +
c2
τ
)(D∗

T2 −D∗
F2)

)

for Case I;
(

β1(D
∗
T1 −D∗

F1 +D∗
T2 −D∗

F2) +
c1
τ
(D∗

T2 −D∗
F2)

)

for Case II;
(

β1(D
∗
T1 −D∗

F1 +D∗
T2 −D∗

F2) +
c1
1−τ

(D∗
T1 −D∗

F1)
)

for Case III.

33



For all the three cases, (p∗0, p
∗
1, p

∗
2) are independent of α and d2Πg/dα

2 = 0.

An interesting result is that, for all the three cases, the optimal prices are

independent of the proportion of customers using the TOU tariff. This may be

because the demand under one tariff is not affected by the price under the other

tariff. As the company’s profit under the optimal decisions is a linear function of

α, it may increase or decrease with α, depending on the values of the parameters

for the demand functions and the values of the costs.

2.5.4 The effects of price elasticity of demand

We resort to numerical studies to gain an understanding of the effects of price

elasticity of demand on the price and capacity decisions, and the associated profit.

Recall that price elasticity of demand is determined by Ed = pD′(p)/D(p). So the

price elasticity of demand in the non-peak and peak periods under the FR tariff

are determined by EF1
d = −bF1p

∗
0/(aF1−bF1p

∗
0) and EF2

d = −bF2p
∗
0/(aF2−bF2p

∗
0),

respectively, and under the TOU tariff are determined by ET1
d = −bT1p

∗
1/(aT1 −

bT1p
∗
1 + r1p

∗
2) and ET2

d = −bT2p
∗
2/(aT2 − bT2p

∗
2 + r2p

∗
1), respectively.

Unlike the multiplicative demand function, where elasticity is a constant in-

dependent of price, the elasticity of the additive demand function is related to

price. So it is very complicated to analyze the effects of price elasticity of the

additive demand function directly. On the other hand, for an additive demand

function, such as D(p) = a− bp, demand is decreasing in b, given p. To a certain

extent, the parameter of price sensitivity, i.e., b, reflects the price elasticity of

demand. So, in this subsection, we study the effects of price elasticity of demand

through investigating the effects of price sensitivity parameters, i.e., bF1, bF2, bT1,

and bT2.

In all the numerical examples, we set aF1 = 1200, aF2 = 1800, aT1 =

1300, aT2 = 1700, r1 = 1, r2 = 1, τ = 1/3, α = 1/3, β1 = 5, β2 = 10, c1 = 10,

and c2 = 20/3. We set bT1 = 7 and bT2 = 4; let bF1 change values within

{2.5, 3, 3.5, · · · , 6.5, 7} with bF2 = 5 to assess the effects of price elasticity associ-

ated with changes in bF1, and let bF2 change values within {2.5, 3, 3.5, · · · , 6.5, 7}
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with bF1 = 4 to assess the effects of price elasticity associated with changes in

bF2. Regarding the effects of bT1 and bT2, we set bF1 = 3 and bF2 = 4. We

let bT1 change values within {4.5, 5, 5.5, · · · , 8.5, 9} with bT2 = 4 to assess the

effects of price elasticity associated with changes in bT1, and let bT2 change values

from {2.2, 2.4, 2.6, · · · , 3.8, 4} with bT1 = 7 to assess the effects of price elasticity

associated with changes in bT2.
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Figure 2.5: Effects of price elasticity of demand associated with changes in bF1.

The effects of price elasticity of demand under the FR tariff are shown in

Figures 2.5 and 2.6. The price elasticity of demand in the non-peak (peak)

period under the FR tariff, i.e., EF1
d (EF2

d ), decreases as price sensitivity bF1

(bF2) increases. This means that the demand in the non-peak (peak) period

under the FR tariff is more elastic when it is more sensitive to price. On the

other hand, the price for the FR tariff and the company’s profit decrease when

the price sensitivity bF1 (bF2) increases. Consequently, we conclude that the price

for the FR tariff and the company’s profit both decrease when the demand under

the FR tariff is more elastic to price.

Figure 2.5(c) shows that the capacity of Technology 1 (2) decreases (increases)
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Figure 2.6: Effects of price elasticity of demand associated with changes in bF2.

in bF1. It is because, on the one hand, the demand in the non-peak period under

the FR tariff, which directly determines the capacity of Technology 1, decreases

when customers are more sensitive to price. On the other hand, the demand in

the peak period under the FR tariff increases as price decreases. So the capacity

of Technology 2 increases because it equals D2/τ −D1/(1− τ) here. The changes

in capacity as shown in Figure 2.6(c) can be explained similarly.

Figures 2.7 and 2.8 show the effects of price elasticity of demand under the

TOU tariff. After a slight increase, the price elasticity of demand in the non-

peak period under the TOU tariff, i.e., ET1
d , decreases as the price sensitivity bT1

increases. This result is different from that for price elasticity of demand under

the FR tariff, where the price elasticity of demand in the non-peak (peak) period

under the FR tariff always decreases in bF1 (bF2). Here, the price elasticity of

demand in the peak period, i.e., ET2
d , still decreases in the price sensitivity bT2.

Similar to the effects of bF1 and bF2, both prices (i.e., the prices in the non-peak

and the peak period) for the TOU tariff and the company’s profit decrease as

the price sensitivity bT1 and bT2 increase. In view of the non-monotonicity of
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Figure 2.7: Effects of price elasticity of demand associated with changes in bT1.
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Figure 2.8: Effects of price elasticity of demand associated with changes in bT2.
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the price elasticity of demand in the non-peak period under the TOU tariff (see

Figure 2.7(a)), we cannot conclude that the prices for the TOU tariff and the

company’s profit decrease when the demand in the non-peak period under the

TOU tariff is more elastic to price.

Figures 2.7(c) and 2.8(c) show the changes in capacity. Unlike the large

changes in capacity in Figures 2.5(c) and 2.6(c), the changes in capacity are very

small when bT1 and bT2 increase. The capacity of Technology 1 is even unchanged

when bT2 increases. Note that the prices for the non-peak and the peak period

under the TOU tariff, i.e., p1 and p2, decrease as bT1 (or bT2) increases, so under

the increasing effect of bT1 (or bT2) and decreasing effects of p1 and p2, the demand

in the non-peak period or the peak period under the TOU tariff may not change

drastically. This leads to small changes in capacity because capacity is mainly

determined by demand.

2.6 Conclusions

In this chapter we consider an electricity market in which an electricity company

generates electricity for customers under a mixed tariff structure that comprises

the FR and TOU tariffs. Under the FR tariff, customers pay a flat price for

electricity consumption over the whole period. Under the TOU tariff, customers

pay a high price for electricity consumption in the peak period and a low price

for electricity consumption in the non-peak period.

We present two models in this chapter. The first model is characterized by

price inelasticity of total demand, i.e., price does not affect the total consumption

of electricity. Customers under the TOU tariff can save electricity cost by shifting

some consumption from the peak period to the non-peak period. We find the

optimal shifted consumption for the customers. The second model is characterized

by price elasticity of demand, i.e., demand is affected by price. For both models,

we find the optimal capacity and pricing policies for the electricity company.

By studying the effects of the proportion of customers using the TOU tariff, we

find the following managerial insights, which are useful to electricity companies:
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For both the model with price inelasticity of total demand and the model with

price elasticity of demand, the company will not change the optimal prices when

more customers use the TOU tariff. For the model with the price inelasticity

of total demand, even though the amount of shifted consumption by a customer

is fixed due to the unchanged optimal prices, the total consumption by all the

customers will increase if more customers use the TOU tariff, leading to a decrease

in capacity investment for the peak period. For the model with price elasticity

of demand, the effects of the proportion of customers using the TOU tariff on

capacity investment and the company’s profit depend on the parameters of the

demand functions. We further analyze the effects of price sensitivity on the

model with price elasticity of demand. Our results show that the prices and the

company’s profit are non-increasing when customers are more sensitive to price.
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Chapter 3

Electricity Time-of-use Tariff
with Stochastic Shifted
Consumption

3.1 Introduction

It is crucial to find ways to promote energy efficiency in the electricity generation

and consumption (IEA 2010, ACEEE 2014). Currently, many electricity cus-

tomers use the traditional flat-rate (FR) tariff, under which the customers pay

the same flat price for each unit of electricity consumption. However, this tariff

dampens the incentive for the customers to reduce the electricity usage in the

peak period.

Reducing peak period demand may save the electricity cost, yield energy save,

and improve energy efficiency (York et al. 2007, EPA 2008). First, reducing

peak period demand can reduce the electricity load in the peak period, so that

the electricity company can avoid additional technology installation and save

its electricity costs for the peak period. Second, reducing peak period demand

can reduce the transmission loss and save the electricity energy (Triki and Violi

2009, Faruqui et al. 2007). Third, in electricity generation, reducing peak period

demand can improve the energy efficiency. It is because that the peak load plants

for generating electricity operate on high cost and less energy-efficient fuels, such

as natural gas, while the base load plants for generating electricity operate on

low cost and more energy-efficient fuels, such as coal (The Electropaedia 2005,
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WiseGEEK 2013).

Motivated by the fundamental problem of in-efficient pricing mechanism for

electricity under the FR tariff, in this chapter we further study another pricing

mechanism, i.e., the time-of-use (TOU) tariff, which helps achieve the goal of

energy efficiency. In Chapter 2, we have studied the optimal capacity and pricing

policies for an electricity company with time-of-use tariff. Although we have

shown that the customers have the incentive to shift the electricity consumption

from the peak period to the non-peak period under the TOU tariff, the amount

of the shifted consumption may be uncertain. So we consider the electricity

time-of-use tariff with stochastic shifted consumption in this chapter.

The TOU tariff has been implemented in some countries in Europe, some

states in the U.S., and some cities in Asia (RAP 2008, CEA 2009). But the

fundamental questions of implementing the TOU tariff with the consideration

of stochastic shifted consumption are still unanswered. First, although early

work has shown that the TOU tariff can reduce the peak period demand, it

is still open for the question: (1) How many capacities should be installed to

meet the demands in both the peak and non-peak periods? Second, we also

need to answer the question: (2) With the uncertainty of shifted consumption,

what should be the optimal electricity prices for the peak and non-peak periods?

Third, some electricity markets have a mixed tariff structure under which some

customers use the TOU tariff while the others use the FR tariff. Examples can

be found in Australia, Canada, and the U.S. (CEA 2009, Prins 2012). But, the

proportion of customers using the TOU tariff may be changing. For example, the

department of Public Utility Control in Connecticut in the U.S. directed all the

utility companies to phase in the mandatory TOU tariff for all the customers. In

other words, in each succeeding year, the mandatory TOU tariff would be applied

to additional customers based on declining levels of consumption (Friedman 2011,

Jessoe and Rapson 2014). On the other hand, the electricity consumption will

increase in the future and the electricity market size may expand as well. So

the third question is: (3) What are the effects of demands, market size, and
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proportion of customers using the TOU tariff on the optimal capacity and price

decisions? Fourth, it is also unanswered for the question: (4) What are the effects

of cost parameters, such as the production, capacity and shortage costs, on the

implementation of the TOU tariff? To get an in-depth understanding of the TOU

tariff, in this chapter we further investigate the optimal capacity investment and

pricing decisions for an electricity company with the TOU tariff, and answer the

above fundamental questions.

Similar to the setting in Chapter 2, in this chapter, we consider a verti-

cally integrated electricity company which determines the amounts of the in-

stalled capacities and the electricity prices, and is responsible for meeting the

market demand for electricity. The electricity company is regulated under

the price-cap regulation, which sets an upper bound on an index of the regu-

lated firm’s price (Sappington and Sibley 1992, Braeutigam and Panzar 1993,

Regulationbodyofknowledge.org 2014). The electricity company offers a mixed

tariff structure to the customers. A fraction of customers use the TOU tariff

and the remaining fraction of customers use the FR tariff. Two technologies are

considered to be installed for generating electricity in the two periods, i.e., the

peak and non-peak periods, for the customers. The first technology is used to

generate electricity for demands in both periods, while the second technology is

used to generate electricity only for the demand in the peak period. We refer

to the first and second technologies as the base-load technology and peak-load

technology, respectively. The base-load technology (e.g., using coal or nuclear

to generate electricity) usually has low production cost and high capacity cost,

while the peak-load technology (e.g., using natural gas to generate electricity)

usually has high production cost and low capacity cost. It is a common strategy

to use the base-load and peak-load technologies to generate electricity in the elec-

tricity generation industry (The Electropaedia 2005, Pineau and Zaccour 2007,

WiseGEEK 2013). In Chapter 2, we study both the model with price inelasticity

of total demand and the model with price elasticity of demand. However, in this

chapter, we only consider the setting that the total demand will be unchanged
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when the TOU tariff is introduced to the customers. We first derive the optimal

capacity investments and the optimal prices for the TOU tariff. After that, we

analyze the effects of the demands, market size, proportion of customers using

the TOU tariff, and cost parameters on the optimal solutions.

In summary, this chapter makes the following contributions:

1. We model the TOU tariff by considering the customers’ uncertain behaviour

of shifting the electricity consumption. Our work not only methodologically

relates to the Operations Management/Operations Research (OM/OR) lit-

erature, but also contextually relates to the OM/OR, Energy, and Eco-

nomics literatures. By studying the interfaces of these bodies of work, we

develop novel insights for the electricity company to implement the TOU

tariff.

2. We obtain the optimal capacity investments for the peak and non-peak

periods. The costs play critical roles in rationing the capacities to meet

the demands. The capacity of Technology 2 and total capacity for the

peak period demand both increase in the price for the non-peak period

and decrease in the price for the peak period, for the TOU tariff. We also

obtain the optimal prices for the TOU tariff. There is a unique optimal

value of the price in the non-peak period, while there are three possible

optimal values for the price in the peak period, depending on the price

sensitivity parameters and the upper bound of the price in the peak period

(i.e., price-cap set by the regulator). It is interesting to show that it may

not be optimal to the electricity company to let the customers shifting too

much consumption from the peak period to the non-peak period.

3. We analytically examine the behaviour of the optimal solutions with respect

to the demands, electricity company’s market size, proportion of customers

using the TOU tariff, and cost parameters (such as production, capacity

and shortage costs). Important insights and managerial implications are

discussed.
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The remainder of this chapter is structured as follows: In Section 3.2, we

review the related literature. In Section 3.3, we present the model setting of this

chapter. In Section 3.4, we study the optimal capacity investment and pricing

decisions. In Section 3.5, we do some comparative statics with respect to the

demands, market size, proportion of customers using the TOU tariff, and cost

parameters. Conclusions are given in Section 3.6. We provide all the proofs in

Appendix B.

3.2 Literature Review

Our work is related to three streams of research. The first one is the literature

on the time-varying electricity prices. In the Economics and Energy literature,

some papers consider the customer or demand response to time-varying elec-

tricity prices, such as Henley and Peirson (1994), Faruqui and George (2005),

Herter at al. (2007), Chao (2010), and Faruqui and Sergici (2010); some other

papers study the other effects of time-varying electricity prices (e.g., the effects

on capacity investments, wholesale prices), such as Holland and Mansur (2005),

Borenstein and Holland (2005), Faruqui et al. (2007), Pineau and Zaccour

(2007), and Chao (2011a). These studies highlight the importance of the time-

varying electricity prices, but most of them do not model the customer’s shifting

behaviour.

In the OM/OR literature, Garcia et al. (2005) examine the dynamic pricing

and learning in an infinite-horizon oligopoly model in electricity markets. With

a transfer function model, Nogales and Conejo (2006) study the electricity price

forecasting based on both past electricity prices and demands. Triki and Violi

(2009) investigate the dynamic pricing of electricity in retail markets, through

a two-stage pricing scheme where the customer is offered a first-stage TOU

tariff and then a dynamic component once the real-time demand is observed.

Banal-Estañol and Micola (2009) study by simulation how the diversification of

electricity generation portfolios affect wholesale prices. However, most of these

papers do not consider the customer behaviour of shifting electricity consump-
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tion from a period of higher price to a period of lower price. Yang et al. (2013)

analyze the TOU tariff for an electricity company taking the customer behaviour

into consideration. Yet unlike our model, theirs does not consider a mixed tariff

structure where some customers use the TOU tariff and the rest of the customers

use the FR tariff; and theirs does not consider the uncertainty in the shifted

consumption.

The second stream of research related to our work is the capacity choice and

peak load pricing in electricity markets in the Economics literature. This frame-

work considers the pricing and capacity investment problems with the stochastic

demand and diverse technologies with different cost characteristics. For instance,

Carlton (1977) and Crew and Kleindorfer (1978) investigate some peak load

pricing problems with stochastic demand, which are extended by Chao (1983)

and Kleindorfer and Fernando (1993) to consider supply uncertainty. Compre-

hensive reviews of this subject can be found in Crew et al. (1995). This research

stream is structurally similar to our setting of the TOU tariff, but our work is

mainly from the electricity company’s perspective and the other studies are from

the social welfare perspective. Besides, our work explicitly models the shift con-

sumption behaviour due to the price difference in the two periods, and considers

the FR tariff co-existing with the TOU tariff, which allows us to study the effects

of the proportion of customers using TOU tariff and other cost parameters.

In this chapter, we consider to use two technologies, as base-load and

peak-load technologies, to generate the electricity, and study the capacity

investments in technologies with uncertainty, so the third related stream

of research includes the works on the investment in technologies. In

the OM/OR literature, many papers have modified or extended the clas-

sic newsvendor model and studied the strategic capacity management (e.g.,

Van Mieghem 1998, Harrison and Van Mieghem 1999, Van Mieghem and Rudi

2002). Van Mieghem (2003) provides a review on the literature of strate-

gic capacity management, which is concerned with determining the types,

sizes, and timing of capacity investments and adjustments under uncertainty.
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This framework has been extended to other related settings. For example,

Goyal and Netessine (2007) study the technology choice and capacity investment

of two firms with stochastic price-dependent demand in a competitive environ-

ment. Yang et al. (2011) examine how market uncertainty, costs, and operation

timing affect a firm’s strategic decisions on the flexible technology and flexible

capacity. Boyabatli and Toktay (2011) consider a monopolistic firm that decides

the technology choice and capacity level with demand uncertainty in imperfect

capital markets, where the firm is budget constrained which can be relaxed by

borrowing money from a creditor. Kashefi (2012) investigates the effect of a

non-sale capacity market on the decisions of the technology choice and capacity

investment of two firms with competition and uncertain demand. Recently, there

has been growing literature on technology choice and capacity investment in the

energy market, and on environmental issues. For instance, Sönmez et al. (2012)

study the strategic technology selection, choices around technology configura-

tion and capacity for the incumbent and emerging technologies in the liquefied

natural gas industry. By modelling the trade-off between renewable and nonre-

newable technologies, Aflaki and Netessine (2012) investigate the incentives for

investing in renewable electricity generating capacity. Drake et al. (2012) study

the technology choice and capacity investment under emission tax and emission

cap-and-trade regulation, through a two-stage model where the firm determines

capacities in two technologies in the first stage; demand information is realized

given at certain time between two stages; and then the firm determines production

quantities in the second stage. Filomena et al. (2014) analyze the technology se-

lection and capacity investment for electricity generation in a competitive market

with the consideration of uncertain marginal cost.

In the Energy Economics literature, Wickart and Madlener (2007) develop

an economic model to examine the optimal technology choice and invest-

ment timing with the consideration of cost (e.g., input fuel price) uncertainty.

Westner and Madlener (2012) use a spread-based real options approach to study

the investment in a condensing power plant without heat utilization or a plant
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with combined heat-and-power generation. Tuthill (2008) and Schwerin (2013)

investigate the effects of emission costs on the investments of dirty and clean

technologies.

One important feature distinguishing our work from the studies in the in-

vestment in technologies is that these papers do not consider the pricing issues,

while our work considers the time-varying electricity pricing mechanism to re-

duce the demand in the peak period. Of the exceptions, Bish and Wang (2004),

Chod and Rudi (2005), Biller et al. (2006) and Bish et al. (2012) study the ca-

pacity investment with a pricing issue, but focus on responsive pricing (or price

postponement) where the pricing decision is made after the demands are real-

ized. However, in our work the electricity prices are determined before realizing

the demand information.

3.3 Modelling

In this chapter we consider a vertically integrated electricity company which not

only determines the capacity for generating electricity, but also sets the electricity

prices for the customers. We consider a scenario that the time of electricity usage

is divided into two periods: the peak period and the non-peak period. Let T

denote the total period time, e.g., one day, and let τ denote the percentage of

the peak period time over the total period time. Without loss of generality,

we normalize T = 1. The fact that the peak-load capacity is only used “few”

hours a day has been empirically observed, consequently, we assume that τ < 1/2

(Pineau and Zaccour 2007).

Two technologies are considered to be installed for generating electricity, i.e.,

Technologies 1 and 2. Let ki denote the capacity needed to be installed for

Technology i, i ∈ {1, 2} (e.g., in megawatt, which is a unit to measure the rate

of energy conversion or transfer), and k = (k1, k2). Similar to the setting in

Yang et al. (2013) and Pineau and Zaccour (2007), we assume that Technology

1 will be used all the time during the whole period, while Technology 2 will be used

only during the peak period. So k1 and k2 are generally referred to as base-load
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and peak-load capacities, respectively. Then (1− τ)k1 is the installed capacity of

Technology 1 for the non-peak period demand, and τk1 is the installed capacity

of Technology 1 for the peak period demand. Note that electricity generation

capacity is measured in units of power, e.g., megawatt, in other words, we can

say that it is measured as a maximum rate of energy per unit time, so τk2 (rather

than k2) is the capacity of Technology 2 for the peak-period demand. We then

let kp = τ(k1 + k2), which is the total capacity for the peak period demand.

Let ci and βi denote the unit capacity cost and unit production cost of Tech-

nology i, respectively. It is well known that the peak-load technology, i.e., Tech-

nology 2, typically has lower capacity cost and higher production cost comparing

with the base-load technology, i.e., Technology 1, thus we have c1 > c2 and

β1 < β2 (Crew et al. 1995, Pineau and Zaccour 2007). The shortage cost will

be incurred if the demands exceed the installed capacities. Let v1 and v2 de-

note the unit shortage costs for the non-peak period and peak period demands,

respectively. On one hand, the shortage costs could be referred to as costs of

the operating reserves. Here, operating reserves are often referred to as ancillary

services to help ensure grid reliability for the electric power system, by keeping

partially loaded spinning generators available to respond to random variation

in demand and system contingencies (Hummon et al. 2013). Hummon et al.

(2013) use a simulation tool to evaluate the cost of operating reserve services,

and find that the total cost of providing reserves adds about 2% to the total cost

of providing energy. On the other hand, the shortage costs can be referred to as

the electricity prices to purchase the additional electricity from outside markets.

Therefore, it is reasonable to assume that v1 ≥ β1 and v2 ≥ β2. Furthermore,

we assume v1 ≤ β2 + c2, indicating that the electricity company will not use the

peak-load technology to generate the electricity for the shortage in the non-peak

period.

We let x+ = max{0, x} for any real number x. Let D1 ≥ 0 and D2 ≥ 0 denote

the demands in the non-peak and peak periods, respectively. The electricity
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company’s expected cost function C(k, D1, D2) can be expressed as follows:

C(k, D1, D2) = E[c1k1 + c2k2 + β1min{D1, (1− τ)k1}+ v1(D1 − (1− τ)k1)
+

+β1min{D2, τk1}+ β2min{(D2 − τk1)
+, τk2}

+v2(D2 − τk1 − τk2)
+]. (3.1)

In the cost function (3.1), the first and second terms are the capacity costs for

Technologies 1 and 2, respectively; the third and forth terms are the production

cost and shortage cost in the non-peak period, respectively; the fifth and sixth

terms are the production costs associated with Technologies 1 and 2, respectively,

in the peak period; and the last term is the shortage cost in the peak period.

