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Abstract  

Multimodal human computer interactions are becoming increasingly popular, 

especially in ubiquitous and pervasive computing applications. These 

applications demand highly responsive and intuitive human control interfaces. 

Because of their nature and form factor, the traditional keyboard, video and 

mouse interfaces are often not appropriate or adequate. As a result, there is much 

current research on developing novel interaction devices and sensors, or 

algorithms for signal processing. However, there are still challenges when it 

comes to integrating and customizing different heterogeneous devices into a 

human-centered multimodal application. In addition, owing to the static binding 

between user control and the application and the strong coupling between the 

application programming interface (API) and heterogeneous devices, the 

development of multimodal applications remains a difficult task.  

 

In this thesis, we introduce i*Chameleon, which not only leverages a principled 

and comprehensive development cycle that systematically captures the principles 

behind multimodal interaction, but also provides a configurable and extensible 

multimodal platform to support the development of highly interactive 

applications. Through the use of an MVC architectural pattern, it enforces the 

principle of separation-of-concerns to facilitate cross-collaboration between 

device engineers, programmers, modality designers and interaction designers 

who are working on different aspects of human computer interaction and 

programming. Collectively, the development efforts are combined, integrated 

and compiled by the i*Chameleon kernel to create the multimodal interactive 

application. During the execution, i*Chameleon also supports dynamic adaption 

across components according to the contextual information from the surrounding 

environment. For example, if a user is accessing a video via a regular smart 

phone on i*Chameleon; and a high-resolution display is then discovered, the 

video can be streamed to the display to take advantage of the higher resolution, 

without having to modify and re-compile the application, or even having to 
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restart the application. This capability moves the multimodal applications closer 

to being human-centered rather than device-centered. In the process, usability 

and flexibility of the applications are enhanced.  

 

To validate the soundness of i*Chameleon, we implemented the platform based 

on two approaches: web services and publish/subscribe architecture. We carried 

out two experimental applications, Mobile DJ and interactive robot exhibit. 

Mobile DJ was implemented over web services to test the support for multimodal 

interactions over distributed components in real time, regardless of the users’ 

locations. Players browse and search for sound tracks that are currently being 

worked on by others based on the web services supported, which provides a 

channel for them to contribute collaboratively. In the second experiment, an 

interactive robot exhibit was developed using publish/subscribe middleware to 

demonstrate dynamic adaption. Modalities and devices can be changed according 

to the users’ behavior (e.g., location) and the contextual environment (e.g., level 

of loudness).  

 

Both experimental applications produce positive results.  The experience shows 

that the use of i*Chameleon can help to decompose the development process into 

different aspects and each aspect can be developed fairly independently. The 

overall achievement is that the interaction components become more reusable 

and the system itself becomes more flexible, validating the design of 

i*Chameleon.  
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Chapter 1. Introduction  

In 1988, Mark Weiser coined the term “ubiquitous computing”, and predicted that it 

would become the third wave in the field of computing science [51]. Ubiquitous or 

pervasive computing describes a “smart world”, where objects have communication 

capability and are integrated with human users. Within the smart environment, 

portable and smart devices are embedded everywhere and computation is invisibly 

woven into daily life, creating an “All time everywhere computing” [49] reality. 

Users can, based on their abilities, interests and environment constraints, choose their 

own way to interact with an object or achieve a task.  

 

At the same time, riding on the success on heterogeneous devices [38][21], computer 

processing power and storage capabilities [1], human-computer interaction has 

progressed to the point where it is no longer bound to the conventional keyboard, 

video and mouse (KVM) interface. Even today, users can control their applications 

through different human-oriented devices, such as game controllers, motion capture 

cameras and speech recognition engines. For example, users are allowed to adjust the 

view angle of the display [62] by Nintendo Wii controllers. In this way, embedded 

heterogeneous devices have been changing the way that users interact with 

applications. The result is a trend towards human-computer interaction that is more 

human-natural, intuitive and robust. 

 

Figure 1-1 Evolution of user interfaces 

 

According to Harbour Research [29] in 2008, 1.75 billion controllers and smart 

sensors are embedded in our daily environment. The possibility, if these sensors are 

networked, are that they will be able to provide human-oriented services anywhere, 

anytime [28], and offer rich context about the user’s state and surroundings. This 

contextual information would then have the potential to minimize human intervention 
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towards the application, providing a proactive interface that anticipates decisions to 

meet user needs. This integration between sensors and mobile devices, coupled with 

the improvement of computation power and enhancement of high-resolution display, 

has hugely impacted human-computer interaction.  

 

At the same time, mobile computing has also taken off. Modern lifestyles and habits 

have brought about an increasing need to access information everywhere and at any 

time, which has changed the interaction style from desktop-based to mobile-based. 

The total usage time of smartphones now outranks laptops, and it has been shown [46] 

that there exists a strong relation between user experience and pervasiveness of 

mobile devices.  Users tend to access different information from different channels on 

a single portable mobile device, such as smartphones or tablet computers. This 

evolution suggests that adaptation of smart mobile devices to existing applications 

will become a trend of human-computer interaction in the future.  

 

Mobile interactions normally involve more than one modality. Modality is defined as 

the type of communication channel used to convey or receive information. It also 

represents a way of expressing ideas, perceiving views or performing an action [42]. 

Modalities can be active or passive. An active modality refers to an action which the 

user issues intentionally while a passive modality represents a command that is not 

explicitly expressed by the user’s will [8][43]. In mobile platforms, both active and 

passive modalities are involved. When the user triggers a command, such as taking a 

photo or sending a message, the smartphone will gather context information, such as 

location, without notifying the user. These passive modalities increase the information 

bandwidth available to the command and provide a better interaction experience for 

the user. Such interactions involving more than one modality are called multimodal 

human-computer interaction (MMHCI).  

 

MMHCI interacts along different types of communication channels to extract and 

convey meaning automatically. It have been proven to prevent errors, increase 

robustness, enrich communication bandwidth and enhance adaptability to different 

situations and environments [14]. Nowadays, MMHCI has begun to take root in 

consumer products, as exemplified by the success of commercial products that rely 
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heavily on non-traditional modes of interaction. It has applications in different areas 

[31], such as ambient spaces. It expands computing beyond desktop and integrates to 

everyday objects, for example, smart conference room applications [40], mobile 

computing [26], wearable computing [41], virtual environments and affective 

computing [55]. 

 

Although heterogeneous devices and pervasive modalities exist everywhere, sensors, 

actuators and hardware resources are still constrained within a single device. It is 

difficult for users to access different modalities across mobiles and bind sensors from 

different locations to form customized applications. Also, extra efforts are required to 

transfer a task from a device to another device. Therefore, existing applications are 

still tightly coupled and device-oriented but not human-oriented. Figure 1-2 (left) 

illustrates an example of tight coupling between modalities and devices. The same 

smartphone contains an accelerometer, light sensor, gyroscope or other actuators, but 

they are associated with the same device, and the whole pervasive system is self-

contained like a black box. It would be difficult to share resources among devices. 

However, the ultimate goal of pervasive environment is to provide a continuous or 

uninterrupted user experience when the user moves across devices. Therefore, if the 

strong coupling can be released and each heterogeneous widget has the ability to 

discover the capabilities of other devices, a pervasive environment with multimodal 

interaction can be established. For example, also in Figure 1-2 (right), after 

decoupling of sensors, actuators and hardware resources, smartphones can bind to 

suitable components according to the need and context environment. Under the 

assumption of well-established framework and consummate development process, an 

“Interaction Cloud” can be formed.  

 

The rationale behind an “Interaction Cloud” is as follows. Cloud computing itself is 

widely defined by different research areas [34] and it refers to applications delivered 

as a service over the Internet [4]. Under the context of multimodal interaction, each 

widget can be defined as a service, for example, an interactive device providing a 

tilting action can be regarded as “Hardware as a service” (HaaS) while a fusion 

algorithm can be classified as “Software as a Service” (SaaS). However, most 

research efforts in cloud computing focus on computational performance, 

synchronization or resource utilization. There is relatively little effort on the modeling 
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of the various hardware and software devices and widgets that make up the interaction 

aspect of the application. This means that although different components are well 

defined and can be combined into multimodal applications, most fusion and fission 

relationships between devices and modalities are statically bound. This means that if 

one of the input widgets encounters a problem, the whole application will become 

unstable or even malfunction. The advantage offered by the “Interaction Cloud” is 

dynamic discovery and dynamic binding to different services according to the 

situations or environment.  

 

 

Figure 1-2 Tight Coupling of modalities on a device (Left) Loose Coupling of modalities on different 

devices (Right) 

 

Figure 1-3 illustrates an example of the concept of “Interaction Cloud” over daily 

mobile interaction. When a user is preparing a presentation on a tablet during the 

travel time, he uses gestures and speech to control editing and searching.  Once he 

arrives at the conference room, the tablet auto-discovers available services within the 

room devices. Connection between devices can then be established and the 

application can automatically select the mode of interaction. For example, the tablet 

can hand over the display to a large-screen projector, bind a WiiMote as a 

presentation controller, connect the microphone to room speakers and unbind 

unnecessary modalities, like touching. Applications are therefore no longer tied to the 

user’s device but follow the user himself. This not only enhances the user experience, 

but also utilizes the available resources.  
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Figure 1-3 Conceptual Idea of “Interaction Cloud” 

 

The existing research in pervasive computing and multimodal human-computer 

interaction leads us to believe that mobile devices will play a significant role in future 

human-computer interaction. Therefore, a comprehensive approach to integrate users’ 

mobile devices as part of a multimodal application is required.  

 

1.1 Challenges in Multimodal Development 

The first challenge in integrating mobile devices into pervasive multimodal 

application is that the static binding between components and the execution platform 

is usually limited to desktop environments. Although existing frameworks provide 

predefined interaction widgets, dynamic adaptation of mobile devices has been 

ignored. Users can only interact with the system through pre-defined commands and 

cannot customize the controls based on their interests or transfer tasks between 

devices. Besides, multimodal applications are still mainly designed for desktop 

environments. It seems that existing multimodal applications are self-contained and 

do not respond readily to changes in the environmental context. Also, end-user 

applications are still device-oriented, and extra effort is required to transfer data from 

one device to another.  

 

We therefore propose that by bringing in the concept of cloud computing (HaaS and 

SaaS), applications can become user-oriented, and self-described widgets can 

automatically bind to each other. A middleware is therefore required to provide 
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automatic service discovery and dynamic binding between components in order to 

resolve the tight coupling problem.  

 

The second challenge is the development cycle of multimodal applications, which 

involves a broad spectrum of research domains. When developing multimodal 

applications, developers are required to study the usability of input and output 

modalities, communication protocols, fusion and fission algorithms and the self-

description capability of hardware widgets. Therefore, the development process lies at 

the crossroads of several research areas including middleware, networking, software 

engineering, psychology and cognitive science [31].  The multidisciplinary nature of 

pervasive computing and multimodal interaction brings together different roles of 

scholars and researchers. Software engineers are interested in building tools and 

systems to support the development of multimodal interfaces [19], HCI engineers 

focus on tasks of people using the system and interaction practitioners are interested 

in how humans use multimodal interfaces. However, existing development artifacts 

pay little attention to the multidisciplinary nature of MMHCI development. 

Components are only classified by physical widgets rather than by the nature of the 

widgets.  

 

We propose that by introducing a MVC-design pattern, components can further be 

decomposed into model, view or controller, which will provide more support for 

multidisciplinary collaboration. 

 

The third challenge is the tight coupling between application programming interfaces 

(API) and the application programming sequences that decode the user’s interactions 

or APIs that are dedicated to specific modalities such as gesture recognition [60], 

speech recognition [27] or combined usage of speech and gesture [35]. Human 

interaction with devices is usually made possible through provided services and code 

libraries. However, multimodal applications are normally constructed from a number 

of independent and heterogeneous components [54]. Existing multimodal systems 

[56][12][18] do not provide an extensible and flexible development environment nor a 

good software engineering approach for integrating large and heterogeneous number 

of components [36].  As a result, the semantics of the interactive data and the 

processing of the modality are embedded deeply within the application logic in an 
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entangled manner, rendering it rather difficult for the application to adapt or respond 

to input from different modalities without explicit modification to the application 

code. To complicate matters, multimodal interaction involves the combination of 

multiple interacting modalities that often act in unison to convey a complex human-

computer interaction. In a conventional application development platform, adapting 

existing desktop applications to support multimodal interaction would require 

significant amounts of programming effort that may make the solution intractable and 

difficult to maintain. Any change to the modality mix and interaction would require 

re-programming effort. Even worse, the solution is not easily portable to another 

platform, nor does it easily accommodate alternative devices [36].  

 

We propose that in order to facilitate the use of multimodal application and develop 

environment of pervasive systems, component-based software engineering (CBSE) 

[36][20][8][9][52] should be used. Under such a paradigm, each component is self-

contained and serves a specific function. By applying the same communication input 

and output interface, components can be re-combined and deployed as a new 

application. This approach emphasizes the concept of separation of concerns, 

decreases the component dependencies, increases the architectural reusability and 

finally reduces the production cost. Also, it provides the basis of supporting large 

scale of heterogeneous devices.  

 

1.2 Contributions  

To solve the problems of static binding between components, to facilitate the 

involvement of a broad spectrum of research domains and to decouple interaction 

components (applications, devices, modalities and commands) from each other, we 

have developed the i*Chameleon platform, which provides a complete development 

cycle and execution platform for multimodal applications. The development platform 

is targeted to facilitate developers, engineers and designers to collaborate through 

their respective roles in developing interaction components. The execution 

middleware supports the discovery and binding of deployed components and finally 

forms a multimodal application. 
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The first contribution of this thesis is the classification of interaction components. By 

taking the concept of separation of concerns from MVC design pattern, we classified 

the pervasive multimodal interface into three conceptual components: modalities and 

interactive devices (model), interactive commands (view) and fusion and fission 

algorithms (controller). It not only provides an isolation layer with a single point of 

access, but also reduces the number of connections needed and facilitates change 

management. As a result, a concrete role distribution can be defined at the early state 

of development and provides a clear structure for each component within the 

interaction cloud. 

 

The second is a self-described modeling language that is defined to model modalities, 

devices, data and interaction. This acts as a communication channel between 

components. Each component is self-contained and it serves a specific purpose. This 

approach allows logic developers, widget engineers and interaction designers to build 

the system independently and plug-in to an interaction cloud.  

 

The third is the implementation of multimodal middleware. We applied two 

approaches: (1) Publish / Subscribe communication paradigm and (2) Web Services. 

Both of them provide a mechanism for changing the binding between interaction 

components from static to dynamic according to the execution environment and user 

preferences. Publish / Subscribe communication paradigm provides a fast prototyping 

platform and real-time execution environment while web services offers a 

standardized communication protocol for interaction of components over the Internet.  

