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Abstract 
 

Data mining is concerned with the discovery of hidden patterns in large databases. Among 

the different types of patterns that can be discovered, “association” patterns are the most 

important. This is because the discovery of association patterns can lead more easily to the 

discovery of other patterns for such data mining tasks as classification, clustering or 

prediction. Given a set of data collected over a certain time period and over a number of 

different locations, existing data mining approaches do not provide suitable tools to allow 

association patterns in such a data set to be easily discovered. The objective of this study is 

therefore to develop new approaches so that patterns that changes from time-period to time-

period and from location to location can be discovered. Making use of techniques in meta-

mining, probability and statistics, and such techniques as machine learning and fuzzy logic, 

our objective is to develop data mining techniques capable of discovering such patterns in 

spatio-temporal databases. 

Over the past few years, a considerable number of studies have been made on market 

basket analysis. Market basket analysis is a useful method for discovering customer 

purchasing patterns by extracting association from stores’ transaction database. In many 

business of today, customer transactions can be made in many different geographical 

locations round the clock, especially after e-business and online shops have become 

prevalent. The traditional methods that consider only the association rules of an individual 

location or all locations as a whole are not suitable for such a multi-location environment. 

Understanding and adapting to changes of customer behavior from time to time and from 

place to place is an important aspect for a company having transactions collected from 

multi-locations, for example those running business-to-customer (B2C) business, to survive 

in continuously changing environment. If applied to B2C business, the methodology 

developed in this study allow companies to detect changes of customer behavior 

automatically from customer profiles, in which customers may come from different places 

over the world, and sales data may be inputted at different time snapshots.  

There are three main contributions in the thesis. Firstly, we design a novel and efficient 

algorithm for mining spatio-temporal association rules which have multi-level time and 

location granularities, in spatio-temporal databases. From the perspective of business 

strategists, the discovered rules also must be readily interpreted for easy reading and further 

usage, in order to be useful. However, different executive personnel will require different 

interpretation of the rules in different usage scenarios. And under different granularities of 
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time-and-place, the knowledge will be different. The goal of our work is to satisfy such 

dynamic needs. In this study, we develop an algorithm that can find association rules under 

different granularities of time-and-place to satisfy the different demands of different 

decision makers. Unlike Apriori-like approaches, our method scans the database at most 

twice. By avoiding multiple scans over the target database, our method can reduce the 

runtime in scanning database. 

Secondly, we use membership functions to construct fuzzy calendar-map patterns 

which represent asynchronous time periods and locations. With the use of fuzzy calendar-

map patterns, we can discover fuzzy spatio-temporal association rules which are defined as 

association rules occur in asynchronous time periods and/or locations. 

Thirdly, we propose to mine a set of rules from the discovered collection of spatio-

temporal rule sets.  These meta-rules, rules about rules, represent the kind of knowledge that 

few existing data mining algorithms have been developed to mine for.  In this study, we 

define problems in discovering the underlying regularities, differences, and changes hidden 

in spatio-temporal rule sets and propose a new approach, meta-mining spatio-temporal 

patterns, which mines previous spatio-temporal association rule mining results to discover 

these underlying regularities, differences, and changes. 

Experimental results have shown that our methods are more efficient than others, and 

we can find fuzzy spatio-temporal association rules satisfactorily and so as meta-rules 

among the set of rules discovered. 
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Chapter 1 

Introduction 
 

1.1 Overview of Data Mining 
Data mining is concerned with the nontrivial extraction of implicit, previously unknown, 

and potentially useful information from data [Frawley, Piatetsky-Shapiro, and Matheus 

1991].  It involves the search for patterns of interest in a particular representational form or 

in a set of such representations (e.g., decision trees, association rules) [Fayyad et al. 1996a]. 

Data mining is also an important step in what is called knowledge discovery in 

databases (KDD) [Fayyad et al. 1996a] and, indeed, many researchers use the term data 

mining to mean KDD (e.g., [Agrawal et al. 1996; Han et al. 1996; Imielinski, Virmani, and 

Abdulghani 1996; Silberschatz, Stonebraker, and Ullman 1996]).  In this thesis, we use data 

mining as a synonym for KDD. 

To quote from [Matheus, Chan, and Piatetsky-Shapiro 1993], “the grand challenge of 

data mining is to collectively handle the problems imposed by the nature of real-world 

databases, which tend to be dynamic, incomplete, redundant, noisy, sparse, and very large.”  

Many interesting studies of data mining have been carried out, drawing upon methods, 

algorithms, and techniques from fields as diverse as machine learning, pattern recognition, 

database systems, statistics, artificial intelligence, knowledge acquisition, and data 

visualization (see, e.g., [Fayyad et al. 1996b; Piatetsky-Shapiro and Frawley 1991]). 

Data mining techniques can be classified according to the kind of patterns they mine 

for.  Among the different types of patterns that can be mined, association patterns are the 

most important. This is because the discovery of association patterns, which are presented in 

IF-THEN rules, can lead more easily to the discovery of other patterns for such data mining 

tasks as classification, clustering or prediction. The mining of association rules aims at 

discovering interesting relationships or associations among different attribute values 

[Agrawal, Imielinski, and Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 

1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and Swami 1995; Mannila, 

Toivonen, and Verkamo 1994; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, 

and Navathe 1995; Srikant and Agrawal 1995, 1996a].  A Boolean association rule involves 

binary attributes; a generalized association rule involves attributes that are hierarchically 

related; a quantitative association rule involves attributes that can take on quantitative or 
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categorical values.  An example of an association rule is “90% of transactions that contain 

bread also contain butter; 3% of all transactions contain both of these items.”  The 90% is 

referred to as the confidence and the 3%, the support, of the rule.  The discovered 

association rules can be used later for human examination and machine inference, e.g., 

classification [Liu, Hsu, and Ma 1998]. 

1.2 Weaknesses of Traditional Approaches 

The traditional methods for mining association rules can discover knowledge about inter-

relationship among different objects. However, the methods search transactions for 

knowledge without individually looking at the spatial and temporal domains in the database. 

In our daily life, people located at different places will plan for their activities based on 

different seasons, weekly cycle or different festivals of the places where they are. Hence, if 

the nature of different time intervals at different places is taken into consideration, we 

should be able to discover more interested association rules. For example, if we look at a 

database of transactions in an international supermarket, say WalMart, we may find that 

turkey and pumpkin pie are seldom sold together. However, if we only look at the 

transactions in the week before Thanksgiving in the United States, we may discover that 

most transactions contain turkey and pumpkin pie, i.e., the association rule “turkey ⇒ 

pumpkin pie” has high support and confidence in the transactions that happen in the United 

States in the week before Thanksgiving. This suggests that we may discover different 

association rules if different time intervals and locations are considered individually. Some 

association rules may hold during some time intervals and locations but not the others. 

Discovering time intervals, locations as well as the association rules that hold during the 

time intervals and locations may lead to useful information.  

1.3 Multiple Levels of Time and Place 

Different decision makers at different corporal levels may have different demands for rules 

interpretation from different level of time and place. That is, different granularities of time-

and-place will have different knowledge for different executives. For example, assume that 

the base unit time is one day and the base unit place is a single location. From the 

perspective of a strategist, he or she may not probably care about what kind of rules would 

happen in a single location on a daily basis. This kind of rules is too fragmented to interpret. 

For example, a CEO of a global company may want to know what kind of rules would be 

held in a whole year in every branch, whereas a regional manager concerns about only the 

rules that are hold in every season in a particular country. Different levels of decision 
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makers would have different demands for rules interpretation and different granularity of the 

pair of time-and-place will have different knowledge for different strategists. In order to 

meet the different demands of those involved in strategic and tactical decision making, we 

need to find the rules in every possible combination of time and place, that is, we need to 

have the ability to find the rules not only in (March, L.A.) but also in (Spring, America). In 

the cause of finding the rules in a general context (the context here means the pair of time-

and place), we use the concept hierarchy in this study to allow the rules or data to be 

handled at varying levels of abstractions. We study the way to establish the content of time 

hierarchy and place hierarchy. Hence, the method we proposed in this thesis not only can 

discover association rules correctly in a multi-location environment,  but also can represent 

the rules in different granularities of time-and-place, which can satisfy different decision 

making with different demands by using the concept hierarchy. 

1.4 Uncertainty in Spatio-temporal Requirements 
Mined spatio-temporal patterns from spatio-temporal databases are subject to the location 

and time requirements specified by users. The spatio-temporal requirements are often vague. 

Temporal requirements specified by human beings tend to be ill-defined or uncertain. 

For example, people in the United States usually buy turkey and pumpkin together at time 

close to Thanksgiving. The term “close to” is ill-defined and uncertain. To deal with this 

kind of uncertainty, we borrow the fuzzy set theory [Mitra, Pal, and Mitra 2002] and 

propose fuzzy calendar algebra to allow users to describe desired temporal requirements 

easily and naturally in term of fuzzy calendars. Operations that reflect the way in which 

people reason about temporal specifications in daily life are provided. Users can define 

complicated calendars with multiple time granularities and different preferences. Different 

time intervals can have different weights corresponding to their matching degrees to the 

specified fuzzy calendar. This can be of great help for users to discover knowledge in the 

time intervals that are of interest to them. 

Likewise, there exists some vagueness in spatial requirements. There are a few reasons 

for the vagueness. First, the boundary of a place is sometimes not very clearcut. For 

example, it may be hard to classify Mei Foo as in the New Territories West or in the Sham 

Shui Po area. In this way, when a sales pattern is discovered in a supermarket in Mei Foo, it 

is difficult for us to make a strong conclusion that the sales pattern should or should not 

count for a sales pattern in the New Territories West area. Second, a phenomenon or a 

pattern appears in a location will have an impact on the locations nearby, e.g. the fashion of 

clothing and dressing in Taiwan will influence that in Hong Kong. Hence, at the very end of 
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the occurrence of the phenomenon, we may hardly define the exact area that the 

phenomenon involves. In most of the cases, we can only say the phenomenon was 

discovered close to some locations. Third, some frequent patterns discovered are related to 

human behaviour, e.g. those found in mobile computing. However, humans have been 

continuously moving. Therefore, these patterns involving human behaviour do not occur 

exactly at a single location.  

1.5 Rules about Rules 
This thesis contributes to the problem definitions of mining the underlying regularities, 

differences, and changes hidden in rule sets and the introduction of a new approach to 

dealing with the problems. 

Given a collection of rule sets discovered by existing data mining techniques (e.g., 

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 

1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and 

Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, 

Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and 

Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996a]), we 

propose a meta-mining approach to discovering a set of rules in the rule sets.  These rules 

are called meta-rules because they are rules about rules. 

1.5.1 Mining Regularities in Rule Sets 

Meta-mining is able to discover the underlying regularities hidden in rule sets.  Let us take 

as an example an interstate or international company.  It consists of a number of offices at 

different geographical locations and each office (or group of offices) maintains its own 

database [Bright, Hurson, and Pakzad 1992].  In general, local decisions are made at the 

branches of the international company, whereas global decisions are made at the head office 

and the branches contribute to these decisions in various ways.  To facilitate effective 

decision making in such an environment, many international companies need to mine 

multiple data sets throughout their branches [Zhang, Wu, and Zhang 2003; Zhang, Zhang, 

and Wu 2004].  To do so, one can extract relevant data from multiple data sets to amass a 

single data set and apply existing data mining techniques (e.g., [Agrawal et al. 1992; 

Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and 

Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 

1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and 

Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; 

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, 
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Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996a; Zhang, Ramakrishnan, and 

Livny 1996]) to the single data set [Liu, Lu, and Yao 1998; Ribeiro, Kaufman, and 

Kerschberg 1995; Wrobel 1997; Yao and Liu 1997; Zhong, Yao, and Ohsuga 1999]. 

However, this approach is unable to distinguish the relationships supported by a 

number of tuples in many data sets from those supported by many tuples in only a few data 

sets.  For example, a data mining algorithm may discover a rule stating that “if a customer is 

married and middle-aged, then he/she gets a home mortgage.”  This rule may be supported 

by many tuples in the data sets in only one or two branches.  The decisions made by the 

head office based on this rule may therefore be good for these one or two branches; but they 

may not be beneficial or may even be harmful to the company as a whole. 

To discover the regularities in common in the branches’ data sets, we proposed to use a 

meta-mining approach.  Given the rule sets discovered in the data sets, it mines a set of 

meta-rules from them.  These meta-rules represent the regularities hidden in the rule sets, 

which in turn reflect the regularities embedded in the data sets.  Based on the meta-rules 

discovered, the head office can better make global decisions that are beneficial to the whole 

company. 

Realistically, the meta-mining of regularities in rule sets is not limited to use in 

international companies.  Any public or private organization that maintains a collection of 

data sets or a data set with implicit groupings in terms of geographical locations, time 

periods, etc. can benefit from meta-mining.  For example, meta-mining techniques can be 

applied to the rule sets discovered from the data sets collected in different outlets operated 

by a supermarket chain, different shops operated by an apparel retailer, or different post 

offices or public libraries operated by a government. 

1.5.2 Mining Differences in Rule Sets 

Discovered meta-rules can also represent the differences in rules sets.  A meta-rule is 

differential if it is supported by only a few rule sets, representing a relationship that holds in 

those few rule sets but not in the others.  It therefore distinguishes these rule sets from the 

others.  In other words, the meta-rule represents one of the distinctive characteristics of 

these rule sets and in turn reflects the distinctive characteristics of the corresponding data 

sets. 

For example, let us consider an apparel retailer operating a number of shops at different 

geographical locations.  To maintain its brand, the retailer has each shop supply a basic 

range of apparel.  The differential meta-rules are useful for the retailer as it allows the 
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retailer to identify the differences in the apparel sold in its shops while each shop, in 

addition to providing the basic clothing range, caters to the preferences of its own customers. 

1.5.3 Mining Changes in Rule Sets 

The ability to detect and adapt to changes is critical to the success of many individuals and 

business organizations as it allows decision makers to take the changes into consideration 

and even take advantage of the changes when they make decisions.  Knowing how 

circumstances will change enables a business organization to not only provide new products 

and services to satisfy the changing needs of its customers, but also to design corrective 

actions to prevent or delay undesirable changes. 

Existing data mining techniques (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and 

Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Bradley, 

Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 1996a; Ganti et al. 

1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, 

Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 

1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; 

Srikant and Agrawal 1995, 1996a; Zhang, Ramakrishnan, and Livny 1996]) aim at 

producing accurate models of the real world in an efficient manner.  They are very useful 

for human users to better understand the problem domains and for prediction.  However, 

regardless of how accurately a model predicts, it can only predict based on historical data.  

An approach to this data that does not take into account the information about change that is 

hidden in its patterns is not optimal, especially when the discovered models are used for 

classification.   

In this thesis, we also study the problem of mining changes in the context of production 

rules.  Given a rule associated with a sequence of interestingness measures (e.g., the 

Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence [Agrawal, 

Imielinski, and Swami 1993b], conviction [Brin et al. 1997b], the chi-squared measure [Brin, 

et al. 1997a], the J-measure [Smyth and Goodman 1992], the adjusted residual and weight 

of evidence [Chan and Wong 1990, 1991], etc.) in different time periods, we propose to 

mine a set of meta-rules to represent the regularities governing how a rule changes over time.  

The change in the rule, in turn, reflects the change in the underlying characteristics hidden 

in the data.  Human users can use the discovered meta-rules to examine the rule and to 

predict how the rule will change. 
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1.6 Technical Challenges 
The discovery of association rules in spatio-temporal databases can be a very complicated 

problem. To deal with it effectively, one has to face a number of technological challenges. 

To quote from [Matheus, Chan, and Piatetsky-Shapiro 1993], “the grand challenge of data 

mining is to collectively handle the problems imposed by the nature of real-world databases, 

which tend to be dynamic, incomplete, redundant, noisy, sparse, and very large.” Firstly, 

data collected in many application areas are usually very noisy. There can be many missing 

values in a database and there can also be many erroneous and inconsistent data values. An 

effective association discovery tool needs to be able to discover patterns in the midst of very 

noisy data. In the presence of such data, one also has to find a very good definition for what 

an “interesting pattern” is. Clearly, such patterns will not appear to be deterministic in a 

database and if the pattern is not deterministic, a definition for a probabilistic 

“interestingness” measure is needed. As the data that we deal with are spatio-temporal in 

nature, there is also a need for a meta-pattern interestingness measure. The reason why this 

is needed is that, there can be “patterns of patterns” in such a way that patterns can actually 

be discovered among the patterns that are discovered on different locations within different 

time periods. As data can be fuzzy, it should be noted that patterns or meta-patterns may 

also be fuzzy. In addition to a probabilistic interestingness measure, it should be noted that 

we may also require a fuzzy interestingness measure for the discovery of fuzzy patterns.  

Furthermore, dealing with the interaction of space and time is complicated by the fact 

that they have different semantics. We cannot just treat time as another spatial dimension, or 

vice versa. For example, time has a natural ordering while space does not. Allied with this, 

we also need to deal with these spatio-temporal semantics effectively. This includes 

considering the effects of area and the time interval width not only on the the patterns we 

mine, but also in the algorithms that find those patterns. Besides, large volume, diverse 

format, multi-phases, high dimension and multi-scale are well-known complexities of 

spatio-temporal data. In such data, attribute values of temporally and/or spatially 

neighboring objects are typically correlated. This severely enlarges the search space in 

finding frequent patterns. Even worst, operations on spatial data are very expensive as 

spatial objects are computationally costly. Constructed from lines, polygons, 3D surfaces 

and to name but a few, operations on spatial objects are very expensive. To manipulate them 

together with the temporal dimension will further blows up the pattern search space. 

Another major difficulty is that many data mining (DM) algorithms do not scale 

well to huge volumes of data. Spatio-temporal databases are usually relatively large 
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in volume because data are collected from multiple locations continuously. A 

scalable DM algorithm is characterized by linear increase of its runtime with the 

linear increase of the number of examples in the data, and within a fixed amount of 

memory. Most of the DM algorithms are not scalable, but there are several examples 

of tools that do scale well. They include clustering algorithms [Zhang et al. 1996; 

Bradley et al. 1998; Ganti et al. 1999a], ML algorithms [Shafer et al. 1996; Gehrke 

et al. 1998], and association rule algorithms [Agrawal and Srikant 1994; Agrawal et 

al. 1995; Toivonen 1996]. An overview of scalable DM tools is given in [Ganti et al. 

1999b]. The most recent approach for dealing with the scalability problem is the 

Meta Mining (MM) concept. MM generates meta-knowledge from the meta-data 

generated by DM algorithms [Spiliopoulou and Roddick 2000]. However, to discover 

meta-rules is not a simple process too because of the two reasons. First, some rules cannot 

be easily compared due to different rule structures. Second, even with matched rules, it is 

difficult to know what kind of change and how much change has occurred. 

1.7 Potential Application Areas 
A data mining engine capable of discovering spatio-temporal association patterns can have 

many applications in many different areas. Consider a supermarket chain that has different 

stores in different region. Suppose that transaction data are captured at each store every day, 

the ability to discover association rules in spatio-temporal data will allow us to understand if 

there are any differences in the patterns discovered from one location to another and from 

one time period to another. Such a discovery will allow us to better control inventory, 

predict sales, etc. A data mining engine capable of discovering how patterns vary across 

time and space can also be applied to evaluate the effect of public policy measures in 

education, crime control, health care, and work-force management, etc. It can also be used 

to evaluate changes in performance, standards of quality, and for customer profiling, etc. 

