

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

LOWER-ORDER PENALTY METHODS

 FOR NONLINEAR OPTIMIZATION AND
COMPLEMENTARITY PROBLEMS

BOSHI TIAN

Ph.D

The Hong Kong Polytechnic University

2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Applied Mathematics

Lower-Order Penalty Methods

for Nonlinear Optimization and

Complementarity Problems

Boshi Tian

A thesis submitted in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

January 2014

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the award of

any other degree or diploma of a university or other institute of higher learning, except

where due acknowledgment is made in the text.

(Signed)

Boshi TIAN (Name of student)

Abstract

The main purpose of this thesis is to propose efficient numerical methods to solve

inequality constrained nonlinear programming problems and complementarity problems

by virtue of the ℓ 1
p
(p > 1)-penalty function.

We propose an interior-point ℓ 1
p
-penalty method for inequality constrained optimiza-

tion problems by introducing a technique of the p-order relaxation to the nonconvex and

non-Lipschitzian ℓ 1
p
-penalty function and combining with an interior-point method. We

introduce different kinds of constraint qualifications to establish first-order necessary

conditions for the relaxed problem. We employ the modified Newton method to solve

a sequence of logarithmic barrier subproblems and detail three reliable algorithms by

using the Armijo line search. We prove that the iteration sequence generated by the

proposed method converges to some KKT (or FJ) point of the original problem under

mild conditions. Preliminary numerical experiments on small, medium and large test

problems in the literature show that, comparing with some existing interior-point ℓ1-

penalty methods, the proposed method is competitive in terms of the iteration numbers,

better when comparing the number of updating the penalty parameters and more

reliable when comparing the relative error.

We introduce a box-constrained differentiable penalty method for nonlinear comple-

mentarity problems, which not only inherits the same convergence rate as the existing

ℓ 1
p
-penalty method but also overcomes its disadvantage of the non-Lipschitzianness.

We introduce a concept of a uniform ξ-P -function with ξ ∈ [1, 2), under which we

prove that the solution of box-constrained penalized equations converges to a solution

of the original problem at an exponential order. Instead of solving the box-constrained

penalized equations directly, we solve a corresponding differentiable least squares

problem by using a trust-region Gauss-Newton method to design the globally convergent

iv

method that allows arbitrary starting points for solving the complementarity problems.

Furthermore, we establish the connection between the local solution of the least squares

problem and the solution of the original problem under mild conditions. We carry out

the numerical experiments on the test problems from MCPLIB, which show that the

proposed method is efficient and robust.

We investigate an unconstrained differentiable penalty method for general com-

plementarity problems without introducing artificial variables, which shares the

exponential convergence rate under the assumption of a uniform ξ-P -function. Instead

of solving the unconstrained penalized equations directly, we solve a corresponding

differentiable least squares problem by using a trust-region Gauss-Newton method.

Preliminary numerical experiments show that the proposed method is more robust

than the box-constrained differentiable penalty method.

v

Acknowledgments

I would like to thank my supervisor Prof. Xiaoqi Yang for providing the vision and

support for this work throughout my years in Hong Kong. His support not only includes

mathematical guides to my research, but also providing adequate funds for conducting

my research. I am grateful for his kindness, encouragement and patience. I wish to

thank Prof. Cedric, Ka-Fai, Yiu (Hong Kong Polytechnic University) as the Chair of

my oral defense and thank Prof. Boris Mordukhovich (Wayne State University) and

Prof. Xiaoming, Yuan (Hong Kong Baptist University) as the examiners of my oral

defense.

I would like to thank Prof. Donghui Li (South China Normal University) and

Prof. Jinping Zeng (Dongguan University of Technology) for their sustained help and

encouragement. I wish to thank Prof. Weijun Zhou (Changsha University of Science

& Technology) and Prof. Zhe Sun (Jiangxi Normal University) for their suggestions

during the course of this research. I had many fruitful and stimulating discussions

with them. To my academic brothers, Prof. Kai Zhang (Shenzhen University), Prof.

Kaiwen Meng (Southwest Jiaotong University), Dr. Yaohua Hu and Dr. Zhangyou

Chen, I am grateful to them for their help and friendship. In addition, I wish to thank

all fellow graduate students for their friendship. They made my time at The Hong Kong

Polytechnic University more enjoyable.

Last but not least, I would like to thank my parents. They gave me the whole life

and have always encouraged me to keep on studying. To my sister Jingjing Tian and

brother Shiye Tian, I am grateful to their love and support. Many thanks to my wife

Qiaoling Li. I thank her for her love, encouragement and tolerance.

vi

Contents

Abstract. iv

Acknowledgment. vi

Chapter 1 Introduction 1

1.1 Nonlinear Programming Problems . 1

1.1.1 Constraint Qualifications . 2

1.1.2 Penalty Methods . 4

1.1.3 Interior-Point Penalty Methods 11

1.2 Complementarity Problems . 16

1.2.1 Equation-Based Methods . 17

1.2.2 Power Penalty Method . 19

1.3 Notation . 20

1.4 Motivation and Outline of the Thesis 23

Chapter 2 An Interior-Point ℓ 1
p
-Penalty Method for Nonlinear Opti-

mization 26

2.1 Introduction . 26

2.2 p-Order Relaxation of the ℓ 1
p
-Penalty Problem 27

2.2.1 Exact Penalization . 30

2.2.2 First-Order Necessary Conditions 32

2.3 Interior-Point ℓ 1
p
-Penalty Method . 39

2.3.1 A Basic Interior-Point Method 39

2.3.2 Updating the Lagrange Multipliers 42

2.3.3 Specific Algorithms . 43

2.3.4 Convergence Analysis . 45

2.4 Numerical Experiments . 54

2.4.1 Experiments with the Different Power p 56

vii

2.4.2 Experiments with Small-Scale and Medium-Scale Problems . . . 59

2.4.3 Experiments with Large-Scale Problems 61

2.4.4 Experiments with Degenerate Problems 63

Chapter 3 A Box-Constrained Differentiable Penalty Method for

Nonlinear Complementarity Problems 65

3.1 Introduction . 65

3.2 Box-Constrained Differentiable Penalty Method 67

3.2.1 Uniform ξ-P -function . 67

3.2.2 Box-Constrained Differentiable Penalty Method 72

3.2.3 Convergence Rate Analysis . 73

3.3 Numerical Algorithms . 77

3.3.1 Convergence Analysis . 80

3.4 Numerical Experiments . 84

Chapter 4 An Unconstrained Differentiable Penalty Method for Gen-

eral Complementarity Problems 94

4.1 Introduction . 94

4.2 Unconstrained Differentiable Penalty Method 96

4.3 Numerical Algorithms and Experiments 103

4.3.1 Convergence Analysis . 104

4.3.2 Numerical Algorithms . 106

4.3.3 Numerical Experiments . 107

Chapter 5 Conclusion and Future Work 113

5.1 Conclusion . 113

5.2 Future Work . 115

Bibliography 117

viii

List of Abbreviations

KKT Karush-Kuhn-Tucker

FJ Fritz-John

CQ Constraint qualification

GCQ Guignard constraint qualification

ACQ Abadie constraint qualification

LICQ Linear independence constraint qualification

MFCQ Mangasarian-Fromovitz constraint qualification

EMFCQ Extended Mangasarian-Fromovitz constraint qualification

SQP Sequential quadratic programming

Sℓ1QP Sequential ℓ1 quadratic programming

GCP General complementarity problem

NCP Nonlinear complementarity problem

LCP Linear complementarity problem

MiCP Mixed complementarity problem

OPDCs Optimization problem with degenerate constraints

ix

List of Algorithms

IPLOP Interior-Point Lower-Order Penalty Method

PIPAL-c Penalty-Interior-Point Algorithm with conservative updates

PIPAL-a Penalty-Interior-Point Algorithm with aggressive updates

CDLOP Constrained Differentiable Lower-Order Penalty Method

SLOP1/2 Smoothing Lower-Order Penalty Method with p = 2

SSOOP1 Semismooth One-Order Penalty Method

SAM Smoothing Approximation Method

NSEM Nonsmooth Equations Method

UDLOP Unconstrained Differentiable Lower-Order Penalty Method

EGA12 Extra-Gradient Method with Modifications 1 and 2

x

List of Tables

Table 2.1 Input parameter values for the IPLOP method. 55

Table 2.2 Problem names for the first test set. 56

Table 2.2 Problem names for the first test set (continued). 57

Table 2.3 Abbreviations on the experiments for large scale problems. 62

Table 2.4 Performance of the IPLOP1/2 method to large-scale problems. . . 62

Table 2.5 Classification rules for degenerate test problems. 63

Table 2.6 Problem names for the third test set. 63

Table 3.1 Problem characteristics and starting intervals. 85

Table 3.2 Numerical results for methods of EGA12 and CDLOP. 90

Table 4.1 Abbreviations for some existing methods. 107

xi

List of Figures

Figure 2.1 Performance profiles based on the number of iterations for the

IPLOP method with the different p. 58

Figure 2.2 Performance profiles based on the values of the penalty parameter

for the IPLOP method with the different p. 59

Figure 2.3 Performance profiles based on the number of iterations for the

IPLOP1/2, PIPAL-a and PIPAL-c methods. 60

Figure 2.4 Performance profiles based on the values of the penalty parameter

for the IPLOP1/2, PIPAL-a and PIPAL-c methods. 60

Figure 2.5 Performance profiles based on the relative error for the IPLOP1/2,

PIPAL-a and PIPAL-c methods. 61

Figure 2.6 Performance profiles based on the relative error of degenerate test

problems for the IPLOP1/2, PIPAL-a and PIPAL-c methods. 64

Figure 3.1 Performance profiles based on the number of function evaluations

for the CDLOP1/2, SLOP1/2 and SSOOP1 methods. 86

Figure 3.2 Performance profiles based on the values of the penalty parameter

for the CDLOP1/2, SLOP1/2 and SSOOP1 methods. 87

Figure 3.3 Performance profiles based on the number of function evaluations

for the CDLOP method with the different p. 87

Figure 3.4 Performance profiles based on the values of the penalty parameter

for the CDLOP method with the different p. 88

Figure 3.5 Performance profiles based on the number of function evaluations

for the CDLOP method with p = 100, the SAM and NSEM methods. . 89

Figure 3.6 Performance profiles based on different values of the starting

penalty parameter for the CDLOP method with p = 100. 91

Figure 3.7 Performance profiles based on different rules of adjusting the

penalty parameter for the CDLOP method with p = 100. 91

xii

Figure 3.8 Performance profiles based on different accuracy of solving the

subproblems for the CDLOP method with p = 2. 92

Figure 3.9 Performance profiles based on different accuracy of solving the

subproblems for the CDLOP method with p = 100. 93

Figure 4.1 Performance profiles based on the number of function evaluations

for the CDLOP1/2, UDLOP1/2 and SSOOP1 methods. 108

Figure 4.2 Performance profiles based on the values of the penalty parameter

for the CDLOP1/2, UDLOP1/2 and SSOOP1 methods. 109

Figure 4.3 Performance profiles based on the number of function evaluations

for the UDLOP method with different p. 109

Figure 4.4 Performance profiles based on the values of the penalty parameter

for the UDLOP method with different p. 110

Figure 4.5 Performance profiles based on the number of function evaluations

for the CDLOP1, UDLOP1 and SSOOP1 methods. 110

Figure 4.6 Performance profiles based on the values of the penalty parameter

for the CDLOP1, UDLOP1 and SSOOP1 methods. 111

Figure 4.7 Performance profiles based on the number of function evaluations

for the CDLOP1/100, UDLOP1/100, SAM and NSEM methods. 112

xiii

Chapter 1

Introduction

1.1 Nonlinear Programming Problems

Consider the inequality constrained nonlinear programming problem

min f(x)

s.t. ci(x) ≤ 0, i ∈ I,
(1.1.1)

where the functions f and ci : Rn → R are assumed to be twice continuously

differentiable and I = {1, 2, . . . ,m}. We define the feasible set F to be the set of

the points x satisfying the constraints, that is, F := {x | ci(x) ≤ 0, i ∈ I}. A

vector x∗ ∈ Rn is called a local solution of problem (1.1.1) if x∗ ∈ F and there is a

neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N ∩ F . Similarly, a point x∗

is called a strict local solution of problem (1.1.1) if x∗ ∈ F and there is a neighborhood

N of x∗ such that f(x∗) < f(x) for all x ∈ N ∩ F with x ̸= x∗.

1

1.1.1 Constraint Qualifications

To state the first-order necessary conditions for x∗ to be a local solution of problem

(1.1.1), the Lagrange function of problem (1.1.1) is defined as

L(x, λ) := f(x) +
∑
i∈I

λici(x), (1.1.2)

where λ = (λ1, . . . , λm)
T ∈ Rm is the Lagrange multiplier vector. The first order

necessary conditions hold at x∗ if there exists a vector λ∗ ∈ Rm such that (x∗, λ∗) is a

solution to the nonlinear system

∇f(x) + A(x)λ = 0, (1.1.3a)

ci(x)λi = 0, ∀ i ∈ I, (1.1.3b)

λi ≥ 0, −ci(x) ≥ 0, ∀ i ∈ I, (1.1.3c)

where ∇f(x) denotes the gradient of f(x) and A(x) is the transpose of the Jacobian

matrix of c(x) := (c1(x), . . . , cm(x))
T at x, i.e., A(x) := [∇c1(x), . . . ,∇cm(x)]. The

first-order necessary conditions are known as the Karush-Kuhn-Tucker (KKT, for short)

conditions, which were derived independently by Karush [99] and by Kuhn and Tucker

[100]. Such a point x∗ is called a KKT point of problem (1.1.1). The Fritz John (FJ, for

short) conditions are said to be satisfied if there exist a constant λ∗
0 ∈ R and a vector

λ∗ ∈ Rm such that (x∗, λ∗
0, λ

∗) is a solution to the nonlinear system

λ0∇f(x) + A(x)λ = 0,

ci(x)λi = 0, ∀ i ∈ I,

λ0 ≥ 0, λi ≥ 0, −ci(x) ≥ 0, ∀ i ∈ I.

Such x∗ is called a FJ point, which was introduced by Fritz John [67]. Algorithms for

solving problem (1.1.1) often focus on producing points that satisfy the KKT conditions.

It is worth noting that the KKT conditions may not hold at local solutions of problem

(1.1.1) unless some constraint qualification (CQ, for short) is satisfied.

The active set I(x) at any feasible point x consists of indices of inequality constraints

i for which ci(x) = 0, that is, I(x) := {i ∈ I | ci(x) = 0}. The Bouligand tangent cone

2

and linearized tangent cone of F at x∗ are defined, respectively, by

TF(x
∗) := {d ∈ Rn | ∃tk → 0+, ∃dk → d, s.t. x∗ + tkdk ∈ F , ∀ k}

and

LF(x
∗) := {d ∈ Rn | ∇ci(x

∗)Td ≤ 0, ∀ i ∈ I(x∗)}.

It is important to note that LF(x
∗) only uses the information of gradients of constraints

and TF(x
∗) ⊂ LF(x

∗). The polar cone of LF(x
∗) is given by (see [151, Chapter 6])

LF(x
∗)∗ :=

{
v ∈ Rn | v =

∑
i∈I(x∗)

λi∇ci(x
∗), λi ≥ 0

}
.

The tangent cone is composed by the limits of directions that move inward of the

feasible set. By this fact, a necessary condition for a local solution x∗ of problem (1.1.1)

is presented by

−∇f(x∗) ∈ TF(x
∗)∗, (1.1.5)

which is also called a geometric necessary condition, as the tangent cone relays only

on the geometric specification of the feasible set F . The linearized tangent cone does,

however, depend on the algebraic specification of the feasible set F , and hence it can be

directly used in algorithms. If LF(x
∗)∗ = TF(x

∗)∗, then the necessary condition (1.1.5)

can be rewritten as

−∇f(x∗) ∈ LF(x
∗)∗,

which is exactly the KKT conditions. The Guignard constraint qualification (GCQ,

for short) [79] holds at x∗ if LF(x
∗)∗ = TF(x

∗)∗. The Abadie constraint qualification

(ACQ, for short) [1] holds at x∗ if LF(x
∗) = TF(x

∗).

The ACQ obviously implies the GCQ, whereas the converse in general is not true,

see [139] for a counterexample. It was noted in [4, 75] that the GCQ is the weakest

constraint qualification in the sense that the GCQ holds at x∗ if and only if the KKT

conditions hold at x∗ whenever a continuously differentiable objective function f has a

local solution at x∗ relative to the feasible set F . A common challenge of the ACQ and

the GCQ in numerical algorithms is that they are extremely difficult to be verified.

Apart from the GCQ and the ACQ, another two well known constraint qualifications

3

are presented as follows, which are important in establishing convergence results in

numerical algorithms [8, 128].

The linear independence constraint qualification (LICQ, for short) [56] holds at

x∗ if the vectors {∇ci(x
∗), i ∈ I(x∗)} are linearly independent. The Mangasarian-

Fromovitz constraint qualification (MFCQ, for short) [112] holds at x∗ if there exists a

vector d ∈ Rn such that

∇ci(x
∗)Td < 0, for all i ∈ I(x∗).

The MFCQ is a weaker condition than the LICQ and it is easy to construct examples

in which the MFCQ is satisfied but the LICQ is not; see [128, Exercise 12.13]. If x∗ is a

local solution of problem (1.1.1), then the KKT conditions hold at x∗ provided that the

LICQ or the MFCQ is satisfied. It was reported in [72] that the MFCQ is equivalent to

boundedness of the set of Lagrange multiplier vectors λ∗ for which the KKT conditions

are satisfied. In the case of the LICQ, this set consists of a unique vector λ∗.

1.1.2 Penalty Methods

Penalty methods are an important class of numerical optimization methods for solving

problem (1.1.1). Such methods essentially eliminate the constraints and replace them

with cost terms in the objective function so as to penalize violations in the original

constraints. The penalty functions associated with problem (1.1.1) can be written in

general as

P (x, ρ) := f(x) + ρQ(∥[c(x)]+∥), (1.1.6)

where ρ > 0 is the penalty parameter, ([c(x)]+)i = max{0, ci(x)}, for all i ∈ I, ∥ · ∥ is

any fixed vector norm in Rm, and Q is some function from the nonnegative real line

R+ into itself with the property that Q(t) = 0 if and only if t = 0. By making this

parameter ρ bigger and bigger, the penalization of constraint violations is more and

more severely, thereby forcing the minimizer of the penalty function closer and closer

to the feasible region of the original problem. The simplest penalty function of this

4

type is the quadratic penalty function

P2(x, ρ) := f(x) + ρ
∑
i∈I

([ci(x)]+)
2,

which is a natural result by setting Q(t) = t2 and using the ℓ2-norm in (1.1.6) and was

first used by Courant [41]. Extensive studies on the quadratic penalty function method

can be found in Fiacco and McCormick’s monograph [56]. Given penalty parameter

ρk, an approximate solution xk can be identified by minimizing the function P2(x, ρ
k)

by nonsmooth Newton methods [132, 146]. As ρk → ∞, the KKT conditions hold at

the limit point x∗ if the LICQ holds at x∗. However, the minimization of the function

P2(x, ρ
k) becomes more and more difficult to perform when ρk becomes very large as

the approximate Hessian matrix becomes ill-conditioned near x∗.

In order to overcome the drawback of the quadratic penalty function method, exact

penalty functions were proposed to solve problem (1.1.1). The exact penalization means

that there exists a threshold ρ̂ > 0 such that for any ρ ≥ ρ̂, the unconstrained

minimizing points of penalty functions are also solutions of problem (1.1.1). This

property is desirable because it makes the performance of penalty methods less

dependent on the strategy for updating the penalty parameter. The quadratic penalty

function is not exact because its minimizer is generally not the same as the solution of

problem (1.1.1) for any finite penalty parameter ρ.

The classical ℓ1-penalty function is included in this class of exact penalty functions

P1(x, ρ) := f(x) + ρ
∑
i∈I

[ci(x)]+, (1.1.7)

which is obtained from (1.1.6) by setting Q(t) = t and using the ℓ1-norm. Under the

convexity of the objective function and constraints, and the assumption that the strict

feasible set is nonempty, Zangwill [184] proved that the solutions of problem (1.1.1) are

the unconstrained minimizing points of the ℓ1-penalty function for all sufficiently big

values of the penalty parameter ρ. Pietrzykowski [141] proved that, if x∗ is a strict

local solution of problem (1.1.1) and the LICQ holds at x∗, then x∗ is a local solution

of the ℓ1-penalty function for all ρ sufficiently big. The same result was shown by Han

and Mangasarian [80] by assuming the MFCQ, a weaker condition than the LICQ.

5

Furthermore, Han and Mangasarian established a well-known theorem that if the ℓ1-

penalty function is exact at x∗, then the KKT conditions hold. Using this theorem, we

may interpret the existence of a local solution to the exact penalty function as constraint

qualification which ensures the satisfaction of the KKT conditions at a local solution

of problem (1.1.1).

The existence of exact penalty functions can be viewed as a consequence of regularity

conditions such as error bounds [134] and metric regularity [10, 34, 120]. One of the

weakest conditions was known as the calmness which was originally formulated by

Rockafellar and first appeared in the literature of Clarke [33]. The calmness can be

utilized to provide some full characterizations of the exact penalization. Consider the

perturbed nonlinear programming problem

min f(x)

s.t. x ∈ M(u),
(1.1.8)

where M : Rm → Rn is a set-valued mapping defined by

M(u) := {x ∈ Rn | ci(x) ≤ ui, ∀ i ∈ I}.

It is clear that problem (1.1.8) with u = 0 is exactly the same as problem (1.1.1). Let

x∗ be a solution of problem (1.1.1). According to Clarke [34, Definition 6.4.1], problem

(1.1.1) is calm at x∗ provided that there exist positive constants ϵ and ᾱ such that for

all u ∈ ϵB and x ∈ x∗ + ϵB which are feasible for problem (1.1.8), one has

f(x) + ᾱ∥u∥ ≥ f(x∗),

where B is a unit ball centered at origin and ∥z∥ stands for the norm of z in Rm and here

we can specify it to be the ℓ1-norm without loss of generality. Burke [11, Definition 1.1]

introduced another definition of the calmness, which varies from the definition given

above in that the variable u is not restricted to an ϵ neighborhood of the origin in order

for the above inequality to hold. It was proved that the restriction on the choice of

perturbation u is redundant when ci(x) are continuous for all i ∈ I, see [11, Proposition
2.1]. Without considering the existence of a solution of problem (1.1.8), the calmness

6

can also be defined by using the perturbation function V (u) given by

V (u) :=

{
+∞, if {x : x ∈ M(u)} = ∅,
min{f(x) : x ∈ M(u)}, otherwise.

Problem (1.1.1) is said to be calm at x∗ ([11]) if

lim inf
u→0

V (u)− V (0)

∥u∥
> −∞. (1.1.9)

The fact that the calmness implies the existence of an exact penalty parameter was

established by Clarke [34, Proposition 6.4.3]. However, the reverse implication and the

precision of this correspondence was first established by Burke ([11, Theorem 1.1], also

see [12, Theorem 2.1]). Therefore, the notion of the calmness is in a sense equivalent

to the notion of the exact penalization. The calmness hypothesis is quite weak and in

many situations is easily verified.

Unfortunately, the ℓ1-penalty function is nonsmooth and nondifferentiable, many

effective algorithms such as quasi-Newton methods [103] cannot be adequately used.

And general techniques for nondifferentiable optimization such as bundle methods

[86], are also not efficient, as they do not take account of the special nature of the

nondifferentiabilities. Even through the ℓ1-penalty function is nondifferentiable, it has

a directional derivative D(P1(x, ρ); d) along any direction d ∈ Rn given by

D(P1(x, ρ); d) := lim
ϵ→0+

P1(x+ ϵd, ρ)− P1(x, ρ)

ϵ
.

And the direction derivative of the function P1(x, ρ) at a feasible point x along a

direction d can be easily written as

D(P1(x, ρ); d) := ∇f(x)Td+ ρ
∑
i∈I(x)

[∇ci(x)
Td]+.

A point x∗ ∈ Rn is called a stationary point of the ℓ1-penalty function ifD(P1(x
∗, ρ); d) ≥

0 for all d ∈ Rn. An important theorem [128, Theorem 17.4] states that if x∗ is

a stationary point of P1(x, ρ) for all ρ bigger than a certain threshold ρ̂ > 0 and

x∗ ∈ F then it satisfies the KKT conditions of problem (1.1.1). The existence of the

the threshold ρ̂ > 0 can be guaranteed by the exact penalization of the ℓ1-penalty

7

function P1(x, ρ). Therefore, the function P1(x, ρ) can be used as a merit function in

some iteration methods such as sequential quadratic programming (SQP) methods [63]

to guarantee the global convergence of the iteration sequence by accepting or rejecting

a trial step. The global convergence means that, under certain common assumptions,

the iteration sequence converges to some KKT point of problem (1.1.1) from remote

starting points. Fletcher [63] introduced a piecewise linear-quadratic model of P1(x, ρ)

to compute an approximate descent direction d. The model is given by

q(d, ρ) := f(x) +∇f(x)Td+
1

2
dTHd+ ρ

∑
i∈I

[ci(x) +∇ci(x)
Td]+,

where H is a symmetric matrix approximating the Hessian of the Lagrange function

(1.1.2). The model q(d, ρ) is nonsmooth, but can be recast as a smooth quadratic

programming problem by introducing artificial variables si as follows

min
d,s

f(x) +∇f(x)Td+
1

2
dTHd+ ρ

∑
i∈I

si

s.t. ci(x) +∇ci(x)
Td ≤ si, i ∈ I,

si ≥ 0, i ∈ I.

(1.1.10)

A standard sequential quadratic programming algorithm can be used to solve problem

(1.1.10). Once the solution d is found, a line search such as Armijo line search or

Wolfe line search is performed in the direction d to ensure that a sufficient decrease

in the ℓ1-exact penalty function P1(x, ρ) is achieved at the new iterate. The iteration

method stated above is referred to as the sequential ℓ1 quadratic programming (Sℓ1QP,

for short) which was proposed by Fletcher [63] and fully investigated in [128]. The

Sℓ1QP approach not only overcomes the difficulties posed by inconsistent constraint

linearizations [63] but also can solve certain class of problems in which standard

constraint qualifications such as the LICQ and the MFCQ are not satisfied [3, 102].

Further, there is no requirement for matrix H to be positive definite. However, this

approach may fail to converge rapidly because it rejects steps that make good progress

toward a solution. This undesirable phenomenon is called the Maratos effect, which

was observed by Maratos [114]. A well-known example was constructed by Powell [144]

to verify the Maratos effect. A great deal of effort has been made to overcoming this

phenomenon, leading to the development of the so called watchdog (or nonmonotone)

8

techniques [21, 77] and second-order correction techniques [38, 61, 62].

The choice of the penalty parameter ρ plays an important role in the efficiency of the

Sℓ1QP method. Examples [20] were given to show that if the penalty parameter ρ is too

small, the ℓ1-penalty function may be unbounded below, and the iterates diverge unless

the value of ρ is corrected in time; if ρ is too big, the efficiency of the penalty approach

may be impaired. Existing strategies [74, 119] for updating the penalty parameter ρ

adaptively are based on tracking the size of the Lagrange multipliers or checking the

optimality conditions for the ℓ1-penalty function P1(x, ρ). As pointed out by Fletcher

and Leyffer [64], these strategies are not without problems.

A breakthrough in updating the penalty parameter ρ for Sℓ1QP methods with line

search was the introduction of steering rules [17, 20] that adjust the penalty parameter

dynamically at every iteration to ensure sufficient progress in linear feasibility and

to promote acceptance of the step. In order to adjust the penalty parameter, an

auxiliary linear programming problem must be solved and the quadratic programming

problem (1.1.10) must be computed one or more times using big values of the penalty

parameter. This extra cost may not be significant to small- or medium-scale problems

because warm starts can be employed in the solution of these additional quadratic

programming problems. However, these extra costs may be potentially expensive to

large-scale problems.

Recently, many researchers are interested in a new type of nonlinear exact penalty

functions called the ℓ 1
p
(p > 1) (or lower order)-penalty function

P 1
p
(x, ρ) := f(x) + ρ

∑
i∈I

([ci(x)]+)
1
p , (1.1.11)

which also can be obtained from P (x, ρ) by setting Q(t) = t and replacing the norm

∥ · ∥ with the nonlinear operator ∥z∥
1
p
1
p

=
m∑
k=1

|zk|
1
p . This type of penalty function has

been employed in the study of mathematical programs with equilibrium constraints

and error bounds; see, e.g., Luo et al. [109] and Pang [134]. Necessary and sufficient

conditions for the exact penalization of the ℓ 1
p
-penalty function have been established

9

in [152, 153] by virtue of the following generalized calmness condition

lim inf
u→0

V (u)− V (0)

∥u∥
1
p

> −∞, (1.1.12)

which is weaker than the calmness condition (1.1.9). Therefore, one advantage of the

ℓ 1
p
-penalty function is that it requires, in general, weaker conditions than the ℓ1-penalty

function for the exact penalization representation, see Huang and Yang [89]. It also

was shown in [152, 154] that the smallest exact penalty parameter corresponding to the

ℓ 1
p
-penalty function is substantially smaller than that of the ℓ1-exact penalty function.

Although the penalty parameter can be adjusted dynamically by using the steering

rules, a smaller exact penalty parameter plays an important role in the efficiency in the

numerical implementation.

However, the function P 1
p
(x, ρ) is referred to as a non-Lipschitzian function because

it may be not locally Lipschitz at the point where ci(x) = 0. It is well known that the

ℓ1-exact penalty function implies the KKT conditions of problem (1.1.1). For the ℓ 1
p
-

exact penalty function, this implication does not hold in general. For example, consider

the simple problem of minimizing x subject to x2 ≤ 0, for which the KKT conditions

do not hold at the local solution x = 0. The ℓ1-penalty function for this problem is not

exact at x = 0, but the ℓ 1
p
-penalty function with p = 2 is exact at x = 0. Therefore,

not every ℓ 1
p
-exact penalty function can be qualified for detecting the KKT conditions.

A breakthrough in establishing the existence of Lagrange multipliers for problem

(1.1.1) by virtue of the ℓ 1
p
-exact penalty function was done by Yang and Meng [181]

by introducing a type of conditions in terms of first-order and (generalized) second-

order derivatives of the constraints. Furthermore, an example was given to show that

these conditions with p = 2 do not imply the weakest GCQ, and vice versa. Meng

and Yang [117] extended the work of Yang and Meng [181] by studying the theory

of deriving optimality conditions for problem (1.1.1) from very general exact penalty

functions, and developed a unified theory from a modern perspective of variational

analysis popularized by Rockafellar and Wets’ book [151].

The ℓ 1
p
-penalty function shares a greater chance to be exact than the ℓ1-penalty

function, and its exactness implies the KKT conditions under mild conditions.

However, the ℓ 1
p
-penalty function is nonsmooth, nonconvex and non-Lipschitz when

10

p > 1. Many well known optimization algorithms lack effectiveness and efficiency in

dealing with nonsmooth and nonconvex objective functions. Furthermore, for non-

Lipschitz continuous functions, the Clarke generalized gradients [34] cannot be used

directly in the analysis. Thus the minimization of the ℓ 1
p
-penalty function is not

an easy task. It has been shown that the smoothing approximate techniques are

efficient methods for solving certain specially structured nonsmooth problems, see

[32, 115, 118, 127, 177, 179, 180, 182].

Yang et al. [182] proposed a smoothing method for the ℓ 1
p
-exact penalty function.