 

In this thesis, we present a comprehensive solution to these issues. In chapter 2, we 

discuss the features of existing modeling languages and system followed by reviewing 

and comparing the strengths and weaknesses of different well-known multimodal 

frameworks. In chapter 3, we generalize the design principles towards dynamic 

binding, services discovery, components modeling and separation of concerns. In 

chapter 4, the classification and its description language of interaction components is 

presented according to the MVC design pattern. This chapter also discusses the 

development cycle in detail. In chapter 5, web services architecture is implemented 

according to the approach discussed in previous chapters while in chapter 6, the 

publish/subscribe communication paradigm is applied. In chapter 7, we evaluate the 
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effort of implementing two multimodal application based on the suggested 

development cycle. Finally, chapter 8 presents the conclusion and suggests future 

research areas.  
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Chapter 2. Literature Review 

Since the appearance of Bolt’s [7] “Put that there” demonstration in 1980 that 

presented the first multimodal application, researchers have been studying the topic of 

multimodal human computer interaction (MMHCI), in particular fusion technologies 

[5], signal integration and synchronization. In the meantime, new developments in 

sensors and processing techniques (computer vision, audio and speech), new detection 

and recognition algorithms and tracking theories have opened up new possibilities in 

the development of multimodal interaction. In recent years, there have been a number 

of toolkits and description languages developed for supporting prototype and 

integration of multimodal interactive applications [59]. In this chapter, we will review 

the existing approaches in two directions, multimodal modeling language and 

multimodal platforms.  

 

2.1 Existing Multimodal Modeling Approach   

In this section, we evaluate seven multimodal modeling languages. They are either 

models in UML or XML and each of them have specific aims or target specific 

applications or modalities. Some of the modeling languages are used for defining and 

capturing abstract ideas, but do not handle implementation. In the following sections, 

we will discuss the scope, advantages and limitations of each modeling approach.  

 

2.1.1 Wisdom UML Extensions Modeling 

Wisdom architecture is a conceptual model for interaction proposed by N.J. Nunes in 

2001 [44]. It separates the concepts between internal functions and user interface. The 

target of this extension is to bridge the gap between software engineering and human 

computer interaction and define the roles of task analysis and object models in user 

interface design.  
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Figure 2-1 describes the architecture of the Wisdom model. Borrowing the concept 

from object-oriented software engineering (OOSE) and interaction model from human 

computer interface (HCI), five dimensions are defined. The analysis model is inter-

connected with interaction model through the same information channel.  

 

 

Figure 2-1 The Arch model and the Wisdom architecture 

 

The analysis model includes three types of elements, boundary class (Interface), 

control class (Behavior) and entity class (Information). The boundary class models 

the interactions between the system and external systems. Control class represents the 

business logic. It coordinates and controls the information while the model class 

model perdurable information.  

 

The Interaction model contains the interaction space class (Presentation) and task 

class (Dialogue). The interaction space class models the interaction between the 

system and users and the task class models the structure of dialogue between the user 

and the system.  
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Figure 2-2 Example of a use-case model, user interface architecture and an internal architecture for an 

simple Hotel Reservation System  

Figure 2-2 shows an example of how to model a hotel reservation system using the 

Wisdom UML integrated with the standard user case model. In this example, the 

interaction model inter-connects the human aspect with the business logic. However, 

it only offers the top level of abstraction, which gives an overall description of the 

system. It does not include the modalities concept or modeling for fusion and fission 

algorithms.  

 

2.1.2 Zeljko’s MMHCI Modeling 

In 2004, Zeljko defined a HCI modality meta-model to describe the concept of 

modalities and to classify multimodal interactions. The motivation of this research is 

to improve the accessibility of the development of multimodal applications. The idea 

is that applying UML techniques would serve to facilitate the communication between 

software engineers and interaction designers.  

 

Figure 2-3 shows the UML model for HCI modalities. It divides modalities into two 

main categories, input and output. These are further divided into event-based, stream-

based, static and dynamic. Following this modeling, developers are less bound to the 

underlying implementation technique and they can focus on the domain related 

problems. Modality designers can focus on the higher level concepts, such as the 

division between simple modality and complex modality while engineers can focus on 
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lower level issues like event-based modality and streaming-based modality. However, 

the input modality classification and modeling is based on the technical factors of 

hardware devices. Although this method can clearly categorize current devices, it 

ignores the properties and the behavior of the devices. Besides, this meta-modeling 

only handles the traditional video output and lacks support for new types of output 

manner, such as sensors and tangible objects [45]. 

 

 

Figure 2-3 Human Computer Interface modalities model [45] 

 

Table 2-1 UML Stereotypes for Zeljko’s MMHCI modeling [45] 

Simple Modality Single modality 

Complex Modality Multimodalities combined by at least two simple 
modality 

Input Modality Human output 

Output Modality Output presented to human 

Event-based Modality Tokenized input signals  

Streaming-based 
modality 

Input signals with some resolution and frequency 

Static Output Modality Statically Presents Data, such as image 

Dynamic Output 
Modality 

Dynamically Presents Data, such as video 
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2.1.3 W3C X+V 

X+V stands for XHTML and VoiceXML. This technology was finalized by W3C in 

2001 [61]. It standardizes and enables the speech interaction over the World Wide 

Web. The profile includes voice modules that support speech synthesis, speech 

dialogs, command and control, speech grammars, and the ability to attach Voice 

handlers for responding to specific DOM events. Figure 2-4 shows an example of 

how to trigger the sound interface when the user clicks on a paragraph element on a 

standard HTML document.     

 

 

Figure 2-4 Example of X+V 

 

One of the advantages of using this technique is both markup languages are proven 

and guarantees the response time. However, it only focuses on thin-client browsing 

and therefore, it is hard to implement. Also, this technique can only provide one-way 

interaction, is not extensible to other modalities and is limited to the Web interface.  

 

2.1.4 Multimodal Markup Language 

In 2001, Roessler introduced the application of the Multimodal Markup Language to 

mobile environments with two input modalities and two output modalities. It is 

another XML-based modeling language which provides the benefits of a clear 
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separation in content, structure and interaction [30]. It models speech and handwriting 

as input with graphical and anthropomorphic avatars as output.  

 

This markup language is similar to X + V which also applied the multimodal concept 

by combining advantages from HTML and VoiceXML. HTML offers authors the 

possibility to publish documents on graphical devices while VoiceXML allows web-

based development and content delivery to interaction voice response systems. Table 

2-2 shows the core elements of MML.  

 

Table 2-2 Specification of MML key element [30] 

modalityOut Define the presentation modalities to user. 

modalityIn Define the use of input modalities including their analyze algorithms. 
For example, grammars for speech recognition or hand-writing.  

production Control the output elements format. 

timing  Specific he synchronization information. 

bargeIn Enables or disables interruption of voice announcements. 

initiative Specific the control flow. 

 

However, MML does not provide extensibility for new upcoming modalities. It also 

does not provide the clear separation for different scholars and researchers for 

involving into its development process.  

 

2.1.5 Extensible Multimodal Annotation 

Extensible Multimodal Annotation (EMMA) is a well-known multimodal language 

developed by W3C and the first version was published in 2009. It offers a sufficient 

syntax for defining multimodal interaction for web applications. The purpose of 

EMMA is to represent content which is automatically extracted from a user's input by 

an interpretation component, where input is to be taken in the general sense of a 

meaningful user input in any modality supported by the platform [22]. Figure 2-5 

shows a simple multimodal application which uses voice recognition as an input 

modality. The XML represents a flight reservation application. Once the engine 

matches with the token defined in the interpretation element, it will load the 

corresponding defined data.   
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Figure 2-5 EMMA sample markup language [22] 

 

In Figure 2-6, Roman [22] implemented a multimodal mobile application using the 

EMMA markup language. After semantic interpretation has been performed by 

different engines, EMMA handles the communication protocol between different 

widgets and the integration processor.  

 

Although EMMA is a well-defined interaction language, it still poses a high barrier 

for non-experienced users, as it requires much technical knowledge to create a 

multimodal application. The application developers are required to do the hardware 

integration, interaction design and modality fusion. EMMA also focuses less on the 

standardization of semantic representation of input modalities [32], which means that 

future modalities cannot be adapted to the language without major changes. EMMA 

therefore targets on serving the input modalities in a web interface, however, not 

much attention is paid on the output modalities and non-web applications. 
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Figure 2-6 Generation of a consistent system task from multiple input channels using EMMA [22] 

 

2.1.6 Multimodal Presentation Markup Language  

Multimodal Presentation Markup Language (MPML) is another XML-based 

modeling language that enables dialogue-based interactions for multimodal user 

interface that was designed by Ishizuka Laboratories [6] in 1999. Using MPML, 

developers can develop and deploy HTML-based multimodal presentation application 

quickly. Figure 2-7 shows a sample application, which performs text-to-speech 

together with HTML switching.  Developers are only required to create suitable 

agents to handle input and output modalities. For example, users can define an 

autonomous component that processes the user’s speech input as the “Voice 

Recognition Agent”. However, in MPML 3.0, only three agents are supported and it is 

hard to integrate new agents into the MPML engine, therefore, extensibility is limited. 

Also, interaction logic and presentation information are mixed together in one XML 

file, which requires software engineers and interaction designers to understand each 

other’s work.  

 

Meta-model is also not defined in MPML, which only focuses on daily presentation, 

rather than the differences between generic user interface and multimodal user 

interface.  
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Figure 2-7 Sample of MPML 

 

2.1.7 Multimodal Interface Language 

Multimodal Interface Language (MMIL), introduced by Romary and Kumar, is yet 

another type of XML-based multimodal language. It models the interaction between 

the user and the dialogue as well as the interactions within the system.  

 

The target of MIML is general purpose; therefore, Kumar defined a meta-model, 

represented in UML. Based on the meta-model, he abstracted six types of information 

streams, such as word and phoneme lattice, dependency representation 

forest, dependency representation, word/phoneme sequence, visual-haptic semantic 

representation, and graphic-haptic layout [32], and translated the salient concepts for 

XML support. It demonstrates the importance of applying UML meta-model 

technique in software engineering.  
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Figure 2-8 Example of MMIL definition 

 

2.2 Existing Multimodal Platform  

After the discussion of multimodal modeling languages, existing execution platforms 

will be evaluated. Multimodal platforms are used to retrieve different input modalities 

and triggers corresponding output modalities using suitable fission and fusion 

algorithms. In this section, we evaluate four multimodal platforms and discuss their 

scope, advantages and limitation.  

 

2.2.1 QuickSet 

QuickSet is developed in 1997 and it is a pen and voice based multimodal system for 

configuring military simulations based on LeatherNet [11], a system used in training 

platoon leaders and commanders at the US Marine Corps (USMC) based [13]. It runs 
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on a hand-held PC and communicates through a distributed agent architecture based 

on the Open Agent Architecture (OAA). It requires a central facilitator to process and 

coordinate different agents, and to route queries to appropriate agents.  

 

Figure 2-9 shows the architecture of QuickSet. Each agent represents a specific 

function. For example, QuickSet interface provides the geo-referenced map. Speech 

recognition agents capture the voice command and pass it to the natural language 

agent to process. Gesture recognition agent recognizes all pen input from a PC screen 

or tablet. Multimodal integration agent accepts structured meaning representations 

from other agents, such as gesture agent or speech agent, and produces a unified 

multimodal interpretation. CommandVu agent is yet another input modality that 

resides on top of the gesture recognition agent, this enables the user to ask 

“CommandVu, fly me to this platoon <gesture on the map>”.  

 

 

Figure 2-9 Architecture of QuickSet [12] 

 

Holding QuickSet in hand, the user views a map from the ModSAF simulation, and 

with spoken language coupled with pen gestures, issues commands to ModSAF. In 

otter to create a unit in QuickSet, the user would hold the pen at the desired location 

and utter (for instance): "led T72 platoon" resulting in a new platoon of the specified 

type being created at that location.  

 

However, QuickSet does not involve any modeling technique and is customized for 

specific application with specific hardware devices. The extensibility is limited. If a 

developer would like to adapt a new agent into the system, he is required to 
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implement it using the OAA communication protocol and integrate the new logic and 

rules into the facilitators. If the new agents are required to communicate with other 

agents, those agents also need to be customized. Interactions between system and 

human cannot be customized. The fusion algorithms are strongly coupled with the 

raw signal as well as the agent design. It lowers the flexibility of the command design.  

 

2.2.2 Krahnstoever’s Framework 

Krahnstoever’s framework proposed a method for combining audio and visual 

interaction with a large screen display [35]. It includes three main components: 

interaction session, visual and audio components and modality fusion. 

 

One of the major characteristics of this framework is that it includes an initialization 

and termination phase in the interaction session which normal multimodal 

applications do not consider. During the initialization phase the interaction dialogue 

between a new user and the system is established. It is followed by the interaction 

phase, where the actual communication between the user and the system takes place. 

Finally, the termination phase is entered when the user (or the system) decides to 

conclude the dialogue. The state transition model is shown in Figure 2-10. 

 

Visual and audio components are responsible for signal processing, which includes 

face detection, palm detection, head and hand tracking, speech command recognition 

and audio feedback. The processed data will be interpreted by another modality fusion 

component.   

 

In Krahnstoever’s platform, the research team focuses on specific input (Speech, 

Hand Gesture, Head Tracking and Face Detection) and output modalities (Display 

and TTS). Therefore, the architecture is not designed to flexibly adapt to new 

modalities. Also, it does not include modality-modeling concept, which limits the 

communication between different roles of user during the development phase.  
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Figure 2-10 State transition model of an interaction session between a user and the system [35] 

 

2.2.3 ICARE  

ICARE stands for Interaction-CARE (Complementarily Assignment Redundancy 

Equivalence). This platform applies the concept of component-based approach for 

specifying and developing multimodal interfaces [9]. This approach included two 

types of components: elementary components and composition components. 

Elementary components are dedicated to interaction modalities, which define the 

combination of physical device d and interaction language L <d, L>. For example, a 

speech input is described as the coupling of microphone and pseudo natural language. 

Therefore, the modality definition is dependent on the fusion algorithms as well as the 

hardware devices. Besides, the fusion conditions are defined by composition 

components, which include complementarity, redundancy, equivalence and 

redundancy/equivalence [8].  

 

Complementarity combines all triggered events within a short period of time. When 

more than one modality conveys redundant pieces of data that were generated at 

approximately the same time and have the same output, one of the events will be 

ignored if those modalities are connected by redundancy component. 

Redundancy/equivalence component is a mix of redundancy and equivalence [20].  

 



 23 

 

Figure 2-11 ICARE Specification for French military aircraft cockpit [20] 

 

As shown in Figure 2-12, the architecture of ICARE platform requires combining an 

outside dialog controller to listen to its triggered events. An ICARE component chain 

defines a pipeline from user’s actions to commands or elementary tasks which are 

useful for the Dialog Controller. The communication protocol is implemented with 

direct call of methods or by using TCP/IP, UDP, JavaRMI. ICARE enables the 

designers to graphically manipulate and assemble software components to customize 

the multimodal application. From the customized result, the code is automatically 

generated.  

 

 

Figure 2-12 The ARCH software architectural model and ICARE components within an ARCH 

software architecture [9] 

 

Although ICARE provides a graphical user interface for users to customize the fusion 

logic by establishing the execution condition, user cannot develop flow control, such 

as looping or store the state of the system. For example, if the user wants to customize 

a command that is based on previous executed commands, ICARE will not be able to 
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support this. Also, modalities are highly dependent on the physical devices and the 

underlying algorithms. Therefore, ICARE can only provide a high level of reusability 

but not at the implementation level. It also does not provide the meta-modeling of the 

components and there is no concept of separation of concerns.   

 

2.2.4 OpenInterface 

OpenInterface is a well-known multimodal application development tool which 

supports the design and effective implementation based on off-the-shelf 

heterogeneous components [52]. The motivation of this platform is to provide an 

evolvable solution implementing a device-independent and interaction language that 

is technique independent.  

