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Abstract

This thesis proposes procedures for testing serial correlation in the partially linear

additive models without and with errors in variables, which include the partially

linear models and additive models as their special cases.

For the partially linear additive models without errors, an empirical-likelihood-

based procedure is developed based on the profile least-squares method. It is shown

that the proposed test statistic is asymptotically chi-square distributed under the

null hypothesis of no serial correlation. Then the rejection region can be constructed

using this result. It is noted that the procedures are not only for testing zero first-

order serial correlation, but also for testing higher-order serial correlation.

For the partially linear additive models with errors, the methods based on the

profile least-squares is invalid because of the existence of the errors in variables.

By a corrected profile least-squares approach, another empirical-likelihood-based

procedure is developed. The asymptotic properties are investigated, based on which

the rejection region can be easily constructed.

Extensive simulation studies were conducted to assess the finite sample properties

of the proposed procedures’ sizes and powers.
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Chapter 1

Introduction

1.1 Partially Linear Additive Models

When investigating relationship between a response Y and some covariates X, the

classical linear regression model is frequently used, which assumes a linear form for

the regression function. The corresponding theory has been investigated deeply,

where details can be found in a classical monograph by Rao (1973). Despite its long

history, the classical linear regression model is still in the focus of modern statistical

study; See, for example, Fan and Li (2001), Zou (2006), Fan and Lv (2008) and so

on.

In spite of the wide applications, the classical linear regression model has some

limitations. For example, the linear regression function is too restrictive and does

not allow the nonlinear effects of the covariates and so on. To overcome these

limitations, statisticians proposed many more flexible regression models to model

the relationship of Y and X, such as the generalized linear models by Nelder
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and Baker (1972), partially linear models by Speckman (1988), additive models by

Friedman and Stuetzle (1981), single-index models by Hardle et al. (1993), partially

linear single-index models by Carroll et al. (1997) and so on. In the partially

linear models, the conditional mean of the response is assumed to depend on some

covariatesX parametrically and some other covariates Z nonparametrically. Usually,

the effects of X (e.g., treatment) are of major interest, while the effects of Z (e.g.,

confounders) are nuisance parameters. This model provides a nice trade-off between

model interpretability and flexibility. Additive models are a popular and flexible

class of nonparametric regression models, which assume that the conditional mean

function can be represented as the sum of several scalar nonparametric functions of

each components of the covariates. Because they allow multidimensional smoothing

to reduce to a sequence of one-dimensional smoothing steps, additive models allow

analysis of multidimensional problems which would be arduous or even impossible

to approach with ”full-dimensional” nonparametric methods. They also maintain

the ease of interpretation of univariate nonparametric smooths, since the estimates

of the component functions can be plotted separately.

Combining the advantages of the partially linear models and additive models,

the partially linear additive models (PLAMs, by Liang et al. (2008)) assume that

Y = XTβ +m1(Z1) + · · ·+mq(Zq) + ε, (1.1)

where Y is a scalar response variable, X is a l × 1 vector of explanatory variables,

β = (β1, β2, · · · , βl)
T is a vector of l-dimensional unknown parameters, Z1, Z2, · · · , Zq

are univariate observed covariates, m1(·), · · · ,mq(·) are unknown smooth functions,

and ε is the random error with zero mean and finite variance σ2. To ensure
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identifiability of the nonparametric functions, we assume that E{mk(Zk)} = 0

for k = 1, 2, · · · , q. Without loss of generality, we also assume that both Y

and X have been centered about their respective means. As noted by many

statisticians, PLAMs allow an easier interpretation of the effect of each variable

and are preferable to completely nonparametric additive models, because PLAMs

combine both parametric and nonparametric components when it is believed that

the response variable depends on some variables in a linear way but is nonlinearly

related to the remaining independent variables.

Model (1.1) has been studied well in literature. Several methods for estimating

the parametric component β and the nonparametric functions mk(·), k = 1, 2, · · · , q,

have been proposed, including the backfitting method of Ospomer and Ruppert

(1999), the series approach of Li (2002), the marginal integration method of Manzan

and Zerom (2005), and the polynomial splines procedure of Liu (2011). Liang et al.

(2008) proposed an attenuation-to-correction estimator of the parametric component

when the linear covariate X is measured with additive error, and showed that the

estimator is asymptotically normal and requires no undersmoothing. Jiang et al.

(2007) applied the generalized likelihood ratio method of Fan and Jiang (2005) to test

the nonparametric component. Wei and Liu (2012) proposed the restricted profile

least-squares estimator for the parametric component. In addition, they proposed

profile generalized likelihood ratio statistics for testing problems on the parametric

component.

In the practical problems, some covariates are mismeasured frequently. The

presence of measurement errors in variables causes biased and inconsistent parameter

estimates and leads to erroneous conclusions to various degrees in the statistical
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analysis. So the problem of measurement errors is one of the most fundamental

problems in statistical inference. And there is a huge literature investigating this

problem in various settings under different models. Details can be found in an

excellent book by Fuller (1987). Throughout this thesis, we assume that the covariate

Z is measured correctly without errors, and X is mismeasured. Typically, it is

assumed that the error is additive, i.e.

V = X+ η, (1.2)

where V is the observed covariate and η is the measurement error with mean zero

and covariance matrix Ση, and independent of (Y,X, Z1, · · · , Zq). Based on (1.1)

and (1.2), we have the following partially linear additive model with errors in variable

or partially linear additive errors-in-variables (PLAM-EV) model

⎧⎪⎨
⎪⎩

Y = XTβ +m1(Z1) + · · ·+mq(Zq) + ε,

V = X+ η.

(1.3)

Obviously, model (1.3) includes a variety of existing models. For example, when

m1(Z1) = · · · = mq(Zq) = 0, model (1.3) becomes the linear EV model which has

been studied by Bekker (1986). When q = 1, model (1.3) reduces to the partially

linear EV model which has been discussed by Cui and Li (1998), Liang et al. (1999),

and Wand (1999). For model (1.3), Liang et al. (2008) proposed a
√
n−consistent

estimator of β by a corrected profile-least squares method without undersmoothing.

Liang et al. (2009), Wang et al. (2010) and Wei et al. (2012) have obtained

the confidence region of the parametric component β by the empirical likelihood

method. Wei and Wang (2012) proposed a novel approach to testing the parametric
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components.

1.2 Serial Correlation

Ordinary, the random errors in models (1.1) and (1.3) are assumed to be independent

from one observation to the next in the statistical analysis. However, this assumption

is often violated in some data set, especially for the business and economic data.

When the error terms from different observations are correlated, we say that the error

term is serially correlated. Serial correlation happens when the errors associated with

a given time period carry over into future time periods. For example, if we predicting

the production of food in a region, an overestimate in one year is likely to lead to

overestimates in succeeding years. Suppose that εi is the error for the ith subject or

time. Then the serial correlation can be modelled by a p-th order moving average,

denoted by MA(p), i.e.,

εi = μi + α1μi−1 + · · ·+ αpμi−p, μi i.i.d (0, σ2), (1.4)

or by a p-th order autoregression, denoted by AR(p), i.e.,

εi = μi + α1εi−1 + · · ·+ αpεi−p, μi i.i.d. (0, σ2), (1.5)

where αi satisfies the stationary condition that the roots of equation α(μ) = 1−α1μ−

α2μ
2−· · ·−αpμ

p = 0 lie outside the unit circle. When p = 1, the serial correlation is

called the first order serial correlation; otherwise, the higher order serial correlation.

The consequences of serial correlation include inefficient or inconsistent estima-
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tion of the regression coefficients, underestimation of the error variance, under-

estimation of the variance of the regression coefficients estimators and inaccurate

confidence intervals and so on. In addition, strong serial correlation may be evidence

of omitting important explanatory variables or functional form misspecification. So

it is important to test the serial correlation for the error terms.