They presented an algorithm for problem (1.1.1) based on the smoothed ℓ 1
p
-penalty

function and proved that the limiting point of the sequence for minimizing the smoothed

penalty function satisfies the KKT conditions as the smoothing parameter goes to zero.

Other smoothing methods have been proposed to smooth the ℓ 1
p
-penalty function in

[115, 118, 176, 177]. A great challenge for the smoothing methods is how to set the

value of the smoothing parameter. It is well known that the solutions of minimizing

the smoothed penalty problem are unstable as the smoothing parameter is sufficiently

small.

1.1.3 Interior-Point Penalty Methods

Interior-point methods have been proved to be successful for nonlinear optimization,

and are currently considered the most powerful algorithms for large-scale nonlinear

programming problems. The interior-point method (also called barrier method) was

proposed by Firsch [66] to solve convex programming problems. We define the log-

barrier function

B(x, µ) := f(x)− µ
∑
i∈I

logci(x), (1.1.13)

where µ > 0 is the barrier parameter and log(·) denotes the natural logarithm

function. The classical interior-point method consists of finding (approximate) solutions

of minimizing the barrier function (1.1.13) for a sequence of positive barrier parameter

µ that converges to zero. A first challenge of this method is how to find a strict

feasible initial point x0 with respect to the inequality constraints ci(x), i ∈ I. A second

challenge is that, in general, the Hessian matrix of the barrier function (1.1.13) becomes

increasing ill-conditioned as the solution is approached and is singular in the limit, see,

11

e.g., [108, 124].

In order to overcome the above drawbacks, Polyak [142] proposed the modified

barrier method, which minimizes the modified barrier function BM : Rn×Rm
+×R1

+ → R1

by the formula

BM(x, µ, ρ) :=

 f(x)− ρ−1
∑
i∈I

µilog(1− ρci(x)), if x ∈ intΩρ,

+∞, if x ̸∈ intΩρ,
(1.1.14)

where ρ > 0, Ωρ := {x ∈ Rn | 1 − ρci(x) ≥ 0, i ∈ I}, and ci(x), i ∈ I, are

convex functions. It is clear that the modified barrier method can handle infeasibility

naturally. As pointed out by Curtis [42] that the modified barrier method, which

essentially incorporates the Lagrange multiplier estimates to play the role of penalty

parameters within a logarithmic barrier term, could be seen as the first kind of interior-

point penalty methods. Under the assumption of the LICQ at the solution and other

standard assumptions, it was shown in [142] that the iteration sequence converges to

some KKT point. Moreover, a superlinear rate of convergence was established by virtue

of the Newton method.

Modern interior-point methods [128] are well known as infeasible interior-point

methods [19] which do not enforce satisfaction of the inequality constraints at each

iteration. They typically make use of slack variables to transform problem (1.1.1) into

the equivalent problem

min
x,s

f(x)

s.t. ci(x) + si = 0, i ∈ I,

si ≥ 0, i ∈ I.

(1.1.15)

Yamashita [178] proposed the interior-point (barrier) ℓ1-penalty method for problem

(1.1.15) in the following two steps. First, problem (1.1.15) is reformulated as a

logarithmic barrier subproblem

min
x,s

f(x)− µ
∑
i∈I

logsi

s.t. ci(x) + si = 0, i ∈ I,
(1.1.16)

which is an approximation to problem (1.1.15). Then, the Newton method is used to

12

solve the KKT conditions of problem (1.1.16). Under the assumption of the LICQ

for active constraints at the solution, the global convergence of this method using the

Armijo line search was established by employing the barrier-penalty function

ϕ1(x, s, ρ, µ) := f(x)− µ
∑
i∈I

logsi + ρ
∑
i∈I

|ci(x) + si|. (1.1.17)

It was shown in [178] that this method keeps the advantage of interior-point methods

for large-scale problems and overcomes the inevitable numerical difficulties occurred at

the final stage of iterations for the classical interior-point methods.

Wächter and Biegler [166] constructed a well-posed analytical example to illustrate

the failure of global convergence for a class of line search interior point methods [48,

165, 178] when starting from certain points. More examples were given by Byrd et

al. [18]. Careful examination shows that the main difficulty stems from the possible

rank deficiency of the Jacobian matrix for active inequality constraints at the infeasible

not-stationary point. This difficulty can be readily avoided in inequality constrained

problems by adding slack variables and employing certain feasibility control strategies;

see, e.g., [14, 105].

Conn et al. [36] proposed a new interior-point ℓ1-penalty method for problem

(1.1.1), which makes use of the ℓ1-exact penalty function (1.1.7). It is well known that

the minimization of the ℓ1-penalty function P1(x, ρ) can be reformulated as a smooth

problem [74, 76]

min
x,s

P S
1 (x, s, ρ) := f(x) + ρ

∑
i∈I

si

s.t. si − ci(x) ≥ 0, i ∈ I,

si ≥ 0, i ∈ I.

(1.1.18)

The point (x, s) is strictly feasible for problem (1.1.18) if the artificial variables are

sufficiently large. The interior-point method places the inequality constraints in a

barrier term leading to the following interior-point ℓ1-penalty problem

min
x,s

PB
1 (x, s, ρ, µ) := P S

1 (x, s, t, ρ)− µ
∑
i∈I

(
log(si − ci(x)) + logsi

)
(1.1.19)

where µ > 0 is the barrier parameter. Compared with the nondifferentiable merit

function ϕ1(x, s, ρ, µ) given in (1.1.7), the function PB
1 (x, s, ρ, µ) is twice continuously

13

differentiable under the assumptions of problem (1.1.1). They employed the trust region

method that incorporates exact second-order derivative information of the function

PB
1 (x, s, t, ρ, µ) to approximately solve problem (1.1.19). It is surprising that the

MFCQ holds at every feasible point of problem (1.1.18), regardless of any constraint

qualification being satisfied or not for problem (1.1.1). Then there always exist bounded

Lagrange multipliers for the KKT conditions of problem (1.1.18). It was shown in [76]

that the iteration sequence converges to some KKT point of problem (1.1.1) if there

exists a threshold ρ̂ > 0 such that for all ρi ≤ ρ̂, where {ρi} is the sequence of the

penalty parameter used to produce the iteration sequence. On the other hand, the

iteration sequence converges to some FJ point if the penalty parameter ρ goes to infinite

and the MFCQ fails to hold at the limit point. Furthermore, the local Q-superlinear

convergence was established under more restrictive assumptions such as the LICQ holds

for the active inequality constraints at the solutions of problem (1.1.1).

Combining the regularization effects on the constraints from the ℓ1-penalty function

and the efficiency of Newton-like methods in large-scale optimization problems from

interior-point methods, Curtis [42] introduced an interior-point ℓ1-penalty method for

problem (1.1.1). A common challenge in the implementation of both penalty methods

and interior-point methods is the design of an effective strategy for updating the penalty

and barrier parameters. Curtis presented an algorithm with novel feature on updating

them.

Hyrd et al. [14] introduced an interior-point ℓ2-penalty method, in which the merit

function was constructed only with primal variables and can be written as

ϕ2(x, s, ρ, µ) := f(x)− µ
∑
i∈I

logsi + ρ∥c(x) + s∥. (1.1.20)

This method applies the sequential quadratic programming techniques to a sequence

of barrier problems (1.1.15), and uses the trust-region to ensure the robustness of the

iteration and to allow the direct use of the second-order derivatives. The convergence

to KKT points was established by assuming the LICQ for active constraints at the

local solutions. Numerical experiments with an implementation of this method have

been performed in [15] and showed that this approach holds much more promise.

Furthermore, the superlinear convergence of this method was established in [16] under

14

suitable assumptions. Tseng [163] further studied this method and established the

convergence to KKT points under a relaxed MFCQ which is weaker than the LICQ

employed in [14]. Moreover, Tseng established convergence to second-order stationary

points under the LICQ, see [163, Corollary 6.2].

Using the same merit function ϕ2(x, s, ρ, µ), Liu and Sun [104, 106] introduced an

interior-point ℓ2-penalty method which has the theoretical properties of trust-region

methods, but works entirely by the line search. Instead of introducing additional trust-

region constraints, this method uses refined line search rules to generate a new iterate

in a decomposed SQP framework. The search direction is determined by either a

Newton-type step or a Cauchy-type step with the choice being made with reference to

a penalty parameter in the merit function. Global convergence properties were derived

without assuming regularity conditions, but a steepest descent approach would be used

whenever the Newton direction fails to be a descent direction. Doing so guarantees the

global convergence theoretically, but would greatly increase the iteration count within

an implementation. However, unlike the trust-region rules used in [14], their method

did not have the flexibility to allow the direct use of indefinite second-order derivatives.

This method was improved by Liu and Yuan [107] by using the null-space techniques.

Their proposed method approximately solves a sequence of subproblems (1.1.15) by

computing a range-space step and a null-space step in every iteration. Under very mild

conditions on range-space steps and approximate Hessian matrix, without assuming

any regularity, the same convergent results were established in [105]. Furthermore,

they analyzed the local convergence properties, and proved that by suitably controlling

the exactness of range-space steps and selecting the barrier parameter and Hessian

approximation, the approach generates a superlinear or quadratically convergent step.

Instead of using the SQP method and trust-region rules to solve barrier subproblem

(1.1.15) in [14, 105, 163], Chen and Goldfarb [31] introduced another interior-point ℓ2-

penalty method which applies a modified Newton method [6, 78, 167] to approximately

solve the KKT conditions of a sequence of barrier subproblems (1.1.15). This method

can be seen as the line search regularized Newton method that takes the advantage of

exact penalization of the ℓ2-merit function defined in (1.1.20). Under mild assumptions,

this method enjoys strong global convergence properties and fast local convergence after

a slight modification.

15

1.2 Complementarity Problems

The general complementarity problem (GCP, for short) is to find a vector x ∈ Rn such

that

F (x) ≤ 0, G(x) ≤ 0, F (x)TG(x) = 0,

where the functions F,G : Rn → Rn are assumed to be continuously differentiable.

It is well known that the GCP can be derived from the general variational inequality,

which is a powerful tool to prove the existence of a solution to the GCP and has been

fully studied in [129, 130, 137, 149] and the references therein. Some efficient methods

such as the projection equation and trust region methods [92, 187] have been proposed

for solving the GCP. As pointed out in [2] that the GCP can be reformulated as a

mixed complementarity problem (MiCP, for short), which is equivalent to a variational

inequality, see [50, Chapter 1]. In addition to optimization problems, many problems

in real world can be cast as MiCPs, such as Nash equilibrium problems [125, 126],

Oligopolistic electricity models [170], traffic equilibrium models [138], frictional contact

problems [140], nonlinear obstacle problems [131] and pricing American options [172].

Overviews of how this is accomplished are given in [45, 50, 54, 82, 155].

In particular, if G(x) ≡ x, the GCP reduces to a nonlinear complementarity problem

(NCP, for short) which was introduced by Cottle [39] for finding stationary points for

nonlinear programming problems. Specifically, the NCP is to find a vector x ∈ Rn such

that

F (x) ≤ 0, x ≤ 0, xTF (x) = 0.

Moreover, if F is an affine function, i.e., F (x) = Ax − b with a matrix A ∈ Rn×n and

a vector b ∈ Rn, then the NCP reduces to a linear complementarity problem (LCP, for

short), which in turn contains linear and quadratic programming problems as special

cases. A comprehensive investigation in the complementarity problems from the basic

theoretical results to numerical methods can be found in monographs [40, 50, 51] and

the vast references therein.

16

1.2.1 Equation-Based Methods

One type of the most powerful methods in solving the NCP is the equation-based

methods, which are to reformulate the NCP as a system of nonlinear equations, or

a minimization problem. A merit function whose global minima are the solutions of

the NCP plays a vital role in these methods, which is defined, if not always, by a

preliminary equation reformulation of the complementarity problem. Specifically, we

define a system of equations H(x) = 0, whose solutions coincide with the solutions

of the NCP, and then use the merit function Φ(x) := ∥H(x)∥2 (or ∥H(x)∥). There

are several ways to construct the system of equations H(x) = 0. Mangasarian [111]

introduced a class of smooth reformulations for H(x), which have been further explored

in [68, 94, 164]. A common drawback of the smooth reformulations as merit functions is

that differentiable merit functions often fail to provide a sound basis for the development

of fast local methods for degenerate problems, see [51, Proposition 9.1.1].

In the last two decades, the nonsmooth reformulations for H(x) have received great

attention [29, 43, 49, 52, 55, 58, 81, 83, 93, 95], since that they not only allow to define

superlinearly convergent algorithms for degenerate problens but also the subproblems

to be solved at each iteration tend to be more numerically stable. However, a price to

pay is that the globalization becomes more complex since the merit function ∥H(x)∥2

is once but not twice continuously differentiable. Fortunately, these merit functions are

B-differentiability [132, 133] or even semismoothness [146] that is a stronger analytical

property than the B-differentiability, so using the recent powerful theory for solving

B-differentiable equations [150] and semismooth equations [136, 145, 146], a fast local

algorithm that only requires the solution of one linear system at each iteration can be

developed to solve the NCP.

To construct the merit function for the NCP, a class of functions named NCP-

functions plays a significant role. A function ϕ : R2 → R is called NCP-function if it

satisfies ϕ(a, b) = 0 if and only if a ≤ 0, b ≤ 0, ab = 0. By using the NCP-function ϕ,

the merit function Φ : Rn → R for the NCP can be constructed by

Φ(x) :=


n∑

i=1

ϕ(xi, Fi(x)), if ϕ is nonnegative on R2,

n∑
i=1

ϕ(xi, Fi(x))
2, otherwise.

17

There are many functions that belong to the class of NCP-functions. The up-to-date

reviews on the NCP-functions can be found in [60, 69, 71, 160]. We recall three kinds

of NCP-functions which have been well studied in the literature.

(a) ϕNR(a, b) := max{a, b};

(b) ϕFB(a, b) :=
√
a2 + b2 + a+ b;

(c) ϕMS(a, b) := ab+ 1
2α

(
max{0, αb− a}2 − a2 +max{0, αa− b}2 − b2

)
, α > 1.

The function ϕNR can be rewritten as ϕNR(a, b) = max{b− a, 0} + a, which is due

to Wierzbicki [171]. The merit function Φ using the function ϕNR is well-known as

the natural residual, which have been fully investigated to design efficient algorithms

such as NE/SQP method [135] and smoothing methods [23, 25]. The function ϕFB

which was considered by Fischer [57] and attributed to Burmeister plays a central role

in the development of efficient algorithms for the NCP and has been intensively studied

in [49, 51, 52, 59, 60, 93, 95]. There are many variants of the ϕFB based on which

efficient numerical methods can be designed, such as generalized Fischer-Burmeister

(FB) functions [26, 28, 29, 91, 97, 162] and penalized FB functions [22, 24]. The

function ϕMS is nonnegative on R2 and the merit function based on it is the implicit

Lagrangian proposed by Mangasarian and Solodov [113].

Another key issue on the equation-based methods is the regular condition which is

used to guarantee that every stationary point of the merit function is a solution of the

NCP. Different regular conditions corresponding to different kinds of merit functions

have been proposed in [94, 113, 122, 147, 148]. Before listing them, we let J :=

{1, 2, . . . , n} and define the following three index sets at a solution x∗ of the NCP

α := {i ∈ J | x∗
i < 0};

β := {i ∈ J | x∗
i = 0 = Fi(x

∗)};

γ := {i ∈ J | Fi(x
∗) < 0}.

The solution x∗ is said to be nondegenerate if β = ∅. A matrix M ∈ Rn×n is called

a P -matrix if every of its principal minors is positive. We review two kinds of regular

conditions which have been widely used in the analysis for the NCP. The solution x∗ is

said to be

18

(a) b-regular if, for every every index set δ such that α ⊆ δ ⊆ α ∪ β, the principal

submatrix ∇Fδδ(x
∗) is nonsingular;

(b) R-regular if ∇Fαα(x
∗) is nonsingular and the Schur complement of ∇Fαα(x

∗) in

(
∇Fαα(x

∗) ∇Fαβ(x
∗)

∇Fβα(x
∗) ∇Fββ(x

∗)

)

is a P -matrix, where ∇F (x∗) denotes the Jacobian matrix of function F at x∗.

Note that R-regularity implies b-regularity [135, 147], while b-regularity guarantees

local uniqueness of the solution x∗ [52, 101]. Some latest reviews on regular conditions

for the NCP can be found in [43, 52, 59]. Jiang and Qi [93] proposed a distinctive

regular condition for the merit function Φ generated by ϕFB, which requires that the

function F is a uniform P -function. A function F : Rn → Rn is called a uniform

P -function [121] if there exists a constant α > 0 such that

max
1≤i≤n

(yi − xi)
(
Fi(y)− Fi(x)

)
≥ α∥y − x∥2, for all x, y ∈ Rn.

Under this regular condition, they proved that every stationary point of the uncon-

strained problem is a global solution; furthermore, the level sets of the merit function

are bounded. Geiger and Kanzow [73] proved the former if the function F is monotone,

and the latter if the function F is strongly monotone.

1.2.2 Power Penalty Method

Recently, the power penalty method has received a great deal of attention in solving

complementarity problems. The general power penalty problem for the NCP is to

transform it into the following nonlinear equations, which are to find a vector xρ ∈ Rn

satisfying

F (x) + ρ[x]
1
p

+ = 0, (1.2.21)

where ρ > 0 is the penalty parameter, p ≥ 1 is the power, [x]
1
p

+ is a vector with

components ([x]
1
p

+)i = max{xi, 0}
1
p for all i ∈ J . As p = 1, the power penalty method

reduces to the classical ℓ1-penalty method which was proposed by Bensoussan and Lions

[7] for solving the continuous variational inequality. They proved that the solution xρ

19

converges to a solution x∗ of the NCP at a rate ofO(ρ−
1
2), that is, there exists a constant

C > 0 such that

∥xρ − x∗∥ ≤ Cρ−
1
2 .

Furthermore, the ℓ1-penalty method was widely used to solve the LCP arising from

American options [44, 65, 143, 172, 188], the Hamilton-Jacobi-Bellman (HJB) equations

in finance [173, 174] and obstacle problems [156]. This square root rate of convergence

requires that ρ is sufficiently big so as to achieve a given accuracy of the approximate

solution. However, researchers in [63, 188] pointed out that big values of the penalty

parameter ρ result in poorly conditional algebraic problems in solving nonlinear

equations (1.2.21).

As p > 1, the power penalty method becomes the ℓ 1
p
-penalty method which was

proposed by Wang et al. [169] to solve the LCP arising from American options. They

proved the solution xρ converges to x∗ at a rate of O(ρ−
p
2), which improves significantly

the existing theoretical result of the square root rate of convergence mentioned above.

Zhang applied the ℓ 1
p
-penalty method to solve more models from American options

[185, 186]. Furthermore, Huang and Wang [87] extended the ℓ 1
p
-penalty method to solve

the NCP and they showed that the convergence rate between the solution of penalized

equations and that of the NCP is of order O(ρ−
p
ξ), provided that the function F is

continuous and ξ-monotonicity for a positive constant ξ > 1. The same convergence

rate has been established in [88] for the ℓ 1
p
-penalty method in solving the MiCP.

The ℓ1-penalized equations can be solved efficiently by nonsmooth Newton methods

[132, 146]. However, it is unfortunate that all efficient methods for nonlinear equations

cannot be used to solve the ℓ 1
p
-penalized equations directly as the ℓ 1

p
-penalized term is

not locally Lipschitz. Some smoothing methods have been introduced to approximately

solve the ℓ 1
p
-penalized equations in [169, 185]. A vital drawback of smoothing methods

is that their solutions become unstable as the smoothing parameter is sufficiently small.

1.3 Notation

In this thesis, the notation is standard. The space of real vectors of length n is denoted

by Rn, while the space of realm×nmatrices is denoted by Rm×n. We write Rn
+ to denote

20

the set of nonnegative real vectors of length n, while Rn
++ to denote the set of positive

real vectors of length n. Given a vector x ∈ Rn, we use xi to denote its i-th component.

We invariably assume that x is a column vector, and its transpose is denoted by xT

which is a row vector. We write x ≥ 0 to indicate componentwise nonnegativity, that

is, xi ≥ 0 for all i = 1, . . . , n, while x > 0 indicates that xi > 0 for all i = 1, . . . , n.

We write [x]+ to indicate a new vector with components ([x]+)i = max{xi, 0} for all

i = 1, . . . , n, while [x]σ+ indicates that ([x]σ+)i = max{xi, 0}σ for all i = 1, . . . , n, with

given real number σ ≥ 0. We write [x]− to indicate a new vector with components

([x]−)i = max{−xi, 0} for all i = 1, . . . , n. We write X = diag(x) to indicate a diagonal

matrix X ∈ Rn×n whose i-th diagonal element is xi for all i = 1, . . . , n. We write

∥x∥, ∥x∥1 and ∥x∥∞ to indicate its Euclidean norm (also called ℓ2-norm), ℓ1-norm and

ℓ∞-norm, respectively.

Given vectors x ∈ Rn and y ∈ Rn, the standard inner product is xTy =
n∑

i=1

xiyi.

We write x ≥ (>)y to indicate that xi ≥ (>)yi for all i = 1, . . . , n. We write x ◦ y to

indicate the Hadamard product of vectors x and y, that is, x ◦ y := (x1y1, . . . , xnyn)
T .

We write (x, y) (or
(

x
y

)
) to indicate a vector in R2n, that is (x, y) := (xT yT)T .

Given a matrix A ∈ Rm×n, we specify its components by double subscripts as Aij, for

i = 1, . . . ,m and j = 1, . . . , n. The transpose of A is denoted by AT , while A−1 denotes

the inverse of matrix A if A is invertible. We write ∥A∥ to indicates its Frobenius norm,

that is,

∥A∥ =
(m∑

i=1

n∑
j=1

A2
ij

)1/2
.

The matrix A is said to be square if m = n. A square matrix A is positive definite

(A ≻ 0) if there exists a positive scalar α > 0 such that

xTAx ≥ αxTx, for all x ∈ Rn.

It is positive semidefinite (A ≽ 0) if

xTAx ≥ 0, for all x ∈ Rn.

Assume A is a positive semidefinite and diagonal matrix, we write Aσ to indicate a

diagonal matrix with components (Aσ)ii := (Aii)
σ for all i = 1, . . . , n, with given real

21

number σ ≥ 0.

We write ei to indicate a vector with i-th component 1 and 0 otherwise. We write

e = e1 + · · ·+ en to indicate a vector whose all components are 1. The identity matrix,

denoted by E, is the square diagonal matrix whose diagonal components are all 1.

Given a point x ∈ Rn, we call N ∈ Rn a neighborhood of x if it is an open set

containing x. We write B(x, ϵ) to indicate a open ball of radius ϵ around x, that is,

B(x, ϵ) := {y ∈ Rn | ∥y − x∥ ≤ ϵ},

while B denotes the unit ball centered at origin.

Considering the function f : D → Rm where D ⊂ Rn for general m and n. The

function f is said to be Lipschitz continuous on some set N ⊂ D if there exists a

constant L > 0 such that

∥f(x)− f(y)∥ ≤ L∥x− y∥, for all x, y ∈ N .

The function f is called a real-valued function if m = 1 and is called vector-valued

function if m > 1. For a twice continuously differentiable real-valued function f , we

write ∇f(x) to denote its gradient vector of f at x, while ∇2f(x) to indicate its Hessian

matrix of f at x. For a continuously differentiable vector-valued function f , we write

∇f(x) to denote its Jacobian matrix of f at x. The Dini upper-directional derivative

[181] and subderivative [151] of the real-valued function f at x in the direction u ∈ Rn

are defined, respectively, by

D+f(x)(u) := lim sup
t→0+

f(x+ tu)− f(x)

t
,

df(x)(u) := lim inf
t→0+, u′→u

f(x+ tu′)− f(x)

t
.

We say that function η : R → R converges to 0 at a rate of O(ν) if there exists a

constant C > 0 such that |η(ν)| ≤ C|ν|, when η is sufficiently small.

22

1.4 Motivation and Outline of the Thesis

The ℓ 1
p
(p > 1)-penalty method is becoming a powerful tool to solve some fundamental

mathematical models such as constrained nonlinear programming problems and

complementarity problems. For constrained nonlinear programming problems, it was

shown in [152] that the existence of an ℓ 1
p
-exact penalty function requires weaker

conditions than that of the ℓ1-exact penalty function and that the smallest exact

penalty parameter of the ℓ 1
p
-exact penalty function is also smaller than that of the

ℓ1-exact penalty function. Furthermore, the ℓ 1
p
-exact penalty function has been used

in the establishment of first-order optimality conditions. Specifically, under some

second order conditions and the existence of the ℓ 1
p
-exact penalty function, first-order

optimality conditions of constrained nonlinear programming problems were established

and examples were given to show that these conditions do not imply the weakest GCQ

and vice versa in [117, 181].

However, the ℓ 1
p
-penalty function is locally nonconvex and non-Lipschitzian. These

features make many well-known optimization methods such as quasi-Newton methods

[128] and gradient sampling methods [13] lack the effectiveness and the efficiency in

solving the minimization of the ℓ 1
p
-penalty function directly. Smoothing methods

[115, 118, 179, 182] seem to be the only choice in dealing with the the ℓ 1
p
-penalty

function. Nevertheless, it is well known that the solutions of minimizing the smoothed

ℓ 1
p
-penalty function are unstable as the smoothing parameter is sufficiently small. In

this thesis, motivated by the interior-point ℓ2-penalty methods [30, 105] and interior-

point ℓ1-penalty methods [5, 76], we propose an interior-point ℓ 1
p
-penalty method to

solve inequality constrained nonlinear programming problems in Chapter 2.

The ℓ 1
p
-penalty method was introduced to solve a LCP arising from the American

option valuation in [169]. Under mild conditions, their convergence rate is faster

than that of the ℓ1-penalty method proposed by Bensoussan and Lions [7]. More

specifically, the solution xρ of ℓ 1
p
-penalized equations converges to a solution x∗ of

the complementarity problem in the speed of O(ρ−
p
2), that is, there exists a constant

C > 0 such that ∥xρ − x∗∥ ≤ Cρ−
p
2 . However, the convergence rate of the ℓ1-

penalty method is only of O(ρ−
1
2). The penalty parameter ρ, which is vital to keep

the stability of solution of the penalized equations, used for ℓ 1
p
-penalty method is

23

smaller than that used for the ℓ1-penalty method in order to achieve a given accuracy.

The same order of convergence rate has been proved for the LCP [168] under the

assumption of a M -matrix. Furthermore, the convergent rate of O(ρ−
p
ξ) has been

proved to the NCP and MiCP under the assumptions of the continuity and the ξ-

monotonicity with ξ ∈ (1, 2] in [87, 88]. In Chapter 3, we propose a box-constrained

differentiable penalty method for solving nonlinear complementarity problems, which

not only shares the convergence rate of the existing ℓ 1
p
-penalty method but also

overcomes the drawback of the non-Lipschitzianness corresponding to the ℓ 1
p
-penalized

equations. Furthermore, we introduce an unconstrained differentiable penalty method

to solve general complementarity problems in Chapter 4.

The outline of the thesis is as follows.

In Chapter 2, we aim at designing algorithms that solve the inequality constrained

nonlinear programming problems efficiently by virtue of the ℓ 1
p
-penalty function. In

Section 2.2, we introduce a technique of p-order relaxation to relax the nonconvex

and non-Lipschitzian ℓ 1
p
-penalty problem into an equivalent constrained problem which

shares the same differentiable property as the original problem. Combining with an

interior-point method, we propose an interior-point ℓ 1
p
-penalty method. Then, we

introduce different kinds of constraint qualifications to establish first-order necessary

conditions for the relaxed problem. Combining with an interior-point method, in

Section 2.3, we propose an interior-point ℓ 1
p
-penalty method. We employ the modified

Newton method to solve a sequence of logarithmic barrier subproblems and detail

three numerical algorithms which constitute the interior-point ℓ 1
p
-penalty method.

Furthermore, under mild conditions, we prove that the iteration sequence converges to

a KKT (or FJ) point of the original problem. In Section 2.4, we conduct our numerical

experiments on three test problems sets: small- to medium-scale problems, large-scale

problems and problems with degenerate constraints. We use the first test set to compare

the performance of the interior-point ℓ 1
p
-penalty method with different values of the

power p. Then we compare the performance of the interior-point ℓ 1
2
-penalty method

with existing interior-point ℓ1-penalty methods.

In Chapter 3, we propose a box-constrained differentiable penalty method by virtue

of the ℓ 1
p
-penalty method for the NCP. In Section 3.2, we introduce a new definition for

the function F named a uniform ξ-P -function which is weaker than the ξ-monotonicity

24

and reduces to the P -function if function F is linear. Then, we propose a box-

constrained differentiable penalty method which not only inherits the convergence rate

of the ℓ 1
p
-penalty method but also can be implemented efficiently by classical iteration

methods. Specifically, we prove that the solution of the boxed-constrained penalized

equations converges to a solution of the NCP at a rate of O(ρ−
p
ξ) if the function

F is a uniform ξ-P -function. Instead of solving box-constrained penalized equations

directly, in Section 3.3, we solve a least squares problem with box constraints by use of

a trust-region Gauss-Newton method [123]. In Section 3.4, we carry out our numerical

experiments on the test problems from MCPLIB [45]. We first set p = 2 and compare

the performances of our method with the smoothed ℓ 1
2
-penalty method [87] and the

ℓ1-penalty method [7] in terms of the number of function evaluations and the values

of the penalty parameter. Then different values of the power p are chosen to test the

efficiency of our method. Furthermore, we compare the performance of our method

with the smooth approximation method [23] and the nonsmooth equations method [93]

in terms of the number of function evaluations.

In Chapter 4, we propose an unconstrained differentiable penalty method for the

GCP. In Section 4.2, we establish the convergence rate of the order O(ρ−
p
ξ) between the

solution of penalized equations and that of the original problem, under the assumption

of a uniform ξ-P -function. In Section 4.3, we carry out our numerical experiments on

the same test problems used in Chapter 3. We first set p = 2 to the proposed method to

compare its performance with the box-constrained differentiable penalty method with

p = 2 and the ℓ1-penalty method [7] in terms of the number of function evaluations and

the values of the penalty parameter. Using the same terms, we test the performances of

the new method with different values of power p. Finally, we compare the performance

of the new method with two well known methods in terms of the number of function

evaluations.

In Chapter 5, we conclude the thesis and provide directions for future research work.

25

Chapter 2

An Interior-Point ℓ1
p
-Penalty

Method for Nonlinear Optimization

2.1 Introduction

In this chapter, we consider the inequality constrained nonlinear programming problem

min f(x)

s.t. ci(x) ≤ 0, i ∈ I,
(2.1.1)

where the functions f and ci : Rn → R are assumed to be twice continuously

differentiable and I = {1, 2, . . . ,m}.

Motivated by interior-point ℓ1-penalty methods [5, 42, 76], we introduce a technique

of the p-order relaxation to the nonsmooth and non-Lipschitzian ℓ 1
p
-penalty problem to

transform it into an equivalent problem which shares the same differentiable property

as problem (2.1.1). We introduce different kinds of constraint qualifications to establish

first-order necessary conditions for the relaxed problem. Combining the interior-point

method, we propose an interior-point ℓ 1
p
-penalty method for problem (2.1.1).

