

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

 I

I*CHAMELEON:

AN MVC-BASED MIDDLEWARE FRAMEWORK FOR THE

SUPPORT OF MULTIMODAL APPLICATION DEVELOPMENT

LO WAI KWAN

M.Phil

The Hong Kong Polytechnic University

2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

 II

The Hong Kong Polytechnic University

Department of Computing

i*Chameleon: An MVC-based Middleware Framework for

the Support of Multimodal Application Development

Lo Wai Kwan

A thesis submitted in partial fulfillment of the requirements

for the Degree of Master of Philosophy

June 2013

 III

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

____________________________ (Signed)

 LO WAI KWAN (Name of student)

 IV

Abstract

Multimodal human computer interactions are becoming increasingly popular,

especially in ubiquitous and pervasive computing applications. These

applications demand highly responsive and intuitive human control interfaces.

Because of their nature and form factor, the traditional keyboard, video and

mouse interfaces are often not appropriate or adequate. As a result, there is much

current research on developing novel interaction devices and sensors, or

algorithms for signal processing. However, there are still challenges when it

comes to integrating and customizing different heterogeneous devices into a

human-centered multimodal application. In addition, owing to the static binding

between user control and the application and the strong coupling between the

application programming interface (API) and heterogeneous devices, the

development of multimodal applications remains a difficult task.

In this thesis, we introduce i*Chameleon, which not only leverages a principled

and comprehensive development cycle that systematically captures the principles

behind multimodal interaction, but also provides a configurable and extensible

multimodal platform to support the development of highly interactive

applications. Through the use of an MVC architectural pattern, it enforces the

principle of separation-of-concerns to facilitate cross-collaboration between

device engineers, programmers, modality designers and interaction designers

who are working on different aspects of human computer interaction and

programming. Collectively, the development efforts are combined, integrated

and compiled by the i*Chameleon kernel to create the multimodal interactive

application. During the execution, i*Chameleon also supports dynamic adaption

across components according to the contextual information from the surrounding

environment. For example, if a user is accessing a video via a regular smart

phone on i*Chameleon; and a high-resolution display is then discovered, the

video can be streamed to the display to take advantage of the higher resolution,

without having to modify and re-compile the application, or even having to

 V

restart the application. This capability moves the multimodal applications closer

to being human-centered rather than device-centered. In the process, usability

and flexibility of the applications are enhanced.

To validate the soundness of i*Chameleon, we implemented the platform based

on two approaches: web services and publish/subscribe architecture. We carried

out two experimental applications, Mobile DJ and interactive robot exhibit.

Mobile DJ was implemented over web services to test the support for multimodal

interactions over distributed components in real time, regardless of the users’

locations. Players browse and search for sound tracks that are currently being

worked on by others based on the web services supported, which provides a

channel for them to contribute collaboratively. In the second experiment, an

interactive robot exhibit was developed using publish/subscribe middleware to

demonstrate dynamic adaption. Modalities and devices can be changed according

to the users’ behavior (e.g., location) and the contextual environment (e.g., level

of loudness).

Both experimental applications produce positive results. The experience shows

that the use of i*Chameleon can help to decompose the development process into

different aspects and each aspect can be developed fairly independently. The

overall achievement is that the interaction components become more reusable

and the system itself becomes more flexible, validating the design of

i*Chameleon.

 VI

List of Publications

Journal Article

[1] Lo, K. W. K., Ngai, G., Chan, A. T. S., Leong, H. V., & Chan, S. C. F.

(2013). i*Chameleon: An MVC Engineering Approach for developing Pervasive

Multimodal Applications. Software: Practice and Experience. 2013 (In

Preparation)

Conference and Workshop Papers

[1] Lo, K. W. K., Tang, W. W. W., Ngai, G., Chan, S. F., & Tse, J. T. P. (2010).

Introduction to a Framework for Multi-modal and Tangible Interaction. IEEE

International Conference on Systems, Man, and Cybernetics - SMC, 3001–3007.

doi:10.1109/ICSMC.2010.5641977

[2] Tang, W. W., Lo, K. W. K., Chan, A. T. S., Chan, S., Leong, H. V., & Ngai,

G. (2011). i*Chameleon: a scalable and extensible framework for multimodal

interaction. Proceedings of the 2011 annual conference extended abstracts on

Human factors in computing systems (pp. 305–310). New York, NY, USA:

ACM. doi:10.1145/1979742.1979703

[3] Lo, K. W. K., Tang, W. W., Leong, H. V., Chan, A., Chan, S., & Ngai, G.

(2012). i * Chameleon : A Unified Web Service Framework for Integrating

Multimodal Interaction Devices. Pervasive Computing and Communications

Workshops (PERCOM Workshops), 2012 IEEE International Conference on (pp.

106–111). Lugano. doi:10.1109/PerComW.2012.6197460

[4] Lo, K. W. K., Tang, W. W. W., Ngai, G., Chan, A. T. S., Leong, H. V., &

Chan, S. C. F. (2013). i * Chameleon : A Platform for Developing Multimodal

Application with Comprehensive Development Cycle. Proceedings of the 28th

 VII

Annual ACM Symposium on Applied Computing. Coimbra, Portugal: ACM. doi:

10.1145/2480362.2480570

[5] Lo, K. W. K., Lau, C. K., Huang, X. L. M., Tang, W. W. W., Ngai, G., Chan,

S. C. C. F. (2013). Mobile DJ: a Tangible, Mobile Platform for Active and

Collaborative Music Listening. Proceedings of the 13th International Conference

on New Interfaces for Musical Expression. Daejeon and Seoul, Korea Republic.

 VIII

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr Grace Ngai for

her invaluable support, advice, insight, and guidance throughout this interesting

and challenging research work. It is a great pleasure and honor for me to be her

student and to work closely with her. I will never forget her kind encouragement,

patient support and tolerance of my last-minute work habit, and even the days

she took her valuable time working with me overnight. She enlightens me not

only on academic research, but also values and goals in life. She gave me many

opportunities to explore the world through novel technologies and community

services. Dr Ngai is the best teacher I ever met.

I am also very thankful for the valuable feedback and support of my co-

supervisors, Dr Stephen Chan, and the other faculties who generously shared

their knowledge and experience with me: Dr Alvin Chan and Dr Hong-va Leong

from the Department of Computing. Dr Stephen Chan and Dr Alvin Chan taught

me about software engineering. Dr Leong shared his knowledge of signal

processing and algorithm design. Without their help, I could not have completed

my research.

I would like to thank all members from eToy Laboratory for their support and

encouragement. Special thanks to Mr Will Tang for helping to develop my

supervisors’ ideas into the i*Chameleon platform; Mr Kin Lau, Mr Michael

Huang for helping with the hardware development and prototyping.

Finally, I would like to sincerely thank my family for their understanding and

tolerance. I know that I have not spent enough time on them over the years.

 IX

Table of Contents

Certificate of Originality .. III

Abstract ... IV

List of Publications .. VI

Acknowledgements .. VIII

Table of Contents .. IX

List of Figures ... XII

List of Tables ... XV

Chapter 1. Introduction .. 1

1.1 Challenges in Multimodal Development ... 5

1.2 Contributions .. 7

Chapter 2. Literature Review ... 10

2.1 Existing Multimodal Modeling Approach ... 10

2.1.1 Wisdom UML Extensions Modeling ... 10

2.1.2 Zeljko’s MMHCI Modeling ... 12

2.1.3 W3C X+V .. 14

2.1.4 Multimodal Markup Language ... 14

2.1.5 Extensible Multimodal Annotation ... 15

2.1.6 Multimodal Presentation Markup Language .. 17

2.1.7 Multimodal Interface Language ... 18

2.2 Existing Multimodal Platform ... 19

2.2.1 QuickSet ... 19

2.2.2 Krahnstoever’s Framework ... 21

2.2.3 ICARE .. 22

2.2.4 OpenInterface .. 24

2.2.5 HCI^2 workbench .. 26

Chapter 3. Design Guidelines ... 28

 X

3.1 Comparison of Multimodal Modeling Languages and Multimodal

Platforms ... 28

3.2 Design Principles ... 29

3.3 Features of i*Chameleon Multimodal Platform ... 35

Chapter 4. MVC-based Development Cycle ... 38

4.1 Development Process .. 40

4.2 Device Interface Modeling ... 42

4.3 Modality Modeling .. 46

4.4 Signal Processing Algorithm Implementation .. 51

4.5 Application Development... 53

Chapter 5. Web Service Architecture .. 55

5.1 Web-Service Architecture .. 56

5.1.1 Application Server ... 57

5.1.2 Co-processor .. 60

5.2 Platform Workflow ... 62

5.3 MVC Components Classification and Development Cycle over Web

Service Architecture .. 63

Chapter 6. Publish/Subscribe Architecture ... 67

6.1 Publish/Subscribe Architecture .. 68

6.2 Platform Workflow ... 71

6.3 MVC Components Classification and Development Cycle over

Publish/Subscribe Paradigm ... 73

Chapter 7. Multimodal Applications ... 76

7.1 Mobile DJ (Web Service) ... 76

7.1.1 Device Interface Modeling.. 78

7.1.2 Modality Modeling ... 81

7.1.3 Signal Processing Algorithm Implementation ... 83

7.1.4 Application Development ... 83

7.2 Interactive Robot Control (Publish/Subscribe) ... 84

7.2.1 Device Interface Modeling.. 85

7.2.2 Modality Modeling ... 86

7.2.3 Signal Processing Algorithm Implementation ... 88

7.2.4 Application Development ... 88

7.2.5 Runtime.. 90

 XI

Chapter 8. Conclusion ... 91

8.1 Summary of Research .. 91

8.2 Future Work .. 92

References ... 94

 XII

List of Figures

Figure 1-1 Evolution of user interfaces .. 1

Figure 1-2 Tight Coupling of modalities on a device (Left) Loose Coupling of

modalities on different devices (Right) .. 4

Figure 1-3 Conceptual Idea of “Interaction Cloud” ... 5

Figure 2-1 The Arch model and the Wisdom architecture 11

Figure 2-2 Example of a use-case model, user interface architecture and an

internal architecture for an simple Hotel Reservation System 12

Figure 2-3 Human Computer Interface modalities model [43] 13

Figure 2-4 Example of X+V .. 14

Figure 2-5 EMMA sample markup language [20] ... 16

Figure 2-6 Generation of a consistent system task from multiple input channels

using EMMA [20] .. 17

Figure 2-7 Sample of MPML ... 18

Figure 2-8 Example of MMIL definition ... 19

Figure 2-9 Architecture of QuickSet [11] .. 20

Figure 2-10 State transition model of an interaction session between a user and

the system [33] ... 22

Figure 2-11 ICARE Specification for French military aircraft cockpit [19] 23

Figure 2-12 The ARCH software architectural model and ICARE components

within an ARCH software architecture [8] .. 23

Figure 2-13 Example of a mouse component [14] ... 25

Figure 2-14 SKEMMI Graphical Editor .. 26

Figure 4-1 Suggested architecture of a multimodal system, with the integration

committee and its major software components. [18] 38

Figure 4-2 The System Architecture of i*Chameleon platform, with the services

provided for different stakeholders to develop or integrate different

components to the system .. 39

Figure 4-3 Development Process of multimodal applications and Classification

of interaction components according to MVC design pattern 42

 XIII

Figure 4-4 Meta-model of abstract device component and its relationship to other

device interface components .. 43

Figure 4-5 Meta-model of input interface component ... 44

Figure 4-6 Meta-model of output interface component 45

Figure 4-7 Meta-model of output modality component 48

Figure 4-8 Meta-model of input modality component ... 49

Figure 4-9 The CASE model (Left) [7]. CASE modeling example (Right) 50

Figure 4-10 i*Chameleon Modality Component and Command Editor 53

Figure 5-1 (Left) Web service architecture (Right) i*Chameleon Web

service architecture... 56

Figure 5-2 i*Chameleon includes two core sub-systems, a web services

application server and a co-processor. The application server is responsible

for receiving signals from the Input device, communicating with the co-

processor and coordinating with the output devices. The co-processor

analyzes the input data and sends notifications back with the analyzed

command to the application server. ... 57

Figure 5-3 Two sensory receptors associated with Application server with

specific identifier and each receptor consists of different modalities. 58

Figure 5-4 Defined devices under sensory system ... 59

Figure 5-5 Modal Layer ... 61

Figure 5-6 i*Chameleon workflow. Hand gesture processing starts with the

camera capturing coordinates. Generalized point object sends the

coordinates to Sensory System via web services. Co-processor translates the

raw data into gestures and notifies Motor System to trigger corresponding

application. ... 63

Figure 5-7 i*Chameleon components. MVC Classification and Development

Process over Web Service Architecture ... 64

Figure 5-8 XML Configuration of creating a algorithm component. This example

illustrates an analyzer receiving a point set that results in a zoom in hand

gesture. ... 66

Figure 6-1 A simple publish/subscribe architecture... 67

Figure 6-2 Interaction between components (publisher / subscribe) and

i*Chameleon kernel ... 70

 XIV

Figure 6-3 Interaction between publishers, subscribes and the i*Chameleon

publish/subscribe multimodal middleware .. 72

Figure 6-4 i*Chameleon components MVC Classification and Development

Process over Publish / Subscribe Architecture .. 73

Figure 7-1 Mobile DJ System Architecture (Left) Mobile DJ user (Right) 77

Figure 7-2 Hardware implementation of TouchPad .. 79

Figure 7-3 Input device modeling (Upper) Output device modeling (Lower) 80

Figure 7-4 Input modalities modeling of Mobile DJ Application........................ 82

Figure 7-5 Floor Plan of the robotic zone in the exhibition hall 84

Figure 7-6 An example to illustrate the modeling of will controller and desktop.

 .. 86

Figure 7-7 Modeling of four input modalities of interactive robots control 87

Figure 7-8 Commands created by interaction designers with using i*Chameleon

graphic editor ... 89

 XV

List of Tables

Table 2-1 UML Stereotypes for Zeljko’s MMHCI modeling [43] 13

Table 2-2 Specification of MML key element [28] ... 15

Table 3-1 Different multimodal modeling language and their capabilities (a) 31

Table 3-2 Different multimodal modeling language and their capabilities (b) 32

Table 3-3 Comparison between different existing multimodal platform 33

Table 3-4 Techniques applied to fulfill the multimodal interface design principles

 .. 37

Table 4-1 Fulfilling the design requirements: The Meta Model 51

Table 5-1 Devices and associated modality ... 59

Table 7-1 Development Cycle with corresponding MVC components over

Mobile DJ multimodal application .. 78

Table 7-2 Modalities Mapping Table for Mobile DJ ... 83

Table 7-3 Roles involved in different development processes and its

corresponding MVC design pattern and description in i*Chameleon

Platform .. 85

Table 7-4 Modalities Mapping Table for Robot Control System 89

 1

Chapter 1. Introduction

In 1988, Mark Weiser coined the term “ubiquitous computing”, and predicted that it

would become the third wave in the field of computing science [51]. Ubiquitous or

pervasive computing describes a “smart world”, where objects have communication

capability and are integrated with human users. Within the smart environment,

portable and smart devices are embedded everywhere and computation is invisibly

woven into daily life, creating an “All time everywhere computing” [49] reality.

Users can, based on their abilities, interests and environment constraints, choose their

own way to interact with an object or achieve a task.

At the same time, riding on the success on heterogeneous devices [38][21], computer

processing power and storage capabilities [1], human-computer interaction has

progressed to the point where it is no longer bound to the conventional keyboard,

video and mouse (KVM) interface. Even today, users can control their applications

through different human-oriented devices, such as game controllers, motion capture

cameras and speech recognition engines. For example, users are allowed to adjust the

view angle of the display [62] by Nintendo Wii controllers. In this way, embedded

heterogeneous devices have been changing the way that users interact with

applications. The result is a trend towards human-computer interaction that is more

human-natural, intuitive and robust.

Figure 1-1 Evolution of user interfaces

According to Harbour Research [29] in 2008, 1.75 billion controllers and smart

sensors are embedded in our daily environment. The possibility, if these sensors are

networked, are that they will be able to provide human-oriented services anywhere,

anytime [28], and offer rich context about the user’s state and surroundings. This

contextual information would then have the potential to minimize human intervention

 2

towards the application, providing a proactive interface that anticipates decisions to

meet user needs. This integration between sensors and mobile devices, coupled with

the improvement of computation power and enhancement of high-resolution display,

has hugely impacted human-computer interaction.

At the same time, mobile computing has also taken off. Modern lifestyles and habits

have brought about an increasing need to access information everywhere and at any

time, which has changed the interaction style from desktop-based to mobile-based.

The total usage time of smartphones now outranks laptops, and it has been shown [46]

that there exists a strong relation between user experience and pervasiveness of

mobile devices. Users tend to access different information from different channels on

a single portable mobile device, such as smartphones or tablet computers. This

evolution suggests that adaptation of smart mobile devices to existing applications

will become a trend of human-computer interaction in the future.

Mobile interactions normally involve more than one modality. Modality is defined as

the type of communication channel used to convey or receive information. It also

represents a way of expressing ideas, perceiving views or performing an action [42].

Modalities can be active or passive. An active modality refers to an action which the

user issues intentionally while a passive modality represents a command that is not

explicitly expressed by the user’s will [8][43]. In mobile platforms, both active and

passive modalities are involved. When the user triggers a command, such as taking a

photo or sending a message, the smartphone will gather context information, such as

location, without notifying the user. These passive modalities increase the information

bandwidth available to the command and provide a better interaction experience for

the user. Such interactions involving more than one modality are called multimodal

human-computer interaction (MMHCI).