We consider a single-period planning horizon problem. Before starting the

planning horizon, the electricity company only offers the FR tariff to the cus-

tomers. We define q1 and q2 as the original total demands in the non-peak and

peak periods, respectively (i.e., the demands in the non-peak and peak periods,

respectively, if the company only offers the FR tariff to the customers). It is

reasonable to assume that the average demand in the peak period is not less

than that in the non-peak period, i.e, q2/τ ≥ q1/(1 − τ). At the beginning of

the planning horizon, the electricity company introduces the TOU tariff to the

customers, such that there is a mixed tariff structure for the customers in the

planning horizon. A fraction α ∈ (0, 1] of the customers are under the TOU tariff

and thus the remaining fraction 1 − α of the customers are under the FR tariff.

We first assume that α is given, and later we will investigate the effects of α on

the optimal solutions. Let N denote the number of customers in the market,

then the number of customers using the TOU tariff is αN . We assume that the

total demand is unchanged when the TOU tariff is introduced to the customers.

The fraction of customers still using the FR tariff is 1 − α. So the demands in

the non-peak and peak periods under the FR tariff are (1 − α)q1 and (1 − α)q2,

respectively. The demands in the non-peak and peak periods under the TOU

tariff are αq1 and αq2, respectively, if there is no shifted consumption.

Under the FR tariff, the customers pay a flat price p0 for the electricity con-

sumption in both the non-peak period and the peak period. As the customers
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under the FR tariff have no incentive to shift the consumption from the peak

period to the non-peak period, the electricity company will simply choose the

upper bound of p0 for FR tariff, given by the regulator, to maximize its profit.

Therefore, in this chapter, we assume that p0 is given and we focus on the TOU

tariff. Under the TOU tariff, the customers pay a lower price p1 ≥ 0 for the

consumption in the non-peak period, and pay a higher price p2 ∈ [0, p̄2] for the

consumption in the peak period. Here, p̄2 is a given upper bound of p2, which may

be imposed by the regulator, e.g., government, under the price-cap regulation.

We assume that p1 ≤ p2, and let p = (p1, p2). Table 3.1 illustrates the tariffs in

this chapter.

Table 3.1: Tariffs of the electricity company for Chapter 3

Tariffs Proportion Prices
FR tariff 1− α p0
TOU tariff α p1, p2

The customers under the TOU tariff will shift some consumption from the

peak period to the non-peak period, due to the price difference. We consider that

the customers under the TOU tariff are homogenous. Let qis denote the amount of

shifted consumption from the peak period to the non-peak period by a customer

under the TOU tariff, for given p1 and p2. We consider that the amount of shifted

consumption by a customer is stochastic, i.e.,

qis(p1, p2) = yi(p1, p2) + ǫ,

where ǫ is a random factor with pdf f(·), cdf F (·), a mean value of µ = 0, and

in the range [A,B], A ≤ 0 and B ≥ 0, and yi(p1, p2) is a deterministic function,

namely determined shifted consumption by a customer (it is the expected value

of the shifted consumption per customer). We let yi(p1, p2) take the form of

yi(p1, p2) = a− b1p1 + b2p2, where a > 0, b1 > 0, b2 > 0.

In order to assure that non-negative shifted consumption and positive demand in

the peak period after shifting are possible for some values of p1 and p2, we assume
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a+A ≥ 0 and a+B ≤ q2/N . It is reasonable to assume that the expected value of

the shifted consumption per customer is decreasing in the price p1 and increasing

in the price p2. And examples of linear demand functions for electricity can be

found in Chao (2011a) and Greer (2012). Besides, we have shown an additive

form of the shifted consumption when considering the customer’s problem in

Chapter 2. Moreover, with the consideration of customer behaviour, Yang et al.

(2013) model the customer’s problem for the TOU tariff to obtain the optimal

shift consumption, and their derived optimal shift consumption equation is very

similar to the function of the determined shifted consumption in our setting.

Let qs denote the total amount of shifted consumption by all customers under

the TOU tariff. As we consider that the customers under the TOU tariff are

homogenous customers, we have qs = αNqis. And we let y = αNyi. Then after

shifting the consumption, the demands in the non-peak and peak periods under

the TOU tariff are αq1 + qs and αq2 − qs, respectively. Table 3.2 illustrates the

electricity demands of the customers under the two tariffs after introducing the

TOU tariff.

Table 3.2: Electricity demand after introducing the TOU tariff

Tariff
Demand in

the non-peak period
Demand in

the peak period
FR tariff (1− α)q1 (1− α)q2
TOU tariff αq1 + qs αq2 − qs

Total D1 = q1 + qs D2 = q2 − qs

Our objective is to maximize the electricity company’s expected profit function

Π(k,p) by optimally determining the installed capacities for the two technologies,

i.e., k = (k1, k2), and the prices for the TOU tariff, i.e., p = (p1, p2):

max
k,p

Π(k,p) = E[p1(αq1 + qs) + p2(αq2 − qs) + p0(1− α)(q1 + q2)]

−C(k, q1 + qs, q2 − qs). (3.2)

The objective function (3.2) is composed of two parts. The first part (i.e., the

part in the squared bracket) is the revenue from customers, where the first and
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second terms are the revenue from the customers under the TOU tariff for the

demands in the non-peak and the peak periods, respectively, and the third term

is the revenue from the customers under the FR tariff. The second part (i.e.,

C(k, q1 + qs, q2 − qs)) is the electricity company’s cost function.

Table 3.3 summarizes the major notation used in this chapter, where i ∈ {1, 2}
indicates Technology i.

Table 3.3: Notation of Chapter 3

τ percentage of time of the peak period.
ki installed capacity of Technology i, k = (k1, k2).
kp total capacity for the peak period demand.
ci unit capacity cost of Technology i.
βi unit production cost of Technology i.
v1, v2 unit shortage cost for the non-peak period demand and the peak

period demand, respectively.
D1, D2 total demands in the non-peak and peak periods, respectively.
C(·) the electricity company’s expected cost function.
α the proportion of customers using the TOU tariff, α ∈ (0, 1].
N total numbers of customers in the market, so the number of cus-

tomers using the TOU tariff is αN .
p0 electricity price for the FR tariff.
p1, p2 electricity prices in the non-peak and peak periods, respectively,

for the TOU tariff, and p̄2 is the upper bound of p2.
q1, q2 original total demands in the non-peak and peak periods, respec-

tively, i.e., the demands in the non-peak and the peak periods,
respectively, if only FR tariff is offered to the customers.

qis shifted consumption from the peak period to the non-peak period
per customer under the TOU tariff, and qs = αNqis.

yi determined shifted consumption, i.e., deterministic part of qis, and
y = αNyi.

Π(·) the electricity company’s expected profit function.

3.4 Analysis and Solution

We use the sequential decision-making approach to find the optimal solution,

denoted by (k∗,p∗), that maximizes Π(k,p) in (3.2). That is, we first obtain the

optimal responses of capacities, i.e., k(p), for a given p. In the second step, we

obtain the optimal prices, i.e., p∗, by maximizing Π(k(p),p) over p, given the

optimal responses of capacities.
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The optimal response of capacities can be obtained uniquely as shown in

Theorem 3.1.

Theorem 3.1 Given p, the optimal responses of capacities k(p) are shown as

follows:

If c2 > τ(v2 − β2), then k∗
2 = 0; otherwise, k(p) is determined by the first-order

conditions:

τ(β2 − β1)F (
q2 − y(p1, p2)− τk1

αN
) + τ(v2 − β2)F (

q2 − y(p1, p2)− τk1 − τk2
αN

)

+(1− τ)(v1 − β1)[1− F (
(1− τ)k1 − q1 − y(p1, p2)

αN
)] = c1; (3.3)

F (
q2 − y(p1, p2)− τk1 − τk2

αN
) =

c2
τ(v2 − β2)

. (3.4)

If c2 > τ(v2 − β2), then the smallest capacity of Technology 2 is optimal, i.e.,

k∗
2 = 0. This case happens because of a too high capacity cost of Technology

2 (c2), too small percentage of the peak period (τ), etc. Otherwise, the values

of the optimal capacities can be obtained by jointly solving Equations (3.3) and

(3.4), which are the first-order conditions of the objective function. The costs,

such as capacity cost, production cost and shortage cost, play critical roles in

rationing the capacities to meet the demands. Equation (3.4) shows that, for a

given k1, the probability of meeting the demand via Technology 2 (with capacity

k2) is proportional to the ratio of the capacity cost to the shortage cost minus

the production cost of Technology 2. It follows that, the optimal capacity of

Technology 2 decreases as the capacity cost (c2) and production cost (β2) in-

crease, and shortage cost (v2) decreases. The left-hand side of Equation (3.3) is a

combination of the probability of rationing the capacities to meet the demand in

both the non-peak and peak periods. Another observation is that, by combining

Equations (3.3) and (3.4), we immediately obtain

τ(β2 − β1)F (
q2 − y(p1, p2)− τk1

αN
) + c2

+(1− τ)(v1 − β1)[1− F (
(1− τ)k1 − q1 − y(p1, p2)

αN
)]− c1 = 0. (3.5)
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There is no k2 in the derived Equation (3.5). It follows that the optimal capacity

of Technology 1 decreases as its capacity cost (c1) increases and the capacity cost

of Technology 2 (c2) decreases. We remark that in the following, we will not

consider the trivial case where k∗
2 = 0 and only focus on the case where k(p) is

determined by the first-order conditions.

Proposition 3.1 ∂k2(p)/∂p1 ≥ 0, ∂k2(p)/∂p2 =≤ 0, ∂kp(p)/∂p1 = αNb1 ≥ 0

and ∂kp(p)/∂p2 = −αNb2 ≤ 0.

Proposition 3.1 indicates that the capacity of Technology 2 (k2) and the total

capacity for the peak period demand (kp) always increase in the price for the non-

peak period (p1) and decrease in the price for the peak period (p2). It is because

that, if the price in the non-peak period increases or the price in the peak period

decreases, then the expected shifted consumption is decreased. It follows that the

remaining demand in the peak period is increased, that leads to an increase effect

on the installed capacities for the peak period. In addition, the total capacity for

the peak period demand is linear in p1 with increasing ratio αNb1 and linear in

p2 with decreasing ratio −αNb2. But the capacity of Technology 2 is not linear

in p1 and p2, and the increasing or decreasing ratio depend on some parameters,

such as the production and shortage costs. And it is remarked that the effects of

the prices on the installed capacity of Technology 1 (k1) are more complex and

not monotone in general.

Theorem 3.2 Given p2, the optimal price in the non-peak period (p1) is uniquely

determined by the first-order condition:

q1
N

+ yi(p1, p2) = b1
(c1 − (v1 − β1)(1− F ( (1−τ)k1(p)−q1−y(p1,p2)

αN
))

τ

+p1 − p2
)

. (3.6)

Theorem 3.2 shows the optimal price in the non-peak period, for a given

price in the peak-period for the TOU tariff. It indicates that, under the optimal
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solution, the expected demand in the non-peak period for a customer under the

TOU tariff, i.e., the left-hand side of Equation (3.6), is equal to a value presented

by the right-hand side of Equation (3.6).

Proposition 3.2 dp1(p2)/dp2 ≥ 0; dy(p1(p2), p2)/dp2 ≥ 0 if b2 ≥ b1; and

dy(p1(p2), p2)/dp2 < 0, otherwise.

Proposition 3.2 shows the effects of the price in the peak period (p2) on the

optimal response of the price in the non-peak period (p1(p2)), and on the deter-

mined shifted consumption by all customers from the peak period to the non-peak

period (y(p1(p2), p2)). If the price in the peak period increases, then the company

should also increase the price in the non-peak period. Consequently, the deter-

mined shifted consumption from the peak period to the non-peak period will be

increased if the customers are more sensitive to the price changes in the peak

period, i.e., b2 ≥ b1, and it will be decreased if the customers are more sensitive

to the price changes in the non-peak period, i.e., b2 < b1. As y = αNyi, then

the effects on the determined shifted consumption by a customer (yi) are similar

with that on the determined shifted consumption by all customers.

Theorem 3.3 The upper bound of the price in the peak period p∗2 is optimal

for the TOU tariff, i.e., p∗2 = min{p̂2, p̄2}, where p̂2 is the unique solution of

y(p1(p2), p2) = αq2−αNB if b2 ≥ b1, and is the unique solution of y(p1(p2), p2) =

−αNA if b2 < b1.

It is interesting to show that, given the optimal response of the price in the

non-peak period, the upper bound of the price in the peak period is optimal for

the TOU tariff. Because the total demand of the electricity will not be affected

by prices, the company will set the price in the peak period as high as possible,

for a given optimal response of the price in the non-peak period. There are three

possible values for the upper bounds of the price in the peak period. As indicated

in Proposition 3.2, if the customers are more sensitive to the price changes in the

peak period, then increasing in the price in the peak period will increase the

55



determined shifted consumption. But we need to guarantee that the shifted

consumption should not be larger than the demand in the peak period without

any shifting, i.e., qs ≤ αq2, which requires that y(p1(p2), p2) ≤ αq2 − αNB. So

the first possible upper bound of the price in the peak period is determined by

y(p1(p2), p2) = αq2 − αNB. Contrary, if the customers are more sensitive to

the price changes in the non-peak period, then increasing in the price in the

peak period will decrease the determined shifted consumption. We also need to

guarantee that the shifted consumption should be non-negative, i.e., qs ≥ 0, which

requires that y(p1(p2), p2) ≥ −αNA. So the second possible upper bound of the

price in the peak period is determined by y(p1(p2), p2) = −αNA. Meanwhile,

under the price-cap regulation, we need to guarantee that the price in the peak

period should not exceed the upper bound of the price set by the regulator (p̄2).

So the last possible value of the upper bound of the price in the peak period is

p̄2.

Corollary 3.1 It may not be optimal for the electricity company to let the cus-

tomers shifting too much consumption from the peak period to the non-peak period.

This result is obtained directly from Theorem 3.3, which indicates that the

lower bound of the determined shifted consumption may be optimal if the cus-

tomers are more sensitive to the price change in the non-peak period. It is because

the company can get a higher profit by setting the appropriate prices for the TOU

tariff, although a high shifting consumption implies a low capacity investment in

the peak period.

3.5 Comparative Statics

In this section, we evaluate the impacts of original total demand in the non-

peak period (q1), original total demand in the peak period (q2), market size

(N), proportion of customers using the TOU tariff (α), and the cost parameters

(β1, β2, c1, c2, v1 and v2) on the optimal capacities (k), prices (p), determined

shifted consumption (which includes the determined shifted consumption by a
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customer (yi) and determined shifted consumption by all customers (y) under

the TOU tariff), and profit (Π). These comparative statics help us to deeply

understand the TOU tariff. In order to keep the presentation concisely, the terms

without the word “optimal” will be used to indicate the optimal solutions. For

example, capacity of Technology 1 means the optimal capacity of Technology 1.

As indicated in Theorem 3.3, there are three possible optimal values of the

price in the peak period for the TOU tariff. So before we proceed further, we

define three cases as follows: Case I: p∗2 is determined by y(p1(p2), p2) = −αNA,

Case II: p∗2 is determined by y(p1(p2), p2) = αq2 − αNB, and Case III: p∗2 = p̄2.

Note that for Case III we have p∗2 = p̄2, which is not affected by other set values

(e.g., q1, N). So it is unnecessary to present the effects on p∗2 for Case III.

3.5.1 Impact of original total demand in the non-peak pe-
riod

Proposition 3.3 characterizes the behaviour of capacities, prices, and determined

shifted consumption with respect to the original total demand in the non-peak

period (q1).

Proposition 3.3 (a) For Cases I and II, capacities of Technology 1 (2) increase

(decrease) in the original total demand in the non-peak period; and the total

capacities for the peak period demand and the determined shifted consumption

are not affected by the original total demand in the non-peak period. For Case I,

prices decrease in the original total demand in the non-peak period, but for Case

II, prices increase in the original total demand in the non-peak period.

(b) For Case III, capacity of Technology 1, total capacity for the peak period

demand and price in the non-peak period increase in the original total demand

in the non-peak period; determined shifted consumption decreases in the original

total demand in the non-peak period; and capacity of Technology 2 decreases in

the original total demand in the non-peak period if α ≤ 2τ and increases if a = 1.
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In any case, capacities of Technology 1 increase in the original total demand

in the non-peak period. This is intuitive. However, the effects on capacities of

Technology 2 vary for different cases. For Cases I and II, capacities of Technology

2 decrease in the original total demand in the non-peak period. It is because

the increase of capacity of Technology 1 can help to meet the demand in the

peak period (i.e., (1 − τ)k1 is for peak period demand), so that the company

can install less capacity for Technology 2, given the fact that determined shifted

consumption is on the boundary and unchanged for these two cases. Besides,

as both determined shifted consumption and the original total demand in the

peak period are unchanged, the total capacities for the peak period demand are

not affected by the original total demand in the non-peak period. The difference

of Cases I and II is that prices decrease in the original total demand in the

non-peak period for Case I but increase for Case II. For Case III, the price in the

non-peak period, which is increasing in the original total demand in the non-peak

period, leads to a decrease in the determined shifted consumption, given that the

price in the peak period is at the boundary and unchanged. Consequently, the

remaining demand in the peak period increases in the original total demand in

the non-peak period, which leads to an increase in total capacity for the peak

period demand. On the other hand, combining the increasing effect of the needed

capacity of Technology 2 due to the decrease of determined shifted consumption

with the decreasing effect due to the increase of the capacity of Technology 1, it

is interesting to show that the effect on the capacity of Technology 2 for Case

III is not monotone. We find that the capacity of Technology 2 decreases in the

original total demand in the non-peak period if α ≤ 2τ , while it unexpectedly

increases in the original total demand in the non-peak period, if all customers

use the TOU tariff.

3.5.2 Impact of original total demand in the peak period

Proposition 3.4 characterizes the behaviour of capacities, prices, and determined

shifted consumption with respect to the original total demand in the peak period
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(q2).

Proposition 3.4 (a) For Case I, capacities of Technologies 1 and 2, total capac-

ity for the peak period demand, and prices increase in the original total demand

in the peak period (and dk∗
p/dq2 = 1); and determined shifted consumption is not

affected by the original total demand in the peak period.

(b) For Case II, capacity of Technology 1, total capacity for the peak period de-

mand, and determined shifted consumption increase in the original total demand

in the peak period (and dk∗
p/dq2 = (1− α)/τ , dyi/dq2 = 1/N , and dy∗/dq2 = α);

capacity of Technology 2 increases in the original total demand in the peak period

if α + τ < 1 and decreases if α + τ ≥ 1; and prices increase in the original total

demand in the peak period if α + τ ≥ 1.

(c) For Case III, capacities of Technologies 1 and 2, total capacity for the peak

period demand, and determined shifted consumption increase in the original to-

tal demand in the peak period; and price in the non-peak period decreases in the

original total demand in the peak period.

In any case, capacities of Technology 1 increases in the original total demand

in the peak period. This is intuitive, since Technology 1 is also responsible for the

peak period demand. For Case I, capacity of Technology 2 increases in the original

total demand in the peak period, given that determined shifted consumption is

at the boundary and unchanged. This result also holds for Case III, although the

determined shifted consumption increases in the original total demand in the peak

period due to a decrease of the price in the non-peak period. However, for Case

II, the effect on the capacity of Technology 2 is not monotone. It is interesting

to show that, for Case II, capacity of Technology 2 may decrease in the original

total demand in the peak period, because of a decreasing effect on the capacity

of Technology 2 due to the increase of the determined shifted consumption. But

the total capacity for the peak period demand still increases in the original total

demand in the peak period for any case.
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3.5.3 Impact of market size

In this subsection we consider the impacts of the market size (N) on the optimal

capacities, prices, and determined shifted consumption. We consider a scenario

that the original total demands in the non-peak and peak periods per customer

are unchanged with the market size. That is, if we define qi1 and qi2 as the original

total demands in the non-peak and peak periods per customer, respectively, then

they are not affected by N (and we have q1 = Nqi1 and q2 = Nqi2). Proposi-

tion 3.5 characterizes the behaviour of capacities, prices, and determined shifted

consumption with respect to the market size.

Proposition 3.5 For any case, capacities of Technologies 1 and 2, total capaci-

ties for the peak period demand, and determined shifted consumption by all cus-

tomers (y) increase in the market size (and dk∗
1/dN = k1/N , dk∗

2/dN = k2/N ,

and dk∗
p/dN = τ(k1 + k2)/N for any case. dy∗/dN = −αA ≥ 0 for Case I,

dy∗/dN = αqi2 − αB ≥ 0 for Case II, and dy∗/dN = αyi ≥ 0 for Case III); and

prices and determined shifted consumption by a customer (yi) are not affected by

the market size.

It is intuitive that the electricity company should increase all capacities if the

market size increases. Taking the second derivatives of the optimal capacities with

respect to the market size, we obtain that d2k∗
1/dN

2 = d2k∗
2/dN

2 = d2k∗
p/dN

2 = 0

for any case. We find that all capacities linearly increase in the market size.

Similarly, determined shifted consumption by all customers also linearly increase

in the market size. On the other hand, the electricity company should keep the

prices unchanged for customers, since the original total demand in the non-peak

and peak periods per customer and the determined shifted consumption by a

customer are fixed for any case.

3.5.4 Impact of proportion of customers using the TOU
tariff

Proposition 3.6 characterizes the behaviour of prices and determined shifted con-

sumption, with respect to the proportion of customers using the TOU tariff (α).
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Proposition 3.6 (a) For both Cases I and II, determined shifted consumption

by a customer is not affected by the proportion of customers using the TOU tariff;

and determined shifted consumption by all customers increases in the proportion

of customers using the TOU tariff. Prices decrease in the proportion of customers

using the TOU tariff for Case I, and increase for Case II.

(b) For Case III, price in the non-peak period increases in the proportion of cus-

tomers using the TOU tariff; and determined shifted consumption by a customer

decreases in the proportion of customers using the TOU tariff.

It is difficult to analyze the effects of the proportion of customers using the

TOU tariff on the capacities and the company’s profit. The effects of the pro-

portion of customers using the TOU tariff on the prices for the TOU tariff vary

from case to case. When more customers use the TOU tariff, the company will

decrease the prices for the TOU tariff, if the customers are more sensitive to the

price change in the non-peak period, i.e., b2 < b1 (Case I); and increase the prices

for the TOU tariff, if the customer are more sensitive to the price change in the

peak period, i.e., b2 ≥ b1 (Case II). For Case III, when more customers use the

TOU tariff, the electricity company will increase the price in the non-peak period.

Consequently, the determined shifted consumption by a customer is decreased.

For Cases I and II, the determined shifted consumption by all customers increases

in the proportion, since the determined shifted consumption by a customer is at

the boundary and unchanged. For Case III, combining the increase of the propor-

tion of customers using the TOU tariff with the decrease of the determined shifted

consumption by a customer, we remark that the effect on determined shifted con-

sumption by all customers is not clear. If the determined shifted consumption by

all customers decreases in the proportion of customers using the TOU tariff like

the determined shifted consumption by a customer does, then the total capacity

for the peak period demand will be unexpectedly increased.
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3.5.5 Impact of cost parameters

In this subsection we study the effects of the costs parameters, i.e., β1, β2, c1, c2, v1

and v2, on the optimal solutions and profits.