We employ a modified Newton’s method with an inexact line search to solve the

first-order necessary conditions of the barrier problem. Due to the p-order relaxation,

we present a condition on the Lagrange multipliers of original inequality constraints and

26

that of inequality constraints of the relaxed problem in order to guarantee the positive

definiteness of the Jacobian matrix of the first-order necessary conditions. We describe

three specific algorithms. The first algorithm is to solve the barrier problem with a

fixed penalty parameter ρ and a fixed barrier parameter µ, the second one is to solve

a sequence of relaxed problems when ρ is fixed and µ goes to zero and the third one

is to solve the penalty problem when the penalty parameter ρ goes to infinite. Finally,

under mild conditions, we prove that the iteration sequence converges to some KKT

(or FJ) point of problem (2.1.1).

We carry out numerical experiments on three test problems sets. The first one

contains 266 small-scale and medium-scale test problems from CUTEr collection,

COPS, MITT and Global test sets, the second one contains 26 large-scale test problems

from COPS and MITT and the last one contains 37 test problems with degenerate

constraints from DEGEN−collection and one degenerate problem from [117]. We

compare our method with two existing interior-point ℓ1-penalty methods: PIPAL-a

and PIPAL-c in [42].

This chapter is organized as follows. In Section 2.2, we introduce a p-order

relaxation scheme to the ℓ 1
p
-penalty problem and investigate its optimality conditions

under different constraint qualifications. In Section 2.3, we propose an interior-

point ℓ 1
p
-penalty method and present its analysis on a modified Newton method and

corresponding algorithms, moreover on global convergence. In the last section, we

present the numerical results.

2.2 p-Order Relaxation of the ℓ1
p
-Penalty Problem

In this section, a technique of p-order relaxation is introduced to recast the minimization

of the ℓ 1
p
-penalty function as an equivalent constrained problem that shares the same

differentiability as problem (2.1.1). Specifically, we relax the following ℓ 1
p
-penalty

problem

min
x

ϕP, 1
p
(x, ρ) := f(x) + ρ

∑
i∈I

[ci(x)]
1
p

+ (2.2.1)

27

as follows
min
x,s

ϕS, 1
p
(x, s; ρ) := f(x) + ρ

∑
i∈I

si

s.t. ci(x) ≤ spi and si ≥ 0, i ∈ I,
(2.2.2)

where ρ > 0 is the penalty parameter, p ≥ 1 is the power, [a]+ = max{a, 0} for any

a ∈ R and s = (si) ∈ Rm
+ are artificial variables. As p = 1, the p-order relaxation

is known as the linear relaxation which plays an important role in the interior-point

ℓ1-penalty methods [5, 76]. In this chapter, we mainly focus on the case of p > 1. Let

(x̂, ŝ) ∈ Rn+m be a local solution of problem (2.2.2).

Throughout this chapter, we define the index sets at x ∈ Rn as follows

I−(x) := {i ∈ I | ci(x) < 0};

I0(x) := {i ∈ I | ci(x) = 0};

I+(x) := {i ∈ I | ci(x) > 0}.

We introduce the following index sets for (x, s) ∈ Rn+m

S0(x, s) := {i ∈ I | si = 0 and ci(x) ≤ 0};

S+(x, s) := {i ∈ I | si > 0 and ci(x) ≤ spi };

S=(x, s) := {i ∈ S+(x, s) | ci(x) = spi };

CS0(x, s) := {i ∈ S0(x, s) | ci(x) = 0}.

We define the feasible set F̂ for problem (2.2.2) by

F̂ := {(x, s) ∈ Rn+m | ci(x) ≤ spi , si ≥ 0, ∀ i ∈ I}.

The following proposition concludes that the ℓ 1
p
-penalty problem (2.2.1) and its p-

order relaxed problem (2.2.2) are equivalent in the sense that they have the same local

solution.

Proposition 2.2.1. Given the penalty parameter ρ > 0, a point x̂ solves problem (2.2.1)

locally if and only if the point (x̂, ŝ) solves problem (2.2.2) locally with ŝi = [ci(x̂)]
1
p

+ for

all i ∈ I.

28

Proof. We prove this proposition by considering two cases.

Case 1. We assume x̂ ∈ F . In this case, we have ŝ = 0. Suppose that x̂ solves

problem (2.2.1). Take ŝ = 0, and then (x̂, 0) solves problem (2.2.2) locally. Conversely,

let (x̂, 0) solve problem (2.2.2) locally. Assume to the contrary that x̂ does not solve

problem (2.2.1) locally. Thus there exists a sequence {xk} → x̂ such that

f(xk) + ρ
∑
i∈I

[ci(x
k)]

1
p

+ < f(x̂) + ρ
∑
i∈I

[ci(x̂)]
1
p

+ = f(x̂). (2.2.3)

Since (x̂, 0) solves problem (2.2.2) locally, it follows that there exists a neighborhood

N (x̂, 0) such that for all points (x, s) ∈ N (x̂, 0), it holds

f(x̂) ≤ f(x) + ρ
∑
i∈I

si,

ci(x) ≤ spi and − si ≤ 0, ∀ i ∈ I.
(2.2.4)

By xk → x̂ and c(x̂) ≤ 0, we have ci(x
k) → 0. Letting ski =

p
√

[ci(xk)]+, we have s
k
i → 0

as k → ∞ for all i ∈ I. Therefore, we see that (xk, sk) ∈ N (x̂, 0) as k → ∞. By (2.2.4),

we have

f(x̂) ≤ f(xk) + ρ
∑
i∈I

ski . (2.2.5)

Combining (2.2.3), (2.2.5) and ski = p
√

[ci(xk)]+, we achieve a contradiction. We have

shown that x̂ solves problem (2.2.1) locally.

Case 2. We assume x̂ ̸∈ F . In this case, we have ŝ ̸= 0. Let (x̂, ŝ) solve problem

(2.2.2) locally. Assume to the contrary that x̂ does not solve problem (2.2.1) locally.

Thus there exists a sequence {xk} → x̂ such that

f(xk) + ρ
∑
i∈I

[ci(x
k)]

1
p

+ < f(x̂) + ρ
∑
i∈I

[ci(x̂)]
1
p

+. (2.2.6)

Since (x̂, ŝ) solves problem (2.2.2) locally, it follows that there exists a neighborhood

29

N (x̂, ŝ) such that for all points (x, s) ∈ N (x̂, ŝ), it holds

f(x̂) + ρ
∑
i∈I

ŝi ≤ f(x) + ρ
∑
i∈I

si,

ci(x) ≤ spi and − si ≤ 0, ∀ i ∈ I.
(2.2.7)

By the continuity of ci(x) and xk → x̂, we have ci(x
k) → ci(x̂) as k → ∞ for all i ∈ I.

Letting ski = [ci(x
k)]

1
p

+ for all i ∈ I. If the set S0(x̂, ŝ) is nonempty, then we have

ci(x
k) → ci(x̂) ≤ 0 and ski → ŝi = 0 for all i ∈ S0(x̂, ŝ) as k → ∞. Since ŝ ̸= 0, we see

that the set S+(x̂, ŝ) is nonempty. We have ci(x
k) → ci(x̂) > 0, and ski → [ci(x̂)]

1
p

+ = ŝi

as k → ∞ for all i ∈ S+(x̂, ŝ). Consequently, we obtain that (xk, sk) ∈ N (x̂, ŝ) as

k → ∞. Substituting (xk, sk) into (2.2.7), we have

f(x̂) + ρ
∑
i∈I

ŝi ≤ f(xk) + ρ
∑
i∈I

ski = f(xk) + ρ
∑
i∈I

[ci(x
k)]

1
p

+

< f(x̂) + ρ
∑
i∈I

[ci(x̂)]
1
p

+ = f(x̂) + ρ
∑
i∈I

ŝi.

We reach a contradiction. Therefore, we have shown that x̂ solves problem (2.2.1)

locally.

Conversely, assume x̂ solves problem (2.2.1) locally. Taking ŝi = [ci(x̂)]
1
p

+ for all

i ∈ I, we have that (x̂, ŝ) solves problem (2.2.2) locally.

Summarizing the above two cases, we proved this proposition.

2.2.1 Exact Penalization

Next we consider the ℓ 1
p
-penalty problem for the p-order relaxed problem (2.2.2) as

follows

min
x,s

Φ(x, s, ρ; π) := f(x) + ρ
∑
i∈I

si + π
(∑

i∈I

[ci(x)− spi]
1
p

+ +
∑
i∈I

[−si]
1
p

+

)
, (2.2.8)

where π > 0 is the penalty parameter.

Lemma 2.2.1. For any a, b ∈ R satisfying a ≥ b ≥ 0 and τ ∈ R with 0 ≤ τ ≤ 1, we

30

have

(a− b)τ ≥ aτ − bτ . (2.2.9)

Proof. It is trivial to prove this lemma if b = 0, or τ = 0 and τ = 1. In the following, we

prove other cases. Let the function g : [0, 1] → R be defined by g(x) := (1−x)τ +xτ −1.

Then the function g is monotonically increasing on [0, 1
2
] and monotonically decreasing

on [1
2
, 1]; moreover, g(0) = g(1) = 0. Therefore, we conclude that g(x) ≥ 0 for all

x ∈ [0, 1]. Taking x = b
a
with a ≥ b > 0, we have g(b

a
) = (1− b

a
)τ + (b

a
)τ − 1 ≥ 0, which

implies that the inequality (2.2.9) holds. The proof is complete.

Lemma 2.2.2. For any a, b ∈ R and p ≥ 1, we have

p
√
[a− b]+ ≥ p

√
[a]+ − p

√
[b]+. (2.2.10)

Proof. We consider the following cases:

(i) If a ≥ b ≥ 0, by Lemma 2.2.1, we have p
√
a− b ≥ p

√
a− p

√
b, i.e., (2.2.10) holds;

(ii) If a ≥ 0 ≥ b, we have a− b ≥ a ≥ 0, i.e., p
√
[a− b]+ ≥ p

√
[a]+, i.e., (2.2.10) holds;

(iii) If 0 ≥ a ≥ b, we have p
√

[a− b]+ ≥ 0, i.e., (2.2.10) holds;

(iv) If a < b ≤ 0, a ≤ 0 ≤ b or 0 ≤ a < b, it is trivial that (2.2.10) holds.

By (i)− (iv), we have shown this lemma.

Using the above lemma, we prove that the ℓ 1
p
-penalty function in problem (2.2.8) is

exact for any π ≥ 1.

Proposition 2.2.2. Let ρ > 0 be fixed. If (x̂, ŝ) solves problem (2.2.2) locally, then

there exists a real number π̂ > 0 such that for all π ≥ π̂, (x̂, ŝ) solves problem (2.2.8)

locally.

Proof. Since (x̂, ŝ) solves problem (2.2.2) locally, by Proposition 2.2.1, we see that

x̂ solves problem (2.2.1) locally and ŝi = [ci(x̂)]
1
p

+ for all i ∈ I. Thus, there is a

neighborhood N (x̂) such that

f(x) + ρ
∑
i∈I

[ci(x)]
1
p

+ ≥ f(x̂) + ρ
∑
i∈I

[ci(x̂)]
1
p

+, ∀ x ∈ N (x̂).

31

Let π̂ = 1. By Lemma 2.2.2, we have for π ≥ π̂,

f(x) + ρ
∑
i∈I

si + π
(∑

i∈I

[ci(x)− spi]
1
p

+ +
∑
i∈I

[−si]
1
p

+

)
≥ f(x) + ρ

∑
i∈I

si +
(∑

i∈I

[ci(x)− spi]
1
p

+ +
∑
i∈I

[−si]
1
p

+

)
≥ f(x) + ρ

∑
i∈I

si +
(∑

i∈I

[ci(x)]
1
p

+ −
∑
i∈I

[spi]
1
p

+ +
∑
i∈I

[−si]
1
p

+

)
≥ f(x) + ρ

∑
i∈I

[ci(x)]
1
p

+ +
(∑

i∈I

si −
∑
i∈I

|si|+
∑
i∈I

[−si]
1
p

+

)
= f(x̂) + ρ

∑
i∈I

[ci(x̂)]
1
p

+ +
∑
i∈I

(
si − |si|+ [−si]

1
p

+

)
≥ f(x̂) + ρ

∑
i∈I

ŝi,

for all x ∈ N (x̂) and si ≥ −2−
p

p−1 for all i ∈ I. The last inequality is derived from

si − |si|+ [−si]
1
p

+ ≥ 0, for all si ≥ −2−
p

p−1 and i ∈ I.

The proof is complete.

2.2.2 First-Order Necessary Conditions

Throughout this subsection, we assume that ρ > 0 is fixed and that (x̂, ŝ) is a local

solution of the p-order relaxed problem (2.2.2). It is well-known that under some

suitable regularity condition (also known as constraint qualification), the first-order

necessary conditions hold at (x̂, ŝ) for the p-order relaxed problem (2.2.2), i.e., there

exist vectors y, u ∈ Rm such that

∇f(x̂) + A(x̂)y = 0, (2.2.11a)

ρe− pY ŝp−1 − u = 0, (2.2.11b)

Y
(
c(x̂)− ŝp

)
= 0, (2.2.11c)

Uŝ = 0, (2.2.11d)

ŝp − c(x̂) ≥ 0, (2.2.11e)

ŝ, y, u ≥ 0, (2.2.11f)

32

where the vectors y, u ∈ Rm
+ are called Lagrange multipliers, Y = diag(y) and U =

diag(u) are diagonal matrices. Since (x̂, ŝ) is assumed to be a local solution of the

problem (2.2.2), we have ŝi =
√
max{ci(x̂), 0} for all i ∈ I, and thus there is no

i ∈ I such that ci(x̂) < ŝ2i and ŝi > 0, implying that S=(x̂, ŝ) = S+(x̂, ŝ) and I =

S=(x̂, ŝ) ∪ S0(x̂, ŝ). By using the index sets above, we can reformulate (2.2.11) as

∇f(x̂) +
∑
i∈I

yi∇ci(x̂) = 0,

yi =
ρ

pŝp−1
i

, ∀ i ∈ S=(x̂, ŝ), yi ≥ 0, ∀ i ∈ CS0(x̂, ŝ),

yi = 0, ∀ i ∈ S0(x̂, ŝ)\CS0(x̂, ŝ),

ui = 0, ∀ i ∈ S=(x̂, ŝ), ui = ρ, ∀ i ∈ S0(x̂, ŝ),

ŝp − c(x̂) ≥ 0, ŝ ≥ 0.

(2.2.12)

If x̂ is feasible to problem (2.1.1), we have ŝ = 0 and S=(x̂, ŝ) = ∅, and moreover,

the first-order necessary conditions (2.2.11) or (2.2.12) recover the first-order necessary

conditions at x̂ for problem (2.1.1).

If ŝ ∈ Rm
++ := {x | xi > 0, ∀ i ∈ I}, the p-order relaxed problem (2.2.2) only has

the inequalities ci(x)−spi ≤ 0 with i ∈ I being active at (x̂, ŝ), and the Jacobian matrix

(A(x̂)T ,−pdiag(ŝp−1)) of c(x)− sp at (x̂, ŝ) has full rank, implying that the LICQ holds

at (x̂, ŝ). In this case, the first-order necessary conditions (2.2.11) hold automatically.

In the remainder of this subsection, we assume that ŝ ∈ Rm
+\Rm

++ and shall give some

CQs for p-order relaxed problem (2.2.2) to possess the first-order necessary conditions

(2.2.11). To begin with, we show in the following lemma that the LICQ (resp. the

MFCQ) holds at (x̂, ŝ) for the p-order relaxed problem (2.2.2) if and only if the LICQ

(resp. the MFCQ) holds at x̂ for the inequality system

ci(x) ≤ 0, ∀ i ∈ CS0(x̂, ŝ). (2.2.13)

Lemma 2.2.3. Assume that ŝ ∈ Rm
+\Rm

++. Consider the following CQs.

(a) The LICQ holds at x̂ for the inequality system (2.2.13), i.e., the vectors ∇ci(x̂)

with i ∈ CS0(x̂, ŝ) are linearly independent.

33

(b) The MFCQ holds at x̂ for the inequality system (2.2.13), i.e., there exists some

d ∈ Rn such that

∇ci(x̂)
Td < 0, ∀ i ∈ CS0(x̂, ŝ),

or in other words,

∑
i∈CS0(x̂,ŝ)

yi∇ci(x̂) = 0, yi ≥ 0, ∀ i ∈ CS0(x̂, ŝ) =⇒ yi = 0, ∀ i ∈ CS0(x̂, ŝ).

(2.2.14)

Then (a) holds if and only if the LICQ holds at (x̂, ŝ) for the p-order relaxed problem

(2.2.2), while (b) holds if and only if the MFCQ holds at (x̂, ŝ) for the p-order relaxed

problem (2.2.2).

Proof. By definition, the MFCQ holds at (x̂, ŝ) for the p-order relaxed problem (2.2.2)

if,

∑
i∈S=(x̂,ŝ)∪CS0(x̂,ŝ)

yi∇ci(x̂) = 0

−pŝp−1
i yi = 0, ∀ i ∈ S=(x̂, ŝ),

ui = 0, ∀ i ∈ S0(x̂, ŝ),

yi ≥ 0, ∀ i ∈ S=(x̂, ŝ) ∪ CS0(x̂, ŝ),

ui ≥ 0, ∀ i ∈ S0(x̂, ŝ)


=⇒


yi = 0, ∀ i ∈ S=(x̂, ŝ) ∪ CS0(x̂, ŝ),

ui = 0, ∀ i ∈ S0(x̂, ŝ).

(2.2.15)

Observing that ŝi > 0 for all i ∈ S=(x̂, ŝ), the equivalence of (2.2.14) and (2.2.15)

follows immediately. The case for the LICQ can be proved in a similar way.

Remark 2.2.1. It is well-known in the field of the nonlinear programming that the

MFCQ amounts to the boundedness of Lagrange multipliers. Thus, in the case of ŝ ∈
Rm

+\Rm
++, the p-order relaxed problem (2.2.2) has bounded Lagrange multipliers (y, u)

as defined by (2.2.11) if and only if Lemma 2.2.3 (b) is fulfilled. If the MFCQ holds

at a feasible point x0 ∈ F for problem (2.1.1), then for all (x̂, ŝ) with x̂ near x0, the

quadratically relaxed problem (2.2.2) has bounded Lagrange multipliers at (x̂, ŝ) provided

that it is a local solution of problem (2.2.2).

Besides having the CQs in Lemma 2.2.3 for the first-order necessary conditions

(2.2.11), we can use the techniques in [116, 117, 181] to derive some other CQs, some

34

of which turn out to be strictly weaker than the ones in Lemma 2.2.3. Three cases,

p = 2, 1 ≤ p < 2 and p > 2, are considered, respectively. Because the case p = 2 is

typical, we shall consider this case first. In this case, the p-order relaxation reduces to

the quadratical relaxation.

Case p = 2.

We conduct the analysis in the next lemma below by showing that the linearized

tangent cone

LF̂ (x̂, ŝ) :=

(w, β) ∈ Rn × Rm

∣∣∣∣∣∣∣∣
⟨∇ci(x̂), w⟩ − 2ŝiβi ≤ 0, ∀ i ∈ S=(x̂, ŝ)

⟨∇ci(x̂), w⟩ ≤ 0, ∀ i ∈ CS0(x̂, ŝ)

−βi ≤ 0, ∀ i ∈ S0(x̂, ŝ)

 (2.2.16)

to the feasible set F̂ of problem (2.2.2) with p = 2 at (x̂, ŝ) coincides with the kernel of

the subderivative (or Dini upper directional derivative) of the penalty term

ϕ(x, s) :=
∑
i∈I

√
max{ci(x)− s2i , 0}+

∑
i∈I

√
max{−si, 0}. (2.2.17)

Next we give characterizations in terms of the gradients and the Hessians of the

functions ci with i ∈ I for two equalities

LF̂(x̂, ŝ) = {(w, β) ∈ Rn+m | D+ϕ(x̂, ŝ)(w, β) = 0} (2.2.18)

and

LF̂(x̂, ŝ) = {(w, β) ∈ Rn+m | dϕ(x̂, ŝ)(w, β) = 0}. (2.2.19)

Lemma 2.2.4. Assume that ŝ ∈ Rm
+\Rm

++. Let

Ω := {w ∈ Rn | ⟨∇ci(x̂), w⟩ ≤ 0, ∀ i ∈ CS0(x̂, ŝ)}.

Consider the following CQs:

(a) The equality (2.2.18) holds.

(b) For each w ∈ Ω and i ∈ S=(x̂, ŝ), it follows that

2ŝ2i ⟨w,∇2ci(x̂)w⟩ ≤ ⟨∇ci(x̂), w⟩2,

35

and for each w ∈ Ω and i ∈ CS0(x̂, ŝ) with ⟨∇ci(x̂), w⟩ = 0, it follows that

⟨w,∇2ci(x̂)w⟩ ≤ 0.

(c) For each w ∈ Ω and i ∈ CS0(x̂, ŝ) with ⟨∇ci(x̂), w⟩ = 0, it follows that

⟨w,∇2ci(x̂)w⟩ ≤ 0.

(d) For each w ∈ Ω and i ∈ CS0(x̂, ŝ) with ⟨∇ci(x̂), w⟩ = 0, there exists some z ∈ Rn

such that

⟨∇ci(x̂), z⟩+ ⟨w,∇2ci(x̂)w⟩ ≤ 0.

(e) For each w ∈ Ω, it follows that

max

 ∑
i∈CS0(x̂,ŝ)

λi⟨w,∇2ci(x̂)w⟩

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀ i ∈ CS0(x̂, ŝ)

 = 0.

(f) The equality (2.2.19) holds.

Then we have

(a) ⇐⇒ (b) =⇒ (c) =⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

Proof. The implications (b) =⇒ (c) =⇒ (d) hold trivially. By a nonhomogeneous

Farkas’ Lemma [159, Lemma 4.2], it is straightforward to verify that (d) ⇐⇒ (e). To

show (e) ⇐⇒ (f), we introduce another square root penalty term for the quadratically

relaxed problem (2.2.2) as follows:

ϕ̃(x, s) :=

√∑
i∈I

max{ci(x)− s2i , 0}+
∑
i∈I

max{−si, 0}.

According to [89, Lemma 4.1], we have ϕ̃ ≤ ϕ ≤ 2mϕ̃ and hence

{(w, β) | dϕ̃(x̂, ŝ)(w, β) = 0} = {(w, β) | dϕ(x̂, ŝ)(w, β) = 0}. (2.2.20)

36

Applying [116, Proposition 2.1], we have the equality

LF̂(x̂, ŝ) = {(w, β) | dϕ̃(x̂, ŝ)(w, β) = 0} (2.2.21)

if and only if for all (w, β) ∈ LF̂(x̂, ŝ),

max

 ∑
i∈CS0(x̂,ŝ)

λi[⟨w,∇2ci(x̂)w⟩ − 2β2
i]

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀ i ∈ CS0(x̂, ŝ)

 = 0.

The latter condition holds if and only if for all w ∈ Ω and β ∈ Rm with βi ≥ 0 for all

i ∈ CS0(x̂, ŝ),

max

 ∑
i∈CS0(x̂,ŝ)

λi[⟨w,∇2ci(x̂)w⟩ − 2β2
i]

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀i ∈ CS0(x̂, ŝ)

 = 0,

because (w, β) ∈ LF̂(x̂, ŝ) amounts to that w ∈ Ω, βi ≥ ⟨∇ci(x̂)
2ŝi

, w⟩ for all i ∈ S=(x̂, ŝ)

and βi ≥ 0 for all i ∈ CS0(x̂, ŝ). Since λi[⟨w,∇2ci(x̂)w⟩ − 2β2
i] ≤ λi⟨w,∇2ci(x̂)w⟩

whenever λi ≥ 0, the equality (2.2.21) holds if and only if (e) holds. In view of (2.2.20),

we have (e) ⇐⇒ (f).

By [181, Lemma 2.3] or [117, Remark 2.2], (a) holds if and only if, for each i ∈
S=(x̂, ŝ) and (w, β) ∈ LF̂(x̂, ŝ) with ⟨∇ci(x̂), w⟩ − 2ŝiβi = 0, it follows that

⟨w,∇2ci(x̂)w⟩ − 2β2
i ≤ 0 or 2ŝ2i ⟨w,∇2ci(x̂)w⟩ ≤ ⟨∇ci(x̂), w⟩2,

and for each i ∈ CS0(x̂, ŝ) and (w, β) ∈ LF̂(x̂, ŝ) with ⟨∇ci(x̂), w⟩ = 0 (or in other

words, for each i ∈ CS0(x̂, ŝ) and w ∈ Ω with ⟨∇ci(x̂), w⟩ = 0), it follows that

⟨w,∇2ci(x̂)w⟩ ≤ 0.

That is, we have (a) ⇐⇒ (b). This completes the proof.

Remark 2.2.2. It is clear to see that the CQ given by Lemma 2.2.4 (e) is implied by

the CQ given by Lemma 2.2.3 (b). But the converse may not hold as can be seen from

[116, Example 2.3] in the case of ŝ = 0.

In view of Lemma 2.2.2 and [116, Theorem 2.1], we now confirm that the first-order

necessary conditions (2.2.11) hold at (x̂, ŝ) for the quadratically relaxed problem (2.2.2)

37

provided that one of the CQs in Lemmas 2.2.3 and 2.2.4 is fulfilled. To be precise, we

now summarize what we have discussed so far on the first-order necessary conditions

for the quadratically relaxed problem (2.2.2) in the following theorem.

Theorem 2.2.1. Let ρ > 0 and p = 2. Assume that (x̂, ŝ) is a local solution of the

problem (2.2.2). Then the first-order necessary conditions (2.2.11) hold at (x̂, ŝ) if

either ŝ ∈ Rm
++ or ŝ ∈ Rm

+\Rm
++ with one of the CQs in Lemmas 2.2.3 and 2.2.4 being

fulfilled.

Case 1 ≤ p < 2.

Similar to [181, Theorem 2.2], we have the next theorem.

Theorem 2.2.2. Let ρ > 0 and 1 ≤ p < 2. Assume that (x̂, ŝ) is a local solution of the

problem (2.2.2) and ci (i ∈ I) are twice continuously differentiable. Then the first-order

necessary conditions (2.2.11) hold at (x̂, ŝ).

Proof. The conclusion follows from Proposition 2.2.2, [181, Lemmas 2.2 and 2.4] and

a homogeneous Farkas’ Lemma [159, Lemma 4.1].

Case p > 2.

Using Proposition 2.2.2, [181, Lemmas 2.2 and 2.5] and a homogeneous Farkas’

Lemma [159, Lemma 4.1], we derive the next theorem.

Theorem 2.2.3. Let ρ > 0 and p > 2. Assume that (x̂, ŝ) is a local solution of the

problem (2.2.2) and ci (i ∈ I) are twice continuously differentiable. In addition, assume

that for each w ∈ Ω and i ∈ S=(x̂, ŝ), it follows that

pŝpi ⟨w,∇2ci(x̂)w⟩ < (p− 1)⟨∇ci(x̂), w⟩2,

and for each w ∈ Ω and i ∈ CS0(x̂, ŝ) with ⟨∇ci(x̂), w⟩ = 0, it follows that

⟨w,∇2ci(x̂)w⟩ < 0.

Then the first-order necessary conditions (2.2.11) hold at (x̂, ŝ).

38

2.3 Interior-Point ℓ1
p
-Penalty Method

In this section, we introduce an interior-point ℓ 1
p
-penalty method. Then we establish

the global convergence results of the proposed method under mild conditions.

2.3.1 A Basic Interior-Point Method

A primal-dual interior-point method is used to solve problem (2.2.2). Specifically, we

minimize a sequence of logarithmic barrier functions

min
x,s

ϕB, 1
2
(x, s; ρ, µ) := ϕS, 1

p
(x, s; ρ)− µp

∑
i∈I

log
(
spi − ci(x)

)
− µ

∑
i∈I

logsi

s.t. spi − ci(x) > 0 and si > 0, i ∈ I,
(2.3.1)

where µ > 0 is the barrier parameter. Let (x, s) be a local solution of problem (2.3.1).

Then the first-order necessary conditions of problem (2.3.1) are

∇f(x) + A(x)y = 0, (2.3.2a)

ρe− pY sp−1 − u = 0, (2.3.2b)

Y
(
sp − c(x)

)
− µpe = 0, (2.3.2c)

Us− µe = 0, (2.3.2d)

where vectors y,u ∈ Rm
++ are the Lagrange multipliers, Y = diag(y) and U = diag(u)

are the diagonal matrices.

Remark 2.3.1. Here we note that it is reasonable to choose µp as the barrier parameter

for the term
∑
i∈I

log
(
spi −ci(x)

)
in (2.3.1a). Indeed, suppose that the Lagrange multiplier

y is bounded. We obtain from (2.3.2b) that the Lagrange multiplier u → ρe as s → 0+.

From (2.3.2d), we have µ = O(∥s∥), which can be guaranteed by setting the barrier

parameter µp for the term
∑
i∈I

log
(
spi − ci(x)

)
in (2.3.1).

Applying a modified Newton’s method (see [6]) to the nonlinear system (2.3.2) in

39

variables x, s, y and u, we obtain

Ω(x, y, s, u,H)


△x

△s

△y

△u

 = −


∇f(x) + A(x)y

ρe− pY sp−1 − u

Y
(
sp − c(x)

)
− µpe

Us− µe

 (2.3.3)

where

Ω(x, y, s, u,H) :=


H(x, y) 0 A(x) 0

0 −p(p− 1)Y Sp−2 −pSp−1 −E

−Y A(x)T pY Sp−1 Sp − C(x) 0

0 U 0 S

 ,

and

H(x, y) := ∇2f(x) +
∑
i∈I

yi∇2ci(x). (2.3.4)

Noting that Y s = Sy and Us = Su, we rewrite (2.3.3) as follows

H(x, y)△x+ A(x)(y +△y) = −∇f(x), (2.3.5a)

pSp−1(y +△y) + E(u+△u) + p(p− 1)Sp−2Y△s = ρe, (2.3.5b)

(Sp − C(x))(y +△y) + pY Sp−1△s− Y A(x)T△x = µpe, (2.3.5c)

U△s+ S(u+△u) = µe. (2.3.5d)

Solving ŷ := y +△y and û := u+△u from (2.3.5c) and (2.3.5d), we get

ŷ =
(
Sp − C(x)

)−1(
µpe− pY Sp−1△s+ Y A(x)T△x

)
, (2.3.6a)

û = S−1
(
µe− U△s

)
. (2.3.6b)

Substituting (2.3.6a) and (2.3.6b) into (2.3.5a) and (2.3.5b), we obtain

M

(
△x

△s

)
=

(
−ρ∇f(x)− µpA(x)

(
Sp − C(x)

)−1
e

pµpSp−1
(
Sp − C(x)

)−1
e+ µS−1e− ρe

)
(2.3.7)

40

where

M :=

(
Ĥ(x, s, y) −pA(x)NSp−1

−pNSp−1A(x)T Ξ

)
(2.3.8)

with N :=
(
Sp − C(x)

)−1
Y , Ĥ(x, s, y) := H(x, y) + A(x)NA(x)T and

Ξ := p2Sp−1NSp−1 + S−1U − p(p− 1)Sp−2Y .

In order to establish the global convergence of the interior-point method, we need

to ensure that the matrix M is sufficiently positive definite [47, 48]. Assume that

u− p(p− 1)Y sp−1 ≥ 0. (2.3.9)

Since N ≻ 0 and S ≻ 0, it follows from the above assumption, we obtain Ξ ≻ 0. To

guarantee M ≻ 0, by the Schur complement, we need to ensure

Ĥ(x, s, y)−
(
pNSp−1A(x)T

)(
Ξ
)−1(

pA(x)NSp−1
)
≻ 0.