MMHCI interacts along different types of communication channels to extract and

convey meaning automatically. It have been proven to prevent errors, increase

robustness, enrich communication bandwidth and enhance adaptability to different

situations and environments [14]. Nowadays, MMHCI has begun to take root in

consumer products, as exemplified by the success of commercial products that rely

 3

heavily on non-traditional modes of interaction. It has applications in different areas

[31], such as ambient spaces. It expands computing beyond desktop and integrates to

everyday objects, for example, smart conference room applications [40], mobile

computing [26], wearable computing [41], virtual environments and affective

computing [55].

Although heterogeneous devices and pervasive modalities exist everywhere, sensors,

actuators and hardware resources are still constrained within a single device. It is

difficult for users to access different modalities across mobiles and bind sensors from

different locations to form customized applications. Also, extra efforts are required to

transfer a task from a device to another device. Therefore, existing applications are

still tightly coupled and device-oriented but not human-oriented. Figure 1-2 (left)

illustrates an example of tight coupling between modalities and devices. The same

smartphone contains an accelerometer, light sensor, gyroscope or other actuators, but

they are associated with the same device, and the whole pervasive system is self-

contained like a black box. It would be difficult to share resources among devices.

However, the ultimate goal of pervasive environment is to provide a continuous or

uninterrupted user experience when the user moves across devices. Therefore, if the

strong coupling can be released and each heterogeneous widget has the ability to

discover the capabilities of other devices, a pervasive environment with multimodal

interaction can be established. For example, also in Figure 1-2 (right), after

decoupling of sensors, actuators and hardware resources, smartphones can bind to

suitable components according to the need and context environment. Under the

assumption of well-established framework and consummate development process, an

“Interaction Cloud” can be formed.

The rationale behind an “Interaction Cloud” is as follows. Cloud computing itself is

widely defined by different research areas [34] and it refers to applications delivered

as a service over the Internet [4]. Under the context of multimodal interaction, each

widget can be defined as a service, for example, an interactive device providing a

tilting action can be regarded as “Hardware as a service” (HaaS) while a fusion

algorithm can be classified as “Software as a Service” (SaaS). However, most

research efforts in cloud computing focus on computational performance,

synchronization or resource utilization. There is relatively little effort on the modeling

 4

of the various hardware and software devices and widgets that make up the interaction

aspect of the application. This means that although different components are well

defined and can be combined into multimodal applications, most fusion and fission

relationships between devices and modalities are statically bound. This means that if

one of the input widgets encounters a problem, the whole application will become

unstable or even malfunction. The advantage offered by the “Interaction Cloud” is

dynamic discovery and dynamic binding to different services according to the

situations or environment.

Figure 1-2 Tight Coupling of modalities on a device (Left) Loose Coupling of modalities on different

devices (Right)

Figure 1-3 illustrates an example of the concept of “Interaction Cloud” over daily

mobile interaction. When a user is preparing a presentation on a tablet during the

travel time, he uses gestures and speech to control editing and searching. Once he

arrives at the conference room, the tablet auto-discovers available services within the

room devices. Connection between devices can then be established and the

application can automatically select the mode of interaction. For example, the tablet

can hand over the display to a large-screen projector, bind a WiiMote as a

presentation controller, connect the microphone to room speakers and unbind

unnecessary modalities, like touching. Applications are therefore no longer tied to the

user’s device but follow the user himself. This not only enhances the user experience,

but also utilizes the available resources.

 5

Figure 1-3 Conceptual Idea of “Interaction Cloud”

The existing research in pervasive computing and multimodal human-computer

interaction leads us to believe that mobile devices will play a significant role in future

human-computer interaction. Therefore, a comprehensive approach to integrate users’

mobile devices as part of a multimodal application is required.

1.1 Challenges in Multimodal Development

The first challenge in integrating mobile devices into pervasive multimodal

application is that the static binding between components and the execution platform

is usually limited to desktop environments. Although existing frameworks provide

predefined interaction widgets, dynamic adaptation of mobile devices has been

ignored. Users can only interact with the system through pre-defined commands and

cannot customize the controls based on their interests or transfer tasks between

devices. Besides, multimodal applications are still mainly designed for desktop

environments. It seems that existing multimodal applications are self-contained and

do not respond readily to changes in the environmental context. Also, end-user

applications are still device-oriented, and extra effort is required to transfer data from

one device to another.

We therefore propose that by bringing in the concept of cloud computing (HaaS and

SaaS), applications can become user-oriented, and self-described widgets can

automatically bind to each other. A middleware is therefore required to provide

 6

automatic service discovery and dynamic binding between components in order to

resolve the tight coupling problem.

The second challenge is the development cycle of multimodal applications, which

involves a broad spectrum of research domains. When developing multimodal

applications, developers are required to study the usability of input and output

modalities, communication protocols, fusion and fission algorithms and the self-

description capability of hardware widgets. Therefore, the development process lies at

the crossroads of several research areas including middleware, networking, software

engineering, psychology and cognitive science [31]. The multidisciplinary nature of

pervasive computing and multimodal interaction brings together different roles of

scholars and researchers. Software engineers are interested in building tools and

systems to support the development of multimodal interfaces [19], HCI engineers

focus on tasks of people using the system and interaction practitioners are interested

in how humans use multimodal interfaces. However, existing development artifacts

pay little attention to the multidisciplinary nature of MMHCI development.

Components are only classified by physical widgets rather than by the nature of the

widgets.

We propose that by introducing a MVC-design pattern, components can further be

decomposed into model, view or controller, which will provide more support for

multidisciplinary collaboration.

The third challenge is the tight coupling between application programming interfaces

(API) and the application programming sequences that decode the user’s interactions

or APIs that are dedicated to specific modalities such as gesture recognition [60],

speech recognition [27] or combined usage of speech and gesture [35]. Human

interaction with devices is usually made possible through provided services and code

libraries. However, multimodal applications are normally constructed from a number

of independent and heterogeneous components [54]. Existing multimodal systems

[56][12][18] do not provide an extensible and flexible development environment nor a

good software engineering approach for integrating large and heterogeneous number

of components [36]. As a result, the semantics of the interactive data and the

processing of the modality are embedded deeply within the application logic in an

 7

entangled manner, rendering it rather difficult for the application to adapt or respond

to input from different modalities without explicit modification to the application

code. To complicate matters, multimodal interaction involves the combination of

multiple interacting modalities that often act in unison to convey a complex human-

computer interaction. In a conventional application development platform, adapting

existing desktop applications to support multimodal interaction would require

significant amounts of programming effort that may make the solution intractable and

difficult to maintain. Any change to the modality mix and interaction would require

re-programming effort. Even worse, the solution is not easily portable to another

platform, nor does it easily accommodate alternative devices [36].

We propose that in order to facilitate the use of multimodal application and develop

environment of pervasive systems, component-based software engineering (CBSE)

[36][20][8][9][52] should be used. Under such a paradigm, each component is self-

contained and serves a specific function. By applying the same communication input

and output interface, components can be re-combined and deployed as a new

application. This approach emphasizes the concept of separation of concerns,

decreases the component dependencies, increases the architectural reusability and

finally reduces the production cost. Also, it provides the basis of supporting large

scale of heterogeneous devices.

1.2 Contributions

To solve the problems of static binding between components, to facilitate the

involvement of a broad spectrum of research domains and to decouple interaction

components (applications, devices, modalities and commands) from each other, we

have developed the i*Chameleon platform, which provides a complete development

cycle and execution platform for multimodal applications. The development platform

is targeted to facilitate developers, engineers and designers to collaborate through

their respective roles in developing interaction components. The execution

middleware supports the discovery and binding of deployed components and finally

forms a multimodal application.

 8

The first contribution of this thesis is the classification of interaction components. By

taking the concept of separation of concerns from MVC design pattern, we classified

the pervasive multimodal interface into three conceptual components: modalities and

interactive devices (model), interactive commands (view) and fusion and fission

algorithms (controller). It not only provides an isolation layer with a single point of

access, but also reduces the number of connections needed and facilitates change

management. As a result, a concrete role distribution can be defined at the early state

of development and provides a clear structure for each component within the

interaction cloud.

The second is a self-described modeling language that is defined to model modalities,

devices, data and interaction. This acts as a communication channel between

components. Each component is self-contained and it serves a specific purpose. This

approach allows logic developers, widget engineers and interaction designers to build

the system independently and plug-in to an interaction cloud.

The third is the implementation of multimodal middleware. We applied two

approaches: (1) Publish / Subscribe communication paradigm and (2) Web Services.

Both of them provide a mechanism for changing the binding between interaction

components from static to dynamic according to the execution environment and user

preferences. Publish / Subscribe communication paradigm provides a fast prototyping

platform and real-time execution environment while web services offers a

standardized communication protocol for interaction of components over the Internet.

In this thesis, we present a comprehensive solution to these issues. In chapter 2, we

discuss the features of existing modeling languages and system followed by reviewing

and comparing the strengths and weaknesses of different well-known multimodal

frameworks. In chapter 3, we generalize the design principles towards dynamic

binding, services discovery, components modeling and separation of concerns. In

chapter 4, the classification and its description language of interaction components is

presented according to the MVC design pattern. This chapter also discusses the

development cycle in detail. In chapter 5, web services architecture is implemented

according to the approach discussed in previous chapters while in chapter 6, the

publish/subscribe communication paradigm is applied. In chapter 7, we evaluate the

 9

effort of implementing two multimodal application based on the suggested

development cycle. Finally, chapter 8 presents the conclusion and suggests future

research areas.

 10

Chapter 2. Literature Review

Since the appearance of Bolt’s [7] “Put that there” demonstration in 1980 that

presented the first multimodal application, researchers have been studying the topic of

multimodal human computer interaction (MMHCI), in particular fusion technologies

[5], signal integration and synchronization. In the meantime, new developments in

sensors and processing techniques (computer vision, audio and speech), new detection

and recognition algorithms and tracking theories have opened up new possibilities in

the development of multimodal interaction. In recent years, there have been a number

of toolkits and description languages developed for supporting prototype and

integration of multimodal interactive applications [59]. In this chapter, we will review

the existing approaches in two directions, multimodal modeling language and

multimodal platforms.

2.1 Existing Multimodal Modeling Approach

In this section, we evaluate seven multimodal modeling languages. They are either

models in UML or XML and each of them have specific aims or target specific

applications or modalities. Some of the modeling languages are used for defining and

capturing abstract ideas, but do not handle implementation. In the following sections,

we will discuss the scope, advantages and limitations of each modeling approach.

2.1.1 Wisdom UML Extensions Modeling

Wisdom architecture is a conceptual model for interaction proposed by N.J. Nunes in

2001 [44]. It separates the concepts between internal functions and user interface. The

target of this extension is to bridge the gap between software engineering and human

computer interaction and define the roles of task analysis and object models in user

interface design.

 11

Figure 2-1 describes the architecture of the Wisdom model. Borrowing the concept

from object-oriented software engineering (OOSE) and interaction model from human

computer interface (HCI), five dimensions are defined. The analysis model is inter-

connected with interaction model through the same information channel.

Figure 2-1 The Arch model and the Wisdom architecture

The analysis model includes three types of elements, boundary class (Interface),

control class (Behavior) and entity class (Information). The boundary class models

the interactions between the system and external systems. Control class represents the

business logic. It coordinates and controls the information while the model class

model perdurable information.

The Interaction model contains the interaction space class (Presentation) and task

class (Dialogue). The interaction space class models the interaction between the

system and users and the task class models the structure of dialogue between the user

and the system.

 12

Figure 2-2 Example of a use-case model, user interface architecture and an internal architecture for an

simple Hotel Reservation System

Figure 2-2 shows an example of how to model a hotel reservation system using the

Wisdom UML integrated with the standard user case model. In this example, the

interaction model inter-connects the human aspect with the business logic. However,

it only offers the top level of abstraction, which gives an overall description of the

system. It does not include the modalities concept or modeling for fusion and fission

algorithms.

2.1.2 Zeljko’s MMHCI Modeling

In 2004, Zeljko defined a HCI modality meta-model to describe the concept of

modalities and to classify multimodal interactions. The motivation of this research is

to improve the accessibility of the development of multimodal applications. The idea

is that applying UML techniques would serve to facilitate the communication between

software engineers and interaction designers.

Figure 2-3 shows the UML model for HCI modalities. It divides modalities into two

main categories, input and output. These are further divided into event-based, stream-

based, static and dynamic. Following this modeling, developers are less bound to the

underlying implementation technique and they can focus on the domain related

problems. Modality designers can focus on the higher level concepts, such as the

division between simple modality and complex modality while engineers can focus on

 13

lower level issues like event-based modality and streaming-based modality. However,

the input modality classification and modeling is based on the technical factors of

hardware devices. Although this method can clearly categorize current devices, it

ignores the properties and the behavior of the devices. Besides, this meta-modeling

only handles the traditional video output and lacks support for new types of output

manner, such as sensors and tangible objects [45].

Figure 2-3 Human Computer Interface modalities model [45]

Table 2-1 UML Stereotypes for Zeljko’s MMHCI modeling [45]

Simple Modality Single modality

Complex Modality Multimodalities combined by at least two simple
modality

Input Modality Human output

Output Modality Output presented to human

Event-based Modality Tokenized input signals

Streaming-based
modality

Input signals with some resolution and frequency

Static Output Modality Statically Presents Data, such as image

Dynamic Output
Modality

Dynamically Presents Data, such as video

 14

2.1.3 W3C X+V

X+V stands for XHTML and VoiceXML. This technology was finalized by W3C in

2001 [61]. It standardizes and enables the speech interaction over the World Wide

Web. The profile includes voice modules that support speech synthesis, speech

dialogs, command and control, speech grammars, and the ability to attach Voice

handlers for responding to specific DOM events. Figure 2-4 shows an example of

how to trigger the sound interface when the user clicks on a paragraph element on a

standard HTML document.

Figure 2-4 Example of X+V

One of the advantages of using this technique is both markup languages are proven

and guarantees the response time. However, it only focuses on thin-client browsing

and therefore, it is hard to implement. Also, this technique can only provide one-way

interaction, is not extensible to other modalities and is limited to the Web interface.

2.1.4 Multimodal Markup Language

In 2001, Roessler introduced the application of the Multimodal Markup Language to

mobile environments with two input modalities and two output modalities. It is

another XML-based modeling language which provides the benefits of a clear

 15

separation in content, structure and interaction [30]. It models speech and handwriting

as input with graphical and anthropomorphic avatars as output.

This markup language is similar to X + V which also applied the multimodal concept

by combining advantages from HTML and VoiceXML. HTML offers authors the

possibility to publish documents on graphical devices while VoiceXML allows web-

based development and content delivery to interaction voice response systems. Table

2-2 shows the core elements of MML.

Table 2-2 Specification of MML key element [30]

modalityOut Define the presentation modalities to user.

modalityIn Define the use of input modalities including their analyze algorithms.
For example, grammars for speech recognition or hand-writing.

production Control the output elements format.

timing Specific he synchronization information.

bargeIn Enables or disables interruption of voice announcements.

initiative Specific the control flow.

However, MML does not provide extensibility for new upcoming modalities. It also

does not provide the clear separation for different scholars and researchers for

involving into its development process.

2.1.5 Extensible Multimodal Annotation

Extensible Multimodal Annotation (EMMA) is a well-known multimodal language

developed by W3C and the first version was published in 2009. It offers a sufficient

syntax for defining multimodal interaction for web applications. The purpose of

EMMA is to represent content which is automatically extracted from a user's input by

an interpretation component, where input is to be taken in the general sense of a

meaningful user input in any modality supported by the platform [22]. Figure 2-5

shows a simple multimodal application which uses voice recognition as an input

modality. The XML represents a flight reservation application. Once the engine

matches with the token defined in the interpretation element, it will load the

corresponding defined data.

 16

Figure 2-5 EMMA sample markup language [22]

In Figure 2-6, Roman [22] implemented a multimodal mobile application using the

EMMA markup language. After semantic interpretation has been performed by

different engines, EMMA handles the communication protocol between different

widgets and the integration processor.

Although EMMA is a well-defined interaction language, it still poses a high barrier

for non-experienced users, as it requires much technical knowledge to create a

multimodal application. The application developers are required to do the hardware

integration, interaction design and modality fusion. EMMA also focuses less on the

standardization of semantic representation of input modalities [32], which means that

future modalities cannot be adapted to the language without major changes. EMMA

therefore targets on serving the input modalities in a web interface, however, not

much attention is paid on the output modalities and non-web applications.

 17

Figure 2-6 Generation of a consistent system task from multiple input channels using EMMA [22]

2.1.6 Multimodal Presentation Markup Language

Multimodal Presentation Markup Language (MPML) is another XML-based

modeling language that enables dialogue-based interactions for multimodal user

interface that was designed by Ishizuka Laboratories [6] in 1999. Using MPML,

developers can develop and deploy HTML-based multimodal presentation application

quickly. Figure 2-7 shows a sample application, which performs text-to-speech

together with HTML switching. Developers are only required to create suitable

agents to handle input and output modalities. For example, users can define an

autonomous component that processes the user’s speech input as the “Voice

Recognition Agent”. However, in MPML 3.0, only three agents are supported and it is

hard to integrate new agents into the MPML engine, therefore, extensibility is limited.

Also, interaction logic and presentation information are mixed together in one XML

file, which requires software engineers and interaction designers to understand each

other’s work.

Meta-model is also not defined in MPML, which only focuses on daily presentation,

rather than the differences between generic user interface and multimodal user

interface.

 18

Figure 2-7 Sample of MPML

2.1.7 Multimodal Interface Language

Multimodal Interface Language (MMIL), introduced by Romary and Kumar, is yet

another type of XML-based multimodal language. It models the interaction between

the user and the dialogue as well as the interactions within the system.

