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Abstract

This thesis is mainly focused on the theoretical studies on some models arising in
chemotaxis and magnetohydrodynamic turbulence. The main results of this thesis
consist of the following three parts.

1. A quasilinear parabolic volume-filling chemotaxis model with critical sensitiv-
ity in two dimensions is considered. In this study, a threshold number is explicitly
found such that the solution exists globally with uniform-in-time bound or blows
up if the initial cell mass is less than or greater than this number. Furthermore we
determine the blowup time is infinite under certain conditions on the decay rate of
the chemotactic sensitivity.

2. We consider the initial-boundary value problem of the attraction-repulsion
Keller-Segel (ARKS) chemotaxis model describing the quorum effect in chemotaxis
and the aggregation of Microglia in the central nervous system in Alzhemer’s disease.
First, we study the asymptotic behavior of solutions to the ARKS chemotaxis model
in one dimension, where we obtain the uniform-in-time boundedness of solutions
and prove that the model possesses a global attractor. For a special case where
the attractive and repulsive chemical signals have the same degradation rate, we
show that the solution converges to a stationary solution algebraically as time tends
to infinity if the attraction dominates. In two dimensional spaces, we show that
if the repulsion dominates over attraction, then the global classical solutions exist

with uniform-in time bound for large initial data. Moreover we present a Lyapunov

vii



function at the first time for the irreducible three-component attraction-repulsion
chemotaxis model which plays a central role to obtain our results.

3. We establish the asymptotic nonlinear stability of solutions to the Cauchy
problem of a strongly coupled Burgers system arising in magnetohydrodynamic
(MHD) turbulence. We show that, as time tends to infinity, the solutions of the
Cauchy problem converge to constant states or rarefaction waves with large ini-
tial data, or viscous shock waves with arbitrarily large amplitude, where the precise
asymptotic behavior depends on the relationship between the left and right end states
of the initial value. Our results confirm the existence of shock waves (or turbulence)

numerically found in the literature.
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Chapter 1

Introduction

For the living organisms, an essential feature is the ability to sense signals in the
environment and change their movement accordingly. A response to an external
stimulus is generally called taxis. There are many different tactical responses such as
chemotaxis, galvanotaxis and phototaxis. In this thesis, I will focus on chemotactical
movement of mobile species, which can lead to various different pattern formation.
Chemotaxis can be either positive or negative depending on whether it is toward or
away from the external signal. The substances that lead to positive chemotaxis are
chemoattractant and those leading to negative chemotaxis are so called repellents.
Mathematical analysis of the chemotaxis phenomena has become more and more
important in understanding these complex processes. Theoretical and mathematical
modelling of chemotaxis dates to the pioneering works of Patlak in the 1950s [78] and
Keller and Segel in the 1970s [49, 50]. Cell aggregation is one of the characteristic
consequences of chemotaxis. This phenomenon has been shown to lead to finite
time blowup under certain formulations of the model, a sequence of elegant works
has been devoted to determining whether blow-up occurs or global solution exists.
Part of this thesis will be focused on the study of the global existence and blow-up
of solution to the chemotaxis models with volume-filling effect and quorum sensing

effect.



The three-dimensional motion of compressible magnetohydrodynamic (MHD) e-
quations were proposed [7, 13, 53] to describe the dynamics of MHD fluid such as
macroscopic plasma motions and dynamic process in the outer core of the earth,
however, which are too complicated to investigate small scale structure of the MHD
turbulence by direct numerical simulations. To remedy this defect, a new one-
dimensional MHD-Burgers system was derived in [24, 103]. This new system is
the simplest possible system allowing energy transfer between the fluid and mag-
netic field excitations. In this thesis, asymptotic behavior of solutions of the new

one-dimensional MHD-Burgers system will be investigated.

1.1 Main Results of the Thesis

In this thesis, I will focus on the theoretical studies on some models arising in chemo-
taxis and magnetohydrodynamic turbulence. The organization of this thesis is as
follows.

In the rest of chapter 1, the motivations and main results of our studies will
be given. The known results related to the models studied in the thesis will be
introduced along the presentation.

Chapter 2 deals with a quasilinear parabolic volume-filling chemotaxis model with
critical sensitivity in two dimensions. The chemotaxis models with volume-filling
effect were initially proposed by Painter and Hillen [30, 77]. The basic assumption
of the volume-filling effect is that cells have a finite volume and can not move into
regions which are already filled by other cells. The global existence and asymptotic
behavior of solutions as well as pattern formation have been studied in the literature
(30, 44, 79, 93, 100, 101, 105] under the assumption that there is a maximal density
U, nae Of cells at which chemotaxis vanishes. For the case that there is no value of u

at which chemotaxis is switched off (i.e., chemotaxis vanishes as u — c0), only few



results are known. First, the stationary state and global dynamics of such type of
volume-filling chemotaxis model were established in [56, 106] in one dimension. In the
higher dimensions, the global-in-time weak solutions were obtained in [14, 16] with
the cell kinetics or the chemotactic sensitivity decaying fast enough. In chapter 2, I
will study the volume-filling chemotaxis model as in [56, 106] with critical sensitivity
in two dimensions. A threshold number of cell mass is explicitly found such that
the solution exists globally with uniform-in-time bound if the initial cell mass is less
than this number and blows up in finite or infinite time if the initial cell mass is
greater than this number. Furthermore we determine the blowup time is infinite
under certain conditions on the decay rate of the chemotactic sensitivity.

In chapter 3, I will study the global dynamics of the attraction-repulsion Keller-
Segel (ARKS) chemotaxis model. A striking feature of the classical attractive Keller-
Segel system is the finite-time blowup of solutions in two dimensions when the initial
cell mass is larger than a threshold number (see the details in the section 1.2.1). The
ARKS chemotaxis model was first proposed in [63], which has been mathematically
studied in the literature [60, 63, 77, 85]. In this chapter, I will study the ARKS
chemotaxis model further in different aspects. First, I explore the asymptotic dy-
namics of the ARKS model in one dimension [46], which improves the results of [60]
by deriving a uniform-in-time bound for solutions and furthermore prove that the
model possesses a global attractor. Second, if repulsion prevails over attraction, the
globally bounded classical solutions exist for large initial data will be obtained in
two dimensions. Moreover, a Lyapunov function is obtained at the first time for the
irreducible three-component ARKS model which plays a central role to obtain our
results.

In chapter 4, I will study the asymptotic nonlinear stability of solutions to the
Cauchy problem of a strongly coupled Burgers system arising in MHD turbulence

[24, 103]. Based on the theory of conservation laws, the nonlinear stability of con-
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stant states or rarefaction waves with large initial data, or viscous shock waves with
arbitrarily large amplitude will be established [47].
Chapter 5 briefly summarize the results obtained in this thesis and present some

research problems that I will pursue in the future.

1.2 Introduction of the Models
1.2.1 Keller-Segel Chemotaxis Model

To describe the motion of cells toward the gradient of a substance called chemoat-

tractant, the following chemotaxis model was first proposed by Keller and Segel [49]

u =V - (D(u)Vu — xop(u)Vv), ze€Qt>0

T = Av + au — P, ret>0
u_ o _ g (1.2.1)
woa =Y IE@Q,Z’:>O,

u(z,0) = up(z), v(z,0) =vo(z), x€Q,

where u(x,t) denotes the density of the cells population and v(z,t) represents the

concentration of the chemoattractant, € is a bounded domain of R™(n > 1), a%
denotes outward normal derivatives on 0, y, «, [ are given positive constants. T is
a constant equal to 0 or 1 justifying whether the change of chemicals is stationary or
dynamical in time. In this subsection, I will briefly review some results concerning
the blowup or global existence of solutions to the chemotaxis model (1.2.1).

If D(u) =1, ¢(u) = u, model (1.2.1) was called the minimal or classical chemo-
taxis model, which has been extensively studied in various aspects. It was first
conjectured by Nanjundiah [73] that the aggregation of cells may eventually lead to
singularities. Moreover due to the conservation of cell mass, the singularities can only
be of d-function type. This phenomenon was called chemotactic collapse or blowup.

Based on the numerical computations for the steady state, Childress and Percus

[10, 11] pointed out that the singular behavior of the solution is a phenomenon de-



pending on the space dimension, and showed that the singularity behavior was not
possible in one dimension. While in higher dimensions (n > 2), they confirmed
Nanjundiah’s argument that blowup can occur and argued that chemotactic blowup
requires a threshold number of cell mass in two dimensions. Subsequently, a se-
quence of elegant works on the critical mass problem of the classical chemotaxis
model have been established. For the parabolic-elliptic case (7 = 0), by substi-
tuting the second equation to the first equation and then constructing a radially
symmetric lower solution for the first equation of model (1.2.1), Jager and Luckhaus
[42] proved that there exists a radially symmetric solution can blow up for suitable
initial mass {;, uo(x)dz in two dimensions. Precisely, they showed that there exists
a critical number mg such that if SQ uo(x)dr < my, the solution exists globally in
time, and the solution blows up in a finite time if §, ug(x)dz > mq. After Jéger and
Luckhaus’ paper in 1992s, the next progress was made by Nagai in [68], in which
the critical number mq was identified to be 87 /ay. He showed that blowup cannot
occur if n = 1, or if n = 2 and Q is a ball and wy(z) is radially symmetric such
that {,uo(x)de < 8m/ay, whereas blowup occurs if {,uo(x)de > 8m/ax. Global
existence and blowup results for nonradial solutions or for general domain €2 can also
found in references [6, 68, 72, 71, 70, 69, 81]. Coming to the full parabolic-parabolic
chemotaxis model (7 = 1), Osaki and Yagi [76] showed that the solution of model
(1.2.1) exists globally in time and converges to a stationary solution as ¢ — o0 in
one dimension. In two dimensional spaces, the critical mass phenomenon has been
found. First, if {, uo(z)dz < 4m/ay, it was proved in [6, 27, 34, 72] that the solutions
exist globally in time with uniform-in-time bound. If §, uo(x)dz > 47 /ax, then there
exists initial data such that the corresponding solution blows up either in finite or
infinite time [34, 38, 80, 29, 35, 36]. Specially, if 47 /ay < {, uo(z)dz < 8m/ay, then
the corresponding solution blows up at the boundary of €2 either in finite or infinite

time. Here, we should point out that the proof of global existence or blow up of
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solutions was based on the existence of a Lyapounv functional of chemotaxis model
(1.2.1). Furthermore, the low energy initial data can been constructed such that the
corresponding solution of chemotaxis model (1.2.1) blows up, and we shall call this
method as ‘low energy method’ in this thesis (see chapter 2 for details). However,
we can not confirm that whether the blowup occurs in finite time or in infinite time
by using the low energy method. The only finite time blowup result was obtained in
[29] by using the asymptotic expansion method, where it was shown that that there
exists a radially symmetric solution of model (1.2.1) which blows up in finite time.
However this result only refers to one single unbounded solution, hence leaving open
the possibility that finite-time aggregation might be a non-generic, unstable phe-
nomenon. Recently, the low energy method has been successfully used in [96, 97, 98]
to established the finite time blowup of solutions independent of the size of initial
mass in dimensions n > 3 for the full parabolic chemotaxis model. At last, we should
point out that for the general case, the global existence and blowup of solutions in

higher dimensions have been studied in a large body of works [19, 17, 39, 86, 99, 97].

b(u)

It was shown that the ratio D
u)

ocu? for u > 1 plays an essential role. If § < %, it has
been proved that the solutions globally exist with uniform-in-time bound, whereas if
0 > 2 for cach initial mass {, ug(z)dz > 0, there exists finite time blow-up solution.
For the critical sensitivity case 6 = %, it was suspected (not confirmed) that there is a
critical mass mg beyond which solutions blow up and below which solutions globally
exist.

The blowup results reflect the initial ‘self-aggregation’ and the existence of blowup
solutions is of interest mathematically. Since the blowup is an extreme case, a large
number of ideas were proposed to modify the classical Keller-Segel chemotaxis model
such that global bounded solutions of modified models are admitted, see a review

article [31] and recent development in [12, 32]. In this thesis, I will study the dy-



namics of the chemotaxis models with volume-filling effect [14, 56, 77, 106] and
attraction-repulsion mechanism [60, 61, 63, 77, 85], which are two important mech-

anisms developed to regularize the classical chemotaxis model.

1.2.2 MHD-Burgers Model

To depict the dynamics of magnetohydrodynamic (MHD) fluid such as macroscopic
plasma motions and the dynamic process in the out core of the earth, the following

three dimensional compressible MHD equations were proposed in [7, 13, 53]

%4 (v-V)p+pV-v =0,

%+ (v V)V = = Vp = o x (V) + 24V + 3¢+ ).
%= Vv ) 4t

V.-u=0,

(1.2.2)

where v denotes the velocity, u stands for the magnetic field, p is the pressure and g
is the magnetic permeability of the vacuum, 1 and ¢ are the viscosity coefficients, and
i is the magnetic diffusivity. Since the MHD equations (1.2.2) are too complicated
to investigate the small scale structure of the MHD turbulence even by numerical
simulations, it is necessary to build a simpler model which, however, still contains es-
sential features of the MHD turbulence. For this reason, a new one dimensional MHD
Burgers system was established in [24, 103] by assuming the following conditions:

(i) Turbulence field depends on one-dimensional space variable = and time t.

(ii) Velocity field has only the z-component as v(z,t) = v(x,t)i.

(iii) Magnetic field has only the y-component as u(z,t) = u(x,t);j.

(iv) Density p is put constant pg in the equations for the velocity and the magnetic
fields.

(v) The pressure term p‘lg—i is neglected.

With suitable scalings (see [24, 103] for details), the system (1.2.2) can be trans-



formed into the following MHD Burgers system

{Ut + (UU)x = Duy,, (123)

v+ (3u? + %Uz)x = Vg

In this model, the turbulence is represented by an ensemble of Alfvenic shock waves
on a homogeneous density background. The one-dimensional Burgers-model analog
of MHD is by far the simplest set of nonlinear, coupled partial differential equation-
s with symmetries and conservation laws akin to those in three dimensional MHD
system. It was also shown in [24] that the MHD-Burgers system (1.2.3) is the sim-
plest possible system allowing energy transfer between the fluid and magnetic field
excitations. Furthermore, the dissipation terms and wavelike propagation are similar
to the three dimensional MHD system. Therefore, the study of the one-dimensional
MHD-Burgers system can provide some insight into the three dimensional MHD
system. Moreover system (1.2.3) may also be used to model the opposite limit of
a fluid-dominated (i.e., unmagnetized) system with arbitrary density variations re-
acting to an adiabatic pressure [24]. For more applications of (1.2.3), we refer the
readers to [25, 54, 89]. Using the Elsasser variables et = v + u, system (1.2.3) is
transformed into

det 0 (e*)? pu+ Dt pu—DPet
= + .
ot odxr 2 2 022 2 022

(1.2.4)

If D = p, then e~ and et do not interact each other and system (1.2.3) can be
reduced to two independent viscous Burgers equations for et and e, respectively.
For this special case a shock type solution was obtained. The nontrivial case D # pu
reveals more interesting interactions between the fluid and the magnetic field [24].
In this thesis, I will study the asymptotic behavior of solutions of system (1.2.3),
which confirm the numerical results in the literature [24, 103] about the existence of

shock waves.



Chapter 2

Volume-Filling Chemotaxis Model

2.1 Introduction
In this chapter, we will study the following volume-filling chemotaxis model

u = V- (D(u)Vu — xo(u)Vo), ze€Q,t>0

v = Av + au — Sv, ret>0 (2.1.1)
Qu— v =, zedt >0, o
U([L’,O) =U,O<.’I)), U(.CL',O) :UO(x)7 z €,

where D(u) and ¢(u) satisfy following relations
D(u) = q(u) = uq'(u), ¢(u) = ug(u), u =0, (2.1.2)

where g(u) denotes the probability that the particle attains a position (x,t) if the
density of cells at this position equals u. Such kind of model was first proposed by
Hillen and Painter [77] based on a biased random. The first version of the volume-
filling chemotaxis model has been studied in [30] under the assumption that there is
a maximal density of cells at which chemotaxis vanishes. Based on the investigation
of the biology that stands behind assumptions they put on the model in [30], it was
suggested considering the second version of the volume-filling chemotaxis model in
[77], in this case there is no value of u at which chemotaxis is switched off (i.e.,
q(u) > 0 and ¢(u) — 0 as u — o0). In this chapter, we will study the second

9



version of the volume-filling chemotaxis model further. More precisely, we consider
an interesting example of ¢(u) = (14 u) (A > 0). Then from (2.1.2) we can deduce

that

1+ (T4 MNu u

D(u) T P(u) = Aro

(2.1.3)

The system (2.1.1) with (2.1.3) has been studied in different aspects. The global ex-
istence of solutions and stationary state were investigated in [56, 106], which exclude
the possible of blowup of solutions in one dimension (n = 1). If n > 3, it was shown
in [97] that there exist unbounded solutions may blow up in finite or infinite time.
Furthermore, when n > 3 it was proved that the unbounded solutions blow up in
infinite time for A > n in [17]. The case n = 2 corresponds to the critical sensitivity.
Hence it is nature to consider whether there is a critical mass mg beyond which solu-
tions blow up and below which solutions globally exist. In this chapter, we will study
this critical mass problem of system (2.1.1) with (2.1.3) in two dimensions. Based on

the existence of Lyapunov function, we find a threshold number %}j’\) such that the

%}j)‘) and blows

solution exists globally with uniform-in-time bound if §, uodz <

4w (1+))
ax

up in finite or infinite time if SQ updr > . Furthermore, if A\ > 1 we construct
global-in-time solutions admitting infinite-time blowup. We notice that the critical
mass phenomenon has also been studied recently in [18] for chemotaxis model (2.1.1)
with (2.1.3). There are two major differences between [18] and our studies: (1) [18]
proves the existence of blowup solutions under the assumption that the initial data
up and vy are radially symmetric and the domain is a ball, hence the blowup point
is only the origin, however, in our studies, we consider the blowup results without
the radially symmetric assumptions on the initial data and domain, and the solution
may blow up on the boundary. (2) In our studies, the transformation (2.4.63) is
essentially used such that we can find some initial data with large negative energy

in the space D = {f € W'*(Q)|{, fdz = 0} in which the corresponding solution

10



blows up in finite or infinite time (see details in Section 2.4.3). To claim the solu-
tion belongs to the space D, the transformation (2.4.63) has to be used. However,
the paper [18] considers the solution in D without introducing the transformation
(2.4.63). This is an error from our understanding. Our results in this thesis correct
this error. Hence the above two differences can be viewed as the supplement of the
paper [18]. Before concluding of this section, we introduce some notations. Here-
after, ¢; denotes a generic constant, which may change from one section to another,

where ¢ = 1,2,3,---.

2.2 Preliminaries

First, we give a lemma to be used for the estimates of solutions in the sequel. This

lemma was proposed in [39, Lemma 4.1] and improved in [51, Lemma 1].

Lemma 2.1 ([51]). Let Q be a bounded domain in R™ with smooth boundary. Assume

0 < vy e WH*(Q). Moreover

llul|;» < C, forall te(0,T).

Then there exists some constant C, such that for every t € (0,T) and s < n, the
solution of (2.1.1) satisfies
[ollpe < Cq (2.2.4)

where ¢ < . If s = n, (2.2.4) holds for all ¢ < o, and if s > n, (2.2.4) is true

S

with ¢ = co. Here C' and C, are positive constants independent of t.

Lemma 2.2 ([22]). Let Q be a bounded domain in R™ with smooth boundary o52.

Assume 1 < p <n and ue W'(Q). Then ue LP*(Q), with the estimate

Jull o < Clulwre, (2.2.5)

where p* = 2= and the constant C' depends only on p,n and ).
P

11



The following inequalities will be used frequently.

Lemma 2.3 ([72]). Let Q be a bounded domain in R* with smooth boundary. Then

for any € > 0, there exists a positive constant C. such that

2 1 1
lull s < el[Vullg [lulnul[f + Co(fulnulor + Jlul £)- (2.2.6)

Lemma 2.4 ([26]). Let Q2 be a bounded domain in R™ with smooth boundary. Let
and k be any integers satisfying 0 < | < k, and let 1 < q,r < 0, and p € R*,é <

a <1 such that

___:a<1_5> L —a)l (2.2.7)

r

Then, for any u € WH4(Q) n L"(Q), there exist two constants ¢, and c, depending

only on ,q, k,r and n such that the following inequalities holds:

| D" r < clﬂDkuHanHuHi?a + colu| -, (2.2.8)

with the following exception: if 1 < q < o0 and k — 1 — % s a nonnegative integer,

then (2.2.7) holds only for a satisfying é <a< 1.
For the special case | = 0,k = 1 and q = 2, we may employ the inequality
(X +Y)2<2(X2+Y?) for any X,Y € R, and obtain the following inequality

al. 121—a n n n
el < es(Vulig 2 + Julf), ~=a(G-1)+T0-a) (229

Lemma 2.5 ([87]). Suppose y(t) = 0 and satisfies

(2.2.10)

%JrAypéB, t>0,
y(0) = o,

where p >0, A >0 and B = 0. Then for any t > 0, we have

y(t) < max (yo, (g) > : (2.2.11)

12
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Lemma 2.6 ([72]). Let Q be a bounded domain in R* with smooth boundary. Then

for any € > 0 there exist a constant C. depending on € and ) such that

1 1
fQ exp |u|dz < C.exp { (8_7T + 5) IVul3s + @|U’Ll} . (2.2.12)

Lemma 2.7 ([22]). Let n(-) be a nonnegative, absolutely continuous function on
[0, 0) satisfying the differential inequality n'(t) + In(t) < w(t), where | is a constant

and w(t) is a nonnegative continuous function on [0,9). Then, one has

n(t) < (n(o) + f e“w(r)dT) e ! (2.2.13)

0

2.3 Boundedness for Subcritical Mass

In this section, we will consider the boundedness of solutions of the chemotaxis
model (2.1.1) with (2.1.3). We have the following theorem on the global existence of

solutions.

Theorem 2.1. Let Q be a bounded domain with smooth boundary in R?. Assume 0 <
(o, v0) € WHP(Q) x WH(Q). If §, up(x)dx < %, then there exists a unique pair
(u,v) of nonnegative bounded functions belongs to C°(Q x [0,0)) n C*H(Q x (0, 0))

which solves (2.1.1) with (2.1.3) classically. Furthermore, there exists a constant C

independent of t such that

First, we consider the local existence of classical solutions to system (2.1.1) with
(2.1.3), which can be proved by the standard parabolic regularity theory and an

appropriate fixed point framework.
Lemma 2.8 ([86]). Assume that 0 < (ug,vy) € WHP(Q) x WH*(Q). Then there
exist Tae € (0,0] and a unique pair (u,v) of nonnegative functions from C°(2 x

13



[0, Trnaz)) NCHHQ % (0, Thraz)) solving (2.1.1) with (2.1.3) classically in Q x (0, Tyyaz) -

Moreover

Zf Tnaz < 0, then Sup(”u(t)HLoo + Hv(t>HLw> — 0 as t /" Tige-
0

>
The following important property on mass can be easily derived.