Most of the literature on the problem of testing serial correlation is concerned

with the cases in which the regression function is parametric, in particular with

linear regression. The Durbin-Watson test procedure by Durbin and Watson (1950),

which can be found in any standard econometrics textbooks, is the most popular

method to test first-order serial correlation. To test higher-order serial correlation,

commonly used tests include the Lagrange Multiplier tests of Breusch (1978) and

Godfrey (1978), the Box-Pierce test of Box and Pierce (1970), and the Ljung-Box

test of Ljung and Box (1978).

Recently, some approaches have been proposed to test serial correlation in

semiparametric models, see Godfrey (1978), Li and Hsiao (1998), Li and Stengos

(1986), Godfrey (2007), Liu et al. (2008) and Hu et al. (2009), Zhou et al. (2010)

and Liu et al. (2011). As we all know, little has been discussed on how to detect

serial correlation in model (1.1) and (1.3). This thesis is ready to fill this gap.

The null hypothesis to be tested is that the errors εi are serially uncorrelated. The

alternative hypothesis of interest is (1.4) or (1.5). Follow the idea of Liu et al. (2008)

and Hu et al. (2009), let α = (α1, · · · , αp)
T be a vector of p-dimensional coefficients,

then our aim is to test whether α = 0 or not. Denote γ = (γ1, · · · , γp)T, γk =

Eεiεi+k, k = 1, · · · , p, i = 1, . . . , N , with N = n − p. According to the Yule-

Walker equation, it is easy to show that testing whether α = 0 or not is equivalent
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to testing whether γ = 0 or not. Denote Ui = (Ui1, · · · , Uip)
T, Uik = εiεi+k, k =

1, 2, · · · , p, i = 1, 2, · · · , N,N = n − p. Then testing the zero finite-order serial

correlation in model (1.1) or (1.3) is equivalent to testing whether EUi = 0. By

Owen (1990), this can be done by using the empirical likelihood method.

1.3 Empirical Likelihood

Likelihood is arguably the most significant concept for inference in parametric models

and it had also been shown to be useful in nonparametric estimates of distribution

functions by Kaplan and Meier (1958); Vardi (1985). Owen (1988,1990,1991), baesd

on an earlier suggestion of Thomas and Grunkemeier (1975), had introduced an

”empirical” likelihood ratio statistic for nonparametric problems. He also had shown

that the statistics have limiting χ2-distributions in certain situations, and shown

how to get tests and confidence limits for parameters, expressed as function θ(F )

of unknown distribution function F . The most attractive characteristics of the

empirical likelihood method include avoiding estimation of the covariance of the

estimators, developing coverage accuracy because it contains auxiliary information,

and convenience of implementation.

Due to its nice qualities, the method of empirical likelihood had been widely

studied in statistics and econometrics. More references and techniques can be found

in the monograph by Owen (2001). Kolaczyk (1994) had made further extensions

to generalized linear model. Although further investigation of this methodology

is needed, especially in small to moderate size samples, it appears to provide a

valuable method to tests and interval estimation in nonparametric or distribution-
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free contexts.

By Owen (1991), we can construct the corresponding empirical log-likelihood

ratio. However, ε′is are unknown. To solve the problem, we can replace εi by

its estimator. Then we should estimate the parametric component β and the

nonparametric functions mk(·), k = 1, 2, · · · , q.

Several methods for estimating both components have been proposed, including

the backfitting method of Ospomer and Ruppert (1999), the series approach of

Li (2002), the marginal integration method of Manzan and Zerom (2005), and

the polynomial splines procedure of Liu et al. (2011). Liang et al. (2008)

proposed an attenuation-to-correction estimator of the parametric component when

the linear covariateX is measured with additive error, and showed that the estimator

is asymptotically normal and requires no undersmoothing. Wei and Liu (2012)

proposed the restricted profile least-squares estimator for the parametric component.

In addition, they proposed profile generalized likelihood ratio statistics for testing

problems on the parametric component.

In this article, we assume q = 2 in model (1.1)and (1.2)for notational simplicity

as Liang et al. (2008), then we can obtain a bivariate additive model. Following

Opsomer and Ruppert (1997), we will use the backfitting method, which was

proposed by Buja et al. (1989), to estimate m1 and m2. The related fitting

procedure in S-PLUS of Chambers and Hastie (1992) have made the additive model

a popular choice for multivariate nonparametric fitting. After it, we still follow Liang

et al. (2008) and Wei and Liu (2012), to adopt the profile least-squares approach to

estimate the β.
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After estimating the parameters β and mk(·), k = 1, 2, · · · , q, we can get the

estimator êi = yi −VT
i β̂ − m̂1(Z1i)− m̂2(Z2i) to replace ei. By using the Lagrange

multiplier technique, we can obtain the empirical log-likelihood ratio test statistic,

which is asymptotically chi-square distributed.

1.4 Outline of the Thesis

Despite the extensive research on the serial correlation under various semiparametric

models, to the best of our knowledge, there is little study on the partially linear

additive models. In this thesis, we investigate the serial correlation for the

partially linear additive models without and with errors-in-variables by the empirical

likelihood method. This thesis includes my two pieces of work. One discussed the

testing serial correlation in partially linear additive models, which has been accepted

for publication, see Wei and Yang (2013). The other work which also has been

accepted for publication, discussed the testing serial correlation in partially linear

additive errors-in-variables models, see Yang et al. (2013).

In Chapter 2, we propose an empirical likelihood based approach for testing

serial correlation in this semiparametric model. The proposed test statistic is not

only for testing zero first-order serial correlation, but also for testing higher-order

serial correlation. Under the null hypothesis of no serial correlation, it is shown that

the test statistic asymptotically follows a chi-square distribution. Furthermore, a

simulation study is conducted to illustrate the performance of the proposed method.

In Chapter 3, based on the empirical likelihood method, a test statistic was

proposed, which is asymptotical chi-square distributed under the null hypothesis of
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no serial correlation. Extensive simulation studies are conducted to assess the size

and power of the proposed test.

In Chapter 4, we make a brief conclusion for this thesis and point out some

further research associated with the problems studied here.
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Chapter 2

Testing Serial Correlation in

Partially Linear Additive Models

2.1 Introduction

In this chapter, we consider the following partially linear additive models

Y = XTβ +m1(Z1) + · · ·+mq(Zq) + ε, (2.1)

where Y is a scalar response variable,X is an l×1 vector of explanatory variables, β =

(β1, β2, · · · , βl)
T is a vector of l-dimensional unknown parameters, Z1, Z2, · · · , Zq are

univariate observed covariate, m1(·), · · · ,mq(·) are unknown smooth functions, and

ε is a random error with zero mean and finite variance σ2. To ensure identifiability

of the nonparametric functions, we assume that E{mk(Zk)} = 0 for k = 1, 2, · · · , q.

Without loss of generality, we also assume that both Y and X have been centered
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about their respective means.

As mentioned in Chapter 1, there is much literature investigating this model.

But the aforementioned studies mainly discuss the inference of the partially linear

additive models when the errors ε′is are i.i.d. random variables. Sometimes, the

observations in the sample data cannot be assumed to be independent. For example,

if they are gathered sequentially in time, time series models often exhibit the

phenomenon of serial correlation, where successive residuals appear to be correlated

with each other. To the best of our knowledge, there is little literature on how to

detect serial correlation in semiparametric partially linear additive models which are

frequently used in statistical modeling. Follow the idea of Liu et al. (2008) and Hu et

al. (2009), we propose an empirical-likelihood based test statistic to test finite-order

serial correlation in model (1.1).

