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Abstract

Current face-recognition algorithms can achieve a highly accurate performance
under controlled conditions, such as unchanged light sources, fraatalpose, no
occlusion, neutral facial expression, etc. Face recognition has a wide rain
applications, however it still has many technical and challenging issuas $olved,

in particular when the faces under consideration have a very low reswoluti
different illumination conditions, arbitrary poses and are underusochs. In order

to achieve robust face recognition, we have investigated efficient wpaobsito
solve some typical challenging problems for robust face recognition.

First, among the facial features, the eyes play the most importantrrdéee
recognition and face hallucination. Most of the existing facial-featletection and
localization algorithms cannot work accurately when the faces are rotated er und
poor lighting conditions. Therefore, in this research, an efficient dlguorfor eye
detection in face images is proposed. As the eye region always has the most
variations in a face image, our algorithm uses a wavelet-based salient rhih, w
can detect and reflect the most visually meaningful regions for eaare detection.
With the aid of a pose-adapted eye template - which can handle eye regions with
large rotation and pose variations, accurate eye positions can be localized.
Furthermore, the position of the nose and mouth can be determined bileong
both the saliency values in the salient map and the detected eye positions as
geometric references.

Second, face images under different illuminations represent a challenge fo
face recognition. In this research, we have discussed an efficient scheme for
illumination compensation and the enhancement of face images. Ourrilition
model is universal; it does not require the assumption of a singhg-pght source.

Thus, it circumvents and overcomes the limitations of the Lambertiadetm The
proposed approach can learn the average representations of face images under
changing illuminations so as to compensate or enhance the face images,catad als

eliminate the effect of different and uneven illuminations, whileairghg the



intrinsic properties of the face surface. Our experiments have pFdvdomising
results, demonstrating that our proposed methods are effective.

Third, in order to achieve robust face recognition and to make face-
recognition systems capable of identifying people at very low reswlutsuper-
resolution (SR) technology is investigated. In this thesis, wst firtroduce facial-
image super-resolution, which is also called face hallucination. In &sisarch, an
efficient mapping model is first proposed for face hallucination. Simee can
observe and prove that the singular values of an image at one resolution,
represented by singular value decomposition (SVD), have approximatedgr |
relationships with their counterparts at other resolutions, themattin of the
corresponding singular values of the high-resolution (HR) face isydgpEomes
more reliable. From the signal-processing viewpoint, this can effegtipedserve
and reconstruct the dominant information in the reconstructed HR faceesn@pe
mapping scheme can be viewed as a “coarse-to-fine” estimation of HR face images
Compared to other, state-of-the-art algorithms, experiments have stawvmour
proposed face-hallucination scheme is practicable and effective.

Fourth, a framework based on singular value decomposition (SVD) for
performing both face hallucination and recognition simultaneowssgldo proposed.
Conventionally, low-resolution (LR) face recognition is carried duyt super-
resolving the LR input face first, and then performing face recognit@identify
the input face. By considering face hallucination and recognition Ismeously,
the accuracy of both hallucination and recognition can be improved. In our
algorithm, each face image is represented by using SVD. For each LR input face,
the corresponding LR and high-resolution (HR) face-image pairs can teen b
selected from the face gallery. With the aid of face recognition, usingétected
LR-HR pairs, the estimation of the mapping functions for interpotathe two
matrices in the SVD representation of the corresponding HR face image can be
more accurate.

All these techniques can be integrated with both existing and new face

recognition algorithms so as to achieve a robust and good performance level
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Chapter 1 Introduction

1.1 Face recognition

Face recognition is a biometric technique which can be formulated as th&epro
of identifying or verifying one or more persons in a scene by compgairiput faces
(probes) with the face images stored in a database (galleries) [1]. knasbro
other types of biometrics (such as fingerprint, hand geometry aing retina scans),
face recognition offers a non-intrusive and the most natural way ofopers
identification/authentication [1]. As is well known, the advantage atef
recognition is intuitive and convenient, and often effective withbetparticipants’
cooperation or knowledge.

Face recognition has a wide range of applications (including access ¢ontrol
security monitoring, facial-paralysis diseases diagnosis, and vidaeikamnce),
and has drawn significant attention from various fields, e.g. cogngisyehology,
neural networks, image processing, pattern recognition, computenyiionputer
graphics. Over the past several decades, many face recognition approaches have
been proposed: Principal Component Analysis (PCA) [2][3] and Linear
Discriminant Analysis (LDA) [4][5][6] are two of the most common @paches,
and have long been used as benchmarks for face recognition. However, these
classical and holistic-based face recognition algorithms require the accurate
positions of the two eyes for normalization and alignment. Furthegmall the
holistic-based algorithms require a huge training set with mieltiipnages in
different poses and expressions for each person. On the other hande{eased
methods extract local features, like eyes, nose, and mouth, to form feattias,
which are fed into a structural classifier for face recognition. Typical ritlgm is
based on Elastic Bunch Graph Matching (EBGM) [7]. Compared to thosstikol
approaches, a major advantage of EBGM is that it can recognize human faces by
comparing their corresponding parts instead of requiring a large ricpiset for
efficient recognition. Under controlled environments, both halibtised and

feature-based face recognition algorithms can achieve a high performance.

1



1.2 Review of typical face recognition

approaches

Since face recognition has the additional advantage of being a passiveoand
intrusive method, in the past three decades, automatic recognitionce$ faas
become an active research topic in the fields of image processing and pattern
recognition. In the following sections, a brief overview of someidgp face

recognition approaches is given.
1.2.1. Principal Component Analysis (PCA)

Among the different face recognition approaches, Principal Component
Analysis (PCA), also known as Eigenface, is the most classical mefhiogl.
objective function of PCA is to find a transformation that can represegit-h
dimensional data in lower dimensions such that the maximum informatimut
the data is present and retained in the transformed space [2][3]. Theitbasiof
the Eigenface method is introduced in the following [2][3].

A face image can be considered as a column vector by concatenating its rows or

columns one by one, denoted BslLet I',, I',,..., [',, be a training set of face
images. The average of the training samples is given as follows:
1 M
Y==3>T,. (1.1)
M =

The difference of each training face image from the average is computed as

® =T ,-W¥. The covariance matrix is then calculated as follows:
1 M
COV=MZCDnCDT] =AA", (1.2)

where the matrixA = [¢1¢2..¢M]. In practice, the matrixCOV is large for

computing its eigenvectors. A trick [2, 3] was suggested to determine the

eigenvectors,, of A" A first, i.e.

ATAY, =Av,. . (1.3)
Multiply both sides byA, we have



AA Ay =) Ay, (1.4)

Thus, the Av, on the right represents an eigenvector @OV= AA , and the
eigenvector, denoted a4, is a linear combination of thil training samples:

M
ty = D va® = Ay, N =1, M. (1.5)

k=1
The eigenvectors represents the principal components of the face imagemeand
called as the Eigenfaces.
For face recognition, a new or query face image, denotdd, &s projected onto

the Eigen-space as follows:
o = 1] (F-¥). (1.6)
The weights form a vectoR' = [col,wz,...,w,\,,] that describes the contribution of

each eigenvector in representing the input face image. The simplest method f
determining which face class provides the best description of an inpuinfecge is
to find the face clask that minimizes the Euclidean distance :

& =[Q-Q. (1.7)
where Q_ is a vector describing thieth face class. A face is classified as belonging
to classk when the minimume, is below some chosen threshoffl . Otherwise

the face is classified as “unknown” [2].

Eigenface is a well-known practical approach that is computationally efficien
for face recognition. However, all face images have a similar structurthesoare
highly correlated with each other. In other words, PCA is more effedtvéacial-
image representation than for face recognition. In addition, the imagest be
aligned accurately, otherwise the performance of the Eigenface method ekegrad

significantly.
1.2.2. Linear Discriminant Analysis (LDA)

Besides PCA, another well known linear transformation methods for face
recognition is Linear Discriminant Analysis (LDA) [7]. Contrast t&€R, which

aims to find a linear transformation that maximum information of ttegadis



preserved in the transformed space, the objective of LDA is to preserveasahu
the class discriminant information as possible in the transformatio

The main purpose of Linear Discriminant Analysis (LDA) method is that
attempts to maximize the ratio of between-class scattering to within-atasgisng
by using the Fisher’s Linear Discriminant (FLD). The Fisherfacethmod is briefly
described below [4, 5, 6].

Consider a set o sample image$x,, X, ,...,Xy} , and assume that each image
belongs to one o€ classes{ X,, X, ,..., X} . Let the between-class scatter matrix

be defined as follows:

]
S=) N(u-p)-H", (1.8)
i=1
and the within-class scatter matrix be given as:
C
Sw=) D (% =M% )" (1.9)
i=1 % 0X;

where 1 is the mean image of clas¥, and N, is the total number of face images
in classX; . If the within-class scatter matrixg, is non-singular, the optimal
projection W, is chosen as the matrix with those columns, which maximizes the

ratio of the between-class scatter matrix of the projected samples to thia-alss

scatter matrix of the projected samples [4]:

Wo = argmaxM
VWS
=W, W, .. W], (1.10)
where{W, | i = 1,2,...,m} is themleading eigenvectors of the following eignvalue
problem:
SW. =AW, i=12..m (1.11)

It should be note that there are at mosL nonzero generalized eigenvectors, so the
upper bound om is c—1, wherec is the number of classes. For face recognition,

the difficulty is that the within-class scatter matr§, is always singular. In order

to slove this problem, PCA can be firstly used to reduce the dimensiaihe



feature space intdl—c, and then the standard FLD of equation 1.10 is applied to

reduce the dimension ©-1. W, is more formally defined as follows:

W, =W, W]

0 pca?

(1.12)

where
Whea = arngaMT SrW‘;

|WTWT sswpcaw|

pca

|WTWT sNWpcaw| '

pca

Wha = argmax
w

Note that the Eigenface method uses PCA for dimensionality reduetioich
yields projection directions that maximize the total scatter across all clagses
images. This projection is best for the reconstruction of images feohow-
dimensional basis. However, this method does not make use of any betlassn-
scatter. The projections are not optimal for discrimination betweeardift classes.
Although Fisherface is similar to Eigenface, it considers between-ctagtes and
can improve the discriminant capability of classifying faces from diffetasses.
With the aid of Fisher’s Linear Discriminant (FLD), the Fisherface et can
classify different people with varying facial expressions [4]. Nevertlseles
Fisherface is more complex than Eigenface in terms of finding the praject
vectors for face recognition, resulting in a larger storage requirerf@nthe

representation and more computation time for face recognition.
1.2.3. Independent Component Analysis (ICA)

In addition to PCA and LDA, Independent Component Analysis (ICA) isther
widely used subspace-projection method, projecting data from adiimgénsional
space to a lower-dimensional space. Motivated by the fact that much of the
important information may be represented in the high-order relatipsshiace
recognition based on ICA is also proposed. Compared to PCA, which uses th
eigenvectors capturing the maximum image variance to determine the batssy

ICA provides a set of basis vectors that possesses maximum statistical
independence. The basic idea of ICA algorithm is briefly introduced &swsl[7,

129].



Let S be the vectors of unknown sources signals &nhdbe vectors of observed
mixtures. If A is an unknown mixing matrix, the mixing model can be expressed
as X =AS .The main task is to estimate the independent source sigdalby
computing the separating matri®/ that corresponds to the mixing matri using
the following relation [129]:

U=WX =WAS. (1.13)
Let the observed samples are whitened and denoted byrhen the kurtosis of

U, =W/Z can be obtained and the separating vecwy is computed via

maximizing the kurtosis:
kur(U;) = E{(U)} -3(E{(U)*D *|. (1.14)

Traditionally, ICA can be applied to face recognition in two different
architectures [7]. The goal in Architecture | was to use ICA to find a sspatially
independent basis images, whereas the ICA architecture Il finds stalystical
independent coefficients that represent input images. Face recognitfonnpence
was evaluated in [7] shows that there was no significant difference in the
performances of the two ICA representations .

As discussed in [7], both PCA and ICA can be derived as generative models of
the data, where PCA uses Gaussian sources, and ICA typically uses spacss sou
for face recognition. It has been shown that for many natural signals,d@/etter
model in that it assigns higher likelihood to the data than PCA [3g T®A basis
dimensions presented here may have captured more likelihood of the fagesm
than PCA, which provides a possible explanation for the superioopeance of
ICA for face recognition [129].

1.2.4. Elastic Bunch Graph Matching (EBGM)

Face recognition techniques based on Elastic Bunch Graph Matching (EBGZW) [
shows successful experimental results. The EBGM representation of fadialefea

is based on Gabor wavelet transform. Gabor wavelet, which is also called Gabor
filtering, can also produce a multi-resolution representation ofsdraple texture

image. Gabor filtering provides a flexible scheme for designing efficgorithms



to capture more orientation and scale information in signals. A twcedsional

Gabor functiong(x, y) is defined as

2mo, o, 2| 5 2 2

2 2
g(x y) = 1 oexpg S| XY 27 WX/, (1.15)
o, o

y
where g, and g, are the standard deviations of the Guassian envelopes along the
x andy direction [1]. Then a set of Gabor filters can be obtained by appropriate
dilations and rotations aj(x, y):

Imn% Y) =a Mg(X, ¥),

X' =a " M(xcosd+ ysing ); (1.16)

y =a " M(-xsind+ ycod )
wherea >1,0 =nz/K, n=0, 1, ...,K-1, andm =0, 1, ...,S1. K and S are the
number of orientations and scales. The scale fagfdP is to ensure that energy is
independent of m. Given an imagg€x) around a given pixek =(x, y), its Gabor

transform is defined as a convolution:
3,(0=[1Rgmf%=%) %= (x yohf * ¥ ¥ P dxd, (1.17)
where * indicates the complex conjugate. A {ets defined as the set{; } of 40

complex coefficients obtained for one image pixel. The set of 40 coeffxien
obtained for one image point is referred as a jet. However, jets takenifmamge
points only a few pixels apart from each other have very different coeffidné

to phase rotation. This may decrease the accuracy of matching. Therefore, @ metho
is proposed to compare the jets by taking into account the phase diffenence

comparison, and the phase similarity function is defined as follows:
Zaja'j cos@ —¢ - dk))
&(J ! J ,) = J 2 12
EDE
J J

By using this phase function, the phase differeifge—¢) is compensated by

: (1.18)

the displacemerd , which is estimated using Taylor expansion. The displacement

estimation could be done using the disparity estimation.
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In order to represent a face, EBGM method builds an image graph from & set o
fiducial points like the pupils, the corner of the mouth, the tigh®e nose, the top
and bottom of ears, etc. A labeled graBhrepresenting a face consistsinodes
on the fiducial points at positiosn, n =1, ..., N andE edges between them.

For an automatic face recognition system, it has to locate the fiduciat pad
build the image graph from an input image automatically. This can be dyn
matching the input image with a stack like general representation of faees, F
Bunch Graph (FBG). For the matching between an input graph and the Facé Bu
Graph (FBG), a function called graph similarity is employed. The gisiphlarity
function depends on the jet similarity mentioned before and therdmtoof the
image grid relative to the FBG grid. For an image gr&hwith nodesn=1, ..., N
ande = 1,.. .E and an FBGB with model graphan = 1,... .M. The similarity is
defined as

9! _ AgB)2
S(G',B) =%;mn§x(&(\]r',,\]f"‘))—%g%, (1.19)
where A determines the relative importance of jets and metric structljyeare the

jets at nodes, and Ax, are the distance vectors used as labels at edge e. Because

the FBG provides several jets for each fiducial point, the best one is selaatkd
used for comparison. These best fitting jets serve as local expertefontye face
[7].

For face recognition, after having extracted model graphs from thergall
images and image graphs from the probe images, recognition can be aahdyct
comparing an image graph to all model graphs and selecting the face with the
highest similarity value. The similarity function is an average overdsihalarities
between pairs of corresponding jets. @ is the image graphG" is the modal

graph, and noden, is the modal graph corresponds to nadein the image graph,

the graph similarity is defined as

n's¥n,

SG(G',GM):%ZSA(J' My, (1.20)
o



where the sum runs only over th& nodes in the image graph with a corresponding
node in the modal graph.

Experiment result show that Elastic Bunch Graph Matching (EBGM) waordib
with different facial expression and with different scales. However, tlgerahm
has certain drawbacks. It is quite complicated to build the FBG at thalisiige.
A large amount of grid placements has to be done manually at the beginning.
What's more, it is difficult to implement because of the complexityref algorithm
in automatically finding the position of the fiducial points. Andrequires huge
storage of convolution images for better performance.

In short, despite the success of face recognition techniques in manycalact

applications, there are still many technical and challenging problems under
uncontrolled environments to be solved [1].

1.3 Challenging issues of face recognition

Although current face-recognition algorithms can achieve a highly accurate
performance under controlled conditions (such as unchanged light sofrocreal-

view images, no occlusion, neutral facial expression, etc.), it still hasym
technical and challenging issues to be solved. Especially, face recogmitibn
very low resolution and under different illuminations, are typicaficlifit problems,

in particular in outdoor circumstances. Fig. 1.1 shows two typical ehgihg

problems for current face recognition.
==
o
LN J

Very low resolution lllumination

Fig. 1.1 Two typical challenging problems for face recognition.

In reality, face recognition is always under outdoor or uncontrolledditimms



in real-world applications. For example, face images are captured at distagce
from the camera in a surveillance system. For face images in surveilladeesy
mostly are of low resolution and are compressed with a high compressiio, etc.
All these problems constitute a difficult and challenging issue in facegnition.
Fig. 1.2 shows an example of faces captured in a surveillance system.

As shown in Fig. 1.2, low resolution problem is one of the hardessn current
face recognition. Constructing a high-resolution (HR) image fras low-
resolution (LR) inputs is called super-resolution in the imagesgssing research
field. For face images, this technology is also called face hallucinatignwi8ich
has become one of the most important fields for face recognition. Face
hallucination is helpful for face recognition. Especially, this techeiqs useful
when face-recognition systems confront the low-resolution of facg@s.

Apart from low-resolution problem, illumination variation is ahet major
problem for current face recognition. Human faces share a similar shape and
structure, but illumination variations and different lightingetitions always make
images of the same person look dissimilar. As shown in Fig. 1.3diffexent face
images of the same person with variations in illuminations are noeth#le as the

same man.

(b) ©)

Fig. 1.2. Low-resolution of faces captured in a surveillance systaaid (c)

Low-resolution of faces in video-surveillance videos; (b) videovsillance videos

compressed with a high compression ratio.
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In real-world applications, face recognition with different illurations is a
difficult problem, in particular in outdoor circumstances. lllumiion variations
remain an unsolved problem in face recognition, despite a lot of researamghav
been devoted to solving it [1]. In the past decade, the illuminatiablpm has
received considerable attention in both face-recognition-related tmeisand
academic circles. However, it is still one of the most prominent isdoes
appearance- or image-based face recognition approaches. The development of
illumination-compensation techniques for face recognition is impagrtamd
modeling face variations in realistic settings is still a heuristeués Without

solving this problem, accurate and robust face recognition cannot be adHigy

[9].

Fig. 1.3. Five face images of the same person from the YaleB face databdse

different illumination conditions.

At present, most of these face hallucination and face recognition algrith
assume that the face images under consideration have been aligned accurately with
respect to the important facial features, such as the eyes and mouth. This
assumption makes these algorithms semi-automatic. Most of the gxistaral
feature detection and localization algorithms [8] cannot work accurately and
reliably when the eyes are closed, the faces are rotated, or the face are under a poo
lighting condition. This will, in turn, have an adverse effect on gleeformance of
both face hallucination and face recognition algorithms. In additionptaof
research has found that the performances of these algorithms will degrade
significantly if the face images under consideration are not alignexpeguly,

regardless of whether these systems are based on local or global methods
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[10][11][22][13]. In [10], Shan et al. called this phenomenon “Cuise mis-
alignment in face recognition”. Fig. 1.4 shows that the rank-1 re¢mgnrate of
the Fisherface method [6], which degrades seriously with the increathes ahis-
alignment [10]. Wang et al. [11] also found that, even if the eye-locagiwor is
only about 5%, the face recognition accuracy reduces dramatiedlyabout 50%.
Therefore, the accurate detection and localization of facial features play a very

important role in face recognition systems.