Substituting Ĥ(x, s, y) into the above inequality, we attain

H(x, y) + A(x)
{
N − pNSp−1

(
Ξ
)−1

pSp−1N
}
A(x)T ≻ 0. (2.3.10)

However, inequality (2.3.10) may not always hold in general. We can modify H(x, y)

by adding a term of the form δE where δ is chosen to be large enough to ensure that it

holds, that is, we can replace H(x, y) by H(x, y)+ δE with a suitable δ so that (2.3.10)

holds [6, 157, 165].

Remark 2.3.2. In order to use the Schur complement to matrix M, we force (2.3.9) to

hold in every iteration (see (2.3.14) and (2.3.15)). Here, we note that this assumption

is reasonable. Indeed, as s → 0+, assume that multiplier y is bounded above, it follows

from (2.3.2b) that u → ρe and (2.3.9) holds automatically.

At the k-th iteration (xk, sk), we can get (△xk,△sk) by solving (2.3.7). Then we

41

let

xk+1 := xk + αk
P△xk, (2.3.11a)

sk+1 := sk + αk
P△sk, (2.3.11b)

where αk
P := max{ ρ̄j | j = 0, 1, 2, . . . } with ρ̄ ∈ (0, 1) is a step length, which satisfies

the following conditions:

(sk+1)p − c(xk+1) > 0, (2.3.12a)

sk+1 > 0, (2.3.12b)

ϕB, 1
p
(xk+1, sk+1; ρ, µ)− ϕB, 1

p
(xk, sk; ρ, µ) ≤ τ1α

k
P

(
∇xϕB, 1

p
(xk, sk; ρ, µ)T△xk+

∇sϕB, 1
p
(xk, sk; ρ, µ)T△sk

)
, (2.3.12c)

for some τ1 ∈ (0, 1
2
), where the last inequality is a standard Armijo line search condition

in [175] on the decrease of the barrier objective function in problem (2.3.1).

Remark 2.3.3. In practice, the parameter τ1 is chosen to be quite small. In this

chapter, following [42], τ1 = 10−8 is set, see Table 2.1 in Section 2.4.

2.3.2 Updating the Lagrange Multipliers

Two steps are used to update the Lagrange multipliers (yk, uk) at the k-th iteration.

We first use the strategy introduced in [5, 30, 36] to update them as follows, ∀ i ∈ I,

ỹk+1
i :=


min{γminy

k
i ,

µp

(ski)
p−ci(xk)

}, if ŷk+1
i < min{γminy

k
i ,

µp

(ski)
p−ci(xk)

},
µpγmax

(ski)
p−ci(xk)

, if ŷk+1
i > µpγmax

(ski)
p−ci(xk)

,

ŷk+1
i , otherwise,

(2.3.13a)

ũk+1
i :=


min{γminu

k
i ,

µ
ski
}, if ûk+1

i < min{γminu
k
i ,

µ
ski
},

µγmax

ski
, if ûk+1

i > µγmax

ski
,

ûk+1
i , otherwise,

(2.3.13b)

where the parameters γmin and γmax satisfy 0 < γmin < 1 < γmax.

The second step is to guarantee the new Lagrange multipliers (yk+1, uk+1) satisfying

42

the assumption (2.3.9). Specifically, if (ỹk+1, ũk+1) satisfies (2.3.9), we let (yk+1, uk+1)

:= (ỹk+1, ũk+1) as the new Lagrange multiplier vector. otherwise, we set

yk+1 := γ1ỹ
k+1, uk+1 := γ2ũ

k+1, (2.3.14)

where γ1 ∈ (0, 1] and γ2 ≥ 1 satisfy

γ2
γ1

≥ max
i∈I

{p(p− 1)(sk+1
i)p−1ỹk+1

i

ũk+1
i

}
. (2.3.15)

Remark 2.3.4. Here we note that, to guarantee the dual multipliers (yk, uk) being

bounded, the sequences {(ŷk, ûk)} is truncated in (2.3.13) through choosing a proper

γmax. In practice, γmax should be very large, for example, γmax = 1020 was used in [36].

In this chapter, γmax = 1023 is chosen; see Table 2.1 in Section 2.4.

Rather than solving the barrier subproblem (2.3.1) accurately, our iteration

continues until the conditions (2.3.2) are satisfied within a tolerance ϵµ for the current

barrier parameter µ, that is

Res(x, s, ŷ, û; ρ, µ) :=

∥∥∥∥∥∥∥∥∥∥∥

∇f(x) + A(x)ŷ

ρe− pŶ sp−1 − û

Ŷ (sp − c(x))− µpe

Ûs− µe

∥∥∥∥∥∥∥∥∥∥∥
< ϵµ, (2.3.16a)

(ŷ, û) ≽ −ϵµ(e, e), (2.3.16b)

where ϵµ > 0 is a µ-related tolerance parameter, which satisfies ϵµ ↓ 0 as µ → 0 .

2.3.3 Specific Algorithms

In this subsection, we describe three specific algorithms to solve problem (2.1.1) by

virtue of the ℓ 1
p
-penalty function. More implementation details will be stated in Section

2.4. The first algorithm gives a description of the approximate solution of problem

(2.3.1) with the fixed penalty parameter ρ > 0 and barrier parameter µ > 0.

43

Algorithm 2.1: Inner algorithm for solving problem (2.3.1).

Step 0 Initialization. Set τ1, γmin and γ1 ∈ (0, 1), γmax and γ2 > 1. Let
k := 0;

Step 1 If (2.3.16) holds at point (xk, sk, ŷk, ûk), stop;

Step 2 If (2.3.10) dose not hold then replace H(xk, yk) by H(xk, yk)+δE with

a proper δ > 0 such that inequality (2.3.10) holds;

Step 3 Computing (△xk,△sk) from (2.3.7) and (ŷk+1, ûk+1) from (2.3.6); we

compute the primal step length αk
P such that it satisfies (2.3.12) and

compute (xk+1, sk+1) from (2.3.11); based on (2.3.13)-(2.3.14), we

update the dual multipliers to obtain (yk+1, uk+1);

Step 4 Let k := k + 1, go to Step 1.

In order to solve the relaxed problem (2.2.2), we need to solve a series of barrier

subproblems (2.3.1) for decreasing the values of µ with a fixed penalty parameter ρ > 0.

Algorithm 2.2: Inner algorithm for solving problem (2.2.2).

Step 0 Initialization. Set µ0 > 0, ϵµ0 > 0 and γ ∈ (0, 1). Let j := 0;

Step 1 If Res(xj , sj , ŷj , ûj ; ρ, 0) ≤ ϵ̄ and (ŷj , ûj) ≥ 0, stop;

Step 2 Starting from (xj , sj , ŷj , ûj), we apply Algorithm 2.1 to solve problem

(2.3.1) with the barrier parameter µj and the stopping tolerance ϵµj .

Let the solution be (xj+1, sj+1, ŷj+1, ûj+1);

Step 3 Set µj+1 := γµj , ϵµj+1 := γϵµj and let j := j + 1, go to Step 1.

If ∥sj∥ is sufficiently small at point (xj, sj), we declare that point xj as a KKT or

FJ point of problem (2.1.1). Otherwise, we increase the penalty parameter ρ and solve

the relaxed problem (2.2.2) again. A formal description of algorithm to solve problem

(2.1.1) is given as follows.

44

Algorithm 2.3: Outer algorithm for solving problem (2.1.1).

Step 0 Initialization. Set p ≥ 1, x0 ∈ Rn, ρ0 > 0, y0 = ŷ0 > 0, u0 = û0 > 0,

ν > 1, ϵ̄ > 0 and s0l ≥
p
√

max{cl(x0), 0}+ 1
2 for all l ∈ I. Let i := 0;

Step 1 If ∥si∥ ≤ ϵ̄, stop;

Step 2 Starting from point (xi, si, ŷi, ûi), we apply Algorithm 2.2 to solve

problem (2.2.2) with the penalty parameter ρi. Let the solution be

(xi+1, si+1, ŷi+1, ûi+1);

Step 3 Set ρi+1 := νρi and let i := i+ 1, go to Step 1.

2.3.4 Convergence Analysis

In this subsection, we establish the global convergence of the interior-point ℓ 1
p
-penalty

method. The following assumptions are needed.

Assumption 1: The feasible set F is nonempty.

Assumption 2: The functions f(x) and ci(x), for all i ∈ I are twice continuously

differentiable on Rn.

Assumption 3: The primal iterate sequence {xk} lies in a bounded set.

Assumption 4: The Hessian matrix sequence {Hk} := {H(xk, yk; ρ)} lies in a bounded

set.

Let the strictly feasible set of problem (2.2.2) be defined by

F̂+ := {(x, s) ∈ Rn+m | ci(x) < spi , si > 0, i ∈ I}.

Lemma 2.3.1. The set F̂+ is nonempty.

Proof. Let x̃ ∈ Rn and s̃i > p
√
max{ci(x̃), 0}, for all i ∈ I. Doing so ensures that

s̃pi − ci(x̃) > 0 and s̃i > 0 for all i ∈ I. Therefore, the point (x̃, s̃) lies in the interior of

the feasible region of problem (2.2.2). This proves that the strictly feasible set F̂+ is

nonempty.

The next lemma shows that the sequence {(△xk,△sk)} generated by Algorithm I

is a descent direction of the merit function ϕB, 1
p
(xk, sk; ρ, µ) provided Mk ≻ 0 or has

45

been modified to be so.

Lemma 2.3.2. Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold and, at the k-th iteration of Algorithm 2.1,

the linear system (2.3.5) has a solution (△xk,△sk, ŷk+1, ûk+1). Then we have

ϕB, 1
p

′(xk, sk; ρ, µ;△xk,△sk) ≤ −(△xk,△sk)TMk(△xk,△sk), (2.3.17)

where ϕB, 1
p

′(xk, sk; ρ, µ;△xk,△sk) denotes the directional derivative of the function

ϕB, 1
p
(x, s; ρ, µ) at point (xk, sk) in the direction (△xk,△sk).

Proof. Since the merit function ϕB, 1
p
(x, s; ρ, µ) is continuously differentiable, it follows

that

∇xϕB, 1
p
(xk, sk; ρ, µ) = ∇f(xk) + µpA(xk)

(
(Sk)p − C(xk)

)−1
e, (2.3.18a)

∇sϕB, 1
p
(xk, sk; ρ, µ) = ρe− pµp(Sk)p−1

(
(Sk)p − C(xk)

)−1
e− µ(Sk)−1e,

(2.3.18b)

ϕB, 1
p

′(xk, sk; ρ, µ;△xk,△sk) = ∇xϕB, 1
p
(xk, sk; ρ, µ)T△xk +∇sϕB, 1

p
(xk, sk; ρ, µ)T△sk.

(2.3.18c)

Substituting (2.3.18a) and (2.3.18b) into (2.3.18c) and combining (2.3.3) and (2.3.7),

we can reach inequality (2.3.17).

In spite of the descent property of the sequence {(△xk,△sk)}, we cannot conclude

its tendency to zero. A possible case is that instead of the search direction, the line

search steplength may tend to zero. The following two lemmas prove that the line

search steplength is sufficiently positive.

Lemma 2.3.3. Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold and Algorithm 2.1 does not terminate at Step

1 in the (k + 1)-th iteration. Then we have (△xk,△sk) ̸= 0.

Proof. Assume to the contrary that (△xk,△sk) = 0. From (2.3.6a) and (2.3.6b), we

46

have that
ŷk+1 =

(
(Sk)p − C(xk)

)−1
µpe,

ûk+1 = (Sk)−1µe.
(2.3.19)

By line search (2.3.12a) and (2.3.12b), we see that (ŷk+1, ûk+1) > 0. It follows from

inequality (2.3.10) we have the matrix Mk is positive definite. Combining (2.3.7), we

have
−∇f(xk)− µpA(xk)

(
(Sk)p − C(xk)

)−1
e = 0,

pµp(Sk)p−1
(
(Sk)p − C(xk)

)−1
e+ µ(Sk)−1e− ρe = 0.

(2.3.20)

By (2.3.19) and (2.3.20), we conclude that the point (xk+1, sk+1, ŷk+1, ûk+1) satisfies the

termination condition (2.3.16). Then the Algorithm 2.1 will terminate at the (k+1)-th

iteration, which contradicts the assumption.

Lemma 2.3.4. Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold and Algorithm 2.1 does not terminate at Step

1 in the (k + 1)-th iteration. Then there exists a constant ᾱk
P ∈ (0, 1] such that line

search condition (2.3.12) holds for all αk,j
P ∈ (0, ᾱk

P].

Proof. Let the function R(x, s) : Rn × Rm
+ → Rm be defined as R(x, s) = sp − c(x).

Then we have the function R(x, s) is continuous and strictly positive at point (xk, sk).

Therefore, there exists a constant α̃k
P > 0 such that condition (2.3.12a) holds for all

αk
P ∈ (0, α̃k

P]. By sk > 0, there exists a constant α̂k
P > 0 such that condition (2.3.12b)

holds for all αk
P ∈ (0, α̂k

P]. By Lemma 2.3.3, we have (△xk,△sk) ̸= 0, and it follows

from (2.3.17) that ϕB, 1
p

′(xk, sk, ρ, µ;△xk,△sk) < 0. Hence, we conclude that there

exists a ᾰk
P > 0 such that condition (2.3.12c) holds for all αk

P ∈ (0, ᾰk
P]. Letting

ᾱk
P = min{α̃k

P , α̂
k
P , ᾰ

k
P}, we prove this lemma.

Lemma 2.3.5. Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold. Then the sequences {(sk)p − c(xk)} and

{sk} generated by Algorithm 2.1 are bounded from above and componentwise bounded

away from zero, so is the sequence {(yk, uk)} generated by our update strategy (2.3.13)-

(2.3.14).

Proof. Since the sequence {(xk, sk)} is generated by a descent line search method, it

47

follows that ϕB, 1
p
(xk, sk; ρ, µ) ≤ ϕB, 1

p
(x0, s0; ρ, µ) for all k ≥ 1. Specifically, we have

f(xk) + ρ
∑
i∈I

ski − µp
∑
i∈I

log
(
(ski)

p − ci(x
k)
)
− µ

∑
i∈I

logski ≤ ϕB, 1
p
(x0, s0; ρ, µ), (2.3.21)

for all k ≥ 1. Assume to the contrary that the sequence {sk} is unbounded. Then

we have (taking a subsequence of the sequence {sk} if necessary) lim
k→∞

∑
i∈I

ski = +∞, as

ski ≥ 0, for all i ∈ I and k ≥ 1. Since the sequence {xk} lies in a bounded set, there

exists a vector x∗ ∈ Rn (taking a subsequence if necessary) such that lim
k→∞

xk = x∗.

By the continuity of the functions f and ci, i ∈ I, we have lim
k→∞

f(xk) = f(x∗) and

lim
k→∞

ci(x
k) = ci(x

∗), i ∈ I. Dividing on both sides of inequality (2.3.21) by
∑
i∈I

ski and

taking the limit as k → ∞, we have 1 ≤ 0 as the facts lim
k→∞

µp
∑

i∈I log
(
(ski)

p−ci(x
k)
)

∑
i∈I

ski
= 0,

lim
k→∞

µ
∑

i∈I logski∑
i∈I

ski
= 0 and the right hand side of inequality (2.3.21) is bounded. Therefore,

we prove that the sequence {sk} is bounded above, so is the sequence {(sk)p − c(xk)}.
There exists a vector s∗ ∈ Rm (taking a subsequence if necessary) such that lim

k→∞
sk = s∗.

Similarly, we can prove that lim
k→∞

(sk)p − c(xk) = (s∗)p − c(x∗) > 0 and s∗ > 0. The

last part can be proved by virtue of the rules (2.3.13)-(2.3.14) for updating the dual

multipliers. Here, the details are omitted.

Lemma 2.3.6. Let the penalty parameter ρ > 0 and barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold. Then the sequence {(ŷk, ûk)} generated by

Algorithm 2.1 is bounded.

Proof. Assume to the contrary that the sequence {(ŷk, ûk)} is unbounded. Then

we have (taking a subsequence if necessary) that ∥(ŷk, ûk)∥ → ∞ as k → ∞. By

Assumptions 3 and 4, there exist a vector x∗ and a matrix H∗ such that lim
k→∞

xk = x∗

and lim
k→∞

Hk = H∗. By Assumption 2, we have that

lim
k→∞

∇f(xk) = ∇f(x∗), lim
k→∞

c(xk) = c(x∗), lim
k→∞

A(xk) = A(x∗).

It follows from inequality (2.3.10) there exists a positive definite matrix M∗ such that

lim
k→∞

Mk = M∗. By Lemma 2.3.5, there exist vectors s∗ > 0, (y∗, u∗) > 0 and a constant

48

M > 0 such that lim
k→∞

sk = s∗, lim
k→∞

(yk, uk) = (y∗, u∗) and

(s∗)p − c(x∗) > 0, ∥s∗∥ ≤ M, ∥(s∗)p − c(x∗)∥ ≤ M, ∥(y∗, u∗)∥ ≤ M.

It follows from equation (2.3.6) we have

ŷk =
(
(Sk)p − C(xk)

)−1(
µpe− pY k(Sk)p−1△sk + Y kA(xk)T△xk

)
ûk = (Sk)−1

(
µe− Uk△sk

)
.

Taking limit as k → ∞ on both sides of the above two equations, we conclude that

lim
k→∞

∥(△xk,△sk)∥ = ∞. By equation (2.3.7), we have

Mk

(
△xk

△xk

)
=

(
−∇f(xk)− µpA(xk)

(
(Sk)p − C(xk)

)−1
e

pµp(Sk)p−1
(
(Sk)p − C(xk)

)−1
e+ µ(Sk)−1e− ρe

)

Taking limit as k → ∞ on both sides of the last equation, we conclude that lim
k→∞

∥Mk∥ =

∥M∗∥ = 0, which contradicts the fact that the matrix M∗ is positive definite. We prove

this lemma.

Similar to the proof of [30, Lemma 4.11], we can prove the next lemma. Here the

details are omitted.

Lemma 2.3.7. Let the penalty parameter ρ > 0 and barrier parameter µ > 0 be fixed.

Suppose that Assumptions 2 − 4 hold. Then the sequence {(△xk,△sk)} generated by

Algorithm 2.1 is bounded from above and ∥(△xk,△sk)∥ → 0 as k → ∞.

We prove that the sequence {(xk, sk)} generated by Algorithm 2.1 converges to a

KKT point of problem (2.3.1).

Theorem 2.3.1. Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be

fixed. Suppose that Assumptions 2-4 hold. Then the sequence {(xk, sk)} generated by

Algorithm 2.1 converges to a KKT point of problem (2.3.1).

Proof. By Assumption 3, Lemmas 2.3.5 and 2.3.6, we have the sequence {(xk, sk, ŷk, ûk)}
lies in a bounded set. Then there exists a vector (x∗, s∗, y∗, u∗) such that

49

lim
k→∞

(xk, sk, ŷk, ûk) = (x∗, s∗, y∗, u∗) (taking a subsequence if necessary). By Assumption

4, there exists a matrix H∗ such that lim
k→∞

Hk = H∗. By Assumption 2, we have that

lim
k→∞

∇f(xk) = ∇f(x∗), lim
k→∞

c(xk) = c(x∗), lim
k→∞

A(xk) = A(x∗).

By Lemma 2.3.5, there exist a vector (y∗∗, u∗∗) > 0 and a constant M > 0 such that

lim
k→∞

(yk, uk) = (y∗∗, u∗∗) and

(s∗)p − c(x∗) > 0, ∥s∗∥ ≤ M, ∥(s∗)p − c(x∗)∥ ≤ M, ∥(y∗∗, u∗∗)∥ ≤ M.

By Lemma 2.3.7, we have ∥(△xk,△sk)∥ → 0 as k → ∞. At the k-th iteration, by

(2.3.5), we have

∇f(xk) +H(xk, yk; ρ)△xk + A(xk)(yk +△yk) = 0,

p(Sk)p−1(yk +△yk) + E(uk +△uk) + p(p− 1)(Sk)p−2Y k△sk = ρe,

((Sk)p − C(xk))(yk +△yk) + p(Y k)(Sk)p−1△sk − (Y k)A(xk)T△xk = µpe,

(Uk)△sk + (Sk)(uk +△uk) = µe.

Taking limit as k → ∞ on both sides of the above equations, we have

∇f(x∗) + (x∗)y∗ = 0,

p(S∗)p−1y∗ + u∗ = ρe,

((S∗)p − C(x∗))y∗ = µpe,

S∗u∗ = µe.

Therefore, we prove that the sequence {(xk, sk)} converges to a KKT point of problem

(2.3.1)

We establish the convergent results of the sequence {(xj, sj)} generated by

Algorithm 2.2.

Theorem 2.3.2. Let the penalty parameter ρ > 0 be fixed. Suppose that Assumptions

2-4 hold and that the sequence {(xj, sj, ŷj, ûj)} is generated by Algorithm 2.2. Then we

conclude that

50

(i) If the sequence {(ŷj, ûj)} is unbounded, then the sequence {(xj, sj)} converges to

a FJ point of problem (2.2.2);

(ii) If the sequence {(ŷj, ûj)} is bounded, then the sequence {(xj, sj)} converges to a

KKT point of problem (2.2.2).

Proof. We first suppose that the sequence {(ŷj, ûj)} is unbounded. By Assumptions

2 and 3, we have (taking a subsequence if necessary) that there exists a vector x∗

such that lim
j→∞

xj = x∗, lim
j→∞

f(xj) = f(x∗), lim
j→∞

c(xj) = c(x∗), lim
j→∞

∇f(xj) =

∇f(x∗), lim
j→∞

A(xj) = A(x∗). By Lemma 2.3.7, there exist a vector s∗ ≥ 0 and a

constant M > 0 such that (sj)p − c(xj) → (s∗)p − c(x∗) ≥ 0 and sj → s∗ ≥ 0 as

j → ∞; moreover, ∥(s∗)p − c(x∗)∥ ≤ M and ∥s∗∥ ≤ M . Let ϖj := max{∥ŷj∥, ∥ûj∥, 1},
ȳj = (ϖj)−1ŷj and ūj = (ϖj)−1ûj. We have the sequence {(ȳj, ūj)} is bounded.

Then we have (taking a subsequence if necessary) there exists a vector (ȳ, ū) such

that (ȳj, ūj) → (ȳ, ū) as j → ∞; furthermore, ∥(ȳ, ū)∥ = 1.

At the j-th iteration, dividing on both sides of inequalities (2.3.16a) and (2.3.16b)

by ϖj and taking limit as j → ∞, we reach that

A(x∗)ȳ = 0,

p(S∗)p−1ȳ + ū = 0,

((S∗)p − C(x∗))ȳ = 0,

S∗ū = 0,

and (ȳ, ū) ≥ 0. Consequently, we conclude that the limit point (x∗, s∗) is a FJ point of

problem (2.2.2).

We then consider the case when the sequence {(ŷj, ûj)} is bounded. Since the

sequences {xj} and {sj} are all bounded, there exists a vector (x∗, s∗, y∗, u∗) such

that (xj, sj, ŷj, ûj) → (x∗, s∗, y∗, u∗) as j → ∞ (taking a subsequence if necessary).

Algorithm 2.2 implies that ϵµj → 0 as j → ∞. By (2.3.16a), we conclude that

51

lim
j→∞

Res(xj, sj, ŷj, ûj; ρ, µj) = Res(x∗, s∗, y∗, u∗; ρ, 0) = 0. Specifically, we have

∇f(x∗) + A(x∗)y∗ = 0,

ρe− p(S∗)p−1y∗ − u∗ = 0,

((S∗)p − C(x∗))y∗ = 0,

S∗u∗ = 0.

By (2.3.16b), we have (y∗, u∗) ≥ 0. Combining (s∗)p − c(x∗) ≥ 0 and s∗ ≥ 0, we prove

that (x∗, s∗) is a KKT point of problem (2.2.2).

We are now ready to prove the globally convergent results of Algorithm 2.3.

Theorem 2.3.3. Suppose that Assumptions 1-4 hold and the sequence {(xi, si, ŷi, ûi)}
is generated by Algorithm 2.3. Then we conclude that

(i) There exists a constant ρ̂ > 0 such that the penalty parameter ρi ≤ ρ̂ for all i ≥ 1,

and the sequence {(ŷi, ûi)} is bounded, then the sequence {xi} converges to a KKT

point of problem (2.1.1);

(ii) There exists a constant ρ̂ > 0 such that the penalty parameter ρi ≤ ρ̂ for all i ≥ 1,

and the sequence {(ŷi, ûi)} is unbounded, then the sequence {xi} converges to a

FJ point of problem (2.1.1);

(iii) The penalty parameter ρi goes to infinite, then the sequence {xi} converges to a

FJ point of problem (2.1.1).

Proof. We consider the following two cases.

Case 1. Assume that there exists a constant ρ̂ > 0 such that ρi ≤ ρ̂ for all i ≥ 1.

Then the penalty parameter updates in a finite number of times before the termination

condition ∥si∥ ≤ ϵ̄ is satisfied. If the sequence {(ŷi, ûi)} is bounded, by Theorem 2.3.2,

52

the sequence {(xi, si, ŷi, ûi)} satisfies the conditions as follows

∇f(xi) + A(xi)ŷi = 0,

ρie− p(Si)p−1ŷi − ûi = 0,

((Si)p − C(xi))ŷi = 0,

Siûi = 0,

(si)p − c(xi) ≥ 0,

si ≥ 0,

(ŷi, ûi) ≥ 0,

(2.3.25)

which reduces to the KKT conditions of problem (2.1.1) as ∥si∥ approaches zero.

Therefore, we prove the statement (i).

Assume that the sequence {(ŷi, ûi)} is unbounded. Let ϖi := max{∥ŷi∥, ∥ûi∥, 1},
ȳi := (ϖi)−1ŷi and ūi := (ϖi)−1ûi. By Theorem 2.3.2, we have that the sequence

{(xi, si, ȳi, ūi)} satisfies the conditions

A(xi)ȳi = 0,

p(Si)p−1ȳi + ūi = 0,

((Si)p − C(xi))ȳi = 0,

Siūi = 0,

(si)p − c(xi) ≥ 0,

si ≥ 0,

(ȳi, ūi) ≥ 0,

(2.3.26)

which reduces to the FJ conditions of problem (2.1.1) as ∥si∥ approaches to zero.

Consequently, we prove the statement (ii).

Case 2. By Algorithm 3, we have the sequence {(xi+1, si+1, ŷi+1, ûi+1, ρi)} satisfying

Res(xi+1, si+1, ŷi+1, ûi+1; ρi, 0) ≤ ϵ̄, (ŷi+1, ûi+1) ≽ 0.

Therefore, we have the sequence {(ŷi, ûi)} is unbounded above as ρi goes to infinite.

Let ϖi := max{ρi, ∥ŷi+1∥, ∥ûi+1∥, 1}, ρ̄i := (ϖi)−1ρi, ȳi+1 := (ϖi)−1ŷi+1 and ūi+1 :=

53

(ϖi)−1ûi+1 for all i = 0, 1, Since the sequence {(xi, si)} and {ρ̄i} are all bounded,

there exists a vector (x∗, s∗, y∗, u∗, ρ̄) such that (xi, si, ȳi, ûi, ρ̄i) → (x∗, s∗, y∗, u∗, ρ̄) as

i → ∞ (taking a subsequence if necessary). After the i-th iteration, dividing on both

sides of inequalities (2.3.16a) and (2.3.16b) by ϖi and taking limit as i → ∞, we reach

that x∗ is a FJ point of problem (2.1.1). Therefore, we have proved the statement (iii).

2.4 Numerical Experiments

In this section, we present numerical results of our algorithms described in Section 2.3.3

using MATLAB 7.10.0. We conduct numerical testing on Ubuntu 9.04 with 1.689GB

of main memory and Intel(R) Core(TM) 2 Duo 3.0GHz processors.

We refer to the implementation of Algorithms 2.1, 2.2 and 2.3 as the IPLOP method,

which stands for the Interior-Point Lower-Order Penalty method. We carry out the

numerical experiment on three sets of optimization problems: small- to medium-scale

problems, large-scale problems and problems with degenerate constraints. In order to

show the robustness of the IPLOP method, we compare its numerical performance with

two existing interior-point ℓ1-penalty methods PIPAL-a and PIPAL-c in [42] in terms

of the number of iterations and the relative error.

Before presenting the numerical results, we illustrate the implementation details of

our method as follows.

In the implementation, we use the default initial point x0 ∈ Rn as the one provided

for every test problem from the test problem collections and set s0i =
p
√

max{ci(x0), 0}+
1
2
for all i ∈ I unless specified otherwise. We set MaxiterI=1000 as the maximum

number of iterations for Algorithm 2.1, and similarly we set MaxiterII=5000 and

MaxiterIII=5000 for Algorithm 2.2 and Algorithm 2.3, respectively.

Next, we illustrate our strategy for choosing δ large enough such that the matrix

M (see (2.3.8)) with Ĥ(x, s, y) being replaced by Ĥ(x, s, y)+ δE is sufficiently positive

definite. However, we would like to keep it as small as possible in order to make this

algorithm work more efficiently in practice, as large values of δ make the algorithm

54

behave like a steepest descent method, which is not desirable. Since matrix M is

symmetric and the matrix 4SNS + S−1U − 2Y is diagonal and positive definite, it

follows from the LDLT factorization for a symmetric indefinite matrix in [165, 167] that

we can find a sufficiently small δ such thatM is positive definite. In our implementation,

we use the factorization routine MA57 in MATLAB 7.10.0 for this purpose.

Having computed search directions from (2.3.7), the step size αk
p ∈ (0, 1] has to be

determined in order to obtain the next iterate by (2.3.11). In our implementation, we

first obtain ᾱk
P := max{ ρ̄j1 | j = 0, 1, 2, . . . } with ρ̄1 ∈ (0, 1) such that (2.3.12c) holds.

Then, we let αk
P := max{ᾱk

p ρ̄2
j | j = 0, 1, 2, . . . } with ρ̄2 ∈ (0, 1) satisfying

(sk+1)p − c(xk+1) ≥ (1− η̂)
(
(sk)p − c(xk)

)
, (2.4.27a)

sk+1 ≥ (1− η̂)sk, (2.4.27b)

where η̂ = max{0.99, 1−µ} in our implementation. We see that (2.4.27a) and (2.4.27b)

imply (2.3.12a) and (2.3.12b), respectively. The modification (2.3.12a) as (2.4.27a) is

due to the nonlinearity of (sk+1)2 in (2.3.12a), in which case the classical fraction-to-

boundary rule cannot be used anymore. The above strategy of computing stepsize αk
P

is shown to be efficient in our numerical experiments. In Algorithm 2.2, we set ϵµj = µj

and ϵµj+1 = max{γϵµj , 10−7} at the j-th iteration.

The default settings for different parameters are listed in Table 2.1 below.

Table 2.1: Input parameter values for the IPLOP method.

Parameter Value Parameter Value

ρ0 0.1 ν 5

µ0 0.1 γ 0.1

γmin 0.5 γmax 1023

γ1 1 ρ̄2 0.1

τ1 10−8 ρ̄1 0.5

ϵ̄ 10−6

55

2.4.1 Experiments with the Different Power p

In this subsection, we select our first test problems set, a total of 266 inequality

constrained optimization problems, from the CUTEr collection2, COPS3, MITT4 and

GLOBAL Library5 test sets, see Table 2.2. We first use this test set to test the

performances of the IPLOP method with different values of the power p in term of

the number of iterations and the values of the penalty parameter ρ. Some values of

the power p are chosen as p = 1.0, 4/3, 3/2, 2, 4, 5. For convenience, we write the

IPLOP method with different values p as the IPLOP1, IPLOP3/4, IPLOP2/3, IPLOP1/2,

IPLOP1/4 and IPLOP1/5 methods, respectively.