The target of MIML is general purpose; therefore, Kumar defined a meta-model,

represented in UML. Based on the meta-model, he abstracted six types of information

streams, such as word and phoneme lattice, dependency representation

forest, dependency representation, word/phoneme sequence, visual-haptic semantic

representation, and graphic-haptic layout [32], and translated the salient concepts for

XML support. It demonstrates the importance of applying UML meta-model

technique in software engineering.

 19

Figure 2-8 Example of MMIL definition

2.2 Existing Multimodal Platform

After the discussion of multimodal modeling languages, existing execution platforms

will be evaluated. Multimodal platforms are used to retrieve different input modalities

and triggers corresponding output modalities using suitable fission and fusion

algorithms. In this section, we evaluate four multimodal platforms and discuss their

scope, advantages and limitation.

2.2.1 QuickSet

QuickSet is developed in 1997 and it is a pen and voice based multimodal system for

configuring military simulations based on LeatherNet [11], a system used in training

platoon leaders and commanders at the US Marine Corps (USMC) based [13]. It runs

 20

on a hand-held PC and communicates through a distributed agent architecture based

on the Open Agent Architecture (OAA). It requires a central facilitator to process and

coordinate different agents, and to route queries to appropriate agents.

Figure 2-9 shows the architecture of QuickSet. Each agent represents a specific

function. For example, QuickSet interface provides the geo-referenced map. Speech

recognition agents capture the voice command and pass it to the natural language

agent to process. Gesture recognition agent recognizes all pen input from a PC screen

or tablet. Multimodal integration agent accepts structured meaning representations

from other agents, such as gesture agent or speech agent, and produces a unified

multimodal interpretation. CommandVu agent is yet another input modality that

resides on top of the gesture recognition agent, this enables the user to ask

“CommandVu, fly me to this platoon <gesture on the map>”.

Figure 2-9 Architecture of QuickSet [12]

Holding QuickSet in hand, the user views a map from the ModSAF simulation, and

with spoken language coupled with pen gestures, issues commands to ModSAF. In

otter to create a unit in QuickSet, the user would hold the pen at the desired location

and utter (for instance): "led T72 platoon" resulting in a new platoon of the specified

type being created at that location.

However, QuickSet does not involve any modeling technique and is customized for

specific application with specific hardware devices. The extensibility is limited. If a

developer would like to adapt a new agent into the system, he is required to

 21

implement it using the OAA communication protocol and integrate the new logic and

rules into the facilitators. If the new agents are required to communicate with other

agents, those agents also need to be customized. Interactions between system and

human cannot be customized. The fusion algorithms are strongly coupled with the

raw signal as well as the agent design. It lowers the flexibility of the command design.

2.2.2 Krahnstoever’s Framework

Krahnstoever’s framework proposed a method for combining audio and visual

interaction with a large screen display [35]. It includes three main components:

interaction session, visual and audio components and modality fusion.

One of the major characteristics of this framework is that it includes an initialization

and termination phase in the interaction session which normal multimodal

applications do not consider. During the initialization phase the interaction dialogue

between a new user and the system is established. It is followed by the interaction

phase, where the actual communication between the user and the system takes place.

Finally, the termination phase is entered when the user (or the system) decides to

conclude the dialogue. The state transition model is shown in Figure 2-10.

Visual and audio components are responsible for signal processing, which includes

face detection, palm detection, head and hand tracking, speech command recognition

and audio feedback. The processed data will be interpreted by another modality fusion

component.

In Krahnstoever’s platform, the research team focuses on specific input (Speech,

Hand Gesture, Head Tracking and Face Detection) and output modalities (Display

and TTS). Therefore, the architecture is not designed to flexibly adapt to new

modalities. Also, it does not include modality-modeling concept, which limits the

communication between different roles of user during the development phase.

 22

Figure 2-10 State transition model of an interaction session between a user and the system [35]

2.2.3 ICARE

ICARE stands for Interaction-CARE (Complementarily Assignment Redundancy

Equivalence). This platform applies the concept of component-based approach for

specifying and developing multimodal interfaces [9]. This approach included two

types of components: elementary components and composition components.

Elementary components are dedicated to interaction modalities, which define the

combination of physical device d and interaction language L <d, L>. For example, a

speech input is described as the coupling of microphone and pseudo natural language.

Therefore, the modality definition is dependent on the fusion algorithms as well as the

hardware devices. Besides, the fusion conditions are defined by composition

components, which include complementarity, redundancy, equivalence and

redundancy/equivalence [8].

Complementarity combines all triggered events within a short period of time. When

more than one modality conveys redundant pieces of data that were generated at

approximately the same time and have the same output, one of the events will be

ignored if those modalities are connected by redundancy component.

Redundancy/equivalence component is a mix of redundancy and equivalence [20].

 23

Figure 2-11 ICARE Specification for French military aircraft cockpit [20]

As shown in Figure 2-12, the architecture of ICARE platform requires combining an

outside dialog controller to listen to its triggered events. An ICARE component chain

defines a pipeline from user’s actions to commands or elementary tasks which are

useful for the Dialog Controller. The communication protocol is implemented with

direct call of methods or by using TCP/IP, UDP, JavaRMI. ICARE enables the

designers to graphically manipulate and assemble software components to customize

the multimodal application. From the customized result, the code is automatically

generated.

Figure 2-12 The ARCH software architectural model and ICARE components within an ARCH

software architecture [9]

Although ICARE provides a graphical user interface for users to customize the fusion

logic by establishing the execution condition, user cannot develop flow control, such

as looping or store the state of the system. For example, if the user wants to customize

a command that is based on previous executed commands, ICARE will not be able to

 24

support this. Also, modalities are highly dependent on the physical devices and the

underlying algorithms. Therefore, ICARE can only provide a high level of reusability

but not at the implementation level. It also does not provide the meta-modeling of the

components and there is no concept of separation of concerns.

2.2.4 OpenInterface

OpenInterface is a well-known multimodal application development tool which

supports the design and effective implementation based on off-the-shelf

heterogeneous components [52]. The motivation of this platform is to provide an

evolvable solution implementing a device-independent and interaction language that

is technique independent.

OpenInterface is manipulated by components and pipelines. A component is defined

as any software or hardware unit that provides a service. Components can do various

tasks, ranging from being a driver for input devices, signal processing, networking,

produce graphics, etc. They are reusable and independent from other components. It

consists of four basic attributes: it must include an API and installation package, it

must be documented and self-contained. The access points where data can come

inside or outside the components are called pins. There are three types of pins, they

are sink pins (receiving data), source pins (receiving and sending data) and callback

pins (sending events) [36]. The component will be translated to XML-based

component interface description language (CIDL) in order to communicate between

the OpenInterface kernel and component driver.

Figure 2-13 discusses an example of defining a mouse component. Within

DirectXMouse component, it receives data from two events (startMouseCapture and

stopMouseCapture) and mdriver is responsible for interpreting the information and

pushing another event (pushed_events) out to other components.

 25

Figure 2-13 Example of a mouse component [15]

The second core object is called pipeline. A pipeline connects different components

together in order to manage an advanced task. Components can be composed in

pipelines by connecting together sinks and sources of various components. In this

way, data produced by callback pins of some component will be sent to sink pins of

another component, letting the components exchange data and events. By using this

mechanism, one can create complex application pipelines to perform advanced

interaction tasks or techniques [15].

In runtime environments, components together with the pipelines would be deployed

to the OpenInterface Kernel. The kernel will initialize the components and establish

the communication path between them. It unifies components implemented in various

technologies (C/C++, Java, Matlab, C#, Python) and follows a dataflow pipe-and-

filter architectural style in order to support easy reconfiguration.

Using a component builder called SKEMMI, developers can do the mapping and

configuration of the pipeline. This tool provides a graphical user interface (Figure

2-14) to designers to manipulate the component and connect them before deploying to

the kernel.

The goal of OpenInterface is to bridge the gap between the design and

implementation process of multimodal interactions. Therefore, it introduces the

concept of separation of concerns. Different types of users, such as programmers and

designers, can contribute their own components in order to develop the final

application.

 26

Figure 2-14 SKEMMI Graphical Editor

Programmers: they can freely use the OpenInterface – CIDL – Components Interface

Description Language to share code source and avoid redundancies in common tasks:

data format support, usual audio, video processing, etc.

Application Designers: (AD): with minimal efforts, they can build multimodal

pipelines using the OpenInterface Design and Development Environment SKEMMI.

End-users: The final OpenInterface multimodal interface provides a natural

interaction between the human and the physical or virtual environment.

OpenInterface is a well-developed tool for the development of multimodal

application. However, it still requires an experienced designer, with technical

knowledge, to customize the application. The barrier is still relatively high when

compared with other GUI programming toolkit, such as Alice [16] or Scratch [39].

OpenInterface also does not provide any modeling language and definition language

for modalities, devices or data structure.

2.2.5 HCI^2 workbench

HCI^2 workbench [54] is a Publish / Subscribe software platform that aims to

simplify the development process of a multimodal application by using a modular

programming technique. It provides a graphical environment to support the

 27

development of a typical MMHCI system, for example, debugging, module

packaging, module management, system configuration and testing. However, each

module must be developed with the multi-disciplinary knowledge and all the

commands must be defined and configured before execution. It only supports runtime

structural changes, such as registration of modules but cannot dynamically change or

bind packages during runtime. Besides, it does not provide any conceptual modeling

of multimodal interaction.

 28

Chapter 3. Design Guidelines

Owing to the growth of interest in multimodal applications [48], the process of

developing such platforms is becoming increasingly important. In order to facilitate

the design of multimodal systems from the ground up, design principles and

interaction paradigms are necessary. Based on the discussion in chapter 2, different

multimodal modeling languages and platforms are presented. For illustrative

purposes, the first section presents a comparison and summarization of six modeling

languages and four frameworks. Then the design principles on modeling languages

and framework design are summarized. Finally, the features of modeling languages

and multimodal platform will be discussed.

3.1 Comparison of Multimodal Modeling Languages

and Multimodal Platforms

Table 3-1 and Table 3-2 summarize the system conceptual and modalities model for

several state-of-the-art frameworks. The tables show that in general, current

frameworks usually either focus on the system conceptual model, or the modality

model. Due to the multidisciplinary nature, however, a complete MMHCI system

needs to include concerns at both the system level and modalities level. Therefore, in

order to create a complete multimodal human-computer interaction application, it is

necessary to work with different frameworks/platforms. This is suboptimal as it

increases the challenges of developing multimodal applications. In addition, within

the system model, most modeling languages only address the workflow modeling,

ignoring the context model and dataflow model. We therefore propose a single

system that seeks to improve the communication between designers and engineers

(system level modeling) and engineers and developers (modality level modeling).

Another observation from Table 3-3 is that existing frameworks are often specific to

particular input modalities or output modalities. Examples are speech or gestural

 29

input. One of the reasons is that often, frameworks are designed and developed to

meet specific requirements, and therefore are required to be highly functional and

accurate. This, however, results in low flexibility and extensibility. This drawback has

been noted in the reviews of ICARE and OpenInterface from chapter 2, which raise

concerns regarding the extensibility of multimodal applications.

The extensibility issue has been addressed to a certain point through the components-

based software engineering (CBSE) approach. Each modality, algorithm or hardware

driver is regarded as a component. In OpenInterface, for example, developers can

apply the pipeline concept to connect different components to build a workflow

sequence. This minimizes the effort of developers and maximizes the flexibility and

reusability of multimodal applications.

Secondly, most existing frameworks still focus on the desktop environment, which

limits the portability to other platforms. With the tremendous increase in mobile

devices, multimodal platforms need to support distributed development. Multimodal

interfaces should adapt to the needs and abilities of different users, as well as different

contexts of use. An example might be to allow gestural controls to replace voice input

in noisy environments. Therefore, distributed sensory networks and dynamic

adaptation among different input / output devices are needed.

Another challenge we discussed in Chapter 1 is the development cycle of multimodal

applications. This usually involves a broad spectrum of research domains. Although

existing platforms involve the principle of separation of concerns, they still require

experienced programmers or developers to customize the interactive commands. This

creates a high barrier for new developers.

3.2 Design Principles

Given the challenges discussed in Chapter One and the limitations above, adapting,

integrating or extending an interaction modal often requires complex recoding and

maintenance. Contemporary markup or modeling languages ignore the

 30

multidisciplinary factors and assume a certain level of knowledge sharing between

software engineers, interaction designers and fusion engineers. In a real world

situation, interaction designers often come from the psychology field while software

engineers are computer scientists. They are trained to address different issues

pertaining to human computer interactions and are often not aware of each others’

concerns or issues, which makes the knowledge sharing assumption invalid.

Tables 3-1, 3-2 and 3-3 thus highlight the desirable principles that enhance the design

process for these heterogeneous parties.

 31

Table 3-1 Different multimodal modeling language and their capabilities (a)

System Level Modeling Modality Level Modeling
Interaction

Language Context Model
Behavioral Model

(Dataflow)

Behavioral Model

(Workflow)

Input

Modalities

Output

Modalities

Multi-
modalities

Wisdom UML

Extension

Lack of describing
Environment factor

Detail distinguish the
system by Analysis
Model and
Interaction Model

Standardize by
Information
Dimension

Boundary class
(System to System)

Presentation
(System to Human)

No No No

UML

(integrate
with existing
User Case
Diagram)

Zeljko’s MMHCI
Modeling

No No No
Abstracted interface
(1) Event-based
(2) Streaming-based

Abstracted interface
(1) Static video
(2) Dynamic video

Complex
modality is
defined as
more than one
input / output
modality.

UML

MMIL No No

Using relation tag
to connect source
event and target
event.

No

Detailed Speech
Modeling

(Grammars,
sentences structure,

etc.)

No

Meta-model
with UML and
configuration

in XML

MPML No No

Only support
simple one to one

request and
response event.

No No No XML

 32

Table 3-2 Different multimodal modeling language and their capabilities (b)

 System Level Modeling Modality Level Modeling
Interaction

Language Context Model
Behavioral Model

(Dataflow)

Behavioral Model

(Workflow)

Input

Modalities

Output

Modalities

Multi-
modalities

EMMA No

Token can be
defined and passed
to other command
by emma:token tag

Define event based
listener in XML,
therefore, each
input event will

map to a command

No

Detailed Speech
Modeling

(Grammars,
sentences structure,

etc.)

No XML

MML No No

Using modalityOut
tag to define the
output modalities

Using modalityIn
tag to link with
suitable algorithm

Using initiative tag
to define the
control flow

No No No

Meta-model
with UML and
configuration

in XML

X+V No
Follow W3C HTML

Protocol No
Follow W3C HTML

Protocol
No Voice No XML

 33

Table 3-3 Comparison between different existing multimodal platform

Platform /
Execution

Environment

Supporting
Modalities

Modalities
Adaption

and
Reusability

Communication
Protocol

Hardware
Abstraction

Layer

Application
Command

Layer

Fusion
Algorithm

Integration and
Customization

Interaction
Language

Separation of
Concerns

QuickSet
Mobile

Desktop

Input: Speech,
Hand Gesture
Output: Voice,
Visual Display

No OAA No No No

Hard-Coded.
Required
additional
programmin
g effort

No. Only design for
experienced
developers

Krahnstoever’s
Framework

Desktop

Input: Keyboard,
Mouse, Palm,
Head Tracking,
Hand Tracking,
Speech
Output: Voice,
Visual Display

No Direct API Call No No No

Hard-Coded.
Required
additional
programmin
g effort

No. Only design for
experienced
developers

ICARE

Desktop

VR Aircraft
Maintenance
Training

Input: Speech,
Hand Gesture,
Keyboard,
Mouse, Sensor
Output: Handle
by other
application

No
TCP, UDP,
JavaRMI

No No

Limited.

Only basic flow
control

Self-defined
file with GUI
Editor

(ICARE Tool)

Programmers and
experienced
Developers

OpenInterface Desktop

Input: Wii (Head
Tracking),
Keyboard, etc
Output: AR,
Visual Display

Supported.
CIDL &

Components

OSC, TCP, UDP,
Multicast

Supported.
CIDL &

Components

Supported.
CIDL &

Components

Supported. CIDL
& Pipeline

CIDL with
own GUI
Editor
(SKEMMI)

Programmers and
experienced
Developers

 34

(1) Be composed by heterogeneous components. One key theme in pervasive

multimodal environments is the integration of different components into a single

system. Under this model, heterogeneous components can decouple unnecessary

dependencies, and different inputs from different modalities are related but not

necessarily integrated. Such a framework would be required to support a wide range

of input and output widgets that are discoverable and interoperable across

heterogeneous devices.

(2) Components need to be self-described and self-contained. The use of plug-and-

play pervasive computing devices makes pervasive multimodal applications more

reusable and thus lowers the cost of implementation. To support multi-level and

cooperative design, data definition, algorithms and modalities should be

componentized as a self-described object that is reusable and discoverable through

standardized communication protocols. Dynamic adaptability of new components,

low level of interruption, low system down time, and transfer of signals in standard

formats are required.

(3) Be integrated with large amount of widgets. The pervasive multimodal system

should be able to support large number of widgets of the same modality and/or

different modalities, to properly support distributed components and user

collaboration. Also, the modality output of one system can become another system’s

input in a cascaded architecture.

(4) Be extensible and Flexible. Regional factors, time constraints and personal

preferences are some parameters that affect the way users interact with applications.

The system should allow developers to create the best-fit implementation. It should

also be domain-independent, minimizing the changes required to adapt to a new

domain.

(5) Components are classified based on the roles of users. The development process

involves contributions from different experts. One could identify four major roles

when building a multimodal application: device engineers, modality designers,

 35

interaction designers, fusion engineers. Yet the use of most interaction markup

languages often results in the entangling of program logic and presentation logic.

