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ABSTRACT 

 

 

Accurate iris recognition using eye or face images acquired at-a-distance and under 

less constrained environments requires development of specialized iris segmentation 

and recognition strategies. Image quality of such distantly acquired eye or face 

images under less constrained imaging conditions are usually degraded due to the 

multiple commonly observed noise sources such as occlusions (eyeglasses, hair, 

eyelashes, eyelid and shadow), reflections, motion or defocus blur, off-angle and 

partial eye images. The influence from the noise is even more noticeable from the 

eye images acquired using visible illumination imaging. Performing iris 

segmentation and recognition on such noisy eye images can be highly challenging. 

Therefore, it is the main objective of this thesis to provide feasible solutions to 

improve the effectiveness of the iris recognition strategy at-a-distance and under less 

constrained environments.  

 We develop an iris segmentation approach by exploiting the random walker 

algorithm in order to efficiently estimate coarsely segmented iris region. Such 

coarsely segmented iris region reduces the search space for further refinement 

through a set of developed post processing operations which can effectively improve 

the segmentation accuracy. Most of the commonly observed noise sources can be 

identified and masked by the developed post processing operations. The 

segmentation accuracy is evaluated on subsets of distantly acquired images from 

three publicly available databases: UBIRIS.v2, FRGC and CASIA.v4-distance, by 

comparing the binary segmented iris mask with the corresponding ground truth 

mask.  

The second contribution of this thesis is the development of a global iris bits 

stabilization encoding and a localized Zernike moments phase-based encoding 

strategies. The global iris encoding strategy has its strength in less noisy region 

pixels while the localized iris encoding strategy can be more tolerant to imaging 

quality variations (e.g. scale change, illumination change, rotation, and translation) 

and noise. The complementary matching information from the joint strategy of both 

global and localized iris encoding can provide more accurate recognition accuracy 
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for the iris recognition at-a-distance and under less constrained environments. The 

reported recognition performance from using such joint matching strategy on 

UBIRIS.v2, FRGC and CASIA.v4-distance databases is encouraging, but further 

research efforts are still required to improve the recognition accuracy. Therefore, we 

present a study on the recent emerging research in the periocular recognition. The 

joint matching information from simultaneously acquired iris and periocular features 

has shown to achieve even better recognition accuracy than any of the iris or 

periocular features alone. 

A final contribution of this thesis is the development of a computationally 

attractive binary encoding strategy by exploiting the geometric information for 

localized iris encoding, which we refer it as geometric key iris encoding. Such 

geometric key iris encoding strategy is aimed to provide an alternative to the global 

iris bits stabilization encoding which incurs relatively higher computational 

complexity. Our experimental results suggest that the joint matching information 

from the geometric key encoding and Zernike moments phase-based encoding 

strategies achieve better or comparable recognition performance but with reduced 

computational complexity. 
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CHAPTER 1  

Introduction 

 

 

1.1 Biometrics Technology 

 

Biometric recognition, or simply the biometrics, is term comes from the Greek bios 

(life) and metron (measure). Biometrics is the science of identifying or verifying the 

identity of an individual based on the physiological characteristics such as 

fingerprint, face, palmprint, ear, iris, DNA (Deoxyribonucleic Acid), retina, hand 

veins and hand geometry, or behavioral characteristics such as gait, voice, signature 

and keystroke of the person [1], [2], [3], [4]. Figure 1.1 shows some examples of the 

physiological and behavioral biometric traits which can be used for various personal 

recognition purposes. In other words, any biological characteristic, be it 

physiological or behavioral, can be used as biometric as long as it satisfies the 

following characteristics: uniqueness, universality, permanence, collectability, 

acceptability, performance and circumvention [1], [4], [5]. The uniqueness measures 

the distinctiveness of the biometric trait between any two persons.  The biometric 

trait being measured should be sufficiently different in order to make good 

distinguishing of individuals. The universality refers to the availability of the 

biometric trait being measured across the population. The permanence measures the 

rate of change of the biometric trait over a period of time. A good biometric trait is 

expected to be invariant or has little changes over time. The collectability refers to 

the easiness in collecting the biometric trait using suitable sensors. The acceptability 

reflects the overall willingness of the target population to accept the use of biometric 

technology in their daily lives. The privacy reasons are the main factor which 

concerns the use of the biometric technology in a particular population. The 

performance concerns about the overall technology burden such as recognition 

accuracy, computational cost and equipment required to practically deploy a 

biometric system. The circumvention concerns about the security perspective of a 

biometric system by evaluating the easiness of using fraudulent approaches to 
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deceive the system. These seven characteristics serve as guidance to objectively 

determine the choice of a biometric trait to be used in a biometric application. 

Therefore, a practical biometric solution should be evaluated according to these 

seven characteristics which meet the specified requirements and constraints as 

imposed by the biometric application. Figure 1.2 shows nine general areas as 

suggested in [6] where the biometric applications are actively involved.  

 

 

 

Figure 1.1: Examples of biometric traits (pictures from [7], [8], [9], [10], [11], [12], 

[13]). 
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Figure 1.2: Typical categories of various biometric applications. 

 

 

1.1.1 Modes of Operation 

 

 

Figure 1.3: Block diagram of a generic biometric system. 

 

Biometrics is being increasingly pervasive today to provide reliable automated 

personal recognitiona in ranges of applications such as border control, performing a 

financial transaction, law enforcement, etc [14], [15]. Biometric recognition can be 

regarded as a pattern recognition problem by comparing the similarity between any 

two given biometric features. A generic biometric system consists of four primary 

procedures: data acquisition, feature extraction, feature matcher and database, 

                                                           
a We use the generic term recognition as commonly used in the biometrics literatures to refer to both 

identification and verification operations throughout this thesis. 
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(a) Verification mode. 

 

(b) Identification mode. 

Figure 1.4: Modes of operation of a biometric system. 

 

as depicted in Figure 1.3. The data acquisition process acquires raw biometric 

sample, and convert it into digital form for further processing. The feature extraction 

serves to compute/extract distinctive feature representation from the acquired 

biometric sample. During enrollment, i.e. registering a subject into the biometric 

system, such extracted feature representation is stored in the database and is 

commonly regarded as feature template. The responsibility of the matcher is to 

make comparison of the extracted feature against the registered feature templates in 

the database. The similarity between any two compared features is typically 

represented using a similarity/dissimilarity score. For example, Hamming distance is 

used to indicate the similarity level of two acquired iris codes, with the score closes 

to zero being the most similar while the score closes to one being the most dissimilar. 

A biometric system can be operated either in the verification or identification 

mode to meet the requirements by the application. Figure 1.4 shows the functioning 

procedures by the verification and identification methods, respectively. In the 

verification mode, the system attempts to validate the identity of a subject by 



5 

 

comparing the acquired biometric data with the template(s) retrieved from the 

database as indexed by the identifier supplied by the subject. Therefore, the 

verification mode performs a one-to-one matching to determine if the subject is 

indeed who she/he claims to be. For example, the ICAO-compliant biometric 

passport or national identity card which stores the biometric information such as 

face, fingerprint or/and iris is employed in many countries to verify the identities of 

the travelers/citizens [16], [17], [15]. 

In the identification mode, the biometric system attempts to recognize the 

identity of a subject by performing a complete search of the templates for all the 

subjects registered in the database (N comparison). Therefore, the identification 

mode conducts a one-to-many comparison to determine the identity of a subject, or a 

rejection decision is made if the subject is not registered in the database. For 

example, the use of face recognition technology in automated surveillance systems 

to identifying subjects in public or identifying unknown persons of interest from 

images [18]. 

 

 

1.1.2 Performance Evaluation 

 

A number of measures are commonly used to evaluate the overall performance and 

effectiveness of a biometric system. Unlike the password-based authentication 

systems, the biometric systems can hardly achieve a perfect match between two 

biometric features acquired from the same subject. Therefore, the comparison 

between any two features computed from the same biometric trait is measured in 

terms of degree of similarity. Such comparison usually generates a similarity score 

to indicate the similarity between the two compared biometric features. A similarity 

score computed from two biometric features of the same subject is known as a 

genuine score. While the result of the similarity comparison between two biometric 

features originating from different subjects is known as an imposter score.  

There are two kinds of errors can be induced from such similarity comparison: 

false accept (false match) and false reject (false non-match). The computed genuine 

or imposter score is typically compared (through binary comparison) with respect to 
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a predetermined threshold 𝑇 to determine the validity of the claimed identity. For 

example, an imposter score which exceeds 𝑇 results in a false accept; a genuine 

score which falls below 𝑇 results in a false reject. The performance of a biometric 

system can be evaluated in terms of two variables: false acceptance rate/false match 

rate (FAR/FMR) and false rejection rate/false non-match rate (FRR/FNMR). The 

FAR indicates the percentage of false accept cases while the FRR indicates the 

percentage of false reject cases. Sometimes, the FRR is represented as the 

percentage of genuine acceptance cases known as genuine acceptance rate (GAR), 

i.e. 𝐺𝐴𝑅 = 1 − 𝐹𝑅𝑅. The tradeoff between the FAR and FRR (or GAR) can be 

described using a receiver operating characteristic (ROC) curve, which plots the 

GAR/FRR against the FAR in a semi-logarithmic scale. The Equal Error Rate (EER) 

which indicates the point where FAR intersects with the FRR (𝐹𝐴𝑅 = 𝐹𝑅𝑅) is a 

single variable commonly used to show the performance of a biometric system. A 

lower EER value is preferred as it indicates better recognition performance. The d-

prime value (also known as decidability index), 𝑑′, as defined in Equation (1.1), is 

another commonly used indicator to show the performance of a biometric system. 

 

𝑑′ =
|𝜇𝑔𝑒𝑛𝑢𝑖𝑛𝑒 − 𝜇𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟|

√(𝜎𝑔𝑒𝑛𝑢𝑖𝑛𝑒
2 + 𝜎𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟

2 )

, 
(1.1) 

 

where 𝜇𝑔𝑒𝑛𝑢𝑖𝑛𝑒  and 𝜇𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟  denote the means of genuine and imposter scores, 

respectively; 𝜎𝑔𝑒𝑛𝑢𝑖𝑛𝑒  and 𝜎𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟  denotes the variance of the genuine and 

imposter scores, respectively. Therefore, the d-prime is a measurement of the 

separation between means of the genuine and imposter probability densities in 

standard deviation units. In the case of identification, a cumulative match 

characteristic (CMC) curve is commonly employed to summarize the percentage of 

the correct match occurs in the top 𝑘 = 1,2, … , 𝑁  ranking, where 𝑁  denotes the 

number of the enrolled subjects. Figure 1.5 shows examples of the ROC and CMC 

curves computed using the similarity scores obtained from the CASIA.v3-Lamp 

database [7]. 



7 

 

 
(a) ROC curve 

 
(b) CMC curve 

Figure 1.5: The performance of a biometric system evaluated using ROC and CMC 

curves. 

 

 

1.2 The Human Eye and Iris 

 

 
Figure 1.6: Anatomy of the human eyeb. 

 

The human eye is part of the visual system which takes in light rays and converts 

them to a neural signal for further analysis and interpretation by the brain. 

                                                           
b © Soerfm / CC-BY-SA-3.0 
http://commons.wikimedia.org/wiki/File%3ASchematic_diagram_of_the_human_eye_en-edit.png 
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(a) Anterior surface                                     

 

(b) Posterior surface 

Figure 1.7: The anterior and posterior surfaces of the iris (pictures from [19]). 

 

The eye resembling the shape of a globe which consists of three spaces: anterior 

chamber, posterior chamber and vitreous chamber, as illustrated in Figure 1.6 [19], 

[20], [21]. The anterior chamber is bounded by the cornea, iris and the anterior 

surface of the lens. The posterior chamber is situated behind the iris and surrounds 

the equator of the lens. The vitreous chamber, which occupies the largest space of 

the eye, is bounded by the inner retina layer and the lens. The sclera is the opaque 

white of the eye formed by tough and fibrous tissue to provide protection for the 

shape of the eyeball and the resistance to the intraocular pressure. The transparent 

cornea is convex as seen from the front which responsible for allowing the light rays 

entering the eye and focus on the retina by refraction. The iris is a thin, contractile 

and pigmented diaphragm which regulates the amount of light entering the pupil. 

The color of the iris varies from light blue to dark brown, which is determined by 

the pigment in the melanocytes. Figure 1.7 shows the anterior and posterior surfaces 

of the iris. The anterior surface is separated into two regions known as central 

pupillary zone and a peripheral ciliary zone. The wavy collarette acts as a circular 

demarcation line between pupillary and ciliary zones. The contraction furrows 

responsible to regulate the contraction and dilation of the iris as the pupil dilates or 

contracts. Crypts are adjacent to the collarette on both the pupillary and ciliary sides 

which is enclosed by rich radially arranged trabeculae meshwork. The posterior 
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surface of the iris is relatively smoother and more uniform than the anterior surface. 

The posterior surface shows a number of radial folds such as the contraction folds, 

structural folds and circular folds [19], [22].  

 

 

1.3 Iris Recognition 

 

Iris recognition is one of the biometric technologies to provide automated non-

invasive personal recognition based on the distinctive characteristic extracted from 

the iris. The human iris exhibits extremely complex texture patterns which are 

relatively stable throughout a human’s lifespan. Such texture patterns are epigenetic 

and are widely regarded to be highly distinctive. For example, the irises of left and 

right eyes are different; the irises of identical twins are different [1], [23], [24], [25]. 

Figure 1.8 shows the complex texture patterns of an iris where the collarette, crypts, 

ridges and furrow can be observed [26], [27]. 

 The idea of automated iris recognition was first proposed by Flom and Safir 

and patented in 1987 [28]. However, there had no actual implementation to perform 

the automated iris recognition based on their described proposal. The earliest 

workable automated iris recognition solutions were perhaps the approaches as 

proposed in [23], [29], [30], which serve as a reference model for most of the 

existing commercial iris biometrics technology. Based on their proposed model, an 

iris recognition system is generally composed of four modules: image acquisition, 

iris segmentation, feature encoding and matching. The image acquisition module 

involves the acquisition of the iris or eye image with sufficient image quality which 

can be useful for recognition. For example, the diameter of the iris image being 

acquired should have at least 140 pixels as suggested in [31] or 200 pixels as 

suggested by the International Organization for Standardization (ISO) [32]. Nearly 

all the existing commercial iris recognition systems use the NIR (near-infrared) in 

the 700-900 nm range to illuminate the irisc, and require full cooperation from the 

users to provide their iris images at the standoff distance between one and  

                                                           
c  The face/eye region is generally acquired simultaneously and can be employed to provide 

multimodal biometrics solutions [136], [137].  
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Figure 1.8: The human iris exhibits extremely rich texture patterns (picture from 

[33], ID: 015L_2). 

 

three feet. With the advancement of the imaging technology, iris images can now be 

acquired conveniently with less cooperation from the users and be acquired at-a-

distance (3-8 m), as shown in Figure 1.9 [34], [35]. It is worth nothing that 

precaution should be paid for the use of the NIR illumination in the image 

acquisition as the excessive NIR illumination level can cause permanent damage to 

the human eyes [36], [37], [38]. Recently, attempts of using visible illumination 

imaging are proposed to acquire iris images at-a-distance (between three to ten 

meters) and under less constrained environments [39], [40].  

 
(a) Portal of the “Iris on the Move” 

project (picture from [41], [34]). 

 
(b) An ongoing project of iris acquisition 

system which is capable to acquire 

images at distance up to 8m (picture 

from [35]). 

Figure 1.9: Iris image acquisition at-a-distance in laboratory environment. 
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Figure 1.10: Sample segmentation result for an iris image (ID: 001_09) from IITD 

iris database [42]. 

 

The purpose of the segmentation is to localize the valid/useful iris region 

from the acquired iris image. Daugman’s integro-differential operator [31], [43] 

perhaps is one of the remarkable iris segmentation approaches and has been 

employed in almost all existing commercial iris biometrics systems. The iris is 

assumed to have a circular boundary and can be represented with three parameters: 

the coordinates of the center of the circle, 𝑥𝑐 and 𝑦𝑐, and the radius 𝑟. The integro-

differential operator attempts to locate the iris boundary by searching the parameter 

space to maximize 

max
(𝑥𝑐, 𝑦𝑐,𝑟)

|𝐺𝜎(𝑟) ∗
𝜕

𝜕𝑟
∮

𝐼(𝑥, 𝑦)

2𝜋𝑟(𝑥𝑐, 𝑦𝑐,𝑟)

𝑑𝑠| , (1.2) 

where 𝐼(𝑥, 𝑦) denotes the intensity value of the iris image at location (𝑥, 𝑦); 𝐺𝜎(𝑟) 

with the standard deviation 𝜎  serves as a Gaussian smoothing function, and ‘∗’ 

denotes the convolution operator. Often, the commonly known noised sources such 

as eyelid, eyelashes, shadow and reflection highlight are also being identified during 

the iris segmentation process. Figure 1.10 shows a sample iris segmentation result 

(superimposed red and green circles) obtained by using a publicly available open-

source software distributed by NIST (National Institute of Standards and 

Technology) [44], [45].  

                                                           
d We use the generic term noise to refer to those commonly observed noise sources in the iris image. 
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Figure 1.11: Iris normalization based on Daugman’s rubber sheet model. 

 

The encoding module aims to recover distinctive iris features which can be 

useful in distinguishing each individual accurately. In order to account for the 

varying iris size due to the imaging distance between the eye and the acquisition 

device, as well as the pupillary response to ambient light which results in dilation or 

constriction of the pupil, normalization is applied before the feature encoding. 

Daugman’s rubber sheet model as illustrated in Figure 1.11 performs a mapping 

from the Cartesian coordinates (𝑥, 𝑦) to the doubly-dimensionless polar coordinates 

(𝑟, 𝜃):  

𝐼(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)) → 𝐼(𝑟, 𝜃) , (1.3) 

 

[
𝑥(𝑟, 𝜃)

𝑦(𝑟, 𝜃)
] = [

𝑥𝑝(𝜃) 𝑥𝑠(𝜃)

𝑦𝑝(𝜃) 𝑦𝑠(𝜃)
] [
1 − 𝑟

𝑟
] , (1.4) 

where (𝑥𝑝, 𝑦𝑝) denote the Cartesian coordinates of the pupillary contour; (𝑥𝑠, 𝑦𝑠) 

denote the Cartesian coordinates of the outer iris contour. The parameters 𝑟 ∈ [0,1] 

spans the unit interval and 𝜃 is the angle span the interval in [0,2𝜋]. Such coordinate 

mapping system has been adopted as ISO standard 197946 [32].  The normalized iris 

image has achieved the invariance to the size of the iris and the pupillary response. 

Feature encoding approach is then applied to the normalized iris image in order to 

recover discriminative iris features. Examples of the feature encoding methods as 

commonly reported in the iris biometrics literature are 2D Gabor filter [29], [31], 

[43], [46] 1D Log-Gabor filter [47], [48], [49], wavelet transform [50], [51], ordinal 
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filter [52], [53] and DCT (discrete cosine transform) [54]. The iris features as 

recovered by different feature encoding methods are generally described using the 

representation which can allow the efficient matching. Such representation can be 

generally divided into two categories: binary representation and real-valued feature 

vector [24]. The binary representation, or typically referred to as iris code, produces 

the binary representation  

 

Table 1.1: Recent promising works in the iris biometrics (between year 2007 and 

2013). 

Year Ref. 

Methodology Database and 

operating 

illumination (*^#+) 

Segmentation Encoding 

2007 [54] Hough transform to localize 

pupil. Circular iris 

boundary is searched from 

the horizontal line through 

the localized pupil center 

Discrete Cosine 

Transform (DCT) 

CASIA*^, BATH^ 

2007 [43] Coarse segmentation using 

Integro-differential operator 

and boundaries refinement 

based on active contour 

model 

2D Gabor filters ICE.v1^, UAE*^  

2008 [55] Pupil and iris are modeled 

as ellipse shape. Boundaries 

refinement through 

modified Mumford–Shah 

functional 

Global features encoded 

using Log-Gabor. Local 

topological features 

encoded using Euler 

numbers 

CASIA.v3^, 

ICE2005^, 

UBIRIS.v1# 

2008 [56] Gradient-based approach. 

Pupil is modeled as ellipse 

while iris is assumed to be 

circular 

2D Discrete Fourier 

Transform (DFT) 

CASIA.v1^, 

CASIA.v2^, ICE2005^ 

2009 [48] IrisBEE-similar software Log-Gabor with 

estimation of fragile bits  

ICE^ 

2009 [57] Use of modified algorithm 

based on [49] 

Global and local features 

encoded using Gabor 

phase 

ICE2005^, 

CASIA.v2^, CBS^* 

2009 [53] Iris detection using 

AdaBoost. Localize pupil 

and iris based on iterative 

pulling and pushing method 

Ordinal filters ICE.v1^, CASIA.v3-

Lamp^ 

2009 [58] Based on Geodesic active 2D Gabor filters WVU Non-ideal^,  
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contour model CASIA.v3-Interval^ 

2009 [52] N/A Ordinal filters BATH^, CASIA .v1^, 

CASIA.v3-Interval^, 

ICE2005^ 

2010 [51] Pupil is localized based on 

the intensity information. 

Iris is localized using a 

voting-based scheme. 

Log-Gabor, Haar 

wavelet, DCT, DFT 

IITD.v1^, CASIA.v1, 

CASIA.v3-Lamp^  

2010 [59] Constellation model based 

on Integro-differential 

operator 

N/A UBIRIS.v1#, 

UBIRIS.v2# 

2010 [60] Use of trained neural 

network classifiers to 

classify pupil and iris pixels 

N/A UBIRIS.v2#, FRGC#, 

FERET+, ICE2006^ 

2011 [61] Use of existing publicly 

available source code [49] 

Gabor filters ICE2005^, ND-IRIS-

0405^, MBGC^ 

2011 [62] Use approach [53] Ordinal filters with 

weight map 

CASIA.v3-Lamp^, 

ICE2005^, BATH^ 

2012 [63] Hough transform Dynamic features (see 

the corresponding 

reference for details) 

Internally constructed 

video-based iris 

database*^# 

2012 [64] Manually segmented Multiple features such as 

ordinal, color, SIFT, etc. 

computed from iris and 

periocular regions. 