The rest of this chapter is organized as follows. In Section 2.2, we propose

the empirical long-likelihood ratio test statistic and show that it is asymptotically

distributed as a χ2. Some simulations are conducted in Section 2.3 to illustrate the

performance of our approach. Section 2.4 provides the proofs of the main results.

2.2 Test Statistic and Its Properties

2.2.1 Profile Least-squares Estimation

For the need of constructing the test statistic, we first develop an estimating approach

for the regression coefficient in model (2.1). Following Liang et al. (2008) and Wei

and Liu (2012), we will adopt the profile least-squares approach to estimate the
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regression coefficient in model (2.1). We also assume q = 2 in model (2.1) for

notational simplicity as Liang et al. (2008). Let {Yi,Xi, Z1i, Z2i, }ni=1 be a random

sample from model (2.1) with q = 2. Then we have

Yi = XT
i β +m1(Z1i) +m2(Z2i) + εi, i = 1, 2, · · · , n. (2.2)

If the parametric component β is known, then model (2.2) can be rewritten as

Yi −XT
i β = m1(Z1i) +m2(Z2i) + εi, i = 1, 2, · · · , n. (2.3)

Then the partially linear additive model (2.2) becomes a bivariate additive model

(2.3) which has been studied by Opsomer and Ruppert (1999). For k = 1, 2, let

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...

Yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XT
1

XT
2

...

XT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,mk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mk(Zk1)

mk(Zk2)

...

mk(Zkn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Dk

Zk
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (Zk1 − Zk)/hk

1 (Zk2 − Zk)/hk

...
...

1 (Zkn − Zk)/hk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Zk is one of Zk1, · · · , Zkn. The smoothing matrix for local linear regression

with respect to the kth covariate vector is

Sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT1 {DkT
Zk1

KZk1
Dk

Zk1
}−1DT

Zk1
KZk1

eT1 {DkT
Zk2

KZk2
Dk

Zk2
}−1DT

Zk2
KZk2

...

eT1 {DkT
Zkn

KZkn
Dk

Zkn
}−1DT

Zkn
KZkn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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with e1 = (1, 0)T andKZk
= diag{Khk

(Zk1−Zk), Khk
(Zk2−Zk), · · · , Khk

(Zkn−Zk)},

where Khk
(·) = K(·/hk)/hk, K(·) is a kernel function and hk is a bandwidth. By

Opsomer and Ruppert (1997), we know that the unknown nonparametric functions

mk’s can be estimated by solving the estimating equation system

⎡
⎢⎣ In S∗

1

S∗
2 In

⎤
⎥⎦
⎡
⎢⎣ m1

m2

⎤
⎥⎦ =

⎡
⎢⎣ S∗

1

S∗
2

⎤
⎥⎦ (Y −Xβ), (2.4)

where S∗
k = (In − 11T)Sk with k = 1, 2. Furthermore, we can obtain the explicit

expression of backfitting estimators for m1 and m2. From (2.4), we get

Inm1 + S∗
1m2 = S∗

1(Y −Xβ), (2.5)

S∗
2m1 + Inm2 = S∗

2(Y −Xβ). (2.6)

Then

In · (2.6)− S∗
2 · (2.5),

we obtain

(InS
∗
2 − S∗

2In)m1 + (InIn − S∗
2S

∗
1)m2 = (InS

∗
2 − S∗

2S
∗
1)(Y −Xβ).

Since

InS
∗
2 = S∗

2 = S∗
2In,

InIn = In,
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it follows that

(In − S∗
2S

∗
1)m2 = (S∗

2 − S∗
2S

∗
1)(Y −Xβ)

= (In − S∗
2S

∗
1 − In + S∗

2)(Y −Xβ)

= [(In − S∗
2S

∗
1)− (In − S∗

2)](Y −Xβ),

m2 = (In − S∗
2S

∗
1)

−1[(In − S∗
2S

∗
1)− (In − S∗

2)](Y −Xβ)

= In − (In − S∗
2S

∗
1)

−1(In − S∗
2)(Y −Xβ).

In the same way,

In · (2.5)− S∗
1 · (2.6),

we can obtain

(InIn − S∗
1S

∗
2)m1 + (InS

∗
1 − S∗

1In)m2 = (InS
∗
1 − S∗

1S
∗
2)(Y −Xβ).

Since

InS
∗
1 = S∗

1 = S∗
1In,

we also get

(In − S∗
1S

∗
2)m1 = (S∗

1 − S∗
1S

∗
2)(Y −Xβ)

= (In − S∗
1S

∗
2 − In + S∗

1)(Y −Xβ)

= [(In − S∗
1S

∗
2)− (In − S∗

1)](Y −Xβ),

m1 = (In − S∗
1S

∗
2)

−1[(In − S∗
1S

∗
2)− (In − S∗

1)](Y −Xβ)

= In − (In − S∗
1S

∗
2)

−1(In − S∗
1)(Y −Xβ),

m̂1 = W1(Y −Xβ), m̂2 = W2(Y −Xβ), (2.7)
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with

W1 = In − (In − S∗
1S

∗
2)

−1(In − S∗
1), W2 = In − (In − S∗

2S
∗
1)

−1(In − S∗
2).

Substituting m̂1 and m̂2 into (2.2), we obtain a synthetic linear regression model

Yi − Ȳi = (Xi − X̄i)
Tβ + εi, i = 1, 2, · · · , n, (2.8)

where Ȳ = (Ȳ1, · · · , Ȳn)
T = SY , X̄ = (X̄1, · · · , X̄n)

T = SX, and S = W1 +W2.

With the linear model (2.8), we obtain the profile least-squares estimator for β,

β̂ =

{
n∑

i=1

(Xi − X̄i)(Xi − X̄i)
T

}−1 n∑
i=1

(Xi − X̄i)(Yi − Ȳi). (2.9)

Moreover, the final estimation of m1 and m2 can be defined as

m̂1 = W1(Y −Xβ̂), m̂2 = W2(Y −Xβ̂). (2.10)

Let Ŷ = (ŷ1, ŷ2, · · · , ŷn)T be the vector of the fitted values of Y and ε̂ =

(ε̂1, ε̂2, · · · , ε̂n)T be the vector of residuals. Then according to the above fitting

procedure and the results in (2.9) and (2.10), we have

Ŷ = Xβ̂ + m̂1 + m̂2 = Xβ̂ + S(Y −Xβ̂) = LY and ε̂ = Y − Ŷ, (2.11)

with L = S+ (I− S)X
[
XT(I− S)T(I− S)X

]−1
XT(I− S)T(I− S).

17



2.2.2 Test Statistic and Its Properties

For model (2.1), we are interested in testing whether the errors εi are serially

uncorrelated. The null hypothesis to be tested is that the errors εi are serially

uncorrelated. The alternative hypothesis of interest is a p-th order moving average,

denoted by MA(p) and written as

εi = μi + α1μi−1 + · · ·+ αpμi−p, μi i.i.d (0, σ2) (2.12)

or a p-th order autoregression, denoted by AR(p) and written as

εi = μi + α1εi−1 + · · ·+ αpεi−p, μi i.i.d. (0, σ2) (2.13)

where αi satisfies the stationary condition that the roots of equation α(μ) = 1 −

α1μ− α2μ
2 − · · · − αpμ

p = 0 lie outside the unit circle.

Follow the idea of Liu et al. (2008) and Hu et al. (2009), let α = (α1, · · · , αp)
T

be a vector of p-dimensional coefficients, then our aim is to test whether α = 0 or

not. Denote γ = (γ1, · · · , γp)T, γk = Eεiεi+k, k = 1, · · · , p, i = 1, . . . , N , with

N = n − p. According to the Yule-Walker equation, it is easy to show that testing

whether α = 0 or not is equivalent to testing whether γ = 0 or not.