Table 2.2: Problem names for the first test set.

Problem Problem Problem Problem Problem

3pk allinit avgasa avgasb bearing−50−100

bearing−50−50 bearing−50−70 biggsb1 biggsc4 bqpgabim

bqpgasim camel6 camshape−100 cantilvr cb2

cb3 chaconn1 chaconn2 circle congigmz

coshfun deer demymalo dipigri eg1

eigena emfl−vareps esfl−socp ex14−1−2m ex14−1−4

ex14−1−5m ex14−1−8 ex14−1−9 ex14−2−1m ex14−2−2m

ex14−2−3m ex14−2−4m ex14−2−4m ex14−2−5m ex14−2−7m

ex14−2−8m ex14−2−9m ex2−1−1 ex2−1−10 ex2−1−3

ex2−1−4 ex2−1−5 ex2−1−6 ex2−1−7 ex3−1−2

ex3−1−3 ex3−1−4 ex4−1−5 ex4−1−9 ex7−2−1

ex7−2−5 ex7−2−6 ex7−3−1 ex8−1−1 ex8−6−2

expfita expfitb expquad fekete fekete2

fekete3 fir−convex fir−linear fir−socp gpp

hadamals haifam haifas haldmads hart6

hatfldc himmelp1 himmelp2 himmelp5 himmelp6

hs001 hs002 hs003 hs004 hs005

hs010 hs011 hs012 hs015 hs016

hs017 hs018 hs020 hs021 hs022

hs023 hs024 hs029 hs030 hs031

hs033 hs034 hs035 hs036 hs037

hs038 hs043 hs044 hs045 hs059

hs064 hs065 hs066 hs076 hs083

hs084 hs086 hs088 hs093 hs095

hs096 hs097 hs098 hs100 hs100mod

hs108 hs110 hs113 hs117 hs118

2http://orfe.princeton.edu/vrvdb/ampl/nlmodels/.
3http://www.mcs.anl.gov/vmore/cops/.
4http://plato.asu.edu/ftp/ampl−files/lukvl−ampl/lukvl/.
5http://www.gamsworld.org/global/globallib.htm.

56

Table 2.2: Problem names for the first test set (continued).

Problem Problem Problem Problem Problem

hubfit jbearing100 jbearing25 jbearing50 jbearing75

kiwcresc least logcheb lootsma lowpass

madsen madsschj makela1 makela3 matrix2

median−exp median−nonconvex mifflin1 mifflin2 minmaxrb

minsurf−50−100 minsurf−50−50 minsurf−50−75 mistake oet7

optprloc pacman palmer1 palmer1a palmer1b

palmer2 palmer2a palmer2b palmer3 palmer3a

palmer3b palmer4 palmer4a palmer4b palmer5a

palmer5b palmer5e palmer6a palmer6e palmer7a

palmer7e palmer8a palmer8e pentagon polak4

polygon−100 polygon−50 polygon25 polygon75 prolog

pspdoc qr3d qr3dbd qr3dls qrtquad

rbrock s222 s223 s224 s225

s226 s227 s228 s229 s230

s231 s232 s233 s234 s236

s237 s238 s239 s242 s244

s249 s250 s251 s253 s257

s259 s264 s268 s270 s277

s278 s279 s280 s284 s285

s315 s323 s324 s326 s330

s331 s337 s339 s340 s341

s343 s346 s354 s356 s357

s359 s360 s361 s365 s365mod

s366 s368 s384 s385 s387

s388 s389 sineali spiral springs

springs−nonconvex stancmin synthes1 torsion−50−50 turtle

twobars weeds yfit zecevic3 zecevic4

zy2

Using the performance profiles of Dolan and Moré in [46], we plot Figure 2.1, where

the plots πs(τ) denote the scaled performance profile

πs(τ) :=
no. of problems p̂ where log2(rp̂,s) ≤ τ

total no. of problems
, τ ≥ 0,

where log2(rp̂,s) is the scaled performance ratio between the iteration number to solve

problem p̂ by solver s over the fewest iteration number required by the solvers of the

IPLOP method with different p. It is clear that πs(τ) is the probability for solver s

that a scaled performance ratio log2(rp̂,s) is within a factor τ ≥ 0 of the best possible

ratio. See [46] for more details regarding the performance profiles.

57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

IPLOP
1

IPLOP
3/4

IPLOP
2/3

IPLOP
1/4

IPLOP
1/5

Figure 2.1: Performance profiles based on the number of iterations for the IPLOP method
with the different p.

Figure 2.1 shows that on this test set the IPLOP1/2 method is the most efficient

among all the six methods as the performance profile for the IPLOP1/2 method lies

above all others for all performance ratios. Moreover, the IPLOP1/2 method uses

the least number of iterations on approximately 52% of test problems, and solves the

most problems (about 97%) successfully. The IPLOP3/4 and IPLOP2/3 methods share

the nearly same performance and are more efficient than the IPLOP1 method. The

robustness of the IPLOP1/4 method is almost identical with the IPLOP3/4 method, but

the IPLOP1/4 method is less efficient than the IPLOP3/4 method and even the IPLOP1

method. Furthermore, the IPLOP1/5 method is the weakest solver among them as its

performance profile lies below all the others.

We use the values of ρ to plot Figure 2.2, which shows that the IPLOP1/2 method

uses the smallest values of penalty parameter ρ on approximately 93% of test problems.

Furthermore, Figure 2.2, to some extent, verifies the theorem in [152, Theorem 7.2],

which states that the smallest exact penalty parameter for the ℓ 1
p
(p > 1)-exact penalty

function is smaller than that of the ℓ1-exact penalty function.

58

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

IPLOP
1

IPLOP
3/4

IPLOP
2/3

IPLOP
1/4

IPLOP
1/5

Figure 2.2: Performance profiles based on the values of the penalty parameter for the IPLOP
method with the different p.

2.4.2 Experiments with Small-Scale and Medium-Scale Prob-

lems

In this subsection, using the first test set, we compare the performance of the IPLOP1/2

method with the interior-point ℓ1-penalty methods PIPAL-a and PIPAL-c implemented

in PIPAL1.01 by Curtis [42].

We plot Figures 2.3-2.4, which describe the performance of these solvers in the

number of iterations and the values of the penalty parameter, respectively. Figure 2.3

shows that the IPLOP1/2 method uses the least number of iterations on approximately

58% of test problems and shares the nearly same robustness with other two solvers.

1http://coral.ie.lehigh.edu/ frankecurtis/software.

59

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

PIPAL−a
PIPAL−c

Figure 2.3: Performance profiles based on the number of iterations for the IPLOP1/2, PIPAL-a
and PIPAL-c methods.

Figure 2.4 is plotted by the values of ρ, which shows the IPLOP1/2 method uses

smaller values of the penalty parameter than that of the PIPAL-c method which employs

the same strategy for updating the penalty parameter as the IPLOP1/2 method.

0 5 10 15
0.75

0.8

0.85

0.9

0.95

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

PIPAL−a
PIPAL−c

Figure 2.4: Performance profiles based on the values of the penalty parameter for the
IPLOP1/2, PIPAL-a and PIPAL-c methods.

We compare the performance of the IPLOP1/2 method with that of the PIPAL-a

and PIPAL-c methods in terms of the relative error. The relative error is defined as

60

|f(x∗)−f∗|
|f∗|+ε

, where f ∗ denotes the known local minimum of object function, f(x∗) denotes

the computed local minimum by a solver with the same starting point, positive constant

ε is very small to guarantee the relative error making sense as f ∗ = 0. In our first test

set, there are 250 problems that we know their best local minima with given starting

points. Based on the relative error, we plot Figure 2.5, which shows that the IPLOP1/2

method can solve about 90% of test problems with the smallest relative error.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

PIPAL−a
PIPAL−c

Figure 2.5: Performance profiles based on the relative error for the IPLOP1/2, PIPAL-a and
PIPAL-c methods.

2.4.3 Experiments with Large-Scale Problems

In this subsection, we choose 26 large-scale inequality constrained optimization

problems from COPS and MITT test sets as the second test set, These problems cannot

be solved by either the PIPAL-a method or the PIPAL-c method. We show the test

problem data and the numerical performance of the IPLOP1/2 method for solving these

large-scale problems in Table 2.4, whose abbreviations are illustrated in Table 2.3. Table

2.4 shows that the IPLOP1/2 method can successfully solve very large-scale problems.

61

Table 2.3: Abbreviations on the experiments for large scale problems.

Problem name of test problem

♯var number of variables (not including the slack variables)

♯ineq number of inequality or range constraints (including the bounded constraints)

♯Iter1 number of iterations of Algorithm 2.1

♯Iter2 number of iterations of Algorithm 2.2

♯Iter3 number of iterations of Algorithm 2.3

CPU [s] CPU time in seconds

f(x∗) computed objective function value

Table 2.4: Performance of the IPLOP1/2 method to large-scale problems.

Problem ♯var ♯ineq ♯Iter1 ♯Iter2 ♯Iter3 CPU [s] f(x∗)

cvxbqp1 10000 20000 12 6 1 8.18784e+00 2.25023e+06

expquad 120 20 30 5 1 1.33528e-01 -3.62460e+06

lukvli2 50000 49993 43 6 1 2.34645e+02 1.32666e+06

lukvli3 50000 2 12 6 1 6.40883e+00 1.15775e+01

lukvli3−100000 100000 2 11 5 1 1.34654e+01 1.15775e+01

lukvli6 49999 24999 48 5 1 9.01176e+01 3.14423e+06

lukvli7 50000 4 24 5 1 1.33679e+01 -1.86339e+04

lukvli9 50000 6 192 6 1 5.31867e+01 4.99467e+03

lukvli11 49997 33330 19 5 1 4.02668e+01 1.26468e-03

lukvli12 49997 37497 21 5 1 2.58388e+01 2.97710e-05

lukvli16 49997 37497 25 5 1 3.18699e+01 4.62037e-02

lukvli17 49997 37497 25 5 1 3.02674e+01 1.05490e-02

lukvli17−149990 149990 112492 27 5 1 1.37633e+02 3.54839e-03

lukvli18 49997 37497 15 5 1 1.38716e+01 3.01438e-02

sinrosnb 1000 2000 9 5 1 2.10994e-01 -9.99010e+04

svanberg 5000 15000 154 6 2 4.61292e+01 8.36142e+03

bearing−200−200 40000 40000 74 6 1 1.53298e+02 -1.54829e-01

torsion−50−75 3750 7500 53 6 2 6.11683e+00 -4.18199e-01

torsion−50−100 5000 10000 56 6 2 8.00671e+00 -4.18239e-01

torsion−200−200 40000 80000 46 5 1 1.27469e+02 -4.18469e-01

torsion−400−400 160000 320000 77 6 1 9.65081e+02 -4.18488e-01

polygon−100 198 5444 78 5 1 2.75431e+01 8.07387e-10

polygon−200 398 20894 120 6 2 1.76088e+02 7.45598e-10

duct12 6906 18875 9 5 1 1.92118e+01 2.23076e+04

duct15 2895 8671 9 5 1 5.89805e+00 1.04951e+04

hook 1200 4071 10 5 1 2.38681e+00 6.05735e+03

62

2.4.4 Experiments with Degenerate Problems

It is a great challenge to design efficient algorithms for solving optimization problems

with degenerate constraints (OPDC, for short). We select 37 degenerate test problems

from the DEGEN−collection
6 and one degenerate problem from [117, Example 2.3] as

our third test set shown in Table 2.6. All these 38 problems are only with inequality

constraints and have the unique minimizer. We use the classification rules in [90] for

naming these problems, that is, using the form T-DD-NN as test identifiers. Their

meanings are explained in Table 2.5 below.

Table 2.5: Classification rules for degenerate test problems.

T problem type

0 problems satisfying LICQ but violating strict complementarity

1 problems satisfying MFCQ but violating LICQ

2 problems violating MFCQ

3 MPCCs(problems with complementarity constraints)

4 MPVCs(problems with vanishing constraints)

5 problems satisfying lower-order exact penalty but violating GCQ

DD number of variables

NN number in the T-DD group

Table 2.6: Problem names for the third test set.

Problem Problem Problem Problem Problem

00201 00302 00501 10202 10203

10204 10205 10207 10401 20103

20104 20105 20209 20211 20213

20216 20221 20222 20226 20227

20304 30201 30203 30205 30206

30210 30301 40201 40202 40203

40204 40205 40206 40207 40208

40210 40401 50201

For each test problem, we perform 100 runs from randomly generated starting points

by a uniform distribution in [−10, 10]. Using the relative error, we plot Figure 2.6 to

6http://www.impa.br/ optim/solodov.html.

63

qualify the ability of finding the minimum of the objective function for each method.

Figure 2.6 shows that the IPLOP1/2 method reaches the smallest relative error on

approximately 90% of test problems and is more reliable and robust than the PIPAL-a

and PIPAL-c methods as its performance profile lies above them for all performance

ratios.

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

IPLOP
1/2

PIPAL−a
PIPAL−c

Figure 2.6: Performance profiles based on the relative error of degenerate test problems for
the IPLOP1/2, PIPAL-a and PIPAL-c methods.

64

Chapter 3

A Box-Constrained Differentiable

Penalty Method for Nonlinear

Complementarity Problems

3.1 Introduction

In this chapter, we consider the following NCP of finding a vector x ∈ Rn satisfying the

following conditions

x ≤ 0, F (x) ≤ 0, xTF (x) = 0, (3.1.1)

where the function F : Rn → Rn is assumed to be continuously differentiable.

Throughout this chapter, we use X∗ to denote the solution set of problem (3.1.1)

and J = {1, 2, . . . , n}. When the function F is linear, i.e., F (x) = Ax − b with

a given matrix A ∈ Rn×n and a vector b ∈ Rn, problem (3.1.1) is reduced to a

LCP. Complementarity problems play an important role in operations research, option

pricing, economic equilibrium models and the engineering sciences; see, e.g., [53, 54, 82].

We introduce a definition for the function F named a uniform ξ-P -function, which

is weaker than the ξ-monotonicity and coincides with a uniform P -function (or a

P -function) when the function F is linear. Under the assumption of a uniform ξ-

P -function, we show that problem (3.1.1) has a unique solution, and moreover the

65

penalized equation (1.2.21) has a unique solution for any ρ > 0. Then we introduce

a box-constrained differentiable penalty method for solving problem (3.1.1), which not

only inherits the convergence rate of the existing ℓ 1
p
-penalty method but also mitigates

its drawback. Specifically, we consider a differentiable system of equations with box-

constraints, whose solution converges to x∗ at a rate of O(ρ−
k
ξ) provided the function

F is a uniform ξ-P -function. Instead of solving the above system directly, we consider

a corresponding least squares problem, which can be solved by a trust-region Gauss-

Newton method introduced by Macconi et al. [123].

We carry out numerical experiments on test problems from MCPLIB [9]. We

first set p = 2 and compare the performance of our method with the smoothed ℓ 1
2
-

penalty method [87] and the ℓ1-penalty method [7] in terms of the number of function

evaluations and the values of the penalty parameter. Numerical results show that our

method is more efficient and robust than other two methods. Then different values

of the power p = 1, 2, 100, 1000, 5000, 10000 are chosen to test the efficiency of our

method. Furthermore, we compare the performance of our method with the smooth

approximation method [23] and the nonsmooth equations method [93] in terms of the

number of function evaluations.

This chapter is organized as follows. In Section 3.2, we propose a differentiable

penalty method for problem (3.1.1). Moreover, we establish the main convergence rate

theorem for the proposed method under the assumption of a uniform ξ-P -function.

We present a numerical algorithm to solve problem (3.1.1) in Section 3.3. In the last

section, preliminary numerical experiments are shown.

66

3.2 Box-Constrained Differentiable Penalty Method

In this section, we first introduce a new definition for the function F named a uniform

ξ-P -function with ξ ∈ (1, 2]. Then we propose a box-constrained differentiable penalty

method and establish its convergence rate theorem.

3.2.1 Uniform ξ-P -function

To begin, we first recall some useful definitions on function F .

Definition 3.2.1 ([50]). A function G : Rn → Rn is said to be ξ-monotone for some

ξ ∈ (1, 2], if there exists a constant α > 0 such that

(x− y)T (G(x)−G(y)) ≥ α∥x− y∥ξ, ∀ x, y ∈ Rn.

when ξ = 2, the ξ-monotone is called the 2-monotonicity.

Definition 3.2.2 ([50]). A function G : Rn → Rn is said to be

• a P0-function, if for all pairs of distinct vectors x and y in Rn, there exists an

index κ = κ(x, y) ∈ J such that

xκ ̸= yκ and (xκ − yκ)(Gκ(x)−Gκ(y)) ≥ 0;

• a P -function, if for all pairs of distinct vectors x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Gκ(x)−Gκ(y)) > 0;

• a uniform P -function, if there exists constant α > 0 such that for all pairs of

vectors x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Gκ(x)−Gκ(y)) ≥ α∥x− y∥2.

Definition 3.2.3 ([50]). A matrix A ∈ Rn×n is said to be

67

• a P0-matrix if for any vector x ̸= 0 in Rn, and y = Ax, there is at least one index

κ ∈ J such that xκ ̸= 0 and xκyκ ≥ 0;

• a P -matrix if for any x ̸= 0 in Rn, and y = Ax, there is at least one index κ ∈ J
such that xκ ̸= 0 and xκyκ > 0;

• an M-matrix if ai,j ≤ 0 whenever i ̸= j and all principal minors of A are positive.

Extending the definition of the ξ-monotonicity, we introduce a new definition for

the function F called a uniform ξ-P -function, which is stronger than a P -function.

Definition 3.2.4. A function G : Rn → Rn is said to be a uniform ξ-P -function for

some ξ ∈ (1, 2], if there exists constant α > 0 such that for all pairs of vectors x and y

in Rn,

max
1≤κ≤n

(xκ − yκ)(Gκ(x)−Gκ(y)) ≥ α∥x− y∥ξ.

We see that a ξ-P -function is a P0-function and is weaker than the ξ-monotonicity.

The ξ-monotonicity has been utilized in [87] to establish the convergence rate of O(ρ−
p
ξ)

by which the solution of problem (1.2.21) converges to that of problem (3.1.1). If

A ∈ Rn×n is a P -matrix, then the function G(x) = Ax becomes a uniform P -function

(also a P -function). The following propositions are useful to investigate properties of

the uniform ξ-P -function.

Proposition 3.2.1 ([50]). Let G : D ⊂ Rn → Rn be a continuously differentiable

P0-function on the open set D. Then ∇G(x) is a P0-matrix for each x ∈ D.

Corollary 3.2.1. Let G : D ⊂ Rn → Rn be a continuously differentiable ξ-P -function

on the open set D. Then ∇G(x) is a P0-matrix for each x ∈ D.

Proposition 3.2.2 ([50]). A matrix A ∈ Rn×n is a P0-matrix if and only if for every

nonzero vector x, there exists an index i ∈ J such that xi ̸= 0 and xi

(
Ax
)
i
≥ 0.

Proposition 3.2.3 ([50]). Let the linear function G : Rn → Rn be G(x) = Ax− b with

a given matrix A ∈ Rn×n and a vector b ∈ Rn. Then

(a) G is ξ-monotone if and only if matrix A is positive definite;

(b) G is a (uniform) P -function if and only if A is a P -matrix.

68

Corollary 3.2.2. Let the linear function G : Rn → Rn be G(x) = Ax− b with a given

matrix A ∈ Rn×n and a vector b ∈ Rn. Then G is a uniform ξ-P -function if and only

if A is a P -matrix.

Proposition 3.2.4 ([50]). Let G : D ⊂ Rn → Rn be continuously differentiable on the

open convex set D. Then G is 2-monotone on D if and only if its Jacobian matrix

∇G(x) is uniformly positive definite for all x in D, i.e., there exists a constant c′ > 0

such that

yT∇G(x)y ≥ c′∥y∥2, ∀ y ∈ Rn,

for all x ∈ D.

We present an example from [40, Example 3.3.2] below, which shows that the

uniform ξ-P -function is weaker than the ξ-monotonicity.

Example 3.2.1. Let F (x) = Ax− b with

A =

(
1 −3

0 1

)

and a vector b ∈ Rn. Clearly, A is a P -matrix. Letting x = (1, 1)T , we note that

xTAx = −1 < 0, which shows that A is not positive definite. Therefore, it follows

from Proposition 3.2.3 that we know function F (x) is a uniform ξ-P -function, but not

ξ-monotone.

Next we describe a nonlinear example to show that the uniform P -function is weaker

than the 2-monotonicity.

Example 3.2.2. Consider function G : R2 → R2 as

G(x) =

(
x3
1

x3
2

)
+ F (x),

where F (x) is a linear function defined in Example 3.2.1. The Jacobian matrix of

function G(x) is

∇G(x) =

(
3x2

1 0

0 3x2
2

)
+

(
1 −3

0 1

)
.

69

Take x = (0, 0)T . Then ∇G(x) =

(
1 −3

0 1

)
. Example 3.2.1 shows that the matrix

∇G(0) is not positive definite. Therefore, by Proposition 3.2.4, we conclude that the

function G(x) is not 2-monotone. Since the function F (x) is a uniform P -function, it

follows that there exists constant α > 0 such that for all pairs of vectors x and y in

R2 the inequality max
1≤κ≤2

(xκ − yκ)(Fκ(x)− Fκ(y)) ≥ α∥x− y∥2 holds. We notice that the

inequality (xκ − yκ)(x
3
κ − y3κ) ≥ 0 holds for all pairs of vectors x and y in R2 and any

1 ≤ κ ≤ 2. Therefore, we have

max
1≤κ≤2

(xκ − yκ)(Gκ(x)−Gκ(y))

= max
1≤κ≤2

(
(xκ − yκ)(x

3
κ − y3κ) + (xκ − yκ)(Fκ(x)− Fκ(y))

)
≥ max

1≤κ≤2
(xκ − yκ)(Fκ(x)− Fκ(y)) ≥ α∥x− y∥2.

Consequently, the function G(x) is a uniform P -function.

In the following, assuming the function F is a uniform ξ-P -function, we show that

the solution of penalized equations (1.2.21) is unique. Before doing this, we first prove

an auxiliary proposition.

Proposition 3.2.5. Assume that the function F : Rn → Rn is a continuous uniform

ξ-P -function. Then problem (3.1.1) has a unique solution.

Proof. It follows from [50, Proposition 1.1.3] that problem (3.1.1) is equivalent to the

following variational inequality problem: Find a vector x ∈ K such that for all vectors

y ∈ K
(y − x)TF (x) ≥ 0, (3.2.2)

where K = {y ∈ Rn | y ≤ 0}.

Using the [50, Proposition 3.5.1 (a)], we need to prove that there exists a vector

xref ∈ K such that the set

L′
≤ := {x ∈ K | Fν(x)(xν − xrefν) ≤ 0, ∀ ν ∈ J such that xν ̸= xrefν }

is nonempty and bounded. Let xref ∈ K and ∥xref∥ ̸= 0. By the continuity of the

function F on the closed convex set K, we obtain that the set L′
≤ is nonempty via the

70

intermediate value theorem. Now, assume the contrary that the set L′
≤ is unbounded.

There exists a sequence {xk} ⊂ K such that for all k,

Fν(x
k)(xk

ν − xrefν) ≤ 0, ∀ ν ∈ J such that xk
ν ̸= xrefν (3.2.3)

and lim
k→∞

∥xk∥ = +∞.

Since the function F is a uniform ξ-P -function, it follows that there exist constants

α > 0, ξ > 1 and an index ν = ν(xk, xref) ∈ J with xk
ν ̸= xrefν such that

(Fν(x
k)− Fν(x

ref))(xk
ν − xrefν) ≥ α∥xk − xref∥ξ.

Dividing on both sides of the last inequality by the term ∥xk∥ ξ+1
2 , we have

lim
∥xk∥→+∞

Fν(x
k)(xk

ν − xrefν)

∥xk∥ ξ+1
2

= +∞,

which contradicts with inequality (3.2.3). Therefore, the set L′
≤ is bounded for any given

xref ∈ K. By [50, Proposition 3.5.1 (c)], we conclude that the variational inequality

problem (3.2.2) has a solution. Since a uniform ξ-P -function is a P -function, it follows

from [50, Proposition 3.5.10 (a)] that the variational inequality problem (3.2.2) has at

most one solution. Therefore, we have proved that the solution of variational inequality

problem (3.2.2) is unique. We concluded that problem (3.1.1) has a unique solution.

Proposition 3.2.6. Assume the function F : Rn → Rn is a uniform ξ-P -function.

Then the penalized nonlinear equations (1.2.21) have a unique solution for any ρ > 0.

Proof. For any vectors x, y ∈ Rn and index i ∈ J , we have

(xi − yi)(ϕi(x, ρ)− ϕi(y, ρ)) = (xi − yi)(Fi(x)− Fi(y)) + ρ(xi − yi)([xi]
1
p

+ − [yi]
1
p

+)

≥ (xi − yi)(Fi(x)− Fi(y)),

since the function [x]
1
p

+ is monotone. There exist constants α > 0 and ξ > 1 such that

max
1≤κ≤n

(xκ − yκ)(ϕκ(x, ρ)− ϕκ(y, ρ)) ≥ max
1≤κ≤n

(xκ − yκ)(Fκ(x)− Fκ(y))

≥ α∥x− y∥ξ,

71

where the last inequality is from Definition 3.2.4. Therefore, the function ϕ(x, ρ) is a

uniform ξ-P -function for any ρ ≥ 0 and the following variational inequality problem:

find a vector x ∈ Rn such that

(y − x)Tϕ(x, ρ) ≥ 0, ∀ y ∈ Rn

has a unique solution by Proposition 3.2.5. We proved that the penalized equations

(??) have a unique solution.

3.2.2 Box-Constrained Differentiable Penalty Method

In this subsection, we introduce a box-constrained differentiable penalty method for

solving problem (3.1.1), which not only shares the same convergence rate as the existing

ℓ 1
p
-penalty method but also can be implemented easily. We consider the system of box-

constrained equations as follows:

F(x, ρ) :=


x1F1(x) + ρ[F1(x)]

q
+

x2F2(x) + ρ[F2(x)]
q
+

...
...

...

xnFn(x) + ρ[Fn(x)]
q
+

 = 0, x ∈ Ω, (3.2.4)

where q = 1+ 1
p
and Ω = {x ∈ Rn | x ≤ 0} . Since the composite function [g(x)]q+ is first

order continuously differentiable as long as the function g : Rn → R is continuously

differentiable and q > 1. We see that the function F(·, ρ) : Rn → Rn is first order

continuously differentiable for any given ρ. The system (3.2.4) can be solved efficiently

by algorithms [98, 123].

Remark 3.2.1. Alternately, we can consider another system of constrained equations

for problem (3.1.1) as follows
x1F1(x) + ρ[x1]

q
+

x2F2(x) + ρ[x2]
q
+

...
...

...

xnFn(x) + ρ[xn]
q
+

 = 0, x ∈ Ω̂, (3.2.5)

72

where Ω̂ = {x ∈ Rn | F (x) ≤ 0}. However, the feasible set Ω̂ in general is not convex

in general. It is not easy to solve the system (3.2.5) when the function F is nonlinear.

Proposition 3.2.7. Let x∗ ∈ Rn be a solution of problem (3.1.1). Then x∗ solves

F(x, ρ) = 0 for any given ρ > 0.

We present an example that shows the converse of Proposition 3.2.7 is not true.

Example 3.2.3. Let F (x) = 0 for all x ∈ R. It is obvious that x∗ solves the equation

F(x, ρ) = 0 for any x∗ ∈ R. But x∗ is not the solution of problem (3.1.1) when x∗ > 0.

Remark 3.2.2. Example 3.2.3 indicates that the constraint set Ω in the system (3.2.4)

is vital to the box-constrained differentiable penalty method for problem (3.1.1).

Given the penalty parameter ρ and the power p. The solution of the system (3.2.4)

in general is not unique even if problem (3.1.1) has a unique solution, which is verified

by the next example.

Example 3.2.4. Let F (x) = x+1 with x ∈ R and q = 2. It is clear that x∗ = −1 is the

unique solution of this linear complementarity problem. Its box-constrained equation is

x(x + 1) + ρ[x + 1]2+ = 0 with x ≤ 0. The constrained equation has two solutions, one

is x̄ρ = −1 and the other one is x̂ρ = − ρ
ρ+1

.

3.2.3 Convergence Rate Analysis

In this subsection, we establish that the solution xρ of system (3.2.4) converges to a

solution x∗ of problem (3.1.1) at a rate of O(ρ−
p
ξ) provided that function F is a uniform

ξ-P -function. We first show some useful lemmas as follows.

Lemma 3.2.1. For each ρ > 0, assume that the function F : Rn → Rn is a uniform

ξ-P -function and let the vector xρ ∈ Rn be a solution of system (3.2.4). Then there

exists a positive constant M1 > 0, independent of xρ, ρ and p, such that

∥xρ∥ ≤ M1.

Proof. Given ρ > 0. Since xρ is a solution of system (3.2.4), it follows that xρ
iFi(x

ρ)+

ρFi(x
ρ)[Fi(x

ρ)]
1
p

+ = 0, which means xρ
iFi(x

ρ) ≤ 0, for all i ∈ J .

73

By the uniform ξ-P -function of the function F , we see that there exist constants

α > 0 and ξ > 1 such that

α∥xρ∥ξ ≤ max
1≤i≤n

xρ
i

(
Fi(x

ρ)− Fi(0)
)
≤ max

1≤i≤n

(
− xρ

iFi(0)
)
≤ ∥xρ∥∥F (0)∥∞.

Consequently, we have proved this lemma with M1 =
ξ−1

√
1
α
∥F (0)∥∞.

Lemma 3.2.1 implies that, for any ρ > 0, the solution of system (3.2.4) always lies

in a bounded closed set. Assuming further the continuity of function F , we have that

there exists a positive constant L, independent of xρ, ρ and p, such that ∥F (xρ)∥ ≤ L,

for all ρ > 0.

Lemma 3.2.2. For each ρ > 0, assume that the function F : Rn → Rn is a uniform

ξ-P -function and let the vector xρ ∈ Rn be a solution of system (3.2.4). Then there

exists a positive C1, independent of x
ρ and ρ, such that

∥[F (xρ)]+∥ ≤ C1ρ
−p.

Proof. Since xρ is a solution of system (3.2.4), it follows that ρ[Fi(x
ρ)]q+ = −Fi(x

ρ)xρ
i ≤

∥F (xρ)∥∞∥xρ∥∞ for all index i ∈ J . Therefore, we have ∥[F (xρ)]+∥∞ ≤ ρ−p∥xρ∥p∞. By

the fact that all norms in Rn are equivalent, there exists constant C̃ > 0 such that

∥[F (xρ)]+∥ ≤ C̃∥[F (xρ)]+∥∞. By Lemma 3.2.1, we have there exists a constant C1 such

that

∥[F (xρ)]+∥ ≤ C1ρ
−p

with C1 = C̃Mp
1 .

Now, we establish our main convergence rate theorem.

Theorem 3.2.1. For each ρ > 0, assume that the function F : Rn → Rn is a uniform

ξ-P -function. Let vectors x∗ and xρ in Rn be the solutions of problem (3.1.1) and system

(3.2.4), respectively. Then there exist constants Ĉ > 0 and ξ > 1, independent of xρ

and ρ, such that

∥x∗ − xρ∥ ≤ Ĉρ−
p
ξ .