 

OpenInterface is manipulated by components and pipelines.  A component is defined 

as any software or hardware unit that provides a service. Components can do various 

tasks, ranging from being a driver for input devices, signal processing, networking, 

produce graphics, etc. They are reusable and independent from other components. It 

consists of four basic attributes: it must include an API and installation package, it 

must be documented and self-contained. The access points where data can come 

inside or outside the components are called pins. There are three types of pins, they 

are sink pins (receiving data), source pins (receiving and sending data) and callback 

pins (sending events) [36]. The component will be translated to XML-based 

component interface description language (CIDL) in order to communicate between 

the OpenInterface kernel and component driver.  

 

Figure 2-13 discusses an example of defining a mouse component. Within 

DirectXMouse component, it receives data from two events (startMouseCapture and 

stopMouseCapture) and mdriver is responsible for interpreting the information and 

pushing another event (pushed_events) out to other components.  
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Figure 2-13 Example of a mouse component [15] 

 

The second core object is called pipeline. A pipeline connects different components 

together in order to manage an advanced task. Components can be composed in 

pipelines by connecting together sinks and sources of various components. In this 

way, data produced by callback pins of some component will be sent to sink pins of 

another component, letting the components exchange data and events. By using this 

mechanism, one can create complex application pipelines to perform advanced 

interaction tasks or techniques [15].  

 

In runtime environments, components together with the pipelines would be deployed 

to the OpenInterface Kernel. The kernel will initialize the components and establish 

the communication path between them. It unifies components implemented in various 

technologies (C/C++, Java, Matlab, C#, Python) and follows a dataflow pipe-and-

filter architectural style in order to support easy reconfiguration.  

 

Using a component builder called SKEMMI, developers can do the mapping and 

configuration of the pipeline. This tool provides a graphical user interface (Figure 

2-14) to designers to manipulate the component and connect them before deploying to 

the kernel.  

 

The goal of OpenInterface is to bridge the gap between the design and 

implementation process of multimodal interactions. Therefore, it introduces the 

concept of separation of concerns. Different types of users, such as programmers and 

designers, can contribute their own components in order to develop the final 

application.  
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Figure 2-14 SKEMMI Graphical Editor 

 

Programmers: they can freely use the OpenInterface – CIDL – Components Interface 

Description Language to share code source and avoid redundancies in common tasks: 

data format support, usual audio, video processing, etc. 

 

Application Designers: (AD): with minimal efforts, they can build multimodal 

pipelines using the OpenInterface Design and Development Environment SKEMMI. 

 

End-users: The final OpenInterface multimodal interface provides a natural 

interaction between the human and the physical or virtual environment. 

 

OpenInterface is a well-developed tool for the development of multimodal 

application. However, it still requires an experienced designer, with technical 

knowledge, to customize the application. The barrier is still relatively high when 

compared with other GUI programming toolkit, such as Alice [16] or Scratch [39]. 

OpenInterface also does not provide any modeling language and definition language 

for modalities, devices or data structure.    

 

2.2.5 HCI^2 workbench 

HCI^2 workbench [54] is a Publish / Subscribe software platform that aims to 

simplify the development process of a multimodal application by using a modular 

programming technique. It provides a graphical environment to support the 
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development of a typical MMHCI system, for example, debugging, module 

packaging, module management, system configuration and testing. However, each 

module must be developed with the multi-disciplinary knowledge and all the 

commands must be defined and configured before execution. It only supports runtime 

structural changes, such as registration of modules but cannot dynamically change or 

bind packages during runtime. Besides, it does not provide any conceptual modeling 

of multimodal interaction.  
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Chapter 3. Design Guidelines  

Owing to the growth of interest in multimodal applications [48], the process of 

developing such platforms is becoming increasingly important.  In order to facilitate 

the design of multimodal systems from the ground up, design principles and 

interaction paradigms are necessary. Based on the discussion in chapter 2, different 

multimodal modeling languages and platforms are presented. For illustrative 

purposes, the first section presents a comparison and summarization of six modeling 

languages and four frameworks. Then the design principles on modeling languages 

and framework design are summarized. Finally, the features of modeling languages 

and multimodal platform will be discussed.  

 

3.1 Comparison of Multimodal Modeling Languages 

and Multimodal Platforms 

Table 3-1 and Table 3-2 summarize the system conceptual and modalities model for 

several state-of-the-art frameworks. The tables show that in general, current 

frameworks usually either focus on the system conceptual model, or the modality 

model. Due to the multidisciplinary nature, however, a complete MMHCI system 

needs to include concerns at both the system level and modalities level. Therefore, in 

order to create a complete multimodal human-computer interaction application, it is 

necessary to work with different frameworks/platforms. This is suboptimal as it 

increases the challenges of developing multimodal applications. In addition, within 

the system model, most modeling languages only address the workflow modeling, 

ignoring the context model and dataflow model.  We therefore propose a single 

system that seeks to improve the communication between designers and engineers 

(system level modeling) and engineers and developers (modality level modeling).  

 

Another observation from Table 3-3 is that existing frameworks are often specific to 

particular input modalities or output modalities. Examples are speech or gestural 
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input. One of the reasons is that often, frameworks are designed and developed to 

meet specific requirements, and therefore are required to be highly functional and 

accurate. This, however, results in low flexibility and extensibility. This drawback has 

been noted in the reviews of ICARE and OpenInterface from chapter 2, which raise 

concerns regarding the extensibility of multimodal applications.  

 

The extensibility issue has been addressed to a certain point through the components-

based software engineering (CBSE) approach. Each modality, algorithm or hardware 

driver is regarded as a component. In OpenInterface, for example, developers can 

apply the pipeline concept to connect different components to build a workflow 

sequence. This minimizes the effort of developers and maximizes the flexibility and 

reusability of multimodal applications.  

 

Secondly, most existing frameworks still focus on the desktop environment, which 

limits the portability to other platforms. With the tremendous increase in mobile 

devices, multimodal platforms need to support distributed development. Multimodal 

interfaces should adapt to the needs and abilities of different users, as well as different 

contexts of use. An example might be to allow gestural controls to replace voice input 

in noisy environments. Therefore, distributed sensory networks and dynamic 

adaptation among different input / output devices are needed.  

 

Another challenge we discussed in Chapter 1 is the development cycle of multimodal 

applications. This usually involves a broad spectrum of research domains. Although 

existing platforms involve the principle of separation of concerns, they still require 

experienced programmers or developers to customize the interactive commands. This 

creates a high barrier for new developers.  

 

3.2 Design Principles  

Given the challenges discussed in Chapter One and the limitations above, adapting, 

integrating or extending an interaction modal often requires complex recoding and 

maintenance. Contemporary markup or modeling languages ignore the 
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multidisciplinary factors and assume a certain level of knowledge sharing between 

software engineers, interaction designers and fusion engineers. In a real world 

situation, interaction designers often come from the psychology field while software 

engineers are computer scientists. They are trained to address different issues 

pertaining to human computer interactions and are often not aware of each others’ 

concerns or issues, which makes the knowledge sharing assumption invalid.  

 

Tables 3-1, 3-2 and 3-3 thus highlight the desirable principles that enhance the design 

process for these heterogeneous parties. 
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Table 3-1 Different multimodal modeling language and their capabilities (a) 

 

System Level Modeling Modality Level Modeling 
Interaction 

Language Context Model 
Behavioral Model 

(Dataflow) 

Behavioral Model 

(Workflow) 

Input 

Modalities 

Output  

Modalities 

Multi-
modalities 

Wisdom UML 

Extension 

Lack of describing 
Environment factor  

Detail distinguish the 
system by Analysis 
Model and 
Interaction Model  

Standardize by 
Information 
Dimension  

Boundary class 
(System to System) 

Presentation 
(System to Human) 

No No No 

UML 

(integrate 
with existing 
User Case 
Diagram) 

Zeljko’s MMHCI 
Modeling 

No No No 
Abstracted interface  
(1) Event-based 
(2) Streaming-based 

Abstracted interface 
(1) Static video 
(2) Dynamic video  

Complex 
modality is 
defined as 
more than one 
input / output 
modality.  

UML 

MMIL No No 

Using relation tag 
to connect source 
event and target 
event. 

No 

Detailed Speech 
Modeling 

(Grammars, 
sentences structure, 

etc.) 

No 

Meta-model 
with UML and 
configuration 

in XML 

MPML No No 

Only support 
simple one to one 

request and 
response event. 

No No No XML 
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Table 3-2 Different multimodal modeling language and their capabilities (b) 

 System Level Modeling Modality Level Modeling 
Interaction 

Language  Context Model 
Behavioral Model 

(Dataflow) 

Behavioral Model 

(Workflow) 

Input 

Modalities 

Output  

Modalities 

Multi-
modalities 

EMMA No 

Token can be 
defined and passed 
to other command 
by emma:token tag 

Define event based 
listener in XML, 
therefore, each 
input event will 

map to a command 

No 

Detailed Speech 
Modeling 

(Grammars, 
sentences structure, 

etc.) 

No XML 

MML No No 

Using modalityOut 
tag to define the 
output modalities 

Using modalityIn 
tag to link with 
suitable algorithm 

Using initiative tag 
to define the 
control flow 

No No No 

Meta-model 
with UML and 
configuration 

in XML 

X+V No 
Follow W3C HTML 

Protocol No 
Follow W3C HTML 

Protocol 
No Voice No XML 
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Table 3-3 Comparison between different existing multimodal platform 

 
Platform / 
Execution 

Environment 

Supporting 
Modalities 

Modalities 
Adaption 

and 
Reusability 

Communication 
Protocol 

Hardware 
Abstraction 

Layer 

Application 
Command 

Layer 

Fusion 
Algorithm 

Integration and 
Customization 

Interaction 
Language 

Separation of 
Concerns  

QuickSet 
Mobile 

Desktop 

Input: Speech, 
Hand Gesture 
Output: Voice, 
Visual Display 

No OAA No No No 

Hard-Coded. 
Required 
additional 
programmin
g effort 

No. Only design for 
experienced 
developers 

Krahnstoever’s 
Framework 

Desktop 

Input: Keyboard, 
Mouse, Palm, 
Head Tracking, 
Hand Tracking, 
Speech  
Output: Voice, 
Visual Display 

No Direct API Call No No No 

Hard-Coded. 
Required 
additional 
programmin
g effort 

No. Only design for 
experienced 
developers 

ICARE 

Desktop 

VR Aircraft 
Maintenance 
Training 

Input: Speech, 
Hand Gesture, 
Keyboard, 
Mouse, Sensor 
Output: Handle 
by other 
application  

No 
TCP, UDP, 
JavaRMI 

No No 

Limited.  

Only basic flow 
control 

Self-defined 
file with GUI 
Editor 

(ICARE Tool) 

Programmers and 
experienced 
Developers 

OpenInterface Desktop 

Input: Wii (Head 
Tracking), 
Keyboard, etc 
Output: AR, 
Visual Display  

Supported. 
CIDL & 

Components 

OSC, TCP, UDP, 
Multicast 

Supported. 
CIDL & 

Components 

Supported. 
CIDL & 

Components 

Supported. CIDL 
& Pipeline 

CIDL with 
own GUI 
Editor 
(SKEMMI) 

Programmers and 
experienced 
Developers 
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(1) Be composed by heterogeneous components. One key theme in pervasive 

multimodal environments is the integration of different components into a single 

system. Under this model, heterogeneous components can decouple unnecessary 

dependencies, and different inputs from different modalities are related but not 

necessarily integrated. Such a framework would be required to support a wide range 

of input and output widgets that are discoverable and interoperable across 

heterogeneous devices.  

 

(2) Components need to be self-described and self-contained. The use of plug-and-

play pervasive computing devices makes pervasive multimodal applications more 

reusable and thus lowers the cost of implementation. To support multi-level and 

cooperative design, data definition, algorithms and modalities should be 

componentized as a self-described object that is reusable and discoverable through 

standardized communication protocols.  Dynamic adaptability of new components, 

low level of interruption, low system down time, and transfer of signals in standard 

formats are required. 

 

(3) Be integrated with large amount of widgets. The pervasive multimodal system 

should be able to support large number of widgets of the same modality and/or 

different modalities, to properly support distributed components and user 

collaboration. Also, the modality output of one system can become another system’s 

input in a cascaded architecture.  

 

(4) Be extensible and Flexible. Regional factors, time constraints and personal 

preferences are some parameters that affect the way users interact with applications. 

The system should allow developers to create the best-fit implementation. It should 

also be domain-independent, minimizing the changes required to adapt to a new 

domain. 

 

(5) Components are classified based on the roles of users. The development process 

involves contributions from different experts. One could identify four major roles 

when building a multimodal application: device engineers, modality designers, 
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interaction designers, fusion engineers. Yet the use of most interaction markup 

languages often results in the entangling of program logic and presentation logic. 

 

(6) Ease of Use. The strong demand on multiple sets of technical skills poses a major 

difficulty in developing multimodal applications. Developers need to possess good 

hardware knowledge and theory of cognitive psychology with creativity [47]. 

However, most psychologists are not trained or equipped with skill sets to program, 

limiting their creativities. The interaction language must be modeled at a higher-level 

of abstraction. Code generation from high level modeling language of different 

components is required.  

 

(7) Dynamic adaption of components. In pervasive computing, processing power and 

devices are everywhere. Multimodal interactive components must bind to suitable 

input or output and detach unnecessary components according to the surroundings 

context.   

3.3 Features of i*Chameleon Multimodal Platform  

Based on the discussed design principles, we apply different aspects of software 

engineering techniques to ensure the fulfillment of the principles.  Table 3-4 provides 

a summary. In general, we first need to consider the conceptual system modeling in 

order to provide the abstracted system overview to different stakeholders, such as 

device engineers, fusion developers, interaction designers and modality designers. 

Modeling the modalities concept would also provide the structure of the interaction. 

This not only narrows the gap between the interaction designers and the hardware 

developers, but also provides a high-level of reusability to the system.  

 

Multimodal modeling includes three aspects – conceptual system modeling, 

modalities concept modeling and modeling language:  

1. Conceptual system modeling - the overview of the execution environment,  

2. Modalities concept modeling –the behaviors and nature of particular input or 

output modality  

3. Modeling language – the representation method for above modeling.  
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Conceptual system modeling represents the functions and parties involved in a clear 

manner. This offers an effective communication channel between the engineers and 

designers. Within this model, we should not take into consideration design or 

implementation criteria but focus on the required elements and workflow of the 

system. We can divide this model into two sections: context modeling and behavioral 

modeling.  

 

The context model distinguishes between the system scope and system environment. 

Behavioral models are used to describe the overall behavior of the system. This model 

can be divided into data-flow models, which model the data processing in the system, 

and state machine models, which model how the system reacts to events.  

 

Modalities concept modeling defines a meta-model for modeling input and output 

modalities. It provides a standard structure for unified and generic modality concept 

that is much less bound to the underlying implementation technology and much closer 

to the problem domain than conventional programming environments [45]. Therefore, 

this modeling is independent of the conceptual system modeling.  

 

Modeling language describes the human-computer interaction, integrated with the rich 

modeling semantics of UML or XML. This language syntactically models the 

modalities concept, captures the requirements and expresses solutions for the design. 