We suggest the more specific examples of potential applications are: 

First, in computer networking, by considering each IP packet in a computer network as 

a transaction and the attributes in the IP header as items in the transaction, we can use 

spatio-temporal association rules to represent normal network activities at different spatial 

points of network in different time periods of a day; attacks to the network may be flagged 

when the network behaves differently from its normal behaviors. 

Second, effective website personalization is at the heart of many e-commerce 

applications. To ensure that customers visiting these websites receive useful product 
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recommendations and additional personalized service, website personalization is a critical 

business strategy. Since the purchase habits of people are often governed by the time and 

location when and where they are, database techniques, including spatio-temporal data 

mining and active databases, can be effectively combined to achieve an efficient and 

scalable personalization framework. 

Third, recent advances in communication and information technology, such as the 

increasing accuracy of GPS technology and the miniaturization of wireless communication 

devices pave the road for Location-Based Services (LBS). To achieve high quality for such 

services, data mining techniques are suggested for the analysis of the huge amount of data 

collected from location-aware mobile devices. Since the two most important attributes of the 

data collected is time and location, spatio-temporal data mining techniques can be 

developed to extract interesting knowledge for LBS. 

1.8 Organization of the Thesis 
This thesis is outlined as follows. 

In Chapter 2, we will give a brief review of the previous works in spatio-temporal data 

mining, especially the mining of spatio-temporal association rules. The idea of meta-mining, 

and the application of fuzzy logic in data mining will also be introduced. 

In Chapter 3, we will formally describe the main problem that will be addressed and 

the types of spatio-temporal association rules, including fuzzy and precise rules that will be 

focused in this work. We will define three types of meta-rules. They are added rules, 

perished rules and change meta-rules. We will also define all the other terminology used in 

this thesis, including calendar-map patterns, fuzzy match ratio, support and confidence for 

our defined spatio-temporal association rules and to name but a few. 

In Chapter 4, we will explain our proposed solution to the problems defined in Chapter 

3. This includes the Spatio-temporal Apriori algorithm (an extension of Apriori, the most 

well-known association rule mining algorithm), our new algorithm that is believed to be 

better than Spatio-temporal Apriori in term of runtime. We will depict how the new 

algorithm can be fuzzified to mine fuzzy spatio-temporal association rules. At the end of the 

chapter, we will also propose some ways to mine the three types of meta-rules defined in 

Chapter 3. 

In Chapter 5, experiments with the proposed algorithms on the real and synthetic 

databases will be described. We will put emphasis on comparing our proposed spatio-
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temporal association rule mining algorithm with Spatio-temporal Apriori. We will review 

the performance of our proposed meta-mining method on mining meta-rules. We will also 

show that the proposed fuzzified approach can discover some patterns that non-fuzzy 

approach cannot discover. 

Finally, some possible future work will be discussed in Chapter 6. And we will 

conclude and discuss all our work in Chapter 7. 
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Chapter 2 

Related Work 
 

The data mining field dates back almost 20 years. However, the field of spatial data 

mining—where the spatial aspect of the data defines a relationship between every data point 

(close-to, within, north-of,…), and the field of temporal data mining—where the temporal 

aspect of the data defines a relationship between every data point (before, during,…) are 

relatively young and highly demanding. The field of spatio-temporal data mining—where 

this relationship is both defined by the spatial and temporal aspects of the data, is extremely 

challenging due to the increased search space for knowledge. Not surprisingly, there have 

only been a few attempts to extend data mining for spatio-temporal data. Although several 

of these techniques from the temporal and the spatial data mining field can be adopted for 

the task of spatio-temporal data mining, with the exception of a few [Tsoukatos and 

Gunopulos 2001; Hadjieleftheriou et al. 2003], there has been little work on the 

combination of the two. However, two directions can be identified: firstly, the incorporation 

of time into spatial data mining systems, and secondly, the incorporation of space into 

temporal data mining systems [Roddick and Spiliopoulou 1999]. It is believed that such a 

unification of spatial and temporal data mining could be highly beneficial for applications, 

in which both time and space are important. 

2.1 Knowledge Discovery and Data Mining 
Due to the automated collection of massive amount of transaction data, data mining (DM) or 

knowledge discovery (KDD) in databases, defined as the discovery of interesting, implicit, 

and previously unknown knowledge from data [Koperski, Adhikary, and Han 1996], 

received significant scientific and commercial interest in recent years.  

KDD is a process comprising of many steps, which involves data selection, data pre-

processing, data transformation, data mining (search for patterns), and interpretation and 

evaluation of patterns. The basic steps of the KDD process are presented in Figure 1 (these 

steps were defined, for example, in [Fayyad et al. 1997]. 
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Fig. 1. Basic steps of the KDD process. 

 

The steps depicted start with the raw data and finish with the extracted knowledge, 

which was acquired as a result of the KDD process. The set of data mining tasks used to 

extract and verify patterns in data is the core of the process. Data mining (DM) consists of 

applying data analysis and discovery algorithms for producing a particular enumeration of 

patterns (or models) over the data [Brunk et al. 1997]. Most of current KDD research is 

dedicated to the DM step. However, this core area typically takes only a small part 

(estimated at 15%-25%) of the effort of the overall KDD process. The additional steps of the 

KDD process, such as data preparation, data selection, data cleaning, incorporating 

appropriate prior knowledge, and proper interpretation of the results of mining, are also 

essential to derive useful knowledge from data [Gaul and Säuberlich 1999]. 

Knowledge discovered can be represented in various forms, but one common and 

intuitively easy to understand form is in terms of rules. A rule is an implication of the form 

A ⇒ B, where A and B are sets of attributes. It carries the meaning that if attributes in A take 

on certain values then with some probability attributes in B take on certain (other) values. 

Rule mining methods can be categorized into three groups based on the type and relation 

among the attributes: association rules, rules describing patterns in sequences, cluster 

characteristic or discriminant rules. 

2.1 Rule Mining in Market Basket Analysis 
The idea of mining association rules originates from the analysis of market basket data, 

which can be informally described as the discovery of intra-transaction patterns in large 

customer transaction databases was first introduced in [Agrawal, Imielinski, and Swami 

1993b]. Let I = {a1,…,an} be a set of distinct literals, called items, and let A, a subset of I, be 

called a k-itemset if |A| = k. Let D be a database of transactions T, where each transactions T 
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is a subset of I. A transaction T supports an itemset A if A is a subset of T. An association 

rule is an expression A ⇒ B, where A, B are itemsets and A∩B = {} holds. The support of an 

itemset A is the fraction of transactions T that contain the itemset. An itemset A is frequent if 

its support is above a certain minimum support threshold. The support of a rule A ⇒ B is the 

support of the itemset A ∪ B. The confidence of this rule is the fraction of the support of the 

rule and the support of A, that is the conditional probability P(B|A). The problem of mining 

association rules can be defined as finding all associations rules that have a support and 

confidence greater than a specified minimum support and confidence value. Such rules are 

often referred to as strong rules. 

Virtually all association rule mining methods decompose the problem into two phases: 

first, finding of all frequent itemsets, second, generating all frequent and confident rules 

from these frequent itemsets. It is easy to see that the search space of all itemsets is 2|I| and 

the search space of all association rules is 3|I|, although knowing all the itemsets apriori the 

later search space also reduces to 2|I|. The traversal of the exponential search space is made 

possible by the following two properties. Downward closure property of itemset support: 

All subsets of a frequent itemset must also be frequent. Downward closure property of rule 

confidence: If the rule A ⇒ B is confident then the for any X subset of B the rule A ∪ X ⇒ B 

\ X must also be confident. 

Although, after the first efficient algorithm [Agrawal and Srikant 1994] there has been 

little improvement on generating strong association rules from frequent itemset (2nd phase), 

there has been significant work on finding frequent itemsets (1st phase). One can divide 

approaches for finding frequent itemsets based on two criteria: a) by their strategy to 

traverse the search space and b) by their strategy to determine the support values of itemsets. 

Based on the first criteria today’s common approaches are either breadth-first search (BFS) 

or depth-first search (DFS). BFS approaches generate and test itemsets in levels, starting at 

level 1 with the trivial 1-itemsets. Candidate itemsets at the kth level are generated by 

intersecting all possible combinations of frequent (k-1)-itemsets that actually form a k-

itemset. State of the art BFS approaches are the Apriori algorithm of [Agrawal and Srikant 

1994] and the Partition algorithm of [Savasere, Omiecinski, and Navathe 1995], DFS 

approaches, f.ex., recursively descend following the lattice defined by the itemsets. State of 

the art DFS approaches are the FP-growth algorithm of [Han, Pei, Yin 2000] and Eclat 

algorithm of [Zaki et al. 1997]. Based on the second criteria approaches can also be divided 

into two classes: a) approaches that determine the support of an itemset by directly counting 

its occurrences in the data based, or b) approaches that determine support of an itemset by 
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set intersection. In the first type of support counting approach subset generation and 

candidate lookup is typically aided by a hash tree or a similar data structure. Apriori and 

FP-growth adopt this approach. In the second type of support counting approach support 

for an itemset is represented in form of a transaction identifier list, tidlist. The identifier of a 

transaction is on the tidlist of an itemset if that itemset is contained in the given transaction. 

This type of representation of itemsets support is also referred to as vertical database layout 

in the literature. Having sorted tidlists in memory allows the efficient joining of two 

itemsets by simply intersecting their tidlists. The actual support of an itemset is the 

cardinality of its tidlist. Partition and Eclat determine itemset support based on set 

intersections. A comparison of the four methods [Hipp, Güntzer, and Nakhaeizadeh 2000] 

have revealed that the methods all have some types of data for which they perform better 

than the others, which is why we will consider all four in our project. 

The idea of mining sequential patterns also originates from the analysis of market 

basket data, which can be informally described as the discovery of inter-transaction patterns 

in large customer transaction databases was first introduced in [Agrawal and Srikant 1995]. 

In this setting transactions are associated with a unique customer identifier and a transaction 

time. A sequence is a set of temporarily ordered itemsets. A customer sequence is an 

ordered list of transactions that are associated with the same customer. A customer supports 

a sequence s if s is contained in the customer sequence for this customer. A sequence is 

frequent if its support is greater than a specified minimum support value. A sequence is 

maximal if it is not a subsequence of any other frequent sequence. The problem of mining 

sequential patterns can be defined as finding all frequent sequences. Since the set of all 

frequent sequences is a superset of the set of all frequent itemsets, sequential pattern mining 

algorithms often utilize some of the ideas proposed for the discovery of association rules, 

i.e.: are an extension of association rule mining. As examples of such extension, the 

algorithms presented in [Agrawal and Srikant 1995] use ideas presented in [Agrawal and 

Srikant 1994], and [Zaki 2001], to find maximal sequential patterns, extends the DFS 

approach for fining association rules [Zaki et al. 1997] by decomposing the original problem 

into independent, smaller sub-problems that can be solved in main memory using efficient 

lattice search techniques. 

2.2 Spatial, Temporal & Spatio-temporal Data Mining 
The rule mining tasks described so far, with the exception of transaction time in the case of 

sequential patterns, were in a sense dimensionless, that is multiple possible items were 

contained in a transaction; however, most of the data collected in databases describe events 

or objects in the physical world, which have two special attributes associated with them: 
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location and time. Despite the abundance of such data, from here on referred to as spatio-

temporal data, the number of algorithms that mine such data is few. The main reason for the 

lack of efficient algorithms is due to the exponential explosion in the search space for 

knowledge caused by the added spatial and temporal attributes. Depending on which of 

these attributes the data mining methods take into account, they can be divided into three 

groups: spatial, temporal, and spatio-temporal [Roddick and Spiliopoulou 1999; Roddick, 

Hornsby, and Spiliopoulou 2000; Roddick and Lees 2001]. The following subsections 

attempt to categorize recent, state of the art methods into these three groups. 

2.2.1 Association Rules 

Since the pioneering work of [Agrawal and Srikant 1994], association rule mining methods 

were extended to the spatial [Koperski and Han 1995; Han, Koperski, and Stefanovic 1997; 

Ester, Kriegel, and Sander 1997, Ester et al. 1998], and later to the temporal domain [Li, 

Wang and Jajodia 2000]. With the exception of [Hadjieleftheriou et al. 2003], where 

approximate methods are applied for counting entries in the database, there has been little 

work done in the spatio-temporal domain. In [Hadjieleftheriou et al. 2003] three techniques 

are proposed for answering density based queries in the spatio-temporal domain for moving 

objects. Trajectories of objects are modeled as linear functions of time in a three-

dimensional space-time grid. Two types of queries are considered: snapshot density and 

period density queries. The difficulty of the problems lies in the fact that the spatial and/or 

temporal predicates are not specified by the query, i.e., the solutions should contain all 

dense regions at a specified future time (snapshot density query) or at any time in the future 

(period density query). The three techniques that solve the problems are based on: coarse 

grids—a way of compressing the temporal dimension by merging consecutive space-time 

cells; lossy counting—an approximate method for counting the number of space-time cell 

crossings; and finally, dense cell filters—a way of efficiently summarizing dense space-time 

cells. 

2.2.2 Sequential Patterns 

The first sequential pattern mining algorithms were first introduced in [Agrawal and Srikant 

1995] and further improved in [Srikant and Agrawal 1996b; Zaki 2001; Mannila, Toivonen, 

and Verkamo 1997]. Spatial extension to these methods, to find spatio-temporal sequential 

patterns for the task of weather prediction, were added in [Stolorz et al. 1995] and later 

improved in [Tsoukatos and Gunopulos 2001]. In [Tsoukatos and Gunopulos 2001] an 

efficient DFS algorithm is given to discover spatio-temporal sequential patterns. The 

algorithm does not enumerate all frequent sequences, but rather aims at discovering only the 
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maximal frequent sequences. This pruning of the search space compensates for the I/O cost 

incurred from the repeated database scans results in an overall efficient algorithm that can 

be easily extended to discover sequential patterns at multiple spatial granularities. Even 

though the method presented efficiently discovers spatio-temporal sequential patterns for 

weather prediction it is currently unclear whether it is applicable for LBS. While in the 

former case one seeks relationships between time-varying attributes for fixed locations 

(temperature, pressure, etc…), in the later case relationships between rather stable attributes 

(age, sex, income, interest, etc…) for objects with time-varying location is sought for. 

2.2.3 Cluster Characteristics or Discriminant Rules 

Cluster characteristic or discriminant rules associate objects belonging to a cluster to some 

attributes with some probability. While clustering has been extensively studied in the past 

decades, spatial clustering and clustering in the presence of obstacles has only recently 

received much attention [Indulska and Orlowska 2002; Guo, Peuquet, and Gahegan 2002; 

Ng and Han 2002; Tung, Hou, and Han 2001; Estivill-Castro and Lee 2000; Zhang, Hsu, 

and Dayal 2000; Povinelli 2000; Tung et al. 2000]. A general approach in spatial data 

mining is to apply generalization techniques to spatial and non-spatial data to generalize 

detailed spatial data to higher levels and study the general characteristics and data 

distributions at these levels [Koperski, and Han 1995]. Generalization has been incorporated 

into spatial clustering in [Lu, Han, and Ooi 1993; Ng and Han 1994] resulting in two 

variants: spatial dominant generalization and non-spatial dominant generalization. Spatial 

dominant generalization focuses on discovering non-spatial characterizations of spatial 

clusters, while nonspatial dominant generalization focuses on spatial clusters existing in 

groups of non-spatial objects. It is not clear whether the spatial dominant and/or the non-

spatial dominant method can be extended to include the time dimension in a straight forward 

manner, but the lack of publications seems to indicate that this has never been tried before. 

Generalization/concept hierarchies have also been used to identify discriminating concepts 

between groups of spatial objects [Knorr and Ng 1996a-b]. 

2.3 Supervised Learning for Data Mining 
All of the above discussed methods are unsupervised learning methods, which try to extract 

“interesting” knowledge about the observable attributes. While there are several measures 

for interestingness [Tan, Kumar, and Srivastava 2002], the measure of “usefulness” can only 

be defined in terms of an objective function w.r.t some outcome variable or attribute. The 

task of extracting knowledge from large samples of observable attributes in the presence of 

an objective function is referred to as supervised learning in the literature [Hastie, Tibshirani, 
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and Friedman 2001]. While there are numerous, sophisticated supervised learning methods 

that approximate any desired objective function, several simple methods remain popular. 

The popularity of these methods is due to several reasons. Firstly, they are simple in 

knowledge representation and hence are easily understood even by non-experts. Secondly, 

they learn to approximate the objective function in a computationally efficient way. Finally, 

they are found to be very robust and generalize well for previously unseen examples. 

Regression trees are one of the oldest and most used of these simple methods. They try 

to partition feature space defined by the observable attributes into a set of rectangles, and 

then fit a simple model to each one. Popular tree building methods are CART, ID3, C4.5 

and C5.0 [Hastie, Tibshirani, and Friedman 2001].  

Naïve Bayes, another simple but popular method for supervised learning for 

classification, constructs a probabilistic model to predict the class attribute based on the 

observable attributes. Since estimating the joint probabilities of all possible combinations of 

observable attribute outcomes given the class attribute requires an enormous amount of 

samples, the model makes the naïve assumption that the observable attributes are 

conditionally independent given the class attribute. Hence, the learning of the model is 

reduced to estimating the frequency of each observable attribute outcome given the class 

attribute. The model can be used for classification by turning around the class conditional 

probability estimates of observable attributes using the Bayes theorem. Bayesian networks 

try to discover probabilistic causal relationship between observable and class attributes. 

While the causal relationships are attractive to analysts, their estimation requires large 

number of observations and is computationally less efficient.  

2.4 Fuzzy Logic in Data Mining 
If humans describe objects, they effectively use linguistic terms like, for instance, small, old, 

long, fast. However, classical set theory is hardly suited to define sets of objects that satisfy 

such linguistic terms. Let us, for examples, assume a person being assigned to the set of tall 

persons. If a second person is only insignificantly smaller, it should also be assigned to this 

set, and thus it seems reasonable to formulate a rule like “a person who is less than 1mm 

smaller than a tall person is also tall” to define our set. However, if we repeatedly apply this 

rule, obviously persons of any size will be assigned to the set of tall persons. Any threshold 

for the concept tall will be hardly justifiable. On the other hand, it is easy to find persons 

that are tall or small, respectively. Modeling the typical cases is not the problem, but the 

penumbra between the concepts can hardly be appropriately modeled with classical sets. 
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2.4.1 Conception of Fuzzy Logic 

The main principle of fuzzy set theory is to generalize the concept of set membership 

[Zadeh 1965]. In classical set theory a characteristic function 
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defines the memberships of objects ω ∈ Ω to a set A ⊂ Ω. In fuzzy set theory the 

characteristic function is replaced by a membership function 
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that assigns numbers to objects ω ∈ Ω according to their membership degree to a fuzzy set 

M ⊂ X. A membership degree of one means that an object fully belongs to the fuzzy set, 

zero means that it does not belong to the set. Membership degrees between zero and one 

correspond to partial memberships. 

 

 

Fig. 2. Examples of typical fuzzy sets. 