Lemma 2.9. Let (u,v) be the solution of the system (2.1.1) with (2.1.3). Then we

have
Jul )l = luolrr = M (2.3.15)

and
o0l = Gl = (Gloles = Il ) . (2.3.16)

Proof. Integrating the first and second equations of (2.1.1) over (2, the lemma is

obtained immediately by the boundary conditions. ]

From Lemma 2.8, we know that there exist a small positive number 75 and a
constant M; depending on the initial data, 2 and 7y such that the solution of (2.1.1)

and (2.1.3) satisfy sup |jul . < M. If we divide the time interval [0, T},4,) into

0<t<7o

two parts: [0, 79] and [79, Trnaz), to complete the proof of Theorem 2.1, we only need

to prove that there exists a constant M, independent of ¢ such that sup ||ul|;. < Mo.
t=710

Next, we will prove this fact by using the Lyapunov function and the Moser-like

procedure.

2.3.1 Uniform Lower Bound of the Lyapunov Functional

We can verify that the system (2.1.1) with (2.1.3) has the following Lyapunov func-

tion
F(t) = J (ulnu + A1+ u)In(1 + u) — yuv + %(|Vu|2 + 51)2)> dov.  (2.3.17)
Q

14



Lemma 2.10. The solution of (2.1.1) with (2.1.3) satisfies

dF(t) x U A
T aHth%Z + L ATy (VIn(u(l + u)*) — xVo)2dz = 0, (2.3.18)

where F(t) is defined by (2.3.17).

Proof. Multiplying the first equation of (2.1.1) by Inu + AIn(1 + u) — xv and inte-

grating by parts, we have

J w(Inw + An(1 + u) — xv)dx
0

B L+ (1+Nug u L N 2 vo\de
—JQV-<WVU x<1+u>/\Vv>(l + An(1 + u) — xv)d

- | G (Vi - ) — Vo,

which implies that

ij (ulnwu + M1+ ) In(1 + u) — yuv)dx + Xf vyudx

(2.3.19)
u A 27 _
+ L m(vm(u(l + u)*) — xVov)“dz = 0.
Multiplying the second equation of (2.1.1) by v;, we obtain
d I6} 1 1
J;l vudr = @ o (%1} + Z‘VUP) dx + o JQ vidr. (2.3.20)
The combination of (2.3.19) and (2.3.20) implies (2.3.18). O

Lemma 2.11. Let F(t) be defined by (2.3.17). If §, updz < %, then there exist

two constants Cy and Cy independent of t such that

F(t) = —Cl and HUII] UHLI < 02. (2321)

15



Proof. From (2.3.17), we have

F(t) = (1+)) JQ (ulnu - Tiiuv) dzr + % L (|Vv|2 + 61}2) dxr + 5JQ uvdx

= (1+)\)J (ulnu—ulne%i”) dx+lf (IVv]* + Bv?) dx—i—éj uvdx
Q 2a Jo Q

x+d
el+>\v

u

= —(1+)\)J uln dx—i—lf (|Vv]* + Bv?) da:+<5f uvdz.
Q 2a Jg Q

(2.3.22)

Since —Inz is a convex function for all z > 0 and {;,44dx = 1, then using the

Jensen’s inequality, we obtain

x+6
1 Y
—In {M Jﬂeﬁi”dx} = _IHL el; %d:ﬁ
x+d,
e+ U

1 v
it
= i Qu<lne " )dw.

The combination of (2.3.22) and (2.3.23) implies that

1 x
Ft)z—-(14XNMIn {M Jﬂelxvdx} + % JQ \Vol2dr + % JQ vide + 5L uvdx.
(2.3.24)

Using the Trudinger-Moser inequality (2.2.12) and the condition that |[v]z1 < ¢ (see

(2.3.16)), we can obtain two constants ¢, and c¢3 depending on ¢ such that

45 1 (x+8)? 2 x+§
f eI Vdr < 026(8”+8) arnz VI T miarsy vl
Q

1 (x+5)2 2
g 036(871' +6) (1+>\>2 ”V’U”LQ .

(2.3.25)

Substituting (2.3.25) into (2.3.24), we can find a constant ¢, = (1 + A)M In § such

that

X 1 (x +0)°M J ) Xﬂf , f
Ft)> X2 —-(— xXp e
(1) (Qa (87r +€) TESY Q|Vv\ dxr + 50, Qv dr + 9 qudx C4

(2.3.26)

16



Since M = {, updz < %

we can choose € > 0 and § > 0 small enough such that

X — (& +¢) (Xg?jy > 0. Then from (2.3.26) we have

x5

F(0) = F(t) = o

2daz: + 5] wvdr — ¢y = —cy. (2.3.27)
Q

From (2.3.27), we have F(t) > —c¢4 and 6 {, uvdz < F(0) 4 ¢4. Hence using (2.3.17),

we can derive that

()\—l—l)f ulnudr < F(t) —l—Xf uvdx—lf (|Vv]* + Bv?) da
Q Q 2a Jgo

(2.3.28)
<F(t)+xf uvdr < (1+K)F(O)+&.
Q o )
Then the proof of the lemma is completed. ]

2.3.2 Boundedness of |vly1.»

Lemma 2.12. If §, uo(z)dx < % then there exists a constant C independent

of t such that
¢
f [ol72dr < Ch. (2.3.29)
0
Furthermore, if A = 1, we can find a constant Cy > 0 depending on 1y such that
[velrz < Cy  for all t =75 > 0. (2.3.30)
Proof. Integrating (2.3.18) on [0,¢] and using Lemma 2.11, we have
v [
J J Trun e Vln( (1+ u) ) — xVv)idrdr + EL Hvt||%2d7'
= F(0) = F(t) < F(0) + ¢,

which implies (2.3.29) and

J;) JQ ﬁ(vm(u(l +u)) — xVo)2dedr < c. (2.3.31)

17



By the Hélder’s inequality and the first equation of (2.1.1), we obtain

el gy = sup (ur, ¥)
el
YeH! HwHHl

< Hﬁ(vmwu + ) — X Vo)

L2

) <L (ﬁ)g (VIn(u(l+u)*) — XVv)zd:L’> |

2

< ( L (L/\(Vln(u(l +u)) — m)%) ,

1+ u)

, (2.3.32)

where we have used 7%5x < 1 for A > 1. The combination of (2.3.31) and (2.3.32)

gives

t t
u
L |\ut|\%H1),dT < L L m(vm(uu +u)) — xVu)2dzdr < cp. (2.3.33)

We differentiate the second equation of (2.1.1) with respect to ¢, then multiply it by

v; to obtain

1d

5 1velze + Vodlzz + Bluilze = OzJ uvyde < elo i + eslu By
Q

where ¢3 depends on e. Letting ¢ < min{1, 5}, we have

d
%HWHQH < 203““1&”%}{1)/- (2334)

Integrating (2.3.34) with respect to ¢ over |7, t], and using (2.3.33), we have

t
[velZ2 < [oe(ro) 22 + 203J [y dr < Joi(mo) 72 + 2e2s, (2.3.35)
70

which implies (2.3.30). The proof of the lemma is completed. ]

18



Lemma 2.13. Assume §, uo(x)dz < %' Then there exists a positive constant

C' depending on 1o such that |1 + ul|p2+r < C for allt = 19 > 0.

Proof. Multiplying the first equation of (2.1.1) by (1 + u)'**, and integrating the
equation over (), we obtain

1 d A2 f1+u+)\u 9
)\+2dtj9<u+1) dx+()\+1)Q & |Vul“dz

=(A+ 1>Xf uVuVudx
Q

A+1
= —%J u? Avdz (2.3.36)
Q

__A+Dx J;l)x L u?(vy + Bv — au)dx

2 Q 2 Q

N

By Hoélder’s inequality and the Gagliardo-Nirenberg inequality we have

1
_()\-i- )XJ |U2Ut‘dl'<
2 Q

1 1 2
< loull e (IVulgallulfs + Jul 2

()\ + 1)X 2
= el g2 flullza

(2.3.37)

2
< ez flvillpe (IVull g2 lJull 2 + ullz2)
A 2 2 2
< 5 IVulliz + s (lvrllze + lleell ) Nullze
Substituting (2.2.6) and (2.3.37) into (2.3.36) and using (2.3.21), we obtain that

d
2l + 10732 + (A + 1) [Vl

A 2 2 2 OJX()\"' 1)

< 5 IVulpe + e (1ol ze + lloell ) Nllze + — 5 ngdf
A 2 2 2 A 2

< 5 IVullze + e (lvellze + Nloell o) s + 5 IVullzz + e

19



which yields

d
Sl R + IVl < e (ol + Dol ) el + e (2.3.38)

By the Gagliardo-Nirenberg inequality we have

A2
lu + 1|78 < <HWH£2” o+ 115 + flu + 1HL1)

(2.3.39)
1+ A+2
co(l[Vall 2™ flu + Ll gy + flu+ 1fJ737).
If 0 < A < 1, applying the Young’s inequality to (2.3.39), we have
lu+ 1]173% < [[Vull7. + er [Ju+ 1H g lu+ 1357,
which implies
2
||Vu||iQ > ||u + 1||2ﬁg —crlu+ 1]} —cflu+ 1|\)‘+2. (2.3.40)

Substituting (2.3.40) into (2.3.38), and using the inequality ||u + 1], = |ul/, + €,

we have

o lle =+ U2 + flu+ 1)73%

A+2
+

< s (lonllZa + Norll ) Nl + er o+ LR + o lu+ 13 + e

< s (loellze + lloell o) llu + LI5E% + e

2 A+2 1 C%H”t”% A+2
< el llu+ 35% + (5 + S5 ) o+ 1385 +

25 + 2
<237

1
< 5 A+2 H + 1||)\+2

loellze llu + 11335 + 5 Tire + cs,

which yields

d 1
7l + 1%+ 5+ 13T

2 LA+2
(2.3.41)
25 + 2
< 25 el + 13 + s
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Upon integration and using (2.3.29), we infer that

|+ 1| pase <cg forall t=0and0 <A< (2.3.42)

Next we consider the case A > 1. Let y(t) = |lu + 1]|}3%, then from (2.3.39), we

have
2
yo1 < e (IVull Pl + 1]+ flu+ 135
(2.3.43)
< 010(||VU||2LQ + 1)
Substituting (2.3.43) into (2.3.38), we have
1 2
Y&+ —y T < ey (lloelZe + Noellp2) llullza +ea + 1
10 (2.3.44)
_2
< enr ([loellZe + lloell 2) y5+ +ea + 1,
where we have used the inequality
2 o
9 9 L2 A+2 A+2
llul[7: < | (uw+1)%dx < (u+ 1)""dx dx
Q Q Q
25 2
= [Q>2]u+ 1700
For t = 79 and A > 1, using (2.3.30) and (2.3.44), we have
, 1 2 2 I 2
Y (t) + —y Ml < 3yt +cq + 1< Yr1 4+ C1y,
C10 2¢10
which yields that
/ L s
Y1) + 5 —y™ < e (2.3.45)
€10

Applying Lemma 2.5 to (2.3.45), we obtain that

1+

u + 1337 = y(t) < max (ym, (2¢10014) 2 ) <cpp forall t=279>0 and A > 1.

(2.3.46)
21



For all t > 75 > 0 and A > 0, the combination of (2.3.42) and (2.3.46) implies that

there exists a constant c¢14 depending on 7y such that
||u + 1”L>\+2 < C16-

Then we complete the proof of the lemma. O]
Next, we will show the boundedness of |v||y 1.

(14+X\)4r

Lemma 2.14. Assume §,uo(z)dz < Then there exists a constant C' > 0

depending on 19 such that
|0]lyr100 < C for all t = 1. (2.3.47)

Proof. From Lemma 2.13, we obtain for all ¢ > 79 > 0, there exist a constant c;

depending on 7y such that

|l prre < |Ju+ 1| prse < 1. (2.3.48)
Since A + 2 > 2 for A > 0, using Lemma 2.1, we obtain (2.3.47) directly. ]
2.3.3 Boundedness of |u|;»

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Using Lemma 2.8, we only need to show that there exists a

constant My depending only on the initial date, 2 and 7, such that for all t > 75 > 0
[l oo < M. (2.3.49)

To prove (2.3.49), we will use the Moser-Alikakos iteration procedure as in [3]. First,

we define (py)ren recursively by setting
Pri=2pk—1 + A, k=1and pg =2+ A (2.3.50)
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Then, we can easily derive that py = (po+A)2F =X = (1+X)2"™ — X and pr > 2+ A

for all £ = 0. Moreover, there exist two constants ¢; > 0 and ¢y > 0 such that
e - 28 <pp <y 28 forall k = 0. (2.3.51)

Multiplying the first equation of (2.1.1) by (u + 1)P*~!, integrating the result over

and using the Cauchy-Schwarz inequality, we have

1 d
Pk
p— pr (u + 1)Pkdx
1+u+ du
_ -1 - - 1 PE—2—A 2d
(pk )Jﬂ —— (u+1) |Vu|*dx
x| (w4 DV Voda (23.52)
Q

< —(px — l)f (u+ l)p’“_z_’\|Vu\2dx + x(pr — 1)J upk_l_’\\Vu||Vv|dx
Q Q

—1
< —pkz J (u + )P Vul2dz + c3(pp — 1)J (u + 1)Pe 2,
0 )

where we have used Lemma 2.14 and the fact that % > 1. Here c¢3 > 0 which, like

)
¢4, Cs, -+ below, may depend on 7y but not on ¢,7" and k. If we let w = (u + 1)pk2 \

then from (2.3.52), we have

1 d
pk—ldt

(u+ 1)P*dx

-1
< ka f (u+ 1)1”“_2_’\\V(u -+ 1)|2dx + c3(pr — 1)f (u+ 1)pk_’\dx,
Q

= J |V (u+ 1 \de + c3(px — l)f (u + 1P da
pk - Q

2(p

(pk — j \Vw|?dz + c3(pr, — I)J 2dx,

Q
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which yields

d 2(pk— 1)QJ 2 2J 2
— u+ DPrdey < ——r——— Vwl|“dx + ¢ wdx
dt L( ) (o —N)? Jo Vel 3Pk Q

(2.3.53)

< —c4f |Vw|*dz + e3p} J wdz,
0 Q

where we have use the fact that 2(73’“_1)22 = (Zp’“*lﬁ_ly
(Pe—A) 2pk_1

> ¢4 for all ¢4 € (0,1]. Using

the Gagliardo-Nirenberg inequality and the fact that (X + Y)¢ < 24(X9 + Y9) for
all X > 0 and Y > 0, we have

cw;[u&m<cwﬂVwLﬂwul+%ﬁmwa
Q

C
< SIVwlis + o= (espilwle)? + espifwl s

24

(2.3.54)
= HV |72 + 2 2 ph w3 + cspw]s
< SVl + coptuwl;
< 219ulls + coptlulis
02 . . .
where ¢ = 52 + c5. Substituting (2.3.54) into (2.3.53), we have
d o Cq 2 4 2
pr (u + 1)Prdx < _EHV'LUHLQ + copillw| - (2.3.55)

Using the Gagliardo-Nirenberg inequality, we can find a constant 6 = 1”2“72’\ such that

2p pzpk)\ (1-6) p2pl€)\ pQPlCA
| et aprde = [ i < vl " - eful:
Q Q

2pk>\ 2pk 2pk>\
S o (HVw|£’§ + [w| 2% ) + erlw] 2% (2.3.56)

ka 21},C
= c7||Vw| /5~ ggus 2c7|wl| 75~ .

Now thanks to the easily verified elementary inequality (X —Y)? > 279X9 Y valid
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whenever d > 0 and 0 < Y < X, we infer that

PR —A
2pg “pr
1 e |
Vw3 = ’—f (u+ 1)Pkdx — 2 <J (u+ 1)pk—1dx) ' ]
¢r Ja Q
) e ) (2357
_ PE— PE PE—
> (2¢7) vk <J (u+ 1)”’%[:5) — 2 v <J (u+ 1)p’“—1dx) (2.3.57)
" 0

PE—A 2
1 )
> — q (u+ 1)Pkdx) R (J (u+ 1)pk1dx> ,
2c7 \Ja Q

here we used the conditions 2¢; > 1 and pkp—j < 1. Then substituting (2.3.57) into

(2.3.53), we have the following ordinary differential inequality

P—A

d b 2
pn (u + 1)Prdx < G (f (u+ 1)p’“da:> gt (cs + copy) (J (u+ 1)pk—1dx)
t 4 Q Q

C7

PE—A

2
< —cg (f (u+ 1)pkd$) t g copy, <J (u+ 1)p’“1dx) :
0 Q

(2.3.58)

where cg = £+ and ¢g = ¢4 + c6. Letting 7, = §o(u+ 1)Prdzx, then from (2.3.58), we

have

Pk—/\

+oesy "t < copyvioy (2.3.59)

d’Yk;
dt

Applying Lemma 2.5 to (2.3.59) and letting & = 2p’\

k—1
4.2 Phe (+5.2) 2
COPKVi—1 | * CoPk reott 2t )
Vi < max {’7]6(7_0)7 (M) } = max {’)/p(’To), < ) Vet 2pg 1
Cs &
: 2(1+6
{ pzﬂk(—f k)}

6 k. 2(1+6g)
< max §v(70), ¢10(2°) v, ;

{
{

< %, then we have

20146
< max (+k)},

’Yk ’Yk 1
(2.3.60)



w

where we have used pp < 2% in (2.3.51) and ¢j9 = (%‘;)5 § and b = 25¢;y. Now in

the case when 7y, < v(7p) for infinitely many k£ € N, we immediately conclude that

(2.3.49) holds. Otherwise we may assume upon increasing p if necessary that

T < bk'y,z(jfré’“) for all k > 1. (2.3.61)

Using the induction (2.3.61) and ¢;2* < p;, in (2.3.51), we have

1
k k k cq2F
L Y I 2046 112048) !
k =17 i ie
,-yk g bg 1 j+1 ,/-)/0

which implies

1
€1

-fj.zﬂ'. ﬁ (1+6;) = - (1+36;)
lu+ 1, <b = '

c1

T e N (2.3.62)

From (2.3.51), we have ¢;2% < 2p;,_; < 2%, hence

A A
O = < 2% forall k> 1,
2pp1
o0 o0 0 )
which implies ] d; converges, hence [[(1 + 9;) is finite. Moreover >} j - 277 <
i=1 i=1 j=1

and v = §,(u+ 1)Podx = §,(u + 1)*" dx < ¢qy, since p, — © as k — o0. Hence,
using (2.3.62) we have |u + 1= < ¢12, then (2.3.49) is obtained directly. Hence the

proof of the theorem is completed. m

From Theorem 2.1, we see that a necessary condition for the blowup of solutions
of (2.1.1) is that {, ug(2)dz > %. It is nature to ask whether this condition is

a sufficient condition. We will study this problem in the next section.
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2.4 Blowup for Supercritical Mass
2.4.1 Main Results and Key Steps

Theorem 2.2. Let Q be a bounded domain with smooth boundary in R%. Then for
any M > % and M ¢ {m% m e N*}, there exist initial data 0 < (ug,vg) €
Whe(Q) x Wh2(Q) with §, uo(x)dx = M such that the solution component u of
(2.1.1) blows up in finite or infinite time. Moreover if X\ > 1, the blow-up time is

infinite.

First we introduce the transformation
- N 1
0=x(v—-10), v= —j vdx. (2.4.63)
9] Jo

Substituting (2.4.63) into (2.1.1), and dropping the tildes for convenience, we get a

transformed version of the Keller-Segel model (2.1.1) as follows

rutzv-(H“Jr’\“Vu—LVv), zet>0

(ut+1)A 1 (T+u)r
vy = Av + ax(u —u) — pv, reQt>0
(e=2=0, redt >0, (2.4.64)

u(@,0) = uo(z), v(w,0) = vo(z), zEQ,
(S udx = M, §,vdx = 0.

The corresponding Lyapunov functional of the transformed system (2.4.64) is

E(t) = fQ (u Inu+ A1+ w)In(l +u) — uv + i(\VuQ + ng)) dr. (2.4.65)

Using the same argument of deriving (2.3.22), we have

E(t) = E(u(t), v(t))

2(/\+1)f

Q

1 v 1
> —(1+A\)MIn —Jede}+—(j Vv%ia:#—ﬁf UZdI)
( ) {M Q 2ax Q| | Q

= &(v).

1
ulnudz — J uvdz + —f (|Vo|* + Bv?)dx
Q 2ax Jo
(2.4.66)
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The corresponding stationary solutions of the system (2.4.64) satisfy the following

equations
—Av+ pv=ax(u—u), =z,
A
%%(”:g_};):;“ | ' (?Q (2.4.67)
SQudx =M, SQ vdx = 0,
where g = lauetMde 4o positive constant. Using the Lyapunov functional E(u,v),

SQ evdx

we have the following properties on the stationary solutions of system (2.4.64).

Lemma 2.15. Suppose that (u,v) is a global and bounded solution of (2.4.64). Then
there exist a sequence of times t, — o0 and nonnegative functions Ue, Ve € CQ(Q)

such that u(-,ty) — Uy, v(-, ;) — vy in C*(Q) and

Vin(uy(l+uw)t) — Vo, =0, z€Q
Avy + ax(ug — 1) — Py =0, x€Q,

2.4.68
. ve o (2469
SQ Ugpdr = M, SQ Vpdx = 0,
as well as
E (o, ve) < E(ug, vp). (2.4.69)

Proof. The lemma can be proved with the similar argument in [97], hence we omit

the details for convenience. ]

Next we are devoted to proving Theorem 2.2 by using the idea as in [35, 38, 97].
The plan is to find a lower bounded for the energy of all conceivable steady states and
then prove that there exist solutions having energy below this bound, that cannot be
bounded since otherwise they should approach some steady states with a forbidden
energy. Here ‘energy’ is measured in term of the Lyapunov functional E(u,v). More

precisely, the proof of Theorem 2.2 will be carried out by the following three steps.
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Step 1 (i.e., Lemma 2.16). Under the assumptions that M > % and M ¢

{m%hn € N+}, we find a constant K > 0 such that all of stationary solutions

of (2.4.64) satisfy
E(u,v) > -K. (2.4.70)

Step 2 (i.e., Lemma 2.19). We show that if M > %, there exist a sequence
(Ve)eso € D = {f e WH*(Q)] §, fdx = 0} such that £(v.) — —o0 and {, |Vv.[*dz —
w0 as ¢ — 0. Then, there exists a ey such that (ue,,v.,) can be chosen as an initial
data of system (2.4.64). Moreover for such initial data (ug,vy) 1= (Ue,, Ve, ), We can
prove that

E(ug,vy) < —K. (2.4.71)

Step 3 (i.e., Lemma 2.20). For the initial data chosen in step 2, we conclude that
the corresponding solution pair (u,v) of (2.4.64) has to blow up in finite or infinite
time. Otherwise, using Lemma 2.15, we have F(uw,vy) < E(ug,vg), where the
solution pair (uy, vy) is the stationary solution of (2.4.64). Then the combination of
the results in step 1 and step 2 implies —K < E(ug, vy) < FE(ug, v9) < —K, which

is a contradiction.