This allows us to apply third-party interpreters to interpret the concept and even 

generate the underlying code.  

 

Besides the modeling language, techniques from component-based software 

engineering are applied to offer self-described and self-contained heterogeneity 

components. In i*Chameleon, we apply the model-view-controller (MVC) design 

principle on component implementation. The MVC design pattern can help to classify 

the components according to their nature by separating user interaction, data 

representation and logic. Finally, device engineers, modality designers, signal 

processing and fusion engineers (fusion engineers) and interaction designers are 

assigned well-defined roles. More detail about the MVC components will be 

discussed in the next chapter.  
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In order to support the dynamic adaption of components, the i*Chameleon platform is 

implemented separately using a publish/subscribe approach and web services 

approach. Web services provide distance interaction and binding between 

components, and provide the advantage of well-developed technologies and 

guidelines. Developers can deploy their components to the web services server based 

on the existing infrastructure.  

 

The publish/subscribe communication paradigm is another option for the 

i*Chameleon kernel. It supports the plug-and-play of different MVC-based 

components to the i*Chameleon kernel. The components can register their interest in 

an event or publish their events to a defined interface. Mechanisms and rules are also 

defined to provide dynamic binding to other components. The details of web services 

and publish/subscribe communication paradigm will be discussed in chapter 5 and 

chapter 6 respectively.   

 

 Table 3-4 Techniques applied to fulfill the multimodal interface design principles 

 

Metamodeling and 

Multimodal 

Description Language 

(XML) 

Separation of Concern 

(MVC) 

Dynamic Binding Between 

Modalities 

(Pub/Sub or WebServices) 

Heterogeneity   Y Y 

Self-described and self-

contained 
Y  Y 

Components integration Y Y  

Extensible and Flexible Y   

Components 

Classification 
 Y  

Ease of use  Y Y  

Dynamic adaption of 

components 
  Y 
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Chapter 4. MVC-based Development Cycle  

In 2009, Dumas generalized the common practice of designing a multimodal system 

[19]. He suggested that a multimodal system should contain a fusion engine, a fission 

module, a dialog manager and a context manager in order to interpret the incoming 

modalities and process the output modalities, and signals should be processed through 

four phases of undergo, perception, interpretation, computation and action. 

 

Figure 4-1.illustrates the process. Different recognizers are required to process input 

modalities and the results are output to the fusion engine, which is in charge of giving 

a common interpretation to the inputs. After the dialog management helps to identify 

the state, the modalities are handled by the fission engine, which triggers different 

output modalities.  

 

 

Figure 4-1 Suggested architecture of a multimodal system, with the integration committee and its major 

software components. [19] 

 

These four phases are independent and can be modeled by the model-view-controller 

architectural pattern. This architectural pattern separates the design space along three 

aspects, with each focusing on a specific area and role in the overall design:  
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1. The Model defines the behavior and nature of the input and output modalities. 

It acts as a standardized protocol for facilitating the communication among the 

system.  

2. The View serves as a presentation layer and models the encapsulation of 

abstract devices. It handles the communication channel from the multimodal 

system to the output devices.  

3. The Controller is responsible for retrieving the input data from the input 

devices, analyzing them, translating them into modalities (Model) and 

triggering the commands (View).  

Thus, the Model encapsulates the collection of functional methods for multimodal 

system, and manages the definition and behaviors of data definition, modalities and 

fusion workflow, including the interpretation of the description of the nature of the 

modalities. The View is defined as the part that directly interacts with the users: in 

other words: the action. The computation and perception handling the analyzing 

process is then defined as Controller.  

 

The i*Chameleon platform adopts the MVC design pattern, which allows developers 

to develop and deploy interaction components and create multimodal applications, 

which end-users can execute and customize based on their profile.  

 

 

Figure 4-2 The System Architecture of i*Chameleon platform, with the services provided for different 

stakeholders to develop or integrate different components to the system 

 

Figure 4-2 shows the system architecture of the i*Chameleon platform. Four services 

are provided to facilitate the development process:  

(i) the device interface integration service allows device engineers to integrate 

input and output interaction devices to the middleware;  

(ii) the modality deployment service offers modality designers the possibility 

of defining input and output modalities at different abstraction levels;  

(iii) the signal processing algorithm deployment service allows programmers to 

implement algorithms for translating incoming signals to outgoing 

modalities, and  
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(iv) the multimodal application development service allows non-expert users to 

associate different modalities with each other to customize the final 

multimodal application.  

 

On top of the services, the i*Chameleon middleware coordinates different interaction 

components. Components will be automatically bound together according to the 

contextual environment and user profile in order to select the most suitable 

components. For example, if the user watching a movie on a smartphone walks into a 

home theatre with a larger screen, i*Chameleon will unbind the existing output screen 

and transfer the output signal to the large screen. The middleware is implemented 

with web services (discussed in chapter 5) and publish / subscribe communication 

paradigm (discussed in chapter 6). 

 

In the rest of this chapter, we will first discuss the process of developing a multimodal 

application under the i*Chameleon platform. We will describe four different aspects 

of the development process, as shown in Figure 4-2. We will then describe the 

classification of the interaction components, according to the MVC (Model-View-

Controller) paradigm.  

4.1 Development Process 

In multimodal interaction, broad spectrums of research domains are involved in the 

development process. The development process lies at the crossroads of several 

research areas including middleware, networking, software engineering, psychology 

and cognitive science [31], and the multidisciplinary nature of pervasive computing 

and multimodal interaction brings different roles of researchers and developers into 

this domain. As a result, the complexity of developing a multimodal application 

increases. For example, developers are required to be knowledgeable on diverse 

topics such as the usability of input and output modalities, communication protocols, 

fusion algorithms and self-description capability of hardware widgets. This brings 

together a wide range of expertise: Software engineers are interested in building tools 

and systems to support the development of multimodal interfaces [19], while 

interaction designers focus on tasks of people using the multimodal interface and 

algorithm developers implement fusion techniques.  
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Bouchet [8] proposed to apply component-based engineering approach to the 

development of multimodal applications. In 2007, a survey from International Data 

Corporation showed that more than 50% of software developers had applied the 

concept of components based software engineering (CBSE) during their project [3]. 

CBSE not only lowers the complexity of developing multimodal applications and thus 

delivers better software, but also increases the reusability and extensibility of the 

multimodal applications. For example, CBSE defines a multi-sensor device as a 

collection of components, thus allowing the description for each component to be 

reused for other devices. However, existing frameworks classify components 

according to their physical capabilities rather than their functional nature, which 

decreases the applications’ flexibility and reusability.  

 

MVC has been widely used since the 1980s after the concept was published by Xerox 

PARC for Smalltalk-80 [10]. It is a design pattern, which separates the business logic, 

presentation to end-user and information collection into three sections. To this end, an 

application is divided into three core components: the model, the view, and the 

controller. Each of these components handles a discrete set of tasks. As a result, the 

MVC design pattern can ensure a clear task division as well as the interrelationship 

between the different tasks. As each component within the MVC is self-contained and 

separated from the other two components, it also ensure fast prototyping and high 

reusabilty. When it comes to coding multidisciplinary and large scale heterogeneous 

widgets, MVC offers the advantages of decoupling the presentation logic, program 

logic and modalities modeling, which lowers the barriers required of non-technical 

users, shortens the development cost and increases the flexibility and extensibility of 

multimodal applications.  

 

Conceptually, the Model is responsible for handling the behavior and properties of 

specific domain related problems, such as the definition of the modalities or the 

categorization of user profiles. The View acts as a presentation layer between the 

components. It is defined as the interface that provides feedback to the end-user and 

encapsulates abstract output devices. The Controller receives events from users, 

models the input devices, and extracts high-level semantic meaning of the interactions 

from incoming signals. Figure 4-3 shows the distribution of interactive components 
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between four development processes. It can be seen that the development of the 

components for each process falls under the expertise of a different class of 

developers. 

 

 

Figure 4-3 Development Process of multimodal applications and Classification of interaction 

components according to MVC design pattern 

 

Developing multimodal applications on the i*Chameleon platform involves four 

different situations: device interface modeling, modality modeling, implementation of 

signal processing algorithms and application development. Each scenario has a 

specific focus and well-defined steps. Based on the defined structure from 

i*Chameleon, developers can collect the requirements of the application to model or 

implement the components. Finally, developers are required to deploy the components 

to the platform by using specific services provided by the middleware.  

 

4.2 Device Interface Modeling  

Device engineers are responsible for widget related adaptation, such as creating a new 

driver for existing widgets or integrating new widgets to the system. To decouple the 

sensors, actuators and device under our model, three types of devices exist: input 

interface components (e.g. a light sensor, or an accelerometer), output interface 

components (e.g. display, sound, etc), and abstract device components (which 

function as a general profile of a particular set of input or output interface components 

and describe the properties of the devices).  

 

In this way, the abstract device component only captures the device-dependent 

properties while the input and output interface describes the interaction-dependent 
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behaviors. Therefore, each interaction device can be associated with a number of 

input and output interfaces, which makes it possible to model heterogeneous widgets 

over a single device. Figure 4-4 shows the relationship between the three components. 

For example, rather than modeling a game controller as one component, it is modeled 

as an abstract device component (describing the operational environment and 

Bluetooth protocol) together with input interface component (buttons, accelerometer) 

and output interface component (vibration, LED).  

 

 
Figure 4-4 Meta-model of abstract device component and its relationship to other device interface 

components 

 

The idea of the abstract device component is similar to the hardware abstraction layer 

[38] and Figure 4-4 presents a meta-model. It captures the widget’s nature and 

properties in two dimensions: location and communication protocol. The first 

dimension is location-awareness, for instance, based on global positioning or 

localized token. This can enrich the context information and awareness of the physical 

environment surrounding. A communication protocol is also captured to abstractize 

the adapters for runtime communication. Our current communication protocol models 

the basic TCP messaging routines, the shared memory data transport protocol and the 

xBee and Bluetooth transmission protocols. The required communication package is 

generated automatically when the model is deployed to the device interface 

integration service. This allows programmers to create other communication protocols 

and deploy them independently.  

 

In summary, the abstract device component provides a profile of the static or 

interaction-independent mechanisms of the interaction devices and also relates 

together heterogeneous components according to their nature and functionality. This 
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allows on-the-fly switching between components of the same nature to optimize for 

the best performance of the system. For example, given an application that needs to 

capture speech for transcription, the system may automatically choose to use a close-

range microphone, if one is available, over a tabletop microphone, if the context is a 

meeting, as the former provides a better signal in such an environment.  

 

The abstract device components are modeled by the device engineers, according to 

the physical capabilities and functionalities of the associated input/output interface 

components.  

 

The model for the input/output interface components captures the dependencies 

between the components and the operating environment, as shown in Figure 4-5 and 

Figure 4-6. This dimension models influences from physical factors, for example, 

loudness is an indicator of accuracy for certain widgets that are affected in noisy 

conditions. This dimension can be extended to other properties by modifying the 

XML schema in the kernel. Therefore, by positioning the widget in different working 

environments, i*Chameleon can offer a handover mechanism according to the 

contextual information in order to enhance the user experience, or to offer the most 

reliable service. Taking our example of multiple available microphones, the 

operational environment can provide information about the performance of the device 

given the noise level of the operating environment. Given this information, the kernel 

can then make a decision about which microphone to use to provide the most reliable 

service.   

 

 
Figure 4-5 Meta-model of input interface component 
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The input interface component is the only component to capture human output, such 

as body moment, or sensory input such as light sensors embedded in the surroundings. 

As it directly generates the events for the i*Chameleon platform, it belongs to the 

controller aspect of the MVC design pattern. It is divided into actively involved or 

passively involved and requires the device to translate human output into a form 

suitable for computer processing. Active modalities refer to actions which users issue 

intentionally, while passive modalities represent commands that are not explicitly 

expressed by the user [8][43]. The categorization of the input signal offers a way to 

prioritize and select the output modality. Furthermore, input signals are classified into 

event-based or streaming-based. Event-based input modalities react to user 

interactions that produce discrete events while streaming-based modalities sample 

continuous input signals from the user and produce a time-stamped array as input to 

the kernel. For example, the accelerometer from game controllers generates streaming 

events in an active interface.  

 

 

Figure 4-6 Meta-model of output interface component 

 

All feedback to the users is handled by the output interface component, which is 

classified as a view component in the MVC pattern. It not only models the traditional 

screen display, but also models human perception according to human senses and 

motion. Sight, hearing and touch are modeled while smell input and taste input are not 

taken into consideration as they are not currently commonly used in human-computer 

interaction. Motion provides another aspect for describing the physical movement of 

output devices, such as robots and other actuators. The main concept of this meta-

model is that it generalizes the common features of output widgets. This not only 

provides an abstraction interface that allows device engineers to reuse the common 
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components to facilitate the development process, but also allows the platform to 

enhance the selection mechanism of the output devices. For example, in vision output, 

the screen is defined and engineers can model the screen by specifying resolutions, 

brightness and color scheme. As a result, each screen display must be modeled 

according to the defined specification. During the execution, the kernel binds the 

output device to a screen with a high brightness if the detected environment is dark.  

 

To summarize, based on this meta-modeling, a single device is no longer defined as 

one and only one component. It can be divided into view (output interface 

component) and controller (input interface component) by association with the 

behavior of the devices (abstract device component). By separating hardware 

dependent components and interaction dependent components, it not only avoids 

unnecessary dependencies, but also provides the ability to discover the capabilities of 

other devices. This way, pervasive environments with multimodal interaction can be 

established. 

4.3 Modality Modeling  

Modality refers to the way an idea is expressed or perceived, or the manner in which 

an action is performed [42]. For example, human interaction modalities include 

speech, vision, gestures, facial expressions or body movement. It describes the 

manner of interaction and is independent of the hardware definition or 

implementation algorithm. According to Zeljko, modality modeling focuses on the 

notion of an abstract modality, which generalizes the common characteristics of HCI 

modalities regardless of their specific manifestations [45]. Zeljko specified the 

fundamental classification of input modalities, which were based on the nature of the 

input signal, such as event-based or streaming-based. Bruno [19] summarized human-

machine interaction with four states: decision state, action state, perception state and 

interpretation state. Each state involves different levels of data abstraction, such as 

sensory level, feature level or decision level. Sensory level data is also called raw 

data, which is acquired from an individual widget. This type of data may be noisy and 

requires specific filtering techniques to extract the semantic meaning that is 

representative of feature-level data. Finally, based on the extracted features and the 
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addition of the time dimension considerations, the decision-level data provides a 

response through the output modality.  

 

Multimodality modeling is not a simple task. It has to consider the combination of 

single modalities at different data abstraction levels as well as the coordination 

between them. For example, some feature level modalities extract semantic meaning 

from multiple sensory level modalities. Also, an output modality may need to be 

coordinated with a number of possible devices. In summary, when defining a meta-

model for multimodality interaction, we need to consider the following:  

 The receiving pattern: e.g. Are the input signals event-based or streaming-

based. 

 The data abstraction level: e.g. Is the incoming data at the sensory level, or has 

the device internally already translated it to feature or even decision level? 

 The fusion pattern: e.g. Should signals be combined in a parallel or sequential 

manner? 

 The dependency between the modalities: e.g. Do certain modalities combine 

or depend on others to generate higher-level multi-modal signals? 