100 Revognition rase

=4 -3 -2 -1 0 1 2 3 4
Translation
(Pixel)

Fig. 1.4. Relationship between the rank-1 recognition rate of tHeeF&ce [6] and

the mis-alignment of translation [10].

To sum up, although current face-recognition algorithms, under céedrol
conditions, achieve a highly accurate performance, there are still manyahdrd

challenging issues to be solved for robust face recognition.

1.4 Summary

This chapter is started with an introduction to face recognition. Then hewve
reviewed some different challenging issues of face recognition. Three main
challenging issues, which are emphasized in this thesis, have been briefly
introduced, namely (1) the accurate eye-detection problem, (2) theinéudion-

variation issue, and (3) the low-resolution problem, respectively.
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1.5 Scope of thisthesis

In this thesis, we aim to investigate the challenging issues of currace f
recognition. Face recognition has a wide range of applications, neesshstill
has many technical and challenging issues to be solved. For robust faceitiecog
the efforts toward achieving this objective consist of three technicalreseparable
parts:
(1) the accurate eye-detection problem,
(2) the illumination-variation issue, and
(3) the low-resolution problem.
In this thesis, we will put emphasis on the above three technical ancenbadlh
issues one by one. The brief introduction of each chapter and contens dhésis
are outlined as follows:
® A brief introduction to Chapter 2 - We put our effort on the accurate eye-
detection problem for robust face recognition. In this chapter, a n@hese
is proposed, which uses a two-level hierarchical structure based on aetvavel
based salient map and PCA-based verification to locate eye regions coarsely,
and uses a pose-adapted eye template, based on the prior knowledge of the
sclera’s photometric and geometric properties, for precise human eye
localization.
First of all, face regions are located using a cascade of boosted clasdifiéis [
In the first level of our algorithm, a wavelet-based saliency map is quegp
and applied to the detected face region for a coarse detection of its facial-
feature regions. It is observed that the eye regions are always the miest var
blocks in a face image. Therefore, those rectangular regions in thencali
map having the largest corresponding sums of saliency values shoult be
potential candidates for the two eye regions. These eye-region candidates are
verified using PCA, so the false-alarm rate can be significantlycedu
Within the eye regions, the accurate locations of the eyes are then further
determined. The first level of detection can greatly narrow down the search

space for finding the actual eye positions, and thus can reduce the



computational cost needed. In the second level of our hierarchical scheme, a
pose-adapted eye template is constructed using the intrinsic phaommaett
geometric properties of eyes for accurate eye detection and localization. Based
on the detected eye positions, the other facial features (nose and moutle can b
determined by considering their respective sums of the saliency values and by
using the two eye positions detected as a reliable geometric reference.

In brief, an efficient hierarchical scheme, which is robust to illuminatmnd

pose variations in face images, is proposed for accurate facial-feateetion

and localization. Our proposed algorithm is non-iterative and computty
simple. Experimental results show that our algorithm can achieve a superi
performance compared to other state-of-the-art methods.

A brief introduction to Chapter 3 - The illumination-variation issiWe will
present a facial-image lighting-compensation and -enhancement algdathm
face recognition in this chapter.

According to the Retinex theory, the intensity of an image can be represanted
the product of illumination and surface reflectance. Face images of the sam
person have identical facial structures and patterns, sharing a similar shape
surface reflectance structure, so it is reasonable to assume that theesur
reflectance-representation matrix is a slowly-changing matrix, whitlects

the intrinsic property of a face surface. Consequently, the diksityi between
images of the same person under different illumination conditionsamlgn
caused by the differences in the illumination-effect matrix. Due éof#ict that
images under uneven illuminations produce shadows, and look diffement
those regions with insufficient illumination. If we can learn a mean
illumination-effect matrix so as to compensate the component of the
illumination-effect matrix of the images with uneven lighting anédbws, it

will make images lighter and shadowless. We can learn the mean illumnatio
effect matrix to compensate the images with uneven illuminationshadows.
Instead of deriving universal representations, illumination compemsaind
enhancement utilizing specific individual information can possiblyvjate an

effective and useful way to achieve a better appearance and a higher
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recognition rate. In this chapter, we present a computationally efficietiod

for generating illumination-invariant texture and face images usiegscheme

of illumination compensation and enhancement. We use an illuminatiorlmod
which is universal and does not require the assumption of a singhe-{ogint
source, thereby overcoming the limitation of the Lambertian model. Our
proposed approach captures the mean illumination-effect matrix
representations of images under a variety of different illuminatiorditioms

for each class, so as to compensate or enhance the images, and consequently.
In particular, we will aim at devising a simple and effective scheme to
compensate/enhance illumination, and to remove the shadow caused by uneven
illumination, to achieve better face recognition performance. The advaofage
the proposed method is that the assumption of a single-pointdmince is not
required, so it circumvents and overcomes the limitations of the Lamabert
model and is also suitable for outdoor circumstances. Experimentaltses
have produced promising results, which demonstrate the effectiverfesur
proposed method.

A brief introduction to Chapter 4 - The low-resolution problemthis chapter,

we will introduce a novel face-hallucination scheme based on singular value
decomposition (SVD).

We firstly verify that a simple mapping model in the image spRf€' is
inappropriate and unfeasible, as the mapping scheme is too coarse to generat
satisfactory results. Then, we propose a more sophisticated mappitel m

the eigenspace based on SVD. This proposed face-hallucination framework
consists of three steps. In the first stdyp,example faces that share the most
similarity to the input LR face image are searched from a database, and the
optical-flow method is then used to align thedeexample image pairs. In the
second step, we compute the leading eigenvectors, which account for most of
the information contained in the image. We also observe and provebtmss(

on the Frobenius norm, the corresponding singular values of an imagssacr
different resolutions have approximately linear relationships. Euantbre, we

can interpolate the other two data matrices generated by SVD to a higher



resolution, as the interpolation of these matrices will not changenhttistic
structure or the pattern of the face image. The mapping scheme, whiigesuti

the interpolated SVD matrices multiplied by the learned corresponding
mapping matrices to generate more details of face images, can be viewed as a
“coarse-to-fine” manner. In the third step, a residual-error matrixjclwh
represents the high-frequency information or the detailed local featois=sed

in the previously predicted HR face image, is generated and added to the one
produced in the second stage. Experimental results show that our proposed
face-hallucination scheme is effective in terms of producing plausible HR
images with both a holistic structure and high-frequency details.

A brief introduction to Chapter 5 - A framework based on SVD for perfiogn

both face hallucination and recognition simultaneously is proposethig
chapter.

In our scheme, face images are represented using SVD, and the hallucination
and recognition of LR faces are taken into account simultaneously. We have
proved [124] that, based on the Frobenius norm, the correspondigglar
values of an image across different resolutions have approximately a linear
relationship. This makes the estimation of the singular values of HR face
images more reliable. Furthermore, the left and right matrices in the SVD
representation can be interpolated to a higher resolution using bicubic
interpolation; this interpolation method applied to these two matnaésnot
change the holistic structure or the pattern of the face image. Quuoped
approach can be applied to both face verification and identification.

Our simultaneous face-hallucination and -verification algorithm isotksh as

SHV, As the claimed identity of the query is known, the claim will slynpe
rejected if the difference between the singular values of the query and those o
the claimed faces in the database is larger than a certain threshold. If the
difference is smaller than the threshold, super-resolution will egopmed
based on the mapping models learned from the claimed LR-HR face pairs.
Then, hallucination is performed based on the LR-HR face pairs of the

claimed identity, and the LR-to-HR mapping matrices of the respective
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claimed face pairs are learned for estimating the high-frequency information
any detailed local features missed in the estimated HR faces generated by
interpolating the two SVD matrices. The hallucinated faces are then used for
verification again On the other hand, the algorithm for simultaneous face
hallucination and identification is denoted as SHI. In this algoriti@rfaces

that are the most similar to the input LR face image are first searcheddrom
gallery database of LR-HR pairs based on its singular values. Suppate th
theseQ faces belong td/ distinct subjects, wher®l < Q. For each of thes#
identities, the corresponding mapping models are learned and usegdn su
resolve the query input. Therefor®] HR face images for the LR query are
generated. Then, the differences between each oMthdR face images and
the corresponding HR face images in the database are computed based.on P
The input LR face is assigned to the class of the face with the smallest
difference.

Conventionally, by considering face hallucination and recognition
simultaneously, the accuracy of both the hallucination and the recograan

be improved.

A brief introduction to Chapter 6 - The discussions and conclusionghief
thesis will be given in this chapter. We will also pinpoint the cdmnitions of

our work in robust face recognition. The chapter ends with some gsind
possible future works related to robust face recognition. Somsildesfuture

of research on robust face recognition will also be discussed.
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Chapter 2 Facial-Feature Detection
and Localization Based

on a Hierarchical Scheme

Accurate facial-feature (such as eyes, nose, mouth, etc.) detection and lomalizati
are essential for a wide range of computer-vision applications (such iaesr-dr
fatigue monitoring systems [81], face recognition [2][3][4]&]B2] face tracking,

iris  recognition [83], human-computer interaction [84], etc.) and
biometric/cognitive psychological tasks (such as facial-paralysis diseas
diagnosis/evaluation [85], control devices for disabled people, facjalession
analysis for human affective states [86], age estimation, user attentibgaae for
marketing analysis, etc.). Since the detection and localization of facial ésapley

a vital role in many tasks, they have attracted many researchers’ attention from
different industrial sectors and different academic disciplines.

In the past few decades, a lot of face recognition approaches have logpeseul:
Principal Component Analysis (PCA) [2][3] and Linear Discriminant alvsis
(LDA) [4][5][6] are two of the most classical and representational apprescand
have long been used as benchmarks for face recognition. However, thesie-holis
based face recognition algorithms require the accurate positions tftheyes and
the mouth for normalization and alignment. In addition, most of theetu face-
hallucination (or face super-resolution) algorithms [8] also rexjuan precise
alignment of the key facial features. Most face-hallucination and current face
recognition algorithms assume that face images have been aligned accurately with
respect to the important facial features, such as the eyes, or both eyes atid mo
This assumption makes these algorithms semi-automatic if high accumagyms
of the facial-feature positions, is needed. What's more, many researchurats fo
that the performances of these algorithms will degrade dramatically iffabe

images under consideration are not aligned properly, regardless of whiedser



systems are based on local or global/holistic methods [10][11][B2][ For
instance, Wang et al [11] found that, even if the eye-location erronlisabout 5%,

the face recognition accuracy reduces dramaticallyy about 50%. Therefore, the
accurate detection and localization of facial features play a very important role in
face recognition systems.

The remainder of this chapter is organized as follows. First, we peo&itrief
overview of the state-of-the-art work on facial-feature detection and katadn.
Then, we introduce our proposed algorithm for accurate facial-featueetaet and
localization based on a two-level hierarchical scheme. Finally, experimentsresu

are presented and a conclusion is given at the end.
2.1 Previous work on facial-feature detection

Although research in different subject areas has paid attention to the iEsue o
accurate detection of facial features, there are still many challenging technical
problems to be solved. Most of the existing facial-feature detectioricaadization
algorithms [1] cannot work accurately and reliably when a face is rotatedsriuand
poor lighting condition, of low resolution, or when the eyes aresetb This will, in
turn, have an adverse effect on the performance of applications such as face
hallucination and face recognition.

There is a general agreement that, among the facial features, the eyes are the
most important. Furthermore, the position of the eyes can be used amlalerel
geometric reference for localizing the other facial features. Therefore, a large
number of methods have been proposed for detecting the eye postidase
images and video clips. The literature on eye-detection and -localizatiorodseth
can be categorized into two classes: active methods and passive methods. Active
methods refer to those that employ a sensing device, while passive daatbhaot
use any sensing device. For active methods, infrared illuminatiomcesuare
usually used to produce a red-eye effect to detect the eyes [87, 88]. ldnwie
obvious drawbacks of this approach are that intrusive sensors are arstdhe
subject concerned is lit by infrared light. Therefore, these active methaoels

utilized in some specific circumstances and conditions only.
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Most of the existing approaches to eye detection are passive. In [89], &atemp
based approach was proposed to detect and locate the eyes in a frontal-view face
image. This approach has difficulty when the appearance of the features changes
significantly: for example, closed eyes, open mouth, etc. The deformaiplplate
method [90] proposed by Yuille et al. defined parameterized templates/és and
mouths. By minimizing energy functions defined in terms of the edgesk®
valleys, image intensities, and prior knowledge, the template parameters ar
changed iteratively so as to fit the templates to the corresponding faciatdsanh
a face image. The Active Shape Model [91] was proposed to handle shape
variations in human faces using statistical models. However, the stalishape
model has to be learned via the manual labeling of landmarks, which are used to
represent the facial features in the training face images; the fittingeofrtodel to
the face is also done iteratively. Later, an extended Active Shape Mag&l) [92]
was proposed to locate the facial features in frontal views of upright facg93],

a corner-detection scheme is first employed to locate possible faciatdeatu
candidates in a head-and-shoulders image, and the approximate posttithes o
features are estimated by means of average anthropometric measures. Based on the
rough positions of the facial features, deformable eye templates caritiaézed

and used to localize the eyes more accurately. Many other methods have also been
devised for eye detection. A multi-layer perception (MLP) eye finder wapgsed

by Jesorsky et al. in [94]. In [95], a generalized projection funcii@iF) was
defined, and the hybrid projection function (HPF) was used to deterriige
optimal parameters of the GPF for eye detection. In [96], an approadmufoan-

face detection and facial-feature extraction was proposed, using a genetithafg

and the eigenface technique. As the genetic algorithm s, in general,
computationally intensive, the searching space is limited to around thesgjons,

so that the required runtime can be greatly reduced. Recently, a methocixehg
to-edge information was proposed in [97], which employs the lengthtlaa slope
information about the closest edge pixels to detect and locate eyes. |Jrafp8ye-
location algorithm based on the radial-symmetry transform was peapoA

symmetry magnitude map is computed using the transform to iderdsggiple eye
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candidates. Campadelli et al. [99] proposed a method for eye detectionthsing
support vector machine (SVM) and the Haar wavelet coefficients. In [108}pa
stage hybrid face-detection scheme was proposed using Probability-Based
Mask Pre-Filtering (PFMPF) and the Pixel-based Hierarchical-Feature
AdaBoosting (PBHFA) method to effectively solve the complexity idafoosting.
Hamouz et al. [101] proposed a method using the Gabor features. Addadaed,
affine-invariant method using isophote curvature was proposed by Waleal. in
[102] for eye localization. A ternary eye-verifier was proposed in [29] dge
verification, which uses skin information and compensation in the gaces for
eye-feature extraction.

As eye localization can be used to approximately identify the otherlfis@tures,
compared to eye localization, less of the literature has addressed the detsctio
other facial features such as the nose and mouth. Perlibakas et al. [10zgdudli
sequence of bottom-hat morphological operations to locate dark msegidmch
correspond to the eyes and lips; geometrical constraints are then empidgedte
the facial-feature candidates. In [105], two thresholds are applied dmtge edge
map for the extraction of head/face boundaries. Then, projections alerxgatidy
axes are performed on the binary edge image for the detection of the eyesnibs
mouth regions. Cristinacce et. al [106] proposed a multi-stage apptoacicate
interesting points around the eyes, the mouth, the nose, the eyelraivthe chin.

A shape constraint is also used to improve the detection accuracy of the facial
features. In [107], a simple transformation is outlined to converbrcohages to
gray-scale images in order to enhance the mouth region during the extrabie
shape of the mouth is then extracted using a binarization method. #ditest al.

[108] used the located eye centers to define a mouth region, and then udadcethe
component in the mouth region to locate the mouth corners. In addiiermouth
candidates in the area were compared to the mean distance vector field. Althoug
the eye positions can be used to coarsely localize the other facial featdfesndi
people have faces with different geometric structures. Therefore, litaid to

precisely detect the nose and mouth positions in practice.
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An efficient approach to locate the facial features is to identify ttiersregions;
localization is then focused within those salient regions. A preliminewyk [109]
uses a salient map to locate pairs of eye regions, and then to identify thealresf
eyes using a fithess function. However, the detection of the nose anith fmasi not
been investigated. Furthermore, using the fitness function onlgietify the best
pair of eyes is difficult in terms of locating the eye positions accuratiythis
chapter, we aim for a precise localization of the eyes, as well as the nosecarid.
Our proposed method is based on a two-level hierarchical scheme, which has the
following advantages:
® Compared to those statistical-learning-based methods [83, 101] (which
usually require a lot of training samples and are time-consuming), our
proposed method does not need extensive training or learning in advance to
locate the eye positions in a face region.
® In contrast to the projection-based methods [95] and the template-based
approaches [89, 90], our proposed method can locate accurately the eye
regions in face images under illumination variations. This is duthé fact
that our proposed scheme is based on multi-scale analysis using wavelet
transform, which is more robust and less sensitive to changes caused by
illumination variations.
® Since our method computes saliency from three different directional efavel
subbands, the detection is reliable even if the face is tilted, or underetit
poses, facial expressions, and/or resolutions.
® The proposed two-level hierarchical scheme can efficiently narrow down the
search space when finding the accurate eye positions. Therefore, the
computational complexity of our proposed method is low: it mainly nexgu
the computation of a salient map only. The computation required isftrer
linearly proportional to the image size, and the method is suitalyleetal-

time applications.



2.2 Hierarchical structurefor eye detection

and localization

In this section, a novel scheme is proposed, which uses a two-level hieedrch
structure based on a wavelet-based salient map and PCA-based verification to
locate eye regions coarsely, and uses a pose-adapted eye template for precise
human eye localization. First of all, face regions are located using a cascade of
boosted classifiers [110]. In the first level of our algorithm, a wat+lsed
saliency map is proposed and applied to the detected face region for a coarse
detection of its facial-feature regions. It is observed that the eye regimalways
the most varied blocks in a face image. Therefore, those rectangular regithes
saliency map having the largest corresponding sums of saliency valuesl $feul
the potential candidates for the two eye regions. These eye-region casdatat
verified using PCA, so the false-alarm rate can be reduced. Within the eipaseg
the accurate locations of the eyes are then determined. The first level ofialetect
can greatly narrow down the search space for finding the actual eye posdiuths
thus can reduce the computational cost needed. In the second level of our
hierarchical scheme, a pose-adapted eye template is constructed using tisecintri
photometric and geometric properties of eyes for accurate eye detection and
localization. Based on the detected eye positions, the other facial featosesgnd
mouth) can be determined by considering their respective sums of trencali
values and by using the two eye positions detected as a reliable georatdrence.

The framework of the proposed novel scheme, based on a two-level hierarchical
structure for facial-feature detection and localization, is illustratedrig. 2.1. A
cascade of boosted classifiers [110] is first used to detect the face seigican
image. The idea of the cascade classifiers is that simple features are usedve rem
negative candidates in the early stages, while more complicated featuresedrsu
the later stages [110]. This method is robust and can be used for reafacee
detection. Then, an improved wavelet-based salient map is computed so thdt salien

rectangular regions in the face regions can be determined. Those rectangular
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regions with the largest saliency values in the salient map are possible ey
candidate regions. Two candidate regions form an eye-window candidat) ishi
then verified to be an eye window (or not) by using PCA. Finally, aepadapted

eye template is used to accurately determine the eye locations. After the eye
positions are localized, they are used as a reliable and geometric refemence t
further locate the approximate positions of the nose and mouttghwdan then be
detected according to their respective saliency values in the salient map. The

following sections of this chapter will present the details of theoppsed method.
2.2.1 Detection of eye-candidate regions using a wavelet-based salient map

Due to the resemblance between multi-resolution filtering and hunsualv
processing, wavelet-transform techniques have been successfully used tweanaly
spatial-frequency content [111]. Psychophysical investigation hassalewn that
the human visual system (HVS) performs a frequency analysis when weisgse th
[112]. Following [111], we denote the detail images (i.e. subkaad LH (contains
the horizontal high-frequency information), HL (contains the weaiti high-
frequency information), and HH (contains the diagonal high-frequency
information). The decomposition/transform also produces oneappation image,
denoted as LL, containing the low-frequency information. The wavelesfoam
can recursively decompose the LL band. Since a two-level wavelet decoropositi
yields 6 detail images, we use LH1, HL1, HH1, LH2, HL2, HH2, and an tamithl
approximation image, LL2, to denote all the subband images. FysiZows an
example of two-level wavelet decomposition.