UBIRIS.v2# 

2012 [65] Neural-network/SVM 

trained classifiers using 

Zernike moments features 

to classify iris pixels 

Log-Gabor UBIRIS.v2#, FRGC#, 

CASIA.v4-distance^ 

2013 [66] Random walker-based 

segmentation 

Log-Gabor and Dense 

SIFT computed from iris 

and periocular regions 

UBIRIS.v2#, FRGC#, 

CASIA.v4-distance^ 

 
Remark: 

N/A Not available/applicable 
* Not publicly available 

^ NIR illumination 

# Visible illumination 

+ Grayscale image 

  

 

by applying the coarse quantization to the recovered iris features. Refs. [31], [43], 

[46], [47], [48], [49], [52], [53], [54] are some of the representative works of 

employing the iris code as the feature representation. On the other hand, the real-
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valued feature vector uses the raw values computed from the encoding methods to 

form the feature vector. The representative works of using the real-valued feature 

vector as iris feature representation are reported in [23], [50], [51], [54], [56], [61]. 

Table 1.1 attempts to summarize the recent promising works in iris biometrics 

reported in the literature. 

The matching module is responsible to compute the similarity between the 

query iris template and the template(s) stored in the database (gallery). Depends on 

the mode and the requirement of the application (see Section 1.1.1), the comparison 

can be either an one-to-one or one-to-many matching. For example, the similarity 

score between a query iris code 𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑞𝑢𝑒𝑟𝑦  and a gallery iris code 

𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦 can be computed in terms of the total number of disagreeing iris 

bits, i.e. Hamming distance (HD), as defined as:  

 

𝐻𝐷 =
‖(𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑞𝑢𝑒𝑟𝑦⊕ 𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦) ∩ 𝑚𝑎𝑠𝑘𝑞𝑢𝑒𝑟𝑦 ∩𝑚𝑎𝑠𝑘𝑔𝑎𝑙𝑙𝑒𝑟𝑦‖

‖𝑚𝑎𝑠𝑘𝑞𝑢𝑒𝑟𝑦 ∩𝑚𝑎𝑠𝑘𝑔𝑎𝑙𝑙𝑒𝑟𝑦‖
, (1.5) 

 

where the ‘⊕’ and ‘∩’ denote the Exclusive-or and And operators, respectively. The 

𝑚𝑎𝑠𝑘𝑞𝑢𝑒𝑟𝑦  and 𝑚𝑎𝑠𝑘𝑔𝑎𝑙𝑙𝑒𝑟𝑦  represent the binary masks which mask out the portion of 

occluded iris bits as identified in the segmentation module. Such binary mask has the same 

dimension as the iris code. The HD is normalized into the unit range [0,1] with the value 

closes to zero indicates higher similarity while the value closes to one indicates higher 

dissimilarity between any two compared iris codes. 

 

 

1.4 Organization of Thesis 

 

This thesis details my research work in improving the iris segmentation and 

recognition strategies which can be more effective and accurate for eye images 

acquired at-a-distance and under less constrained environments using either visible 

or NIR illumination imaging. In Chapter 2, some background on the recent 

promising iris segmentation and feature encoding approaches which are developed 

for the conventional NIR based iris recognition systems is provided. Chapter 3 



16 

 

offers some background on the recent development of the iris recognition at-a-

distance and under less constrained environments.  

In Chapter 4, a robust and efficient iris segmentation strategy which can be 

more effectively for eye images acquired distantly and under less constrained 

environments is detailed. In Chapter 5, we detail the joint encoding strategy from a 

global iris bits stabilization encoding and a localized Zernike moments phase-based 

encoding. The complementary matching information from such joint strategy has 

shown to provide more accurate recognition accuracy for the iris recognition at-a-

distance and under less constrained environments. Chapter 6 investigates recognition 

performance from various commonly employed periocular features. We show that 

the joint matching information from simultaneously acquired iris and periocular 

features can achieve even better recognition accuracy than any of the iris or 

periocular features alone. In Chapter 7, a computationally attractive binary encoding 

strategy by exploiting the geometric information for localized iris encoding is 

presented. Such geometric-based iris encoding strategy is aimed to provide an 

alternative to the global iris bits stabilization encoding which incurs relatively higher 

computational complexity. We show that the joint matching information from the 

geometric based encoding and Zernike moments phase-based encoding strategies 

can offer better or comparable recognition performance but with reduced 

computational complexity. Chapter 8 provides concluding remarks and suggestions 

for further work. 
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CHAPTER 2  

Iris Recognition under Constrained Environment 

 

 

Iris biometrics has emerged as one of well-established biometric technologies to 

provide reliable human recognition with many existing successfully deployed large-

scale applications. For example, iris biometrics has been used for border control in 

The United Arab Emirates (UAE) with the reported 2.7 billion iris cross-

comparisons daily [67], [14], the Unique ID (Aaahar) project for millions of citizens 

in India [15], access control into some security zones and etc. Almost all the existing 

commercial iris recognition systems employ NIR illumination in the 700-900 nm 

range to illuminate the iris images which can better reveal the iris textures and 

provide sufficient contrast even for darkly pigmented irises. Such NIR-based iris 

recognition systems are designed to work under constrained environment in order to 

mitigate the influence from the commonly observed noise sources such as 

illumination changes, occlusions from eyeglasses, eyelashes, hair and reflections. In 

addition, full cooperation is highly expected from the users, e.g. stop-and-stare as 

illustrated in Figure 2.1, in order to provide their eye/iris images with sufficient 

image quality which can be useful for the recognition.  

 

 

Figure 2.1: A commercial NIR-based iris recognition system deployed in UAE 

(picture from [68]). 
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Remarkable iris recognition accuracy has been reported by many existing state-of-

the-art iris recognition algorithms on those iris images acquired using NIR 

illumination under the constrained environment [43], [48], [51], [53], [54] [56]. 

Therefore, this chapter aims to provide review into some of these state-of-the-art iris 

recognition algorithms particularly in the context of iris segmentation, feature 

encoding and matching. Lastly, we discuss about the limitations and challenges of 

the existing NIR-based iris recognition systems. 

 

 

2.1 Iris Segmentation 

 

Iris segmentation is a process to localize the valid iris region from the eye image. 

The iris is assumed to resembling a circular shape (annulus) as seen from a frontally 

acquired iris image. Such assumption has since become the basis for most iris 

segmentation methods that are developed for the iris images acquired using NIR 

illumination under the constrained environment in order to localize the iris region. 

Therefore, this section serves to provide review on several representative works on 

the iris segmentation methods. 

 

 

2.1.1 Daugman’s Method 

 

Daugman’s method is a well-known technique which has been employed by most 

commercial NIR-based iris recognition systems. In his earlier paper [31], the iris and 

pupil are modeled as two circles, which can be approximated using the Integro-

differential operator as given in Equation (1.2). However, the latest findings show 

that the pupil and the iris are not necessary to resembling circular shape. In order to 

better approximate such noncircular boundaries, Daugman proposed an 

improvement over his earlier work to approximate the pupillary and limbic 

boundaries using the active contour model based on the Fourier series [43]. The 𝑀 

Fourier coefficients {𝐶𝑘}𝑘=0
𝑀−1 for 𝑁 regularly sampled angular edge points (pupil/iris) 

{𝑟𝜃}𝜃=0
𝑁−1 are given as follows: 
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Figure 2.2: Pupillary and limbic boundaries approximation using active contour 

model (picture from [43]). 

 

𝐶𝑘 = ∑ 𝑟𝜃𝑒−2𝜋𝑖𝑘𝜃/𝑁
𝑁−1

𝜃=0

. (2.1) 

 

Therefore, the approximation to the boundary edge points can be computed by 

inverse of the 𝑀 discrete Fourier coefficients, as given as follows: 

 

𝑅𝜃 =
1

𝑁
∑ 𝐶𝑘𝑒

2𝜋𝑖𝑘𝜃/𝑁

𝑀−1

𝑘=0

. (2.2) 

 

Figure 2.2 shows a sample result obtained from the approximation based on the 

active contour model on a preprocessed iris image from ICE dataset. It can be 

observed that the boundary of the non-circular pupil can now be better estimated 

based on the active contour model. In order to reduce the influence from the eyelids, 

the Equation (1.2) is again employed to localize the eyelids, which are modeled as 

two parabolic curves. A statistical inference model based on the intensity 

distribution from the localized iris region is used to compute a threshold for 

separating the eyelashes and shadow.  
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2.1.2 Kazuyuki et al. Method 

 

 

Figure 2.3: Deformable iris model (picture from [56]). 

 

Kazuyuki et. al proposed a deformable iris model to approximate the pupillary and 

limbic boundaries, as illustrated in Figure 2.3 [56]. Firstly, an iterative search 

approach is employed to find the initial pupil center (𝑐1, 𝑐2) from the binarized iris 

image. Then, the pupillary and limbic boundaries can be approximated by 

maximizing the following: 

 

|𝑆(𝑙1 + ∆𝑙1, 𝑙1 + ∆𝑙1, 𝑐1, 𝑐2, 𝜃1) − 𝑆(𝑙1, 𝑙1, 𝑐1, 𝑐2, 𝜃1)|, (2.3) 

𝑆(𝑙1, 𝑙1, 𝑐1, 𝑐2, 𝜃1) = ∑ 𝐼(𝑝1(𝑛), 𝑝2(𝑛))

𝑁−1

𝑛=0

, 
(2.4) 

 

where ∆𝑙1  and ∆𝑙2  denote the step sizes; 𝜃1 and 𝜃2  denote the angles; 𝑆  denotes the 

contour summation of the intensity values of 𝑁 sampling points from the iris image 𝐼. The 

coordinates of the contour can be obtained using:  𝑝1(𝑛) = 𝑙1 cos 𝜃1 cos (
2𝜋

𝑁
𝑛) −

𝑙2 sin𝜃1 sin (
2𝜋

𝑁
𝑛) + 𝑐1  and 𝑝2(𝑛) = 𝑙1 sin𝜃1 cos (

2𝜋

𝑁
𝑛) − 𝑙2 cos 𝜃1 sin (

2𝜋

𝑁
𝑛) + 𝑐2 , 

respectively. In their approach, the pupil is modeled using ellipse shape while the iris is 
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modeled using circle shape. In order to avoid the influence from the eyelashes, only the 

lower half of the localized iris region is employed for encoding and matching. 

 

 

2.1.3 He et al. Method 

 

 

(a) The springs are not in the equilibrium 

position as different forces are produced 

by each spring 

 

(b) The springs produce the identical 

force and all springs are restored to its 

equilibrium position 

Figure 2.4: The pulling and pushing method (pictures from [53]). 

 

The approach proposed by He et al. first performs a coarse detection of iris by using 

a trained Adaboost-cascade iris detector in order to obtain an initial estimation for 

the iris location. The localization of the pupillary and limbic boundaries is then 

performed by using pulling and pushing (PP) method [69], [53]. The PP method 

attempts to restore the forces as produced by the 𝑁  identical imaginary springs 

{𝑆𝑖}𝑖=0
𝑁−1 to its equilibrium (neutral) position, as illustrated in Figure 2.4. The force 

produced by each spring is given as follows: 

 

𝑓𝑖⃗⃗ = −𝑘(𝑅 − 𝑟𝑖)𝑒𝑖⃗⃗  , 𝑖 = 0,1, … ,𝑁 − 1, (2.5) 

 



22 

 

where 𝑘 = 1 𝑁⁄  represents the spring constant; 𝑟𝑖  denotes the length of the 

corresponding spring 𝑆𝑖; 𝑒𝑖⃗⃗   indicates the direction of the spring radiating from the 

estimated center 𝑂′. The 𝑅 denotes the equilibrium length of the springs and can be 

obtained from: 

 

𝑅 =
1

𝑁
∑ 𝑂′𝑝𝑃𝑖

𝑁−1

𝑖=0

. (2.6) 

 

where 𝑃𝑖  denotes the detected pupillary/limbic edge point. The localization of the 

eyelids is performed by measuring the shape similarity between the detected 

candidate eyelid edge points and the three generic eyelid models established 

statistically from the training samples. The model which resembles the most 

similarity is used to eliminate the noisy candidate eyelid edge points. The remaining 

candidate eyelid edge points are then used to approximate the eyelid by using the 

parabolic curve fitting technique. In order to detect the eyelash and shadow noise, a 

statistically learned prediction model is used to estimate an appropriate threshold to 

exclude those occluded pixels from the localized iris region. 

 

 

2.1.4 Kumar and Passi’s Method  

 

The segmentation algorithm [51] proposed by Kumar and Passi first performs a row-

wise scanning of the image to search for the consecutive low intensity pixels whose 

values are less than a predefined threshold. The heuristic is made here by assuming 

that the longest consecutive of such thresholded pixels must correspond to the 

diameter of the pupil. To localize the limbic boundary, a voting-based scheme is 

employed. A 20 × 20 window centered at the localized pupil center is assumed to 

be the candidates to test for the iris center. The voting begins by varying the radiuses 

(typically in the monotonic order) of the search circle from the edge map produced 

by the Canny edge detector. The circumference pixel which encounters the edge 

points contributes a vote. Therefore, the parameters of the circle, i.e. iris center and 

radius, which accumulates the maximum vote is used to approximate the limbic  
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(a) The localized pupillary boundary 

 

(b) Localization of limbic boundary from 

the candidate iris centers as indicated by 

the superimposed rectangle 

Figure 2.5: Sample segmentation result (ID: 001_01) from IITD iris database [42] 

 

boundary. Figure 2.5 shows a sample segmentation result produced by the Kumar’s 

segmentation algorithm. 

 

 

2.1.5 Other Methods 

 

The approach presented in [54] models the pupil and iris as two circles. The 

pupillary boundary is approximated using the Hough transform from the generated 

edge map. The dominant row which passes through the localized pupil center is used 

to search for the limbic boundary, also using the Hough transform. The approach 

presented in [55] models pupil and iris as two ellipses. A coarse localization is 

performed to obtain the initial contours of the pupillary and limbic boundaries. The 

coarsely localized boundaries are further refined based on the modified Mumford–

Shah functional.  The approach presented in [58] employs a circle fitting procedure 

to approximate the pupillary boundary from the binarized iris image while the limbic 

boundary is approximated using geodesic active contour model. The approach 

presented in [70] employs a graph-based technique to represent the line segments 

from the edge map as produced by applying the Canny edge detector to the iris 

image. A likelihood test which is based on the Normalized Cuts approach is 

employed to segment the circular-like contours computed from the line segments. 
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The coarsely segmented circular contours are further refined by using the Hough 

circle transform.  

 

2.2 Feature Encoding and Matching 

 

As shown in Figure 1.8, the human iris exhibits extremely rich texture patterns 

which have been widely regarded to be unique among each individual. The feature 

encoding is a process to recover the distinctive features from such complex texture 

patterns which can be employed for human recognition. The matching takes the 

similarity (dissimilarity) measurement between any two recovered features and 

outputs a similarity score which can be used for decision making. In this section, we 

provide review on several promising efforts on the feature encoding and matching 

methods.  

 

 

2.2.1 Gabor Filters 

 

 

Figure 2.6: Quantization of the phase-only information in order to produce the 

binary representation, i.e. iris code (picture from [31]). 

 

Gabor filters have been shown to exhibit desirable characteristics such as spatial-

frequency selectivity and orientation selectivity which can be used to characterize 



25 

 

the textural information of the iris, as proposed by Daugman [29], [31]. A 2D Gabor 

filter computed over an image domain (𝑥, 𝑦) is given as follows:   

 

𝐺(𝑥, 𝑦) = exp (−𝜋 [
(𝑥 − 𝑥0)

2

𝛼2
+
(𝑦 − 𝑦0)

2

𝛽2
]) . exp(−2𝜋𝑖[𝑢0(𝑥 − 𝑥0) + 𝑣0(𝑦 − 𝑦0)]) (2.7) 

 

where  (𝑥0, 𝑦0) indicates the center of the Gaussian filter; 𝛼  and 𝛽  represent the 

width and length of the filter, respectively; (𝑢0, 𝑣0) specifies the modulation with 

spatial frequency 𝑤0 = √𝑢0
2 + 𝑣0

2  and orientation 𝜃 = arctan(𝑣0 𝑢0⁄ ). In order to 

encode the iris texture, the 2D Gabor filter is applied to the normalized iris images 

(unwrapped iris images). Phase-only information from the 2D Gabor filter response 

is coarsely quantized into binary code (iris code) according to the phase-quadrant, as 

illustrated in Figure 2.6. Therefore, iris recognition can be performed by computing 

the Hamming distance between two iris codes using the Equation (1.5). 

 

 

2.2.2 Log-Gabor Filters 

 

(a) Real component 

 

(b) Imaginary component 

Figure 2.7: Visualization of the Log-Gabor filters in spatial domain with the 

parameters, 𝑓0 = 16 and 𝜎𝑓 = 0.55. 

 

Log-Gabor filters are another commonly used phase encoding method (e.g. [47], 

[51], [61]) as an alternative to the Gabor filters as it offers several advantages over 

the Gabor filters. Gabor filters have been observed to over represent the low 
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frequency components and under represent the high frequency components in any 

encoding [71]. Furthermore, a Gabor filter will have DC-component in its even-

symmetric component if the bandwidth is greater than one octave [49], [72]. In 

contrast, a Log-Gabor filter with zero DC-component can always be constructed at 

any arbitrary bandwidth. The Log-Gabor filters are expected to better encode natural 

images due to the extended tails at the high frequency end [71]. The frequency 

response of Log-Gabor in the frequency domain is defined as follows: 

 

𝐺(𝑓) = exp

(

 
− log (

𝑓
𝑓0
)
2

2 log (
𝜎
𝑓0
)
2

)

 , (2.8) 

 

where 𝑓0  denotes the central frequency and 𝜎  is the scaling factor. However, the 

denominator term 𝜎 𝑓0⁄  is usually expressed as a constant ratio value, 𝜎𝑓, in order to 

obtain constant shape ratio filters [49]. Figure 2.7 shows an example of the Log-

Gabor filter visualized in spatial domain. The matching of any two Log-Gabor 

encoded features can be done similarly as to the Section 2.2.1. Binary codes are 

constructed by quantizing the Log-Gabor filter response and the similarity can be 

measured by using the Hamming distance. 

 

 

2.2.3 Ordinal Filters 

 

Sun et. al proposed to encode iris features based on the ordinal measures, i.e., 

relative comparison, between the building blocks constructed from the normalized 

iris region pixels [52]. The ordinal iris features can be extracted by using multilobe 

differential filters (MLDF), as defined as follows:  

 

𝑀𝐿𝐷𝐹 = 𝐶𝑝∑
1

√2𝜋𝜎𝑝𝑖
exp [

−(𝑋 − 𝜇𝑝𝑖)
2

2𝜎𝑝𝑖
2 ]

𝑁𝑝

𝑖=1

− 𝐶𝑛∑
1

√2𝜋𝜎𝑛𝑗
exp [

−(𝑋 − 𝜇𝑛𝑗)
2

2𝜎𝑛𝑗
2 ]

𝑁𝑛

𝑗=1

. (2.9) 
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(a) Number of lobes = 2; orientation = 0; 

distance = 0  

 

(b) Number of lobes = 3; orientation = 0; 

distance = 0 

  

 

(c) Number of lobes = 3; orientation = 

45-degree; distance = 0 

 

(d) Number of lobes = 4; orientation = 

45-degree; distance = 0 

Figure 2.8: Examples of the multilobe differential filters. All filters are constructed 

with the basic lobe size of 21 × 21 and  𝜎 = 3.5. 

 

where 𝜇 and 𝜎 denote the center position and standard deviation the Gaussian filter, 

respectively; 𝑁𝑝  and 𝑁𝑛  indicate the numbers of positive and negative lobes, 

respectively; 𝐶𝑝 and 𝐶𝑛 are two coefficients used to ensure zero sum of the MLDF, 

i.e., 𝐶𝑝𝑁𝑝 = 𝐶𝑛𝑁𝑛. The MLDF offers a number of settings such as scale, interlobe 

distance, orientation and number of lobes to flexibly construct the filter which can 

be more adaptive to image structure. Figure 2.8 shows some examples of the MLDF 

constructed with different settings. The MLDF filter response is quantized into 

binary representation based on the sign of the filter response. Therefore, the 

matching of two ordinal features can be computed using the Equation (1.5). 
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2.2.4 Fragile Bits 

 

The existence of the fragile (inconsistent) bits in the binary iris code was 

investigated by Hollingsworth et al. [47], [48], [73]. Such inconsistent bits are 

observed to be mainly caused by the coarse quantization of the phase response, 

particularly those near the axes of the complex plane. However, other possible 

causes such as segmentation, template alignment and choice of filter may possibly 

affect the consistency of bits in the binary iris code. In their papers, iris features 

were encoded with 1D Log-Gabor filterse and the phase response was quantized in 

order to obtain the binary iris code 𝐶. The procedure for estimating the fragile bits 

can be summarized as follows: 

i. Given K iris codes 𝑪
𝑗
= {𝐶𝑖

𝑗
}
𝑖=1

𝐾
 belong to class 𝑗 . 𝐶1

𝑗
 is employed as a 

reference image. 

ii. Align the rest of the iris codes {𝐶𝑖
𝑗
}
𝑖=2

𝐾
 with respect to the reference image by 

circularly shifting the iris bits. The rotation which produced the minimum 

Hamming distance was used for alignment. 

iii. Calculate the frequency 𝑓 that a bit is flipped, i.e., a bit has a different value 

from the corresponding bit in the reference image. A threshold 𝜏 is used to 

mask the fragile bits. For example, Table 2.1 shows five iris codes (𝐾 = 5) 

and each of them consists of six bits. The last row indicates the frequency 

that a bit is flipped. Let 𝜏 = 0.3, then a bit is considered as fragile if 𝑓 ≥ 𝜏. 