 

Membership degrees can be used to represent different kinds of imperfect knowledge, 

including similarity, preference, and uncertainty. In fuzzy classification rules, fuzzy sets are 

used to model similarity between attribute values and prototypes, often described by 

linguistic terms. On the real scale, very common fuzzy sets are so-called fuzzy numbers (or 

fuzzy intervals) that assume a value of one for a single value a ∈ ℛ (or interval [a, b] ⊂ ℛ), 

and have monotonously decreasing membership degrees with increasing distance from this 
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core. Fuzzy numbers can be associated with linguistic terms like, for example, 

“approximately a”. In fuzzy rule based systems, typically parameterized membership 

functions are used, where these are in most cases either triangular, trapezoidal, or Gaussian 

shaped (cf. Figure 2): 
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If the complete input range is covered by overlapping fuzzy sets, this is called fuzzy 

partition. If their number is sufficiently small, the fuzzy sets M are usually associated with 

linguistic terms, e.g. AM ∈ {small, medium, large}. In the following, fuzzy sets M, their 

corresponding fuzzy membership functions μM and the associated linguistic terms AM will be 

used interchangeably, where the correspondence is clear. 

2.4.2 Application of Fuzzy Logic 

In data mining, regardless of how the values of continuous attributes, e.g. height, size, 

distance, temporal proximity and the like, are discretized, the intervals may not be concise 

and meaningful enough for human users to easily obtain non-trivial knowledge from the 

discovered relationships.  To better handle continuous data, the use of fuzzy sets for data 

mining has recently been proposed in the literature [Mitra, Pal, and Mitra 2002].  The 

resilience to noises and the affinity with the human knowledge representation make fuzzy 

sets to be used in many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 2003; 

Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and 

Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow 

1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999; 

Yager 1991]). 

Linguistic summaries introduced in [Yager 1991] express knowledge using a linguistic 

representation that is natural for human users to comprehend.  An example of a linguistic 

summary is the statement “about half of the people in the database are middle-aged.”  

However, no algorithm was proposed for generating linguistic summaries in [Yager 1991].  

Recently, the use of an algorithm for mining association rules for the purpose of linguistic 

summaries has been studied in [Kacprzyk and Zadrozny 2001].  This technique extends 

AprioriTid [Agrawal and Srikant 1994], a well-known algorithm for mining association 

rules, to handle linguistic terms (fuzzy values).  An attribute is replaced by a set of artificial 

attributes (items) so that a tuple supports a specific item to a certain degree, which is in the 
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range from 0 to 1.  Given two user-specified thresholds, threshold1 and threshold2, an item 

or an itemset (i.e., a combination of items) is considered interesting if its fuzzy support is 

greater than threshold1 and it is also less than threshold2.  Although this technique is very 

useful, many users may not be able to set the thresholds appropriately. 

In addition to linguistic summaries, an interactive process for the discovery of top-

down summaries, which utilizes fuzzy is-a hierarchies as domain knowledge, has been 

described in [Lee and Kim 1997].  This technique aims at discovering a set of generalized 

tuples, such as <technical writer, documentation>.  In contrast to association rules, which 

involve the implications between different attributes, linguistic summaries and generalized 

tuples only provide the summarization on different attributes.  The idea of implication has 

not been taken into consideration and hence these techniques are not developed for the task 

of rule discovery. 

Furthermore, the applicability of fuzzy modeling techniques to data mining has been 

discussed in [Hirota and Pedrycz 1999].  Given a relational table, X, and a context variable, 

A, the context-sensitive fuzzy clustering method reveals the structure in X in the context of A.  

Since this method can only manipulate continuous attributes, the values of any discrete 

attributes are first encoded into numeric values.  The context-sensitive fuzzy clustering 

method is then applied to the encoded data to induce clusters in the context of A.  Although 

the encoding technique allows this method to deal with discrete attributes, the distances 

between the encoded numeric values, which do not possess any meaning in the original 

discrete attributes, are used to induce the clusters.  Therefore, the associations that are 

concerned with these attributes, which are discovered by the context-sensitive fuzzy 

clustering method, may be misleading. 

2.5 Meta Mining 
Meta-mining is concerned with mining previously discovered patterns, which are typically 

represented in the form of production (if-then) rules [Au and Chan 2002a, 2002b, 2005; 

Roddick and Spiliopoulou 2002; Spiliopoulou and Roddick 2000; Kurgan and Cios 2004].  

It can be used to discover many useful patterns that existing data mining techniques (e.g., 

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 

1996; Agrawal and Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 

1996; Cheung et al. 1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; 

Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and 

Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; 

Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996a; Zhang, Ramakrishnan, 
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and Livny 1996]) are not developed to mine for.  These patterns are represented in the form 

of production rules and they are called meta-rules because they are rules about rules.  The 

discovered meta-rules are arguably closer to the forms of knowledge that might be 

considered interesting [Roddick and Spiliopoulou 2002].  For example, the meta-rule “High 

Income is becoming more associated with Mercedes Benz Ownership” is arguably more 

interesting than the rule “High Income is associated with Mercedes Benz Ownership.” 

Although meta-mining is an important problem, it has received little attention in the 

literature.  To our best knowledge, in addition to our previous work [Au and Chan 2002a, 

2002b, 2005], this problem has only been studied in [Spiliopoulou and Roddick 2000; 

Kurgan and Cios 2004]. 

A framework for analyzing data mining results, called higher order mining, has been 

proposed in [Spiliopoulou and Roddick 2000].  In this framework, a first order rule is a rule 

discovered in a data set, whereas a second order rule is a sequence of first order rules 

discovered in different data sets.  Given a second order rule, the interestingness measures 

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence 

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997b], the chi-squared 

measure [Brin et al. 1997a], the J-measure [Smyth and Goodman 1992], the adjusted 

residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first order rules 

can be considered as a time series.  One can then apply time series analysis (e.g., ARIMA 

[Box, Jenkins, and Reinsel 1994]) to analyze the time series.  Some of the first order rules of 

a second order rule may not hold in the corresponding data sets because their interestingness 

measures may fall below the user-specified thresholds, for example.  The time series may 

therefore contain missing values.  However, time series analysis is not developed to deal 

with missing values.  Furthermore, the discovered patterns are embedded in the parameters 

of the statistical model constructed and hence they are unnatural for human users to 

comprehend. 

This framework has also been used in a meta-mining system proposed in [Kurgan and 

Cios 2004] to generate data models from already generated data models.  The system 1) 

divides a data set into a number of subsets; 2) generates a set of rule from each data subset 

using a supervised learning algorithm; and 3) mines a set of (meta-) rules from the rule sets 

using the same algorithm.  The discovered meta-rules can then be used for classification.  

The experimental results reported in [Kurgan and Cios 2004] show that the performance of 

the meta-rules discovered from the already discovered rule sets is a little inferior to that of 

the rules discovered from the data sets in terms of classification rate. 
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 [Spiliopoulou and Roddick 2000] is concerned with revealing changes in rule sets, 

whereas [Kurgan and Cios 2004] aims at discovering regularities in rule sets.  None of them 

is developed to uncover all of the regularities, differences, and changes. 

A related, but not directly applicable, work is meta-learning [Prodromidis, Chan, and 

Stolfo 2000].  Given a collection of data sets or data subsets, it runs a supervised learning 

algorithm or different learning algorithms on each of them.  It then combines the predictions 

of the learned classifiers to produce a meta-classifier by recursively learning arbiter and 

combiner models in a bottom-up tree manner [Prodromidis, Chan, and Stolfo 2000].  An 

arbiter plays the role as a judge whose own prediction is used if the participating classifiers 

cannot reach a consensus decision.  A combiner can further be classified as class-combiner, 

class-attribute-combiner, and binary-class-combiner.  In a class-combiner, the meta-level 

training instances consist of the correct classification and the predictions; in a class-

attribute-combiner, the instances are formed as in a class-combiner with the addition of the 

attribute vectors; and a binary-class-combiner, the instances are composed in a manner 

similar to that in a class-combiner except that each prediction has l binary predictions where 

l is the number of classes [Prodromidis, Chan, and Stolfo 2000].  An example of the patterns 

revealed by meta-learning is “given a record, if classifier 1 classifies it into class A and 

classifier 2 classifies it into class B, then it is classified into class A.”  Meta-learning indeed 

is not developed to reveal the underlying patterns hidden in the classifiers. 

2.5.1 Mining Regularities in Multiple Data Sets 

For an interstate or international company, which comprises a number of offices at different 

geographical locations and has each office (or group of offices) to maintain its own database, 

to better make decisions, it needs to mine multiple databases throughout their offices [Zhang, 

Wu, and Zhang 2003].  However, existing data mining techniques (e.g., [Agrawal et al. 

1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal 

and Srikant 1994, 1995; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; 

Cheung et al. 1996a; Ganti et al. 1999b; Han, Dong, and Yin 1999; Han and Fu 1995; 

Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 

1994, 1995; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; 

Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and 

Agrawal 1995, 1996a; Zhang, Ramakrishnan, and Livny 1996]) are developed to handle a 

single database and they are not directly applicable to mining multiple databases. 

Recently, several techniques for data mining in multiple databases, including [Liu, Lu, 

and Yao 1998; Ribeiro, Kaufman, and Kerschberg 1995; Wrobel 1997; Yao and Liu 1997; 
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Zhong, Yao, and Ohsuga 1999], have been proposed in the literature.  These multi-database 

mining techniques typically involve 1) selecting relevant data from multiple databases; 2) 

extracting the selected data to amass a single database; and 3) applying existing data mining 

techniques, such as association rule mining (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and 

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995, 

1996a]), classification (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a; 

Lu, Setiono, and Liu 1995; Mehta, Agrawal, and Rissanen 1996; Shafer, Agrawal, and 

Mehta 1996]), and clustering (e.g., [Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 

1996; Ganti et al. 1999b; Zhang, Ramakrishnan, and Livny 1996]), to the single database. 

They can therefore discover only the same kind of patterns as conventional (single-) 

database mining techniques.  They are unable to discover some patterns such as “in general, 

if a customer is married and middle-aged, then he/she gets a home mortgage.”  They also 

cannot discover such patterns as “in an exceptional manner, if a customer is single and 

tertiary educated, then he/she has more than one car.”  The former represents a regular 

pattern supported by many branches of an international company, whereas the latter 

represents a differential pattern supported by only a few branches. 

Recently, the mining of high-vote patterns in multiple databases has been proposed in 

[Zhang, Zhang, and Wu 2004].  Given the m databases, D1, …, Dm in the m branches of a 

company, a conventional (single-) database mining algorithm is first applied to Di to 

discover a set of patterns, Ri, i = 1, …, m.  Let R = {rj | rj ∈ R1 ∪ … ∪ Rm} and n = |R|.  The 

average voting rate, AVR, is given by: 
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The interestingness of rj, interest(rj), is then defined in [Zhang, Zhang, Wu 2004] as: 
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A pattern is high-voting if its voting rate is greater than the average voting rate and its 

interestingness is greater than or equal to a user-specified threshold [Zhang, Zhang, and Wu 

2004].  A weakness of this approach is that many users do not have any idea what the 

threshold should be.  Some useful patterns may be missed if it is set too high, whereas many 

irrelevant patterns may be found if it is set too low. 

Instead of concatenating multiple data sources to amass a single data set, a set of 

association rules can be synthesized from the association rules discovered in the data 

sources [Wu and Zhang 2003].  The supports of these association rules are estimated in 

terms of the supports of the underlying association rules and the popularities of the data 

sources.  The experimental results in [Wu and Zhang 2003] show that the synthesized rules 

are a good approximate of the rules discovered in the concatenated data set.  Although this 

synthesizing technique starts from multiple data sources, it is not developed to discover the 

regularities in the rule sets. 

2.5.2 Mining Differences in Multiple Data Sets 

In [Ganti et al. 1999a], a framework has been proposed to measure the difference between 

two data sets by building two models (one from each data set) and measuring the amount of 

work required to transform one model to the other.  It results in a real number to reflect to 

which degree the two data sets differ from each other.  However, it is not developed to 

explicitly reveal what the differences are. 

Recently, the mining of exceptional patterns in multiple databases in the context of 

association rules has been proposed in [Zhang, Zhang, and Wu 2004].  Given the m 

databases, D1, …, Dm in the m branches of a company, an association rule mining algorithm 

is first applied to Di to discover a set of patterns (i.e., association rules), Ri, i = 1, …, m.  Let 

R = {rj | rj ∈ R1 ∪ … ∪ Rm}.  The interestingness of rj, exceptional interest(rj), is defined in 

[Zhang, Zhang, and Wu 2004] as: 
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where voting(rj) is the voting rate of rj given by Equation (2.3) and AVR is the average 

voting rate calculated by Equation (2.2).  In addition to this measure, another interestingness 
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measure of rj with respect to Di is also defined in [Zhang, Zhang, and Wu 2004] as: 

 

 
i

iji
ji minsupport

minsupportrsupport
rinterest lexceptiona

−
=

)(
)( , (2.5) 

 

where supporti(rj) is the support of rj in Di and minsupporti is the user-specified minimum 

support for mining patterns in Di.  A pattern rj is exceptional if 1) its voting rate is greater 

than the average voting rate and exceptional interest(rj) is greater than or equal to a user-

specified threshold; and 2) exceptional interesti(rj) is greater than or equal to another user-

specified threshold for all i ∈ {i | rj ∈ Ri}.  Similar to the mining of high-vote patterns, a 

weakness of this approach is that many users have no idea what the thresholds should be.  If 

they are set too high, some useful patterns may be missed; but if they are set too low, many 

irrelevant patterns may be found. 

2.5.3 Mining Changes in Multiple Data Sets 

To deal with the data collected in different time periods, the maintenance of discovered 

association rules (e.g., FUP [Cheung et al. 1996b]) and active data mining [Agrawal and 

Psaila 1995] have been proposed in the literature.  Incremental updating techniques (e.g., 

FUP) can be used to update the discovered association rules if there are additions, deletions, 

or modifications of any tuples in a database after a set of association rules has been 

discovered.  Active data mining is concerned with representing and querying the shape of 

the history of parameters for the discovered association rules.  Although these techniques 

can be used to track the variations in supports and confidences of association rules, both of 

them are not developed to discover and predict rule changes. 

Although the mining of rule changes over time is an important problem, it has received 

little attention.  To our best knowledge, in addition to our previous work [Au and Chan 

2002a, 2002b, 2005], this problem has only been studied in [Liu et al. 2000], [Liu, Hsu, and 

Ma 2001], and [Spiliopoulou and Roddick 2000].  [Liu et al. 2000] is concerned with 

finding whether a decision tree built in a time period is applicable in other time periods.  

Given two data sets collected in two different time periods, this method builds a decision 

tree based on one of the data sets and then builds another based on the other data set such 

that the latter tree uses the same attribute and chooses the same cut point for the attribute as 

the former at each step of partitioning.  This method can be used to identify three categories 

of changes in the context of decision tree building: partition change, error rate change, and 

coverage change [Liu et al. 2000].  Compared to [Liu et al. 2000], instead of building a 

decision tree in the next time instance to ensure that it resembles the first, our goal is to 
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discover the changes in rules discovered in different time periods. 

Following the idea presented in [Liu et al. 2000], a method has been proposed in [Liu, 

Hsu, and Ma 2001] to find whether a set of association rules discovered in a time period is 

applicable in other time periods.  To do so, it employs chi-square test to determine whether 

there are any changes in the supports and confidences of the association rules discovered in 

different time periods.  Unlike this method, our goal is to mine (meta-) rules to represent the 

changes and to predict any changes in the future. 

If the underlying data sets are collected in different time periods, the higher order 

mining framework proposed in [Spiliopoulou and Roddick 2000] can be used to find the 

changes in the discovered rules.  Given a second order rule, the interestingness measures 

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence 

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997b], the chi-squared 

measure [Brin et al. 1997a], the J-measure [Smyth and Goodman 1992], the adjusted 

residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first order rules 

can be considered as a time series, which can be analyzed by time series analysis (e.g., 

ARIMA [Box, Jenkins, and Reinsel 1994]).  The time series may contain missing values 

because some of the first order rules of a second order rule may not hold in the 

corresponding data sets as their interestingness measures may fall below the user-specified 

thresholds, for example.  However, time series analysis is not developed to deal with 

missing values.  Furthermore, the discovered patterns are embedded in the parameters of the 

statistical model constructed.  They are therefore not natural for human users to comprehend. 
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where σ denotes the SELECT operation in relational algebra and |S| denotes the cardinality 

of set S.  

3.2 Calendar-based Patterns 
Since every transaction in the the database D has a timestamp tv, we denote timestamps with 

calendar schema in this thesis in explaining our algorithms. A calendar schema is a 

relational schema S = (Ta : Ma, Ta-1 : Ma-l, …, T1 : M1) with a valid constraint. Each attribute 

T, is a granularity name like year, month and week. Each domain M, is a finite subset of 

positive integers. The constraint valid is a Boolean function on Ma × Ma-l ×  … × M1, 

specifying which combinations of the values in Ma×Ma-l×  …×M1 are “valid”. The purpose 

is to exclude the combinations that we are not interested in or that do not correspond to any 

time intervals. For example, if we do not want to consider the weekend days and holidays, 

we can let valid evaluate to False for all such days. For brevity, we omit the domains M, 

and/or the constraint valid from the calendar schema when no confusion arises. 

Given a calendar schema S = (Ta : Ma, Ta-1 : Ma-l, …, T1 : M1), a simple calendar-based 

pattern (or calendar pattern for short) on S is a tuple of the form <ta, ta-1, …, t1>, where each 

t, is in M, or the wild-card symbol *. The calendar pattern <ta, ta-1, …, t1> represents the set-

of time intervals intuitively described by “the t1
th T1 of the t2

th T2, …, of ta
th Ta.” If t, is the 

wildcard symbol ‘*’, then the phrase “the ti
th” is replaced by the phrase “every”. For 

example, given the calendar schema (week, day, hour), the calendar pattern (*, 1, 10) means 

“the 10th hour on the first day (i.e., Monday) of every week”. Each calendar pattern 

intuitively represents the time intervals given by a set of valid tuples in Ma×Ma-l×  …×M1.  

We say a calendar pattern f covers another calendar pattern f’ in the same calendar 

schema if the set of time intervals of f’ is a subset of the set of intervals of f. For example, 

given the calendar schema (week, day, hour), (l, *, 10) covers (1, 1, 10). It is easy to see that 

for a given calendar schema (Ta, Ta-1, …, T1), a calendar pattern <ta, ta-1, …, t1> covers 

another calendar pattern <ta
’, ta-1

’, …, t1
’> if and only if for each i, 1 ≤ i ≤ a, either ti = ‘*’ or 
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ti=ti
’. 

For the sake of presentation, we call a calendar pattern with k wild-card symbols a k-

star calendar pattern (denoted fk) and a calendar pattern with at least one wild-card symbol 

a star calendar pattern. In addition, we call a calendar pattern with no wild-card symbol 

(i.e., a 0-star calendar pattern) a basic time interval if the combination is “valid”. 

3.3 Map-based Patterns 

Likewise, we denote location identifier pw in each transaction with map schema in this thesis. 