Wavelet-based saliency detection is an effective approach for describing
different parts of a face image, as it can express image variations at different
resolutions. An extensive comparison of saliency-detection technagrebe found
in [113][114][115][116][117][118]. An orthogonal wavelet trsform with a
compact support, i.e. its value is zero outside a bounded interval, catoleaabn-
redundant and a complete representation of signals. Using a set of artiog

wavelets, the wavelet coefficient at each signal point is computed at each scale of

2 ; the wavelet transform can provide information about the local variatiora



signal at different scales. A local absolute maximum value of the wavelet
coefficients at a coarse resolution corresponds to a region with tagialgvariation

in the signal. In other words, salient points can be detected by finditeyant
points at finer resolutions to represent the global variation.

For wavelets with a compact support, a wavelet coefficient can be computed as

W, f(n) with 271 p signal points, wher&\; andf(n) are the wavelet function and

the signal at the scale oR’, respectively, andp is the wavelet regularity
[113][114][115][116][117][118]. We can further investigatehet wavelet
coefficients at the finer scale &f**. At this scale, a set of coefficients is computed
for the same signal points as a coefficient at the scale2’of We call these

coefficients, denoted a€(W, f(n), the children of the coefficien®, f(r), and
they are related as follows:

CW, f(N)={W.. { k2 & k2 r2 pl}, (2.1)
where 0sn< 2'N, andN is the length of the signal. The children coefficients

C(W, f(n) reflect the variations of the ! p signal points, and the most salient

point should have the wavelet coefficient with the largest absolutaevalhe
salient points can therefore be detected by considering this maximum, and th
corresponding children are then searched. By applying this process vetyrsihe
salient points can be identified. The following formulation has beseduto
compute saliency values for detecting salient points in
[113][114][115][116][117][118]:

Sal(r):i| CO(W f(m], 0<s 2 N -log & £-1 (2.2)

However, the largest absolute values of the wavelet coefficients at differe
scales have different mean values and ranges. The set of maximum wavelet
coefficients at the first level have larger magnitudes than those at thadséneel,
and so on. This result actually follows the wavelet transform theorg][lth order
to extract the salient points more accurately, the maximum values at diftarales
should be normalized. In our algorithm, we utilize an improved salietgtgctor as
follows [119, 120]:
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Face detection using
Haar-like features

Coarse localization of eye- Compute the wavelet-base
regions based on the salient mgp saliency map of the detecte
anc PCA-base verificatior face regior
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Accurate eye region detection Accurate detection of the noge
using a pose-adapted eye and mouth with reference to
template the eye positions

Fig. 2.1. The framework of the proposed facial-feature detection andidatiah

algorithm using a two-level scheme.

Sal(n):ikkdk)(vyj fn)], 0< 2 N -log N £-1 (2.3)

where ¢, is the weight to be assigned to the maximum wavelet coefficients at
different scales. The weighg, is the reciprocal of the standard deviation of the

coefficients, which is defined as follows:

ERICT 2.4)
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LL2 HL2
HL1

LH2 HH2
LH1 HH1

(a) The framework of two-level wavelet decomposition. (b) Two-level wavelet

decomposition of the image “Lena”

Fig. 2.2. Two-level wavelet decomposition: (a) the different subbgaerated in
the decomposition, and (b) the decomposition of the image “Lena”, eviies
approximation image, denoted BE2, contains the low-frequency information; the
LH1 andLH2 subbands contain the horizontal high-frequency informationHthke
and HL2 subbands contain the vertical high-frequency information; anditié

andHH2 subbands contain the diagonal high-frequency information.

o, =\/§Zwv2k f(2-4,)°  and (2.5)

& =Yo,, (2.6)
where W, f(2 is an element in the set of maximum coefficients Witk z< S,

and Sis the number of maximum wavelet coefficients at lekeln practice, ifK
salient points are detected in an image, we carSs&tK. Sis the number of the
set of maximum wavelet coefficients at each level [119], &80.

As the two eye regions contain the largest intensity variation in a fawge,
many salient points can therefore be detected in these regions. Thuslite s
values of the regions are first computed. The two blocks in a face imagehwh
have the largest total saliency values are identified as the positioniseoéyte
regions. Define a rectangular region Rect(), whose center coordinates are ¥)
and whose length and width are denotedessandwid, respectively. Consider the

wavelet coefficients at the scale @f in Rectf, y), we can further investigate the
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region at the finer scale 02'*!, where a set of coefficients is computed using the
same points at the scale d¢f , i.e. the children in Rect( y). These children
coefficients reflect the variations inside Recty), and the most salient Rekt(y) is
the one that has the largest sum of absolute wavelet coefficients at theos@Al".

The algorithm is applied to the three different subbands, i.e. trzdntal,
vertical, and diagonal subbands. If the most salient rectangles of thereditf
subbands lead to the same position, the corresponding sums ericsalralues of
the three subbands are added to form the saliency values. The saliexcy)abf(
the resulting salient map of an image is computed by summing the sahahogs
inside Rect, y). If the size of the face images obtained from a face deteclox\¥,
the width and the height of Regi(y) are approximately set &n = 0.15<L andwid
= 0.12xW, respectively; these are set empirically. It is obvious that the eyenegi
are always the most varied blocks in a face image, andlthectangular regions
with the maximum saliency values are selected as the coarse eye-region candidates

for further verification.
2.2.2 Verification of eye-region candidates usng PCA

The T selected rectangular regions, which possibly contain an eye, can be
verified using PCA. Each of these possible eye-region candidates ecf@djonto
an eigen-space, constructed using PCA based on eye-region training saangles,
is then reconstructed. The two candidates with the minimum reconstiuetiors
are selected as the best or the correct eye regions for the left and rightTéyes
approach can achieve a better performance for face images in which people wear
glasses. The eigen-space verification procedure is described as follo8ys [2,

An eye window can be considered as a column vector, denoted ,asf

dimensionlen x wid by concatenating its rows one by one. llet, I,,..., [, bea

training set of eye regions. The average of the eye-region training sanspyiven

as follows:

_ 13
Y= VZrn. 2.7)

=1
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The difference of each eye region from the average is comput€glad —-W.

The covariance matrix is calculated as follows:
1 M
MAT:MZchcDﬁ:ATA, (2.8)

where the matrixA = [®,®,..®,]. In practice, the matrixMAT is large for

computing its eigenvectors. A trick [2, 3] can be used which determines the

eigenvectors,, of A" A first, i.e.

ATAY, =Av,. (2.9)
Multiply both sides byA, we have
AA'AY =) Ay, (2.10)

so Av, are the eigenvectors oMAT= AA . Thus, the eigenvectqun, is a linear

combination of theM training samples:

M
ty = D vy @ =Av, n=1,...,M. (2.11)
k=1

Usually, a smaller number of eigenvectd is selected, which are those with

the largest eigenvalues, so as to reduce the dimensionality of the gigea-s

Eye-candidate

e
left eye

Corresponding

reconstructed

images

SSD 4.07e+005| 4.16e+005 4.09e+005 2.16e+(005

Fig. 2.3. An example of coarse eye-region verification based on PCA: (a) Th
colored rectangular regions represent the eye-candidate regions fefttegd, (b)

the first row shows the original eye-candidate regions for the ledt &ye second

row shows the corresponding reconstructed images, and the thirghrows the

sum of squared differences (SSD) between each original eye region and the

corresponding reconstructed image.
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Fig. 2.4. Examples of coarse eye-region detection results using theovetp
saliency-detection method with the Db4 wavelet and verification based on @FA
face detection results, (b) the saliency maps, and (c) the detected coarse eyg regio

using the proposed approach.

A possible eye region, denotedlasis projected onto the eigen-space as follows:
o, =u, (MT=-¥),n=1...M. (2.12)
The weights form a vecto' = [w,,,,...:,,] that describes the contribution of

each eigenvector in representing the input eye region. The sum of squared
difference (SSD) between the eye region and the corresponding recoedtruct

image is computed as follows:

e =|r-r |, (2.13)

.
where | = W+> o u, . The two eye windows with the minimum reconstruction

n=1

errors among th& eye-candidate regions will be selected.
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Fig. 2.3 shows an example of verification of eye regions based on PCA. The
right-most column in Fig. 2.3(b) is the candidate with the minimteconstruction
error (SSD), so it is selected as the optimal coarse eye region. Figh@wbssome
detection results of coarse eye regions using the improved saliencyidetect
method with the Db4 wavelet and PCA-based verification. It can be seen that ou
proposed approach is effective with variations in illumination, pose, facial

expression, and with the presence of glasses.

2.2.3 Accurate eye localization using a pose-adapted eye template

The sclera, also known as the white of the eye, is the opaque outer fayer o
eye. Human eyes are distinctive in the animal kingdom in that the scleiailidev
whenever the eye is open. For other mammals, the visible part of the si¢ches
the color of the iris, so the white part does not normally showl][1Zhis special
intrinsic property of the human eye can be utilized for accurate eye deteatidn
localization.

Based on the prior knowledge of the sclera’s photometric and gemmetr
properties, a pose-adapted eye template is proposed. In practice, human faces
always have variations in facial expression and pose. Nevertheless, uging th
proposed template, eyes can always be localized accurately, except in some
extreme conditions. The proposed template has the following charéicteris
® No training or learning is needed.
® |t works on both frontal and rotated faces with on-plane rotations dbut®

(a rotation of 45 means that the face almost touches the shoulder, and this is

the rotation limit).
® |t can locate the eyes in face images with variations in pose, facial expressio
and illumination.

Fig. 2.5(a) illustrates three face images with variations in pose, and2f(b)
shows the appearance of the corresponding left eyes. Fig. 2.5(c) shews\tised
pose-adapted eye template based on the intrinsic-appearance property bitthe w

of the eye under variations in pose.
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The pose-adapted eye template has a black block, deno®&daags center, with
a size ofrxr. This black block represents the black pupil in the human eye. There
are two white blocks on the left and the right of the black block, whigpresent
the white (sclera) of the eye, and are denoted\asand W-, respectively. Their
sizes are equal, i.ex2r (widthxheight). The height of the white blocks is set at 2

in order to deal with face images with the maximum rotation ¢f 45

w, | B | W

.|

N 5

Fig. 2.5. Face images with variations in pose and the devised posesddeys
template: (a) three face images with different poses, (b) the appearanesn ptt

each of the eyes, and (c) the devised pose-adapted eye template.

Let I(x, y) be the gray-level intensity at positior, y) of a face region, antlw, Is,
and Iw. be the summation of the pixel intensities in the regidis B, and W,

respectively. Specificallywi, Is, andlwz are defined as follows:

w= 2, 1xy), (2.14)
(x, y)BW

= > 1(x,y), and (2.15)
(x,y)oB

o= D, 1Y) (2.16)
(%, y)OW,

We define a similarity function, denoted &M, to measure how well the
template represents an eye as follows:

sim =tz 2.17)

lg + 8
wheref is a small positive number to avoid the denominator being zero.
Having coarsely detected the eye regions as described in Section 2.2.2, ¢he pos

adapted (or pose-insensitive) eye template is applied to the two eyewsnd he
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template slides over the detected eye region from left to right and themtbp to
bottom to determine the best eye position. At each position, the pamdsigSIM
value is computed. Fig. 2.6 shows how the pose-adapted eye template searehe
an eye region. To determine the best eye location,Qhitemplate positions with

maximumSIM values are selected. The best eye posiijgn y.) is determined as

follows:
X, = mediarf X, X...... X) and (2.18)
Y. =mediarf y , ¥...... ¥), (2.19)

where (X, y) are the coordinates of thié candidate of th&€ eye candidates.

Fig. 2.6. The pose-adapted eye template searches over an eye region from left to

right and top to bottom.

(@)

(b)
Fig. 2.7. Some examples, with variations in pose and facial expresditime aose
and mouth detection results. The black arrows show the search direc@ribe(
nose and mouth are searched along the line perpendicular to the linejtie two
eye centers and through the middle of the two eye centers, and (b) theandse

mouth detection results.
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2.2.4. Nose and mouth detection and localization based on saliency values

Having determined the precise position of the two eyes, the posifitiee nose

and mouth can be located using the fact that their centers are located roughby on t
line which is perpendicular to the line joining the two eye centers araugh the
midpoint of the eye centers, as illustrated in Fig. 2.7(a). When a search is
performed along the vertical line, the nose region and the mouth regioa the
largest variation in intensity, as well as the largest saliency valuesefner the
two positions where the sum of the saliency values in the rectanglég iangest
can be determined. The upper rectangular region is considered to be the nose
position, while the lower one is the mouth position.

Fig. 2.7(b) shows some detection results for the nose and mod#ténimages
with variations in pose and facial expression. We can see that our method can
accurately detect the nose and mouth in face images with variations inapase

facial expression.
2.3 Experimental results

2.3.1 Experiments on eye detection and localization based on the BiolD face

database

Extensive experiments have been conducted to evaluate the effectiveness of ou
proposed method. Experiments were conducted on a “difficult” dataseBithD
face database, to demonstrate the robustness of our method. The BicdD f
database contains face images under "real-world" conditions, which wetgadp
under uncontrolled illumination, different backgrounds, facesijavith glasses, etc.
The dataset consists of 1,521 gray-scale images with a resoldt884&286 pixels.

In each of the following experiments, the eye-detection and -localization
algorithm is tested using a wide range of face images, and the uppeofhalf
detected face region is considered for eye detection. All of the face images are
obtained from a face detector, and the saliency of the detected face regions is
computed using the Db4 wavelet with 3 levels of decomposition [111]o Tw

rectangular regions from five eye-region candidaiesg) on the left and the right,
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respectively, of each face region are selected to form the coarse eye-region
candidates. The number of eye-region training samples is Jgt a5, and the
number of leading eigenvectors used, i.e. those with the highest associated
eigenvalues, is set 8’'=10. The pose-adapted eye template has the parametér

and the number of candidates for an eye region is experimentally @t=af,

which can produce a good and robust result by experiments. The detectioa@ccu

Is measured as follows [94]:
e=max(d .4 ) q . (2.20)
whered, andd, are the Euclidean distances between the located positions and the

corresponding ground-true positions of the left and the rigesgeyespectively, and

d, is the Euclidean distance between the two eyes of the ground-truthheln t

Ir
experimentse < 0.25 ande < 0.1 are used as the criteria for measuring the accuracy.
If a detected eye position has itsvalue smaller than a certain threshold, the
detection will be considered correct.

Fig. 2.8 shows some facial-feature detection results using our gedpmethod
for faces under pose variations, different facial expressions, and wedsasgeg.
The blue rectangles represent the detected face regions, and the detected eyes are
marked with a red dot. From the results, we see that the proposed medimod
detect eyes accurately even if the faces are under different illuminations and poses
or wearing glasses. As the saliency is computed based on the summatiotinfezm
subbands, the detection is insensitive to face orientations. Fomtiher the
proposed pose-adapted eye template based on the intrinsic-appearancey mopert
eyes produces precise localization.

We also compare the detection accuracy of our proposed algorithm wittatex s
of-the-art eye-detection approaches using the BiolD database. The sixdneiteo
(1) multi-layer perceptron (MLP) eye finder proposed by Jesorsky ¢4,
(2) method using pixel-to-edge information proposed by Asteriad#. [97],
(3) enhanced method based on the radial-symmetry transform proposed by Bai

et al.[98],

(4) method using the SVM and Haar wavelet coefficients proposed by

Campadelli et al. [99],
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(5) method using Gabor features proposed by Hamouz et al. [101], and
(6) method using isophote curvature proposed by Valenti et al. [102].

(b)

Fig. 2.8. Examples of coarse eye-region detection results using theovetp

saliency-detection method with the Db4 wavelet and verification based on @LA
face detection results, (b) the saliency maps, and (c) the detected coarse eye regio

using the proposed approach.

Table 2.1 tabulates the normalized errors for the different algosithwith e <
0.25 ande < 0.1 to assess the detection accuracy. We see that our method can
achieve a superior accuracy to that of the state-of-the-art methods. We also
compare our method with the other detection and localization methodsms &
the run-times required, as tabulated in Table 2.2. It can be seen that tiaerun

required by our method is similar to that of the other methods.
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Table 2.1. Detection accuracy of different eye-detection and -localizationoaeth
using the BiolD Face Database.

Algorithms: Accuracy (e<0.1) | Accuracy (e<0.25)
Jesorsky [94] 78.07% 90.23%
Asteriadis [97] 79.60% 94.46%

Bai [98] 65.08% 95.54%
Campadelli [99] 83.12% 95.80%
Hamouz [101] 82.33% 95.40%
Valenti [102] 87.45% 96.69%
Our method 90.56% 98.62%

Table 2.2. The run-times of different eye-detection and -localizatiomaalst using

the BiolD Face Database.

Algorithms: Run-times (second per image
Jesorsky [94] 0.45

Asteriadis [97] 0.47

Bai [98] 0.56

Campadelli [99] 0.52

Hamouz [101] 0.54

Valenti [102] 0.67

Our method 0.62

We notice that failed detection mainly occurs in those face images with
eyeglasses, especially with specularities around them, as shown in Fa). 719¢
saliency values around the eyeglasses’ frame increase due to its edgess,corner
highlights and specularities. This also leads to incorrect detectiomie sases, as
shown in Fig. 2.9(b). Nevertheless, an automatic eyeglasses-removathaigoan
be employed to solve this problem [122]. In this experiment, faceg@rawith
eyeglasses are pre-processed using the eyeglasses-removal algorith19(€ig.
shows the results for our method using the eyeglasses-removaittaigor

For the issue whether the eyeglasses removal algorithm is decided to apply
automatically, as shown in Fig. 2.8(b), the saliency maps of faces witljasses
are more “complex” than those saliency maps of faces without eyeglasses. The

mean value of the saliency map of face with eyeglasses is significantly taage

38



the face without eyeglasses, therefore, if the mean value of the salieapyism
significantly large than a threshobh, which is set emprically, it will apply the

eyeglasses removal algorithm automatically, vice versa.

(€)
Fig. 2.9. Results of eye detection and localization using our propadeshe: (a)

original image with eyeglasses, highlights and specularities, (b) falktdction

without performing eyeglasses removal, and (c) detection results withlasges-

(f) (9)

(@), (b), and (c) face image with left out-of-plane rotation of 10, &) 30 degree,

removal performed.

(@) (b) (©)

(d) ()

Fig. 2.10. Face images with out-of-plane rotations [130].

respectively.

(d) and (e) face image with left out-of-plane rotation of 45 degree, aria nght
out-of-plane rotation of 45 degree, respectively.

() and (g) face image with left out-of-plane rotation of 90 degree, art vght

out-of-plane rotation of 90 degree, respectively.



In addition, for out-of-plane rotation cases, as shown in Fig.,201i® proposed
method work well on the face images with rotation degrees within &fyek, i.e.
Figs. 2.10(a), 2.10(b) and 2.10(c). However, for face images watiation degrees
larger than 30 degree, such as shown in Figs. 2.10(d), 2.10(e) asd Fig(f),
2.10(g), it is hard to accurate localization for both existing approachesoand
proposed method. The issue on out-of-plane rotation with sogmf degree (e.g.

larger than 45 degree) is very challenging, which will be our futurekwor
2.3.2. Experiments on mouth and nose detection and localization

Experiments were also performed to evaluate the effectiveness of thesptbpo
method for mouth and nose detection and localization. All of the expatsne
empirically set the size of the rectangle for nose-region detectioteat= 0.25xL
and nwid = 0.12xW, and the size of the rectangle for mouth-region detection at
mlen= 0.30xL andmwid = 0.12xW, respectively. Figs. 2.7(b) and 2.7(d) show the
nose and mouth facial-feature detection results using the proposeddn@éfeosee
that the proposed scheme can effectively localize the mouth and nosestegion

There are some variations between the mouths: some face images have a wide-
open mouth, while others have an almost-closed mouth; and males usaedyah
larger mouth than females. However, the distance between the differeptefse
eyes is usually similar. In other words, the variation in the size @htlouth (mouth
size and shape vary between people) is larger than that of the distance bédteveen t

two eyes. Therefore, we still use the distance between the two dyex the

ground-truth to normalize the errors so as to form the measure éodétection
accuracy of the mouth and nose. In order to objectively assess the detection
performance, we define the detection accuracy for the mouth and nose assfollow
€= d,/ d, and (2.21)
€nou= O/ dy» (2.22)
whered, and d,, are the Euclidean distances between the located positions and the

corresponding ground-true positions of the nose and mouthectgeply. In the
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experiments,e, < 0.25 ande, < 0.1 are used as the criteria to assess the

detection accuracy.
We have compared the mouth-detection accuracy of our proposed algorithm wit
five state-of-the-art mouth-detection approaches. The five methods are:
(1) the method in [104] based on morphological operations and gecaietr
constraints;
(2) the method in [105] using the image edge map and projectionshéor t
detection of nose and mouth regions;
(3) a multi-stage approach to locate interesting points around mmcatial
noses [106];
(4) the binarization method in [107] to detect mouth regions; and
(5) the approach in [108] using a mean template for mouth-corner localizati
In addition, the methods in [105] and [106] were also compared to apgsed
method in terms of nose-detection accuracy. Table 2.3 tabulates the mouth-

detection accuracy of all the methods. Our detection rate gjthx 0.25 is 92.19%.
By comparison, the detection rates of [104] and [108] are 83.70% an®®5.3

respectively. Experiments show that our proposed method can achieve asuperi
performance for mouth detection.
Table 2.4 tabulates the nose-detection accuracy. Our saliency-region-based

scheme produces satisfactory results, with a detection rate of 95.65% eyen

0.25, while the detection rates of [104] and [106] are 83.38% and084d,.4
respectively. Extensive experiments have verified the effectiveness groposed
scheme for locating noses.