(6) Ease of Use. The strong demand on multiple sets of technical skills poses a major

difficulty in developing multimodal applications. Developers need to possess good

hardware knowledge and theory of cognitive psychology with creativity [47].

However, most psychologists are not trained or equipped with skill sets to program,

limiting their creativities. The interaction language must be modeled at a higher-level

of abstraction. Code generation from high level modeling language of different

components is required.

(7) Dynamic adaption of components. In pervasive computing, processing power and

devices are everywhere. Multimodal interactive components must bind to suitable

input or output and detach unnecessary components according to the surroundings

context.

3.3 Features of i*Chameleon Multimodal Platform

Based on the discussed design principles, we apply different aspects of software

engineering techniques to ensure the fulfillment of the principles. Table 3-4 provides

a summary. In general, we first need to consider the conceptual system modeling in

order to provide the abstracted system overview to different stakeholders, such as

device engineers, fusion developers, interaction designers and modality designers.

Modeling the modalities concept would also provide the structure of the interaction.

This not only narrows the gap between the interaction designers and the hardware

developers, but also provides a high-level of reusability to the system.

Multimodal modeling includes three aspects – conceptual system modeling,

modalities concept modeling and modeling language:

1. Conceptual system modeling - the overview of the execution environment,

2. Modalities concept modeling –the behaviors and nature of particular input or

output modality

3. Modeling language – the representation method for above modeling.

 36

Conceptual system modeling represents the functions and parties involved in a clear

manner. This offers an effective communication channel between the engineers and

designers. Within this model, we should not take into consideration design or

implementation criteria but focus on the required elements and workflow of the

system. We can divide this model into two sections: context modeling and behavioral

modeling.

The context model distinguishes between the system scope and system environment.

Behavioral models are used to describe the overall behavior of the system. This model

can be divided into data-flow models, which model the data processing in the system,

and state machine models, which model how the system reacts to events.

Modalities concept modeling defines a meta-model for modeling input and output

modalities. It provides a standard structure for unified and generic modality concept

that is much less bound to the underlying implementation technology and much closer

to the problem domain than conventional programming environments [45]. Therefore,

this modeling is independent of the conceptual system modeling.

Modeling language describes the human-computer interaction, integrated with the rich

modeling semantics of UML or XML. This language syntactically models the

modalities concept, captures the requirements and expresses solutions for the design.

This allows us to apply third-party interpreters to interpret the concept and even

generate the underlying code.

Besides the modeling language, techniques from component-based software

engineering are applied to offer self-described and self-contained heterogeneity

components. In i*Chameleon, we apply the model-view-controller (MVC) design

principle on component implementation. The MVC design pattern can help to classify

the components according to their nature by separating user interaction, data

representation and logic. Finally, device engineers, modality designers, signal

processing and fusion engineers (fusion engineers) and interaction designers are

assigned well-defined roles. More detail about the MVC components will be

discussed in the next chapter.

 37

In order to support the dynamic adaption of components, the i*Chameleon platform is

implemented separately using a publish/subscribe approach and web services

approach. Web services provide distance interaction and binding between

components, and provide the advantage of well-developed technologies and

guidelines. Developers can deploy their components to the web services server based

on the existing infrastructure.

The publish/subscribe communication paradigm is another option for the

i*Chameleon kernel. It supports the plug-and-play of different MVC-based

components to the i*Chameleon kernel. The components can register their interest in

an event or publish their events to a defined interface. Mechanisms and rules are also

defined to provide dynamic binding to other components. The details of web services

and publish/subscribe communication paradigm will be discussed in chapter 5 and

chapter 6 respectively.

 Table 3-4 Techniques applied to fulfill the multimodal interface design principles

Metamodeling and

Multimodal

Description Language

(XML)

Separation of Concern

(MVC)

Dynamic Binding Between

Modalities

(Pub/Sub or WebServices)

Heterogeneity Y Y

Self-described and self-

contained
Y Y

Components integration Y Y

Extensible and Flexible Y

Components

Classification
 Y

Ease of use Y Y

Dynamic adaption of

components
 Y

 38

Chapter 4. MVC-based Development Cycle

In 2009, Dumas generalized the common practice of designing a multimodal system

[19]. He suggested that a multimodal system should contain a fusion engine, a fission

module, a dialog manager and a context manager in order to interpret the incoming

modalities and process the output modalities, and signals should be processed through

four phases of undergo, perception, interpretation, computation and action.

Figure 4-1.illustrates the process. Different recognizers are required to process input

modalities and the results are output to the fusion engine, which is in charge of giving

a common interpretation to the inputs. After the dialog management helps to identify

the state, the modalities are handled by the fission engine, which triggers different

output modalities.

Figure 4-1 Suggested architecture of a multimodal system, with the integration committee and its major

software components. [19]

These four phases are independent and can be modeled by the model-view-controller

architectural pattern. This architectural pattern separates the design space along three

aspects, with each focusing on a specific area and role in the overall design:

 39

1. The Model defines the behavior and nature of the input and output modalities.

It acts as a standardized protocol for facilitating the communication among the

system.

2. The View serves as a presentation layer and models the encapsulation of

abstract devices. It handles the communication channel from the multimodal

system to the output devices.

3. The Controller is responsible for retrieving the input data from the input

devices, analyzing them, translating them into modalities (Model) and

triggering the commands (View).

Thus, the Model encapsulates the collection of functional methods for multimodal

system, and manages the definition and behaviors of data definition, modalities and

fusion workflow, including the interpretation of the description of the nature of the

modalities. The View is defined as the part that directly interacts with the users: in

other words: the action. The computation and perception handling the analyzing

process is then defined as Controller.

The i*Chameleon platform adopts the MVC design pattern, which allows developers

to develop and deploy interaction components and create multimodal applications,

which end-users can execute and customize based on their profile.

Figure 4-2 The System Architecture of i*Chameleon platform, with the services provided for different

stakeholders to develop or integrate different components to the system

Figure 4-2 shows the system architecture of the i*Chameleon platform. Four services

are provided to facilitate the development process:

(i) the device interface integration service allows device engineers to integrate

input and output interaction devices to the middleware;

(ii) the modality deployment service offers modality designers the possibility

of defining input and output modalities at different abstraction levels;

(iii) the signal processing algorithm deployment service allows programmers to

implement algorithms for translating incoming signals to outgoing

modalities, and

 40

(iv) the multimodal application development service allows non-expert users to

associate different modalities with each other to customize the final

multimodal application.

On top of the services, the i*Chameleon middleware coordinates different interaction

components. Components will be automatically bound together according to the

contextual environment and user profile in order to select the most suitable

components. For example, if the user watching a movie on a smartphone walks into a

home theatre with a larger screen, i*Chameleon will unbind the existing output screen

and transfer the output signal to the large screen. The middleware is implemented

with web services (discussed in chapter 5) and publish / subscribe communication

paradigm (discussed in chapter 6).

In the rest of this chapter, we will first discuss the process of developing a multimodal

application under the i*Chameleon platform. We will describe four different aspects

of the development process, as shown in Figure 4-2. We will then describe the

classification of the interaction components, according to the MVC (Model-View-

Controller) paradigm.

4.1 Development Process

In multimodal interaction, broad spectrums of research domains are involved in the

development process. The development process lies at the crossroads of several

research areas including middleware, networking, software engineering, psychology

and cognitive science [31], and the multidisciplinary nature of pervasive computing

and multimodal interaction brings different roles of researchers and developers into

this domain. As a result, the complexity of developing a multimodal application

increases. For example, developers are required to be knowledgeable on diverse

topics such as the usability of input and output modalities, communication protocols,

fusion algorithms and self-description capability of hardware widgets. This brings

together a wide range of expertise: Software engineers are interested in building tools

and systems to support the development of multimodal interfaces [19], while

interaction designers focus on tasks of people using the multimodal interface and

algorithm developers implement fusion techniques.

 41

Bouchet [8] proposed to apply component-based engineering approach to the

development of multimodal applications. In 2007, a survey from International Data

Corporation showed that more than 50% of software developers had applied the

concept of components based software engineering (CBSE) during their project [3].

CBSE not only lowers the complexity of developing multimodal applications and thus

delivers better software, but also increases the reusability and extensibility of the

multimodal applications. For example, CBSE defines a multi-sensor device as a

collection of components, thus allowing the description for each component to be

reused for other devices. However, existing frameworks classify components

according to their physical capabilities rather than their functional nature, which

decreases the applications’ flexibility and reusability.

MVC has been widely used since the 1980s after the concept was published by Xerox

PARC for Smalltalk-80 [10]. It is a design pattern, which separates the business logic,

presentation to end-user and information collection into three sections. To this end, an

application is divided into three core components: the model, the view, and the

controller. Each of these components handles a discrete set of tasks. As a result, the

MVC design pattern can ensure a clear task division as well as the interrelationship

between the different tasks. As each component within the MVC is self-contained and

separated from the other two components, it also ensure fast prototyping and high

reusabilty. When it comes to coding multidisciplinary and large scale heterogeneous

widgets, MVC offers the advantages of decoupling the presentation logic, program

logic and modalities modeling, which lowers the barriers required of non-technical

users, shortens the development cost and increases the flexibility and extensibility of

multimodal applications.

Conceptually, the Model is responsible for handling the behavior and properties of

specific domain related problems, such as the definition of the modalities or the

categorization of user profiles. The View acts as a presentation layer between the

components. It is defined as the interface that provides feedback to the end-user and

encapsulates abstract output devices. The Controller receives events from users,

models the input devices, and extracts high-level semantic meaning of the interactions

from incoming signals. Figure 4-3 shows the distribution of interactive components

 42

between four development processes. It can be seen that the development of the

components for each process falls under the expertise of a different class of

developers.

Figure 4-3 Development Process of multimodal applications and Classification of interaction

components according to MVC design pattern

Developing multimodal applications on the i*Chameleon platform involves four

different situations: device interface modeling, modality modeling, implementation of

signal processing algorithms and application development. Each scenario has a

specific focus and well-defined steps. Based on the defined structure from

i*Chameleon, developers can collect the requirements of the application to model or

implement the components. Finally, developers are required to deploy the components

to the platform by using specific services provided by the middleware.

4.2 Device Interface Modeling

Device engineers are responsible for widget related adaptation, such as creating a new

driver for existing widgets or integrating new widgets to the system. To decouple the

sensors, actuators and device under our model, three types of devices exist: input

interface components (e.g. a light sensor, or an accelerometer), output interface

components (e.g. display, sound, etc), and abstract device components (which

function as a general profile of a particular set of input or output interface components

and describe the properties of the devices).

In this way, the abstract device component only captures the device-dependent

properties while the input and output interface describes the interaction-dependent

 43

behaviors. Therefore, each interaction device can be associated with a number of

input and output interfaces, which makes it possible to model heterogeneous widgets

over a single device. Figure 4-4 shows the relationship between the three components.

For example, rather than modeling a game controller as one component, it is modeled

as an abstract device component (describing the operational environment and

Bluetooth protocol) together with input interface component (buttons, accelerometer)

and output interface component (vibration, LED).

Figure 4-4 Meta-model of abstract device component and its relationship to other device interface

components

The idea of the abstract device component is similar to the hardware abstraction layer

[38] and Figure 4-4 presents a meta-model. It captures the widget’s nature and

properties in two dimensions: location and communication protocol. The first

dimension is location-awareness, for instance, based on global positioning or

localized token. This can enrich the context information and awareness of the physical

environment surrounding. A communication protocol is also captured to abstractize

the adapters for runtime communication. Our current communication protocol models

the basic TCP messaging routines, the shared memory data transport protocol and the

xBee and Bluetooth transmission protocols. The required communication package is

generated automatically when the model is deployed to the device interface

integration service. This allows programmers to create other communication protocols

and deploy them independently.

In summary, the abstract device component provides a profile of the static or

interaction-independent mechanisms of the interaction devices and also relates

together heterogeneous components according to their nature and functionality. This

 44

allows on-the-fly switching between components of the same nature to optimize for

the best performance of the system. For example, given an application that needs to

capture speech for transcription, the system may automatically choose to use a close-

range microphone, if one is available, over a tabletop microphone, if the context is a

meeting, as the former provides a better signal in such an environment.

The abstract device components are modeled by the device engineers, according to

the physical capabilities and functionalities of the associated input/output interface

components.

The model for the input/output interface components captures the dependencies

between the components and the operating environment, as shown in Figure 4-5 and

Figure 4-6. This dimension models influences from physical factors, for example,

loudness is an indicator of accuracy for certain widgets that are affected in noisy

conditions. This dimension can be extended to other properties by modifying the

XML schema in the kernel. Therefore, by positioning the widget in different working

environments, i*Chameleon can offer a handover mechanism according to the

contextual information in order to enhance the user experience, or to offer the most

reliable service. Taking our example of multiple available microphones, the

operational environment can provide information about the performance of the device

given the noise level of the operating environment. Given this information, the kernel

can then make a decision about which microphone to use to provide the most reliable

service.

Figure 4-5 Meta-model of input interface component

 45

The input interface component is the only component to capture human output, such

as body moment, or sensory input such as light sensors embedded in the surroundings.

As it directly generates the events for the i*Chameleon platform, it belongs to the

controller aspect of the MVC design pattern. It is divided into actively involved or

passively involved and requires the device to translate human output into a form

suitable for computer processing. Active modalities refer to actions which users issue

intentionally, while passive modalities represent commands that are not explicitly

expressed by the user [8][43]. The categorization of the input signal offers a way to

prioritize and select the output modality. Furthermore, input signals are classified into

event-based or streaming-based. Event-based input modalities react to user

interactions that produce discrete events while streaming-based modalities sample

continuous input signals from the user and produce a time-stamped array as input to

the kernel. For example, the accelerometer from game controllers generates streaming

events in an active interface.

Figure 4-6 Meta-model of output interface component

All feedback to the users is handled by the output interface component, which is

classified as a view component in the MVC pattern. It not only models the traditional

screen display, but also models human perception according to human senses and

motion. Sight, hearing and touch are modeled while smell input and taste input are not

taken into consideration as they are not currently commonly used in human-computer

interaction. Motion provides another aspect for describing the physical movement of

output devices, such as robots and other actuators. The main concept of this meta-

model is that it generalizes the common features of output widgets. This not only

provides an abstraction interface that allows device engineers to reuse the common

 46

components to facilitate the development process, but also allows the platform to

enhance the selection mechanism of the output devices. For example, in vision output,

the screen is defined and engineers can model the screen by specifying resolutions,

brightness and color scheme. As a result, each screen display must be modeled

according to the defined specification. During the execution, the kernel binds the

output device to a screen with a high brightness if the detected environment is dark.

To summarize, based on this meta-modeling, a single device is no longer defined as

one and only one component. It can be divided into view (output interface

component) and controller (input interface component) by association with the

behavior of the devices (abstract device component). By separating hardware

dependent components and interaction dependent components, it not only avoids

unnecessary dependencies, but also provides the ability to discover the capabilities of

other devices. This way, pervasive environments with multimodal interaction can be

established.

4.3 Modality Modeling

Modality refers to the way an idea is expressed or perceived, or the manner in which

an action is performed [42]. For example, human interaction modalities include

speech, vision, gestures, facial expressions or body movement. It describes the

manner of interaction and is independent of the hardware definition or

implementation algorithm. According to Zeljko, modality modeling focuses on the

notion of an abstract modality, which generalizes the common characteristics of HCI

modalities regardless of their specific manifestations [45]. Zeljko specified the

fundamental classification of input modalities, which were based on the nature of the

input signal, such as event-based or streaming-based. Bruno [19] summarized human-

machine interaction with four states: decision state, action state, perception state and

interpretation state. Each state involves different levels of data abstraction, such as

sensory level, feature level or decision level. Sensory level data is also called raw

data, which is acquired from an individual widget. This type of data may be noisy and

requires specific filtering techniques to extract the semantic meaning that is

representative of feature-level data. Finally, based on the extracted features and the

 47

addition of the time dimension considerations, the decision-level data provides a

response through the output modality.

Multimodality modeling is not a simple task. It has to consider the combination of

single modalities at different data abstraction levels as well as the coordination

between them. For example, some feature level modalities extract semantic meaning

from multiple sensory level modalities. Also, an output modality may need to be

coordinated with a number of possible devices. In summary, when defining a meta-

model for multimodality interaction, we need to consider the following:

 The receiving pattern: e.g. Are the input signals event-based or streaming-

based.

 The data abstraction level: e.g. Is the incoming data at the sensory level, or has

the device internally already translated it to feature or even decision level?

 The fusion pattern: e.g. Should signals be combined in a parallel or sequential

manner?

 The dependency between the modalities: e.g. Do certain modalities combine

or depend on others to generate higher-level multi-modal signals?

We first classify the modality component according to its nature, in other words,

whether it is an input modality or output modality. An input modality receives

abstracted data patterns from input interface components while output modality sends

abstracted commands to output interface components. Figure 4-7 shows the modeling

of the output modality. Uni-modal output is described by the receiving pattern, which

can be event-based or streaming-based. For example, an event-based output modality

might be the playing of a video clip file. A streaming-based output modality models

real time processing feedback, such as displaying the signal from a camera.

Simultaneously, we also apply the CARE model [50] to model multi-modal output

modality. The CARE model provides a methodology to describe and model user-

machine interaction. CARE stands for complementarity, assignment, redundancy and

equivalence.

 48

Figure 4-7 Meta-model of output modality component

Complementarity is involved when multiple complementary output modalities are

needed to produce the feedback within a temporal window, and when all of them are

required for the interaction to result in success. An example is sending an instruction

to a robot car to move forward, which requires the turning on of both left and right

motors. Assignment indicates that one and only one output modality can lead to

another output modality. If the previous state cannot be reached, the next state will not

be executed. For example, instructing a robot car to turn right requires both motors to

stop first, then the right motor is started. Equivalence output modality implies that

multiple output modalities can be used to produce the desired feedback, however,

only one would be used at any one time. For example, it may be possible to produce

feedback to the user through either sound, or displaying the text on the screen.