2.4.2 Lower Bound for Steady-State Energy

This subsection is to find a lower bound for the value of E(u,v) for all the solutions

of (2.4.67). The result can be stated as follow.

Lemma 2.16. Let Q) be a bounded domain with smooth boundary in R?. Suppose
that §, ug(x)dr > % and §, uo(x)dr # m% for some m € N*, then there

exists a constant K > 0 such that
Ev)=-K (2.4.72)

holds for all the solutions of (2.4.67).
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Proof. 1If there is not a constant K such that (2.4.72) holds true with the assump-

(1+N)4dm

o and § uo(z)d # m(lJrA M7 for some m € N*, then using

tions §, uo(x)dz >
the Lyapunov functional £(v) in (2.4.66), we can claim that there exists a solution
sequence (v )ken Of (2.4.67) such that as k — oo

J e3dy — o0 and max vg(x) — 0. (2.4.73)
Q

z€$)

Let v = v, + 53, then system (2.4.67) is transformed into the following equations

—Avf + Buf = axui, e,
ui(1l + uf) = ope’, z e,
v ouff (2474)
W= =Y x € o9,
M
Squide = M, §,vide = ==

From the second equation of (2.4.74), we can derive that there exists a sequence

0< (uk)keN such that

v v
*

e — 1 < uf < pupets (2.4.75)

* *
k

Using (2.4.73), we have { et dz — oo, Furthermore, (2.4.75) implies that

+de M+ [0
p < Sl Vdz M0 o o (2.4.76)

S el+*dx S eHAdx

By employing a similar argument [38, 90], we can show that there exists a sub-
sequence of (u})gen (denoted by (ujf)ren again for simplicity) such that for some

m e NT

1+ A\)4
J@MamLiﬁi,%kam (2.4.77)
Q ax

which contradict the assumption that M # m(H’\)47r since §, ujdx = M. Then the

proof of the lemma is completed. m
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Next, we will give the details for the proof of (2.4.77). First, we define the blowup

set S as follows:
S:={ze€Q:3 x, > x such that vj(z;) > 0 as k — x}. (2.4.78)

Then from (2.4.73), we know that card S > 1, where card S stands for the cardinality

of set §. Furthermore, we have the following lemma.

Lemma 2.17. Assume the blowup set S is defined as (2.4.78). Then one has 1 <

card S < .

Proof. Since (u})ren is bounded in L'(€2), then using the Prokhorov’s theorem we
may extract a subsequence (still denoted (uj)ren for simplicity) such that u} con-

verges in the sense of measure on () to some nonnegative bounded measure 7, i.e.

L withdr — L Wdn, (2.4.79)

for every ¢ € C(Q). As in [8, 38, 90], we call g € Q a d-regular point if there is a
function ¢ € CF°(2), 0 < ¢ < 1, with ¢ = 1 in a neighborhood of z( such that

Ar(1+A)
2.4.80

J bdp < ax(1+30) ( )
Let> (d) be the set of points which are not d-regular points in Q. Clearly xq € >(9) if

A (1+N)
ax(1+396) "

and only if n({zo}) = Since 7 is a bounded measure with §dn = M, it

follows that the elements of () are finite and

axM (1 + 36)
<=7 2.4.81
cardZ EEESY (2.4.81)

Using the similar argument as in [38, 90], we state the following two claims without

proof for convenience.
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(i). If xy is a d-regular point, then (v})geny is uniformly bounded in L*(€2 n
Br,(z9)) for some Ry > 0.

(ii). S = >(0).

Hence the combination of (2.4.81) and the claim (ii) implies 1 < card § =

card >;(0) < oo. Then we complete the proof of the lemma. O

Due to 1 < card § < oo, without loss of generality, we assume S = {py,--- ,pn}.
We decompose § into a boundary blowup set §; = § n 02 and an interior blowup

set S =S N 2. Let

of(r) = QXJ updx, (2.4.82)
Br(p;)

where » > 0 is a small constant. Then we can derive the following properties on

af (r) by using a similar argument in [90, Lemma 3.4] and [38, Lemma 3].

Lemma 2.18.

4(1+)\)7T, pj681, (2483)
8(1+)\)7T, p]‘ESQ. o

Proof. Without loss of generality, we assume the blowup point p; = 0. Let U, =

B,(0) n Q. Assume the function wy, is a solution of the following problem

o o0t e (2.4.84)

{Aw—ﬁwzo, x € U,
v ov ?

It is easy to see that w;, = O(1) in C?*(U,) since |63LE| < C on 0U,. Asin [38, 90], we

let by, = (vf —wg)/o¥(r), then hy — G(-,0) in C7,.(B,(0) n Q/{0}) (see [21, Lemma

loc

2.6]), where G(-,0) satisfies

{—AG+5G =&, zel,

oG
Fi O, S 0UT,

32



where 9§y denotes the Dirac measure on U, giving unit mass to the point 0. The
regular part of G(x,0) is defined depending on whether the blowup point 0 lies in

the domain or on its boundary as

1] if U,
H(w,0) = { C@ 0+ w =, if 0e Uy, (2.4.85)
G(2,0) + 5-Infz|, if 0€U,,
where H(-,0) € C1*(U,) (see [20]). Hence, for x € U, it holds that
G, 0) —<In|z| + O(1), if 0eoU,, (2.4.56)
z,0) = . A.
—5=In|z| + O(1), if 0eU,.
Using the condition wy, = O(1) in C*(U,), we have
ak(r) .
_ait)y 0@ f 0eal,
o) = { g, M OWM, 0 (2.4.87)
———In|z| + O(1), if 0eU,

in C'(0U,)(here O(1) may depend on r but is uniform in k). First, we consider the

ok
case that blowup point 0 € &y, hence vji(z) = —# In|z| + O(1). For the equation
Aw — pw + f(w) =0, velU cR?

we have the following Pohozaev’s identity

JU(—BwQ + 2F (w))dz

. 2 2 (2.4.88)
_ LU [@; V)P () V;”' frev (—B% " F(w>)] s,

v

where F(w) = ;' f(s)ds ([90]). Applying (2.4.88) to the first equation of (2.4.74) on

U,, then one has

J (—B(v,’if + 2F(v,’:)) dx

(2.4.89)
*)2

_ o OVL [Voil? (vi
—LUT {(m V) 2, (x V)T—i—m v|—p 5

33

+ F(v;:))] ds.



Next, we will estimate all the terms on both sides of (2.4.89). First, using the elliptic
estimate and the fact [uj|1 = M, we have [v]7,14: < C. Hence, we have the

following estimate

fr(v,f)de < (erx)

Next we estimate the term {;, F(vf)dr. Letting f(vy) = axuj and using (2.4.75),

=
SIS

U T(“Z*) = O(r|vf[74) = O(r[[vi[3yr.0) = O(r).

(2.4.90)

we have

ok
F(v}) = ax(1+ )\),uk(elTkA — 1) —axvy = ax(l + Nuj — ax(1 + N up — axvy,
(2.4.91)

and
Fv}) <ax(1+ )\)uk(elqiriA — 1) <ax(T+ A1+ uf) —ax(1+ ). (2.4.92)
The combination of (2.4.91) and (2.4.92) implies that
ax(I+N)up—ax(1+N)pr—axv;y < F(vf) < ax(1+X)(1+ug)—ax(1+X)pg. (2.4.93)

Integrating (2.4.93) over U,, one has

(14 N)ok(r) —ax(1+)) j prdr — ozxf

vpde < J F(vy)dz, (2.4.94)
U Ur T

and

J F(vi)dz < (14 N)ob(r) + ax(1 + A) J de —ax(1+X) J prdr.  (2.4.95)

r i T

Using (2.4.94), (2.4.95) and noting the facts

JT prdr = O(er?), Jr vpdr = O(r), J dr = O(r?), (2.4.96)

T
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we have the following estimate

(1+N)ak(r) — O(uer?®) — O(r) < J F(v)dz < (1+ N)oh(r) + O(r*) — O(uer®).

T

(2.4.97)
Using the equalities (2.4.87) and av’“ =v- Vv,’:, we have
0vk y
(- Vuy) dS = V VuidS
oU, oUr
f Vuids
U,
(2.4.98)

_ (”ﬁy))lw (% + 0(1)) ds

L Ur<x.y)|vgz‘ ds — GUT2—1T (%Tm) ds = (“JTW) (F+om). (249)

Using vf € C'(0U,) and (2.4.91), we have

LU (z-v)(v})*dS = O(r). (2.4.100)
LU (x-v)F(vi)dS = O(ruy max 61:;) = O(ugr). (2.4.101)

Substituting (2.4.90), (2.4.97)-(2.4.101) into (2.4.89), and letting k — oo first and

then v — 0, we can obtain that

2(1 4+ A) lim lim o%(r) = iE(hm lim o (r))?,

r—0 k—0o0 72 2 50 k—owo

which implies

lim lim o%(r) = 4(1 + A)m. (2.4.102)

r—0 k—o0
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¥ (r)

For the case 0 € Sy, then vj(r) = ——4-

In|z| + O(1). Hence, we can obtain the

same estimates except that

J (x - VUZ)%UZ s = <M> (27 + O(r)), (2.4.103)
U, v 2

and

f (z- y)%ds _ (@) (7 + O(r)). (2.4.104)
oU,

™

Then using the Pohozaev’s inequality again, we have

1
2(1 + ) lim lim g’?(r) = 4—7r(lim lim U;?(r))Q’

r—0k—o 7 T2 >0 k—o

which yields

lim lim o%(r) = 8(1 + A)m. (2.4.105)
r—0 k—o0
Then we complete the proof of the lemma. m

Next we will prove (2.4.77) to complete the proof of Lemma 2.16 by using the
Lemma 2.18.

Proof of (2.4.77). Using the definition of ¢%(r), we have that

N N
ax lim | wjidx = axz lim J updr = ) lim lim of(r). (2.4.106)
k=o Jo j=1 B:(p;)

— k—0 e— r—0 k—o0

Hence, the combination of (2.4.106) and Lemma 2.18 gives (2.4.77). Then the proof

of Lemma 2.16 is completed. ]

2.4.3 Initial Data With Large Negative Energy

In this subsection, we assert that there exist some initial data with supercritical

mass having energy below any prescribed bound. To attain the aim, we look for a

36



sequence (v.).>o satisfying {, v-(z)dz = 0 such that lir% E(v.) = —oo. From [9], we
E—

know that the functions

¢e(z) =In <ﬁ) ;

e > 0, are solution of the following system

{S_A¢(x) = €¢(I), T e R27 (2.4.107)

2 €°@dz < 0.

We note that ¢.(r) — —oo for all z # 0 and ¢.(0) — o as ¢ — 0. As in [35], we

choose the sequence (v.).>¢ with

v:(z) = (1+)\)< |Q|f¢e )
‘(””[ID(W) mrf <a—2+wrw|>>d°””]’

as our candidate to obtain the properties lin% E(v.) = —oo with supercritical mass.
E—>

(2.4.108)

Lemma 2.19. Assume M > % and the sequence (v.).=q is defined by (2.4.108).

Then as € — 0, we have
E(v.) » —oo and J V. |2de — oo. (2.4.109)
Q

Proof. From (2.4.108), we have

2.2 2 2.2 2
j Vo, Pdr = 16(1 + \)°m J x dr — 8(1+ N)*m J x .
QXOZ Q Q

2xa (€2 + ma?)? X (€2 + ma?)?
(2.4.110)
Substituting y = %, we obtain that
1 8(1 + \)?7? |ly|?
5—IVel; = J 5 dy, (24.111)
2ax xa 0. (1+7yl?)
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where Q. = {yley € Q}. Applying the polar coordinates around original point 0 € 02

to (2.4.111), we obtain

8(1 + )22 J |y|?
X o, (1+7lyl?)?

2.2 U g 3
_8(1+A)WJJ P
o o Jo (14 mr2)?

X
X | 9uz - y

8(1 - \)273 [+ 3 1 2.3 & 3
:(+)7rf r dr+8(+)\)7rj r i
xo o (14 7r2)? xa 1 (1 +7r2)?

8(1 + \)?m3 8(1+ \)?n
:(+>7r]1+(+)7r127
X X«

(2.4.112)

where R denote the maximum distance between original point and the pole. First,

we can estimate I; as follows

1 (= r? 1 (= z
L == ———dr* == ——d
! QL (14 7r2)? " 2_[) (1+ 7z)? -

[0}

1 J 1+7z—1
= — ——dz
21 Jo (1 +7z)?
(2.4.113)
1 (Eo1 1 (= 1 ;
Y 1 +az " 2m 0 (1+7rz)22
1 | 2+ N 1 &2 1
= —1In|{—— S
272 g2 2n2e?2+ 7 272
Similarly, we can obtain the following estimates of I
R
1 (= r?
L=-| ———=d?
? 2f1 (1+7r2)2 "
R? R?
1 (-2 =
_ _f LIPS S [ S (2.4.114)
2n J1 147z 2 J1 (1 +7z2)?
2 P
1 | e? + R? 1 g2 1 &2
=—In|{— _——
272 24+ 2n2e?2+ TR?2  2m2e2 + 7
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Substituting (2.4.113) and (2.4.114) into (2.4.112), we have

1
2ox Ve |7

4(1+ N)2m 1 9 9 g
— Q—X <ln€—2+ln(s + R )71+€2—|——7TR2 (24115)
1+ )2)? 1
— Mln— + 04 (1),
ay £

where |O1(1)| < C as ¢ — 0. Since
1 2
= (1+))? (ln(€2 + mlz?)? - 9l In(e? + 7T|1"2>2d517)
Q
2
= (1+ )2 [(ln(52 + 7r|a;|2)2)2 i In(e? + WxIZ)QJ

an(€2 + 7r|a;\2)2dm]
1+ A)? ?
+ ( ‘5’20 (J In(e? +7T|x|2)2dx) ,
0

(2.4.116)
then we can deduce

b v2dx
2ax Jo

B(1 +>\)2f , yios B(1+ )2 U ) b )2 (2.4.117)
=0 7 In(e* + 7|z de — ——— In(e® + 7|x|*)*dzx

e | (n( 4 wloft)2de — S (] nie 4 alef?)

= 02(1)7

where |Os(1)| < C' as ¢ — 0. Using (2.4.108), we have the estimates

2 2
f etindy = |Qe"1lg"ln<<62+fwl2>2)dxj SRR )
a o \ (e + m[z[?)

and

Ve 52
1 Txde = In|Q) 1 - d
“Le“x I”'+“L(W+ﬂw )“?uuf (§+ﬂw))x’
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which imply

]. Ve
—(1+ A Mln{—f elﬂdx}
( ) M )q
1 e
—(1+ A M(In——i—lnj elﬂdx)
( ) M Q

e (ln%“ﬂfg ()~ ot (v ar ) )

(I+ MM 1+/\)M

ln

In(e? + 7|z |*)*dx
e e L

B e

—2(1+ N)M1ne + Os(1)

(2.4.118)

where |O3(1)] < C as € — 0. Then the combination of (2.4.115), (2.4.117) and
(2.4.118) implies

T 2(1 + A)M) ln% +0(1), (2.4.119)

where O(1) = O1(1) + O5(1) + O3(1) and |O(1)| < C as ¢ — 0. Then (2.4.119) leads

to the assertion of the lemma. ]

Remark 2.1. In the proof of Lemma 2.19, we assume that the blowup point 0 € 0€2.
If the blowup point 0 € €, then we have the same estimates except that 5 — HV?)E 13, =

16(14X)3m In

o + O1(1) by using the polar coordinates around original point 0 € Q.

Hence, we have

16(1 + \)?m
ax

E(v.) < ( o1+ A)M) h% L o), (2.4.120)

which implies that £(v.) > —w ase - 0if M >

8(14+N)w
ax
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Lemma 2.20. Assume the conditions in Lemma 2.16 are satisfied. Then there exists
initial data (ug,vo) such that the corresponding solution of (2.4.64) blows up in finite

or infinite time.

Proof. Let K > 0 be the constant in Lemma 2.16. Now let us choose a ¢, arbitrary

but fixed, and

=40 i (W) w1l (e €o+7f\90\ 7))

such that
E(vey) < —K —AN+1Ino )M —C,,,

where C,, is a constant depending on ¢y and will be defined later. The existence
of appropriate ¢, is a direct consequence of Lemma 2.19. We can check that v., €

Whe(Q). And we choose u,, satisfying
Uy (1 + ugy) = 0oy€™0, J Ugy (z)dz = M. (2.4.121)
Q

Collecting (2.4.65) and (2.4.66) and using the fact that v., € Wh*(Q), we obtain

E(ucy,ve) — E(ve,) = J (teg Inuey + A(1 + ugy) In(1 + ugy) — ugyvs,) do
Q

1 ve
+(1+A)Mln {M erl+()Adx}

< )\f In(1 + u,,)dz + Ino,, J uz,dz + C., (2.4.122)
@ Q
< )\J Ug,dx + In o, f Ug,dx + Cy,
Q Q
< ()\ + lno_Eo)M + CEO'
which implies
E(ueoaveo) < g(’l)go> + ()\ + IHO'ao)M + Ceo < —K. (24123)
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Hence, we can define (ug,vg) = (ue,,vs,) as the initial data, and the correspond-
ing solution of chemotaxis model (2.4.65) has to blow up in finite time or infinite
time. Otherwise, if the corresponding solution (u,v) of (2.4.65) is global in time
and bounded in L*(€ x (0,00)), then from Lemma 2.15, we have —K < &(uy) <
E(tuw,v) < E(ug,v9) < —K, which is a contradiction. Then the proof of this

lemma is completed. [

2.4.4 Infinite Time Blowup

Next, we show that if A > 1, the blowup time is infinite. First, we show that if A > 1,
the solution of (2.1.1) globally exists without the smallness assumption on the initial

data.

Lemma 2.21. Let Q be a bounded domain with smooth boundary in R%. Assume
0 < (ug,vo) € WH*(Q) x Wh?(Q) and X > 1. Then there exists a constant C' > 0

depending on T such that the solution of (2.1.1) satisfies

Proof. Multiplying the first equation of (2.1.1) by u and integrating it over 2 to

obtain that

1d 9 Vu|? J u
—— d — dx = — -Yud
5l Qu :B+JQ(U+1)/\95 X Q(u—i—l)’\vu Vudz

(2.4.125)

1 2 2
< —J Mdaz + X—J u? Vol dr.
2 Jo (u+1)» 2 Ja

Multiplying the second equation of (2.1.1) by Av and integrating the result with

respect to x, we have

1
—iJ |Vv|?dz —l—j |Av|?dx + EJ V|2 de = —ozf Avudx

(2.4.126)
<1J|A |2+O‘2J 2
X = v —_ u-ax.
2 Jo 2 Jo
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The combination of (2.4.125) and (2.4.126) gives

[Vul?
(u+1)*

, . 2.4.127
<x? (J (uQ’\)pdx) (f \Vv\qu:E) + a2f u?dx ( )
O 0 O

< XN V0220 + 0 ullZ2,

(u + |Vl )dw+J ———dzx +6J \Vvl2dx+J |Av|*dz

dt

where the Holder’s inequality has been used and % + % = 1. Using Lemma 2.1 and

[ulz1 < ¢1, we can deduce that
Vol < cg, forall r<2. (2.4.128)

Using the Gagliardo-Nirenberg inequality, we can choose § = 1 — %} such that

IVoli2 < esAv]E

9T
o200 1 |V, < e (||AU|\L;1 + 1) L (2.4.129)

which implies
_ B 2t

VLM e Vol < eyl oo (JA0] " +1)

(2.4.130)
< el A5+ clut s + cr.
Now we let r = % — 2 < 2, which requires A > 1, and choose p, ¢ such that
2q—r=2, (2—=ANp=2, (2.4.131)
then from (2.4.127) and (2.4.130), we have
d 2 2 2
T (lulze + 1V0lz2) < (6 + o®)ulze + e < (c6 +a®) (Julze + |Vo[Z2) + er

= cs (Jul> + [ Vvlzz) +er,

which implies
lullze < JuolZz + [Vvol72 + ; e, (2.4.132)
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by using the Gronwall’s inequality. Then using Lemma 2.1 and (2.4.132), we can

find a constant ¢y depending on 7" such that
[Vv|rr < cg, forall 1 < p < o0. (2.4.133)

Multiplying the first equation of (2.1.1) by (1 4+ u)'™, integrating the equation over

(2, and using (2.4.132) and (2.4.133), we obtain

1 d

1+wu+ A u
- - 1)M2 1 - -
ST Q(u+ ) Edr + (N + )J

\Vul*dz

=+ 1)XJ uVuVodx
0

1)2y2 e won |\ M2
<f \Vul2dx + A+ D% (f u’\+2daz) : (J (Vo255 )dx)
Q 4 Q Q

1
< J;Z |VU|2dﬂf + /\—+2 JQ(U + 1>)\+2d$ + 19,

(2.4.134)

where ¢19 depends on 7. Using (2.4.134) and the fact 1*&—2’\“ > 1, we obatin

d

7 (u+ D) 2dr < J (u + 1) 2dx + (A + 2)cio,
0

Q

which implies |u+ 1| a+2 < ¢11 by using the Gronwall’s inequality, where ¢;; depends
on T. Then we can find a constant ¢j5 depending on 7' such that |Vol||p» < ¢1o by
using Lemma 2.1 and |ul|pa+2 < |u + 1|22 < ¢11. Hence carrying out the Moser-
Alikakos iteration procedure, we obtain a constant c;3 depending on 7' such that

|u(-,t)| e < 13 for all t € (0,7"). Then the proof of this lemma is completed. O
Next, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. The blowup result has been proved in Lemma 2.20. The com-
bination of Lemma 2.8 and the fact ||ul|;.. < C(T") gives the existence of a unique
global-in-time solution of (2.1.1) for any initial data with A > 1. Hence if the solution

blows up, it has to blow up at infinite time. O
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Chapter 3