Table 2.3. Mouth-detection rates of the different methods based on thB Bace

Database.

Algorithms: Accuracy (e<0.1) | Accuracy (e<0.25)
Perlibakas [104] 81.66% 83.70%
Shih [105] 75.25% 81.47%
Cristinacce [106] 81.50% 83.11%
Travieso[107] 66.20% 69.80%
Asteriadis [108] 83.37% 85.33%
Our method 90.24% 92.19%
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Table 2.4. Nose-detection rates of the different methods based on dli2 Bace

Database.
Algorithms: Accuracy (e<0.1) | Accuracy (e<0.25)
Shih [105] 80.25% 83.38%
Cristinacce [106] 84.01% 87.40%
Our method 93.78% 95.65%

2.3.3 Experiments on eye detection and localization based on the Yale Face

Databases

In order to test the effectiveness of the proposed method under iktiom
variations, experiments were also carried out using the Yale Face Databag¢ B [7
and the extended Yale Face Database B [73], which have been commonly used to
evaluate the performances of illumination-invariant face recognitiorhoagst The
Yale Face Database B consists of 10 classes, named from yaleBO1 to yale®10. Th
extended Yale Face Database B contains 28 human subjects, named from yaleB11
to yaleB13, and from yaleB15 to yaleB39. The total number of distinbjests in
the two databases is 38. The face images named **_P0OOA-035E-20 and
** POOA+035E-20 (“**” represents yaleB01yaleB13 and yaleB15 yaleB39)

were selected in the experiment, i.e. 38x2=76 images in total.

Table 2.5. Detection accuracy of different eye-detection and -localizationongeth
using the Yale Face Database.

Algorithms: Accuracy (e< 0.25)
Jesorsky [94] 80.25%
Asteriadis [97] 82.07%

Bai [98] 81.41%
Campadelli [99] 84.50%
Hamouz [101] 81.83%
Valenti [102] 83.75%

Our method 93.42%
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Table 2.5 tabulates the normalized errors for the different algorithwitb, e <
0.25. Although the face images used in this experiment have themiiktion
conditions changed dramatically, experiment results show that 71 ou¢ Gftiace
images (i.e. 93.42%) have the eye positions detected accuratelye with25. We
can see that the detection accuracy of our method is significantly higher taof th

other methods.

2.4 Conclusion

In this chapter, we have proposed an efficient algorithm for the accurate idatect

of facial features in face images. Our method has the advantages of being non-
iterative and computationally simple. The proposed algorithm can Idbateye
features precisely. This is due to the fact that the computation of sglieslues
considers saliency from three different directional wavelet subbandsheo t
proposed scheme is robust to face orientation and to variations causefficlbgndi
poses, facial expressions, and resolutions. With the use of salienegtidatand

the verification of eye candidates using PCA, the required computatiorbean
greatly reduced because the eye template is only applied to the selected cearse ey
regions. In addition, the proposed eye template can handle eye regitna large
rotation and pose variation. The position of the nose and mouth cdetkemined

by considering both the saliency values in the salient map and the deteaed ey
positions as geometric references. Experiment results show that obhodanean
achieve a higher detection-accuracy level than existing state-of-the-artlahgeri
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Chapter 3 Illumination-Invariant Face
Recognition Using [llumination

Compensation and Enhancement

Face images exhibit large variations in appearance under differentniftions. As
shown in Figure 3.1, the different face images of the same pergbnvasiations in
illuminations are not discernible as the same man. From Figure 3daweee that
human faces share a similar shape and structure, but illuminationioasiand

different lighting directions always make images of the same pemuandissimilar.

AR S
- . J- ‘ - .
i - .t»." .

Figure 3.1. Images under different illumination directions: face msagf the same

person from the YaleB face database.

With the rapid development of the devices of digital image capturing and
researches of complicated recognition algorithms, face recognition can achieve a
highly accurate performance under controlled conditions, such as unchagiyed |
sources, frontal-view images, no occlusion, neutral facial expressiortietvever,
face recognition with different illuminations is a difficult prigon, in particular in
outdoor circumstances. lllumination variations remain an unsolvedeoln face
recognition, despite a lot of research having been devoted to solving it [1

In the past decades, the illumination problem has received considerabléoattent
in both the face-recognition-related industries and academic circles. Howeiger
still one of the prominent issues for appearance- or image-based face temogni
approaches. The development of illumination-compensation techniqueader
recognition is important, and modeling face variations in realistitnggs is still a

heuristic issue, especially in uncontrolled environments such as auaddmatural



settings. Without solving this problem, accurate and robust face rémopgnannot
be achieved [1, 9].

In this chapter, we will focus on the problems of illumination vagas for face
images, and proposed a novel scheme for lllumination-Invariant Face Re&cogn
Using lllumination Compensation and Enhancement. The rest of thistethap
organized as follows. First, we give a brief overview of related stétde-art work.
Then, we describe our proposed methods for illumination compensaiw
enhancement, and experiment results are also presented. At the end, a conclusio

and discussion for this chapter is given.

3.1 Related Work

Face recognition with different illumination conditions is a ditflt issue, and
currently illumination variations remain an unsolved problem, desaitt of
research having been devoted to solving it [1]. In the past several decades, the
illumination problem has received considerable attention, yet it lisaste of the
most prominent issues for appearance- or image-based recognition apprddehes
first such method used a number of images with different illumimatito extract
the three-dimensional shape for illumination-invariant represemntalbiased on
Lambertian reflectance [42][43][44][45]. In [46], the authorsriduthat the ratio of
two images from the same object is simpler than the ratio of images ditferent
objects with Lambertian reflectance, and the ratio provides two of tlee tHistinct
values in the Hessian matrix of the object’s surface. A method based orewuoti
images [47] was introduced, which assumedased on the Lambertian model
that faces of the same class have the same shape but different textures.yRecentl
Chen et al. [39] improved self quotient image (SQI) by using Lobarit Total
Variation (LTV) smoothing and an efficient illumination-normalizet method
was proposed using an illumination model with a Lambertian surface doe f
recognition in [48]. Later, photometric stereo has been used to obt&astand
non-contact surface reconstruction of Lambertian surfaces in [49], whi[B80],
the 3D face-reconstruction methods assume that human faces can be modeled as
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Lambertian, and show that human skin exhibits nearly-Lambertian refteetan
properties.

The illumination problem in face recognition has drawn many researchers’
attention, besides the approaches based on Lambertian model, and many other
methods have been also proposed. According to the Retinex theory [®l], th

intensities of an imagd (x,y) can be represented as the product of illumination
L(x, y) and surface reflectancB(x, y). Based on this theory, an automatic image-

processing algorithm for compensating illumination-induced vanatiovas
proposed in [52], which estimates the illumination field and thenmemsates for it.
However, this method is subject to artifacts. Shan and Ward [53] propased
wavelet-based normalization method, which enhances the contrast as well as the
edges of face images for illumination normalization in order to fatditface-
recognition tasks. In [54], a facial-image illumination-invariantaaithm, based on
the fusion of wavelet analysis and the local binary pattern, was introdlicete
same year, a simple algorithm which can alleviate illumination effectseliyng

the coefficients in the wavelet approximation sub-band to zero was proposed
[55]. Moreover, In [9], Adini et al. presented an empirical and systematidyst
and evaluated the sensitivity of some representations to changes imndhion.
Three different categories of approaches were discussed. The first methdd u
gray-level information to extract the three-dimensional shape of an objgog the
shape-from-shading approach [56]. This is an ill-posed problem, amd th
assumptions used make it difficult to apply to general object recagniiiherefore,
this approach is not effective for face recognition. The second approachnizgel
representations that are relatively insensitive to illumination chargyed) as the
edge maps of images [57][58][59] and a basic image-representatioal fiovdace
recognition [60][61]. The third approach to solve the illuminatiariation
problem was to model several images of the same face taken under different
illumination conditions [62][63]. More recently, a 3D morphabkcé model was
employed to produce synthetic images under varying poses and ifitions.
Frontal, semi-profile, and profile face images of the same person s&d to

generate 3D face models in [64]. Zhao and Chellappa [65] proposed adnetiny
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symmetric shape-from-shading for Illumination-insensitive faeeognition. In
[66], Zhao et al. used illumination ratio images to produce new trgiimmages for
face recognition with a single frontal-view image. Xie and Lam [67] psgd a 2D
face-shape model to eliminate the effect of difference in the face shagifesent
individuals for face recognition. Tan and Triggs proposed an ilhation
normalization method, which incorporates three main stages designed ritecou
the effects of illumination variations, local shadowing, and hiditeg while
preserving the essential elements of visual appearance [79]. The three agsn st
contain a nonlinear Gamma correction, Difference of Gaussian (DoG) riidfexind

a final stage of contrast equalization for face recognition under diffiogititing
conditions.

3.1.1 Discussion of the disadvantages of the existing techniques

However, those existing techniques methods [42][43][44][45]BY] based on
the Lambertian model share the same drawbacks; a single-point ligttesplaced
at infinity is assumed. The Lambertian model is suitable for someagins, but
it has proven difficult to build accurate 3-D models using only imagden in
uncontrolled circumstances, and the assumptions make it difficult pby ao
general object recognition in outdoors environments [46]. Furthesmalthough
traditional illumination-invariant face-recognition methods, whicased on the
Lambertian model, can construct a three-dimensional face representation by
combining linearly a number of the images under different illumoret, there are
two obvious drawbacks with the Lambertian model: a single-pointt Iggurce
placed at infinity is assumed, and multiple images need to be captured ander
variety of illumination conditions for each class to obtain a three-dimeas
representation of the images. Furthermore, most existing approacheketo t
illumination problem rely primarily on universal representations,iclvhare in
general insufficient to model the variations caused by illumination obsufg]. It
has been shown theoretically that an illumination-invariant image repegsenbr
function does not exist [9][68]. Solving image variations caused by gésnn
illumination direction can be achieved by utlizing more domain-specific

knowledge. In [69], a simple scheme based on the wavelet transform wasspib
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for illumination compensation and enhancement for face images; howeves it

the disadvantage that a face image within a class under even and frontal
illuminations is needed in order to calculate the average representatidaseo
images under changing illuminations.

In contrast to previous work and instead of deriving universal represamgat
illumination compensation and enhancement utilizing specific individual
information can possibly provide an effective and useful way to achievettarb
appearance and a higher recognition rate. In this chapter, we present a
computationally efficient method for generating illumination-inaati texture and
face images using the scheme of illumination compensation and enhancengent. W
use an illumination model which is universal and does not require thergen
of a single-point light source, thereby overcoming the limitatiorthef Lambertian
model. Our proposed approach captures the mean illumination-effect matrix
representations of images under a variety of different illuminatiorditioms for
each class, so as to compensate or enhance the images, and consequently, to
achieve better classification performance. In particular, we will aim at deyisi
simple and effective scheme to compensate/enhance illumination, and teeremo
the shadow caused by uneven illumination, rather than obtaining a soatad

and accurate representation of the texture surface reflection.

3.2 | llumination Compensation and
Enhancement for |llumination-lnvariant Face
Recognition

3.2.1 An illumination model

Some methods have been proposed to handle varied illuminations basée on t
Lambertian model, with the assumption that a single illuminantasq at infinity,
and the utilization of a number of images, to construct 3D models tbahaariant
to illumination. In real situations, images are usually captured indamr

uncontrolled environments, with various illumination sources fralifferent



directions. To overcome the limitations of the Lambertian model, tbeination
model should be universal (can be used in multi-lighting circumstaneagout
requiring the assumption of a single-point light source.

According to the Retinex theory [70], the intensity of an imade,y) can be
represented as the product of illuminatisand surface reflectancB(x y) . Based

on this theory, in contrast to the previous work, a novel and effectcreeme is
proposed in this chapter for illumination compensation and enhancemeict) ish
efficient and does not require an image under even and frontal illumintditearn
or to be the reference image. Thus, our proposed algorithm is eagypterment.

The intensity of an image (X, y) is expressed as follows:

1%, y)=R(X Y (% Y, (8.1

where R(x ) is the surface-reflectance-representation matrix apdy) is the

illumination-effect matrix.

Such a illumination model-decomposition could be advantageous for many
computer vision algorithms. However, estimating this decompositisna
fundamentally ill-posed problem because every observed value there &rplenu
unknowns [70]. In this chapter, we employ a mathematical framework thaé s
the ill-posed problem and can be used to extract image representations for
relighting. The framework is essentially based on the Singular Value
Decomposition (SVD) representation of images, which are images undéplsu
and different illumination directions. The illumination model B.X) is nonlinear.
Hence, the logarithmic transformation is applied so as to convert (®d yilinear
model, as follows:

1, (x.y) =log(l (x, y)+8)

=log(R(x y) L(x Y48)= logR (x, y))+ log(L(x, )]
=R(x Y+ L(xY

whereg is a small positive integer.

(3.2)

First, after the logarithmic transformation an imagéx,y) into I (X,y) , our

proposed framework decomposes the imalgéx,y) of size mx n into the
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eigenspace using SVD. SVD is commonly used in matrix analysis and can be
applied to analyze an image matrix based on the following theorem of linear
algebra:

The imagel,(x,y) can be viewed as a matrix witlhn rows andn columns, and
any |,(x, y) matrix, whose number of rows is greater than or equal to its number
of columnsn, can be written as the product of emxm column-orthogonal matrixJ,

a mxn diagonal matrixW with positive or zero elements, and the transpose of an
nxn orthogonal matrix/. That is,

(X, y) = UWV' (3.3)
where U'U =V'V = EandE is the unit matrix. The matri}J is amxn column-
orthogonal matrix, whileV is a nxn orthogonal matrix. The elements; on the
diagonal ofW are called singular values (the square root of the eigenvalues), i.e.

W=diag(w, W, ., W, .., W. (3.4)

The singular value vectarof the imagel, (X, y)is defined as follows:

S=[W, W, Wl (3.5)

where 1<i < n, andw is thei® singular value of the imageé (x, y) in the singular
value vectors such thatw = w,, . It can be observed that the singular values

decrease dramatically and the mathematical framework of SVD can be used to
represent texture images effectively [44, 45]. Particularly, Pentland gtlglhave
shown that the first three eigenvectors represent illuminations anifaages, and
have also empirically shown that a superior face recognition perfarenaan be
achieved if the first three eigenvectors are excluded. In general, thek firsjor
eigenvectors mainly reflect variation of illuminations.

Let:

W:d|aqu, V!, . ViV, reney W}
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W
W2
) W
Wn
=diag(w, ..., w, O, ..., Oydag(, .., O, W, , ..., W (3.6)
W 0 |
_ W, N 0
0 Wy
0 W,
=W +W

Then, (3.2) can be written as follows:
[,(X, Y)=UWV" =UW+ W)V = UWV + UWV
=L'(xy)+R(x Yy 3.7
where, suppos®W\V' = L(x y) for the firstk major eigenvectors mainly reflect
variation of illuminations, and the other residual comporgw,V' = R( x y is the
illumination-effect matrix.
This expression is similar to the formulation of the illuminatimodel in (3.2).

Specifically, UW,V" can be treated as the component of the surface-reflectance-

representation matri' (% y), while UW,V' can be seen to be the component of the
illumination-effect matrixL'(x, y) in the illumination model. Now, we can see that

an image represented in matrix form can be described using the illurmnataolel
in (3.1) and SVD in (3.7).

Now, we can see that an image represented in matrix form can be described
using the illumination model in (3.1) and SVD in (3.2). Figure 3hows an
example of image decomposition based on using the illumination meodelSVD
with differentk. The next step is how to select the valk¢o obtain an optimal

image decomposition representation, and so as to solve the ill-posielepr.
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3.2.2 Surface-r eflectance-r epr esentation matrix in the illumination model

What make the face images of one person with the same surface reflectance
structure look dissimilar, as illustrated in Figure 3.1? Face imagjethe same
person have identical facial structures and patterns, sharing a similar sindpee
reflectance structure, so it is reasonable to assume that the surfaceareféec
representation matrixR(x y) is a slowly-changing matrix, which reflects the
intrinsic property of a face surface. Consequently, the dissiityilaetween images
of the same person under different illumination conditions is matalysed by the
differences in the illumination-effect matrix(x, y) . That is to say, assume that
there areM face images of the same person; the differences between the
components of the surface-reflectance-representation matfi y) of the M face
images are small. The following root mean squared value (RMS) can be used to
measure the differences between the components of the surface-reflectance-

representation matriR (x y) of theM face images with differerk.

= J > > RO~ RO

Il<asM Isxsm
1<b<M Isy<n

RMS = azb = , (3.8)
k

whereg, is the standard deviation of the component of the surface-reflectance-
representation matribR (x,)) (1<sa< M), m andn are the numbers of rows and
columns of the imagelXx,y). R(x,y) and R (x,)) represent the component of the
surface-reflectance-representation matrix of the original imaggg,y) and

I,(x,y) (lsabs M), respectively, i. e.



=14 k=13 k=16 =17 =18 =19

Figure 3.2. An example of image decomposition based on the illuromatiodel
and SVD with differentk. (a) Input image. Odd rows are the component of the
illumination-effect matrixL'(x, y) in the illumination model, and even rows are the

component of the surface-reflectance-representation niRifnxy) .
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R(xY=UW,V = U, v, and

R(xY=UW,Y =y V.

Suppose that there aM persons withM face images of the same person in the
training set. Every person withl face images in the training set are transformed in
the same way, using equation (3.8). The average root mean squared vaM&)AR
can be used to measure the overall differences betweem thersons in the
training set to determine the valie

>, RMS
ARMS === (3.9)
The scope of the valuk is set empirically in the rang2< k <19, because, as
shown in Figure 3.2, when the vallkebecomes larger than 19, the energy of the

component of the surface-reflectance-representation nii{rkxy) becomes nearer

to zero. The optimalk can be selected such that the difference between the

components of the surface-reflectance-representation maffix y) is the smallest:
k=min{ ARMS 2< k19 (3.10)

The global optimalk can be determined using the training set (kes 9 in our
experiment. An optimak can produce the best results, but the performance is not
very sensitive t’s value. Actually, our experiments have shown that satisfactory
illumination-compensation and -enhancement performances can still be achieved,
even though the value & is +2 of the optimal value.). Figure 3.3 illustrates the

decomposition of the intensity of an imaggx,y) into the component of the
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surface-reflectance-representation mati¥(x y) and the component of the

illumination-effect matrixL'(x, y) in the illumination model.

e
B

(a) (b)
Figure 3.3. The decomposition of the image into the two componénth®
illumination model. (a) The input intensity image. (b) the compdaneh the

illumination-effect matrix L'(x,y) in the illumination model, and (c) the
component of the surface-reflectance-representation mawRixx y) in the

illumination model.