A map schema is a relational schema R = (Pc : Dc, Pc-1 : Dc-l, …, P1 : D1) with a valid 

constraint. Each attribute P, is a granularity name like counry, province/state and city. Each 

domain D, is a finite subset of the strings. The constraint valid is a Boolean function on 

Dc×Dc-l×  …×D1, specifying which combinations of the values in Dc×Dc-l×  …×D1 are 

“valid”. The purpose is to exclude the combinations that we are not interested in or that do 

not correspond to any locations. For example, if we do not want to consider the cities in 

Alaska, we can let valid evaluate to False for all such places. For brevity, we omit the 

domains D, and/or the constraint valid from the map schema when no confusion arises. 

Given a map schema R = (Pc : Dc, Pc-1 : Dc-l, …, P1 : D1), a simple map-based pattern 

(or map pattern for short) on R is a tuple of the form <dc, dc-1, …, d1>, where each d, is in D, 

or the wild-card symbol *. The map pattern <dc, dc-1, …, d1> represents the set-of locations 

intuitively described by “the P1 d1, in the P2 d2, …, in the Pc dc.” If d, is the wildcard symbol 

‘*’, then the phrase “the Pi di” is replaced by the phrase “every Pi”. For example, given the 

map schema (counry, province/state, city), the calendar pattern (United States, California, *) 

means “every city in the state California in the country United States”. Each map pattern 

intuitively represents the locations given by a set of valid tuples in Dc×Dc-l×  …×D1. 

Unlike calendar patterns, a wildcard symbol * cannot be put in the middle of two d in a 

map pattern. For example, the map pattern <United States, *, Los Angeles> will be 

evaluated to be false by the Boolean function of the ”valid“ constraint. It is because the 

meaning of <United States, *, Los Angeles> is the same as that of <United States, 

California, Los Angeles>, since Los Angeles belongs to one and only one state, i.e. 

California, that the map pattern <United States, *, Los Angeles> is regarded to be 

"repeated". Formally speaking, for a valid map pattern, if Dj = *, then Dk = *, ∀ 1 ≤ k < j. 

We say a map pattern e covers another map pattern e’ in the same map schema if the 

set of locations of e’ is a subset of the set of locations of e. For example, given the map 
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schema (country, province/state, city), (United States, California, *) covers (Unit States, 

California, Los Angeles). It is easy to see that for a given calendar schema (Pc, Pc-1, …, P1), 

a valid map pattern <dc, dc-1, …, d1> covers another valid map pattern <dc
’, dc-1

’, …, d1
’> if 

and only if for each i, 1 ≤ i ≤ c, either di = ‘*’ or di=di
’. 

For the sake of presentation, we call a map pattern with k wild-card symbols a k-star 

map pattern (denoted ek) and a map pattern with at least one wild-card symbol a star map 

pattern. In addition, we call a map pattern with no wild-card symbol (i.e., a 0-star map 

pattern) a basic space interval if the combination is “valid”. 

3.4 Calendar-map Patterns  
Spacetime is a model that combines 3-D or 2-D space and 1-D time into a single construct 

called the space-time continuum, as shown in Figure 3. According to Euclidean space 

perception, our universe has three dimensions of space, and one dimension of time. Space 

and time are the arenas in which all physical events take place — for example, the action of 

a user's logging in a shopping site may be described in a particular type of space-time, or the 

transaction of a customer's buying a bottle of coke in a supermarkt may be described in 

another type of space-time. In any given spacetime, an event is a unique position at a unique 

time. By combining the two concepts into a single manifold, analysts are able to deal in a 

unified way with spacetimes which attempt to explain the underlying patterns or repeating 

cycles of the occurrence of events. 

 

 

Fig. 3. Space-time continuum. 

 

Since we want to represent the association rules extracted from multi-location 

environment in general, we define the combination of the period of time and the position of 
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the T(i1, x1) ⊂ T(i2, x2) and i2 = i1 + 1. The expression T(i1, x1) ⊂ T(i2, x2) can be defined as all time 

periods of T(i1, x1) are covered by those of T(i2, x2). In the same way, consider two scope of 

positions P(j1, y1) and P(j2, y2), P(j2, y2) is the parent of P(j1, y1) if the P(j1, y1) ⊂ P(j2, y2) and j2 = j1 

+1. The expression P(j1, y1) ⊂ P(j2, y2) can be defined as all scope of positions of P(j1, y1) are 

covered by those of P(j2, y2). 

We use Figure 4 to illustrate an example of time hierarchy tree and the concept will be 

the same of the place hierarchy tree. 

 

 

Fig. 4.  An example of time hierarchy tree. 

 

Since time and place have their own specific hierarchy trees, in order to show the rules 

that are represented in different point of view of time and place, we need to use a combine 

relationship between T and P to facilate us to achieve this goal. Hence, we use TP lattice to 

state the combined relationsip between T and P clearly. 

 

Definition 3.4. Given the time hierarchy T and place hierarchy P, we can form an 

aggregation lattice, TP lattice, from T and P by the following rules: 

 

(1) Node (Ti, Pj) exists in TP for b ≦ i ≦ a and b ≦ j ≦ c 

(2) Arc (Ti, Pj) → (Ti+1, Pj) exists in TP for b ≦ i < a and b ≦ j ≦ c 

(3) Arc (Ti, Pj) → (Ti, Pj+1) exists in TP for i = b and b ≦ j < c 

 

From the perspective of a strategist, sometimes he would probably not concern about 
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what kind of rules would happen in a single location day by day. And therefore, it would be 

meaningless for us to discover the rules that would be held during a unit time in a unit place. 

In this case, we can set b to be 2, so that we will treat (T2, P2) as a starting point of the 

combine relation in TP lattice.  

 

Example 3.4. Given the four level of time hierarchy T and place hierarchies P, we can form 

a TP lattice with nine different conditions that will be shown in Figure 5. 

 

 

Fig. 5.  An example of TP lattice. 

 

Through the concept of TP lattice, using the method of combining, we can find rule 

under more general context, i.e. By the concept of TP lattice, our algorithm can find the 

rules not only in (April, San Francisco), but also can find the rule in (Spring, San Francisco) 

or (April, California), and so on. 

 

Definition 3.5. The single node (Ti, Pj) contains the set of all possible combinations of 

calendar patterns and map patterns, i.e. {{(Ta, Ta-1, ..., Tk, ..., T1)} × {(Pc, Pc-1, ..., Pl, ..., P1)}} 

where ’×’ is Cartesian product of two sets, satisfying the following rules: 

 

(1) Tk = *,  ∀ k < i 

(2) Tk ≠ *, k = i 

(3) Tk = * or {T(k,1), T(k,2), ..., T(k, nk)}, ∀ k > i 

(4) (Ta, Ta-1, ..., Tk, ..., T1) is a valid calendar pattern 

(5) Pl = *, ∀ l < i 

(6) Pl ≠ *, l = i 

(7) Pl = * or {P(l,1), P(l,2), ..., P(l, nl)}, ∀ l > i 

(8) (Pc, Pc-1, ..., Pl, ..., P1) is a valid map pattern 
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Example 3.5. According to Definition (3.5) and given the following conditions and 

constraints:  

 

1) The calendar schema S = (year, month, date). 

2) A valid calendar pattern s in S must have year = {2005, 2006} and month = {1, 2}. 

3) The map schema R = (country, state/province, city). 

4) A valid map pattern r in R must have state/province = {California, Florida}. 

 

The node (T2, P2) in the TP lattice should contain the following set:  

 

{{(United States, California, *), (United States, Florida, *)} × 

 {(*, 1, *), (2005, 1, *), (2006, 1, *), (*, 2, *), (2005, 2, *), (2006, 2, *)}} 

= {(United States, Califoria, *, *, 1, *)  → In every January in California 

   (United States, Califoria, *, 2005, 1, *)  → In January of 2005 in California 

   (United States, Califoria, *, 2006, 1, *)  → In January of 2006 in California 

   (United States, Califoria, *, *, 2, *)  → In every February in California 

   (United States, Califoria, *, 2005, 2, *)  → In February of 2005 in California 

   (United States, Califoria, *, 2006, 2, *) → In February of 2006 in California 

   (United States, Florida, *, *, 1, *)  → In every January in Florida 

   (United States, Florida, *, 2005, 1, *) → In January of 2005 in Florida 

   (United States, Florida, *, 2006, 1, *) → In January of 2006 in Florida 

   (United States, Florida, *, *, 2, *)  → In every February in Florida 

   (United States, Florida, *, 2005, 2, *) → In February of 2005 in Florida 

   (United States, Florida, *, 2006, 2, *)} → In February of 2006 in Florida 

 

For the sake of presentation, we call a calendar-map pattern with k wild-card symbols a 

k-star calendar-map pattern (denoted efk) and a calendar-map pattern with at least one wild-

card symbol a star calendar-map pattern. In addition, we call a map pattern with no wild-

card symbol (i.e., a 0-star map pattern) a basic space-time interval if the combination is 

“valid”. 

3.5 Mining Spatio-temporal Association Rules 
The problem addressed in this thesis is to find, from spatio-temporal databases, map-

calendar-based spatio-temporal association rules which holds in the calendar schema and 

map schema specified by users. Let τ = {i1, i2, …, il} be a set of items. Let D be a spatio-
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temporal database of transactions where each transaction t is associated with a pair of 

identifiers (TID, SID) , and a set of items tc such that tc ⊆ τ. TID is time information  

indicating the time when the transaction occurred whereas SID is location information  

indicating the place where the transaction occurred. Let D be divided into a sequence of n × 

o partitions, P1,1, P1,2, …, P2,1, P2,2, …, and Pn,o, each Pi,j containing a set of transactions 

occurring in the corresponding time interval Ti and location Sj with the temporal and spatial 

units being those of the smallest granularities, i.e. basic time interval and basic space 

interval. n is the total number of basic time intervals while o is the total number of basic 

space intervals. Mining map-calendar-based spatio-temporal association rules in the 

database D is to discover interesting patterns with calendar-based periodicity and map-based 

repeatability in D. That is, to discover every association rule, which holds in an enough 

number of time intervals and locations given by the corresponding calendar pattern and map 

pattern. An association rule with respect to a time interval, Ti, and a location Sj, is an 

implication of the form 

 

YX
ji ST ,

⇒  

 

where X ⊆ τ, Y ⊆ τ, and X ∩ Y = Ø. Let |Pi,j(I)| be the number of transactions containing 

itemset I in partition Pi,j. The association rule YX
ji ST ,

⇒  is said to have support s% in 

the partition Pi,j if  
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where |Pi,j| denotes the number of transactions in partition Pi,j. For an association rule 
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The rule is said to hold in Pi,j or (Ti, Sj) with confidence c%. For a given pair of 
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confidence and support thresholds, c% and s%, and a given pair of time interval and 

location (Ti, Sj), association rules in (Ti, Sj) are those which have confidence and support 

greater than or equal to c% and s% in Pi,j, respectively. 

Furthermore, a map-calendar-based spatio-temporal association rule with respect to a 

calendar pattern, v, and a map pattern, u, is an implication of the form 

 

YX
vu ,

⇒  

 

Assume that |v| time intervals are covered by v and |u| locations are covered by u. If an 

association rule holds in at least m × |u| × |v| combinations of locations covered by u and 

time intervals covered by v, where m is a user-defined match ratio (0 < m ≤ 1), it is said to 

be a map-calendar-based spatio-temporal association rule that holds in u and v. 

3.6 Fuzzy Calendar Patterns 
Temporal expressions are widely used in our daily life. However, temporal requirements 

specified by human beings tend to be ill-defined or uncertain. It is hard, or even impossible, 

for users to provide a crisp description about their desired calendars. To formulate human 

reasoning into the process of knowledge discovery, fuzzy set theory is adopted for the 

construction of calendars in this section. Fuzzy concepts and operations are introduced to 

help users express their desired calendars easily and conveniently. 

To construct a calendar, the hierarchy of time granularity, e.g., week, month, and year, 

has to be determined to handle descriptions of multiple time granularities [Giannella, Han, 

Pei, Yan, and Yu 2003]. For each time granularity, fuzzy sets which describe the 

distribution of all the time intervals in the time granularity can be specified. Each fuzzy 

description of a time granularity, e.g., in the middle of a year, at the very beginning of a 

month, or at the end of a week, etc., forms a basic fuzzy calendar. 

 

Definition 3.6. A basic fuzzy calendar pattern, A, characterizes a fuzzy proposition about 

the collection of time intervals in a time granularity, described by a membership function 

where 

 

]1,0[→=UAμ  
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for every time interval . The function value indicates the matching degree of input time to 

the fuzzy calendar pattern A. 

In a calendar schema S=(Ta:Ma, Ta-1:Ma-1, …, T1:M1), we let the fuzzy calendar pattern 

FC,  defined by users under the calendar schema, has the membership function F=(Fa, Fa-

1, …, F1). Fi is a membership function for the corresponding time unit Ti in the calendar 

schema S. In that way, the degree of membership of a basic time interval (ta, ta-1, …, t1), ti ∈ 

Mi, where i=1,…, a,  in the fuzzy calendar pattern FC is calculated as: 

 

 )(...)()(),...,,( 111111 tFtFtFtttdegree aaaaaarc ×××= −−− , (3.3) 

 

In Figure 6, we use the fuzzy calendar pattern “close to (*, 11, 25)”, i.e. “close to 

November 25”,  as an example. We define the set of membership functions F=(Fyear, Fmonth, 

Fday) to describe the fuzzy calendar pattern. This is under the assumption that only the dates 

between two days before and after November 25 of each year can be said to be “close to 

November 25 of each year”. 
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Fig. 6.  Use a membership function to represent (*, 11, 25). 

Some examples of basic fuzzy calendar patterns are shown in Figure 7. Usually, the 

shapes and the number of fuzzy sets describing a time granularity are arbitrarily specified by 

the user. Hedges such as very and more or less can also be used. With such fuzzy 

descriptions about time, users do not have to know the exact boundaries between interesting 

and non-interesting time intervals. Furthermore, the time intervals which are more important 

can have a larger membership degree and will contribute bigger influence, which is 

intuitively desirable. Fuzzy calendars can also be used to describe crisp time intervals. For 

example, Wednesday and May can be described by the fuzzy calendar patterns with 

singletons, as shown in Figure 8.  

 

  

 

Fig. 7.  Basic fuzzy calendar patterns associated with the time granularity of (a) week (b) 

month (c) year. 
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Fig. 8.  An Singletons describing crisp time intervals (a) Wednesday, and (b) May, 

respectively. 

 

3.7 Fuzzy Map Patterns 
Most of the linguistic description such as close and prefer are fuzzy in nature. The 

conventional feature map approach does not capture linguistic and heuristic knowledge in an 

effective manner. Linguistic terms such as Close and Far are often used to describe 

distances. The distance is an important factor governing huumans’ decision making and 

behaviour. For example, the distance from highway is an important factor for many buyers 

to determine whether a site is suitable as a residential, commercial, or industrial site. Also, 

people will usually purchase things in the supermarkets the closest to their home. Since the 

descriptions of many linguistic terms are relative, we need to define the range that the 

membership functions of the linguistic variable are to cover. The range is termed the 

universe of discourse of the membership function. The membership values of each function 

are usually normalized between 0 and 1, where 0 indicates non-member and 1 indicates full 

member of the membership function, respectively. Figure 9 shows the membership 

functions of three linguistic variables: Very Close, Moderately Close, and Far, used to 

describe the distance from supermarket. For example, 0 and 9 miles cannot be considered as 

moderately close because they both have 0 membership values in the moderately close 

membership function. 4 miles is really moderately close because its has full membership 

value for being moderately close. 2 miles has 0.66 membership value of being moderately 

close, and it is considered as more or less (more toward more) moderately close. In this 

thesis, we assume locations are points in calculating distances among places. The whole 

collection of locations forms a set of points. Definition (3.7) summaries our assumption. 
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Fig. 9.  Examples of distance membership functions. 

 

Definition 3.7. A point-set S is said to be a metric space if there exists a function, distance, 

that takes ordered pairs (s,t) of elements of S and returns a real number distance(s, t) that 

satisfies the following three conditions: 

 

M1. For each pair s, t in S, distance(s, t) > 0 if s and t are distinct points and distance(s, t) = 

0 if, and only if, s and t are identical. 

 

M2. For each pair s, t in S, the distance from s to t is equal to the distance from t to s, 

distance(s, t) = distance(t, s).  

 

M3. (Triangle inequality) For each triple s, t, u in S, the sum of the distances from s to t and 

from t to u is always at least as large as the distance from s to u, that is: 

 

distance(s, t) + distance(t, u) ≥ distance(s, u). 

 

The first condition M1 stipulates that the distance between points must be a positive 

number unless the points are the same, in which case the distance will be zero. The second 

condition M2 ensures that the distance between two points is independent of which way 

round it is measured. The third condition M3, the triangle inequality, states that it must 

always be at least as far to travel between two points via a third point rather than to travel 

directly. 
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Fig. 10.  Forty eight British centres of population. 

 

We can see that a geographic space does not always admit such a metric. It is 

reasonable to suppose that condition M1 is satisfied by any distance function. However, 

context and travel-time both provide examples where condition M2 does not hold. 

Contextual knowledge is a key feature of human apprehension of geographic space. 

Different contexts provide us with quite distinct models of the surrounding space. For 

example, a bicyclist will have a different perception of his or her geographic neighbourhood 

from a driver of a wide load or an airline pilot. Even for the same person and application, 

distance may be perceived differently depending upon geographic location. Thus an 

observer in New York might perceive the distance from London to Edinburgh differently 

from an observer in London. Present computer systems do not generally support context-

based representations. Condition M3 does hold for travel-time metrics, but does not hold for 

context related metrics. We illustrate this by means of an example.  

 

Example 3.6. Figure 10 shows 48 centres in Great Britain. Their distances, measured in 

miles along major roads, have been calculated [Collins 1995], and some examples are given 

in Table 1. These distances relate to a global view, and are here termed objective distances, 

since they take no account of users, applications or locations (except that they assume users 

to be travellers along major roads). 
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Table 1.  Part of the objective distance relationship between 48 British centres of 

population. 

 
 

In this example, context is accounted for in the following manner. For each centre c, 

the mean μc of the distances from c to all centres is calculated. The relativised distance reldis 

from centre c to centre d is then determined by the formula: 

 

c

dcdc
μ

),(distance),(reldis =  

 

Some relativised distances are shown in Table 2. Note that the table is asymmetric, 

since reldis(c,d) ≠ reldis(d,c). This accords with our intuition regarding context dependent 

distance. For example, reldis(Aberdeen, Birmingham) = 1.1 and reldis(Birmingham, 

Aberdeen) = 2.6, reflecting the notion that from the perspective of Birmingham, closely 

surrounded by several centres, Aberdeen is relatively far away, but from the context of the 

relatively outlying and isolated Aberdeen, Birmingham is relatively closer. 

We may also note that the reldis relationship does not obey the triangle inequality. For 

example: 

 

reldis (Birmingham, Aberdeen) = 2.6 

reldis (Birmingham, Ayr) = 1.8 

reldis (Ayr, Aberdeen) = 0.6 
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and so  

 

reldis (Birmingham, Aberdeen) > reldis (Birmingham, Ayr) + reldis (Ayr, Aberdeen) 

 

Table 2.  Part of the relativised distance relationship between the 48 centres. 

