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Abstract
Current face-recognition algorithms can achieve a highly accurate performance

under controlled conditions, such as unchanged light sources, frontal-view pose, no

occlusion, neutral facial expression, etc. Face recognition has a wide range of

applications, however it still has many technical and challenging issues to be solved,

in particular when the faces under consideration have a very low resolution,

different illumination conditions, arbitrary poses and are under occlusions. In order

to achieve robust face recognition, we have investigated efficient techniques to

solve some typical challenging problems for robust face recognition.

First, among the facial features, the eyes play the most important role in face

recognition and face hallucination. Most of the existing facial-featuredetection and

localization algorithms cannot work accurately when the faces are rotated or under

poor lighting conditions. Therefore, in this research, an efficient algorithm for eye

detection in face images is proposed. As the eye region always has the most

variations in a face image, our algorithm uses a wavelet-based salient map, which

can detect and reflect the most visually meaningful regions for coarse eye detection.

With the aid of a pose-adapted eye template - which can handle eye regions with

large rotation and pose variations, accurate eye positions can be localized.

Furthermore, the position of the nose and mouth can be determined by considering

both the saliency values in the salient map and the detected eye positions as

geometric references.

Second, face images under different illuminations represent a challenge for

face recognition. In this research, we have discussed an efficient scheme for

illumination compensation and the enhancement of face images. Our illumination

model is universal; it does not require the assumption of a single-point light source.

Thus, it circumvents and overcomes the limitations of the Lambertian model. The

proposed approach can learn the average representations of face images under

changing illuminations so as to compensate or enhance the face images, and also to

eliminate the effect of different and uneven illuminations, while retaining the
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intrinsic properties of the face surface. Our experiments have provided promising

results, demonstrating that our proposed methods are effective.

Third, in order to achieve robust face recognition and to make face-

recognition systems capable of identifying people at very low resolution, super-

resolution (SR) technology is investigated. In this thesis, we first introduce facial-

image super-resolution, which is also called face hallucination. In this research, an

efficient mapping model is first proposed for face hallucination. Sincewe can

observe and prove that the singular values of an image at one resolution,

represented by singular value decomposition (SVD), have approximately linear

relationships with their counterparts at other resolutions, the estimation of the

corresponding singular values of the high-resolution (HR) face images becomes

more reliable. From the signal-processing viewpoint, this can effectively preserve

and reconstruct the dominant information in the reconstructed HR face images. The

mapping scheme can be viewed as a “coarse-to-fine” estimation of HR face images.

Compared to other, state-of-the-art algorithms, experiments have shownthat our

proposed face-hallucination scheme is practicable and effective.

Fourth, a framework based on singular value decomposition (SVD) for

performing both face hallucination and recognition simultaneously is also proposed.

Conventionally, low-resolution (LR) face recognition is carried outby super-

resolving the LR input face first, and then performing face recognition to identify

the input face. By considering face hallucination and recognition simultaneously,

the accuracy of both hallucination and recognition can be improved. In our

algorithm, each face image is represented by using SVD. For each LR input face,

the corresponding LR and high-resolution (HR) face-image pairs can then be

selected from the face gallery. With the aid of face recognition, using theselected

LR-HR pairs, the estimation of the mapping functions for interpolating the two

matrices in the SVD representation of the corresponding HR face image can be

more accurate.

All these techniques can be integrated with both existing and new face

recognition algorithms so as to achieve a robust and good performance level.
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Chapter 1 Introduction

1.1 Face recognition

Face recognition is a biometric technique which can be formulated as the problem

of identifying or verifying one or more persons in a scene by comparing input faces

(probes) with the face images stored in a database (galleries) [1]. In contrast to

other types of biometrics (such as fingerprint, hand geometry, iris,and retina scans),

face recognition offers a non-intrusive and the most natural way of person

identification/authentication [1]. As is well known, the advantage of face

recognition is intuitive and convenient, and often effective without the participants’

cooperation or knowledge.

Face recognition has a wide range of applications (including access control,

security monitoring, facial-paralysis diseases diagnosis, and video surveillance),

and has drawn significant attention from various fields, e.g. cognitivepsychology,

neural networks, image processing, pattern recognition, computer vision, computer

graphics. Over the past several decades, many face recognition approaches have

been proposed: Principal Component Analysis (PCA) [2][3] and Linear

Discriminant Analysis (LDA) [4][5][6] are two of the most common approaches,

and have long been used as benchmarks for face recognition. However, these

classical and holistic-based face recognition algorithms require the accurate

positions of the two eyes for normalization and alignment. Furthermore, all the

holistic-based algorithms require a huge training set with multiple images in

different poses and expressions for each person. On the other hand, feature-based

methods extract local features, like eyes, nose, and mouth, to form featurevectors,

which are fed into a structural classifier for face recognition. Typical algorithm is

based on Elastic Bunch Graph Matching (EBGM) [7]. Compared to those holistic

approaches, a major advantage of EBGM is that it can recognize human faces by

comparing their corresponding parts instead of requiring a large training set for

efficient recognition. Under controlled environments, both holistic-based and

feature-based face recognition algorithms can achieve a high performance.
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1.2 Review of typical face recognition

approaches
Since face recognition has the additional advantage of being a passive andnon-

intrusive method, in the past three decades, automatic recognition of faces has

become an active research topic in the fields of image processing and pattern

recognition. In the following sections, a brief overview of some typical face

recognition approaches is given.

1.2.1. Principal Component Analysis (PCA)

Among the different face recognition approaches, Principal Component

Analysis (PCA), also known as Eigenface, is the most classical method.The

objective function of PCA is to find a transformation that can represent high-

dimensional data in lower dimensions such that the maximum information about

the data is present and retained in the transformed space [2][3]. The basicidea of

the Eigenface method is introduced in the following [2][3].

A face image can be considered as a column vector by concatenating its rows or

columns one by one, denoted asΓ . Let 1Γ , 2Γ ,…, MΓ be a training set of face

images. The average of the training samples is given as follows:

1

1 M

n
n

 = 
M =

Ψ Γ∑ . (1.1)

The difference of each training face image from the average is computed as

n n= Φ Γ − Ψ . The covariance matrix is then calculated as follows:

1 M
T T

n n
n

COV= =AA
M

Φ Φ∑ , (1.2)

where the matrix [ ]1 2 MA = ... .Φ Φ Φ In practice, the matrixCOV is large for

computing its eigenvectors. A trick [2, 3] was suggested to determine the

eigenvectors nν of TA A first, i.e.

T
n n nA Aν νλ= . (1.3)

Multiply both sides byA, we have
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T
n n nAA Aν Aνλ= . (1.4)

Thus, the nAν on the right represents an eigenvector of T COV= AA , and the

eigenvector, denoted asµn, is a linear combination of theM training samples:

1

1
M

n nk k n
k

µ  = ν  = Aν , n = ,......,M
=

Φ∑ . (1.5)

The eigenvectors represents the principal components of the face images, andare

called as the Eigenfaces.

For face recognition, a new or query face image, denoted asΓ, is projected onto

the Eigen-space as follows:

( )T
k kω  = µ Γ − Ψ . (1.6)

The weights form a vector [ ]1 2
T

M = ω ,ω ,...,ωΩ that describes the contribution of

each eigenvector in representing the input face image. The simplest method for

determining which face class provides the best description of an input faceimage is

to find the face classk that minimizes the Euclidean distance :

k kε = Ω − Ω , (1.7)

where kΩ is a vector describing thekth face class. A face is classified as belonging

to classk when the minimum kε is below some chosen thresholdkθ . Otherwise

the face is classified as “unknown” [2].

Eigenface is a well-known practical approach that is computationally efficient

for face recognition. However, all face images have a similar structure, sothey are

highly correlated with each other. In other words, PCA is more effectivefor facial-

image representation than for face recognition. In addition, the imagesmust be

aligned accurately, otherwise the performance of the Eigenface method degrades

significantly.

1.2.2. Linear Discriminant Analysis (LDA)

Besides PCA, another well known linear transformation methods for face

recognition is Linear Discriminant Analysis (LDA) [7]. Contrast to PCA, which

aims to find a linear transformation that maximum information of the data is
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preserved in the transformed space, the objective of LDA is to preserve as much of

the class discriminant information as possible in the transformation.

The main purpose of Linear Discriminant Analysis (LDA) method is thatit

attempts to maximize the ratio of between-class scattering to within-class scattering

by using the Fisher’s Linear Discriminant (FLD). The Fisherface method is briefly

described below [4, 5, 6].

Consider a set ofN sample images }...,,, 21 Nxxx    { , and assume that each image

belongs to one ofC classes }...,,, 21 CXXX    { . Let the between-class scatter matrix

be defined as follows:

T
ii

C

i

iB NS ))(( 
1

µµµµ −−=∑
=

, (1.8)

and the within-class scatter matrix be given as:

T
ikik

C

i Xx

W xxS
ik

))((
1

µµ −−=∑ ∑
= ∈

, (1.9)

where iµ is the mean image of class iX and iN is the total number of face images

in class iX . If the within-class scatter matrix WS is non-singular, the optimal

projection oW is chosen as the matrix with those columns, which maximizes the

ratio of the between-class scatter matrix of the projected samples to the within-class

scatter matrix of the projected samples [4]:

WSW

WSW
W

W
T

B
T

W
o maxarg=

= ],...[ 21 mWWW (1.10)

where }...,,2,1| mii      {W = is them leading eigenvectors of the following eignvalue

problem:

....,,2,1, miSS iWiiB      WW == λ (1.11)

It should be note that there are at mostc−1 nonzero generalized eigenvectors, so the

upper bound onm is c−1, wherec is the number of classes. For face recognition,

the difficulty is that the within-class scatter matrixWS is always singular. In order

to slove this problem, PCA can be firstly used to reduce the dimensionof the
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feature space intoN−c, and then the standard FLD of equation 1.10 is applied to

reduce the dimension toc−1. oW is more formally defined as follows:

T
pca

T
fld

T
o WWW = , (1.12)

where

;maxarg WSWW T
T

W
pca =

WWSWW

WWSWW
W

pcaW
T
pca

T

pcaB
T
pca

T

W
fld maxarg= .

Note that the Eigenface method uses PCA for dimensionality reduction,which

yields projection directions that maximize the total scatter across all classesof

images. This projection is best for the reconstruction of images froma low-

dimensional basis. However, this method does not make use of any between-class

scatter. The projections are not optimal for discrimination between different classes.

Although Fisherface is similar to Eigenface, it considers between-class scatter and

can improve the discriminant capability of classifying faces from different classes.

With the aid of Fisher’s Linear Discriminant (FLD), the Fisherface method can

classify different people with varying facial expressions [4]. Nevertheless,

Fisherface is more complex than Eigenface in terms of finding the projection

vectors for face recognition, resulting in a larger storage requirement for the

representation and more computation time for face recognition.

1.2.3. Independent Component Analysis (ICA)

In addition to PCA and LDA, Independent Component Analysis (ICA) is another

widely used subspace-projection method, projecting data from a high-dimensional

space to a lower-dimensional space. Motivated by the fact that much of the

important information may be represented in the high-order relationships, face

recognition based on ICA is also proposed. Compared to PCA, which uses those

eigenvectors capturing the maximum image variance to determine the basis vectors,

ICA provides a set of basis vectors that possesses maximum statistical

independence. The basic idea of ICA algorithm is briefly introduced as follows [7,

129].
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Let S be the vectors of unknown sources signals andX be vectors of observed

mixtures. If A is an unknown mixing matrix, the mixing model can be expressed

as ASX = .The main task is to estimate the independent source signalsU by

computing the separating matrixW that corresponds to the mixing matrixA using

the following relation [129]:

WASWXU == . (1.13)

Let the observed samples are whitened and denoted byZ . Then the kurtosis of

ZWU T
ii = can be obtained and the separating vectoriW is computed via

maximizing the kurtosis:

|})){((3}){(|)( 224
iii EEkur UUU −= . (1.14)

Traditionally, ICA can be applied to face recognition in two different

architectures [7]. The goal in Architecture I was to use ICA to find a set ofspatially

independent basis images, whereas the ICA architecture II finds statistically

independent coefficients that represent input images. Face recognition performance

was evaluated in [7] shows that there was no significant difference in the

performances of the two ICA representations .

As discussed in [7], both PCA and ICA can be derived as generative models of

the data, where PCA uses Gaussian sources, and ICA typically uses sparse sources

for face recognition. It has been shown that for many natural signals, ICA is a better

model in that it assigns higher likelihood to the data than PCA [3]. The ICA basis

dimensions presented here may have captured more likelihood of the face images

than PCA, which provides a possible explanation for the superior performance of

ICA for face recognition [129].

1.2.4. Elastic Bunch Graph Matching (EBGM)

Face recognition techniques based on Elastic Bunch Graph Matching (EBGM) [12]

shows successful experimental results. The EBGM representation of facial feature

is based on Gabor wavelet transform. Gabor wavelet, which is also called Gabor

filtering, can also produce a multi-resolution representation of thesample texture

image. Gabor filtering provides a flexible scheme for designing efficient algorithms
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to capture more orientation and scale information in signals. A two dimensional

Gabor functiong(x, y) is defined as

221 1
( , ) exp - 2

2 22 2X y X y

yxg x y jWxπ
πσ σ σ σ

  
  = + +
  

  

, (1.15)

where Xσ and yσ are the standard deviations of the Guassian envelopes along the

x and y direction [1]. Then a set of Gabor filters can be obtained by appropriate

dilations and rotations ofg(x, y):

-( , ) = ( , )g a mx y g x ymn ′ ′ ,

( cos sin );

( sin cos ).

mx x ya
my x ya

θ θ

θ θ

−′ = +
−′ = − +

(1.16)

wherea >1, θ = nπ/K, n = 0, 1, …, K-1, andm = 0, 1, …, S-1. K and S are the

number of orientations and scales. The scale factorma− is to ensure that energy is

independent of m. Given an image( )I x
�

around a given pixel ( , )x x y=� , its Gabor

transform is defined as a convolution:

2
1 1 1 1 1 1( ) ( ) ( ) ( , ) ( , )jJ x I x x x d x I x y x x y y dx dyg gmn mn

∗ ∗= − = − −∫ ∫
� � � � �

, (1.17)

where * indicates the complex conjugate. A jetJ is defined as the set { jJ } of 40

complex coefficients obtained for one image pixel. The set of 40 coefficients

obtained for one image point is referred as a jet. However, jets taken fromimage

points only a few pixels apart from each other have very different coefficients due

to phase rotation. This may decrease the accuracy of matching. Therefore, a method

is proposed to compare the jets by taking into account the phase differencein

comparison, and the phase similarity function is defined as follows:

∑∑

∑
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−′−′
=′

j
j

j
j

j
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22

)cos(

),(

��
φφ

, (1.18)

By using this phase function, the phase difference )( jj φφ ′− is compensated by

the displacementd
�

, which is estimated using Taylor expansion. The displacement

estimation could be done using the disparity estimation.
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In order to represent a face, EBGM method builds an image graph from a set of

fiducial points like the pupils, the corner of the mouth, the tip of the nose, the top

and bottom of ears, etc. A labeled graphG representing a face consists ofN nodes

on the fiducial points at positionnx
�

, n = 1,…, N andE edges between them.

For an automatic face recognition system, it has to locate the fiducial point and

build the image graph from an input image automatically. This can be done by

matching the input image with a stack like general representation of faces, Face

Bunch Graph (FBG). For the matching between an input graph and the Face Bunch

Graph (FBG), a function called graph similarity is employed. The graphsimilarity

function depends on the jet similarity mentioned before and the distortion of the

image grid relative to the FBG grid. For an image graphIG with nodesn = 1,…, N

and e = 1,… ,E and an FBGB with model graphsm = 1,… ,M. The similarity is

defined as

∑ ∑ ∆
∆−∆−=

n e
B
e

B
e
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I
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E
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1
),( �

��λ
φ , (1.19)

where λ determines the relative importance of jets and metric structure.nJ are the

jets at nodesn, and ex
�∆ are the distance vectors used as labels at edge e. Because

the FBG provides several jets for each fiducial point, the best one is selectedand

used for comparison. These best fitting jets serve as local experts for the image face

[ 7].

For face recognition, after having extracted model graphs from the gallery

images and image graphs from the probe images, recognition can be conducted by

comparing an image graph to all model graphs and selecting the face with the

highest similarity value. The similarity function is an average over thesimilarities

between pairs of corresponding jets. IfIG is the image graph, MG is the modal

graph, and node nn ′ is the modal graph corresponds to noden′ in the image graph,

the graph similarity is defined as

∑=
'

),(
'

1
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''

n

JJS
N

GGS M
n

I
na

MI
G

n
, (1.20)
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where the sum runs only over theN' nodes in the image graph with a corresponding

node in the modal graph.

Experiment result show that Elastic Bunch Graph Matching (EBGM) workswell

with different facial expression and with different scales. However, this algorithm

has certain drawbacks. It is quite complicated to build the FBG at the initial stage.

A large amount of grid placements has to be done manually at the beginning.

What’s more, it is difficult to implement because of the complexity of the algorithm

in automatically finding the position of the fiducial points. And it requires huge

storage of convolution images for better performance.

In short, despite the success of face recognition techniques in many practical

applications, there are still many technical and challenging problems under

uncontrolled environments to be solved [1].

1.3 Challenging issues of face recognition

Although current face-recognition algorithms can achieve a highly accurate

performance under controlled conditions (such as unchanged light sources,frontal-

view images, no occlusion, neutral facial expression, etc.), it still has many

technical and challenging issues to be solved. Especially, face recognitionwith

very low resolution and under different illuminations, are typical difficult problems,

in particular in outdoor circumstances. Fig. 1.1 shows two typical challenging

problems for current face recognition.

Very low resolution Illumination

Fig. 1.1 Two typical challenging problems for face recognition.

In reality, face recognition is always under outdoor or uncontrolled conditions
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in real-world applications. For example, face images are captured at a longdistance

from the camera in a surveillance system. For face images in surveillance videos,

mostly are of low resolution and are compressed with a high compression ratio, etc.

All these problems constitute a difficult and challenging issue in facerecognition.

Fig. 1.2 shows an example of faces captured in a surveillance system.

As shown in Fig. 1.2, low resolution problem is one of the hard issues in current

face recognition. Constructing a high-resolution (HR) image from its low-

resolution (LR) inputs is called super-resolution in the image-processing research

field. For face images, this technology is also called face hallucination [8], which

has become one of the most important fields for face recognition. Face

hallucination is helpful for face recognition. Especially, this technique is useful

when face-recognition systems confront the low-resolution of face images.

Apart from low-resolution problem, illumination variation is another major

problem for current face recognition. Human faces share a similar shape and

structure, but illumination variations and different lighting directions always make

images of the same person look dissimilar. As shown in Fig. 1.3, thedifferent face

images of the same person with variations in illuminations are not discernible as the

same man.

(a) (b) (c)

Fig. 1.2. Low-resolution of faces captured in a surveillance system. (a) and (c)

Low-resolution of faces in video-surveillance videos; (b) video-surveillance videos

compressed with a high compression ratio.
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In real-world applications, face recognition with different illuminations is a

difficult problem, in particular in outdoor circumstances. Illumination variations

remain an unsolved problem in face recognition, despite a lot of research having

been devoted to solving it [1]. In the past decade, the illumination problem has

received considerable attention in both face-recognition-related industries and

academic circles. However, it is still one of the most prominent issuesfor

appearance- or image-based face recognition approaches. The development of

illumination-compensation techniques for face recognition is important, and

modeling face variations in realistic settings is still a heuristic issue. Without

solving this problem, accurate and robust face recognition cannot be achieved [1]

[9].

Fig. 1.3. Five face images of the same person from the YaleB face databaseunder

different illumination conditions.

At present, most of these face hallucination and face recognition algorithms

assume that the face images under consideration have been aligned accurately with

respect to the important facial features, such as the eyes and mouth. This

assumption makes these algorithms semi-automatic. Most of the existing facial

feature detection and localization algorithms [8] cannot work accurately and

reliably when the eyes are closed, the faces are rotated, or the face are under a poor

lighting condition. This will, in turn, have an adverse effect on theperformance of

both face hallucination and face recognition algorithms. In addition, a lot of

research has found that the performances of these algorithms will degrade

significantly if the face images under consideration are not aligned properly,

regardless of whether these systems are based on local or global methods
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[10][11][12][13]. In [10], Shan et al. called this phenomenon “Curseof mis-

alignment in face recognition”. Fig. 1.4 shows that the rank-1 recognition rate of

the Fisherface method [6], which degrades seriously with the increase ofthe mis-

alignment [10]. Wang et al. [11] also found that, even if the eye-locationerror is

only about 5%, the face recognition accuracy reduces dramatically− by about 50%.

Therefore, the accurate detection and localization of facial features play a very

important role in face recognition systems.