3.2.3 Illumination compensation algorithm (ICA)

Humans have similar face structures and shapes, but the face images afthe s

person do not look similar under different lighting conditiombus, it is reasonable

to infer that the component of the reflectance-representation m&iix y) of
faces with a similar shape and structure has a slight difference, whde th
component of the illuminations-effect matrix'(x,y) can vary significantly,
depending on the illumination conditions. This is due to the faat tlnages under
uneven illumination conditions produce shadows, and look diffeienthose
regions with insufficient illumination. If we can learn a mean illuitiion-effect
matrix L(x,y) SO as to compensate the component of the illumination-effect matrix
L'(x,y) of the images with uneven lighting and shadows, it will make images
lighter and shadowless. Figure 3.4 illustrates the process of ouritalgofor

illumination compensation and enhancement.
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(b)

(a) Animage under (b) Q face images similar

uneven illumination. to (a) are searched.

Compute the illumination- Compute the learned mean
effect matrix L, of (a) t——= illumination-effect matrixL

Illumination-invariani proces

lllumination-compensation lllumination-enhancement
algorithm (ICA): L +L algorithm (IEA) : L, +AL (A>1)

& <
————

- -

——

(c) (d)
Figure 3.4. The illumination-invariant scheme using illumioaticompensation
and enhancement. (c) Result with illumination compensation for (a). (dulRes
with illumination enhancement for (a).

Supposel (%, y) is a face image under uneven lighting and with shad@vice
images are searched with a similar shape and structure ()y) , then the

searched) face images are transformed in the same way. We can learn the mean

illumination-effect matrix L(x,y) to compensate the images with uneven

illuminations and shadows.
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Moreover, in [80], Jenkins and Burton indicated that averaging differace f
images dilutes some transients (e.g., lighting condition and ageg whéserving
appearances of the face image, which improves face recognition accurac@® The

face images can express the image-data matrix as:
LGY)=R(X Y L(x Y, (1<t<Q) (3.11)
where log(L(x y)) = L(x Y= UW, Y according to equ. (3.7), antist<Q. The

mean illumination-effect matrices(x, y) can be computed as follows:

_ Q
L(x, y):éz L(x y). (3.12)

Decomposeé_(x,y) , which is under uneven and non-frontal illumination, and also

write |_(x,y) using the illumination model accordingly:

. Y)=R(% Y (X% Y. (13.3)
The mean illumination-effect matrices(x,y) can then be used for illumination
compensation as follows:
I* =R (L +L). (3.14)
When an image_(x,y) is under an uneven illumination condition, shadows may
appear, and the image may look different in those regions with ingartic
illumination. Therefore, the formulation of(x,y) in (3.12) takes the value of
different illumination conditions to generate a mean illuminatffect matrix
L(xy) for compensating the face images for uneven lighting and shadows. This
can make images lighter and shadowless. We call it the illumination-caapen
algorithm (ICA).
3.2.4 lllumination enhancement algorithm (IEA)
Inspired by the shadowless lamp used in surgical operations to compensat
illumination and remove shadows, we propose an efficient method fagem

illumination enhancement. We call it the illumination-enhancement algurit
(IEA).
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The mean lighting matrixL(x,y) can be utilized for image illumination

enhancement, not only to compensate for uneven lighting but also to entence t

image by removing any shadows in the image under uneven illumination

conditions, as follows:
|FA=R (L +AL), (3.15)

where) = 1, and is called the “illumination-enhancement factor”. Whet, the
illumination-enhancement algorithm (IEA) will become the illumioati
compensation algorithm (ICA) described in Section 3.2.2.

The effect of IEA can be seen in Fig. 3.5; experimental results will shHoav t

performance of this algorithm in the next section of this chapter. Tloegssed

face or texture images.™ will have their lighting smoothed, will look similar

under even and frontal light sources, and will have any shadow effectsygreatl
reduced (similar to the function of a shadowless lamp in surgical apasatwhich

enhances the uneven illumination conditions so as to remove any shadows).

3.3 Experimental results

In this section, we will evaluate our proposed illumination-compeosand -
enhancement algorithms. We first show the visual quality of the face eémag
processed by our algorithms. Then, our algorithms are evaluated in t&rras

benchmark face-recognition algorithm.
3.3.1 Comparison based on visual quality

We carried out a large number of experiments to verify the effectivenessrof o
proposed methods. To evaluate the performances of our proposedhaiggrive
employed the Yale Face Database B [72] and the extended Yale Face Database B
[73], which have been commonly used to evaluate the performance of itiwrm
invariant face recognition methods. The Yale Face Database B consist® of
classes, named from yaleBO1 to yaleB10. The extended Yale Face Database B
contains 28 human subjects, named from yaleB11 to yaleB13, and from yateB1

yaleB39. Each subject in these two databases has 9 poses and is under 64
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illumination conditions. The total number of distinct subjectghe two databases
is 38. All the face images are cropped with a size of 168x196.

Experiments on face textures were performed to verify the effectivenessrof o
proposed methods in terms of visual quality. For comparisons witératorks, the
following methods have been implemented: a widely used method in image
processing for modifying the dynamic range and contrast of imagegs first
employed to improve the visual appearance of all images used in experiridits [
the wavelet-based normalization method proposed in [53], which enhances the
contrast as well as the edges of face images; the algorithm [55] whichheets t
coefficients in the wavelet approximation sub-band to zero. In our expeatinthe
“db4” wavelet is used with 1-level decomposition for the cropped face imageb
the illumination normalization method [79] including a series @lgsts (Gamma
correction, DoG filtering, Masking (optional) and contrast equalizatdesigned to
deal with the effects of illumination variations.

Figure 3.5 shows the results based on two distinct subjects from&tabase,
which can illustrate the superior performance of our algorithms in geomthe
illumination-compensation and -enhancement capabilities. Figure 3b¢ys the
iImages processed by histogram equalization [74]. Although the visyaaaance
and the contrast of the textures are enhanced, the results are not ili@minat
invariant. Figure 3.5(c) shows the results using [53], which eggplbistogram
equalization to enhance the contrast of the approximation coefficientsnaltigly
each element in the detail coefficient matrix with a scale factor. In our expetsmen
we set the scale factor to 2. We see that our method can enhance the detals in t
face texture better than the histogram-equalization method, e.g. the gipase
shown in the first row of Figure 3.5(b) and 3.5(c). Figure 3)5(tlistrates the
results using the method in [55], which alleviates the illuminatiofiuence by
setting the coefficients in the wavelet approximation subband to zero.evkw
this scheme also discards some detailed information about a face, which is
important for recognition. As shown in Figure 3.5(e), the illoation
normalization method in [79] can deal with the effects of illumination reeno

shadows effectively, however, face mages of the same class are lookildissi
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(@) (b) (©) @ ()

Figure 3.5. Face images of the same subject from the Yale Face DatabaseyB usi

different illumination-compensation and illumination-enhancementhots: (a)
the original face images, (b) results using the histogram-equaleatiethod [74],
(c) results using the method in [53], (d) results using the methd@85], (e) results
using the method in [79], (f) results using our illuminatiomgeensation algorithm,
(g) results using our illumination-enhancement algorithm witk3, and (h) results

using our illumination-enhancement algorithm witk5.
under different illumination variations and some artifacts are agoediigure 3.6(f)
show the results using our proposed illumination-compensatioensehwhich can

effectively remove uneven illumination and shadows on face images. Howthiger
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compensation scheme may produce small artifacts over those face textuees wh
the 3-D face heightmap changes dramatically. This results in a largaigarof the
illumination-effect matrix L(x, y) under different illumination conditions, and
thereforeL(x, y) has a greater difference to the learned mean illumination-effect
matrix L . Figure 3.5(g) and 3.5(h) show the results using our illumimatio
enhancement methods with the illumination-enhancement facsaet at 3 and 5,
respectively. We can observe that uneven lighting is compensated and thevshado
are smoothed. The results show that our proposed method can effectiesiatal
the illumination effect, and can produce a better visual quality thanethdts using
the methods in [53] and [55]. In conclusion, the illumination-erdegnent method
is more suitable for illumination-invariant face textures. Witke illumination-
enhancement factor set at different values, the effect of uneven illuminationecan b
alleviated effectively, or even completely, without producing any arsfact
Experimental results using all the face images in the database show that ou
simple, non-iterative illumination-compensation and illuminatemhancement
algorithms can achieve a good performance level, and can effectively reduce the

illumination effects while retaining the symmetrical structures antepas of faces.
3.3.2 Performances in terms of recognition accuracy

In this section, we will evaluate the effectiveness of the proposed appes
for illumination-invariant face recognition. In this chapter, wencentrate on the
issue of illumination compensation and illumination enhancementléonination-
invariant face images, rather than face recognition. Nevertheless, a good
illumination-compensation and -enhancement method should also heigptovie
the face recognition rate.

The PCA-based algorithm [3] (also known as eigenfaces) is a benchmark for
appearance-based and image-based face recognition approaches [1]. Thersfore, it i
used in these experiments to illustrate the effectiveness of our &igofir face
recognition. Pentland et al. [71] have shown that the first three eegtors
represent illuminations on face images, and have also empirically shioatnat

superior face recognition performance can be achieved if the first three
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eigenvectors are excluded. Therefore, we will evaluate the followingifiation-
compensation and -enhancement algorithms using PCA-based algorithrms fo
comparison:

PCA-based algorithm [3];

PCA-based algorithm with the first three eigenvectors excluded [71];
Histogram equalization and PCA-based algorithm [74];

lllumination normalization [53] and PCA-based algorithm;

lllumination invariant [55] and PCA-based algorithm;

lllumination normalization [79] and PCA-based algorithm;

lllumination compensation and PCA-based algorithm;

lllumination enhancement with =3 and PCA-based algorithm; and

lllumination enhancement with =5 and PCA-based algorithm.

These eight PCA-based algorithms are denoted as Algorithml, Alg@&ith
Algorithm3, Algorithm4, Algorithm5, Algorithm6, Algorlim7, Algorithm8, and
Algorithm9, respectively. In the experiments, all 38 distinct subjécts the Yale

Face Database B were used. A randomly selected face of each subject is used as a
training sample, while the remaining faces are used for testing. AGin77], the

L1 norm distance metric is used, which is a more suitable distance mehsuréhe
Euclidean distance metrit.{) for PCA-based algorithms.

Figure 3.6 shows the recognition rates for each of the 38 subjects, badbe
eight PCA-based algorithms. Table 3.1 tabulates the average recogites of
the eight PCA-based algorithms. As is shown in Table 3.1, if no
compensation/normalization scheme is employed, the average recogmit® is
only 26.58%. The average recognition rate increases to 31.97% if rdtetliree
eigenvectors are not used. The performance of the algorithm usinggizist
equalization [74] in the spatial domain can further improve the ratghtiji, to
34.45%. These experimental results are consistent with those irgf7d jprove that
this simple scheme is effective. Because the illumination normadizatiethod in
[79] can remove shadows and normalize illumination variations, the awerag
recognition rate increases to 67.46%. Our proposed algorithrAdgorithm?7,

Algorithm8, and Algorithm9-significantly outperform Algorithm4 and Algorithm5.



This is because, as proposed in [53], although Algorithm4 can enhancettiked
information on face images by multiplying the detail coefficient matnith a
scaling factor, it cannot eliminate the illumination effect completelygokithm5

[55] attempts to smooth out the illumination influence by settihg wavelet
approximation coefficients to zero. This results in some detailedrnmdton, which

is useful and important for recognition, being missed. It is obvibas Algorithm7,
Algorithm8, and Algorithm9 can achieve better performances than the atleer f
methods. The average recognition rates are 73.65%, 82.33%, and 8thB%¥e
illumination-compensation algorithm, and the illumination-enharer@nalgorithm
with A=3 and A=5, respectively. As discussed in section 3.1, the illumination-
compensation scheme may produce artifacts under some extreme illeminati
conditions. Nevertheless, the effect of these artifacts will be reduced thieeiace
images are projected into the PCA sub-space. Consequently, the average
recognition rate is still high, and only slightly lower than that dféithm8 and
Algorithm9. Our illumination-enhancement algorithm can achieve thet bes
performance. This is due to the fact that our illumination-enhancement sctam
make face images having more even illumination; in particular, shadows e&an b
removed effectively. As a result, face images of the same class will resemble each
other more when compared to the illumination-compensation scheme. Woreo
the recognition rate of the illumination-enhancement approach witlarger
illumination-enhancement factok<5) is higher than with the smaller ong=Q).

This is because a larger illumination-enhancement faétefs)(can alleviate uneven

illumination more completely than a smaller factas(3) can.
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Figure 3.6. Face recognition rates for the 38 distinct subjects inYtie Face

Database B and the extended Yale Face Database B.

Table 3.1. The average recognition rates (ARR) of the eight face recagnitio

schemes for the Yale Face Database B and the extended Yale Face Database B.

Alg.1 | Alg.2 | Alg.3 | Alg.4 | Alg.5| Alg.6 | Alg.7| Alg.8| Alg.9

ARR | 26.6%| 32.0% 34.5% 42.2% 442% 67.9% 73./% 82|3% 84.4%

Figure 3.7 demonstrates tthe norm distance measures of those images in the
class "yaleB10" (indexed as 10 in the figure) using our illuminatompensation
and -enhancement methods. It can be seen that the respective measured distances
for the subject indexed as 10 are the lowest for our three algorithras, i.
Algorithm7, Algorithm8, and Algorithm9. In addition, the thsices based on
Algorithm8 and Algorithm9 are close, and are much lower than that of ilgo.
In summary, using the illumination-compensation and -enhancemeidstthe
recognition rate can be improved. This demonstrates that the propokethas

form a useful pre-processing step for practical face recognition.
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Figure 3.7.L1 norm distance measures for an image of the class "yaleB10" using
our illumination-compensation and -enhancement methods: (a) illuromati
compensation, (b) illumination-enhancement witk3, and (c) illumination-

enhancement with=5.

3.4 Summary

In this chapter, we have proposed an effective scheme for illumination
compensation and enhancement, which can generate illumination-invar@ant fa
images. Unlike the traditional Lambertian model, which requires a nurober
images to reconstruct 3D models for illumination-invariant repredemt, with the
assumption of the existence of a single-point light source, oupgs®d methods
can overcome all these limitations, and are suitable for outdoor emagots
without any postulation of the light sources. Experiment resultsvsthe superior
performances of our proposed methods for face images in terms of batal vis

quality and recognition rate.
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Chapter 4 A Nove Face-
Hallucination Scheme
Based on SVD

Constructing a high-resolution (HR) image from its low-resiolut(LR) inputs is
called super-resolution in image-processing research field. For face imihijes
technology is also called face hallucination [8], which has become one of ke m
important fields for face recognition. This technique is particularhportant for
video surveillance, in which images are captured at a long distance by a camera.
Face images in these videos are usually of low resolution and the videos are
compressed with a high compression ratio, which pose an challengirgirsface
recognition.

The rest of this chapter is organized as follows. First, a brief inttdn of
related work on face hallucination will be given. Then we will present gpm
mapping model and introduce our proposed face-hallucination schemetdih. de

Experiment results and a conclusion are presented at the end.
4.1 Related work on face hallucination

Face hallucination was firstly proposed by Baker et al. [8], and has drawg man
researchers’ attention since then. A pixel-wise super-resolution (SR)aa was
proposed, which uses the Laplacian pyramid and the Gaussian pyramid to
decompose an image into a pyramid of features in order to generate a HR face
image. Later, the limitations on super-resolution and how to breale tiegations
were introduced in [14]. Freeman et al. [15] proposed a nonparametric-pasel
prior along with the Markov random field model to produce the desirBdiHages.

In [16], temporal correspondence and a prior model are combined to hallecin
faces. Many researchers [17] [18] have further developed patch-based SR

frameworks. A sparse-coding method [19] was proposed to represent apuR i
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patch as a combination of its raw neighboring image patches, and the taRget H
patch is generated directly by using the same combination coefficients as the
corresponding neighboring HR patches. The algorithms proposedjril8] also

used the same approach, in which a number of similar neighbors to thepLR i
patches are searched from a training dataset, and then a specific method éxladopt
to reconstruct the corresponding HR images. In [20], Wang et al.ogexp a
holistic face-hallucination method which employs Principal Componemlysis
(PCA) to represent a LR input image as a linear combination of LR training
samples. The corresponding HR image is then estimated using the szeae i
combination as the corresponding HR training samples. Park et al. [Hz¢dtthe
PCA-based SR framework [20] to develop an example-based face-hallucination
method. As the PCA method considers global-structure informatiautatacial
images, it is less suitable for use in patch-based approaches [24]. |ra[Bgbrid
method was proposed based on global and local constraints to apply face
hallucination to unregistered images. In [23], a novel example-basaedein$R
method was proposed, in which a class-specific predictor is designed fockash

of patches so as to improve the accuracy of estimating the high-frequentnton
Another early learning-based SR technique was developed by Qiu [24, 2588eTh
methods are based on the observation that, for a LR version of an image th
visually resembles its HR counterpart, the LR and corresponding HReinragst

be intrinsically correlated. In other words, the LR image can be used agahtd
predict its HR counterpart. Ma et al. [26] proposed a method to halluciA&e
image patches using patches at the same position of each training imagethEhen
optimal weights for the training position-patches are estimated armd us
reconstruct the HR patches. Recently, a new face-hallucination framework
namely, from local-pixel structure to global image SR (LPS-GtSyas developed

in [27] and is based on the assumption that two similar face imageddshaue
similar local-pixel structures. This new framework uses an input LR fa@g@rto
search a face database for similar example HR faces in order to learn the kadal-pi
structures for the target HR face. In [28], a synthesized approach whiitesiti

both the shape and texture components is proposed. These two congparent
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based on accurately aligned local image regions. To achieve sufficient accuracy in
alignment, shape reconstruction is solved together with texturensércction in a
coordinated manner.

In contrast to these previous works, we propose a novel and efficad- f
hallucination scheme based on a SVD-based mapping model. We firstly temif
a simple mapping model in the image sp&¥" is inappropriate and unfeasible, as
the mapping scheme is too coarse to generate satisfactory results whpropose
a more sophisticated mapping model in the eigenspace based on SVD. This
proposed face-hallucination framework consists of three steps. Inrttestep,M
example faces that share the most similarity to the input LR face image are
searched from a database, and the optical-flow method is then used to aligivithes
example image pairs. In the second step, we compute the leading eigenvectors
which account for most of the information contained in the image. Wediserve
and prove that, based on the Frobenius norm, the correspondingasinglues of
an image across different resolutions have approximately linear reshtms
Furthermore, we can interpolate the other two data matrices generatedbjoSV
higher resolution, as the interpolation of these matrices will not ahaing holistic
structure or the pattern of the face image. The mapping scheme, whiizesithe
interpolated SVD matrices multiplied by the learned corresponding mgppi
matrices to generate more details of face images, can be viewed as a “coarse-to-
fine” manner. In the third step, a residual-error matrix, which repitsstire high-
frequency information or the detailed local features missed in the pr&yiou
predicted HR face image, is generated and added to the one produced in thet secon

stage.
4.1.1 Analysisthe drawbacks of the existing techniques

For the existing techniques, the main drawback is that when a new and novel face
which is significantly different from the training samples, most bé texisting
learning-based face-hallucination methods will likely produce artifacts and
discontinuities in the reconstruction results. Our proposed rdethas three

advantages such that the abovementioned problem can be solved to a certain extent



First, aligning and warping the retrievéd example images via optical flow makes
our algorithm able to estimate fine details more accurately. AsMh&arped
images should have similar holistic structures and patterns, they gamohglevent
the algorithm from producing artifacts and discontinuities in teeonstruction
results. Second, as it is proven that the major singular values of tloeiatesl
eigenvectors of the same image at different resolutions have approxiniatsr
relationships, the estimation of the corresponding singular valtiéiseoHR face
images will become more reliable. This can effectively preserve and recontteu
dominant information in the HR face image. The third reason is thatlé¢hrned
mapping matrices for the other two matrices of the SVD representation caeehe s
as holistic constraints, which do not change the global structuréngluhe
reconstruction of HR images. Experimental results show that our #igoris

effective and produces promising hallucination results.
4.2 The mapping model

4.2.1 The mapping model in the spatial domain

Denotel, as a gray-scale face image with a size mafx n pixels and the
corresponding LR image af , which is subsampled from the original HR face
image as follows:

L, =1,1a, 4.1)
wherea is the down-sampling factor used.