Proposition 3.7 The effects of the cost parameters on the optimal solutions are

shown in Table 3.4, where ‘+’, ‘-’, and ‘0’ mean the increase effect, decrease

effect, and no effect, respectively, ‘?’ means no clear monotone effect.

Table 3.4: The effects of the cost parameters on the optimal solutions

Case I Case II Case III
k1 k2 kp p1 p2 y Π k1 k2 kp p1 p2 y Π k1 k2 kp p1 p2 y Π

β1 - + 0 ? ? 0 ? - + 0 ? ? 0 ? - + ? ? 0 ? -
β2 + - - + + 0 ? + - - - - 0 - + - - - 0 + -
c1 - + 0 ? ? 0 ? - + 0 ? ? 0 ? - + ? ? 0 ? -
c2 + - - + + 0 ? + - - - - 0 - + - - - 0 + -
v1 + - 0 - - 0 - + - 0 + + 0 ? + - + + 0 - -
v2 0 + + 0 0 0 - 0 + + 0 0 0 - 0 + + 0 0 0 -

Note that y = αNyi, then the effects of the cost parameters on determined

shifted consumption by a customer (yi) are the same as the effects on determined

shifted consumption by all customers (y). So we do not present the effects on

determined shifted consumption by a customer in Table 3.4. Recalling that, for

Cases I and II, y = −αNA and y = αq2 − αNB, respectively, which are in-

dependent of the costs parameters. So, for Cases I and II, determined shifted

consumption is not affected by the cost parameters. Regarding the prices and

profits, the effects vary from case to case. But it is interesting to show that,

for any case, prices are not affected by the shortage cost for the peak period

demand. It may be because the capacity investments are determined together

with the pricing simultaneously, then we can keep the prices unchanged and ad-

just the capacity investment decisions when the shortage cost for the peak period

demand changes. Regarding the effects on the capacities, for any case, capacities

of Technology 1 decrease (increase) in the production and capacity costs of Tech-

nology 1 (2); and capacities of Technology 2 increase (decrease) in the production

and capacity costs of Technology 1 (2). Capacities may also be affected by the
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shortage costs. Specifically, capacities of Technology 1 increase in the shortage

cost for the non-peak period demand, while it is independent of the shortage cost

for the peak period demand. Capacities of Technology 2 decrease (increase) in

the shortage cost for the non-peak period demand (peak period demand). The

results are intuitive. Regarding the effects on the total capacities for the peak

period demand, it is worth noting that, for Cases I and II, total capacity for

the peak period demand is independent of the production and capacity costs of

Technology 1 and the shortage cost for the non-peak period demand; decreases in

the production and capacity costs of Technology 2; and increases in the shortage

cost for the peak period demand. It may be because the determined shifted con-

sumption is unchanged in these two cases; and Technology 2 can act as capacity

buffer to keep the total capacity for the peak period demand unchanged when

the production and capacity costs of Technology 1 and the shortage cost for the

non-peak period demand change. For Case III, total capacity for the peak period

demand increases in the shortage cost for the non-peak period, which is different

from that for Cases I and II. It is because, for Case III, the electricity company

will increase the price for the non-peak period demand when the shortage cost

for the non-peak period increases, which will lead to a decrease in the determined

shifted consumption by all customers. Consequently, the remaining consumption

in the peak period will increase, so that the electricity company will increase the

total capacity for the peak period demand.

3.6 Conclusions

In this chapter, we study the electricity TOU tariff, under which the customers

have the incentive to shift some electricity consumption from the peak period to

the non-peak period, due to the price difference. We consider that the amount

of shifted consumption by customers is uncertain. The electricity company of-

fers two tariffs to the customers, a fraction of the customers use the TOU tariff,

and the remaining fraction of the customers use the traditional FR tariff. Two

technologies, the base-load and peak-load technologies, are considered to be in-
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stalled for generating electricity for the customers. The first technology will be

installed to generate electricity for the demands in both periods, while the sec-

ond technology will be installed to generate electricity only for the peak period

demand.

We have answered the four research questions raised in Section 3.1. For the

first and second questions, we obtain the optimal capacity investment decisions

of the two technologies for the electricity company and the optimal prices for

the TOU tariff. For the third and fourth questions, we analyze the impacts of

the demands, market size, proportion of customers using the TOU tariff, and

cost parameters on the optimal solutions. Important insights and managerial

implications for the electricity company are discussed and summarized:

1. Regarding the effects of the demands, we find that the effect of the origi-

nal total demand in the non-peak period (i.e., the demand in the non-peak

period if the company only offers the FR tariff to the customers) on the ca-

pacity of Technology 2 may not be monotone. It may unexpectedly increase

in the original total demand in the non-peak period, if all customers use the

TOU tariff, because of the battling between the decreasing effect due to the

increase of the capacity of Technology 1 and the increasing effect due to the

decrease of the expected shifted consumption. Meanwhile, the capacity of

Technology 2 may surprisedly decrease in the original total demand in the

peak period, due to an increase in the shifted consumption from the peak

period to the non-peak period by customers.

2. Regarding the effects of the market size, the electricity company should

increase all capacities if the market size increases. This is intuitive. How-

ever, we find that the company should keep the prices unchanged for the

customers, as the expected demands per customer are unchanged.

3. Regarding the effects of the proportion of customers using the TOU tariff,

we find that the effects on the prices vary from case to case. The prices may

increase or decrease in the proportion. This result is different with that in
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Chapter 2, where we show that the optimal prices are not affected by the

proportion of customers using the TOU tariff. Besides, in this chapter, we

find that the expected shifted consumption by a customer may be decreased

when more customers use the TOU tariff, due to an increase in the price in

the non-peak period. Then the effect on the expected shifted consumption

by all customers becomes unclear, due to the joint effects of the decrease

of the expected shifted consumption by a customer and the increase of the

proportion. If the expected shifted consumption by all customers decreases

in the proportion, then the total capacity for the peak period demand will

be unexpectedly increased.

4. Regarding the effects of cost parameters, the total capacity for the peak

period demand may be independent of the production and capacity costs

of Technology 1 and the shortage cost for the non-peak period demand; de-

creases in the production and capacity costs of Technology 2; and increases

in the shortage cost for the peak period demand. It may be mainly due to

that Technology 2 can act as a capacity buffer to keep the total capacity

for the peak period demand unchanged when the production and capacity

costs of Technology 1 and the shortage cost for the non-peak period de-

mand change. Besides, prices are not affected by the shortage cost for the

peak period demand. It may be because that the capacity investments are

determined together with the pricing simultaneously, then we can keep the

prices unchanged and adjust the capacity investment decisions when the

shortage cost for the peak period demand changes.

Managers of electricity companies may follow the insights when they imple-

ment the TOU tariff for the customers.
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Chapter 4

Environmental Sustainability
Investment under Cap-and-trade
Regulation for Carbon Emission

4.1 Introduction

Carbon emission accelerates global warming. After Kyoto Protocol in 1997, many

countries such as the U.S. and Australia have attempted to design carbon trading

mechanism such as cap-and-trade for carbon emission reduction (Stavins 2008,

Zhang and Xu 2013). Cap-and-trade policy implies that a firm is allocated a

limit or cap on carbon emissions by national government. More specifically, the

firm has to buy the right to emit extra carbon if it produces more than the pre-

scribed capacity; otherwise, it can sell its surplus carbon credit (Du et al. 2011,

Hua et al. 2011). Reducing carbon emission is significantly important when envi-

ronmental sustainability is receiving more and more public awareness all around

the globe (Nagurney and Yu 2012).

However, only implementing the carbon cap-and-trade policy is still not ef-

fective enough to reduce carbon emission (Samaras et al. 2009). In order to be

more effective, the investment in the adoption of cleaner technologies is also im-

plemented by responsible firms (Drake and Spinler 2013). For example, in the

fashion apparel industry, it is well-known that the fashion supply chain produces

all kinds of pollutants including carbon (de Brito et al. 2008, Lo et al. 2012).

Companies such as H&M, Marks & Spencer, and Levis all promise to protect
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environment and reduce carbon emission. For example, H&M, the Sweden fast

fashion company, has taken many approaches to minimize carbon emission in its

production process by adopting new technologies and meanwhile, H&M launches

the green label products which are claimed to be produced in a sustainable way

(H&M conscious actions sustainability report 2010 and 2012). From the envi-

ronmental perspective, producing the sustainable product could reduce the emis-

sion and is beneficial to the environment, whereas from the marketing perspec-

tive, it could stimulate the market demand. Consumers have strong willingness

to purchase the sustainable products (Luchs et al. 2010, Thøgersen et al. 2012,

Shen et al. 2012, Grimmer and Bingham 2013). Hence, the positive impact of

sustainability on market demand should not be neglected in managing carbon

emission abatement.

Motivated by the real industrial practices, in this chapter, we study a two-

echelon decentralized supply chain and its centralized channel in which the chan-

nel members determine the order quantity (or production quantity) and sustain-

ability investment with a sustainability-dependent market demand under carbon

cap-and-trade regulation. For the decentralized supply chain, we consider a classi-

cal newsvendor setting in which the manufacturer, as a Stackelberg leader, deter-

mines the sustainability investment, and then the retailer, as a follower, places the

decision of the order quantity. We consider that the manufacturer is operating on

make-to-order basis, under which the manufacturer’s production quantity is equal

to the retailer’s order quantity. For the centralized supply chain, we consider that

the manufacturer and the retailer are fully aligned to achieve the channel’s maxi-

mal profit by determining the production quantity and sustainability investment.

To the best of our knowledge, this study is the first one to examine the impact

of the order quantity (or production quantity) and sustainability investment in a

supply chain under the carbon cap-and-trade regulation.

This chapter contributes to the literature by constructing a model in which

both the order quantity (or production quantity) and the sustainability invest-

ment are considered under the carbon cap-and-trade regulation. The optimal
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order quantity and sustainability investment are derived for the decentralized

supply chain, and the production quantity and sustainability investment are de-

rived for the centralized supply chain as well. The effects of some emission related

parameters on the optimal solutions and profits are analytically analyzed. More-

over, by comparing the optimal solutions and the profits for the decentralized and

centralized supply chains, the managerial insights in the significance of carbon

emission regulation in a supply chain are discussed. Finally, the coordination of

the supply chain is studied under several contracts.

The remainder of this chapter is organized as follows: In Section 4.2, we

review the related literature. Section 4.3 analyzes the decentralized supply chain

and Section 4.4 examines the centralized supply chain. Section 4.5 compares

the optimal solutions and the profits for the decentralized and centralized supply

chains. Section 4.6 studies the coordination of the supply chain. The conclusions

and managerial insights are given in Section 4.7. All of the proofs are relegated

to Appendix C.

4.2 Literature Review

Cap-and-trade policy started to receive considerable attentions from 1970s

(Montgomery 1972, Tietenberg 1985) and is regarded as an effective way to mit-

igate climate change (Stern 2008). Lately, cap-and-trade regulation has been ex-

tensively discussed by scholars in the field of supply chain management due to its

huge impact on supply chain performance (Choi 2013). Zhao et al. (2010) study

a supply chain in which the equilibrium production is affected by the allowance

allocation under perfect competition and the cap-and-trade setting. Hua et al.

(2011) investigate how companies optimally manage inventory under carbon cap-

and-trade regulation by integrating the consideration of carbon emission into the

classical economic order quantity model. They find that carbon cap and carbon

price have a great impact on the retailer’s order decisions. Zhang et al. (2011)

derive the manufacturer’s optimal production policy with a stochastic demand

under the cap-and-trade regulation. Further, Song and Leng (2012) examine the
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optimal inventory decision in a single-period production problem under carbon

cap-and-trade regulation and find that under which the firm could not only re-

duce carbon emission, but also enhance its business performance under some

conditions. Zhang and Xu (2013) also examine a single-period but multi-item

production planning supply chain under the carbon cap-and-trade regulation,

and find that the firm tends to produce more carbon efficient products under the

carbon cap-and-trade regulation.

Du et al. (2013) investigate a two-echelon supply chain in which the emission-

dependent manufacturer trades with emission permit supplier under the cap-

and-trade regulation. They prove that the manufacturer’s profit increases while

the supplier’s profit decreases with the emission cap. More interestingly, they

find that in the centralized system, there is a condition under which the supply

chain can achieve coordination. Benjaafar et al. (2013) examine the impact of

cap-and-trade regulation in a supply chain and find the possibility that the firms

can earn additional revenue under carbon cap-and-trade regulation by leveraging

differences between their emission reduction costs and the market carbon price.

In addition, they explore the impact of technology adoption on carbon emission

reduction and find that if the gains from alternative technologies are substantial,

the carbon cap-and-trade regulation could be effective in motivating the firms to

adopt the energy-efficient technologies.

Drake and Spinler (2013) indicate that the effectiveness of technology adop-

tion should not be underestimated in a sustainable economic. To develop green

supply chain such as carbon emission reduction, making investment in cleaner

technologies to reduce emission, namely, sustainability investment, has been dis-

cussed and proposed in the existing literature. Krass et al. (2013) consider the

case in which the environmental regulator acting as a Stackelberg leader firstly

decides the tax level and the firm acting as a follower selects emission control

technology, production quantity and price. They find that an initial increase in

taxes may motivate a switch to a cleaner technology and if the capital cost of

cleaner technologies is subsidized, the negative environmental effect would dis-
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appear and taxation becomes efficient. Drake et al. (2012) study the impact of

emission tax and emissions cap-and-trade regulation on a firm’s long-run tech-

nology choice and capacity decisions. They find that emissions would be reduced

under cap-and-trade regulation with technology choice and by embedding the

option value into the firm’s production decision, and cap-and-trade could help

firm to earn greater expected profits than emission tax due to the uncertainty of

emissions price and the option of no production under the former. Similar with

Drake et al. (2012), we also consider that the emission could be reduced by in-

vesting in the sustainable technology in production. In addition, consistent with

industrial practices, we consider that the consumers will be motivated to purchase

if the product is produced with lower emission, namely, the market demand is

dependent on product sustainability.

Supply chain coordination represents the scenario under which the individual

supply chain members will behave in a way which maximizes the total supply

chain system’s profitability (Xiao et al. 2005, Chopra and Meindl 2007). Some

papers have discussed the supply chain coordination with carbon emission consid-

eration. Jaber et al. (2013) investigate the problem of supply chain coordination

when considering greenhouse gap emissions generated from the manufacturer’s

processes under the European Union Emissions Trading System. Zhang and Liu

(2013) consider a supply chain in which the market demand correlates with the

green degree of green product. They find that the revenue sharing contract can

coordinate the supply chain and encourage positive response of the participat-

ing members to the cooperation strategy. Swami and Shah (2013) examine a

two-echelon supply chain in which both supply chain members can design the

greening effort. Under the deterministic demand setting, they find that a two-

part tariff contract can coordinate the supply chain. In this chapter, we consider

under the stochastic demand setting, whether the supply chain contracts such

as revenue sharing contract, buyback contract and two-part tariff contract can

achieve supply chain coordination.

As reviewed above, even though the existing literature has examined various
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important aspects of sustainable supply chain management with cap-and-trade

regulation, how the product sustainability and cap-and-trade regulation affect

the decision making in a supply chain is not yet fully known. In addition, it is

important to know how such a supply chain can be coordinated. To the best of

our knowledge, the above important research issues have not yet been explored

in the literature. Addressing these open research questions hence outlines the

contribution of this chapter. Table 4.1 shows the literature positioning of our

work.

Table 4.1: The literature positioning of Chapter 4

Research
Carbon Emission Product Supply Chain
Consideration Sustainability Coordination

Benjaafar et al. (2013) Yes No No
Drake et al. (2012) Yes Yes No
Hua et al. (2011) Yes No No
Jaber et al. (2013) Yes No Yes
Swami and Shah (2013) No Yes Yes
Zhang and Xu (2013) Yes No No
Zhang et al. (2011) Yes No No
Zhang and Liu (2013) No Yes Yes
Our work Yes Yes Yes

4.3 The Decentralized Supply Chain

In this section, we consider a two-echelon decentralized supply chain, where a

manufacturer (she) produces the product and trades with a retailer (he) by a

wholesale price contract in a single period. The retailer is responsible for selling

the product to the customer market. The decisions are made in two sequential

steps. In the first step, the manufacturer decides the product’s sustainability

level in terms of carbon emission abatement. In the second step, given the sus-

tainability level, the retailer decides the order quantity of the product from the

manufacturer. Please note that, in this chapter, we focus on examining the

optimal decisions of the sustainability level of the manufacturer and the order

quantity of the retailer. So we consider that the wholesale price is exogenously

given and will analyze its effects in Section 4.5.
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Let p denote the market price of a product sold by the retailer, c denote the

unit production cost, and w denote the wholesale price per unit product. Given

the wholesale price, the retailer decides to order x units of the product from the

manufacturer. Under the make-to-order setting, the manufacturer will produce

the amount of product exactly as the retailer’s order quantity. We assume that

there are no constraints on the order quantity and production capability. The

manufacturer produces the x units of the product (it is equal to the retailer’s order

quantity under the make-to-order setting) which results in a carbon emission

level (a − bs)x, where 0 ≤ s ≤ a/b is the sustainability level determined by

the manufacturer, a is the base emission when sustainability level is zero, and b

is the coefficient of the sustainability effect on reducing the emission. Here, we

assume a linear function of carbon emission reduction model, and it indicates that

improving the sustainability level has diminishing return on emission. Similar

models of reducing the carbon emission level by the investment can be found in

Jiang and Klabjan (2012).

Consistent with the existing literature (e.g., Swami and Shah 2013), we con-

sider a linear demand function affected by the sustainability level,

D(s) = d+ βs+ ǫ,

where d is the base demand and irrelevant to s, coefficient β > 0 indicates that the

sustainability level has a positive effect on the demand, and ǫ is a random factor

with pdf f(·), cdf F (·), a mean value of µ, and in the range [A,B], A ≤ 0 and B ≥
0. Here, we model the demand as a function of the sustainability level, because

the customers have strong willingness to purchase the sustainable products (see,

e.g., Shen et al. 2012). Similar models of the positive effects on the demand

function can also be found in the existing literature, such as Gurnani et al. (2007)

and Gurnani and Erkoc (2008). In order to assure the non-negative demand, we

further set A ≥ −d. If the demand does not exceed the order quantity x, then

the leftover x−D is disposed at the unit cost ch (it may be negative, in which it

represents a per-unit salvage value). Without loss of generality, we assume that

the shortage cost is equal to zero even if the demand exceeds x.
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We consider the cap-and-trade regulation for the emission in this chapter.

Let K denote the total permissible emission level, which is given by the regu-

lator and assumed to be exogenous. Let ce denote the emission price per unit

emission, and we assume that emission amount can always be bought or sold at

this price. Similar to Savaskan and Van Wassenhove (2006), Gurnani and Erkoc

(2008), Li et al. (2013), and Swami and Shah (2013), we assume that the sustain-

ability investment cost for the manufacturer is a quadratic function, i.e., cIs
2/2,

where cI is the sustainability investment coefficient.

In current business practice, it is true that the investment cost for improving

the sustainability level usually is high. So we assume that cI is high enough such

that cI ≥ 2cebβ, though we can obtain analytical results even if without this

assumption. Specifically, if cI < 2cebβ, we have the results that the lower bound

or upper bound of the sustainability are optimal to the manufacturer, i.e., s∗ = 0

under which the manufacture will not invest in the sustainability, or s∗ = a/b

under which the manufacture will invest in a very high sustainability level such

that no carbon emission will be produced. So in order to avoid these trivial cases

and make our results more elegant, we only present our results for the case of

cI ≥ 2cebβ hereafter4.1.

Table 4.2 summarizes some major notations used in this chapter.

We use the backward sequential decision-making approach to analyze the

problems. First, we assume that the sustainability level is given by the man-

ufacturer, under which we solve the retailer’s problem and obtain the optimal

response of the order quantity, i.e., x(s). In the second step, we solve the manu-

facturer’s problem and obtain the optimal sustainability level, i.e., s∗, given the

optimal response of the order quantity.

4.3.1 Retailer’s problem

For a given sustainability level, the retailer maximizes his own expected profit

by deciding the order quantity x. Denote Πr(x) as the retailer’s expected profit

4.1See the supplement for the case of cI < 2cebβ in Appendix C.

73



Table 4.2: Notation of Chapter 4

p product’s market price.
c unit production cost.
w wholesale price.
x order quantity for decentralized supply chain (production quantity

for centralized supply chain).
s sustainability level.
a the emission when sustainability level is zero.
b coefficient of the sustainability effect on reducing the emission
cI sustainability investment coefficient
β coefficient of the sustainability effect on increasing the demand
K total permissible emission level.
ce unit emission price.
D(·) demand function.
ch unit leftover cost.
Πm manufacturer’s profit
Πr retailer’s profit
Πd supply chain’s profit in the decentralized setting
Πc supply chain’s profit in the centralized setting

function. We have

max
x

Πr(x) = E[pmin{D, x} − wx− ch(x−D)+]. (4.1)

In the above profit function, the first term is the revenue from selling the

product in the customer market, the second term is the cost of ordering the

product from the manufacturer, and the last term is the leftover cost. After

deriving Equation (4.1) with respect to order quantity x, we can have the following

proposition.

Proposition 4.1 Given s, the unique optimal response of the order quantity x(s)

is as follow:

x(s) = F−1(
p− w

p+ ch
) + d+ βs. (4.2)

The optimal response of the order quantity is obtained by the first-order

condition of the retailer’s profit function. The solution is essentially the same

to the well-known newsvendor solution in the literature. Given a sustainability
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level s, the order quantity is increasing in the base demand d, and decreasing

in the unit leftover cost ch and wholesale price w, which are consistent with our

intuitive understanding.

Corollary 4.1 dx(s)/ds = β > 0.

Corollary 4.1 indicates that the order quantity is increasing in the sustain-

ability level. This result could be potentially explained by the fact that when

the sustainability level is higher, the market demand would be also higher, which

induces the retailer to order more from the manufacturer.

4.3.2 Manufacturer’s problem

The manufacturer’s profit function, denoted by Πm(s), is given by

Πm(s) = wx(s)− cx(s)− ce((a− bs)x(s)−K)− cI
2
s2. (4.3)

In the above profit function, the first term is the revenue generated from

selling the product to the retailer, the second term is the production cost, the

third term is the cost or revenue from buying or selling the extra allowances of

the emission, and the last term is the sustainability investment cost. Knowing

that the retailer orders the product x according to Equation(4.2) in response to

a given sustainability level s, the manufacturer decides on s to maximize her own

expected profit. By substituting x(s) into Equation (4.3) and differentiating it

with respect to sustainable level s, we can have the following proposition.

Proposition 4.2 The manufacturer’s optimal sustainability level is given by

s∗ =
ceb(F

−1( p−w
p+ch

) + d) + (w − c− cea)β

cI − 2cebβ
. (4.4)

Proposition 4.2 shows the optimal sustainability level for the manufacturer,

i.e., Equation (4.4), which is solved by the first-order condition of the manufac-

turer’s profit function. Obliviously, the optimal value is increasing in the base

demand d, and decreasing in the unit production cost c and unit leftover cost ch.
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Next we analyze the effects of the parameters b, β, ce, and cI , which are related

to the sustainability investment or the emission, on the optimal decisions x∗ and

s∗, the retailer’s optimal profit Π∗
r , the manufacturer’s optimal profit Π∗

m, and

the optimal profit of the whole supply chain Π∗
d (i.e., Π∗

d = Π∗
r +Π∗

m).

Proposition 4.3 x∗ and s∗ are increasing in b, and decreasing in cI .