Denote Ui = (Ui1, · · · , Uip)
T, Uik = εiεi+k, k = 1, 2, · · · , p, i = 1, 2, · · · , N,N =

n−p. Then testing the zero finite-order serial correlation in model (2.1) is equivalent

to testing whether EUi = 0. By Owen (1990), this can be done using the empirical

likelihood method. Let p1, p2, · · · , pN be nonnegative numbers summing to unity.
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Then the corresponding empirical log-likelihood ratio can be defined as

l̄N = −2max

{
N∑
i=1

log(Npi) :
N∑
i=1

piUi = 0,
N∑
i=1

pi = 1

}
.

However, ε′is are unknown, then l̄n cannot be used directly. To solve the problem, we

can replace εi by its estimator. Then, using ε̂i to replace εi, the estimated empirical

log-likelihood ratio is then defined by

lN = −2max

{
N∑
i=1

log(Npi) :
N∑
i=1

piξi = 0, pi ≥ 0,
N∑
i=1

pi = 1

}
, (2.14)

where ξi = (ξi1, · · · , ξip)T, ξik = ε̂iε̂i+k, k = 1, 2, · · · , p, i = 1, 2, · · · , N .

By the Lagrange multiplier technique, the empirical log-likelihood ratio can be

represented as

lN = 2
N∑
i=1

log
(
1 + λTξi

)
, (2.15)

where λ = (λ1, λ2, · · · , λp)
T is the solution of the equation

1

N

N∑
i=1

ξi
1 + λTξi

= 0. (2.16)

The following theorem indicates that lN is asymptotical distributed as a χ2-

distribution.

Theorem 2.1 Under the Assumptions 1 to 4 given in Section 2.4, and the null

hypothesis of no serial correlation, we have

lN
D−→ χ2

p,
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where χ2
p is a χ2-distribution with p degrees of freedom.

2.3 Simulation Studies

In this section, we conduct extensive simulations to illustrate the finite sample

properties of the proposed test procedure.

In our simulations, the data are generated from the following bivariate additive

model

yi = xiβ +m1(z1i) +m2(z2i) + εi, i = 1, 2, · · · , n,

where β = 1,m1(z1i) = 2 sin(πz1i), m2(z2i) = exp(z2i) − 3.75, and xi ∼ N(0, 1),

z1i ∼ U(0, 1), and z2i ∼ U(0, 1). εi are generated from different processes

1:AR(1) error: εi = ρεi−1 + μi;

2:MA(1) error: εi = ρμi−1 + μi;

3:AR(2) error: εi = α1εi−1 + α2εi−2 + μi;

4:MA(2) error: εi = α1μi−1 + α2μi−2 + μi.

To evaluate the effect of the error distributions on our results, ui is supposed

to follow the following three different distributions, (1)μi ∼ N(0, 0.52), (2)μi ∼

U(−√
3/2,

√
3/2), (3) μi ∼ 1

8
χ2
8 − 1. The Epanechnikov kernel K(x) = 0.75(1 −

x2)I|x|≤1 and bandwidths h1 = h2 = n−1/5 are used in the simulations.

Take ρ = 0, 0.2,−0.2, 0.5,−0.5, 0.8,−0.8, (α1, α2) = (0, 0), (0.2, 0.3), (0.2,−0.6), (0.5, 0.5), (−0.2

and n = 50, 100. For each case, 1000 replications were run and the rejection rate at

the significance level α = 0.05 was computed as the estimated size and power of our

proposed test procedure. The results are presented in Tables 2.1 to 2.4. For better
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visualization, we also give plots and explanations for Tables 2.1 to 2.4 at the end of

this chapter.

We summarize our findings as follows. When the null hypothesis is true (that is

ρ = 0 or (α1, α2) = (0, 0)), the rejection frequencies (estimated sizes) of our proposed

test are close to their nominal levels 0.05 under different error distributions and error

process. Under the alternative hypothesis, the rejection rate seems very robust to

the variation of the type of error distribution, and increases rapidly as the alternative

hypothesis deviates from the null hypothesis.

2.4 Proof of the Theorem

We begin with the following assumptions required to prove the theorem. These

assumptions are quite mild and can be easily satisfied.

Assumption 1. The function K(·) is a bounded symmetric density function with

compact support.

Assumption 2. The densities fk(Zk) of Zk are Lipschitz continuous and bounded

away from 0, and have bounded supports Ωk for k = 1, 2, · · · , q.

Assumption 3. The second derivatives of mk(·), k = 1, 2, · · · , q exist and are

bounded and continuous.

Assumption 4. As n → ∞, hk → 0, nhk/ log n → ∞ and nh8
k → 0 for k =

1, 2, · · · , q.

In order to prove the main results, we first introduce several properties and

lemmas.

Property 2.1 Op(1) ·Op(1) = Op(1)
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Proof: Denote Xn = Op(1), Yn = Op(1), then for any ε > 0, there exist Mε and Nε

such that

P(|Xn| > Mε) < ε,P(|Yn| > Nε) < ε.

Then

P(|Xn · Yn| > Mε ·Nε) = P(|Xn · Yn| > Mε ·Nε, |Xn| > Mε)

+P(|Xn · Yn| > Mε ·Nε, |Xn| ≤ Mε)

� P(|Xn| > Mε) +P(|Yn| > Nε)

< 2ε

So

Op(1) ·Op(1) = Op(1).

Property 2.2 Op(1) · op(1) = op(1)

Proof: Denote Xn = Op(1), then for any ε > 0, there exists Mε such that

P(|Xn| > Mε) < ε.

Denote Yn = op(1), which means that for any δ > 0, there exists N , when n > N ,

we have

P(|Yn| > δ) < ε.

Then

P(|Xn · Yn| > Mε · δ) = P(|Xn · Yn| > Mε · δ, |Xn| > Mε)

+P(|Xn · Yn| > Mε · δ, |Xn| ≤ Mε)

� P(|Xn| > Mε) +P(|Yn| > δ)

< 2ε.

22



So

Op(1) · op(1) = op(1).

Property 2.3 op(1) · op(1) = op(1)

Proof: Denote Xn = op(1), Yn = op(1), then for any ε > 0, there exist δ1 and δ2

such that

P(|Xn| > δ1) < ε,P(|Yn| > δ2) < ε.

Then

P(|Xn · Yn| > δ1 · δ2) = P(|Xn · Yn| > δ1 · δ2, |Xn| > δ1)

+P(|Xn · Yn| > δ1 · δ2, |Xn| ≤ δ1)

� P(|Xn| > δ1) +P(|Yn| > δ2)

< 2ε.

So

op(1) · op(1) = op(1).

Property 2.4 op(1) + op(1) = op(1)

Proof: Denote Xn = op(1), Yn = op(1), then for any ε > 0, there exist δ1 and δ2

such that

P(|Xn| > δ1) < ε,P(|Yn| > δ2) < ε.

Then

P(|Xn + Yn| > δ1 + δ2) � P(|Xn| > δ1) +P(|Yn| > δ2)

< 2ε.
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So

op(1) + op(1) = op(1).

Lemma 2.1 For the backfitting estimation of unknown functions, we have

m̂k(z)−mk(z) = Op

(
h2
k +

1√
nhk

)
, k = 1, 2, · · · , q.

This lemma can be obtained by Theorem 1 of Wand (1999).

Lemma 2.2 Let Gi, i = 1, 2, · · · , n be i.i.d random variables with E(Gi) = 0 and

E(G2
i ) < ∞. Then for any permutation (j1, j2, · · · , jn) of (1, 2, · · · , n),

max
1≤k≤n

|
k∑

i=1

Gji |= Op(n
1
2 log n).