In this particular example, three bits are identified as fragile bits, and 

therefore are masked in order to exclude from matching.  

 

Table 2.1: Estimation of fragile bits. 

𝑖 Iris Bits 

1 (reference) 1 0 0 1 1 0 

2 0 0 0 1 0 0 

3 0 0 1 0 0 1 

4 0 0 0 1 1 0 

5 1 0 0 1 0 1 

𝑓 = 0.6 0 0.2 0.2 0.6 0.4 

                                                           
e Other feature encoding methods which generate the binary templates can be employed as well. 
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2.2.5 Personalized Weight Map 

 

Ref. [62] provides an improvement work based on the phenomenon of fragile bits in 

the binary iris codes [48].  Instead of using a hard threshold 𝜏 to detect fragile bits, 

they proposed to weight every bit according to their stability/consistency, as can be 

derived from the fragile bit estimation approach. Therefore, the weight 𝑤 for 𝑖-th bit 

for some 𝐾 iris codes from class 𝑗 can be obtained as follows: 

 

𝑤𝑖 = 2
𝑚1
2 +𝑚0

2

(𝑚1 +𝑚0)2
− 1, (2.10) 

 

where 𝑚1 and 𝑚0 indicate numbers of times the bit 𝑖 being 1 and 0, respectively; 

and 𝑚1 +𝑚0 = 𝐾. The set of the computed weight values is referred to as weight 

map, i.e.  𝑊𝑗 = {𝑤1, … , 𝑤𝑛} . The generated weight map 𝑊  has the same 

dimensionality as the iris code which consists of 𝑛 total bits. As similarly to [48], the 

weight map is considered to be personalized as it is computed for every user 

registered into the system. The similarity score between a query iris code 

𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑞𝑢𝑒𝑟𝑦 and a gallery iris code 𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦 with its corresponding weight 

map 𝑊𝑔𝑎𝑙𝑙𝑒𝑟𝑦 can be calculated using a modified Hamming distance, as given as 

follows: 

 

𝐻𝐷𝑔𝑎𝑙𝑙𝑒𝑟𝑦 =
‖𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑞𝑢𝑒𝑟𝑦⊕ 𝐼𝑟𝑖𝑠𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦‖ ×𝑊𝑔𝑎𝑙𝑙𝑒𝑟𝑦

‖𝑊𝑔𝑎𝑙𝑙𝑒𝑟𝑦‖
 (2.11) 

 

 

2.2.6 Other Methods 

 

In ref. [56], iris features are encoded using 2D discrete Fourier transform (DFT). 

The similarity of the two DFT encoded features is measured using the phase 

correlation technique. The phase correlation produces a distinct sharp peak if the 

two features are similar, or vice versa. In ref. [54], the discrete cosine transform 

(DCT) is used to encode iris features. A binary code is generated from the zero-
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crossings of the differences between the DCT coefficients of adjacent patch vector. 

A modified Hamming distance function is used in their method to compute the 

similarity between two DCT encoded features. Krichen et al. use real-valued 

response from the Gabor filters to encode the iris features [57]. The similarity of two 

encoded iris features is computed using global and local normalized phase 

correlation method. Pillai et al. presents the first work by framing the iris 

recognition into sparse representation framework [74], [61]. A sparse dictionary is 

constructed from real-valued phase response of Log-Gabor filter generated from set 

of training images. Matching is performed by computing the approximation error 

between the query and the sparse recovery features. Ref. [75] presents another iris 

recognition approach based on the sparse representation techniques. Several key 

point based approaches (e.g. SIFT [76], DAISY [77]) are also suggested by several 

researchers for feature encoding and matching [78], [79], [80].  

 

 

2.3 Summary 

 

The survey as reported in [25] has shown the dramatically growth of the iris 

biometrics research in recent years. This chapter reviewed several promising 

approaches as reported from the iris biometric literatures, particularly, iris 

segmentation methods, feature encoding and matching methods. These approaches 

are mostly developed based on the eye images acquired from close distance using 

NIR illumination and under constrained environment. Therefore, further application 

of these approaches to the iris recognition at-a-distance and under less constrained 

environments pose several challenges (see CHAPTER 3). For example, illumination 

level of the eye images acquired under less constrained environments is expected to 

be varying and therefore it is challenging for the approaches [51], [56] to 

predetermine a hard threshold for localizing pupillary boundary. As such, 

development of effective segmentation and recognition strategies for the iris 

recognition at-a-distance and under less imaging constraints is highly desirable. 
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CHAPTER 3  

Iris Recognition under Less Constrained Environments 

 

 

Almost all existing commercial iris recognition systems are designed to operate 

under constrained environment, which expect high amount of cooperation from 

users to provide their eye images within very limited depth of view of the 

acquisition device (typically between 1-3ft.). In order to provide sufficient 

illumination, NIR in the range between 700-900 nm is commonly used to illuminate 

iris/eye region. Another advantage of using NIR illumination is to better reveal the 

iris textures and provide sufficient contrast between the iris and pupil regions. 

Recently, there have been some promising efforts to acquire iris/eye images under 

less constrained environments using visible imaging in order to overcome several 

limitations of the existing NIR-based iris recognition systems. In this chapter, we 

provide review on recent development of the iris biometrics, as well as the 

technologies to enable the iris recognition at-a-distance and under less constrained 

environments. 

 

 

3.1 Relaxed Imaging Setup 

 

Recent trend in the development of the biometric technologies has been driven more 

toward forensic and surveillance applications, especially after the tragedy of 

September 11 [6]. Such increasingly demand in the high security biometrics-based 

solutions are aimed to provide covert and negative identification, for example, 

identify suspect from a crowd. Therefore, relaxation of the rigid imaging constraints 

as imposed by the conventional NIR-based iris systems is necessary in order to 

allow iris images to be acquired at-a-distance and under less constrained 

environments. In order to overcome such limitations, Proença et al. proposed to use 

visible imaging for eye image acquisition and they had successfully imaged the eye 

images from up to eight meters away and under less constrained environments [39],  
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Figure 3.1: Less constrained imaging setup in a laboratory environment (picture 

from [40]). 

 

[40]. Figure 3.1 shows the imaging setup in a laboratory environment used by 

Proença et al. for image acquisition. They had used a camera with CMOS sensor, i.e. 

Canon EOS 5D, with 12.8 million effective pixels to acquire eye images [40]. 

 

 

Figure 3.2: Electromagnetic spectrum (picture from [81]). 

 

 Visible imaging is referred to the use of imaging devices (e.g. filter, image 

sensor) which is sensitive to capture the electromagnetic radiation in the wavelength  
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Table 3.1: Comparison between NIR and visible illumination based iris recognition 

[65]. 

 NIR Illumination Visible Illumination 

User cooperation High Low 

Image quality Good Degraded by noise 

Application Forensics, surveillance Banking, national identity, 

physical and logical access 

Imaging costf High Low 

Medical concern High Low 

Recognition accuracy High Low 

Key challenges Technology is considered 

matured, nationwide large-

scale applications are 

available 

Robust iris segmentation, 

feature encoding 

 

range between 400nm and 750nm (visible spectrum), as depicted in Figure 3.2. As 

mentioned earlier, the NIR illumination must be used in precaution in order to avoid 

the possible risk which can cause permanent eye damage. This is due to the fact that 

the human eye is not sensitive to the NIR illumination, and therefore does not 

instinctively respond with natural precautionary mechanisms such as blinking, 

aversion, and pupil contraction. In contrast, the visible spectrum does not have such 

limitation/constraint as the electromagnetic radiation within this range of spectrum 

can be perceived by the human eye, which can offer a more relaxed imaging 

environment to acquire images at-a-distance. Table 3.1 attempts to comparatively 

summarize the iris recognition at-a-distance using NIR and visible imaging. The 

advancement of the imaging technology has enabled the images to be conveniently 

acquired at-a-distance and under less constrained environments. Therefore, 

development of robust and efficient iris recognition approaches which can work 

under such relaxed imaging constraints can be highly essential. 

 

 

3.1.1 Limitations and Challenges 

 

Despite the flexibility offered by the visible imaging setups, the quality of the 

images acquired under such less constrained environments are usually degraded as 

                                                           
f The imaging cost we refer not only the camera itself but the acquisition setup in whole, for example, 

NIR illumination panels and band-pass filter [34], [35]. 
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compared to those acquired under constrained environment using NIR imaging. The 

influences from the commonly observed noise sources such as illumination changes, 

occlusions from eyeglasses, eyelashes, hair and reflection is found to be severer in 

the eye images acquired using visible imaging, which pose the challenges to perform 

reliable and accurate iris recognition. Figure 3.3 shows several challenging eye  

 

 

(a) C119_S1_I15 

 

(b) C518_S1_I7 

 

(c) C2_S1_I15 

 

(d) C13_S1_I15 

 

(e) C92_S2_I12 

 

(f) C511_S1_I3 

Figure 3.3: Sample eye images from UBIRIS.v2 database [40].  
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Figure 3.4: Segmentation results using gradient-based approach on eye images from 

UBIRIS.v2 database. 

 

images which were acquired using visible imaging under less constrained 

environments. It can be observed from these images that the image quality is 

severely degraded due to the influences from noise. In addition, there is no clear 

contrast between iris and pupil regions for those darkly pigmented irises, which 

poses challenges for conventional gradient based approaches (see Section 2.1) to 

perform the iris segmentation, as depicted in Figure 3.4. Due to significant 

variations in segmented iris image quality, the existing feature encoding techniques 

may not be adequate to accurately characterize the iris features for those noisy iris 

images. Figure 3.5 shows two sets of the normalized iris images for two different 

users, each of the sets was acquired under different imaging setup. As can be 

observed, the normalized iris images in Figure 3.5(b) suffer more from the image 

quality and spatial variations. Therefore, robust feature encoding techniques which 

can be more tolerant to such variations, e.g. scale change, illumination change, 

defocus and translation, are of highly desired. 
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(a) Normalized iris images of same user 

acquired under constrained environment 

(Subject ID: 001, from CASIA.v3-Lamp 

database) 

 

 

 

(b) Normalized iris images of same user 

acquired under less constrained 

environments (Subject ID: C079, from 

UBIRIS.v2 database) 

Figure 3.5: Examples of normalized iris images acquired under constrained and less 

constrained environments. 

 

 

3.2 Iris Segmentation 

 

Distantly acquired eye image using visible imaging and under less constrained 

imaging environments requires development of robust segmentation algorithms in 

order to automatically extract the iris region. This section provides review on recent 

promising iris segmentation approaches developed for the eye images acquired at-a-

distance and under less constrained environments, using either visible or NIR 

imaging. 

 

 

3.2.1 Tan et al. Method  

 

The iris segmentation proposed by Tan et al. placed on the first rank in the NICE.I 

(Noisy Iris Challenge Evaluation - Part I) competition [59], [82]. The NICE.I 

competition was initiated by SOCIA Lab in University of Beira Interior, Portugal 

with the objective to promote further research on the development of robust iris 

segmentation algorithms for those noisy iris imagesg. In their proposed algorithm,  

                                                           
g We use noisy iris images to refer to the iris/eye images acquired using visible imaging at-a-distance 

and under less constrained environments. 
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Figure 3.6: Integro-differential based constellation model (picture from [59]). 

 

image pixels in a given eye image are first clustered based on the point-to-region 

distance and eight-neighbor connection. Iris region is selected from the clustered 

regions based on some heuristic rules. In order to localize pupillary and limbic 

boundaries, an integro-differential based constellation model is proposed, as 

depicted in Figure 3.6. The integro-differential operator is used to iteratively search 

for the local maximum from the sampling points as defined in the constellation 

model. In order to speed up the search, a “stop-at-once” strategy is used. In other 

words, if any of the sampling points returned an integro-differential score which is 

larger than the existing largest score (center point in the constellation model), the 

current iteration is stopped and a new search is started with the constellation model 

centered at the point which obtained the local maximum from the previous iteration. 

The eyelid localization, eyelash and shadow detection are performed based on the 

approaches as presented in [53]. 

 

 

3.2.2 Proença’s Method 

 

Proença proposed a neural-network (NN) based pixel-level classification approach 

to perform iris segmentation for the iris images acquired using either visible or NIR  
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(a) Classified sclera pixels 

 

(b) Proportion of sclera features in east 

direction 

 

(c) Proportion of sclera 

features in west direction 

 

(d) Proportion of sclera 

features in north direction 

 

(e) Proportion of sclera 

features in south direction 

Figure 3.7: Proportion of sclera features computed from classified sclera pixels. 

 

illumination [60]. His proposed approach can be generally divided into three stages: 

(i) sclera classification stage, (ii) iris classification stage and (iii) boundary 

refinement stage. The sclera classification stage is aimed to perform binary 

classification of image pixels into either sclera or non-sclera category. To perform 

the classification, a 20-dimensional feature set as defined in Equation (3.1) is 

computed for every image pixel.  

 

{𝑥, 𝑦, ℎ𝑢𝑒0,3,7
𝜇,𝜎 (𝑥, 𝑦), 𝑐𝑏0,3,7

𝜇,𝜎 (𝑥, 𝑦), 𝑐𝑟0,3,7
𝜇,𝜎 (𝑥, 𝑦)}, (3.1) 

 

where (𝑥, 𝑦) denotes the pixel coordinate; ℎ𝑢𝑒(), 𝑐𝑏() and 𝑐𝑟() respectively denote 

the square regions of the hue, blue-chroma and red-chroma color components  

centered at (𝑥, 𝑦) with the radiuses specified as subscript, while the superscripts  

indicate the mean 𝜇 and standard deviation 𝜎 operations computed over the defined 

square regions. In the iris classification stage, an 18-dimensional feature set as 

defined in Equation (3.2) is computed for every pixel for binary classification. 
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{𝑥, 𝑦, 𝑠𝑎𝑡0,3,7
𝜇,𝜎 (𝑥, 𝑦), 𝑐𝑏0,3,7

𝜇,𝜎 (𝑥, 𝑦), 𝑝←,→,↑,↓(𝑥, 𝑦)}, (3.2) 

 

where 𝑠𝑎𝑡()  denote the square region of the saturation color component; 

𝑝←,→,↑,↓(𝑥, 𝑦) denotes the proportion of sclera features at the directions west (←), 

east (→), north (↑) and south (↓) at location (𝑥, 𝑦), as shown in Figure 3.7. In order 

to provide adaptation for iris images acquired using NIR illumination, Proença 

employs the pixel intensity 𝐼 with the modified feature sets {𝑥, 𝑦, 𝐼0,3,5,7,9
𝜇,𝜎 (𝑥, 𝑦)} and 

{𝑥, 𝑦, 𝐼0,3,5,7,9
𝜇,𝜎 (𝑥, 𝑦), 𝑝←,→,↑,↓(𝑥, 𝑦)}  to perform sclera and iris classification, 

respectively. The boundary of the segmented iris region is further refined by using 

the polynomial regression technique.  

 

 

3.2.3 Tan and Kumar’s Method 

 

Tan and Kumar developed a pixel-level classification approach similarly as to [60]. 

A six-dimensional feature set  as defined in Equation (3.3) is used to perform 

classification of image pixels into either iris or non-iris category [65]. 

 

{𝑥1, 𝑥2, 𝐼(𝑥1, 𝑥2), 𝑍𝑚𝑛
𝑙 (𝐼, 𝑥1, 𝑥2)}, (3.3) 

 

where (𝑥1, 𝑥2) denotes the pixel coordinate; 𝐼 is the image enhanced by using the 

retinex algorithm; 𝑍𝑚𝑛  denotes the Zernike moments of order 𝑚 and repetition 𝑛, 

computed over the square region with radiuses as indicated by 𝑙 = {2,5,7}. They had 

provided the performance comparison between NN and SVM (support vector 

machine), which are two of the popular supervised machine learning models, to 

perform iris pixel classification. A set of post-processing operations such as 

boundary refinement, eyelid localization, reflection removal, eyelashes and shadow 

removal are also developed to further mitigate the possible classification errors from 

the classifier. Their proposed approach has shown to be effective to provide a 

unified segmentation framework to perform iris segmentation on iris images 

acquired using either visible or NIR illumination. 
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3.2.4 Other Methods 

 

Approach [83] employed the well-known integro-differential operator for limbic and 

pupillary boundaries localization. The lower eyelid is modeled as circular arc and is 

localized using the similar segmentation operator with the additional supplementary 

intensity information. The upper eyelid and eyelashes are estimated based on a 

goodness of fit measure computed from the color (RGB) information. Almeida 

exploited information from different color spaces to perform the iris segmentation 

[84]. A number of seed points which serve as candidate pupil centers are placed in a 

gray level image with enhanced contrast. A greedy search based on gradient-based 

circular model is performed around the square region centered at each seed point to 

localize the pupillary boundary. Similarly, the limbic boundary is localized by 

performing the greedy search of circle in red channel image from a set of seed points. 

The localization of eyelids is performed based on a circular arc model in an image 

constructed from green and blue channels. Approach presented in [85] used an 

AdaBoost eye detector to search for the presence of the eye. A k-means clustering is 

applied to the gray level image of the detected eye region in order to coarsely cluster 

the image pixels into iris, sclera, skin, pupil and eyelashes categories. In order to 

localize the limbic boundary, a modified Hough transform is performed on the edge 

map computed from the k-means clustered image. While an integro-differential 

operator is used to localize the pupillary boundary and the upper eyelid. For lower 

eyelid localization, RANSAC (random sample consensus) algorithm is employed to 

estimate a set of candidate edge points for parabolic curve fitting. Jeong et al. 

employed two circular edge detectors to simultaneously localize the pupillary and 

limbic boundaries [86]. A parabolic Hough transform is employed to localize the 

eyelids from the candidate edge points computed from a set of masks. A set of 

convolution kernels and statistically established information of intensity distribution 

(e.g. mean, standard deviation) are used to detect the eyelashes. In approach [87], a 

modified circular Hough transform is used to localize both the pupillary and limbic 

boundaries from the estimated iris region. While a linear Hough transform is 

employed to localize the upper and lower eyelids. In approach [88], the pupillary 

and limbic boundaries are approximated using a technique similarly as to [43]. A 
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thresholding method is applied to a Gabor filtered image to detect the separable 

eyelashes, while variance information is used to detect non-separable eyelashes and 

reflection. A Grow-cut based iris segmentation approach is presented in [89]. 

Detection of eyelids, eyelashes and reflection is achieved using the approaches as 

described in [65]. 

 

 

3.3 Feature Encoding and Matching 

 

Table 3.2: Top three ranking from the NICE.II competition [90]. 

Ranking Username / Ref. Affiliation Country 
Decidability 

Index (d') 

1 CASIA [64] Chinese Academy of Sciences China 2.5748 

2 Betaeye [91] Northeastern University China 1.8213 

3 UBI [92] University of Beira Interior Portugal 1.7786 

 

Feature encoding for the iris images acquired distantly using visible illumination and 

under less constrained environments can be very challenging mostly due to the 

degradation in image quality and the image variations such as scale change, 

illumination change, defocus and translation. Currently, there are very limited 

efforts in the literature that attempt to address such limitations of feature encoding 

and matching algorithms on visible illumination images, with notable exceptions 

like those reported in the NICE.II (Noisy Iris Challenge Evaluation - Part II) 

competition [90], [93], [94]. The primary objective of the NICE.II competition is to 

provide evaluation on the robustness of iris encoding and matching methods for 

noisy images acquired under less constrained imaging conditions. Table 3.2 

summarizes the top three iris encoding and matching algorithms from such 

competition. 
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3.3.1 Tan et al. Method 

 

Tan et al. consider multiple features computed from the normalized iris and 

periocularh regions [64]. Boosting algorithm is used to select the most discriminative 

ordinal filters to encode the iris texture information [52], [95]. In addition, color 

distribution computed from multiple color spaces such as RGB, HSI and lαβ are 

employed to encode the iris color information. A set of the representative textons 

(texton dictionary) is constructed based on the k-means clustered dense SIFT 

(DSIFT) features [76] computed from the red, green and blue channels of the 

normalized training periocular regions. The constructed texton dictionary is used to 

classify the DSIFT features computed from the normalized periocular region of a 

query image. Such multiple features computed from the iris and periocular regions 

are combined using score level fusion technique to generate a single matching score 

which can be useful for decision making. 

 

 

3.3.2 Wang et al. Method 

 

Wang et al. use the 2D Gabor filters with multiple orientations to encode iris 

features from global and local regions of a normalized iris image [91]. Two distinct 

AdaBoost classifiers which can be more adaptive to two different segmentation 

scenarios: (i) pupillary boundary can be successfully localized and (ii) pupillary 

boundary cannot be segmented, are trained respectively in order to select the most 

discriminative Gabor features. 

 

 

3.3.3 Santos and Hoyle’s Method 

 

In [92], a multiple features strategy by combining information from both iris and 

periocular regions are also exploited. Iris textures are encoded with 1D Gaussian  

                                                           
h Periocular or ocular is referred to the region around the eye (see CHAPTER 6). 
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wavelet, 2D dyadic wavelet, and 2D Gabor filters. For the first two encoding 

methods, the zero-crossings of the wavelet transforms are computed to obtain the 

iris codes. The iris codes of the 2D Gabor response can be obtained by comparing 

the sign of the filter output (see Section 2.2.1). To extract the periocular features, the 

approaches as detailed in [96] are employed. The LBP (local binary patterns), SIFT, 

and HoG (histogram of gradient) features are computed over the periocular region. 

 

 

3.3.4 Other Methods 

 

Shin et al. exploit both color and texture information for iris feature representations. 

The matching scores computed from the extracted features are combined based on 

weighted sum rule at score level [97]. Li et al. proposed a weighted co-occurrence 

phase histogram (WCPH) to characterize the local iris texture patterns. 

Bhattacharyya distance is employed to measure the similarity score between two 

WCPH features [98]. Marsico et al. exploit the LBP and discriminable texton 

representations for analyzing the local iris textures extracted from vertical and 

horizontal bands of the normalized iris image [99]. In [100], a sequential forward 

selection strategy is used to rank a set of 2D Gabor filters, and the most 

discriminative filters are employed to encode the iris features. Szewczyk et al. 

perform analysis on several wavelet transform approaches and conclude that the use 

of the reverse biorthogonal dyadic wavelet transform can achieve better recognition 

accuracy [101]. 