74

Proof. Since xρ is a solution of system (3.2.4), the index set at xρ can be split into the

following two sets:

αρ = {i ∈ J | xρ
i = 0, Fi(x

ρ) ≤ 0};

γρ = {i ∈ J | xρ
i < 0, Fi(x

ρ) ≥ 0}.

We first show that the inequality holds for any index i ∈ J

(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ) + [Fi(x

ρ)]+

)
=
(
x∗
i − xρ

i

)(
Fi(x

∗) + [Fi(x
ρ)]−

)
≤ 0 (3.2.6)

where [a]− := max{−a, 0} for all a ∈ R. Note that x∗ is a solution of problem (3.1.1),

the following two cases are considered.

(I) i ∈ αρ. We have

(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ) + [Fi(x

ρ)]+

)
= x∗

i [Fi(x
ρ)]− ≤ 0;

(II) i ∈ γρ. We have

(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ) + [Fi(x

ρ)]+

)
= −xρ

iFi(x
∗) ≤ 0.

Therefore, we proved that the inequality (3.2.6) holds for all index i ∈ J .

Since the function F is a uniform ξ-P -function, it follows that there exist constants

α > 0 and ξ > 1 such that

α∥x∗ − xρ∥ξ ≤ max
1≤i≤n

(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ)
)

≤ max
1≤i≤n

(
− [Fi(x

ρ)]+(x
∗
i − xρ

i)
)

≤ C1ρ
−p∥x∗ − xρ∥∞

≤ 2C1M1ρ
−p,

where the second inequality is from inequality (3.2.6), the third one is from Lemma

3.2.2 and the last one is from Lemma 3.2.1. Therefore, we proved this theorem with

Ĉ = ξ

√
2C1M1

α
.

75

Similar to the proof of Theorem 3.2.1, we can establish the convergence rate of

O(ρ−
p
ξ) for the existing ℓ 1

p
-penalty method under the assumption of a uniform ξ-P -

function (or a P -matrix for the matrix A to the LCP), which is weaker than that of the

ξ-monotonicity for the function F (or a positive definite matrix for the matrix A to the

LCP) used in [87]. Here, the details are omitted.

Theorem 3.2.2. For each ρ > 0, assume that the function F : Rn → Rn is a uniform

ξ-P -function. Let vectors x∗ and xρ in Rn be the solutions of the problem (3.1.1) and

system (1.2.21), respectively. Then there exist constants Ĉ > 0 and ξ > 1, independent

of xρ and ρ, such that

∥x∗ − xρ∥ ≤ Ĉρ−
p
ξ .

Corollary 3.2.3. For each ρ > 0, assume that the linear function F : Rn → Rn is

F (x) = Ax with the matrix A ∈ Rn×n being a P -matrix. Let vectors x∗ and xρ in Rn

be the solutions of problem (3.1.1) and system (1.2.21), respectively. Then, there exists

a constant Ĉ > 0, independent of xρ and ρ, such that

∥x∗ − xρ∥∞ ≤ Ĉρ−p.

Remark 3.2.3. We note that the assumption of a P -matrix for matrix A is weaker than

the assumption of a M-matrix used in [168] and the assumption of positive definiteness

used in [87].

Remark 3.2.4. It has been proved in [121] that the class of P -matrices contains not

only the positive definiteness matrix but also the M-matrix; furthermore, any strictly

or irreducibly diagonally dominant matrix with non-negative elements is likewise a P -

matrix.

We present an example from [40, Example 3.3.10], which verifies the conclusions in

Remarks 3.2.3 and 3.2.4.

Example 3.2.5. Let matrix

A =


1 −1 0

1 1 −17

4 0 1

 .

76

Three eigenvalues of matrix A are 5 and −1 ± i
√
13. Thus, the matrix A is neither

positive definite nor an M-matrix. However, it is a P -matrix.

3.3 Numerical Algorithms

In this section, we describe specific algorithms to solve system (3.2.4). Instead of solving

the box-constrained system (3.2.4) directly, we consider the corresponding least squares

problem

min
x∈Ω

Ψ(x, ρ) :=
1

2
∥F(x, ρ)∥2. (3.3.7)

The first-order necessary condition for a vector xρ ∈ Ω to be a local solution of

problem (3.3.7) for given ρ > 0 is stated in the following proposition.

Proposition 3.3.1 ([8]). For each ρ > 0, assume that xρ is a local solution of problem

(3.3.7). Then

∇Ψ(xρ, ρ)T (x− xρ) ≥ 0, ∀ x ∈ Ω, (3.3.8)

where ∇Ψ is the gradient of function Ψ.

Theorem 3.3.1 ([35]). For each ρ > 0, a vector xρ ∈ Rn satisfies inequality (3.3.8) if

and only if xρ is the solution of the following nonlinear system

D(x)∇Ψ(x, ρ) = D(x)∇F(x, ρ)TF(x, ρ) = 0,

where ∇F is the Jacobian matrix of function F and D is the scaling matrix D(x) :=

diag(|d1(x)|, . . . , |dn(x)|) with

di(x) :=

{
xi, if (∇Ψ(x, ρ))i < 0,

1, otherwise.

For each ρ > 0, the Jacobian matrix ∇F of function F(x, ρ) can be expressed as

∇F(x, ρ) := Θ(x) + Π(x, ρ)∇F (x), (3.3.9)

77

where

Θ(x) := diag(F1(x), . . . , Fn(x)), Π(x, ρ) := diag(G1(x, ρ), . . . , Gn(x, ρ))

are diagonal matrices, ∇F (x) is the Jacobian matrix of function F and Gi(x, ρ) :=

xi + ρ(1 + 1
p
)[Fi(x)]

1
p

+ for all i ∈ J .

In the following, we apply a trust-region Gauss-Newton method to solve the least

squares problem (3.3.7) for given ρ > 0; more details can be found in [37, 110, 128]. At

the k-th iteration, we consider a quadratic model mk(d, ρ) for Ψ(x, ρ) at xk ∈ Ω and

replace the problem (3.3.7) by a trust-region problem

min mk(d, ρ) s.t. ∥d∥ ≤ ∆k, (3.3.10)

with the objective function

mk(d, ρ) :=
1

2
∥F(xk, ρ) +∇F(xk, ρ)d∥2, (3.3.11)

where ∆k is the trust-region radius.

A formal description of the trust-region Gauss-Newton method for problem (3.3.7)

for given ρ > 0 is presented as follows.

78

Algorithm 3.1: Trust-region Gauss-Newton method.

1 Input: x0 ∈ Ω, ν̄ > 0, β̄, σ̄, γ̄ ∈ (0, 1), ∆0 ≥ ∆min > 0, β1, β2, µ̂ ∈ (0, 1), µ ≥ 0, ρ, ϵρ > 0,

ϵ̂ > 0 and let k := 0;

2 if min
{
∥D(xk)∇Ψ(xk, ρ)∥,∥PΩ(x

k −∇Ψ(xk, ρ))− xk∥
}
≤ ϵ̂

√
n or ∥F(xk, ρ)∥ ≤ ϵρ then

3 Stop;

4 else

5 Compute the minimum-length solution dkN to the problem min
d

mk(d, ρ). Compute the

generalized Cauchy step dkC as follows:

dkC = argmin
d∈span{pk}

mk(d, ρ) s.t. ∥d∥ ≤ ∆k, xk + d ∈ Ω.

if ∥dkN∥ ≤ ∆k then

6 Set dtr = dkN ;

7 else

8 Find the dogleg step dtr for (3.3.10).

9 end

10 Let d̄tr = PΩ(x
k + dtr)− xk.

11 if

ζc(d̄tr) :=
mk(0, ρ)−mk(d̄tr, ρ)

mk(0, ρ)−mk(dkC , ρ)
≥ β1

then

12 Set dk = d̄ktr ;

13 else

14 Find some scale t ∈ (0, 1] such that dk = tdkC + (1− t)d̄tr satisfies ζc(d
k) ≥ β1.

15 end

16 if

ζΨ(d
k) :=

Ψ(xk, ρ)−Ψ(xk + dk, ρ)

mk(0, ρ)−mk(dk, ρ)
≥ β2 (3.3.12)

then

17 Set xk+1 = xk + dk, if ζΨ(d
k) ≥ 0.75 we set ∆k+1 = max{∆k, 2∥dk∥,∆min},

otherwise we let ∆k+1 = max{∆k,∆min}, let k := k + 1 and go to 2;

18 else

19 Set ∆k = min{∆k

4 , ∥dk∥
2 } and go to 6;

20 end

21 end

In Algorithm 3.1, the function PΩ : Rn → R denotes the projection operator defined

by

PΩ(x) := {y ∈ Rn | ∥y − x∥ = min
z∈Ω

∥z − x∥}.

79

We present a box-constrained differentiable penalty algorithm for problem (3.1.1).

Before doing this, we define the termination criterion for this algorithm as follows

Termination(x) := min{∥[x]+∥, ∥[F (x)]+∥, ∥F (x) ◦ x∥} ≤ ϵ, (3.3.13)

where ϵ > 0 is the tolerance parameter, which should be small enough, F (x)◦x denotes

a vector with components (F (x)◦x)i = Fi(x)xi, for all i ∈ J . Now, a formal description

of our algorithm for problem (3.1.1) is given as follows.

Algorithm 3.2: Box-constrained differentiable penalty method for the NCP.

1 Initializing ρ0 > 0, ρmin; σ > 1, ϵ > 0 and an initial point x0 and let i := 0;

2 while ρi > ρmin do

3 if Termination(xi) ≤ ϵ then

4 Stop;

5 else

6 Using Algorithm 3.1 to solve problem (3.3.7) with starting point xi,

termination tolerance ϵρi and penalty parameter ρi, we obtain xi+1;

7 end

8 Letting ρi+1 := σρi and i := i+ 1;

9 end

3.3.1 Convergence Analysis

In this subsection, we establish the connection between solutions of the least squares

problem (3.3.7) and solutions of problem (3.1.1).

Theorem 3.3.2. Suppose that vector xi ∈ Ω is the exact global solution of problem

(3.3.7), and that ρi → ∞. Then every limit point of the sequence {xi} is a solution of

problem (3.1.1).

Proof. Let x∗ be the solution of problem (3.1.1). Then Ψ(x∗, ρ) = 0 for any ρ > 0.

Since xi is the exact global solution of problem (3.3.7) for given ρi > 0, we have

80

Ψ(xi, ρi) ≤ Ψ(x∗, ρi), which means that Ψ(xi, ρi) = 0. Specifically, we have

1

2

n∑
l=1

(xi
lFl(x

i))2 + ρi
(n∑

l=1

xi
l[Fl(x

i)]q+1
+ +

ρi

2

n∑
l=1

[Fl(x
i)]2q+

)
= 0. (3.3.14)

By rearranging this expression, we obtain

1

2
(ρi)2

n∑
l=1

[Fl(x
i)]2q+ = −1

2

n∑
l=1

(xi
lFl(x

i))2 − ρi
n∑

l=1

xi
l[Fl(x

i)]q+1
+ ≤ −ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ ,

which means that
n∑

l=1

[Fl(x
i)]2q+ ≤ − 2

ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ . (3.3.15)

Suppose that x̄ is a limit point of the sequence {xi}, so there is an infinite subsequence

K such that x̄ = lim
i∈K

xi ≤ 0, which implies x̄ ∈ Ω. By taking the limit as i → ∞, i ∈ K,

on both sides of (3.3.15), we have

n∑
l=1

[Fl(x̄)]
2q
+ = lim

i∈K

n∑
l=1

[Fl(x
i)]2q+ ≤ − lim

i∈K

2

ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ = 0,

where the last equality follows from ρi → ∞. Therefore, we have Fl(x̄) ≤ 0 for all

l ∈ J . Moreover, by taking the limit as i → ∞ for i ∈ K in (3.3.14), we have

n∑
l=1

(x̄lFl(x̄))
2 = lim

i
K→∞

n∑
l=1

(xi
lFl(x

i))2

= − lim
i
K→∞

(
2ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ + (ρi)2

n∑
l=1

[Fl(x
i)]2q+

)
,

= − lim
i
K→∞

(
− 2

n∑
l=1

(xi
l)
2[Fl(x

i)]2+ + (ρi)2
n∑

l=1

[Fl(x
i)]2q+

)
≤ 0,

where the last equality follows from (3.2.4) that ρixi
l[Fl(x

i)]q+1
+ = −(xi

l)
2[Fl(x

i)]2+ for all

l ∈ J .

Therefore, we have proved that x̄ ≤ 0, F (x̄) ≤ 0 and
n∑

l=1

(x̄lFl(x̄))
2 = 0, that is, x̄ is

a solution of problem (3.1.1).

Theorem 3.3.3. Suppose that F is a uniform ξ-P -function and the set X∗ is nonempty.

Moreover, assume that xρ is a local solution of problem (3.3.7) for given ρ > 0 and

81

satisfies F (xρ) ≤ 0. Then xρ is the solution of problem (3.1.1).

Proof. Applying Proposition 3.3.1 at xρ for given penalty parameter ρ > 0, we have{
∂Ψ(xρ,ρ)

∂xi
= 0, if xρ

i < 0,
∂Ψ(xρ,ρ)

∂xi
≤ 0, if xρ

i = 0,

which can be expressed as an explicit form via equality (3.3.9) as follows

{ (
Θ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
i
= 0, if xρ

i < 0,(
Θ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
i
≤ 0, if xρ

i = 0.
(3.3.16)

Since xρ satisfies F (xρ) ≤ 0, it follows that Π(xρ, ρ) = diag(xρ
1, . . . , x

ρ
n).

Assume on the contrary that F(xρ, ρ) ̸= 0. Then there exists at least one index

i ∈ J such that Fi(x
ρ, ρ) ̸= 0. Without loss of generality, we assume F1(x

ρ, ρ) ̸= 0 and

Fi(x
ρ, ρ) = 0 for all i = 2, . . . , n. Since F1(x

ρ, ρ) = xρ
1F1(x

ρ), we see that F1(x
ρ) ̸= 0

and xρ
1 ̸= 0. It follows from (3.3.16) that

(
ρΘ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
1
= 0. (3.3.17)

Thus,

(
Θ(xρ)F(xρ, ρ)

)
1
= xρ

1F1(x
ρ)2 < 0 and

(
Π(xρ, ρ)F(xρ, ρ)

)
1
= (xρ

1)
2F1(x

ρ) < 0.

It follows from equality (3.3.17) that

(
Π(xρ, ρ)F(xρ, ρ)

)
1

(
∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
1
= −(xρ

1)
3F1(x

ρ)3 < 0,

which contradicts the fact that ∇F (xρ)T is a P0-matrix (because the uniform ξ-P -

function F is a P0-function). Therefore, we have proved that F(xρ, ρ) = 0, which

means that xρ is the solution of problem (3.1.1).

In the next theorem, under the assumption of a uniform ξ-P -function on the function

F , we prove that the merit function Ψ has bounded level sets for given ρ > 0.

Theorem 3.3.4. Suppose that the function F : Rn → Rn is a uniform ξ-P -function.

82

Then the merit function Ψ(x, ρ) is level-bounded for each ρ > 0.

Proof. Suppose on the contrary that the level sets of Ψ(x, ρ) are unbounded for given

ρ > 0. Then there exist a sequence {xk} and a constant α̂ ≥ 0 such that lim
k→∞

∥xk∥ = ∞
and

Ψ(xk, ρ) ≤ α̂. (3.3.18)

We define the index set T := {i ∈ J | {xk
i } is unbounded}. Since {xk} is unbounded,

it follows that T ≠ ∅. Let {zk} denote a bounded sequence defined by:

zki =

{
0 if i ∈ T ,

xk
i if i ̸∈ T .

By the definition of sequence {zk} and the assumption of a uniform ξ-P -function on F ,

there exist constants α > 0, ξ > 1 and an index ν = ν(xk, zk) ∈ J such that

α
∑
i∈T

(xk
i)

ξ = α∥xk − zk∥ξ

≤ (xk
ν − zkν)(Fν(x

k)− Fν(z
k))

≤ max
i∈T

xk
i (Fi(x

k)− Fi(z
k))

= xk
j (Fj(x

k)− Fj(z
k))

≤ |xk
j ||Fj(x

k)− Fj(z
k)|,

(3.3.19)

where j is one of the indices at which the max is attained. Since j ∈ T , we can assume,

without loss of generality, that

{|xk
j |} → ∞. (3.3.20)

Dividing by |xk
j | on both sides of inequality (3.3.19), we have

α|xk
j |ξ−1 ≤ |Fj(x

k)− Fj(z
k)|,

this, in turn, implies

{|Fj(x
k)|} → ∞, (3.3.21)

since Fj(z
k) is bounded. However, (3.3.20) and (3.3.21) imply that {|Fj(x

k, ρ)|} → ∞,

which contradicts with (3.3.18).

83

3.4 Numerical Experiments

In this section, we present numerical results of our Algorithms described in Section 3.3

using MATLAB R2011b. We conduct numerical testing on Windows XP with 3.00GB

of main memory and Intel(R) Core(TM) 2 Duo 3.0GHz processors. We carry out the

numerical experiments on the test problems from MCPLIB [9].

We refer to the implementation of Algorithm 3.2 as the CDLOP method, which s-

tands for the Constrained Differentiable Lower Order Penalty method. For convenience,

we write the CDLOP method with p = 2 and 100 as the CDLOP1/2 and CDLOP1/100

methods, respectively. We first compare the performances of the DLOPP1/2 method

with the ℓ 1
2
-penalty method [169] and ℓ1-penalty method [7] in terms of the number of

function evaluations and the values of the penalty parameter ρ. Using the same terms,

we compare the performances of the CDLOP method with different values of the power

p = 1, 2, 100, 1000, 5000, 10000. Finally, based on the number of function evaluations,

we compare the performance of our method with some well known approaches, such as

the smooth approximation method [23, 25] and the nonsmooth equations method [93].

Before presenting our numerical results, we illustrate the implementation details for

our method and other existing methods used in this section as follows.

A smoothing strategy in [169] is used to smooth out the non-Lipschitzian term in

the ℓ 1
2
-penalized term. The smoothing ℓ 1

2
-penalty method is abbreviated as SLOP1/2

method. The ℓ1-penalty method employs the semismooth Newton method [146] to

solve the corresponding ℓ1-penalized equations. We refer to the implementation of

ℓ1-penalty method as the SSOOP1 method, which stands for the Semismooth One

Order Penalty method. The implementation of Algorithm 3.1 is by virtue of a Matlab

solver TRESNEI1, which is a trust-region Gauss-Newton method developed by Morini

and Porcelli [123] for bound-constrained (or unconstrained) nonlinear least squares

problems. Furthermore, the solver TRESNEI is used to solve the corresponding least

squares problems for the SLOP1/2 and SSOOP1 methods.

Throughout the experiments, we set parameters ρ0 = 1, ρmin = 1016, σ = 0.1 and

ϵ = 1.0e − 6 in Algorithm 3.2. We use ϵ̂ = 10−5 for the value of smoothing factor in

1http://tresnei.de.unifi.it/.

84

the SLOP1/2 method. We follow all default parameters in the solver TRESNEI. For

example, we terminate the Algorithm 3.1 when the number of iteration or the number

of function evaluations is over 1000. Other details can be found in [123]. We employ

the performance profile introduced by Dolan and Moré [46] to present our numerical

results. See Section 2.4 or [46] for more details regarding the performance profiles.

We select 22 test problems from MCPLIB shown in Table 3.1. For each problem, we

perform 100 runs from randomly generated starting points by a uniform distribution in

a given interval. Therefore, we run each method on a set of 2200 test problems.

Table 3.1: Problem characteristics and starting intervals.

Problem Dim Interval Problem Dim Interval

colvnlp 15 [-10,0] cycle 1 [-10,0]
josephy 4 [-10,0] kojshin 4 [-10,0]
mathisum 4 [-10,0] powell 16 [-10,0]
scarfanum 13 [-1,0] scarfsum 14 [-1,0]
sppe 27 [-10,0] tobin 42 [-10,0]
billups 1 [-10,0] colvdual 20 [-10,0]
degen 2 [-10,0] hanskoop 14 [-10,0]
nash 10 [-10,0] tinloi 146 [-1,0]
colvtemp 20 [-1,0] oligomcp 6 [-10,0]
fathi 100 [-10,0] murty 100 [-10,0]
primaldual 6 [-10,0] explcp 16 [-10,0]

In Table 3.1, the Problem denotes the name of test problem, the Dim denotes the

dimension of problem (3.1.1) and the Interval denotes the interval in which a starting

point is generated by a uniform distribution.

We present the numerical results as follows. We plot Figures 3.1-3.2 to compare

the performance of the CDLOP1/2 method with the SLOP1/2 and SSOOP1 methods in

terms of the number of function evaluations and the values of the penalty parameter.

85

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ

π s(τ
)

Log2 scaled performance profile

CDLOP
1/2

SLOP
1/2

SSOOP
1

Figure 3.1: Performance profiles based on the number of function evaluations for the
CDLOP1/2, SLOP1/2 and SSOOP1 methods.

Figure 3.1 indicates that the CDLOP1/2 method is the most efficient method among

them as its performance profile lies above all others for all performance ratios. Moreover,

the CDLOP1/2 method can solve the most of the test problems successfully. The

SLOP1/2 method is the weakest solver among them.

The performance profiles in Figure 3.2 are plotted by the values of ρ. Figure 3.2

indicates the CDLOP1/2 method can solve about 68% of the test problems with the

smallest values of penalty parameter ρ. A small portion of the test problems can be

solved by the SSOOP1 method with the smallest penalty parameter ρ. However, the

SSOOP1 method is more robust than the SLLOP1/2 method.

86

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log2 scaled performance profile

CDLOP
1/2

SLOP
1/2

SSOOP
1

Figure 3.2: Performance profiles based on the values of the penalty parameter for the
CDLOP1/2, SLOP1/2 and SSOOP1 methods.

We plot Figures 3.3 and 3.4 to compare performance of the CDLOP method with

different values of p in term of the number of function evaluations and the values of the

penalty parameter.

0 2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

p=1
p=2
p=100
p=1000
p=5000
p=10000

Figure 3.3: Performance profiles based on the number of function evaluations for the CDLOP
method with the different p.

Figure 3.3 indicates that the CDLOP method with p = 100 can solve about 60%

test problems with the least number of function evaluations and is the most efficient

87

solver among them. We also see that the number of function iterations used by the

CDLOP method decreases dramatically as the power p increases from 2 to 100. Slight

changes will happen on the performance profiles as we increase p from 100 to 10000.

Furthermore, there are nearly the same test problems (about 90%) that can be solved

successfully by the CDLOP method with different values of p.

0 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

p=1
p=2
p=100
p=1000
p=5000
p=10000

Figure 3.4: Performance profiles based on the values of the penalty parameter for the CDLOP
method with the different p.

The performance profiles in Figure 3.4 are plotted by the values of ρ. Figure 3.4

indicates that the CDLOP method with p = 1 uses the smallest values of penalty

parameter. smaller values of the penalty parameter ρ are used by the CDLOP method

as we increase p from 1 to 100, which verifies the conclusion of Theorem 3.2.1.

Next, we use the CDLOP method with p = 100 to compare its performance with

the smooth approximation method and the nonsmooth equations method in terms of

the number of function evaluations. The Zang smooth plus function [183] is used in

the smooth approximation method to smooth its normal equations. The nonsmooth

equations method employs the semismooth Newton method [146] to solve its nonsmooth

equations. We write SAM and NSEM to denote the smooth approximation and

nonsmooth equations methods, respectively. Moreover, the solver TRESNEI is used

to solve the corresponding least squares problems for the last two methods.

88

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

CDLOP
SAM
NSEM

Figure 3.5: Performance profiles based on the number of function evaluations for the CDLOP
method with p = 100, the SAM and NSEM methods.

Figure 3.5 indicates that the SAM method can solve about 47% test problems

with the least number of function evaluations. However, the fewest problems can be

successfully solved by this method. The NSEM method is more efficient than the

SAM method. The CDLOP method with p = 100 can successfully solve the most test

problems among them.

Next, we compare the performance of the proposed method with projection-type

methods that have been studied widely for solving monotone linear and nonlinear

variational inequalities, see [51, Chapter 12] and [84, 85, 158]. The extra-gradient

method with modifications 1 and 2 in [84] (EGA12, for short) is used to compare the

performance of the CDLOP method with p = 100 in term of the number of function

evaluations and the CPU time on the next test example. We take

F (x) = D(x) +Mx+ q,

where D(x) and Mx+q are the nonlinear part and the linear part of F (x), respectively.

The matrix M = ATA + B where A is an n × n matrix whose entries are randomly

generated in the interval (−5, 5) and a skew-symmetric matrix B is generated in the

same way. The vector q is generated from a uniform distribution in the interval

(−500, 500). In D(x), the nonlinear part of F (x), the components are dj ∗ arctan(xj),

89

where dj is a random variable in (0, 1). It is easy to see that the Jacobian matrix of F is

positive semidefinite (not necessarily symmetric) and hence the problem is monotone.

We test problems with dimension n = 100, 200, 300. All methods started at the same

x0 generated from a uniform distribution in the interval (0, 10). To obtain more stable

results, we run each test case 5 times. The average numbers of function evaluations

and the computation times of these methods for problem with different sizes are given

in the following table, where Dim denotes the dimension of problem, NF denotes the

number of function evaluations and CPU denotes the CPU time.

Table 3.2: Numerical results for methods of EGA12 and CDLOP.

EGA12 CDLOP
Dim NF CPU NF CPU

100 640 0.044 26 0.101
200 870 0.113 26 0.375
300 1017 0.525 30 1.376

Table 3.2 shows that more number of function evaluations is used by the projection-

type method than that of the proposed method. However, the proposed method uses

much CPU time. This is due to the fact that the CDLOP method needs to solve

some linear equations of high dimensions, while the EGA12 method does not need to.

However, the EGA12 method cannot be used to solve the complementarity problems

without monotonicity, which can be solved efficiently by the proposed method CDLOP

if they satisfy the assumption of the uniform ξ-P -function.

We plot the following Figures 3.6-3.9 in terms of the number of function evaluations

to illustrate the sensitivity of the proposed algorithms’ performance on the starting

penalty parameter ρ0, the rules of adjusting the penalty parameter ρi and the accuracy

of solving the subproblems. Figure 3.6 describes the performance of the proposed

method using different values of the starting penalty parameter ρ0 = 10−1, 100, 101 and

103, which indicates that the starting ρ0 = 1 and ρ0 = 10 make the proposed method

more efficient and robust.

90

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

ρ0=10−1

ρ0=100

ρ0=101

ρ0=103

Figure 3.6: Performance profiles based on different values of the starting penalty parameter
for the CDLOP method with p = 100.

Figure 3.7 is plotted by use of different values of σ = 1/5, 1/10, 1/15 and 1/25 in

Algorithm 3.2, which implies that the proposed method with the adjusting parameter

σ = 0.1 is more efficient.

2 4 6 8 10 12 14 16 18 20 22
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

τ

π s(τ
)

Log
2
 scaled performance profile

σ=1/5

σ=1/10

σ=1/15

σ=1/25

Figure 3.7: Performance profiles based on different rules of adjusting the penalty parameter
for the CDLOP method with p = 100.

In order to test the sensitivity of the proposed method on the accuracy of solving the

91

subproblems, we let ϵρ := max{ν 1
ρ
, 10−6} in Algorithm 3.1, where ν ≥ 0 is a parameter

that determines the accuracy of solving the subproblems. We plot Figures 3.8 and

3.9 using different values of ν = 0, 0.1, 0.5 and 1. Figure 3.8 shows that the proposed

method with p = 2 use less number of function evaluations and is more robust if its

subproblems are solved by some inexact rules. However, the performance profiles of

Figure 3.9 show that the least number of function evaluations is used by the proposed

method with p = 100 if the subproblems can be solved more accurately.

2 4 6 8 10 12 14
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

τ

π s(τ
)

Log
2
 scaled performance profile

ν=0

ν=0.1

ν=0.5

ν=1

Figure 3.8: Performance profiles based on different accuracy of solving the subproblems for
the CDLOP method with p = 2.

92

5 10 15 20 25 30 35 40

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

ν=0

ν=0.1

ν=0.5

ν=1

Figure 3.9: Performance profiles based on different accuracy of solving the subproblems for
the CDLOP method with p = 100.

93

Chapter 4

An Unconstrained Differentiable

Penalty Method for General

Complementarity Problems

4.1 Introduction

In this chapter, we consider the GCP, which is to find a vector x ∈ Rn satisfying the

following conditions,

H(x) ≤ 0, F (x) ≤ 0, H(x)TF (x) = 0, (4.1.1)

where the functions H, F : Rn → Rn are continuously differentiable. Throughout this

chapter, we write J = {1, 2, . . . , n} and use X∗ to denote the solution set of problem

(4.1.1), which is assumed to be nonempty. When the function H(x) := x, problem

(4.1.1) reduces to the NCP studied in Chapter 3. Furthermore, problem (4.1.1) becomes

a LCP if the function H(x) := x and function F (x) is linear, i.e., F (x) := Ax− b for a

given matrix A ∈ Rn×n and a vector b ∈ Rn.

An unconstrained minimization formulation for problem (4.1.1) was studied by

94

Tseng et al. [164] by virtue of the Mangasarian and Solodov’s implicit Lagrangian

function [113]. Kanzow and Fukushima [96] employed the Fischer’s function [57]

to transform problem (4.1.1) into an unconstrained minimization formulation. They

presented mild conditions to guarantee that the global minima of the unconstrained

problem coincide with the solutions of problem (4.1.1). The last unconstrained

formulation was further investigated by Jiang et al. [92] and they proposed a trust region

method for solving problem (4.1.1). The global convergence and local Q-superlinear

convergence were established under a nonsingularity assumption.

In Chapter 3, we introduced a box-constrained differentiable penalty method for the

NCP. However, it is not efficient to use this method to solve problem (4.1.1) directly as

the corresponding constrained differentiable penalty problem has nonlinear constraints

as the functions H and F are nonlinear. It is well known that optimization with

nonlinear constraints are munch harder to solve in general than optimization problems

with box constraints. We note the fact that problem (4.1.1) can be reformulated as a

MiCP by virtue of artificial variables, which can be solved by the existing ℓ 1
p
-penalty

method [88]. We can use the box-constrained differentiable penalty method to solve

problem (4.1.1) by introducing artificial variables, which however doubles the number

of nonlinear equations.

In this chapter, we introduce an unconstrained differentiable penalty method for

problem (4.1.1) without introducing any artificial variables. Specifically, we will

consider the system of unconstrained equations as follows:

G(x, ρ) := H(x) ◦ F (x) + ρ
(
[H(x)]

1+ 1
p

+ + [F (x)]
1+ 1

p

+

)
= 0, (4.1.2)

where ρ > 0 is the penalty parameter, p ≥ 1 is the power, [z]σ+ denotes a vector with

components ([z]σ+)i = max{zi, 0}σ, for all i ∈ J , for any given vector z ∈ Rn and

constant σ > 0, and H(x) ◦ F (x) is the Hadamard (or Schur) product of two vectors

H(x) and F (x) with components
(
H(x) ◦ F (x)

)
i
= Hi(x)Fi(x), for all i ∈ J . We note

that the function G(x, ρ) is continuously differentiable for any ρ > 0 and p ∈ [1,∞). We

establish that the solution xρ of system (4.1.2) converges to a solution x∗ of problem

(4.1.1) at a rate of O(ρ−
p
ξ) under the assumption of a uniform ξ-P -function on functions

95

H and G, that is, there exists a constant C > 0 such that,

∥xρ − x∗∥ ≤ Cρ−
p
ξ . (4.1.3)

Instead of solving the unconstrained equations (4.1.2) directly, we consider a uncon-

strained minimization problem that is solved by a trust-region Gauss-Newton method.