 
 

It will be useful in what follows to define a proximity or nearness relationship between 

geospatial entities. For geographic space G, define a function nearness, that takes ordered 

pairs (s,t) of elements of G and returns a real number nearness (s, t) that satisfies the 

following conditions: 

 

1. 0 < nearness (s, t) ≤ 1 

2. nearness (s, s) = 1 

 

The idea is that if entity y is far from entity x, then nearness (x, y) will have a value 

close to zero, while if entity y is near to entity x, then nearness (x, y) will have a value close 

to 1. Note that, as with distance, nearness is context dependent and asymmetric in general. 

For our example of the 48 British centres, we may derive a nearness measure from 

relative distance by means of the following formula: 

 

nearness (x, y) = (reldis (x, y) + 1)-1 

 

The return value of the nearness function reflects how much time is needed if 
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someone goes from x to y, although it is not a value of duration. It is in inverse proportion to 

the relativised distance from x to y because the larger the relativised distance from x to y, the 

more time it takes to go from x to y. One is added to the function reldis(x, y) because if x and 

y refer to the same place, the value of the function reldis(x, y) will be equal to zero. Then, 

we will be an error of division by zero in the nearness function. Values of the nearness 

relationship for the some of the 48 centres are shown in Table 3. 

 

Table 3.  Part of the nearness relationship between the 48 centres. 

 
 

Like fuzzy calendar patterns, we can use fuzzy map patterns to represent those map 

patterns, which are asynchronous in the location dimension. In Section 3.3 discussing map 

patterns, we use Boolean functions to denote the coverage of map patterns. The Boolean 

function of a map pattern will return 1 for locations covered the map pattern and otherwise 0. 

According to this definition, Boolean functions for different levels of location representation 

can only return a singleton (di ∈ Di) or a constant 1 (di = *). In order to find our targeted 

fuzzy spatio-temporal association rules, we will use membership functions to depict fuzzy 

map patterns. Values returned from the membership functions will be in the range between 

0 and 1.  The magnitude of a returned value represents the degree of membership of a 

particular location to the corresponding fuzzy map pattern of the membership function.  

In a map schema R=(Pc:Dc, Pc-1:Dc-1, …, P1:D1), we let the fuzzy map pattern FC,  

defined by users under the map schema, has the membership function F=(Fc, Fc-1, …, F1). Fi 

is a membership function for the corresponding spatial unit Pc in the map schema R. In that 

way, the degree of membership of a basic space interval (dc, dc-1, …, d1), di ∈ Di, i=1,…, c 
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in the fuzzy map pattern FM is calculated as: 

 

 )(...)()(),...,,( 111111 dFdFdFddddegree ccccccrc ×××= −−− , (3.4) 

 

3.8 Fuzzy Calendar-map Patterns 
We have explained fuzzy calendar patterns and fuzzy map patterns respectively. In a spatio-

temporal database, if a phenomenon or a pattern is discovered, the time and location in 

which it occurs is an important piece of information. However, the occurrence time and 

locations of patterns are often uncertain and asynchronous in the sense that patterns seldom 

appear exactly and sharply at a single time period in a single place. Instead, we can only 

ensure that the patterns will appear around sometime near somewhere. For example, 

 

“If people buy swimming suits, they will usually buy swimming goggle too in places 

close to Miami around July.” 

 

The fuzziness can be found in both the temporal and spatial dimensions of patterns. 

There is a chance that the time when the patterns occur is asynchronous while there is also a 

chance that the occurrence locations are inexact. Hence, we combine the concept of 

temporal fuzziness described in Section 3.6 and that of spatial fuzziness described in Section 

3.7 and define in this section spatio-temporal fuzziness, which can be used to evaluate and 

quantize the spatio-temporal uncertainty. We also define fuzzy calendar-map patterns for 

specifying the fuzzy space-time intervals, in which spatio-temporal association rules are 

found. To be more precise, given two calendar-map patterns A and C, we are to formulate 

whether C can be regarded as “close to A” and to what extent. In other words, we are to 

calculate how much C is similar to A.  

First of all, both of the calendar-map patterns A and C are respectively composed of a 

calendar pattern and a map pattern. We can denote A and C as: 

 

 st AAA += , (3.5) 

 st CCC +=  (3.6) 

 

where At and Ct are calendar patterns and As and Cs are map patterns. 
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We assume the meaning of “close to A” as fulfilling “close to At” temporally and “close 

to As” spatially at the same time. Having the assumption, we can further define that 
tAFC  

represents the fuzzy calendar pattern “close to At”, that is the set of calendar patterns {Ct 

| )(degree tFC C
At

> 0}. 
sAFM  represents the fuzzy map pattern “close to As”, that is the set 

of map patterns {Cs | )(degree sFM C
As

> 0}. The calculation of )(degree tFC C
At

 and 

)(degree sFM C
As

 are detailed in Section 3.6 and 3.7. Similarly, we define FCMA as a set of 

calendar-map patterns such that {C | )(degree C
AFCM > 0}. )(degree C

AFCM  is the degree of 

membership quantizing how much the calendar-map pattern C is close to A. It is calculated 

as: 

 

)(degree)(degree stFCMFCM CCC
AA

+=  

 )(degree)(degree sFMtFC CC
AsAt

×=  (3.7) 

 

We call the inexact calendar-map pattern “close to A” a fuzzy calendar-map pattern. 

With the multiplication operation between )(degree tFC C
At

 and )(degree sFM C
As

in the 

formula,  for any calendar-map pattern C be said to be close to A, the two components of C, 

i.e. the calendar pattern Ct and map pattern Cs, have to be both close to those of A at the 

same time.  

3.9 Mining Fuzzy Rules 
Given i) a calendar-map schema R=(fn:Dn, fn-1:Dn-1, …, f1:D1) (a combination of a calendar 

schema and a map schema), where (fn:Dn, …, fi:Di) is a calendar schema, (fi-1:Di-1, …, f1:D1) 

is a map schema and 1 ≤ i ≤ n, ii) a group of datasets D partitioned by basic space-time 

intervals in the calendar-map schema R, iii) a user-defined threshold value called fuzzy 

match ratio threshold fm (0 < fm ≤ 1) and iv) a user-defined fuzzy calendar-map pattern, in 

the calendar-map schema R, FC = “close to (dn, dn-1, …, d1)” (where di ∈ Di ∪ *, i=1, 2, …, 

n, i.e. (dn, dn-1, …, d1) is a precise or non-fuzzy calendar-map pattern). A membership 

function F=(Fn, Fn-1, …, F1), where Fn is the membership function of fn in the calendar-map 

schema R, is defined. With the membership function, we can calculate the degree of 

membership of different space-time intervals to the fuzzy calendar-map pattern FC, so as to 

induce if association rules found in the space-time intervals are still valid in the fuzzy 

calendar-map pattern FC. 
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With a view to finding if an association rule exists in the fuzzy calendar-map pattern 

FC = “close to (dn, dn-1, …, d1)”, We perform Fuzzy Rule-based Inference. Firstly, we define 

a basic space-time interval ti=(d’
n, d’

n-1, …, d’
1) where d’

j ∈ Dj, j=1, 2, …, n. We find the 

degree of membership of ti to the fuzzy calendar-map “close to (dn, dn-1, …, d1)” where dj ∈ 

Dj ∪ *, j=1, 2, …, n, based on the following if-then rules: 

 

“If d’
n is close to dn AND d’

n-1 is close to dn-1 AND … AND d’
1 is close to d1 THEN ti is 

close to (dn, dn-1, …, d1)” 

 

With the user-defined membership function F=(Fn, Fn-1, …, F1) of the fuzzy calendar-

map pattern FC = “close to (dn, dn-1, …, d1)”, we can know the degree of membership Fj(d’
j), 

meaning how d’
j is close to dj, where j=1, 2, …, n. Using the AND operation, we can 

calculate the product of the degrees of membership of all temporal and spatial components 

in ti. The product will be regarded as the degree of membership of ti to the fuzzy calendar-

map pattern FC. 

When the degrees of membership of all basic space-time intervals are found, we can 

calculate the fuzzy match ratios, to FC, of the association rules discovered in basic space-

time intervals. A matched association rule should have a fuzzy match ratio exceeding the 

user-defined fuzzy match ratio threshold fm. Fuzzy match ratio is a measure for judging if a 

mined rule is strong enough in a fuzzy time period and in a fuzzy location.  

Assume we obtained the degree of membership degreeFC(ti) of each basic space-time 

interval ti to FC. FC is the fuzzy calendar-map pattern “close to P”, where P is a precise 

calendar-map pattern (dn, dn-1, …, d1), di ∈ Di ∪ *, i=1, 2, …, n. Then the fuzzy match ratio 

FM of an association rule in FC is calculated as: 

 

 
)(

)(

∑
∑ ×

=
iFC

iFC

tdegree
existedtdegree

PD , where ti is covered by P,, (3.8) 

 
)(

)(

∑
∑ ×

=
iFC

iFC

tdegree
existedtdegree

FD , where ti is not covered by P, (3.9) 

 FM = PD + αFD, where 0 ≤ α ≤ 1, (3.10) 

 

existed represents if the association rule exists in the space-time interval Ti. If yes, the 
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value of existed will be 1 and otherwise 0. PD is the ratio that the association rule occurs in 

the space-time intervals covered by the precise calendar-map pattern P. FD is the ratio that 

the association rule occurs in the asynchronous space-time intervals, which are covered by 

the fuzzy calendar-map pattern FC but not the precise calendar-map pattern P. α is a 

parameter adjustable by users in the calculation of FM, in order to tune how much the 

impact of the asynchronous space-time intervals in the fuzzy calendar-map pattern FC will 

be counted on. The larger the value of α, the larger the impact will be. When if α is set to 0, 

the asynchronous space-time intervals will be totally ignored. With the formula for 

calculating the fuzzy match ratio FM, we first use PD and FD to find those association rules, 

which are valid in space-time intervals represented by precise calendar-map patterns and 

asynchronous space-time intervals in fuzzy calendar-map patterns respectively, so as to 

discover our fuzzy association patterns.  

If the calculated FM is larger than the user-defined fuzzy match ratio threshold fm, we 

can denote the discovered fuzzy spatio-temporal association rule as: 

 

yx
FC
→  

 

which represents the association rule x→y is valid in the space-time intervals covered by the 

fuzzy calendar-map pattern FC, i.e. close to (dn, dn-1, …, d1). 

 

Example 3.7. Under the calendar-map schema R=(year:{1996, …, 2000}, month:{1, …, 

12}, day:{1, …, 31}, country:{United States}, state:{California, Florida}, city:{Los Angeles, 

Orlando}), we can define a set of membership functions F=(Fyear, Fmonth, Fday) of the fuzzy 

calendar pattern “close to (*, 11, 25)” as shown in Figure 6. We can also define that a set of 

membership functions F’=(Fcountry, Fstate, Fcity) of the fuzzy map pattern “close to (United 

States, California, Los Angeles)” in the way that all precise map patterns will have the 

degrees of membership equal to 0 except the map pattern (United States, California, Los 

Angeles), which has the degree of membership equal to 1. That is, among all cities, only Los 

Angeles is regarded as close to itself. We can group F and F’ to form a new set of 

membership functions F”=(Fyear, Fmonth, Fday, Fcountry, Fstate, Fcity) for the fuzzy calendar-map 

pattern “close to (*, 11, 25, United States, California, Los Angeles)” in the calendar-map 

schema R. In the set of membership functions, the definition of “close to (*, 11, 25, United 

States, California, Los Angeles)” is defined as within the date range ± 2 days from 

November 25 of each year in Los Angeles. On calculating the degree of membership, only 

the space-time intervals represented by the 1-star calendar-map patterns (*, 11, 23, United 
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States, California, Los Angeles), (*, 11, 24, United States, California, Los Angeles), (*, 11, 

25, United States, California, Los Angeles), (*, 11, 26, United States, California, Los 

Angeles), (*, 11, 27, United States, California, Los Angeles) will have non-zero degrees. In 

other words, except these combinations of dates and cities, there cannot be any other space-

time intervals which are defined to be “close to (*, 11, 25, United States, California, Los 

Angeles)”. Therefore, the transactions with timestamp and location identifier not equal to 

any of these space-time intervals can be skipped in scanning the database to find frequent 

patterns. For example, the degree of membership of the date (1998, 11, 20) plus the city 

(United States, Florida, Orlando) to the fuzzy calendar pattern “close to (*, 11, 25, United 

States, California, Los Angeles)” = Fyear(1998)×Fmonth(11)×Fday(20) ×Fcountry(United 

States)×Fstate(Florida) ×Fmonth(Orlando) = 
4847648476 part spatialpart temporal

)001()011( ××××× = 0. The results are zero for 

both the temporal and spatial parts of the multiplication operation. Hence, we do not need to 

consider those transactions with this timestamp OR this location. 

 

Assume we need to find association rules in the space-time intervals covered by the 

fuzzy calendar-map pattern “close to (*, 11, 25, United States, California, Los Angeles)”. 

After scanning the database, we find that the association rule “ pumpkinturkey→ ” exists in the 

calendar-map patterns: 

 

1. (1996, 11, 23, United States, California, Los Angeles),  

2. (1996, 11, 24, United States, California, Los Angeles),  

3. (1996, 11, 26, United States, California, Los Angeles),  

4. (1997, 11, 25, United States, California, Los Angeles),  

5. (1997, 11, 26, United States, California, Los Angeles),  

6. (1998, 11, 24, United States, California, Los Angeles),  

7. (1998, 11, 26, United States, California, Los Angeles),  

8. (1998, 11, 27, United States, California, Los Angeles),  

9. (1999, 11, 23, United States, California, Los Angeles),  

10. (1999, 11, 25, United States, California, Los Angeles),  

11. (1999, 11, 26, United States, California, Los Angeles),  

12. (2000, 11, 25, United States, California, Los Angeles),  

13. (2000, 11, 26, United States, California, Los Angeles),  

14. (2000, 11, 27, United States, California, Los Angeles),  

15. (2000, 11, 26, United States, Florida, Orlando),  
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16. (2000, 11, 27, United States, Florida, Orlando).  

 

Then, we can calculate the fuzzy match ratio of the association rule in the fuzzy calendar 

pattern “close to (*, 11, 25, United States, California, Los Angeles)” as: 

 

PD = { 
Fyear(1997)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+  

Fyear(2000)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)} 

÷ { 
Fyear(1996)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1997)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+  

Fyear(1998)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+  

Fyear(1999)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+  

Fyear(2000)×Fmonth(11)×Fday(25)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)} 

= (1 + 1 + 1) ÷ 5 = 0.6 

 

FD = { 
Fyear(1996)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1996)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1996)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1997)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(26) ×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(27) ×Fcountry(United States)×Fday(California)×Fday(Los Angeles)} 

÷ { 
Fyear(1996)×Fmonth(11)×Fday(23) ×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1996)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1996)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles) + 

Fyear(1996)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1997)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1997)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1997)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 
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Fyear(1997)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles) + 

Fyear(1998)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1998)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(1999)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles) + 

Fyear(1999)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(23)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(24)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(26)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)+ 

Fyear(2000)×Fmonth(11)×Fday(27)×Fcountry(United States)×Fday(California)×Fday(Los Angeles)} 

= (0.33 + 0.67 + 0.67 + 0.67 + 0.67 + 0.67 + 0.33 + 0.33 + 0.67 + 0.67 + 0.33) ÷  

           (0.33 + 0.67 + 0.67 + 0.33 + 0.33 + 0.67 + 0.67 + 0.33 + 0.33 + 0.67 + 0.67 + 0.33 +  

 0.33 + 0.67 + 0.67 + 0.33 + 0.33 + 0.67 + 0.67 + 0.33) 

= 0.601 

 

FM = PD + αFD 

 

Assume α=0.3, then FM = 0.6+0.3×0.601 = 0.6+0.1803 = 0.7803. Therefore, if the 

fuzzy match ratio threshold is set to a value smaller than 0.7803, the association rule 

“ pumpkinturkey→ ” is valid in the space-time intervals covered by the fuzzy calendar-map 

pattern “close to (*, 11, 25, United States, California, Los Angeles)”. The association rule 

can be represented as: 

 

pumpkinturkey Angeles) Los ,California States,  United25, 11, (*, - ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ toclose  

 

It means in places close to Los Angeles, at around November 25 of each year, there 

exists a fuzzy spatio-temporal association rule that people likely buy turkey together with 

pumpkin. 

3.10  Mining Meta-rules 
The spatio-temporal patterns discovered by solving the association rule mining problems 
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described in previous sections will change as time goes by. In other words, patterns mined 

in this year are probably different from those mined last year. Understanding and adapting 

to changes of patterns, e.g. customer behaviour, is an important aspect of surviving in a 

continuously changing environment. Especially for businesses, knowing what is changing 

and how it has been changed is of crucial importance because it allows businesses to 

provide the right products and services to suit the changing market needs [Liu et al. 2000]. 

Data mining is the process of exploration and analysis of large quantities of data in order to 

discover meaningful patterns and rules. But much of existing data mining research has been 

focused on devising techniques to build accurate models and to discover rules. Relatively 

little attention has been paid to mining changes in databases collected over time [Liu et al. 

2000]. We try to propose a method to solve the problem in this study. We expect the 

solution should be able to be applied without any changes to discover regularities and 

differences in patterns between two different calendar-map patterns or even fuzzy calendar-

map patterns. 

3.10.1 Mining Regularities and Differences 

Let us suppose that there is a collection of data sets, {Dj, j = 1, …, n}, collected at the same 

time.  Dv is a data set identified by the fuzzy calendar-map pattern (or precise calendar-map 

pattern) FCMv, where 1 ≤ v ≤ n. A set of rules, } ..., ,{ 1 jjsjj rrR = , is mined from Dj, j = 

1, …, n. From R1, …, Rn, we aim at mining a set of meta-rules to reveal the underlying 

regularities hidden in the rule sets and the differences between different rule sets. 

 

Definition 3.8. A meta-rule mined from rule sets R1, …, Rn is an implication of the form: 

 

X ⇒ Y, 

 

where X and Y are conjunctions of conditions such that U
n

j
jRconditionXcondition

1

)()(
=

⊆ , 

U
n

j
jRconditionYcondition

1

)()(
=

⊆ , and condition(X) ∩ condition(Y) = ∅.  

Rather than being supported by data records, a meta-rule is supported by the rules in 

the rule sets.  We say that a rule supports a meta-rule if the set of conditions in the meta-rule 

is a subset of that in the rule. 

 

Definition 3.9 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, is supported by a set of 
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rules: 

 

R (X ⇒ Y) = {r | r ∈ R1 ∪ … ∪ Rn, condition(X) ∪ condition(Y) ⊆ condition(r)}.          (3.11) 

  

A meta-rule represents an association relationship in common in the rule sets if many 

rules support it.  In other words, it represents an underlying regularity hidden in the rule sets. 

 

Definition 3.10.  A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a regularity 

embedded in them if |R (X ⇒ Y)| is sufficiently large.  We refer to this meta-rule as a regular 

meta-rule.   

On the other hand, a meta-rule represents a distinctive association relationship in the 

rule sets if only a few rules support it.  In other words, it represents a difference between the 

rule sets. 