Attraction-Repulsion Keller-Segel
Chemotaxis Model

3.1 Introduction

In this chapter, we consider the following attraction-repulsion chemotaxis system

u = Au—V - (xuVov) + V- (&uVw), ze€Q, t>0,
Tvy = Av + au — S, ref, t>0,

{ wy = Aw + yu — dw, ze, t>0, (3.1.1)
Qu— v Qw |, red, t>0,

| u(,0) = up(x), v(z,0) = vo(x), x €,

where x, &, a,7 > 0 and 3,6 = 0, € is a bounded domain in R™ with smooth bound-
ary 0€2, v denotes the unit outward normal vector to the boundary 0f2. The model
(3.1.1) was proposed in [63] to describe how the combination of chemicals might inter-
act to produce aggregates of cells. A documented example is the motion of Microglia
in the central nervous system (CNS) in Alzhemer’s disease (AD) which is affected by
the interaction of chemoattractant(e.g., S-amyloid) and chemorepellent(e.g., TNF-
«) which are secreted by Microglia, where the concentrations of Microglia, chemoat-
tractant and chemorepellent are denoted by u(x,t),v(z,t) and w(z,t) in the model
(3.1.1) respectively. The positive parameters y and & are called the chemosensitivity

coefficients, and y, 5,7, > 0 are chemical production and depredation rates. 7,7
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are constants equal to 0 or 1 justifying whether the change of chemicals is stationary
or dynamical in time. It is noted that the model (3.1.1) was also introduced in the
paper [77] to interpret the quorum sensing effect in the chemotactic movement.
Proposed first by Keller and Segel [49], the classical (attractive) chemotaxis model
was a system of two partial differential equations (i.e. the first two equations of
(3.1.1) with £ = 0) which possesses an apparent Lyapunov functional. This particular
structure motivated a vast amount of mathematical studies in the past (see review
articles [37, 31, 95]) and recent studies [12, 32, 86, 96, 98], where most of works were
focused at whether the solution blows up or not (see some early works in [38, 68, 69]
in this area). On the other hand, for the repulsive Keller-Segel model (i.e. the
coupling of first and third equations of (3.1.1) with y = 0), a Laypunoval function
(which was different from that of the attractive Keller-Segel model) was found in
[15] which leads to the global existence of classical solutions in two dimensions and
weak solutions in three and four dimensions. Compared to the classical Keller-
Segel model, the three-component system of ARKS model (3.1.1) is much harder
to analyze. In one dimensional space the linear stability analysis has been done in
the work [63]. Furthermore Liu and Wang [60] has studied the global existence of
classical solution and the stationary solution. Meanwhile, the time-periodic orbits
has been found recently in [61] by employing the local and global Hopf bifurcation
theory. Due to the lack of an apparent Lyapunov functional, no progress has been
made for higher dimensional space until a recent work by Tao and Wang [85] where
the main contribution has three folds: (1) when 71 = 75 = 0, the parameter regime of
global boundedness and blowup of solutions was successfully identified by the Moser
iteration method, which reveals the competing effect of attraction and repulsion
plays a central role in determining the dynamics of solutions. (2) when 73 = 75 =1
and 8 = 0, numerous clean transformation were introduced to reduce the ARKS

model (3.1.1) to the classical chemotaxis model so that the existing mathematical
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techniques (like Lyapunov functional) and results can be employed to derive various
behaviors of solutions; (3) when 7 = 75 = 1 and [ # ¢, an entropy inequality was
provided to establish the time dependent global boundedness of solutions when the
initial mass {, updz is small and repulsion prevails (i.e. &y — ya > 0).

The study of [85] leaves two evident gaps in the case of 71 = 75 = 1L and § # J: (a)
existence of global solutions with uniform-in-time boundedenss or with large data of
initial value wy if the repulsion dominates; (b) behavior of solutions if the attraction
prevails. All the past and current methods (e.g. see [38, 68, 69, 96, 98] ) of proving
the blowup of solutions of the attractive Keller-Segel model essentially depends on
the existence of a Lyapunov functional. It appears to be hopeless at present due to
the failure of finding a Lyapunov functional to establish the blowup of solutions for
the case where the attraction prevails (i.e. £y — xa < 0).

In this chapter, we first consider the asymptotic behavior of the ARKS model
in one dimension. Furthermore, we remove the the smallness assumption on the
initial mass §, uo(x)dz for the global existence of solutions with uniform-in-time
bound in two dimensions, which substantially improves the results of [85, Theorem
2.7]. In particulary, for the case 14 = 1,75 = 0,0 # §, the ARKS model (3.1.1)
is irreducible to a two-component chemotaxis model and we succeed in finding a
Lyapunov functional to prove the uniform-in-time boundedness of solutions, which
was not found in [85]. As we know, it is the first result that presents a Lyapunov
functional for an irreducible three component attraction-repulsion chemotaxis model.
Moreover, the Lyapunov functional for an irreducible three component attraction-
repulsion chemotaxis model may be useful in establishing the blowup of solutions for
the case where the attraction prevails, this problem will be pursued in future.

Before proceeding our main results, we give the following local existence theorem

of the solutions to system (3.1.1), which was proved in [60, 85].
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Lemma 3.1. Assume that 0 < (ug, Tivg, Towg) € [Wh*(Q)]*. Then there exist
Trnaz € (0,00] and a unique triple (u,v,w) of nonnegative functions from C°(Q x
[0, Trnaz); R?) A C2HQ x (0, Thae); R?) solving (3.1.1) classically in € x (0, Tyyaz)-
Moreover

if Toaw < 0, then |u(-,t)||0 =0 as t /" Ty (3.1.2)

3.2 Asymptotic Behavior in One Dimension

In one dimension, 2 = I = (a,b) is a bounded open interval in R and 07 denotes the

boundary of the interval /. When 77 = 75 = 1, then the system (3.1.1) becomes

-

Up = Ugy — (XU ) + (EUW,)y, rel,t>0,
Vp = Uy + au — S, rel,t>0,
QW = Wy + YU — dw, xel t>0, (3.2.3)
Qu— v w_, zedl,t>0,
U(.’I),O) = UO(ﬁ),/U(.CL",O) = UO(x>7w($’0) = ZU()(fIf), rel.

\

3.2.1 Uniform-in-time Bound of Solutions

First, we address the global existence of classical solutions to system (3.2.3) which

improve the results in [60] by deriving a uniform-in-time bound for solutions.
Theorem 3.1. Let ug € H'(I), (vo,wy) € [H?(I)]?. Then the system (3.2.3) has a
unique global classical solution (u,v,w) € C°(I x [0,20);R?) n C*Y(I x (0,0); R?)
such that u,v,w = 0 if ug,vg, wy = 0.

Theorem 3.1 is a consequence of local existence theorem (Lemma 3.1) and the a
priori estimates (Propositions 3.1) by the continuation argument.
Proposition 3.1 (A priori estimates). Let ug € H'(I), (vo,wo) € [H*(I)]* and
(u,v,w) be a solution of (3.2.3). Then for any T > 0, there exists a constant C' > 0
such that (u,v,w) satisfies

lw()|| g + [[(v,w)()]| 2 < C, forall 0 <t <T. (3.2.4)
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Next we are devoted to proving the Proposition 3.1. The Proposition 3.1 will be

verified by the following two lemmas.

Lemma 3.2. Let the assumptions in Proposition 3.1 hold. If (u,v,w) is a solution
of (3.2.3), then for any T > 0, there is a constant C' independent of T such that the

following inequality holds for each 0 <t < T
()72 + [l (v, w) ()1 < Ol (w0, wo) 5 + lluollzz + lluol7). (3.2.5)
Proof. First the result of [76, Eq. (4.3)] gives that ||(v, w)(t)|[5: < C(||(ve, wo)|| 7 +
l[uol|3»). Hence it remains to derive that
()72 < C(lluollz2 + I1(vo, wo) 7). (3.2.6)

Multiplying the first equation of (3.2.3) by w and integrating the resulting equation

with respect to x over I gives rise to

1d

—— | W?dz + J uidm = Xf UV Updx — SJ UWL U dT
2dt J; I I I

(3.2.7)
1
< J 2 (uv, ) ?dx + J & (vw, ) dx + = f ulda,
I I 2 Jr

where we have used the Young’s inequality
_/ —1 1 1
ab < ea?+ (ep)”YPq 09, forany a, b=0, e >0, 1 <p, g< oo, —+-=1. (3.2.8)
p q

Applying (2.2.9) and ||ul|pr = |uo|zr =: M to (3.2.7) and using the Holder’s inequality

as well as the Young’s inequality, we have

1d 9 1
—— dr + - 2d
5 Iu x QL% x

2 2 2 2
<X s lJvallzs + &% Nullza llwsllzs

2 3 3 2 2 2 2

< Ollluallpz lJullpr + llellz) ([vaell 72 lval 22 + [[v2llze + lweall 72 [[wall 72 + lwellZ2)

2 2 2 6 6
< gUluallze + llvaellze + lweellz2) + Cllvallze + llwellz2)-

ol =

(3.2.9)
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Multiplying the second equation of (3.2.3) by —v,,, the third equation by —w,., and

adding them, then integrating the resulting equation with respect to x, we have
1d

—— | (v +wi)dr + J(vzx + w2 )dw + ﬁf vida + 5J wdx
2dt Jy I I I

= —ozj UV dT — vf UW e d (3.2.10)
I I

1 2 2
e J (v2, + w2, )dx + @« J u?dr,
2 2l

N

where the Cauchy-Schwarz inequality has been used. Using (2.2.9) and (3.2.8), we
have

1

i 219) a2 + C flul% . (3.2.11)

2 4
L wtdr < C(||ugl|s |Jull? + [lul)?,) <

Adding (3.2.9), (3.2.10) and (3.2.11), applying (3.2.5) to the resulting inequality, we
obtain

d
— | (u* + 2 +w§)dx+f

(w2 + v2, + w?,)dx + J(u2 + Bo2 + dw?)dx

1 (3.2.12)
< O(L+ [loallze + [lwell72) < C,
where C' > 0 depends on ||(vo, wo)|| g1 + ||wo]| ;1. Solving (3.2.12) yields (3.2.6). Then

the proof of Lemma 3.2 is completed.

]

Lemma 3.3. Let the assumptions in Proposition 3.1 hold, and (u,v,w) be a solution
of (3.2.3). Then for any 0 <t < T, there exists a constant C > 0 independent of T

such that the solution satisfies that

[ ()1 72 + | (Vaws waa) ()72 < Cllluoll3 + 1 (vo, wo)l[772), (3.2.13)
and

[ e+ e ) 61 s
’ (3.2.14)

2 2 2 2
< C (lluollzn + 11(vo, wo)llz> + t(lluoll7z> + [l (vo, wo)ll1))
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Proof. Multiplying the first equation of system (3.2.3) by —u,,, and integrating the

resulting equation with respect to x yields

1

1d uldr + f u?, dx

=X J (uvg) gz dr — & J (uwy) pUgpdx (3.2.15)
I I

1
<3 f u? da + 2(x2 + €2) f [w?(v2, + w?,) + ub (vl +w?)] da,
I I

where the Young’s inequality (3.2.8) has been used. Applying (2.2.8) to v,, one has

2 3 3 2
[0all2e < ClllveaallZz lvellz2 + llvzllL2)- (3.2.16)
Similarly, we obtain
2 1 3 2
[wall7 < Cllwasall7z 1wl 72 + lwall72)- (3.2.17)

The combination of (3.2.16) and (3.2.17) with (3.2.8) gives
20 + ) | wt(e?+ o
I
2 2 2
< 20¢" + € lluallze (lvallze + llwsllze0)
2 3 3 2 3 2
< Clluellzz (Ivesellze vel 72 + lweaall 72 lwel 72 + 1| (2, wa)|l72)
2 > 3 > 3 2
< Ollluaell 2 lull 2 + lullz2) (vawall 72 (|02l 72 + |weaell 72 well 72 + (2 wa)l12)

2 2 2 4 6 6
< (HuxxHL? + HUmme + wam”m) +C HUHL2 (HUQSHLQ + waHL2 + 1)-

0|

(3.2.18)
Using (2.2.9) and (3.2.8), one has

202 + &) f (02, + k)
I

1 3 2 2
< O(llugall 72 Jull 22 + lullze) (lveeell 2 vl gz + Wzl 2 lwell g2 + [ (ve; wa)[|72)

2 2 2 6 4 4
S gUltwallze + 1vreallze + [[wreallz2) + Cllullzz (Joallze + llwellzz + 1),

| =

(3.2.19)
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Therefore substituting (3.2.18) and (3.2.19) back to (3.2.15) gives

1
Ld J uZd + lj u?, dx

<

(3.2.20)

(ltasllze + lvmse 72 + ez l72) + Clluollze + Il (vo, wo)llz),

| =

where Lemma 3.2 and (3.2.8) have been used.
Differentiating the second and third equations of (3.2.3) with respect to z once,

we have

{Utx = VUgpz + AU, — sza (3221)

Wiy = Wyge + YUy — 5ww
Multiplying the first equation of (3.2.21) by —v,4., the second by —w,.., and adding
them, we end up with the following results after integrating the resulting equation

with respect to x

1d

—— | (W3, +w?,)dz + J(vim +w?, Ydr + BJ v2 dr + (5J w? dx

2dt J; I I I

= ozf Up Vg AT — 'yj Up Wy AT (3.2.22)
I I

1 2 2
< = f (vzm + wim)dx + @y j uidm,
2 ); 2 I

where we have used the Cauchy-Schwarz inequality and

1d
— j Vi Vpwn AT — J Wy Wagedr = =— | (V2, + w2, )dw

Noting (2.2.8) with n = 1 and (3.2.8) entails that

1

2 2
luallze < Clllugell 2 lull 12 + [lullz2) <
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Then combining (3.2.6), (3.2.20), (3.2.22) and (3.2.23) yields that

1d

1
I 1 I

4

a? +'72

< f Wd + fud (22 + 1o wo) )
I I

1 2 2 2
< g laellze + Clluollzz + [I(vo, wo)l[pn),

which implies that

d

2 2 2 2 2 2 2 2 2
pr I(ux + vz, + w5, )dr + L(um + v, + W) dT + L(uw + fvi, + ows,)dx

< C([[uoll2 + 1I(vo, wo) 7).
Therefore it follows that

e (8)1[72 + ([ (v, wea) (£)lI72 < ol + 11 (w0, wo) ).

and
! 2 2
[, (e + N ) 1)
2 2 2 2
< C (lluollz + 1l (vo, wo)llz2 + t(lluol72 + [1(vo, wo) )
which completes the proof of Lemma 3.3. m

With the above results in hand, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Based on the estimates obtained in Lemma 3.2, Lemma 3.3

and Sobolev embedding H' < L*, we have for any T" > 0

sup || (u, 0, w)|[ g < Ol g1 + [[(v0, wo) | 2),
0<t<min{Ty,T'}

which combined with Lemma 3.1 gives the existence of a unique nonnegative global
in time solution. The regularity of the solution is obtained by the standard parabolic

regularity argument (see [85] for details ). The proof of Theorem 3.1 is finished.
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3.2.2 Existence of Global Attractor

Next, we consider the large time behavior of the solution of (3.2.3). Define
2 = {(u,v,w) e H'(I) x H*(I) x H*(I)|u = 0,v = 0,w = 0}.

From Theorem 3.1, we know that for any initial function Uy = (ug, vo, wo) € £, the
system (3.2.3) has a unique solution U (t; Uy) = (u,v,w) for all ¢ > 0. Hence, we can
define a dynamical system ({S(t);>0}, 2") by a nonlinear C° semigroup S(t) : 2~ —
Z by

S(t)Uo = U(t; Up),

such that

S(0) = Identity, S(t)S(s) = S(s)S(t) = S(s+t), S(t)Uy is continuous in Uy and t.

The definition of a global attractor is presented below.

Definition 3.1 ([87]). We say that of < Z is a global attractor for the semigroup

{S(t)i=0} if & is a compact attractor that altracts the bounded sets of 2.

A useful concept associated with global attractor is the absorbing set as defined

below.

Definition 3.2 ([87]). Let & be a subset of Z~ and % an open set containing 2.
We say that % is absorbing in % if the orbit of any bounded set of % enters into

A after a certain time:
V By U, By bounded, 3 tgz, such that S(t)By < B, ¥t = tay,.
Then we have the following result.

Theorem 3.2. The dynamical system ({S(t)i=0}, Z°) possesses a global attractor.
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To study the large time behavior of solutions of (3.2.3), we need higher-order

energy estimates.

Lemma 3.4. Let ug € H*(I), (vo, wo) € [H3(I)]*. Let (u,v,w) be a solution of
(3.2.3). Then for any T > 0, it holds that for any 0 <t < T

etz (D)2 + 11 (V2s wee) (O 72 < Cllutoll 772 + 11 (w0, w0) ). (3.2.24)

Proof. We differentiate the first equation of (3.2.3) with respect to x, multiply the
resulting equation by —u,,., and then integrate the product in x. Finally, we end

up with

d 2
— de + J uimdx =X J (W) gz Uggpdr — §J(wa)muxmdl’
dt J; 2 I I I

<

N | =

f ufm,dx + f (X2 |(uvx)xx|2 + 52 |(uwx>xx|2) dx.
1 I
(3.2.25)

Using (3.2.8), Lemma 3.2 and Lemma 3.3, as well as the Sobolev embedding H! —

L*, we have

L (O | ()l + € [(utoy) al?) d

TTT

< C | [0+ ) + 20k +ud,) + 0+ )] da

< C (1(ve, wa) 30 Naallze + a0 [|(Vaws Waa) 172 + [l 2o | (Vawes Waaa)l|72)
2 2 2 2

< C(H“MHL? + HUxMHL? + ||wxm||L2 + ||(Umvwm)”L2>

< C(HUQCHL? ||umxHL2 + ||UmHL2 HUMMHL? + Hw:wEHLQ meafoL?)

+ Cllluslze + (Vo wae) [ 72)

< 2 (laaallze + lvssselze + lwesealz2) + Clluslze + Il (vaz, wae)l72)-

co| —

(3.2.26)
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Combining (3.2.25) and (3.2.26) gives

1d 1
—— | Wi dr + f u?, dx
(3.2.27)
1 2 2 2 2 2
< g(”“mx“LZ + ||Umm:t||L2 + memnﬂ) + C(HUmHH + ||(Uxmvwm)||L2)'

Differentiating the second and third equations of (3.2.3) with respect to x three times,

one derives that

(3.2.28)

Utzar = Vzzazs T QUggz — ﬁvxxxa
Wizy = Wrzgze T VUzazr — 5wzzx

Multiplying the first equation of (3.2.28) by v, the second by w,.,, and adding
them, integrating the results yields that

1d
2 dt I I I I

= —ozf Upp Vg AT — 7] Ugy Wapaw AT (3.2.29)
I I

1 2 + 2
<5 f (Ufcxxx + wiwzx)dx + = 1 f ufmdx,
2Jr 2 I

where we have used the facts vy = Wyee = 0 on 01 which can be derive from
(3.2.21) and the boundary conditions u, = v, = w, = 0 on dI. Furthermore (2.2.8)
with n = 1 and (3.2.8) entail that

1

2 2
4(0[2 + 72 + 2) HuwwzHLz + ¢ HuwHL2 .

J ot < Otz g2 sl 2 + lluallz2) <
1

(3.2.30)

Jointing (3.2.27), (3.2.29) and (3.2.30) yields that

1d
2dt J,

1
2 2 2 2
(uxm + Urza + wxxx>d$ + 5 L(umxx + Vyzan + wxmxac>dm

b o g e o
1

1

1
< Mewallze + 5 1 (Vazrar wrae) 72 + Cllltallze + [[(va, waa) [72),
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which implies

4
dt ),

2 2 2 2 2 2
I

- f (w2, + Bvd,, + o, )d (3.2:31)
I
< C(lluallzz + Nl (Vaws wez)lI72)-
Then the application of Lemma 3.3 and the Gronwall’s inequality to (3.2.31) gives
etz (0) 172 + | Wars Waa) ()72 < Cllluollg2 + 11 (w0, w0) [ 372)-
Thus the proof of Lemma 3.4 is completed. ]

Next, we derive the estimates of ||u(t)||2 and [[(v,w)(t)|| ;s for (ug,ve,wo) €

HY(I) x HX(I) x H*(I).
Proposition 3.2. Let ug € HY(I), (vo,wo) € [H*(I)]* and (u,v,w) be the global

solution obtained in Theorem 3.1. Then we have the following estimate

1
o0 + 1) O < € (3 + ol + Honwalle) . (232

Proof. Using (3.2.13) and integrating (3.2.31) in the interval [s, t], we have
||um(t>|‘2L2 + H(wamwmx)(t)Hi?

< C ([uae($)[72 + [|(Vazes wewe) ()72 + lollzn + [[(vo, wo)[[52) » 0 <5 <.
(3.2.33)

Furthermore the integration of (3.2.33) with respect to s over (0,t) gives

t(HUJL‘x(t)HQL? + H(Uccﬂcx?wamx)(tﬂﬁﬂ)

t
< CL(Ilum(S)Ilia + | (Vas Wawa) () 1 72)ds + Ct ([Juoll 7 + I (vo, wo)[32) , 0 <'s <.
(3.2.34)
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Applying (3.2.14) to (3.2.34) yields that

1
ltae (D72 + 11 (V20, Weae) (D72 < C (; + 1) (ol + Nl (vo, wo)ll7=)-  (3.2.35)

The combination of Lemma 3.2, Lemma 3.3 and (3.2.35) gives

()l + (v, w) (O

N

1
c (; ; 1) (ol + 11 (v0s wo) ) + Clluolly + 11w wo) )

1
<c (z ’ 1) (ol + (v, wo)lIe):

Then we complete the proof of Proposition 3.2. m
As a consequence of Proposition 3.2, we have the following result.

Proposition 3.3. For each bounded ball B, = {(ug, vo,wo) € 2| |[tol| 51 +]| (vo, wo) || 72 <

r}, there exists a time t, depending on B, such that for any Uy € B,, it has that

sup sup HS(t)UUHH2><H3><H3 <C,
t=t, UpeB,

where C' > 0 is a constant.
Next, we are devoted to proving Theorem 3.2. First we present a result in [87].