Proposition 4.3 indicates that, if the coefficient of the sustainability effect on

reducing the emission b is larger, then the manufacturer will invest more in the

sustainability level s∗ to reduce the emission. Meanwhile, a higher sustainability

level will induce a larger demand, which will lead to a higher order quantity

x∗. So the order quantity is increasing in the coefficient b. Intuitively, if the

sustainability investment coefficient cI is large, then the manufacturer will invest

less in the sustainability level, which will lead to a lower order quantity.

Remark 4.1 For the effects of the coefficient of the sustainability effect on in-

creasing the demand β and unit emission price ce, we can obtain that

ds∗

dβ
=

w − c− ce(a− 2bs∗)

2cebβ − cI
;

dx∗

dβ
= s∗ +

ds∗

dβ
β;

ds∗

dce
=

−bx∗ + β(a− bs∗)

2cebβ − cI
;

dx∗

dce
=

ds∗

dce
β,

which may be positive or negative. And the way by which Π∗
r, Π

∗
m, and Π∗

d depend

on b, β, ce, and cI are more complex and are not monotone in general also.

4.4 The Centralized Supply Chain

In this section, we consider a centralized supply chain, where the manufacturer

and the retailer are fully aligned to achieve the channel’s maximal profit. Our ob-

jective is to maximize the expected profit of the whole supply chain by optimally

choosing the production quantity and sustainability investment.

max
x,s

Πc(x, s) = E[pmin{D, x} − cx− ch(x−D)+

−ce
(

(a− bs)x−K
)

− cI
2
s2]. (4.5)
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In the above profit function, the first term is the revenue generated from selling

the product in the customer market, the second term is the production cost,

the third term is the leftover cost, the fourth term is the cost or revenue from

buying or selling the extra allowances of the emission, and the last term is the

sustainability investment cost.

We use the sequential decision-making approach to analyze the problem, and

solve our problem by two steps. In the first step, we assume that the sustainable

level is given, under which we solve the problem and obtain the optimal response

of the production quantity, x(s). In the second step, we obtain the optimal

sustainability level, s∗, given the optimal response of the production quantity.

This approach can guarantee the optimality of the solution, and is widely used

in the literature, such as Petruzzi and Dada (1999) and Wang et al. (2004).

Proposition 4.4 shows the optimal response of the production quantity for a

given sustainability level.

Proposition 4.4 Given s, the unique optimal response of production quantity

x(s) is as follow:

x(s) = F−1(
p− c− ce(a− bs)

p+ ch
) + d+ βs. (4.6)

The optimal response of the production quantity is obtained by the first-order

condition of the channel’s profit function, for a given s. Similar to the decentral-

ized supply chain, the solution of the production quantity for the centralized

supply chain is essentially the same to the well-known newsvendor solution in the

literature. Given a sustainability level s, the order quantity is increasing in the

base demand d, and decreasing in the unit leftover cost ch, unit production cost

c, and unit emission price ce.

Corollary 4.2 dx(s)/ds = β + (ceb)/((p+ ch)f(x− d− βs)) > 0.

Similar to Corollary 4.1, Corollary 4.2 indicates that the production quantity

is increasing in the sustainability level.
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Substituting x = x(s) into Equation (4.5), the optimization problem becomes

a maximization over the single variable s: max
s

Πc(x(s), s). By taking and rear-

ranging the first and second derivatives of Πc(x(s), s) over s, we obtain

dΠc(x(s), s)

ds
= (p− c− ce(a− bs))β − cIs+ cebx(s); (4.7)

d2Πc(x(s), s)

ds2
= 2cebβ − cI +

(ceb)
2

(p+ ch)f(x(s)− d− βs)
.

As shown in Proposition 4.5, Πc(x(s), s) might have multiple optimal values

of the sustainability level, depending on the parameters of the problem.

Proposition 4.5 There is at most one optimal point of s that satisfies the

first-order condition of the channel’s profit function Πc(x(s), s) when f(·) is

monotonous.

There may be multiple points that satisfy the first-order optimality condi-

tion of the channel’s profit function Πc(x(s), s), i.e., dΠc(x(s), s)/ds = 0, where

dΠc(x(s), s)/ds is represented in Equation (4.7). If f(·) is a non-decreasing distri-

bution function (i.e., f ′(·) ≥ 0), then we obtain d3Πc(x(s), s)/ds
3 ≤ 0, implying

that dΠc(x(s), s)/ds is concave in s. So dΠc(x(s), s)/ds = 0 has at most two roots

and the larger of the two makes a change of sign for dΠc(x(s), s)/ds from positive

to negative that corresponds to a local maximum of Πc(x(s), s); if f(·) is a de-

creasing distribution function (i.e., f ′(·) < 0), then the smaller of the two makes

a change of sign for dΠc(x(s), s)/ds from positive to negative that corresponds to

a local maximum of Πc(x(s), s). We consider three general distributions of the

demand: uniform, exponential, and normal distribution in Corollary 4.3.

Corollary 4.3 For the uniform, exponential, and normal distribution of the de-

mand, there is at most one optimal point of s that satisfies dΠc(x(s), s)/ds = 0.

The following proposition describes how the optimal decision x∗ and s∗, and

the optimal profit of the whole supply chain Π∗
c change with system parameters

b, β, and cI .
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Proposition 4.6 x∗, s∗, and Π∗
c are increasing in b and β, and are decreasing

in cI .

Similar to the decentralized supply chain, the centralized supply chain will

invest more in the sustainability level s∗ and increase the production quantity x∗,

if the coefficient of the sustainability effect on reducing the emission b is large and

the sustainability investment coefficient cI is small. Besides, Proposition 4.6 indi-

cates that, if the coefficient of the sustainability effect on increasing the demand

β increases, then the centralized supply chain will increase the sustainability level

and the production quantity, and the channel’s profit will be increased as well,

and if the sustainability investment coefficient cI increases, then the channel’s

profit will be decreased. Note that b, β, and cI are the parameters related to sus-

tainability level or emission, so Proposition 4.6 implies that, in order to increase

the centralized supply chain profit, enhancing the efficiency of sustainability in-

vestment is significant.

Remark 4.2 For the effects of the unit emission price ce, we can obtain that

ds∗

dce
=

−bx∗ + p̂f̂β+ceb

p̂f̂
(a− bs∗)

2cebβ − cI +
(ceb)2

p̂f̂

;
dx∗

dce
=

−(a− bs∗) + (p̂f̂β + ceb)
ds∗

dce

p̂f̂
;

dΠ∗
c

dce
= K − (a− bs∗)x∗,

where p̂ = p+ ch and f̂ = f(x∗ − d− βs∗). Here, ds∗/dce, dx
∗/dce, and dΠ∗

c/dce

may be positive or non-positive, and the effects of the unit emission price are

complicate and are not monotone in general.

4.5 The Comparison of Decentralized and Cen-

tralized Supply Chains

In this section, we numerically compare the profit of the whole supply chain and

the optimal solutions under the decentralized case with those under the central-

ized case. Some interesting results are presented in the following subsection.
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4.5.1 Numerical examples

As shown in Corollary 4.3, there is at most one optimal solution of s that satisfies

the first-order condition of the profit function, for the centralized supply chain,

for the uniform, normal, and exponential distributions of the demand. Figures

4.1 and 4.2 show the numerical results for the uniform and normal distributions,

respectively. For the exponential distribution, we can obtain the similar numerical

results.

In the literature, the wholesale price is usually assumed to be larger than the

unit production cost, i.e., w > c. However, in this chapter, after considering

the cap-and-trade regulation, we could relax this assumption and set that the

wholesale price can be not lager than the unit production cost. For example, if the

manufacturer could obtain a higher profit by selling the quota of the allowances

of the emission, rather than by selling product, then she would invest in a high

sustainability level to reduce the emission in production, although the wholesale

price is very small.

In all numerical examples, we set p = 120, c = 50, d = 10, a = 5, b = 0.5, ce =

10, β = 1, and cI = 25. Without loss of generality, we let the total permissible

emission level equals to zero, i.e., K = 0. Then the manufacturer’s profit would

be negative if the wholesale price is lower, e.g., w < c. Alternatively, if we set a

high total permissible emission level, e.g., K = 500, the manufacturer can get a

positive profit even if the wholesale price is very low. For the uniform distribution,

we let ǫ ∽ U [0, 10], and for the normal distribution, we let ǫ ∽ Normal(10, 1).

We benchmark our results with the consideration of the sustainability and the

emission, to the results without considering the sustainability and the emission

(i.e., ce = cI = a = b = sd = sc = 0). We use ‘SE’ to stand for the ‘Sustainability

and emission’, so ‘with SE’ means ‘with the consideration of the sustainability

and the emission’ and ‘without SE’ means ‘without considering the sustainability

and the emission’.

Figure 4.1 shows the effects of the wholesale price on the optimal solutions

and the corresponding profits for the uniform distribution of the demand. Ob-
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Figure 4.1: Effects of the wholesale price on the optimal solutions and the profits
for the uniform distribution of the demand.

viously, the optimal solutions and the corresponding profits for the centralized

case are not affected by the wholesale price. Figures 4.1(a) and 4.1(b) show that

the optimal sustainability level and order quantity for the decentralized case are

non-decreasing and decreasing, respectively, in the wholesale price. Figure 4.1(c)

shows that the manufacturer’s profit and the retailer’s profit are increasing and

decreasing, respectively, in the wholesale price. Besides, the manufacturer’s profit

with SE is smaller than that without SE, but the retailer’s profit with SE is larger

than that without SE. Because, with the consideration of the sustainability and

the emission, the manufacturer needs to pay the emission cost and the sustain-

ability investment cost, while the retailer can get the benefit of the sustainability

effect on increasing the demand. As shown in Figure 4.1(d), the optimal profit

of the whole supply chain for the decentralized case is not larger than that for

the centralized case. If we do not consider the sustainability investment and the

emission issues, the optimal profit of the whole supply chain is obtained when

the wholesale price equals to the unit production cost (i.e., w = c = 50). How-
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ever, as shown in Figure 4.1(d), our results indicate that the optimal profit of

the whole supply chain obtains its maximum at w = 94 which is almost double

of the unit production cost, due to the effects of the sustainability and emission

consideration. Those differences are mainly due to the effects of the sustainability

investment and emission consideration.
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Figure 4.2: Effects of the wholesale price on the optimal solutions and the profits
for the normal distribution of the demand.

Figure 4.2 shows the effects of the wholesale price on the optimal solutions and

the corresponding profits for the normal distribution of the demand. The effects

are almost the same with that for the uniform distribution, except for the effects

on the sustainability level and the order quantity. As shown in Figures 4.2(a) and

4.2(b), the optimal sustainability level and the order quantity for the decentralized

case are not monotonous in the wholesale price, with the consideration of the

sustainability and the emission. If we do not consider the sustainability issue,

then the order quantity will be decreasing in the wholesale price. However, in

this chapter, we consider that the sustainability level has the direct effect on

the demand which would further affect the order quantity. Besides, as shown in
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Equations (4.2) and (4.4), the order quantity is increasing in the sustainability

level which may be increasing or decreasing in the wholesale price, depending

on the cdf of the distribution of the demand and the value of the coefficient

of the sustainability effect on increasing the demand (i.e., β). For the normal

distribution of the demand, we thus obtain the above result, which is different

from the other distributions and the situations without the sustainability and the

emission consideration.

4.6 Coordinating the Supply Chain

This section studies the coordination in a supply chain with the consideration

of the sustainability and the emission. In the previous literature, several con-

tracts have been proposed for coordinating a supply chain, including the buy-

back contract, the revenue sharing contract, the two-part tariff contract, etc

(Cachon 2003, Cachon and Lariviere 2005). In this chapter, we consider three

contracts, i.e., buyback, revenue sharing, and two-part tariff contracts, and verify

that whether they can coordinate the supply chain. Recalling that this chapter

determiners the optimal order quantity (or production quantity) and sustain-

ability level. So a key question is that whether the contracts that coordinate

the retailer’s order quantity and also coordinate the manufacture’s sustainability

level. We restrict our attention to the cases in which the sustainability levels

are determined by the first-order conditions of the profit functions. Note that

under some contracts, such as the buyback contract, the manufacturer needs to

depose the unsold products, which may causes carbon emission. However, in this

chapter we will not consider such issues, and only focus on the situation where

the emission is caused when the manufacturer produces the products.

Let xd and sd be the optimal solutions of the order quantity and sustainability

level, respectively, for the decentralized supply chain, and xc and sc be the optimal

solutions of the production quantity and sustainability level, respectively, for the

centralized chain.
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4.6.1 Revenue sharing contract

We consider that, under a revenue sharing contract (w, φ), the retailer pays the

manufacturer a unit wholesale price w for each unit ordered plus a proportion of

his revenue from selling the products to the customers, where φ is the proportion

of the revenue the retailer keeps, and thus 1− φ is the proportion shared to the

manufacturer. See Cachon (2003) and Cachon and Lariviere (2005) for detailed

discussions of this contract. The retailer’s and the manufacturer’s expected profit

functions are given by

Πr = E[φpmin{D, x} − wx− ch(x−D)+];

Πm = E[(1 − φ)pmin{D, x}+ wx− cx− ce((a− bs)x−K)− cI
2
s2].

Proposition 4.7 For a given revenue sharing contract (w, φ), the optimal deci-

sion of the order quantity and sustainability investments (xd, sd) = (x∗, s∗) are

determined as follows:

x− F−1(
φp− w

φp+ ch
)− d− βs = 0; (4.8)

((1− φ)p+ w − c− ce(a− bs))β − cIs+ cebx = 0. (4.9)

Comparing Equations (4.8) with (4.6) and (4.9) with (4.7), we find that

(xd, sd) can be the centralized supply chain’s optimal solution (xc, sc) if w = φp

and φ = (p + ch)/(p(p − c − ce(a − bsc))) − ch/p. Therefore, a revenue sharing

contract with reasonable contract parameters is sufficient to coordinate the sup-

ply chain with the sustainability and emission consideration. Besides, our result

shows that there is s single coordinating revenue sharing contract such that pro-

vides only one allocation of the supply chain’s profit. This result is similar to the

coordination result of the revenue sharing contract with price dependent demand

and non-zero lost sales penalty (Cachon 2003).

4.6.2 Buyback contract

With a buyback contract (w, bc), the manufacturer charges the retailer a unit

wholesale price w for each unit purchased, but pays the retailer bc per unit re-
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maining at the end of the season. See Pasternack (1985) and Cachon (2003) for

detailed analysis of this contract in the context of the newsvendor problem. The

retailer’s and the manufacturer’s expected profit functions are given by

Πr = E[pmin{D, x} − wx− ch(x−D)+ + bc(x−D)+];

Πm = E[wx− cx− ce((a− bs)x−K)− cI
2
s2 − bc(x−D)+].

Proposition 4.8 For a given buyback contract (w, bc), the optimal decision of the

order quantity and sustainability investments (xd, sd) = (x∗, s∗) are determined

as follows:

x− F−1(
p− w

p+ ch − bc
)− d− βs = 0; (4.10)

(w − c− ce(a− bs))β − cIs+ cebx = 0. (4.11)

Comparing Equations (4.10) with (4.6) and (4.11) with (4.7), we find that

(xd, sd) can be the centralized supply chain’s optimal solution (xc, sc) only if

w = p and bc = p + ch. Therefore, the coordination can only occur if w =

p, which is not desirable. With w = p and bc = p + ch, the retailer earns a

non-positive profit, so the retailer certainly cannot be better off with buyback

contract. Cachon and Lariviere (2005) prove that the revenue sharing contract

is equivalent to the buyback contract with the fixed-price newsvendor setting.

However, our results show that the revenue sharing contract can coordinate the

supply chain with the consideration of the sustainability and the emission whereas

the buyback contract cannot.

4.6.3 Two-part tariff contract

With a two-part tariff contract (w,G), the manufacturer charges the retailer a

per unit wholesale price w and a fix fee G. See Cachon and Lariviere (2005) and

Cachon and Kök (2010) for detailed analysis of this contract. The retailer’s and
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the manufacturer’s expected profit functions are given by

Πr = E[pmin{D, x} − wx− ch(x−D)+ −G];

Πm = E[wx− cx− ce((a− bs)x−K)− cI
2
s2 +G].

Proposition 4.9 For a given two-part tariff contract (w,G), the optimal deci-

sion of the order quantity and sustainability investment (xd, sd) = (x∗, s∗) are

determined as follows:

x− F−1(
p− w

p+ ch
)− d− βs = 0; (4.12)

(w − c− ce(a− bs))β − cIs + cebx = 0. (4.13)

Comparing Equations (4.12) with (4.6) and (4.13) with (4.7), we find that

(xd, sd) can be the centralized supply chain’s optimal solution (xc, sc) only if

w = p = c + ce(a − bsc). With p = c + ce(a − bsc), the manufacture can get

the positive profit only if the total permissible emission level K is sufficient large

such that the manufacture can earn some profit by selling the extra allowances

of the emission. With w = p, the retailer earns a non-positive profit, so the

retailer cannot be better off with two-part tariff contract. Hence, the two-part

tariff contract does not coordinate the supply chain with the consideration of the

sustainability and the emission.

Supply chain coordination implies that under a scenario the individual sup-

ply chain members can behave in a way eliminating double marginalization and

maximizing the total supply chain’s profit, so as to achieve the Pareto improve-

ment. We find that when we consider the sustainability investment and carbon

emission for the supply chain, the revenue sharing contract can coordinate the

supply chain while the buyback and two-part tariff contracts cannot coordinate

the supply chain. It may be due to the fact that the revenue sharing contract can

induce the manufacturer doing better in the sustainability investment. There-

fore, we should propose the revenue sharing contract for the supply chain so as

to achieve the Pareto improvement.
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4.7 Conclusions

Motivated by the real industrial practices, in this chapter, we consider supply

chains in which a high level of product’s sustainability not only increases the

market demand, but also reduces the carbon emission, and its sustainability pro-

duction of carbon emission abatement requires the sustainability investment as

a cost. We first investigate a two-echelon decentralized supply chain in which

the manufacturer firstly decides the product’s sustainability level and then the

retailer places an order under the cap-and-trade regulation. We also examine the

supply chain in the centralized setting and then compare their performance with

those in the decentralized one.

We derive the optimal ordering quantity and sustainability investment for

decentralized setting, and the optimal production quantity and sustainability in-

vestment for centralized setting as well. We find that the sustainability investment

coefficient has a significant impact on the optimal order quantity (or production

quantity) and sustainability investment. If the sustainability investment and the

emission issues are not considered, the optimal profit of the whole supply chain

will be theoretically obtained when the wholesale price equals to the unit produc-

tion cost. However, by examining the effects of the wholesale price, we find that,

due to the effects of the sustainability and the emission, the optimal profit of the

whole supply chain obtains its maximum at a wholesale price which is almost

double of the unit production cost. On the other hand, if we do not consider the

sustainability and the emission issues, then the order quantity will be decreasing

in the wholesale price. However, our results show that the order quantity may

be unexpectedly increasing in the wholesale price, because the order quantity is

increasing in the sustainability level, but which may be decreasing in the whole-

sale price, depending on the cdf of the distribution of the demand and the value

of the coefficient of the sustainability effect on increasing the demand. Moreover,

with the consideration of the sustainability and the emission, the manufacturer’s

profit is smaller than that without considering the sustainability and the emis-

sion, but the retailer’s profit has the inverse result. It is because that, with the
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consideration of the sustainability and the emission, the manufacturer needs to

pay the emission cost and the sustainability investment cost, while the retailer

can get the benefit of the sustainability effect on increasing the demand.

Finally, we study the coordination in the supply chain by considering three

contracts, i.e., buyback, revenue sharing, and two-part tariff contracts. We verify

that whether the contracts that coordinate the retailer’s order quantity and also

coordinate the manufacturer’s sustainability level. It is shown that with the

consideration of the sustainability and the emission, the buyback and two-part

tariff contracts cannot coordinate the supply chain but revenue sharing contract

can coordinate it. The allocation of the supply chain’s profit in revenue sharing

contract is unique. From the coordination perspective, this finding implies that

the revenue sharing contract should be suggested to be adopted in sustainable

supply chain.
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Chapter 5

Summary and Future Research

In this thesis, we study three topics in capacity and sustainability investments

from the perspectives of pricing and carbon emission. In the first and second

topics, we analyze the capacity investment and pricing policies for an electricity

company with the TOU tariff. In the first topic, we consider two models, one

with price inelasticity of total demand (the total demand of electricity will not

be affected by prices) and the other one with price elasticity of demand (the

demands of electricity are functions of prices). We derive the optimal capac-

ity investment and pricing policies for the electricity company for both models.

Besides, for the model with price inelasticity of total demand, we derive the op-

timal shifted consumption for the customers under the TOU tariff by solving the

customer’s problem. Based on the work in the first topic, we further study the

capacity investment and pricing policies for the TOU tariff with uncertain shifted

consumption in the second topic. By examining the behavior of the optimal solu-

tions with respect to some parameters, we obtain some insights for the electricity

company, which are practically relevant. The electricity company may follow

the insights upon implementing the TOU tariff. For example, we find that the

electricity company should not change the prices when the market size expands.

This guideline should be helpful to the electricity company with practical rele-

vance. The third topic studies the environmental sustainability investment under

a cap-and-trade regulation of carbon emission. We consider both decentralized

and centralized supply chains with one manufacturer and one retailer. The opti-

mal sustainability investment and order quantity are derived for the decentralized
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supply chain, and the optimal sustainability investment and production quantity

are derived for the centralized supply chain. Moreover, the coordination of the

supply chain is studied under several contracts in this topic. Important insights

and managerial implications are discussed in all topics.

The phenomenon of the peak and non-peak periods exists not only in the

electricity industry, but also in other industries, such as the transportation in-

dustry and telecommunication industry. Thus, from the application perspective,

the analysis of the capacities investment in various technologies and the pricing

for the peak period and non-peak period demands in the first and second topics

can be applied to extensive industries with the property of having the peak and

non-peak periods. In terms of future research, an immediate extension would be

to consider the competition effects of multiple companies on the capacity and

pricing policies. Some industrial examples have shown that the mandatory TOU

tariff may be applied to some customers in some areas (RAP 2008, Friedman

2011, Jessoe and Rapson 2014). Based on this observation, we assume that the

proportion of customers who use the TOU tariff is given. However, there are

some examples showing that the TOU tariff may be optional to the customers

(Tweed 2011), so another future research direction would be to consider the set-

ting in which the proportion of customers using the TOU tariff is determined

endogenously by the electricity prices and customers’ values, based on consumer

choice behaviour.

In the third topic, we have focused on investigating the optimal decisions of

order quantity (or production quantity) and sustainability investment, given the

wholesale price. Although the effects of wholesale price on the optimal solutions

and profits are studied in this topic, it is worth considering the setting under which

the wholesale price is determined endogenously in the future research. Besides,

the consideration of the joint decision of the price and sustainability investment

may provide additional useful insights. Moreover, it is also interesting to study

the risk issues in a supply chain under the cap-and-trade regulation.

Finally, the combination of the three topics leads to a very interesting research
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direction. From an environmental perspective, the generation of electricity and

heat accounts for 41% of the total CO2 emission in the world in 2010. The use of

fossil fuels to generate electricity also accounts for 38% of total CO2 emission in

the U.S. in 2012 (IEA 2012, EPA 2014). So it is an important future research

direction to incorporate the modelling of CO2 emission in the third topic into the

first and second topics, and examine the effects of the constraints of CO2 emission

on the capacity investment and pricing policies for the electricity company. To

extend our research on the TOU tariff with consideration of cap-and-trade regu-

lation, we can consider that the generation of electricity will emit CO2. Each unit

of electricity generated by different technologies emits different units of CO2. The

electricity company can buy or sell the emission allowances in an outside market

under the cap-and-trade regulation. In this way, we relate the three topics in this

thesis together. This thesis not only fills a gap in the literature, but also lays a

foundation for future research.
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Appendix A

Proofs and Supplement for
Chapter 2

A.1 Proofs

Proof of Proposition 2.1 We can easily show that Πc(q
i
s) is convex in qis. The

first derivative of Πc(q
i
s) with respect to qis is

dΠc(q
i
s)

dqis
= g′(qis)− (p2 − p1).