Fig. 1.4. Relationship between the rank-1 recognition rate of the Fisherface [6] and

the mis-alignment of translation [10].

To sum up, although current face-recognition algorithms, under controlled

conditions, achieve a highly accurate performance, there are still many hardand

challenging issues to be solved for robust face recognition.

1.4 Summary

This chapter is started with an introduction to face recognition. Then, we have

reviewed some different challenging issues of face recognition. Three main

challenging issues, which are emphasized in this thesis, have been briefly

introduced, namely (1) the accurate eye-detection problem, (2) the illumination-

variation issue, and (3) the low-resolution problem, respectively.
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1.5 Scope of this thesis

In this thesis, we aim to investigate the challenging issues of current face

recognition. Face recognition has a wide range of applications, nevertheless still

has many technical and challenging issues to be solved. For robust face recognition,

the efforts toward achieving this objective consist of three technical and inseparable

parts:

(1) the accurate eye-detection problem,

(2) the illumination-variation issue, and

(3) the low-resolution problem.

In this thesis, we will put emphasis on the above three technical and challenging

issues one by one. The brief introduction of each chapter and content of this thesis

are outlined as follows:

� A brief introduction to Chapter 2 - We put our effort on the accurate eye-

detection problem for robust face recognition. In this chapter, a novel scheme

is proposed, which uses a two-level hierarchical structure based on a wavelet-

based salient map and PCA-based verification to locate eye regions coarsely,

and uses a pose-adapted eye template, based on the prior knowledge of the

sclera’s photometric and geometric properties, for precise human eye

localization.

First of all, face regions are located using a cascade of boosted classifiers [110].

In the first level of our algorithm, a wavelet-based saliency map is proposed

and applied to the detected face region for a coarse detection of its facial-

feature regions. It is observed that the eye regions are always the most varied

blocks in a face image. Therefore, those rectangular regions in the saliency

map having the largest corresponding sums of saliency values should bethe

potential candidates for the two eye regions. These eye-region candidates are

verified using PCA, so the false-alarm rate can be significantly reduced.

Within the eye regions, the accurate locations of the eyes are then further

determined. The first level of detection can greatly narrow down the search

space for finding the actual eye positions, and thus can reduce the
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computational cost needed. In the second level of our hierarchical scheme, a

pose-adapted eye template is constructed using the intrinsic photometric and

geometric properties of eyes for accurate eye detection and localization. Based

on the detected eye positions, the other facial features (nose and mouth) can be

determined by considering their respective sums of the saliency values and by

using the two eye positions detected as a reliable geometric reference.

In brief, an efficient hierarchical scheme, which is robust to illumination and

pose variations in face images, is proposed for accurate facial-feature detection

and localization. Our proposed algorithm is non-iterative and computationally

simple. Experimental results show that our algorithm can achieve a superior

performance compared to other state-of-the-art methods.

� A brief introduction to Chapter 3 - The illumination-variation issue: We will

present a facial-image lighting-compensation and -enhancement algorithmfor

face recognition in this chapter.

According to the Retinex theory, the intensity of an image can be representedas

the product of illumination and surface reflectance. Face images of the same

person have identical facial structures and patterns, sharing a similar shape

surface reflectance structure, so it is reasonable to assume that the surface-

reflectance-representation matrix is a slowly-changing matrix, which reflects

the intrinsic property of a face surface. Consequently, the dissimilarity between

images of the same person under different illumination conditions is mainly

caused by the differences in the illumination-effect matrix. Due to the fact that

images under uneven illuminations produce shadows, and look differentin

those regions with insufficient illumination. If we can learn a mean

illumination-effect matrix so as to compensate the component of the

illumination-effect matrix of the images with uneven lighting and shadows, it

will make images lighter and shadowless. We can learn the mean illumination-

effect matrix to compensate the images with uneven illuminations andshadows.

Instead of deriving universal representations, illumination compensation and

enhancement utilizing specific individual information can possibly provide an

effective and useful way to achieve a better appearance and a higher
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recognition rate. In this chapter, we present a computationally efficient method

for generating illumination-invariant texture and face images usingthe scheme

of illumination compensation and enhancement. We use an illumination model

which is universal and does not require the assumption of a single-point light

source, thereby overcoming the limitation of the Lambertian model. Our

proposed approach captures the mean illumination-effect matrix

representations of images under a variety of different illumination conditions

for each class, so as to compensate or enhance the images, and consequently.

In particular, we will aim at devising a simple and effective scheme to

compensate/enhance illumination, and to remove the shadow caused by uneven

illumination, to achieve better face recognition performance. The advantageof

the proposed method is that the assumption of a single-point lightsource is not

required, so it circumvents and overcomes the limitations of the Lambertian

model and is also suitable for outdoor circumstances. Experimental results

have produced promising results, which demonstrate the effectiveness of our

proposed method.

� A brief introduction to Chapter 4 - The low-resolution problem: Inthis chapter,

we will introduce a novel face-hallucination scheme based on singular value

decomposition (SVD).

We firstly verify that a simple mapping model in the image spacem nR × is

inappropriate and unfeasible, as the mapping scheme is too coarse to generate

satisfactory results. Then, we propose a more sophisticated mapping model in

the eigenspace based on SVD. This proposed face-hallucination framework

consists of three steps. In the first step,M example faces that share the most

similarity to the input LR face image are searched from a database, and the

optical-flow method is then used to align theseM example image pairs. In the

second step, we compute the leading eigenvectors, which account for most of

the information contained in the image. We also observe and prove that,based

on the Frobenius norm, the corresponding singular values of an image across

different resolutions have approximately linear relationships. Furthermore, we

can interpolate the other two data matrices generated by SVD to a higher
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resolution, as the interpolation of these matrices will not change theholistic

structure or the pattern of the face image. The mapping scheme, which utilizes

the interpolated SVD matrices multiplied by the learned corresponding

mapping matrices to generate more details of face images, can be viewed as a

“coarse-to-fine” manner. In the third step, a residual-error matrix, which

represents the high-frequency information or the detailed local featuresmissed

in the previously predicted HR face image, is generated and added to the one

produced in the second stage. Experimental results show that our proposed

face-hallucination scheme is effective in terms of producing plausible HR

images with both a holistic structure and high-frequency details.

� A brief introduction to Chapter 5 - A framework based on SVD for performing

both face hallucination and recognition simultaneously is proposed inthis

chapter.

In our scheme, face images are represented using SVD, and the hallucination

and recognition of LR faces are taken into account simultaneously. We have

proved [124] that, based on the Frobenius norm, the corresponding singular

values of an image across different resolutions have approximately a linear

relationship. This makes the estimation of the singular values of HR face

images more reliable. Furthermore, the left and right matrices in the SVD

representation can be interpolated to a higher resolution using bicubic

interpolation; this interpolation method applied to these two matriceswill not

change the holistic structure or the pattern of the face image. Our proposed

approach can be applied to both face verification and identification.

Our simultaneous face-hallucination and -verification algorithm is denoted as

SHV, As the claimed identity of the query is known, the claim will simply be

rejected if the difference between the singular values of the query and those of

the claimed faces in the database is larger than a certain threshold. If the

difference is smaller than the threshold, super-resolution will be performed

based on the mapping models learned from the claimed LR-HR face pairs.

Then, hallucination is performed based on the LR-HR face pairs of the

claimed identity, and the LR-to-HR mapping matrices of the respective
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claimed face pairs are learned for estimating the high-frequency informationor

any detailed local features missed in the estimated HR faces generated by

interpolating the two SVD matrices. The hallucinated faces are then used for

verification again On the other hand, the algorithm for simultaneous face

hallucination and identification is denoted as SHI. In this algorithm,Q faces

that are the most similar to the input LR face image are first searched froma

gallery database of LR-HR pairs based on its singular values. Suppose that

theseQ faces belong toM distinct subjects, whereM < Q. For each of theseM

identities, the corresponding mapping models are learned and used to super-

resolve the query input. Therefore,M HR face images for the LR query are

generated. Then, the differences between each of theM HR face images and

the corresponding HR face images in the database are computed based on PCA.

The input LR face is assigned to the class of the face with the smallest

difference.

Conventionally, by considering face hallucination and recognition

simultaneously, the accuracy of both the hallucination and the recognition can

be improved.

� A brief introduction to Chapter 6 - The discussions and conclusions ofthis

thesis will be given in this chapter. We will also pinpoint the contributions of

our work in robust face recognition. The chapter ends with some pointers to

possible future works related to robust face recognition. Some possible future

of research on robust face recognition will also be discussed.
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Chapter 2 Facial-Feature Detection

and Localization Based

on a Hierarchical Scheme

Accurate facial-feature (such as eyes, nose, mouth, etc.) detection and localization

are essential for a wide range of computer-vision applications (such as driver-

fatigue monitoring systems [81], face recognition [2][3][4][5][6][82] face tracking,

iris recognition [83], human-computer interaction [84], etc.) and

biometric/cognitive psychological tasks (such as facial-paralysis diseases

diagnosis/evaluation [85], control devices for disabled people, facial-expression

analysis for human affective states [86], age estimation, user attention and gaze for

marketing analysis, etc.). Since the detection and localization of facial features play

a vital role in many tasks, they have attracted many researchers’ attention from

different industrial sectors and different academic disciplines.

In the past few decades, a lot of face recognition approaches have been proposed:

Principal Component Analysis (PCA) [2][3] and Linear Discriminant Analysis

(LDA) [4][5][6] are two of the most classical and representational approaches, and

have long been used as benchmarks for face recognition. However, these holistic-

based face recognition algorithms require the accurate positions of thetwo eyes and

the mouth for normalization and alignment. In addition, most of the current face-

hallucination (or face super-resolution) algorithms [8] also require an precise

alignment of the key facial features. Most face-hallucination and current face

recognition algorithms assume that face images have been aligned accurately with

respect to the important facial features, such as the eyes, or both eyes and mouth.

This assumption makes these algorithms semi-automatic if high accuracy, in terms

of the facial-feature positions, is needed. What's more, many research has found

that the performances of these algorithms will degrade dramatically if theface

images under consideration are not aligned properly, regardless of whetherthese
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systems are based on local or global/holistic methods [10][11][12][13]. For

instance, Wang et al [11] found that, even if the eye-location error is only about 5%,

the face recognition accuracy reduces dramatically− by about 50%. Therefore, the

accurate detection and localization of facial features play a very important role in

face recognition systems.

The remainder of this chapter is organized as follows. First, we provide a brief

overview of the state-of-the-art work on facial-feature detection and localization.

Then, we introduce our proposed algorithm for accurate facial-feature detection and

localization based on a two-level hierarchical scheme. Finally, experiment results

are presented and a conclusion is given at the end.

2.1 Previous work on facial-feature detection

Although research in different subject areas has paid attention to the issue of

accurate detection of facial features, there are still many challenging technical

problems to be solved. Most of the existing facial-feature detection andlocalization

algorithms [1] cannot work accurately and reliably when a face is rotated, under a

poor lighting condition, of low resolution, or when the eyes are closed. This will, in

turn, have an adverse effect on the performance of applications such as face

hallucination and face recognition.

There is a general agreement that, among the facial features, the eyes are the

most important. Furthermore, the position of the eyes can be used as a reliable

geometric reference for localizing the other facial features. Therefore, a large

number of methods have been proposed for detecting the eye positions in face

images and video clips. The literature on eye-detection and -localization methods

can be categorized into two classes: active methods and passive methods. Active

methods refer to those that employ a sensing device, while passive methods do not

use any sensing device. For active methods, infrared illumination sources are

usually used to produce a red-eye effect to detect the eyes [87, 88]. However, the

obvious drawbacks of this approach are that intrusive sensors are used,and the

subject concerned is lit by infrared light. Therefore, these active methodsare

utilized in some specific circumstances and conditions only.
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Most of the existing approaches to eye detection are passive. In [89], a template-

based approach was proposed to detect and locate the eyes in a frontal-view face

image. This approach has difficulty when the appearance of the features changes

significantly: for example, closed eyes, open mouth, etc. The deformable-template

method [90] proposed by Yuille et al. defined parameterized templates foreyes and

mouths. By minimizing energy functions defined in terms of the edges, peaks,

valleys, image intensities, and prior knowledge, the template parameters are

changed iteratively so as to fit the templates to the corresponding facial features in

a face image. The Active Shape Model [91] was proposed to handle shape

variations in human faces using statistical models. However, the statistical-shape

model has to be learned via the manual labeling of landmarks, which are used to

represent the facial features in the training face images; the fitting of the model to

the face is also done iteratively. Later, an extended Active Shape Model (ASM) [92]

was proposed to locate the facial features in frontal views of upright faces. In [93],

a corner-detection scheme is first employed to locate possible facial-feature

candidates in a head-and-shoulders image, and the approximate positions of the

features are estimated by means of average anthropometric measures. Based on the

rough positions of the facial features, deformable eye templates can be initialized

and used to localize the eyes more accurately. Many other methods have also been

devised for eye detection. A multi-layer perception (MLP) eye finder was proposed

by Jesorsky et al. in [94]. In [95], a generalized projection function(GPF) was

defined, and the hybrid projection function (HPF) was used to determinethe

optimal parameters of the GPF for eye detection. In [96], an approach forhuman-

face detection and facial-feature extraction was proposed, using a genetic algorithm

and the eigenface technique. As the genetic algorithm is, in general,

computationally intensive, the searching space is limited to around the eye regions,

so that the required runtime can be greatly reduced. Recently, a method usingpixel-

to-edge information was proposed in [97], which employs the length and the slope

information about the closest edge pixels to detect and locate eyes. In [98], an eye-

location algorithm based on the radial-symmetry transform was proposed. A

symmetry magnitude map is computed using the transform to identify possible eye
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candidates. Campadelli et al. [99] proposed a method for eye detection usingthe

support vector machine (SVM) and the Haar wavelet coefficients. In [100], atwo-

stage hybrid face-detection scheme was proposed using Probability-basedFace

Mask Pre-Filtering (PFMPF) and the Pixel-based Hierarchical-Feature

AdaBoosting (PBHFA) method to effectively solve the complexity in AdaBoosting.

Hamouz et al. [101] proposed a method using the Gabor features. A feature-based,

affine-invariant method using isophote curvature was proposed by Valenti et al. in

[102] for eye localization. A ternary eye-verifier was proposed in [29] for eye

verification, which uses skin information and compensation in the colorspaces for

eye-feature extraction.

As eye localization can be used to approximately identify the other facial features,

compared to eye localization, less of the literature has addressed the detection of

other facial features such as the nose and mouth. Perlibakas et al. [104] utilized a

sequence of bottom-hat morphological operations to locate dark regions which

correspond to the eyes and lips; geometrical constraints are then employed to locate

the facial-feature candidates. In [105], two thresholds are applied on theimage edge

map for the extraction of head/face boundaries. Then, projections along the x andy

axes are performed on the binary edge image for the detection of the eyes, nose and

mouth regions. Cristinacce et. al [106] proposed a multi-stage approachto locate

interesting points around the eyes, the mouth, the nose, the eyebrows and the chin.

A shape constraint is also used to improve the detection accuracy of the facial

features. In [107], a simple transformation is outlined to convert color images to

gray-scale images in order to enhance the mouth region during the extraction; the

shape of the mouth is then extracted using a binarization method. Asteriadis et al.

[108] used the located eye centers to define a mouth region, and then used thehue

component in the mouth region to locate the mouth corners. In addition, the mouth

candidates in the area were compared to the mean distance vector field. Although

the eye positions can be used to coarsely localize the other facial features, different

people have faces with different geometric structures. Therefore, it ishard to

precisely detect the nose and mouth positions in practice.
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An efficient approach to locate the facial features is to identify the salient regions;

localization is then focused within those salient regions. A preliminarywork [109]

uses a salient map to locate pairs of eye regions, and then to identify the best pair of

eyes using a fitness function. However, the detection of the nose and mouth has not

been investigated. Furthermore, using the fitness function only to identify the best

pair of eyes is difficult in terms of locating the eye positions accurately. In this

chapter, we aim for a precise localization of the eyes, as well as the nose andmouth.

Our proposed method is based on a two-level hierarchical scheme, which has the

following advantages:

� Compared to those statistical-learning-based methods [83, 101] (which

usually require a lot of training samples and are time-consuming), our

proposed method does not need extensive training or learning in advance to

locate the eye positions in a face region.

� In contrast to the projection-based methods [95] and the template-based

approaches [89, 90], our proposed method can locate accurately the eye

regions in face images under illumination variations. This is due to the fact

that our proposed scheme is based on multi-scale analysis using wavelet

transform, which is more robust and less sensitive to changes caused by

illumination variations.

� Since our method computes saliency from three different directional wavelet

subbands, the detection is reliable even if the face is tilted, or under different

poses, facial expressions, and/or resolutions.

� The proposed two-level hierarchical scheme can efficiently narrow down the

search space when finding the accurate eye positions. Therefore, the

computational complexity of our proposed method is low: it mainly requires

the computation of a salient map only. The computation required is therefore

linearly proportional to the image size, and the method is suitable for real-

time applications.
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2.2 Hierarchical structure for eye detection

and localization

In this section, a novel scheme is proposed, which uses a two-level hierarchical

structure based on a wavelet-based salient map and PCA-based verification to

locate eye regions coarsely, and uses a pose-adapted eye template for precise

human eye localization. First of all, face regions are located using a cascade of

boosted classifiers [110]. In the first level of our algorithm, a wavelet-based

saliency map is proposed and applied to the detected face region for a coarse

detection of its facial-feature regions. It is observed that the eye regions are always

the most varied blocks in a face image. Therefore, those rectangular regionsin the

saliency map having the largest corresponding sums of saliency values should be

the potential candidates for the two eye regions. These eye-region candidates are

verified using PCA, so the false-alarm rate can be reduced. Within the eye regions,

the accurate locations of the eyes are then determined. The first level of detection

can greatly narrow down the search space for finding the actual eye positions, and

thus can reduce the computational cost needed. In the second level of our

hierarchical scheme, a pose-adapted eye template is constructed using the intrinsic

photometric and geometric properties of eyes for accurate eye detection and

localization. Based on the detected eye positions, the other facial features (nose and

mouth) can be determined by considering their respective sums of the saliency

values and by using the two eye positions detected as a reliable geometric reference.

The framework of the proposed novel scheme, based on a two-level hierarchical

structure for facial-feature detection and localization, is illustrated in Fig. 2.1. A

cascade of boosted classifiers [110] is first used to detect the face regions in an

image. The idea of the cascade classifiers is that simple features are used to remove

negative candidates in the early stages, while more complicated features are used in

the later stages [110]. This method is robust and can be used for real-timeface

detection. Then, an improved wavelet-based salient map is computed so that salient

rectangular regions in the face regions can be determined. Those rectangular
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regions with the largest saliency values in the salient map are possible eye-

candidate regions. Two candidate regions form an eye-window candidate, which is

then verified to be an eye window (or not) by using PCA. Finally, a pose-adapted

eye template is used to accurately determine the eye locations. After the eye

positions are localized, they are used as a reliable and geometric reference to

further locate the approximate positions of the nose and mouth, which can then be

detected according to their respective saliency values in the salient map. The

following sections of this chapter will present the details of the proposed method.

2.2.1 Detection of eye-candidate regions using a wavelet-based salient map

Due to the resemblance between multi-resolution filtering and human visual

processing, wavelet-transform techniques have been successfully used to analyze

spatial-frequency content [111]. Psychophysical investigation has also shown that

the human visual system (HVS) performs a frequency analysis when we see things

[112]. Following [111], we denote the detail images (i.e. subbands) as LH (contains

the horizontal high-frequency information), HL (contains the vertical high-

frequency information), and HH (contains the diagonal high-frequency

information). The decomposition/transform also produces one approximation image,

denoted as LL, containing the low-frequency information. The wavelet transform

can recursively decompose the LL band. Since a two-level wavelet decomposition

yields 6 detail images, we use LH1, HL1, HH1, LH2, HL2, HH2, and an additional

approximation image, LL2, to denote all the subband images. Fig. 2.2 shows an

example of two-level wavelet decomposition.

Wavelet-based saliency detection is an effective approach for describing

different parts of a face image, as it can express image variations at different

resolutions. An extensive comparison of saliency-detection techniquescan be found

in [113][114][115][116][117][118]. An orthogonal wavelet transform with a

compact support, i.e. its value is zero outside a bounded interval, can leadto a non-

redundant and a complete representation of signals. Using a set of orthogonal

wavelets, the wavelet coefficient at each signal point is computed at each scale of

2 j ; the wavelet transform can provide information about the local variations in a
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signal at different scales. A local absolute maximum value of the wavelet

coefficients at a coarse resolution corresponds to a region with high global variation

in the signal. In other words, salient points can be detected by finding relevant

points at finer resolutions to represent the global variation.