 

Definition 3.11.  A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a 

difference between them if |R (X ⇒ Y)| is sufficiently small.  We refer to this meta-rule as a 

differential meta-rule.   

To reveal regularities and differences in rule sets, we mine regular and differential 

meta-rules from the rule sets, respectively. 

 

Example 3.8. Let us consider rule sets R1, …, R5, each of which contains a set of 

association rules.  They are given in the following: 

 

R1: {i1, i2} ⇒ {i3} 

 {i4} ⇒ {i1} 

 

R2: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 

 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 

 

R4: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 
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R5: {i1, i2} ⇒ {i3}, 

 

where i1, …, i5 are items. 

The meta-rule {i2, i3} ⇒ {i4} is supported by the following rules: 

 

R2: {i2, i3, i5} ⇒ {i4} 

 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 

 

R4: {i2, i3, i5} ⇒ {i4}, 

 

whereas the meta-rule {i4} ⇒ {i1} is supported by the following rule: 

 

R1: {i4} ⇒ {i1}. 

The former and the latter meta-rules are supported by 44.4% (= 4 / 9) and 11.1%  

(= 1 / 9) of all the rules, respectively. 

A straightforward approach to determining whether a meta-rule is supported by a 

sufficiently large or small number of rules is to have a user supply thresholds.  For example, 

if the threshold for determining regular meta-rules is set to 40%, the former meta-rule is 

found to be regular; and if the threshold for determining differential meta-rules is set to 15%, 

the latter meta-rule is found to be differential. 

3.10.2 Mining Changes 

We are also concerned with mining a set of meta-rules to reveal how the rules in the rule 

sets change over time. 

Now, let us further suppose that {Dj, i = 1, …n} is set of data identified by a single 

particular calendar-map pattern or fuzzy calendar-map pattern. Dj is collected in time 

periods tj, j = 1, …, n, where t1, …, tn are consecutive and tj happens before tk if j < k.  Let us 

consider rules rju ∈ Rj and rkv ∈ Rk, j, k ∈ {1, …, n}, j < k.  These represent the same 

association relationship if, and only if, antecedent(rju) = antecedent(rkv) and consequent(rju) 

= consequent(rkv). 
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Definition 3.12.  Given a rule, rju ∈ Rj, if there exists another rule, rkv ∈ Rk, j < k, such that 

antecedent(rju) = antecedent(rkv) and consequent(rju) = consequent(rkv), rju is equivalent to rkv, 

denoted as rju ≡ rkv, because they represent the same association relationship.  

It is important to note that although rju ≡ rkv, its interestingness measure in tj may be 

different from that in tk because the rule may change as will be discussed in Definitions 

3.13–3.15. 

 

Definition 3.13.  Given two rules, rju ∈ Rj and rkv ∈ Rk, j < k, such that rju ≡ rkv, rju changes 

during the period from tj to tk if interestingnessj(rju) ≠ interestingnessk(rju).  We say that rju is 

an emerging pattern in tk.  

It is possible that rule rju is found in Rj but not in Rk because it is interesting in tj but it 

becomes uninteresting in tk, j < k. 

 

Definition 3.14.  Given Rj and Rk, j < k, if rju ∈ Rj and there does not exist rkv ∈ Rk such that 

rju ≡ rkv, we say that rju is perished in tk and rju is a perished rule in tk.  In this case, the 

interestingness measure of rju in tk is missing.  

On the other hand, it is also possible that rkv is not found in Rj but is found in Rk 

because it is uninteresting in tj but it becomes interesting in tk, j < k. 

 

Definition 3.15.  Given Rj and Rk, j < k, if rkv ∈ Rk and there does not exist any rju ∈ Rj such 

that rju ≡ rkv, we say that rkv is added in tk and rkv is an added rule in tk.  In this case, the 

interestingness measure of rkv in tj is missing.  

An added rule or a perished rule is a special case of an emerging pattern.  It is special 

in that  an added rule’s interestingness measure changes from below a threshold to above it, 

whereas a perished rule’s interestingness measure changes in the reverse direction, from 

above the threshold to below it.  The threshold can be specified by a user or determined by 

an objective means.  Revealing how a rule changed in the past allows one to predict whether 

it will be added or perished or to what degree it will change in the future. 

For each rule in R1 ∪ … ∪ Rn, we are interested in mining a set of meta-rules to 

represent the regularities governing how the rule changes during the period from t1 to tn.  We 

refer to these meta-rules as change meta-rules because they represent how the rule changes 

over time. 
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Definition 3.16. For r ∈ R1 ∪ … ∪ Rn, a change meta-rule is an implication of the form: 

 
r
p

r
j

r
p

r
j

r
p

r
j qqhh

lLlLlL =⇒=∧∧= ...
11

, 

 

where r
jk

L  is an attribute representing 

)()()( 1 rnessnterestingirnessnterestingirnessnterestingi
kkk jjj −=Δ +  (i.e., the difference in 

the interestingness measure of r during the period from 
kjt  to 1+kjt ) and r

pk
l  is an attribute 

value in )( r
jk

Ldom , which denotes the domain of r
jk

L , for k = 1, …, h, q and  

j1 < … < jh < jq.  

The mining of change meta-rules allows the examination of the regularities governing 

how a rule changes during a period t1 to tn.  The discovered meta-rules can also be used to 

predict how the rule will change in tn + 1.  The ability to predict how rules will change allows 

accurate results to be achieved when the discovered rules in the past are used for 

classification in the future. 

 

Example 3.9. Let us consider the association rules of items i1, i2, i3, and i4 discovered in 

three consecutive time periods, t1, t2, and t3.  Assume that the association rule discovered in 

time period t1 is: 

 

r: {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t1 are support1(r) = 37.8% and confidence1(r) = 95.0%, 

respectively. 

In time period t2, the association rule becomes: 

 

r': {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t2 are support2(r) = 34.9% and confidence2(r) = 94.8%, 

respectively. 

Then in time period t3, the association rule becomes: 

 

r": {i1, i2, i3} ⇒ {i4} 
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whose support and confidence in t3 are support3(r) = 28.4% and confidence3(r) = 94.5%, 

respectively. 

The support of the association rule decreases in the period from t1 to t2 and in the 

period from t2 to t3.  A change meta-rule of support mined from these rules would be: 

 

 

Change in support in this period = Fairly decrease 

 ⇒ Change in support in next period = Highly decrease. 

 

This meta-rule of support states that “if the change in support in this period moderately 

decreases, then the change in support in next period will decrease significantly.”  The 

support of the association rule in tj can then be predicted given the support of this rule in tj – 1 

and that in tj – 2. 

On the other hand, the confidence of the association rule is more or less the same in the 

period from t1 to t2 and in the period from t2 to t3.  A change meta-rule of confidence 

discovered in these rules would be: 

 

Change in confidence in this period = More or less the same 

 ⇒ Change in confidence in next period = More or less the same. 

 

This states that “if the change in confidence in this period is more or less the same, then the 

change in confidence in next period will be more or less the same.”  The confidence of the 

association rule in tj can then be predicted given the confidence of this rule in tj – 1 and that in 

tj – 2. 

The other type of change is unexpectedness which is found from many studies about 

discovering interesting patterns [Liu and Hsu 1996; Liu et al. 1997; Padmanabhan and 

Tuzhilin 1999; Silberschatz and Tuzhilin 1996; Suzuki 1997]. Liu and Hsu (1996) defined 

unexpected changes as rule similarity and difference aspects. They distinguished unexpected 

changes to unexpected condition changes and unexpected consequent changes based on a 

syntactic comparison between a rule and a belief. But we only adapt unexpected consequent 

changes because most unexpected condition changes usually make no sense. These 

unexpected consequent changes are the second type of change to detect which has a 

different rule structure over time. Therefore we redefine the term unexpected changes like 

the following from the study of Liu and Hsu (1996). 



 

59 

 

Definition 3.17.  Unexpected Changes (or Unexpected Consequent Changes) 

Given Rj and Rk, j < k, if rju ∈ Rj and there exists rkv ∈ Rk such that the antecedent parts 

of rju and rkv are similar but the consequent parts of the two rules are quite different, rkv is 

unexpected change with respect to rju.  

 

Example 3.10. 

rju : Income = High, Age = High ⇒ Model = Large 

rkv : Income = High, Age = High ⇒ Model = Medium 

In this case, rkv is unexpected consequent change with respect to rju since the antecedent 

parts of the two rules are similar, but the consequent parts of the two rules are quite different. 
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Chapter 4 

The Proposed Approaches 
 

In Section 4.1, we propose a way to extend Apriori, the most well-known association rule 

mining algorithm, to mine spatio-temporal association rules that we have defined in Chapter 

3. We call the extended algorithm Spatio-temporal Apriori. In Section 4.2, we propose our 

new algorithm to mine the kind of spatio-temporal association rules. Compared with Spatio-

temporal Apriori, our method is faster and consumes less memory, because it scans the 

database at most twice.  In Section 4.3, we fuzzify our method by using fuzzy calendar-map 

patterns to find fuzzy rules. Given the sets of rules mined in different combinations of time 

intervals and locations, we can mine meta-rules, which are regularities, differences and 

changes among the different sets of rules. Our meta-mining approach will be discussed in 

Section 4.4. 

4.1 Spatio-temporal Apriori 
We propose an Apriori-like method, as one of the feasible methods to find frequent itemsets 

in different calendar-map patterns, which meet the minimum support threshold defined by 

users. We name the calendar-map patterns, in which the frequent itemsets are found, 

frequent calendar-map patterns. We call the entire algorithm Spatio-temporal Apriori, which 

is an extension of Apriori. Spatio-temporal Apriori is simple to implement. It follows the 

algorithmic flow of Apriori to find frequent itemsets, in which the mined dataset is scanned 

pass by pass. Frequent itemsets found in one pass are used to create the candidate itemsets 

in the next pass until no more frequent itemsets can be found. The Apriori algorithm is 

based on the Apriori theory, which states that “All subsets of frequent itemsets are frequent 

itemsets”. Hence, in creating candidate itemsets, the algorithm observes a rule, which 

states ”When an itemset is not frequent, no supersets of it can be made candidate itemsets”. 

This rule can help reduce the number of candidate itemsets generated.  

In the Apriori algorithm, the subroutine, which applies the rule to create candidate 

itemsets, is called Apriori_gen: 

Assume the set of frequent itemsets in the previous level is Lk-1. Lk-1 is a sorted list of 

itemsets, in which each itemset is unique.  

 

1. For each x ∈ Lk-1, y ∈ Lk-1, x = (x1, x2, ..., xk-1), y = (y1, y2, ..., yk-1), find all combinations 
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of x and y, where x1 = y1, x2 = y2, ..., xk-2 = yk-2 but xk-1 < yk-1.   

2. Form a new k-itemset z = (x1, x2, ..., xk-1, yk-1), such that z is the union of x and y, with all 

combinations of x and y found in Step 1 found. 

3. For each z formed in Step 2, count the number of x ∈ Lk-1, such that x ⊂ z. let it be m. If 

m = k, then z is one of the candidates in frequent k-itemsets. 

4. The union of all z fulfilling the criteria from Step 1 to Step 3 will form a set of 

candidates of frequent k-itemsets. 

 

For example, assume L2 = {AB, AC, AD, BC}. Then, with the operation L2 × L2, ABC 

can be generated from AB and AC. ABD can be generated from AB and AD. ACD can be 

generated from AC and AD. However, due to the fact that BD is not in L2, ABD cannot be a 

candidate itemset. Likewise, CD does not exist in L2, so ACD cannot be a candidate too. 

Hence L3 will become {ABC}. 

Spatio-temporal Apriori also uses the Apriori_gen subroutine to find frequent itemsets 

in each basic space-time interval. Figure 11 shows a flowchart of the Spatio-temporal 

Apriori algorithm. In the algorithm, a basic space-time interval is the smallest unit to 

partition the target dataset. Spatio-temporal Apriori follows the algorithmic flow of Apriori, 

to search for frequent itemsets in frequent calendar-map patterns. Firstly, it finds all frequent 

1-itemsets in each basic space-time interval. Then, for each basic space-time interval, it rolls 

up the counts of the frequent 1-itemsets to that in those calendar-map patterns, which cover 

the basic space-time intervals.  

For example, in the calendar-map schema R = (year: {1996, ..., 2000}, month: {1, ..., 

12}, day: {1, ..., 31}, province/state: {California, Florida}, city: {Los Angeles, San 

Francisco, San Diego, Orlando, Miami, Atlantis}), the items A, B, C are frequent in the 

basic space-time interval (2000, 10, 20, California, Los Angeles). The n-Star Calender-map 

patterns that cover the basic space-time intervals are:  

 

1. (2000, 10, *, California, Los Angeles) 

2. (2000, *, 20, California, Los Angeles) 

3. (*, 10, 20, California, Los Angeles) 

4. (2000, *, *, California, Los Angeles) 

5. (*, *, 20, California, Los Angeles) 

6. (*, 10, *, California, Los Angeles) 

7. (2000, 10, *, California, *) 



 

62 

8. (2000, *, 20, California, *) 

9. (*, 10, 20, California, *) 

10. (2000, *, *, California, *) 

11. (*, *, 20, California, *) 

12. (*, 10, *, California, *) 

 

Hence, the count of the items (A, B, C) is accumulated to that in the 12 calendar-map 

patterns when the database partition identified by (2000, 10, 20, California, Los Angeles) is 

being scanned. At last, after the first scanning of the whole database, the algorithm 

computes the match ratio of each 1-itemsets in each n-star calendar-map patterns, which is 

equal to the number of (n-1)-star calendar-map patterns covered by the n-star calendar-map 

pattern containing the 1-itemsets. The algorithm will keep those 1-itemsets with match 

ratios larger than or equal to the user-defined match ratio threshold. The kept 1-itemsets in 

their corresponding n-star calendar-map patterns are therefore frequent 1-itemsets in 

frequent calendar-map patterns. 

From the second pass on, we will manipulate each basic space-time interval in 3 steps 

in every pass: 1) Generate candidate itemsets from the frequent itemsets found in the 

previous pass. 2) Compute the support of the candidate itemsets in the basic space-time 

interval. 3) Use the count of frequent itemsets to update that in the n-star calendar-map 

patterns that cover the basic space-time interval. We repeat the 3 steps until no more 

frequent itemsets can be discovered in any calendar-map patterns.  

Spatio-temporal Apriori can search multiple different time intervals and locations with 

different granularities for frequent patterns with the help of calendar-map schema in one 

process. Hence, users do not need to find association rules period by period or place by 

place.  However, Spatio-temporal Apriori can have a lot of improvement in term of 

performance and efficiency. Firstly, as in Apriori, a long database scanning time may be 

needed, especially for large datasets. The number of database scans needed also depends on 

the maximum allowed length of frequent itemsets. Secondly, to generate candidate itemsets 

in each basic space-time interval, the algorithm have to keep track of all the frequent 

itemsets found in the previous pass. The frequent itemsets can be very large, especially 

when there are a large number of basic time intervals and locations. Thirdly, in scanning 

database, the algorithm needs to keep and update the count of itemsets in the whole 

hierarchy of calendar-map patterns. This can be costly in term of processor and memory 

utilization. With a view to achieving better performance, we design a new algorithm for 

mining spatio-temporal association rules, which will be detailed in Section 4.2. 
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Start

End

Find all large 1-itemsets in each basic space-time interval and 
update the counts of the large 1-itemsets in the n-star calendar-
map patterns, which cover the basic space-time interval.

Find all the large 1-itemsets with large enough number of 
occurrence in all calendar-map patterns. Let k=2.

For each basic space-time interval, 
1. Create candidate k-itemsets from large (k-1)-itemsets. 
2. If there are candidates created, 
    2.1 Scan the transactions in the basic space-time interval

with the candidates to find large k-itemsets. 
    2.2 Update the counts of the large k-itemsets found to the 

n-star calendar-map patterns covering the basic space-
          time interval. 
3. If there are no candidates created, continue with next basic 
    space-time interval.

Find all frequent calendar-map patterns and the large k-
itemsets inside them

Are there any large k-itemsets in frequent 
calendar-map patterns found?

Database

Database

No

Yes
k=k+1

 

Fig. 11.  The Spatio-temporal Apriori algorithm. 

 

4.2 Our Spatio-temporal Association Rule Mining 
In a common situation, an association rule is generated from a frequent itemset with at least 

two items. In Apriori-like methods, if we compare the number of candidate itemsets with 

that of frequent itemsets found, we can induce that the largest number of redundant 
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candidates are often candidates of 2-itemset. Moreover, relatively speakingly, the lower the 

support threshold, the more the number of redundant candidates of 2-itemset. Based on the 

observation, our algorithm directly starts searching for frequent 2-itemset instead of 

generating candidates of 2-itemset from frequent 1-itemsets and then looking for frequent 2-

itemsets within the candidates. Hence, we design a new algorithm to effectively discover the 

frequent calendar-map patterns of all frequent itemsets in the target database. Figure 12 is 

flowchart outlining our algorithm. 

Roughly, our method for discovering spatio-temporal association rules can be divided 

into three phases. They are 1) discovery of frequent 2-itemsets along with their 1-star 

candidate calendar-map patterns, 2) generation of candidate itemsets along with all their k-

star candidate calendar-map patterns, and 3) discovery of frequent itemsets along with their 

frequent calendar-map patterns. In phase 1, we are to discover all frequent 2-itemsets L2  in 

the dataset D composed of a set of partitions {Pi}, where a partition Pi is uniquely identified 

by a basic space-time interval Ti. A frequent 2-itemset l2 ∈ L2 discovered will then be stored 

with a set of 1-star candidate calendar-map patterns {l2. 1
iv }, where each l2. 1

iv  covers the 

basic space-time interval Ti, in which l2 is discovered. (Note that a basic space-time interval 

can be covered by more than one 1-star calendar-map pattern.) l2.V1 is a set of all the 1-star 

candidate calendar-map patterns of l2, such that l2. 1
iv  ∈ l2.V1 ⊂ L2.V1.  

Note that L2 and L2.V1 are empty initially. In the partition P1, every frequent 2-itemset 

is found out and inserted into L2. For each itemset l2 inserted into L2, the set of 1-star 

candidate calendar-map patterns covering T1 is kept in l2.V1. The repeating count of l2 in 

each l2. 1
iv  is set to 1.  

In the rest of the partitions, P2, ..., Pn, discovery of frequent 2-itemsets along with their 

1-star candidate calendar-map patterns is iterated partition by partition. Frequent 2-itemsets 

in a partition Pi, where 2 ≤ i ≤ n, are computed with three different cases. In case 1, a 

frequent 2-itemset, l2, is not currently in L2, and therefore it is inserted into L2. Also, {l2. 1
iv }, 

a set of 1-star candidate calendar-map patterns covering Ti is kept in l2.V1. The repeating 

count of l2 in each l2. 1
iv  is set to 1. In case 2, the frequent 2-itemset, l2, is already in L2, but a 

new 1-star calendar-map pattern, l2. 1
iv , with respect to the current partition is found. In this 

case, l2. 1
iv  is inserted into l2.V1 and l2’s repeating count in l2. 1

iv  is set to 1. In case 3, the 

frequent 2-itemset, l2, is already in L2, and all the corresponding 1-star calendar-map 

patterns, {l2. 1
iv }, covering Ti has already been in l2.V1. In this case, we simply increase l2’s 
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repeating count in all the {l2. 1
iv } by 1. 