 

We first classify the modality component according to its nature, in other words, 

whether it is an input modality or output modality. An input modality receives 

abstracted data patterns from input interface components while output modality sends 

abstracted commands to output interface components. Figure 4-7 shows the modeling 

of the output modality. Uni-modal output is described by the receiving pattern, which 

can be event-based or streaming-based. For example, an event-based output modality 

might be the playing of a video clip file. A streaming-based output modality models 

real time processing feedback, such as displaying the signal from a camera.  

 

Simultaneously, we also apply the CARE model [50] to model multi-modal output 

modality. The CARE model provides a methodology to describe and model user-

machine interaction. CARE stands for complementarity, assignment, redundancy and 

equivalence.   
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Figure 4-7 Meta-model of output modality component 

 

Complementarity is involved when multiple complementary output modalities are 

needed to produce the feedback within a temporal window, and when all of them are 

required for the interaction to result in success. An example is sending an instruction 

to a robot car to move forward, which requires the turning on of both left and right 

motors. Assignment indicates that one and only one output modality can lead to 

another output modality. If the previous state cannot be reached, the next state will not 

be executed. For example, instructing a robot car to turn right requires both motors to 

stop first, then the right motor is started. Equivalence output modality implies that 

multiple output modalities can be used to produce the desired feedback, however, 

only one would be used at any one time. For example, it may be possible to produce 

feedback to the user through either sound, or displaying the text on the screen. 

However, if the external constraints are added, the system may not choose to use 

voice while in a noisy environment, or the screen device when the user is walking 

down the street with the device in his pocket. Lastly, redundancy indicates multiple 

output modalities, which even if used simultaneously, can be used individually to 

produce the desired feedback, which mean that either one of the output modality can 

be used to express the same meaning. For example, pushing a notification to the 

mobile phone and sending an email can both send the user a message. However, either 

one can also achieve the same outcome. Therefore, by using CARE properties, 

relationships can be added between different output modality components.  
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Figure 4-8 Meta-model of input modality component 

 

Similar to output modalities, input modalities may be uni-modal or mulit-modal, as 

shown in Figure 4-8. Input modality components describe the commands, which are 

organically triggered by the human(s). A uni-modal input represents a singular form 

of interaction while multi-modal input integrates several modalities sequentially or 

simultaneously. A uni-modal input is classified into three different data abstraction 

levels and associated with simple data type definition components, which use four 

pre-defined different data types (Boolean, integer, decimal and string). Data 

abstraction levels include sensory-level, feature-level and decision-level. Sensory-

level data is also known as the raw data from devices (for example, a set of 

coordinates). Feature-level data represents semi-processed information, generated 

from sensory-level data or directly retrieved from devices (for example, a set of hand 

movements). Finally, decision-level data illustrates the meaning behind the input 

modality, which can be the analyzed result from feature-level data or directly 

triggered by devices (for example, a zoom-in gesture). Each data abstraction is 

divided into event-based input modalities or streaming-based input modalities. Event-

based modalities react to user actions by producing discrete events while streaming-

based modalities produce a time-stamped array for particular signals. For example, a 

recognized voice token is an event-based sensory-level input modality and a point-set 

would be a streaming-based sensory-level input modality.  

 

The CASE model is applied to model multiple-input modalities. It describes the 

means by which modalities are combined at the integration engine level and it focuses 

on different possibilities of modality combinations [42] according to “use of 

modalities” and “fusion of modalities” (Figure 4-9 left).  
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“Use of modalities” expresses the temporal availability of input modalities which 

describe the receiving pattern. If the modalities are classified as “simultaneous”, this 

means that the system may employ multiple input modalities in parallel. Conversely, 

when “sequential” modalities are concerned, this means that the system processes the 

modalities one after another. “Fusion of modalities” considers the coordination of 

incoming modalities, which may be coordinated or uncoordinated. In our meta-

modeling scheme, coordinated modalities require both modalities to be triggered to 

generate another modality. For example, when a “single click” is combined with 

another “single click”, a “double click” modality is generated. In contrast, 

uncoordinated modalities refer to modalities that are independent from each other, 

where either one of them, when triggered, would lead to the resulting modality. For 

example, when a user performs a “drag-and-drop” on a virtual object using the mouse 

and executes a “put-that-there” voice command in parallel, only one command will be 

enforced.  

 

With the discussed classification methods, CASE model introduces four properties: 

concurrent, alternate, synergistic and exclusive.  

 

  
Figure 4-9 The CASE model (Left) [8]. CASE modeling example (Right) .  

 

Figure 4-9 (right) illustrates an example of modeling a multimodal modality 

component with different combinations of modalities. A user can move a virtual 

object from A to B using two different modality channels, either by voice and gesture 

or mouse. Therefore, at the highest abstraction level, this modality component is 

would be modeled as concurrent. For the “Put that there” command, the user is 
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required to speak the keywords in the correct sequence, so, it is classified as alternate. 

This is the same situation as a mouse drag-and-drop modality. Lastly, during the “Put 

that there” command, user is required to point to an object while saying the keyword 

“that” and point to a new location while saying the keyword “there”. As these actions 

are coordinated and need to be triggered simultaneously, they are modeled as 

synergistic.  With the use of CASE model, a modality repository can be built. It not 

only can define the definition of each modality, but also store the dependency 

between them. This meta-model can model the modalities at different abstraction 

levels.  

 

Table 4-1 Fulfilling the design requirements: The Meta Model 

 Input Modalities  Output Modalities 

Receiving Pattern Uni-modality Uni-modality 

Data abstraction level Simple DataType Definition Component - 

Fusion pattern Multi-modality with CASE model - 

Dependency between the 

modalities  

Multi-modality with CASE model Multi-modality with CARE model 

 

4.4 Signal Processing Algorithm Implementation  

Signal processing algorithms implementation refers to the development of a new 

analyzing algorithm with specific input data that can be deployed to the i*Chameleon 

kernel to improve or enhance the performance or accuracy of the application. Each 

algorithm is wrapped as a self-contained component which needs to have a self-

descriptive profile, follow the proper communication protocol, associate with specific 

modality component(s) and generate particular modality components. This kind of 

components belongs to the “Controller” pattern of the MVC design model.  

 

A self-descriptive profile is used to define the requirement of the algorithm 

(processing power or frames per second) and provide performance information to the 

kernel (accuracy or turnover time). Therefore, if there exists more than one 

component that fulfills the requirements of the situation, the kernel can select the most 

suitable algorithm. For example, if a number of algorithm components are distributed 

around the network, the kernel can automatically select the appropriate component 
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according to the round trip time based on the communication protocol and accuracy 

defined in the profile.  

 

Similar to the abstract device component, the communication protocols are wrapped 

in an abstraction layer that currently models the TCP/IP, Bluetooth and xBee 

protocols. Programmers are therefore only required to define an XML document to 

handle the communication protocol when a new algorithm component is developed.  

 

Another feature is the integration of publish/subscribe architectural pattern. Once the 

algorithm component is registered to the modality components, the web services 

protocol (discussed in chapter 5) or publish/subscribe mechanism (discussed in 

chapter 6) will automatically route the modality to the suitable algorithm, or the 

analyzed result will notify the corresponding components.   

 

We categorize those generic algorithms for implementing fusion algorithms into three 

types: filters, parsers and analyzers.  

- Filters (Sensory-level modality) handle data pre-processing. They receive the 

raw data from the sensors or other hardware, and based on the hardware 

definition, translate the raw data into well-defined sensory-level modalities. 

For example, a filter will is used to normalize the coordinates for a 2D point 

object from a video camera to ensure all input data is consistent for analyzers 

or parsers.  

- Analyzers (Feature-level modality) are responsible for computation and 

extracting the meaning from a stream of sensory-level modality or feature-

level modality for tokenization. For example, after 2D point modalities have 

been obtained from filters, analyzers will compute it and extract the meaning 

from it, such as a zoom-in hand gesture command. 

- Parsers (Decision-level modality) determine the output modalities from the 

different tokens extracted from the analyzers. For example, after the zoom-in 

gesture is detected, parsers will gather the contents from the existing execution 

state. Based on the execution conditions, the parsers will notify the “View” 

components to trigger the commands. 

 

Therefore, developers can design and deploy suitable algorithms without affecting 

other components based on the requirement of the application. 
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4.5 Application Development  

Creating a new application based on a set of implemented modalities and devices 

requires the interaction designers to have a certain level of programming knowledge. 

Since we have separated the hardware-dependent tasks from the modality definition 

and algorithms and also applied the concept of component-based software 

engineering, the interaction designers now only need to map the input modalities to 

the output modalities, without having to know the internal details and specifications 

of the hardware. This not only results in a high degree of reusability and fast 

development, but also lowers the barriers of multimodal interaction development.  

 

We extended from previous work [57] to develop the i*Chameleon interaction editor 

according to the “View” aspect of the MVC design pattern. It is designed to allow 

non-computing experts to create high-level modality components and link them 

together to form a command. We applied the concept of logic gates, but limited the 

user’s choice to AND and OR gates. Therefore, with a graphical user interface (Figure 

4-10), non-technical users can easily drag-and-drop modeled input modality 

components and map them to output modality components to form a multimodal 

application.  

 

 

Figure 4-10 i*Chameleon Modality Component and Command Editor 

 

In addition, users can define certain preferences with an XML file. These preferences 

model the user’s habits and preferences by setting priorities to available modalities. 

For example, if a user prefers using voice input rather than gesture control, once the 
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priority is configured, when both inputs are detected, the kernel will default to voice 

input whenever possible.  

 

In summary, there are a number of advantages of applying the MVC (model-view-

controller) design pattern to multimodal interaction development. Its enforcing of the 

principle of separation-of-concerns in the i*Chameleon framework and the resulting 

four different aspects of the development process (device interface modeling, 

modality modeling, signal processing algorithm implementation and application 

development) enables cross-disciplinary collaboration between device engineers, 

modality designers, programmers and interaction designers. This simplifies and 

accelerates the application development process.  
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Chapter 5. Web Service Architecture  

A web service is a self-contained, self-describing and modular application that can be 

published, located, and invoked across the Internet [25]. Together with contemporary 

networking infrastructure, web services provide high compatibility with different 

components. Once the components are deployed to the i*Chameleon platform, they 

can discover and interact with the deployed components dynamically. 

 

Web services are supported by a set of XML-based protocols such as Universal 

Description, Discovery and Integration (UDDI), Web Service Definition Language 

(WSDL) and Simple Object Access Protocol (SOAP).  They are platform-

independent, conducive to heterogeneity and are supported by all current IT 

infrastructures, with libraries in nearly all major programming languages. Developers 

interact with SOAP, which is a specification protocol for exchanging uniform 

information, by passing XML-encoded data, bound to HTTP as the underlying 

communication protocol, from one endpoint to another. It uses XML messaging over 

plain HTTP, thus avoiding networking issues, such as firewall problems, allowing for 

remote procedure calls via simple request/reply. WSDL describes the functionality 

offered by a web service. It offers a machine-readable description of the usage of the 

web service, the way the function is triggered, what parameters it needs, and what 

data structures it returns. Meanwhile, UDDI provides directory services for services to 

list themselves over the Internet, which is beyond the scope of this thesis.  

 

Figure 5-1 (left) shows a typical web service architecture, which involves a web 

service broker, web service provider and a number of clients. A web service broker 

acts as a repository for all available web services described by WSDL. When a client 

requests a service, the broker will offer the most suitable one for the client, and finally 

the client can directly interact with the service provided by SOAP.  

 

The architecture of the i*Chameleon platform follows a similar model. The 

application service consists of the broker and provider. The broker generates the 

necessary packages for the clients while service requests are received from the 



 56 

provider. The input widgets, such as touch screens, and output widgets, such as 

vibration motors, make up the clients.  

 

 

Figure 5-1 (Left) Web service architecture         (Right) i*Chameleon Web service architecture 

 

One of the biggest problems faced by multimodal interaction is that hardware devices 

often come with their own language-dependent or platform-dependent libraries.  This 

makes it difficult to integrate multiple modes of interaction into the same application. 

Using web services can solve the problem of incompatibility between the 

programming languages required by the various hardware devices. Freed from the 

programming language constraints, developers only need to call the corresponding 

web services. Besides, web services also provide a standard protocol for 

communication over the Internet, which allows distributed devices to interact with 

each other in remote areas. An example might be controlling a team of robots in 

different locations. Therefore, the concept of “Interaction Cloud” can be achieved.  

 

In this chapter, we will first discuss the detailed architecture and workflow of the web 

service-based i*Chameleon followed by the MVC classification over this platform. In 

section 3, four development processes will be studied.  

 

5.1 Web-Service Architecture  

Web service-based i*Chameleon involves two core kernels, the application server and 

the co-processor. Figure 5-2 shows the detailed platform architecture. Linked with the 
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application server is the co-processor, which receives and processes input modalities, 

such as visual and auditory information. The purpose of the co-processor is to offload 

some processing tasks from the application server. It receives data from the 

application server, analyzing and recognizing events and sending notifications back to 

the application server with the intended action, i.e., the command to the target 

application. Communications between them are handled by a socket channel with 

TCP/IP connection implemented via object serialization, allowing us to create 

reusable objects and transfer them through standard sockets with common modeling 

definitions. It manages sensory and application input separately in order to allow each 

widget to be reused and extended [24]. A modeling and definition language has been 

developed for i*Chameleon to support the sharing of information among different 

components.  

 

 

Figure 5-2 i*Chameleon includes two core sub-systems, a web services application server and a co-

processor. The application server is responsible for receiving signals from the Input device, 

communicating with the co-processor and coordinating with the output devices. The co-processor 

analyzes the input data and sends notifications back with the analyzed command to the application 

server. 

5.1.1 Application Server  

The application server consists of three modules: Sensory System, Communication 

System and Motor System. The sensory system is responsible for handling all input 
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signals from input widgets and communications using SOAP. It provides three 

important functions. First, it manages all sensory input devices at the workstation 

level. Each device can have one or more widgets associated with it; for example, an 

iPhone can be defined as a device with three input widgets: voice, touch and tilt. At 

the beginning, each workstation declares itself as an input device, which is a client of 

the sensory system. After declaration, this input device can be deployed to 

i*Chameleon, which would return a device identifier to the client. Hence, the 

application server manages the list of connected widgets which enables i*Chameleon 

to distinguish the senders of events.  

 

Secondly, the sensory system handles all input events from connected input devices. 

Each device can be dynamically associated with the sensory system by invoking web 

services, and be given an identifier as shown in Figure 5-3. This method has the 

advantage of adding new devices without stopping the multimodal application. For 

example, after a device is initiated, a developer can append a new speech recognizer 

(widget). Thereafter, once incoming verbal input is detected and recognized, it can 

trigger an event to notify the sensory system. 

 

 

Figure 5-3 Two sensory receptors associated with Application server with specific identifier and each 

receptor consists of different modalities. 

 

Thirdly, the sensory system also acts as a hardware abstraction layer, which is 

responsible for handling the data communication between application server and co-

processor, including object standardization and creation. Based on the received raw 

data, it translates them into specific data objects according to the data definition stored 

in the communication system. Also, based on the modeling technique, i*Chameleon 
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defines a set of abstract device classes which provide the structure of the hardware 

configuration. According to the device’s nature, we classify them into four categories 

as shown in Figure 5-4, with associated examples depicted in Table 5-1. 