For wavelets with a compact support, a wavelet coefficient can be computed as

2
( )jW f n with 2 j p− signal points, where

2 jW andf(n) are the wavelet function and

the signal at the scale of2 ,j respectively, andp is the wavelet regularity

[113][114][115][116][117][118]. We can further investigate the wavelet

coefficients at the finer scale of 12 j + . At this scale, a set of coefficients is computed

for the same signal points as a coefficient at the scale of2 j . We call these

coefficients, denoted as
2

( ( ))jC W f n , the children of the coefficient
2

( )jW f n , and

they are related as follows:

12 2
( ( )) { ( ), 2 2 2 1}j jC W f n W f k n k n p+= ≤ ≤ + − , (2.1)

where 0 2jn N≤ ≤ , and N is the length of the signal. The children coefficients

2
( ( ))jC W f n reflect the variations of the2 j p− signal points, and the most salient

point should have the wavelet coefficient with the largest absolute value. The

salient points can therefore be detected by considering this maximum, and the

corresponding children are then searched. By applying this process recursively, the

salient points can be identified. The following formulation has been used to

compute saliency values for detecting salient points in

[113][114][115][116][117][118]:

( )
22

1

( ) | ( ( )) |, 0 2 , log 1.j

j
k j

k

Sal n C W f n n N N j
−

=

= ≤ ≤ − ≤ ≤ −∑ (2.2)

However, the largest absolute values of the wavelet coefficients at different

scales have different mean values and ranges. The set of maximum wavelet

coefficients at the first level have larger magnitudes than those at the second level,

and so on. This result actually follows the wavelet transform theory [111]. In order

to extract the salient points more accurately, the maximum values at different scales

should be normalized. In our algorithm, we utilize an improved saliencydetector as

follows [119, 120]:
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Fig. 2.1. The framework of the proposed facial-feature detection and localization

algorithm using a two-level scheme.

( )
22

1

( ) | ( ( )) |, 0 2 , log 1,j

j
k j

k
k

Sal n C W f n n N N jς
−

=
= ≤ ≤ − ≤ ≤ −∑ (2.3)

where kς is the weight to be assigned to the maximum wavelet coefficients at

different scales. The weightkς is the reciprocal of the standard deviation of the

coefficients, which is defined as follows:

2
1

1
| ( ) |k

S

k
z

W f z
S

µ
=

= ∑ , (2.4)

Input image Face detection using
Haar-like features

Compute the wavelet-based
saliency map of the detected

faceregion

Accurate eye region detection
using a pose-adapted eye

template

Accurate detection of the nose
and mouth with reference to

the eye positions

Coarse localization of eye-
regions based on the salient map

andPCA-basedverification
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(a) The framework of two-level wavelet decomposition. (b) Two-level wavelet

decomposition of the image “Lena”

Fig. 2.2. Two-level wavelet decomposition: (a) the different subbandsgenerated in

the decomposition, and (b) the decomposition of the image “Lena”, where the

approximation image, denoted asLL2, contains the low-frequency information; the

LH1 andLH2 subbands contain the horizontal high-frequency information; theHL1

and HL2 subbands contain the vertical high-frequency information; and theHH1

andHH2 subbands contain the diagonal high-frequency information.

2

2
1

1
( ( ) )k

S

k k
z

W f z
S

σ µ
=

= −∑ , and (2.5)

1k kς σ= , (2.6)

where
2

( )kW f z is an element in the set of maximum coefficients with0 z S≤ ≤ ,

andS is the number of maximum wavelet coefficients at levelk. In practice, ifK

salient points are detected in an image, we can setS=1.5K. S is the number of the

set of maximum wavelet coefficients at each level [119], e.g.S=60.

As the two eye regions contain the largest intensity variation in a face image,

many salient points can therefore be detected in these regions. Thus, the salient

values of the regions are first computed. The two blocks in a face image which

have the largest total saliency values are identified as the positions of the eye

regions. Define a rectangular region Rect(x, y), whose center coordinates are (x, y)

and whose length and width are denoted aslen andwid, respectively. Consider the

wavelet coefficients at the scale of2 j in Rect(x, y), we can further investigate the
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region at the finer scale of 12 j + , where a set of coefficients is computed using the

same points at the scale of2 j , i.e. the children in Rect(x, y). These children

coefficients reflect the variations inside Rect(x, y), and the most salient Rect(x, y) is

the one that has the largest sum of absolute wavelet coefficients at the scale of 12 j + .

The algorithm is applied to the three different subbands, i.e. the horizontal,

vertical, and diagonal subbands. If the most salient rectangles of the different

subbands lead to the same position, the corresponding sums of saliency values of

the three subbands are added to form the saliency values. The saliency at (x, y) of

the resulting salient map of an image is computed by summing the saliencyvalues

inside Rect(x, y). If the size of the face images obtained from a face detector isL×W,

the width and the height of Rect(x, y) are approximately set atlen = 0.15×L andwid

= 0.12×W, respectively; these are set empirically. It is obvious that the eye regions

are always the most varied blocks in a face image, and theT rectangular regions

with the maximum saliency values are selected as the coarse eye-region candidates

for further verification.

2.2.2 Verification of eye-region candidates using PCA

The T selected rectangular regions, which possibly contain an eye, can be

verified using PCA. Each of these possible eye-region candidates is projected onto

an eigen-space, constructed using PCA based on eye-region training samples,and

is then reconstructed. The two candidates with the minimum reconstruction errors

are selected as the best or the correct eye regions for the left and right eyes. This

approach can achieve a better performance for face images in which people wear

glasses. The eigen-space verification procedure is described as follows [2,3]:

An eye window can be considered as a column vector, denoted asΓ , of

dimensionlen × wid by concatenating its rows one by one. Let1Γ , 2Γ ,…, MΓ be a

training set of eye regions. The average of the eye-region training samples is given

as follows:

1

1 M

n
n

 = 
M =

Ψ Γ∑ . (2.7)
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The difference of each eye region from the average is computed asn n= Φ Γ − Ψ .

The covariance matrix is calculated as follows:

n

1 M
T T

n nMAT= =A A
M

Φ Φ∑ , (2.8)

where the matrix [ ]1 2 MA = ... .Φ Φ Φ In practice, the matrixMAT is large for

computing its eigenvectors. A trick [2, 3] can be used which determines the

eigenvectors nν of TA A first, i.e.

T
n n nA Aν νλ= . (2.9)

Multiply both sides byA, we have
T

n n nAA Aν Aνλ= , (2.10)

so nAν are the eigenvectors of T MAT= AA . Thus, the eigenvectorµ n is a linear

combination of theM training samples:

1

1
M

n nk k n
k

µ  = ν  = Aν , n = ,......,M
=

Φ∑ . (2.11)

Usually, a smaller number of eigenvectorsM' is selected, which are those with

the largest eigenvalues, so as to reduce the dimensionality of the eigen-space.

(a)

Fig. 2.3. An example of coarse eye-region verification based on PCA: (a) The

colored rectangular regions represent the eye-candidate regions for the left eye, (b)

the first row shows the original eye-candidate regions for the left eye, the second

row shows the corresponding reconstructed images, and the third rowshows the

sum of squared differences (SSD) between each original eye region and the

corresponding reconstructed image.

Eye-candidate
regions for the
left eye
Corresponding
reconstructed
images
SSD 4.07e+005 4.16e+005 4.09e+005 2.16e+005
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(a) (b) (c)

Fig. 2.4. Examples of coarse eye-region detection results using the improved

saliency-detection method with the Db4 wavelet and verification based on PCA: (a)

face detection results, (b) the saliency maps, and (c) the detected coarse eye regions

using the proposed approach.

A possible eye region, denoted asΓ, is projected onto the eigen-space as follows:

( ) 1T
n nω  = µ , n = ,..... ’.,MΓ − Ψ . (2.12)

The weights form a vector [ ]1 2
T

M' = ω ,ω ,...,ωΩ that describes the contribution of

each eigenvector in representing the input eye region. The sum of squared

difference (SSD) between the eye region and the corresponding reconstructed

image is computed as follows:

22
fε = Γ − Γ , (2.13)

where
1

'M

f n n
n

 = ω µ
=

Γ Ψ +∑ . The two eye windows with the minimum reconstruction

errors among theT eye-candidate regions will be selected.
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Fig. 2.3 shows an example of verification of eye regions based on PCA. The

right-most column in Fig. 2.3(b) is the candidate with the minimum reconstruction

error (SSD), so it is selected as the optimal coarse eye region. Fig. 2.4 shows some

detection results of coarse eye regions using the improved saliency-detection

method with the Db4 wavelet and PCA-based verification. It can be seen that our

proposed approach is effective with variations in illumination, pose, and facial

expression, and with the presence of glasses.

2.2.3 Accurate eye localization using a pose-adapted eye template

The sclera, also known as the white of the eye, is the opaque outer layer of the

eye. Human eyes are distinctive in the animal kingdom in that the sclera is visible

whenever the eye is open. For other mammals, the visible part of the scleramatches

the color of the iris, so the white part does not normally show [121]. This special

intrinsic property of the human eye can be utilized for accurate eye detectionand

localization.

Based on the prior knowledge of the sclera’s photometric and geometric

properties, a pose-adapted eye template is proposed. In practice, human faces

always have variations in facial expression and pose. Nevertheless, using the

proposed template, eyes can always be localized accurately, except in some

extreme conditions. The proposed template has the following characteristics:

� No training or learning is needed.

� It works on both frontal and rotated faces with on-plane rotations of upto 45°

(a rotation of 45° means that the face almost touches the shoulder, and this is

the rotation limit).

� It can locate the eyes in face images with variations in pose, facial expression,

and illumination.

Fig. 2.5(a) illustrates three face images with variations in pose, and Fig. 2.5(b)

shows the appearance of the corresponding left eyes. Fig. 2.5(c) shows the devised

pose-adapted eye template based on the intrinsic-appearance property of the white

of the eye under variations in pose.
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The pose-adapted eye template has a black block, denoted asB, at its center, with

a size ofr×r. This black block represents the black pupil in the human eye. There

are two white blocks on the left and the right of the black block, which represent

the white (sclera) of the eye, and are denoted asW1 and W2, respectively. Their

sizes are equal, i.e.r×2r (width×height). The height of the white blocks is set at 2r

in order to deal with face images with the maximum rotation of 45°.

(a) (b) (c)

Fig. 2.5. Face images with variations in pose and the devised pose-adapted eye

template: (a) three face images with different poses, (b) the appearance pattern of

each of the eyes, and (c) the devised pose-adapted eye template.

Let I(x, y) be the gray-level intensity at position (x, y) of a face region, andIW1, IB,

and IW2 be the summation of the pixel intensities in the regionsW1, B, and W2,

respectively. Specifically,IW1, IB, andIW2 are defined as follows:

1

1
( , )

( , ),W
x y W

I I x y
∈

= ∑ (2.14)

( , )

( , ),B
x y B

I I x y
∈

= ∑ and (2.15)

2

2
( , )

( , ).W
x y W

I I x y
∈

= ∑ (2.16)

We define a similarity function, denoted asSIM, to measure how well the

template represents an eye as follows:

,W

B

W1 2I I
SIM

I β
+=
+

(2.17)

whereβ is a small positive number to avoid the denominator being zero.

Having coarsely detected the eye regions as described in Section 2.2.2, the pose-

adapted (or pose-insensitive) eye template is applied to the two eye windows. The
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template slides over the detected eye region from left to right and then from top to

bottom to determine the best eye position. At each position, the correspondingSIM

value is computed. Fig. 2.6 shows how the pose-adapted eye template searches over

an eye region. To determine the best eye location, theQ template positions with

maximumSIM values are selected. The best eye position( )e ex , y is determined as

follows:

1 2( ,...... )e Qx median x , x x= and (2.18)

1 2( ,...... )e Qy median y , y y= , (2.19)

where ( )i ix , y are the coordinates of thei th candidate of theQ eye candidates.

Fig. 2.6. The pose-adapted eye template searches over an eye region from left to

right and top to bottom.

(a)

(b)

Fig. 2.7. Some examples, with variations in pose and facial expression, of the nose

and mouth detection results. The black arrows show the search directions: (a) the

nose and mouth are searched along the line perpendicular to the line joining the two

eye centers and through the middle of the two eye centers, and (b) the noseand

mouth detection results.
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2.2.4. Nose and mouth detection and localization based on saliency values

Having determined the precise position of the two eyes, the positionof the nose

and mouth can be located using the fact that their centers are located roughly on the

line which is perpendicular to the line joining the two eye centers and through the

midpoint of the eye centers, as illustrated in Fig. 2.7(a). When a search is

performed along the vertical line, the nose region and the mouth region have the

largest variation in intensity, as well as the largest saliency values. Therefore, the

two positions where the sum of the saliency values in the rectangles is the largest

can be determined. The upper rectangular region is considered to be the nose

position, while the lower one is the mouth position.

Fig. 2.7(b) shows some detection results for the nose and mouth inface images

with variations in pose and facial expression. We can see that our method can

accurately detect the nose and mouth in face images with variations in poseand

facial expression.

2.3 Experimental results

2.3.1 Experiments on eye detection and localization based on the BioID face

database

Extensive experiments have been conducted to evaluate the effectiveness of our

proposed method. Experiments were conducted on a “difficult” dataset, the BioID

face database, to demonstrate the robustness of our method. The BioID face

database contains face images under "real-world" conditions, which were captured

under uncontrolled illumination, different backgrounds, face sizes, with glasses, etc.

The dataset consists of 1,521 gray-scale images with a resolution of 384×286 pixels.

In each of the following experiments, the eye-detection and -localization

algorithm is tested using a wide range of face images, and the upper halfof a

detected face region is considered for eye detection. All of the face images are

obtained from a face detector, and the saliency of the detected face regions is

computed using the Db4 wavelet with 3 levels of decomposition [111]. Two

rectangular regions from five eye-region candidates (T =5) on the left and the right,
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respectively, of each face region are selected to form the coarse eye-region

candidates. The number of eye-region training samples is set atM =15, and the

number of leading eigenvectors used, i.e. those with the highest associated

eigenvalues, is set atM’=10. The pose-adapted eye template has the parameterr = 7,

and the number of candidates for an eye region is experimentally set atQ = 7,

which can produce a good and robust result by experiments. The detection accuracy

is measured as follows [94]:

= max( , )l r lre d d d , (2.20)

where ld and rd are the Euclidean distances between the located positions and the

corresponding ground-true positions of the left and the right eyes, respectively, and

lrd is the Euclidean distance between the two eyes of the ground-truth. In the

experiments,e ≤ 0.25 ande ≤ 0.1 are used as the criteria for measuring the accuracy.

If a detected eye position has itse value smaller than a certain threshold, the

detection will be considered correct.

Fig. 2.8 shows some facial-feature detection results using our proposed method

for faces under pose variations, different facial expressions, and wearing glasses.

The blue rectangles represent the detected face regions, and the detected eyes are

marked with a red dot. From the results, we see that the proposed methodcan

detect eyes accurately even if the faces are under different illuminations and poses,

or wearing glasses. As the saliency is computed based on the summation fromthree

subbands, the detection is insensitive to face orientations. Furthermore, the

proposed pose-adapted eye template based on the intrinsic-appearance property of

eyes produces precise localization.

We also compare the detection accuracy of our proposed algorithm with six state-

of-the-art eye-detection approaches using the BioID database. The six methods are:

(1) multi-layer perceptron (MLP) eye finder proposed by Jesorsky et al.[94],

(2) method using pixel-to-edge information proposed by Asteriadiset al. [97],

(3) enhanced method based on the radial-symmetry transform proposed by Bai

et al. [98],

(4) method using the SVM and Haar wavelet coefficients proposed by

Campadelli et al. [99],
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(5) method using Gabor features proposed by Hamouz et al. [101], and

(6) method using isophote curvature proposed by Valenti et al. [102].

(a) (b) (c)

Fig. 2.8. Examples of coarse eye-region detection results using the improved

saliency-detection method with the Db4 wavelet and verification based on PCA: (a)

face detection results, (b) the saliency maps, and (c) the detected coarse eye regions

using the proposed approach.

Table 2.1 tabulates the normalized errors for the different algorithms, with e ≤

0.25 ande ≤ 0.1 to assess the detection accuracy. We see that our method can

achieve a superior accuracy to that of the state-of-the-art methods. We also

compare our method with the other detection and localization methods in terms of

the run-times required, as tabulated in Table 2.2. It can be seen that the runtime

required by our method is similar to that of the other methods.
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Table 2.1. Detection accuracy of different eye-detection and -localization methods

using the BioID Face Database.

Algorithms: Accuracy (e ≤ 0.1) Accuracy (e ≤ 0.25)

Jesorsky [94] 78.07% 90.23%
Asteriadis [97] 79.60% 94.46%
Bai [98] 65.08% 95.54%
Campadelli [99] 83.12% 95.80%
Hamouz [101] 82.33% 95.40%
Valenti [102] 87.45% 96.69%
Our method 90.56% 98.62%

Table 2.2. The run-times of different eye-detection and -localization methods using

the BioID Face Database.

Algorithms: Run-times (second per image)

Jesorsky [94] 0.45
Asteriadis [97] 0.47
Bai [98] 0.56
Campadelli [99] 0.52
Hamouz [101] 0.54
Valenti [102] 0.67
Our method 0.62

We notice that failed detection mainly occurs in those face images with

eyeglasses, especially with specularities around them, as shown in Fig. 2.9(a). The

saliency values around the eyeglasses’ frame increase due to its edges, corners,

highlights and specularities. This also leads to incorrect detection in some cases, as

shown in Fig. 2.9(b). Nevertheless, an automatic eyeglasses-removal algorithm can

be employed to solve this problem [122]. In this experiment, face images with

eyeglasses are pre-processed using the eyeglasses-removal algorithm. Fig.2.9(c)

shows the results for our method using the eyeglasses-removal algorithm.

For the issue whether the eyeglasses removal algorithm is decided to apply

automatically, as shown in Fig. 2.8(b), the saliency maps of faces with eyeglasses

are more “complex” than those saliency maps of faces without eyeglasses. The

mean value of the saliency map of face with eyeglasses is significantly largethan
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the face without eyeglasses, therefore, if the mean value of the saliency map is

significantly large than a threshodTh, which is set emprically, it will apply the

eyeglasses removal algorithm automatically, vice versa.

(a) (b) (c)

Fig. 2.9. Results of eye detection and localization using our proposed scheme: (a)

original image with eyeglasses, highlights and specularities, (b) faileddetection

without performing eyeglasses removal, and (c) detection results with eyeglasses-

removal performed.

(a) (b) (c) (d) (e) (f) (g)

Fig. 2.10. Face images with out-of-plane rotations [130].

(a), (b), and (c) face image with left out-of-plane rotation of 10, 20,and 30 degree,

respectively.

(d) and (e) face image with left out-of-plane rotation of 45 degree, and with right

out-of-plane rotation of 45 degree, respectively.

(f) and (g) face image with left out-of-plane rotation of 90 degree, and with right

out-of-plane rotation of 90 degree, respectively.
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In addition, for out-of-plane rotation cases, as shown in Fig. 2.10, our proposed

method work well on the face images with rotation degrees within 30 degree, i.e.

Figs. 2.10(a), 2.10(b) and 2.10(c). However, for face images withrotation degrees

larger than 30 degree, such as shown in Figs. 2.10(d), 2.10(e) and Figs. 2.10(f),

2.10(g), it is hard to accurate localization for both existing approaches andour

proposed method. The issue on out-of-plane rotation with significant degree (e.g.

larger than 45 degree) is very challenging, which will be our future work.

2.3.2. Experiments on mouth and nose detection and localization

Experiments were also performed to evaluate the effectiveness of the proposed

method for mouth and nose detection and localization. All of the experiments

empirically set the size of the rectangle for nose-region detection atnlen = 0.25×L

and nwid = 0.12× W, and the size of the rectangle for mouth-region detection at

mlen= 0.30×L andmwid = 0.12×W, respectively. Figs. 2.7(b) and 2.7(d) show the

nose and mouth facial-feature detection results using the proposed method. We see

that the proposed scheme can effectively localize the mouth and nose regions.

There are some variations between the mouths: some face images have a wide-

open mouth, while others have an almost-closed mouth; and males usually have a

larger mouth than females. However, the distance between the different people's

eyes is usually similar. In other words, the variation in the size of the mouth (mouth

size and shape vary between people) is larger than that of the distance between the

two eyes. Therefore, we still use the distance between the two eyeslrd of the

ground-truth to normalize the errors so as to form the measure for the detection

accuracy of the mouth and nose. In order to objectively assess the detection

performance, we define the detection accuracy for the mouth and nose as follows:

=nose n lre d d and (2.21)

=mou m lre d d , (2.22)

where nd and md are the Euclidean distances between the located positions and the

corresponding ground-true positions of the nose and mouth, respectively. In the
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experiments, moue ≤ 0.25 and moue ≤ 0.1 are used as the criteria to assess the

detection accuracy.