The LR imagel, can be interpolated by using the same faetowhich is called
the magnification factor, to generate a new imdge Therefore,l,” and I, have
the same resolutionf a mapping matrixP exists as follows:

I, =1P, (4.2)
then the HR imagel, can be reconstructed from its LR subsampled imapes

using the mapping matri®. This mapping model in theR™" space expresses

super-resolution as a product of two matricgsandP.
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The key issue for this model is to learn the mattiirom a set of pairs of LR and
HR face images. The learned mapping matrix, denoted ascan be computed
using the pseudo-inverse technique as follows:

B=m) . (4.3)

In practice, 1,1 is usually a singular matrix. The learned optimal mapping

matrix, denoted a® , can be computed using an approximatiorPafs follows:
B=(m+ e M1, (4.4)
where/ is a small positive integer, arid is a unit matrix with a size ohxn. The

estimated HR face image, denotedf@s can be reconstructed as follows:

ih=1P. (4.5)
However, in real situations, the mapping model in R&" space is too simple

and coarse to achieve satisfactory results. Fig. 4.1 shows an example refsthit

using the mapping model in th™" space. As shown in Fig. 4.1(d), the visual

quality of the reconstructed image using the approximate mappingxnmatis not

satisfactory.

(a) (b) () (d) (e)
Figure 4.1. Reconstruction results based on the mapping model iRtHespace
and in the eigenspace, respectively, with a magnification factor of 4: &)
image obtained by downsampling the original image by a factor of 4,tHb)
original HR image, (c) the result based on bicubic interpolation, (W t
reconstructed image based on the mapping model inRR& space, and (e) the

reconstructed image based on the SVD-based mapping model in the eigenspace.
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4.2.2 The mapping model in the egenspace based on singular value

decomposition

In the previous section of this chapter, we showed that a simple nappadel
in the R™" space is unable to provide satisfactory results in face hallucination. |
this section, we use a mathematical framework to achieve a more effective image
representation for face hallucination. Our proposed framework projectaagei
of sizemxn to the eigenspace using SVD.

The imagd can be viewed as a matrix witin rows andn columns. Assume that
m = n, by using SVD,I can be written as the product of a left mattix a mxn
diagonal matriXW with positive or zero diagonal elements, and the transpose of a
right matrixV, i.e.

| =UWVT, (4.6)

whereu™u =v'v =E . The matrixU is amxm column-orthogonal matrix, whil¥ is

anxn orthogonal matrix. The elemen¥ on the diagonal oWV are called singular

values (the square root of the eigenvalues), i.e.

W =diag( Wy, W, ...,V ,...,W. 4.7)
The singular value vectarof the imagd is defined as follows:
S=[W, W, oW i (4.8)

where 1< i < n, and W is thei" singular value of in the singular value vect®

such that W > W,, . It can be observed that the singular values decrease

dramatically. The following definitions can be used to measure thernmdtion

accounted for by an eigenvector [29]:

£ (1) a/wf/ >w? (4.9)

and the accumulation of the firkteigenvectors [30] can be measured as follows:

(4.10)

We found that the first several eigenvectors are sufficient to account rfavsal

all of the information contained in an image. This observation is alse for
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texture images [31][32]. For illustration, Fig. 4.2 shows th&rmation accounted

for by the eigenvectors for two different face images. Figs. 4.2(a) aa(hYare

two distinct face images used. Figs. 4.2 (c) and 4.2 (d) show theniation
accounted for by individual eigenvectors and by the accumulated eigenvectors,
respectively. It can be seen that the first 20 eigenvectors can account for nearly all

the information in a face image.

(a) Face Image 1 (b) Face Image 2
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Figure 4.2: An example of the information accounted for by the fitsttyt

eigenvectors of face images: (a) and (b) are two distinct face images of andam
woman, respectively; (c) the information accounted for by individual eigetors,
calculated using (4.9); and (d) the cumulative information accounteddtsulated
using (4.10).

It also can be seen that the fast decay of the eigenvalues can be commonly
observed across a wide variety of image types. Fig. 4.3 shows diffeypes of
images, and a similar rate of decay of the eigenvalues can be seen.
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Figure 4.3: The information accounted for by the first thirty eigsstors of

different image types: (a) images of different types, (b) the in&diom accounted

for by the individual eigenvectors, calculated using (4.9).
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Since the singular values decrease rapidly and the first few eigenvectors can

account for most of the information, the original matican be approximated as

W, as follows:

(e) k=30 (f) k=40 (9)k=50 (h)k=60
Figure 4.4. Examples of different approximated images witket at different
values.
W, = diag( W, W, ..., W,0, ...0) (4.11)
and we have
n k
W= W (4.12)

wherek is the number of singular values or eigenvectors to be retained. We choose
the firstk singular values, rather than all tlnenon-zero singular values available,
because those high-order singular values represent the high-freqoeni@nt, or
noise, in the interpolated LR face image under consideration. The linear
relationship for the low-order singular values does not hold fos¢hbigh-order

singular values. Based on the fikssingular values, we can obtain an approximated



image f, which contains almost the same information as the original inhagae
image |, which can be viewed as a matrix, can be expressed as follows:
I =UW,V". (4.13)
Fig. 4.4 shows different approximated images when the image has atresaif
262x300 andk is set at different values. The number of non-zero singular values

for the image is 262. We can observe that the image quality has a veht slig

difference wherk is larger than 40.

4.2.2.1 The diagonal matrix W at different resolutions

According to [33], if a matrixA has singular value¥V, wherel<i <n,then
IATE=> W, (4.14)
i=1

where || A [} is the Frobenius norm of the matri which is defined as the square

root of the sum of the squares of all its entries. The following igiaflproof of
(4.14):

Proof: If matrix A has singular valuesi, Wy, ..., W ..., thenl| A [f=D_w? .
i=1

Using SVD, a matrixA can be expressed #=UWV' . First note that, for any
matrix C whose i" column is denoted asx, i.e. C=(C]|...|G) , then
ICIE=llc A +...+ & 3. Now, we have

IAE=IDWV f

[1]
=WV E=[[WV ] B= IMTOWT E WWT |
[2]
=|wW" [E=|w B
[3]_Nn
=3 w?
i=1
[1] Let (C, |...]G) be the columns ofVV'. Since theU matrix simply rotates the
columns of (G, | ... G,) without changing their lengths, the two sides are equal.

[2] The V matrix simply rotates the columns ¥¥" without changing their lengths.
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[3] The diagonal matriXxV has positive or zero values on its diagonal and the other

elements are zeros.

We observe that when a LR imadg is interpolated or super-resolved to produce

a new HR imagel, with a magnification factor ofr, the first k main singular

values in the singular-value vect@,(:[wl, we, .., wﬁ]T of the imagel, can be
approximated as times of the firstk main singular values in the singular value
vector s :[\Ml, W, wi“,]T of the original imagel, . Hence, we have
s, Uas. (4.15)
In other words, the main singular values of the same image under afiffer

resolutions are approximately proportional to each other, with thenrfieation

factora as the proportional constant.

20 30 ) 50 f ) m o 0 10 20 30 40 50 60
The 60th Eigenvalues of image 1 Th (th Eigeralues of image 2 The 60th Eigenvalues of images

(c) (d) (e)

Figure 4.5. The singular values of two images of the same face witbret

0 10

resolutions: (a) An original image of size 26300; (b) a downsampled image of
size 13%150, obtained with a downsampling factor of 2 in both the horizontdl an
vertical directions; (c) the first 60 singular values, denoted,asf the image in (a);

(d) the first 60 singular values, denoted ssof the image in (b); (e) the first 60
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singular values of the image in (a) and twice the values of the first BQuiar
values of the image in (b).

Theorem 1: If a LR image |, is interpolated to produce a HR imadg with a

magnification factor ofx, then the firstk main singular values in the singular-value

vector s, of the new imagel, area times the corresponding firgt main singular
values of the singular-value vectsrof the original imagel, .
Proof: Suppose thatl, is interpolated to produce a new HR imade with a
magnification factor ot:, then we have:
2 4 2 o112
[alle © et [l =%

[5]

e

U s, Uas.
[4] An interpolation method, with a magnification factor of producesaxa
neighboring pixels in the interpolated imagdg with similar values to the
corresponding pixel in the original LR imagg . For instance, the nearest-

neighbor interpolation generatesa neighbors of equal values, and the bilinear
and bicubic-interpolation methods producex similar pixels.

[5] According to (4.14) 1A IE=> w? .
i=1

n k
[6] According to (4.12),2""‘2 =W,
i=1 i=1

Figs. 4.5(c), 4.5(d) and 4.5(e) show the linear relationship ofitsek=60 main
singular values for two images of the same person at different reswdutThe
image in Fig. 4.5(a) has double the resolution of the image in &ig(b), both
horizontally and vertically. Figs. 4.5(c) and 4.5(d) show the #@teigenvectors of
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the images in Figs. 4.5(a) and 4.5(b), respectively. To illustregerékationship of
the singular values of the two images, Fig. 4.5(e) shows the firstifigular values
of the image in Fig. 4.5(a), as well as the first 60 singular valueb@frhage in Fig.

4.5(b), multiplied by two. We can see thgt Ua's, with the magnification factor
o=2.
4.2.2.2 Mapping U and V in the eigenspace

Suppose that an original face image is denoted, aand the corresponding sub-
sampled LR image is denoted §s These two images,, and I, can be expressed
in the eigenspace using SVD as follows:

I, =U W,V; and (4.16)
I, =UWVT. (4.17)

The two matricedJ, andV, for |, can be interpolated to form two new matrices
U/ andV, that have the same size &% andV, , respectively. Define two
mapping matrice?, and P,, as follows:

U, =U/R, and (4.18)
V., =V/R. (4.19)
In the eigenspace, these two matrid@sand P, can be calculated using pseudo-

inverse as follows:

R,=(Uy;) Uy, and (4.20)

u

R =(vV) vy (4.21)

As U/'U/ andV,'TV' are always singular matrice®, and P, can be computed

approximately as follows:
P, =(U"U/+AE) Uy, and (4.22)
B=(VTV+1E) VY, (4.23)
where/ is a small positive integer arflis a unit matrix. An estimation o), and

V,,, denoted ad) N and\7h, respectively, can be expressed as follows:
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U, =U/P, and (4.24)
V, =V'P. (4.25)
For the purpose of super-resolution, a HR image can be reconstructaecaft.R

image using the matricels§h and \7h, which can be learned from a pair of LR-HR

training face images; and the diagonal matvfig is computed using the scheme
described in Section 4.2.2.2.1, i.e.
I, =U W,V . (4.26)
Fig. 4.1 also shows an example of using the mapping model in the emsnsp

Fig. 4.1(e) shows that the HR image reconstructed using the mappidgl imothe

eigenspace is effective, and that our algorithm can produce a promisirg resu

4.3 SV D-based face-hallucination scheme

Suppose that an input LR face image is to be super-resolved with a

magnification factor ofr to form a HR face image. With this LR input fadé, LR

face images resembling , as well as the corresponding reference HR images, are

searched from a dataset which contains pairs of LR and HR face images. NThese

pairs of LR and HR training face images, denotedlasand I; (i = 1, ..., M),
respectively, should have a high structural similarity to the LRuinface after
alignment. Each of the similar HR face images can be reconstructed from the
corresponding LR faces using the mapping matrices, as describedtior5€R2.2.2,
le.
U'P, and (4.27)

Vo =V'R, (4.28)
where 1<i <M.

We can now learn the mapping matricBs and P, for face hallucination using
the individual mapping matrice® and P', learned from theM pairs of HR and

LR images. A linear combination of the mapping matrices can be writtenllas/&
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P :iﬁiﬁj, and (4.29)

1

- M
R=2%

i=1

13

<g

: (4.30)

where B and y; are the embedding coefficients f& and P!, respectively.
After the LR input imagel, is decomposed by SVD using (4.17), ity and
V, can be interpolated to generate two new matridgsandV," with the same size

asU, andV, for the desired HR imagé, , respectively Then, the corresponding

approximated matrice@h and\7h can be computed as follows:

A

U, =U/P, and (4.31)
V, =V/P. (4.32)

As described in Section 4.2.2.1, the leading singular values in theomidhg

matrix W, can be estimated using the linear relationsBid]a's. The number of

leading singular valuek to be used can be determined by using (4.10), such that

the firstk leading singular values can represent a sufficient amount of information
about the face images. In our algorithm, we chodse(K) =77 (where /7 =0.99 in

our experiment). After estimating the firktleading singular values, we can also

. .. . , . . T
estimate the remaining singular values, denoted, ak) =[ W™, W™, ..., " |,
in the diagonal matrix\/ilh using a linear combination of the remaining singular

valuess) () =[ Wi, w2, ., W™ ]T of theM similar HR images, as follows:

[V\zu’ V\Z+2’ " Vﬂn ]T

2B =

=1 i

s (K

BLWS W2, e ]T. (4.33)

1
iM=

Now, the HR imagel, can be reconstructed using the estimated matrites
andV,_, and the diagonal matri¥y, , as follows:

A N

I, =U WV . (4.34)
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The reconstructed imagfe;1 should be similar to th& HR training face images.

The following squared erroE(i) can be used to measure the reconstruction error:

Mo 2
E(i):;\\l'h—lh\\
st ta=l,. (4.35)

The optimal reconstruction weightg and y; can be derived by minimizing the

following formulation:

[=arg min{ E( |)}

A
M, a2
=arg min ZH I - IhH
By i=1

sti,la=1.  (4.36)

The global constrained least-square problem can be computed using the
iterative method in [34], and the determined weights are normalized aahhir
sum is one.

To further improve the visual quality of the reconstructed HR images,
proposed algorithm estimates the residual-error ma@ix which comprises the
high-frequency information about a face image, and represents the detzskdd |
features missing from the global HR image. This residual informasoadded as

the missing high-frequency information to achieve high-quality fagkubination.
Based on our proposed SVD-based mapping model, the matrean be estimated

from the individual residual errors of the selected training samg@es I! -1, ,

where I[,.=U WV, as defined in (4.34). We use a Gaussian function to measure
the similarity of two images, and the weigldi reflects the global similarity as

follows:

i 2
P Lt @31)
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wherei =1, ...,M, and o controls the effect of the gray-level difference between

the HR training sample and the reconstructed HR image. The weijjhtse then

normalized so that their sum is equal to 1. Then, the mafrican be computed as

follows:

c=idé
i=1

=Y 5 (1h-1,). (4.38)

Having determined the residual-error matrix, the final reconstructed &t f

image, denoted ak,, can be computed as follows:

I, =1,+C. (4.39)

4.4 Experimental results

In order to verify the effectiveness of the proposed scheme, the dataseinused
[27] is used to evaluate the performance of our proposed framework fabied
images in the dataset were selected from the GT [35], AR [36], and FERHT [3
databases, which contain 40, 70, and 120 images, respectively. All the faci
images are aligned based on the position of the two eyes, using thedmet{83].

The original HR facial images are cropped to a size of 124x108. The nuafber
reference face examples is set at 3, and the parameter@2) andos in (35) are
empirically set at 0.001 and 50, respectively. Experiments show thag aBiof the
above settings can achieve a satisfactory overall performance. In the exgsrimen
we evaluate all the methods by reconstructing the HR facial images with a
magnification factor of 4. All the testing images are evaluated using #e/8-one-

out” approach. Two objective quality measures, PSNR (peak signalite-matio)

and SSIM (structural similarity) [39], are used to evaluate the pedoes of the
different methods.



4.4.1 Thethree stages of our proposed SR scheme
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Figure 4.6. Reconstruction results at different stages of our segp8R scheme: (a)

the original HR images, (b) bicubic interpolation, (c) Stage 2 of proposed
method, and (d) Stage 3 of our proposed method after adding highefiequ

information.

In our experiment, three face images similar to an input LR face are first
searched from a training set, using the same method as in [27]. Then, weahear

reference images to the input using the optical-flow method. In ¢oersd stage of
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our proposed method, interpolation is employed, which does not chtheggobal
structure or the pattern of a face image. It can be seen as a “coarse-to+iinesp

using the learned projection matrices and P, based on the mapping model. In the

third phase, a residual matrix, which represents the high-frequencymatmn
about a face image, is added to the previously estimated HR face imagehter fu
improve the reconstruction accuracy.

Fig. 4.6 illustrates some example results produced at the differagéstof our
proposed SR scheme, with a magnification faeted4. As shown in Fig. 4.6(b), the
bicubic-interpolation method [40] produces blurry results. Fig(e).illustrates the
results for the second stage of our proposed method, which utilizegltial

structure of reference images and the learned projection matricesd R, based

on the mapping model for face hallucination. It can be seen that the rasuHig.
4.6(c) have a better visual quality than those in Fig. 4.6(b). Thiecause the two
learned matrices can be viewed as holistic constraints in the reconstroéttbe
HR image using the similar global structure and pattern of the searetfiexknce
face images. Fig. 4.6(d) shows the results produced by the thire sthgur
algorithm. By adding the residual matrix, which contains the misdigh-
frequency information about the face image, the proposed model can produee
photo-realistic images. In addition, we employ SSIM as an objectiveitgual
measure to assess the visual quality of the hallucinated results. & shé-ig. 4.6,
the SSIM values for the second stage of our proposed method are lhagethbse
for the bicubic interpolation [40]. After the addition of the migg high-frequency
information, the SSIM values for the third stage of our method ageltahan those
for the second stage. The SSIM values are consistent with human visualtparcep
in terms of the visual quality of the images, and can objectively reflect the

effectiveness of the different algorithms.

4.4.2 Comparison with the state-of-the-art methods

Two interpolation algorithms, the bicubic-interpolation algaritj40] and the
edge-directed interpolation (NEDI) method [41], are applied for face tialtion

and are compared with the second stage of our proposed algorithm, whielisocan



be considered as an interpolation technique. Another four state-ofitHeez-
hallucination algorithms are also compared to our proposed method: @¥o P
based, holistic SR methods (the eigentransformation method [20] &adant of
Park’s method [21]), one patch-based method (Freeman’s method [15]),i&sd
method [22] based on a global parametric model and local nonparametric model.
The version of Park’s method used in this chapter is different fromotinginal
algorithm in [21] in that the training images are warped with referencéheoLR

input face rather than with reference to a predefined reference face.

Fig. 4.7 shows some samples of the reconstruction results generaigdhese
respective methods, with a magnification facte#. It can be seen from Fig. 4.7(b)
that the bicubic-interpolation algorithm produces the blurriegtltesThe results in
Fig. 4.7(c) are generated using the NEDI method. However, if a face image h
very low resolution, the NEDI method struggles to distinguislgesj and hence
also produces blurry results as compared to other SR methods. Therdfere, t
results of Fig. 4.7(d) show a better visual quality than both thedisinterpolation
and the NEDI algorithms. Figs. 4.7(d) and 4.7(e) are the results agaeby using
the eigentransformation method and the variant of Park’s method, whechadh
holistic/global face-hallucination methods. Plausible face structases be well
inferred in the resulting HR images. Nevertheless, as the methoda$/hwolistic,
it cannot effectively reconstruct the fine individual facial details of elotesting
faces. If a testing face image is very different from the faces in the database,
infidelity will result in the reconstructed HR faces. Park's method leenploys the
morphable face model to capture the shape variations of novel tesiteg,fso it
outperforms the eigentransformation method. However, the HR tctare still
reconstructed in a holistic manner, like the eigentransformation rdeffie face-
hallucination results using the patch-based SR methods are illustraked. i4.7 (f).

It can be seen that Freeman’s method can provide plausible HR facial images wit
sharp edges and corners. However, as some of the patches are badly matched or
conflict with adjacent ones, some structural errors and discontialafear in the
reconstructed HR images; these errors are drawbacks with most patch-adsed S

methods. Furthermore, the patch-based SR usually requires thoudaimdage-
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patch pairs to learn, and therefore is computationally expensive. In agditiere
are artifacts in the reconstructed HR images, as shown in Fig. 4.7(f).

(@) (b) (©) (d) (€) (f) ©) (h)

Figure 4.7: Face-hallucination results reconstructed using diffenethods with a

magnification factor of 4d=4): (a) the original images, (b) bicubic interpolation, (c)
NEDI, (d) the eigentransformation method, (e) a variant of Park’s naetli

Freeman’s method, (g) Liu’s method, and (h) our proposed method.