 

Property 4.1. The information of a (k+1)-star calendar-map pattern, <*, *, *, *, *, …, *, 

R(k+2), …, Rm>, can be aggregated from the information of all k-star calendar-map patterns in 

<*, *, *, *, *, …, *, R(k+1), …, Rm), where each Ri, for (k+1) ≤ i ≤ m, is indicated by an 

integer. 

 

Proof  Given a time or space granularity U(k+1), assume that there are totally τ time intervals 

or locations in U(k+1). By definition, all time intervals or locations in a spatio-temporal 

granularity are indicated with a ‘*’ symbol. For example, if U(k+1) is the time granularity 

“year”, τ is equal to 12, because there are 12 months in a year, and a ‘*’ is used to represent 

all months in a year in the calendar-map schema. Therefore, the aggregation of all k-star 

calendar patterns <*, *, *, *, *, …, *, R(k+1), …, Rm> in U(k+1) will be 

 

∑
=

+ ><
τ

1
)2( ,...,,...,*,*,*,*,*,*,

j
mk RRj  

 ,,...,...,*,*,*,*,*,*,*, )2( >=< + mk RR , (4.1) 

 

which is the (k+1)-star calendar pattern, <*, *, *, *, *, …, *, R(k+2), …, Rm>. Thus, if the 

information of every k-star calendar pattern is known, the information of the (k+1)-star 

calendar pattern can also be derived. 

 

In phase 2, Property (4.1) is firstly used to aggregate all other k-star candidate calendar-

map patterns of itemsets in L2 from 1-star candidate calendar-map patterns. For an itemset l2 

in L2, its repeating counts in the 1-star candidate calendar-map patterns, l2. 1
jv ’s, have been 

derived from phase 1, and thus its repeating counts in 2-star candidate calendar-map patterns, 

l2. 2
jv ’s, can be easily obtained. Similarly, its repeating counts in 3-star candidate calendar-

map patterns, l2. 3
jv ’s, can be aggregated from that in l2. 2

jv ’s, and so on. Instead of directly 

generating all k-star candidate calendar-map patlerns in phase l, our method generates and 

scans only 1-star candidate calendar-map patterns in the first scan of the database. Therefore, 

a smaller number of candidate calendar-map patterns are generated and counted in the 

process of scanning database. Once all candidate calendar-map patterns of itemsets in L2 are 

derived, candidate itemsets Ck, for k ≥ 3, along with their candidate calendar-map patterns 

can further be generated. Note that two kinds of candidates are generated in this phase, i.e., 
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Start

End

Scan the database. In each partition, directly generate large 2-
itemsets and record their numbers of occurrences only in their 
corresponding 1-star calendar-map patterns.

1. Generate all frequent k-star calendar-map patterns with 1-star 
calendar patterns of large 2-itemsets by levelwise manipulation.

2. Generate all candidate itemsets with 3 or more items and their 
associdated calendar-map patterns by levelwise manipulation.

Scan the database to compute the numbers of occurrences of all 
large itemsets in their candidate calendar-map patterns.

Output all large itemsets and their frequent calendar-map patterns.

Are there any candidate itemsets 
and their candidate calendar-map 

patterns generated?

Database

Database

Yes

No

  

Fig. 12. Our spatio-temporal association rule mining algorithm. 

 

4.3 Mining Fuzzy Rules 

This thesis provides a method, which allows users to define the membership functions of 

fuzzy calendar patterns for any interested time periods and fuzzy map patterns for any 

interested locations. With the membership functions, fuzzy spatio-temporal association rules 
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that we defined can be mined. 

First of all, users can design the membership functions of their interested fuzzy 

calendar patterns and map patterns in the calendar-map schema. For example, consider the 

calendar-map schema R=(year:{1996, ..., 2000}, month:{1, ..., 12}, day:{1, ..., 31}, 

province/state: {California, Florida}, city: {Los Angeles, Orlando}), which can be 

decomposed into the calendar schema Rc=(year:{1996, ..., 2000}, month:{1, ..., 12}, 

day:{1, ..., 31}) and the map schema Rm=(province: {California, Florida}, city: {Los 

Angeles, Orlando }). In the calendar schema Rc, the membership function of the fuzzy 

calendar pattern "close to (*, 11, 25)" is designed as in Figure 6, in which the range of time 

intervals that have the property "close to (*, 11, 25)" is defined to be two days before and 

after Novemer 25 of each year.  In other words, only the dates defined by the calendar 

patterns (*, 11, 23), (*, 11, 24), (*, 11, 25), (*, 11, 26), (*, 11, 27) share the property ”close 

to (*, 11, 25)”. And according to the degree of closure to November 25 of any years, the 

dates will have different degrees of membership. In the map schema Rm, the membership 

function of the fuzzy map patterns  “close to (California, Los Angeles)” and “Florida, 

Orlando” are designed as the “very close” line in Figure 7, in which two cities are regarded 

as being close to each other only if the distance between them is less than or equal to 2km. 

In other words, for the two cities in the calendar-map schema R, only (Florida, Orlando) is 

regarded as “close to (Florida, Orlando)” and has a degree of membership equal to 1. Any 

other map patterns will have a zero degree of membership to the fuzzy map pattern. 

Likewise, only (California, Los Angeles) is regarded as “close to (California, Los Angeles)” 

and has a degree of membership equal to 1. Any other map patterns will have a zero degree 

of membership. 

Moving back to the whole calendar-map schema R, where R = Rc + Rm, a calendar-map 

pattern P ∈ R is composed of a calendar pattern and a map pattern, that is P = Pc + Pm 

where Pc ∈ Rc and Pm ∈ Rm. We can define a fuzzy calendar-map pattern Fcm as a fuzzy 

calendar pattern Fc plus a fuzzy map pattern Pm. That is, Fcm = Fc + Fm. An example of a 

fuzzy calendar-map pattern in the calendar-map schema R is "close to (*, 11, 25, California, 

Los Angeles)". The degree of membership of a precise calendar-map pattern P’ (P’ can be a 

basic space-time interval or a n-star calendar-map pattern. A precise calendar-map pattern 

means a non-fuzzy calendar-map pattern.), which is composed of a calendar pattern Pc’ and 

a map pattern Pm’, to a fuzzy calendar-map pattern Fcm is formulated as: 

 

Degree of Membership Fcm (P’) =  Degree of Membership Fc(Pc’) ×  

 Degree of Membership Fm(Pm’), (4.7) 
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where P’ = Pc’ + Pm’, Pc’ is a non-fuzzy calendar pattern and Pm’ is a non-fuzzy map pattern. 

For example, according to Figure 6, the degree of membership of the calendar pattern (*, 11, 

24) to the fuzzy calendar pattern ”close to (*, 11, 25)” is equal to 0.6. And according to 

Figure 9, the degree of membership of the map pattern (California, Los Angeles) to the 

fuzzy map pattern “close to (California, Los Angeles)” is equal to 1. Hence, the degree of 

membership of the calendar-map pattern (*, 11, 24, California, Los Angeles) to the fuzzy 

calendar-map pattern "close to (*, 11, 25, California, Los Angeles)" is equal to 0.6 × 1 = 0.6.  

We make use of an algorithmic flow similar to that used to find spatio-temporal 

association rules. The method scans the database at most twice. Before scanning the 

database, we first find all precise calendar-map patterns with degrees of membership, 

according to the membership functions that users defined for their interested fuzzy calendar 

patterns and fuzzy map patterns.  Then, when scanning the database, only those precise 

calendar-map patterns with degrees of membership have to be manipulated.  

In each scanning of the database, only those precise calendar-map patterns with non-

zero degrees of membership to the interested fuzzy calendar-map patterns have to be 

considered. In the first scanning of database, our method finds all frequent 2-itemsets in 

these precise calendar-map patterns. Then we determine if these precise calendar-map 

patterns are asynchronous calendar-map patterns or not. An asynchronous calendar-map 

pattern is a calendar-map pattern with a non-zero and non-one degree of membership m, i.e. 

0 < m < 1. The degree of membership to the fuzzy calendar-map pattern of these frequent 

itemsets will then be accumulated to FD, for asynchronous calendar-map patterns, or PD, 

for non-asynchronous calendar-map patterns. In other words, given a frequent itemset in a 

precise calendar-map pattern, its count will be added a value, which is equal to the degree of 

membership of this calendar-map pattern to the interested fuzzy calendar-map pattern, 

composed of a fuzzy calendar pattern and a fuzzy map pattern.  

After the first scanning of database, we individually divide the PD and FD of frequent 

itemsets by the sums of their corresponding degrees of membership. Then, the Equation 

(3.10) is used to compute the fuzzy match ratio, with which we can filter out frequent 2-

itemsets fulfilling the user-defined fuzzy match ratio threshold. In this way, frequent 2-

itemsets, which appears at around the same place periodically but asynchronously, can be 

found.  

In the second scanning of database, we apply Equation (4.2), an Apriori’s way to 

generate candidate itemsets with 3 or more items. Like in the first scanning, we only have to 

consider those precise calendar-map patterns with non-zero degrees of membership and 
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 R (X → Y) = {r | r ∈ R1 ∪ …∪ Rm, X, Y ∈ condition(r)}. (4.9) 

 

The support and the confidence of the association X → Y are then given by: 
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respectively. 

Intuitively, sup(X) and sup(Y) can be considered as being the probability that a rule has 

the conjunctions of conditions X and Y, respectively.  Similarly, sup(X → Y) can be 

considered as being the probability that a rule has both X and Y.  If X and Y are independent 

of each other, then sup(X → Y) = sup(X) × sup(Y).  Hence sup(X) × sup(Y) × | R1 ∪ …∪ Rm| 

yields the expected value of |R (X → Y)| (= sup(X → Y) × |R1 ∪ …∪ Rm|).  If |R (X → Y)| is 

significantly larger than its expected value, it is sufficiently large.  The regular meta-rule X 

⇒ Y can therefore be formed Definition (3.10).  On the other hand, if |R (X → Y)| is 

significantly smaller than its expected value, it is sufficiently small.  Consequently, the 

differential meta-rule X ⇒ Y can be formed Definition (3.11). 

The difference between sup(X → Y) and sup(X) × sup(Y) and hence the difference 

between |R (X → Y)| and its expected value can be objectively evaluated in terms of the 

adjusted residual [Agresti 1990], d(X → Y), given by the formula: 

 
)](1[)](1[)()(

)()()()(
YsupXsupYsupXsup

YsupXsupYXsupYXd
−×−××

×−→
=→ , (4.12) 

Since the adjusted residual has a normal distribution [Agresti 1990], we can conclude 

that sup(X → Y) is significantly larger than sup(X) × sup(Y) if d(X → Y) > 1.96 (the 95th 

percentile of the normal distribution).  In other words, |R (X → Y)| is significantly larger 

than its expected value and it is therefore sufficiently large.  On the other hand, if d(X → Y) 
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< –1.96, we can conclude that sup(X → Y) is significantly smaller than sup(X) × sup(Y).  In 

other words, |R (X → Y)| is significantly smaller than its expected value and it is therefore 

sufficiently small. 

It is important to note that we need to take care of not only the criterion d(X → Y) > 

1.96, but also d(X → Y) < –1.96  for meta-mining.  The former is to test for the regularities 

in common in the rule sets (i.e., regular meta-rules), whereas the latter is to test for the 

distinguishing relationships in only a few rule sets (i.e., differential meta-rules). The 

adjusted residual can be used as a measure to identify whether the support of an association 

hidden in the rule sets is sufficiently large or sufficiently small in order to identify regular or 

differential meta-rules, respectively.   

4.4.2 Mining Changes 

In this section, we will propose a rule matching method that can detect various types of 

change meta-rules. The input parameters of the rule matching method are two sets of rules 

Rt and Rt+k discovered at time t and t+k respectively, as well as a user-defined threshold 

called the Rule Matching Threshold (RMT). The meta-mining process is composed of three 

steps: 

 

Step 1:  Calculate the maximum similarity value for each rule discovered at time t and t+k. 

Step 2: For each rule t
ir  ∈ Rt, calculate the difference measures between t

ir  and kt
jr +  ∈ 

Rt+k. 

Step 3: Classify the type of changes for the rules using the maximum similarity value and 

the difference measures. 

 

4.4.2.1 Step 1: Calculation of Maximum Similarity Values 

For the explanation of each step, some notations are briefly defined. 

 

δij : Difference measure. 

  Degree of difference between t
ir  and kt

jr +  (-1 ≤ δij  ≤ 1, 0 ≤ |δij| ≤ 1) 

sij : Similarities measure. Degree of similarity between t
ir  and kt

jr +  (0 ≤ sij ≤ 1) 

lij : Degree of attribute match of the antecedent parts ),max(/ kt
j

t
iijij XXAl +=

cij : Degree of attribute match of the consequent parts ),max(/ kt
j

t
iijij YYBc +=  
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ijA  : Number of attributes common to both antecedent parts of t
ir  and kt

jr +  

t
iX  : Number of attributes in the antecedent parts of t

ir  

kt
jX +  : Number of attributes in the antecedent parts of kt

jr +  

ijB  : Number of attributes common to both consequent parts of t
ir  and kt

jr +  

t
iY  : Number of attributes in the consequent parts of t

ir  

kt
jY +  : Number of attributes in the consequent parts of kt

jr +  

xijk : Degree of value match of the kth matching attribute in Aij 

yij : Degree of value match of the kth matching attribute in Bij 
 

⎩
⎨
⎧

=
otherwise ,0

 valuesame if ,1
ijkx , 

⎩
⎨
⎧

=
otherwise ,0

 valuesame if ,1
ijy

 

Now we provide similarity measure as follows: 

 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

≠≠
×

×××

=

∑ ∑
∈ ∈

0or  0 if ,0

0 and 0 if ,

ijij

ijij
ijij

Ak Bk
ijkijijkij

ij

BA

BA
BA

ycxl

s
ij ij

, (4.13) 

 

In the formula to compute sij, ij
Ak

ijkij Axl
ij

/∑
∈

×  represents a similarity of antecedent part, 

and ij
Bk

ijkij Byc
ij

/∑
∈

×  represents a similarity of consequent part between t
ir  and kt

jr + . If the 

antecedent and consequent parts between t
ir  and kt

jr +  and the same, then the degree of 

similarity becomes 1. The similarity measure can take any value between 0 and 1. To detect 

added and perished rules, the maximum similarity value is provided as follows: 

 

 ),...,,max( 21 ktRiiii ssss
+

= ; Maximum Similarity Value of t
ir , (4.14) 

 ),...,,max( 21 jRjjj t
ssss = ; Maximum Similarity Value of kt

jr + , (4.15) 

 

The maximum similarity value indicates whether the rule is added or perished. If si < RMT, 
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the t
ir  is recognized as a perished rule. If sj < RMT, the the rule kt

jr +  becomes an added rule. 

Example 4.1.  Assume the following rules are generated from each dataset Dt and Dt+k. 

 
tr1 : Income = High ⇒ Sales = High 

tr2 : Age = High, Preference = Price ⇒ Sales = High 

ktr +
1 : Income = High ⇒ Sales = High 

ktr +
2 : Age = High ⇒ Sales = High 

ktr +
3 : Income = High, Preference = Price ⇒ Sales = Low 

 

We can compute the similarity measure between tr2 , ktr +
2  and the maximum similarity 

value of tr2  as follows. 

 

5.0
1

111
2
1

22 =
×××

=s , ts2 = max(0, 0.5, 0) = 0.5 

 

In the same manner, we can compute the maximum similarity value of each rule. 

 
ts1  = max(1, 0, 0) = 1 ts2  = max(0, 0.5, 0) = 0.5  

kts +
1  = max(1, 0) = 1 kts +

2  = max(0, 0.5) = 0.5 kts +
3  = max(0, 0) = 0 

   

If we specify RMT to be 0.4, then we can conclude that only is an added rule.  

 

4.4.2.2 Calculation of Difference Measures 

As we can see from Example (4.1), the maximum similarity value in step 1 is used to 

discover added or perished rules. The purpose of step 2 is to detect unexpected changes and 

emerging patterns. To dectect unexpected change, a difference measure is provided as 

follows: 



 

76 

 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≠∞

==
−

=≠
−

×

=

∑

∑∑

∈

∈∈

1 if ,

1 ,0 if ,

1 ,0 if ,

ij

ijijij

Bk
ijk

ijijij

Bk
ijk

ij

Ak
ijkij

ij

c

cAB

y

cAB

y

A

xl

ij

ijij

δ , (4.16) 

 

As defined above in the problem definition section, the association rule kt
jr +  

discovered at time t+k is an unexpected change with respect to the association rule t
ir  

discovered at time t if the antecedent parts of the two association rules are similar but their 

consequent parts are quite different. Based on this definition of unexpected changes, we 

propose a way to judge whether the rule kt
jr +  is an unexpected change with respect to t

ir  

with the difference measure δij. The conclusions that can be drawn from the value of δij can 

be classified into four cases: 

 

1. If δij > 0, then rule kt
jr +  is an unexpected consequent change with respect to t

ir .  

2. If δij < 0, then rule kt
jr +  is an unexpected antecedent change with respect to t

ir  or 

simply not an unexpected change.  

3. If δij = 0, then the two rules t
ir  and kt

jr +  are either completely the same or 

completely different. Therefore, some additional measures such as lij, 

ij
Bk

ijk By
ij

/∑
∈

 and etc. need to be provided to judge between the two cases. For 

example, If lij = 1 and ij
Bk

ijk By
ij

/∑
∈

 = 1, then the two rules are same.  

4. If δij = ∞, this means the attributes of the consequent parts of the two rules are 

different, i.e. cij ≠ 1. In this case, the two rules t
ir  and kt

jr +  are completely 

different.  

 

Hence, kt
jr +  is a useful pattern with respect to t

ir  only when δij ≥ 0 
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4.4.2.3 Classification of Change Types 

In Step 3, we are to classify rules into three types of change. In addition to difference 

measures, we need some other computation in the classification of change meta-rules. 

Although when δij > 0, kt
jr +  is judged to be an unexpected change with regard to t

ir , 

we cannot conclude directly that it is an unexpected change. This is because there are two 

cases that δij > 0 but kt
jr +  should not be classified as an unexpected change with regard to 

t
ir .  

Firstly, if there exists an association rule t
mr , where m ≠ i and t

mr ∈ Rt , which has the 

same structure as that of kt
jr + , i.e. kt

jr + ≡ t
mr , then kt

jr +  should be classified as an emerging 

pattern with respect to t
mr  instead if the interestingness of the two rules is different from 

each other, i.e. interestingness( t
ir ) ≠ interestingness( kt

jr + ).  

Secondly, if there exists an association rule kt
nr
+ , where n ≠ j and kt

nr
+ ∈ Rt+k , which 

has the same structure as that of t
ir , i.e. t

ir ≡ kt
nr
+ , then kt

jr +  should be regarded as a different 

rule from  t
ir  instead.  

As we cannot make a conclusion based on δij alone whether kt
jr +  is an unexpected 

change or an emerging pattern, we propose a new measure called Adjusted Difference 

Measure, which is formulated as: 

 

 ijijij k−= δδ '  where 
⎩
⎨
⎧ =

=
+

otherwise ,0
1),max(if ,1 kt

j
t
i

ij
ss

k , (4.17) 

 

The fact that t
is  is equal to 1 means that an equivalent rule of t

ir  exists in the ruleset Rt+k. 