Note that g′(qis) is increasing in qis, so by comparing the values of g′(0) and

g′(q2/N) with p2 − p1, we obtain the results.

Before presenting the proof of Theorem 2.1, we show Lemma A.1 for the model

with price inelasticity of total demand.

Lemma A.1 If q2 − qs(p1, p2) ≤ τk1, the optimal capacities (k1(p), k2(p)) are

determined by:

(

k1(p), k2(p)
)

=

{

( q1+qs(p1,p2)
1−τ

, 0) if qs(p1, p2) > q0;

( q2−qs(p1,p2)
τ

, 0) if qs(p1, p2) ≤ q0.

If q2 − qs(p1, p2) ≥ τk1, the optimal capacities (k1(p), k2(p)) are determined by:

(

k1(p), k2(p)
)

=































( q2−qs(p1,p2)
τ

, 0) if qs(p1, p2) ≤ q0

and τβ2 + c2 ≥ τβ1 + c1;

( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

) if qs(p1, p2) ≤ q0

and τβ2 + c2 < τβ1 + c1;

no feasible solution if qs(p1, p2) > q0.
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Proof of Lemma A.1 Note from Constraint (2.3) that k2, determined by

q2− qs(p1, p2), can be zero or positive. So we consider two cases. The first case is

q2− qs(p1, p2) ≤ τk1 such that k2 = 0. In this case, the company’s profit function

can be expressed as

Πg(k,p) = α(p1q1 + p2q2) + (1− α)p0(q1 + q2)− (p2 − p1)qs(p1, p2)

−β1(q1 + q2)− c1k1. (A.1)

The second case is q2 − qs(p1, p2) ≥ τk1 such that k2 ≥ 0. In this case, the

company’s profit function can be expressed by:

Πg(k,p) = α(p1q1 + p2q2) + (1− α)p0(q1 + q2)− (p2 − p1 + β1 − β2)qs(p1, p2)

−β1q1 − β2q2 − (c1 + τβ1 − τβ2)k1 − c2k2. (A.2)

First we prove the results for the case q2 − qs(p1, p2) ≤ τk1 (k2 = 0). From

Equation (A.1), we find that Πg(k,p) is decreasing in k1. Then the optimal k1

is equal to its lower bound, which is indicated by Constraints (2.1) and (2.2).

Note that k2 = 0, so we need to compare q1+qs(p1,p2)
1−τ

and q2−qs(p1,p2)
τ

to determine

the lower bound on k1. After that, the proof for the case q2 − qs(p1, p2) ≤ τk1 is

completed.

We then show the results for the case where q2 − qs(p1, p2) ≥ τk1 (k2 ≥ 0).

Recalling that we have two other constraints: Constraint (2.1) q1 + qs(p1, p2) ≤
(1−τ)k1 and Constraint (2.2) q2−qs(p1, p2) ≤ τ(k1+k2). If

q1+qs(p1,p2)
1−τ

> q2−qs(p1,p2)
τ

(i.e., qs > q0), combining it with q2−qs(p1, p2) ≥ τk1 and q1+qs(p1, p2) ≤ (1−τ)k1,

we get a contradiction. So there is no feasible solution if qs > q0.

Next we show the results for the case where q1+qs(p1,p2)
1−τ

≤ q2−qs(p1,p2)
τ

(i.e.,

qs ≤ q0). Note from Equation (A.2) that Πg(k,p) is decreasing in k2, and it is

increasing in k1 if c1+ τβ1− τβ2 ≤ 0 and decreasing otherwise. Then we consider

two cases as follows:

(1) If c1 + τβ1 − τβ2 ≤ 0, then Πg(k,p) is increasing in k1 and decreasing in

k2. From the conditions q2 − qs(p1, p2) ≥ τk1, q1 + qs(p1, p2) ≤ (1 − τ)k1, and

q2 − qs(p1, p2) ≤ τ(k1 + k2) (where q1+qs(p1,p2)
1−τ

≤ q2−qs(p1,p2)
τ

), we obtain that the

optimal k1 and k2 are k1(p1, p2) =
q2−qs(p1,p2)

τ
and k2(p1, p2) = 0, respectively.
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(2) If c1 + τβ1 − τβ2 > 0, then Πg(k,p) is decreasing in k1 and k2. In this

case, we still have the conditions q2− qs(p1, p2) ≥ τk1, q1 + qs(p1, p2) ≤ (1− τ)k1,

and q2 − qs(p1, p2) ≤ τ(k1 + k2) (where q1+qs(p1,p2)
1−τ

≤ q2−qs(p1,p2)
τ

). However, in

order to maximize Πg(k,p), which is decreasing in k1 and k2, we need to compare

c1+τβ1−τβ2

c2
and 1.

(2.1) If c1+τβ1−τβ2

c2
≥ 1, then the optimal k1 and k2 are k1(p1, p2) =

q1+qs(p1,p2)
1−τ

and k2(p1, p2) =
q0−qs(p1,p2)

τ(1−τ)
.

(2.2) If c1+τβ1−τβ2

c2
< 1, then the optimal k1 and k2 are k1(p1, p2) =

q2−qs(p1,p2)
τ

and k2(p1, p2) = 0.

Thus, by combining (1) and (2), we obtain that, for the case qs ≤
q0, (k1(p1, p2), k2(p1, p2)) = ( q2−qs(p1,p2)

τ
, 0) if c1 + τβ1 − τβ2 < c2;

(k1(p1, p2), k2(p1, p2)) = ( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

) if c1 + τβ1 − τβ2 ≥ c2.

By combining the results obtained above, we complete the proof.

Proof of Theorem 2.1 From Lemma A.1, we find that there are five cases for

the capacity decision. We enumerate them in Table A.1.

Table A.1: Five cases for the capacity values
Case (k1(p), k2(p)) Conditions

1 ( q1+qs(p1,p2)
1−τ

, 0) qs(p1, p2) > q0 and q2 − qs(p1, p2) ≤ τk1
2 ( q2−qs(p1,p2)

τ
, 0) qs(p1, p2) ≤ q0 and q2 − qs(p1, p2) ≤ τk1

3 ( q2−qs(p1,p2)
τ

, 0)
qs(p1, p2) ≤ q0, τβ2 + c2 ≥ τβ1 + c1

and q2 − qs(p1, p2) ≥ τk1

4 ( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

)
qs(p1, p2) ≤ q0, τβ2 + c2 < τβ1 + c1

and q2 − qs(p1, p2) ≥ τk1
5 no feasible solution qs(p1, p2) > q0 and q2 − qs(p1, p2) ≥ τk1

First, we divide Case 2 into two cases as shown in Table A.2:

Table A.2: Two sub-cases for the capacity values
Case (k1(p), k2(p)) Conditions

2-1 ( q2−qs(p1,p2)
τ

, 0)
qs(p1, p2) ≤ q0, τβ2 + c2 ≥ τβ1 + c1

and q2 − qs(p1, p2) ≤ τk1

2-2 ( q2−qs(p1,p2)
τ

, 0)
qs(p1, p2) ≤ q0, τβ2 + c2 < τβ1 + c1

and q2 − qs(p1, p2) ≤ τk1

Then, we complete the proof by considering three combinations:
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(1) First combination: by combining Cases 2-1 and 3, we obtain that

(k1(p), k2(p)) = ( q2−qs(p1,p2)
τ

, 0) if qs(p1, p2) ≤ q0 and τβ2 + c2 ≥ τβ1 + c1.

(2) Second combination: we combine Cases 2-2 and 4. Note that in Case 2-2,

k1 =
q2−qs(p1,p2)

τ
, so the condition q2 − qs(p1, p2) ≤ τk1 is always satisfied and the

optimal value is obtained on the boundary of this condition for Case 4. This

implies that Case 2-2 is dominated by Case 4. So, by combining Cases 2-2 and

4, we obtain that (k1(p), k2(p)) = ( q1+qs(p1,p2)
1−τ

, q0−qs(p1,p2)
τ(1−τ)

) if qs(p1, p2) ≤ q0 and

τβ2 + c2 < τβ1 + c1.

(3) Third combination: by combining Cases 1 and 5, we obtain that

(k1(p), k2(p)) = ( q1+qs(p1,p2)
1−τ

, 0) if qs(p1, p2) > q0.

Proof of Lemma 2.1 Note that g′(qis) ≥ 0 and p2−p1 = g′(qis) = g′(qs/(αN)),

then the condition for Case III, i.e., qs(p1, p2) ≥ q0, is equivalent to p2 − p1 ≥
g′(q0/(αN)). We can list the conditions associated with p1 and p2: g

′(q0/(αN)) ≤
p2 − p1 ≤ g′(q2/N); p1 ≤ p∗0 ≤ p2 ≤ p̄2; p2 − p1 = g′(qs/(αN)), ∆Πc ≤ 0, and

∆Πc|(p1=0,p2=g′(q0/(αN))) ≤ 0.

Taking the first partial derivative of Πg(p) with respect to p1, we have

∂Πg(p)

∂p1
= αq1 + qs(p1, p2)− (p2 − p1 +

c1
1− τ

)
∂qs(p1, p2)

∂p1

= αq1 + qs(p1, p2)− (p2 − p1 +
c1

1− τ
)αN

∂qis(p1, p2)

∂p1

= αq1 + qs(p1, p2) + (p2 − p1 +
c1

1− τ
)

αN

g′′(qs/(αN))
> 0,

where (∂qis(p1, p2))/∂p1 = −1/g′′(qs/(αN)) is derived from Equation (2.9). The

inequality holds because of p2 > p1 and g′′(qis) > 0. Therefore, Πg(p) is increasing

in p1 for a given p2. Combining with the conditions listed above, we have the

result that the optimal point either lies on p2 − p1 = g′(q0/(αN)) or ∆Πc = 0.

Next we consider the point along with the curve ∆Πc = 0, and we treat p2 as

a function of p1. Then, we have

dp2(p1)

dp1
= −∂∆Πc/∂p1

∂∆Πc/∂p2

= −
αq1 + qs(p1, p2)− ∂qs(p1,p2)

∂p1
(p2 − p1 − g′(qs/(αN)))

αq2 − qs(p1, p2)− ∂qs(p1,p2)
∂p2

(p2 − p1 − g′(qs/(αN)))
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= −αq1 + qs(p1, p2)

αq2 − qs(p1, p2)
< 0. (A.3)

The last equality holds because of p2− p1 = g′(qs/(αN)), which is derived by the

customer’s optimal response of shifted consumption. Furthermore, we have

Πg(p|∆Πc=0) = p̄0(q1 + q2)− αNg(qs/(αN))− c1
1− τ

qs − β1(q1 + q2)−
c1

1− τ
q1.

By taking the first derivative of Πg(p)|∆Πc=0 with respect to p1, we have

dΠg(p|∆Πc=0)

dp1
=

∂Πg(p|∆Πc=0)

∂p2

dp2(p1)

dp1
+

∂Πg(p|∆Πc=0)

∂p1

= (g′(qs/(αN)) +
c1

1− τ
)

αN

g′′(qs/(αN))
(−dp2(p1)

dp1
+ 1)

= (g′(qs/(αN)) +
c1

1− τ
)

αN

g′′(qs/(αN))

α(q1 + q2)

αq2 − qs(p1, p2)
> 0.

This implies that along with ∆Πc = 0, Πg(p) is increasing in p1. Note that

dp2(p1)
dp1

indicates that Equation (A.3) is negative. So the optimal point is the

intersection of p2 − p1 = g′(q0/(αN)) and ∆Πc = 0 regardless of the value of

p̄2. Although the value of p̄2 is taken into consideration, the optimal point is

on p2 − p1 = g′(q0/(αN)), which is the boundary of Cases I and II, if p̄2 ≥
g′(q0/(αN)); otherwise, there is no feasible solution for Case III. Therefore, we

say that Case III is dominated by Cases I and II.

Proof of Theorem 2.2 Please note that γ = c1
τ

if τβ2 + c2 ≥ τβ1 + c1, and

γ = β2+c2/τ−β1−c1
1−τ

if τβ2 + c2 ≤ τβ1 + c1. Then combining Cases I and II, we

express the profit function as follows:

Πg(p) = α(p1q1 + p2q2) + (1− α)p0(q1 + q2)− (p2 − p1 − γ)qs(p1, p2)

−
{

(β1+c1)q1+(β2+c2/τ)q0
1−τ

if τβ2 + c2 ≤ τβ1 + c1;

β1(q1 + q2) + c1
q2
τ

otherwise.
(A.4)

We next list the conditions associated with p1 and p2: g′(0) ≤ p2 − p1 ≤
g′(q0/(αN)); p1 ≤ p̄0 ≤ p2 ≤ p̄2; p2 − p1 = g′(qs/(αN)), ∆Πc ≤ 0 and

∆Πc|(p1=0,p2=θ) ≤ 0. Let ω be the feasible region of p1 and p2 such that

g′(0) ≤ p2 − p1 ≤ g′(q0/(αN)) and ∆Πc ≤ 0.
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Taking the first partial derivative of Πg(p) with respect to p1, we have

∂Πg(p)

∂p1
= αq1 + qs(p1, p2)− (p2 − p1 − γ)

∂qs(p1, p2)

∂p1

= αq1 + qs(p1, p2) + (p2 − p1 − γ)
αN

g′′(qs/(αN))
, (A.5)

where (∂qs(p1, p2))/∂p1 = −(αN)/g′′(qs/(αN)) is derived from Equation (2.9).

Then we consider that, if p2 − p1 − γ ≥ 0, then ∂Πg(p)
∂p1

> 0 and Πg(p) is

increasing in p1; if p2 − p1 − γ < 0, then by taking the second partial derivative

of Πg(p) with respect to p1, we have

∂2Πg(p)

∂p21
= − αN

g′′(qs/(αN))

(

2− (p2 − p1 − γ)
g′′′(qs/(αN))

(g′′(qs/(αN)))2

)

≤ 0.

Moreover, note from Equation (A.5) that p1 and p2 only explicitly appear in

the term of p2 − p1. Combining it with qs = αNg′−1(p2 − p1), we find that the

solution of ∂Πg(p)
∂p1

= 0 is p2 − p1 = pD2 , where pD2 is the solution of p2 from the

equation: ∂Πg(p)
∂p1

|p1=0 = αq1 + αNg′−1(p2) + (p2 − γ) αN
g′′(g′−1(p2))

= 0. This implies

that the solutions obtained from the first-order condition of Πg(p) are a straight

line, e.g., p2 − p1 = pD2 .

On the other hand, we have

Πg(p|∆Πc=0) = p̄0(q1 + q2)− αNg(qs/(αN)) + γqs

−
{

(β1+c1)q1+(β2+c2/τ)q0
1−τ

if τβ2 + c2 ≤ τβ1 + c1;

β1(q1 + q2) + c1
q2
τ

otherwise.

By taking the first derivative of Πg(p|∆Πc=0) with respect to p1, we have

dΠg(p|∆Πc=0)

dp1
=

∂Πg(p|∆Πc=0)

∂p2

dp2(p1)

dp1
+

∂Πg(p|∆Πc=0)

∂p1

= (g′(qs/(αN))− γ)
αN

g′′(qs/(αN))

α(q1 + q2)

αq2 − qs(p1, p2)

= (p2 − p1 − γ)
αN

g′′(qs/(αN))

α(q1 + q2)

αq2 − qs(p1, p2)
,

where the value of dp2(p1)
dp1

is indicated in Equation (A.3). This implies that along

with ∆Πc = 0, Πg(p) increases in p1 when p2 − p1 − γ ≥ 0 and decreases oth-

erwise. Here, we consider two cases: Case (1) γ ≤ g′(q0/(αN)) and Case (2)

γ ≥ g′(q0/(αN)).
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Case (1) γ ≤ g′(q0/(αN)). Then we consider the value of pD2 . Since

∂Πg(p)

∂p1
|p2−p1=γ = αq1 + qs(p1, p2) ≥ 0,

we have the result that pD2 ≤ γ for Case (1), so we consider two subcases: Subcase

(1.1) pD2 ≤ g′(0) and Subcase (1.2) pD2 ≥ g′(0).

Subcase (1.1) pD2 ≤ g′(0). Then in the feasible region ω, we have ∂Πg(p)

∂p1
≥ 0.

This implies that the optimal point is either on the line p2 − p1 = g′(0) or on the

curve ∆Πc = 0. Along with line p2 − p1 = g′(0), we have

dΠg(p|p2−p1=C′

s(0))

dp1
= α(q1 + q2) ≥ 0.

This means that the intersection of p2−p1 = g′(0) and ∆Πc = 0 is optimal on the

line p2 − p1 = g′(0). So we only need to consider the curve ∆Πc = 0. Recalling

that along with ∆Πc = 0, Πg(p) increases in p1 when p2−p1−γ ≥ 0, and decreases

otherwise. Moreover, along with the curve ∆Πc = 0, we have dp2(p1)
dp1

< 0, which

is indicated in Equation (A.3). So the intersection of ∆Πc = 0 and p2 − p1 = γ

is optimal on the curve ∆Πc = 0. Therefore, the intersection of ∆Πc = 0 and

p2 − p1 = γ is an optimal solution for Subcase (1.1) regardless of the value of p̄2.

Next we consider the effect of the value of p̄2: the intersection of ∆Πc = 0 and

p2 − p1 = γ is still an optimal point if the line segment p2 = p̄2 is above it (i.e.,

p∗1 = pB2 − γ and p∗2 = pB2 if p̄2 ≥ pB2 ); the intersection of p2 = p̄2 and ∆Πc = 0

is an optimal point if the line segment p2 = p̄2 is between the intersection of

p2 − p1 = γ and ∆Πc = 0, and the intersection of p2 − p1 = g′(0) and ∆Πc = 0,

since Πg(p) increases in p2 along with the curve ∆Πc = 0 when p2 − p1 − γ ≤ 0

(i.e., p∗1 = pE1 and p∗2 = p̄2 if pA2 ≤ p̄2 ≤ pB2 ); the intersection of p2 = p̄2 and

p2 − p1 = g′(0) is an optimal point if the line segment p2 = p̄2 is between the

intersection of p2−p1 = g′(0) and ∆Πc = 0, and p2 = g′(0), since Πg(p) increases

in p1 along with the line segment p2 − p1 = g′(0) (i.e., p∗1 = p̄2 − g′(0) and

p∗2 = p̄2 if g′(0) ≤ p̄2 ≤ pA2 ); and there is no feasible solution if p̄2 ≤ g′(0), we

omit this extremely special case. The optimal shifted consumption is determined

immediately as long as the optimal prices are obtained.
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Subcase (1.2) pD2 ≥ g′(0). Then there is the line segment p2 − p1 = pD2 in the

feasible region ω. The optimal point is either on the line segment p2 − p1 = pD2

as ∂2Πg(p)

∂p21
≤ 0 when p2 − p1 − γ ≤ 0, or on the curve ∆Πc = 0. Along with line

p2 − p1 = pD2 , we have

dΠg(p|p2−p1=pD2
)

dp2
= α(q1 + q2) ≥ 0.

This means that the intersection of p2 − p1 = pD2 and ∆Πc = 0 is optimal on the

line p2 − p1 = pD2 . So we only need to consider the curve ∆Πc = 0. Then the rest

of the analysis for Subcase (1.2) is the same as that in Subcase (1.1). Therefore,

we conclude that the intersection of ∆Πc = 0 and p2 − p1 = γ is an optimal

solution for Subcase (1.2) regardless of the value of p̄2. Similarly, the optimal

solutions can be easily obtained when the value of p̄2 is taken into consideration.

Case (2) γ ≥ g′(q0/(αN)). Then we have

∂Πg(p)

∂p1
|p2−p1=g′(q0/(αN)) = αq1 + qs(p1, p2) + (g′(q0/(αN))− γ)

αN

g′′(qs/(αN))
,

which may be positive or negative. So we need to consider three subcases: Subcase

(2.1) pD2 ≤ g′(0), Subcase (2.2) g′(0) ≤ pD2 ≤ g′(q0/(αN)), and Subcase (2.3)

pD2 ≥ g′(q0/(αN)). The analysis and results for these subcases are very similar

to those presented above, so we omit the details here. Combining the results of

Cases (1) and (2), we complete the proof.

Proof of Proposition 2.2 The results associated with k∗
1, k

∗
2, k

∗
1 + k∗

2, p
∗
1, p

∗
2,

and q∗s can be obtained directly by taking the derivatives of these optimal values

with respect to α. Note that for (p∗1, p
∗
2) = (pF1 , p̄2),

dq∗s
dα

= N
2cs

(γ
2
− csq1

N
) ≥ 0 as

γ
2
− csq1

N
= pD2 ≥ 0 for this case. Next we show the results for dΠg

dα
and ∆Πc

dα
as

follows:

(1) (p∗1, p
∗
2) = (pB2 − θ, pB2 ). By taking the derivative of Πg with respect to α,

we can obtain that dΠg

dα
= 1

2
Nθ
2cs

(2γ − θ) ≥ 0, where the inequality holds because

θ ≤ γ. Since ∆Πc = 0 in this case, we have dΠc

dα
= 0.

(2) (p∗1, p
∗
2) = (pE1 , p̄2). By taking the derivative of Πg with respect to α, we can

obtain that dΠg

dα
= dq∗s

dα
(γ− cs

N
dq∗s
dα

) = −Nqis
∗
(csq

i
s
∗−γ) = −1

2
Nqis

∗
(p∗2−p∗1−γ−γ) ≥ 0,
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where the inequality holds because p2−p1−γ ≤ 0 in this case. Similarly, ∆Πc = 0

in this case, so we have dΠc

dα
= 0.

(3) (p∗1, p
∗
2) = (pF1 , p̄2). By taking the derivative of Πg with respect to α, we

can obtain that dΠg

dα
= w + N

2cs
(γ
2
− csq1

N
)2 ≥ 0. By rearranging ∆Πc, we obtain

that ∆Πc =
1
N
(p∗1q1 + p∗2q2 − p̄0(q1 + q2))− cs(q

i
s
∗
)2 which is independent of α, so

we have dΠc

dα
= 0.

(4) (p∗1, p
∗
2) = (0, p̄2). First we note that in this case ∂Πg

∂p1
= αqs + (p2 − p1 −

γ)αN
2cs

≤ 0, implying that −(2csq1 + (p∗2 − p∗1 − γ)N) = −(2csq1 + (p̄2 − γ)N) ≥
2csNqis

∗
. Then by taking the derivative of Πg with respect to α, we can obtain that

dΠg

dα
= w− p̄2

2cs
(2csq1+ (p̄2− γ)N) ≥ w+ p̄2

2cs
2csNqis

∗
= w+ p̄2Nqis

∗ ≥ 0. Similarly,

by rearranging ∆Πc, we obtain that ∆Πc =
1
N
(p∗1q1+p∗2q2− p̄0(q1+ q2))− cs(q

i
s
∗
)2

which is independent of α, so we have dΠc

dα
= 0.