 

 

Figure 5-4 Defined devices under sensory system 

 

Table 5-1 Devices and associated modality 

Widget Signal Object Modality 

Speech Recognition Recognized Word Voice  

Multi-Point A Set of Points Hand 

Gesture 

Key Pressed Key Key 

Tangible Orientation Tilt 

 

 

The communication system is responsible for storing the modalities’ definitions, 

transmitting the incoming modalities and analyzing modalities between application 

server and co-processors. This is implemented with object serialization, allowing 

objects to be transmitted over the network via TCP/IP. The co-processor connects by 

making a connection request to the application server, establishing a communication 

channel for the transferring of objects. 

 

The motor system is responsible for handling the analyzed events from co-processors 

and forwarding the commands to the corresponding output devices for execution. The 

process orchestrations are similar to those of the sensory system. The motor system 

thus acts as the communicator between the application server and command 

executors. When the motor system receives the command from the co-processors, it 

triggers a particular output device on a specific workstation to execute the command. 

Command executors are platform-dependent, and each workstation owns its 

executors. When an executor receives a notification from the application server, it 

triggers the output device to perform the action. 
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Besides, the motor system also handles the selection of output devices. It stores the 

device information and configuration. Therefore, it automatically binds the commands 

to the best-fit devices for execution. For example, if a screen with better resolution is 

available, the motor system will bind the display with this device.  

 

Using the web services declared in the motor system, developers could customize or 

create commands dynamically. A command is responsible for storing the execution 

conditions, which include events, actions (which are inputs to user programs, e.g., 

games) and time constraints. An event, an invoker in the command design pattern, is 

created by the end-user, which describes when the associated action should be 

triggered. Actions are the instructions that need to be executed when a command is 

triggered. For example, an action can be “Open File Explorer”, “Make the WiiMote 

Vibrate” or “Right Click the Mouse”.  

 

5.1.2 Co-processor  

The co-processor handles all the computation tasks involved in translating data from 

receptors into meaningful commands, such as mouse moves or key clicks. It is 

organized into three layers: Data Preprocessing Layer, Modal Layer and Command 

Layer. Each layer is independent of the other two.  Hence changing one layer will not 

affect the other layers.  

 

After receiving the structured data from the communication system, the objects will 

first arrive at the data-preprocessing layer. After passing through appropriate filters, 

such as noise filter, point tracking filter or transformation filter, data integrity and 

accuracy can be ensured. 

 

The most complex part of the co-processor dwells in the modal layer, which accepts 

packaged data from the hardware abstraction layer, analyzes the input and recognizes 

the events. These events are then passed to the command layer, which maps it to a 

corresponding action. This modal layer can be subdivided into two major 

components. The first component consists of a number of analyzers, which handle 

data processing and computation in order to translate the raw resources into tokens 
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using pre-defined rules. The second component is a parser that parses the tokens into 

parse trees of different modalities, such as gesture, voice or others using an interaction 

grammar and finally maps the parse trees to events. Events are then passed to the 

command layer to be executed. Due to the layered design, developers can attach or 

detach interaction devices without any modification to the other layers. When data is 

received from the hardware abstraction layer, the relevant modality is triggered.  For 

example, a series of 2D Points triggers the Gesture modality. As we defined four 

categories of widgets, four corresponding modalities are implemented, as illustrated in 

Table 5-1 and Figure 5-5. 

 

 

Figure 5-5 Modal Layer 

 

The final layer is the command layer. As the name implies, this layer is responsible 

for determining which command needs to be executed. After the modal layer 

recognizes the events, these events still appear independent from one another. It is 

only known that at a certain moment, say, t1, two events, e1 and e2, are triggered, but it 

is unclear which command needs to be executed. The command layer gathers the 

execution conditions of all application inputs. Once an event is triggered, it 

consolidates the triggered events with all previously triggered events to determine 

whether an associated command is to be executed. It then sends back the interpreted 

signal for the associated command to the motor system in the application server. 

 

To illustrate the operation of i*Chameleon, suppose a multi-touch table-top screen is 

used to display and manipulate a digital mapping application. A user puts four fingers 

on the table and pinches them together, to indicate a zoom-in action. The machine 

managing the table sends the coordinates of the corresponding points to i*Chameleon 

via web services. The data are handed over to the hardware abstraction layer for 

preprocessing and then passed to the modal layer for analysis. The modal layer 
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interprets the incoming Points as a Gesture, which is passed to the command layer, to 

be mapped to the appropriate command for notification to output widgets through the 

motor system. 

 

5.2 Platform Workflow 

In i*Chameleon, each input device corresponds to a particular input in the web service. 

Figure 5-6 illustrates how an event is triggered, recognized and an action is executed. 

An application input is fired by one or more events, while an input device triggers an 

event.  

 

The sensory system captures raw data and notifies the application server. Data 

together with the device information will be passed to the sensory system, which 

translates the raw data into a generalized data object, which stores information related 

to the event. Finally, the object is sent to the co-processor for analysis. 

 

The co-processor is responsible for listening to the communication system event 

handler, receiving a signal, and extracting raw data from the signal. The 

representation of data is device-dependent. The translated object will be passed to a 

set of data-preprocessing filters, such as noise filter or normalizing filter, to ensure 

that the data is valid and accurate.  

 

Then, the output data from the hardware abstraction layer will processed by the proper 

algorithm for the modality, e.g., applying a gesture recognition algorithm on a set of 

points. An analyzer will eventually parse the input data and map it to a command 

based on a set of grammar rules, paving the way to trigger the corresponding action 

(command for target application). 

 

Finally, the co-processor notifies the application server of the action intended by the 

user, and the motor system in the application server gathers the intended actions and 

notifies the application input devices to execute the commands by invoking the 

corresponding web services. 
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Figure 5-6 i*Chameleon workflow. Hand gesture processing starts with the camera capturing 

coordinates. Generalized point object sends the coordinates to Sensory System via web services. Co-

processor translates the raw data into gestures and notifies Motor System to trigger corresponding 

application. 

 

5.3 MVC Components Classification and 

Development Cycle over Web Service Architecture  

 

Our suggested web service architecture involves two core systems with a number of 

components. Each component can be classified into Model, View or Controller 

according to their nature and functionally. Figure 5-7 illustrates the classification of 

the MVC components and the associated development process based on the model 

discussed in chapter 4 (Figure 4-3).   
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Figure 5-7 i*Chameleon components. MVC Classification and Development Process over Web Service 

Architecture 

 

Device engineers are involved in the process of device interface modeling, which 

involves the controller model (input interface) and view model (output interface). The 

abstracted hardware configuration (discussed in section 4.2, Figure 4-4) is required 

for deployment to both motion and sensory system. If the device engineer wants to 

deploy a new input device, he is required to: 

1. Model the abstracted device configuration XML based on the 4 services 

provided by sensory system 

2. Model the device, e.g. Desktop computer 

3. Generate the device driver by the code generator and the driver included 

a. Declaration of the device as an input device  

b. Communication protocol 

c. Widget listeners   

4. Append new sensory input widget, e.g. Wii controller that is connected to the 

declared desktop computer 

a. Integrate the device dependent API for getting the signal, if any 

5. Once the device driver has been executed, the device arrival event will send it 

to the i*Chameleon platform via web services call, and a communication 

channel will be set up to listen to the incoming signal  

 

Similarly, if the device engineers need to deploy a new output device, they are 

required to:  

1. Model the abstracted device configuration XML 

2. Model the device, e.g. Desktop computer 

3. Generate the device driver using the code generator and the included driver  

a. Declare of the device as an output device  

b. Declare the communication protocol 

c. Implement the widget listeners   

4. Append new sensory input widgets, e.g. a screen that is connected to the 

declared desktop computer 
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a. Integrate the device dependent API for triggering the command, if any 

5. Once the device driver is executed, device arrival event will send it to the 

i*Chameleon platform via web services call, and a communication channel 

will be set up for sending commands   

 

In addition, modality designers define the input (Figure 4-8) and output modalities 

(Figure 4-7) according to the modeling we discussed in chapter 4.3. This component 

is classified as a model pattern as it is related to the behavior modeling. After the 

designer defined the modality by XML, the kernel can generate the modalities classes. 

The communication system acts as a repository that manages all modalities. Finally, 

sensory system or motion system can, based on the modality definitions, translate and 

structure the raw input to modalities they require.  

 

Programmers work with the kernel of i*Chameleon directly and they are required to 

develop and deploy signal processing components to the modal layer. With the 

standardized modalities defined in communication system, programmers may need to 

reuse the modalities as input parameters and output objects of the algorithm 

components. For example, if point (x, y coordinates) modality M1, and hand gesture 

(zoom in) modality M2, is defined in the communication system, programmers can 

deploy their algorithms for retrieving M2 from M1. Creating an algorithm component 

only requires defining the XML configuration, which is shown in Figure 5-8, passing 

the configuration to i*Chameleon kernel to generate necessary packages and finally 

implementing the algorithm.     

 

<?xml version="1.0"?> 

 

<iChameleon xmlns="http://etoy1.comp.polyu.edu.hk/ichameleon/controller"> 

 <communication type="TCP/IP" > 

  <port>8001</port> 

  <hostname>localhost</hostname>  

 </communication> 

 

 <algorithm type="analyzer" paradigm="frame"> 

  <description>Analyze zoom-in from point.</description> 

   

  <inputModalities>  

   <add ref="iChameleon.model.Point" /> 

  </inputModalities>  

   

  <outputModality ref="iChameleon.model.handGesture.ZoomIn" /> 

   

  <feature> 

   <add type="int" value="30" name="fps" /> 
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   <add type="double" value="0.8" name="accuracy" /> 

  </feature> 

 </algorithm> 

</iChameleon> 

Figure 5-8 XML Configuration of creating a algorithm component. This example illustrates an analyzer 

receiving a point set that results in a zoom in hand gesture. 

 

Interaction designers can customize the commands using the graphical user interface 

discussed in [58], which is classified into View pattern according to the MVC 

definition. With a drag-and-drop editor, non-computing experts can also customize 

their own interactive commands and execute them with the i*Chameleon web services 

architecture. When the editor is started, it will retrieve the modalities and algorithm 

component definitions from the kernel. Therefore, the users can manipulate the 

deployed modalities and customize the desired commands. After customization, an 

XML-based file will be generated and deployed to the kernel by specific web 

services.  

 

This chapter covers the implementation of i*Chameleon platform using the approach 

of web services. Fundamentally, the components in web services have a clear MVC 

classification. It also allows interaction components, e.g. the input and output widgets 

and the algorithm components, to be distributed across different hosts connected by 

the web service. Based on the suggested modeling approach, different developers can 

model the components independently and deploy them to the same i*Chameleon 

kernel, which will then generate the necessary component packages, manage the input 

data and handle the output commands. This facilitates and speeds up the development 

procedures.  



 

 

 67 

Chapter 6. Publish/Subscribe Architecture 

The publish/subscribe paradigm of communication has recently received increased 

attention [23]. Different researchers [24, [17, 23]59] have claimed that the 

publish/subscribe paradigm provides decoupling of distributed interaction in large-

scale applications and improves the flexibility of adapting the system architecture.  

 

 

Figure 6-1 A simple publish/subscribe architecture 

 

Figure 6-1 shows a simple architecture for a publish/subscribe middleware. Basically, 

subscribers express their interest in an event, so as to be notified when matching 

registered events are generated by a publisher. The publishers do not record 

references to the subscribers and do not know the number or identity of subscribers 

participating in the interaction. Similarly, subscribers do not store the list of 

publishers, neither do they know the number of publishers involved. Therefore, this 

paradigm offers the ability to decouple with respect to the dimension of space. The 

event service handles the registration of all the publishers and subscribers and the 

broadcasting of events to them. This allows the components to be self-contained and 

self-described. Similar to the web-service architecture discussed in the last chapter, 

each interaction widget acts as a component. Therefore, these components can be self-

contained and independent of other publish components or subscribe components, 

which fulfills the design principles of “Heterogeneity” and “Self-described and self-

contained” suggested in Chapter Three.  
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In addition to space decoupling, the publish/subscribe paradigm also provides 

decoupling along time and synchronization dimensions [23]. Time decoupling 

benefits the interacting components as they do not need to be actively participating in 

the event services at the same time. In other words, publisher components might 

publish events even when no subscribers are connected. In multimodal applications, 

most existing frameworks focus on real time feedback based on absolute space and 

time frame. However, in a context-aware pervasive system where multimodal 

interaction is involved, external factors such as the situation of the current working 

environment need to be taken in account. It may not be possible to capture such data 

instantaneously, or the capture of such data requires backtracking and linking to 

previous events or events from disconnected widgets. Time decoupling helps to 

facilitate the process. Synchronization decoupling ensures components are not 

blocked while publishers are producing events or subscribers are consuming events 

and it helps to support concurrent activities. The context-aware environment also 

provides additional information for decision-making and contributes to the dynamic 

adaptation of the publishers and subscribers.  

 

In the following sections, we will first discuss the architecture of implementing a 

multimodal middleware for supporting a publish/subscribe paradigm followed by the 

workflow of the execution. Finally, the MVC design pattern and the development 

cycle over this publish/subscribe architecture will be presented.  

 

6.1 Publish/Subscribe Architecture 

In order to achieve space, time and synchronization decoupling over a 

publish/subscribe paradigm, three schemes are defined according to the level of 

expressive power: namely, topic-based, content-based and type-based [23]. These 

schemes provide the methodology for publishing events and the different approaches 

result in different performances. In the following section, we will first discuss the 

existing three variants in use for designing publish/subscribe systems, followed by the 

i*Chameleon architecture.  

 

The first scheme is topic-based and it has been widely used in different applications 

[2]. Basically, topics are represented by keywords. It extends the notion of channels 
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with methods to characterize and classify events. The events are grouped under a 

specific topic T, every event will map to one or more topics, and subscribers can 

subscribe to one or more topics.  

 

The topic-based scheme has the advantage of being easy to implement. However, 

since topics are represented by string keywords, it lacks the descriptive power of the 

content-based scheme, which augments the topics with additional information about 

the event, such as the data type of the signal or the magnitude of the data. 

Implementation under this paradigm is more complex and query languages, such as 

SQL, may be needed. However, as the content filtering has no information about the 

relationship between different topics (such as Topic A is a type of Topic B), this 

approach may increase the risk of redundant events. 

 

Finally, the type-based publish/subscribe paradigm adopts an object-oriented 

approach and groups events into structured hierarchies. This allows for more powerful 

filtering of the events, and provides a closer integration of the language and the 

middleware.  

 

Chapter 4 described modality modeling as based on the signal type, augmented with 

optional data. For example, a signal may be described as a point with (x, y, z) 

coordinates, at 30 fps (optional). Therefore, we clearly cannot rely solely on the topic-

based approach. As many of our events are related (e.g. different kinds of gestures, 

etc), the content-based paradigm does not fit our needs. Given all these constraints 

and requirements, the i*Chameleon platform uses the type-based approach.  

 

In terms of the system architecture, as presented in Figure 4-2 (Chapter 4), the 

i*Chameleon platform consists of a middleware that coordinates different modalities 

from different devices. Components can act as publishers, subscribers or both and 

interact with the kernel. The system architecture and interaction between components 

and kernel is shown in Figure 6-2. Under a publish/subscribe communication 

paradigm, different MVC-based components are classified, which allows plug-and-

play to the kernel. Modality and device properties are defined as the model; output 

interface components and descriptions of interactions are classified as the view; and 

the controller consists of input interface components and algorithm components. 
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Details about the classification will be discussed in section 6.3. The system is mainly 

divided into three parts, i*Chameleon kernel (middleware), multimodal application 

(publishers and subscribers) and algorithm component (publishers and subscribers). 