Compared with the holistic-based and the patch-based approaches, Eiiiedn
[10] utilizes both global and local prior information through a giblparametric
model and a local nonparametric model. Thus, as shown in Fig. 4.hig)nethod
can produce not only visually plausible face structures, but also details or
textures like those in the HR training images. However, some pdrtthe
hallucinated face, such as the mouth, are somewhat different from theabtfigce.
This can be partially attributed to the properties of the PCA-baseblaglmodel
used in this approach. Unlike Liu’s method, our framework does not ehameg
global structure of face images, and the main energy can be retained, as explained

in Section 4.2.2.1. Furthermore, the mapping scheme and the resdiiak can
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produce high-resolution results with clear details. As can be seen frgniFi(h),
compared to other typical state-of-the-art algorithms, plausible HR emagth a

holistic structure and more details with a better visual quality caolit@ined.

(@) (©) (d) (€) (f) (9)

(b)

Fig. 4.8. The error maps displaying the reconstruction errorsftédrdnt methods,

with a magnification factor of 4¢=4): (a) bicubic interpolation, (b) NEDI, (c) the
eigentransformation method, (d) a variant of Park’s method, (e) Freemmatted,

(f) Liu’'s method, and (g) our proposed method.

Fig. 4.8 shows some sample error maps displaying the reconstruetions
produced using these typical state-of-the-art algorithms, with a riieagon factor
a=4. With the visual aid of the error maps in Fig. 4.8, it can be seen that ou
proposed method produces more accurate results, compared to other syqiea

of-the-art methods.

88



(@) (b) (©) (d) (e) (f) (9)

Figure 4.9: Face-hallucination results reconstructed using differethods with a

magnification factor of 6: (a) the original images, (b) bicubic intéagion, (c) the
eigentransformation method, (d) a variant of Park’s method, (e) Freemmeatfsod,

(f) Liu’'s method, and (g) our proposed method.

We also evaluate our method by reconstructing the HR facial images with a
magnification factor of 6 ¢=6). Fig. 4.9 shows the reconstruction results for the
images used in the previous experiment. It can be seen that the generic, paidh-bas
SR method is no longer able to produce promising HR facial structufestigtly,
while those methods that employ the holistic structure of facial @sagan provide
a better performance than the patch-based method in terms of visual qUhlgys
because, when the LR observations have very low resolution, usigglonlocal
patch-based prior is not sufficient to infer the target HR image. Inrasttby using
the holistic characteristics of the HR face examples, a stronger prior can be
imposed on the reconstructed facial images, which can result in a better facial

appearance. The images in Fig. 4.9(e) are produced by the patch-based method;



with very low resolution images as the input, it is hard to generatel gesults. Fig.
4.9(c) and (d) show the holistic SR methods, which can provide beterddults
for every LR image. The hallucinated faces generated using Liu’'s method have a
better holistic appearance than those generated using the patch-based, msthod
shown in Fig. 4.9(f). However, it is also observed that Liu’s metheglilts in some
distortions at facial features different from those in the originages. Our method
is illustrated in Fig. 4.9(g): the results look consistent witk tiriginal HR face
even though these were very low-resolution images. Experimentatgdmded on
visual inspection show that the proposed method is effective and cahthéftask
of face hallucination. It achieves a satisfactory performance and produces
promising results while preserving the details and the structutieediuman face.

Two quantitatively objective quality measures, i.e. PSNR and SSIM, are als
employed to evaluate different methods with different magnification factbable
4.1 tabulates the average PSNR and SSIM, and the corresponding standard
deviations, of the different methods with a magnification factor ofTdble 4.1
shows that our method is superior, in terms of the two measuremeritse bther
two classical interpolation approaches, and it can achieve a comparable

performance to the other typical state-of-the-art algorithms.

Table 4.1. The average PSNR and SSIM, and the corresponding standatibaesvi
shown in brackets, of the different face-hallucination algorithmsh wa

magnification factor of 4.

PSNR SSIM
Bicubic interpolation 22.16 (1.84) 0.7022 (0.1071)
NEDI 21.64 (2.75) 0.7034 (0.0943)
Eigentransformation method 25.40 (2.38) 0.7167 (0.1035)
A variant of Park’s method 25.97 (3.65) 0.7541 (0.1130)
Freeman’s method 26.28 (3.23) 0.7894 (0.1581)
Liu’s method 25.72 (3.61) 0.7345 (0.1766)
Our proposed method 26.70 (3.55) 0.7887 (0.1224)
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Table 4.2. The average PSNR and SSIM, and the corresponding standaxtibadesvi
shown in brackets, of the different face-hallucination algorithmsh wa

magnification factor of 6.

PSNR SSIM
Bicubic interpolation 19.40 (1.92) 0.5743 (0.0905)
Eigentransformation method 23.47 (2.68) 0.6735 (0.0921)
A variant of Park’s method 24.49 (2.45) 0.7044 (0.1248)
Freeman’s method 23.15 (2.50) 0.6881 (0.1415)
Liu’s method 23.88 (2.65) 0.6642 (0.1503)
Our proposed method 24.52 (2.37) 0.7109 (0.1167)

Table 4.2 tabulates the average PSNR and SSIM, and the corresponditigrdtan
deviations, produced by using the very low-resolution images assnmith a
magnification factor of 6. It can be seen from Table 4.2 that our method again
outperforms other state-of-the-art algorithms. In addition, wenstiee statistical
results in terms of the SSIM across all the faces in the database (230 immages
total). Instead of showing the SSIM of each face, we group 20 faces and mmput
the corresponding average SSIM. And the last 30 faces of the 230 images are
grouped, rather than having groups of 20 and then the final 10. Fi§.ahd Fig.

4.11 illustrate the average SSIM for the different face-hallucinatigorithms with

a magnification factor of 4 and 6, respectively. When the magnification rfasi,

the performance of Freeman's method is similar to our method, but otwothean
achieve a better performance in terms of PSNR. When the magnification factor i
increased to 6, our method is significantly better than Freeman's methehia of

both PSNR and SSIM. Also our method has a slightly better performdwacedoes

the variant of Park's method. In conclusion, our method can achieve a better

performance statistically.
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Figure 4.10: The average SSIM of the different face-hallucination d@hgug on
groups of faces (20 faces for each group except the last, which has 30 faces) in the
database, with a magnification factor of 4.
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Figure 4.11: The average SSIM of the different face-hallucination d@hgug on
groups of faces (20 faces for each group except the last, which has 30 faces) in the
database, with a magnification factor of 6.
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4.5 Conclusion and discussion

In this chapter, a novel face-hallucination scheme based on a simple mapping
model is proposed. The superior performance of our algorithm isaltieetuse of
three different stages in estimating a HR face from a LR face. In thestagfe, the
optical-flow method is used to align the facial images. Therefore, thectsffof
warping errors can be reduced by using adaptive weighting in the localmpaddel,
and the method can infer comparably more faithful individual facial stnest of
the target HR faces. We have also proved that the major singular valué® of t
associated eigenvectors of the same image at different resolutionsop@tgmal
to the magnification factor. In the second stage, bicubic interpolatapplied to
the matrices decomposed from the input images by SVD. This methahsehe
holistic structure of face images, and the learned mapping matrices, \ahich
represented as embedding coefficients of the mapping matrices derived using an
iterative method, can be seen as holistic constraints in the reconstruaftiHR
images. Finally, the residual matrix is added, which contains the rgidsigh-
frequency information and details required for face hallucination. Coeap&o
typical state-of-the-art algorithms, experiments show that our pegpasethod is
practicable and can produce plausible HR images with both a holistictste and
high-frequency details.
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Chapter 5 Simultaneous Hallucination and
Recognition of Low-resolution
Faces Based on SVD

Face recognition is an important task for video surveillance. The twogpyi tasks
for face recognition are face identification and verification. In face idieatibn, a
query face is compared to the gallery faces in a dataset so as to identify itisyiden
For face verification, the claimed identity of a query face is verified. Face
recognition can achieve a highly accurate performance under controlled ocosditi
such as under frontal light sources, frontal view, no occlusion, neuaahlf
expression, etc. However, low-resolution (LR) faces are a difficulblgra in the
face-recognition domain. Although current digital cameras can capture inzges
high resolution, face images captured in outdoor circumstances and stiaaad,
with a compressed video format, are usually of low resolution and loalitguTo
achieve effective video surveillance, both face hallucination and face reaogniti

are needed simultaneously.
5.1 Related Work

In the image-processing research field, reconstruction of a high-tesol{HR)
image from its LR inputs is called super-resolution (SR). For face @sathis
technology is also called face hallucination [8], which has become one ofdsé m
important fields of face recognition. A lot of face-hallucination methdaas
described in the Section 4.1.

Currently, most existing methods focus only on reconstruction, seldom
consider face recognition and hallucination simultaneously. In [1&3]approach
for simultaneous face SR and feature extraction for LR face verification was
proposed. This approach simultaneously provides fitness measuresRtresults
from both the reconstruction and recognition perspectives. In [Z25),and Yuen

proposed an approach to learn the relationship between the HR image space and th
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very low-resolution (VLR) image space for face SR. The proposed digtative
SR (DSR) method, with a discriminative constraint, is used to lehenproper
relationship, based on class information, for face-recognition applicatio

In contrast to the previous works, we propose a novel and efficiergnseHor
the simultaneous hallucination and recognition of LR face images migulgar
value decomposition (SVD) and the LR-HR mapping model for the SVD
representation. In our approach, face images are represented using SVibeand t
hallucination and recognition of LR faces are taken into account simultalyeous
We have proved [124] that, based on the Frobenius norm, the corresgond
singular values of an image across different resolutions have approxmadiakar
relationship. This makes the estimation of the singular values of HRifaages
more reliable. Furthermore, the left and right matrices in the SVD semtation
can be interpolated to a higher resolution using bicubic interpolatibis
interpolation method applied to these two matrices will not change thistic
structure or the pattern of the face image. Our proposed approach caplies ap
both face verification and identification.

Our simultaneous face-hallucination and -verification algorithm is tehas
SHV, As the claimed identity of the query is known, the claim will siynpe
rejected if the difference between the singular values of the query asd tfahe
claimed faces in the database is larger than a certain threshold. If the diffeien
smaller than the threshold, super-resolution will be performed basedhe
mapping models learned from the claimed LR-HR face pairs. Then, halluminati
is performed based on the LR-HR face pairs of the claimed identity, andRhe-L
HR mapping matrices of the respective claimed face pairs are learned for
estimating the high-frequency information or any detailed local featureseaiin
the estimated HR faces generated by interpolating the two SVD matrices. The
hallucinated faces are then used for verification again On the other hand, the
algorithm for simultaneous face hallucination and identification isotiesh as SHI.

In this algorithm,Q faces that are the most similar to the input LR face image are
first searched from a gallery database of LR-HR pairs based on itslaingalues.

Suppose that thes@ faces belong tdv distinct subjects, wherll < Q. For each of
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theseM identities, the corresponding mapping models are learned and used to
super-resolve the query input. Therefok HR face images for the LR query are
generated. Then, the differences between each oMH¢R face images and the
corresponding HR face images in the database are computed based on PCA. The
input LR face is assigned to the class of the face with the smallestreiifte. Fig.
5.1 illustrates the proposed framework for simultaneous hallucmatand
identification of LR faces based on SVD and the LR-to-HR mapping models.

As is well known, for a novel face which is significantly differenoi the
training samples, most of the existing learning-based face-halluanatethods
will likely produce artifacts and discontinuities in the reconstrctresults. The
face-recognition steps in the proposed approaches have the advantageethat th
abovementioned problem can be solved, to a certain extent. If the referesidac
not have similar holistic structures and patterns to the LR inpese faces will be
rejected during face recognition. Concurrently, with the aid of face mtog, the
estimation of the high-frequency details of the HR face images will becowe
reliable and effective. Experimental results show that our algorithnféestefe and
can produce promising hallucination results.

The rest of the chapter is organized as follows. First, we will presesimale
mapping model for hallucinating SVD matrices. Then we introduce oupgzed
face-hallucination and -recognition scheme. An the end, experimentalsresalt

presented and a conclusion of this part is given, respectively.
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E%N Low-resolution probe

Q faces which are the most similar to the input LR face are searfrom a
gallery databas of LR-HR face pairs baser on singular values.
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Suppose that the<@ faces belong td distinct subjects. Then, for each of theidentities,
the corresponding mapping models are learned and usedé¢o-egolve the query LR input.
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The differences between each of teHR face images and the corresponding HR face
images in the database are computed in the eigenspace.pilie_R face is assigned to
the clas: of the face with the smalles difference.

3

Result of simultaneous face hallucination and recognitio

@

Fig. 5.1. The proposed framework for the simultaneous hallucinatoal

=]

identification of LR faces, based on SVD and a mapping-model method.

5.2 SVD of Face Images

In the section 4.2, a mathematical framework using SVD has described to
achieve an effective image representation for face hallucination. In siwmids,
the main singular values of the same image under different resolutiams ar
approximately proportional to each other, with the magnification faat@s the

proportional constant [124, 127].
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By linear algebra, the spectral norm (i.e. the Euclidean norm) of thexmais

the largest singular value & i.e.

A=W (5.1)
For imageln and the original LR imagé, we have:

I, lh=w, and (5.2)

I, 1h=w- (5.3)

Since the imagédn, with a magnification factor of:, has similar values to the

corresponding pixel in the original LR imade we have||l |, O||al, |, =a]l,|, - This

is equivalent to:

w Oaw, (5.4)
Then, the linear relationship becomes:
k N2 k \2
(w,) 0a”Y (W) (5.5)
i=2 i=2

Now, we can set = 0 and w/ = 0, the new imagel, and I, can be expressed as

follows:

S

V,", and (5.6)

AR (5.7)

0
The Euclidean norms of the matrik, and I, are their corresponding largest

singular values, as follows:
1, b=wg, and (5.8)



I h=w (5.9)

Similarly, since||I, 1,01, =a 1| J, we have:

W Daw’. (5.10)
Therefore, the linear relationship becomes:
[ \2 Kk N2
(w,) 0a”> (W) (5.11)
i=3 i=3

Using the principle of mathematical induction, we can alsovgst 0, W = 0 and
w'=0, w’= 0. Thus, we have:

w; Oaw’, until (5.12)

W Oawf. (5.13)

This proves that the leading singular values of the same image underedif

resolutions are approximately proportional to each other with the rhiegon
factor a. In addition, since the Euclidean norm of the matAxis the largest

singular value ofA [124, 127], and we can utilize the largest singular vaieof Iy

and the largest singular value/ of the original LR imagel, respectively, to
normalize the global feature to form scale-invariant feature vectordlawfo
S =5/ w,ands =s/ . (5.14)
We can see thay, = §, which means that the singular values are normalized so

that face images at different resolutions can be compared directly [127].

5.3 Simultaneous  Hallucination  and
Verification/Recognition of Low-resolution
Faces

For the scheme on simultaneous face hallucination and face recogniten, w
consider the algorithms SHV and SHI separately. The major differeeteeen
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these two algorithms is in the selection of the LR-HR training paifsenv

performing face super-resolution for face verification and identifcati
5.3.1 Simultaneous face hallucination and verification (SHV)

Given a pair of face images, the task of face verification is to verify wdrettney
belong to the same person identity or not. In our framework for sanebus face
hallucination and verification, we will first use the singular valué$age images as
a global scale-invariant feature vector for their representation accordiaguation
(5.14). We define a similarity functionSIM , to measure the similarity between
the input query and the claimed identity in the gallery database, baseaguiasi

values only, as follows:

SIM(1,,1,)=1|s, - 8, (5.15)

where | |, is the L, norm, ands and s are the normalized leading singular

2 1

values utilizing the largest singular value, i.e. using Equatiof4(5 of the input
LR probe and the claimed identity in the gallery database, respectivelyhelf

difference is larger than the threshold, i®IM < T ,the claimed face will be

rejected. If the difference between the singular values of the query andaimed

identity is smaller than a certain threshold, iSIM>T,, super-resolution will be

performed based on the mapping models learned from the claimed LR-HR face
pairs. And the thresholdl, is set empirically by experiments. Then, the face
hallucination of the input LR face, only using the claimed face pairsefsences

for estimation of the mapping functions for interpolating the tmatrices in the
SVD representation, is described in the following.

Suppose thal face images of the claimed identity in the gallery set can pass the
face-verification process based on singular values, and face images in they gall
are ax g times of the input LR face imagk. TheseN face images are down-
sampled to formN pairs of LR and HR training face images, denoted aand 1|
(i =1, ...,N), respectively. The LR training images should have a high structural

similarity to the LR input face after alignment. Based on tdeface pairs,N
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corresponding HR face images can be reconstructed from the LR face tsing t
mapping model scheme, as described in Section 2.2 in Chapter 2.

With the aid of face verification, this will make the reconstructed HRage
more reliable and accurate. In addition, another merit of our proposedthigds
that face verification can help prevent from producing artifacts and disaotiéis
during the stage of face hallucination. Based on the reconstructed Hifages,
combine with Potential-Field Representation of HR face images [12fe f
verification can be conducted based on PCA. If the query input is the claimed
identity, the mapping models learned should be correct and effectivehtor t
reconstruction. High verification accuracy can be achieved. Otherwise,hee. t

query is not the claimed identity, the accuracy should be degraded.
5.3.2 Simultaneous face hallucination and identification (SHI)

For the scheme of simultaneous face hallucination and identifica@pfgces
that are the most similar to the input LR face image are first searcheddrgatiery
database of LR-HR pairs based on its singular values [124], as shofig.i%.1.
Suppose that thed® faces belong tdM distinct subjects, wher& < Q, and for
each of theM identities, the corresponding mapping models are learned and used to

super-resolve the query input. Therefor® hallucinated HR face images

_hj , 1= 1,2, ...,M, for the LR query are generated using the face hallucination

algorithm introduced in Section 2.2. Then, the differences between each M the
hallucinated HR face images and the corresponding HR face images gf' the

distinct subject, j= 1,2, ...,M, in the gallery database are computed using the

eigenface method [3].

Fig. 5.1 illustrates the proposed framework for simultaneous tiattion and
identification of LR faces. In our framework, the targeted HRandV matrices of
the query are computed using the mapping models [124] learned fromRHeR.
pairs of the respectivé distinct subjects. If the query and the identities of the
subject under consideration are of the same person, the mapping moaidld s
correct, and hence the HR query face image generated should resemble the

corresponding HR face images in the database. Otherwise, the reconstiRted
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face is unlikely to be similar to the HR face images of different subjettthe
gallery database. By considering face hallucination and identification
simultaneously, both the face-hallucination and -identification peréorices can be

improved.
5.4 Experimental results

In order to verify the effectiveness of the proposed schemes, the cedbin
dataset used in [27, 124] is used to evaluate the performance of our edopos
framework. The facial images in the dataset were selected from the GTAB5S],
[36], and FERET [37] databases, which contain 40, 70, and 500 persores. Fi
images from each class with a near-frontal view, neutral expressions, deictaif
illuminations are randomly chosen for the experiments. Thus, tta¢ namber of
images in the database is 610x5 = 3,050 images. All the facial imagesedre w
aligned based on the position of the two eyes, using the method2®].[The
parameters. andc are empirically set at 0.001 and 50, respectively. Experiments
show that using all of the above settings can achieve a satisfactory overall
performance. A number of experiments were conducted to verify the effeeigen
of our schemes. Our proposed SHV and SHI schemes will be evaluated in Section

5.4.1 and Section 5.4.2, respectively.
5.4.1 Experiments on Simultaneous Face Hallucination and Verification (SHV)

The task of face verification is to determine whether a pair of face imaglesidp
to the same person. In the experiments, the database consists of &85Mhages
of 610 distinct subjects, the original HR facial images are cropped tizea
72x64 pixels, and the LR faces are of size 18x16 pixels. We followedtémelard
10-fold cross-validation over the combined database in the experimentade
verification. The similarity functionSIM defined in Equation (5.15) is used to
measure the similarity between an input query and the claimed identityein th
gallery database for face verification.