We have compared the mouth-detection accuracy of our proposed algorithm with

five state-of-the-art mouth-detection approaches. The five methods are:

(1) the method in [104] based on morphological operations and geometrical

constraints;

(2) the method in [105] using the image edge map and projections for the

detection of nose and mouth regions;

(3) a multi-stage approach to locate interesting points around mouths and

noses [106];

(4) the binarization method in [107] to detect mouth regions; and

(5) the approach in [108] using a mean template for mouth-corner localization.

In addition, the methods in [105] and [106] were also compared to our proposed

method in terms of nose-detection accuracy. Table 2.3 tabulates the mouth-

detection accuracy of all the methods. Our detection rate withmoue ≤ 0.25 is 92.19%.

By comparison, the detection rates of [104] and [108] are 83.70% and 85.33%,

respectively. Experiments show that our proposed method can achieve a superior

performance for mouth detection.

Table 2.4 tabulates the nose-detection accuracy. Our saliency-region-based

scheme produces satisfactory results, with a detection rate of 95.65% whennosee ≤

0.25, while the detection rates of [104] and [106] are 83.38% and 87.40%,

respectively. Extensive experiments have verified the effectiveness of ourproposed

scheme for locating noses.

Table 2.3. Mouth-detection rates of the different methods based on the BioID Face

Database.

Algorithms: Accuracy (e ≤ 0.1) Accuracy (e ≤ 0.25)
Perlibakas [104] 81.66% 83.70%
Shih [105] 75.25% 81.47%
Cristinacce [106] 81.50% 83.11%
Travieso[107] 66.20% 69.80%
Asteriadis [108] 83.37% 85.33%
Our method 90.24% 92.19%
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Table 2.4. Nose-detection rates of the different methods based on the BioID Face

Database.

Algorithms: Accuracy (e ≤ 0.1) Accuracy (e ≤ 0.25)
Shih [105] 80.25% 83.38%
Cristinacce [106] 84.01% 87.40%
Our method 93.78% 95.65%

2.3.3 Experiments on eye detection and localization based on the Yale Face

Databases

In order to test the effectiveness of the proposed method under illumination

variations, experiments were also carried out using the Yale Face Database B [72]

and the extended Yale Face Database B [73], which have been commonly used to

evaluate the performances of illumination-invariant face recognition methods. The

Yale Face Database B consists of 10 classes, named from yaleB01 to yaleB10. The

extended Yale Face Database B contains 28 human subjects, named from yaleB11

to yaleB13, and from yaleB15 to yaleB39. The total number of distinct subjects in

the two databases is 38. The face images named **_P00A-035E-20 and

**_P00A+035E-20 (“**” represents yaleB01− yaleB13 and yaleB15− yaleB39)

were selected in the experiment, i.e. 38×2=76 images in total.

Table 2.5. Detection accuracy of different eye-detection and -localization methods

using the Yale Face Database.

Algorithms: Accuracy (e ≤ 0.25)

Jesorsky [94] 80.25%
Asteriadis [97] 82.07%
Bai [98] 81.41%
Campadelli [99] 84.50%
Hamouz [101] 81.83%
Valenti [102] 83.75%
Our method 93.42%
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Table 2.5 tabulates the normalized errors for the different algorithms,with e ≤

0.25. Although the face images used in this experiment have their illumination

conditions changed dramatically, experiment results show that 71 out of the 76 face

images (i.e. 93.42%) have the eye positions detected accurately, withe ≤ 0.25. We

can see that the detection accuracy of our method is significantly higher than that of

other methods.

2.4 Conclusion

In this chapter, we have proposed an efficient algorithm for the accurate detection

of facial features in face images. Our method has the advantages of being non-

iterative and computationally simple. The proposed algorithm can locatethe eye

features precisely. This is due to the fact that the computation of saliency values

considers saliency from three different directional wavelet subbands, so the

proposed scheme is robust to face orientation and to variations caused by different

poses, facial expressions, and resolutions. With the use of saliency detection and

the verification of eye candidates using PCA, the required computation canbe

greatly reduced because the eye template is only applied to the selected coarse eye

regions. In addition, the proposed eye template can handle eye regions with a large

rotation and pose variation. The position of the nose and mouth can bedetermined

by considering both the saliency values in the salient map and the detected eye

positions as geometric references. Experiment results show that our method can

achieve a higher detection-accuracy level than existing state-of-the-art algorithms.
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Chapter 3 Illumination-Invariant Face

Recognition Using Illumination

Compensation and Enhancement

Face images exhibit large variations in appearance under different illuminations. As

shown in Figure 3.1, the different face images of the same person with variations in

illuminations are not discernible as the same man. From Figure 3.1 wecan see that

human faces share a similar shape and structure, but illumination variations and

different lighting directions always make images of the same person look dissimilar.

Figure 3.1. Images under different illumination directions: face images of the same

person from the YaleB face database.

With the rapid development of the devices of digital image capturing and

researches of complicated recognition algorithms, face recognition can achieve a

highly accurate performance under controlled conditions, such as unchanged light

sources, frontal-view images, no occlusion, neutral facial expression, etc. However,

face recognition with different illuminations is a difficult problem, in particular in

outdoor circumstances. Illumination variations remain an unsolved problem in face

recognition, despite a lot of research having been devoted to solving it [1].

In the past decades, the illumination problem has received considerable attention

in both the face-recognition-related industries and academic circles. However, it is

still one of the prominent issues for appearance- or image-based face recognition

approaches. The development of illumination-compensation techniques forface

recognition is important, and modeling face variations in realistic settings is still a

heuristic issue, especially in uncontrolled environments such as outdoor and natural
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settings. Without solving this problem, accurate and robust face recognition cannot

be achieved [1, 9].

In this chapter, we will focus on the problems of illumination variations for face

images, and proposed a novel scheme for Illumination-Invariant Face Recognition

Using Illumination Compensation and Enhancement. The rest of this chapter is

organized as follows. First, we give a brief overview of related state-of-the-art work.

Then, we describe our proposed methods for illumination compensation and

enhancement, and experiment results are also presented. At the end, a conclusion

and discussion for this chapter is given.

3.1 Related Work

Face recognition with different illumination conditions is a difficult issue, and

currently illumination variations remain an unsolved problem, despitea lot of

research having been devoted to solving it [1]. In the past several decades, the

illumination problem has received considerable attention, yet it is still one of the

most prominent issues for appearance- or image-based recognition approaches. The

first such method used a number of images with different illuminations to extract

the three-dimensional shape for illumination-invariant representation based on

Lambertian reflectance [42][43][44][45]. In [46], the authors found that the ratio of

two images from the same object is simpler than the ratio of images from different

objects with Lambertian reflectance, and the ratio provides two of the three distinct

values in the Hessian matrix of the object’s surface. A method based on quotient

images [47] was introduced, which assumes− based on the Lambertian model−

that faces of the same class have the same shape but different textures. Recently,

Chen et al. [39] improved self quotient image (SQI) by using Logarithmic Total

Variation (LTV) smoothing and an efficient illumination-normalization method

was proposed using an illumination model with a Lambertian surface for face

recognition in [48]. Later, photometric stereo has been used to obtain afast and

non-contact surface reconstruction of Lambertian surfaces in [49], whilein [50],

the 3D face-reconstruction methods assume that human faces can be modeled as
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Lambertian, and show that human skin exhibits nearly-Lambertian reflectance

properties.

The illumination problem in face recognition has drawn many researchers’

attention, besides the approaches based on Lambertian model, and many other

methods have been also proposed. According to the Retinex theory [51], the

intensities of an image ( , )I x y can be represented as the product of illumination

( , )L x y and surface reflectance( , ).R x y Based on this theory, an automatic image-

processing algorithm for compensating illumination-induced variations was

proposed in [52], which estimates the illumination field and then compensates for it.

However, this method is subject to artifacts. Shan and Ward [53] proposeda

wavelet-based normalization method, which enhances the contrast as well as the

edges of face images for illumination normalization in order to facilitate face-

recognition tasks. In [54], a facial-image illumination-invariant algorithm, based on

the fusion of wavelet analysis and the local binary pattern, was introduced.In the

same year, a simple algorithm which can alleviate illumination effects by setting

the coefficients in the wavelet approximation sub-band to zero was proposedin

[55]. Moreover, In [9], Adini et al. presented an empirical and systematic study,

and evaluated the sensitivity of some representations to changes in illumination.

Three different categories of approaches were discussed. The first method used

gray-level information to extract the three-dimensional shape of an object,using the

shape-from-shading approach [56]. This is an ill-posed problem, and the

assumptions used make it difficult to apply to general object recognition. Therefore,

this approach is not effective for face recognition. The second approach usedimage

representations that are relatively insensitive to illumination changes,such as the

edge maps of images [57][58][59] and a basic image-representation model for face

recognition [60][61]. The third approach to solve the illumination-variation

problem was to model several images of the same face taken under different

illumination conditions [62][63]. More recently, a 3D morphable face model was

employed to produce synthetic images under varying poses and illuminations.

Frontal, semi-profile, and profile face images of the same person are used to

generate 3D face models in [64]. Zhao and Chellappa [65] proposed a method using
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symmetric shape-from-shading for Illumination-insensitive face recognition. In

[66], Zhao et al. used illumination ratio images to produce new training images for

face recognition with a single frontal-view image. Xie and Lam [67] proposed a 2D

face-shape model to eliminate the effect of difference in the face shape ofdifferent

individuals for face recognition. Tan and Triggs proposed an illumination

normalization method, which incorporates three main stages designed to counter

the effects of illumination variations, local shadowing, and highlights while

preserving the essential elements of visual appearance [79]. The three main stages

contain a nonlinear Gamma correction, Difference of Gaussian (DoG) filtering and

a final stage of contrast equalization for face recognition under difficultlighting

conditions.

3.1.1 Discussion of the disadvantages of the existing techniques

However, those existing techniques methods [42][43][44][45][49][50] based on

the Lambertian model share the same drawbacks; a single-point light source placed

at infinity is assumed. The Lambertian model is suitable for some applications, but

it has proven difficult to build accurate 3-D models using only images taken in

uncontrolled circumstances, and the assumptions make it difficult to apply to

general object recognition in outdoors environments [46]. Furthermore, although

traditional illumination-invariant face-recognition methods, whichbased on the

Lambertian model, can construct a three-dimensional face representation by

combining linearly a number of the images under different illuminations, there are

two obvious drawbacks with the Lambertian model: a single-point light source

placed at infinity is assumed, and multiple images need to be captured undera

variety of illumination conditions for each class to obtain a three-dimensional

representation of the images. Furthermore, most existing approaches to the

illumination problem rely primarily on universal representations, which are in

general insufficient to model the variations caused by illumination changes [9]. It

has been shown theoretically that an illumination-invariant image representation or

function does not exist [9][68]. Solving image variations caused by changes in

illumination direction can be achieved by utilizing more domain-specific

knowledge. In [69], a simple scheme based on the wavelet transform was proposed
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for illumination compensation and enhancement for face images; however, ithas

the disadvantage that a face image within a class under even and frontal

illuminations is needed in order to calculate the average representations of face

images under changing illuminations.

In contrast to previous work and instead of deriving universal representations,

illumination compensation and enhancement utilizing specific individual

information can possibly provide an effective and useful way to achieve a better

appearance and a higher recognition rate. In this chapter, we present a

computationally efficient method for generating illumination-invariant texture and

face images using the scheme of illumination compensation and enhancement. We

use an illumination model which is universal and does not require the assumption

of a single-point light source, thereby overcoming the limitation ofthe Lambertian

model. Our proposed approach captures the mean illumination-effect matrix

representations of images under a variety of different illumination conditions for

each class, so as to compensate or enhance the images, and consequently, to

achieve better classification performance. In particular, we will aim at devising a

simple and effective scheme to compensate/enhance illumination, and to remove

the shadow caused by uneven illumination, rather than obtaining a sophisticated

and accurate representation of the texture surface reflection.

3.2 Illumination Compensation and

Enhancement for Illumination-Invariant Face

Recognition

3.2.1 An illumination model

Some methods have been proposed to handle varied illuminations based on the

Lambertian model, with the assumption that a single illuminant is placed at infinity,

and the utilization of a number of images, to construct 3D models that are invariant

to illumination. In real situations, images are usually captured in outdoor,

uncontrolled environments, with various illumination sources fromdifferent
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directions. To overcome the limitations of the Lambertian model, the illumination

model should be universal (can be used in multi-lighting circumstances), without

requiring the assumption of a single-point light source.

According to the Retinex theory [70], the intensity of an image( , )I x y can be

represented as the product of illuminations and surface reflectance( , )R x y . Based

on this theory, in contrast to the previous work, a novel and effectivescheme is

proposed in this chapter for illumination compensation and enhancement, which is

efficient and does not require an image under even and frontal illuminationto learn

or to be the reference image. Thus, our proposed algorithm is easy to implement.

The intensity of an image( , )I x y is expressed as follows:

( , ) ( , ) ( , ),I x y R x y L x y= (3.1)

where ( , )R x y is the surface-reflectance-representation matrix and( , )L x y is the

illumination-effect matrix.

Such a illumination model-decomposition could be advantageous for many

computer vision algorithms. However, estimating this decompositionis a

fundamentally ill-posed problem because every observed value there are multiple

unknowns [70]. In this chapter, we employ a mathematical framework that solve

the ill-posed problem and can be used to extract image representations for

relighting. The framework is essentially based on the Singular Value

Decomposition (SVD) representation of images, which are images under multiple

and different illumination directions. The illumination model in (3.1) is nonlinear.

Hence, the logarithmic transformation is applied so as to convert (3.1) into a linear

model, as follows:

( ), log( ( , )+ )lI x y I x y β=

log( ( , ) ( , )+ ) log( ( , )) log( ( , ))

( , ) ( , )

R x y L x y β R x y L x y

R x y L x y

= ≈ +
′ ′= +

(3.2)

whereβ is a small positive integer.

First, after the logarithmic transformation an image( , )I x y into ( , )lI x y , our

proposed framework decomposes the image( , )lI x y of size m × n into the
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eigenspace using SVD. SVD is commonly used in matrix analysis and can be

applied to analyze an image matrix based on the following theorem of linear

algebra:

The image ( , )lI x y can be viewed as a matrix withm rows andn columns, and

any ( , )lI x y matrix, whose number of rowsm is greater than or equal to its number

of columnsn, can be written as the product of anm×m column-orthogonal matrixU,

a m×n diagonal matrixW with positive or zero elements, and the transpose of an

n×n orthogonal matrixV. That is,

( ) T
lI x, y UWV ,= (3.3)

where T TU U V V E= = and E is the unit matrix. The matrixU is a m×n column-

orthogonal matrix, whileV is a n× n orthogonal matrix. The elementsiw on the

diagonal ofW are called singular values (the square root of the eigenvalues), i.e.

1 2( , , ...., , ...., )i nW diag w w w w= . (3.4)

The singular value vectors of the image ( , )lI x y is defined as follows:

1 2[ , , ] ,T
i ns w w  ....,w ....,w= (3.5)

where 1≤ i ≤ n, and iw is thei th singular value of the image ( , )lI x y in the singular

value vectors such that iw ≥ 1iw+ . It can be observed that the singular values

decrease dramatically and the mathematical framework of SVD can be used to

represent texture images effectively [44, 45]. Particularly, Pentland et al.[71] have

shown that the first three eigenvectors represent illuminations on face images, and

have also empirically shown that a superior face recognition performance can be

achieved if the first three eigenvectors are excluded. In general, the firstk major

eigenvectors mainly reflect variation of illuminations.

Let:

1 2( , , ...., , ...., )i nW diag w w w w=
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Then, (3.2) can be written as follows:

1 2 1 2( , ) ( )T T T T
lI x y =UWV U W W V UWV UW V= + = +

( , ) ( , )L x y R x y′ ′= + (3.7)

where, suppose 1 ( , )TUWV L x y′= for the first k major eigenvectors mainly reflect

variation of illuminations, and the other residual component2 ( , )TUW V R x y′= is the

illumination-effect matrix.

This expression is similar to the formulation of the illuminationmodel in (3.2).

Specifically, 2
TUW V can be treated as the component of the surface-reflectance-

representation matrix ( , )R x y′ , while 1
TUWV can be seen to be the component of the

illumination-effect matrix ( , )L x y′ in the illumination model. Now, we can see that

an image represented in matrix form can be described using the illumination model

in (3.1) and SVD in (3.7).

Now, we can see that an image represented in matrix form can be described

using the illumination model in (3.1) and SVD in (3.2). Figure 3.2 shows an

example of image decomposition based on using the illumination modeland SVD

with different k. The next step is how to select the valuek to obtain an optimal

image decomposition representation, and so as to solve the ill-posed problem.
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3.2.2 Surface-reflectance-representation matrix in the illumination model

What make the face images of one person with the same surface reflectance

structure look dissimilar, as illustrated in Figure 3.1? Face imagesof the same

person have identical facial structures and patterns, sharing a similar shapesurface

reflectance structure, so it is reasonable to assume that the surface-reflectance-

representation matrix ( , )R x y is a slowly-changing matrix, which reflects the

intrinsic property of a face surface. Consequently, the dissimilarity between images

of the same person under different illumination conditions is mainlycaused by the

differences in the illumination-effect matrix( , )L x y . That is to say, assume that

there are M face images of the same person; the differences between the

components of the surface-reflectance-representation matrix( , )R x y′ of the M face

images are small. The following root mean squared value (RMS) can be used to

measure the differences between the components of the surface-reflectance-

representation matrix ( , )R x y′ of theM face images with differentk.

2

1 1
11

1
( ( ) ( ))a b

a M x m
y nb M

a bk

k

R x,y R x,y
mn

RMS
σ

≤ ≤ ≤ ≤
≤ ≤≤ ≤

≠

′ ′−

=

∑ ∑

, (3.8)

where kσ is the standard deviation of the component of the surface-reflectance-

representation matrix ( )aR x,y′ (1 )a M≤ ≤ , m and n are the numbers of rows and

columns of the images( , )I x y . ( )aR x,y′ and ( )bR x,y′ represent the component of the

surface-reflectance-representation matrix of the original images( , )aI x y and

( , )bI x y (1 )a,b M≤ ≤ , respectively, i. e.
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Figure 3.2. An example of image decomposition based on the illumination model

and SVD with differentk. (a) Input image. Odd rows are the component of the

illumination-effect matrix ( , )L x y′ in the illumination model, and even rows are the

component of the surface-reflectance-representation matrix( , )R x y′ .
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Suppose that there areN persons withM face images of the same person in the

training set. Every person withM face images in the training set are transformed in

the same way, using equation (3.8). The average root mean squared value (ARMS)

can be used to measure the overall differences between theN persons in the

training set to determine the valuek:

1

k
j

j Nk

RMS

ARMS
N

≤ ≤=
∑

(3.9)

The scope of the valuek is set empirically in the range2 19k≤ ≤ , because, as

shown in Figure 3.2, when the valuek becomes larger than 19, the energy of the

component of the surface-reflectance-representation matrix( , )R x y′ becomes nearer

to zero. The optimalk can be selected such that the difference between the

components of the surface-reflectance-representation matrix( , )R x y′ is the smallest:

{ }2 19kk min ARMS , k= ≤ ≤ (3.10)

The global optimalk can be determined using the training set (i.e.k = 9 in our

experiment. An optimalk can produce the best results, but the performance is not

very sensitive tok’s value. Actually, our experiments have shown that satisfactory

illumination-compensation and -enhancement performances can still be achieved,

even though the value ofk is ±2 of the optimal value.). Figure 3.3 illustrates the

decomposition of the intensity of an image( , )I x y into the component of the
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surface-reflectance-representation matrix( , )R x y′ and the component of the

illumination-effect matrix ( , )L x y′ in the illumination model.

(a) (b) (c)

Figure 3.3. The decomposition of the image into the two component of the

illumination model. (a) The input intensity image. (b) the component of the

illumination-effect matrix ( , )L x y′ in the illumination model, and (c) the

component of the surface-reflectance-representation matrix( , )R x y′ in the

illumination model.

3.2.3 Illumination compensation algorithm (ICA)

Humans have similar face structures and shapes, but the face images of the same

person do not look similar under different lighting conditions.Thus, it is reasonable

to infer that the component of the reflectance-representation matrix( , )R x y′ of

faces with a similar shape and structure has a slight difference, while the

component of the illuminations-effect matrix ( , )L x y′ can vary significantly,

depending on the illumination conditions. This is due to the fact that images under

uneven illumination conditions produce shadows, and look different in those

regions with insufficient illumination. If we can learn a mean illumination-effect

matrix ( , )L x y so as to compensate the component of the illumination-effect matrix

( , )L x y′ of the images with uneven lighting and shadows, it will make images

lighter and shadowless. Figure 3.4 illustrates the process of our algorithm for

illumination compensation and enhancement.
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(a) (b)

(c) (d)

Figure 3.4. The illumination-invariant scheme using illumination compensation

and enhancement. (c) Result with illumination compensation for (a). (d) Result

with illumination enhancement for (a).