Proof of Theorem 2.3 Similar to the model with price inelasticity of total

demand, from Constraint (2.3), we find that two cases need to be considered,

according to the values of D2(p0, p1, p2) and τk1. The first case is D2(p0, p1, p2) ≤
τk1 such that k2 = 0. In this case, the company’s profit function can be expressed

by

Πg(k,p) = α
(

p1DT1(p1, p2) + p2DT2(p1, p2)
)

+ (1− α)p0

(

DF1(p0) +DF2(p0)
)

−β1D1(p0, p1, p2)− β1D2(p0, p1, p2)− c1k1.

The second case is D2(p0, p1, p2) ≥ τk1 such that k2 ≥ 0. In this case, the

company’s profit function can be expressed by

Πg(k,p) = α
(

p1DT1(p1, p2) + p2DT2(p1, p2)
)

+ (1− α)p0

(

DF1(p0) +DF2(p0)
)

−β1D1(p0, p1, p2)− β2D2(p0, p1, p2)−
(

c1 + τβ1 − τβ2

)

k1 − c2k2.

The rest of the analysis and proof are almost the same as those for the model

with inelastic total demand, so we omit the proof here.

Proof of Theorem 2.4 By substituting the optimal response of capacity into

the company’s profit function, our objective becomes maximizing the profit func-
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tion by optimally setting the prices for electricity. The company’s profit function

can be expressed as follows:

Πg(p) =



















Π0 − β1D1(p0, p1, p2)− β2D2(p0, p1, p2)−
(

c1 + τβ1 − τβ2

)

D1(p0,p1,p2)
1−τ

−c2(
D2(p0,p1,p2)

τ
− D1(p0,p1,p2)

1−τ
) for Case I;

Π0 − β1D1(p0, p1, p2)− β1D2(p0, p1, p2)− c1
D2(p0,p1,p2)

τ
for Case II;

Π0 − β1D1(p0, p1, p2)− β1D2(p0, p1, p2)− c1
D1(p0,p1,p2)

1−τ
for Case III,

where Π0 = α
(

p1DT1(p1, p2) + p2DT2(p1, p2)
)

+ (1− α)p0

(

DF1(p0) +DF2(p0)
)

.

The proofs for Cases I, II, and III are almost the same. So we just present

the proof for Case III here.

By considering the Hessian matrix of the profit function, we have

H(Πg) =









∂2Πg

∂p20

∂2Πg

∂p0p1

∂2Πg

∂p0p2
∂2Πg

∂p1p0

∂2Πg

∂p21

∂2Πg

∂p1p2
∂2Πg

∂p2p0

∂2Πg

∂p2p1

∂2Πg

∂p22









=





−2(1− α)(bF1 + bF2) 0 0
0 −2αbT1 α(r1 + r2)
0 α(r1 + r2) −2αbT2



 ,

and

|H1
1 | = −2(1− α)(bF1 + bF2) ≤ 0; |H1

2 | = −2αbT1 ≤ 0; |H1
3 | = −2αbT2 ≤ 0;

|H2
12| =

(

− 2(1− α)(bF1 + bF2)
)(

− 2αbT1

)

≥ 0;

|H2
13| =

(

− 2(1− α)(bF1 + bF2)
)(

− 2αbT2

)

≥ 0;

|H2
23| =

(

− 2αbT1

)(

− 2αbT2

)

−
(

α(r1 + r2)
)2

≥ 0,

where the last inequality holds by Assumption 2.1. Furthermore, we have

|H3
123| =

(

− 2(1− α)(bF1 + bF2)
)

|H2
23|+ 0 + 0 ≤ 0.

Thus, the Hessian matrix is negative semi-definite, implying that Πg is joint

concave in p0 and p1, and p2. p̂0, p̂1 and p̂2 can be solved by the first-order

condition, i.e.,

∂Πg

∂p0
= (1− α)

(

aF1 + aF2 − 2(bF1 + bF2)p0 + (bF1 + bF2)β1 + bF1
c1

1− τ

)

= 0;

∂Πg

∂p1
= α

(

aT1 − 2bT1p1 + (r1 + r2)p2 + (bT1 − r2)β1 + bT1
c1

1− τ

)

= 0;

∂Πg

∂p2
= α

(

aT2 − 2bT2p2 + (r1 + r2)p1 + (bT2 − r1)β1 − r1
c1

1− τ

)

= 0.
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The optimal prices can be obtained by comparing the prices obtained from the

first-order condition for the company’s profit function and their boundary values.

Proof of Proposition 2.3 Note that for all the cases, (p∗0, p
∗
1, p

∗
2) is independent

of α. After taking the derivative of the optimal capacity and the company’s

optimal profit with respect to α, the proof is completed.

A.2 Supplement for Some Trivial Cases

Here, we present the optimal results when ∆Πc|(p1=0,p2=θ) > 0 or g′(0) ≥ γ.

If ∆Πc|(p1=0,p2=g′(0)) > 0, then there is no solution for the electricity company.

If ∆Πc|(p1=0,p2=g′(0)) ≤ 0 and g′(0) ≥ γ, then the optimal solutions are shown

in Table A.3. Here, q∗s ≡ 0.

Table A.3: Optimal prices and shifted consumption for the case of
∆Πc|(p1=0,p2=g′(0)) ≤ 0 and g′(0) ≥ γ

Case p∗1 p∗2 q∗s ∆Πc

If p̄2 ≥ pA2 pA2 − g′(0) pA2 0 = 0
If p̄2 ≤ pA2 p̄2 − g′(0) p̄2 0 < 0

If g′(0) ≤ γ and ∆Πc|(p1=0,p2=g′(0)) ≤ 0 < ∆Πc|(p1=0,p2=θ), then the optimal

solutions are shown in Table A.4. Here, pA2 , p
C
2 , p

D
2 , p

E
1 , and pF1 are indicated in

Table A.4: Optimal prices and shifted consumption for the case of g′(0) ≤ γ and
∆Πc|(p1=0,p2=g′(0)) ≤ 0 < ∆Πc|(p1=0,p2=θ)

Case Sub-case p∗1 p∗2 q∗s ∆Πc

If pD2 ≤ g′(0)
If p̄2 ≥ pH2 0 pH2 αNg′−1(pH2 ) = 0
If pA2 ≤ p̄2 ≤ pH2 pE1 p̄2 αNg′−1(p̄2 − pE1 ) = 0
If p̄2 ≤ pA2 p̄2 − g′(0) p̄2 0 < 0

If g′(0) ≤ pD2 ≤ pH2

If p̄2 ≥ pH2 0 pH2 αNg′−1(pH2 ) = 0
If pC2 ≤ p̄2 ≤ pH2 pE1 p̄2 αNg′−1(p̄2 − pE1 ) = 0
If pD2 ≤ p̄2 ≤ pC2 pF1 p̄2 αNg′−1(p̄2 − pF1 ) < 0
If p̄2 ≤ pD2 0 p̄2 αNg′−1(p̄2) < 0

If pD2 ≥ pH2
If p̄2 ≥ pH2 0 pH2 αNg′−1(pH2 ) = 0
If p̄2 ≤ pH2 0 p̄2 αNg′−1(p̄2) < 0
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Theorem 2.2. pH2 is the unique solution of p2 for the equations:

{

∆Πc|p1=0 =
1
N
(p2q2 − p̄0(q1 + q2))− p2q

i
s + g(qis) = 0;

g′(qis) = p2.

Similarly, if p̄2 is large, e.g., p̄2 ≥ pH2 , then we have p∗2 = pH2 , p∗1 ≡ 0, qs =

αNg′−1(pH2 ), and ∆Πc ≡ 0. The proof of the above results is very similar to that

of Theorem 2.2, so we omit it here.
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Appendix B

Proofs for Chapter 3

Proof of Theorem 3.1 Note that there are no k in the first part of Π(k,p) in

Equation (3.2) and k only exist in the expected cost function C(k,p), so we prove

the results for C(k,p) instead (As the decision variables are k and p, here we

replace C(k, D1, D2) by C(k,p) to have a consistent presentation with Π(k,p)).

For the notation simplicity, we replace y(p1, p2) by y.

C(k,p) = E[c1k1 + c2k2 + β1min{D1, (1− τ)k1}+ v1(D1 − (1− τ)k1)
+

+β1min{D2, τk1}+ β2min{(D2 − τk1)
+, τk2}+ v2(D2 − τk1 − τk2)

+]

= c1k1 + c2k2 + β1

(

∫
(1−τ)k1−q1−y

αN

A

(q1 + y + αNu)f(u)du

+

∫ B

(1−τ)k1−q1−y

αN

(1− τ)k1f(u)du
)

+v1

∫ B

(1−τ)k1−q1−y

αN

(q1 + y + αNu− (1− τ)k1)f(u)du

+β1

(

∫ B

q2−τk1−y

αN

(q2 − y − αNu)f(u)du+

∫
q2−y−τk1

αN

A

τk1f(u)du
)

+β2

(

∫
q2−y−τk1

αN

q2−y−τk1−τk2
αN

(q2 − y − αNu− τk1)f(u)du

+

∫
q2−y−τk1−τk2

αN

A

τk2f(u)du
)

+v2

∫
q2−y−τk1−τk2

αN

A

(q2 − y − αNu− τk1 − τk2)f(u)du.

Consider the first and second partial derivatives of C(k,p) taken with respect
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to k1 and k2:

∂C(k,p)

∂k1
= c1 + (1− τ)(β1 − v1)[1− F (

(1− τ)k1 − q1 − y

αN
)]

+τ(β1 − β2)F (
q2 − y − τk1

αN
) + τ(β2 − v2)F (

q2 − y − τk1 − τk2
αN

),

∂2C(k,p)

∂k2
1

=
1

αN

{

(1− τ)2(v1 − β1)f(
(1− τ)k1 − q1 − y

αN
)

+τ 2(β2 − β1)f(
q2 − y − τk1

αN
)

+τ 2(v2 − β2)f(
q2 − y − τk1 − τk2

αN
)
}

≥ 0,

∂C(k,p)

∂k2
= c2 + τ(β2 − v2)F (

q2 − y − τk1 − τk2
αN

),

∂2C(k,p)

∂k2
2

=
1

αN
τ 2(v2 − β2)f(

q2 − y − τk1 − τk2
αN

) ≥ 0.

If c2 > τ(v2 − β2), then
∂C(k,p)

∂k2
is positive. It means that, under this setting,

smallest capacity of Technology 2 is optimal, i.e., k∗
2 = 0. Otherwise, we consider

that

∂2C(k,p)

∂k1∂k2
=

1

αN
τ 2(v2 − β2)f(

q2 − y − τk1 − τk2
αN

) ≥ 0.

Then,

∂2C(k,p)

∂k2
1

∂2C(k,p)

∂k2
2

−
(∂2C(k,p)

∂k1∂k2

)2

=

[(1− τ)2(v1 − β1)f(
(1− τ)k1 − q1 − y

αN
)

+τ 2(β2 − β1)f(
q2 − y − τk1

αN
)]

1

(αN)2
τ 2(v2 − β2)f(

q2 − y − τk1 − τk2
αN

) ≥ 0,

together with ∂2C(k,p)
∂k21

≥ 0 and ∂2C(k,p)
∂k22

≥ 0, we conclude that C(k,p) is jointly

convex in k1 and k2. Then, the optimal capacities k(p) can be obtained by

∂C(k,p)
∂k1

= 0 and ∂C(k,p)
∂k2

= 0.

Proof of Proposition 3.1 Let f1 = f(((1−τ)k1−q1−y)/(αN)), f2 = f((q2−
y − τk1)/(αN)), f3 = f((q2 − y − τk1 − τk2)/(αN)). First we prove the results

for the effects of p1.

By Equation (3.4), we can obtain that τk1+τk2 = q2−y−αNF−1(c2/(τ(v2−
β2))), from which we obtain that

∂kp(p)

∂p1
=

∂(τk1(p) + τk2(p))

∂p1
= −∂y(p)

∂p1
= αNb1 ≥ 0.
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Note that the optimal value of k1 can be obtained by solving Equation (3.5).

Then by taking the derivatives of both sides of Equation (3.5) with respect to p1,

we obtain that

τ(β2 − β1)f2(−
∂y(p)

∂p1
− τ

∂k1(p)

∂p1
) = (1− τ)(v1 − β1)f1((1− τ)

∂k1(p)

∂p1
− ∂y(p)

∂p1
).

By solving this equation, we obtain that

∂k1(p)

∂p1
=

τ(β2 − β1)f2 − (1− τ)(v1 − β1)f1
τ 2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1

αNb1,

which may be positive or negative. Now, we can obtain that

∂k2(p)

∂p1
=

1

τ
(
∂kp(p)

∂p1
− τ

∂k1(p)

∂p1
)

=
(1− τ)(v1 − β1)f1

τ 2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1

αNb1
τ

≥ 0.

Similarly, for the effects of p2, we can obtain that

∂kp(p)

∂p2
= −αNb2 ≤ 0;

∂k1(p)

∂p2
= − τ(β2 − β1)f2 − (1− τ)(v1 − β1)f1

τ 2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1
αNb2;

∂k2(p)

∂p2
= − (1− τ)(v1 − β1)f1

τ 2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1

αNb2
τ

≤ 0,

where ∂k1(p)
∂p2

may be positive or negative.

Proof of Theorem 3.2 For the notation simplicity, we first let F1 =

F ( (1−τ)k1(p)−q1−y
αN

), F2 = F ( q2−y−τk1(p)
αN

), and F3 = F ( q2−y−τk1(p)−τk2(p)
αN

). After

substituting (k1(p), k2(p)) back into Π(k,p) and taking first derivative of Π(k,p)

with respect to p1, we have

∂Π(k(p),p)

∂p1
=

∂Π(k,p)

∂k1

∂k1(p)

∂p1
+

∂Π(k,p)

∂k2

∂k2(p)

∂p1
+

∂Π(k,p)

∂p1

=
∂Π(k,p)

∂p1
|k=k(p)

= αq1 + y + αNb1

{

p2 − p1 + (v1 − β1)(1− F1) + (β1 − β2)F2

+(β2 − v2)F3

}

= αq1 + y + αNb1

{

p2 − p1 +
(v1 − β1)(1− F1)− c1

τ

}

.
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The second equality holds because ∂Π(k,p)
∂k1

= 0 and ∂Π(k,p)
∂k2

= 0 when k = k(p).

The last equality holds because of Equation (3.3), where optimal k1 is obtained.

By taking the derivative of ∂Π(k(p),p)
∂p1

with respect to p1, we have

∂2Π(k(p),p)

∂p21
= −αNb1{2 +

(v1 − β1)

τ

∂F1

∂p1
}.

Here,

∂F1

∂p1
=

∂ (1−τ)k1(p)−q1−y
αN

∂p1
f1 =

1

αN
((1− τ)

∂k1(p)

∂p1
− ∂y

∂p1
)f1

= b1
τ(β2 − β1)f2

(1− τ)2(v1 − β1)f1 + τ 2(β2 − β1)f2
f1 ≥ 0. (B.1)

Then we obtain that

∂2Π(k(p),p)

∂p21
= −2αNb1 − αNb1

(v1 − β1)

τ

∂F1

∂p1
≤ 0. (B.2)

Although it may be possible that ∂Π(k(p),p)
∂p1

is always positive as p1 increase, we do

not consider the extreme case and only consider the interesting case that p∗1 can

be obtained at the first-order condition of Π(k(p),p), i.e., ∂Π(k(p),p)
∂p1

= 0, which

leads to Equation (3.6).

Proof of Proposition 3.2 We first prove that dp1(p2)
dp2

> 0. Note that, from

Proof of Theorem 3.2, we have

∂Π(k(p),p)

∂p1
= αq1 + y + αNb1

{

p2 − p1 +
(v1 − β1)(1− F1)− c1

τ

}

.

Then we obtain that

∂2Π(k(p),p)

∂p1∂p2
= αN

{

b2 + b1 − b1
v1 − β1

τ

∂F1

∂p2

}

.

Here,

∂F1

∂p2
=

∂ (1−τ)k1(p)−q1−y
αN

∂p2
f1 =

1

αN
((1− τ)

∂k1(p)

∂p2
− ∂y

∂p2
)f1

= −b2
τ(β2 − β1)f2

(1− τ)2(v1 − β1)f1 + τ 2(β2 − β1)f2
f1 ≤ 0.

Then we have that ∂2Π(k(p),p)
∂p1∂p2

≥ 0, so

dp1(p2)

dp2
= −

∂2Π(k(p),p)
∂p1∂p2

∂2Π(k(p),p)

∂p21

≥ 0.
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The inequality holds because ∂2Π(k(p),p)
∂p1∂p2

≥ 0, and ∂2Π(k(p),p)
∂p21

≤ 0 which is indicated

in Equation (B.2).

Next, we prove the results for dy(p1(p2),p2)
dp2

.

dy(p1(p2), p2)

dp2
= αN

{

− b1
dp1(p2)

dp2
+ b2

}

= αN
{

−
b2 + b1 − b1

v1−β1

τ
∂F1

∂p2

2 + v1−β1

τ
∂F1

∂p1

+ b2

}

=
αN(b2 − b1)

2 + v1−β1

τ
∂F1

∂p1

.

Note that ∂F1

∂p1
≥ 0, as indicated in Equation (B.1). Thus, we have

dy(p1(p2), p2)

dp2

{

≥ 0 if b2 ≥ b1;

< 0 otherwise.

Proof of Theorem 3.3 Consider that

dΠ(k(p),p)

dp2
=

∂Π(k,p)

∂p1

dp1(p2)

dp2
+

∂Π(k,p)

∂p2

=
∂Π(k,p)

∂p2
|p1=p1(p2)

= αq2 − y − αNb2

{

p2 − p1 + (v1 − β1)(1− F1) + (β1 − β2)F2

+(β2 − v2)F3

}

= αq2 − y − αNb2

{

p2 − p1 +
(v1 − β1)(1− F1)− c1

τ

}

=
1

b1

{

b1(αq2 − y) + b2(αq1 + y)
}

.

The second equality holds because that ∂Π(k,p)
∂p1

= 0 when p1 reaches its optimal

point. The fourth equality holds because of Equation (3.3), where optimal k1 is

obtained. The last equality holds because of Equation (3.6), where optimal p1 is

obtained.

Then we consider the second derivative of Π(k(p),p) with respect to p2, and
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we have

d2Π(k(p),p)

dp22
=

1

b1
(b2 − b1)

dy(p1(p2), p2)

dp2

=
1

b1

αN(b2 − b1)
2

2 + v1−β1

τ
∂F1

∂p1

≥ 0.

The inequality holds because ∂F1

∂p1
≥ 0, which is indicated in Equation (B.1). Thus,

Π(k(p),p) is convex in p2.

Note that the price in the peak period is not less than that in the non-peak

period, it means that we have the condition p2 ≥ p1. Then we consider

dΠ(k(p),p)

dp2
|p2=p1 =

1

b1

{

b1(αq2 − y(p1, p1)) + b2(αq1 + y(p1, p1))
}

=
1

b1

{

b1(αq2 − αNa) + b2(αq1 + αNa) + αN(b1 − b2)
2p1

}

≥ 0.

The inequality holds because of a ≤ a+B ≤ q2/N which implies that αq2−αNa ≥
0. Combining it with the result that Π(k(p),p) is convex in p2, we then obtain

that Π(k(p),p) increases in p2 for p2 ≥ p1. Thus, we have the result that the

upper bound of p2 is optimal.

Recalling that the shifted consumption and the remanning consumption in

the peak period after the shift both should be non-negative, i.e., qs ≥ 0 and

αq2 − qs ≥ 0, which require that −αNA ≤ y(p1, p2) ≤ αq2 − αNB. On the other

hand, from Proposition 3.2, we have the result that dy(p1(p2),p2)
dp2

≥ 0 if b2 ≥ b1,

and dy(p1(p2),p2)
dp2

< 0 otherwise. So the upper bound value of p2 is the minimum of

two values between p̄2 and the value of p2 such that y(p1(p2), p2) = αq2 − αNB

if b2 ≥ b1, and such that y(p1(p2), p2) = −αNA if b2 < b1. Therefore, p∗2 =

min{p̄2, p̂2}, where p̂2 is the unique solution of y(p1(p2), p2) = αN(a− b1p1(p2) +

b2p2) = αq2 − αNB if b2 ≥ b1, and is the unique solution of y(p1(p2), p2) =

αN(a− b1p1(p2) + b2p2) = −αNA if b2 < b1.

Proof of Proposition 3.3 Recalling that the optimal capacities are deter-

mined by Equations (3.3) and (3.4), and the optimal price in the non-peak period
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is determined by Equation (3.6). We rearrange these three equations, and let

G1 = τ(β2 − β1)F2 + τ(v2 − β2)F3 + (1− τ)(v1 − β1)(1− F1)− c1 = 0,

G2 = τ(v2 − β2)F3 − c2 = 0,

G3 = q1 +Nyi +Nb1(p2 − p1 +
(v1 − β1)(1− F1)− c1

τ
) = 0.

And we have that ∂G2

∂k1
= ∂G2

∂k2
= ∂G1

∂k2
= − 1

αN
τ 2(v2 − β2)f3,

∂G1

∂k1
= − 1

αN
{(1 −

τ)2(v1 − β1)f1 + τ 2(β2 − β1)f2 + τ 2(v2 − β2)f3}, ∂G3

∂k1
= − 1

αN
Nb1(1−τ)(v1−β1)f1

τ
, and

∂G3

∂p1
= Nb1(b1−b2)

b2
. Before considering the three cases, we define L = (1− τ)2(v1 −

β1)f1+τ 2(β2−β1)f2 ≥ 0, H = (v1−β1)f1(β2−β1)f2 ≥ 0 and M = 2L+b1H ≥ 0.

(1) For Case I, i.e., p∗2 is determined by y = −αNA, then we have con-

dition b2 < b1 and we have yi = −A. So F1 = F ( (1−τ)k1−q1+αNA
αN

), F2 =

F ( q2+αNA−τk1
αN

), F3 = F ( q2+αNA−τk1−τk2
αN

), f1 = f( (1−τ)k1−q1+αNA
αN

), f2 =

f( q2+αNA−τk1
αN

), and f3 = f( q2+αNA−τk1−τk2
αN

). Note that yi = −A, by which we

obtain that p2 = b1p1−a−A
b2

. Then G3 can be rewritten as G3 = q1 − NA +

Nb1(
b1p1−a−A

b2
− p1 +

(v1−β1)(1−F1)−c1
τ

). And we directly obtain that dyi

dq1
= dy

dq1
= 0.

By taking the first derivatives of G1, G2 and G3 with respect to q1, we have

dG1

dq1
=

∂G1

∂q1
+

∂G1

∂k1

dk∗
1

dq1
+

∂G1

∂k2

dk∗
2

dq1
= 0,

dG2

dq1
=

∂G2

∂q1
+

∂G2

∂k1

dk∗
1

dq1
+

∂G2

∂k2

dk∗
2

dq1
= 0,

dG3

dq1
=

∂G3

∂q1
+

∂G3

∂k1

dk∗
1

dq1
+

∂G3

∂p1

dp∗1
dq1

= 0.

Here, ∂G2

∂q1
= 0, ∂G1

∂q1
= 1

αN
(1 − τ)(v1 − β1)f1, and

∂G3

∂q1
= 1 + 1

αN
Nb1(v1−β1)f1

τ
. By

solving the above equations, we obtain that

dk∗
1

dq1
=

(1− τ)(v1 − β1)f1
L

≥ 0;
dk∗

2

dq1
= −(1− τ)(v1 − β1)f1

L
≤ 0;

dk∗
p

dq1
= 0;

dp∗1
dq1

= − b2
Nb1(b1 − b2)

(1 +
τNb1H

αNL
) ≤ 0;

dp∗2
dq1

=
b1
b2

dp∗1
dq1

≤ 0.