Lemma 3.5 ([87]). Assume that for some subset B < X, % + &, and for some
to > 0, the set U=y, S(t) A is relatively compact in 2. Then w(%AB) is nonempty,

compact and invariant.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Define the set

% = {(u,v,w) e HA(I) x H3(I) x HX(D)| |u®)|z2 + 10, w) ()5 < C} 0 2,
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where C' is a constant appearing in Proposition 3.3. By the Sobolev imbedding
theorem, it follows that £ is a compact subset of 2. From Proposition 3.3, we know
that for any bounded subset B, < 27, there is a time ¢, such that | J,., S(¢)B, <
#. Hence £ is a compact absorbing set for ({S(¢);0}, Z"). Using [87, Theorem
1.1], we conclude that &/ = w(%) is a global attractor of the dynamical system
({S(t)i=0}, Z). By Lemma 3.5, this global attractor is nonempty, compact and

invariant in 2". Then the proof of Theorem 3.2 is completed.

3.2.3 Convergence to Stationary Solution

In this subsection, we explore the asymptotical behavior of solution for a special case
[ = 0. First noticing that the integration of the first equation of (3.2.3) in x entails

that the cell preserves the mass:
luOll = ol =2 M (3.2.36)

where M > 0 is a prescribed constant denoting the cell mass. Therefore the station-

ary solution (U, V,W)(z) of (3.2.3) satisfies

0="Uso — (XUVi)o + (EUWL)a, z e,

0=V +aU -V, rel,

30 =Wy, + U — 6W, vel (3.2.37)
U=V, =W, =0, x € dl,

L §; Ulx)de = M, xel.

When 5 = ¢ and &y — ya = 0 (i.e., repulsion dominates), the results of [85, Propo-
sition 2.3 and Proposition 2.4] showed that (3.2.37) has a unique constant solution
(Wo, o, FUo) Where W := M/|I], and the solution of (3.2.3) approaches this con-
stant solution exponentially as time goes to infinity in two dimension. When § = ¢
and £y — xya < 0 (i.e., attraction dominates), the existence of non-constant solution

(U,V,W) has been established in [85, Proposition 2.3], whereas the asymptotical
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behavior of the solution to (3.2.3) has not been obtained for this case. In this sub-
section, we shall explore this question and show that the solution of (3.2.3) converges

to a solution of (3.2.37) algebraically as time tends to infinity in one dimension.

Theorem 3.3. Let ug € H'Y(I),(vo,wo) € [H*(I)]?. If B = § and &y — xa <
0, then the global solution (u,v,w) of (3.2.3) converges to a stationary solution
(U(x),V(z),W(x)) in [H(I)]* as time tends to infinity. Moreover, there exist a
0 € (0,2) and a positive constant C' such that for all t = 0, it holds that

’2

lu(@, t) = U@) | + o, ) = V@)l gn + wlz, 8) = W(@) ]| o < C(1+ )70,
Next, we are devoted to proving Theorem 3.3. If § = ¢ and £y — ya < 0, we set
§:=xv — &w. (3.2.38)

Substituting (3.2.38) into (3.2.3), we have

Ut = Ugpy — (U,Sm):m re Ijt = 07
St = Sz + (X — EY)u — fs, zel,t>0, (3.2.39)
Uy = Sy = 0, xe&],t>0,

u(z,0) = up(z), s(x,0) = xvo(x) — Ewo(z) := so(z), x€l.

Due to the conservation of cell mass (3.2.36), the corresponding stationary problem

of system (3.2.39) is

0="Us— (USy)q, xel,
= Pzx - - ) Ia
0=0S5+ (xa—E&Y)U —BS x € (3.2.40)
UI:SCL‘:07 .Teal,
§,U(x) = M, xel.

Notice that the non-constant stationary steady state solution (U, S) of (3.2.40) have
been established in [85, Proposition 2.3] when £y — ya < 0. By Theorem 3.1 and the

Minkowski inequality, we have the following estimates on the solution of (3.2.39).
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Lemma 3.6. Let ug € H'(I), (vo,wo) € [H*(I)]*. Then problem (3.2.39) has a global
classical solution (u,s) € CO(I x [0,00);R?) n C*L(I x (0,0); R?) such that

[u(®)|2n + |s@®)|]5 < C. (3.2.41)

It is well-known (e.g., see [37]) that if s > 0, the system (3.2.39) has a Lyapunov

functional
1
E(u,s =J{ulnu+— 52 + Bs? —us}dm 3.2.42
=, 2a— e ) 9242

satisfying

d
EE(u(t),s(t)) +f

1
U lnu—swzdaH——fszdm:O. 3.2.43
ulnu—s), P e+ —— | o (3243

However we should underline that the initial condition so(x) = xvo(x) — Ewy(z) may
be negative in principle and hence the non-negativity of the solution component s
can not be guaranteed. Fortunately the second and third terms of (3.2.43) do not
depend on the sign of s and hence (3.2.42) is still a Lyapunov functional of (3.2.39)
for any s € R. However the sign of s will affect the lower bound of the Lyapunov
functional. Since in one dimension, the solution (u, s) is uniformly bounded in time,

we can easily find a lower bound for the Lyapunov functional (3.2.42) as given below.

Lemma 3.7. For (ug, so) € H(I) x H*(I), the Lyapunov functional (3.2.42) satisfies
1]
E(u,s) > —C —— for any t > 0
e

where C' is a positive constant.

Proof. Employing (3.2.36), (3.2.41) and Sobolev embedding H' < L®, we have

J usdr < ||| ;o [Juol 2 < C. (3.2.44)
I
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Substituting (3.2.44) into (3.2.42), and using ulnu > —1 for all u > 0, we obtain

that

1|

E(u,s) > —C — — forany t >0
e
which completes the proof. ]

If (u, s) is a global classical solution of (3.2.39), we introduce the w-limit set

wlu, 5] ::{(U,S)| (t,) 1 o0, s.t. lim (u, 8)(t,) = (U, S) in cl(i)}. (3.2.45)

n—o0

Then based on the Lyapunov functional and the LaSalle invariant principle, it can

be concluded (see also [23, Eq. (3.23)]) that
wlu, s] == {(U, S)|(U, S) solves (3.2.40)} (3.2.46)
and there exists F, such that for any stationary solution (U, S) € w|u, s], there holds

t—00

EU,S)=E, = %EgE(u(t),s(t)) = lim E(u(t), s(t)). (3.2.47)
Furthermore we can solve the first equation of (3.2.40) and obtain that
Ulz) = Ae®@
with A being a positive constant. Hence we have

inf U(z) = A > 0 for all (U, 95) € w|u, s].

zel

Thanks to (3.2.45), (3.2.46) and (3.2.47), we may assume without loss of generality
that

inlfr’u(x,t) > \A>0forallt>0.

e

Using the results of [23, section 5], we have the following result.
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Lemma 3.8. Let (u(t), s(t)) be a solution of system (3.2.39) and (U, S) € w|u, s| be
a stationary solution of (3.2.39). Then there exists a constant Cy > 0 such that for

some t = t,, it holds that

E(u,s) — E, < Cy UJ (u [(Inu—s),]* + ! f) dx}mle) , (3.2.48)

xa— &
where 0 € (0, %) and t, is a time such that when t > t,. one has
[u®) = Ull > + [[s(t) = S|l <.
Proof of Theorem 3.3. The convergence of the solution (u, s) to (U,.S) follows from

the results of [23] directly. Next we derive the convergence rate announced in the

Theorem 3.3 based on an idea of [44, 43, 107]. First note that

E(u(t), s(t)) — By = fo {L <u [(Inu—s),]° + ! 32) dw} dr = 0.

xa— &y

Combining (3.2.43) and (3.2.48), we have for any ¢ > t,

d 1 2(1-0)
o (E(u(t), s(t)) — Eeo) + W(E(U(t% s(t)) — Ex) <0, (3.2.49)
and
d , 0 ) 1, 12
a(E(u(t),s(t)) —FEy)’ + ), wl(lnu—s),]" + o ffyst dx < 0.
(3.2.50)
The inequality (3.2.49) entails that
E(u(t), s(t)) — B < C(1 4 t)"Y0729 for all ¢ > 0, (3.2.51)

for some constant C' > 0, where we should point out that for ¢ < ¢, the term on the

left hand of (3.2.51) is bounded by a constant depending only on initial data.
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Then integrating the inequality (3.2.50) with respect to time in (¢, 00) leads to

: Lm{J;Quanu—snf4- ! g)dxyﬂdf<<E@mwaa»——EwW

Co* xa =&y

< O(1 +t)~0/0=20),
(3.2.52)

From the first equation of (3.2.39) we have (u;, h) = —(u(lnu — s),, h,), where

frg)= SI fgdz, which implies

[N

laell g1y < ( f[ w? [(Inu — S)Z]de); <C (Lu[(lnu - s)z]zdm> . (3.2.53)

where (H')" denotes the dual of H' and we have used |lul|,.. < C. Hence the

inequalities (3.2.52) and (3.2.53) entail that

o0
Is(t) = Sls < [l dr < O +)700-20), (3.2.54)
t
and
o0
||lu(t) — UH(HI), < J HUtH(Hl)/ dr < C(1+ t)’e/(1’29). (3.2.55)
t
Define
_ &f
Aof = —@ for f € D(A) N Ho,

where D(A) = {f(z)|f € W*2(), fulor = 0} and Hy = {f(2)|f € L*(1),, f(z)dz = 0}.
Noting that Ag is a positive linear operator, for any r € R, we can define its powers
Al (see [5, 4, 52] for details).

Letting ¢ = u — U and ¢ = s — S, using (3.3.107) and (3.3.111), we have

(3.2.56)

¢t = (¢x - UT/fm - ¢Sm)x>
¢t = ¢mc + (XO: - 67)¢ - 5¢
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Multiplying the first equation in (3.2.56) by ¢, A;'¢ and Aj'¢, respectively, and

integrating by parts, then applying the Young’s inequality (3.2.8), we end up with

1d
577 1922 + 6:lZe < elldelZa + CellelZ2 + 161Z), (3.2.57)
1d,  _ _
5 7140 M3 + 16172 < c(IlFz + [0alF2) + Ce0:4 2, (3.2.58)
and
1d _ _
5 g 101 + 146 P onl2 < e Ag ™ol + el 7o + 161172 (3.2.59)

where the boundedness of u and S, have been used. Integrating the second equa-
tion in (3.2.30) multiplied by ,—1,, and 1 respectively, we have by the Young’s

inequality (3.2.8)

1d
577 1012 + 1Wallzz + B 1lI72 = ((xa =606, 9) < € [l + Ce [l gy (3:2:60)

1d
57 10allzz + [wallzz + B l1valie < € lallze + Cell6all72 (3:2.61)

and

1d
5@(”%”%2 + BI1N7e) + el < & 1ellze + Ce 19172 (3.2.62)

Differentiating (3.2.56) with respect to ¢ and noticing that ¢; = u,, we have

{¢tt = Guat — (P1e + uhur + G152)a,s (3.2.63)

Yy = VYuar + (X = £7) P — Uy

Multiplying the first equation in (3.2.63) by Ay'¢; and noticing that 0, Ay ¢ =
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%—uw — ¢S, = 0 for x € I, we have
5 dt”A Poul3e + loelTe = (Drtbe + by + 615k, AT 61
= (Gthe + 1Su, O Ay D) + (Wihay, Oz AG D1y
< e |gullze + Celln AT il 72 — Cutes by — Cuthy, 2 A" b1

< ellgullze + Co(llvellze + [0:45" 6ul72)
(3.2.64)

where the boundedness of 1., 5,, v and u, has been used. We multiply the second
equation in (3.2.63) by v, and integrate over I to obtain

th Hd}tHLZ + [[atllze + Bllellze < € 1ellzz + Ce el - (3.2.65)

Set y(t) = |A5"?012: + I6l72 + |45 P 6l + [¢xllz2 + 1172 + Ilve]7> - Noting
1045 72 =
ities (3.2.57)-(3.2.62) and (3.2.64)-(3.2.65) that

|A51/2¢H2LQ <C Hng?Hl), and letting ¢ small, we deduce from inequal-

(1) + ky(t) < CI0lGmy + 10]72) < C(1+1)72/072,

for some k > 0, where (3.2.54) and (3.2.55) have been used. Solving above inequality
yields that

y(t) < y(0)e ™ + Ce_ktJ eF (1 4 5)"2/0-20) g, (3.2.66)

Note that the last term of (3.2.66) can be estimated as
t

¢ t/2
f eks(l + 8)729/(1729)d3 _ J Gks(l + 3)729/(1720)d8 _|_j eks<1 + 8)720/(1726)d$
0 0 t/2

£/2 !
< thf (1 + 8)729/(1729)ds + (1 + t/2>29/(129)J ekst
t/2

< C’egt(l + t/2)*29/(1*29)+1 + %ekt(l + t/2)*29/(1*29),
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Then substituting above inequality into (3.2.66) gives rise to
y(t) < O(1 + )~ 2/0=20) (3.2.67)
which implies that
lu(t) = Ull;2 + [|s(t) = S|l gn < C(1 + £)~6/(1=20), (3.2.68)

To derive the decay rates for v and w, we subtract (3.2.40) from (3.2.39) and obtain

that
(w=W)=(w=W)u +7y(u—-U)=(w—W).
By the Duhamel principle, v(t) — V' can be represented in the form of
t
v(t) =V = e A (yg — V) + oaj e~ U=AHB) (y(s) — U)ds. (3.2.70)
0

Noting that §,(u(s) — U)ds = 0 which allows us to use the inequality ||e™* f||,» <

C|f|z» for any f e L such that §, fdz = 0, we have

¢
o) = V. < Ce™? + Cf e P |lu(s) — U2 ds
0

t
<Ce P+ CJ e PU=)(1 + 5) =020 gs
’ (3.2.71)

¢
< C'(e_ﬁt + f e P (1 +1t— s)_e/(l_%)ds)

0

< O(1 +t)~9/0-20)

where we have used the inequality
t
f (1+t—s)"eds<C(1+1t) " for any k,p >0
0

which was proved in [94, Lemma 4.4]. Similarly, we can prove that the convergence
of w satisfies
lw(t) =W <C(1+ t)fe/(lf%).
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By the first equation of (3.2.56) and the classic elliptic regularity theory, using
(3.2.67) we have

2 2 1/2
e — Uall22 = [|0all%e = | AY 022

< C (140 e + 145 2 (wat + 98,212 )

(3.2.72)
< € (145 61l + llutse + 65 1132)
< Cy(t) < C(1 +t)~20/0-20),
The combination of (3.2.68) and (3.2.72) gives that
u(t) = Ul < C(1+t)~70720), (3.2.73)

Letting ¢ = v, — V, and using the first equation of (3.2.70), one has

Applying the same procedure to ¢ as was done to v — V, and using (3.2.73), we have

a K > 0 such that
1

Hﬂm<C€m+CJ€%WQWA@—%MMS
0

t
< Ce Kt 4 CJ e—K(t—s)(l n 8)—9/(1—29)d8 (3.2.74)

0
< O(1 +t)~0/0-20),
Collecting (3.2.71) and (3.2.74), one has
v =V < C(1 4 1)~9/0-20),
Applying the same procedure to w, we have

Jw — W < C(1 +t)~9/0-20),

Thus the proof of Theorem 3.3 is completed.
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3.3 Boundedness of Solutions in Two Dimensions

331 Casel:q=m=1

When 71 =, =1, f # 0 and n = 2, the global existence of solution with small
initial mass has been proved in [85] if repulsion dominates over attraction. In this
subsection, we obtain the global classical solution with uniform-in-time bound for

the large initial mass, which substantially improve the results in [85].

Theorem 3.4. Assume that 0 < (ug,vo,wo) € [WHP(Q)]* with ug # 0 and &y =
xo. The the ARKS model (3.1.1) with 77 = 7 = 1 has a unique nonnegative
classical solution (u,v,w) € C(Q x [0,0); R?) n C*L(Q x (0,0); R?) such that u > 0
in Q x (0,00). Moreover there is a constant C' independent of time t such that

[uC )]l < €.

Next, we are going to prove Theorem 3.4. To estimate the cross-diffusive terms
in system (3.1.1), we use the transformation s = £&w — xv such that (3.1.1) can be

transformed into the following system

(= Au+ V- (uVs), rxet>0,
s =As —0s + (&7 — xa)u + x(6 — 9)v, xeQ,t>0,

S v = Av + au — Po, xet>D0,
g_z;:g_j:g_z:o’ xe o), t >0,
u(z,0) = up(z), s(z,0) = Ewo(x) — xvo(x) =: so(x),v(x,0) = vo(x), =€

(3.3.75)

Lemma 3.9. Assume the conditions in Theorem 3.4 are satisfied. Then there ezists

C > 0 independent of T' such that the solution of (3.3.75) satisfies
|Vs|lpe < C if &y = xa, (3.3.76)

and

lulnu|g + |Vs|z < C if &y > xa. (3.3.77)
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Proof. Using Lemma 2.1 and u € L'(£2), we have
|v|wir < ¢, foralll<p<2. (3.3.78)
Choosing p = £ in (3.3.78) and using Lemma 2.2, we have
]z < eafvf e < crca (3.3.79)

If &y = xa, the second equation of (3.3.75) becomes s; = As — ds + x (8 — I)v,
then using Lemma 2.1 and (3.3.79), we can deduce (3.3.76) by noting that |Vs| = <
Islhwroo < s

Next, we consider the case &y > ya. Multiplying the first equation of (3.3.75) by

Inu and integrating with respect to x over €2 yields that

d Vau|?
— | ulnudz + dex = — | Vu-Vsdz. (3.3.80)
dt Q Q u Q

Multiplying the second equation of (3.3.75) by —

1
Ev—x

then we have

1 d f 1 J 9 1) f 9
_ Vs|” dx + As|” dx + Vs|” dx
2(67 — ya) dt Vst £y — xa Q‘ | £y — xa Q‘ |
= J Vu - Vsdr — MJ vAsdx (3.3.81)
Q £y — xa Jg
(- o)
< Vu-Vsda:+—f As dx+—f v2d.
fg 2(&y — xa) st 2(§y — xa) Jo

Furthermore, using the Holder’s inequality and (3.3.79) we have

2
3 1
J vide < (J v3dx) Q5 < ¢y. (3.3.82)
Q Q

The combination of (3.3.80), (3 3.81) and (3.3.82) entails

2
i{f ulnudx—i— J Vs|? dx} f |Vu|
dt | Jg v = xa)

2 < C4X2(ﬁ - 5)2‘
asty vs 2(&y — xa)

(3.3.83)

+— As d:E+
2(&y — Xaj| ’



1 1
Using the Gagliardo-Nirenberg inequality and |uz |2 = |ul7: = |uol ., we have

J ulnudr < J widz + cs = |uz 35 + |uol 2
Q Q

< 6 (IVub | sallub 32 + Jud 32 ) + cs
(3.3.84)

1 1 2
< 4IVu? 172 + cilluollZe + coluoll;s + cs

2
=J [Vl dzx + ¢,
Q

u

3
where ¢; = ¢§|lug|7. + coluof 2, + ¢5. Substituting (3.3.84) into (3.3.83) and letting

cax*(B—96)?

C8 = C6 + S ) WO have

d {J In udz + ! f |V8|2d1:} +f wlnuds + —° f Vs|*dz < ¢

— ulnude + ——— e < cs.

dt {Jo 2(&y — xa) Jo Q £y —xa Jo :
(3.3.85)

Then applying the Gronwall’s inequality to (3.3.85), we obtain (3.3.77). O

Lemma 3.10. Assume the conditions in Theorem 3.4 are satisfied. Then there exists
a constant C' > 0 such that

lulze < C. (3.3.86)

Proof. First, we consider the case £y = ya. We multiply the first equation in (3.3.75)
by u and apply the Young’s inequality to find a constant ¢; such that

1d

1
—— | wPdx + f |Vul*dr = —f uVu - Vsdr < —f |Vul*dx + ¢; J u?dz,
2dt Jg Q Q 2 Ja Q

(3.3.87)

where the inequality (3.3.77) in Lemma 3.9 has been used. Using the Gagliardo-

Nirenberg inequality, we have

1 1
Juls < 2 (IVulZfulf: + lulr ) (3.3.88)
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which implies

1
2exul}s < 26163 (IVul sl + [ul}s) < 2IVults + (3:3.80)
with ¢5 = 2¢163(c163 + 1)|ug|?,. Adding (3.3.89) and (3.3.87), we have
d
%Huniz + 2¢1|ul3z < 2es. (3.3.90)

Applying the Gronwall’s inequality to (3.3.90), we have (3.3.86) for the case {y = xa.
Next, we will show that (3.3.86) holds with £y > ya. Multiplying the first equation

of (3.3.75) by wu, integrating the result with respect to x over 2, then we have
1d

— | widx + J \Vul2dr = j W Asdr < |ul3s|As| s (3.3.91)

Using (3.3.77), (2.2.6) and the Gagliardo-Nirenberg inequality, we have

2 1
[ullZsAs] 22 < esluls (HVASHEQHVSHEQ + HVSHL2>

< ¢ (€] VulZ2 +er)? (|VAs|}. + 1)

4 2 (3.3.92)
< cs(e|Vul i + 1)([VAs|;. + 1)
1
< §HVUH%2 + || VAs|22 + co.
Substituting (3.3.92) into (3.3.91), we have
d
— | vidr + f |Vul?dz < 2¢|VASs|7s + 2cq. (3.3.93)

We differentiate the second equation of (3.3.75) first and then multiply it by —V(As)

and integrate the product in €2 to obtain

1

1d f |As|?dx + J |VAs|*dx + 5] |As|*dx

= (xa —&y) f Vu-VAsdz + x(0 — ) J Vv - VAsdx (3.3.94)
Q 0

1
< 5] IVAs|*dz + (xa — §7)2J IVul2dz + (5 — ﬂ)Qf |Vol2d.
0 0 "
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Multiplying the third equation of (3.3.75) by v and integrating the product in €2,

then we have

1d

2
— | vidz + J |Vo|Pdz + ﬁf vidr = af uvdz < |ul?. + a—HvH%z

2 o’ 2
< 8HVUHL2 + ZHUHLQ + C10

= 5HVUH2L2 + C11,
(3.3.95)

where we have used (3.3.82) and
J Wdz < e VulZs + cn. (3.3.96)
Q

Multiplying (3.3.93) and (3.3.96) by 2(xa — £7)?, (3.3.95) by x*(d — )2, and then

adding them to (3.3.94) and taking e sufficiently small, we have

d 1 2(0 — B)?
% (Q(Xa —&y)? JQ w?dr + 3 L |As|® + M fQ dex)

(3.3.97)
+ 2(xa — §’y)QJ u?dz + (5J |As]* + Bx* (5 — 5)2J vidr < 3.
Q Q Q
Then using the Gronwall’s inequality, we have (3.3.86). O