The lemma comes from Gao (1995).

Lemma 2.3 (Kolmogorov Strong Law of Large Numbers) If {Xn}, n ≥ 1

is an i.i.d sequence of random variables and Sn =
∑

Xn. Then, there exists C ∈ R

such that

Sn

n

a.s.−→ C ⇔ E(| X1 |) < ∞, C = E(X1).

Lemma 2.4 Under the Assumptions 1 to 4, we have

1√
N

N∑
i=1

ξi
D−→ N(0, σ4Ip).
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Proof: Denote ei = xT
i (β − β̂) + mi − m̂i with mi = m1(Z1i) + m2(Z2i), m̂i =

m̂1(Z1i) + m̂2(Z2i). Then, by the definition of ξi, we have

1√
N

N∑
i=1

ξik = 1√
N

N∑
i=1

(ei + εi)(ei+kεi+k)

= 1√
N

N∑
i=1

εiεi+k +
1√
N

N∑
i=1

eiei+k +
1√
N

N∑
i=1

eiεi+k +
1√
N

N∑
i=1

ei+kεi

.
= 1√

N

N∑
i=1

Uik + I1 + I2 + I3.

For I1, we have

I1 = 1√
N

N∑
i=1

[
XT

i (β − β̂) +mi − m̂i

] [
XT

i+k(β − β̂) +mi+k − m̂i+k

]
= 1√

N

N∑
i=1

[
XT

i (β − β̂)XT
i+k(β − β̂)

]
+ 1√

N

N∑
i=1

[(mi − m̂i)(mi+k − m̂i+k)]

+ 1√
N

N∑
i=1

[
XT

i (β − β̂)(mi+k − m̂i+k)
]
+ 1√

N

N∑
i=1

[
(mi + m̂i)X

T
i+k(β − β̂)

]
= I11 + I12 + I13 + I14.

(2.17)

By Lemmas 2.1 and 2.2, we prove

I11 = ‖β − β̂‖2 1√
N

N∑
i=1

XiX
T
i+k

≤ √
N‖β − β̂‖2 · 1

N

N∑
i=1

‖Xi‖‖Xi+k‖

≤ √
N‖β − β̂‖2 ·

(
1
N

N∑
i=1

‖Xi‖2
)1/2

·
(

1
N

N∑
i=1

‖Xi+k‖2
)1/2

=
√
N ·Op(N

−1) ·Op(1) ·Op(1) = op(1).

(2.18)

For ‖β − β̂‖2, β̂ is the profile least-square estimator of β, so Eβ̂ = β. Then we get

√
N(β − Eβ̂) −→ N(0,Σ),
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which means,

β − Eβ̂ = Op(
1√
N
),

so

‖β − β̂‖2 = Op(N
−1).

For

(
1
N

N∑
i=1

‖Xi‖2
)1/2

, by Lemma 2.3, we obtain

(
1

N

N∑
i=1

‖Xi‖2
)

a.s.−→ E(‖Xi‖2).

Since E(‖Xi‖2) is a constant, then

(
1

N

N∑
i=1

‖Xi‖2
)

= Op(1).

Similarly, we also obtain

(
1

N

N∑
i=1

‖Xi+k‖2
)

= Op(1).

Then

|I12| = | 1√
N

N∑
i=1

(mi − m̂i)(mi+k − m̂i+k)|

� 1√
N

N∑
i=1

sup
i

|mi − m̂i| sup
i

|mi+k − m̂i+k|

=
√
NOp(c

2
n) = op(1),

(2.19)
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with cn = h2
1 + h2

2 +
{

log(1/h1)
nh1

}1/2

+
{

log(1/h2)
nh2

}1/2

. For I13, we have

|I13| � 1√
N

{
N∑
i=1

[XT
i (β − β̂)]2

} 1
2
{

N∑
i=1

(mi+k − m̂i+k)
2

} 1
2

�
√
N‖β − β̂‖

(
1
N

N∑
i=1

‖Xi‖2
) 1

2

sup
i

|mi − m̂i|

= op(1).

(2.20)

By (2.18)-(2.20), we have I1 = op(1).

For I2, we have

I2 =
1√
N

N∑
i=1

XT
i (β − β̂)εi+k +

1√
N

N∑
i=1

(mi − m̂i)εi+k = I21 + I22. (2.21)

Since

I21 =
√
N(β − β̂)T

1

N

N∑
i=1

Xiεi+k = op(1), (2.22)

and

I22 ≤ 1√
N

sup
i

|mi − m̂i| max
1≤k≤N

|
k∑

i=1

vji | = op(1), (2.23)

we can obatin I2 = op(1).

Similarly, we obtain I3 = op(1). Then, we get

1√
N

N∑
i=1

ξik =
1√
N

N∑
i=1

Uik + op(1),
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and

1√
N

N∑
i=1

ξi =
1√
N

N∑
i=1

Ui + op(1).

By the same argument used in the proof of Theorem 3.1 in Hu et al. (2009), we get

1√
N

N∑
i=1

ξi
D−→ N(0, σ4Ip).

Lemma 2.5 Under the assumptions 1-4, we have

1

N

N∑
i=1

ξiξ
T
i

p−→ σ4Ip.

By the same argument used in the proof of Lemma 2.4, we can prove Lemma 2.5 by

the law of large numbers. We omit the details here.

Proof of Theorem 2.1 Using the same strategy as the proof of Theorem 3.2 in

Owen (1991), we prove that

‖λ‖ = Op(N
−1/2). (2.24)

On the other hand, based on the assumptions and Lemma 2.3, and the strong law

of large numbers, we have

max
1≤i≤N

‖ξi‖ = op(N
1/2). (2.25)
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Based on the equation (2.16), by Lemma 2.3, (2.24) and (2.25), we have

λ =

(
N∑
i=1

ξiξ
T
i

)−1 N∑
i=1

ξi + op(N
−1/2), (2.26)

and

N∑
i=1

λTξi =
N∑
i=1

(
λTξi

)2
+ op(1). (2.27)

By (2.24)-(2.27), we know that

lN =
N∑
i=1

λTξiξ
T
i λ+ op(1)

=

(
1√
N

N∑
i=1

ξi

)T(
1
N

N∑
i=1

ξiξ
T
i

)−1(
1√
N

N∑
i=1

ξi

)
+ op(1).

Finally, combining Lemmas 2.4 and 2.5, we have lN
D−→ χ2

p as N → ∞. The theorem

is then proved.
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From the figure PLAM-AR(1), we obtain that when n = 50 and ρ = 0, the

rejection rate of our proposed test is close to their significance levels 0.05 under

three different error distributions. When ρ �= 0, the rejection rate seems very robust

to the variation of the type of error distribution, and increases rapidly as the ρ’s value

becomes larger. When n = 100, we get the same conclusion and this phenomenon

becomes more and more obvious.
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From the figure PLAM-MA(1), we obtain that when n = 50 and ρ = 0, the

rejection rate of our proposed test is close to their significance levels 0.05 under

three different error distributions. When ρ �= 0, the rejection rate seems very robust

to the variation of the type of error distribution, and increases rapidly as the ρ’s value

becomes larger. When n = 100, we get the same conclusion and this phenomenon

becomes more and more obvious.
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From the figure PLAM-AR(2), we can obtain that when n = 50 and (α1, α2) =

(0, 0), the rejection rate of our proposed test are close to their significance levels 0.05

under three different error distributions. When ρ �= 0, the rejection rate seems very

robust to the variation of the type of error distribution, and increase rapidly as the

(α1, α2)’s value becomes larger. When n = 100, we can get the same conclusion and

this phenomenon becomes more and more obvious.
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From the figure PLAM-MA(2), we can obtain that when n = 50 and (α1, α2) =