However, if the external constraints are added, the system may not choose to use

voice while in a noisy environment, or the screen device when the user is walking

down the street with the device in his pocket. Lastly, redundancy indicates multiple

output modalities, which even if used simultaneously, can be used individually to

produce the desired feedback, which mean that either one of the output modality can

be used to express the same meaning. For example, pushing a notification to the

mobile phone and sending an email can both send the user a message. However, either

one can also achieve the same outcome. Therefore, by using CARE properties,

relationships can be added between different output modality components.

 49

Figure 4-8 Meta-model of input modality component

Similar to output modalities, input modalities may be uni-modal or mulit-modal, as

shown in Figure 4-8. Input modality components describe the commands, which are

organically triggered by the human(s). A uni-modal input represents a singular form

of interaction while multi-modal input integrates several modalities sequentially or

simultaneously. A uni-modal input is classified into three different data abstraction

levels and associated with simple data type definition components, which use four

pre-defined different data types (Boolean, integer, decimal and string). Data

abstraction levels include sensory-level, feature-level and decision-level. Sensory-

level data is also known as the raw data from devices (for example, a set of

coordinates). Feature-level data represents semi-processed information, generated

from sensory-level data or directly retrieved from devices (for example, a set of hand

movements). Finally, decision-level data illustrates the meaning behind the input

modality, which can be the analyzed result from feature-level data or directly

triggered by devices (for example, a zoom-in gesture). Each data abstraction is

divided into event-based input modalities or streaming-based input modalities. Event-

based modalities react to user actions by producing discrete events while streaming-

based modalities produce a time-stamped array for particular signals. For example, a

recognized voice token is an event-based sensory-level input modality and a point-set

would be a streaming-based sensory-level input modality.

The CASE model is applied to model multiple-input modalities. It describes the

means by which modalities are combined at the integration engine level and it focuses

on different possibilities of modality combinations [42] according to “use of

modalities” and “fusion of modalities” (Figure 4-9 left).

 50

“Use of modalities” expresses the temporal availability of input modalities which

describe the receiving pattern. If the modalities are classified as “simultaneous”, this

means that the system may employ multiple input modalities in parallel. Conversely,

when “sequential” modalities are concerned, this means that the system processes the

modalities one after another. “Fusion of modalities” considers the coordination of

incoming modalities, which may be coordinated or uncoordinated. In our meta-

modeling scheme, coordinated modalities require both modalities to be triggered to

generate another modality. For example, when a “single click” is combined with

another “single click”, a “double click” modality is generated. In contrast,

uncoordinated modalities refer to modalities that are independent from each other,

where either one of them, when triggered, would lead to the resulting modality. For

example, when a user performs a “drag-and-drop” on a virtual object using the mouse

and executes a “put-that-there” voice command in parallel, only one command will be

enforced.

With the discussed classification methods, CASE model introduces four properties:

concurrent, alternate, synergistic and exclusive.

Figure 4-9 The CASE model (Left) [8]. CASE modeling example (Right) .

Figure 4-9 (right) illustrates an example of modeling a multimodal modality

component with different combinations of modalities. A user can move a virtual

object from A to B using two different modality channels, either by voice and gesture

or mouse. Therefore, at the highest abstraction level, this modality component is

would be modeled as concurrent. For the “Put that there” command, the user is

 51

required to speak the keywords in the correct sequence, so, it is classified as alternate.

This is the same situation as a mouse drag-and-drop modality. Lastly, during the “Put

that there” command, user is required to point to an object while saying the keyword

“that” and point to a new location while saying the keyword “there”. As these actions

are coordinated and need to be triggered simultaneously, they are modeled as

synergistic. With the use of CASE model, a modality repository can be built. It not

only can define the definition of each modality, but also store the dependency

between them. This meta-model can model the modalities at different abstraction

levels.

Table 4-1 Fulfilling the design requirements: The Meta Model

 Input Modalities Output Modalities

Receiving Pattern Uni-modality Uni-modality

Data abstraction level Simple DataType Definition Component -

Fusion pattern Multi-modality with CASE model -

Dependency between the

modalities

Multi-modality with CASE model Multi-modality with CARE model

4.4 Signal Processing Algorithm Implementation

Signal processing algorithms implementation refers to the development of a new

analyzing algorithm with specific input data that can be deployed to the i*Chameleon

kernel to improve or enhance the performance or accuracy of the application. Each

algorithm is wrapped as a self-contained component which needs to have a self-

descriptive profile, follow the proper communication protocol, associate with specific

modality component(s) and generate particular modality components. This kind of

components belongs to the “Controller” pattern of the MVC design model.

A self-descriptive profile is used to define the requirement of the algorithm

(processing power or frames per second) and provide performance information to the

kernel (accuracy or turnover time). Therefore, if there exists more than one

component that fulfills the requirements of the situation, the kernel can select the most

suitable algorithm. For example, if a number of algorithm components are distributed

around the network, the kernel can automatically select the appropriate component

 52

according to the round trip time based on the communication protocol and accuracy

defined in the profile.

Similar to the abstract device component, the communication protocols are wrapped

in an abstraction layer that currently models the TCP/IP, Bluetooth and xBee

protocols. Programmers are therefore only required to define an XML document to

handle the communication protocol when a new algorithm component is developed.

Another feature is the integration of publish/subscribe architectural pattern. Once the

algorithm component is registered to the modality components, the web services

protocol (discussed in chapter 5) or publish/subscribe mechanism (discussed in

chapter 6) will automatically route the modality to the suitable algorithm, or the

analyzed result will notify the corresponding components.

We categorize those generic algorithms for implementing fusion algorithms into three

types: filters, parsers and analyzers.

- Filters (Sensory-level modality) handle data pre-processing. They receive the

raw data from the sensors or other hardware, and based on the hardware

definition, translate the raw data into well-defined sensory-level modalities.

For example, a filter will is used to normalize the coordinates for a 2D point

object from a video camera to ensure all input data is consistent for analyzers

or parsers.

- Analyzers (Feature-level modality) are responsible for computation and

extracting the meaning from a stream of sensory-level modality or feature-

level modality for tokenization. For example, after 2D point modalities have

been obtained from filters, analyzers will compute it and extract the meaning

from it, such as a zoom-in hand gesture command.

- Parsers (Decision-level modality) determine the output modalities from the

different tokens extracted from the analyzers. For example, after the zoom-in

gesture is detected, parsers will gather the contents from the existing execution

state. Based on the execution conditions, the parsers will notify the “View”

components to trigger the commands.

Therefore, developers can design and deploy suitable algorithms without affecting

other components based on the requirement of the application.

 53

4.5 Application Development

Creating a new application based on a set of implemented modalities and devices

requires the interaction designers to have a certain level of programming knowledge.

Since we have separated the hardware-dependent tasks from the modality definition

and algorithms and also applied the concept of component-based software

engineering, the interaction designers now only need to map the input modalities to

the output modalities, without having to know the internal details and specifications

of the hardware. This not only results in a high degree of reusability and fast

development, but also lowers the barriers of multimodal interaction development.

We extended from previous work [57] to develop the i*Chameleon interaction editor

according to the “View” aspect of the MVC design pattern. It is designed to allow

non-computing experts to create high-level modality components and link them

together to form a command. We applied the concept of logic gates, but limited the

user’s choice to AND and OR gates. Therefore, with a graphical user interface (Figure

4-10), non-technical users can easily drag-and-drop modeled input modality

components and map them to output modality components to form a multimodal

application.

Figure 4-10 i*Chameleon Modality Component and Command Editor

In addition, users can define certain preferences with an XML file. These preferences

model the user’s habits and preferences by setting priorities to available modalities.

For example, if a user prefers using voice input rather than gesture control, once the

 54

priority is configured, when both inputs are detected, the kernel will default to voice

input whenever possible.

In summary, there are a number of advantages of applying the MVC (model-view-

controller) design pattern to multimodal interaction development. Its enforcing of the

principle of separation-of-concerns in the i*Chameleon framework and the resulting

four different aspects of the development process (device interface modeling,

modality modeling, signal processing algorithm implementation and application

development) enables cross-disciplinary collaboration between device engineers,

modality designers, programmers and interaction designers. This simplifies and

accelerates the application development process.

 55

Chapter 5. Web Service Architecture

A web service is a self-contained, self-describing and modular application that can be

published, located, and invoked across the Internet [25]. Together with contemporary

networking infrastructure, web services provide high compatibility with different

components. Once the components are deployed to the i*Chameleon platform, they

can discover and interact with the deployed components dynamically.

Web services are supported by a set of XML-based protocols such as Universal

Description, Discovery and Integration (UDDI), Web Service Definition Language

(WSDL) and Simple Object Access Protocol (SOAP). They are platform-

independent, conducive to heterogeneity and are supported by all current IT

infrastructures, with libraries in nearly all major programming languages. Developers

interact with SOAP, which is a specification protocol for exchanging uniform

information, by passing XML-encoded data, bound to HTTP as the underlying

communication protocol, from one endpoint to another. It uses XML messaging over

plain HTTP, thus avoiding networking issues, such as firewall problems, allowing for

remote procedure calls via simple request/reply. WSDL describes the functionality

offered by a web service. It offers a machine-readable description of the usage of the

web service, the way the function is triggered, what parameters it needs, and what

data structures it returns. Meanwhile, UDDI provides directory services for services to

list themselves over the Internet, which is beyond the scope of this thesis.

Figure 5-1 (left) shows a typical web service architecture, which involves a web

service broker, web service provider and a number of clients. A web service broker

acts as a repository for all available web services described by WSDL. When a client

requests a service, the broker will offer the most suitable one for the client, and finally

the client can directly interact with the service provided by SOAP.

The architecture of the i*Chameleon platform follows a similar model. The

application service consists of the broker and provider. The broker generates the

necessary packages for the clients while service requests are received from the

 56

provider. The input widgets, such as touch screens, and output widgets, such as

vibration motors, make up the clients.

Figure 5-1 (Left) Web service architecture (Right) i*Chameleon Web service architecture

One of the biggest problems faced by multimodal interaction is that hardware devices

often come with their own language-dependent or platform-dependent libraries. This

makes it difficult to integrate multiple modes of interaction into the same application.

Using web services can solve the problem of incompatibility between the

programming languages required by the various hardware devices. Freed from the

programming language constraints, developers only need to call the corresponding

web services. Besides, web services also provide a standard protocol for

communication over the Internet, which allows distributed devices to interact with

each other in remote areas. An example might be controlling a team of robots in

different locations. Therefore, the concept of “Interaction Cloud” can be achieved.

In this chapter, we will first discuss the detailed architecture and workflow of the web

service-based i*Chameleon followed by the MVC classification over this platform. In

section 3, four development processes will be studied.

5.1 Web-Service Architecture

Web service-based i*Chameleon involves two core kernels, the application server and

the co-processor. Figure 5-2 shows the detailed platform architecture. Linked with the

 57

application server is the co-processor, which receives and processes input modalities,

such as visual and auditory information. The purpose of the co-processor is to offload

some processing tasks from the application server. It receives data from the

application server, analyzing and recognizing events and sending notifications back to

the application server with the intended action, i.e., the command to the target

application. Communications between them are handled by a socket channel with

TCP/IP connection implemented via object serialization, allowing us to create

reusable objects and transfer them through standard sockets with common modeling

definitions. It manages sensory and application input separately in order to allow each

widget to be reused and extended [24]. A modeling and definition language has been

developed for i*Chameleon to support the sharing of information among different

components.

Figure 5-2 i*Chameleon includes two core sub-systems, a web services application server and a co-

processor. The application server is responsible for receiving signals from the Input device,

communicating with the co-processor and coordinating with the output devices. The co-processor

analyzes the input data and sends notifications back with the analyzed command to the application

server.

5.1.1 Application Server

The application server consists of three modules: Sensory System, Communication

System and Motor System. The sensory system is responsible for handling all input

 58

signals from input widgets and communications using SOAP. It provides three

important functions. First, it manages all sensory input devices at the workstation

level. Each device can have one or more widgets associated with it; for example, an

iPhone can be defined as a device with three input widgets: voice, touch and tilt. At

the beginning, each workstation declares itself as an input device, which is a client of

the sensory system. After declaration, this input device can be deployed to

i*Chameleon, which would return a device identifier to the client. Hence, the

application server manages the list of connected widgets which enables i*Chameleon

to distinguish the senders of events.

Secondly, the sensory system handles all input events from connected input devices.

Each device can be dynamically associated with the sensory system by invoking web

services, and be given an identifier as shown in Figure 5-3. This method has the

advantage of adding new devices without stopping the multimodal application. For

example, after a device is initiated, a developer can append a new speech recognizer

(widget). Thereafter, once incoming verbal input is detected and recognized, it can

trigger an event to notify the sensory system.

Figure 5-3 Two sensory receptors associated with Application server with specific identifier and each

receptor consists of different modalities.

Thirdly, the sensory system also acts as a hardware abstraction layer, which is

responsible for handling the data communication between application server and co-

processor, including object standardization and creation. Based on the received raw

data, it translates them into specific data objects according to the data definition stored

in the communication system. Also, based on the modeling technique, i*Chameleon

 59

defines a set of abstract device classes which provide the structure of the hardware

configuration. According to the device’s nature, we classify them into four categories

as shown in Figure 5-4, with associated examples depicted in Table 5-1.

Figure 5-4 Defined devices under sensory system

Table 5-1 Devices and associated modality

Widget Signal Object Modality

Speech Recognition Recognized Word Voice

Multi-Point A Set of Points Hand

Gesture

Key Pressed Key Key

Tangible Orientation Tilt

The communication system is responsible for storing the modalities’ definitions,

transmitting the incoming modalities and analyzing modalities between application

server and co-processors. This is implemented with object serialization, allowing

objects to be transmitted over the network via TCP/IP. The co-processor connects by

making a connection request to the application server, establishing a communication

channel for the transferring of objects.

The motor system is responsible for handling the analyzed events from co-processors

and forwarding the commands to the corresponding output devices for execution. The

process orchestrations are similar to those of the sensory system. The motor system

thus acts as the communicator between the application server and command

executors. When the motor system receives the command from the co-processors, it

triggers a particular output device on a specific workstation to execute the command.

Command executors are platform-dependent, and each workstation owns its

executors. When an executor receives a notification from the application server, it

triggers the output device to perform the action.

 60

Besides, the motor system also handles the selection of output devices. It stores the

device information and configuration. Therefore, it automatically binds the commands

to the best-fit devices for execution. For example, if a screen with better resolution is

available, the motor system will bind the display with this device.

Using the web services declared in the motor system, developers could customize or

create commands dynamically. A command is responsible for storing the execution

conditions, which include events, actions (which are inputs to user programs, e.g.,

games) and time constraints. An event, an invoker in the command design pattern, is

created by the end-user, which describes when the associated action should be

triggered. Actions are the instructions that need to be executed when a command is

triggered. For example, an action can be “Open File Explorer”, “Make the WiiMote

Vibrate” or “Right Click the Mouse”.

5.1.2 Co-processor

The co-processor handles all the computation tasks involved in translating data from

receptors into meaningful commands, such as mouse moves or key clicks. It is

organized into three layers: Data Preprocessing Layer, Modal Layer and Command

Layer. Each layer is independent of the other two. Hence changing one layer will not

affect the other layers.

After receiving the structured data from the communication system, the objects will

first arrive at the data-preprocessing layer. After passing through appropriate filters,

such as noise filter, point tracking filter or transformation filter, data integrity and

accuracy can be ensured.

The most complex part of the co-processor dwells in the modal layer, which accepts

packaged data from the hardware abstraction layer, analyzes the input and recognizes

the events. These events are then passed to the command layer, which maps it to a

corresponding action. This modal layer can be subdivided into two major

components. The first component consists of a number of analyzers, which handle

data processing and computation in order to translate the raw resources into tokens

 61

using pre-defined rules. The second component is a parser that parses the tokens into

parse trees of different modalities, such as gesture, voice or others using an interaction

grammar and finally maps the parse trees to events. Events are then passed to the

command layer to be executed. Due to the layered design, developers can attach or

detach interaction devices without any modification to the other layers. When data is

received from the hardware abstraction layer, the relevant modality is triggered. For

example, a series of 2D Points triggers the Gesture modality. As we defined four

categories of widgets, four corresponding modalities are implemented, as illustrated in

Table 5-1 and Figure 5-5.

Figure 5-5 Modal Layer

The final layer is the command layer. As the name implies, this layer is responsible

for determining which command needs to be executed. After the modal layer

recognizes the events, these events still appear independent from one another. It is

only known that at a certain moment, say, t1, two events, e1 and e2, are triggered, but it

is unclear which command needs to be executed. The command layer gathers the

execution conditions of all application inputs. Once an event is triggered, it

consolidates the triggered events with all previously triggered events to determine

whether an associated command is to be executed. It then sends back the interpreted

signal for the associated command to the motor system in the application server.

To illustrate the operation of i*Chameleon, suppose a multi-touch table-top screen is

used to display and manipulate a digital mapping application. A user puts four fingers

on the table and pinches them together, to indicate a zoom-in action. The machine

managing the table sends the coordinates of the corresponding points to i*Chameleon

via web services. The data are handed over to the hardware abstraction layer for

preprocessing and then passed to the modal layer for analysis. The modal layer

 62

interprets the incoming Points as a Gesture, which is passed to the command layer, to

be mapped to the appropriate command for notification to output widgets through the

motor system.