 

 

3.4 Summary 

 

In this chapter, we provide review on recent iris segmentation, feature encoding and 

matching algorithms which are developed for distantly acquired eye images using 

visible imaging and under less constrained environments. Iris recognition using such 

noisy eye images is very challenging as the images are usually suffered from the 

degradation in the image quality and the image variations. Currently, there are very 
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limited efforts in the literature which are dedicated for the eye images acquired at-a-

distance and under less constrained environments using visible imaging, with the 

exceptions from those reported in NICE. I and NICE. II competitions. Therefore, 

extensive efforts in the development of iris recognition approaches which can 

perform more robustly and accurately on those noisy eye images are still required in 

order to make any inroad to the practical applications such as forensics and remote 

surveillance applications. 
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CHAPTER 4  

Proposed Segmentation Approach for Iris Images Acquired 

under Less Constrained Environments 

 

 

In this chapter, we present an effective iris segmentation solution to automatically 

extract the iris regions from the eye images which are acquired at-a-distance and 

under less imaging constrained environments using either NIR or visible 

illumination. The developed iris segmentation approach exploits random walker 

algorithm to efficiently estimate coarsely segmented iris images. These coarsely 

segmented iris images are post-processed using a sequence of operations which can 

effectively improve the segmentation accuracy. The robustness of the proposed iris 

segmentation approach is ascertained by providing comparison with several 

competing iris segmentation algorithms from the literature using three publicly 

available UBIRIS.v2, FRGC and CASIA.v4-distance databases. Our experimental 

results achieve improvement of 9.5%, 4.3% and 25.7% in the average segmentation 

accuracy, respectively for the UBIRIS.v2, FRGC and CASIA.v4-distance databases, 

as compared to the most competing approaches. 

 

 

4.1 Methodology 

 

Figure 4.1 shows the block diagram of the proposed iris segmentation approach 

which can be effective to segment iris images acquired at-a-distance and under less 

constrained environments, using either visible or NIR imaging. The face and eye 

detection module is aimed to provide detection for face or eye-pair region if face 

image is presented. As such, we employ an open source implementation of the  
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Figure 4.1: Block diagram of the proposed iris segmentation approach. 

 

AdaBoost face and eye-pair detectorsi to automatically detect the presence of face 

and eye-pair region [102], [103]. 

 

 

4.1.1 Preprocessing 

 

Illumination variation is a common problem for imaging in real environment mainly 

due to the uncontrolled light source. Illumination variation not only poses difficulty 

in iris segmentation but also affects the recognition performance. Therefore, we 

adopt retinex algorithm as detailed in [104], [105], [106] to address such problem. 

The algorithm provides high dynamic range compression which has been shown to 

be effective in improving the overall image quality, especially for those iris images 

acquired under real imaging conditions. After that, Gaussian filter with standard 

deviation 𝜎 = 1.5 is applied to the image in order to suppress high frequency 

contents in the acquired images and help in segmentation. Also, the reflection 

removal technique reported in [65] is adopted in order to mitigate the influence from 

the source reflection in the subsequence iris segmentation operations 

                                                           
i Note that the objective of this thesis is not to further improve the performance of face and eye 

detection but intentionally to present a completely automated iris recognition framework for distantly 

acquired images which can operate under real/varying imaging conditions 
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4.1.2 Coarse Iris Segmentation 

 

 

Figure 4.2: Flow chart of coarse segmentation using random walker based algorithm. 

 

The objective of the coarse iris segmentation is to provide a simplistic model to 

“classify” each image pixel into either iris or non-iris category. Such model is 

intended to provide the classification performance as close to the reported 

classification method in [65], but with significantly reduced computational cost and 

complexity. Although it is expected that such simplistic model may not produce 

classification result as good as to the statistically trained model [65], such limitation 

is addressed with the post-processing operations (see Section 2.3-2.7) which provide 

robust solution to further refine the coarsely segmented iris images. 

In this work, random walker (RW) algorithm [107] is exploited to provide 

solution for obtaining the coarsely segmented binary iris mask 𝐵𝑐 . The RW 

algorithm is a general interactive segmentation algorithm and the general procedure 

is illustrated in Figure 3. In RW algorithm, images are modeled based on the graph 

theory [108], such that image pixels corresponding to the vertices 𝑣 ∈ 𝕍  of an 

undirected graph  𝔾 = (𝕍, 𝔼) . An edge 𝑒𝑚𝑛 ∈ 𝔼 ⊂ 𝕍 × 𝕍  is attributed by two 

vertices 𝑣𝑚 and 𝑣𝑛. Each edge is associated with a weight (cost), 𝜔𝑚𝑛(𝜔𝑛𝑚 = 𝜔𝑚𝑛), 

and is calculated by exploiting the gradient information, i.e.: 

 

𝜔𝑚𝑛 = exp(−𝜌𝒢𝑚𝑛
2), (4.1) 

 

where 𝒢𝑚𝑛
2
 is the normalized square difference between the intensities at nodes 𝑚 

and 𝑛,which can be calculated as follows: 
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𝒢𝑚𝑛
2 =

(𝑔𝑚 − 𝑔𝑛)
2

max{𝑜, 𝑝 ∈ 𝕍: 𝑒𝑚𝑛 ∈ 𝔼} (𝑔𝑜 − 𝑔𝑝)
2. (4.2) 

 

The parameter 𝜌 is the only free parameter which will affect the weighting function 

in Equation (4.1). 

The RW-based iris segmentation requires initialization of seed points which 

forms a subset of the labeled nodes  𝕍𝑙 , and the remaining unlabeled nodes are 

denoted as  𝕍𝑢, such that  𝕍𝑙 ∪ 𝕍𝑢 = 𝕍. The 𝕍𝑙 contains the nodes labeled as either 

foreground (+1) or background (-1), which constitute two initial models to estimate 

labels for  𝕍𝑢 . In order to provide automated initialization of seed points, the 

following rules are employed: 

 

𝑣𝑙𝑘 = {

+1 if 𝑔𝑘 < 𝑚𝑜𝑑(𝐼) − 𝜑𝑓𝜎(𝐼)

−1 if 𝑔𝑘 > 𝑚𝑜𝑑(𝐼) − 𝜑𝑏𝜎(𝐼)

0 Otherwise (𝑣𝑙𝑘 ∈ 𝕍𝑢),

 (4.3) 

 

where 𝑚𝑜𝑑(𝐼)  and 𝜎(𝐼)  are the mode and standard deviation of input image  𝐼 

(preprocessed). The weights were empirically computed during the training phase 

and were set as 𝜑𝑓 = {1.6,1.6,1.6} and 𝜑𝑏 = {0.7,0.7,1.25} , respectively for the 

UBIRIS.v2, FRGC and CASIA.v4-distance databases. Then the relationship 

between the labeled and unlabeled nodes can be expressed using Dirichlet integral, 

as follows: 

 

𝐼𝐷(�̃�𝑢) =
1

2
[�̃�𝑙
𝑇 �̃�𝑢

𝑇] [
𝐿𝑙 𝐵

𝐵𝑇 𝐿𝑢
] [
�̃�𝑙
�̃�𝑢
] =

1

2
(�̃�𝑙
𝑇𝐿𝑙�̃�𝑙 + 2�̃�𝑢

𝑇𝐵𝑇�̃�𝑙 + �̃�𝑢
𝑇𝐿𝑢�̃�𝑢), (4.4) 

 

where �̃�𝑙  and �̃�𝑢  denote the responses of the labeled and unlabeled nodes, 

respectively. 𝐿 denotes the combinatorial Laplacian matrix defined as: 

 

𝐿𝑚𝑛 = {
∑ 𝜔𝑚𝑛

𝑛
if 𝑚 = 𝑛

−𝜔𝑚𝑛 if𝑣𝑚 and 𝑣𝑛 are adjacent nodes 
0 otherwise.

 (4.5) 
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𝐿𝑢�̃�𝑢 = −𝐵
𝑇�̃�𝑙 . (4.6) 

 

Nodes 𝕍𝑢 are assigned with labels by solving the minimizer �̃�𝑢 as in Equation (4.6) 

iteratively. 

 

 

4.1.3 Initial Iris Center Estimation 

 

The iris image and the corresponding binary iris mask 𝐵𝑐 obtained from the coarse 

iris segmentation stage are exploited to provide information in estimating the initial 

iris center. In [65], the initial iris center was obtained by measuring the center of 

mass of the classified iris mask, under the assumption that the classified iris mask is 

proximate to the actual iris region. However, the 𝐵𝑐  obtained from the coarse 

segmentation stage may not always produce the iris mask which is proximate to the 

actual iris region. By directly measuring the center of masses from those 𝐵𝑐 can 

cause serious deviation of the initial iris center from the actual one, as illustrated in 

Figure 4.3(a)-(c). More importantly, such measurement error will be propagated to 

the subsequence operations and affect the overall iris segmentation performance. 

Therefore, it is essential to refine the 𝐵𝑐 in order to mitigate the influence from the 

noisy artifact, or in particular, the eyelashes. As such, the mean of the heights 𝜇ℎ 

from the masked region of 𝐵𝑐 is employed to compute an adaptive threshold 𝜏ℎ =

0.85 × 𝜇ℎ , which will be utilized to eliminate the column ℎ𝑔 <  𝜏ℎ ,  where ℎ 

indicates the height of the column 𝑔 = 1, … ,𝑁. The motivation to threshold the ℎ𝑔 

is that the heights of the eyelashes regions beyond the iris region are observed to be 

shorter than the average height of the iris region, as shown from the third and the  
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(a) (b) (c) (d) (e) 

Figure 4.3: Initial center estimation. (a) Input enhanced image (color images are 

presented to provide better visualization), (b) Coarse segmented iris mask, (c) The 

estimated initial center (yellow mark) using (b), (d) Refined 𝑅𝑖 , (e) The initial 

estimated iris center. 

 

fourth sample images in Figure 4.3(d). The center of mass 𝐶 = (𝑥𝑐, 𝑦𝑐)  is then 

obtained from the refined binary mask �̃�𝑐, as shown in Figure 4.3 (e). 

The 𝐶 is obtained exclusively from the �̃�𝑐, which does not exploit any of the 

underlying image feature such as the intensity/color information. Therefore, such 

additional intensity information will be exploited to further improve the accuracy of 

the initial estimation of the iris center. Similar as in [65], the red channel plane 𝐼𝑟 of 

the input color image I is employed throughout the experiment. A 2D median filter 

with respective size of {7×7, 3×3, 9×9} for UBIRIS.v2, FRGC and CASIA.v4-

distance is applied to 𝐼𝑟 in order to smoothen the intensity variations across image 

pixels. After that, the smoothened 𝐼𝑟 is subject to gamma correction, which takes the 

following mathematical form 

 

𝐼𝛾(𝑥, 𝑦) = 255 × (
𝐼𝑟(𝑥, 𝑦)

255
)

𝛾

, (4.7) 

 

where 𝐼𝛾 is the gamma corrected of image 𝐼𝑟 and (𝑥, 𝑦) indicates the image coordinate. The 

𝛾 is the parameter for gamma correction (𝛾 = {0.8, 0.8, 1.0} is empirically determined for  
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(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.4: Initial center estimation using localized intensity information. (a) 

Extracted red channel plane, (b) Gamma corrected of image (a), with 𝛾 = 0.8, (c) 

The corresponding refined mask �̃�𝑐  superimposed with a rectangle indicates the 

bounding region, (d) The region with the minimum average intensity, (e) Binary 

mask 𝐵𝑟 and its center of mass. The estimated distance between 𝐶 and �̃�, 𝑑(𝐶, �̃�) = 

20.8945. 

 

three respective databases, i.e., UBIRIS.v2, FRGC and CASIA.v4-distance 

databases employed in the experiments). Given the refined mask �̃�𝑐  and let’s 

denotes 𝒑𝒊 = (𝑥𝑖, 𝑦𝑖) as the coarsely segmented iris pixels in �̃�𝑐, average intensity of 

a rectangular region of size 𝐻 × 𝐻 centered at 𝒑𝒊 is then computed, where 𝐻 =

0.55 × ℎ𝐵 and ℎ𝐵 denotes one half of the height of the bounding region of �̃�𝑐. The 

region 𝑅𝑖 which produces the minimum average intensity will be employed for 

further processing and other regions are ignored. It is to be noted that such 

refinement step narrows down the search region for estimating the initial center. The 

average intensity at each 𝑅𝑖  can be computed using the intermediate image 

representation, i.e. integral image (see [103]), which allows the fast computation of 

the regional mean with just single image scan. Figure 4.4 illustrates the described 

refinement process and it can be observed from Figure 4.4(d) that the search region 

for estimating initial center has been reduced. By applying a weighted thresholding 

method 𝜏𝜔 = 𝜔 × 𝜏𝑂𝑡𝑠𝑢 to the localized region, a binary mask 𝐵𝑟 is then generated.  
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Table 4.1: Estimated Euclidean distance between iris and pupil centers. 

 Min. Max. Mean 

Distance between iris and pupil centers 1 11.1803 5.1202 

 

The 𝜏𝑂𝑡𝑠𝑢 denotes the threshold obtained by using Otsu’s thresholding method; the 

𝜔  denotes the weight and is set to 0.65 for all the employed databases in the 

experiments. The center of mass �̃� = (𝑥𝑐̃, 𝑦𝑐̃) of  𝐵𝑟 is then computed, as illustrated 

in Figure 4.4(e). 

Both of the acquired centers 𝐶 and �̃� provide the information to estimate the 

initial center and it is expected that 𝐶 and �̃� should be close to each other. As such, 

the Euclidean distance between 𝐶  and �̃�  is measured, i.e. 𝑑(𝐶, �̃�) =

√(𝑥𝑐 − 𝑥𝑐̃)2 + (𝑦𝑐 − 𝑦𝑐̃)2 . The distance metric is employed in helping to make 

decision how should the acquired centers 𝐶 and �̃� to be utilized, with the following 

rule applied: 

 

Rule 1: 

If 𝑑(𝐶, �̃�) > Threshold 

Both 𝐶 and �̃� are employed in the next operation. 

Else 

Only 𝐶 is employed in the next operation. 

End 

 

The distance threshold is set to 15 for all the employed databases based on the 

estimated distance from the training images, as summarized in Table 4.1. Note that 

all the presented parameters are empirically estimated from the training images (see 

Table 4.2), which is completely independent from the testing dataset. 

 

 

4.1.4 Iris and Pupil Localization 

 

The coarse segmented iris mask from the previous stage does not provide detailed 

information about limbic and pupillary boundaries, i.e., the radius of pupil and iris. 
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By exploiting the information such as the coarse segmented iris mask 𝐵𝑐 and the 

estimated center 𝐶 from the previous stages, the limbic and pupillary boundaries will 

be approximated using circular model. Here, the approximation to the limbic 

boundary is used as an example to describe the developed approach. The pupillary 

boundary can be approximated in the similar manner j . The detailed steps of 

localizing the limbic boundary are as follows: 

 

i. Firstly, an edge map 𝐸𝑚 is obtained by applying Canny edge detector to the 

smoothed image 𝐼𝛾. The iris radius is obtained by searching the maximum 

response A, as given as follows:  

 

 𝐴 = arg max
(𝑥,𝑦,𝑟)

∑ 𝐸𝑚
𝑛=0,…,𝑁−1

(𝑝𝑛(𝑥, 𝑦, 𝑟), 𝑞𝑛(𝑥, 𝑦, 𝑟)) ,  

 

(4.8) 

𝑥𝑐 − ∆𝑜 ≤ 𝑥 ≤ 𝑥𝑐 + ∆𝑜,   
𝑦𝑐 − ∆𝑜 ≤ 𝑦 ≤ 𝑦𝑐 + ∆𝑜,   

𝜑1min (ℎ𝐵, 𝑤𝐵) ≤ 𝑟 ≤ 𝜑2max (ℎ𝐵, 𝑤𝐵): 𝜑1 < 𝜑2, 
 

 

where 𝑥 and 𝑦 denote the coordinates within a bounding region calculated 

from the estimated center 𝐶  and a predefined offset ∆𝑜 = ±15 . The 𝑟 

denotes the search radius which is calculated using the weighted half-height 

ℎ𝐵 and half-width 𝑤𝐵 of the bounding region of �̃�𝑐. The weights 𝜑1 and 𝜑2 

are set to 0.7 (0.3) and 1.3 (0.8) for UBIRIS.v2 and FRGC (CASIA.v4-

distancek) databases. The quantized N contour points (𝒑, 𝒒) can be obtained 

using 𝑝𝑛(𝑥, 𝑦, 𝑟) = 𝑟 cos
2𝜋
𝑁
𝑛+ 𝑥 and 𝑞𝑛(𝑥, 𝑦, 𝑟) = 𝑟 sin

2𝜋
𝑁
𝑛+ 𝑦 respectively. 

ii. In case of two estimated centers are obtained from Section 4.1.3, the step (i) 

is repeated for �̃� , which yields �̃�. Here, a simple heuristic is employed to 

check for the segmentation quality 𝑄𝑠 for both 𝐴 and �̃�, as defined as follows: 

 

𝑄𝑠 =
𝐴

𝑁
 

 
(4.9) 

                                                           
j For NIR illumination based iris images, the order of localization is different. The pupillary boundary 

is localized first then only followed by the limbic boundary. 
k The weights are for localizing pupillary boundary as the order of localization is different for the 

NIR images. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5: Limbic and pupillary boundaries localization. (a) Input smoothed image 

𝐼𝑟, (b) Edgemap of (a), (c) Localized limbic and pupillary boundaries. 

 

where 𝑁 is the number of sampling points which acts as a normalization 

factor so that the 𝑄𝑠 ∈ [0,1]. The response which produces the highest score 

will be employed and the other one is discarded. 

 

The parameters which describe the limbic boundary (𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝑟𝑖𝑟) should be obtained 

and are employed to approximate the pupillary boundary (𝑥𝑝𝑢, 𝑦𝑝𝑢, 𝑟𝑝𝑢) . The 

(𝑥𝑖𝑟 , 𝑦𝑖𝑟) serves as the initial center and the predefined offset ∆𝑜 = ±10. The search 

radius is calculated using 𝑟𝑖𝑟  with the weights 𝜑1  and 𝜑2  set to 0.2 and 0.6 for 

UBIRIS.v2 and FRGC databases. For localizing the limbic boundary of NIR 

illumination based iris images, we adopted different strategy for calculating the 

search radius, i.e. min (𝜑1𝑟𝑖𝑟 , 𝜑1max (ℎ𝐵, 𝑤𝐵) 2⁄ ) ≤ 𝑟 ≤ 𝜑1max (ℎ𝐵, 𝑤𝐵) , with 

𝜑1 = 1.3. Figure 4.5 illustrates the described procedures for limbic and pupillary 

boundaries localization for both visible (first row) and NIR (second row) 

illumination based iris images. 

 

 

4.1.5 Boundary Refinement 

 

Iris segmentation for the iris images acquired under less constrained environments is 

highly challenging. The simple circular model as employed in Section 4.1.4 to 
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approximate the limbic boundary is not sufficient to accommodate the inherent 

image variations for the images acquired under such challenging environments. 

Therefore, boundary refinement approach as developed in this section aims to 

address for such limitation to further refine the localized limbic boundary as 

obtained from Section 4.1.4. Statistical intensity information is exploited from two 

defined regions 𝑅1 and 𝑅2 in order to compute the adaptive threshold to remove 

non-iris pixels near to the limbic boundary. Such two regions can be obtained with 

respect to the localized iris (𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝑟𝑖𝑟) and localized pupil (𝑥𝑝𝑢, 𝑦𝑝𝑢, 𝑟𝑝𝑢) 

information. The region 𝑅1  is defined as𝑅1 = {(𝑥, 𝑦): 𝑥 = 𝑟 cos 𝜃 + 𝑥𝑝𝑢, 𝑦 =

𝑟 sin 𝜃 + 𝑦𝑝𝑢 , 𝑟𝑝𝑢 < 𝑟 ≤ 𝑟𝑝𝑢 + ∆𝑜}. The offset  ∆𝑜 delimits the maximum size of 

the region to be considered, which is set to 20 for all the databases employed in the 

experiments. In order to mitigate the influence from the eyelid region which may 

potentially affect the performance, the lower part region of 𝑅1 (half circular ring 

region) as illustrated in Figure 4.6(a), is considered. Mean 𝜇𝑅1  and standard 

deviation 𝜎𝑅1 are computed from such half-ring region to represent the statistical 

information of the iris region. An adaptive threshold is then calculated as 𝜏𝑎 =

𝜇𝑅1 + 𝛽𝜎𝑅1 ∶  𝛽 ∈ ℝ , 𝛽 > 0, with the parameter 𝛽 set to 2 for all the databases 

employed in the experiments. The region 𝑅2 can be obtained similarly as to 𝑅1, with 

the 𝑟𝑖𝑟 − ∆𝑜 < 𝑟 ≤ 𝑟𝑖𝑟 + ∆𝑜, as illustrated in Figure 4.6(b). The computed adaptive 

threshold is then applied to the 𝐼𝛾, i.e. 𝐼𝛾 > 𝜏𝑎 , and the pixels belong to 𝑅2 are 

retained. The thresholded pixels can be considered as the outliers whose intensities 

are deviated to a certain degree from the statistical information of 𝑅1. In order to 

improve the robustness of the algorithm, an additional constraint is imposed which 

only the connected pixels to the limbic boundary are retained. Note that our method 

is different from [59] which they considered the statistical information from two 

consecutive annular rings near the limbic boundary. The information near to the 

limbic boundary is observed to be unstable due to the poorly localized limbic 

boundary. As such, the developed approach exploits the statistical information from 

the half-ring region (𝑅1) near to the pupillary boundary for computing the adaptive 

threshold to refine limbic boundary. The half-ring region is considered to be more 

stable as it is less likely to be influenced from the eyelashes and eyelid region.  
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(a) 

  

(b) 

  

(c) 

  

(d) 

  
Figure 4.6: Boundary refinement. (a) Half-ring region 𝑅1 , (b) Region 𝑅2 , (c) 

Thresholded region, (d) Refined limbic boundary mask. 