We carry out our numerical experiments on the same test problems used in Chapter

3. We set p = 2 in the unconstrained differentiable penalty method to compare

its performance with the box-constrained differentiable penalty method with p = 2

and the ℓ1-penalty method [7] in terms of the number of function evaluations and

the values of the penalty parameter. Furthermore, different values of the power

p = 1, 2, 100, 1000, 5000, 10000 are chosen to test the efficiency of the proposed method.

Finally, we compare the performance of the proposed method with box-constrained

differentiable penalty method in Chapter 3, the smooth approximation method [23],

and the nonsmooth equations method [93] in terms of the function evaluations.

This chapter is organized as follows. In Section 4.2, we introduce an unconstrained

differentiable penalty method for problem (4.1.1) and establish the convergence rate

theorem for this method under the assumption of a uniform ξ-P -function. In the last

section, we present a numerical implementation of the proposed method and detail our

numerical results.

4.2 Unconstrained Differentiable Penalty Method

In this section, we establish that the solution of system (4.1.2) converges to a solution of

problem (4.1.1) in the order of O(ρ−
p
ξ) under the assumption of a uniform ξ-P -function

on functions H and F .

Now, we reformulate problem (4.1.1) as a mixed complementarity problem by virtue

96

of artificial variables as follows:

T (x, y) = 0,

G(x, y) ≤ 0,

yTG(x, y) = 0,

y ≤ 0,

(4.2.4)

where T (x, y) := H(x)− y and G(x, y) := F (x).

Proposition 4.2.1. The vector x∗ ∈ Rn is a solution of problem (4.1.1) if and only if

there exists a vector y∗ ∈ Rn satisfying y∗ = H(x∗) such that the vector
(

x∗

y∗

)
∈ R2n is

a solution of problem (4.2.4).

We consider a system of unconstrained equations as follows:

F(x, y, ρ) :=

(
T (x, y)

G(x, y) ◦ y

)
+ ρ

(
0

[y]
1+ 1

p

+ + [G(x, y)]
1+ 1

p

+

)
= 0, (4.2.5)

where G(x, y) ◦ y denotes a vector with components
(
G(x, y) ◦ y

)
i
= Gi(x, y)yi, for all

i ∈ J .

Proposition 4.2.2. Given ρ > 0, the vector xρ ∈ Rn is a solution of system (4.1.2)

if and only if there exists a vector yρ ∈ Rn satisfying yρ = H(xρ) such that the vector(
xρ

yρ

)
∈ R2n is a solution of system (4.2.5).

Proof. We first assume that the vector xρ is a solution of system (4.1.2). Letting

yρ = H(xρ), we have T (xρ, yρ) = H(xρ)− yρ = 0. Consequently, we conclude that the

vector
(

xρ

yρ

)
is a solution of system (4.2.5). Now, we assume that the vector

(
xρ

yρ

)
is

a solution of system (4.2.5). Since T (xρ, yρ) = 0, we have yρ = H(xρ). Therefore, the

vector xρ is a solution of system (4.1.2).

The next example shows that the solution of system (4.1.2) is not unique in general,

even if problem (4.1.1) has a unique solution.

Example 4.2.1. Let F (x) = x+ 1 and H(x) = x with x ∈ R. It is clear that x∗ = −1

is the unique solution of problem (4.1.1). Take p = 1. Its unconstrained differentiable

penalized equation is x(x+ 1) + ρ
(
[x]2+ + [x+ 1]2+

)
= 0. Then x̄ρ = −1 and x̂ρ = − ρ

ρ+1

are two solutions of the last equation.

97

Next we define the function Z : R2n → R2n by Z(x, y) =
(

T (x,y)
G(x,y)

)
. We prove that

the solution
(

xρ

yρ

)
of system (4.2.5) converges to a solution

(
x∗

y∗

)
of problem (4.2.4) at a

rate of O(ρ−
p
ξ) under the assumption of a uniform ξ-P -function on function Z. Before

doing this, we first show some lemmas.

Lemma 4.2.1. For each ρ > 0, assume that the function Z is a uniform ξ-P -function

and let the vector
(

xρ

yρ

)
be a solution of system (4.2.5). Then there exists a constant

M > 0, independent of
(

xρ

yρ

)
, ρ and p such that

∥∥∥(xρ

yρ

)∥∥∥ ≤ M.

Proof. Since
(

xρ

yρ

)
is a solution of system (4.2.5), it follows that T (xρ, yρ) = 0, and

moreover Gi(x
ρ, yρ)yρi + ρ

(
[yρi]

1+ 1
p + [Gi(x

ρ, yρ)]
1+ 1

p

+

)
= 0 for all i ∈ J . Therefore, we

have Ti(x
ρ, yρ)xρ

i = 0 and Gi(x
ρ, yρ)yρi ≤ 0 for all i ∈ J . By the uniform ξ-P -function

assumption on function Z, there exist constants α > 0 and ξ > 1 such that

α
∥∥∥(xρ

yρ

)∥∥∥ξ ≤ max
i∈J

(
xρ
i (Ti(x

ρ, yρ)− Ti(0, 0))

yρi (Gi(xρ, yρ)−Gi(0, 0))

)
≤ max

i∈J

(
−xρ

iTi(0, 0)

−yρiGi(0, 0)

)
≤

∥∥∥(xρ

yρ

)∥∥∥∥Z(0, 0)∥∞.

Consequently, we have proved this lemma with M = ξ−1

√
1
α
∥Z(0, 0)∥∞.

Lemma 4.2.1 implies that the solution of problem (4.2.5) always lies in a bounded

closed set for any ρ > 0. Assuming the continuity of function Z, we have that there

exists a positive constant L, independent of
(

xρ

yρ

)
, ρ and p such that

∥Z(xρ, yρ)∥ ≤ L. (4.2.6)

Lemma 4.2.2. For each ρ > 0, assume that function Z is a uniform ξ-P -function and

let the vector
(

xρ

yρ

)
be a solution of system (4.2.5). Then there exist constants C1 > 0

and C2 > 0, independent of
(

xρ

yρ

)
and ρ, such that

∥[yρ]+∥ ≤ C1ρ
−p and ∥[G(xρ, yρ)]+∥ ≤ C2ρ

−p.

98

Proof. Since
(

xρ

yρ

)
is a solution of system (4.2.5), it follows that T (xρ, yρ) = 0, and

moreover Gi(x
ρ, yρ)yρi + ρ

(
[yρi]

1+ 1
p + [Gi(x

ρ, yρ)]
1+ 1

p

+

)
= 0 for all i ∈ J . Then

ρ[yρi]
1+ 1

p

+ = −Gi(x
ρ, yρ)yρi − ρ[Gi(x

ρ, yρ)]
1+ 1

p

+

≤ −Gi(x
ρ, yρ)yρi ≤ ∥G(xρ, yρ)∥∞∥yρ∥∞,

for all i ∈ J . We have ∥[yρ]+∥∞ ≤ ρ−p∥G(xρ, yρ)∥p∞. By the fact that all norms in Rn are

equivalent, there exists a constant C̃ > 0 such that ∥[yρ]+∥ ≤ C̃∥[yρ]+∥∞. Combining

inequality (4.2.6), we have that there exists a constant C1 such that ∥[yρ]+∥ ≤ C1ρ
−p

with C1 = C̃Lp. Similarly, there exists a constant C2 such that ∥[G(xρ, yρ)]+∥ ≤ C2ρ
−p

with C2 = C̃Mp.

Theorem 4.2.1. For each ρ > 0, assume that function Z is a uniform ξ-P -function and

let
(

x∗

y∗

)
and

(
xρ

yρ

)
be the solutions of problem (4.2.5) and system (4.1.2), respectively.

Then there exists a constant Ĉ > 0, independent of
(

xρ

yρ

)
and ρ, such that

∥∥∥(x∗

y∗

)
−
(
xρ

yρ

)∥∥∥ ≤ Ĉρ−
p
ξ .

Proof. We define the index sets at point
(

xρ

yρ

)
as follows

yρa = {i ∈ J | yρi = 0, Gi(x
ρ, yρ) > 0};

yρb = {i ∈ J | yρi = 0, Gi(x
ρ, yρ) = 0};

yρc = {i ∈ J | yρi = 0, Gi(x
ρ, yρ) < 0};

yρd = {i ∈ J | yρi > 0, Gi(x
ρ, yρ) > 0};

yρe = {i ∈ J | yρi > 0, Gi(x
ρ, yρ) = 0};

yρf = {i ∈ J | yρi > 0, Gi(x
ρ, yρ) < 0};

yρg = {i ∈ J | yρi < 0, Gi(x
ρ, yρ) > 0};

yρh = {i ∈ J | yρi < 0, Gi(x
ρ, yρ) = 0};

yρs = {i ∈ J | yρi < 0, Gi(x
ρ, yρ) < 0}.

Since
(

xρ

yρ

)
is the solution of system (4.1.2), it follows that the sets yρa, y

ρ
d, y

ρ
e and yρs

are empty. Let Λ := yρb ∪ yρc ∪ yρf and Γ := yρg ∪ yρs . Then J = Λ ∪ Γ. In the following,

99

we first prove the inequality

(
y∗i − yρi + [yρi]+

)(
Gi(x

∗, y∗)−Gi(x
ρ, yρ)

)
=
(
y∗i + [yρi]−

)(
Gi(x

∗, y∗)−Gi(x
ρ, yρ)

)
≤ 0

(4.2.7)

holds for i ∈ Λ.

(I) Let i ∈ yρb . Then(
y∗i + [yρi]−

)(
Gi(x

∗, y∗)−Gi(x
ρ, yρ)

)
= y∗iGi(x

∗, y∗) ≤ 0.

(II) Let i ∈ yρc . Then(
y∗i + [yρi]−

)(
Gi(x

∗, y∗)−Gi(x
ρ, yρ)

)
= y∗iGi(x

∗, y∗)− y∗iGi(x
ρ, yρ) + [yρi]−Gi(x

∗, y∗)− [yρi]−Gi(x
ρ, yρ)

= −y∗iGi(x
ρ, yρ) ≤ 0.

(III) Let i ∈ yρf . Then(
y∗i + [yρi]−

)(
Gi(x

∗, y∗)−Gi(x
ρ, yρ)

)
= y∗iGi(x

∗, y∗)− y∗iGi(x
ρ, yρ) + [yρi]−Gi(x

∗, y∗)− [yρi]−Gi(x
ρ, yρ)

= −y∗iGi(x
ρ, yρ) ≤ 0.

In the next, we prove that the inequality

(
y∗i − yρi

)(
Fi(x

∗, y∗)−Gi(x
ρ, yρ) + [Gi(x

ρ, yρ)]+

)
≤ 0 (4.2.8)

holds for all i ∈ Γ.

(I) Let i ∈ yρg . Then(
y∗i − yρi

)(
Gi(x

∗, y∗) + [Gi(x
ρ, yρ)]−

)
= y∗iGi(x

∗, y∗) + y∗i [Gi(x
ρ, yρ)]− − yρiGi(x

∗, y∗)− yρi [Gi(x
ρ, yρ)]−

= −yρiGi(x
∗, y∗) ≤ 0.

100

(II) Let i ∈ yρh. Then(
y∗i − yρi

)(
Gi(x

∗, y∗) + [Gi(x
ρ, yρ)]−

)
= y∗iGi(x

∗, y∗) + y∗i [Gi(x
ρ, yρ)]− − yρiGi(x

∗, y∗)− yρi [Gi(x
ρ, yρ)]−

= −yρiGi(x
∗, y∗) ≤ 0.

Since
(

x∗

y∗

)
solves problem (4.2.5) and

(
xρ

yρ

)
is a solution of system (4.1.2), we have

Ti(x
∗, y∗) = 0 and Ti(x

ρ, yρ) = 0 for all i ∈ J . Therefore, we have

max
i∈Λ

(
(x∗

i − xρ
i)(Ti(x

∗, y∗)− Ti(x
ρ, yρ))

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ, yρ))

)
= max

i∈Λ

(
0

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ − yρ))

)
≤ max

i∈Λ

(
0

−[yρi]+(Gi(x∗, y∗)−Gi(xρ − yρ))

)
≤ ∥[yρ]+∥∥

(
G(x∗, y∗)−G(xρ, yρ)

)
∥∞

≤ C1ρ
−p∥
(
G(x∗, y∗)−G(xρ, yρ)

)
∥∞

≤ 2C1Lρ
−p,

where the first inequality comes from inequality (4.2.7) and the third inequality is from

Lemma 4.2.2.

Furthermore, we have

max
i∈Γ

(
(x∗

i − xρ
i)(Ti(x

∗, y∗)− Ti(x
ρ, yρ))

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ, yρ))

)
= max

i∈Γ

(
0

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ − yρ))

)
≤ max

i∈Γ

(
0

−[Gi(xρ, yρ)]+(y∗i − yρi)

)
≤ ∥[G(xρ, yρ)]+∥∥y∗ − yρ∥∞

≤ C2ρ
−p∥y∗ − yρ∥∞

≤ 2C2M1ρ
−p,

where the first inequality is from inequality (4.2.8) and the third inequality comes from

Lemma 4.2.2.

101

By the uniform ξ-P -function assumption of function Z, there exist constants α > 0

and ξ > 1 such that

α
∥∥∥(x∗

y∗

)
−
(
xρ

yρ

)∥∥∥ξ
≤ max

i∈J

(
(x∗

i − xρ
i)(Ti(x

∗, y∗)− Ti(x
ρ, yρ))

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ, yρ))

)
= max

i∈Λ∪Γ

(
(x∗

i − xρ
i)(Ti(x

∗, y∗)− Ti(x
ρ, yρ))

(y∗i − yρi)(Gi(x∗, y∗)−Gi(xρ, yρ))

)
≤ Ĉρ−p.

where Ĉ = max
{

ξ

√
2C1L
α

, ξ

√
2C2M1

α

}
.

Theorem 4.2.2. For each ρ > 0, assume that functions H and F are uniform ξ-

P -functions. Let x∗ and xρ be the solutions of problem (4.1.1) and system (4.1.2),

respectively. Then there exists a constant C̃1 > 0, independent of xρ and ρ, such that

∥x∗ − xρ∥ ≤ C̃1ρ
− p

ξ .

Proof. Since x∗ is a solution of problem (4.1.1), it follows from Proposition 4.2.1 that

there exists y∗ such that
(

x∗

y∗

)
is a solution of problem (4.2.4). Since xρ is a solution

of system (4.1.2), it follows from Proposition 4.2.2 that there exists yρ such that
(

xρ

yρ

)
is a solution of system (4.2.5). Using Theorem 3.2.2, we conclude that ∥x∗ − xρ∥ ≤∥∥∥(x∗

y∗

)
−
(

xρ

yρ

)∥∥∥ ≤ C̃1ρ
− p

ξ with C̃1 = max
{

ξ

√
2C1L
α

, ξ

√
2C2M1

α

}
.

We consider a system of box-constrained nonlinear equations for problem (4.1.1) as

follows:

E(x, y, ρ) :=
(

T (x, y)

G(x, y) ◦ y

)
+ ρ

(
0

[G(x, y)]
1+ 1

p

+

)
= 0, y ∈ Ω, (4.2.9)

where Ω := {y ∈ Rn | y ≤ 0}.

Similar to the proof of Theorem 3.2.1, we establish the following convergence rate

theorem for problem (4.1.1). Here, the details are omitted.

Theorem 4.2.3. For each ρ > 0, assume that functions H and F are uniform ξ-

P -functions. Let x∗ and
(

xρ

yρ

)
be solutions of problem (4.1.1) and system (4.2.9),

respectively. Then there exists a constant Ĉ > 0, independent of
(

xρ

yρ

)
and ρ, such

102

that

∥x∗ − xρ∥ ≤ Ĉρ−
p
ξ .

4.3 Numerical Algorithms and Experiments

In this section, we first present a numerical algorithm for problem (4.1.1) by virtue of

the unconstrained differentiable penalty method. Then we use the same test problems

described in Chapter 3 to compare the performance of our method with some existing

methods in terms of the number of function evaluations and the values of the penalty

parameter.

Instead of solving the penalized equations (4.2.5) directly, we consider the corre-

sponding unconstrained optimization problem

min
x∈Rn

Ψ(x, ρ) :=
1

2
∥G(x, ρ)∥2. (4.3.10)

For each ρ > 0, assume that xρ ∈ Rn is a local solution of problem (4.3.10). Then

we have that xρ satisfies the next equations

∇G(x, ρ)TG(x, ρ) = 0,

where ∇G(x, ρ) is the Jacobian matrix of the function G(x, ρ), which can be expressed

as

∇G(x, ρ) := Θ(x, ρ)∇H(x) + Π(x, ρ)∇F (x),

where∇F (x) and∇H(x) are the Jacobian matrices of functions F (x) andH(x), respec-

tively, Θ(x, ρ) := diag(G1(x, ρ), . . . , Gn(x, ρ)) and Π(x, ρ) := diag(Q1(x, ρ), . . . , Qn(x, ρ))

are diagonal matrices with for all i ∈ J ,

Gi(x, ρ) := Fi(x) + ρ(1 +
1

p
)[Hi(x)]

1
p

+ and Qi(x, ρ) := Hi(x) + ρ(1 +
1

p
)[Fi(x)]

1
p

+.

103

4.3.1 Convergence Analysis

In this subsection, we establish the connection between solutions of the unconstrained

optimization problem (4.3.10) and that of problem (4.1.1).

Theorem 4.3.1. Suppose that xi ∈ Rn is a global solution of problem (4.3.10) for each

ρi > 0 and that ρi → ∞. Then every limit point of the sequence {xi} is a solution of

problem (4.1.1).

Proof. Let x∗ be a solution of problem (4.1.1). Then we have Ψ(x∗, ρ) = 0 for each

ρ > 0. Therefore, we have Ψ(xi, ρi) ≤ Ψ(x∗, ρi) = 0, which means that Ψ(xi, ρi) = 0.

Specifically, we have

1

2

n∑
l=1

(
Hl(x

i)2Fl(x
i)2 + (ρi)2[Hl(x

i)]
2+ 2

p

+ + (ρi)2[Fl(x
i)]

2+ 2
p

+

)
+

n∑
l=1

(
ρiFl(x

i)[Hl(x
i)]

2+ 1
p

+ + ρiHl(x
i)[Fl(x

i)]
2+ 1

p

+

)
+

n∑
l=1

(ρi)2[Hl(x
i)]

1+ 1
p

+ [Fl(x
i)]

1+ 1
p

+ = 0.

(4.3.11)

Suppose that x̄ is a limit point of the sequence {xi}, so there exists an infinite

subsequence K such that x̄ = lim
i
K→∞

xi. By taking the limit as i
K→ ∞ on both sides

of the above equation, we have

1

2

n∑
l=1

(
[Hl(x̄)]

2+ 2
p

+ + [Fl(x̄)]
2+ 2

p

+

)
+

n∑
l=1

[Hl(x̄)]
1+ 1

p

+ [Fl(x̄)]
1+ 1

p

+ = 0.

Therefore, we conclude that F (x̄) ≤ 0 and H(x̄) ≤ 0. It follows from (4.3.11) and take

the limit as i
K→ ∞ we have

1

2

n∑
l=1

(
Fl(x̄)Hl(x̄)

)2
= lim

i
K→∞

1

2

n∑
l=1

(Hl(x
i)2Fl(x

i)2

= − lim
i
K→∞

(
2(ρi)2

n∑
l=1

(
[Hl(x

i)]
2+ 2

p

+ + [Fl(x
i)]

2+ 2
p

+

)
+ (ρi)2

n∑
l=1

[Hl(x
i)]

1+ 1
p

+ [Fl(x
i)]

1+ 1
p

+

)
+ lim

i
K→∞

n∑
l=1

(
[Fl(x

i)]+[Hl(x
i)]+
)2 ≤ 0,

104

where the second equality follows from (4.1.2) that, for all l ∈ J ,

Fl(x
i)[Hl(x

i)]
2+ 1

p

+ +Hl(x
i)[Fl(x

i)]
2+ 1

p

+ = − 1

ρi
(
[Fl(x

i)]+[Hl(x
i)]+
)2
.

Therefore, we conclude that ⟨F (x̄), H(x̄)⟩ = 0. The proof is complete.

It is difficulty to find a global solution of problem (4.3.10) without the assumption

of the convexity for the objective function Ψ(x, ρ) for each ρ > 0. We mainly focus

on the local solution of problem (4.3.10) in practice. In the next theorem, we prove

that the local solution of problem (4.3.10) solves the general complementarity problem

under the assumption of the uniform P -function on functions F and H that is strictly

weaker than the assumption of the convexity for the objective function Ψ(x, ρ) for each

ρ > 0.

Theorem 4.3.2. Suppose that the functions F and H : Rn → Rn are uniform P -

functions. Moreover, assume that xρ is a local solution of problem (4.3.10) for each

ρ > 0 and satisfies F (xρ) ≤ 0 and H(xρ) ≤ 0. Then xρ is a solution of problem (4.1.1).

Proof. Since xρ is a local solution of problem (4.3.10) for given ρ > 0, we have(
∇G(x, ρ)TG(x, ρ)

)
i
= 0 for all i ∈ J . Specifically, we have, for all i ∈ J ,

(
∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ)

)
i
= 0. (4.3.12)

Since xρ satisfies F (xρ) ≤ 0 and H(xρ) ≤ 0, it follows that

G(xρ, ρ) = (H1(x
ρ)F1(x

ρ), . . . , Hn(x
ρ)Fn(x

ρ))T ,

Θ(xρ, ρ) = diag(F1(x
ρ), . . . , Fn(x

ρ)),

Π(xρ, ρ) = diag(H1(x
ρ), . . . , Hn(x

ρ)).

(4.3.13)

We first prove that G(xρ, ρ) = 0. Assume on the contrary that G(xρ, ρ) ̸= 0. Then

there exists at least one index i ∈ J such that Gi(x
ρ, ρ) ̸= 0. Without loss of generality,

we assume G1(x
ρ, ρ) ̸= 0 and Gi(x

ρ, ρ) = 0 for all i = 2, . . . , n. It follows from G1(x
ρ, ρ) ̸=

0 that we have F1(x
ρ) ̸= 0 and H1(x

ρ) ̸= 0. It follows from (4.3.13) that we have(
Θ(xρ, ρ)G(xρ, ρ)

)
1
= H1(x

ρ)F1(x
ρ)2 < 0,

(
Π(xρ, ρ)G(xρ, ρ)

)
1
= F1(x

ρ)H1(x
ρ)2 < 0,(

Θ(xρ, ρ)G(xρ, ρ)
)
i
= 0 and

(
Π(xρ, ρ)G(xρ, ρ)

)
i
= 0 for all i = 2, . . . , n. Since the

105

function F is a uniform P -function, it follows that there exists a constant c > 0 such

that

(
Π(xρ, ρ)G(xρ, ρ)

)
1

(
∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ)

)
1
≥ c∥Π(xρ, ρ)G(xρ, ρ)∥2 > 0.

By (4.3.12), we have

(
Θ(xρ, ρ)G(xρ, ρ)

)
1

(
∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ)

)
1

= −
(
Θ(xρ, ρ)G(xρ, ρ)

)
1

(
∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ)

)
1

= −F1(x
ρ)

H1(xρ)

(
Π(xρ, ρ)G(xρ, ρ)

)
1

(
∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ)

)
1
< 0.

Therefore, we conclude that

max
1≤i≤n

(
Θ(xρ, ρ)G(xρ, ρ)

)
i

(
∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ)

)
i
= 0,

which contradicts the fact that max
1≤i≤n

zi
(
∇H(xρ)T z

)
i
≥ c̄∥z∥2 for some constant c̄ > 0

and for all z ∈ Rn as the function H is a uniform P -function. Thus, we have proved

that G(xρ, ρ) = 0. Since F (xρ) ≤ 0 and H(xρ) ≤ 0, we conclude that xρ is a solution of

problem (4.1.1). The proof is complete.

4.3.2 Numerical Algorithms

We apply a trust-region Gauss-Newton method to solve the unconstrained least squares

problem (4.3.10) for each ρ > 0, see Algorithm 3.1 in Chapter 3. Before presenting our

unconstrained differentiable penalty method for solving problem (4.1.1), we define the

termination criterion for it as follows

Termination(x) := min{∥[H(x)]+∥, ∥[F (x)]+∥, ∥F (x) ◦H(x)∥} ≤ ϵ,

where ϵ > 0 is the tolerance parameter, which is set to be small enough, F (x) ◦H(x)

denotes a vector with components (F (x) ◦H(x))i = Fi(x)Hi(x), for all i ∈ J . Now, a

formal description of our algorithm for problem (4.1.1) is given as follows.

106

Algorithm 4.1: Unconstrained differentiable penalty method for the GCP.

1 Initializing ρ0 > 0, ρmin, σ > 1, ϵ > 0 and an initial point x0 and let i := 0;

2 while ρi > ρmin do

3 if Termination(xi) ≤ ϵ then

4 Stop;

5 else

6 Using Algorithm 3.1 to solve the unconstrained problem (4.3.10) with

starting point xi, termination tolerance ϵρi and penalty parameter ρi,

we obtain xi+1;

7 end

8 Letting ρi+1 := σρi and i := i+ 1;

9 end

4.3.3 Numerical Experiments

In this subsection, we implement the Algorithm 4.1 with our code in MATLAB R2011b

for the same test problems described in Table 3.1. We conduct numerical testing on

Windows XP with 3.00GB of main memory and Intel(R) Core(TM) 2 Duo 3.0GHz

processors.

We refer to the implementation of Algorithm 4.1 as the UDLOP method, which

stands for the Unconstrained Differentiable Lower Order Penalty method. The same

abbreviations for the existing methods used in Chapter 3 are rewritten in Table 4.1.

Table 4.1: Abbreviations for some existing methods.

CDLOP1 constrained differentiable lower order penalty method with p = 1

CDLOP1/2 constrained differentiable lower order penalty method with p = 2

CDLOP1/100 constrained differentiable lower order penalty method with p = 100

SSOOP1 semismooth one order penalty method

SAM smooth approximate method

NSEM nonsmooth equations method

107

For convenience, we write the UDLOP method with p = 1, 2 and 100 as UDLOP1,

UDLOP1/2 and UDLOP1/100 methods, respectively. Throughout the experiments, all

parameters are set the same as that in Chapter 3. The solver TRESNEI [123] is used

to solve the corresponding least squares problem of every method. We employ the

performance profile introduced by Dolan and Moré [46] to present our numerical results.

In the following, we first compare the performance of the UDLOP1/2 method with

the CDLOP1/2 and SSOOP1 methods in terms of the number of function evaluations

and the values of penalty parameter.

0 1 2 3 4 5 6 7 8

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log2 scaled performance profile

CDLOP
1/2

UDLOP
1/2

SSOOP
1

Figure 4.1: Performance profiles based on the number of function evaluations for the
CDLOP1/2, UDLOP1/2 and SSOOP1 methods.

Figure 4.1 indicates that the SSOOP1 method solves about 47% test problems with

the least number of function evaluations but this method is the weakest solver as it

only can solve 80% test problems. The UDLOP1/2 method is the most robust and can

solve about 93% test problems.

We use the values of ρ to plot Figure 4.2, which shows that the SSOOP1 method

employs bigger values of penalty parameter than that of the CDLOP1/2 method in order

to achieve an approximate solution within the given accuracy.

108

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log2 scaled performance profile

CDLOP
1/2

UDLOP
1/2

SSOOP
1

Figure 4.2: Performance profiles based on the values of the penalty parameter for the
CDLOP1/2, UDLOP1/2 and SSOOP1 methods.

We plot Figures 4.3 and 4.4 to compare the performance of the UDLOP method

with different values of p in terms of the number of function evaluations and the values

of penalty parameter.

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

p=1
p=2
p=100
p=1000
p=5000
p=10000

Figure 4.3: Performance profiles based on the number of function evaluations for the UDLOP
method with different p.

Figure 4.3 indicates that the number of function evaluations for the UDLOP method

decreases dramatically as the power p increases from 1 to 100. However, slight difference

109

happens on the performance profiles as we increase p from 100 to 10000. Furthermore,

the UDLOP method shares the almost same robustness for different power p.

We use the values of ρ to plot Figure 4.4, which indicates that the UDLOP1 method

is the weakest solver among them.

0 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

p=1
p=2
p=100
p=1000
p=5000
p=10000

Figure 4.4: Performance profiles based on the values of the penalty parameter for the UDLOP
method with different p.

0 1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π s(τ
)

Log
2
 scaled performance profile

CDLOP
1

UDLOP
1

SSOOP
1

Figure 4.5: Performance profiles based on the number of function evaluations for the CDLOP1,
UDLOP1 and SSOOP1 methods.

110

0 5 10 15 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

τ

π s(τ
)

Log
2
 scaled performance profile

CDLOP
1

UDLOP
1

SSOOP
1

Figure 4.6: Performance profiles based on the values of the penalty parameter for the
CDLOP1, UDLOP1 and SSOOP1 methods.

Figures 4.5 and 4.6 indicate that the UDLOP1 method performs better than the

CDLOP1 method and the SSOOP1 method is the weakest solver among them.

Finally, using the number of function evaluations, we compare the performance of

the CDLOP1/100 and UDLOP1/100 methods with the smooth approximation method

and the nonsmooth equations method.

Figure 4.7 indicates that the SAM method can solve about 47% test problems with

the least number of function evaluations, but this method only can solve about 75%

test problems. The UDLOP1/100 method is the most robust among them and can solve

about 89% test problems.

111

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ

π s(τ
)

Log
2
 scaled performance profile

CDLOP
UDLOP
SAM
NSEM

Figure 4.7: Performance profiles based on the number of function evaluations for the
CDLOP1/100, UDLOP1/100, SAM and NSEM methods.

112

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we aimed at designing efficient algorithms for inequality constrained

nonlinear programming problems and complementarity problems by virtue of ℓ 1
p
(p > 1)-

penalty functions. A technique of the p-order relaxation was used to the nonconvex and

non-Lipschitzian ℓ 1
p
-penalty function. Combining with an interior-point method, we

proposed an interior-point ℓ 1
p
-penalty method to solve inequality constrained nonlinear

programming problems. We introduce different kinds of constraint qualifications to

establish first-order necessary conditions for the relaxed problem. We employed the

modified Newton method to solve a sequence of logarithmic barrier subproblems and

detailed three reliable algorithms which constitute the interior-point ℓ 1
p
-penalty method

and established the global convergence of the proposed method under mild conditions.

Specifically, we proved that the iteration sequence generated by the interior-point ℓ 1
p
-

penalty method converges to some KKT (or FJ) point of original problem. Preliminary

numerical experiments have been done, which show that the interior-point ℓ 1
2
-penalty

method is competitive with other existing interior-point ℓ1-penalty method in terms

of iteration numbers and better when comparing the number of updating the penalty

parameter and the relative error.

Furthermore, we proposed box-constrained and unconstrained differentiable penalty

methods for complementarity problems and established their convergence rate between

113

the solution of original problem and that of differentiable penalized equations under the

assumption of a unform ξ-P -function. Our methods not only inherit the convergence

rate of the existing ℓ 1
p
-penalty method but also overcome the shortcoming of the non-

Lipschitzianness of the ℓ 1
p
-penalized term. Instead of solving differentiable penalized

equations directly, we solved a corresponding least squares problem by the trust-region

Gauss-Newton method. Numerical experiments were carried out on the test problems

from MCPLIB, and numerical results showed that the differentiable ℓ 1
2
-penalty methods

are more efficient than both the smoothing ℓ 1
2
-penalty method and the ℓ1-penalty

method in terms of the number of function evaluations and the values of the penalty

parameter.