(2) For Case II, i.e., p∗2 is determined by y = αq2 − αNB, then we have con-

dition b2 ≥ b1 and we have yi = q2/N −B. So F1 = F ( (1−τ)k1−q1−α(q2−NB)
αN

), F2 =

F ( q2−α(q2−NB)−τk1
αN

), F3 = F ( q2−α(q2−NB)−τk1−τk2
αN

), f1 = f( (1−τ)k1−q1−α(q2−NB)
αN

),
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f2 = f( q2−α(q2−NB)−τk1
αN

), and f3 = f( q2−α(q2−NB)−τk1−τk2
αN

). Note that yi =

q2/N − B, from which we obtain that p2 = b1p1−a+q2/N−B
b2

. Then G3 can be

rewritten as G3 = q1 + q2 −NB +Nb1(
b1p1−a+q2/N−B

b2
− p1 +

(v1−β1)(1−F1)−c1
τ

). We

directly obtain that dyi

dq1
= dy

dq1
= 0.

By taking the similar method with that for case I, we obtain that

dk∗
1

dq1
=

(1− τ)(v1 − β1)f1
L

≥ 0;
dk∗

2

dq1
= −(1− τ)(v1 − β1)f1

L
≤ 0;

dk∗
p

dq1
= 0;

dp∗1
dq1

=
b2

Nb1(b2 − b1)
(1 +

τNb1H

αNL
) ≥ 0;

dp∗2
dq1

=
b1
b2

dp∗1
dq1

≥ 0.

(3) For Case III, i.e., p∗2 = p̄2, then we have F1 = F ( (1−τ)k1−q1−y
αN

), F2 =

F ( q2−y−τk1
αN

), F3 = F ( q2−y−τk1−τk2
αN

), f1 = f( (1−τ)k1−q1−y
αN

), f2 = f( q2−y−τk1
αN

), and

f3 = f( q2−y−τk1−τk2
αN

). We immediately obtain that
dp∗2
dq1

= b1
b2

= 0.

By taking the similar method with that for case I, we obtain that

dp∗1
dq1

=
αL+ τb1H

αNb1M
≥ 0;

dk∗
p

dq1
=

αL+ τb1H

τM
≥ 0;

dk∗
1

dq1
=

1

LM

{

(1− τ)(v1 − β1)f1αN [(2− α)L+ b1(1− τ)H ]

+τ(β2 − β1)f2[αNL+ τNb1H ]
}

≥ 0;

dk∗
2

dq1
=

1

LMτ

{

(1− τ)(v1 − β1)f1αN(α− 2τ)L

−τ 2(β2 − β1)f2(1− α)[αNL+ τNb1H ]
}

.

So if α < 2τ then
dk∗2
dq1

< 0, and if α = 1 and τ < 1
2
(and we assume that τ < 1

2
)

then
dk∗2
dq1

> 0. For yi and y, we have dyi

dq1
= −b1

dp∗1
dq1

≤ 0 and dy
dq1

= −αNb1
dp∗1
dq1

≤ 0.

Proof of Proposition 3.4 The results can be obtained by following the similar

proof approach of Proposition 3.3. So we omit the details of the proof and only

show the results here.
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(1) For Case I, we have

dk∗
1

dq2
=

τ(β2 − β1)f2
L

≥ 0;
dk∗

2

dq2
=

(1− τ)2(v1 − β1)f1
τL

≥ 0;

dk∗
p

dq2
= 1 > 0;

dp∗1
dq2

=
b2

b1 − b2

(1− τ)H

αNL
≥ 0;

dp∗2
dq2

=
b1
b2

dp∗1
dq2

≥ 0;
dyi

dq2
=

dy

dq2
= 0.

(2) For Case II, we have

dk∗
1

dq2
=

τ(β2 − β1)f2(1− α) + (1− τ)(v1 − β1)f1α

L
≥ 0;

dk∗
2

dq2
=

(1− τ)(v1 − β1)f1(1− τ − α)

τL
;

dk∗
p

dq2
= 1− α > 0;

dp∗1
dq2

=
b2

Nb1(b2 − b1)
(1 +

b1
b2

+
Nb1H(α+ τ − 1)

αNL
);

dp∗2
dq2

=
b1
b2

dp∗1
dq2

+
1

Nb2
;
dyi

dq2
=

1

N
> 0;

dy

dq2
= α > 0.

So we have
dk∗2
dq2

≥ 0 if 1 − τ − α ≥ 0;
dk∗2
dq2

≤ 0 otherwise, and if α + τ ≥ 1 then

dp∗1
dq2

≥ 0 and
dp∗2
dq2

≥ 0.

(3) For Case III, we have

dk∗
1

dq2
=

2τ + b1(v1 − β1)f1
(v1 − β1)f1

H

M
≥ 0;

dk∗
2

dq2
=

2(1− τ)2(v1 − β1)f1
τM

≥ 0;

dk∗
p

dq2
= τ(

dk∗
1

dq2
+

dk∗
2

dq2
) ≥ 0;

dp∗1
dq2

= −(1− τ)H

αNM
≤ 0;

dp∗2
dq2

= 0;
dyi

dq2
= −b1

dp∗1
dq2

≥ 0;
dy

dq2
= −αNb1

dp∗1
dq2

≥ 0.

Proof of Proposition 3.5 Note that for the impact of the market size (N),

we consider the scenario that the original total demand in the non-peak period

per customer (qi1) and the original total demand in the peak period per customer

(qi2) are unchanged with the market size, and we have q1 = Nqi1 and q2 = Nqi2.

Then by following the similar proof approach of Proposition 3.3, we obtain the

results which are shown as follows:

For any case, we have

dk∗
1

dN
=

k1
N

≥ 0;
dk∗

2

dN
=

k2
N

≥ 0;
dk∗

p

dN
=

τ(k1 + k2)

N
> 0;

dp∗1
dN

= 0;
dp∗2
dN

= 0;
dyi

dN
= 0.
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For Case I, we have dy
dN

= −αA ≥ 0; for Case II, we have dy
dN

= αqi2−αB ≥ 0;

and for Case III, we have dy
dN

= αyi ≥ 0.

Proof of Proposition 3.6 Similarly, the results can be obtained by following

the proof approach of Proposition 3.3. So we omit the details of the proof and

only show the results here.

(1) For Case I, we have

dk∗
1

dα
=

−(q2 − τk1)τ(β2 − β1)f2 + ((1− τ)k1 − q1)(1− τ)(v1 − β1)f1
αL

;

dk∗
2

dα
= −

−k2τ
2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1[

q2
τ
− q1

1−τ
− k2]

αL
;

dk∗
p

dα
= −q2 − τk1 − τk2

α
;
dp∗1
dα

= −
b2τ(1 − τ)[ q2

τ
− q1

1−τ
]H

α2N(b1 − b2)L
≤ 0;

dp∗2
dα

=
b1
b2

dp∗1
dα

≤ 0;
dyi

dα
= 0;

dy

dα
= −NA ≥ 0.

(2) For Case II, we have

dk∗
1

dα
=

−(q2 − τk1)τ(β2 − β1)f2 + ((1− τ)k1 − q1)(1− τ)(v1 − β1)f1
αL

;

dk∗
2

dα
= −

−k2τ
2(β2 − β1)f2 + (1− τ)2(v1 − β1)f1[

q2
τ
− q1

1−τ
− k2]

αL
;

dk∗
p

dα
= −q2 − τk1 − τk2

α
;
dp∗1
dα

=
b2τ(1− τ)[ q2

τ
− q1

1−τ
]H

α2N(b2 − b1)L
≥ 0;

dp∗2
dα

=
b1
b2

dp∗1
dα

≥ 0;
dyi

dα
= 0;

dy

dα
= q2 −NB ≥ 0.

(3) For Case III, we have

dk∗
1

dα
=

1

αM

{

[k1 − q1 − q2]b1H − 2(q2 − τk1)τ(β2 − β1)f2

+2[(1− τ)k1 − q1](1− τ)(v1 − β1)f1

}

;

dk∗
2

dα
=

2k2τ
2(β2 − β1)f2 + 2(1− τ)2(v1 − β1)f1[k2 − q2

τ
+ q1

1−τ
] + k2b1H

αM
;

dk∗
p

dα
= −q2 − τk1 − τk2

α
+

τ(1 − τ)[ q2
τ
− q1

1−τ
]b1H

αM
;

dp∗1
dα

=
τ(1− τ)[ q2

τ
− q1

1−τ
]H

α2NM
≥ 0;

dp∗2
dα

= 0;
dyi

dα
= −b1

dp∗1
dα

≤ 0;
dy

dα
= N(yi − αb1

dp∗1
dα

).
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The inequalities hold for
dp∗1
dα

because that q2
τ

≥ q1
1−τ

and H ≥ 0. Although the

effects of α on the optimal capacities may not be monotone, here, we present the

values of the derivatives of the capacities with respect to α for completeness.

Proof of Proposition 3.7 The results can be obtained by following the similar

proof approach of Proposition 3.3. So we omit the details of the proof and only

show the results here.

(1) First we consider the impacts for Case I.

1.1) For c2, we have

dk∗
1

dc2
=

αN

L
≥ 0;

dk∗
2

dc2
= − αN

τ 2(v2 − β2)f3
− αN

L
≤ 0;

dk∗
p

dc2
= − αN

τ(v2 − β2)f3
≤ 0;

dp∗1
dc2

= −b2(1− τ)(v1 − β1)f1
τ(b2 − b1)L

≥ 0;

dp∗2
dc2

= −b1(1− τ)(v1 − β1)f1
τ(b2 − b1)L

≥ 0;
dyi

dc2
=

dy

dc2
= 0.

dΠ∗

dc2
=

∂Π

∂c2
+

∂Π

∂k1

dk∗
1

dc2
+

∂Π

∂k2

dk∗
2

dc2
+

∂Π

∂p1

dp∗1
dc2

+
∂Π

∂p2

dp∗2
dc2

=
∂Π

∂c2
+

∂Π

∂p2

dp∗2
dc2

= −k∗
2 +

∂Π

∂p2

dp∗2
dc2

.

For dΠ∗

dc2
, the second equality holds because ∂Π

∂k1
= ∂Π

∂k2
= ∂Π

∂p1
= 0 when the optimal

solutions are obtained. However, dΠ∗

dc2
may be positive or negative, as

dp∗2
dc2

≥ 0 and

∂Π
∂p2

≥ 0 (as indicated in the proof of Theorem 3.3, ∂Π
∂p2

≥ 0 when the optimal

solutions of k1, k2 and p1 are obtained).

1.2) For c1, we have

dk∗
1

dc1
= −αN

L
≤ 0;

dk∗
2

dc1
=

αN

L
≥ 0;

dk∗
p

dc1
= 0;

dp∗1
dc1

= b2
(1− τ)(v1 − β1)f1 − τ(β2 − β1)f2

(b2 − b1)L
;

dp∗2
dc1

=
b1
b2

dp∗1
dc1

;
dyi

dc1
=

dy

dc1
= 0.

Here,
dp∗1
dc1

and
dp∗2
dc1

may be positive or negative. Consequently, dΠ∗

dc1
= ∂Π

∂c1
+ ∂Π

∂p2

dp∗2
dc1

may be positive or negative, though ∂Π
∂c1

≤ 0 and ∂Π
∂p2

≥ 0.
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1.3) For β2, we have

dk∗
1

dβ2

=
αNτF2

L
≥ 0;

dk∗
2

dβ2

= − αNF3

τ(v2 − β2)f3
− αNτF2

L
≤ 0;

dk∗
p

dβ2

= − αNF3

(v2 − β2)f3
≤ 0;

dp∗1
dβ2

= −b2
(1− τ)(v1 − β1)f1F2

(b2 − b1)L
≥ 0;

dp∗2
dβ2

= −b1
(1− τ)(v1 − β1)f1F2

(b2 − b1)L
≥ 0;

dyi

dβ2

=
dy

dβ2

= 0.

Note that
dp∗2
dβ2

≥ 0, so dΠ∗

dβ2
= ∂Π

∂β2
+ ∂Π

∂p2

dp∗2
dβ2

may be positive or negative, though

∂Π
∂β2

≤ 0 and ∂Π
∂p2

≥ 0.

1.4) For β1, we have

dk∗
1

dβ1
= −αN

τF2 + (1− τ)(1 − F1)

L
≤ 0;

dk∗
2

dβ1
= αN

τF2 + (1− τ)(1 − F1)

L
≥ 0;

dp∗1
dβ1

= b2
(1− τ)(v1 − β1)f1F2 − τ(β2 − β1)f2(1− F1)

(b2 − b1)L
;
dk∗

p

dβ1

= 0;

dp∗2
dβ1

=
b1
b2

dp∗1
dβ1

;
dyi

dβ1

=
dy

dβ1

= 0.

Here,
dp∗1
dβ1

and
dp∗2
dβ1

may be positive or negative. Consequently, dΠ∗

dβ1
= ∂Π

∂β1
+ ∂Π

∂p2

dp∗2
dβ1

may be positive or negative.

1.5) For v2, we have

dk∗
1

dv2
= 0;

dk∗
2

dv2
=

αNF3

τ(v2 − β2)f3
≥ 0;

dk∗
p

dv2
=

αNF3

(v2 − β2)f3
≥ 0;

dp∗1
dv2

= 0;
dp∗2
dv2

= 0;
dyi

dv2
=

dy

dv2
= 0.

And, dΠ∗

dv2
= ∂Π

∂v2
+ ∂Π

∂p2

dp∗2
dv2

≤ 0 as ∂Π
∂v2

≤ 0 and
dp∗2
dv2

= 0.

1.6) For v1, we have

dk∗
1

dv1
=

αN(1− τ)(1− F1)

L
≥ 0;

dk∗
2

dv1
= −αN(1− τ)(1− F1)

L
≤ 0;

dk∗
p

dv1
= 0;

dp∗1
dv1

= b2
τ(β2 − β1)f2(1− F1)

(b2 − b1)L
≤ 0;

dp∗2
dv1

=
b1
b2

dp∗1
dv1

≤ 0;
dyi

dv1
=

dy

dv1
= 0.

Note that
dp∗2
dv1

≤ 0, then dΠ∗

dv1
= ∂Π

∂v1
+ ∂Π

∂p2

dp∗2
dv1

≤ 0, as ∂Π
∂v1

≤ 0 and ∂Π
∂p2

≥ 0.

(2) Then we consider the impacts for Case II.
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2.1) For c2, we have

dk∗
1

dc2
=

αN

L
≥ 0;

dk∗
2

dc2
= − αN

τ 2(v2 − β2)f3
− αN

L
≤ 0;

dk∗
p

dc2
= − αN

τ(v2 − β2)f3
≤ 0;

dp∗1
dc2

= −b2(1− τ)(v1 − β1)f1
τ(b2 − b1)L

≤ 0;

dp∗2
dc2

= −b1(1− τ)(v1 − β1)f1
τ(b2 − b1)L

≤ 0;
dyi

dc2
=

dy

dc2
= 0.

Note that
dp∗2
dc2

≤ 0, then dΠ∗

dc2
= ∂Π

∂c2
+ ∂Π

∂p2

dp∗2
dc2

≤ 0, as ∂Π
∂c2

≤ 0 and ∂Π
∂p2

≥ 0.

2.2) For c1, we have

dk∗
1

dc1
= −αN

L
≤ 0;

dk∗
2

dc1
=

αN

L
≥ 0;

dk∗
p

dc1
= 0;

dp∗1
dc1

= b2
(1− τ)(v1 − β1)f1 − τ(β2 − β1)f2

(b2 − b1)L
;
dp∗2
dc1

=
b1
b2

dp∗1
dc1

;
dyi

dc1
=

dy

dc1
= 0.

Here,
dp∗1
dc1

and
dp∗2
dc1

may be positive or negative. Consequently, dΠ∗

dc1
= ∂Π

∂c1
+ ∂Π

∂p2

dp∗2
dc1

may be positive or negative, though ∂Π
∂c1

≤ 0 and ∂Π
∂p2

≥ 0.

2.3) For β2, we have

dk∗
1

dβ2

=
αNτF2

L
≥ 0;

dk∗
2

dβ2

= − αNF3

τ(v2 − β2)f3
− αNτF2

L
≤ 0;

dk∗
p

dβ2

= − αNF3

(v2 − β2)f3
≤ 0;

dp∗1
dβ2

= −b2
(1− τ)(v1 − β1)f1F2

(b2 − b1)L
≤ 0;

dp∗2
dβ2

= −b1
(1− τ)(v1 − β1)f1F2

(b2 − b1)L
≤ 0;

dyi

dβ2

=
dy

dβ2

= 0.

Note that
dp∗2
dβ2

≤ 0, then dΠ∗

dβ2
= ∂Π

∂β2
+ ∂Π

∂p2

dp∗2
dβ2

≤ 0, as ∂Π
∂β2

≤ 0 and ∂Π
∂p2

≥ 0.

2.4) For β1, we have

dk∗
1

dβ1
= −αN

τF2 + (1− τ)(1− F1)

L
≤ 0;

dk∗
2

dβ1
= αN

τF2 + (1− τ)(1− F1)

L
≥ 0;

dk∗
p

dβ1

= 0;
dp∗1
dβ1

= b2
(1− τ)(v1 − β1)f1F2 − τ(β2 − β1)f2(1− F1)

(b2 − b1)L
;

dp∗2
dβ1

=
b1
b2

dp∗1
dβ1

;
dyi

dβ1

=
dy

dβ1

= 0.

Here,
dp∗1
dβ1

and
dp∗2
dβ1

may be positive or negative. Consequently, dΠ∗

dβ1
= ∂Π

∂β1
+ ∂Π

∂p2

dp∗2
dβ1

may be positive or negative.

2.5) For v2, we have

dk∗
1

dv2
= 0;

dk∗
2

dv2
=

αNF3

τ(v2 − β2)f3
≥ 0;

dk∗
p

dv2
=

αNF3

(v2 − β2)f3
≥ 0;

dp∗1
dv2

= 0;
dp∗2
dv2

= 0;
dyi

dv2
=

dy

dv2
= 0.
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And, dΠ∗

dv2
= ∂Π

∂v2
+ ∂Π

∂p2

dp∗2
dv2

≤ 0 as ∂Π
∂v2

≤ 0 and
dp∗2
dv2

= 0.

2.6) For v1, we have

dk∗
1

dv1
=

αN(1− τ)(1− F1)

L
≥ 0;

dk∗
2

dv1
= −αN(1− τ)(1− F1)

L
≤ 0;

dk∗
p

dv1
= 0;

dp∗1
dv1

= b2
τ(β2 − β1)f2(1− F1)

(b2 − b1)L
≥ 0;

dp∗2
dv1

=
b1
b2

dp∗1
dv1

≥ 0;
dyi

dv1
=

dy

dv1
= 0.

Note that
dp∗2
dv1

≥ 0, so dΠ∗

dv1
= ∂Π

∂v1
+ ∂Π

∂p2

dp∗2
dv1

may be positive or negative, though

∂Π
∂v1

≤ 0, and ∂Π
∂p2

≥ 0.

(3) Last we consider the impacts for Case III.

3.1) For c2, we have

dp∗1
dc2

= −(1 − τ)(v1 − β1)f1
τM

≤ 0;
dp∗2
dc2

= 0;

dk∗
1

dc2
= −(

2αNτ

(1 − τ)(v1 − β1)f1
+

αNb1
1− τ

)
dp∗1
dc2

≥ 0;

dk∗
2

dc2
= − αN

τ 2(v2 − β2)f3
+

αNb1
τ

dp∗1
dc2

− dk∗
1

dc2
≤ 0;

dk∗
p

dc2
= − αN

τ(v2 − β2)f3
+ αNb1

dp∗1
dc2

≤ 0;

dyi

dc2
= −b1

dp∗1
dc2

≥ 0;
dy

dc2
= −αNb1

dp∗1
dc2

≥ 0.

dΠ∗

dc2
=

∂Π

∂c2
+

∂Π

∂k1

dk∗
1

dc2
+

∂Π

∂k2

dk∗
2

dc2
+

∂Π

∂p1

dp∗1
dc2

+
∂Π

∂p2

dp∗2
dc2

=
∂Π

∂c2

= −k∗
2 ≤ 0

For dΠ∗

dc2
, the second equality holds because ∂Π

∂k1
= ∂Π

∂k2
= ∂Π

∂p1
= 0 when the optimal

solutions are obtained, and p∗2 = p̄2 which follows that
dp∗2
dc2

= 0.

3.2) For c1, we have

dp∗1
dc1

=
(1− τ)(v1 − β1)f1 − τ(β2 − β1)f2

M
;
dp∗2
dc1

= 0;

dk∗
1

dc1
= −αN

2 + b1((v1 − β1)f1 + (β2 − β1)f2)

M
≤ 0;

dk∗
2

dc1
= αN

2τ + b1(v1 − β1)f1
τM

≥ 0;

dk∗
p

dc1
= αNb1

dp∗1
dc1

;
dyi

dc1
= −b1

dp∗1
dc1

;
dy

dc1
= −αNb1

dp∗1
dc1

.
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Here,
dp∗1
dc1

,
dk∗p
dc1

, dyi

dc1
and dy

dc1
may be positive or negative. Similarly, dΠ∗

dc1
= ∂Π

∂c1
≤ 0.

3.3) For β2, we have

dp∗1
dβ2

= −(1 − τ)(v1 − β1)f1F2

M
≤ 0;

dp∗2
dβ2

= 0;

dk∗
1

dβ2
= −(

αNb1
1 − τ

+
2αNτ

(1− τ)(v1 − β1)f1
)
dp∗1
dβ2

≥ 0;

dk∗
2

dβ2
= − αNF3

τ(v2 − β2)f3
+

αNb1
τ

dp∗1
dβ2

− dk∗
1

dβ2
≤ 0;

dk∗
p

dβ2
= − αNF3

(v2 − β2)f3
+ αNb1

dp∗1
dβ2

≤ 0;

dyi

dβ2
= −b1

dp∗1
dβ2

≥ 0;
dy

dβ2
= −αNb1

dp∗1
dβ2

≥ 0;
dΠ∗

dβ2
=

∂Π

∂β2
≤ 0.

3.4) For β1, we have

dp∗1
dβ1

=
(1− τ)(v1 − β − 1)f1F2 − τ(β2 − β1)f2(1− F1)

M
;
dp∗2
dβ1

= 0;

dk∗
1

dβ1
= −αN

[2τ + b1(v1 − β1)f1]F2 + (1− F1)[2(1− τ) + b1(β2 − β1)f2]

M
≤ 0;

dk∗
2

dβ1

= αN
F2[2τ

2 + b1(v1 − β1)f1] + 2τ(1− τ)(1 − F1)

τM
≥ 0;

dk∗
p

dβ1
= αNb1

dp∗1
dβ1

;
dyi

dβ1
= −b1

dp∗1
dβ1

;
dy

dβ1
= −αNb1

dp∗1
dβ1

.

Here,
dp∗1
dβ1

,
dk∗p
dβ1

, dyi

dβ1
, and dy

dβ1
may be positive or negative, and dΠ∗

dβ1
= ∂Π

∂β1
≤ 0.

3.5) For V2, we have

dp∗1
dv2

= 0;
dp∗2
dv2

= 0;
dk∗

1

dv2
= 0;

dk∗
2

dv2
=

αNF3

τ(v2 − β2)f3
≥ 0;

dk∗
p

dv2
=

αNF3

(v2 − β2)f3
≥ 0;

dyi

dv2
=

dy

dv2
= 0;

dΠ∗

dv2
=

∂Π

∂v2
≤ 0.