5.2 Platform Workflow

In i*Chameleon, each input device corresponds to a particular input in the web service.

Figure 5-6 illustrates how an event is triggered, recognized and an action is executed.

An application input is fired by one or more events, while an input device triggers an

event.

The sensory system captures raw data and notifies the application server. Data

together with the device information will be passed to the sensory system, which

translates the raw data into a generalized data object, which stores information related

to the event. Finally, the object is sent to the co-processor for analysis.

The co-processor is responsible for listening to the communication system event

handler, receiving a signal, and extracting raw data from the signal. The

representation of data is device-dependent. The translated object will be passed to a

set of data-preprocessing filters, such as noise filter or normalizing filter, to ensure

that the data is valid and accurate.

Then, the output data from the hardware abstraction layer will processed by the proper

algorithm for the modality, e.g., applying a gesture recognition algorithm on a set of

points. An analyzer will eventually parse the input data and map it to a command

based on a set of grammar rules, paving the way to trigger the corresponding action

(command for target application).

Finally, the co-processor notifies the application server of the action intended by the

user, and the motor system in the application server gathers the intended actions and

notifies the application input devices to execute the commands by invoking the

corresponding web services.

 63

Figure 5-6 i*Chameleon workflow. Hand gesture processing starts with the camera capturing

coordinates. Generalized point object sends the coordinates to Sensory System via web services. Co-

processor translates the raw data into gestures and notifies Motor System to trigger corresponding

application.

5.3 MVC Components Classification and

Development Cycle over Web Service Architecture

Our suggested web service architecture involves two core systems with a number of

components. Each component can be classified into Model, View or Controller

according to their nature and functionally. Figure 5-7 illustrates the classification of

the MVC components and the associated development process based on the model

discussed in chapter 4 (Figure 4-3).

 64

Figure 5-7 i*Chameleon components. MVC Classification and Development Process over Web Service

Architecture

Device engineers are involved in the process of device interface modeling, which

involves the controller model (input interface) and view model (output interface). The

abstracted hardware configuration (discussed in section 4.2, Figure 4-4) is required

for deployment to both motion and sensory system. If the device engineer wants to

deploy a new input device, he is required to:

1. Model the abstracted device configuration XML based on the 4 services

provided by sensory system

2. Model the device, e.g. Desktop computer

3. Generate the device driver by the code generator and the driver included

a. Declaration of the device as an input device

b. Communication protocol

c. Widget listeners

4. Append new sensory input widget, e.g. Wii controller that is connected to the

declared desktop computer

a. Integrate the device dependent API for getting the signal, if any

5. Once the device driver has been executed, the device arrival event will send it

to the i*Chameleon platform via web services call, and a communication

channel will be set up to listen to the incoming signal

Similarly, if the device engineers need to deploy a new output device, they are

required to:

1. Model the abstracted device configuration XML

2. Model the device, e.g. Desktop computer

3. Generate the device driver using the code generator and the included driver

a. Declare of the device as an output device

b. Declare the communication protocol

c. Implement the widget listeners

4. Append new sensory input widgets, e.g. a screen that is connected to the

declared desktop computer

 65

a. Integrate the device dependent API for triggering the command, if any

5. Once the device driver is executed, device arrival event will send it to the

i*Chameleon platform via web services call, and a communication channel

will be set up for sending commands

In addition, modality designers define the input (Figure 4-8) and output modalities

(Figure 4-7) according to the modeling we discussed in chapter 4.3. This component

is classified as a model pattern as it is related to the behavior modeling. After the

designer defined the modality by XML, the kernel can generate the modalities classes.

The communication system acts as a repository that manages all modalities. Finally,

sensory system or motion system can, based on the modality definitions, translate and

structure the raw input to modalities they require.

Programmers work with the kernel of i*Chameleon directly and they are required to

develop and deploy signal processing components to the modal layer. With the

standardized modalities defined in communication system, programmers may need to

reuse the modalities as input parameters and output objects of the algorithm

components. For example, if point (x, y coordinates) modality M1, and hand gesture

(zoom in) modality M2, is defined in the communication system, programmers can

deploy their algorithms for retrieving M2 from M1. Creating an algorithm component

only requires defining the XML configuration, which is shown in Figure 5-8, passing

the configuration to i*Chameleon kernel to generate necessary packages and finally

implementing the algorithm.

<?xml version="1.0"?>

<iChameleon xmlns="http://etoy1.comp.polyu.edu.hk/ichameleon/controller">

 <communication type="TCP/IP" >

 <port>8001</port>

 <hostname>localhost</hostname>

 </communication>

 <algorithm type="analyzer" paradigm="frame">

 <description>Analyze zoom-in from point.</description>

 <inputModalities>

 <add ref="iChameleon.model.Point" />

 </inputModalities>

 <outputModality ref="iChameleon.model.handGesture.ZoomIn" />

 <feature>

 <add type="int" value="30" name="fps" />

 66

 <add type="double" value="0.8" name="accuracy" />

 </feature>

 </algorithm>

</iChameleon>

Figure 5-8 XML Configuration of creating a algorithm component. This example illustrates an analyzer

receiving a point set that results in a zoom in hand gesture.

Interaction designers can customize the commands using the graphical user interface

discussed in [58], which is classified into View pattern according to the MVC

definition. With a drag-and-drop editor, non-computing experts can also customize

their own interactive commands and execute them with the i*Chameleon web services

architecture. When the editor is started, it will retrieve the modalities and algorithm

component definitions from the kernel. Therefore, the users can manipulate the

deployed modalities and customize the desired commands. After customization, an

XML-based file will be generated and deployed to the kernel by specific web

services.

This chapter covers the implementation of i*Chameleon platform using the approach

of web services. Fundamentally, the components in web services have a clear MVC

classification. It also allows interaction components, e.g. the input and output widgets

and the algorithm components, to be distributed across different hosts connected by

the web service. Based on the suggested modeling approach, different developers can

model the components independently and deploy them to the same i*Chameleon

kernel, which will then generate the necessary component packages, manage the input

data and handle the output commands. This facilitates and speeds up the development

procedures.

 67

Chapter 6. Publish/Subscribe Architecture

The publish/subscribe paradigm of communication has recently received increased

attention [23]. Different researchers [24, [17, 23]59] have claimed that the

publish/subscribe paradigm provides decoupling of distributed interaction in large-

scale applications and improves the flexibility of adapting the system architecture.

Figure 6-1 A simple publish/subscribe architecture

Figure 6-1 shows a simple architecture for a publish/subscribe middleware. Basically,

subscribers express their interest in an event, so as to be notified when matching

registered events are generated by a publisher. The publishers do not record

references to the subscribers and do not know the number or identity of subscribers

participating in the interaction. Similarly, subscribers do not store the list of

publishers, neither do they know the number of publishers involved. Therefore, this

paradigm offers the ability to decouple with respect to the dimension of space. The

event service handles the registration of all the publishers and subscribers and the

broadcasting of events to them. This allows the components to be self-contained and

self-described. Similar to the web-service architecture discussed in the last chapter,

each interaction widget acts as a component. Therefore, these components can be self-

contained and independent of other publish components or subscribe components,

which fulfills the design principles of “Heterogeneity” and “Self-described and self-

contained” suggested in Chapter Three.

 68

In addition to space decoupling, the publish/subscribe paradigm also provides

decoupling along time and synchronization dimensions [23]. Time decoupling

benefits the interacting components as they do not need to be actively participating in

the event services at the same time. In other words, publisher components might

publish events even when no subscribers are connected. In multimodal applications,

most existing frameworks focus on real time feedback based on absolute space and

time frame. However, in a context-aware pervasive system where multimodal

interaction is involved, external factors such as the situation of the current working

environment need to be taken in account. It may not be possible to capture such data

instantaneously, or the capture of such data requires backtracking and linking to

previous events or events from disconnected widgets. Time decoupling helps to

facilitate the process. Synchronization decoupling ensures components are not

blocked while publishers are producing events or subscribers are consuming events

and it helps to support concurrent activities. The context-aware environment also

provides additional information for decision-making and contributes to the dynamic

adaptation of the publishers and subscribers.

In the following sections, we will first discuss the architecture of implementing a

multimodal middleware for supporting a publish/subscribe paradigm followed by the

workflow of the execution. Finally, the MVC design pattern and the development

cycle over this publish/subscribe architecture will be presented.

6.1 Publish/Subscribe Architecture

In order to achieve space, time and synchronization decoupling over a

publish/subscribe paradigm, three schemes are defined according to the level of

expressive power: namely, topic-based, content-based and type-based [23]. These

schemes provide the methodology for publishing events and the different approaches

result in different performances. In the following section, we will first discuss the

existing three variants in use for designing publish/subscribe systems, followed by the

i*Chameleon architecture.

The first scheme is topic-based and it has been widely used in different applications

[2]. Basically, topics are represented by keywords. It extends the notion of channels

 69

with methods to characterize and classify events. The events are grouped under a

specific topic T, every event will map to one or more topics, and subscribers can

subscribe to one or more topics.

The topic-based scheme has the advantage of being easy to implement. However,

since topics are represented by string keywords, it lacks the descriptive power of the

content-based scheme, which augments the topics with additional information about

the event, such as the data type of the signal or the magnitude of the data.

Implementation under this paradigm is more complex and query languages, such as

SQL, may be needed. However, as the content filtering has no information about the

relationship between different topics (such as Topic A is a type of Topic B), this

approach may increase the risk of redundant events.

Finally, the type-based publish/subscribe paradigm adopts an object-oriented

approach and groups events into structured hierarchies. This allows for more powerful

filtering of the events, and provides a closer integration of the language and the

middleware.

Chapter 4 described modality modeling as based on the signal type, augmented with

optional data. For example, a signal may be described as a point with (x, y, z)

coordinates, at 30 fps (optional). Therefore, we clearly cannot rely solely on the topic-

based approach. As many of our events are related (e.g. different kinds of gestures,

etc), the content-based paradigm does not fit our needs. Given all these constraints

and requirements, the i*Chameleon platform uses the type-based approach.

In terms of the system architecture, as presented in Figure 4-2 (Chapter 4), the

i*Chameleon platform consists of a middleware that coordinates different modalities

from different devices. Components can act as publishers, subscribers or both and

interact with the kernel. The system architecture and interaction between components

and kernel is shown in Figure 6-2. Under a publish/subscribe communication

paradigm, different MVC-based components are classified, which allows plug-and-

play to the kernel. Modality and device properties are defined as the model; output

interface components and descriptions of interactions are classified as the view; and

the controller consists of input interface components and algorithm components.

 70

Details about the classification will be discussed in section 6.3. The system is mainly

divided into three parts, i*Chameleon kernel (middleware), multimodal application

(publishers and subscribers) and algorithm component (publishers and subscribers).

The core middleware is responsible for managing all publishers and subscribers,

routing the message to suitable components and deciding on the interactive

commands. The kernel involves four managers: device interface manager, modality

manager, controller manager and command manager.

Figure 6-2 Interaction between components (publisher / subscribe) and i*Chameleon kernel

 The device interface manger offers “Device Interface Integration Service”,

which handles registration and deregistration of input interface components

(publishers) and output interface components (subscribers). These components

can register their interest in a particular event or publish their events through

the services provided by the kernel.

 The modality manager provides “Modality Deployment Service”. It acts as a

repository for all deployed modalities and handles input and output modalities.

 The controller manager offers “Signal Processing Algorithm Deployment

Service”. After the programmer implements the algorithm component, it can

be deployed to the kernel via this manager.

 The command manager provides an interface for users to create and deploy

their interaction files. It also manages the fusion of modalities.

Secondly, input and output devices are modeled as publishers and subscribers

respectively. The input interface components are integrated with device dependent

drivers that retrieve the sensory data and translate it to the corresponding data

 71

structure defined in the modality manager. Once connected to the kernel, the

component generates events by calling a publish() operation. Output interface

components are subscribers and they express their interest in an output modality, such

as “Zoom In”. Therefore, once the kernel receives the required output modalities,

which need to be executed, it can notify the relevant output interface components.

The last part of the kernel consists of the algorithm components, which handle signal

processing and translate the sensory level data to feature level or others. These

components are similar to operators or functions of other programming language,

which require input parameters and return value. Therefore, algorithm components are

defined both as publishers and subscribers.

6.2 Platform Workflow

In the last section, we provided a detailed description design concept of the

publish/subscribe system and the architecture of the i*Chameleon platform. In this

section, we focus on the component interaction models.

Registering a publisher, retrieving an event and triggering a command all require a

direct and continuous interaction between the different managers and components.

The sequence diagram in Figure 6-3 shows the main communication and interaction

patterns when a new input device and output device are connected and trigger a

command. For example, a smart phone can register as an input device while a robot

car can register as an output device. The smart phone can send a tilting event to

trigger the robot car to move forward [37].

After the kernel is started, all publishers and subscribers can register or unregister

without the time constraints. Once a publisher or subscriber has completed the

handshake protocol, they are ready to transfer sensory data or receive notification.

The sensory data first publishes to the device interface manager. This manager

verifies the data structure of the incoming signal with the modality manager. During

the verification process, the modality manager standardizes and normalizes the data

with the support of device profile stored in the device interface manager. For

 72

example, a point retrieved from an infrared camera (x1, y1) is normalized with the

devices’ resolution. In addition, a timestamp will be added to all sensory data.

Once that is done, the pre-processed sensory data is published to the corresponding

algorithm components. According to the subscribed interest of the event, the

controller manager forwards it to registered components based on the type of data. If

there exist additional algorithm components that subscribe to the same type of sensory

data, the controller manager requests the device interface manager for the device

profile and compares the accuracy or available resources to decide which

component(s) should be notified.

Figure 6-3 Interaction between publishers, subscribes and the i*Chameleon publish/subscribe

multimodal middleware

After the sensory data has been published to the algorithm component, the data is

analyzed and translated into feature level data or decision level data. During this

interpretation process, the algorithm components publish the result back to the

controller manager, and the controller manager publishes the data again until no more

 73

algorithm components are subscribing to the data. This allows the sensory data to be

continuously translated to higher-level data.

The command manager also listens to the events published to the controller manager;

once an event is matched, the event would publish to the corresponding device

interface manager. Finally, the device interface manager will trigger the command by

notifying the output interface components.

6.3 MVC Components Classification and Development Cycle

over Publish/Subscribe Paradigm

According to the development cycle discussed in Chapter 4, four processes are

required to design and develop the multimodal applications. For each process, the

components are defined based on the MVC architecture pattern. Figure 6-4 illustrates

the classification of publish/subscribe managers along with the development cycle.

Figure 6-4 i*Chameleon components MVC Classification and Development Process over Publish /

Subscribe Architecture

The device engineer can deploy input and output interface components to the kernel.

Input interface components are classified as Controller (because they gather and

model the user input information), while output interface components are classified as

View (since it models the information that it needs to generate an output

representation to the user). Similar to the web service architecture, device engineers

are required to:

1. Model the abstract device

2. Model the input or output interface components

 74

3. Select the modality that the input components will publish or the output

components will subscribe to

4. Generate the publishers or subscribers

5. Once the publisher or subscriber is executed, a handshake protocol will be

sent to the i*Chameleon platform and the components will be registered to the

device interface manager.

The second process is modality modeling, which involves the modality designer and

is independent of the kernel implementation. This enables the modality modeled for

web services architecture to be reused. The same set of generated code will then be

deployed to the modality manager as the Model component under the MVC pattern.

This component is responsible for representing the behavior and status of the

modalities.

In addition, programmers can reuse the XML configuration from the web services (as

discussed in the previous chapter) to generate the communication layers for both

publishers and subscribers. After the communication layer has been generated, the

programmers can implement their own algorithms and deploy to the fusion and fission

managers. These components are classified under the Controller pattern, which is

responsible for receiving low-level signals and translating them to high-level data.

Finally, interaction designers can make use of the graphical user interface to

customize the commands they desired. As the modeling technique is also independent

of the kernel implementation, the customization methods by the non-computing

experts are the same as in the web service. The users can manipulate the input and

output modalities using the drag-and-drop editor and finally deploy the commands to

the command manager from the i*Chameleon kernel. By definition, the commands

support interaction to the system or provide feedback to the users. Therefore, these

components are grouped under the View pattern.

In this chapter, we have presented the contribution of the publish/subscribe

middleware to the i*Chameleon platform. This communication paradigm allows

components to be dynamically plugged into and detached from the kernel. This allows

the kernel to bind to different components according to the task or the content

 75

environment in order to provide the best experience for end-users in the run-time

environment. We have also discussed how the different components of the

publish/subscribe middleware fit into the MVC (model-view-controller) design

pattern, and the classification of the components into different categories, based on

their functionality, interaction style and clear delineation of development roles.

 76

Chapter 7. Multimodal Applications

In this section, we illustrate the use of the i*Chameleon platform in two scenarios.

They are: (1) Web services-based i*Chameleon for an application called Mobile DJ,

which is a tangible and mobile platform for active music listening [33] and (2)

publish/subscribe-based i*Chameleon for robot control in an interactive exhibition

area. In particular, we demonstrate how the discussed platform facilitates the

development process and support the runtime execution. For each scenario, we

present the requirements of multimodal interaction application, as well as the division

of labor and separation of concerns with respect to the four development processes.

Finally, the runtime support and handover mechanism between components are

discussed.

7.1 Mobile DJ (Web Service)

Mobile DJ is a music-listening system that allows multiple users to interact and

collaboratively contribute to a single song over a social network. Our platform

enables single or multiple users to actively modify music content or manipulate sound

effects via a physical interface device, which supports multiple modes of interaction,

and encourages user immersion into the music through exaggerated physical motions.