 

The core middleware is responsible for managing all publishers and subscribers, 

routing the message to suitable components and deciding on the interactive 

commands.  The kernel involves four managers: device interface manager, modality 

manager, controller manager and command manager. 

 

 

Figure 6-2 Interaction between components (publisher / subscribe) and i*Chameleon kernel 

 

 The device interface manger offers “Device Interface Integration Service”, 

which handles registration and deregistration of input interface components 

(publishers) and output interface components (subscribers). These components 

can register their interest in a particular event or publish their events through 

the services provided by the kernel.  

 The modality manager provides “Modality Deployment Service”. It acts as a 

repository for all deployed modalities and handles input and output modalities.  

 The controller manager offers “Signal Processing Algorithm Deployment 

Service”. After the programmer implements the algorithm component, it can 

be deployed to the kernel via this manager.  

 The command manager provides an interface for users to create and deploy 

their interaction files. It also manages the fusion of modalities. 

 

Secondly, input and output devices are modeled as publishers and subscribers 

respectively. The input interface components are integrated with device dependent 

drivers that retrieve the sensory data and translate it to the corresponding data 
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structure defined in the modality manager. Once connected to the kernel, the 

component generates events by calling a publish() operation. Output interface 

components are subscribers and they express their interest in an output modality, such 

as “Zoom In”. Therefore, once the kernel receives the required output modalities, 

which need to be executed, it can notify the relevant output interface components.  

 

The last part of the kernel consists of the algorithm components, which handle signal 

processing and translate the sensory level data to feature level or others. These 

components are similar to operators or functions of other programming language, 

which require input parameters and return value. Therefore, algorithm components are 

defined both as publishers and subscribers.  

  

6.2 Platform Workflow  

In the last section, we provided a detailed description design concept of the 

publish/subscribe system and the architecture of the i*Chameleon platform. In this 

section, we focus on the component interaction models.  

 

Registering a publisher, retrieving an event and triggering a command all require a 

direct and continuous interaction between the different managers and components. 

The sequence diagram in Figure 6-3 shows the main communication and interaction 

patterns when a new input device and output device are connected and trigger a 

command. For example, a smart phone can register as an input device while a robot 

car can register as an output device. The smart phone can send a tilting event to 

trigger the robot car to move forward [37].   

 

After the kernel is started, all publishers and subscribers can register or unregister 

without the time constraints. Once a publisher or subscriber has completed the 

handshake protocol, they are ready to transfer sensory data or receive notification. 

The sensory data first publishes to the device interface manager. This manager 

verifies the data structure of the incoming signal with the modality manager. During 

the verification process, the modality manager standardizes and normalizes the data 

with the support of device profile stored in the device interface manager. For 
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example, a point retrieved from an infrared camera (x1, y1) is normalized with the 

devices’ resolution. In addition, a timestamp will be added to all sensory data.  

 

Once that is done, the pre-processed sensory data is published to the corresponding 

algorithm components. According to the subscribed interest of the event, the 

controller manager forwards it to registered components based on the type of data. If 

there exist additional algorithm components that subscribe to the same type of sensory 

data, the controller manager requests the device interface manager for the device 

profile and compares the accuracy or available resources to decide which 

component(s) should be notified. 

 

 

Figure 6-3 Interaction between publishers, subscribes and the i*Chameleon publish/subscribe 

multimodal middleware 

 
After the sensory data has been published to the algorithm component, the data is 

analyzed and translated into feature level data or decision level data. During this 

interpretation process, the algorithm components publish the result back to the 

controller manager, and the controller manager publishes the data again until no more 
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algorithm components are subscribing to the data. This allows the sensory data to be 

continuously translated to higher-level data.  

 

The command manager also listens to the events published to the controller manager; 

once an event is matched, the event would publish to the corresponding device 

interface manager. Finally, the device interface manager will trigger the command by 

notifying the output interface components. 

 

6.3 MVC Components Classification and Development Cycle 

over Publish/Subscribe Paradigm 

According to the development cycle discussed in Chapter 4, four processes are 

required to design and develop the multimodal applications. For each process, the 

components are defined based on the MVC architecture pattern. Figure 6-4 illustrates 

the classification of publish/subscribe managers along with the development cycle.  

 

 

Figure 6-4 i*Chameleon components MVC Classification and Development Process over Publish / 

Subscribe Architecture 

 

The device engineer can deploy input and output interface components to the kernel. 

Input interface components are classified as Controller (because they gather and 

model the user input information), while output interface components are classified as 

View (since it models the information that it needs to generate an output 

representation to the user). Similar to the web service architecture, device engineers 

are required to: 

1. Model the abstract device  

2. Model the input or output interface components 
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3. Select the modality that the input components will publish or the output 

components will subscribe to  

4. Generate the publishers or subscribers 

5. Once the publisher or subscriber is executed, a handshake protocol will be 

sent to the i*Chameleon platform and the components will be registered to the 

device interface manager. 

 

The second process is modality modeling, which involves the modality designer and 

is independent of the kernel implementation. This enables the modality modeled for 

web services architecture to be reused. The same set of generated code will then be 

deployed to the modality manager as the Model component under the MVC pattern. 

This component is responsible for representing the behavior and status of the 

modalities.  

 

In addition, programmers can reuse the XML configuration from the web services (as 

discussed in the previous chapter) to generate the communication layers for both 

publishers and subscribers. After the communication layer has been generated, the 

programmers can implement their own algorithms and deploy to the fusion and fission 

managers. These components are classified under the Controller pattern, which is 

responsible for receiving low-level signals and translating them to high-level data. 

  

Finally, interaction designers can make use of the graphical user interface to 

customize the commands they desired. As the modeling technique is also independent 

of the kernel implementation, the customization methods by the non-computing 

experts are the same as in the web service. The users can manipulate the input and 

output modalities using the drag-and-drop editor and finally deploy the commands to 

the command manager from the i*Chameleon kernel. By definition, the commands 

support interaction to the system or provide feedback to the users. Therefore, these 

components are grouped under the View pattern. 

 

In this chapter, we have presented the contribution of the publish/subscribe 

middleware to the i*Chameleon platform. This communication paradigm allows 

components to be dynamically plugged into and detached from the kernel. This allows 

the kernel to bind to different components according to the task or the content 
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environment in order to provide the best experience for end-users in the run-time 

environment. We have also discussed how the different components of the 

publish/subscribe middleware fit into the MVC (model-view-controller) design 

pattern, and the classification of the components into different categories, based on 

their functionality, interaction style and clear delineation of development roles.  
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Chapter 7. Multimodal Applications 

In this section, we illustrate the use of the i*Chameleon platform in two scenarios. 

They are: (1) Web services-based i*Chameleon for an application called Mobile DJ, 

which is a tangible and mobile platform for active music listening [33] and (2) 

publish/subscribe-based i*Chameleon for robot control in an interactive exhibition 

area. In particular, we demonstrate how the discussed platform facilitates the 

development process and support the runtime execution. For each scenario, we 

present the requirements of multimodal interaction application, as well as the division 

of labor and separation of concerns with respect to the four development processes. 

Finally, the runtime support and handover mechanism between components are 

discussed.    

 

7.1 Mobile DJ (Web Service) 

Mobile DJ is a music-listening system that allows multiple users to interact and 

collaboratively contribute to a single song over a social network. Our platform 

enables single or multiple users to actively modify music content or manipulate sound 

effects via a physical interface device, which supports multiple modes of interaction, 

and encourages user immersion into the music through exaggerated physical motions.  

 

This system also allows collaborative and social interaction in real time, regardless of 

the users’ location. It also allows players to browse and search sound tracks that are 

currently being worked on by others, and provides a channel for them to 

collaboratively contribute. Such collaboration requires synchronization of actions, 

even when the users are in different physical locations, in order to achieve pleasant 

effects.  

 

In this system, it consists of a tangible musical control interface that is connected to a 

mobile device for signal processing and social interaction. The overview of the 
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system architecture of Mobile DJ is shown in Figure 7-1. The system consists of three 

components: tangible musical control interface, active music listening application and 

i*Chameleon web services application server.   

  

Figure 7-1 Mobile DJ System Architecture (Left) Mobile DJ user (Right) 

 

The tangible musical control interface (TouchPad) is responsible for capturing the 

user’s interactions, which is regarded as an input widget of the multimodal 

application. Together with the mobile device, it forms a self-contained digital musical 

mixing platform. Active music listening on a single-user basis is enabled when a user 

connects the Musical Control Interface to a device and registers it with the 

application. Secondly, the active music listening application was implemented to run 

on iOS in Objective-C, and the BASS audio library was used to implement special 

sound effects such as scratching. This application is defined at the output interface in 

term of sound. Finally, i*Chameleon web services application server was used to 

integrate the tangible control interface and the music listening application together by 

providing a comprehensive protocol to model and handle the communication between 

them. Portable music players, such as an Apple iPhone, that is running an active 

music listening application, can be connected by standardized web services.  

 

In the following section, we will first discus how to model the tangible musical 

interface and listening application following by the modality modeling. The model of 

algorithm and modality mapping will be discussed as well. Finally, the runtime 

environment and workflow are presented. 
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Table 7-1 Development Cycle with corresponding MVC components over Mobile DJ multimodal 

application 

Process Roles MVC Description 

Device Interface 

Modeling 
Device Engineer 

View & 

Controller 

1. Abstracted Device Component 

    - TouchPad 

    - Active Music Listening Application 

View 1. TouchPad (Screen) 

2. Active Music Listening Application (Audio) 

Controller 1. TouchPad (Slidebar, potentiometer)  

2. TouchPad (Accelerometer) 

Modality Modeling Modality Designer Modal 1. Input Modality Modeling 

    - Sliding  

    - Swing (SwingUp / SwingDown) 

    - Pressing (ShortPress / LongPress) 

2. Output Modality Modeling  

    - LED 

    - Audio 

Signal Processing 

Algorithm 

Implementation 

Programmer Controller 1. Translate continues point set into orientation  

    (for detecting swing events) 

2. Retrieving swing events from continuously 

pressing 

Application Development  Interaction Designer View 1. Mapping between modalities 

 

7.1.1 Device Interface Modeling 

In this multimodal application, each user uses two devices, TouchPad for input and 

Active Music Listening Application for output. Figure 7-2 shows the hardware 

implementation of the TouchPad interface. We require the interface to be intuitive 

and to support different modes of interaction with the music. From a wearability 

standpoint, the form factor of the interface as an armband implies that users should be 

able to interact with the music through movements of the other hand on the arm, or by 

swinging the arm. Besides, TouchPad also provides visual feedback. The major 

output device would be on the mobile application. Therefore, within the device 

interface modeling, we need to model two pieces of physical hardware, TouchPad and 

smart phone.  

 

From a technical point of view, the TouchPad is equipped with a potentiometer on the 

surface of the armband. The slidebar consists of two tracks. The lower track is in one 
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piece, while the upper track consists of segments connected with constant-valued 

resistors. When a user touches both the upper and lower tracks at the same time, the 

resistance between the tracks changes in proportion to the number of resistors that 

have been bypassed, thus allowing us to determine the upper track segment that is 

currently being touched. For aesthetics and usability, the tracks in the potentiometer 

are constructed from conductive fabric, which makes them congruent to textiles and 

garments. Besides, an accelerometer is equipped for detecting the motion of 

TouchPad and a LED matrix is provided for visual feedback. Therefore, when the 

device engineer models the TouchPad, he needs to model two input interface 

components and one output interface component and associated them to the same 

abstract device component.  

 

  

Figure 7-2 Hardware implementation of TouchPad   

 

Figure 7-3 shows the modeling of both input device and output device. With reference 

to the modeling; two abstract device components are defined. It generalizes the 

common information for all input or output devices equipped in TouchPad, for 

example, the configuration of Bluetooth connection. Therefore, even if the engineers 

design and install more sensors on the TouchPad, this modeling can still be reused. 

Also, if the TouchPad is moved to another location or used by another user, the 

engineers are only required to change the modeling of the abstract component.  

 

The abstract device component is associated with two input interface components and 

one output interface component.  
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(1) Input interface component for TouchPad: Accelerometer 

 As the accelerometer will be affected by vibration, this attribute will be set to 

“Fail”.  

 The signal is defined as streaming-based with FPS 30. Therefore, the 

i*Chameleon kernel will expect the signal (points with x-,y-,z-coordinates) to 

continuously fit into the web services handler.   

 

 

Figure 7-3 Input device modeling (Upper) Output device modeling (Lower) 

 

(2) Input interface component for TouchPad: Slidebar 

 Similar to the accelerometer, the slidebar will be affected by vibration; 

therefore, this attribute will be set to “Fail”.  
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 The signal is defined as streaming-based with FPS 30. 

 

(3) Output interface component for TouchPad: LED 

 The operation environment is limited to dark area. So, if the context sensors 

reporting the users are exposed to bright lighting, the application may opt to 

use other feedback devices.  

 The only presentation policy is configured to be visual, which provides 6 

patterns for display. Those patterns are represented in token format 

(A,B,C,D,E,F). 

 

(4) Output interface component for Active Music Listening Application: Audio 

 Being an audio output, it cannot work well in a noisy environment while the 

rest of the factors would not be affected.   

 The audio will be accepting streaming data from the kernel by default and the 

kernel can also control the volume.  

 

Device engineers can make use of the modeling to define the XML-based properties 

files. Two abstract device drivers for TouchPad and application are generated with 

communication handler and widget listeners. Then each input or output components 

will be created as notifiers. This allows engineers to deploy all drivers to the kernel 

with SOAP protocol and start the widget anytime.  

 

7.1.2 Modality Modeling 

In this application, three input modalities (swinging, sliding and pressing) and two 

output modalities (visual and audio) are involved. Swinging, swaying and bouncing 

along to the beat are a common response to music, and certainly very commonly seen 

in active music listening experiences. The armband form factor of the tangible 

interface also suggested interaction through swinging or waving of the arm. Swinging 

is supported via the incorporation of an accelerometer in the armband, which detects 

movements of the user’s body. The potentiometer on the tangible interface supports a 

pressing interaction. The pressing is further divided into short press and long press. 

When an algorithm detects a number of short presses, sliding has occurred. 
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Figure 7-4 Input modalities modeling of Mobile DJ Application 

 

On the other hand, Mobile DJ also includes two major output modalities, visual 

feedback and audio feedback. In general, in active listening, the user’s interactions 

will receive audio feedback through the playing of the rearranged or modified music 

track. However, since one of the objectives of Mobile DJ is to support remote multi-

user interaction, it was also deemed necessary to incorporate visual feedback to 

enhance the interaction between users. The visual feedback is supported by a matrix 

of multicolored LEDs that is incorporated into the tangible interface above the 

slidebar potentiometer. The LEDs flash in different colors to signal interactions from 

the collaborating partner, which provides a channel that allows a certain degree of 

communication and signaling, but without interfering with the experience or imposing 

upon the center of attention of the user. In the absence of signals from the other party, 

or in single-user mode, the LEDs serve as an additional form of feedback to enhance 

user immersion by flashing along according to the rhythm of the music. 
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7.1.3 Signal Processing Algorithm Implementation 

Programmers need to implement the algorithm components. Within the multimodal 

application, two types of sensory level data have to be sent to the kernel. Therefore, 

programmers are required to develop algorithm components to translate Point3D from 

accelerometer to swing modality and SlidebarToken to pressing modality as well as 

analyzing the pressing to retrieve sliding modality. So, programmers are only required 

to define the XML-based configuration files according to the standard provided and 

directly integrate the components in the Modal Layer, which is discussed in Figure 

5-5. 