Lemma 3.11. Assume the conditions in Theorem 3.4 are satisfied. Then there exists

a constant C > 0 such that

Proof. Multiplying the first equation of (3.1.1) by u? to get that

1d

— | uldr + §f |Vu%|2dx = 2xf u*Vu - Vudr — 2§J u*Vu - Vwdz

4 : 4
< —Xf }U%Vu% . Vv‘dx + _fj ‘U%VU% . Vw‘dx.
3 Q 3 Q
(3.3.99)
73



Using (3.3.86) and Lemma 2.1, we have ||(Vv,Vw)||;s < ¢;. Then, applying the
Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality to the right terms
of (3.3.99) we have

3
2

f |u2Vu% Vv‘d:v+ —j ‘u2Vu -Vw‘d:v
1 : :
< 3IVuR 5 + 16 Juz 3 Vol + 867 u 7] Voo 1

1 3 3
= gHVWHQH + e (16X + 88%) uz |74

(3.3.100)
1
< IVl + o (IVadifalud )y + b))
1
gHVlN 52 + cac3 HVW HL2 + cc3
5
< glvusliz + e,
3
where we have used H”LL%HL% = |u?||}, < ¢3. Substituting (3.3.100) into (3.3.99), we
can derive that
p 3da:+f (V2 [2dz < 3cy. (3.3.101)

By the Gagliardo-Nirenberg inequality we two positive constant c; and cg which are

depended on |[|u||;. such that
316 1 319
HUQHL2 g C_HVUQHLQ +CG. (33102)
5
Inserting (3.3.102) into (3.3.101) and using |u? 19, = |ul3s, we have

—|ul3s + cs|ul3s < 3eq + esc6 = ¢,

dt
which implies
C
lul )l < € uofzs + = = s, (3.3.103)
8
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Then using Lemma 2.1 and (3.3.103), we obtain (3.3.98). Then the proof of this

lemma is completed. [

We are now in a position to prove Theorem 3.4.
Proof of Theorem 3.4. Multiplying the first equation of (3.1.1) by w?~!, and inte-
grating the result equation with respect to x over 2, using (3.3.98) and applying the

Cauchy-Schwarz inequality, we have

td uPdr = Ay ; D f (Vs 2z + (p — 1)f uP 'V - (xVv — EVw)de
pdt Jo p 0 Q
4p—1 p
< - (pp2 ) J (Vuz 2dz + ¢ (p — 1) (x + f)f uP~ V| dz
Q 0

4(p—1 p
< _MJ |Vu§|2dx
p Q

0 g e =0 )

C%(X; £)? (p—1) JQ uPdz,

+alx +§)

2(p—1 P
— _MJ (Vb |2de +
p Q ( )
3.3.104

2 2
we can obtain that there exists a constant ¢y = 1 + % independent of ¢t such

that

d 2(p—1 p
— upda:%—p(p—l)f uPdr < —MJ VuZ\%lx—F@p(p—l)J uPdz (3.3.105)
dt Jo Q p Q Q

for all t € (0,7") and for all p > 2 (see [85, p.12] for details). Then it follows from
(3.3.105) and the well-know Moser-Alikakos iteration procedure (cf. [3], [84, Lemma

3.2], [85, Lemma 4.1]) that there exists a constant c¢3 > 0 such that
lu(-,t)]| ;0 <z forall te(0,7). (3.3.106)

Theorem 3.4 is an immediate consequence of (3.3.106) and Lemma 3.1.
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3.3.2 Case2:1m=1,1m=0

In this subsection, we will consider the case 71 = 1, 73 = 0,  # 0. When 74 = 1

and 75 = 0, then system (3.1.1) is transformed into

u = Au—V - (xuVv)+ V- (EuVw), ze€Q, t>0,
vy = Av + au — v, xref, t>0,

10 =Aw + yu — dw, reQ, t>0, (3.3.107)
u— vy, red, t>0,

L u(,0) = ug(x), v(z,0) = vo(x), z €.

Then we have the following result of system (3.3.107).

Theorem 3.5. Let 7, = 1,75 = 0 and Q be a bounded domain in R? with smooth
boundary o). Assume that 0 < (ug,v) € [WHP(Q)]?. Then if &y = xa, there exists
a unique triple (u, v, w) of nonnegative functions belong to C(Qx [0, 0); R*)nCH(Qx
(0,00); R®) which solves (3.1.1) classically. Furthermore, there exists a constant C
independent of t such that

Ju(, ) < C. (3.3.108)

If we can find a constant ¢; > 0 independent of ¢ such that the solution of (3.1.1)
satisfies

IVo( )l e + V(8| e < C, (3.3.109)

then we can carry out the Moser-Alikakos iteration procedure same as the proof
of Theorem 3.4 to obtain (3.3.108). Then Theorem 3.5 follows immediately from
Lemma 3.1 and (3.3.108). Hence to complete the proof of Theorem 3.5, we only
need to prove (3.3.109). For system (3.3.107), the transformation s = yv — {w does

not help to estimate the cross-diffusive terms as done for the case 1 = ™ = 1.
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However, we can find a Lyapunov functional of system (3.1.1) as follows

F(u,v,w) = f ulnud:c—i—lj (Bv* + VU!Q)daz—i—if (6w? + ]Vw\Q)dac—XJ uvdzx.
Q 2a Jo 27 Jo Q
(3.3.110)

Lemma 3.12. Let 1y = 1 and » = 0, then the solutions obtained in Lemma 3.1

satisfy

d
EF(u,v,w) + G(u,v,w) = 0, (3.3.111)

where F(u,v,w) is defined by (3.3.110) and
G(u,v,w) = EJ vidr + f u|V(Inu — xv + &w)*dx. (3.3.112)
Q Q

Proof. Multiplying the first equation of (3.3.107) by Inu — yv + {w and integrating

with respect to x over €2, we have

J u(Inu — v + fw)dr = J V- (Vu — xuVv + EuVw)(Inu — xv + {w)dx
Q 0

= —J u|V(Inu — xv + &w)*dx.
Q
(3.3.113)

Using the fact that §, u,dz = 0, we have

d d
J u(Inu — xv + fw)dr = — uln udr — X—J uvdx + Xf uvdr + §J upwdz.
Q dt Jo Q Q

dt
(3.3.114)
From the second equation of (3.3.107), one has u = —v — —Av + U which gives
J d 1J 2dx + J|V2d+ f (3.3.115)
uvdr = — r+ —— x 3.

Similarly, from the third equation of (3.3.107), we have u; = %wt — %Awt, and hence

0 d
dr = —— —— d 3.3.116
Lutw r = 2 i o T+ > dtf Vw|*dx. ( )
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The combination of (3.3.114), (3.3.115) and (3.3.116) yields
J u(Inu — xv + w)dx
Q

d

Bx X £o § X
== Q{ulnu—xuv+ v+ ﬁ\VvPﬁLZwQJrg\Vw\Q dm+a Qvfdm,

2a

which together with (3.3.113) leads to (3.3.111). The proof of this lemma is com-
pleted. ]

Lemma 3.13. Let (u,v,w) be a smooth solution to (3.3.107). Assume that £y = xa

Then there exists a finite constant C' independent of t such that
% t
f ulnudr + —f v (T)||22 dm < C, for all t € (0, 7). (3.3.117)
Q @ Jo

Proof. From the third equation of (3.3.107), we have

u = éw - lAw. (3.3.118)

Y Y

Hence, using (3.3.118) and the Cauchy-Schwarz inequality one can derive that

X J uvdx

= —J vwdr + = J Vw - Vudzr

X5<§f 2 Xf 2 > X(fj 2 XJ 2 )
<= |= | wdr+=| vide )| +=| = Vw|dx + = Vol“dx
v \2x Ja 28 Jg 7 \2x Q| | 28 Q’ |

o 2 Xz‘sf 2 § J 2 X2 J 2
== | widxr + = | vidr + = Vw|*dr + £— Vol“dz.

27 Jo 287 Ja 2y Q| ‘ 28y Q| |
(3.3.119)

Substituting (3.3.119) into (3.3.110), then we have

OéX e f 2 Q f
F > 1 = - = —
(u, v, w) Lu nudx (2 26, QU dz 2 \Vo|2dz

xX(§vB —XO“S)J 2 X(§y — xa) J
= | vlhnude + =———=>2 | vidx + Vol“dz.
L 20y 0 257 ’ |
(3.3.120)
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Integrating (3.3.111) with respect to ¢ and using (3.3.120), we have

Julnudva X(& = xa J]V ?de + = fj Zdxdr
Q 26ya

X|€v6 — xad
20{57 Q

(3.3.121)

¢
+ J j u|V(Inu — yv + &w)|*dedr < F(ug,vo) + vida.
0 Ja

Using Lemma 2.1 and u € L'(Q), we have |v|y1» < ¢ for all 1 < p < 2. Hence
using Lemma 2.2 and choosing p = 1, we obtain

H’UHLZ CQHUle 1 < C1C9. (33122)
Substituting (3.3.122) into (3.3.121) and using the condition £y — xa = 0, we have

f ulnudr + KJ J vidrdr +J f u|V(Inu — xv + &w)|Pdedr < F(ug,vo) + cs,
Q @ Jo Ja 0 Ja

which implies (3.3.117). Then the proof of this lemma is completed. O

Lemma 3.14. Assume the conditions in Lemma 3.13 are satisfied, then there exists

a positive constant C such that ||u(-,t)||,;. < C.

Proof. Multiplying the first equation of (3.3.107) by u, integrating with respect to

x, then we have

—— d d
2dtLu x+L|Vu x

= —Xf uV - (uVv)de + SJ uV - (uVw)dx
Q Q
= KJ VuQ'Vvdx—EJ Vu? - Vwdz
2 Q 2 Q

— _KJ u? (v, — au + Bu)dx + éf u? (0w — yu)dz
2 QO 2 Q

_ )
xe—&y J wdde + S_J wwdr — Xf u*vdz — X—ﬁ f w?vdz

— )
< W—&J uddx + f_f wrwdr — KJ wvdr,
2 Q 2 Jo 2 Ja
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then using the condition £y — ya = 0, we have
d 2 2 2 2
— | wdr+2 | |Vul*de <& | vwdr —x | vvde. (3.3.123)
dt Jo Q Q 0

Next, we estimate the first term on the right-hand side in (3.3.123). By the Young’s

inequality (3.2.8), we have that

Y JQ wwdr < % JQ wddr + ;—5@5)3 fﬂ wdz. (3.3.124)

The combination of (3.3.123) and (3.3.124) yields that

d 1 16
—f udz + ZJ Vul*dz < —J udr + —(55)3J wdx — Xf w*v,dr. (3.3.125)

To estimate the term SQ w3dx, we apply the Agmon-Douglis-Nirenberg LP estimates
[1, 2] to the following linear elliptic equations with the zero Neumann boundary

condition:

{_Aw + 5?1} = Ju, re Qu te (Ovaax);

% = O’ S 59, te (O7Tmaz)7

where § > 0, then we can find some constant ¢; to satisfy the following inequality
[w(, llwer < e flu DL - (3.3.126)
Specially, we choose p = 2 in (3.3.126) to obtain
Jw (- ) ly2e < e ful, )] - (3.3.127)

Using (3.3.127), the Gagliardo-Nirenberg inequality and Young’s inequality to obtain

some constants ¢; > 0,7 = 2, 3,4 such that

16 16 4 5 4
16 coyp f Wz = (6 Jwlls < e lwllas follfy < e Jullf
27 o 27

1
< ey flull 3 ull s (3.3.128)

1
< B HUH?ES t+¢s
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3
2

3 1
where ¢5 := 22¢f [Jugl|?, and the interpolation inequality has been used to obtain

1 3 1 3
lull 2 < llullzs [lull s = luollZ lullzs - (3.3.129)

Inserting (3.3.128) into (3.3.125), we obtain that

d
— f udr + QJ |Vu|*dr < J uPdr — XJ w?vidr + cs. (3.3.130)
dt Jo Q Q Q

By the Holder’s inequality and the Gagliardo-Nirenberg inequality we have
2 dr < 2 < \V4 % % 2
X | wndr <X el g2 ullps < o vl o (V] Zallul 2o + ol

< 206 ||vell g2 (IVull 2 ull 2 + ull72)

2 2 2
< | Vullze + (c§ o7z + 266 [[vll ) [Jull7=
(3.3.131)

Collecting (3.3.130) and (3.3.131), we obtain
d
7 lull72 + [ VulZ2

< Julgs + (c6 llvellz2 + 2¢ [[vrll 2) lull 72 + c5

< e | Vullzz lulnwl o + er(JulnulZa + [ul ) + (6§ loill7e + 266 [orll 2) [ullZz + cs.
(3.3.132)

Using the facts |ulnu|z: < C and [Jufr < C, and letting e small enough such that

ellulnul;, <3, then from (3.3.132) we have

d 1
= Nz + SIVulZe < (¢ llvellz2 + 26 [uill2) flullzz + cs. (3.3.133)

By the Gagliardo-Nirenberg inequality and Cauchy-Schwarz inequality, we have

1
JulZ: < co([Vulzluler + ulz,) < §HVUH2Lz + cio- (3.3.134)

81



Then adding (3.3.133) and (3.3.135), and using the Young’s inequality yields that

d
7 iz + ullze < (e llvrllze + 26 [lvell 2) ullze + cs + cio

(3.3.135)
1
< Ci2 HthiZ Hu”QLz + B} HUHiz + C11,4
where ¢; := cg + ¢19 and ¢13 := 3c2. From (3.3.135), we have
d ( fhGcrlu? 2 ! (L—craljue]?
& (it u2,) < oy litiotution,
dt
which yields that
HuHiQ < ||uo||i2 6_56(%—012“%“%2)515 + ¢y = Huoni2 e—%eclz Sollvel? o ds e
(3.3.136)

< i3 ||U0||f;2 ez + C11 < Ci4,
where we have used (3.3.117) to obtain w2 Sollveliads < o Then the proof of this
lemma is completed. [
Remark 3.1. Choosing p = 3 in (3.3.126) and using Lemma 3.14, we have
Vw18 < flwll 28 < afull s < cofufrz < cs. (3.3.137)
Using Lemma 2.2 with n = 2 and the inequality (3.3.137), we can derive that

HVU)H[A < C4HVU)H < Cs. (33138)

whi
Furthermore, from the Lemma 2.1 and Lemma 3.14, we obtain that there exists a
constant cg such that

Vol e < co. (3.3.139)
Then as in proof of Lemma 3.11, we can obtain the following lemma.

Lemma 3.15. There exists a constant C such that for all t € (0, Tynaz) such that
(3.3.109) holds.

Proof of Theorem 3.5. Theorem 3.5 can be proved by using Lemma 3.15 and the

well-know Moser-Alikakos iteration procedure as in the proof of Theorem 3.4. [
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Chapter 4

Cauchy Problem of the
MHD-Burgers System

4.1 Introduction

In the chapter, we will investigate the Cauchy problem of the following MHD-Burgers

system
up + (uv)y = Dy, reR, t>0, (41.1)
v+ (5U° 4+ 30%) = e,  TER, >0 o
with the initial data
(u_,v_), as x— —o0,
(u, v)(2,0) = (ug, vo)(z) — (4.1.2)
(uy,vy), as x — +oo.

The standard hyperbolic theory (cf.[55, 82]) predicts that the time asymptotic be-
havior of solutions of the Cauchy problem (4.1.1)-(4.1.2) are closely related to the

following Riemann problem:

u + (uv), =0, reR, t>0,
v+ (3u+50%) =0, zeR, >0,

(4.1.3)
(u,0)(x,0) = (i, v5)(x) = {

(U77U7)7 $<07

(u+7v+)7 x> 0.

83



Writing the equations in (4.1.3) in the vector form

<Z)t + <Z Z) (Z)x ~0, (4.1.4)

we see that the Jacobian matrix A := (Z Z) has two real distinct eigenvalues

AM(u,v) =v—u, M(u,v)=0v+u,

with corresponding eigenvectors

r(u,v) = (f1> ra(u, v) = G)

Therefore it follows that VA;(u,v) - r(u,v) = =2 < 0 and VAg(u,v) - ro(u,v) =
2 > 0. This shows that the hyperbolic system (4.1.3) is genuinely nonlinear. By
the hyperbolic theory [82], the solutions of the Riemann problem (4.1.3) are made
up of three types of elementary waves (solutions): constant states, rarefaction waves
and shock waves. Moreover, we point out that the rarefaction curves of (4.1.4) are
straight lines in the u-v plane (see section 2), and hence the hyperbolic system (4.1.4)
is of a Temple class [88].

In this chapter, we shall show that as time goes to infinity, the solution of the
Cauchy problem (4.1.1)-(4.1.2) will tend to a constant solution if (uy,v;) = (u_,v_),
or a rarefaction wave if \;(u_,v_) < \;(uy4, vy ), or a viscous shock wave (i.e. traveling
wave) if A\;(u—,v_) > \;(us,vy). Specifically, the following results are proved. If the
right state equals the left state, say (uy,v;) = (u_,v_) = (u,?), then the solution of
(4.1.1) with large data (4.1.2) will eventually approach the constant state (u,v). If
the right state (u,,v,) is connected to the left state (u_,v_) by a rarefaction wave,
then the Cauchy problem (4.1.1)-(4.1.2) has a unique global solution which tends

to the rarefaction wave of the Riemann problem (4.1.3) with large data. Finally
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if the initial value (4.1.2) is a small perturbation of a viscous shock wave (traveling
wave), then the solution of (4.1.1)-(4.1.2) will asymptotically converge to this viscous
shock wave with a proper translation, where the wave amplitude can be arbitrarily
large. Our results analytically confirm the existence of shock-type waves (and hence
turbulence) numerically obtained in both papers [103] and [24].

Mathematical studies on the asymptotics toward rarefaction/shock waves for vis-
cous conservation laws have been undertaken for a long time (e.g. see [41, 65, 66]).

For the general 2 x 2 viscous conservation laws

(4.1.5)

g + [f1(u,v)]e = Dugyg, reR, t>0,
v + [ fa(u, v)]e = U, zeR, t>0

with initial data (4.1.2), Xin [102] and Yang and Zhao [104] established the time
asymptotic stability of weak rarefaction waves and strong rarefaction waves with
small initial data, respectively. The main hypothesis on the structure of the system
(4.1.5) is the strong coupling in the sense that

0f1(u,v) _ 0 fa(u,v)

ov ou

£0, (4.1.6)

which is satisfied by the system (4.1.1). To the best of our knowledge, for the
strongly coupled system of conservation laws with large initial data, very few results
are known. The asymptotic stability of viscous shock waves for the general system
of conservation laws have been extensively investigated over many years. Most of
results (if not all) require the wave amplitude to be small (e.g. see [28, 62, 64, 83]).
The main contributions of this paper have two folds. First, exploiting the peculiar
coupling structure of the MHD-Burgers system (4.1.1), the nonlinear stability of
strong rarefaction waves of (4.1.1)-(4.1.2) is established with large data. Second, the
asymptotic stability of viscous shock waves of (4.1.1)-(4.1.2) is proved for large wave

amplitude. Usually these results can not be proved for general hyperbolic systems as
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mentioned above. Finally, we mention that the asymptotic stability of viscous shock
waves to (4.1.1) with uy > 0 was previously established in [40] based on the idea
of [59, 58, 67] by leaving open the case u; = 0, which causes a singularity in the
energy estimates. In this chapter, we will resolve this challenging case (i.e. u, = 0)
by invoking the weighted energy estimates inspired by the ideas of [45, 48, 57, 75].
The rest of the chapter is organized as follows. In section 4.2, we solve the
Riemann problem (4.1.3) and then state the main results for the Cauchy problem
(4.1.1)-(4.1.2). Then we prove the large-time behavior of solutions with constant
states in section 4.3. In section 4.4, we show the stability of rarefaction waves. The

proof of nonlinear stability of viscous shock waves is given in section 4.5.

4.2 Riemann Problem

In this section, we first briefly solve the Riemann problem (4.1.3) in the class of
functions consisting of constant states, separated by rarefaction waves or shock waves.
We begin with the rarefaction waves of (4.1.3) by setting £ = x/t. Then substituting
it into the equations of (4.1.4), we find that (ug,ve) is an eigenvector of A for the
eigenvalue . Because the matrix A has two real and distinct eigenvalues \; and
Ao, there are two families of rarefaction waves: 1-rarefaction waves and 2-rarefaction

waves. The eigenvector (ug, ve) associated with the first eigenvalue \; satisfies

(Z Z) (zf) =0, (4.2.7)

which gives ue + v = 0 thanks to u # 0. This gives Z—Z = —1. Integrating it, we
obtain the l-rarefaction curve Ry(u_,v_) as
Ri(u_,v_) = {(u,v)|lu=—v+u_+v_,v>0v_}, (4.2.8)

where the entropy condition A\j(u—,v_) < A;(u,v) has been used to guarantee the

uniqueness of the l-rarefaction waves. Similarly, the 2-rarefaction curve Ro(u_,v_)
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can be represented as
Ro(u_,v_) = {(w,v)|lu =v+u_ —v_,v>v_}. (4.2.9)

Moreover (4.1.3) also has two distinct types of shock waves: 1-shock waves and

2-shock waves. To see this, we use the following jump condition (see [82, 15.11]):

{uv —u v =s(u—u), (4.2.10)

s
(W +0%) — (w2 +0%) = s(v—v_),

where s is the speed of the discontinuity (wave speed). Subtracting the first equation

from the second equation of (4.2.10), we have
(u—v—u_+v_)(u—v+u_—v_+2s)=0. (4.2.11)

For 1-shock waves, the entropy condition v — u = Ay (u,v) < Aj(u_,v_) = v_ —u_

implies u — v — u_ +v_ > 0. Hence from (4.2.11), we obtain
u—v+u_—v_+2s=0. (4.2.12)

Clearly u # u_ for otherwise we have v = v_ from the first equation of (4.2.10), and

then (u,v) = (u_,v_) is not a shock curve. Hence the first equation of (4.2.10) gives

g = LUV (4.2.13)
U — Uu_

Then substituting (4.2.13) into (4.2.12), one can derive the 1-shock curve Sy (u_,v_)
as

Si(u—,v-) = {(u,v)|u = —v+u_ +v_,v <v_}. (4.2.14)

To deduce 2-shock curves, we add the equations in (4.2.10) to obtain

(u+v—u_—v_)(u+v+u_+v_—2s)=0. (4.2.15)

87



Similarly, by using the entropy condition v + u = Ay(u,v) < Ao(u_,v_) = v_ + u_

and (4.2.13), we obtain the 2-shock curve Sy(u_,v_) as

So(u—,v_) = {(u,v)|[u =v+u_ —v_,v <wv_}. (4.2.16)
Then curves Ry, Ry, S7 and Sy divide the u-v plane into four disjoint open regions
I, II, III, IV defined as follows
I=RiRo(u_,v_) :={(u,v)| —v4+u_+v_ <u<v+u_ —uv_},
IT=RiSo(u_,v_):={(u,v)fju< —v4+u_+v_,u<v+u_—uv_},
(4.2.17)
I = S1So(u—,v_) == {(u,v) v+ u_ —v_ <u < —v+u_ +v_},
IV =SiRy(u_,v_) == {(w,v)jlu> v+ u_+v_,u>v+u_—uv_}.
Hence, depending on the relationship between the end states (u,,vy) and (u_,v_),

the solutions of Riemann problem (4.1.3) are described as

1 — rarefaction waves if uy +vy =u_+ov_and vy >v_,
1 — shock waves if uy +vy =u_+v_and vy <wv_,
2 — rarefaction waves ifuy —vy =u_ —v_ and vy >v_,
2 — shock waves ifuy —vy =u_—v_and vy <wv_,
Composite waves of two rarefaction waves if uy +ovyp >u_ +o_
) and u, —vy <u_ —uv_,
Composite waves of two viscous shock waves ifuy +vy <u_ +o_
and u, — v >u_ —v_,
1 — rarefaction waves and 2 — shock waves ifu, +v, <u_+wv_
and vy — vy <u_ —v_,
1 — shock waves and 2 — rarefaction waves ifuy +vy >u_ +o_
L and uy — vy >u_ —ov_.