This system also allows collaborative and social interaction in real time, regardless of

the users’ location. It also allows players to browse and search sound tracks that are

currently being worked on by others, and provides a channel for them to

collaboratively contribute. Such collaboration requires synchronization of actions,

even when the users are in different physical locations, in order to achieve pleasant

effects.

In this system, it consists of a tangible musical control interface that is connected to a

mobile device for signal processing and social interaction. The overview of the

 77

system architecture of Mobile DJ is shown in Figure 7-1. The system consists of three

components: tangible musical control interface, active music listening application and

i*Chameleon web services application server.

Figure 7-1 Mobile DJ System Architecture (Left) Mobile DJ user (Right)

The tangible musical control interface (TouchPad) is responsible for capturing the

user’s interactions, which is regarded as an input widget of the multimodal

application. Together with the mobile device, it forms a self-contained digital musical

mixing platform. Active music listening on a single-user basis is enabled when a user

connects the Musical Control Interface to a device and registers it with the

application. Secondly, the active music listening application was implemented to run

on iOS in Objective-C, and the BASS audio library was used to implement special

sound effects such as scratching. This application is defined at the output interface in

term of sound. Finally, i*Chameleon web services application server was used to

integrate the tangible control interface and the music listening application together by

providing a comprehensive protocol to model and handle the communication between

them. Portable music players, such as an Apple iPhone, that is running an active

music listening application, can be connected by standardized web services.

In the following section, we will first discus how to model the tangible musical

interface and listening application following by the modality modeling. The model of

algorithm and modality mapping will be discussed as well. Finally, the runtime

environment and workflow are presented.

 78

Table 7-1 Development Cycle with corresponding MVC components over Mobile DJ multimodal

application

Process Roles MVC Description

Device Interface

Modeling
Device Engineer

View &

Controller

1. Abstracted Device Component

 - TouchPad

 - Active Music Listening Application

View 1. TouchPad (Screen)

2. Active Music Listening Application (Audio)

Controller 1. TouchPad (Slidebar, potentiometer)

2. TouchPad (Accelerometer)

Modality Modeling Modality Designer Modal 1. Input Modality Modeling

 - Sliding

 - Swing (SwingUp / SwingDown)

 - Pressing (ShortPress / LongPress)

2. Output Modality Modeling

 - LED

 - Audio

Signal Processing

Algorithm

Implementation

Programmer Controller 1. Translate continues point set into orientation

 (for detecting swing events)

2. Retrieving swing events from continuously

pressing

Application Development Interaction Designer View 1. Mapping between modalities

7.1.1 Device Interface Modeling

In this multimodal application, each user uses two devices, TouchPad for input and

Active Music Listening Application for output. Figure 7-2 shows the hardware

implementation of the TouchPad interface. We require the interface to be intuitive

and to support different modes of interaction with the music. From a wearability

standpoint, the form factor of the interface as an armband implies that users should be

able to interact with the music through movements of the other hand on the arm, or by

swinging the arm. Besides, TouchPad also provides visual feedback. The major

output device would be on the mobile application. Therefore, within the device

interface modeling, we need to model two pieces of physical hardware, TouchPad and

smart phone.

From a technical point of view, the TouchPad is equipped with a potentiometer on the

surface of the armband. The slidebar consists of two tracks. The lower track is in one

 79

piece, while the upper track consists of segments connected with constant-valued

resistors. When a user touches both the upper and lower tracks at the same time, the

resistance between the tracks changes in proportion to the number of resistors that

have been bypassed, thus allowing us to determine the upper track segment that is

currently being touched. For aesthetics and usability, the tracks in the potentiometer

are constructed from conductive fabric, which makes them congruent to textiles and

garments. Besides, an accelerometer is equipped for detecting the motion of

TouchPad and a LED matrix is provided for visual feedback. Therefore, when the

device engineer models the TouchPad, he needs to model two input interface

components and one output interface component and associated them to the same

abstract device component.

Figure 7-2 Hardware implementation of TouchPad

Figure 7-3 shows the modeling of both input device and output device. With reference

to the modeling; two abstract device components are defined. It generalizes the

common information for all input or output devices equipped in TouchPad, for

example, the configuration of Bluetooth connection. Therefore, even if the engineers

design and install more sensors on the TouchPad, this modeling can still be reused.

Also, if the TouchPad is moved to another location or used by another user, the

engineers are only required to change the modeling of the abstract component.

The abstract device component is associated with two input interface components and

one output interface component.

 80

(1) Input interface component for TouchPad: Accelerometer

 As the accelerometer will be affected by vibration, this attribute will be set to

“Fail”.

 The signal is defined as streaming-based with FPS 30. Therefore, the

i*Chameleon kernel will expect the signal (points with x-,y-,z-coordinates) to

continuously fit into the web services handler.

Figure 7-3 Input device modeling (Upper) Output device modeling (Lower)

(2) Input interface component for TouchPad: Slidebar

 Similar to the accelerometer, the slidebar will be affected by vibration;

therefore, this attribute will be set to “Fail”.

 81

 The signal is defined as streaming-based with FPS 30.

(3) Output interface component for TouchPad: LED

 The operation environment is limited to dark area. So, if the context sensors

reporting the users are exposed to bright lighting, the application may opt to

use other feedback devices.

 The only presentation policy is configured to be visual, which provides 6

patterns for display. Those patterns are represented in token format

(A,B,C,D,E,F).

(4) Output interface component for Active Music Listening Application: Audio

 Being an audio output, it cannot work well in a noisy environment while the

rest of the factors would not be affected.

 The audio will be accepting streaming data from the kernel by default and the

kernel can also control the volume.

Device engineers can make use of the modeling to define the XML-based properties

files. Two abstract device drivers for TouchPad and application are generated with

communication handler and widget listeners. Then each input or output components

will be created as notifiers. This allows engineers to deploy all drivers to the kernel

with SOAP protocol and start the widget anytime.

7.1.2 Modality Modeling

In this application, three input modalities (swinging, sliding and pressing) and two

output modalities (visual and audio) are involved. Swinging, swaying and bouncing

along to the beat are a common response to music, and certainly very commonly seen

in active music listening experiences. The armband form factor of the tangible

interface also suggested interaction through swinging or waving of the arm. Swinging

is supported via the incorporation of an accelerometer in the armband, which detects

movements of the user’s body. The potentiometer on the tangible interface supports a

pressing interaction. The pressing is further divided into short press and long press.

When an algorithm detects a number of short presses, sliding has occurred.

 82

Figure 7-4 Input modalities modeling of Mobile DJ Application

On the other hand, Mobile DJ also includes two major output modalities, visual

feedback and audio feedback. In general, in active listening, the user’s interactions

will receive audio feedback through the playing of the rearranged or modified music

track. However, since one of the objectives of Mobile DJ is to support remote multi-

user interaction, it was also deemed necessary to incorporate visual feedback to

enhance the interaction between users. The visual feedback is supported by a matrix

of multicolored LEDs that is incorporated into the tangible interface above the

slidebar potentiometer. The LEDs flash in different colors to signal interactions from

the collaborating partner, which provides a channel that allows a certain degree of

communication and signaling, but without interfering with the experience or imposing

upon the center of attention of the user. In the absence of signals from the other party,

or in single-user mode, the LEDs serve as an additional form of feedback to enhance

user immersion by flashing along according to the rhythm of the music.

 83

7.1.3 Signal Processing Algorithm Implementation

Programmers need to implement the algorithm components. Within the multimodal

application, two types of sensory level data have to be sent to the kernel. Therefore,

programmers are required to develop algorithm components to translate Point3D from

accelerometer to swing modality and SlidebarToken to pressing modality as well as

analyzing the pressing to retrieve sliding modality. So, programmers are only required

to define the XML-based configuration files according to the standard provided and

directly integrate the components in the Modal Layer, which is discussed in Figure

5-5.

7.1.4 Application Development

In Mobile DJ, the pressing motion enriches the musical track by interspersing the

melody with chords and different instruments, or changing the rhythm and the

harmony. The interface supports both a short “tap” as well as a long “press”. The

“buttons” are the upper track segments. A tap on a “button” adds a chord to the music;

the system will automatically generate an appropriate chord based on the key and the

instrument of the currently playing song. Since we have seven “buttons”, this allows

the user to generate up to seven different chords. Long presses trigger a change in

rhythm or harmony of the music in a similar fashion. Also, sliding is mapped to the

scratching while swinging is mapped to the LED display.

Table 7-2 Modalities Mapping Table for Mobile DJ

Input Modality Token Output Modality

Sliding 1 – 7 Scratching

LongPress 1 – 7 Changing Chords (A-G)

ShortPress 1 – 2 Changing Background Music

3 - 4 Changing Chords Style

7 Changing Instruments

SwingUp - LED Display Pattern A

SwingDown - LED Display Pattern B

 84

7.2 Interactive Robot Control (Publish/Subscribe)

In the second case, we apply the same development cycle with a different

implementation approach through the publish/subscribe paradigm. This application is

situation in an exhibition, where users are allowed to manipulate robot cars in a

constrained area using different controllers. With the advances in the technology of

distributed system and interactive devices, it is possible to relax the constraints

imposed on the users by the limited space and the modalities provided by requiring

input and output modalities to handover to each another according to the context

environment.

Figure 7-5 shows the floor plan of the robotic area, which is designed to provide a

multimodal controlling experience to the user. In the robotic zone, the view of the

robot cars are occluded by a number of obstacles. Each robot car is equipped with a

webcam, and users “see” where the cars are by viewing the camera feed. Users

standing in the control zone either manipulate the car through a customized controller

or with their mobile devices. Once the users activate their mobile devices, the camera

feed from the robot will stream to their devices. Otherwise, the feed will be displayed

on the large LED screen.

Figure 7-5 Floor Plan of the robotic zone in the exhibition hall

Table 7-3 summarizes the required effort from different users according to the

proposed development processes. In our scenario, three input devices and three output

devices are involved. Device engineers are required to model the abstracted device

interface and its corresponding device-dependent components while modality

designers are required to model the modalities. Also, an analyzer for translating

 85

incoming coordinates from tilting devices to orientation is developed by programmers

and finally end-users create a mapping between modalities using the GUI editor.

Table 7-3 Roles involved in different development processes and its corresponding MVC design

pattern and description in i*Chameleon Platform

Process Roles MVC Description

Device Interface

Modeling
Device Engineer

View &

Controller

1. Abstracted Device Component

 - Wii Device

 - iPhone

 - i*CATch

 - Desktop

 - xBee location detector

View 1. Desktop Computer (Screen)

2. iPhone (Screen)

3. i*CATch Robot

4. xBee location detector

Controller 1. Wii Controller

2. iPhone (Accelerometer)

3. Desktop with SAPI

 (Voice recognition engine)

Modality Modeling Modality Designer Modal 1. Input Modality Modeling

 - Tilting (front / back / left / right)

 - Voice input

 - Video input

2. Output Modality Modeling

 - Robot move forward / backward, turn left /

 right and stop

 - Video output

Signal Processing

Algorithm

Implementation

Programmer Controller 1. Translate continues point set into orientation

 (for detecting tilt events)

2. Analyze xBee signal strength to determine

 the client location

Application Development Interaction Designer View 1. Mapping between modalities

7.2.1 Device Interface Modeling

In our scenario, five devices are involved and Figure 7-6 shows an example of

modeling of two of them, a Wii device and a desktop computer. Both of them are

located in the exhibition area and Wii controller is connected to the i*Chameleon

kernel by TCP/IP communication protocol while desktop’s signal is directly transfer

by API call from the kernel. Therefore, if the wireless signal strength is low, the

 86

kernel will switch to using voice control if both devices are activated. Besides,

referring to the operational environment, the vibration affects the Wii accelerometer

while SAPI would not work properly in a noisy environment. So, the i*Chameleon

platform can make of this criteria to select the accuracy of input devices according to

the context.

After translating the model into XML-based modeling language and compiling to the

i*Chameleon kernel, device driver source code will be generated and the device will

also be registered to the kernel. Abstract device components will be generated as an

XML-based properties file while input interface components are publishers and output

interface components are subscribers. The source code already includes the device

description file, event listeners and communication protocol. Finally, the device

engineer only needs to implement the layer between the generated blueprint and the

device dependent library.

Figure 7-6 An example to illustrate the modeling of will controller and desktop.

7.2.2 Modality Modeling

 87

When the hardware abstraction layers are modeled, modality designers are required to

model the involved modalities at different abstraction levels and the modeling is

independent of the implementation methodology of the kernel. Figure 7-7 shows four

models of input modalities. When the user executes the “robot forward” command, it

consists of two simultaneous and coordinated modalities: a button needs to be pressed

and the orientation of the handheld device needs to be tilted towards the front.

Therefore, it models the input modality ButtonPressWithTiltFront as the bottom right

model in Figure 7-7. Besides, in order to detect the orientation of the handheld device,

a continuous point set with (x,y,z) coordinates, Point3D, are required as input. With a

suitable algorithm, tilt actions (front, back left and right) can be distinguished from

Point3D modality components. So, points and translated tilting tokens are modeled as

uni-modalities. The button press event is described as a sensory level, event-based

input with associated with a Boolean variable. After that, when the programmers

defines the algorithm component which subscribes Point3D and publish TiltFront,

those defined modalities would be related and connected.

Figure 7-7 Modeling of four input modalities of interactive robots control

 88

Similar to abstract device components, a meta-model will be represented in XML and

compiled to the i*Chameleon kernel. Point3D, TiltFront and other related modalities

will be translated into source code and necessary event notifiers and listeners will also

be generated. Therefore, modality engineers are not required to contribute any coding

effort within this development process.

7.2.3 Signal Processing Algorithm Implementation

While device engineers generate the structure of the hardware drivers and modality

designers define the abstracted modality definition, programmers are responsible for

implementing the algorithm for translating from one modality to another modality. In

our scenario, we need to analyze the Point3D data and retrieve the orientation and the

signal strength of xBee to detect the location of the client. Therefore, regardless of the

hardware used, once the kernel receives the continuous Point3D object, it will publish

them to this algorithm so as to generate tilting events.

In i*Chameleon, we developed a simple command line tool for generating the

structure of the components. The following parameters are required:

- Kernel IP address: The IP address of the i*Chameleon kernel.

- Kernel Port number: The port number that match the i*Chameleon service.

- Communication protocol: TCP/IP, xBee or Bluetooth to indicate the way of

communication. Similar to the abstract device component, associated packages

are generated and programmers do not required inputting any coding effort.

- Subscribe modality: The signature of the required input modality.

- Publish modality: The signature of the output modality.

Syntax:

call KernalIP KernelPort {tcpip|xbee|bluetooth} SubscribeModality PublishModality

After the abstract classes have been generated for the algorithm component,

programmers can continue the implementation of the needed algorithms.

7.2.4 Application Development

The final step of developing a multimodal application is mapping between the defined

input modality components and output modality components. This process involves

an interaction designer, who does not need to be a computing expert, using a drag-

 89

and-drop editor to do the mapping. After the modality designer deploys the

components to the i*Chameleon kernel, the components will automatically be found

in the graphical editors (shown in Figure 7-8).

Figure 7-8 Commands created by interaction designers with using i*Chameleon graphic editor

In our case, we have four sensory level input components (xBee Signal strength,

Point3D, VideoStreamingIn and ButtonPress), four feature level input components

(TiltFront, TiltBack, TiltRight and TiltLeft) and four decision level input components

(ButtonPressWithTiltFront, ButtonPressWithTiltBack, ButtonPressWithTiltLeft,

ButtonPressWithTiltRight and VoiceRecognizedStop). Besides, six uni-output

modality components are defined (Location, VideoStreamingOut, LeftMotorOn,

LeftMotorOff, RightMotorOn and RightMotorOff) and five multi-output modalities are

deployed (RobotMoveForward, RobotMoveBackward, RobotMoveLeft,

RobotMoveRight and RobotStop). For example, instructing the robot to move forward

only requires the matching of ButtonPressWithTiltFront as the input component to

RobotMoveForward as the output component, as shown in Figure 7-8 (upper).

Besides, Table 7-4 also shows the use of OR gate to define a command. In order to

achieve our task, the following commands are created:

Table 7-4 Modalities Mapping Table for Robot Control System

Input Modality Output Modality Logic Gate Description

ButtonPressWithTiltFront RobotMoveForward / Instructs the robot to move forward

ButtonPressWithTiltBack RobotMoveBack / Instructs the robot to move backward

ButtonPressWithTiltLeft RobotMoveLeft / Instructs the robot to turn left

ButtonPressWithTiltRight RobotMoveRight / Instructs the robot to turn right

ButtonPress RobotStop OR Instructs the robot to stop

 90

VoiceRecognizedStop

VideoStreamIn VideoStreamOut /
Streaming the video signal from the robot to

the screen

7.2.5 Runtime

The developed application can be executed from the graphic editor. When the

multimodal application is executed, the kernel invokes a handshake protocol to make

contact with all available devices. The devices respond by sending an XML-based

configuration document to the kernel. The kernel sends its certification back to the

devices to finish the handshake protocol. At the same time, if the components are

distributed among the network, a handshake protocol will be issued in order to check

the availability of the modalities. The initiation process is then completed.

Handover of device components – In our case, a client can either control the robot

using an iPhone (remote distance) or Wii (within the exhibition area). If the client

uses the iPhone while no signal is being generated from the Wii controller, the iPhone

will be activated as a controller; otherwise, Wii controller will be in active mode.

Therefore, same modality components, algorithm and commands can be applied to

different interaction widgets. Using the signal strength from xBee, a client’s location

can be detected. With the device modeling, the kernel is able to determine which

device should be trusted. The detected client’s location also helps the kernel to decide

whether to stream the video signal to the screen of the mobile device or desktop

computer.