 

Figure 4.6 presents two sample results of the proposed boundary refinement method 

obtained from two of the employed databases, i.e., UBIRIS.v2 (first column) and 

CASIA.v4-distance (second column). 

 

 

4.1.6 Eyelid Localization with Adaptive Eyelid Models 

 

 

Figure 4.7: Eyelid localization steps. 

Figure 4.7 shows the procedure of the developed adaptive eyelid location approach. 

The localized limbic information 𝑅𝑖𝑟 = (𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝑟𝑖𝑟) is employed to define the upper 

and lower eyelid regions. The upper eyelid region can be computed as follows: 
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(a) Input image 

 
(b) Extracted edge points for upper 

eyelid from the delimited area 

 
(c) Constructed upper 

eyelid model 𝑀/  ( 𝑑1 =

115.95), 

 
(d) Constructed upper 

eyelid model 𝑀^ 

(𝑑1 =105.85), 

 
(e) Constructed upper 

eyelid model 𝑀\  ( 𝑑1 =

128.94) 

Figure 4.8: Adaptive eyelid models construction. Note that the edge points shown in 

the figures were enhanced for better visualization. (Note (c)-(e): Control points 𝐶𝑀𝑙 

are denoted using red ‘o’, bounding region is shown using yellow box and the 

constructed model is shown as green curve). 

 

𝑅𝑢𝑝𝑝𝑒𝑟 = {𝑥, 𝑦: 𝑥𝑖𝑟 − 𝑟𝑖𝑟 ≤ 𝑥 ≤ 𝑥𝑖𝑟 + 𝑟𝑖𝑟 , 𝑦𝑖𝑟 − 𝑟𝑖𝑟 ≤ 𝑦 ≤ 𝑦𝑖𝑟 − 0.3 × 𝑟𝑖𝑟} (4.10) 

 

The edge points  𝒑𝑘=1,…,𝐾 ∈ (𝑅𝑢𝑝𝑝𝑒𝑟 ∩ 𝑅𝑖𝑟) within the intersection region of 𝑅𝑢𝑝𝑝𝑒𝑟 

and 𝑅𝑖𝑟 (see Figure 4.8(b)) are extracted as the candidate points for the construction 

of the eyelid models. Three eyelid models 𝑀𝑙={/,^,\} which represent the general 

eyelid shapes are adaptively constructed by exploiting the information of the 

bounding region of  𝒑𝑘. Each of the model requires three control points which can 

be obtained from the bounding region of  𝒑𝑘 , as defined as follows: 𝐶𝑀/ =

{(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), (𝑥𝑐, 𝑦𝑐), (𝑥𝑚𝑎𝑥, 𝑦𝑐)} ,  𝐶𝑀^ = {(𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥), (𝑥𝑐 , 𝑦𝑐), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥)} ,  a n d  𝐶𝑀\ =

{(𝑥𝑚𝑖𝑛, 𝑦𝑐), (𝑥𝑐, 𝑦𝑐), (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥)}. The 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛  (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ) denote the minimum 

(maximum) x- and y-coordinate of the bounding region while 𝑥𝑐, 𝑦𝑐  denote the 

middle point of the bounding region. The three eyelid models are then constructed 

by applying a second degree polynomial interpolation to the calculated control  
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Figure 4.9: Sample eyelid localization results obtained using the adaptive eyelid 

model. 

 

points 𝐶𝑀𝑙 , as illustrated in Figure 4.8(c)-(e). In order to measure the best 

representative eyelid model among 𝑀𝑙 , L1 distance 𝑑1  between  𝒑𝑘  and  𝒑𝑀𝑙  is 

firstly calculated. The model which produces the minimum 𝑑1 is considered as the 

best representative eyelid model and is employed as a reference model to eliminate 

outlier edge points. 

Let’s denote 𝜇𝑑1�̃� and 𝜎𝑑1�̃� respectively as the mean and standard deviation 

of the distance 𝑑1�̃� = | 𝒑𝑘 −  𝒑𝑀𝑙𝑘| between the nominated eyelid model and the 𝒑𝑘. 

Outlier edge points can be detected by performing the following statistical test: 

 

𝜖𝑘 =
(𝑑1�̃� − 𝜇𝑑1�̃�)

2

𝜎𝑑1�̃�  
2

. (4.11) 

 

The edge point  𝒑𝑘  whose 𝜖𝑘 > 3 is considered as the outlier point and is excluded 

for the subsequent operation. A second degree polynomial curve is fitted to the 

remaining candidate edge points in order to eliminate the non-iris region 

(upper/lower eyelid region). Figure 4.9 presents some sample results obtained from 

the developed eyelid localization technique. Localization of the lower eyelid region 

can be performed similarly as to the upper eyelid region. The proposed eyelid 

localization using adaptive eyelid models is inspired by the work in [53] which three 

representative eyelid models were trained for each upper and lower eyelid to 

eliminate the outlier points. One of the advantages of the proposed localization 

method is that it requires no prior training for the eyelid models while providing the 

similar functionality as in [53] to regulate the extracted edge points. The eyelid 

models are adaptively constructed by exploiting the localized information from each 

segmented iris and therefore provide superior localization capability than the 

globally trained models. 
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4.1.7 Eyelashes and Shadow Masking 

 

 
(a) Input image 

 
(b) ES (red) and IR (green) regions 

 
(c) Iris masks before ES masking 

 
(d) Iris masks after ES masking 

Figure 4.10: Eyelashes and shadow masking. 

 

Eyelashes and shadow (ES) are one of the commonly observed noisy artifacts which 

occlude portion of iris region. The proposed ES masking method is similarly as to 

[65] by exploiting statistical information of the localized iris region to detect those 

noisy pixels. Firstly, the localized iris region is virtually divided into two regions 

namely ES region and IR region. ES region is defined as the region calculated from 

the localized upper eyelid to a distance 𝑑 = 0.3 × 𝑟𝑖𝑟 while IR region is defined as 

the lower half annular region of the localized iris, as illustrated in Figure 4.10(b). 

Mean 𝜇(IR)  and standard deviation 𝜎(IR)  of the IR region which describe the 

intensity distribution of the localized iris region are calculated. Such information is 

then employed to calculate two adaptive thresholds: 𝜏𝑙𝑜𝑤 =  𝜇(IR) − 𝛿1𝜎(IR) and 

𝜏ℎ𝑖𝑔ℎ =  𝜇(IR) + 𝛿2𝜎(IR) , with the weights set to 𝛿1 = 3.5  and 𝛿2 = 2.5 . The 

computed thresholds are employed to detect noisy pixels within ES region whose 

intensity 𝐼 < 𝜏𝑙𝑜𝑤 or 𝐼 > 𝜏ℎ𝑖𝑔ℎ. In addition, the 𝜏ℎ𝑖𝑔ℎ serves as the complementary 

to the Section 4.1.6 to further eliminate eyelid pixels which may not be successfully 

removed in the earlier operation. Figure 4.10 illustrates the described ES masking 
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method and it can be observed that the proposed method was effectively eliminated 

outlier pixels within the ES region 

 

 

4.2 Experiments and Results 

 

4.2.1 Databases and Evaluation Protocol 

 

Table 4.2: Overview of the three employed databases. 

 UBIRIS.v2 FRGC CASIA.v4-distance 

Operating illumination visible visible NIR 

Acquisition distance (meter) 4 – 8 N/A ≥ 3 

Original image size 400 × 300 1200 × 1600 2352 × 1728 

No. of training images / subjects 96 / 19 40 / 13 79 / 10 

No. of test images / subject 904 / 152 500 / 150 502 / 67 

 

Three publicly available databases namely: (i) UBIRIS.v2 [40], [90], (ii) FRGC 

[109], [10], and (iii) CASIA.v4-distance [110] were employed to evaluate the 

performance of the proposed segmentation method. The images from the first two 

databases were distantly acquired using visible imaging while the images from the 

third database were acquired using NIR imaging. Table 4.2 provides summarized 

information about the employed databases for the conducted experiments. It is worth 

noting that all the employed training images were independent from the test images. 

 

 UBIRIS.v2: The full database consists of a total of 11102 images from 261 

subjects. The images were acquired under less constrained imaging 

conditions with subject at-a-distance and on the move. The standoff distance 

(distance between subject and the camera) range between 4 and 8 meters. As 

similarly to [65], only subset of the images was employed in the experiment. 

The subset consists of 1000 images from 171 subjects. The eye images of the 

first 19 subjects were employed as training images for parameters selection 

and the rest of 904 images were employed as test images. 
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 FRGC: The images from the high resolution still images category were 

considered in our experiments. As similarly to [65], only subset of images 

was employed. The subset images were selected from the session 2002-269 

to 2002-317 of Fall 2002. We employed the same procedure as reported in 

[65] for automatically localizing eye regions from these images. 

 CASIA.v4-distance: The full database consists of a total of 2567 images 

from 142 subjects. The images were acquired using NIR imaging with the 

subjects 3 meters away from the camera. Images from the first 10 subjects 

were employed as training images for parameters selection. While the first 

left eye images from the subjects 11 – 77 were employed as test images to 

evaluate the segmentation performance. 

 

In order to ascertain the performance of the proposed segmentation approach, we 

employ the identical protocol as adopted in the NICE.I competition [82]. The 

average segmentation error 𝐸1̅̅ ̅ is defined as follows: 

 

𝐸1̅̅ ̅ =
1

𝑁 × 𝑐 × 𝑟
∑∑𝑂(𝑐′, 𝑟′) ⊗ 𝐶(𝑐′, 𝑟′)

𝑟′∈𝑟𝑐′∈𝑐

, (4.12) 

 

where 𝑂 and 𝐶 correspond to the ground truth and segmented iris masks respectively;  

𝑐 and 𝑟 denote the total numbers of columns and rows of the image; 𝑁 is the total 

number of images. The XOR operator ‘⊗’ serves to evaluate the disagreeing pixels 

between 𝑂 and 𝐶.  

 

 

4.2.2 Performance Comparison 

 

The proposed iris segmentation method reported average segmentation errors of 

1.72%, 1.76% and 0.81% on UBIRIS.v2, FRGC and CASIA.v4-distance databases, 

respectively. The improvement over the method reported in [65] was respectively 

9.5%, 4.3% and 25.7% on these three databases. We have also provided comparison  
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(a) Average segmentation errors of different segmentation methods  

 

(b) Statistically significant differences of different segmentation approaches 

Figure 4.11: Segmentation performance. 
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against other competing iris segmentation methods [59], [60], [65], [89], [111] as 

shown in Figure 4.11. This figure also illustrates statistical significance of the 

performance improvement over respective state-of-art approaches (p-value at 

significance level of  = 0.05 using independent two-sample test technique [112]). It 

can be observed that the proposed segmentation method outperforms the other 

segmentation approaches reported in the literature [59], [60], [65], [89], [111] on the 

three employed databases. It is worth noting that the approaches [89], [111] 

employed the post-processing operations as developed in the Sections 4.1.3 – 4.1.7 

to further refine the coarsely segmented iris images, and thus reported similar 

average segmentation errors. Therefore, the robustness of the developed post-

processing operations is further ascertained from the competing segmentation 

performance obtained from the approaches [89], [111]. Figure 4.12 provides several 

sample results from the three employed databases as obtained by the proposed 

segmentation method. The proposed segmentation technique not only achieved 

better segmentation accuracy but also has the advantage in time efficiency. Table 4.3 

summarizes the average execution time for computation of image features in the iris 

segmentation stage. All the experiments were conducted in Matlab environment and 

executed on Intel 2.93 GHz processor with 4 GB RAM. As can be observed from 

Table 4.3, the proposed segmentation technique significantly reduced the 

computational complexity in performing the iris segmentation. In [65], localized 

Zernike features are computed for every single pixel, which may explains the reason 

why significant amount of time is required.  

 

 

Table 4.3: Average execution time. 

 Average Execution Time (second) 
Improvement (%) 

 Method [65] Proposed Method 

UBIRIS.v2 136.3 0.75 99.4 

FRGC 51.1 0.39 99.2 

CASIA.v4-distance 368.2 1.53 99.6 
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(a) Sample results from UBIRIS.v2 database (IDs: C102_S2_I14, C107_S1_I2, 

C109_S2_I14, C518_S1_I7) 
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(b) Sample results from FRGC database (IDs: 04243d88, 04265d84, 04302d15) 

 

 

 

 

 

 

(c) Sample results from CASIA.v4-distance database (IDs: S4078D01, S4088D02, 

S4100D02) 

Figure 4.12: Sample segmentation results. 
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4.3 Summary 

 

In this chapter, a promising iris segmentation approach to automatically extract the 

iris regions from the distantly acquired eye images under less constrained 

environments is presented. The developed iris segmentation approach is 

computationally attractive (Table 4.3) as compared to the previously proposed 

approaches especially for visible illumination based databases. However, further 

efforts are still required to improve the efficiency of the iris segmentation algorithm 

in order to make it feasible for any possible online deployment in applications like 

remote surveillance. The experimental results obtained from the three publicly 

available at-a-distance databases: UBIRIS.v2, FRGC and CASIA.v4-distance, 

clearly demonstrate the superior performance of the proposed segmentation 

technique, which suggest average improvements of 9.5%, 4.3% and 25.7% in the 

segmentation accuracy as compared to the approach [65] on the three employed 

databases, respectively. 
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CHAPTER 5  

Proposed Feature Encoding and Matching Approaches for 

Iris Images Acquired under Less Constrained 

Environments 

 

 

Accurate iris recognition from the distantly acquired face or eye images requires 

development of effective strategies which can account for significant variations in 

the segmented iris image quality. Such variations can be highly correlated with the 

consistency of encoded iris features and the knowledge that such fragile bits can be 

exploited to improve matching accuracy. A non-linear approach to simultaneously 

account for both local consistency of iris bit and also the overall quality of the 

weight map is proposed. Our approach therefore more effectively penalizes the 

fragile bits while simultaneously rewarding more consistent bits. In order to achieve 

more stable characterization of local iris features, a Zernike moment-based phase 

encoding of iris features is proposed. Such Zernike moments-based phase features 

are computed from the partially overlapping regions to more effectively 

accommodate local pixel region variations in the normalized iris images. A joint 

strategy is adopted to simultaneously extract and combine both the global and 

localized iris features. The superiority of the proposed iris matching strategy is 

ascertained by providing comparison with several state-of-the-art iris matching 

algorithms on three publicly available databases: UBIRIS.v2, FRGC, CASIA.v4-

distance. Our experimental results suggest that proposed strategy can achieve 

significant improvement in iris matching accuracy over those competing approaches 

in the literature, i.e., average improvement of 54.3%, 32.7% and 42.6% in equal 

error rates, respectively for UBIRIS.v2, FRGC, CASIA.v4-distance. 
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5.1 Methodology 

 

 

Figure 5.1: Block diagram of the proposed joint iris recognition strategy using 

global and localized (ZMs phase-based encoding) iris features encoding. 

 

Figure 5.1 shows the block diagram of the proposed iris matching strategy which 

consists of a global iris bits stabilization encoding strategy (Section 5.1.1) and a 

localized Zernite Moments (ZMs) phase-based encoding strategy (Section 5.1.2). 

The global iris bits stabilization encoding strategy is motivated from the recent 

promising approaches in [48], [62], and exploits the weight maps in such manner 

that higher (lower) weights are assigned to the quantized iris bits which appear to be 

stable/consistent (fragile). Such weighting strategy is observed to be more effective 

especially for the noisy iris images acquired under less constrained environments by 

emphasizing (penalizing) the high (low) discriminative iris features. As such, a non-

linear weighting approach based on the power law is proposed to adaptively weight 

the extracted global iris features. In spite of having better discriminative power over 

the conventional approaches [31], [43], [51], [65], [66], the global iris encoding 

strategy is still not adequate to accurately characterize the iris features extracted 

from the distantly acquired eye images under less constrained environments, which 

are generally have higher variations (e.g. scale change, illumination change, defocus 

and translation). In order to achieve more stable characterization of local iris features, 

we propose a new iris extraction scheme using phase encoding information of the 

ZMs. The ZMs have been shown to constitute robust image features which are less 

sensitive to noise, information redundancy, viewpoint change, partial occlusion, etc. 
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[113], [114], [115], [116], and therefore can be used as powerful descriptor to 

account for such variations in at-a-distance eye images. The localized ZMs features 

are computed from the partially overlapping image blocks extracted from the 

normalized iris image. The phase information in the computed ZMs encoded 

features from the image blocks is further exploited to construct a feature vector 

which represents the localized iris features. The advantages of employing such 

localized phase-based encoding strategy are two folds. Firstly, the local pixel 

variations can be better recovered from the localized iris region. Such localized 

phase-based encoding strategy can be more tolerant to feature distortion (due to 

nature of features) in local region pixels, and therefore can be exploited to 

complement the global encoding strategy in order to achieve more accurate 

recognition accuracy. Secondly, the phase encoding information of the ZMs has 

shown to offer more discriminative power than the magnitude information in local 

region pixels, as also in [116]. In order to mitigate the effect from the identified 

occluded iris pixels, a parameter 𝛾  is introduced to weight the computed ZMs 

features. This parameter 𝛾  is estimated from the occlusion mask which is 

automatically obtained during the iris segmentation stage. A joint strategy is 

employed to simultaneously combine both the extracted global and localized iris 

features. Such combined information can allow us to make better decisions and 

benefit from the outcome of matching performance using local texture matches 

which are more tolerant to variations/noise, and also the global iris texture matches 

which have its strength in less noisy iris region pixels. 

 

 

5.1.1 Global Iris Feature Representation 

 

A. Preprocessing for Normalized Iris Images 

 

The accuracy of the iris segmentation and the effectiveness of the feature encoding 

are the essential core for any successfully iris recognition application. Most of the 

commonly observed noise sources such as occlusions from eyelashes, eyelid, hair, 

eyeglasses and specular reflections in the eye images can be usually identified and  
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(a) Normalized iris image (ID: S4011D00) 

 
(b) Remapped normalized iris image 

 
(c) smoothed version of (b). 

Figure 5.2: Overlapping block strategy (Note that the actual image size of (b) and (c) 

are larger than the (a), and therefore they are resized to better utilization of space). 

 

masked during the iris segmentation process. However, the eye images acquired at-

a-distance and under less constrained environments are tend to be noisier not only 

due to the influences from the commonly observed noise sources but also from the 

imaging quality variations. Such phenomenon is even more noticeable from the eye 

images acquired using visible illumination imaging. In order to mitigate such 

influences, preprocessing is firstly applied to the normalized iris images by 

employing an overlapping block strategy, as given as follows: 

 

𝑓𝑏,𝑠: ℝ
2 → ℝ2 (5.1) 

 

where f is a function to extract the image blocks of size 𝑏 × 𝑏 from the normalized 

iris image I, sliding at an interval of s pixels in both the horizontal and vertical 

directions. The interval s is defined as half of the block size, i.e. 𝑠 =  𝑏/2 for all the 

employed databases in this paper. The remapped normalized iris images contain 

blocking artifacts as a result of the overlapping block operation. Such blocking 

artifacts are undesired as may introduce spurious frequency content during the iris 

feature extraction stage. In order to alleviate the effect from the blocking artifacts, a 

two-dimensional median filter of size 𝑏 × 𝑏 is applied to the remapped normalized 

iris images, as illustrated in Figure 5.2. The employed overlapping block strategy is 

observed to achieve improved recognition performance. There are two possible 
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reasons to justify the advantages of the overlapping block strategy. Firstly, the 

information redundancy is achieved across the neighboring image blocks. Such 

redundant information can be exploited to better account for spatial variations in the 

normalized iris images, especially for those acquired under less constrained 

environments. Secondly, the smoothing operation by employing the median filter 

not only mitigates the effect from the blocking artifacts but also simultaneously 

suppresses the noise in each image block. 

 

 

B. Iris Bits Stabilization 

 

 

Figure 5.3: Examples of the trained probability map (last row) computed from five 

iris codes (first five rows) from CASIA.v4-distance database (Image IDs: 

{S4011D00, S4011D01, S4011D02, S4011D03, S4011D04}, {S4023D00, 

S4023D01, S4023D02, S4023D03, S4023D04}). Brighter pixel indicates the bit is 

more stable while darker pixel indicates otherwise. 

 

The existence of the fragile bits has been observed and effectively used in [48] to 

improve the matching accuracy. Ref. [62] further extended this work based on the 

knowledge of fragile bits by weighting each bit to achieve improved recognition 

performance. The eye images acquired under less constrained environments are 

often degraded by noise, and the observation shows that the occurrence of noise is 

even more evident in the eye images acquired under visible illumination [60], [64], 

[65]. Therefore, the previous strategy as in [48], [62] can be further exploited to  
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Figure 5.4: The influence of 𝜇 on the bit probability. 

 

work on the noisy eye images which are acquired under less constrained 

environments. The fragile bits which are estimated from the training images can be 

considered as an outcome from the noise perturbation. 

As such, we propose a nonlinear weighting strategy to quantify the 

consistency of each iris bit in the remapped normalized iris image. The iris bit which 

is more consistent will be assigned with higher weight (close to one) to emphasize 

its importance while the iris bit which is less consistent is assigned with a lower 

weight (close to zero).  Given K preprocessed training normalized iris images 

{𝐼𝑖
𝑗
}
𝑖=1

𝐾
 of j-th class, we first obtain the corresponding iris code representations 

𝑪
𝑗
= {𝐶𝑖

𝑗
}
𝑖=1

𝐾
. Next, the consistency of n-th bit can be estimated from the 𝑪

𝑗
 by 

measuring the number of times that the n-th is fragile. Note that the 𝑪
𝑗

 is aligned 

with respect to the minimum Hamming distance obtained from the circular bit 

shifting before the consistency of iris bits is estimated. Let 𝜃𝑛 denote the number of 

times that n-th bit is fragile. Then the consistency of n-th bit can be indicated based 

on a probability value, as defined as follows: 

 

𝑝𝑛
𝑗
= 1 −

𝜃𝑛
𝐾
∈ [0, 1]. (5.2) 

 



73 

 

Hence, a probability map 𝑃𝑗 = {𝑝1
𝑗
, 𝑝2
𝑗
, … , 𝑝𝑁

𝑗
}  can be obtained based on the 

knowledge of the fragile bits estimated from some iris codes 𝑪
𝑗

. The 𝑃𝑗  has the 

identical dimension as the iris code of N bits, with each 𝑝𝑛
𝑗
 corresponding to the 

consistency of the n-th iris bit. Figure 5.3 shows two examples of the probability 

maps obtained from the five iris codes.  It can be observed that the iris bits where are 

estimated to be more consistent have higher probability values (higher intensity 

values), while the iris bits which are less consistent are indicated by lower 

probability values (lower intensity values). 