4.3 Nonlinear Stability of Constant States

If the end states (u_,v_) and (uy,v,) are connected by a constant, say (uy,v;) =
(u—,v_) =: (u,v), and if the initial value (4.1.2) is a perturbation of the constant
state (u,v) in H'(R), we have the following global asymptotic stability results.
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Theorem 4.1. Let (ug — u,v9 — ©) € H'(R). Then there exists a unique global
solution (u,v)(x,t) to the Cauchy problem (4.1.1)-(4.1.2), which satisfies

(u —u,v— 6) € C([O7 OO>7 Hl) A L2<(07 OO), H2)
Furthermore, the solution has the following asymptotic stability:

sup |(u, v)(z,t) — (u,v)] > 0, as t— +o0. (4.3.18)

zeR

4.3.1 Local Existence and the A Priori Estimates

For the case (uy,v;) = (u_,v_) = (u,v), we seek the solution of (4.1.1)-(4.1.2) in

the following solution space:
X100,7) = {(u,v) : (u—1u,v—2) e C([0,T]; H"); (uy,v,) € L*((0,T); H")}.

The construction on the local existence of solutions is standard based on iteration

argument and fixed point theorem (cf.[33]). We omit the details for brevity.

Lemma 4.1 (Local existence). If (ug — @,v9 — ) € HY(R), then there erists a
positive constant Ty such that the Cauchy problem (4.1.1)-(4.1.2) admits a unique

smooth solution (u,v) € X1(0,7T0) satisfying
[(u(-,t) —a,v(-,t) —0) |1 < 2|(ug —w,v9 —0) |1, forall 0<t<Ty. (4.3.19)

Proposition 4.1 (A priori estimates). Suppose the Cauchy problem (4.1.1)-(4.1.2)
has a solution (u,v) € X1(0,T) for some T > 0. Then there exists a constant C

independent of T' such that

() = 0, ) = 0+ D [ o)+ [ ol a0,

< O(uo — @, v9 — 0) 3.

By continuing a unique local solution with the a prior: estimates, we have the
following proposition.
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Proposition 4.2. There exists a unique global solution (u,v) € X1(0,00) to (4.1.1)-
(4.1.2) such that

Q0 o0
I(u—u,0— o) + DL s (- )17 dt + ML [va (-, )13 dt < O (uo — @, v — 0)|.
(4.3.21)

We are now in a position to prove Theorem 4.1.

Proof. The proof of global existence in Theorem 4.1 is a consequence of the Proposi-
tion 4.2 . Next we derive (4.3.18). From (4.3.21), one has |(u(-, ) —a, v(-,t) —0)|| 2 <
C and

H(ux<'at);vx(',t))HL2 — (0 as t — oo.

Consequently, for all x € R, it follows that

T

(u(e,t) — ) =2 J (uly.t) — @) (uly. t) — ),dy

—0Q0

<2 U(”(y’t) - u)Qdy) ’ ( J Uidy); (4.3.22)

< 2C|uy (-, t)|p2 = 0 as t — 0.

NI

This implies sup |u(x, t)—u| — 0 as t — oo. Similarly, we can prove sup |v(x,t)—0| —
zeR zeR

0 as t — . Hence (4.3.18) is proved and the proof of Theorem 4.1 is completed. [J

4.3.2 Proof of the A Priori Estimates

In this subsection, we are devoted to proving Proposition 4.1 based on the energy

estimates.

Proof. Letting ¢ = u—u and ¢ = v — 0, and substituting (¢, ) into (4.1.1), we have

{cbt + (@) + 06 + 90, = Do, (£3.23)

e+ (50° + 30° + U+ 00) = (1l
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Step 1 (L*-estimates). Multiplying the first equation of (4.3.23) by ¢ and second
equation by v, adding them and integrating the resulting equation with respect to

x, we end up with

% (%2 + %2) dx + Dj(bidx + ,ungdx
- J(uw + 0 + P) ppdx — f (¢—2 + w—Q + up + w) Wdx (4.3.24)

=—J<v—+®w—2+—+u¢w+¢2w> dx = 0.
2 2 3 i

Hence

j(%z + %2> dw+DLth§idxdT+u£szdxdT = f <% + %) x,

which yields

i t
[(u(-t) = @, 0(-,t) = )72 + QDJ e (-, 7) [ 22dr + 2uf [02(-, )| Z2dr
0 0 (4.3.25)

= || (1o — @, v — )72

Step 2 (H'-estimates). Multiplying the first equation of (4.3.23) by —¢,, and second

equation by —1,,, adding them and integrating the results with respect to z yield

d 2 2
o <¢ w)d +Df¢mdx+ﬂf¢2df

= f(m/) + 06 + V) pppdr + f (¢—2 + ¢—2 + Uug + w) Vppdr

that

(4.3.26)
< [ Gutnads + [ 06,0, + f $6tnate + | Uistnads o

=2
U 2
+ 5 sl + H%Hp — ||<bx||Lz +7 meHiz-
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Using (4.3.25), we have [|(¢,v)]];» < C, and hence
| st + [ 06.6.t
< Vel 19l 2 N@wall 2 + (@0l oo 191l 2 [|Baal 12
< (el 1912 + N6l I10122) + 2 Nl (43.27)

D
< C |’¢z’|L2 ||¢m||L2 +C HQZSzHLZ ||¢M‘HL2 + g |’¢MHQLQ

3
Cllldallze + I1allz2) + ||¢mHLz + 16 meHLz-

Similarly, we have

J¢%%MH+J¢%¢MM

8
<;||¢x||i°0 IglI72 + meuw II%IILoo 11172 + QH%H%Q
(4.3.28)

W
<C HﬁszH HQSM’HL? +C HwIHH meHp + 1_6H¢MH%2
< C(lallz> + ¢llzz) + II%IILQ + II%mIILz :

Substituting (4.3.27) and (4.3.28) into (4.3.26), we have

2 2 D
(% + %) dot 5 [0tdo+ b [ 2o < CQoE + WulR). (4329)

dt

Integrating (4.3.29) over [0,¢] and using (4.3.25), we get

t t
[, va) (-, )22 + DJ |[tta (-, 7) | 2T + MJ V20 (- T [72d7 < Cl(uo — 1,00 — D)1
0 0

(4.3.30)
The combination of (4.3.25) and (4.3.30) yields (4.3.20). Then the proof of Proposi-

tion 4.1 is completed. [
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4.4 Nonlinear Stability of Rarefaction Waves

Without loss of generality, we consider l-rarefaction wave solutions (u",v")(x/t)
of the Riemann problem (4.1.3) only and analysis can be directly applied to 2-
rarefaction wave. Using (4.2.8), we can separate the variables v and v in (4.1.3) such

that u satisfies the Riemann problem

g + (u— + v —2u)u, =0,

. u_, =<0, (4.4.31)
mLm—uww—{u T
+>

and v satisfies the Riemann problem
v+ (20 —u_ —v_)v, =0,
_ <0 4.4.32
wmm=vmw={”’x / 4

vy, x> 0.

Employing the method of characteristics, we can solve (4.4.31) and obtain the rar-

efaction wave u”(x/t) as follows

u_, T<v-—u,
r _ U—+v_ x T
u'(/t) = == - 5 vo—ul < T <uy —uy,  (4.4.33)
€T
Uy, n = Vy — Uy

v_, < —u,
T . U—+v_ T x
v (Z]')/t) = g + BT Vo —U_ < n < Vy — Uy, (4434)
x
Vg, I = Vy — Uy

Then the result on asymptotic stability of the 1-rarefaction waves (u”,v")(z/t) is as

follows.
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Theorem 4.2. Let (uy,vy) € Ry(u_,v_) and vy > v_. Assume (ug — ufy, vo — V() €
L*(R) and (uoz, voz) € L*(R), then the Cauchy problem (4.1.1)-(4.1.2) has a unique
global solution (u,v) satisfying

{(u — v —v") e O([0,%); L?) n L2((0, 0); L?),
(g, v) € C([0,90); L?) N L*((0,00); L) n L*((0, 0); H'),

and

ilelﬂg |(u,v)(x,t) — (u",0")(x/t)] = 0, as t— +o0. (4.4.35)

Remark 4.1. If (u,,v,) € Ro(u_,v_) and v, > v_, similar stability result can be

obtained.

4.4.1 Smooth Approximate Solutions

To study the nonlinear stability of rarefaction waves, we first construct a smooth
approximation of solutions (u",v")(x/t) of the Riemann problem (4.1.3). It is well-
known (e.g. see [65]) that the Riemann problem of the Burgers equation
wy + ww, = 0, reR, t>0,
—ul, x<0, 4.4.36
wla,0) = () = { o A

vy —uy, x>0,

where v_ —u_ < vy — uy, has a continuous weak solution w”(x/t) of the form

Vo — U_, T<v-—u,
w'(x/t) = 2, v —u_ < F<vp— Uy, (4.4.37)
x
Vy — Uy, 7= U — Uy

Then the 1-rarefaction wave solutions (u",v")(z/t) given by (4.4.33) and (4.4.34) can

be written as

() = M= ;“’T(I/ D () = et . Wi/ - (yass)
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We approximate w” (z/t) by the solution w(z, t) of the following initial value problem:

(4.4.39)

{wt+ww1,=0, reR, t>0,

w(z,0) = wy(z) := v*_u+;v’_u’ + U+_u+;v’+u* k, ng(l + y?) " dy,

where € > 0 is a constant to be determined later and £, is a constant such that
k, SSO (1 +y?*) %y = 1 for each ¢ > 3. Then the solution of the Cauchy problem

(4.4.39) has the following properties.

Lemma 4.2 ([65]). If v —u_ < vy —uy, then the Cauchy problem (4.4.39) has a
unique smooth global solution w(x,t) satisfying the following:
(i) vo —u_ <w(z,t) <vy —uy, wg(x,t) >0, for (z,t)eRxR,.
(ii) For any p € [1,0], there exists a constant C,, such that for any t € Ry
()l < Cpgmin {175, (140773,

(4.4.40)
p—1
waa (s D)l < Cpgmin {275, 030D (14 475

(iii) lim sup |w(z,t) —w"(z/t)| = 0.

=0 zeR

Using (4.4.38) and Lemma 4.2, the smooth approximation of the rarefaction wave

profile (u",v")(x/t) can be constructed via

U_ +v_ +w

~  U_F+Uv_—w ~
= — = — 4.4.41
U 5 , % 5 , ( )
which satisfy
U+ (UV), =0,
(0. V)(x,0) = (T, Vo) () = (Hiogrtle), ate ol )

where wy is defined in (4.4.39). Moreover the following properties can be readily

verified.
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Lemma 4.3. The smooth function (U,V)(x,t) given in (4.4.41) has the following
properties:
(i) V, = —U, > 0.

(ii) For any p € [1,+0], there exists a positive constant C,, 4 such that

I

¢

s ‘N/z)(,t) < Cphy min{gl_%, (1+ t)‘“’%},

Lp

| @ee. Vo)1)

< Cp 4 min {52_%, e@=2)0-5)(1 4+ t)_l_%ql} .
Lp

In particular, for p > 1, it holds that

L H(ﬁm,ffm) dt < C,, (4.4.43)

(iii) lim sup ‘(u’" —U, 0" — YN/)(x,t)‘ = 0.

=0 zeR

Proof. The properties (i) and (iii) can de derived from Lemma 4.2 and (4.4.41)

directly. We only need to prove (i). Indeed, using (4.4.41) and Lemma 4.2 (i), we

have
V, = U, = wy(z,t) >0, U, =-V, (4.4.44)
which implies XN/Z = —(71, > 0. L]

4.4.2 Local Existence and the A Priori Estimates

By the approximate smooth solution ((7 , ‘7) constructed in (4.4.41), we define (¢, ) =

(u—U,v— V) and rewrite the Cauchy problem (4.1.1)-(4.1.2) as

&+ (U + Vo + )y = Doy + DUy,
Lo ) < ~ ~ (4.4.45)
wt + §(¢ + w ):r + (V'l/} + U¢)z = /Mbrm + ,uvzz
with initial data
(¢, 0)(2,0) = (¢, Y0)(x) = (uo(z) — ﬁo(@,vo(fﬂ) - ‘70(37))7 (4.4.46)
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where (4.4.42) has been used.
We seek the solution of (4.4.45)-(4.4.46) in the space X5(0,7T) defined by

Xo(0,T) = {(¢,%) : (¢,¢) € C([0,T); H"); (a0, ) € L*((0,T); H')}.

Then we can obtain the following proposition on the local existence of solutions of
system (4.4.45)-(4.4.46). The proof of the local existence of solutions is standard and
is based on an iteration argument and a fixed point theorem (cf. [102]). We state

the local existence theorem without proof.

Proposition 4.3 (Local existence). If (¢g,10) € H', then there exists a positive

constant Ty such that the Cauchy problem (4.4.45)-(4.4.46) admits a unique solution
(¢7 Q/}) € X2<07 TO) Satzsfymg

1@, V) )l < 2o, Po)lly s for all 0 <t <Tp. (4.4.47)

Furthermore, we can show that the solutions of system (4.4.45)-(4.4.46) have the

following the a priori estimates by using the energy estimates method.

Proposition 4.4 (A priori estimates). Suppose the Cauchy problem (4.4.45)-(4.4.46)
has a solution (¢,v) € X5(0,T) for some T > 0. Then there exists a constant C

independent of T' such that

16, )( M+DJH%, |m+ujum, mm+j\¢¢ B) (1) adr

f|¢¢m% )| adr < Cl(b0, 0|2+ 1), for all te[0,T).
(4.4.48)

The combination of local existence of solutions and the a priori estimates implies

the following proposition by using the continuity argument.
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Proposition 4.5. There exists a unique global solution (¢, 1) € X5(0,0) to (4.4.45)-
(4.4.46) such that

||(¢,¢)(-7t)llf+DL II%(-J)II?dHMJ a7 dt < Cll(do, wo)ll7 - (4.4.49)

0

With the above lemmas in hand, we now prove Theorem 4.2.

Proof of Theorem 4.2 . From Proposition 4.5, one has ||(¢,¢)(-,t)||,» < C and

H(%,%)('yt)Hm — 0 ast — 0.

Hence, the same argument as in the proof of Theorem 4.1 leads to

sup |u(z,t) — U(z,t)] >0 as t— o (4.4.50)
zeR

and
sup |v(z,t) — V(z,t)] > 0 as t— 0. (4.4.51)
zeR

The combination of (4.4.50) and Lemma 4.3 (iii) gives

sup [u(z, t) —u (z/t)] < sup |u(z,t) — Uz, t)|+sup [u" (z/t) —U(z,t)] — 0 as t — o,
zeR zeR zeR

Similarly, the combination of (4.4.51) and Lemma 4.3 (iii) gives

sup [v(x,t) —o"(x/t)] > 0 as ¢ — .
zeR

Then the proof of Theorem 4.2 is completed. ]

4.4.3 Proof of the A Priori Estimates

To prove Proposition 4.4, we first derive the L*-estimates of (¢, ).
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Lemma 4.4 (L*-estimates). Let (¢,%) € X2(0,T) be a solution of (4.4.45)-(4.4.46)
for some T' > 0. Then it holds that

16,0 (- \ur+Dfrwx, mﬂh+uj|wz,>mﬂh
(4.4.52)

[0 = )7 < OG0 w0 + 1),

where C'is a constant independent of T

Proof. We multiply the first equation of (4.4.45) by ¢ and the second by 1, then
integrate the results with respect to x to have

1d

ST (¢* + ? dm—kDJ(b dx—i—uf?ﬁdx

— f(ﬁw + Vo + 9¢),odr — f(% + Ug)ppda — f Goybda (4.4.53)
+D f Upp0dz + pu f V,ptbda.
Notice that

(O + Vo + o)t = (Tov + 52 + 0%0) + 1V,6? = U, — 96,0,
{(W + U9)aw = (vt +Tov) + 30w — Uy
(4.4.54)
Substituting (4.4.54) into (4.4.53) and using Lemma 4.3 (i), we have

1d

1
37 (¢? +w)dx+DJ¢dx+qudx+ J (0 + ) da

_ J 0 (é).dz + D J Uobda + i J Viatpda

_ f V. gude + D f Ureide + 1 f V,ibde,
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which yields

d ~
7 (¢* + ) dx + 2DJ¢§dx -+ 2uJ1/1§dx + fl/;(gb —)*dx

— 2D | Uppipdzr + 2u | Voptid
f b “J vz (4.4.55)

< 2D|Usal 22 |91l 2 + 204Vl 22 190]] 2

< D*|Usallz2 + WUsolz2 @172 + 12 Vaal 2 + |Vaall 2[4z,

where we have used the Holder and Cauchy-Schwarz inequalities. Applying Gron-
wall’s inequality to (4.4.55), we obtain (4.4.52) by using (4.4.43) and the fact V, > 0
in Lemma 4.3. ]

Lemma 4.5 (H'-estimates). Suppose the Cauchy problem (4.4.45)-(4.4.46) has a so-
lution (¢,v) € X5(0,T) for some T > 0. Then there exists a constant C' independent
of T such that

(62, %2) (-, )72 +Df Paa (-, 7)1 22 dT+uf [ (- 772
0 0
(4.4.56)

¥ J I3 V(B0 8) (o ) Pt < C (| (G0, o) + 1).

Proof. Multiplying the first equation of (4.4.45) by —¢,, and the second by —t),,,
and integrating them with respect to z, we end up with

1d

3 [~
s @4 e D e [hdo 4 S [Vie + )

= [(tmtuate + [ttt + [ Gttt + [ puppuat
4.4.
_fi?m(aﬁqﬁx+www)dm_f(7mw¢ﬁ¢%)dx (4.4.57)
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Integrating (4.4.57) with respect to ¢ leads to

0

%f@i +¢7)dx + D fjaﬁxdm + ’“‘Lt Jwixdxdr + gfff/x(qﬁg +¢?)dzdr

1 9
=5 1(Poas You)lI 72 + Z 1,

J=1

(4.4.58)
where
9

I = f J PPu P adrdT + Lt fwwmmdxdf + Lt fcb%%xdxdT

j=1

+fjWMWMh—fj%@%+w@mm_ff@mm+@mwm
- f f Usbstadrdr — D f: fﬁm%d:cdr —p L t fﬁmwmdm

Using Lemma 4.4, one has || (¢, ) (-, )| 52+, [|(02, 100) (- 7) |22 dr < C (|| (0, o) |72+
1). Then

t
0
2 t t
<o | | eetanr & | oaliar
H Jo 8 Jo
2 t ,LL t
<2 | alle Nolsdr + & [ ol ar
K Jo 0
(4.4.59)
t 1 t 9
<C [ Nnallys Nl r + & [ el
0 0

! 2 D (! 2 H ! 2
SC| Nbellpodm + = | N@walliodr + =5 | Vel d7
0 8 Jo 8 Jo

D t 1 t
< ClGo ) e + 1 + g [ Nmaliedr + & [ ot ar
0 0
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Applying the same procedure to Iy, I3 and Iy, we have
_[2 + [3 + I4

<fﬁWWMMM+£ﬁMWMMM+£wamMm

t t (4.4.60)
H 2 D 2
2 | Wl dr + 55 | ol dr

2 1% ! 2 D (! 2
< CUGn vl + 1)+ 5§ [ el dr+ 3 | 6l
0

Using the Holder and Cauchy-Schwarz inequalities, we can estimate the terms I5, Ig

and I, as follows:

Is + Is + I7

t -~ t ~ t -~
< | [ 1Weato0. + vuldadr + [ [ 0ra(wos + ovoldadr 3 | [ 10usldar
t N t -
< | Vel Qs Ul + 0l Wl dr + | WDl (ol 16l + il )
3t~
# 3 | 10l ol + Woulader

1 (" ~ ~ 1 (" ~ ~
<5 | 00l + Vel 16,00 dr 4 5 [ (1Tl + 1 Pali) N, 01

0

3 ("~
+ §L [Tl (621172 + 19l72)dr.
(4.4.61)

From Lemma 4.3 (ii), we have
~ ~ ~ t ~ ~
[(Uszy U, Vi)l L» < € and J |(Uss, Vi) | podr < C. (4.4.62)
0

Substituting (4.4.62) into (4.4.61), and using Lemma 4.4, one has

t t
LIt I <C f (Tl + [Voalle)dr + C j (allZe + s 22)dr
0 0 (4.4.63)

< C(||(¢0, %o) |32 + 1).
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Finally, we use the Holder’s inequality, Cauchy-Schwarz inequality and Lemma 4.3

(ii) to estimate the last two terms Iy and Iy as follows

t t
Ig + Iy < DJ f|Um¢m|da:dT + MJ f|‘/;xwm|dwd7
0 0
t - t - D t 5 M t 5
<Df|um&mr+uf|wa;mw~—fH@Mmdr+—j|wmmﬂh
0 0 4 0 4 0

C+—JMMWW+ fwmmm
(4.4.64)

Substituting (4.4.59), (4.4.60), (4.4.63) and (4.4.64) into (4.4.58), we obtain

f(¢2+w )dx + = ffqb dadr + = ffzp dmd7+;£fx7$(¢g+¢g)dxd7

1 2 2
< 5 @0z Yoa) 12 + C 1l (G0, ¥o)ll7z2 +1)

C([l(os o)1} + 1),

which implies (4.4.56). Then we complete the proof of Lemma 4.5. O

Then, the combination of Lemma 4.4 and Lemma 4.5 yields Proposition 4.4.