Suppose ( , )cI x y is a face image under uneven lighting and with shadows,Q face

images are searched with a similar shape and structure to( , )cI x y , then the

searchedQ face images are transformed in the same way. We can learn the mean

illumination-effect matrix ( , )L x y to compensate the images with uneven

illuminations and shadows.

Illumination-enhancement

algorithm (IEA) : cL Lλ+ (λ>1)

(a) An image under
uneven illumination.

(b) Q face images similar
to (a) are searched.

Compute the illumination-
effect matrix

cL of (a)
Compute the learned mean

illumination-effect matrixL

Illumination-invariantprocess

Illumination-compensation

algorithm (ICA): cL L+
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Moreover, in [80], Jenkins and Burton indicated that averaging different face

images dilutes some transients (e.g., lighting condition and age) while preserving

appearances of the face image, which improves face recognition accuracy. TheQ

face images can express the image-data matrix as:

( , ) ( , ) ( , ), (1 )t t tI x y R x y L x y t Q≤ ≤= (3.11)

where ,1( ( , )) ( , ) T

t t t t tlog L x y L x y U W V′= = according to equ. (3.7), and1 t Q≤ ≤ . The

mean illumination-effect matrices( , )L x y can be computed as follows:

1

1
( , ) ( , )

Q

t
t

L x y L x y
Q =

= ∑ . (3.12)

Decompose ( , )cI x y , which is under uneven and non-frontal illumination, and also

write ( , )cI x y using the illumination model accordingly:

( , ) ( , ) ( , ).c c cI x y R x y L x y= (13.3)

The mean illumination-effect matrices( , )L x y can then be used for illumination

compensation as follows:

( )ICA
c c cI R L L= + . (3.14)

When an image ( , )cI x y is under an uneven illumination condition, shadows may

appear, and the image may look different in those regions with insufficient

illumination. Therefore, the formulation of ( , )L x y in (3.12) takes the value of

different illumination conditions to generate a mean illumination-effect matrix

( , )L x y for compensating the face images for uneven lighting and shadows. This

can make images lighter and shadowless. We call it the illumination-compensation

algorithm (ICA).

3.2.4 Illumination enhancement algorithm (IEA)

Inspired by the shadowless lamp used in surgical operations to compensate

illumination and remove shadows, we propose an efficient method for image

illumination enhancement. We call it the illumination-enhancement algorithm

(IEA).
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The mean lighting matrix ( , )L x y can be utilized for image illumination

enhancement, not only to compensate for uneven lighting but also to enhance the

image by removing any shadows in the imagejI under uneven illumination

conditions, as follows:

( )IEA
c c cI R L Lλ= + , (3.15)

whereλ ≥ 1, and is called the “illumination-enhancement factor”. Whenλ=1, the

illumination-enhancement algorithm (IEA) will become the illumination-

compensation algorithm (ICA) described in Section 3.2.2.

The effect of IEA can be seen in Fig. 3.5; experimental results will show the

performance of this algorithm in the next section of this chapter. The processed

face or texture images IEA
cI will have their lighting smoothed, will look similar

under even and frontal light sources, and will have any shadow effects greatly

reduced (similar to the function of a shadowless lamp in surgical operations, which

enhances the uneven illumination conditions so as to remove any shadows).

3.3 Experimental results

In this section, we will evaluate our proposed illumination-compensation and -

enhancement algorithms. We first show the visual quality of the face images

processed by our algorithms. Then, our algorithms are evaluated in termsof a

benchmark face-recognition algorithm.

3.3.1 Comparison based on visual quality

We carried out a large number of experiments to verify the effectiveness of our

proposed methods. To evaluate the performances of our proposed algorithms, we

employed the Yale Face Database B [72] and the extended Yale Face Database B

[73], which have been commonly used to evaluate the performance of illumination-

invariant face recognition methods. The Yale Face Database B consists of10

classes, named from yaleB01 to yaleB10. The extended Yale Face Database B

contains 28 human subjects, named from yaleB11 to yaleB13, and from yaleB15 to

yaleB39. Each subject in these two databases has 9 poses and is under 64
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illumination conditions. The total number of distinct subjects inthe two databases

is 38. All the face images are cropped with a size of 168×196.

Experiments on face textures were performed to verify the effectiveness of our

proposed methods in terms of visual quality. For comparisons with other works, the

following methods have been implemented:− a widely used method in image

processing for modifying the dynamic range and contrast of images− was first

employed to improve the visual appearance of all images used in experiments [74];

the wavelet-based normalization method proposed in [53], which enhances the

contrast as well as the edges of face images; the algorithm [55] which sets the

coefficients in the wavelet approximation sub-band to zero. In our experiment, the

“db4” wavelet is used with 1-level decomposition for the cropped face images; and

the illumination normalization method [79] including a series of stages (Gamma

correction, DoG filtering, Masking (optional) and contrast equalization) designed to

deal with the effects of illumination variations.

Figure 3.5 shows the results based on two distinct subjects from thedatabase,

which can illustrate the superior performance of our algorithms in terms of the

illumination-compensation and -enhancement capabilities. Figure 3.5(b)shows the

images processed by histogram equalization [74]. Although the visual appearance

and the contrast of the textures are enhanced, the results are not illumination-

invariant. Figure 3.5(c) shows the results using [53], which employs histogram

equalization to enhance the contrast of the approximation coefficients andmultiply

each element in the detail coefficient matrix with a scale factor. In our experiments,

we set the scale factor to 2. We see that our method can enhance the details in the

face texture better than the histogram-equalization method, e.g. the eye regions

shown in the first row of Figure 3.5(b) and 3.5(c). Figure 3.5(d) illustrates the

results using the method in [55], which alleviates the illumination influence by

setting the coefficients in the wavelet approximation subband to zero. However,

this scheme also discards some detailed information about a face, which is

important for recognition. As shown in Figure 3.5(e), the illumination

normalization method in [79] can deal with the effects of illumination remove

shadows effectively, however, face mages of the same class are look dissimilar
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.5. Face images of the same subject from the Yale Face Database B using

different illumination-compensation and illumination-enhancement methods: (a)

the original face images, (b) results using the histogram-equalization method [74],

(c) results using the method in [53], (d) results using the method in [55], (e) results

using the method in [79], (f) results using our illumination-compensation algorithm,

(g) results using our illumination-enhancement algorithm withλ =3, and (h) results

using our illumination-enhancement algorithm withλ =5.

under different illumination variations and some artifacts are appeared. Figure 3.6(f)

show the results using our proposed illumination-compensation scheme, which can

effectively remove uneven illumination and shadows on face images. However, this
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compensation scheme may produce small artifacts over those face textures where

the 3-D face heightmap changes dramatically. This results in a large variation of the

illumination-effect matrix L(x, y) under different illumination conditions, and

thereforeL(x, y) has a greater difference to the learned mean illumination-effect

matrix L . Figure 3.5(g) and 3.5(h) show the results using our illumination-

enhancement methods with the illumination-enhancement factorλ set at 3 and 5,

respectively. We can observe that uneven lighting is compensated and the shadows

are smoothed. The results show that our proposed method can effectively alleviate

the illumination effect, and can produce a better visual quality than the results using

the methods in [53] and [55]. In conclusion, the illumination-enhancement method

is more suitable for illumination-invariant face textures. Withthe illumination-

enhancement factor set at different values, the effect of uneven illumination can be

alleviated effectively, or even completely, without producing any artifacts.

Experimental results using all the face images in the database show that our

simple, non-iterative illumination-compensation and illumination-enhancement

algorithms can achieve a good performance level, and can effectively reduce the

illumination effects while retaining the symmetrical structures and patterns of faces.

3.3.2 Performances in terms of recognition accuracy

In this section, we will evaluate the effectiveness of the proposed approaches

for illumination-invariant face recognition. In this chapter, we concentrate on the

issue of illumination compensation and illumination enhancement for illumination-

invariant face images, rather than face recognition. Nevertheless, a good

illumination-compensation and -enhancement method should also help to improve

the face recognition rate.

The PCA-based algorithm [3] (also known as eigenfaces) is a benchmark for

appearance-based and image-based face recognition approaches [1]. Therefore, it is

used in these experiments to illustrate the effectiveness of our algorithm for face

recognition. Pentland et al. [71] have shown that the first three eigenvectors

represent illuminations on face images, and have also empirically shown that a

superior face recognition performance can be achieved if the first three
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eigenvectors are excluded. Therefore, we will evaluate the following illumination-

compensation and -enhancement algorithms using PCA-based algorithms for

comparison:

� PCA-based algorithm [3];

� PCA-based algorithm with the first three eigenvectors excluded [71];

� Histogram equalization and PCA-based algorithm [74];

� Illumination normalization [53] and PCA-based algorithm;

� Illumination invariant [55] and PCA-based algorithm;

� Illumination normalization [79] and PCA-based algorithm;

� Illumination compensation and PCA-based algorithm;

� Illumination enhancement withλ =3 and PCA-based algorithm; and

� Illumination enhancement withλ =5 and PCA-based algorithm.

These eight PCA-based algorithms are denoted as Algorithm1, Algorithm2,

Algorithm3, Algorithm4, Algorithm5, Algorithm6, Algorithm7, Algorithm8, and

Algorithm9, respectively. In the experiments, all 38 distinct subjectsfrom the Yale

Face Database B were used. A randomly selected face of each subject is used as a

training sample, while the remaining faces are used for testing. As in [76, 77], the

L1 norm distance metric is used, which is a more suitable distance measure than the

Euclidean distance metric (L2) for PCA-based algorithms.

Figure 3.6 shows the recognition rates for each of the 38 subjects, basedon the

eight PCA-based algorithms. Table 3.1 tabulates the average recognitionrates of

the eight PCA-based algorithms. As is shown in Table 3.1, if no

compensation/normalization scheme is employed, the average recognition rate is

only 26.58%. The average recognition rate increases to 31.97% if the first three

eigenvectors are not used. The performance of the algorithm using histogram

equalization [74] in the spatial domain can further improve the rate slightly, to

34.45%. These experimental results are consistent with those in [71],and prove that

this simple scheme is effective. Because the illumination normalization method in

[79] can remove shadows and normalize illumination variations, the average

recognition rate increases to 67.46%. Our proposed algorithms− Algorithm7,

Algorithm8, and Algorithm9−significantly outperform Algorithm4 and Algorithm5.
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This is because, as proposed in [53], although Algorithm4 can enhance the detailed

information on face images by multiplying the detail coefficient matrixwith a

scaling factor, it cannot eliminate the illumination effect completely. Algorithm5

[55] attempts to smooth out the illumination influence by settingthe wavelet

approximation coefficients to zero. This results in some detailed information, which

is useful and important for recognition, being missed. It is obviousthat Algorithm7,

Algorithm8, and Algorithm9 can achieve better performances than the other five

methods. The average recognition rates are 73.65%, 82.33%, and 84.39%for the

illumination-compensation algorithm, and the illumination-enhancement algorithm

with λ=3 and λ=5, respectively. As discussed in section 3.1, the illumination-

compensation scheme may produce artifacts under some extreme illumination

conditions. Nevertheless, the effect of these artifacts will be reduced whenthe face

images are projected into the PCA sub-space. Consequently, the average

recognition rate is still high, and only slightly lower than that of Algorithm8 and

Algorithm9. Our illumination-enhancement algorithm can achieve the best

performance. This is due to the fact that our illumination-enhancement scheme can

make face images having more even illumination; in particular, shadows can be

removed effectively. As a result, face images of the same class will resemble each

other more when compared to the illumination-compensation scheme. Moreover,

the recognition rate of the illumination-enhancement approach with alarger

illumination-enhancement factor (λ=5) is higher than with the smaller one (λ=3).

This is because a larger illumination-enhancement factor (λ=5) can alleviate uneven

illumination more completely than a smaller factor (λ= 3) can.
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Figure 3.6. Face recognition rates for the 38 distinct subjects in theYale Face

Database B and the extended Yale Face Database B.

Table 3.1. The average recognition rates (ARR) of the eight face recognition

schemes for the Yale Face Database B and the extended Yale Face Database B.

Alg.1 Alg.2 Alg.3 Alg.4 Alg.5 Alg.6 Alg.7 Alg.8 Alg.9

ARR 26.6% 32.0% 34.5% 42.2% 44.2% 67.5% 73.7% 82.3% 84.4%

Figure 3.7 demonstrates theL1 norm distance measures of those images in the

class "yaleB10" (indexed as 10 in the figure) using our illumination-compensation

and -enhancement methods. It can be seen that the respective measured distances

for the subject indexed as 10 are the lowest for our three algorithms, i.e.

Algorithm7, Algorithm8, and Algorithm9. In addition, the distances based on

Algorithm8 and Algorithm9 are close, and are much lower than that of Algorithm.

In summary, using the illumination-compensation and -enhancement methods, the

recognition rate can be improved. This demonstrates that the proposed schemes

form a useful pre-processing step for practical face recognition.
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(a) (b) (c)

Figure 3.7.L1 norm distance measures for an image of the class "yaleB10" using

our illumination-compensation and -enhancement methods: (a) illumination-

compensation, (b) illumination-enhancement withλ=3, and (c) illumination-

enhancement withλ=5.

3.4 Summary

In this chapter, we have proposed an effective scheme for illumination

compensation and enhancement, which can generate illumination-invariant face

images. Unlike the traditional Lambertian model, which requires a numberof

images to reconstruct 3D models for illumination-invariant representation, with the

assumption of the existence of a single-point light source, our proposed methods

can overcome all these limitations, and are suitable for outdoor environments

without any postulation of the light sources. Experiment results show the superior

performances of our proposed methods for face images in terms of both visual

quality and recognition rate.
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Chapter 4 A Novel Face-

Hallucination Scheme

Based on SVD

Constructing a high-resolution (HR) image from its low-resolution (LR) inputs is

called super-resolution in image-processing research field. For face images, this

technology is also called face hallucination [8], which has become one of the most

important fields for face recognition. This technique is particularly important for

video surveillance, in which images are captured at a long distance by a camera.

Face images in these videos are usually of low resolution and the videos are

compressed with a high compression ratio, which pose an challenging issue in face

recognition.

The rest of this chapter is organized as follows. First, a brief introduction of

related work on face hallucination will be given. Then we will present a simple

mapping model and introduce our proposed face-hallucination scheme in detail.

Experiment results and a conclusion are presented at the end.

4.1 Related work on face hallucination

Face hallucination was firstly proposed by Baker et al. [8], and has drawn many

researchers’ attention since then. A pixel-wise super-resolution (SR) method was

proposed, which uses the Laplacian pyramid and the Gaussian pyramid to

decompose an image into a pyramid of features in order to generate a HR face

image. Later, the limitations on super-resolution and how to break these limitations

were introduced in [14]. Freeman et al. [15] proposed a nonparametric patch-based

prior along with the Markov random field model to produce the desired HR images.

In [16], temporal correspondence and a prior model are combined to hallucinate

faces. Many researchers [17] [18] have further developed patch-based SR

frameworks. A sparse-coding method [19] was proposed to represent a LR input
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patch as a combination of its raw neighboring image patches, and the target HR

patch is generated directly by using the same combination coefficients as the

corresponding neighboring HR patches. The algorithms proposed in [17] [18] also

used the same approach, in which a number of similar neighbors to the LR input

patches are searched from a training dataset, and then a specific method is adopted

to reconstruct the corresponding HR images. In [20], Wang et al. proposed a

holistic face-hallucination method which employs Principal Component Analysis

(PCA) to represent a LR input image as a linear combination of LR training

samples. The corresponding HR image is then estimated using the same linear

combination as the corresponding HR training samples. Park et al. [21] utilized the

PCA-based SR framework [20] to develop an example-based face-hallucination

method. As the PCA method considers global-structure information about facial

images, it is less suitable for use in patch-based approaches [24]. In [22], a hybrid

method was proposed based on global and local constraints to apply face

hallucination to unregistered images. In [23], a novel example-based image SR

method was proposed, in which a class-specific predictor is designed for eachclass

of patches so as to improve the accuracy of estimating the high-frequency content.

Another early learning-based SR technique was developed by Qiu [24, 25]. These

methods are based on the observation that, for a LR version of an image that

visually resembles its HR counterpart, the LR and corresponding HR image must

be intrinsically correlated. In other words, the LR image can be used as an input to

predict its HR counterpart. Ma et al. [26] proposed a method to hallucinateHR

image patches using patches at the same position of each training image. Then, the

optimal weights for the training position-patches are estimated and used to

reconstruct the HR patches. Recently, a new face-hallucination framework−

namely, from local-pixel structure to global image SR (LPS-GIS)− was developed

in [27] and is based on the assumption that two similar face images should have

similar local-pixel structures. This new framework uses an input LR face image to

search a face database for similar example HR faces in order to learn the local-pixel

structures for the target HR face. In [28], a synthesized approach which utilizes

both the shape and texture components is proposed. These two components are
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based on accurately aligned local image regions. To achieve sufficient accuracy in

alignment, shape reconstruction is solved together with texture reconstruction in a

coordinated manner.

In contrast to these previous works, we propose a novel and efficient face-

hallucination scheme based on a SVD-based mapping model. We firstly verify that

a simple mapping model in the image spacem nR × is inappropriate and unfeasible, as

the mapping scheme is too coarse to generate satisfactory results. Then, we propose

a more sophisticated mapping model in the eigenspace based on SVD. This

proposed face-hallucination framework consists of three steps. In the first step,M

example faces that share the most similarity to the input LR face image are

searched from a database, and the optical-flow method is then used to align these M

example image pairs. In the second step, we compute the leading eigenvectors,

which account for most of the information contained in the image. We alsoobserve

and prove that, based on the Frobenius norm, the corresponding singular values of

an image across different resolutions have approximately linear relationships.

Furthermore, we can interpolate the other two data matrices generated by SVD to a

higher resolution, as the interpolation of these matrices will not change the holistic

structure or the pattern of the face image. The mapping scheme, which utilizes the

interpolated SVD matrices multiplied by the learned corresponding mapping

matrices to generate more details of face images, can be viewed as a “coarse-to-

fine” manner. In the third step, a residual-error matrix, which represents the high-

frequency information or the detailed local features missed in the previously

predicted HR face image, is generated and added to the one produced in the second

stage.

4.1.1 Analysis the drawbacks of the existing techniques

For the existing techniques, the main drawback is that when a new and novel face

which is significantly different from the training samples, most of the existing

learning-based face-hallucination methods will likely produce artifacts and

discontinuities in the reconstruction results. Our proposed method has three

advantages such that the abovementioned problem can be solved to a certain extent.
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First, aligning and warping the retrievedM example images via optical flow makes

our algorithm able to estimate fine details more accurately. As theM warped

images should have similar holistic structures and patterns, they can help to prevent

the algorithm from producing artifacts and discontinuities in the reconstruction

results. Second, as it is proven that the major singular values of the associated

eigenvectors of the same image at different resolutions have approximately linear

relationships, the estimation of the corresponding singular values of the HR face

images will become more reliable. This can effectively preserve and reconstruct the

dominant information in the HR face image. The third reason is that the learned

mapping matrices for the other two matrices of the SVD representation can be seen

as holistic constraints, which do not change the global structure during the

reconstruction of HR images. Experimental results show that our algorithm is

effective and produces promising hallucination results.

4.2 The mapping model

4.2.1 The mapping model in the spatial domain

Denote hI as a gray-scale face image with a size ofm × n pixels and the

corresponding LR image aslI , which is subsampled from the original HR face

image as follows:

l hI I α= ↓ , (4.1)

whereα is the down-sampling factor used.

The LR image lI can be interpolated by using the same factorα, which is called

the magnification factor, to generate a new imagelI ′ . Therefore, lI ′ and hI have

the same resolution. If a mapping matrixP exists as follows:

h lI I P′= , (4.2)

then the HR image hI can be reconstructed from its LR subsampled imageslI

using the mapping matrixP. This mapping model in the m nR × space expresses

super-resolution as a product of two matrices,lI andP.
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The key issue for this model is to learn the matrixP from a set of pairs of LR and

HR face images. The learned mapping matrix, denoted asP
~ , can be computed

using the pseudo-inverse technique as follows:

( ) .
~ 1

h
T

ll
T

l IIIIP ′′′=
−

(4.3)

In practice, T
l lI I′ ′ is usually a singular matrix. The learned optimal mapping

matrix, denoted asP~ , can be computed using an approximation ofP as follows:

( ) h
T

ll
T

l IIEIIP ′+′′=
−1~ λ , (4.4)

whereλ is a small positive integer, andE is a unit matrix with a size ofn×n. The

estimated HR face image, denoted asˆ ,hI can be reconstructed as follows:

PII lh
~ˆ ′= . (4.5)

However, in real situations, the mapping model in them nR × space is too simple

and coarse to achieve satisfactory results. Fig. 4.1 shows an example of the result

using the mapping model in the m nR × space. As shown in Fig. 4.1(d), the visual

quality of the reconstructed image using the approximate mapping matrix P
~ is not

satisfactory.