Dynamic adaption of components – With the use of publish and subscribe

architectural pattern, components can be deployed to the kernel without restarting the

application. Therefore, if the programmers develop another algorithm component to

analyze the tilting events from raw data points, once deployment is finished, the

kernel will compare the creditability of all available components and devices and

choose the best subscriber.

 91

Chapter 8. Conclusion

This chapter concludes the thesis in two sections. The first section summarizes the

research work and major contributions of the thesis, followed by pointing out the

limitations of the proposed system. Finally, suggestions on possible further work on

the proposed development cycle and multimodal platform are made.

8.1 Summary of Research

This thesis studies a generalized methodology and challenges of developing a

multimodal application. We present a comprehensive development cycle with

i*Chameleon middleware to deal with the static binding between different interactive

components and the tight coupling between the application programming interfaces

and the application programming sequences to the user’s interactions or dedicated to

specific modalities. Besides, in order to decrease the complexity caused by the the

multidisciplinary nature of multimodal interaction application development and to

increase the efficiency of the integration of components, the model-view-controller

design pattern is applied. Components are classified into different categories based on

their functionality, interaction style, division of labor and separation of concerns. The

clear separation-of-concerns realized in the design of i*Chameleon enables cross-

disciplinary collaboration among device engineers, modality designers, programmers

and interaction designers in order to simplify and accelerate the application

development process. It enables remote controlling and collaborative work among a

group of people and fast integration of components.

From the viewpoint of software engineering, meta-modeling is defined for each

component and the complex development cycle is divided into four independent

processes: (1) Device interface modeling – model device dependent output interface

(View) and input interface (Controller), (2) Modality modeling – model the behaviors

of input and output modalities (Model), (3) Signal processing algorithm

 92

implementation – develop algorithm to translate modality from sensory level to

decision level and (4) Application development with GUI editor – enable non-

computing users to create their own interactions.

Finally, we have successfully developed two prototype platforms of i*Chameleon to

validate our contributions in two different types of technologies: web services and

publish/subscribe middleware. While using the same modeling technique, different

interactive components can be generated. The web service architecture provides a

standard SOAP for communication among different components over the Internet

while the publish/subscribe paradigm allows components to be plugged-in and

detached from the kernel dynamically. Also, the publish/subscribe paradigm supports

dynamic binding. During the runtime environment, the i*Chameleon kernel can bind

to different components according to the task or the content environment in order to

provide the best experience to the end-users.

We simulate two multimodal applications, a collaborative tangible musical interfaces

and a robot car control application, to demonstrate the development process according

to our suggested procedure. The result shows that the use of MVC design pattern can

clearly separate the application into different components and each component can be

deployed independently. It not only increases the flexibility and reusability of the

interaction components, but also shows itself to be successful and effective in

facilitating user-customizable multimodal interaction for a variety of environments

and requirements.

8.2 Future Work

One direction for future work will be the use of modalities among different users.

Once the hardware and software platform is developed, the interpretation of the input

modalities according to the culture, context environment or other human-oriented

factors needs to be studied. One way to approach the problem is to build a general

model for “mobile interaction for kids”. This can provide an ontology for multimodal

human computer interaction. This could be done by user experiments over the

i*Chameleon platform, especially studying the self-customized commands. For

 93

example, novice users can be invited to design their own multimodal commands for

controlling a photo viewer. Since most of the existing platforms can only provide

limited commands for selection and those commands cannot be customized,

i*Chameleon can overcome this limitation and offers a better user experience and rich

sets of user experience data for both customers and programmers.

In term of software engineering, although the discussed methodology can facilitate the

development procedures of multi-modal applications, more research is still needed to

define a generalized architectural pattern or meta-model which can be applied to other

domains. The challenges would be the interaction between components and users.

Last but not the least, the ultimate goal for multimodal human computer interaction is

to provide human-centered methodology for controlling applications. Tasks can be

transferred from one device to another while commands can be adaptively changed

according to the context and the processes need to be invisible for the customers. This

facilitates the development of multimodal interaction and human computer

interaction.

 94

References

[1] A. Jaimes, N. Sebe, D. Gatica-Perez, T.S.H. (Eds. . 2007. Special Issue on

Human-centered Computing. IEEE Computer. 40, 5 (2007).

[2] Altherr M, Erzberger M, M.S. 1999. iBus—a software bus middleware for the

Java platform. Workshop on Reliable Middleware Systems (1999), 43–53.

[3] Application Develop- ment Software: 2007.

http://www.idc.com/getdoc.jsp?containerId=IDC_P644.

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,

Lee, G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. 2010. A view of

cloud computing. Commun. ACM. 53, 4 (Apr. 2010), 50–58.

[5] Atrey, P.K., Hossain, M.A., El Saddik, A. and Kankanhalli, M.S. 2010.

Multimodal fusion for multimedia analysis: a survey. Multimedia Systems. 16,

6 (Apr. 2010), 345–379.

[6] B’Far, R. 2004. Multichannel and Multimodal User Interfaces. Mobile

Computing Principles: Designing and Developing Mobile Applications with

UML and XML. New York : Cambridge University Press.

[7] Bolt, R.A. 1980. “Put-that-there”: Voice and gesture at the graphics interface.

ACM SIGGRAPH Computer Graphics. 14, 3 (Jul. 1980), 262–270.

[8] Bouchet, J. and Nigay, L. 2004. ICARE: a component-based approach for the

design and development of multimodal interfaces. CHI ’04 extended abstracts

on Human factors in computing systems (New York, NY, USA, 2004), 1325–

1328.

[9] Bouchet, J., Nigay, L. and Ganille, T. 2004. ICARE software components for

rapidly developing multimodal interfaces. Proceedings of the 6th international

conference on Multimodal interfaces (New York, NY, USA, 2004), 251–258.

[10] Burbeck, S. 1987. Applications Programming in Smalltalk-80: How to use

Model-View- Controller (MVC). Softsmarts, Inc.

[11] Clarkson, J. D., and Yi, J.L. 1996. A synthetic forces tactical training system

for the USMC commander. Proceedings of the Sixth Conference on Computer

Generated Forces and Behavioral Representation (Orlando, Florida, 1996),

275–281.

[12] Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen,

L. and Clow, J. 1997. QuickSet: multimodal interaction for distributed

 95

applications. Proceedings of the fifth ACM international conference on

Multimedia (New York, NY, USA, 1997), 31–40.

[13] Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen,

L. and Clow, J. 1997. QuickSet: multimodal interaction for simulation set-up

and control. Proceedings of the fifth conference on Applied natural language

processing (Stroudsburg, PA, USA, 1997), 20–24.

[14] Cohen, P.R. and McGee, D.R. 2004. Tangible multimodal interfaces for safety-

critical applications. Commun. ACM. 47, 1 (Jan. 2004), 41–46.

[15] Concepts | OpenInterface Platform:

http://www.openinterface.org/platform/concepts.

[16] Cooper, S., Dann, W. and Pausch, R. 2003. Teaching objects-first in

introductory computer science. ACM SIGCSE Bulletin. 35, 1 (Jan. 2003), 191.

[17] Cugola, G., Margara, A. and Migliavacca, M. 2009. Context-aware publish-

subscribe: Model, implementation, and evaluation. 2009 IEEE Symposium on

Computers and Communications. (Jul. 2009), 875–881.

[18] Dragicevic, P. and Fekete, J.-D. 2004. Support for input adaptability in the

ICON toolkit. Proceedings of the 6th international conference on Multimodal

interfaces (New York, NY, USA, 2004), 212–219.

[19] Dumas, B., Lalanne, D. and Oviatt, S. 2009. Multimodal Interfaces: A Survey

of Principles, Models and Frameworks. Human Machine Interaction. D.

Lalanne and J. Kohlas, eds. Springer Berlin / Heidelberg. 3–26.

[20] Dupuy-chessa, S., Bousquet, L. Du, Bouchet, J. and Ledru, Y. 2005. Test of the

icare platform fusion mechanism. In DSVIS05, LNCS (2005).

[21] Elouali, N., Rouillard, J., Le Pallec, X. and Tarby, J.-C. 2013. Multimodal

interaction: a survey from model driven engineering and mobile perspectives.

Journal on Multimodal User Interfaces. 7, 4 (Jun. 2013), 351–370.

[22] EMMA: Extensible MultiModal Annotation markup language:

http://www.w3.org/TR/emma/#s4.1.2.

[23] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.-M. 2003. The

many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (Jun. 2003), 114–

131.

[24] Fernandes, V., Guerreiro, T., Araújo, B., Jorge, J. and Pereira, J. 2007.

Extensible middleware framework for multimodal interfaces in distributed

environments. Proceedings of the ninth international conference on

Multimodal interfaces - ICMI ’07. (2007), 216.

 96

[25] V. Fernandes, T. Guerreiro, B. Araújo, J.A. Jorge, and J.P. 2007. Architectural

patterns revisited – a pattern language. International Conference on

Multimodal Interfaces (2007), 216–219.

[26] Fritz, G., Seifert, C., Luley, P., Paletta, L., Almer, A., Attewell, J. and Savill-

smith, C. 2004. Mobile vision for ambient learning in urban environments.

Learning and Skills Development Agency.

[27] Glass, J., Weinstein, E., Cyphers, S., Polifroni, J., Chung, G. and Nakano, M.

2005. A Framework for Developing Conversational User Interfaces. Computer-

Aided Design of User Interfaces IV. R. Jacob, Q. Limbourg, and J.

Vanderdonckt, eds. Springer Netherlands. 349–360.

[28] Greenberg, S. and Fitchett, C. 2001. Phidgets: easy development of physical

interfaces through physical widgets. Proceedings of the 14th annual ACM

symposium on User interface software and technology - UIST ’01 (New York,

New York, USA, 2001), 209.

[29] Harbor Research, I. 2009. Pervasive Internet & Smart Services Market

Forecast.

[30] Horst.Roessler Juergen.Sienel, W.W.J.H.M.K., Rssler, H., Sienel, J., Wajda,

W., Hoffmann, J. and Kostrzewa, M. 2001. Multimodal Interaction for Mobile

Environments. International Workshop on Information Presentation and

Natural Multimodal Dialogue (Private Network Department; Alcatel SEL AG

Research and Innovation, 2001).

[31] Jaimes, A. and Sebe, N. 2007. Multimodal human-computer interaction: A

survey. Comput. Vis. Image Underst. Computer Vision and Image

Understanding. 108, 1-2 (Oct. 2007), 116–134.

[32] Johnston, M. 2009. Building multimodal applications with EMMA.

Proceedings of the 2009 international conference on Multimodal interfaces -

ICMI-MLMI ’09 (New York, New York, USA, 2009), 47.

[33] Kenneth W.K. Lo, Chi Kin Lau, Michael Xuelin Huang, Wai Wa Tang, Grace

Ngai, S.C.F.C. 2013. Mobile DJ: a Tangible, Mobile Platform for Active and

Collaborative Music Listening. Proceedings of the 13th International

Conference on New Interfaces for Musical Expression (Daejeon and Seoul,

Korea Republic, 2013), 217–222.

[34] Kim, W., Kim, S.D., Lee, E. and Lee, S. 2009. Adoption issues for cloud

computing. Proceedings of the 7th International Conference on Advances in

Mobile Computing and Multimedia (New York, NY, USA, 2009), 2–5.

[35] Krahnstoever, N., Kettebekov, S., Yeasin, M. and Sharma, R. 2002. A Real-

Time Framework for Natural Multimodal Interaction with Large Screen

Displays. Proceedings of the 4th IEEE International Conference on

Multimodal Interfaces (Washington, DC, USA, 2002), 349–.

 97

[36] Lawson, J.-Y.L., Al-Akkad, A.-A., Vanderdonckt, J. and Macq, B. 2009. An

open source workbench for prototyping multimodal interactions based on off-

the-shelf heterogeneous components. Proceedings of the 1st ACM SIGCHI

symposium on Engineering interactive computing systems (New York, NY,

USA, 2009), 245–254.

[37] Li, K. and Hudak, P. 1989. Memory coherence in shared virtual memory

systems. ACM Transactions on Computer Systems. 7, 4 (Nov. 1989), 321–359.

[38] Lo, K.W.K., Tang, W.W., Leong, H.V., Chan, A., Chan, S. and Ngai, G. 2012.

i∗Chameleon: A unified web service framework for integrating multimodal

interaction devices. 2012 IEEE International Conference on Pervasive

Computing and Communications Workshops (Lugano, Mar. 2012), 106–111.

[39] Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. and Resnick, M.

2004. Scratch: a sneak preview. Proceedings. Second International Conference

on Creating, Connecting and Collaborating through Computing, 2004. (2004),

104–109.

[40] McCowan, L., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M. and

Zhang, D. 2005. Automatic analysis of multimodal group actions in meetings.

Pattern Analysis and Machine Intelligence, IEEE Transactions on. 27, 3 (Mar.

2005), 305–317.

[41] Ngai, G., Chan, S.C.F., Ng, V.T.Y., Cheung, J.C.Y., Choy, S.S.S., Lau,

W.W.Y. and Tse, J.T.P. 2010. i*CATch: a scalable plug-n-play wearable

computing framework for novices and children. Proceedings of the 28th

international conference on Human factors in computing systems - CHI ’10

(New York, New York, USA, 2010), 443.

[42] Nigay, L. and Coutaz, J. 1993. A design space for multimodal systems.

Proceedings of the SIGCHI conference on Human factors in computing systems

- CHI ’93 (New York, New York, USA, 1993), 172–178.

[43] Noceti, N., Caputo, B., Castellini, C., Baldassarre, L., Barla, A., Rosasco, L.,

Odone, F. and Sandini, G. 2009. Towards a Theoretical Framework for

Learning Multi-modal Patterns for Embodied Agents. Image Analysis and

Processing – ICIAP 2009. P. Foggia, C. Sansone, and M. Vento, eds. Springer

Berlin / Heidelberg. 239–248.

[44] Nunes, N.J. and Falcão, J. 2001. Wisdom – A UML Based Architecture for

Interactive Systems 2 Software Architecture Models for Interactive Systems.

Interactive Systems Design, Specification, and Verification. Springer Berlin /

Heidelberg. 191–205.

[45] Obrenovic, Z. and Starcevic, D. 2004. Modeling multimodal human-computer

interaction. Computer. 37, 9 (2004), 65–72.

 98

[46] Oulasvirta, A., Rattenbury, T., Ma, L. and Raita, E. 2011. Habits make

smartphone use more pervasive. Personal and Ubiquitous Computing. 16, 1

(Jun. 2011), 105–114.

[47] Oviatt, S. 1997. Multimodal interactive maps: designing for human

performance. Hum.-Comput. Interact. 12, 1 (Mar. 1997), 93–129.

[48] Oviatt, S. 2003. The human-computer interaction handbook. J.A. Jacko and A.

Sears, eds. L. Erlbaum Associates Inc. 286–304.

[49] Saha, D. 2003. Pervasive computing: a paradigm for the 21st century.

Computer.

[50] Salber, D., Blandford, A., May, J. and Young, R.M. 1995. Four easy pieces for

assessing the usability of multimodal interaction: the CARE properties.

INTERACT (1995), 1–7.

[51] Satyanarayanan, M. 2001. Pervasive computing: vision and challenges. IEEE

Personal Communications. 8, 4 (2001), 10–17.

[52] Serrano, M., Nigay, L., Lawson, J.-Y.L., Ramsay, A., Murray-Smith, R. and

Denef, S. 2008. The openinterface framework: a tool for multimodal

interaction. CHI ’08 extended abstracts on Human factors in computing

systems (New York, NY, USA, 2008), 3501–3506.

[53] Shen, J. and Pantic, M. 2009. A software framework for multimodal

humancomputer interaction systems. Systems, Man and Cybernetics, 2009.

SMC 2009. IEEE International Conference on (2009), 2038–2045.

[54] Shen, J., Shi, W. and Pantic, M. 2011. HCI 2 Workbench: A development tool

for multimodal human-computer interaction systems. Automatic Face Gesture

Recognition and Workshops (FG 2011), 2011 IEEE International Conference

on (Mar. 2011), 766–773.

[55] Simpson, R., Lopresti, E., Hayashi, S., Nourbakhsh, I. and Miller, D. 2004. The

smart wheelchair component system. Journal of rehabilitation research and

development. 41, 3B (May 2004), 429–42.

[56] Sinha, A.K. and Landay, J.A. 2003. Capturing user tests in a multimodal,

multidevice informal prototyping tool. Proceedings of the 5th international

conference on Multimodal interfaces (New York, NY, USA, 2003), 117–124.

[57] Tang, W.W., Lo, K.W.K., Chan, A.T.S., Chan, S., Leong, H.V. and Ngai, G.

2011. i*Chameleon: a scalable and extensible framework for multimodal

interaction. Proceedings of the 2011 annual conference extended abstracts on

Human factors in computing systems (New York, NY, USA, 2011), 305–310.

[58] Tang, W.W.W. i * Chameleon : A Scalable and Extensible Framework for

Multimodal Interaction. 1–6.

 99

[59] Turk, M. 2014. Multimodal interaction: A review. Pattern Recognition Letters.

36, (Jan. 2014), 189–195.

[60] Westeyn, T., Brashear, H., Atrash, A. and Starner, T. 2003. Georgia tech

gesture toolkit: supporting experiments in gesture recognition. Proceedings of

the 5th international conference on Multimodal interfaces - ICMI ’03 (New

York, New York, USA, 2003), 85.

[61] XHTML+Voice Profile 1.0: http://www.w3.org/TR/xhtml+voice/.

[62] Yim, J., Qiu, E. and Graham, T.C.N. 2008. Experience in the design and

development of a game based on head-tracking input. Proceedings of the 2008

Conference on Future Play Research, Play, Share - Future Play ’08 (New

York, New York, USA, 2008), 236.