4.5 Nonlinear Stability of Viscous Shock Waves

The existence of traveling wave solutions of (4.1.1) with 0 < u;, <wu_ and 0 < vy <
v_ was established in [40] by the phase plane analysis and the nonlinear stability
of traveling wave solutions was prove only for u, > 0 by the method of energy
estimates, whereas the stability for u, = 0 remains open. In this section, we shall
solve this open question by using the weighted energy estimates. Toward this end,
we identify the decay rates of traveling wave solutions as z — 4o and choose

appropriate exponential weight functions. For completeness, we shall briefly recall
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the existence of traveling wave solutions for u, = 0 and derive the asymptotic decay

rates of traveling wave solutions.

The traveling wave solution of (4.1.1) with (4.1.2) is a special solution in the form

(’U,,U)(l’,t) = (U7V>(Z>7 Z =z —st,
where (U, V) € C*(R) satisfies

—sU' + (UVY = DU,
—sV' + % (U2 + V2)’ _ ,LLV”

with boundary condition
U(+o0) =ug, V(+w)=wvy, U'(tw)="V'(+w)=0,
where ' = d%. Integrating (4.5.65) once yields that

DU = —sU + UV + oy,
pV' = —sV + L({U? + V2) + po,

where 0; and gy are constants satisfying

1

01 = SUjp — ULV = SU_ — U_V_,
_ 102 a2 — L1002 4 a2
02 = svy — 5(ul +vy) = sv_ — F(uZ +02)

which gives

Then (4.5.68) with u; = 0 yields

2 —v_s=0,

(4.5.65)

(4.5.66)

(4.5.67)

(4.5.68)

(4.5.69)

and hence s = 0 or s = v_, which corresponds to the wave speed of the 1st and

2nd characteristic family of shock waves of (4.1.1). If (uy,vy) € Sy(u_,v_), using
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(4.2.14), we have uy = —vy +u_ +v_ and v, < v_, which yield 0 = uy >
u_ and vy < v_. Similarly, when (uy,v.) € Sy(u_,v_), from (4.2.16), we obtain

uy —u_ =vy —ov_ and vy < wv_, which imply that
O=uy <u_ and v, <wv_, (4.5.70)

In this chapter, we consider the case s = v_ only and the analysis for s = 0 is similar.

We first have the following existence results for the 2-shock profile (U, V')(x — st).

Lemma 4.6. Let uy and vy satisfy (4.5.70). Then there exists a monotone shock
profile (U, V')(x — st) to the system (4.5.65)-(4.5.66) with wave speed s = v_, which
s unique up to a translation and satisfies U, < 0, V, < 0. Furthermore, the solution

profile (U, V')(x — st) decays exponentially at +00 with rates

U—uqy ~e’** as z — too;
(4.5.71)
V—vy ~e’** as z >+
where
u_ =52, D>y,
0. = —F—, 0, = 4.5.72
VD' T {+T_ D < . ( )

Proof. The existence of monotone shock profiles (U, V)(z — st) to system (4.5.65)-
(4.5.66) has been proved in [40] by the phase plane analysis. It remains only to
derive the asymptotic decay rates which are eigenvalues of the linearized system at
equilibria (u+,v4). To see this, we linearize the system (4.5.67) at (u4,v4) and

obtain the corresponding Jacobian matrix

vizs  up
m

I

whose eigenvalue o satisfies

£ - . (4.5.74)



By (4.5.70) and s = v_, we can readily check that the equilibrium (u_, v_) is a saddle
and (u,,v,) is a stable node. Then solving the equation (4.5.74), we obtained the

decay rates as announced. O]

Then we proceed to consider the asymptotic stability of traveling wave solutions

obtained in Lemma 4.6 under the small initial perturbation of the form

Jj: ( Zgéz)) _ gg)) ) dr = o < Zi ~ Z: ) + Bri(u—,v-). (4.5.75)

The coefficients xy and /5 are uniquely determined by the initial data (ug(z), vo(x)).
When g # 0, the diffusion wave will appear. The stability of viscous shock waves
with diffusion wave for small wave strength have been investigated previously (e.g.
see [62, 83]). The stability of shock waves with diffusion wave and large wave strength
still remains open up to present. In this paper we do not consider the diffusion wave
(i.e. assuming [ = 0) but consider large wave strength. Then by conservation law

(4.1.1), we can derive that

[ (v Jae= [ (w0 U Y

[T e [ (VR Y e

- R0 )= 02 - ()

Thus we decompose the solution of (4.1.1) into the form

(u,v)(z,t) = (U, V)(x + xog — st) + (¢, 0.)(2, 1), (4.5.77)

where

(012060 0) = | (ulyot) = Uy + 20 = st), (01) = Vi + 0~ st)) dy.
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Clearly, for all ¢t > 0, if follows from (4.5.76) that
(£, t) = P(£0,t) = 0.

Without loss of generality, we assume xy = 0, otherwise we make a translation for
the traveling wave solutions. Hence, the initial value of the perturbation (¢,) is

given by
(o, 10)(2) = f (uo — U,vg — V) (y)dy. (4.5.78)
-0
Then we have the following stability results on the traveling wave solutions.

Theorem 4.3. Let (4.5.70) hold, and let (U,V)(x — st) be a traveling wave solution
obtained in Lemma 4.6. If D > pu, there exists a constant g > 0 such that if
[uo = Ully o+ l1vo = V|1 +1(@0, %0) | < €0, then the Cauchy problem (4.1.1)-(4.1.2)

has a unique global solution (u,v)(x,t) satisfying
(u—Uyv—V) e C([0,00); HL) o L((0,0); H2), (4.5.79)

where the weight function w is defined by as

s — vy

=14+e" n=
w(z) e, m D

> 0. (4.5.80)

Furthermore, the solution has the following asymptotic stability:

sup |(u, v)(z,t) — (U, V)(x — st)| - 0, as t — +oo. (4.5.81)

zeR

Remark 4.2. To establish the L2-energy estimates, the conditions D > y is needed,

see (4.5.94). The nonlinear stability result for the case D < p still remains unknown.

Remark 4.3. When uy = 0 and D > p, it can be easily verified that there exist
two constants Cy > C7 > 0 such that the traveling wave solution (U, V') obtained in

Lemma 4.6 satisfies

< Chw(z) for all z € R. (4.5.82)
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4.5.1 Reformulation of the Problem

Substituting (4.5.77) into (4.1.1), using (4.5.65) and integrating the system with

respect to z, we obtain the equations for the perturbation (¢, )

¢t = D¢zz + (S - V)¢z - U¢z - ¢z¢z7
4.5.83
{wt = e (5= Ve — U — 362+ 2) 4283)
with initial data
(¢, 4)(2,0) = (¢0,%0)(2), z€R, (4.5.84)

where (¢g, 100) is defined in (4.5.78). We look for solutions of the reformulated system

(4.5.83) in the following solution space:

X5(0,T) = {(¢,¥) : (¢,¢) € C([0, T Hy), (62,:) € L*((0,T); Hy) }

where the weight function w is defined by (4.5.80).
Clearly, if ¢ € H2, then ¢ € H* because w > 1. Define

N(t) == sup ([o(; )]z + [0 7)l2)-

T€[0,t]

By the Sobolev embedding inequality, one has

SUP]{Hgb('vT)HLOOa [0 )L, [0 7)o, 102 (e, 7)o} < N(E). (4.5.85)

Te[0,t

Then we have the following local existence theorem on the reformulated problem

(4.5.83).

Proposition 4.6 (Local existence). For any o > 0, there exists a positive constant
Ty depending on 9 such that if (¢o,10) € H2 with N(0) < eo, then the problem
(4.5.83)-(4.5.84) has a unique solution (¢,1) € X3(0,Ty) satisfying N(t) < 2N(0)

for any 0 <t <Tj.
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The local existence in Proposition 4.6 can be proved by the standard argument
(cf. [74]). So we omit the details for brevity. Then Theorem 4.3 is a consequence of

the following theorem.

Theorem 4.4. Let (4.5.70) hold, and let D > . Then there exists a positive constant
1, such that if N(0) < ey, then the Cauchy problem (4.5.83)-(4.5.84) has a unique
global solution (¢,v) € X3(0,00) satisfying

t
[0 )30 + 19(. )3, + j (l6:-Co )30 + 190 7)I3,0)dr
0 (4.5.86)
< (160l + I60l3..) < CN*(0)
for any t € [0, +00). Moreover, it follows that
sup [(¢.,¢.)(z,t)] = 0 as t — . (4.5.87)

zeR

The global existence of (¢, ) announced in Theorem 4.4 follows from the local

existence of solutions in Proposition 4.6 and the following a priori estimates.

Proposition 4.7 (A priori estimates). Assume that (¢,¢) € X3(0,T) is a solution
obtained in Proposition 4.6 for a positive constant T'. Then there is a positive constant

g3 > 0, independent of T, such that if
N(t) < €3

for any 0 < t < T, then the solution (¢,v) of (4.5.83)-(4.5.84) satisfies (4.5.86) for

any 0 <t <T.

Now we are in a position to prove Theorem 4.4. In fact we only need to prove

(4.5.87). From the global estimate (4.5.86) we have

[(@=( 1), (s 0)) ]l — O @8 & — +0. (4.5.88)
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Hence, for all z € R, we have

Gert) =2 [ 60l )y

(4.5.89)
w0 1/2 o0 1/2
<2 (J gzﬁdy) (f cﬁzdy) — 0 as t — +o0.
—o0 —00
Applying the same procedure to v, leads to
Y, (z,t) >0 as t >+ forall zeR. (4.5.90)

Thus (4.5.87) is proved.

4.5.2 Weighted Energy Estimates

In this subsection, we shall prove Proposition 4.7 by using the weighted energy

estimates. In the following, we assume N (t) < min{u, D} without loss of generality.

Lemma 4.7 (L*estimates). Let the assumptions of Theorem 4.4 hold and (¢, 1)) €
X3(0,T) is a solution obtained in Proposition 4.6. Then there exists a constant C' > 0

such that

H¢>(~,t)|\i+H@/J(ut)IIfﬁDfo -, 7115, dTﬂLL 1: (-, )z, dr < ClIgolly, + l14oll,)-
(4.5.91)

Proof. Multiplying the first equation of (4.5.83) by ¢/U and the second by ©/U,

integrating the resultant equations with respect to z and adding them, we obtain

li ¢2+w2
2dt U

A1), el (7)o

91, 1 [¥(¢2 +¢2)
[y, L[,

@2 fsz
+D | Zdz + =z
dz J Udz I Udz

U
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Using (4.5.65) and the fact that u, = 0, it can be checked that

(5) . <S ;]V) - 2UU; (s — vy)uy = 0. (4.5.93)

The combination of (4.5.65) and the facts U, < 0,V, < 0,s —V > 0,U > 0 and

D > pu gives

.- () S e

Substituting (4.5.93) and (4.5.94) into (4.5.92) and integrating the equation with

respect to £, with the fact [[(9,14)(-£) | < N(t), we derive
j&+wd+pff%mw+ufjgwm
v 2V )| S
:%V%;%d%ﬂ%m_gﬂwm
Haﬁ%;%dz ff(d) W)dd LN wawzdzd
BB [ [ Sasar o [ [ i,

which yields that

f¢2;w2dz+2 D—N(t J f¢zdzd7+2 f szd dr f(b%;}wgdz'

(4.5.95)

N

//\

Then using the assumption N(¢) < min{y, D} and Remark 4.3, we obtain (4.5.91)
from (4.5.95). O
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Lemma 4.8 (H'-estimates). Let the assumptions of Lemma 4.7 hold. Then it follows

that

HQS(?t)Hiw + ||¢(7t)||iw + Df ||¢Z('77->Hiw dr + MJ HwZ('?T)”iw dr
0 0

(4.5.96)
¢ (lgoll},, + Iolf,,)
where C' > 0 is a constant.
Proof. We differentiate (4.5.83) with respect to z to get
¢zt = D¢zzz - ‘/zqsz + (3 - v)¢zz - Uzwz - Uwzz - <¢zd)z)z> (4 5 97)

Multiplying the first equation of (4.5.97) by ¢./U and the second by v,/U, after

some algebra, we have

2dtj¢2+¢ dz +DJ¢szz+uJ¢”dz

1 [ D\  [(s-V ) 1 ny  (s=V )
(4.5.98)
—2 [ Gowds = [ e+ 02 >
< -2 JP %szwzdz - J (¢2 n Q/}Q ¢2wzz + 2wz$z¢zz + ¢zz¢

where (4.5.93) and (4.5.94) have been used. Using (4.5.67) and the facts s = v_, 0 =
uy <U <wu_and vy <V <wv_, it is easy to check that

Vo — Uy

D

~

U

U,
D

_‘V—s

1
V.| < ‘—EV 0+ V) + 2l<o (45.99)
It 2p 7

Integrating (4.5.98) in ¢ and using the fact ¢? < Cg’g and (4.5.85), we obtain from
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(4.5.98) and (4.5.99) that

f¢2+¢ dz +2DJ J¢zzdzd7+2uf fwzzdsz
J%Z ¢Ozdz+ 5 JJ(UW >dzd +CJJ¢2+w§dzd
LN (fwwwdd *ff¢2 % dodr +JJ¢2+%M)

f¢°z+¢02d +O(1+ N(t JJ‘bQ - dedr + 2N (1 Jj‘b V% ger,

which entails that

J¢2+¢2d +2(D— N(t JJ¢ZZdsz+2u N(t wazzdsz

fqboZ e 011 NG J J¢2 92 (4.5.100)

Cllldo:lls, + llo:1l7) + C (L + N (1)) fo (lo:Co )l + 1= 7l ) dr

where we have used the fact 7 < Cow(z) for all z € R (see Remark 4.3). The

combination (4.5.91) and (4.5.100) gives that

f¢2+¢2d +2(D — N(t jf¢zzdzd7'+2ﬂ Nt ijZZdZdT

¢ (ol + olf,) -

(4.5.101)

Using the fact Chw(z) < ﬁ for all z € R (see Remark 4.3) and the assumption

N(t) < min{p, D}, we obtain (4.5.96) from (4.5.101). O
Next, we give the estimates of the second order derivative of (¢,1)).

Lemma 4.9 (H?-estimates). Let the assumptions of Lemma 4.7 hold. Then there
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exists a constant C' > 0 such that

16 150 + 1¢I5, + DJ 16 )15, dT + uf 1= (-, 7)13,, d7
0 0 (4.5.102)

C (6ol + Iol3,,)

Proof. We differentiate (4.5.83) with respect to z twice to get

¢zzt = D¢zzzz - ‘/zz¢z - 2v;;¢zz + (3 - V)¢zzz - Uzzwz - 2Uzd)zz

- Uwzzz - (¢zwz)z27
Yzt = szzzz — Veeth, = 2Vethe: + (S - V)wzzz —U..¢. —2U.¢.. (45103)

1
- U¢zzz - §(¢3 + w§>22~

Multiplying the first equation of (4.5.103) by ¢../U and the second equation by

., /U, using the facts

(0nsss - G = (0o ).~ % 3 (02(5) ) +3(5) 9%
(s — )¢zzz' bz = 1 (gbzz%)Z _ %(s?]v>z 2
2 = (520, ~ 5 3 (2(2) ), +3(2) o2
z/ z zz
>

zZ -V -
(s — )wm-%=§< gz(sU ))z_ <st 2

\

we obtain

¢ Z J\¢ZZZ fwgzz
2dtj Tz L Vg, 4 D dz +p | g

=§H(§)z;(8?)j a5 (57) e

- f%(wu o)z — f (g2, + ¥2)d f U (st 6

J—U dz — 3 J i dz

—4 J %¢zz¢zzdz -
(4.5.104)
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Using (4.5.93) and (4.5.94), one has

1), () e [0, (7 Jeweo

(4.5.105)

The combination of (4.5.104) and (4.5.105) yields that

02, J ¢ f V3
Z D ZZZ ZZZ
oW J ———=2dz + —=dz + p dz

< — J %(¢z¢z2 + wzwzz>dz —2 f %(gbgz + wzz)dz -

Uzz
U (wz¢zz + ¢z¢zz)dz

[ty L i

U
*4 - 2z zzd -
| otz -

(4.5.106)

Using (4.5.65), (4.5.99) and the facts 0 = u; < U < u_ and vy <V < v_, one can

derive that

0. (V—s)U - (v_ —vy)u |

D D
U..| = ‘(V S)Z"' UV _;;> Ry (4.5.107)
V.| ‘(V )‘;”UU <C.

Then we have the following estimates by using (4.5.107) and the Cauchy-Schwarz

inequality

f”@%+%% fm%+%W'

U

S CRRTATE f¢ Yz,
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f 2 (sos + Dotba)d f ¢+ ¥ +U¢ kN

(4.5.109)
_4f ¢zz¢zzdz = J QS zzd
Using (4.5.85), (4.5.99) and the Cauchy-Schwarz inequality, we have
f (¢z¢z)zz¢zz
(¢Z¢Z)Z¢ZZZ (¢ZwZ)Z¢ZZUZ
= dez — sz
f |1/Jzz¢zzz + ¢zz¢zzz’ - U+ J ¢ + |wzz¢zz
<3’U —3U+—|—D J‘Qszzd _U++D fwzzd +N ngzzzd
(4.5.110)
and
1 2 2
L[,
2 U
gv _U++D f¢zzd + 3U++D szzd +N szzzd
(4.5.111)

Inserting (4.5.108), (4.5.110), (4.5.110) and (4.5.111) into (4.5.106), one has

¢ f ¢? f V3
ZZ D N ZZZ N ZZZ
5 dtf dz + ( dz + (pu — dz

i . (4.5.112)
<2fu_—2v++DN<t)f( $ )d +CJ¢Z+¢Z+¢ +¢sz

D U U U

Integrating (4.5.112) with respect to ¢, then using (4.5.82), Lemma 4.8 and the

assumption N(¢) < min{u, D}, we obtain (4.5.102). Then the proof of Lemma 4.9 is
completed. H
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Chapter 5

Conclusions and Future Work

In chapter 2, based on the existence of Lyapunov functional, we obtain the criti-

cal mass %;A) for the volume filling chemotaxis model (2.1.1) with the squeezing

probability function g(u) = ﬁ()\ > () in two dimensions, which means that the

%}j” and blows

solution exists globally with uniform-in-time bound if §, uodz <

. . . . . . 4 (1+X)
up in finite or infinite time if SQ updx > o

. Furthermore, when A > 1, we proved
that if there exist some initial data such that the corresponding solutions of (2.1.1)
blow up, then it has to blow up at infinite time.

In chapter 3, we study the initial-boundary value problem of the ARKS chemo-
taxis model. The asymptotic behavior of solutions to the ARKS chemotaxis model
was studied in one dimension. In two dimensional spaces, we show that if the repul-
sion dominates over attraction, then the globally bounded classical solutions exist
for large initial data. Moreover we present a Lyapunov function at the first time for
the irreducible three-component ARKS chemotaxis model which plays a central role
to obtain our results.

In chapter 4, the asymptotic nonlinear stability of solutions to the Cauchy prob-
lem of a strongly coupled Burgers system arising in MHD turbulence was established.

Our results confirm the existence of shock waves (or turbulence) numerically found

in the literature [24, 103].
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Based on the results of this thesis, a few interesting problems are proposed below
to pursue in the future.

(). In chapter 2, we have proved that if the initial mass SQ updx > @, there

X
exist some initial data such that the corresponding solutions of the volume-filling
chemotaxis model blow up at infinite time if A > 1. For the classical chemotaxis
model, it has been proved in [29] that there exists a radially symmetric solution blows
up in finite time by using the asymptotic expansion method. Hence we suspect that
the solutions of volume-filling chemotaxis model (2.1.1) with 0 < A < 1 may blow
up in finite time for SQ updr > %. However, this needs to be verified.

(ii). The combination of volume-filling and cell kinetic model has been studied
for different cases in [16, 91, 92, 93, 100]. More precisely, the global existence and
pattern formation as well as the existence of a compact global attractor of solution
have been studied in the literature [93, 100]. However in both papers [93, 100], they
assumed that ¢(Upe:) = 0, which implies the chemotactic force is switched off at
1 = Upae. For the case that there is no value of © at which chemotaxis is switched
off (i.e., chemotaxis vanishes as u — o), it was proved in [16] that the solution
globally exists, however with the assumption that the signal production has a priori
bound. If there exist some constants o € R, g e R, M; > 0 and My > 0 such that
D(u) = Mi(u+ 1)~ and ¢(u) < My(u + 1)°~! for all u > 0, and the cell kinetic
function satisfies f(u) < a — bu” with r > 1,a = 0,b > 0, then the existence of
global solution with uniform-in-time bound for 0 < o + 8 < 7 has been established
in [91]. For the chemotaxis model (2.1.1)-(2.1.3), we can check that a + 5 = 1 in
two dimensions, and hence it would be interesting to study the global existence of
volume-filling chemotaxis model (2.1.1)-(2.1.3) in two dimensional spaces with the

same kinetic function as in [91].

(iii). For the ARKS chemotaxis model discussed in chapter 3, we show that if the
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repulsion dominates over attraction, then the globally bounded classical solutions
exist for large initial data. However if attraction prevails over repulsion, few results
are known. There are still a few remaining open question to explore as follows.

Casel. 11 =1, 7, =0, ya > &y, f # d (Ongoing work). We have obtained a
Lyapunov functional for this case. With the Lyapunov functional, we can study the
critical mass problem to the system (3.1.1) in two dimensional spaces by using the
constructed method as in chapter 2.

Case2. 71 =7 =1, ya > &y, B # 0. For this case, the system (3.1.1) can
not be transformed into the classical chemotaxis model. However, we may use the
asymptotic expansion method as in [29] to show that there exists a radially symmetric
solution blows up in finite time.

(iv). In chapter 4, using the energy estimates method, we obtain the asymptotic
stability of viscous waves for the MHD-Burgers system by assuming the condition
that D > u. The energy estimates method is invalid for the case D < pu. The
nonlinear stability of viscous waves with D < p may be explored by the spectral
analysis. Moreover, the nonlinear stability of rarefaction wave with large initial data
has been obtained in chapter 4. However there is not any result for the convergence
rate. It is deserved to study convergence rate of the rarefaction wave with large

initial data in the future.
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