(0, 0), the rejection rate of our proposed test are close to their significance levels 0.05

under three different error distributions. When ρ �= 0, the rejection rate seems very

robust to the variation of the type of error distribution, and increase rapidly as the

(α1, α2)’s value becomes larger. When n = 100, we can get the same conclusion and

this phenomenon becomes more and more obvious.
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Chapter 3

Testing Serial Correlation in

Partially Linear Additive Models

with Errors in Variables

3.1 Introduction

In this chapter, we consider the following partially linear additive models with errors

in variable or partially linear additive errors-in-variables models

⎧⎪⎨
⎪⎩

Y = XTβ +m1(Z1) + · · ·+mq(Zq) + ε,

V = X+ η,

(3.1)

where Y is a scalar response variable, X is an l × 1 vector of explanatory variables,

β = (β1, β2, · · · , βl)
T is a vector of l-dimensional unknown parameters, Zk’s are

univariate continuous variables, m1(·), · · · ,mq(·) are unknown smooth functions, and
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ε is a random error with zero mean and finite variance σ2. To ensure identifiability

of the nonparametric functions, we assume that E{mk(Zk)} = 0 for k = 1, 2, · · · , q.

Measurement errors η are independent and identically distributed, independent of

(Y,X, Z1, · · · , Zq), with mean zero and covariance matrix Ση. Here, we assume that

Ση is known. If Ση is unknown, we can estimate it by repeatedly measuring V.

Model (3.1) includes a variety of existing models. For example, when m1(Z1) =

· · · = mq(Zq) = 0, model (3.1) becomes linear EV models. When q = 1, model (3.1)

reduces to the partially linear EV model which has been discussed by Cui and Li

(1998), Liang et al. (2007), and Wang (1999).

There is much literature studying model (3.1). Relevant discussion can be found

in Chapter 1. As we know, little has been done on how to detect serial correlation

in model (3.1). The present chapter is ready to fill this gap. Following the idea of

Liu et al. (2008) and Hu et al. (2009), we propose an empirical-likelihood based test

statistic to test finite-order serial correlation in model (3.1).

3.2 Test Statistic and Its Properties

We assume q = 2 in model (3.1) for notational simplicity as Liang et al.(2008).

Suppose that {Yi,Vi, Z1i, Z2i, }ni=1 is a random sample of incomplete data from model

(3.1) with q = 2. Then we have

⎧⎪⎨
⎪⎩

Yi = XT
i β +m1(Z1i) +m2(Z2i) + εi,

Vi = Xi + ηi,

(3.2)
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For model (3.2), we assume that εi follows p-th order moving average, denoted

by MA(p) and written as

εi = μi + α1μi−1 + · · ·+ αpμi−p, μi i.i.d (0, σ2),

or a p-th order autoregression, denoted by AR(p) and written as

εi = μi + α1εi−1 + · · ·+ αpεi−p, μi i.i.d. (0, σ2),

where αi satisfies the stationary condition that the roots of equation α(μ) = 1 −

α1μ− α2μ
2 − · · · − αpμ

p = 0 lie outside the unit circle.

We are interested in testing whether the model error εi is serially uncorrelated.

Denote γ = (γ1, · · · , γp)T, γk = Eεiεi+k, k = 1, · · · , p, i = 1, . . . , N , with N =

n − p. It is easy to show that testing whether εi is serially uncorrelated or not is

equivalent to testing whether γ = 0 or not. Follow the idea of Liu et al. (2008) and

Hu et al. (2009), let ei = εi − ηT
i β, γ̄ = (γ̄1, · · · , γ̄p)T, with γ̄k = Eeiei+k. Noting

that εi is independent of ηi, then under the null hypothesis of no serial correlation,

we have

γ̄k = Eeiei+k = E(εi − ηT
i β)(εi+k − ηT

i+kβ) = Eεiεi+k = γk.

Denote Ui = (Ui1, · · · , Uip)
T, Uik = eiei+k, k = 1, 2, · · · , p, i = 1, 2, · · · , N , then

testing the zero finite-order serial correlation in model (3.2) is equivalent to testing

whether EUi = 0. By Owen (2001), this can be done by using the empirical

likelihood method.

40



Empirical likelihood is a nonparametric method of statistical inference. It allows

the data analyst to use likelihood method, without having to assume that the data

comes from a known family of distribution.

Let x1, x2, · · · , xn be independent random vectors inRP , for P ≥ 1, with common

distribution function F0. The empirical distribution

Fn =
1

n

n∑
i=1

δxi

is well known to be the nonparametric maximum likelihood estimate of F0 based on

x1, x2, · · · , xn. Here δx denotes a point mass at x. Then the likelihood function that

Fn maximizes is

L(F ) =
n∏

i=1

F{xi},

where F{xi} is the probability of {xi} under F , xi is the observed value, and F is

any probability measure on RP . This motivates the term nonparametric mle for the

estimate T (Fn) of the parameter T (F0), where T is a statistical functional. In some

cases the empirical likelihood ratio function

R(F ) = L(F )/L(Fn)

can be used to construct nonparametric confidence regions and test for T (F0).

Consider sets of the form

C = {T (F )|R(F ) ≥ r},

where C maybe used as confidence regions for T (F0). Under such conditions, a test

of T (F0) = t rejects when t /∈ C. That means, when no distribution F with T (F ) = t
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has likelihood L(F ) ≥ rL(Fn).

Theorem 1 (Owen (1990)) Let x, x1, x2, · · · , xn be i.i.d. random vectors in RP , with

E(X) = μ0 and V ar(X) = Σ of rank q > 0. For positive r < 1, let

Cr,n = {
∫

xdF |F ≤ Fn, R(F ) ≥ r},

then Cr,n is a convex set and

lim
x→∞

P (μ0 ∈ Cr,n) = P (χ2
(q) ≤ −2log(r)).

Assume there are no ties among the xi, let ωi = F ({xi}), ωi ≥ 0,
n∑

i=1

ωi = 1, then

L(F ) =
n∏

i=1

ωi.

Since mle of F is F̂ = 1
n
, we get

L(F̂ ) =
n∏

i=1

1

n
.

Thus

R(F ) = L(F )/L(F̂ ) =
n∏

i=1

nωi.

For

T (F ) =

∫
xdF =

n∑
i=1

ωixi,

Therefore

Cr,n = {
n∑

i=1

ωixi|
n∑

i=1

nωi ≥ r, ωi ≥ 0,
n∑

i=1

ωi = 1}.
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The corresponding profile likelihood is

R(μ) = max{
n∑

i=1

nωi|
n∑

i=1

ωixi = μ, ωi ≥ 0,
n∑

i=1

ωi = 1}.

In our thesis, let p1, p2, · · · , pN be nonnegative numbers summing to unity. Then

the corresponding empirical log-likelihood ratio can be defined as

l̄N = −2max

{
N∑
i=1

log(Npi)|
N∑
i=1

piUi = 0, pi ≥ 0,
N∑
i=1

pi = 1

}
. (3.3)

However, e′is are unknown, then l̄n cannot be used directly. To solve the problem, we

can replace ei by its estimator. In the following, we will apply the corrected profile

least-squares approach of Liang et al. (2008) to estimate model (3.2).

3.2.1 Corrected Profile Least-squares Estimation

For convenience, we first suppose that X can be observed without measurement

error. If the parametric component β is known, then the first part of model (3.2)

can be rewritten as

Yi −XT
i β = m1(Z1i) +m2(Z2i) + εi, i = 1, 2, · · · , n. (3.4)

Obviously, model (3.4) is a bivariate additive model that has been studied by

Opsomer and Ruppert (1997). Let Y = (Y1, Y2, · · · , Yn)
T,
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mk = (mk(Zk1),mk(Zk2), · · · ,mk(Zkn)),

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XT
1

XT
2

...