3.6) For v1, we have

dp∗1
dv1

=
τ(β2 − β1)f2(1− F1)

M
≥ 0;

dp∗2
dv1

= 0;

dk∗
1

dv1
= αN(1− F1)

2(1− τ) + b1(β2 − β1)f2
M

≥ 0;

dk∗
2

dv1
= −2αN(1 − τ)(1 − F1)

M
≤ 0;

dk∗
p

dv1
= αNb1

dp∗1
dv1

≥ 0;

dyi

dv1
= −b1

dp∗1
dv1

≤ 0;
dy

dv1
= −αNb1

dp∗1
dv1

≤ 0;
dΠ∗

dv1
=

∂Π

∂v1
≤ 0.
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Appendix C

Proofs and Supplement for
Chapter 4

C.1 Proofs

Proof of Proposition 4.1 Note that Equation (4.1) is a newsvendor model,

so we can obtain the results immediately.

Proof of Proposition 4.2 By taking the first and second derivatives of the

profit function Πm(s) with respect to s, we have

dΠm(s)

ds
= ceb(F

−1(
p− w

p+ ch
) + d) + (w − c− cea)β + (2cebβ − cI)s;

d2Πm(s)

ds2
= 2cebβ − cI .

Then Πm(s) is concave in s, given that cI ≥ 2cebβ. By solving the first-order

condition, i.e., dΠm(s)
ds

= 0, we obtain that

s∗ =
ceb(F

−1( p−w
p+ch

) + d) + (w − c− cea)β

cI − 2cebβ
.

Proof of Proposition 4.3 The effects of b and cI can be obtained by just

looking at the formula of x∗ and s∗, i.e., Equations(4.2) and (4.4), respectively.

However, the effects of β and ce are more complex and not monotones in

general. For completeness, we show the value of ds∗

dβ
, dx∗

dβ
, ds∗

dce
, and dx∗

dce
in this

proof as follows:
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Recalling that x(s) is determined by the first-order condition of the retailer’s

profit function:

∂Πr(x)

∂x
= (p+ ch)F (x− d− βs)− p+ w = 0,

and s∗ is determined by the first-order condition of the manufacturer’s profit

function:

dΠm(s)

ds
= (w − c)β + cebx(s)− ceβ(a− bs)− cIs = 0.

Let G1 =
∂Πr(x)

∂x
= (p+ ch)F (x− d− βs)− p+ w and G2 =

dΠm(s)
ds

= (w − c)β +

cebx(s)− ceβ(a− bs)− cIs.

By taking the first derivatives of G1 and G2 with respect to β, we have

dG1

dβ
= p̂f̂(

dx∗

dβ
− s∗ − β

ds∗

dβ
) = 0;

dG2

dβ
= w − c + ceb

dx∗

dβ
− ce(a− bs∗) + cebβ

ds∗

dβ
− cI

ds∗

dβ
= 0,

where p̂ = p + ch and f̂ = f(x∗ − d − βs∗). Solving the above two equations

obtains that ds∗

dβ
= w−c−ce(a−2bs∗)

2cebβ−cI
, dx∗

dβ
= s∗ + ds∗

dβ
β, but they may be positive or

non-positive. By taking the above approach to consider the effects of β and ce, we

can obtain that , ds∗

dce
= −bx∗+β(a−bs∗)

2cebβ−cI
, and dx∗

dce
= ds∗

dce
β, but they may be positive

or non-positive too.

For the effects on the profits, by taking the first derivatives of Π∗
r , Π

∗
m, and

Π∗
d with respect to b, we have

dΠ∗
r

db
=

∂Πr

∂b
+

∂Πr

∂x

dx∗

db
+

∂Πr

∂s

ds∗

db
=

∂Πr

∂b
|(x=x∗,s=s∗) +

∂Πr

∂s

ds∗

db
|(x=x∗,s=s∗)

= β((p+ ch)F (x∗ − d− βs∗))
cex

∗ + ceβs
∗

cI − 2cebβ
;

dΠ∗
m

db
=

∂Πm

∂b
+

∂Πm

∂x

dx∗

db
+

∂Πm

∂s

ds∗

db

=
∂Πm

∂b
|(x=x∗,s=s∗) +

∂Πm

∂x

dx∗

db
|(x=x∗,s=s∗)

= ces
∗x∗ + (w − c− ce(a− bs∗))

cex
∗ + ceβs

∗

cI − 2cebβ
β;

dΠ∗
d

db
=

∂Πd

∂b
+

∂Πd

∂x

dx∗

db
+

∂Πd

∂s

ds∗

db

= cex
∗ + ((p− c− ce(a− bs∗)β − cIs

∗ + cebx
∗)
cex

∗ + ceβs
∗

cI − 2cebβ
.
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In the first equation, the second equality holds because ∂Πr

∂x
= 0 when (x = x∗, s =

s∗), and in the second equation, the second equality holds because ∂Πm

∂s
= 0 when

(x = x∗, s = s∗). However, dΠ∗

r

db
, dΠ∗

m

db
, and

dΠ∗

d

db
may be positive or non-positive.

Similarly, we can obtain the values of the first derivative of Π∗
r , Π

∗
m, and Π∗

d with

respect to β, ce, and cI . Unfortunately, they are complex and are not monotone

in general.

Proof of Proposition 4.4 By taking the first and second partial derivatives

of the profit function Πc(x, s) with respect to x, we have

∂Πc(x, s)

∂x
= (p+ ch)(1− F (x− d− βs))− c− ch − ce(a− bs);

∂2Πc(x, s)

∂x2
= −(p+ ch)f(x− d− βs) ≤ 0.

As the second partial derivative is non-positive, Πc(x, s) is concave in x, and the

optimal response of the production quantity is uniquely determined by the first

order condition of the profit function, i.e., ∂Πc(x,s)
∂x

= 0.

Proof of Corollary 4.2 By taking the derivative of ∂Πc(x,s)
∂x

with respect to s,

we have

∂2Πc(x, s)

∂x∂s
= (p+ ch)f(x− d− βs)β + ceb.

Then, by the Implicit Function Theorem, i.e., dx(s)
ds

= −
∂2Πc(x,s)

∂x∂s

∂2Πc(x,s)

∂x2

, we have

dx(s)

ds
= −(p+ ch)f(x− d− βs)β + ceb

−(p + ch)f(x− d− βs)

= β +
ceb

(p+ ch)f(x− d− βs)
> 0.

Proof of Proposition 4.5 Given that cI ≥ 2cebβ, it is difficult to determine

the sign of d2Πc(x(s),s)
dx2 directly. So we take the third derivative of Πc(x(s), s) over

s, and we have

d3Πc(x(s), s)

ds3
= − (ceb)

3f ′(x(s)− d− βs)

(p+ ch)2(f(x(s)− d− βs))3
.
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When f ′(·) ≥ 0, we have d3Πc(x(s),s)
ds3

≤ 0, it implies that dΠc(x(s),s)
ds

is concave

in s. So dΠc(x(s),s)
ds

= 0 has at most two roots and the larger of the two makes a

change of sign for dΠc(x(s),s)
ds

from positive to negative that corresponds to a local

maximum of Πc(x(s), s).

When f ′(·) < 0, we have d3Πc(x(s),s)
ds3

> 0, it implies that dΠc(x(s),s)
ds

is convex in

s. So dΠc(x(s),s)
ds

= 0 has at most two roots and the smaller of the two makes a

change of sign for dΠc(x(s),s)
ds

from positive to negative that corresponds to a local

maximum of Πc(x(s), s).

Proof of Corollary 4.3 For the uniform distribution of the demand, ǫ ∽

U [A,B], then f(z) = 1
B−A

and f ′(z) = 0. We have

d2Πc(x(s), s)

ds2
= 2cebβ − cI +

(ceb)
2(B − A)

(p+ ch)

{

≥ 0 if cI ≤ 2cebβ + (ceb)2(B−A)
(p+ch)

;

< 0 otherwise,

which means that Πc(x(s), s) is a convex function if cI ≤ 2cebβ + (ceb)2(B−A)
(p+ch)

,

and concave otherwise. So there is at most one optimal point of s that satisfies

dΠc(x(s), s)/ds = 0 for the uniform distribution.

For the exponential distribution, ǫ ∽ Exp(1/θ), then f(z) = 1
θ
e−

z
θ and f ′(z) =

−1
θ
f(s) = − 1

θ2
e−

z
θ . We have

d3Πc(x(s), s)

ds3
=

(ceb)
3

(p+ ch)2(f(x(s)− d− βs))2θ
≥ 0.

So dΠc(x(s), s)/ds = 0 has at most two roots, and the smaller of the two makes

a change of sign for dΠc(x(s), s)/ds from positive to negative that corresponds to

a local maximum of Πc(x(s), s).

For the normal distribution, ǫ ∽ Normal(µ, σ), then f(z) = 1√
2πσ

e−
(z−µ)2

2σ2 and

f ′(z) = −z−µ
σ2 f(z). We have

d3Πc(x(s), s)

ds3
=

(ceb)
3

(p+ ch)2(f(x(s)− d− βs))2
x(s)− d− βs− µ

σ2

{

≥ 0 if x(s)− d− βs ≥ µ;

< 0 otherwise.

By Corollary 4.2, we obtain that

d(x(s)− d− βs)

ds
=

ceb

(p+ ch)f(x− d− βs)
≥ 0,
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which means that x(s) − d − βs increases in s. Let st be the solution of x(s) −
d − βs = µ. Then we have that, if s < st, then dΠc(x(s), s)/ds is concave in

s; if s ≥ st, then dΠc(x(s), s)/ds is convex in s. In other words, dΠc(x(s), s)/ds

changes from a concave function to a convex function as s increases. Therefore,

dΠc(x(s), s)/ds has at most three roots, and the one (and has at most one) makes

a changes of sign for dΠc(x(s), s)/ds from positive to negative that corresponds

to a local maximum of Πc(x(s), s).

Proof of Proposition 4.6 (a) Recalling that x(s) is determined by

∂Πc(x, s)

∂x
= (p+ ch)(1− F (x− d− βs))− c− ch − ce(a− bs) = 0,

and s∗ is determined by

dΠc(x(s), s)

ds
= (p+ ch)F (x− d− βs)β − cIs+ cebx(s) = 0.

Let G1 = −∂Πc(x,s)
∂x

= (p + ch)F (x − d − βs) − p + c + ce(a − bs) and G2 =

dΠc(x(s),s)
ds

= (p+ ch)F (x− d− βs)β − cIs+ cebx(s).

By taking the first derivatives of G1 and G2 with respect to b, we have

dG1

db
= −ces

∗ + p̂f̂
dx∗

db
− (p̂f̂β + ceb)

ds∗

db
= 0;

dG2

db
= cex

∗ + (p̂f̂β + ceb)
dx∗

db
− (p̂f̂β2 + cI)

ds∗

db
= 0,

where p̂ = p+ ch and f̂ = f(x∗ − d− βs∗).

Solving the above two equations obtains that

ds∗

db
= −

cex
∗ + ceβs

∗ + cebces∗

p̂f̂

2cebβ − cI +
(ceb)2

p̂f̂

≥ 0;

dx∗

db
=

ces
∗ + (p̂f̂β + ceb)

ds∗

db

p̂f̂
≥ 0.

The inequalities hold because that, when s is obtained at the optimal point,

2cebβ − cI +
(ceb)2

p̂f̂
= d2Πc(x(s),s)

ds2
≤ 0.

Similarly, by taking the first derivatives of G1 and G2 with respect to cI , we

have

dG1

dcI
= p̂f̂

dx∗

dcI
− (p̂f̂β + ceb)

ds∗

dcI
= 0;

dG2

dcI
= −s∗ + (p̂f̂β + ceb)

dx∗

dcI
− (p̂f̂β2 + cI)

ds∗

dcI
= 0,
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Solving the above two equations obtains that

ds∗

dcI
=

s∗

2cebβ − cI +
(ceb)2

p̂f̂

≤ 0;

dx∗

dcI
=

(p̂f̂β + ceb)
ds∗

dcI

p̂f̂
≤ 0.

The inequalities hold because we have that, here, 2cebβ − cI +
(ceb)2

p̂f̂
≤ 0 when

s = s∗.

By taking the above approach to consider the effects of β and ce, we can

obtain that, for β, ds∗

dβ
= −cebs∗

2cebβ−cI+
(ceb)2

p̂f̂

≥ 0 and dx∗

dβ
= s + p̂f̂β+ceb

p̂f̂

ds∗

dβ
≥ 0; for

ce,
ds∗

dce
=

−bx∗+ p̂f̂β+ceb

p̂f̂
(a−bs∗)

2cebβ−cI+
(ceb)2

p̂f̂

and dx∗

dce
=

−(a−bs∗)+(p̂f̂β+ceb)
ds∗

dce

p̂f̂
, but which may be

positive or non-positive.

By taking the first derivative of Π∗
c with respect to b, we have

dΠ∗
c

db
=

∂Πc

∂b
+

∂Πc

∂x

dx∗

db
+

∂Πc

∂s

ds∗

db

=
∂Πc

∂b
|(x=x∗,s=s∗)

= ces
∗x∗ ≥ 0

The second equality holds because ∂Πc

∂x
= ∂Πc

∂s
= 0 when (x = x∗, s = s∗). Simi-

larly, we can obtain that dΠ∗

c

dcI
= − (s∗)2

2
≤ 0, dΠ∗

c

dβ
= s∗p̂F (x∗ − d − βs∗) ≥ 0, and

dΠ∗

c

dce
= K − (a− bs∗)x∗ but which may be positive or non-positive.

Proof of Proposition 4.7 The retailer’s problem is a newsvendor problem, so

we can easily obtain that

x(s) = F−1(
φp− w

φp+ ch
)− d− βs;

By substituting the x into the manufacturer’s profit function, and taking the

derivatives with respect to s, we have

dΠm

ds
= ((1− φ)p+ w − c− ce(a− bs))β − cIs+ cebx(s);

d2Πm

ds2
= 2cebβ − cI ≤ 0.
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The inequality holds because in this section we restrict our attention to the case

in which the sustainability level are determined by the first-order condition of

the profit function for the centralized supply chain, i.e., cI ≥ 2cebβ. Thus, the

optimal s is uniquely determined by dΠm

ds
= 0.

Proof of Proposition 4.8 The proof is similar to the proof for Proposition

4.7 and omitted.

Proof of Proposition 4.9 The proof is similar to the proof for Proposition

4.7 and omitted.

C.2 Supplement for the Case of cI < 2cebβ

The optimal response of the order quantity (or production quantity) x(s) in this

case is the same as that in the case of cI ≥ 2cebβ. So we only present the results

of the optimal sustainability level here.

C.2.1 The decentralized supply chain

Proposition C.1 The manufacturer’s optimal sustainability level is as follows:

s∗ =







0 if cI >
(

ceb(F
−1( p−w

p+ch
) + d) + (w − c)β

)

2b/a;

a

b
if cI ≤

(

ceb(F
−1( p−w

p+ch
) + d) + (w − c)β

)

2b/a.

Proposition C.1 shows the optimal sustainability level for the manufacturer.

We find that the manufacturer’s profit function is a convex function in s. So

either the lower bound s = 0 or the upper bound s = a/b is optimal for the

manufacturer. By comparing the manufacturer’s profit when s = 0 and the profit

when s = a/b, we find that, if the sustainability investment coefficient is very

small, e.g., cI ≤ (ceb(F
−1((p− w)/(p+ ch)) + d) + (w − c)β)2b/a, then s∗ = a/b

such that no emission is produced, i.e., a− bs∗ = 0; otherwise, s∗ = 0.

125



Proposition C.2 (a) If s∗ = 0, then x∗ is not affected by b, β, ce, and cI; Π
∗
r is

not affected by b, β, ce, and cI ; Π
∗
m and Π∗

d are not affected by b, β, and cI.

(b) If s∗ = a/b, then x∗ is decreasing in b, and is increasing in β, but is not

affected by ce and cI ; Π
∗
r is not affected by b, ce, and cI , and increasing in β; and

Π∗
m and Π∗

d are increasing in ce, and are decreasing in cI .

Clearly, if s∗ = 0 or s∗ = a/b, then s∗ will not be affected by b, β, ce, and

cI . Part (a) of Proposition C.2 indicates that, if s∗ = 0, then the order quantity

and retailer’s expected profit will not be affected by parameters related to the

sustainability level and the emission, and the manufacturer’s profit and the whole

supply chain’s profit will only be affected by the emission price. Part (b) of

Proposition C.2 indicates that Π∗
m and Π∗

d are increasing in ce, that is because,

in this case, the manufacturer would invest in a very high sustainability level

and no emission would be produced, then the manufacturer could get extra profit

by selling the quota of the permissible emission level. Here, the extra profit

is increasing in the emission price. In other words, under this scenario, the

manufacturer is encouraged to produce a higher sustainable product without any

carbon emission when the emission price is higher. In addition, when s∗ = a/b,

namely, the upper bound of stainability level, the optimal order quantity would

not be affected by both ce and cI .

Remark C.1 If s∗ = 0, then dΠ∗
m/dce = dΠ∗

d/dce = K − ax∗; if s∗ = a/b, then

dΠ∗
m/db = cex

∗ − (w − c)βa/(b2), dΠ∗
m/dβ = (w − c)a/b, dΠ∗

d/db = cex
∗a/b −

(p̂(1− F̂ (a/b))− c− ch)βa/(b
2), and dΠ∗

d/dβ = (p− c)a/b, where p̂ = p+ ch and

F̂ (s∗) = F (x∗ − d− βs∗).

C.2.2 The centralized supply chain

Proposition C.3 (d2Πc(x(s), s))/(ds
2) > 0, and s∗ = 0 or s∗ = a/b.

Proposition C.3 shows that, if 2cebβ > cI , then Πc(x(s), s) is a convex function

in s. So the lower bound s = 0 or upper bound s = a/b is optimal for Πc(x(s), s).

By comparing the profit when s = 0 and the profit when s = a/b, we can obtain
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the optimal solution: If Πc(x(0), 0) ≥ Πc(x(a/b), a/b), then s∗ = 0; otherwise

s∗ = a/b.

Proposition C.4 (a) If s∗ = 0, then x∗ is decreasing in ce, and x∗ and Π∗
c are

not affected by b, β, and cI .

(b) If s∗ = a/b, then x∗ is decreasing in b, and is increasing in β, but is not

affected by ce and cI ; Π
∗
c is increasing in b, β and ce, and is decreasing in cI .

From Proposition C.4, we can see that cI has an impact to the optimal profit

of the whole supply chain Π∗
c . More specifically, when s∗ is larger than zero,

a higher sustainability investment coefficient would lead to a lower centralized

supply chain profit. Therefore, in order to increase the centralized supply chain

profit, enhancing the efficiency of sustainability investment is significant.

Remark C.2 If s∗ = 0 , then dΠ∗
c/dce = K − ax∗.

C.2.3 The comparison of decentralized and centralized

supply chains

In this section, we compare the whole supply chain’s profit and the optimal

solutions under the decentralized case with those under the centralized case. Let

xd and sd be the optimal solutions of the order quantity and sustainability level,

respectively, for the decentralized supply chain, and xc and sc be the optimal

solutions of the production quantity and sustainability level, respectively, for the

centralized chain.

Case I: sd = sc = 0. Then, we have

xd = F−1(
p− w

p+ ch
) + d;

xc = F−1(
p− c− cea

p+ ch
) + d.

From the above equations, we easily find that, if w ≤ c + cea, then xd ≥ xc;

otherwise, xd < xc. By comparing the profit of the whole supply chain under the

decentralized case, i.e., Π∗
d (Π

∗
d = Π∗

r +Π∗
m), with that under the centralized case,
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i.e., Π∗
c , we have

Π∗
d − Π∗

c = (w − c− cea)(xd − d) + (p+ ch)

∫ xd−d

xc−d

ǫf(ǫ)dǫ. (C.1)

Corollary C.1 For the uniform distribution of the demand, i.e., ǫ ∽ U [A,B],

Equation (C.1) can be expressed as

Π∗
d − Π∗

c = −(w − c− cea)
2(B − A)

2(p+ ch)
≤ 0.

Corollary C.1 indicates that, when the demand is followed the uniform dis-

tribution and no sustainability level is invested in, i.e., sd = sc = 0, the optimal

profit of the whole supply chain under the decentralized case is lower than that

under the centralized case.

Case II: sd = sc = a/b. Then, we have

xd = F−1(
p− w

p+ ch
) + d+ β

a

b
;

xc = F−1(
p− c

p+ ch
) + d+ β

a

b
.

From the above equation, we easily find that, if w ≤ c, then xd ≥ xc; otherwise,

xd < xc.

By comparing the profit of the whole supply chain under the decentralized

case, with that under the centralized case, we have

Π∗
d − Π∗

c = (w − c)(xd − d− β
a

b
) + (p+ ch)

∫ xd−d−β a
b

xc−d−β a
b

ǫf(ǫ)dǫ. (C.2)

Corollary C.2 For the uniform distribution of the demand, i.e., ǫ ∽ U [A,B],

Equation (C.2) can be expressed as

Π∗
d − Π∗

c = −(w − c)2(B − A)

2(p+ ch)
≤ 0.

Similarly, Corollary C.2 indicates that, when the demand follows the uniform

distribution and a very high sustainability level is invested in such that no emis-

sion is produced, i.e., sd = sc = a/b, the optimal profit of the whole supply chain

under the decentralized case is lower than that under the centralized case.
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Proofs for the case of cI < 2cebβ

Proof of Proposition C.1 By taking the first and second derivatives of the

profit function Πm(s) with respect to s, we have

dΠm(s)

ds
= ceb(F

−1(
p− w

p+ ch
) + d) + (w − c− cea)β + (2cebβ − cI)s;

d2Πm(s)

ds2
= 2cebβ − cI .

Given 2cebβ − cI > 0, Πm(s) is convex in s; either the lower bound s = 0 or

the upper bound s = a
b
is optimum. By comparing Πm(s = 0) and Πm(s = a

b
),

we obtain that

s∗ =

{

0 if cI >
(

ceb(F
−1( p−w

p+ch
) + d) + (w − c)β)2b/a;

a
b

if cI ≤
(

ceb(F
−1( p−w

p+ch
) + d) + (w − c)β

)

2b/a.

Proof of Proposition C.2 Given s∗ = 0 or s∗ = a
b
, the proof is trivial, so we

omit it.

Proof of Proposition C.3 Clearly, given 2cebβ > cI , we have d2Πc(x(s),s)
dx2 ≥ 0,

it implies that Πc(x(s), s) is convex in s. So either the lower bound of s or the

upper bound of s is optimal. By comparing the profit under this two values, we

can obtain the optimal solution. If Πc(x(0), 0) ≥ Πc(x(a/b), a/b), then s∗ = 0;

otherwise s∗ = a/b.

Proof of Proposition C.4 Given s∗ = 0 or s∗ = a
b
, the proof is trivial, so we

omit it.

Proof of Corollary C.1 For the uniform distribution of the demand, ǫ ∽

U [A,B], then f(z) = 1
B−A

. We have

xd =
p− w

p+ ch
(B − A) + A + d;

xc =
p− c− cea

p+ ch
(B − A) + A+ d,
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and Equation (C.1) can be expressed as

Π∗
d − Π∗

c = (w − c− cea)(xd − d) + (p+ ch)

∫ xd−d

xc−d

ǫf(ǫ)dǫ

= −(w − c− cea)
2(B − A)

2(p+ ch)
≤ 0.

Proof of Corollary C.2 The proof is very similar with that for Corollary C.1,

so we omit the details here.
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