In order to more effectively emphasize (penalize) those bits which are highly 

consistent (inconsistent), a non-linear weighting strategy is introduced as follows: 

 

𝑤𝑛
𝑗
= (𝑝𝑛

𝑗
)
𝛼𝑗

, (5.3) 

𝛼𝑗 = {
 
|𝑃𝑚𝑎𝑥|

𝜇𝑗
=
1

𝜇𝑗
if 𝜇𝑗 > 0

 1  if 𝜇𝑗 = 0

 (5.4) 

 

where 𝜇𝑗 = 1 𝑁⁄ ∑ 𝑝𝑛
𝑗𝑁

𝑛=1 ; 𝑃𝑚𝑎𝑥 indicates the maximum probability value of 𝑃. The 

𝛼𝑗 takes the similar form as crest factor (peak-to-average ratio) which is employed 

to indicate the overall quality of the 𝑃𝑗 . Figure 5.4 illustrates the influence of the 

stability factor on the computed stability map 𝑃𝑗 . The weighting function in 

Equations (5.3) and (5.4) exhibit several interesting properties which can be 

summarized as follows: 

 

 The weighting function preserves the local consistency value for the highly 

consistent (inconsistent) bits, i.e. when 𝑝𝑛
𝑗
= {0,1}, regardless of the crest 

factor  𝛼𝑗. As such, the weights for those highly consistent (inconsistent) bits 

will not be affected by 𝛼𝑗.  

 For 𝜇𝑗 = {0, 1}, which are the two special cases when the crest factor at its 

extremum, the weight remains the same, i.e. 𝑤𝑛
𝑗
= 𝑝𝑛

𝑗
. 
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 For 𝐾 = 1, the computed weight map 𝑊𝑗 = {𝑤1
𝑗
, 𝑤2

𝑗
, … , 𝑤𝑁

𝑗
} is identical to 

the generated iris code 𝐶
𝑗

, such that the 𝑤𝑛
𝑗
= {0,1}. Therefore, the Equation 

(5.3) can be considered as the generalized representation for the conventional 

iris code representation. 

 

The similarity between a query iris code 𝐶𝑞𝑢𝑒𝑟𝑦  and reference gallery iris code 

𝐶𝑔𝑎𝑙𝑙𝑒𝑟𝑦
𝑗

 of class j can be computed using a modified Hamming distance function as 

given below [62]: 

 

𝐻𝐷𝑗 =
‖(𝐶𝑞𝑢𝑒𝑟𝑦  ⊕ 𝐶𝑔𝑎𝑙𝑙𝑒𝑟𝑦

𝑗
)  × 𝑊𝑗‖

‖𝑊𝑗‖
. (5.5) 

 

 

5.1.2 Zernike Moments Phase-based Encoding 

 

Zernike moments are well known to extract scale, rotation and translation invariance 

features and are employed in many image processing applications, including in iris 

segmentation [65], [117], image reconstruction [114], [115], etc. However, prior 

attempts only exploited the magnitude information of the ZMs in order to benefit 

from the rotation invariance property. The coarse phase information (iris code) as 

detailed in [31], [43] has been successfully employed to characterize the iris texture. 

Such an approach for iris matching has shown to achieve accurate iris matching for 

large-scale iris recognition applications but under constrained and NIR-based image 

acquisition. However, large image variations such as scale changes, illumination 

changes, geometric transformation, etc., are often encountered in case of the iris 

images acquired at-a-distance and under the less constrained environments, which 

further increase the difficulty in performing the iris encoding and matching for such 

noisy iris images. The ZMs have been shown to constitute robust image features 

which are tolerance to those commonly observed image variations in the remotely 

acquired iris images [113], [114], [115], [116]. As such, we develop a new iris 

encoding and matching strategy by exploiting the phase information of the ZMs 
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extracted from the partially overlapping local iris region pixels. The motivation of 

using ZMs phase-only information to encode such localized iris texture information 

are as follows: (i) The phase information has been demonstrated to provide better 

discriminative power than the magnitude information, while retaining the scale 

invariant properties of the ZMs to accommodate inherent image variations from less 

constrained imaging [116]; (ii) the local pixel variations can be better recovered 

from the localized iris region rather than those accumulated globally from the phase 

difference in conventional iris encoding. Such phase encoding information of the 

ZMs from the local region pixels is expected to be more tolerant to the feature 

distortions than the global encoding scheme, and therefore can be used to 

complement the global iris features matching to achieve more accurate performance. 

 

 

A. Zernike Moments 

 

The Zernike moments with order 𝛽 and repetition 𝛼 constitute a set of orthogonal 

basis functions {𝑉𝛽𝛼(𝜌, �̃�)}  which are defined over a unit circle in the polar 

coordinates as follows [114], [116]: 

 

𝑉𝛽𝛼(𝜌, �̃�) = 𝑅𝛽𝛼(𝜌)𝑒
𝑗𝛼�̃� (5.6) 

𝑅𝛽𝛼(𝜌) = ∑(−1)𝑘
(𝛽 − 𝑘)!

𝑘! (𝑝 − 𝑘)! (𝑞 − 𝑘)!

𝑝

𝑘=0

𝜌𝛽−2𝑘, (5.7) 

where 𝑝 = (𝛽 − |𝛼|)/2 and 𝑞 = (𝛽 + |𝛼|)/2; 𝛽 is a non-negative integer and 𝛼 is 

an integer that satisfies the conditions: |𝛼| ≤ 𝛽 and 𝛽 − |𝛼| = even. ZMs for an 

image function 𝐼(𝜌, �̃�) can be obtained by projecting the 𝐼(𝜌, �̃�) onto {𝑉𝛽𝛼(𝜌, �̃�)}, 

as represented by: 

 

𝑍𝛽𝛼 =
𝛽 + 1

𝜋
∫ ∫ 𝐼(𝜌, �̃�)𝑉𝛽𝛼

∗ (𝜌, �̃�)
1

0

2𝜋

0

𝜌 𝑑𝜌 𝑑�̃�, (5.8) 

 

where 𝑉𝛽𝛼
∗  denotes the complex conjugate of Equation (5.6). 
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B. Localized Iris Representation 

 

 

            (a) S4011D00                          (b) S4011D01                         (c) S4023D01 

Figure 5.5: Phase angle information for three Zernike features respectively 

computed from the normalized iris images from CASIA.v4-distance database. 

Features (a) and (b) are computed from the images of the same class. The varying 

angles represent the encoded iris features using the phase information of the ZMs. 

The similarity scores between (a) and (a), (a) and (b), and (a) and (c) are  𝑠(𝑎, 𝑎) =

0, 𝑠(𝑎, 𝑏) = 16.624 and 𝑠(𝑎, 𝑐) = 27.218, respectively. 

 

The localized ZMs features are computed from the image blocks 𝐵 of size �̃� × �̃�  

extracted from the normalized iris image 𝐼, sliding at an interval of �̃� pixels in both 

the horizontal and vertical directions. The interval �̃� is defined as half of the block 

size, i.e. �̃�  =   �̃�/2 for all the employed databases in this paper. Let 𝑁𝐵 denote the 

total number of extracted image blocks {𝐵𝑖}𝑖=1
𝑁𝐵 . The ZMs from order one up to order 

𝛽  at repetition 𝛼  are computed for each 𝐵𝑖 , which form a feature vector 𝒁  as 

represented as follows: 

 

𝒁 = 𝛾 [𝑍1𝛼
1 , 𝑍2𝛼

1 , … , 𝑍𝛽𝛼
1 | … |𝑍1𝛼

𝑁𝐵 , 𝑍2𝛼
𝑁𝐵 , … , 𝑍𝛽𝛼

𝑁𝐵]
𝑇

. (5.9) 

 

The parameter 𝛾 ∈ [0,1] is introduced in Equation (5.9) which serves to mitigate the 

effect of the occlusion noise to the computed Zernike features. Such 𝛾 is defined and 

can be computed as follows: 
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𝛾 =
2𝜉

1 + 𝜉2
 (5.10) 

𝜉 = 1 −
𝑂𝑛𝑜𝑖𝑠𝑒
𝑊 ×𝐻

, (5.11) 

 

where 𝑂𝑛𝑜𝑖𝑠𝑒  denotes the total number of occluded iris pixels (white) which are 

identified from the automatically extracted 𝑊 ×𝐻  occlusion mask from the iris 

segmentation phase. 

In order to measure the similarity 𝑠  between two given feature vectors 

𝒁𝑞𝑢𝑒𝑟𝑦 and 𝒁𝑔𝑎𝑙𝑙𝑒𝑟𝑦
𝑗

 of class 𝑗, we employ a phase distance function which can be 

described as follows: 

 

𝑠𝑗 = ‖𝜑 (
𝒁𝑞𝑢𝑒𝑟𝑦 ° 𝒁

∗
𝑔𝑎𝑙𝑙𝑒𝑟𝑦
𝑗

|𝒁𝑞𝑢𝑒𝑟𝑦° 𝒁∗𝑔𝑎𝑙𝑙𝑒𝑟𝑦
𝑗

|
)‖

2

= ‖𝜑(𝑅)‖2 (5.12) 

𝜑(𝑅) = arctan (
Imag(𝑅)

Real(𝑅)
), (5.13) 

 

where Real(. ) and Imag(. ) respectively denote the real and imaginary parts of R; ‘°’ 

denotes the entry-wise product; ‘∗’ denotes the complex conjugate. Higher similarity 

between phase angles of the ZMs will result in lower values of S (close to zero) 

while higher dissimilarity will result in higher values. It can be observed that the 

phase information computed from the iris images of the same subject, for example in 

Figure 5.5(a) and (b), are highly correlated. 

 

 

5.2 Experiments and Results 

 

In this section, we detail on the experiments and present results from the rigorous 

experimentation on three publicly available databases: UBIRIS.v2 [40], [90], FRGC 

[10], [109], and CASIA.v4-distance [110] to ascertain the performance from the 
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proposed iris matching strategy. The three employed databases were distantly 

acquired (ranging from 3-8 meters) under less constrained environments using either 

visible or NIR imaging, and therefore appropriate for the research problem focused 

in this thesis. All the employed iris images in the conducted experiments use 

automated iris segmentation approach as described in CHAPTER 4, which has 

shown to be more accurate as it achieves superior segmentation accuracy on both the 

iris images acquired under visible and NIR illumination. In order to ascertain the 

performance of the proposed feature encoding and matching strategy, we employ the 

two most commonly used performance metrics in the iris biometrics literature, i.e., 

Equal Error Rate (EER) and the decidability index (d’), as described in Section 1.1.2. 

 

 

5.2.1 Databases and Evaluation Protocol 

 

Table 5.1: Numbers of images and subjects of the employed databasesl. 

Database UBIRIS.v2 FRGC CASIA.v4-distance 

Illumination type Visible Visible NIR 

Number of images 863 1085 934 

Number of subjects 151 149 128 

 

All the experiments performed in this work use subsets of images from the three 

employed databases, as summarized in the Table 5.1. The segmented iris images 

from UBIRIS.v2, FRGC, and CASIA.v4-distance databases are respectively 

normalized to the sizes of 512 × 64, 256 × 32 and 512 × 64. The global iris 

features are extracted by employing 1D log-Gabor filter [49], and the parameters 

wavelength and SigmanOnf for the three employed databases are given in Table 5.2. 

Such parameters are obtained from a set of training images which are independent 

from the test images. For CASIA.v4-distance database, the images from the first 10 

subjects are employed to train the log-Gabor parameters, while the first eight left eye 

images from the rest of the 128 subjects are employed for testing or performance 

evaluation. For UBIRIS.v2 database, a subset of 1000 images from 171 subjects as  

                                                           
l This table shows the effective numbers of images and subjects used in the experiments. Some 

images were excluded in the experiments due to the limitations of eye detector or iris segmentation 

algorithm. 
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(a) UBIRIS.v2 (b) FRGC (c) CASIA.v4-distance 

Figure 5.6: Parameters selection for Zernike-moments phase-based encoding on 

three employed databases with the corresponding window sizes {25, 17, 25}.  

 

Table 5.2: Parameters employed by the proposed approach. 

Parameter 

Database 

Global Feature Localized ZMs phase-based Feature 

Wavelength SigmaOnf Block size Order Repetition 

UBIRIS.v2 59 0.32 25 1 1 

FRGC 40 0.35 17 1 1 

CASIA.v4-distance 20 0.25 25 3 1 

 

released in [90] is employed in the experiments. The 96 images from the first 19 

subjects are employed for selecting the log-Gabor parametersm while the rest of the 

segmented eye images are employed as independent test images for the performance 

evaluation. Similarly, a subset of high-resolution still images from the FRGC 

database is employed in the experiments. The eye images are selected from session 

2002-269 to 2002-317 of Fall2002 and Spring2003 by using an open source eye 

detector provided in OpenCV [102], which comprise a total of 1085 images from 

149 subjects. For the color images, we employ the luma-channel (Y) of the YCbCr 

after the color space conversion from the RGB color space. As for the performance 

evaluation, we further divide the remaining images into gallery dataset and test 

dataset. The gallery dataset is employed in training the weight maps as detailed in 

Section 5.1.1. In addition, subsets of the images from the gallery dataset of the 

employed databases are randomly chosen in order to determine the parameters for 

the localized Zernike moments representations as detailed in Section 5.1.2. In this 

                                                           
m We use same protocol as in previous work in [65] and [66]. 
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paper, we employ the first five images (or at mostno) as the gallery dataset while the 

remaining images as the test dataset. The ZMs features with parameters (𝑛,𝑚) range 

from (1, 1)  and to (10, 10)  are computed on the image blocks of various sizes. 

Figure 5.6 shows such parameters estimation computed from the training images of 

the three employed databases. The choices of the parameters are quite consistent 

with several reported works [113], [114], [116], as higher-order moments are more 

sensitive to image noise. The decline in the recognition accuracy can be observed on 

the noisy datasets from the UBIRIS.v2 and FRGC databases when higher-order 

moments are employed in computation of ZMs features but remain stable on the 

CASIA.v4-distance dataset (with relatively less influence from the noise on the NIR 

iris dataset).  

 

 

5.2.2 Comparison Between Real-valued and Quantized ZM Phase-

based Features 

 

In this section, we provide comparison between the real-valued (ZMs) and the 

binary quantization (ZMsbin) of the ZMs phase-based features. Figure 5.8 and Figure 

5.9 respectively show the receiver operating characteristic and cumulative match 

characteristic curves computed from the three employed databases. It can be 

observed that the real-valued ZMs phase-based features generally achieve better 

recognition accuracy as compared to the quantized features, especially on the visible 

illumination based iris dataset.  

 

 

 

 

                                                           
n The number of images is varying for each distinct subject for UBIRIS.v2 and FRGC databases as 

some poor segmented/quality images were filtered out by the completely automated segmentation 

algorithm [66].  
o The total numbers of generated genuine/imposter scores are 276/41400, 287/42476 and 337/42462 

from UBIRIS.v2, FRGC and CASIA.v4-distance databases, respectively. 
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5.2.3 Combination of Global and Local Matching Scores 

 

 
(a) UBIRIS.v2 (b) FRGC (c) CASIA.v4-distance 

Figure 5.7: Normalized matching score distributions for the proposed global and 

local encoding approaches. 

 

In order to simultaneously employ both global and localized iris features, the 

presented approaches in Sections 5.1.1 and 5.1.2 are combined at score level based 

on the weighted sum rule: 𝑠𝑐𝑜𝑟𝑒 = 𝑤1 × 𝑠𝑐𝑜𝑟𝑒1 + 𝑤2 × 𝑠𝑐𝑜𝑟𝑒2 and 𝑤1 + 𝑤2 = 1. 

The receiver operating characteristic and cumulative match characteristic curves on 

the three employed databases are shown in Figure 5.10 and Figure 5.11 respectively. 

It can be observed that the recognition performance from the phase encoding 

information of ZMs clearly outperforms the magnitude encoding information of 

ZMs on three employed databases. Such results have further confirmed that the 

phase information of ZMs can offer more discriminative power than the magnitude 

information. The distribution of genuine and imposter matching scores for the test 

data on each of the three databases considered in this work is shown in Figure 5.7.  

This figure suggests that the simultaneous use of matching scores from the global 

and local iris region pixels can be used to achieve better matching accuracy. These 

experimental results illustrate significantly improved performance and suggest the 

superiority of the proposed joint strategy of using matching information from both 

the global and localized iris features. The combined scores from the global and 

localized iris features achieve better discrimination than employing either global or 

localized iris representation alone.  
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 5.8: Receiver operating characteristic curves from the proposed ZMs phase-

based encoding approach.  
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 5.9: Cumulative match characteristic curves from the proposed ZMs phase-

based encoding approach.  
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(a) UBIRIS.v2 

 
(b) FRGC database 

 
(c) CASIA.v4-distance 

Figure 5.10: Receiver operating characteristics from the proposed.  
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance database 

Figure 5.11: Cumulative match curves from the proposed approach. 
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5.2.4 Performance Comparison 

 

We have also provided comparison with several competing iris matching approaches 

presented in the literatures: Fragile Bits [47], [48], Personalized weight map 

(PWMap) [62], band-limited phase only correlation (BLPOC) [56], log-Gabor [66] 

and Sparse [61]p. The ROC and CMC curves obtained for the various approaches 

using the same protocol are respectively shown in Figure 5.12 and Figure 5.13. The 

EER and the d’q are two most common performance metrics employed in the iris 

biometrics in the literature [52], [62], [94]. The estimated recognition performance 

from the various iris matching approaches in this work as indicated using EER and d’ 

are summarized in the Table 5.3. The proposed iris matching approach outperforms 

the other approaches in both the EER and the decidability index. Figure 5.14 

illustrates the percentages of improvement for the proposed approach in terms of 

EER as compared to the other methods. In summary, the proposed iris matching 

approach achieves significant improvement over several state-of-the-art iris 

matching techniques, which suggests average percentage of improvement of 54.3%, 

32.7% and 42.6% respectively on UBIRIS.v2, FRGC and CASIA.v4-distance 

databases. 

 

Table 5.3: The Equal Error Rate and decidability index obtained by the different 

approaches from the three employed databases. 

 UBIRIS.v2 FRGC CASIA.v4-distance 

Method EER d’ EER d’ EER d’ 

Sparse [61] 0.1922 1.5842 0.2397 1.4298 0.0445 3.4345 

PWMap [62] 0.2608 1.37 0.2681 1.1448 0.0564 3.4170 

Fragile Bits [48] 0.2534 1.0923 0.2961 0.8284 0.0418 3.3054 

BLPOC [56] 0.4022 0.4528 0.4396 0.2773 0.1136 2.6748 

Log-Gabor [66] 0.2745 0.9266 0.2960 0.8280 0.0385 3.1525 

Proposed 0.1196 2.5735 0.1986 1.8899 0.0290 6.4735 

 

 

                                                           
p The source code is publicly available at: 
http://www.umiacs.umd.edu/~jsp/Research/SRRecognition/SparseRecognitionCancelability_PAMI2010.zip 
q Decidability index is employed in NICE.II competition as performance indicator to evaluate the 

performance of iris encoding and matching algorithms. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 5.12: Receiver operating characteristics from various approaches. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 5.13: Cumulative match curves from various approaches. 
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Figure 5.14: Expected improvement in Equal Error Rate as compared to the 

competing approaches in literature. 

 

In order to establish a fairer comparison, we made another attempt to 

compare our proposed strategy with the combination of the best two methods 

reported from each of the employed databases. The matching information from the 

two methods are combined at score level based on the weighted sum rule, and the 

parameter employed for such fusion is summarized in Table 5.4. As Figure 5.15 

shows, the proposed strategy is again outperforms the joint strategy of the best two 

reported methods from our experiments, which further ascertain the effectiveness of 

the proposed joint global and localized iris encoding and matching strategy. The 

superiority of using such joint matching strategy can be mostly attributed to the 

complementary matching information from both the global and localized iris region 

pixels. As mentioned earlier, the localized iris encoding strategy can be more 

tolerant to imaging variations and noise, while the global iris encoding strategy has 

its strength in less noisy iris region pixels, as can be well reflected by the fusion 

weights as employed for our joint matching strategy. For the two very challenging 

visible illumination eye/face databases, i.e., UBIRIS.v2 and FRGC, more weights 

are assigned to the localized encoding method. For the CASIA.v4-distance database 

in which better quality of the eye images can be expected, more weight is assigned  
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Table 5.4: Parameter employed for score combination. 