 

7.1.4 Application Development  

In Mobile DJ, the pressing motion enriches the musical track by interspersing the 

melody with chords and different instruments, or changing the rhythm and the 

harmony. The interface supports both a short “tap” as well as a long “press”. The 

“buttons” are the upper track segments. A tap on a “button” adds a chord to the music; 

the system will automatically generate an appropriate chord based on the key and the 

instrument of the currently playing song. Since we have seven “buttons”, this allows 

the user to generate up to seven different chords. Long presses trigger a change in 

rhythm or harmony of the music in a similar fashion. Also, sliding is mapped to the 

scratching while swinging is mapped to the LED display. 

 

Table 7-2 Modalities Mapping Table for Mobile DJ 

Input Modality Token Output Modality  

Sliding 1 – 7 Scratching 

LongPress 1 – 7 Changing Chords (A-G) 

ShortPress 1 – 2 Changing Background Music 

3 - 4 Changing Chords Style 

7 Changing Instruments 

SwingUp - LED Display Pattern A 

SwingDown - LED Display Pattern B 
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7.2 Interactive Robot Control (Publish/Subscribe) 

In the second case, we apply the same development cycle with a different 

implementation approach through the publish/subscribe paradigm. This application is 

situation in an exhibition, where users are allowed to manipulate robot cars in a 

constrained area using different controllers. With the advances in the technology of 

distributed system and interactive devices, it is possible to relax the constraints 

imposed on the users by the limited space and the modalities provided by requiring 

input and output modalities to handover to each another according to the context 

environment.  

 

Figure 7-5 shows the floor plan of the robotic area, which is designed to provide a 

multimodal controlling experience to the user.  In the robotic zone, the view of the 

robot cars are occluded by a number of obstacles. Each robot car is equipped with a 

webcam, and users “see” where the cars are by viewing the camera feed. Users 

standing in the control zone either manipulate the car through a customized controller 

or with their mobile devices. Once the users activate their mobile devices, the camera 

feed from the robot will stream to their devices.  Otherwise, the feed will be displayed 

on the large LED screen.  

 

 

Figure 7-5 Floor Plan of the robotic zone in the exhibition hall 

 

Table 7-3 summarizes the required effort from different users according to the 

proposed development processes. In our scenario, three input devices and three output 

devices are involved. Device engineers are required to model the abstracted device 

interface and its corresponding device-dependent components while modality 

designers are required to model the modalities. Also, an analyzer for translating 
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incoming coordinates from tilting devices to orientation is developed by programmers 

and finally end-users create a mapping between modalities using the GUI editor.  

 

Table 7-3 Roles involved in different development processes and its corresponding MVC design 

pattern and description in i*Chameleon Platform 

Process Roles MVC Description 

Device Interface 

Modeling 
Device Engineer 

View & 

Controller 

1. Abstracted Device Component 

    - Wii Device 

    - iPhone 

    - i*CATch 

    - Desktop 

    - xBee location detector  

View 1. Desktop Computer (Screen) 

2. iPhone (Screen) 

3. i*CATch Robot 

4. xBee location detector 

Controller 1. Wii Controller 

2. iPhone (Accelerometer) 

3. Desktop with SAPI  

    (Voice recognition engine) 

Modality Modeling Modality Designer Modal 1. Input Modality Modeling 

    - Tilting (front / back / left / right) 

    - Voice input 

    - Video input  

2. Output Modality Modeling  

    - Robot move forward / backward, turn left /    

      right and stop 

    - Video output 

Signal Processing 

Algorithm 

Implementation 

Programmer Controller 1. Translate continues point set into orientation  

    (for detecting tilt events) 

2. Analyze xBee signal strength to determine     

    the client location  

Application Development  Interaction Designer View 1. Mapping between modalities 

 

7.2.1 Device Interface Modeling 

In our scenario, five devices are involved and Figure 7-6 shows an example of 

modeling of two of them, a Wii device and a desktop computer. Both of them are 

located in the exhibition area and Wii controller is connected to the i*Chameleon 

kernel by TCP/IP communication protocol while desktop’s signal is directly transfer 

by API call from the kernel.  Therefore, if the wireless signal strength is low, the 
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kernel will switch to using voice control if both devices are activated. Besides, 

referring to the operational environment, the vibration affects the Wii accelerometer 

while SAPI would not work properly in a noisy environment. So, the i*Chameleon 

platform can make of this criteria to select the accuracy of input devices according to 

the context.  

 

After translating the model into XML-based modeling language and compiling to the 

i*Chameleon kernel, device driver source code will be generated and the device will 

also be registered to the kernel. Abstract device components will be generated as an 

XML-based properties file while input interface components are publishers and output 

interface components are subscribers. The source code already includes the device 

description file, event listeners and communication protocol. Finally, the device 

engineer only needs to implement the layer between the generated blueprint and the 

device dependent library. 

 
Figure 7-6 An example to illustrate the modeling of will controller and desktop. 

 

7.2.2 Modality Modeling 
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When the hardware abstraction layers are modeled, modality designers are required to 

model the involved modalities at different abstraction levels and the modeling is 

independent of the implementation methodology of the kernel. Figure 7-7 shows four 

models of input modalities. When the user executes the “robot forward” command, it 

consists of two simultaneous and coordinated modalities: a button needs to be pressed 

and the orientation of the handheld device needs to be tilted towards the front. 

Therefore, it models the input modality ButtonPressWithTiltFront as the bottom right 

model in Figure 7-7. Besides, in order to detect the orientation of the handheld device, 

a continuous point set with (x,y,z) coordinates, Point3D, are required as input. With a 

suitable algorithm, tilt actions (front, back left and right) can be distinguished from 

Point3D modality components. So, points and translated tilting tokens are modeled as 

uni-modalities. The button press event is described as a sensory level, event-based 

input with associated with a Boolean variable. After that, when the programmers 

defines the algorithm component which subscribes Point3D and publish TiltFront, 

those defined modalities would be related and connected.  

 

 

Figure 7-7 Modeling of four input modalities of interactive robots control 
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Similar to abstract device components, a meta-model will be represented in XML and 

compiled to the i*Chameleon kernel. Point3D, TiltFront and other related modalities 

will be translated into source code and necessary event notifiers and listeners will also 

be generated. Therefore, modality engineers are not required to contribute any coding 

effort within this development process. 

 

7.2.3 Signal Processing Algorithm Implementation 

While device engineers generate the structure of the hardware drivers and modality 

designers define the abstracted modality definition, programmers are responsible for 

implementing the algorithm for translating from one modality to another modality. In 

our scenario, we need to analyze the Point3D data and retrieve the orientation and the 

signal strength of xBee to detect the location of the client. Therefore, regardless of the 

hardware used, once the kernel receives the continuous Point3D object, it will publish 

them to this algorithm so as to generate tilting events.  

 

In i*Chameleon, we developed a simple command line tool for generating the 

structure of the components. The following parameters are required: 

- Kernel IP address: The IP address of the i*Chameleon kernel. 

- Kernel Port number: The port number that match the i*Chameleon service. 

- Communication protocol: TCP/IP, xBee or Bluetooth to indicate the way of 

communication. Similar to the abstract device component, associated packages 

are generated and programmers do not required inputting any coding effort.  

- Subscribe modality: The signature of the required input modality.  

- Publish modality: The signature of the output modality.  

Syntax: 

call KernalIP KernelPort {tcpip|xbee|bluetooth} SubscribeModality PublishModality  

 

After the abstract classes have been generated for the algorithm component, 

programmers can continue the implementation of the needed algorithms. 

 

7.2.4 Application Development  

The final step of developing a multimodal application is mapping between the defined 

input modality components and output modality components. This process involves 

an interaction designer, who does not need to be a computing expert, using a drag-
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and-drop editor to do the mapping. After the modality designer deploys the 

components to the i*Chameleon kernel, the components will automatically be found 

in the graphical editors (shown in Figure 7-8).  

 

Figure 7-8 Commands created by interaction designers with using i*Chameleon graphic editor 

 

In our case, we have four sensory level input components (xBee Signal strength, 

Point3D, VideoStreamingIn and ButtonPress), four feature level input components 

(TiltFront, TiltBack, TiltRight and TiltLeft) and four decision level input components 

(ButtonPressWithTiltFront, ButtonPressWithTiltBack, ButtonPressWithTiltLeft, 

ButtonPressWithTiltRight and VoiceRecognizedStop). Besides, six uni-output 

modality components are defined (Location, VideoStreamingOut, LeftMotorOn, 

LeftMotorOff, RightMotorOn and RightMotorOff) and five multi-output modalities are 

deployed (RobotMoveForward, RobotMoveBackward, RobotMoveLeft, 

RobotMoveRight and RobotStop). For example, instructing the robot to move forward 

only requires the matching of ButtonPressWithTiltFront as the input component to 

RobotMoveForward as the output component, as shown in Figure 7-8 (upper). 

Besides, Table 7-4 also shows the use of OR gate to define a command.  In order to 

achieve our task, the following commands are created: 

 

Table 7-4 Modalities Mapping Table for Robot Control System 

Input Modality Output Modality Logic Gate Description 

ButtonPressWithTiltFront RobotMoveForward / Instructs the robot to move forward 

ButtonPressWithTiltBack RobotMoveBack / Instructs the robot to move backward 

ButtonPressWithTiltLeft RobotMoveLeft / Instructs the robot to turn left 

ButtonPressWithTiltRight RobotMoveRight / Instructs the robot to turn right 

ButtonPress RobotStop OR Instructs the robot to stop 
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VoiceRecognizedStop 

VideoStreamIn VideoStreamOut / 
Streaming the video signal from the robot to 

the screen 

 

 

7.2.5 Runtime  

The developed application can be executed from the graphic editor. When the 

multimodal application is executed, the kernel invokes a handshake protocol to make 

contact with all available devices. The devices respond by sending an XML-based 

configuration document to the kernel. The kernel sends its certification back to the 

devices to finish the handshake protocol. At the same time, if the components are 

distributed among the network, a handshake protocol will be issued in order to check 

the availability of the modalities. The initiation process is then completed.   

 

Handover of device components – In our case, a client can either control the robot 

using an iPhone (remote distance) or Wii (within the exhibition area). If the client 

uses the iPhone while no signal is being generated from the Wii controller, the iPhone 

will be activated as a controller; otherwise, Wii controller will be in active mode. 

Therefore, same modality components, algorithm and commands can be applied to 

different interaction widgets. Using the signal strength from xBee, a client’s location 

can be detected. With the device modeling, the kernel is able to determine which 

device should be trusted. The detected client’s location also helps the kernel to decide 

whether to stream the video signal to the screen of the mobile device or desktop 

computer.  

 

Dynamic adaption of components – With the use of publish and subscribe 

architectural pattern, components can be deployed to the kernel without restarting the 

application. Therefore, if the programmers develop another algorithm component to 

analyze the tilting events from raw data points, once deployment is finished, the 

kernel will compare the creditability of all available components and devices and 

choose the best subscriber.  
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Chapter 8. Conclusion  

This chapter concludes the thesis in two sections. The first section summarizes the 

research work and major contributions of the thesis, followed by pointing out the 

limitations of the proposed system. Finally, suggestions on possible further work on 

the proposed development cycle and multimodal platform are made.  

 

8.1 Summary of Research  

This thesis studies a generalized methodology and challenges of developing a 

multimodal application. We present a comprehensive development cycle with 

i*Chameleon middleware to deal with the static binding between different interactive 

components and the tight coupling between the application programming interfaces 

and the application programming sequences to the user’s interactions or dedicated to 

specific modalities. Besides, in order to decrease the complexity caused by the the 

multidisciplinary nature of multimodal interaction application development and to 

increase the efficiency of the integration of components, the model-view-controller 

design pattern is applied. Components are classified into different categories based on 

their functionality, interaction style, division of labor and separation of concerns. The 

clear separation-of-concerns realized in the design of i*Chameleon enables cross-

disciplinary collaboration among device engineers, modality designers, programmers 

and interaction designers in order to simplify and accelerate the application 

development process. It enables remote controlling and collaborative work among a 

group of people and fast integration of components. 

 

From the viewpoint of software engineering, meta-modeling is defined for each 

component and the complex development cycle is divided into four independent 

processes: (1) Device interface modeling – model device dependent output interface 

(View) and input interface (Controller), (2) Modality modeling – model the behaviors 

of input and output modalities (Model), (3) Signal processing algorithm 
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implementation – develop algorithm to translate modality from sensory level to 

decision level and (4) Application development with GUI editor – enable non-

computing users to create their own interactions. 

 

Finally, we have successfully developed two prototype platforms of i*Chameleon to 

validate our contributions in two different types of technologies: web services and 

publish/subscribe middleware. While using the same modeling technique, different 

interactive components can be generated. The web service architecture provides a 

standard SOAP for communication among different components over the Internet 

while the publish/subscribe paradigm allows components to be plugged-in and 

detached from the kernel dynamically. Also, the publish/subscribe paradigm supports 

dynamic binding. During the runtime environment, the i*Chameleon kernel can bind 

to different components according to the task or the content environment in order to 

provide the best experience to the end-users.  

 

We simulate two multimodal applications, a collaborative tangible musical interfaces 

and a robot car control application, to demonstrate the development process according 

to our suggested procedure. The result shows that the use of MVC design pattern can 

clearly separate the application into different components and each component can be 

deployed independently. It not only increases the flexibility and reusability of the 

interaction components, but also shows itself to be successful and effective in 

facilitating user-customizable multimodal interaction for a variety of environments 

and requirements.  

 

8.2 Future Work 

One direction for future work will be the use of modalities among different users. 

Once the hardware and software platform is developed, the interpretation of the input 

modalities according to the culture, context environment or other human-oriented 

factors needs to be studied. One way to approach the problem is to build a general 

model for “mobile interaction for kids”. This can provide an ontology for multimodal 

human computer interaction. This could be done by user experiments over the 

i*Chameleon platform, especially studying the self-customized commands. For 
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example, novice users can be invited to design their own multimodal commands for 

controlling a photo viewer. Since most of the existing platforms can only provide 

limited commands for selection and those commands cannot be customized, 

i*Chameleon can overcome this limitation and offers a better user experience and rich 

sets of user experience data for both customers and programmers. 

 

In term of software engineering, although the discussed methodology can facilitate the 

development procedures of multi-modal applications, more research is still needed to 

define a generalized architectural pattern or meta-model which can be applied to other 

domains. The challenges would be the interaction between components and users.  

 

Last but not the least, the ultimate goal for multimodal human computer interaction is 

to provide human-centered methodology for controlling applications. Tasks can be 

transferred from one device to another while commands can be adaptively changed 

according to the context and the processes need to be invisible for the customers. This 

facilitates the development of multimodal interaction and human computer 

interaction. 
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