(a) (b) (c) (d) (e)

Figure 4.1. Reconstruction results based on the mapping model in them nR × space

and in the eigenspace, respectively, with a magnification factor of 4: (a) the LR

image obtained by downsampling the original image by a factor of 4, (b)the

original HR image, (c) the result based on bicubic interpolation, (d) the

reconstructed image based on the mapping model in them nR × space, and (e) the

reconstructed image based on the SVD-based mapping model in the eigenspace.
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4.2.2 The mapping model in the eigenspace based on singular value

decomposition

In the previous section of this chapter, we showed that a simple mapping model

in the m nR × space is unable to provide satisfactory results in face hallucination. In

this section, we use a mathematical framework to achieve a more effective image

representation for face hallucination. Our proposed framework projects an imageI

of sizem×n to the eigenspace using SVD.

The imageI can be viewed as a matrix withm rows andn columns. Assume that

m ≥ n, by using SVD,I can be written as the product of a left matrixU, a m×n

diagonal matrixW with positive or zero diagonal elements, and the transpose of a

right matrixV, i.e.

,TI UWV= (4.6)

where EVVUU TT == . The matrixU is am×m column-orthogonal matrix, whileV is

a n×n orthogonal matrix. The elementsiw on the diagonal ofW are called singular

values (the square root of the eigenvalues), i.e.

1 2( , , ).i nW diag w w  ....,w ,....,w= (4.7)

The singular value vectors of the imageI is defined as follows:

1 2[ , , ] ,T
i ns w w  ....,w ....,w= (4.8)

where 1≤ i ≤ n, and iw is the ith singular value ofI in the singular value vectors

such that iw ≥ 1iw+ . It can be observed that the singular values decrease

dramatically. The following definitions can be used to measure the information

accounted for by an eigenvector [29]:

2 2

1

( ) ,
i jind

n

i
j

wf i w
=

= ∑ (4.9)

and the accumulation of the firstk eigenvectors [30] can be measured as follows:

2 2

1 1

( ) .
i icu

k n

i
u

i
mf k w w

= =

= ∑ ∑ (4.10)

We found that the first several eigenvectors are sufficient to account for almost

all of the information contained in an image. This observation is also true for
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texture images [31][32]. For illustration, Fig. 4.2 shows the information accounted

for by the eigenvectors for two different face images. Figs. 4.2(a) and 4.2(b) are

two distinct face images used. Figs. 4.2 (c) and 4.2 (d) show the information

accounted for by individual eigenvectors and by the accumulated eigenvectors,

respectively. It can be seen that the first 20 eigenvectors can account for nearly all

the information in a face image.

(a) Face Image 1 (b) Face Image 2

(c) (d)

Figure 4.2: An example of the information accounted for by the first thirty

eigenvectors of face images: (a) and (b) are two distinct face images of a manand a

woman, respectively; (c) the information accounted for by individual eigenvectors,

calculated using (4.9); and (d) the cumulative information accounted for,calculated

using (4.10).

It also can be seen that the fast decay of the eigenvalues can be commonly

observed across a wide variety of image types. Fig. 4.3 shows different types of

images, and a similar rate of decay of the eigenvalues can be seen.
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(a) (b)
Figure 4.3: The information accounted for by the first thirty eigenvectors of

different image types: (a) images of different types, (b) the information accounted

for by the individual eigenvectors, calculated using (4.9).
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Since the singular values decrease rapidly and the first few eigenvectors can

account for most of the information, the original matrixW can be approximated as

ˆ
IW as follows:

(a) Original Image (b)k=3 (c) k=10 (d)k=20

(e) k=30 (f) k=40 (g)k=50 (h)k=60

Figure 4.4. Examples of different approximated images withk set at different

values.

1 2
ˆ ( , ,...., ,0, 0),I kW diag w w w ....,= (4.11)

and we have

2 2

1 1

,
i i

n k

i i

w w
= =

=∑ ∑ɶ (4.12)

wherek is the number of singular values or eigenvectors to be retained. We choose

the first k singular values, rather than all then non-zero singular values available,

because those high-order singular values represent the high-frequencycontent, or

noise, in the interpolated LR face image under consideration. The linear

relationship for the low-order singular values does not hold for those high-order

singular values. Based on the firstk singular values, we can obtain an approximated
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image ˆ,I which contains almost the same information as the original imageI. The

image ˆ,I which can be viewed as a matrix, can be expressed as follows:

ˆ ˆ .T
II UW V= (4.13)

Fig. 4.4 shows different approximated images when the image has a resolution of

262×300 andk is set at different values. The number of non-zero singular values

for the image is 262. We can observe that the image quality has a very slight

difference whenk is larger than 40.

4.2.2.1 The diagonal matrix W at different resolutions

According to [33], if a matrixA has singular values ,iw where1 ,i n≤ ≤ then

1

2 2|| ||
iF

n

i

wA
=

=∑ , (4.14)

where || ||FA is the Frobenius norm of the matrixA, which is defined as the square

root of the sum of the squares of all its entries. The following is a brief proof of

(4.14):

Proof: If matrix A has singular values, 1 2, , i nw w  ....,w ....,w, then
1

2 2|| ||
iF

n

i

wA
=

=∑ .

Using SVD, a matrixA can be expressed as TA UWV= . First note that, for any

matrix C whose i th column is denoted asci, i.e. 1( )nC = c | ...| c , then

2 2 2
1|| || || || || ||=F F n FC c +...+ c . Now, we have

2 2|| || || ||T
F FA UWV=

[1]
2 2 2 2

[2]
2 2

[3]
2

1

|| || || ( ) || || ( ) || || ||

|| || || ||

 
i

T T T T T T T
F F F F

T

i

F

n

F

WV WV

w

V W VW

W W

=

= = = =

= =

=∑

[1] Let 1( )nc | ...| c be the columns ofWVT. Since theU matrix simply rotates the

columns of 1( )nc | ...| c without changing their lengths, the two sides are equal.

[2] The V matrix simply rotates the columns of TW without changing their lengths.



77

[3] The diagonal matrixW has positive or zero values on its diagonal and the other

elements are zeros.

We observe that when a LR imagelI is interpolated or super-resolved to produce

a new HR image hI with a magnification factor ofα, the first k main singular

values in the singular-value vector [ ]Tk
hhhh wwws ,,,, 21

…= of the image hI can be

approximated asα times of the firstk main singular values in the singular value

vector [ ]Tk
llll wwws ,,,, 21

…= of the original image lI . Hence, we have

.h ls sα≅ (4.15)

In other words, the main singular values of the same image under different

resolutions are approximately proportional to each other, with the magnification

factorα as the proportional constant.

(a) (b)

(c) (d) (e)

Figure 4.5. The singular values of two images of the same face with different

resolutions: (a) An original image of size 262×300; (b) a downsampled image of

size 131×150, obtained with a downsampling factor of 2 in both the horizontal and

vertical directions; (c) the first 60 singular values, denoted assh, of the image in (a);

(d) the first 60 singular values, denoted assl, of the image in (b); (e) the first 60
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singular values of the image in (a) and twice the values of the first 60 singular

values of the image in (b).

Theorem 1: If a LR image lI is interpolated to produce a HR imagehI with a

magnification factor ofα, then the firstk main singular values in the singular-value

vectorsh of the new image hI areα times the corresponding firstk main singular

values of the singular-value vectorsl of the original image lI .

Proof: Suppose that lI is interpolated to produce a new HR imagehI with a

magnification factor ofα, then we have:

[4]
2 2 22

h l lF F F
I  αI a I≅ =

( )

( ) ( ) ( )

[5]

[6]

22

1

2 2 22

1 1 1

 

 

n
i
l

i

k k k
i i i
l l h

i i i
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=
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=

≅ = =

∑
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   h ls sα∴ ≅ .

[4] An interpolation method, with a magnification factor ofα, producesα×α

neighboring pixels in the interpolated imagehI with similar values to the

corresponding pixel in the original LR imagelI . For instance, the nearest-

neighbor interpolation generatesα×α neighbors of equal values, and the bilinear

and bicubic-interpolation methods produceα×α similar pixels.

[5] According to (4.14),
1

2 2|| ||
iF

n

i

wA
=

=∑ .

[6] According to (4.12),
2 2

1 1
i i

n k

i i

w w
= =

=∑ ∑ɶ .

Figs. 4.5(c), 4.5(d) and 4.5(e) show the linear relationship of the first k=60 main

singular values for two images of the same person at different resolutions. The

image in Fig. 4.5(a) has double the resolution of the image in Fig.4.5(b), both

horizontally and vertically. Figs. 4.5(c) and 4.5(d) show the first60 eigenvectors of
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the images in Figs. 4.5(a) and 4.5(b), respectively. To illustrate the relationship of

the singular values of the two images, Fig. 4.5(e) shows the first 60 singular values

of the image in Fig. 4.5(a), as well as the first 60 singular values of the image in Fig.

4.5(b), multiplied by two. We can see thath ls sα≅ , with the magnification factor

α=2.

4.2.2.2 Mapping U and V in the eigenspace

Suppose that an original face image is denoted ashI and the corresponding sub-

sampled LR image is denoted aslI . These two images,hI and lI , can be expressed

in the eigenspace using SVD as follows:

T
h h h hI U W V= and (4.16)

T
l l l lI U WV= . (4.17)

The two matrices lU and lV for lI can be interpolated to form two new matrices

lU ′ and lV ′ that have the same size ashU and hV , respectively. Define two

mapping matrices uP and vP , as follows:

,uh lU U P′= and (4.18)

.vh lV V P′= (4.19)

In the eigenspace, these two matricesuP and vP can be calculated using pseudo-

inverse as follows:

( ) 1
,T T

u l l l hP U U U U
−

′ ′ ′= and (4.20)

( ) 1
.T T

v l l l hP V V V V
−

′ ′ ′= (4.21)

As T
l lU U′ ′ and l

T
lV V′ ′ are always singular matrices,uP and vP can be computed

approximately as follows:

( ) 1
,T T

u l l l hP U U E U Uλ
−

′ ′ ′= +ɶ and (4.22)

( ) 1T T
v l l l hP V V E V Vλ

−
′ ′ ′= +ɶ , (4.23)

whereλ is a small positive integer andE is a unit matrix. An estimation of hU and

hV , denoted asˆ
hU and ĥV , respectively, can be expressed as follows:
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ˆ ,h l uU U P′= ɶ and (4.24)

ˆ .h l vV V P′= ɶ (4.25)

For the purpose of super-resolution, a HR image can be reconstructed from a LR

image using the matriceŝ hU and ĥV , which can be learned from a pair of LR-HR

training face images; and the diagonal matrix̂hW is computed using the scheme

described in Section 4.2.2.2.1, i.e.

ˆ ˆ ˆT
h h h hI U W V .= (4.26)

Fig. 4.1 also shows an example of using the mapping model in the eigenspace.

Fig. 4.1(e) shows that the HR image reconstructed using the mapping model in the

eigenspace is effective, and that our algorithm can produce a promising result.

4.3 SVD-based face-hallucination scheme

Suppose that an input LR face imagelI is to be super-resolved with a

magnification factor ofα to form a HR face image. With this LR input face,M LR

face images resemblinglI , as well as the corresponding reference HR images, are

searched from a dataset which contains pairs of LR and HR face images. TheseM

pairs of LR and HR training face images, denoted asi
lI and i

hI (i = 1, ..., M),

respectively, should have a high structural similarity to the LR input face after

alignment. Each of the similar HR face images can be reconstructed from the

corresponding LR faces using the mapping matrices, as described in Section 4.2.2.2,

i.e.

ˆ ,i i i
h l uU U P′= ɶ and (4.27)

ˆ ,i i i
h l vV V P′= ɶ (4.28)

where 1≤ i ≤ M.

We can now learn the mapping matricesuPɶ and vPɶ for face hallucination using

the individual mapping matrices i
uPɶ and i

vPɶ , learned from theM pairs of HR and

LR images. A linear combination of the mapping matrices can be written as follows:
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1

,
M

i
u i u

i

P Pβ
=

=∑ɶ ɶ and (4.29)

1

,
M

i
v i v

i

P Pγ
=

=∑ɶ ɶ (4.30)

where iβ and iγ are the embedding coefficients foriuPɶ and i
vPɶ , respectively.

After the LR input image lI is decomposed by SVD using (4.17), itslU and

lV can be interpolated to generate two new matriceslU ′ and lV ′ with the same size

as hU and hV for the desired HR imagehI , respectively. Then, the corresponding

approximated matriceŝ hU and ĥV can be computed as follows:

ˆ ,h l uU U P′= ɶ and (4.31)

ˆ .h l vV V P′= ɶ (4.32)

As described in Section 4.2.2.1, the leading singular values in the diagonal

matrix ˆ
hW can be estimated using the linear relationshiph ls sα≅ . The number of

leading singular valuesk to be used can be determined by using (4.10), such that

the first k leading singular values can represent a sufficient amount of information

about the face images. In our algorithm, we choose ( )cumuf k η≥ (whereη =0.99 in

our experiment). After estimating the firstk leading singular values, we can also

estimate the remaining singular values, denoted as 1 2( ) ,  ,  ,  
Tk k n

h h h hs k w w wα+ +′  =  … ,

in the diagonal matrix ˆ
hW using a linear combination of the remaining singular

values , 1 , 2 ,( ) ,  ,  ,  
Ti i k i k i n

h h h hs k w w wα+ +′  =  … of theM similar HR images, as follows:

1 2( ) ,  ,  ,  
Tk k n

h h h hs k w w wα+ +′  =  …

, 1 , 2 ,

1 1

,  ,  ,  
M M Ti i k i k i n

i h i h h h
i i

s w w wαβ β + +

= =

′  = =  ∑ ∑ … . (4.33)

Now, the HR image ĥI can be reconstructed using the estimated matricesˆ
hU

and ĥV , and the diagonal matrix̂ hW , as follows:

ˆ ˆ ˆ ˆT
h h h hI U W V .= (4.34)
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The reconstructed imagêhI should be similar to theM HR training face images.

The following squared error ( )E i can be used to measure the reconstruction error:

( )
2

1

M
i
h h

i

ˆE i I I
=

= −∑

s.t. ĥ lI α I↓ = . (4.35)

The optimal reconstruction weightsiβ and iγ can be derived by minimizing the

following formulation:

( ){ }
i i,

arg min E i
β γ

β =

2

1i i

M
i
h h

, i

ˆarg min I I
β γ =

  = − 
  
∑

s.t. ĥ lI α I↓ = . (4.36)

The global constrained least-square problem can be computed using the

iterative method in [34], and the determined weights are normalized so that their

sum is one.

To further improve the visual quality of the reconstructed HR images,our

proposed algorithm estimates the residual-error matrixC , which comprises the

high-frequency information about a face image, and represents the detailed local

features missing from the global HR image. This residual informationis added as

the missing high-frequency information to achieve high-quality face hallucination.

Based on our proposed SVD-based mapping model, the matrixC can be estimated

from the individual residual errors of the selected training samples ˆi i
h hC I I= − ,

where ˆ ˆ ˆ ˆT
h h h hI =U W V , as defined in (4.34). We use a Gaussian function to measure

the similarity of two images, and the weightiδ reflects the global similarity as

follows:

2

2

ˆ
exp

i
h h

i

I I
δ

σ

 − − =
  
 

, (4.37)
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wherei = 1, ...,M, and σ controls the effect of the gray-level difference between

the HR training sample and the reconstructed HR image. The weightsiδ are then

normalized so that their sum is equal to 1. Then, the matrixC can be computed as

follows:

i
1

M
i

i

C Cδ
=

=∑

( )
1

M
i

i h h
i

ˆδ I I
=

= −∑ . (4.38)

Having determined the residual-error matrix, the final reconstructed HR face

image, denoted ashI , can be computed as follows:

ˆ .h hI I C= + (4.39)

4.4 Experimental results

In order to verify the effectiveness of the proposed scheme, the dataset usedin

[27] is used to evaluate the performance of our proposed framework. Thefacial

images in the dataset were selected from the GT [35], AR [36], and FERET [37]

databases, which contain 40, 70, and 120 images, respectively. All the facial

images are aligned based on the position of the two eyes, using the method in [38].

The original HR facial images are cropped to a size of 124×108. The numberof

reference face examples is set at 3, and the parametersλ in (22) andσ in (35) are

empirically set at 0.001 and 50, respectively. Experiments show that using all of the

above settings can achieve a satisfactory overall performance. In the experiments,

we evaluate all the methods by reconstructing the HR facial images with a

magnification factor of 4. All the testing images are evaluated using the “leave-one-

out” approach. Two objective quality measures, PSNR (peak signal-to-noise ratio)

and SSIM (structural similarity) [39], are used to evaluate the performances of the

different methods.
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4.4.1 The three stages of our proposed SR scheme

SSIM 0.7147 0.7646 0.7887

SSIM 0.7025 0.7699 0.7797

SSIM 0.7057 0.7957 0.8135

(a) (b) (c) (d)

Figure 4.6. Reconstruction results at different stages of our proposed SR scheme: (a)

the original HR images, (b) bicubic interpolation, (c) Stage 2 of ourproposed

method, and (d) Stage 3 of our proposed method after adding high-frequency

information.

In our experiment, three face images similar to an input LR face are first

searched from a training set, using the same method as in [27]. Then, we warp the

reference images to the input using the optical-flow method. In the second stage of
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our proposed method, interpolation is employed, which does not changethe global

structure or the pattern of a face image. It can be seen as a “coarse-to-fine” process

using the learned projection matricesuP and vP based on the mapping model. In the

third phase, a residual matrix, which represents the high-frequency information

about a face image, is added to the previously estimated HR face image to further

improve the reconstruction accuracy.

Fig. 4.6 illustrates some example results produced at the different stages of our

proposed SR scheme, with a magnification factorα=4. As shown in Fig. 4.6(b), the

bicubic-interpolation method [40] produces blurry results. Fig. 4.6(c) illustrates the

results for the second stage of our proposed method, which utilizes theglobal

structure of reference images and the learned projection matricesuP and vP based

on the mapping model for face hallucination. It can be seen that the resultsin Fig.

4.6(c) have a better visual quality than those in Fig. 4.6(b). This isbecause the two

learned matrices can be viewed as holistic constraints in the reconstructionof the

HR image using the similar global structure and pattern of the searchedreference

face images. Fig. 4.6(d) shows the results produced by the third stage of our

algorithm. By adding the residual matrix, which contains the missinghigh-

frequency information about the face image, the proposed model can producemore

photo-realistic images. In addition, we employ SSIM as an objective quality

measure to assess the visual quality of the hallucinated results. As shown in Fig. 4.6,

the SSIM values for the second stage of our proposed method are larger than those

for the bicubic interpolation [40]. After the addition of the missing high-frequency

information, the SSIM values for the third stage of our method are larger than those

for the second stage. The SSIM values are consistent with human visual perception

in terms of the visual quality of the images, and can objectively reflect the

effectiveness of the different algorithms.

4.4.2 Comparison with the state-of-the-art methods

Two interpolation algorithms, the bicubic-interpolation algorithm [40] and the

edge-directed interpolation (NEDI) method [41], are applied for face hallucination

and are compared with the second stage of our proposed algorithm, which canalso
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be considered as an interpolation technique. Another four state-of-the-art face-

hallucination algorithms are also compared to our proposed method: two PCA-

based, holistic SR methods (the eigentransformation method [20] and avariant of

Park’s method [21]), one patch-based method (Freeman’s method [15]), andLiu’s

method [22] based on a global parametric model and local nonparametric model.

The version of Park’s method used in this chapter is different from theoriginal

algorithm in [21] in that the training images are warped with reference tothe LR

input face rather than with reference to a predefined reference face.

Fig. 4.7 shows some samples of the reconstruction results generated using these

respective methods, with a magnification factorα=4. It can be seen from Fig. 4.7(b)

that the bicubic-interpolation algorithm produces the blurriest results. The results in

Fig. 4.7(c) are generated using the NEDI method. However, if a face image has

very low resolution, the NEDI method struggles to distinguish edges, and hence

also produces blurry results as compared to other SR methods. Therefore, the

results of Fig. 4.7(d) show a better visual quality than both the bicubic-interpolation

and the NEDI algorithms. Figs. 4.7(d) and 4.7(e) are the results generated by using

the eigentransformation method and the variant of Park’s method, which are both

holistic/global face-hallucination methods. Plausible face structurescan be well

inferred in the resulting HR images. Nevertheless, as the method is purely holistic,

it cannot effectively reconstruct the fine individual facial details of novel testing

faces. If a testing face image is very different from the faces in the database,

infidelity will result in the reconstructed HR faces. Park's method hereemploys the

morphable face model to capture the shape variations of novel testing faces, so it

outperforms the eigentransformation method. However, the HR textures are still

reconstructed in a holistic manner, like the eigentransformation method. The face-

hallucination results using the patch-based SR methods are illustrated in Fig. 4.7(f).