In this section, we evaluate the effectiveness of the proposed face-atoific

approach. The PCA-based algorithm [3] (also known as eigenfaces) is a bekchmar
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for appearance-based and image-based face recognition/verification approdches [1
Therefore, it is used in these experiments to illustrate the effectiveoiessir

algorithm. As in [33, 34], th&, norm distance metric is used, which is a more
suitable distance measure than the Euclidean distance métyicf¢r PCA-based

algorithms. The state-of-the-art algorithm proposed in [123féaognition of low-

resolution faces, namel®’R? , is employed for comparison. Furthermore, two
more state-of-the-art methods, namely the discriminative constrasgd DSR
method [125], which employs the class-label information, and the edukérnel
embedding (CKE) feature-extraction method [126], are also compared fdaddR
recognition. For the DSR method [125], images from 610 persores fjen person)
are randomly selected to form the training set, and the rest of the imagedHe
testing (probe) set. As in [125], the training pairs are clusteredgubirearity
clustering, so that the relationship between the data pairs in each clusteecan b
linearly approximated. Following [126], 610 images are also randoselgcted
from the database, and projection directions are train using the Gakesrasi-
based CKE algorithm. The kernel parameter is set at 3, and 40 features in the
embedding space are extracted for matching.

Figure 5.2 shows the identification accuracy (IDA), which is the pesgtof
the probes that are correctly identified by an algorithm. As shown in % the
PCA-based algorithm achieves an IDA of 32.36% only. The performanceeof th
S*R? algorithm can further improve the IDA significantly, to 46.05%.tBdhe
DSR and CKE methods produce good recognition results compared tofthas
PCA-based algorithm, which are 53.22% and 52.35%, respectively. @poged
SHV method can increase the IDA to 54.11%, i.e. achieving a better performance
than both the DSR-based algorithm and the CKE algorithm. These ex@#dam
results prove that our proposed scheme is effective.
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Figure 5.2. Identification accuracy (IDA) for different algorithms.

The receiver operating characteristics (ROC) curve, which is constructed from
the true-positive rate (TPR) and the false-positive rate (FPR) langihg the
threshold, is shown in Figure 5.3. The ROC characteristics showbgiroposed
SHV method outperforms the other, state-of-the-art methods. Iniaddiéach
ROC curve can be summarized by the area under the ROC curve (AUC). dttegref
AUC is also used as a quantitative measure for the evaluation of different
algorithms. Table 5.1 shows that our proposed method is superiermrs of AUC,
compared to other algorithms.
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Figure 5.3. Receiver operating characteristics (ROC) curve for the eiffer

algorithms.

Table 5.1. AUC of five different scheme.
Eigenfaces P R? DSR CKE Our SHI method

AUC 0.6595 0.7471 0.7763 0.7649 0.7954

The input LR face can be hallucinated by using the respective mapping snodel
for the matricedJ andV based on the LR-HR face pairs of the claimed identity. For
comparison, two interpolation algorithms, namely the bicubic-imttpon
algorithm [40] and the edge-directed interpolation (NEDI) method,[44g applied
for face hallucination. Five more state-of-the-art face-hallucinatigorahms are
also compared to our proposed method: two PCA-based, holistic SR asefthe
eigentransformation method [20] and a variant of Park’s method [2hp; patch-
based method (Freeman’s method [15]); Liu’s method [22] based on a global
parametric model and a local nonparametric model; and a SVD mapping-based
method [124]. The version of Park’s method used in this chapter isrdiit from
the original algorithm in [21] in that the training images are warpéith weference
to the LR input face rather than with reference to a predefined reference face.

In the experiments, we evaluate all the methods by reconstructing thexti&t f
images with a magnification factor of 4. All the testing images of resmiul8x16

pixels are evaluated using the “leave-one-out” approach. Two objective yqualit
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measures, PSNR (peak signal-to-noise ratio) and SSIM [39], are usadhloate
the performances of the different methods.

Fig. 5.4 shows some samples of the reconstruction results generatedtiues
different state-of-the-art face-hallucination algorithms, with a nifagtion factor
a=4. It can be seen from Fig. 5.4(b) that the bicubic-interpolation dlgar
produces the blurriest results. The results in Fig. 5.4(c) are geteusing the
NEDI method. However, if a face image has a very low resolution (i.e.vbelo
18x16 pixels), the NEDI method struggles to distinguish edges, hemite also
produces blurry results as compared to the other SR methods. Fiff). &l 5.4(e)
are the results generated by using the eigentransformation methodeamdrifint
of Park’'s method, which are both holistic/global face-hallucinatioethuds.
Plausible face structures can be well inferred in the resulting HR imagesshow
a better visual quality than both the bicubic-interpolation and th® Nigorithms.
Nevertheless, as the method is purely holistic, it cannot effectively recahshe
fine individual facial details of those novel testing faces. If a tgsface image is
very different from the faces in the database, infidelity will result e t
reconstructed HR faces. Park's method employs the morphable face model to
capture the shape variations of novel testing faces, so it outperfohas t
eigentransformation method. However, the HR textures are still recotetr in a
holistic manner, like the eigentransformation method. The facediadtion results
using the patch-based SR methods are illustrated in Fig. 5.4(f). Ibeaeen that
Freeman’s method can provide plausible HR facial images with sharp edges and
corners. However, as some of the patches are badly matched or conflict with
adjacent ones, some structural errors and discontinuities appear in thetrectad
HR images; these errors are the drawbacks of most patch-based SR methods.
Furthermore, patch-based SR usually requires a large number of imageppatch
for learning, and therefore is computationally expensive. In additibaret are
artifacts in the reconstructed HR images, as shown in Fig. 5.4(f). @oedpwith
the holistic-based and the patch-based approaches, Liu’'s method [22}ublbth
global and local prior information through a global parametric made a local

nonparametric model. Thus, as shown in Fig. 5.4(g), the method caluge not



only visually plausible face structures, but also fine details or testlike those in
the HR training images. However, some parts of the hallucinated facesasuthe
mouth, are somewhat different from the original face. This can be gligirti

attributed to the properties of the PCA-based global model used iappi®ach.

(@) (b) (©) @d (e ® © (h) ()

Figure 5.4: Face-hallucination results reconstructed using differethods with a

magnification factor of 4. (a) the original images, (b) bicubic intémgon, (c)
NEDI, (d) the eigentransformation method, (e) a variant of Park’s naetl(©
Freeman’s method, (g) Liu’s method, (h) the SVD mapping-based me#mati(i)
our proposed SHV method.
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Unlike Liu’'s method, our proposed framework can retain the main enerdyRof
faces, meanwhile the mapping scheme and the residual matrix can produee high
resolution results affectively with clear details, as shown in Fig. 3.4h this
chapter, our proposed framework for simultaneous verification anddiadition of
LR faces can select similar holistic structures and patterns with the LR dhying
the stage of face verification. It has the advantage of preventing thatalgdrom
producing artifacts and discontinuities in the reconstruction reswhd the
estimation of the high-frequency details of the HR face images will becowe
reliable and effective. As can be seen from Fig. 5.4(i), plausible HR eésagth a
holistic structure and more details with a better visual quality canl@ined.

Table 5.2 tabulates the average PSNR and SSIM of the different methtida wi
magnification factor of 4. The results show that our method is supenderms of

both the two measurements, to the other, state-of-the-art algorithms.

Table 5.2. The average PSNR and SSIM of the different face-hallucination

algorithms with a magnification factor of 4.

Face-hallucination algorithms PSNR(dB) SSIM
Bicubic interpolation 19.32 0.5507
NEDI 19.58 0.5585
Eigentransformation method 21.58 0.6392
A variant of Park’s method 22.07 0.6410
Freeman’s method 22.34 0.6515
Liu’s method 21.86 0.6443
Mapping method 22.69 0.6532
Our proposed SHV method. 22.72 0.6627
Our proposed SHI method. 22.83 0.6685

5.4.2 Experiments on Simultaneous Face Hallucination and I dentification (SHI)

In this section, extensive experiments were performed to evaluate the

effectiveness of the proposed simultaneous face hallucination andfickeign
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(SHI) algorithm. In the experiments, LR faces of three different resmiat 18x16,
16x14, and 14x12 pixels are considered. The number of searchedJase®t at

40, i.e.Q = 40 faces that are the most similar to the input LR face are searched
from a gallery database of LR-HR face pairs based on singular values using
Equation (11). A face of each subject is randomly selected in the databasenta fo
gallery dataset, while the remaining faces are used for testing in the eguesi.
Eigenfaces are used to measure the differences between eachvbhtikicinated

HR face images and the corresponding HR face images in the gallery dataset.

For comparison, the state-of-the-art methods used in Section 5.4.1 sre al
performed for LR face recognition. Table 5.2 tabulates the average reawgniti
rates of the different state-of-the-art algorithms for the LR faces refetldifferent
resolutions. We can see that, for LR faces with 18x16 pixels, the average
recognition rate of the PCA-based algorithm [3] is 39.44% only. Bverage
recognition rate of thes’R* algorithm [123] achieves 55.70%. Both the DSR[125]
and CKE[126] can further improve the average recognition rate Sigimifiy to
71.66% and 71.24%%, respectively. Our proposed SHI method can achive th
best average recognition rate of 72.15%.

When the LR faces are reduced to the resolution of 16x14 and 14x12 pixel
recognition performances of all the methods degrade. For the resoldtibéxa4
pixels, the DSR [125] and CKE [126] methods achieve recognition ratée.86%
and 70.32%, respectively; this is much better than that of the PCA-baseuttatg
[3], which is 37.11%. The average recognition rate of our propos¢idngthod is
71.33%. When the resolution is 14x12 pixels, the PCA-based #igorj3], the
DSR [125] method, and CKE [126] method achieves recognition rates.0634
69.19%, and 68.85%, respectively. Our proposed SHI method outperfall these
methods, and achieve a recognition rates of 69.50%; this shows theweffessts of

our proposed method.
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Table 5.3. The average recognition rates of five different face regogrsthemes
with the LR faces of sizes 18x16 pixels and 16x14 pixels, respectively.

Average Eigenfaces FR? DSR CKE Our SHI
recognition rates method

18x16 39.44% 55.70% 71.66% 71.24% 72.15%

16x14 37.11% 53.05% 70.85% 70.32% 71.33%

14x12 34. 06% 51.88% 69.19% 68.85% 69.50%

Fig. 5.5, Fig. 5.6, and Fig. 5.7 show the recognition performandbetifferent
methods in terms of the cumulative matching characteristic (CMC) cuvhéh
evaluates the ranking capability of an identification algorithm, whemrékelutions
of the LR faces are 18x16, 16x14, and 14x12 pixels, respectively. Frese th

results, we can see that our proposed SHI method outperforms the tateeok
the-art algorithms.

100 : : : :

Average recognition rate (%)

@ : :
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Figure 5.5. The cumulative matching characteristic (CMC) curves efdifferent
methods with the LR faces of size 18x16 pixels.
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Figure 5.6. The cumulative matching characteristic (CMC) curves fiérdint
methods with the LR faces of size 16x14 pixels.
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Figure 5.7. The cumulative matching characteristic (CMC) curves efdifferent

methods with the LR faces of size 14x12 pixels.
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For simultaneous face hallucination, Table 5.2 also tabulates the averaffe PS
and SSIM of the proposed simultaneous face-hallucination and Hidgatitn (SHI)
method with a magnification factor of 4. From Table 5.2, it can be seenciinat
SHI method is superior to the different state-of-the-art methodserim tof the
average PSNR and SSIM. Table 5.3 and Figs. 5.5, 5.6, and 5.7 show that ou
proposed SHI method is superior in terms of the recognition rate laadCMC
curve compared to other, state-of-the-art face-identification algorithfese
experimental results prove that our proposed scheme of simultanfzmes

hallucination and identification is effective, and can achieve excellent peaforen

5.5 Conclusion and discussion

A novel approach for simultaneous hallucination and recognition of LR faags h
been proposed. In our framework, hallucination and recognition of LR faoes
taken into account simultaneously. Our proposed scheme can retain tkgcholi
structure and the high-frequency details of face images, and outperfotiner,
state-of-the-art algorithms in terms of PSNR and SSIM. Experiments Baown
that our proposed method is practicable and can produce plausible HRsinvdbe
both a holistic structure and high-frequency details. Meanwhile, @xpet results
also demonstrate that our proposed simultaneous framework can achpsreosu
results for both face verification and identification.
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Chapter 6 Concluson and future

wor k

In this thesis, we have firstly introduced face recognition and somiés afurrent
typical challenging problems. Although these typical challenging okl have
attracted increasing attention in recent years, they are still ongoing agld i€sues
for robust face recognition.

Concerning Chapter 2 to Chapter 5: we have presented the accurate eye-
detection problem in Chapter 2, the illumination-variation issue lager 3, the
low-resolution problem in Chapter 4, and the simultaneous halluomagind
recognition of LR faces in Chapter 5. In this final chapter, we will sumpeathe
main contributions of this research, and discuss some possiblee fudsearch

directions based on the work presented in the previous chapters.
6.1 Summary and conclusions

This thesis concentrates on some typical challenging problems for cueeat f
recognition. We have surveyed three fields and the work described anthasis
involves the following research:

(1) the accurate eye-detection problem in Chapter 2. Since accurate eye
detection is an important problem for robust face recognition, in thépter, an
efficient hierarchical scheme is proposed for accurate facial-feature detectébn
localization. The proposed algorithm, which is non-iterative and adatnally
simple, achieves a superior performance compared to other stdie-afttmethods.

(2) the illumination-variation issue in Chapter 3. In this chaptee w
introduces a facial-image lighting-compensation and -enhancementitlafgdior
face recognition. The advantage of the proposed method is that the dssuofma
single-point light source is not required, so it circumvents and oveesothe

limitations of the Lambertian model and is also suitable for out@irocumstances.
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(3) the low-resolution problem in Chapter 4. We presented a novel face-
hallucination scheme based on singular value decomposition, whicheistie# in
terms of producing plausible HR images with both a holistic stmectand high-
frequency detalils.

(4) the issue of simultaneous hallucination and recognition of LR fates
Chapter 5. In this chapter, a novel approach for simultaneous hallwnand
recognition of LR faces has been proposed. In our framework, hallucinatidn
recognition of LR faces are taken into account simultaneously. Our proposed
scheme can retain the holistic structure and the high-frequency defaftsc®
images, and outperforms other, state-of-the-art algorithms in ternsSdiR and
SSIM. Experiments have shown that our proposed method is practicathleaan
produce plausible HR images with both a holistic structure aigth-frequency
details. Meanwhile, experiment results also demonstrate that our proposed
simultaneous framework can achieve superior results for both face vedficatid

identification.
6.2 The new contributionsin thisthesis

In this thesis, we have made a number of new contributions to the obsear
community of current face recognition. It is believed that this thesisamositthe
following original work and new contributions:

® Chapter 2 - The accurate eye-detection problem for robust face recognition:
an efficient hierarchical scheme, which is robust to illumination and pose
variations in face images, is proposed for accurate facial-feature detection
and localization. In our algorithm, having detected a face region using a
face detector, a wavelet-based saliency mawhich can reflect the most
visually meaningful regions is computed on the detected face region. As
the eye region always has the most variations in a face image, the coarse
eye region can be reliably located based on the saliency map, and verified
by means of principal component analysis. This step in the proposed
hierarchical scheme narrows down the search space, thereby reducing the

computational cost in the further precise localization of the two eye
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positions based on a pose-adapted eye template. Moreover, among the
facial features, the eyes play the most important role, and their positions
can be used as an approximate geometric reference to localize the other
facial features. Therefore, localization of the nose and mouth can be
determined by using the saliency values in the saliency map and the
detected eye positions as geometric references. Our proposed algorithm is
non-iterative and computationally simple. Experimental resuisasthat
our algorithm can achieve a superior performance compared to other state-
of-the-art methods.

® Chapter 3 - The illumination-variation issue: For this issue, weppse a
novel scheme for generating illumination-invariant face images gusin
illumination compensation and enhancement, which is applied to face
recognition. It is reasonable to assume that the variations of the face
surface-reflectance representation matrix, which reflects the intrinsic
property of a face surface of the same person under different matmon
conditions are small, while the dissimilarity between images of Hraes
person under different illumination conditions is mainly caused by th
differences in the illumination-effect matrix. In this chapter, thepgmsed
scheme learns the average illumination-effect matrix for face image
representation under changing illumination, which can be used to
compensate or enhance images, and to eliminate the effect of different and
uneven illuminations while retaining the intrinsic properties bé tface
surfaces. The advantage of our method is that the assumption of a-singl
point light source is not required, so it circumvents and overcomes the
limitations of the Lambertian model and is also suitable for outdoor
circumstances. Experimental results have produced promising results,
which demonstrate the effectiveness of our proposed method.

® Chapter 4 - The low-resolution problem: In this chapter, an efficient
mapping model based on singular value decomposition (SVD) is proposed
for face hallucination. We observe and prove that the main singular values

of an image at one resolution have approximately linear relationshiths wi



their counterparts at other resolutions. This makes the estimatioheof t
singular values of the corresponding high-resolution (HR) face isi&gen

a low-resolution (LR) face image more reliable. From the signal-psicgs
point of view, this can effectively preserve and reconstruct the dominant
information in the HR face images. Interpolating the other two roesri
obtained from the SVD of the LR image does not change either the primary
facial structure or the pattern of the face image. The corresponding two
matrices for the HR face images can be constructed in a “coarse-to-fine”
manner using global reconstruction. Our proposed method retains the
holistic structure of face images, while the learned mapping matrices,
which are represented as embedding coefficients of the individual mapping
matrices learned from LR-HR training pairs, can be seen as holistic
constraints in the reconstruction of HR images. Compared to statesof-t
art algorithms, experiments show that our proposed face-hallucination
scheme is effective in terms of producing plausible HR images with &oth
holistic structure and high-frequency details.

Chapter 5 - The simultaneous hallucination and recognition of LR faces: A
framework based on singular value decomposition (SVD) for performing
both face hallucination and recognition simultaneously is proposetisn t
thesis. Conventionally, low-resolution (LR) face recognition is iedrrout

by super-resolving the LR input face first, and then performing face
recognition to identify the input face. By considering face hallucinasiod
recognition simultaneously, the accuracy of both the hallucination laad t
recognition can be improved. In our algorithm, each face image is
represented by using SVD. For each LR input face, the corresponding LR
and high-resolution (HR) face-image pairs can then be selected from the
face gallery. With the aid of face recognition, using the selected LR-HR
pairs, the estimation of the mapping functions for interpolating tivo
matrices in the SVD representation of the corresponding HR face image
can be more accurate. Therefore, the final estimation of the high-frequency

details of the HR face images will become more reliable and effective.
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Experimental results demonstrate that our proposed framework can achieve

promising results for both face hallucination and recognition.
6.3 Future work

This thesis has presented a number of new ideas and techniques, which are just a
snapshot of our on-going research undertaken in the field of rohastrecognition.

In this section, some directions for possible future research willdiseussed.
Future research may be carried out in the following fields:

(1) The pose problem: This is another typical challenging problenfaice
recognition at present. We will explore an accurate algorithm to reconstre@&D
face for pose-invariant face recognition. As one of the effective teoigies for
capturing 3D surface information, Photometric Stereo, has attractedsprielad
attention. A face image can be seen as a special texture, and Photometric Stereo can
capture more 3D information than traditional shape-from-shading igeés,
therefore an accurate algorithm to reconstruct the 3D surface is useful and
important for robust face recognition and face representation. Ifuthes, we will
focus on accurate algorithm to reconstruct the 3D face for pose-invariant face
recognition.

(2) The occlusion issue: Currently, occlusion is another tough i$sue
robust face recognition. To continue our work, we will conduct reseamth o
effective local features for occluded face representation. We will also analgze an
compare the effectiveness and efficiency of different local features to represent
occluded faces; this can help to either determine or devise optimal local fetdures
represent an occluded face for robust occlusion-insensitive face reoogniti

(3) In the future, all of these techniques will then be integrated and
combined with both existing and new face-recognition algorithms. Wk w
investigate these related techniques to devise a compound framewaklesidr
face verification/recognition, develop efficient algorithms to allevi&ie ¢ffect of
uneven lighting on faces, study how to best combine multi-view facai¢iattion

and pose-invariant face recognition, evaluate the relative performanceslghgpp
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SR and face recognition, design an accurate algorithm to reconstruct 3D fades, an
investigate robust occlusion-insensitive face recognition, ideorto achieve a

robust and good performance level.
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