XT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT1 {DkT
Zk1

KZk1
Dk

Zk1
}−1DT

Zk1
KZk1

eT1 {DkT
Zk2

KZk2
Dk

Zk2
}−1DT

Zk2
KZk2

...

eT1 {DkT
Zkn

KZkn
Dk

Zkn
}−1DT

Zkn
KZkn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Dk
Zk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (Zk1 − Zk)/hk

1 (Zk2 − Zk)/hk

...
...

1 (Zkn − Zk)/hk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Zk = [Zk1, Zk2, · · · , Zkn]
T, e1 = (1, 0)T and KZk

= diag{Khk
(Zk1 − Zk), Khk

(Zk2 −

Zk), · · · , Khk
(Zkn −Zk)}, where Khk

(·) = K(·/hk)/hk, K(·) is a kernel function and

hk is a bandwidth, k = 1, 2.

By Opsomer and Ruppert (1997), the backfitting estimators of m1 and m2 can

be obtained as

m̂1 = W1(Y −Xβ), m̂2 = W2(Y −Xβ), (3.5)

with

W1 = In − (In − S∗
1S

∗
2)

−1(In − S∗
1), W2 = In − (In − S∗

2S
∗
1)

−1(In − S∗
2).

Substituting m̂1 and m̂2 into model (3.4), we obtain a synthetic linear regression

model

Yi − Ŷi = (Xi − X̂i)
Tβ + εi − ε̂i, i = 1, 2, · · · , n, (3.6)
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where Ŷ = (Ŷ1, · · · , Ŷn)
T = SY, X̂ = (X̂1, · · · , X̂n)

T = SX,

ε̂ = (ε̂1, · · · , ε̂n)T = Sε, and S = W1 +W2, ε = (ε1, ε2, · · · , εn).

Based on the linear model (3.6), when Xi can be observed, we get the profile least

squares estimator for β. However, in our case, Xi cannot be observed. By correction

for attenuation technique, Liang et al. (2008) defined the corrected profile least-

squares estimator of β as

β̂ = arg min
β∈Rl

[
(Ȳ − V̄β)T(Ȳ − V̄β)− nβTΣηβ

]
= (V̄TV̄ − nΣη)

−1V̄TȲ, (3.7)

where Ȳ = Y−Ŷ, V̄ = V−V̂, V̂ = (V̂1, · · · , V̂n)
T = SV and V = (V1, · · · ,Vn)

T.

Moreover, the final estimator of m1 and m2 can be defined as

m̂1 = W1(Y −Vβ̂), m̂2 = W2(Y −Vβ̂). (3.8)

3.2.2 The Empirical Log-likelihood Ratio Statistic

Using êi = yi−VT
i β̂−m̂1(Z1i)−m̂2(Z2i) to replace ei in (3.3), the estimated empirical

log-likelihood ratio is then defined by

lN = −2max

{
N∑
i=1

log(Npi) :
N∑
i=1

piξi = 0, pi ≥ 0,
N∑
i=1

pi = 1

}
, (3.9)

where ξi = (ξi1, · · · , ξip)T, ξik = êiêi+k, k = 1, 2, · · · , p, i = 1, 2, · · · , N .

By the Lagrange multiplier technique, the empirical log-likelihood ratio can be
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represented as

l̂N = 2
N∑
i=1

log(1 + λTξi), (3.10)

where λ = (λ1, λ2, · · · , λp)
T is the solution of the equation

1

N

N∑
i=1

ξi
1 + λTξi

= 0. (3.11)

The following theorem indicates that lN is asymptotically distributed as a χ2-

distribution.

Theorem 3.1 Under the Assumptions 1 to 4 given in Section 3.4, and the null

hypothesis of no serial correlation, we have

lN
D−→ χ2

p,

where χ2
p is a χ2-distribution with p degrees of freedom.

3.3 Simulation Studies

In this section, we conducted extensive simulations to illustrate the finite sample

properties of the proposed test procedure. In our simulations, the data are generated

from the following models

yi = xiβ +m1(z1i) +m2(z2i) + εi, vi = xi + ηi, i = 1, 2, · · · , n,
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where β = 1,m1(z1i) = 2 cos(2πz1i), m2(z2i) = z42i + 2z32i + 3z22i − 2z2i − 2, and

xi ∼ N(0, 1), z1i ∼ U(0, 1), z2i ∼ U(−1, 1), ηi ∼ N(0, 0.25). εi are generated from

different processes

1:AR(1) error: εi = ρεi−1 + μi;

2:MA(1) error: εi = ρμi−1 + μi;

3:AR(2) error: εi = α1εi−1 + α2εi−2 + μi;

4:MA(2) error: εi = α1μi−1 + α2μi−2 + μi.

To evaluate the effect of the error distributions on our results, μi is supposed

to follow the following three different distributions, (1)μi ∼ N(0, 0.52), (2)μi ∼

U(−√
3/2,

√
3/2), (3) μi ∼ 1

8
χ2
8 − 1. The Epanechnikov kernel K(x) = 0.75(1 −

x2)I|x|≤1 and bandwidths h1 = h2 = n−1/5 are used in the simulations.

Take ρ = 0,±0.2,±0.5,±0.8 and (α1, α2) = (0, 0), (0.3, 0.4), (0.2,−0.6),(−0.4, 0.5),

(0, 0.5) and n = 100, 200. For each case, 1000 replications were run and the rejection

rate at the significance level α = 0.05 was computed as the estimated size and power

of our proposed test procedure. The results are presented in Tables 3.1 to 3.4. For

better visualization, we also give plots and explanations for Tables 3.1 to 3.4 at the

end of this chapter.

We summarize our findings as follows. When the null hypothesis is true (that is

ρ = 0 or (α1, α2) = (0, 0)), the rejection frequencies (estimated sizes) of our proposed

test are close to their nominal levels 0.05 under different error distributions and error

process. Under the alternative hypothesis, the rejection rate seems very robust to

the variation of the type of error distribution, and increases rapidly as the alternative

hypothesis deviates from the null hypothesis.
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3.4 Proof of the Theorem

We begin with the following assumptions required to derive the main results. These

assumptions are quite mild and can be easily satisfied.

Assumption 1. The function K(·) is a bounded symmetric density function with

compact support.

Assumption 2. The densities fk(Zk) of Zk are Lipschitz continuous and bounded

away from 0, and have bounded supports Ωk for k = 1, 2.

Assumption 3. The second derivatives of mk(·), k = 1, 2 exist and are bounded

and continuous.

Assumption 4. As n → ∞, hk → 0, nhk/ log n → ∞ and nh8
k → 0 for k = 1, 2.

In order to prove that main results, we first introduce several lemmas.

Lemma 3.1 For the backfitting estimation of unknown functions, we have

m̂k(z)−mk(z) = Op

(
h2
k +

1√
nhk

)
, k = 1, 2.

This lemma can be obtained by Theorem 1 of Wand (1999).

Lemma 3.2 Let Gi, i = 1, 2, · · · , n be i.i.d. random variables with E(Gi) = 0 and

E(G2
i ) < ∞. Then for any permutation (j1, j2, · · · , jn) of (1, 2, · · · , n),

max
1≤k≤n

|
k∑

i=1

Gji |= Op(n
1
2 log n).

The lemma comes from Gao (1995).
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Lemma 3.3 Under the Assumptions 1 to 4, we have

1√
N

n∑
i=1

ξi
D−→ N(0, σ2

0), σ0 = σ2 + βTΣηβ.