Database 

Method Weight Rank-one 

Recognition 

Rate 
Method 1 Method 2 𝑤1 𝑤2 

UBIRIS.v2 
PWMap [62] Sparse [61] 0.49 0.51 49.6% 

Proposed (Global) Proposed (Local) 0.43 0.57 63% 

FRGC 
PWMap [62] Sparse [61] 0.49 0.51 48.4% 

Proposed (Global) Proposed (Local) 0.485 0.515 55.8% 

CASIA.v4-

distance 

PWMap [62] Fragile Bits [48] 0.61 0.39 93.8% 

Proposed (Global) Proposed (Local) 0.7 0.3 95% 

 

 

matching information from the joint strategy of global and localized iris encoding 

can provide more accurate recognition accuracy for the iris recognition at-a-distance 

and under less constrained environments. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 5.15: Cumulative match curves from the comparison with the best two 

reported iris matching methods.  
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5.2.5 Discussion 

 

The recognition performance achieved by the proposed approach is quite 

encouraging, especially for the iris images acquired remotely using visible 

illumination and under less constrained environments. For example, the estimated 

decidability index of 2.5735 on UBIRIS.v2 database is comparable to the reported 

result from the winning algorithm (𝑑’ =  2.5748) in NICE.II competition [90]. Such 

competition employed decidability index as the performance metric in the evaluation 

of the iris matching algorithms participated in the competition. It is worth noting that 

the iris matching strategy investigated in this chapter only employs the iris features 

and does not consider the multimodal (e.g. periocular) strategy as in the case of [64], 

which has been declared as winning algorithm in the NICEII competition. Therefore, 

if we employ such combination strategy, the recognition performance improvement 

can also be expected (see CHAPTER 6). In addition, the participated algorithms in 

NICE.II competition were evaluated on the noise-free iris imagesr, which may not be 

well-suited to provide accurate estimation of the actual performance for a 

deployable iris recognition system. As such, all the presented iris matching 

approaches in this paper were evaluated on the iris images which were segmented by 

employing a fully automated iris segmentation approach [66] (see CHAPTER 4). 

Therefore, our experimental results can better reflect the actual performance of at-a-

distance iris recognition strategy acquired under less constrained environments. 

In spite of the superiority in the recognition performance as demonstrated 

from our experiments, the memory requirement and computational complexity are 

other important considerations should also be investigated. As such, we also analyze 

the memory requirements and the computational complexity of the proposed iris 

matching strategy based on the parameters as provided in Table 5.2. In order to 

provide the complexity analysis which can be independent across different 

implementation environments, we also employ the similar analysis approach as in 

[62] to investigate the complexity of the iris matching algorithm proposed in this 

paper. For the global iris feature representation, higher memory is required due to 

                                                           
r The iris images are manually segmented and can be considered to have less influence (neglectable) 

from segmentation errors. 
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the remapping operation (Section 5.1.1). For example, the remapped dimension for a 

normalized iris image from the UBIRIS.v2 is 1024 × 128 bits (16 kB). The 

corresponding weight map requires 128 kB of the memory storage, such that the 

fraction values are quantized into the integers of range [0,255] (1 byte). The 

memory storage required by the localized iris representation depends on a number of 

factors: (i) total number of image blocks, (ii) order of ZMs, (iii) repetition of ZMs, 

and (iv) size of occlusion mask. The occlusion mask has the same dimensionality as 

the normalized iris image. For example, the dimension of occlusion mask for the 

UBIRIS.v2 is 512 × 64 bits (4 kilobytes). Due to the remapping operation in the 

global iris feature representation phase, the incurred computational cost in iris 

matching is expected to increase. For example, the global iris feature representation 

computed from the UBIRIS.v2 requires 2048 XOR operations on a 64-bit machine, 

131072 element-wise weight multiplication operation (MUL) and a multiplication 

for the 1/‖𝑊𝑗‖ (can be precomputed during the weight map training phase). The  

Table 5.5: Memory requirement and the computational cost of the proposed iris 

matching strategy. 

Database 

Memory requirement per 

template (kilobyte) 
Computational cost (matching) 

Global Localized Global Localized 

UBIRIS.v2 16 + 128 3.125 + 4 

2048XOR + 

131072MUL + 

1MUL 

200MUL + 200DIV 

+ 200DIV + 

200MUL + 200INC 

FRGC 4 + 32 1.8125 + 1 
512XOR + 

32768MUL + 1MUL 

116MUL + 116DIV 

+ 116DIV + 

116MUL + 116INC 

CASIA.v4-distance 16 + 128 6.25 + 4 

2048XOR + 

131072MUL + 

1MUL 

400MUL + 400DIV 

+ 400DIV + 

400MUL + 400INC 

 

incurred computational cost for the localized iris feature representation depends on 

the dimension of the computed feature vector. For instance, the dimension of the 

feature vector computed from a normalized iris image of the UBIRIS.v2 is 𝐂200 

(complex number). The matching requires 200 element-wise multiplication 

operations, 200 element-wise division operations (DIV), 200 element-wise division 

operations to extract phase angles, and 200 multiplication (square) and incremental 

sum (INC) operations (approximation to the L2-norm). Table 5.5 summarizes the 

incurred memory storage and the computational cost as required by the proposed iris 
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matching strategy on each of the employed databases. It is obvious to observe that 

higher computational cost is required for the global iris feature representation, which 

is mainly due to the employed block overlapping operation to account for spatial 

variations in the iris images acquired at-a-distance and under less constrained 

environments. In contrast, the localized iris feature representation requires much 

lower computational cost, which is mainly attributed to the low order moments of 

the computed ZMs features. 

 

 

5.3 Summary 

 

In this chapter, a promising iris encoding and matching strategy for the iris images 

acquired at-a-distance, using both NIR and visible imaging, under less constrained 

environments is investigated. Such iris images acquired at-a-distance and under less 

constrained imaging conditions are often degraded due to noise introduced by 

multiple sources, and therefore it is more likely to distort the iris texture details (e.g. 

scale, rotation, blur, off-angle, occlusion, etc.). Therefore, the segmented iris images 

following the iris normalization step reveals the distorted texture details which can 

be varying even for the iris images from the same class. The approach presented in 

this chapter exploits a global iris bits stabilization encoding strategy and a localized 

ZMs phase-based encoding strategy to robustly recover the iris features. Our 

strategy has been to simultaneously ascertain the matching information from the 

local region pixels (which is more tolerant to the distortion) while also evaluating 

the matching information for the features which can preserve global matches from 

more stable texture patterns/regions. A joint strategy to simultaneously employ the 

encoded global and localized iris features can benefit from both of these approaches. 

The experimental results obtained from three publicly available databases: 

UBIRIS.v2, FRGC, CASIA.v4-distance, establish the superiority of the proposed 

iris matching strategy and achieve average improvement of 54.3%, 32.7% and 42.6% 

in EER, respectively. Despite the encouraging results obtained by the proposed iris 

matching strategy, further efforts are required to improve the matching accuracy, 

especially for the visible-light iris matching in order to make any inroads to the 
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commercial applications. Efficiency of the iris matching algorithm and the 

recognition accuracy are the two prime criterions for selecting an algorithm for the 

deployment. Therefore further efforts should also be directed to develop more 

efficient iris matching algorithms which can simultaneously operate on images 

acquired in dynamic spectral illumination under less constrained environments. 
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CHAPTER 6  

Periocular Recognition 

 

 

Periocular or ocular is referred to the region around the eye [96]. Such region is 

typically acquired simultaneously with the eye without incurring additional 

hardware cost, and therefore can be exploited to further improve the recognition 

accuracy of the iris recognition at-a-distance and under less constrained imaging 

conditions. In this chapter, we provide evaluation on several commonly employed 

feature extraction methods such as SIFT [76], [118], GIST [119], LBP [120], HoG 

(histogram of oriented gradients) [121] and LMF (Leung-Malik Filters) [122] for 

computation of periocular features. The strategy to jointly exploit iris and periocular 

strategy suggests promising results and achieves improvements of 63.6%, 43.5% 

and 28.3% in equal error rates, respectively from the UBIRIS.v2, FRGC and 

CASIA.v4-distance database, as compared to the reported results in CHAPTER 5. 

 

 

6.1 Methodology 

 

6.1.1 Segmentation of Periocular Region 

 

Currently, there is no clear definition about what the size of the periocular region 

should be, e.g. refs. [96], [123] use the periocular region which is quite different 

from the [124]. However, the automated segmentation of periocular region, e.g. 

those in [96], [123], is more challenging in less constrained imaging environment as 

the size of the periocular region is highly dependent on the distance between the user 

and the camera. Ref. [96] provides a promising solution to address such issue by 

employing the localized iris information (𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝑟𝑖𝑟) to compute a rectangular 

region centered at the iris center, which is invariant to both scale and translation.  
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Figure 6.1: Segmentation of periocular regions from face images acquired at-a-

distance (left eyes are employed for better illustration and comparison). 

 

Firstly, the input image is normalized (upscaling/downscaling) w.r.t a scale factor 

𝑠𝑓 =
𝑟𝑛𝑜𝑟𝑚

𝑟𝑖𝑟⁄ , where 𝑟𝑛𝑜𝑟𝑚  is to the normalized iris radius. Such normalization 

operation results in the shifting of the original localized iris center (𝑥𝑖𝑟 , 𝑦𝑖𝑟) in the 

normalized eye image 𝐼𝑆𝑓 , and the updated iris center is given as (𝑥𝑖�̃� , 𝑦𝑖�̃�) =

𝑠𝑓(𝑥𝑖𝑟 , 𝑦𝑖𝑟). The periocular region 𝑅𝑝𝑒 is then defined as the rectangular region of 

size �̀� × ℎ̀ centered at (𝑥𝑖�̃� , 𝑦𝑖�̃�). The �̀� and ℎ̀ correspond to the width and the height 

of 𝑅𝑝𝑒, which are defined as �̀� = 𝑟𝑛𝑜𝑟𝑚 × 𝑓𝑤 and ℎ̀ = 𝑟𝑛𝑜𝑟𝑚 × 𝑓ℎ, respectively. The 

factors 𝑓𝑤 and 𝑓ℎ  are fixed for all the images from the same dataset to ensure the 

consistent size of the 𝑅𝑝𝑒 can be obtained. We set 𝑓𝑤 = {6,6,8} and 𝑓ℎ = {4,4,6} for 

the UBIRIS.v2, FRGC and CASIA.v4-distance databases, respectively. Figure 6.1 

shows the sample segmentation of the periocular regions from the same subject. 

 

 

6.2 Experiments and Results 

 

Recognition performance of using periocular biometrics has been shown to be 

encouraging [96], [123], [124], [125] and can be further exploited to improve the 

recognition accuracy of the iris recognition at-a-distance and under less constrained 

environments. In this section, we first provide the performance comparison between 
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several commonly used periocular feature extraction methods: SIFT [76], [118], 

GIST [119], LBP [120], HoG (histogram of oriented gradients) [121] and LMF 

(Leung-Malik Filters) [122], as obtained from the rigorous experiments conducted 

on three publicly available databases with images acquired at-a-distance and under 

less constrained environments using either visible or NIR imaging. Such comparison 

can be advantageous in order to select the feature extraction method which can be 

more adaptive to each of the employed database. Later on, a joint strategy is 

employed to combine the simultaneously acquired iris and periocular matching 

scores, which has been shown to be effective to provide more accurate recognition 

accuracy especially for the distantly acquired visible illumination based eye images. 

 

 

6.2.1 Comparison between Different Feature Extraction Methods 

 

Table 6.1: Overview of the three employed databases. 

 UBIRIS.v2 FRGC CASIA.v4-distance 

Operating illumination visible visible NIR 

Acquisition distance (meter) 4 – 8 N/A ≥ 3 

Original image size 400 × 300 1200 × 1600 2352 × 1728 

No. of training images / subjects 96 / 19 40 / 13 79 / 10 

No. of test images / subject 904 / 152 500 / 150 995 / 131 

 

The experiments were conducted with the identical protocol as described in [66] on 

three publicly available databases namely: (i) UBIRIS.v2 [40], [90], (ii) FRGC [109], 

[10], and (iii) CASIA.v4-distance [110]. Table 6.1 provides the summarized 

information about the dataset as employed in the experiments. Two types of 

experiments namely Experiment I and Experiment II were carried out in order to 

investigate the performance of the feature extraction methods on global and local 

periocular regions. 

 Experiment I: The segmented periocular region 𝑅𝑝𝑒 (see Section 6.1.1) was 

employed in this experiments. Such segmented region is referred as local 

periocular region in this chapter. Figure 6.2 shows the cumulative match 

                                                           
s  Iris segmentation for this experiment was performed using the automated iris segmentation 

approach as detailed in CHAPTER 4. 
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characteristic curves of the different periocular extraction methods obtained 

from the three employed databases. The best of the rank-one recognition 

rates of 38.5% and 53.1% are reported from the DSIFT method on the 

UBIRIS.v2 and FRGC databases respectively. While the best of the rank-one 

recognition rate of 83.3% is reported from the LMF method on CASIA.v4-

distance database. 

 Experiment II: In [124], the periocular features were computed directly from 

the localized eye region (the detected eye region) without involving 

segmentation step as described in Section 6.1.1. Therefore, the periocular 

region is considered as the immediate region detected by the eye detectort, 

which is referred as global periocular region in this thesis. Such global 

periocular region is particularly useful if the iris segmentation fails or the 

segmented iris image does not meet the minimum quality requirements to be 

 

 
(a) UBIRIS.v2 (b) FRGC (c) CASIA.v4-distance 

Figure 6.2: Cumulative match characteristic curves of different periocular feature 

extraction methods computed on local periocular regions. 

 

(a) UBIRIS.v2 (b) FRGC (c) CASIA.v4-distance 

Figure 6.3: Cumulative match characteristic curves of different periocular feature 

extraction methods computed on global periocular regions. 

                                                           
t Note that the UBIRIS.v2 database provides the localized eye images and therefore eye detection is 

not required for the images from this database. 
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(a) UBIRIS.v2 

    

(b) FRGC 

    

(c) CASIA.v4-distance 

Figure 6.4: Sample images from the three employed databases. 

 

used for the recognition. Unlike the local periocular region, the size and the 

location of the global periocular region is less consistent as such region is 

highly dependent on the detected eye region. For that reason, experiment II 

was carried out to objectively investigate the performance of the various 

feature extraction methods considered in this chapter on such global 

periocular region. Figure 6.3 shows the cumulative match characteristic 

curves of the various periocular extraction methods obtained from the three 

employed databases. The best of the rank-one recognition rates of 32.2% and 

59.7% is observed from the DSIFT method on the UBIRIS.v2 and FRGC 

databases, respectively. The rank-one recognition rate of 83.2% is reported 

from the LMF method on the CASIA.v4-distance database. 

 

It can be observed that the experimental results on the UBIRIS.v2 database reported 

the lowest recognition accuracy among the three employed databases. One of the 

possible reasons of such discouraging performance may due to the lack of the  
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(a) Training stage 

 

(b) Classification and matching stage 

Figure 6.5: Block diagrams of the developed periocular recognition approach. 

 

adequate periocular region (e.g. eyebrow, malar fold and nasojugal fold) for feature 

recovery. The eye images provided from the UBIRIS.v2 database were pre-cropped 

and therefore are not adequate to represent a more complete structure of the 

periocular region, as compared to the images from the FRGC and CASIA.v4-

distance databases, as depicted in Figure 6.4. The best recognition accuracy is 

observed from the DSIFT method on the local periocular region for the UBIRIS.v2 

database. For the FRGC database, the best recognition accuracy is observed from the 

DSIFT method on the global periocular region. While similar recognition 

performance is observed from the LMF method on both the local and global 

periocular regions for the CASIA.v4-distance database. 

Promising recognition performance using periocular features has been 

ascertained through the Experiment I and II. As such, the procedure of the best 

performing methods, i.e., DSIFT and LMF is further detailed in this section, as can 

also be seen from Figure 6.5. The developed periocular recognition approach 

consists of two stages: (i) training and (ii) classification and matching, which can be 

generally adopted for both the DSIFT and LMF feature extraction methods. The 

training stage is aimed to build a texton dictionary which comprises of 𝑘 primitive 

representative textons recovered from the computed feature sets. Such feature sets  
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(a) DSIFT 

 
(b) LMF 

Figure 6.6: Estimation of the parameter k for constructing texton dictionary. 

 

 

are obtained by applying the feature extraction method (DSIFT/LMF) to the 

periocular regions (local/global) of 𝑀 training images. A texton dictionary is then 

constructed by employing k-means algorithm to recover 𝑘 primitive representative 

textons from the computed feature sets. The parameter 𝑘  was estimated from a 

discrete set of k-values for both DSIFT and LMF features, as shown in Figure 6.6. In 

the matching stage, the periocular features are extracted similarly as in the training 

stage. The extracted features are classified using the constructed texton dictionary to 

form a texton distribution as represented by a k-bin histogram 𝐻. Therefore, the 

similarity between two given 𝑘 texton distribution 𝐻1 and 𝐻2 can be computed using 

chi-square distance (CSD), as given as follows: 

 

 

𝐶𝑆𝐷(𝐻1, 𝐻2) =
1

2
∑
(ℎ1𝑗 − ℎ2𝑗)

2

ℎ1𝑗 + ℎ2𝑗

𝑘

𝑗=1

, (6.1) 

 

 

where {ℎ11, … , ℎ1𝑘} ∈ 𝐻1  and {ℎ21, … , ℎ2𝑘} ∈ 𝐻2 . Lower CSD value indicates 

higher similarity between the two texton distributions while higher CSD value 

indicates otherwise. 
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6.2.2 Combination of Iris and Periocular Matching Scores 

 

The simultaneously acquired periocular region features can be further exploited to 

achieve more accurate recognition accuracy for the iris recognition at-a-distance and 

under less constrained environments. We show that by combining the matching 

information from the both the extracted iris (see CHAPTER 5) and periocular 

features, the recognition performance can be significantly improved, especially for 

the visible illumination based images. We followed the identical protocol u  as 

presented in Section 5.2.1 to perform the experiments. The recovered iris features 

are combined with the best performing periocular features (DSIFT/LMF) based on 

weighted sum rule at score level. Such joint iris and periocular strategy suggests 

promising results and achieves improvements of 63.6%, 43.5% and 28.3% in equal 

error rates, respectively from UBIRIS.v2, FRGC and CASIA.v4-distance databases, 

as compared to the reported results in CHAPTER 5. The receiver operating 

characteristic and cumulative match characteristic curves obtained from the three 

employed databases are respectively provided in Figure 6.7 and Figure 6.8. The 

performance evaluation presented in the Equal Error Rate and the decidability index 

is summarized in Table 6.2. It can be observed that such strategy to jointly exploit 

iris and periocular features reported better recognition performance in the Equal 

Error Rate on the three employed databases. However, the decidability index for the 

combination of iris and periocular features on the CASIA.v4-distance dataset is 

worse than the iris alone. One of the possible reasons may due to that the NIR 

illumination imagingv was used to acquire the periocular images in such dataset. 

Table 6.2: The Equal Error Rate and decidability index from joint periocular and iris 

strategy. 

Feature 

Database 

Iris Iris + Periocular 

EER d’ EER d’ 

UBIRIS.v2 0.1196 2.5735 0.0435 3.5743 

FRGC 0.1986 1.8899 0.1122 2.5407 

CASIA.v4-distance 0.0290 6.4735 0.0208 5.3199 

  

                                                           
u Such protocol requires of multiple samples (gallery) for stability map estimation. 
v  Recent studies have shown that the visible light periocular images averagely achieve better 

recognition performance than the NIR periocular images [140]. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 6.7: Receiver operating characteristics from joint periocular and iris strategy.  
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 6.8: Cumulative match characteristics from joint periocular and iris strategy.  
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6.3 Summary 

 

The work described in this chapter exploited the strategy to jointly employ the 

simultaneously computed iris and periocular features in order to achieve more 

accurate recognition accuracy for human recognition at-a-distance and under less 

constrained imaging conditions. The reported experimental results from such joint 

strategy have shown to be quite promising, especially for the images acquired using 

visible illumination imaging. The improvements of 63.6%, 43.5% and 28.3% in 

equal error rates are respectively obtained from UBIRIS.v2, FRGC and CASIA.v4-

distance databases, as compared to the reported results in CHAPTER 5. 
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CHAPTER 7  

GeoKey Iris Encoding 

 

 

In this chapter, we present a computationally efficient iris encoding and matching 

strategy which may provide solution to address the complexity of the global iris 

encoding algorithm as detailed in Section 5.1.1. A set of coordinate-pairs which 

referred as geometric key is randomly generated and exclusively assigned to each 

subject enrolled into the system. Such geometric key uniquely defines the way how 

the iris features are encoded from the locally assembled image patches. The 

recovered features from such locally assembled image patches are expected to be 

more tolerant to the noise. Scale and rotation changes in the localized iris region can 

be well accommodated by using the transformed geometric key. The similarity 

between two recovered iris features can be efficiently computed using Hamming 

distance. The superiority of the proposed iris encoding and matching strategy is 

ascertained by providing comparison with several state-of-the-art iris encoding and 

matching algorithms on three publicly available databases: UBIRIS.v2, FRGC, 

CASIA.v4-distance, which suggests the average improvements of 36.3%, 32.7% and 

29.6% in equal error rates, respectively. 

 

 

7.1 Methodology 

 

Figure 7.1 shows the block diagram of the proposed iris matching strategy for the 

iris images acquired at-a-distance and under less constrained imaging conditions. 

The proposed iris matching strategy comprises of a localized geometric key 

(GeoKey) encoding scheme and a global phase encoding scheme. The iris images 

acquired distantly and under less constrained conditions are often influenced from 

severer level of image variations (e.g. scale, rotation), and conventional iris 

encoding and matching techniques are designed to match iris images acquired from  
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Figure 7.1: Block diagram of the proposed geometric key iris encoding scheme for 

iris images acquired at-a-distance and under less constrained conditions. 

 

close distance in which iris features are more stable [31], [51], [56]. Therefore, 

development of feature encoding strategy that can accommodate scale and rotation 

variations is highly desirable. In this chapter, we propose an iris feature encoding 

scheme by incorporating the geometry information to encode iris texture information 

extracted from the localized iris region pixels. Such geometry information is 

determined by the GeoKey, which is a set of the coordinate-pairs exclusively 

assigned to each subject enrolled into the system. Therefore, the GeoKey can be 

considered as a unique key which is personalized to each subject and uniquely 

defines the geometric location to encode the localized iris features. The proposed 

GeoKey encoding scheme works on the locally assembled region pixels and 

therefore can be more tolerant to variations/noise. Furthermore, the GeoKey can be 

configured to account for scale and rotational changes in the localized iris region by 

applying simple transformation operations to the GeoKey. It is worth noting that 

such transformation operations are applied to the GeoKey rather than the iris images, 

which provide computational efficiency to encode the iris features. In order to 

exploit the global iris texture, the proposed scheme considers the global iris 

matchers such as Log-Gabor [49] to encode the global iris features. Such global iris 

matcher has its strength in less noisy iris region pixels and can be simultaneously 

computed with the localized GeoKey encoding scheme. The combined information 

from both the localized and the global iris matchers can provide more accurate 

matching accuracy and therefore can benefit us to make better decisions. 
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7.1.1 Generating Geometric Key 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 7.2: Examples of the GeoKey at different configurations (𝐵 = 32; 𝑑 = 32). 