It can be seen that Freeman’s method can provide plausible HR facial images with

sharp edges and corners. However, as some of the patches are badly matched or

conflict with adjacent ones, some structural errors and discontinuities appear in the

reconstructed HR images; these errors are drawbacks with most patch-based SR

methods. Furthermore, the patch-based SR usually requires thousands of image-



87

patch pairs to learn, and therefore is computationally expensive. In addition, there

are artifacts in the reconstructed HR images, as shown in Fig. 4.7(f).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.7: Face-hallucination results reconstructed using different methods with a

magnification factor of 4 (α=4): (a) the original images, (b) bicubic interpolation, (c)

NEDI, (d) the eigentransformation method, (e) a variant of Park’s method, (f)

Freeman’s method, (g) Liu’s method, and (h) our proposed method.

Compared with the holistic-based and the patch-based approaches, Liu’s method

[10] utilizes both global and local prior information through a global parametric

model and a local nonparametric model. Thus, as shown in Fig. 4.7(g), the method

can produce not only visually plausible face structures, but also finedetails or

textures like those in the HR training images. However, some parts of the

hallucinated face, such as the mouth, are somewhat different from the original face.

This can be partially attributed to the properties of the PCA-based global model

used in this approach. Unlike Liu’s method, our framework does not change the

global structure of face images, and the main energy can be retained, as explained

in Section 4.2.2.1. Furthermore, the mapping scheme and the residualmatrix can
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produce high-resolution results with clear details. As can be seen from Fig. 4.7(h),

compared to other typical state-of-the-art algorithms, plausible HR images with a

holistic structure and more details with a better visual quality can beobtained.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4.8. The error maps displaying the reconstruction errors of different methods,

with a magnification factor of 4 (α=4): (a) bicubic interpolation, (b) NEDI, (c) the

eigentransformation method, (d) a variant of Park’s method, (e) Freeman’smethod,

(f) Liu’s method, and (g) our proposed method.

Fig. 4.8 shows some sample error maps displaying the reconstructionerrors

produced using these typical state-of-the-art algorithms, with a magnification factor

α=4. With the visual aid of the error maps in Fig. 4.8, it can be seen that our

proposed method produces more accurate results, compared to other typical state-

of-the-art methods.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.9: Face-hallucination results reconstructed using different methods with a

magnification factor of 6: (a) the original images, (b) bicubic interpolation, (c) the

eigentransformation method, (d) a variant of Park’s method, (e) Freeman’smethod,

(f) Liu’s method, and (g) our proposed method.

We also evaluate our method by reconstructing the HR facial images with a

magnification factor of 6 (α=6). Fig. 4.9 shows the reconstruction results for the

images used in the previous experiment. It can be seen that the generic, patch-based

SR method is no longer able to produce promising HR facial structures effectively,

while those methods that employ the holistic structure of facial images can provide

a better performance than the patch-based method in terms of visual quality.This is

because, when the LR observations have very low resolution, using only the local

patch-based prior is not sufficient to infer the target HR image. In contrast, by using

the holistic characteristics of the HR face examples, a stronger prior can be

imposed on the reconstructed facial images, which can result in a better facial

appearance. The images in Fig. 4.9(e) are produced by the patch-based method;
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with very low resolution images as the input, it is hard to generate good results. Fig.

4.9(c) and (d) show the holistic SR methods, which can provide better HR results

for every LR image. The hallucinated faces generated using Liu’s method have a

better holistic appearance than those generated using the patch-based method, as

shown in Fig. 4.9(f). However, it is also observed that Liu’s method results in some

distortions at facial features different from those in the original images. Our method

is illustrated in Fig. 4.9(g): the results look consistent with the original HR face

even though these were very low-resolution images. Experimental results based on

visual inspection show that the proposed method is effective and can fulfill the task

of face hallucination. It achieves a satisfactory performance and produces

promising results while preserving the details and the structure ofthe human face.

Two quantitatively objective quality measures, i.e. PSNR and SSIM, are also

employed to evaluate different methods with different magnification factors. Table

4.1 tabulates the average PSNR and SSIM, and the corresponding standard

deviations, of the different methods with a magnification factor of 4. Table 4.1

shows that our method is superior, in terms of the two measurements, to the other

two classical interpolation approaches, and it can achieve a comparable

performance to the other typical state-of-the-art algorithms.

Table 4.1. The average PSNR and SSIM, and the corresponding standard deviations

shown in brackets, of the different face-hallucination algorithms with a

magnification factor of 4.

PSNR SSIM

Bicubic interpolation

NEDI

Eigentransformation method

A variant of Park’s method

Freeman’s method

Liu’s method

Our proposed method

22.16 (1.84)

21.64 (2.75)

25.40 (2.38)

25.97 (3.65)

26.28 (3.23)

25.72 (3.61)

26.70 (3.55)

0.7022 (0.1071)

0.7034 (0.0943)

0.7167 (0.1035)

0.7541 (0.1130)

0.7894 (0.1581)

0.7345 (0.1766)

0.7887 (0.1224)
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Table 4.2. The average PSNR and SSIM, and the corresponding standard deviations

shown in brackets, of the different face-hallucination algorithms with a

magnification factor of 6.

PSNR SSIM

Bicubic interpolation

Eigentransformation method

A variant of Park’s method

Freeman’s method

Liu’s method

Our proposed method

19.40 (1.92)

23.47 (2.68)

24.49 (2.45)

23.15 (2.50)

23.88 (2.65)

24.52 (2.37)

0.5743 (0.0905)

0.6735 (0.0921)

0.7044 (0.1248)

0.6881 (0.1415)

0.6642 (0.1503)

0.7109 (0.1167)

Table 4.2 tabulates the average PSNR and SSIM, and the corresponding standard

deviations, produced by using the very low-resolution images as inputs, with a

magnification factor of 6. It can be seen from Table 4.2 that our method again

outperforms other state-of-the-art algorithms. In addition, we show the statistical

results in terms of the SSIM across all the faces in the database (230 imagesin

total). Instead of showing the SSIM of each face, we group 20 faces and compute

the corresponding average SSIM. And the last 30 faces of the 230 images are

grouped, rather than having groups of 20 and then the final 10. Fig. 4.10 and Fig.

4.11 illustrate the average SSIM for the different face-hallucinationalgorithms with

a magnification factor of 4 and 6, respectively. When the magnification factor is 4,

the performance of Freeman's method is similar to our method, but our method can

achieve a better performance in terms of PSNR. When the magnification factor is

increased to 6, our method is significantly better than Freeman's method in terms of

both PSNR and SSIM. Also our method has a slightly better performance than does

the variant of Park's method. In conclusion, our method can achieve a better

performance statistically.
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Indices of test faces

Figure 4.10: The average SSIM of the different face-hallucination algorithms on

groups of faces (20 faces for each group except the last, which has 30 faces) in the

database, with a magnification factor of 4.

Indices of test faces

Figure 4.11: The average SSIM of the different face-hallucination algorithms on

groups of faces (20 faces for each group except the last, which has 30 faces) in the

database, with a magnification factor of 6.
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4.5 Conclusion and discussion

In this chapter, a novel face-hallucination scheme based on a simple mapping

model is proposed. The superior performance of our algorithm is due to the use of

three different stages in estimating a HR face from a LR face. In the firststage, the

optical-flow method is used to align the facial images. Therefore, the effects of

warping errors can be reduced by using adaptive weighting in the local prior model,

and the method can infer comparably more faithful individual facial structures of

the target HR faces. We have also proved that the major singular values of the

associated eigenvectors of the same image at different resolutions are proportional

to the magnification factor. In the second stage, bicubic interpolation is applied to

the matrices decomposed from the input images by SVD. This method retains the

holistic structure of face images, and the learned mapping matrices, whichare

represented as embedding coefficients of the mapping matrices derived using an

iterative method, can be seen as holistic constraints in the reconstruction of HR

images. Finally, the residual matrix is added, which contains the missing high-

frequency information and details required for face hallucination. Compared to

typical state-of-the-art algorithms, experiments show that our proposed method is

practicable and can produce plausible HR images with both a holistic structure and

high-frequency details.
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Chapter 5 Simultaneous Hallucination and

Recognition of Low-resolution

Faces Based on SVD

Face recognition is an important task for video surveillance. The two primary tasks

for face recognition are face identification and verification. In face identification, a

query face is compared to the gallery faces in a dataset so as to identify its identity.

For face verification, the claimed identity of a query face is verified. Face

recognition can achieve a highly accurate performance under controlled conditions,

such as under frontal light sources, frontal view, no occlusion, neutral facial

expression, etc. However, low-resolution (LR) faces are a difficult problem in the

face-recognition domain. Although current digital cameras can capture imagesat

high resolution, face images captured in outdoor circumstances and at a distance,

with a compressed video format, are usually of low resolution and low quality. To

achieve effective video surveillance, both face hallucination and face recognition

are needed simultaneously.

5.1 Related Work

In the image-processing research field, reconstruction of a high-resolution (HR)

image from its LR inputs is called super-resolution (SR). For face images, this

technology is also called face hallucination [8], which has become one of the most

important fields of face recognition. A lot of face-hallucination methods has

described in the Section 4.1.

Currently, most existing methods focus only on reconstruction, andseldom

consider face recognition and hallucination simultaneously. In [123], an approach

for simultaneous face SR and feature extraction for LR face verification was

proposed. This approach simultaneously provides fitness measures of the SR results

from both the reconstruction and recognition perspectives. In [125],Zou and Yuen

proposed an approach to learn the relationship between the HR image space and the
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very low-resolution (VLR) image space for face SR. The proposed discriminative

SR (DSR) method, with a discriminative constraint, is used to learn the proper

relationship, based on class information, for face-recognition applications.

In contrast to the previous works, we propose a novel and efficient scheme for

the simultaneous hallucination and recognition of LR face images via singular

value decomposition (SVD) and the LR-HR mapping model for the SVD

representation. In our approach, face images are represented using SVD, and the

hallucination and recognition of LR faces are taken into account simultaneously.

We have proved [124] that, based on the Frobenius norm, the corresponding

singular values of an image across different resolutions have approximately a linear

relationship. This makes the estimation of the singular values of HR faceimages

more reliable. Furthermore, the left and right matrices in the SVD representation

can be interpolated to a higher resolution using bicubic interpolation; this

interpolation method applied to these two matrices will not change the holistic

structure or the pattern of the face image. Our proposed approach can be applied to

both face verification and identification.

Our simultaneous face-hallucination and -verification algorithm is denoted as

SHV, As the claimed identity of the query is known, the claim will simply be

rejected if the difference between the singular values of the query and those of the

claimed faces in the database is larger than a certain threshold. If the difference is

smaller than the threshold, super-resolution will be performed basedon the

mapping models learned from the claimed LR-HR face pairs. Then, hallucination

is performed based on the LR-HR face pairs of the claimed identity, and the LR-to-

HR mapping matrices of the respective claimed face pairs are learned for

estimating the high-frequency information or any detailed local features missed in

the estimated HR faces generated by interpolating the two SVD matrices. The

hallucinated faces are then used for verification again On the other hand, the

algorithm for simultaneous face hallucination and identification is denoted as SHI.

In this algorithm,Q faces that are the most similar to the input LR face image are

first searched from a gallery database of LR-HR pairs based on its singular values.

Suppose that theseQ faces belong toM distinct subjects, whereM < Q. For each of
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theseM identities, the corresponding mapping models are learned and used to

super-resolve the query input. Therefore,M HR face images for the LR query are

generated. Then, the differences between each of theM HR face images and the

corresponding HR face images in the database are computed based on PCA. The

input LR face is assigned to the class of the face with the smallest difference. Fig.

5.1 illustrates the proposed framework for simultaneous hallucination and

identification of LR faces based on SVD and the LR-to-HR mapping models.

As is well known, for a novel face which is significantly different from the

training samples, most of the existing learning-based face-hallucination methods

will likely produce artifacts and discontinuities in the reconstruction results. The

face-recognition steps in the proposed approaches have the advantage that the

abovementioned problem can be solved, to a certain extent. If the referred faces do

not have similar holistic structures and patterns to the LR input, these faces will be

rejected during face recognition. Concurrently, with the aid of face recognition, the

estimation of the high-frequency details of the HR face images will becomemore

reliable and effective. Experimental results show that our algorithm is effective and

can produce promising hallucination results.

The rest of the chapter is organized as follows. First, we will present asimple

mapping model for hallucinating SVD matrices. Then we introduce our proposed

face-hallucination and -recognition scheme. An the end, experimental results are

presented and a conclusion of this part is given, respectively.
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Low-resolution probe

Fig. 5.1. The proposed framework for the simultaneous hallucinationand

identification of LR faces, based on SVD and a mapping-model method.

5.2 SVD of Face Images

In the section 4.2, a mathematical framework using SVD has described to

achieve an effective image representation for face hallucination. In simplewords,

the main singular values of the same image under different resolutions are

approximately proportional to each other, with the magnification factorα as the

proportional constant [124, 127].

Q faces which are the most similar to the input LR face are searched from a
gallerydatabaseof LR-HR facepairs,basedon singularvalues.

Suppose that theseQ faces belong toM distinct subjects. Then, for each of theM identities,
the corresponding mapping models are learned and used to super-resolve the query LR input.

1st 2nd 3rd 4th ...... Qth

1st 2nd 3rd ...... Mth

The differences between each of theM HR face images and the corresponding HR face
images in the database are computed in the eigenspace. The input LR face is assigned to
theclassof thefacewith thesmallestdifference.

Result of simultaneous face hallucination and recognition
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By linear algebra, the spectral norm (i.e. the Euclidean norm) of the matrix A is

the largest singular value ofA, i.e.

2 1|| ||A w= . (5.1)

For imageIh and the original LR imageI l, we have:
1

2|| ||h hI w= , and (5.2)

1
2|| ||l lI w= . (5.3)

Since the imageIh, with a magnification factor ofα, has similar values to the

corresponding pixel in the original LR imageI l, we have
2 2h l l 2

I αI a I≅ = . This

is equivalent to:

1 1,h lw wα≅ (5.4)

Then, the linear relationship becomes:
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Now, we can set 1
hw = 0 and 1

lw = 0, the new image '
hI and '

lI can be expressed as

follows:

2

'

0

....

0

0

h

T
h h hk

h

w

I U V
w

 
 
 
 

=  
 
 
  
 

, and (5.6)

2

'

0

....

0

0

l

T
l l lk

l

w

I U V
w

 
 
 
 

=  
 
 
  
 

. (5.7)

The Euclidean norms of the matrix'
hI and '

lI are their corresponding largest

singular values, as follows:
'

2
2|| ||h hI w= , and (5.8)
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'
2

2|| ||l lI w= . (5.9)

Similarly, since ' ' '
2 2 2|| || || || || ||h l lI I Iα α≅ = , we have:

2 2.h lw wα≅ (5.10)

Therefore, the linear relationship becomes:

( ) ( )2 22

3 3

k k
i i
h l

i i

w wα
= =

≅∑ ∑ . (5.11)

Using the principle of mathematical induction, we can also set1
hw = 0, 2

hw = 0 and

1
lw = 0, 2

lw = 0. Thus, we have:

3 3,h lw wα≅ until (5.12)

.k k
h lw wα≅ (5.13)

This proves that the leading singular values of the same image under different

resolutions are approximately proportional to each other with the magnification

factor α. In addition, since the Euclidean norm of the matrixA is the largest

singular value ofA [124, 127], and we can utilize the largest singular value1
hw of Ih

and the largest singular value1
lw of the original LR imageI l, respectively, to

normalize the global feature to form scale-invariant feature vectors as follows:

1/ ,h h hs s w′ = and 1/ .l l ls s w′ = (5.14)

We can see thath ls s′ ′= , which means that the singular values are normalized so

that face images at different resolutions can be compared directly [127].

5.3 Simultaneous Hallucination and

Verification/Recognition of Low-resolution

Faces

For the scheme on simultaneous face hallucination and face recognition, we

consider the algorithms SHV and SHI separately. The major difference between
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these two algorithms is in the selection of the LR-HR training pairs when

performing face super-resolution for face verification and identification.

5.3.1 Simultaneous face hallucination and verification (SHV)

Given a pair of face images, the task of face verification is to verify whether they

belong to the same person identity or not. In our framework for simultaneous face

hallucination and verification, we will first use the singular values of face images as

a global scale-invariant feature vector for their representation according toEquation

(5.14). We define a similarity function,SIM , to measure the similarity between

the input query and the claimed identity in the gallery database, based on singular

values only, as follows:

1 21 2 2
( , ) 1 ,I ISIM I I s s−′ ′= (5.15)

where
2

is the 2L norm, and
1I

s′ and
2I

s′ are the normalized leading singular

values utilizing the largest singular value, i.e. using Equation (5.14), of the input

LR probe and the claimed identity in the gallery database, respectively. Ifthe

difference is larger than the threshold, i.e. 1SIM T ,≤ the claimed face will be

rejected. If the difference between the singular values of the query and the claimed

identity is smaller than a certain threshold, i.e. 1SIM>T , super-resolution will be

performed based on the mapping models learned from the claimed LR-HR face

pairs. And the threshold 1T is set empirically by experiments. Then, the face

hallucination of the input LR face, only using the claimed face pairs as references

for estimation of the mapping functions for interpolating the twomatrices in the

SVD representation, is described in the following.

Suppose thatN face images of the claimed identity in the gallery set can pass the

face-verification process based on singular values, and face images in the gallery

are α × α times of the input LR face imageI l. TheseN face images are down-

sampled to formN pairs of LR and HR training face images, denoted asi
lI and i

hI

(i = 1, ..., N), respectively. The LR training images should have a high structural

similarity to the LR input face after alignment. Based on theN face pairs,N
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corresponding HR face images can be reconstructed from the LR face using the

mapping model scheme, as described in Section 2.2 in Chapter 2.

With the aid of face verification, this will make the reconstructed HR image

more reliable and accurate. In addition, another merit of our proposed algorithm is

that face verification can help prevent from producing artifacts and discontinuities

during the stage of face hallucination. Based on the reconstructed HR faceimages,

combine with Potential-Field Representation of HR face images [127], face

verification can be conducted based on PCA. If the query input is the claimed

identity, the mapping models learned should be correct and effective for the

reconstruction. High verification accuracy can be achieved. Otherwise, i.e. the

query is not the claimed identity, the accuracy should be degraded.

5.3.2 Simultaneous face hallucination and identification (SHI)

For the scheme of simultaneous face hallucination and identification,Q faces

that are the most similar to the input LR face image are first searched froma gallery

database of LR-HR pairs based on its singular values [124], as shown inFig. 5.1.

Suppose that theseQ faces belong toM distinct subjects, whereM < Q, and for

each of theM identities, the corresponding mapping models are learned and used to

super-resolve the query input. Therefore,M hallucinated HR face images

j
hI , 1 2j  , , ...,M,= for the LR query are generated using the face hallucination

algorithm introduced in Section 2.2. Then, the differences between each of theM

hallucinated HR face images and the corresponding HR face images of thej th

distinct subject, 1 2j  , , ...,M,= in the gallery database are computed using the

eigenface method [3].

Fig. 5.1 illustrates the proposed framework for simultaneous hallucination and

identification of LR faces. In our framework, the targeted HRU andV matrices of

the query are computed using the mapping models [124] learned from the LR-HR

pairs of the respectiveM distinct subjects. If the query and the identities of the

subject under consideration are of the same person, the mapping models should be

correct, and hence the HR query face image generated should resemble the

corresponding HR face images in the database. Otherwise, the reconstructedHR
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face is unlikely to be similar to the HR face images of different subjects in the

gallery database. By considering face hallucination and identification

simultaneously, both the face-hallucination and -identification performances can be

improved.

5.4 Experimental results

In order to verify the effectiveness of the proposed schemes, the combined

dataset used in [27, 124] is used to evaluate the performance of our proposed

framework. The facial images in the dataset were selected from the GT [35],AR

[36], and FERET [37] databases, which contain 40, 70, and 500 persons. Five

images from each class with a near-frontal view, neutral expressions, and different

illuminations are randomly chosen for the experiments. Thus, the total number of

images in the database is 610×5 = 3,050 images. All the facial images are well

aligned based on the position of the two eyes, using the method in [128]. The

parametersλ andσ are empirically set at 0.001 and 50, respectively. Experiments

show that using all of the above settings can achieve a satisfactory overall

performance. A number of experiments were conducted to verify the effectiveness

of our schemes. Our proposed SHV and SHI schemes will be evaluated in Section

5.4.1 and Section 5.4.2, respectively.