Proof: Denote ϕi = VT
i (β − β̂) + mi − m̂i with mi = m1(Z1i) + m2(Z2i), m̂i =

m̂1(Z1i) + m̂2(Z2i). Then, by the definition of ξi, we have

1√
N

N∑
i=1

ξik = 1√
N

N∑
i=1

(ei + ϕi)(ei+kϕi+k)

= 1√
N

N∑
i=1

eiei+k +
1√
N

N∑
i=1

ϕiϕi+k +
1√
N

N∑
i=1

ei+kϕi +
1√
N

N∑
i=1

eiϕi+k

.
= 1√

N

N∑
i=1

Uik + I1 + I2 + I3.

For I1, we have

I1 = 1√
N

N∑
i=1

[
VT

i (β − β̂) +mi − m̂i

] [
VT

i+k(β − β̂) +mi+k − m̂i+k

]
= 1√

N

N∑
i=1

[
VT

i (β − β̂)VT
i+k(β − β̂)

]
+ 1√

N

N∑
i=1

[(mi − m̂i)(mi+k − m̂i+k)]

+ 1√
N

N∑
i=1

[
VT

i (β − β̂)(mi+k − m̂i+k)
]
+ 1√

N

N∑
i=1

[
(mi + m̂i)V

T
i+k(β − β̂)

]
= I11 + I12 + I13 + I14.

Obviously, I11 =
√
N(β − β̂)T

[
1√
N

N∑
i=1

ViV
T
i+k

]
(β − β̂) = Op(

1√
N
) = op(1). By

Lemmas 3.1 and 3.2, we prove

|I12| =

∣∣∣∣ 1√
N

N∑
i=1

(mi − m̂i)(mi+k − m̂i+k)

∣∣∣∣
� 1√

N

N∑
i=1

sup
i

|mi − m̂i| sup
i

|mi+k − m̂i+k|

=
√
NOp(c

2
n) = op(1),

(3.12)
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with cn = h2
1 + h2

2 +
{

log(1/h1)
nh1

}1/2

+
{

log(1/h2)
nh2

}1/2

. For I13, we have

|I13| � 1√
N

{
N∑
i=1

[XT
i (β − β̂)]2

} 1
2
{

N∑
i=1

(mi+k − m̂i+k)
2

} 1
2

�
√
N‖β − β̂‖

(
1
N

N∑
i=1

‖Xi‖2
) 1

2

sup
i

|mi − m̂i|

= op(1).

(3.13)

Similarly to I13, we have I14 = op(1). By the above results, we have I1 = op(1).

For I2, we have

I2 =
1√
N

N∑
i=1

VT
i (β − β̂)ei+k +

1√
N

N∑
i=1

(mi − m̂i)ei+k = I21 + I22. (3.14)

We have

I21 =
√
N(β − β̂)T

1

N

N∑
i=1

Viei+k = op(1), (3.15)

and

I22 ≤ 1√
N

sup
i

|mi − m̂i| max
1≤k≤n

|
k∑

i=1

vji | = op(1). (3.16)

By (3.15) and (3.16), we have I2 = op(1). Similarly, we prove I3 = op(1). Then, we

get

1√
N

N∑
i=1

ξik =
1√
N

N∑
i=1

Uik + op(1),

and

1√
N

N∑
i=1

ξi =
1√
N

N∑
i=1

Ui + op(1).

By the same argument used in the proof of Theorem 3.1 in Hu et al. (2009), we get

1√
N

N∑
i=1

ξi
D−→ N(0, σ2

0).
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Lemma 3.4 Under the Assumptions 1 to 4, we have

1

N

N∑
i=1

ξiξ
T
i

p−→ σ4Ip.

By the same argument as in the proof of Lemma 3.3, we prove Lemma 3.4 by the

law of large numbers. We omit the details here.

Proof of Theorem 3.1 Using the same strategy as in the proof of Theorem 3.2 in

Owen (1991), we prove that

λ =

(
N∑
i=1

ξiξ
T
i

)−1 N∑
i=1

ξi + op(N
−1/2), (3.17)

and
N∑
i=1

λTξi =
N∑
i=1

(
λTξi

)2
+ op(1). (3.18)

Using Taylor’s expansion, and (3.17), (3.18), we obtain

lN =
N∑
i=1

λTξiξ
T
i λ+ op(1)

=

(
1√
N

N∑
i=1

ξi

)T(
1
N

N∑
i=1

ξiξ
T
i

)−1(
1√
N

N∑
i=1

ξi

)
+ op(1).

Finally, combining Lemmas 3.3 and 3.4, we have lN
D−→ χ2

p as N → ∞. The theorem

is then proved.
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From the figure PLAM(EV)-AR(1), we obtain that when n = 100 and ρ = 0, the

rejection rate of our proposed test is close to their significance levels 0.05 under three

different error distributions. When ρ �= 0, the rejection rate seems very robust to

the variation of the type of error distribution, and increases rapidly as the ρ’s value

becomes larger. When n = 200, we get the same conclusion and this phenomenon

becomes more and more obvious.
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From the figure PLAM(EV)-MA(1), we can obtain that when n = 100 and ρ = 0,

the rejection rate of our proposed test are close to their significance levels 0.05 under

three different error distributions. When ρ �= 0, the rejection rate seems very robust

to the variation of the type of error distribution, and increase rapidly as the ρ’s

value becomes larger. When n = 200, we can get the same conclusion and this

phenomenon becomes more and more obvious.
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From the figure PLAM-AR(2), we can obtain that when n = 100 and (α1, α2) =

(0, 0), the rejection rate of our proposed test are close to their significance levels 0.05

under three different error distributions. When ρ �= 0, the rejection rate seems very

robust to the variation of the type of error distribution, and increase rapidly as the

ρ’s value becomes larger. When n = 200, we can get the same conclusion and this

phenomenon becomes more and more obvious.
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From the figure PLAM-MA(2), we can obtain that when n = 100 and (α1, α2) =

(0, 0)), the rejection rate of our proposed test are close to their significance levels

0.05 under three different error distributions. When ρ �= 0, the rejection rate seems

very robust to the variation of the type of error distribution, and increase rapidly as

the (α1, α2)’s value becomes larger. When n = 200, we can get the same conclusion

and this phenomenon becomes more and more obvious.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we proposed inference procedures for testing the serial correlation

in the partially linear additive models based on the empirical likelihood methods.

For the partially linear additive models without errors in variables, the empirical

likelihood method based on the profile least-square estimation was developed. The

method can be used not only for testing zero first-order serial correlation, but also

for testing higher-order serial correlation. Under mild conditions, we showed that the

estimated empirical log-likelihood ratio is an asymptotical χ2-distribution under the

null hypothesis of no serial correlation. Then the rejection region can be constructed

easily. Our simulation results illustrate the performance of the proposed procedure.

Furthermore, we considered the same problem for the partially linear additive model

with errors in variable. Because of the existence of the errors, the profile-least-

square-based empirical likelihood is no longer valid. The empirical likelihood based
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on a corrected profile least-squares method was investigated. We showed in Chapter

3 that the estimated empirical log-likelihood ratio is asymptotical χ2-distribution

under the null hypothesis of no serial correlation. Then the rejection region can be

constructed easily. Our simulation results illustrate the performance of the proposed

procedure.

4.2 Future Work

In this work, we focus on the partially linear additive model for ordinary data.

There remain many topics for future work. Firstly, we can extend the procedure

established here to the generalized partially linear additive model which includes

the partially linear additive model as a special case. Secondly, this thesis only deals

with the ordinary data, but in practice, people often encounter data with incomplete

observations, such as missing data, censoring data and so on. How to extend the

methods established here to such types of data is worthy of further investigation.
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