(a) original GeoKey, (b) rotation of (a) at 𝜃 = 30-degree,  (c) rotation of (a) at 𝜃 =

60-degree, (d) scaled of (a) at 𝑠 = 0.85, (e) scaled of (a) at 𝑠 = 1.15, (f) scaled and 

rotation of (a) at 𝑠 = 0.65 and 𝜃 = 30-degree. 

 

Geometric key 𝐾  is a set of the coordinate-pairs of length 𝑑  which defines the 

locations in an image patch of size 𝐵 × 𝐵. Such geometric locations as defined by 

the GeoKey determine how the iris features are encoded from the localized iris 

region pixels. We employ the best out of the five configurations as discussed in [126] 

to generate the coordinate-pairs of length 𝑑 ≤ 𝐵2, which is given as: 

 

𝑲 = {(𝒙𝟏, 𝒙𝟐) ~ i. i. d. 𝐺 (0,
1

5
𝐵)}

𝑖=1,…,𝑑
, (7.1) 

 

where 𝐺(∙) is a Gaussian kernel with the mean equals to zero and the standard 

deviation equals to 1 5⁄ 𝐵. Suppose there are 𝑁 enrolled subjects in the system, a 
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total of 𝑁  GeoKeys {𝑲𝑑
1 , 𝑲𝑑

2 , … , 𝑲𝑑
𝑁} will be generated and each of the enrolled 

subjects will be assigned with a GeoKey of length d.  

The iris images acquired distantly and under less constrained conditions are 

often influenced from severer level of imaging variations such as scale and rotation 

in local region pixels. The proposed GeoKey iris encoding scheme can be 

configured to conveniently accommodate for such variations in the local region 

pixels. Unlike the work in [126], we apply the geometric transformations to the 

GeoKey rather than to the iris images using the Equation (7.2) and/or (7.3), as given 

below: 

 

�̃�𝑠 = {𝑆𝐾𝑖=1,…,𝑑};  𝑆 = [
𝑠 0
0 𝑠

], (7.2) 

�̃�𝜃 = {𝑅𝐾𝑖=1,…,𝑑};  𝑅 = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
], (7.3) 

 

where S and R represent the scaling matrix and rotation matrix [127], respectively 

(we use 𝑠 = {0.85, 1,1.15}  and 𝜃 = {0°, 30°, 60°, 90°, 120°, 150°}  in the 

experiments). By applying the transformations on the GeoKey can be more 

computationally attractive as compared to the more demanding image 

transformation operations. The complexity of the transformations on the GeoKey 

depends on the key length of the GeoKey, which is typically much lower than the 

block size, i.e., 𝑑 < 𝐵2 (see Table 7.1). Figure 7.2 shows the examples of GeoKey 

configured to encode iris features at different orientations and scales.  

 

 

7.1.2 Geometric Key Encoding 

 

Our iris encoding approach is inspired by the recent works in [126], [128] which 

have shown to be effective in accommodating the imaging variations from local 

image regions. In this work, we exploit the iris features computed from the 

normalized iris images by performing the binary comparisons on the smoothed 

version of local windows w of size 𝑆 × 𝑆 using the locations as defined by the  
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Figure 7.3: Illustration of the GeoKey iris encoding from an image patch of size 𝐵 ×

𝐵 . The binary test is performed on the local smoothing windows of size 𝑆 × 𝑆 

centered at 𝒙𝟏 and 𝒙𝟐, respectively. Therefore, the 𝒙𝟏 and 𝒙𝟐 represent the average 

values of the filter responses computed from the respective local window w. 

 

GeoKey, as illustrated in Figure 7.3. The binary features 𝑓 from an image patch can 

be computed as follows: 

 

𝑓(𝐰; 𝒙𝟏, 𝒙𝟐 ∈ 𝑲) = {
1
0
 
𝑖𝑓 𝐿(𝐰, 𝒙𝟏) < 𝐿(𝐰, 𝒙𝟐)

otherwise,
 (7.4) 

 

where 𝐿(𝐰, 𝒙𝟏) denotes the filter responses from the Log-Gabor in the smoothed 

version of w at 𝒙𝟏 . The computation of the binary features is performed on the 

smoothed local windows in order to provide more reliable estimation of the iris 

features from the local iris regions. It is worth noting that the mean values of w can 

be efficiently approximated using the integral image technique, which requires only 

three addition operations and a division operation. Therefore, the proposed GeoKey 

iris encoding scheme provides a different way from the conventional coarse phase 



112 

 

quantization approaches [31], [49] which encodes the iris features by incorporating 

the geometry information. The encoded iris features are in the binary form and 

therefore can be efficiently matched using the modified Hamming distance, as given 

as follows: 

 

𝐻𝐷𝑗 =
‖𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦

𝑗
 ⊕ 𝐅𝑞𝑢𝑒𝑟𝑦(𝐖,𝑲

𝑗)‖

𝑝 × 𝑞
, (7.5) 

 

where 𝐶𝑜𝑑𝑒𝑔𝑎𝑙𝑙𝑒𝑟𝑦
𝑗

∈ 𝔹𝑝×𝑞  denotes the binary gallery template of class 𝑗 ; 𝐖 =

[𝐰1, 𝐰2, … ,𝐰𝑝×𝑞] represents the local windows; 𝐅𝑞𝑢𝑒𝑟𝑦(𝐖,𝑲
𝑗) ∈ 𝔹𝑝×𝑞 represents 

the binary query template of size 𝑝 × 𝑞 encoded with the 𝑲𝑗; ‘⊕’ denotes the XOR 

operator. In this GeoKey encoding approach, we employ an overlapping block 

strategy to extract image patches from the normalized iris image at the interval ℎ =

𝐵
2⁄  in both horizontal and vertical directions. Therefore, the width 𝑝 and height 𝑞 of 

the template are depend on the width and height of the normalized iris image, block 

size 𝐵 × 𝐵, sliding interval ℎ, and the key length 𝑑 of GeoKey. 

The proposed GeoKey iris encoding scheme is designed to provide localized 

encoding which can be more tolerant to the local region pixel variations such as 

rotation and scale changesw. However, the conventional coarse phase quantization 

approaches (global iris encoding) such as [31], [49] have its strength to encode the 

iris features in less noisy iris region pixels. Such coarse phase quantization 

approaches, i.e. Log-Gabor, as employed in our experiments, can be conveniently 

acquired since that the feature extraction is a common procedure prior both the 

localized and global encoding schemes (see Figure 7.1). Therefore, both the 

localized and global binarized iris features can be simultaneously computed without 

incurring expensive computation cost. The combined information from both the 

localized and the global iris matchers can provide more accurate matching accuracy 

(see Section 7.2) and therefore can benefit us to make better decisions.  

 

                                                           
w Translation can be addressed by using the conventional circular bit shift operation during the 

matching phase. 
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7.2 Experiments and Results 

 

In this section, we detail on the experiments and present results from the rigorous 

experimentation on three publicly available databases: UBIRIS.v2 [40], [90], FRGC 

[10], [109], and CASIA.v4-distance [110] to ascertain the performance from the 

proposed iris encoding and matching strategy. All the iris images employed in the 

experiments use automated iris segmentation approach described in CHAPTER 4, 

which has shown to be more accurate as it achieves superior segmentation accuracy 

for both the iris images acquired using visible and NIR imaging. 

 

 

7.2.1 Databases and Evaluation Protocol 

 

We followed the identical protocol as detailed in Section 5.2 to carry out the 

experiments on three publicly available databases. Table 7.1 summarizes all the 

major parameters used by the GeoKey iris encoding scheme for the three employed 

databases.  

 

Table 7.1: Parameters employed by the proposed iris encoding scheme. 

Parameter 

Database 

GeoKey Encoding Log-Gabor Encoding 

B h S d Wavelength SigmaOnf 

UBIRIS.v2 32 16 7 96 59 0.32 

FRGC 16 8 5 48 40 0.35 

CASIA.v4-distance 32 16 7 128 20 0.25 

 

 

7.2.2 Combination of Global and Local Matching Scores 

 

In this section, we report experimental results to achieve superior matching accuracy 

by simultaneously employ both the GeoKey and Log-Gabor recovered iris features. 

The matching scores computed from both GeoKey encoding scheme and Log-Gabor 

encoding scheme are combined at score level based on weighted sum rule. Figure 

7.4 and Figure 7.5 show the receiver operating characteristic and cumulative match 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 7.4: Receiver operating characteristics from the proposed GeoKey encoding 

scheme. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 7.5: Cumulative match characteristic curves from the proposed GeoKey 

encoding scheme. 
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characteristic curves obtained from the three employed databases. The experimental 

results suggest that the combined scores from the recovered localized and global iris 

features can achieve more accurate recognition accuracy than employing either 

global or localized iris features alone. 

 

 

7.2.3 Performance Comparison 

 

 

In order to further ascertain the recognition performance of the proposed iris 

encoding scheme for the distantly acquired iris images under less constrained 

environments, we have also provided comparison with several competing iris 

encoding approaches from the literatures: Fragile Bits [47], [48], Personalized 

weight map (PWMap) [62], band-limited phase only correlation (BLPOC) [56], 

Log-Gabor  [66] and Sparse [61]. The proposed GeoKey iris encoding scheme has 

shown its superiority by outperforming the other state-of-the-art iris encoding 

approaches in both the Equal Error Rate and decidability index, as can be observed 

from Table 7.2. The percentage of improvement in the EER as compared to other 

competing iris encoding approaches is provided in Figure 7.6. The proposed 

GeoKey iris encoding scheme achieves significant improvement over several 

competing iris encoding techniques, which suggests average improvements of 

36.3%, 32.7% and 29.6% in the equal error rates on UBIRIS.v2, FRGC and 

CASIA.v4-distance databases, respectively. Figure 7.7 and Figure 7.8 show the 

receiver operating characteristic and cumulative match characteristic curves 

obtained from various iris matching approaches. 
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Figure 7.6: Expected improvement in Equal Error Rate as compared to several 

competing approaches from the literature. 

 

 

Table 7.2: The Equal Error Rate and decidability index obtained by the different 

approaches from the three employed databases. 

 UBIRIS.v2 FRGC CASIA.v4-distance 

Method EER d’ EER d’ EER d’ 

Sparse [61] 0.1922 1.5842 0.2397 1.4298 0.0445 3.4345 

PWMap [62] 0.2608 1.37 0.2681 1.1448 0.0564 3.4170 

Fragile Bits [48] 0.2534 1.0923 0.2961 0.8284 0.0418 3.3054 

BLPOC [56] 0.4022 0.4528 0.4396 0.2773 0.1136 2.6748 

Log-Gabor [66] 0.2745 0.9266 0.2960 0.8280 0.0385 3.1525 

Proposed 0.1667 2.0774 0.1987 1.7166 0.0356 5.3243 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 7.7: Receiver operating characteristic curves from various approaches. 
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(a) UBIRIS.v2 

 
(b) FRGC 

 
(c) CASIA.v4-distance 

Figure 7.8:. Cumulative match characteristic curves from various approaches.  



120 

 

7.2.4 Joint Scores from Multiple Phase-based Features 

 

 
(a) UBIRIS.v2 (b) FRGC (c) CASIA.v4-distance 

Figure 7.9: Cumulative match characteristic curves from joint scores of multiple 

phase-based features. 

 

In this section, we show that the presented GeoKey encoding scheme in this chapter 

can be a solution to address the complexity of the global encoding scheme as 

detailed in Section 5.1.1, and yet achieve comparable recognition accuracy on the 

three employed databases. We compare the recognition performance from multiple 

phase-based features, i.e. GK (GeoKey encoding) + LG (Log-Gabor encoding), 

SMap (iris bits stabilization encoding) + ZM (ZMs phase-based encoding) and GK + 

LG + ZM. The experiments on (GK + LG + ZM) phase-based features are aimed to 

offer a more computationally attractive approach as an alternative to the global 

encoding module in Section 5.1.1. Figure 7.9 shows the cumulative match 

characteristic curves from the joint scores of multiple phase-based features on the 

three employed databases. It can be observed that comparable recognition accuracies 

have been reported from GK + LG + ZM phase-based features as compared to the 

reported results in CHAPTER 5, but with more computationally attractive. 

 

 

7.2.5 Discussion 

 

One attractive element of the proposed iris encoding and matching strategy in this 

chapter is its efficiency in both computation and memory requirements. The iris 

matching for both localized and global binarized iris features can be computed in  
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Table 7.3: Memory requirements by the best three algorithms from the experiments. 

Database 

Method 

Memory Requirements Per Iris Template (bytes) 

UBIRIS.v2 FRGC CASIA.V4-distance 

Sparse [61] 262144 65536 262144 

PWMap [62] 4096 + 32768 1024 + 8192 4096 + 32768 

CHAPTER 5 154752 39744 157952 

- Stabilized bits 16384 + 131072 4096 + 32768 16384 + 131072 

- Zernike moments 3200 + 4096 1856 + 1024 6400 + 4096 

Proposed 11584 4000 14848 

- GeoKey 192 96 256 

- Log-Gabor 4096 + 4096 1024 + 1024 4096 + 4096 

- Zernike moments 3200 1856 6400 

 

very efficient way using the Hamming distance. Table 7.3 summarizes the 

requirements of the memory storage by the best three performing iris encoding and 

matching algorithms from the experiments (see Section 7.2.3) on the three employed 

databases, which suggest that much lower memory storage x  is required by the 

proposed iris encoding and matching strategy. Although the memory requirement by 

the proposed iris encoding approach is higher than the conventional approach (e.g. 

[31], involves only computation of iris code and occlusion mask) which requires 

computation of multiple iris features in order to provide more accurate recognition 

accuracy. However, we expect that such limitation can be overcome with the rapid 

advent of computing powers and technologies (e.g. cloud computing). As mentioned 

earlier, quality of the eye images acquired at-a-distance and under less constrained 

environments, especially the visible illumination eye images, is usually degraded by 

multiple noise sources which can impair the recognition performance. The joint 

strategy of using multiple matchers can be more tolerant to the noise and provide 

more effective solution to recover discriminative iris features. Such joint strategy 

has shown to be promising based on the reported experimental results to provide 

more accurate iris recognition for eye images acquired at-a-distance and under less 

constrained imaging conditions.  

 

                                                           
x Memory requirement is computed based on the size of the normalized iris image (see Section 5.2.1). 
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7.3 Summary 

 

This chapter has presented a computationally attractive GeoKey iris encoding  and 

matching strategy for the noisy iris images acquired at-a-distance and under less 

constrained environments using either visible or NIR imaging. The superiority of the 

proposed iris encoding and matching strategy is ascertained by providing 

comparison with several state-of-the-art iris encoding and matching algorithms on 

three publicly available databases: UBIRIS.v2, FRGC, CASIA.v4-distance, which 

suggests the average improvements of 36.3%, 32.7% and 29.6% in equal error rates, 

respectively. In addition, the recognition performance from joint strategy of using 

multiple features was also investigated. The GeoKey encoding strategy which has its 

advantages in both computation and memory requirements can be used as an 

alternative to the global encoding module in Section 5.1.1. Such joint strategy of 

using multiple recovered iris features has shown to be promising, especially for the 

visible illumination eye images, as comparable recognition performance to the 

approach in CHAPTER 5 has been reported from our experiments (see Section 

7.2.4). 
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CHAPTER 8  

Conclusions and Future Work 

 

 

The work described in this thesis has been concerned with the development of iris 

recognition algorithm for eye images acquired at-a-distance and under less 

constrained imaging conditions using either visible or NIR illumination. We 

developed an effective random walker based iris segmentation solution to 

automatically extract the iris regions from noisy eye images. In addition, a set of 

post-processing operations (initial iris center estimation, iris and pupil localization, 

boundary refinement, eyelid localization with adaptive eyelid models, eyelashes and 

shadow masking) which had shown to be effective to mitigate the commonly 

observed noise sources such as occlusions from eyelids, eyelashes and shadow were 

developed as well. The second open problem of at-a-distance iris recognition 

concerns with the development of robust feature encoding and matching algorithms 

which can be more tolerant to the inherent noise and variations in the segmented iris 

image quality and recover discriminative features from such noisy iris data. We 

presented an effective iris encoding and matching strategy by exploiting iris features 

from both global and localized normalized iris region pixels. The global iris 

encoding has its strength to recover discriminative iris features from less noisy iris 

region pixels while the localized iris encoding can better accommodate for imaging 

variations. The experimental results obtained from such joint strategy have shown to 

be promising, as the average improvements of 54.3%, 32.7% and 42.6% in equal 

error rates as compared to several competing approaches [48], [56], [66], [61], [62], 

were reported from the experiments on three publicly available databases: 

UBIRIS.v2, FRGC and CASIA.v4-distance, respectively. 

 One of the possible solutions to further improve the recognition accuracy for 

distantly iris recognition is to consider additional available features around the eye 

region, i.e. periocular. The periocular region is typically acquired simultaneously 

with the eye and therefore does not incur additional hardware cost. We presented the 

experimental results from using the joint iris and periocular strategy on the 
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UBIRIS.v2, FRGC and CASIA.v4-distance databases. The rank-one recognition rate 

of 85.1% was reported from the joint iris and periocular strategy on the UBIRIS.v2 

database while the rank-one recognition rate from using iris alone was only 63%. 

For the experiment conducted on FRGC database, the rank-one recognition rate of 

65.9% was observed from using joint iris and periocular strategy while the rank-one 

recognition rate of 55.8% was reported from using the iris alone. The strategy either 

considering joint iris and periocular or iris alone reported very similar rank-one 

recognition rates, i.e., 95% and 96.1% on CASIA.v4-distance database. In such case, 

the contribution from the periocular features to complement the improvement of iris 

recognition performance seems to be limited. One possible reason may due to better 

image quality of the NIR illumination iris images from the CASIA.v4-distance 

database. The proposed iris encoding strategy can more effectively recover the 

discriminative iris features from such less noisy iris region pixels and achieves very 

promising recognition accuracy by using only iris alone. 

 In order to reduce the computational complexity and the memory 

requirement of the proposed iris encoding and matching strategy, a geometric key 

iris encoding scheme was investigated. Such geometric key iris encoding scheme 

produces binary iris templates by using computationally efficient and fast 

comparison operation on locally assembled image features. The generated binary iris 

templates are compact in size and allow efficient computation of their similarity 

using Hamming distance. The geometric key encoding scheme reported promising 

recognition results by providing comparison with several competing approaches [48], 

[56], [66], [61], [62], on the UBIRIS.v2, FRGC and CASIA.v4-distance databases, 

which reported the average improvements of 36.3%, 32.7% and 29.6% in equal error 

rates, respectively. We had shown experimentally that the computationally attractive 

geometric key encoding scheme can be a solution to address the complexity of the 

global iris encoding strategy presented earlier, and yet reported comparable 

recognition performance.  
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8.1 Contributions 

 

Figure 8.1: Contribution highlights of this thesis. 

 

This thesis makes several important contributions, as highlighted in Figure 8.1. 

Firstly, an effective iris segmentation approach was developed which can 

automatically extract the iris regions from eye images acquired at-a-distance and 

under less constrained environments. The proposed iris segmentation approach can 

simultaneously works on visible and NIR illumination eye images. Secondly, a 

global iris bits stabilization encoding strategy was proposed such that the iris bits 

which are highly consistent are rewarded while the inconsistent iris bits are 

penalized. Thirdly, a localized encoding strategy by exploiting the phase information 

of the ZMs was proposed. Such ZMs phase-based encoding strategy can be more 

tolerant to the imaging variations in the eye images acquired at-a-distance and under 

constrained environments. Fourthly, the strategy to jointly exploit the iris and 

periocular features was developed to further improve the recognition performance of 

the at-a-distance iris recognition. Lastly, a computationally attractive iris encoding 

and matching strategy was proposed. 
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8.2 Future Work 

 

As future work, we hope to develop more effective iris encoding and matching 

algorithms which can be more accurate to perform iris recognition at-a-distance and 

under less constrained environments. One possible improvement works is to 

consider generation of dynamic geometric keys with different key lengths, block 

sizes and key generation functions for feature encoding which can be more adaptive 

to each enrolled user.  

Another possible aspect for performance improvement is to consider 

different fusion strategy, for example, feature level fusion [129]. The feature set 

contains richer information extracted from the raw biometric data than the matching 

score and therefore it is expected to provide better recognition accuracy. However, 

template alignment issue, particularly the iris, has to be addressed before performing 

the feature level fusion [130]. 

Multispectral iris recognition can be a potential aspect to provide more 

accurate recognition accuracy [131]. Such multispectral strategy may better reveal 

iris textural information which is more sensitive to certain spectrum and such cross-

spectral iris textural information can be further exploited to improve the recognition 

performance. Future iris recognition technologies may possibly require performing 

cross-spectral matching between the NIR and visible illumination eye images. 

Therefore, development of effective matching strategies which can seamlessly 

match such heterogeneous iris data is essential. 

There are still several remaining issues which require further research effort 

to be devoted, especially for the visible illumination eye images. Recent studies have 

shown that the effect of iris template aging results in increase of false non-match 

rate [132], [133]. However, it still remains uncertain how such template aging 

phenomenon can impact the recognition performance on the visible illumination eye 

images. Textured cosmetic lenses are another major problem for iris recognition 

[134], [135]. The present contact lens detection approaches have been designed to 

work for NIR eye images. Therefore, further research effort is still required to study 

the applicability of such approaches on the visible illumination eye images. 
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