5.4.1 Experiments on Simultaneous Face Hallucination and Verification (SHV)

The task of face verification is to determine whether a pair of face images belong

to the same person. In the experiments, the database consists of 3,050 face images

of 610 distinct subjects, the original HR facial images are cropped to a size of

72×64 pixels, and the LR faces are of size 18×16 pixels. We followed the standard

10-fold cross-validation over the combined database in the experiments for face

verification. The similarity functionSIM defined in Equation (5.15) is used to

measure the similarity between an input query and the claimed identity in the

gallery database for face verification.

In this section, we evaluate the effectiveness of the proposed face-verification

approach. The PCA-based algorithm [3] (also known as eigenfaces) is a benchmark
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for appearance-based and image-based face recognition/verification approaches [1].

Therefore, it is used in these experiments to illustrate the effectivenessof our

algorithm. As in [33, 34], the 1L norm distance metric is used, which is a more

suitable distance measure than the Euclidean distance metric (2L ) for PCA-based

algorithms. The state-of-the-art algorithm proposed in [123] forrecognition of low-

resolution faces, namely 2 2S R , is employed for comparison. Furthermore, two

more state-of-the-art methods, namely the discriminative constraint-based DSR

method [125], which employs the class-label information, and the coupled kernel

embedding (CKE) feature-extraction method [126], are also compared for LRface

recognition. For the DSR method [125], images from 610 persons (one per person)

are randomly selected to form the training set, and the rest of the images form the

testing (probe) set. As in [125], the training pairs are clustered using linearity

clustering, so that the relationship between the data pairs in each cluster can be

linearly approximated. Following [126], 610 images are also randomlyselected

from the database, and projection directions are train using the Gaussian-kernel-

based CKE algorithm. The kernel parameter is set at 3, and 40 features in the

embedding space are extracted for matching.

Figure 5.2 shows the identification accuracy (IDA), which is the percentage of

the probes that are correctly identified by an algorithm. As shown in Fig. 5.2, the

PCA-based algorithm achieves an IDA of 32.36% only. The performance of the

2 2S R algorithm can further improve the IDA significantly, to 46.05%. Both the

DSR and CKE methods produce good recognition results compared to thatof the

PCA-based algorithm, which are 53.22% and 52.35%, respectively. Our proposed

SHV method can increase the IDA to 54.11%, i.e. achieving a better performance

than both the DSR-based algorithm and the CKE algorithm. These experimental

results prove that our proposed scheme is effective.
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Eigenfaces[3] 2 2S R [123] DSR[125] CKE [126] Our SHV method

Figure 5.2. Identification accuracy (IDA) for different algorithms.

The receiver operating characteristics (ROC) curve, which is constructed from

the true-positive rate (TPR) and the false-positive rate (FPR) by changing the

threshold, is shown in Figure 5.3. The ROC characteristics show that the proposed

SHV method outperforms the other, state-of-the-art methods. In addition, each

ROC curve can be summarized by the area under the ROC curve (AUC). Therefore,

AUC is also used as a quantitative measure for the evaluation of different

algorithms. Table 5.1 shows that our proposed method is superior interms of AUC,

compared to other algorithms.
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Figure 5.3. Receiver operating characteristics (ROC) curve for the different

algorithms.

Table 5.1. AUC of five different scheme.

Eigenfaces 2 2S R DSR CKE Our SHI method

AUC 0.6595 0.7471 0.7763 0.7649 0.7954

The input LR face can be hallucinated by using the respective mapping models

for the matricesU andV based on the LR-HR face pairs of the claimed identity. For

comparison, two interpolation algorithms, namely the bicubic-interpolation

algorithm [40] and the edge-directed interpolation (NEDI) method [41], are applied

for face hallucination. Five more state-of-the-art face-hallucination algorithms are

also compared to our proposed method: two PCA-based, holistic SR methods (the

eigentransformation method [20] and a variant of Park’s method [21]); one patch-

based method (Freeman’s method [15]); Liu’s method [22] based on a global

parametric model and a local nonparametric model; and a SVD mapping-based

method [124]. The version of Park’s method used in this chapter is different from

the original algorithm in [21] in that the training images are warped with reference

to the LR input face rather than with reference to a predefined reference face.

In the experiments, we evaluate all the methods by reconstructing the HR facial

images with a magnification factor of 4. All the testing images of resolution 18×16

pixels are evaluated using the “leave-one-out” approach. Two objective quality
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measures, PSNR (peak signal-to-noise ratio) and SSIM [39], are used toevaluate

the performances of the different methods.

Fig. 5.4 shows some samples of the reconstruction results generated using the

different state-of-the-art face-hallucination algorithms, with a magnification factor

α=4. It can be seen from Fig. 5.4(b) that the bicubic-interpolation algorithm

produces the blurriest results. The results in Fig. 5.4(c) are generated using the

NEDI method. However, if a face image has a very low resolution (i.e. below

18×16 pixels), the NEDI method struggles to distinguish edges, andhence also

produces blurry results as compared to the other SR methods. Figs. 5.4(d) and 5.4(e)

are the results generated by using the eigentransformation method and the variant

of Park’s method, which are both holistic/global face-hallucination methods.

Plausible face structures can be well inferred in the resulting HR images,and show

a better visual quality than both the bicubic-interpolation and the NEDI algorithms.

Nevertheless, as the method is purely holistic, it cannot effectively reconstruct the

fine individual facial details of those novel testing faces. If a testing face image is

very different from the faces in the database, infidelity will result in the

reconstructed HR faces. Park's method employs the morphable face model to

capture the shape variations of novel testing faces, so it outperforms the

eigentransformation method. However, the HR textures are still reconstructed in a

holistic manner, like the eigentransformation method. The face-hallucination results

using the patch-based SR methods are illustrated in Fig. 5.4(f). It canbe seen that

Freeman’s method can provide plausible HR facial images with sharp edges and

corners. However, as some of the patches are badly matched or conflict with

adjacent ones, some structural errors and discontinuities appear in the reconstructed

HR images; these errors are the drawbacks of most patch-based SR methods.

Furthermore, patch-based SR usually requires a large number of image-patchpairs

for learning, and therefore is computationally expensive. In addition, there are

artifacts in the reconstructed HR images, as shown in Fig. 5.4(f). Compared with

the holistic-based and the patch-based approaches, Liu’s method [22] utilizes both

global and local prior information through a global parametric modeland a local

nonparametric model. Thus, as shown in Fig. 5.4(g), the method can produce not
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only visually plausible face structures, but also fine details or textures like those in

the HR training images. However, some parts of the hallucinated faces, such as the

mouth, are somewhat different from the original face. This can be partially

attributed to the properties of the PCA-based global model used in thisapproach.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5.4: Face-hallucination results reconstructed using different methods with a

magnification factor of 4: (a) the original images, (b) bicubic interpolation, (c)

NEDI, (d) the eigentransformation method, (e) a variant of Park’s method, (f)

Freeman’s method, (g) Liu’s method, (h) the SVD mapping-based method, and (i)

our proposed SHV method.
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Unlike Liu’s method, our proposed framework can retain the main energy ofLR

faces, meanwhile the mapping scheme and the residual matrix can produce high-

resolution results affectively with clear details, as shown in Fig. 5.4(h). In this

chapter, our proposed framework for simultaneous verification and hallucination of

LR faces can select similar holistic structures and patterns with the LR input during

the stage of face verification. It has the advantage of preventing the algorithm from

producing artifacts and discontinuities in the reconstruction results, and the

estimation of the high-frequency details of the HR face images will becomemore

reliable and effective. As can be seen from Fig. 5.4(i), plausible HR images with a

holistic structure and more details with a better visual quality can beobtained.

Table 5.2 tabulates the average PSNR and SSIM of the different methods with a

magnification factor of 4. The results show that our method is superior, in terms of

both the two measurements, to the other, state-of-the-art algorithms.

Table 5.2. The average PSNR and SSIM of the different face-hallucination

algorithms with a magnification factor of 4.

Face-hallucination algorithms PSNR(dB) SSIM

Bicubic interpolation

NEDI

Eigentransformation method

A variant of Park’s method

Freeman’s method

Liu’s method

Mapping method

Our proposed SHV method.

Our proposed SHI method.

19.32

19.58

21.58

22.07

22.34

21.86

22.69

22.72

22.83

0.5507

0.5585

0.6392

0.6410

0.6515

0.6443

0.6532

0.6627

0.6685

5.4.2 Experiments on Simultaneous Face Hallucination and Identification (SHI)

In this section, extensive experiments were performed to evaluate the

effectiveness of the proposed simultaneous face hallucination and identification
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(SHI) algorithm. In the experiments, LR faces of three different resolutions, 18×16,

16×14, and 14×12 pixels are considered. The number of searched facesQ is set at

40, i.e. Q = 40 faces that are the most similar to the input LR face are searched

from a gallery database of LR-HR face pairs based on singular values using

Equation (11). A face of each subject is randomly selected in the database to form a

gallery dataset, while the remaining faces are used for testing in the experiments.

Eigenfaces are used to measure the differences between each of theM hallucinated

HR face images and the corresponding HR face images in the gallery dataset.

For comparison, the state-of-the-art methods used in Section 5.4.1 are also

performed for LR face recognition. Table 5.2 tabulates the average recognition

rates of the different state-of-the-art algorithms for the LR faces of three different

resolutions. We can see that, for LR faces with 18×16 pixels, the average

recognition rate of the PCA-based algorithm [3] is 39.44% only. Theaverage

recognition rate of the 2 2S R algorithm [123] achieves 55.70%. Both the DSR[125]

and CKE[126] can further improve the average recognition rate significantly to

71.66% and 71.24%%, respectively. Our proposed SHI method can achieve the

best average recognition rate of 72.15%.

When the LR faces are reduced to the resolution of 16×14 and 14×12 pixels, the

recognition performances of all the methods degrade. For the resolution of 16×14

pixels, the DSR [125] and CKE [126] methods achieve recognition rates of70.85%

and 70.32%, respectively; this is much better than that of the PCA-based algorithm

[3], which is 37.11%. The average recognition rate of our proposed SHI method is

71.33%. When the resolution is 14×12 pixels, the PCA-based algorithm [3], the

DSR [125] method, and CKE [126] method achieves recognition rates of 34.06%,

69.19%, and 68.85%, respectively. Our proposed SHI method outperforms all these

methods, and achieve a recognition rates of 69.50%; this shows the effectiveness of

our proposed method.
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Table 5.3. The average recognition rates of five different face recognition schemes

with the LR faces of sizes 18×16 pixels and 16×14 pixels, respectively.

Average

recognition rates

Eigenfaces 2 2S R DSR CKE Our SHI

method

18×16 39.44% 55.70% 71.66% 71.24% 72.15%

16×14 37.11% 53.05% 70.85% 70.32% 71.33%

14×12 34. 06% 51.88% 69.19% 68.85% 69.50%

Fig. 5.5, Fig. 5.6, and Fig. 5.7 show the recognition performance ofthe different

methods in terms of the cumulative matching characteristic (CMC) curve,which

evaluates the ranking capability of an identification algorithm, when theresolutions

of the LR faces are 18×16, 16×14, and 14×12 pixels, respectively. From these

results, we can see that our proposed SHI method outperforms the other state-of-

the-art algorithms.

Figure 5.5. The cumulative matching characteristic (CMC) curves of the different

methods with the LR faces of size 18×16 pixels.
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Figure 5.6. The cumulative matching characteristic (CMC) curves of different

methods with the LR faces of size 16×14 pixels.

Figure 5.7. The cumulative matching characteristic (CMC) curves of the different

methods with the LR faces of size 14×12 pixels.
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For simultaneous face hallucination, Table 5.2 also tabulates the average PSNR

and SSIM of the proposed simultaneous face-hallucination and -identification (SHI)

method with a magnification factor of 4. From Table 5.2, it can be seen thatour

SHI method is superior to the different state-of-the-art methods, in term of the

average PSNR and SSIM. Table 5.3 and Figs. 5.5, 5.6, and 5.7 show that our

proposed SHI method is superior in terms of the recognition rate and the CMC

curve compared to other, state-of-the-art face-identification algorithms. These

experimental results prove that our proposed scheme of simultaneousface

hallucination and identification is effective, and can achieve excellent performance.

5.5 Conclusion and discussion

A novel approach for simultaneous hallucination and recognition of LR faces has

been proposed. In our framework, hallucination and recognition of LR facesare

taken into account simultaneously. Our proposed scheme can retain the holistic

structure and the high-frequency details of face images, and outperforms other,

state-of-the-art algorithms in terms of PSNR and SSIM. Experiments have shown

that our proposed method is practicable and can produce plausible HR images with

both a holistic structure and high-frequency details. Meanwhile, experiment results

also demonstrate that our proposed simultaneous framework can achieve superior

results for both face verification and identification.
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Chapter 6 Conclusion and future

work

In this thesis, we have firstly introduced face recognition and some ofits current

typical challenging problems. Although these typical challenging problems have

attracted increasing attention in recent years, they are still ongoing and tough issues

for robust face recognition.

Concerning Chapter 2 to Chapter 5: we have presented the accurate eye-

detection problem in Chapter 2, the illumination-variation issue in Chapter 3, the

low-resolution problem in Chapter 4, and the simultaneous hallucination and

recognition of LR faces in Chapter 5. In this final chapter, we will summarize the

main contributions of this research, and discuss some possible future research

directions based on the work presented in the previous chapters.

6.1 Summary and conclusions

This thesis concentrates on some typical challenging problems for current face

recognition. We have surveyed three fields and the work described in this thesis

involves the following research:

(1) the accurate eye-detection problem in Chapter 2. Since accurate eye

detection is an important problem for robust face recognition, in this chapter, an

efficient hierarchical scheme is proposed for accurate facial-feature detectionand

localization. The proposed algorithm, which is non-iterative and computationally

simple, achieves a superior performance compared to other state-of-the-art methods.

(2) the illumination-variation issue in Chapter 3. In this chapter, we

introduces a facial-image lighting-compensation and -enhancement algorithm for

face recognition. The advantage of the proposed method is that the assumption of a

single-point light source is not required, so it circumvents and overcomes the

limitations of the Lambertian model and is also suitable for outdoorcircumstances.
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(3) the low-resolution problem in Chapter 4. We presented a novel face-

hallucination scheme based on singular value decomposition, which is effective in

terms of producing plausible HR images with both a holistic structure and high-

frequency details.

(4) the issue of simultaneous hallucination and recognition of LR facesin

Chapter 5. In this chapter, a novel approach for simultaneous hallucination and

recognition of LR faces has been proposed. In our framework, hallucinationand

recognition of LR faces are taken into account simultaneously. Our proposed

scheme can retain the holistic structure and the high-frequency details of face

images, and outperforms other, state-of-the-art algorithms in terms ofPSNR and

SSIM. Experiments have shown that our proposed method is practicable and can

produce plausible HR images with both a holistic structure and high-frequency

details. Meanwhile, experiment results also demonstrate that our proposed

simultaneous framework can achieve superior results for both face verification and

identification.

6.2 The new contributions in this thesis

In this thesis, we have made a number of new contributions to the research

community of current face recognition. It is believed that this thesis contains the

following original work and new contributions:

� Chapter 2 - The accurate eye-detection problem for robust face recognition:

an efficient hierarchical scheme, which is robust to illumination and pose

variations in face images, is proposed for accurate facial-feature detection

and localization. In our algorithm, having detected a face region using a

face detector, a wavelet-based saliency map− which can reflect the most

visually meaningful regions− is computed on the detected face region. As

the eye region always has the most variations in a face image, the coarse

eye region can be reliably located based on the saliency map, and verified

by means of principal component analysis. This step in the proposed

hierarchical scheme narrows down the search space, thereby reducing the

computational cost in the further precise localization of the two eye
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positions based on a pose-adapted eye template. Moreover, among the

facial features, the eyes play the most important role, and their positions

can be used as an approximate geometric reference to localize the other

facial features. Therefore, localization of the nose and mouth can be

determined by using the saliency values in the saliency map and the

detected eye positions as geometric references. Our proposed algorithm is

non-iterative and computationally simple. Experimental results show that

our algorithm can achieve a superior performance compared to other state-

of-the-art methods.

� Chapter 3 - The illumination-variation issue: For this issue, we propose a

novel scheme for generating illumination-invariant face images using

illumination compensation and enhancement, which is applied to face

recognition. It is reasonable to assume that the variations of the face

surface-reflectance representation matrix, which reflects the intrinsic

property of a face surface of the same person under different illumination

conditions are small, while the dissimilarity between images of the same

person under different illumination conditions is mainly caused by the

differences in the illumination-effect matrix. In this chapter, the proposed

scheme learns the average illumination-effect matrix for face image

representation under changing illumination, which can be used to

compensate or enhance images, and to eliminate the effect of different and

uneven illuminations while retaining the intrinsic properties of the face

surfaces. The advantage of our method is that the assumption of a single-

point light source is not required, so it circumvents and overcomes the

limitations of the Lambertian model and is also suitable for outdoor

circumstances. Experimental results have produced promising results,

which demonstrate the effectiveness of our proposed method.

� Chapter 4 - The low-resolution problem: In this chapter, an efficient

mapping model based on singular value decomposition (SVD) is proposed

for face hallucination. We observe and prove that the main singular values

of an image at one resolution have approximately linear relationships with
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their counterparts at other resolutions. This makes the estimation of the

singular values of the corresponding high-resolution (HR) face images from

a low-resolution (LR) face image more reliable. From the signal-processing

point of view, this can effectively preserve and reconstruct the dominant

information in the HR face images. Interpolating the other two matrices

obtained from the SVD of the LR image does not change either the primary

facial structure or the pattern of the face image. The corresponding two

matrices for the HR face images can be constructed in a “coarse-to-fine”

manner using global reconstruction. Our proposed method retains the

holistic structure of face images, while the learned mapping matrices,

which are represented as embedding coefficients of the individual mapping

matrices learned from LR-HR training pairs, can be seen as holistic

constraints in the reconstruction of HR images. Compared to state-of-the-

art algorithms, experiments show that our proposed face-hallucination

scheme is effective in terms of producing plausible HR images with botha

holistic structure and high-frequency details.

� Chapter 5 - The simultaneous hallucination and recognition of LR faces: A

framework based on singular value decomposition (SVD) for performing

both face hallucination and recognition simultaneously is proposed in this

thesis. Conventionally, low-resolution (LR) face recognition is carried out

by super-resolving the LR input face first, and then performing face

recognition to identify the input face. By considering face hallucinationand

recognition simultaneously, the accuracy of both the hallucination and the

recognition can be improved. In our algorithm, each face image is

represented by using SVD. For each LR input face, the corresponding LR

and high-resolution (HR) face-image pairs can then be selected from the

face gallery. With the aid of face recognition, using the selected LR-HR

pairs, the estimation of the mapping functions for interpolating the two

matrices in the SVD representation of the corresponding HR face image

can be more accurate. Therefore, the final estimation of the high-frequency

details of the HR face images will become more reliable and effective.
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Experimental results demonstrate that our proposed framework can achieve

promising results for both face hallucination and recognition.

6.3 Future work

This thesis has presented a number of new ideas and techniques, which are just a

snapshot of our on-going research undertaken in the field of robust face recognition.

In this section, some directions for possible future research will bediscussed.

Future research may be carried out in the following fields:

(1) The pose problem: This is another typical challenging problem forface

recognition at present. We will explore an accurate algorithm to reconstructthe 3D

face for pose-invariant face recognition. As one of the effective technologies for

capturing 3D surface information, Photometric Stereo, has attracted widespread

attention. A face image can be seen as a special texture, and Photometric Stereo can

capture more 3D information than traditional shape-from-shading techniques,

therefore an accurate algorithm to reconstruct the 3D surface is useful and

important for robust face recognition and face representation. In thefuture, we will

focus on accurate algorithm to reconstruct the 3D face for pose-invariant face

recognition.

(2) The occlusion issue: Currently, occlusion is another tough issuefor

robust face recognition. To continue our work, we will conduct research on

effective local features for occluded face representation. We will also analyze and

compare the effectiveness and efficiency of different local features to represent

occluded faces; this can help to either determine or devise optimal local featuresto

represent an occluded face for robust occlusion-insensitive face recognition.

(3) In the future, all of these techniques will then be integrated and

combined with both existing and new face-recognition algorithms. We will

investigate these related techniques to devise a compound framework suitable for

face verification/recognition, develop efficient algorithms to alleviate the effect of

uneven lighting on faces, study how to best combine multi-view face hallucination

and pose-invariant face recognition, evaluate the relative performances of applying
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SR and face recognition, design an accurate algorithm to reconstruct 3D faces, and

investigate robust occlusion-insensitive face recognition, in order to achieve a

robust and good performance level.
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