114

5.2 Future Work

We believe that our methods proposed in this thesis open a leaf of window to

examine the non-Lipschitzian ℓ 1
p
-penalty function from the point of view of numerical

implementation. However, there are many other issues that are needed to deal with in

the future work. We summarize them as follows.

(I) As pointed out by Fletcher [63] that the strategy of updating the penalty

parameter plays a central role in the numerical implementation for penalty

methods, some adaptive strategies have been introduced in [17, 20] to update the

penalty parameter for the ℓ1-penalty method. It is well-known that the smallest

exact penalty parameter of the ℓ 1
p
-exact penalty function is smaller than that of

the ℓ1-exact penalty function. However, a precise criterion for adjustment of the

penalty parameter in the numerical implementation of the ℓ 1
p
-penalty method

has not been studied in the thesis.

(II) We have run both the interior-point ℓ 1
2
-penalty method and two interior-point

ℓ1-penalty methods developed by Curtis [42] with the same stopping criterion

on the set of 38 test problems with degenerate constraints and with the same

starting point. Our numerical results showed that the interior-point ℓ 1
2
-penalty

method can find a local minimum more accurately than that of the interior-point

ℓ1-penalty methods. However, our numerical findings are lack of the theoretical

justification.

(III) Our interior-point ℓ 1
p
-penalty methods are only efficient to solve inequality

constrained optimization problems. It is possible that we can utilize artificial

variables to transform all equality constraints into inequality constraints to

convert the optimization problem with equality and inequality constraints into

an optimization problem with only inequality constraints, which can be solved

by interior-point ℓ 1
p
-penalty methods. Following the procedure above, we

have conducted numerical experiments, whose results show that the interior-

point ℓ 1
p
-penalty method lack efficiency for optimization problems with equality

constraints. We will combine the techniques of augmented Lagrangian and

interior-point ℓ 1
p
-penalization to tackle the equality and inequality constraints,

respectively.

115

(IV) Recently, second-order cone complementarity problems [27, 70, 161] have received

a great deal of attention. However, there are few numerical algorithms that can

solve these problems efficiently, especially for large scale problems. We will apply

our differentiable penalty methods to design efficient numerical algorithms for

solving second order cone complementarity problems.

116

Bibliography

[1] J. Abadie. On the Kuhn-Tucker theorem. In: J. Abadie, eds., Nonlinear

Programming (North-Holland, Amsterdam), pages 19–36, 1966.

[2] R. Andreani, A. Friedlander, and S. A. Santos. On the resolution of the generalized

nonlinear complementarity problem. SIAM Journal on Optimization, 12(2):303–

321, 2002.

[3] M. Anitescu. Global convergence of an elastic mode approach for a class of

mathematical programs with complementarity constraints. SIAM Journal on

Optimization, 16(1):120–145, 2005.

[4] L. Armijo. Minimization of functions having Lipschitz continuous first partial

derivatives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

[5] H. Y. Benson, A. Sen, and D. F. Shanno. Interior-point methods for nonconvex

nonlinear programming: Convergence analysis and computational performance.

http://rutcor.rutgers.edu/vshanno/converge5.pdf, 2009.

[6] H. Y. Benson, D. F. Shanno, and R. J. Vanderbei. Interior-point methods

for nonconvex nonlinear programming: Jamming and numerical testing.

Mathematical Programming, 99(1):35–48, 2004.

[7] A. Bensoussan and J. L. Lions. Applications of Variational Inequalities in

Stochastic Control. North Holland, 1982.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[9] S. C. Billups, S. P. Dirkse, and M. C. Ferris. A comparison of large scale mixed

complementarity problem solvers. Computational Optimization and Applications,

7(1):3–25, 1997.

117

[10] J. M. Borwein. Stability and regular points of inequality systems. Journal of

Optimization Theory and Applications, 48(1):9–52, 1986.

[11] J. V. Burke. Calmness and exact penalization. SIAM Journal on Control and

Optimization, 29(2):493–497, 1991.

[12] J. V. Burke. An exact penalization viewpoint of constrained optimization. SIAM

Journal on Control and Optimization, 29(4):968–998, 1991.

[13] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient

sampling algorithm for nonsmooth, nonconvex optimization. SIAM Journal on

Optimization, 15(3):751–779, 2005.

[14] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on

interior point techniques for nonlinear programming. Mathematical Programming,

89(1):149–185, 2000.

[15] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for

large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–

900, 1999.

[16] R. H. Byrd, G. H. Liu, and J. Nocedal. On the local behavior of an interior point

method for nonlinear programming. In: D.F. Griffiiths and D. J. Higham, eds.,

Numerical Analysis (Addison-Wesley Longman), pages 37–56, 1997.

[17] R. H. Byrd, G. Lopez-Calva, and J. Nocedal. A line search exact penalty method

using steering rules. Mathematical Programming, 133(1-2):39–73, 2012.

[18] R. H. Byrd, M. Marazzi, and J. Nocedal. On the convergence of Newton iterations

to non-stationary points. Mathematical Programming, 99(1):127–148, 2004.

[19] R. H. Byrd, J. Nocedal, and R. A. Waltz. Feasible interior methods using slacks for

nonlinear optimization. Computational Optimization and Applications, 26(1):35–

61, 2003.

[20] R. H. Byrd, J. Nocedal, and R. A. Waltz. Steering exact penalty methods

for nonlinear programming. Optimization Methods and Software, 23(2):197–213,

2008.

118

[21] R. M. Chamberlain, M. J. D. Powell, C. Lemarechal, and H. C. Pedersen.

The watchdog technique for forcing convergence in algorithms for constrained

optimization. Algorithms for Constrained Minimization of Smooth Nonlinear

Functions, 16:1–17, 1982.

[22] B. Chen, X. Chen, and C. Kanzow. A penalized Fischer-Burmeister NCP-

function. Mathematical Programming, 88(1):211–216, 2000.

[23] B. Chen and P. T. Harker. Smooth approximations to nonlinear complementarity

problems. SIAM Journal on Optimization, 7(2):403–420, 1997.

[24] B. T. Chen, X. J. Chen, and C. Kanzow. A penalized Fischer-Burmeister

NCP-function: Theoretical investigation and numerical results. Technical

Report, Internaltional Symposium on Mathematical Programming in Lausanne,

Switzerland, 1997.

[25] C. Chen and O. L. Mangasarian. A class of smoothing functions for nonlinear and

mixed complementarity problems. Computational Optimization and Applications,

5(2):97–138, 1996.

[26] J. S. Chen. On some NCP-functions based on the generalized Fischer–Burmeister

function. Asia-Pacific Journal of Operational Research, 24(3):401–420, 2007.

[27] J. S. Chen, X. Chen, and P. Tseng. Analysis of nonsmooth vector-valued functions

associated with second-order cones. Mathematical Programming, 101(1):95–117,

2004.

[28] J. S. Chen, Z. H. Huang, and C. Y. She. A new class of penalized NCP-functions

and its properties. Computational Optimization and Applications, 50(1):49–73,

2011.

[29] J. S. Chen and S. Pan. A family of NCP functions and a descent method

for the nonlinear complementarity problem. Computational Optimization and

Applications, 40(3):389–404, 2008.

[30] L. Chen and D. Goldfarb. Interior-point ℓ2-penalty methods for nonlinear

programming with strong global convergence properties. Mathematical

Programming, 108(1):1–36, 2006.

119

[31] L. Chen and D. Goldfarb. An interior-point piecewise linear penalty method for

nonlinear programming. Mathematical Programming, 128(1):73–122, 2011.

[32] X. J. Chen. Smoothing methods for nonsmooth, nonconvex minimization.

Mathematical Programming, 134(1):71–99, 2012.

[33] F. H. Clarke. A new approach to Lagrange multipliers. Mathematics of Operations

Research, 1(2):165–174, 1976.

[34] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[35] T. F. Coleman and Y.Y. Li. An interior trust region approach for nonlinear

minimization subject to bounds. SIAM Journal on Optimization, 6(2):418–445,

1996.

[36] A. R. Conn, N. I. M. Gould, D. Orban, and P. L. Toint. A primal-dual trust-region

algorithm for non-convex nonlinear programming. Mathematical Programming,

87(2):215–249, 2000.

[37] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. SIAM, 1987.

[38] A. R. Conn and T. Pietrzykowski. A penalty function method converging directly

to a constrained optimum. SIAM Journal on Numerical Analysis, 14(2):348–375,

1977.

[39] R. W. Cottle. Nonlinear programs with positively bounded Jacobians. SIAM

Journal on Applied Mathematics, 14(1):147–158, 1966.

[40] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity Problem.

SIAM, 2009.

[41] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Bulletin of the American Mathematical Society, 49(1):1–23, 1943.

[42] F. E. Curtis. A penalty-interior-point algorithm for nonlinear constrained

optimization. Mathematical Programming Computation, 4(2):181–209, 2012.

[43] T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach to

the solution of nonlinear complementarity problems. Mathematical Programming,

75(3):407–439, 1996.

120

[44] Y. d′Halluin, P. A. Forsyth, and G. Labahn. A penalty method for American

options with jump diffusion processes. Numerische Mathematik, 97(2):321–352,

2004.

[45] S. P. Dirkse and M. C. Ferris. MCPLIB: A collection of nonlinear mixed

complementarity problems. Optimization Methods and Software, 5(4):319–345,

1995.

[46] E. D. Dolan and J. J. Moré. Benchmarking optimization software with

performance profiles. Mathematical Programming, 91(2):201–213, 2002.

[47] C. Durazzi. On the Newton interior-point method for nonlinear programming

problems. Journal of Optimization Theory and Applications, 104(1):73–90, 2000.

[48] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and

theory of the Newton interior-point method for nonlinear programming. Journal

of Optimization Theory and Applications, 89(3):507–541, 1996.

[49] F. Facchinei and C. Kanzow. On unconstrained and constrained stationary points

of the implicit Lagrangian. Journal of Optimization Theory and Applications,

92(1):99–115, 1997.

[50] F. Facchinei and J. S. Pang. Finite-dimensional Variational Inequalities and

Complementarity Problems, Volume I . Springer Verlag, 2003.

[51] F. Facchinei and J. S. Pang. Finite-dimensional Variational Inequalities and

Complementarity Problems, Volume II. Springer Verlag, 2003.

[52] F. Facchinei and J. Soares. A new merit function for nonlinear complementarity

problems and a related algorithm. SIAM Journal on Optimization, 7(1):225–247,

1997.

[53] P. L. Fackler. Applied Computational Economics and Finance. The MIT Press,

2002.

[54] M. C. Ferris and J. S. Pang. Engineering and economic applications of

complementarity problems. SIAM Review, 39(4):669–713, 1997.

121

[55] M. C. Ferris and D. Ralph. Projected gradient methods for nonlinear

complementarity problems via normal maps. In: D. Z. Du, L. Qi and R. S.

Womersley, eds., Recent Advances in Nonsmooth Optimization(World Scientific

Publishing), pages 57–87, 1995.

[56] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential

Unconstrained Minimization Techniques. SIAM, 1990.

[57] A. Fischer. A special Newton-type optimization method. Optimization, 24(3-

4):269–284, 1992.

[58] A. Fischer. Solution of monotone complementarity problems with locally

Lipschitzian functions. Mathematical Programming, 76(3):513–532, 1997.

[59] A. Fischer. New constrained optimization reformulation of complementarity

problems. Journal of Optimization Theory and Applications, 97(1):105–117, 1998.

[60] A. Fischer and H. Y. Jiang. Merit functions for complementarity and related

problems: A survey. Computational Optimization and Applications, 17(2):159–

182, 2000.

[61] R. Fletcher. A model algorithm for composite nondifferentiable optimization

problems. Nondifferential and Variational Techniques in Optimization, 17:67–76,

1982.

[62] R. Fletcher. Second order corrections for non-differentiable optimization.

Numerical Analysis, Lecture Notes in Mathematics, 912:85–114, 1982.

[63] R. Fletcher. Practical Methods of Optimization. Wiley, 2013.

[64] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.

Mathematical Programming, 91(2):239–269, 2002.

[65] P. A. Forsyth and K. R. Vetzal. Quadratic convergence of a penalty method for

valuing American options. SIAM Journal on Scientific Computation, 23(6):2095–

2122, 2002.

[66] K. R. Frisch. The logarithmic potential method of convex programming.

Unpublished manuscript, Instituation of Economics Memorandum, Oslo

University, 1955.

122

[67] J. Fritz. Extremum problems with inequalities as side conditions. Studies and

Essays, Courant Anniversary Volume, pages 187–204, 1948.

[68] M. Fukushima. Equivalent differentiable optimization problems and descent

methods for asymmetric variational inequality problems. Mathematical

Programming, 53(1-3):99–110, 1992.

[69] M. Fukushima. Merit functions for variational inequality and complementarity

problems. In: G. DiPillo and F. Giannessi, eds., Nonlinear Optimization and

Applications (Plenum Press, New York), pages 155–170, 1996.

[70] M. Fukushima, Z. Q. Luo, and P. Tseng. Smoothing functions for second-order-

cone complementarity problems. SIAM Journal on Optimization, 12(2):436–460,

2002.

[71] A. Galántai. Properties and construction of NCP functions. Computational

Optimization and Applications, 52(3):805–824, 2012.

[72] J. Gauvin. A necessary and sufficient regularity condition to have bounded

multipliers in nonconvex programming. Mathematical Programming, 12(1):136–

138, 1977.

[73] C. Geiger and C. Kanzow. On the resolution of monotone complementarity

problems. Computational Optimization and Applications, 5(2):155–173, 1996.

[74] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, 1981.

[75] F.J. Gould and J. W. Tolle. A necessary and sufficient qualification for constrained

optimization. SIAM Journal on Applied Mathematics, 20(2):164–172, 1971.

[76] N. I. M. Gould, P. L. Toint, and D. Orban. An interior-point ℓ1-penalty method for

nonlinear optimization. Groupe d’études et de recherche en analyse des décisions,

2010.

[77] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique

for newton’s method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

[78] I. Griva, D. F. Shanno, and R. J. Vanderbei. Convergence analysis of a primal-dual

interior-point method for nonlinear programming. Optimization Online, 2004.

123

[79] M. Guignard. Generalized Kuhn-Tucker conditions for mathematical program-

ming problems in a Banach space. SIAM Journal on Control, 7(2):232–241, 1969.

[80] S. P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear

programming. Mathematical Programming, 17(1):251–269, 1979.

[81] S. P. Han, J. S. Pang, and N. Rangaraj. Globally convergent Newton methods for

nonsmooth equations. Mathematics of Operations Research, 17(3):586–607, 1992.

[82] P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and

nonlinear complementarity problems: a survey of theory, algorithms and

applications. Mathematical Programming, 48(1-3):161–220, 1990.

[83] P. T. Harker and B. Xiao. Newton’s method for the nonlinear complementarity

problem: A B-differentiable equation approach. Mathematical Programming,

48(1):339–357, 1990.

[84] B. S. He, X. M. Yuan, and J. Z. Zhang. Comparison of two kinds of prediction-

correction methods for monotone variational inequalities. Computational

Optimization and Applications, 27(3):247–267, 2004.

[85] B.S. He and L.Z. Liao. Improvements of some projection methods for

monotone nonlinear variational inequalities. Journal of Optimization Theory and

Applications, 112(1):111–128, 2002.

[86] J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization

Algorithms: Part 1: Fundamentals. Springer, 1996.

[87] C. C. Huang and S. Wang. A power penalty approach to a nonlinear

complementarity problem. Operations Research Letters, 38(1):72–76, 2010.

[88] C.C. Huang and S. Wang. A penalty method for a mixed nonlinear

complementarity problem. Nonlinear Analysis: Theory, Methods and

Applications, 75(2):588–597, 2012.

[89] X. X. Huang and X. Q. Yang. A unified augmented Lagrangian approach to

duality and exact penalization. Mathematics of Operations Research, 28(3):533–

552, 2003.

124

[90] A. F. Izmailov and M. V. Solodov. Examples of dual behaviour of Newton-type

methods on optimization problems with degenerate constraints. Computational

Optimization and Applications, 42(2):231–264, 2009.

[91] H. Y. Jiang. Smoothed Fischer-Burmeister equation methods for the

complementarity problem. Department of Mathematics, The University of

Melbourne, Australia, 1997.

[92] H. Y. Jiang, M. Fukushima, L. Q. Qi, and D. F. Sun. A trust region method for

solving generalized complementarity problems. SIAM Journal on Optimization,

8(1):140–157, 1998.

[93] H. Y. Jiang and L. Q. Qi. A new nonsmooth equations approach to nonlinear

complementarity problems. SIAM Journal on Control and Optimization,

35(1):178–193, 1997.

[94] C. Kanzow. Some equation-based methods for the nonlinear complementarity

problem. Optimization Methods and Software, 3(4):327–340, 1994.

[95] C. Kanzow. Nonlinear complementarity as unconstrained optimization. Journal

of Optimization Theory and Applications, 88(1):139–155, 1996.

[96] C. Kanzow and M. Fukushima. Equivalence of the generalized complementarity

problem to differentiable unconstrained minimization. Journal of Optimization

Theory and Applications, 90(3):581–603, 1996.

[97] C. Kanzow, N. Yamashita, and M. Fukushima. New NCP-functions and their

properties. Journal of Optimization Theory and Applications, 94(1):115–135,

1997.

[98] C. Kanzow, N. Yamashita, and M. Fukushima. Levenberg–Marquardt methods

with strong local convergence properties for solving nonlinear equations with

convex constraints. Journal of Computational and Applied Mathematics,

173(2):321–343, 2005.

[99] W. Karush. Minima of functions of several variables with inequalities as side

constraints. Master’s thesis, Department of Mathematics, University of Chicago,

1939.

125

[100] H. W. Kuhn and A. W. Tucker. Nonlinear programming. Proceedings of the

second Berkeley symposium on mathematical statistics and probability, 5:481–492,

1951.

[101] J. Kyparisis. Uniqueness and differentiability of solutions of parametric nonlinear

complementarity problems. Mathematical Programming, 36(1):105–113, 1986.

[102] S. Leyffer, G. López-Calva, and J. Nocedal. Interior methods for mathematical

programs with complementarity constraints. SIAM Journal on Optimization,

17(1):52–77, 2006.

[103] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[104] X. W. Liu and J. Sun. Generalized stationary points and an interior-point

method for mathematical programs with equilibrium constraints. Mathematical

Programming, 101(1):231–261, 2004.

[105] X. W. Liu and J. Sun. A robust primal-dual interior-point algorithm for nonlinear

programs. SIAM Journal on Optimization, 14(4):1163–1186, 2004.

[106] X. W. Liu and J. Sun. Global convergence analysis of line search interior-point

methods for nonlinear programming without regularity assumptions. Journal of

Optimization Theory and Applications, 125(3):609–628, 2005.

[107] X. W. Liu and Y. X. Yuan. A null-space primal-dual interior-point algorithm

for nonlinear optimization with nice convergence properties. Mathematical

Programming, 125(1):163–193, 2010.

[108] F. A. Lootsma. Hessian matrices of penalty functions for solving constrained

optimization problems. Philips Research Reports, 24:322–331, 1969.

[109] Z. Q. Luo, J. S. Pang, and D. Ralph. Mathematical Programs with Equilibrium

Constraints. Cambridge University Press, 1996.

[110] M. Macconi, B. Morini, and M. Porcelli. Trust-region quadratic methods

for nonlinear systems of mixed equalities and inequalities. Applied Numerical

Mathematics, 59(5):859–876, 2009.

126

[111] O. L. Mangasarian. Equivalence of the complementarity problem to a system of

nonlinear equations. SIAM Journal on Applied Mathematics, 31(1):89–92, 1976.

[112] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality

conditions in the presence of equality and inequality constraints. Journal of

Mathematical Analysis and Applications, 17(1):37–47, 1967.

[113] O. L. Mangasarian and M. V. Solodov. Nonlinear complementarity as

unconstrained and constrained minimization. Mathematical Programming,

62(1):277–297, 1993.

[114] N. Maratos. Exact Penalty Function Algorithms for Finite Dimensional and

Control Optimization Problems. PhD thesis, Imperial College London, 1978.

[115] K. W. Meng, S. J. Li, and X. Q. Yang. A robust SQP method based on a

smoothing lower order penalty functions. Optimization, 58(1):23–38, 2009.

[116] K. W. Meng and X. Q. Yang. First- and second-order necessary conditions via

exact penalty functions. Submitted.

[117] K. W. Meng and X. Q. Yang. Optimality conditions via exact penalty functions.

SIAM Journal on Optimization, 20(6):3208–3231, 2010.

[118] Z. Q. Meng, C. Y. Dang, and X. Q. Yang. On the smoothing of the square-root

exact penalty function for inequality constrained optimization. Computational

Optimization and Applications, 35(3):375–398, 2006.

[119] M. Mongeau and A. Sartenaer. Automatic decrease of the penalty parameter

in exact penalty function methods. European Journal of Operational Research,

83(3):686–699, 1995.

[120] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation. I:

Basic Theory. II: Applications. Springer, 2006.

[121] J. Moré and W. Rheinboldt. On P-and S-functions and related classes of n-

dimensional nonlinear mappings. Linear Algebra and its Applications, 6:45–68,

1973.

[122] J. J. Moré. Global methods for nonlinear complementarity problems. Mathematics

of Operations Research, 21(3):589–614, 1996.

127

[123] B. Morini and M. Porcelli. TRESNEI, a Matlab trust-region solver for

systems of nonlinear equalities and inequalities. Computational Optimization and

Applications, 51(1):27–49, 2012.

[124] W. Murray. Analytical expressions for the eigenvalues and eigenvectors of the

Hessian matrices of barrier and penalty functions. Journal of Optimization Theory

and Applications, 7(3):189–196, 1971.

[125] J. F. Nash. Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences, 36(1):48–49, 1950.

[126] J. F. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295,

1951.

[127] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical

Programming, 103(1):127–152, 2005.

[128] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, 2006.

[129] A. M. Noor. General variational inequalities. Applied Mathematics Letters,

1(2):119–122, 1988.

[130] A. M. Noor. Some developments in general variational inequalities. Applied

Mathematics and Computation, 152(1):199–277, 2004.

[131] P. D. Panagiotopoulos. Inequality Problems in Mechanics and Applications:

Convex and Nonconvex Energy Functions. Springer, 1985.

[132] J. S. Pang. Newton’s method for B-differentiable equations. Mathematics of

Operations Research, 15(2):311–341, 1990.

[133] J. S. Pang. A B-differentiable equation-based, globally and locally quadratically

convergent algorithm for nonlinear programs, complementarity and variational

inequality problems. Mathematical Programming, 51(1-3):101–131, 1991.

[134] J. S. Pang. Error bounds in mathematical programming. Mathematical

Programming, 79(1-3):299–332, 1997.

[135] J. S. Pang and S. A. Gabriel. NE/SQP: A robust algorithm for the nonlinear

complementarity problem. Mathematical Programming, 60(1):295–337, 1993.

128

[136] J. S. Pang and L. Q. Qi. Nonsmooth equations: motivation and algorithms. SIAM

Journal on Optimization, 3(3):443–465, 1993.

[137] J. S. Pang and J. C. Yao. On a generalization of a normal map and equation.

SIAM Journal on Control and Optimization, 33(1):168–184, 1995.

[138] P. Patriksson. The Traffic Assignment Problem: Models and Methods. CRC Press,

1994.

[139] D. W. Peterson. A review of constraint qualifications in finite-dimensional spaces.

SIAM Review, 15(3):639–654, 1973.

[140] F. Pfeiffer. Multibody Dynamics with Unilateral Contacts. Wiley, 1996.

[141] T. Pietrzykowski. An exact potential method for constrained maxima. SIAM

Journal on Numerical Analysis, 6(2):299–304, 1969.

[142] R. Polyak. Modified barrier functions (theory and methods). Mathematical

Programming, 54(1):177–222, 1992.

[143] D. M. Pooley, P.A. Forsyth, and K. R. Vetzal. Numerical convergence properties

of option pricing PDEs with uncertain volatility. IMA Journal of Numerical

Analysis, 23(2):241–267, 2003.

[144] M. J. D. Powell. Convergence properties of algorithms for nonlinear optimization.

SIAM Review, 28(4):487–500, 1986.

[145] L. Q. Qi. Convergence analysis of some algorithms for solving nonsmooth

equations. Mathematics of Operations Research, 18(1):227–244, 1993.

[146] L. Q. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical

Programming, 58(1):353–367, 1993.

[147] S. M. Robinson. Strongly regular generalized equations. Mathematics of

Operations Research, 5(1):43–62, 1980.

[148] S. M. Robinson. Generalized equations and their solutions, Part II:

Applications to nonlinear programming. Optimality and Stability in Mathematical

Programming, Mathematical Programming Studies, 19:200–221, 1982.

129

[149] S. M. Robinson. Normal maps induced by linear transformations. Mathematics

of Operations Research, 17(3):691–714, 1992.

[150] S. M. Robinson. Newton’s method for a class of nonsmooth functions. Set-Valued

Analysis, 2(1-2):291–305, 1994.

[151] R. T. Rockafellar and R. J. B. Wets. Variational Analysis. Springer, 2011.

[152] A. M. Rubinov, B. M. Glover, and X. Q. Yang. Decreasing functions with

applications to penalization. SIAM Journal on Optimization, 10(1):289–313, 1999.

[153] A. M. Rubinov and X. Q. Yang. Lagrange-type Functions in Constrained Non-

convex Optimization. Springer, 2003.

[154] A. M. Rubinov, X. Q. Yang, and A. M. Bagirov. Penalty functions with a small

penalty parameter. Optimization Methods and Software, 17(5):931–964, 2002.

[155] T. F Rutherford. Extension of GAMS for complementarity problems arising

in applied economic analysis. Journal of Economic Dynamics and Control,

19(8):1299–1324, 1995.

[156] R. Scholz. Numerical solution of the obstacle problem by the penalty method.

Numerische Mathematik, 49(2-3):255–268, 1986.

[157] D. F. Shanno and R. J. Vanderbei. Interior-point methods for nonconvex nonlinear

programming: Orderings and higher-order methods. Mathematical Programming,

87(2):303–316, 2000.

[158] M. V. Solodov and P. Tseng. Modified projection-type methods for monotone

variational inequalities. SIAM Journal on Control and Optimization, 34(5):1814–

1830, 1996.

[159] G Still and M Streng. Optimality conditions in smooth nonlinear programming.

Journal of Optimization Theory and Applications, 90(3):483–515, 1996.

[160] D. F. Sun and L. Q. Qi. On NCP-functions. Computational Optimization and

Applications, 13(1-3):201–220, 1999.

[161] D.F. Sun and J. Sun. Strong semismoothness of the Fischer-Burmeister SDC and

SOC complementarity functions. Mathematical Programming, 103(3):575–581,

2005.

130

[162] P. Tseng. Growth behavior of a class of merit functions for the nonlinear

complementarity problem. Journal of Optimization Theory and Applications,

89(1):17–37, 1996.

[163] P. Tseng. Convergent infeasible interior-point trust-region methods for

constrained minimization. SIAM Journal on Optimization, 13(2):432–469, 2002.

[164] P. Tseng, N. Yamashita, and M. Fukushima. Equivalence of complementarity

problems to differentiable minimization: A unified approach. SIAM Journal on

Optimization, 6(2):446–460, 1996.

[165] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex

nonlinear programming. Computational Optimization and Applications,

13(1):231–252, 1999.

[166] A. Wächter and L. T. Biegler. Failure of global convergence for a class of

interior point methods for nonlinear programming. Mathematical Programming,

88(3):565–574, 2000.

[167] A. Wächter and L. T. Biegler. On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57, 2006.

[168] S. Wang and X. Q. Yang. A power penalty method for linear complementarity

problems. Operations Research Letters, 36(2):211–214, 2008.

[169] S. Wang, X. Q. Yang, and K. L. Teo. Power penalty method for a linear

complementarity problem arising from American option valuation. Journal of

Optimization Theory and Applications, 129(2):227–254, 2006.

[170] J. Y. Wei and S. Yves. Spatial oligopolistic electricity models with cournot

generators and regulated transmission prices. Operations Research, 47(1):102–

112, 1999.

[171] A. P. Wierzbicki. Note on the equivalence of Kuhn-Tucker complementarity

conditions to an equation. Journal of Optimization Theory and Applications,

37(3):401–405, 1982.

131

[172] P. Wilmott, J. Dewynne, and S. Howison. Option Pricing: Mathematical Models

and Computation. Oxford Financial Press, 2000.

[173] J. H. Witte and C. Reisinger. A penalty method for the numerical solution

of Hamilton-Jacobi-Bellman (HJB) equations in finance. SIAM Journal on

Numerical Analysis, 49(1):213–231, 2011.

[174] J. H. Witte and C. Reisinger. Penalty methods for the solution of discrete HJB

equations-continuous control and obstacle problems. SIAM Journal on Numerical

Analysis, 50(2):595–625, 2012.

[175] S. J. Wright. Primal-dual Interior-Point Methods. SIAM, 1987.

[176] Z. Y. Wu, F. S. Bai, X. Q. Yang, and L. S. Zhang. An exact lower order penalty

function and its smoothing in nonlinear programming. Optimization, 53(1):51–68,

2004.

[177] X. S. Xu, Z. Q. Meng, J. W. Sun, L. G. Huang, and R. Shen. A second-

order smooth penalty function algorithm for constrained optimization problems.

Computational Optimization and Applications, 55(1):155–172, 2013.

[178] H. Yamashita. A globally convergent primal-dual interior point method for

constrained optimization. Optimization Methods and Software, 10(2):443–469,

1998.

[179] X. Q. Yang. Smoothing approximations to nonsmooth optimization problems.

Journal of the Australian Mathematical Society, Series B, 36(3):274–285, 1995.

[180] X. Q. Yang. A comparative study of smoothing approximations. Journal of the

Australian Mathematical Society, Series B, 38(2):194–200, 1996.

[181] X. Q. Yang and Z. Q. Meng. Lagrange multipliers and calmness conditions of

order p. Mathematics of Operations Research, 32(1):95–101, 2007.

[182] X. Q. Yang, Z. Q. Meng, X. X. Huang, and G. T. Y. Pong. Smoothing nonlinear

penalty functions for constrained optimization problems. Numerical Functional

Analysis and Optimization, 24(3):351–364, 2003.

[183] I. Zang. A smoothing-out technique for min-max optimization. Mathematical

Programming, 19(1):61–77, 1980.

132

[184] W. I. Zangwill. Non-linear programming via penalty functions. Management

Science, 13(5):344–358, 1967.

[185] K. Zhang. American Option Pricing and Penalty Methods. PhD thesis, The Hong

Kong Polytechnic University, 2006.

[186] K. Zhang, X. Q. Yang, S. Wang, and K. L. Teo. Numerical performance of

penalty method for American option pricing. Optimization Methods and Software,

25(5):737–752, 2010.

[187] Y. Zhao and D. F. Sun. Alternative theorems for nonlinear projection equations

and applications to generalized complementarity problems. Nonlinear Analysis:

Theory Methods and Applications, 46(6):853–868, 2001.

[188] R. Zvan, P. A. Forsyth, and K. R. Vetzal. Penalty methods for American options

with stochastic volatility. Journal of Computational and Applied Mathematics,

91(2):199–218, 1998.

133

	TIAN BOSHI
	New Microsoft Word Document (3)
	Boshi_Tian_phd_thesis