And the fact that kt
js +  is equal to 1 means that an equivalent rule of kt

jr +  exists in the ruleset 

Rt.  In both cases, the minus kij prevents kt
jr +  from being classified as an unexpected change. 

If '
ijδ  turns out to be greater than the pre-specified RMT, then the rule kt

jr +  will finally be 

classified as an unexpected change with respect to t
ir . 

 

Example 4.2.  Consider the five association rules: 
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tr1 : Income = High, Preference = Price ⇒ Sales = Low 

tr2 : Age = High, Preference = Price ⇒ Sales = High 

ktr +
1 : Income = High ⇒ Sales = High 

ktr +
2 : Age = High ⇒ Sales = High 

ktr +
3 : Income = High, Preference = Price ⇒ Sales = Low 

 

With the association ruleset, we can compute the difference measure and adjusted 

difference measure between tr2  and ktr +
3  as follows: 

 

δ23 = 0.5; 

δ’
23 = 0.5 – 1 = -0.5 

 

If we specify that RMT is equal to 0.4, we cannot conclude that ktr +
3  is an unexpected 

consequent change with respect to tr2  because ktr +
3  share the same rule structure with tr1 . 

Therefore, ktr +
3  is an emerging pattern of tr1  but not an unexpected consequent change with 

respect to tr2 . Table 4 summaries how to make use of the values of the measures to classify 

the type of change meta-rules. 

 

Table 4.  Value of measure for each type of change. 

Type of Change Value of measure to classify 

Emerging Pattern δij = 0 and ( 0>∑
∈ uhAk

ijkx  or 0>∑
∈ uhBk

ijky  > 0 or lij > 0) and  

interestingness( t
ir ) ≠ interestingness( kt

jr + ) 

Unexpected Change δij > 0 and δ’
ij ≥ RMT 

Added Rules (Perished Rule) sj < RMT (si < RMT) 

 

4.4.2.4 Evaluation of the Degree of Changes 

It will be useful to rank change meta-rules by their degrees of changes because the larger the 
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degrees of changes, the more significant the change meta-rules. Hence, degrees of changes 

and significance levels of change meta-rules refer to the same thing. We will explain how to 

evaluate degrees of changes for each class of change rules in this section.  

 

Example 4.3. This example presents the need of additional measures to judge the 

significance of change meta-rules. 

 
t

ir : Income = High, Age = High ⇒ Model = Large 

kt
jr + : Preference = Price, Age = High ⇒ Model = Small  (δij = δ’

ij = 0.5) 

 

If RMT is equal to 0.4, then the rule kt
jr +  will be classified as an unexpected consequent 

change with respect to t
ir . However, it is difficult for us to judge whether the change from 

t
ir  to kt

jr +  is significant. The reasons are that 1) the antecedent parts of the two rules are not 

the same and 2) we do not quantatively know how much kt
jr +  has been changed from t

ir . 

Therefore, additional measures and judgement are required to decide whether the degree of 

change from one rule to another is significant.  

For this purpose, we adapt the concept of Unexpectedness from the study of 

Padmanabhan and Tuzhilin (1999) to measure the significance levels of unexpected 

consequent changes. They define unexpectedness using the concept of exception rules 

[Suzuki 1997]. 

 

Definition 4.1.  Unexpectedness. 

If the association rule A ⇒ B is unexpected with respect to the belief X ⇒ Y, then the 

following constraint must hold: 

 

1. B ∩ Y = ∅ 

2. The rule X and A ⇒ B holds 

 

To measure the degree of change of the unexpected consequent change kt
jr +  with respect to 

t
ir , t

ir  is assumed to be a belief or existing knowledge. According to Padmanabhan and 

Tuzhilin, every unexpected consequent change satisfied Condition (1) of Definition (4.1) is 
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due to Condition (2). Furthermore, the support of the conjunction rule of t
ir  and kt

jr +  

should be evaluated to check whether Condition (2) of Definition (4.1) holds or not.  

 

Example 4.4.  The conjunction rule of the t
ir  and kt

jr +  in Example (4.2) is as follows. 

 
kt
jir

+
∩ : Income = High, Age = High, Preference = Price ⇒ Model = Small 

 

If the conjunction rule kt
jir

+
∩  has “large support value” in the dataset at time t+k, i.e. Dt+k, our 

conclusion that kt
jr +  is an unexpected consequent change with respect to t

ir  is strengthened 

according to condition 2 of Definition (4.1). Therefore, supports of conjunction rules is a 

factor to determine degrees of changes for unexpected consequent changes.  

However, what is “large support value”? We say that if the support value of the 

conjunction rule kt
jir

+
∩  is relatively small compared with that of kt

jr + , then we cannot 

conclude that kt
jr +  is a significant unexpected consequent change with respect to t

ir . 

Therefore, a large support value of kt
jir

+
∩  should be larger than that of kt

jr + . Therefore, the 

measure of degrees of changes for unexpected consequent changes should take the support 

values of both kt
jr +  and kt

jir
+
∩  into consideration. To sum up, the measure for degrees of 

unexpected consequent changes can be formulated as: 

 

)(

)(

j
kt

ji
kt

ij
rsup

rsup
+

∩
+

=α  

 

In the case of emerging patterns, it is a lot simpler to evaluate their significance levels than 

those of unexpected changes. The increase or decrease rate of support values is used as the 

measure of significance levels for emerging patterns. To evaluate degrees of changes for 

added or perished rules, the supports and maximum similarities of the rules are considered. 

The value of maximum similarity of a rule represents how similar the rule to any rules in 

another ruleset is. If there is a situation that the support values of two added rules are same, 

we will intuitively put the rule with a smaller value of maximum similarity in a more 

important position. The measures of degrees of changes for different classes of change 

meta-rules are finally summarized as follows. Based on the degrees of changes, we can rank 

the mined change meta-rules. 



 

81 

 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

×−

×−

−

=

++

+
∩

+

+

rules addedfor  ,)()1(

rules perishedfor  ,)()1(

changes unexpectedfor  ,
)(

)(

patterns emergingfor  ,
)(

)()(

j
ktkt

j

i
tt

i

j
kt

ji
kt

i
t

i
t

i
kt

ij

rsups

rsups

rsup

rsup
rsup

rsuprsup

α , (4.20) 

 

 



 

82 

 

Chapter 5 

Experiments 
 

In this section, we perform a simulation study to empirically compare the runtime and 

number of generated patterns of the proposed methods. Since the application scenarios of 

the proposed methods are entirely different from those of traditional association rule mining, 

we will not compare our proposed methods with traditional association rule mining methods 

in this section. Instead, the main objective of the simulation study is to measure and identify 

the performance of the proposed methods in finding important spatio-temporal patterns and 

their runtime in a multi-location environment under different pre-conditions. The proposed 

algorithms are implemented and tested with the following hardware and software 

configuration: 

 

(1) Operation system: Windows XP 

(2) Hardware: Pentium 3.0G processor, 1024M main memory 

(3) Tool: Java 2 Standard Edition Version 1.4.2 

 

5.1 Synthetic Data Sets 
In the experiments, we randomly generate synthetic transactional data sets by applying the 

data generation algorithm proposed by [Chen, Tang, Shen and Hu 2005] with some 

additional modification. The main process of generating the synthetic transactional data sets 

will be introduced in this section.  

The factors determining the generated data sets are listed in Table 5. In addition, we 

will generate the time concept hierarchy and place concept hierarchy information from a 

Poisson distribution with mean Bd and a decided value Ht and Hp, for each generated dataset. 

To generate the area sizes of locations, we use two parameters, Su and Sl, to represent 

the largest and smallest area sizes, respectively, and the area size of a location i for 1 ≤ i ≤ q, 

denoted by Si, is generated by a uniform distribution between Su and Si. We assume that the 

total number of transactions and the number of items are dependent on how large the area of 

a location.  In addition, we also allow the locations to have different item replacement 

(turnover) ratios. This is intuitve because, for example, the list of products sold in a 
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supermarket of WalMart may change over time. In the experiments, these relationships are 

estimated by generating m random numbers for the store i from a Poisson distribution with 

mean Si. We use the jth number, denoted by Wij, as the weight of location i in period j. Let Dij 

denote the number of transactions of location i in period j. The total number of transactions, 

D, is distributed to the location i, and period j is determined by: 
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Furthermore, we assume the number of items in a location is proportional to the square 

root of its area size. Thus, let ii SIS =  for I = 1, 2, …, q. Then, the number of items in 

location i, denoted by Ni, is determined by the following formula: 

 

i
i

i IS
ISMax

rN ×=
)(

 

 

Note that the list of items available in a location may change over time, although Ni is 

kept the same in all periods. Since the parameter Id is the proportion of items that will be 

replaced in every period, location i replaces Ni × Id items in each period. Furthermore, we 

follow the method used by [Agrawal and Srikant 2004] to generate Fd maximum potentially 

frequent itemsets with an average length of Fl within each space-time interval. 

Finally, we generate all the transactions in the data sets. To generate the transactions 

for location i in period j, we generate Dij transactions from a Poisson distribution with 

average length of transactions L and a series of maximum potentially frequent itemsets with 

the parameters Fd and Fl. If an itemset generated to a transaction from the process has some 

items not available at store i in period j, we remove these items, and then repetitively add 

items into the transaction until we have reached the intended size of the transaction. If the 

last itemset exceeds the boundary of this transaction, we remove the part that excees the 

boundary. When adding an itemset to a transaction, we use a corruption level, c = 0.7, to 

simulate the phenomenon that all the items in a frequent itemset do not always appear 

together. Information on how the corruption level affects the procedure of generating items 

for a transaction is introduced by [Agrawal and Srikant 2004]. 
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Table 5. Parameters used in simulation. 

Parameters Description Default 

D Number of transactions 6M 

q Number of locations 100 

m Number of time periods 60 

L Average length of transactions 10 

r Number of items 1000 

Fl Average length of maximum potentially frequent itemsets 5 

Fd Number of maximum potentially frequent itemsets 80 

Id Replace rates of items 0.05 

Su, Sl The Maximum and minimum area sizes of locations 10, 1 

Ht Level of time concept hierarchy  3 

Hp Level of place concept hierarchy 3 

Bd Average branch degree 10 

 

We perform Experiment 1 to 7, for testing our spatio-temporal association rule mining 

algorithms, on synthetic datasets, changing a different parameter in each dataset. All the 

parameters other than the controlled variable are set to their default values. A real-world 

data set has been used in testing meta-rule mining in the last experiment. Why synthetic data 

sets have been used in most of the experiments is that synthetic data can be generated to 

have a lot of different properties. Hence, they are used to test the performance of the 

algorithms with different datasets. 

5.2 Experiment 1 
We use four different data types, (L=10;Fl=3;D=6M), (L=10;Fl=4;D=6M), 

(L=10;Fl=5;D=6M), and (L=10;Fl=6;D=6M), to generate around 1000 transactions for each 

basic space-time intervals. We also apply different support thresholds, 0.06, 0.07, 0.08, 0.09 

and 0.1, to investigate how the performance of the two methods, i.e. our proposed new 

method and Spatio-temporal Apriori, will vary with different support thresholds. The match 

ratio threshold is defined to be 0.8 in this experiment. 

Table 6 contains the numbers of frequent calendar-map patterns and frequent patterns, 

as well as the maximum length of the frequent itemsets, found in the four sets of data with 

the two methods and the five different support thresholds. Figure 13 shows a plot of runtime 

time of the two methods with the 4 datasets against the different support thresholds. 
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Table 6. Experiment 1: The numbers of candidate and frequent calendar-map patterns as 

well as the maximum length of generated frequent itemsets by Spatio-temporal Apriori and 

our method. 

Support threshold 
 

0.06 0.07 0.08 0.09 0.1 

Spatio-temporal Apriori 65511 40023 28333 22485 15878 Candidate Calendar-map 

patterns of Our Method 72992 46105 29990 24935 17839 

Discovered frequent calendar-map patterns 64844 39596 28071 22206 14727 

L=10;F
l =3;D

=6M
 Maximal length of frequent itemsets 7 6 6 5 5 

Spatio-temporal Apriori 205886 133932 73784 48726 29277 Candidate calendar-map 

patterns of Our Method 212943 174203 89915 55214 34681 

Discovered frequent calendar-map patterns 198454 128495 71432 46618 27756 

L=10;F
l =4;D

=6M
 Maximal length of frequent itemsets 8 8 8 6 6 

Spatio-temporal Apriori 56017 45429 34215 18191 6146 Candidate calendar-map 

patterns of Our Method 55465 46083 36561 25585 9430 

Discovered frequent calendar-map patterns 52942 43431 31732 16540 5412 

L=10;F
l =5;D

=6M
 Maximal length of frequent itemsets 6 6 6 6 6 

Spatio-temporal Apriori 180697 122007 48047 9787 1313 Candidate calendar-map 

patterns of Our Method 192262 138016 83417 21123 2407 

Discovered frequent calendar-map patterns 162640 105666 42128 8968 1068 
L=10;F

l =6;D
=6M

 Maximal length of frequent itemsets 9 8 8 6 4 

 

In the analysis of Table 6 and Figure 13, we discover that when the maximum length of 

frequent itemsets becomes larger, if the number of candidate calendar-map patterns 

increases, then the runtime of Spatio-temporal Apriori will increase tremendously. When the 

maximum length of frequent itemsets becomes smaller, if the number of candidate calendar-

map patterns increases, then the runtime of Spatio-temporal Apriori will increase but the 

increase tends to be slower. This can be observed by comparing data from 

(L=10;Fl=4;D=6M) and (L=10;Fl=5;D=6M).  

Our explanation is that when the maximum length of frequent itemsets becomes larger, 

Spatio-temporal Apriori has to scan the database for more times. Even worst, when there are 

more candidate calendar-map patterns that have to be checked in each scanning of database, 

the adverse influence on execution runtime will become more apparent. Our method, on the 
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other hand, will scan the database at most twice, so the impact of the maximum length of 

frequent items is less apparent. The impact of an increase in the number of candidate 

calendar-map patterns is also not as vigorous as that in applying Spatio-temporal Apriori. 

Hence, our method on these grounds has better performance in term of execution runtime 

compared with Spatio-temporal Apriori. 
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Fig. 13. Experiment 1: Comparison of execution time between Spatio-temporal Apriori and 

our method. 

 

5.3 Experiment 2 
We use four data sets of different sizes in this experiment. They are (L=10;Fl=4;D=4M), 

(L=10;Fl=4;D=6M), (L=10;Fl=4;D=8M) and (L=10;Fl=4;D=10M). On average, there are 

1000 transactions in each basic space-time interval. We apply different support thresholds, 

0.06, 0.07, 0.08, 0.09 and 0.1 respectively, to investigate the differences of the two methods 

in runtime with data sets of different sizes. The match ratio threshold defined in this 

experiment is 0.8.  

Figure 14 is, under the data sets of four different sizes, how the performance of the two 

methods will change with different support thresholds. The dotted lines are the runtime of 

Spatio-temporal Apriori whereas the solid line is that of our proposed new method. Figure 

15 is, under the different support thresholds, the number of candidate itemsets and the 

discovered frequent itemsets from the four data sets with the two methods. Figure 16 is, 
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under the different support thresholds, the number of candidate calendar-map patterns and 

the discovered frequent calendar-map patterns from the four data sets with the two methods. 

Before the experiment, we know that the number of scanning times in Spatio-temporal 

Apriori depends on the allowed maximum length of frequent itemsets. From the figures, we 

can see that when the sizes of data sets become larger, Spatio-temporal Apriori, which 

relatively needs more number of scanning times, has runtime increasing in phase with the 

sizes of the data sets. What is more, the phenonemun is more apparent when the support 

threshold becomes smaller. This is because, with a smaller support threshold, there are more 

candidates that need to be checked in each scanning. From Figure 14, we can deduce that 

our method outperforms Spatio-temporal Apriori in term of execution runtime with all the 

data sets of different sizes. 
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Fig. 14. Experiment 2: Comparison of execution time between Spatio-temporal Apriori and 

our method. 
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Fig. 15. Experiment 2: Average number of candidate itemsets and frequent itemsets found 

by Spatio-temporal Apriori and our method. 
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Fig. 16. Experiment 2: Average number of candidate and frequent calendar-map patterns 

found by Spatio-temporal Apriori and our method. 
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5.4 Experiment 3 
We use four data sets of different sizes, (L=10;Fl=4;D=4M), (L=10;Fl=4;D=6M), 

(L=10;Fl=4;D=8M) and (L=10;Fl=4;D=10M), partitioned by having around 1000 

transactions in each basic space-time interval. By applying different support thresholds, we 

compare the impact in execution time of keeping only 1-star calendar-map patterns with 

keeping all calendar patterns in the first scanning of data sets. 

Figure 17 represents the average number of calendar-map patterns obtained after the 

first scanning of the four different data sets with different support thresholds.  

We can clearly deduce that since all k-star calendar-map patterns include 1-star 

calendar patterns, the number of 1-star calendar patterns is inevitably less than the number 

of all k-star calendar patterns for k ≥ 1. According to the calendar-map schema that we use 

in this experiment, the number of 1-star calendar-map patterns is roughly equal to 90% of 

that of all k-star calendar-map patterns. Hence, applying our proposed new methods can 

save about 10% of calendar-map patterns. Moreover, this ratio of the number of k-star 

calendar-map patterns to that of 1-star calendar-map patterns will decrease along with the 

increase in the complexity of the adopted calendar-map schema, for example when there are 

more layers in the time/place hierarchy or when there are more members in a particular 

layer in the hierarchy. From Figure 18, we can see the differences in execution time between 

keeping only 1-star calendar patterns and keeping all k-star calendar patterns. We can 

clearly see that the method of keeping only 1-star calendar patterns in the first scanning of 

data sets can help improve the execution efficiency to some extent. 
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Fig. 17. Experiment 3: Comparison of the average number of calendar-map patterns 

between keeping only 1-star calendar-map patterns and keeping all k-star calendar-map 

patterns in the first scanning of datasets. 

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0.06 0.07 0.08 0.09 0.1

Support Threshold

E
xe

cu
ti

on
 T

im
e 

(s
ec

)

Scanning 1-star Candidate Calendar-map
Patterns

Scanning all k-star Candidate Calendar-map
Patterns

 

Fig. 18. Experiment 3: Comparison of execution time between keeping only 1-star calendar-

map patterns and keeping all k-star calendar-map patterns in the first scanning of datasets. 

 

5.5 Experiment 4 
In this experiment, we use the data set L=10;Fl=4;D=1M, partitioned by having around 1000 

transactions in each basic space-time interval. By adjusting the fuzzy match ratio threshold, 

we compare the number of discovered frequent itemsets with that of ordinary calendar-map 

patterns. In the simulation, we use two fuzzy calendar-map patterns. Both of them represents 

those space-time intervals ”close to (*, *, 15, United States, California, Los Angeles)”.  

Figure 19 and Figure 20 respectively define the two fuzzy calendar-map patterns FC1 

and FC2. Both FC1 and FC2 defines the range “k days before and after 15th of each month, in 

Los Angeles” as ”close to (*, *, 15, United States, California, Los Angeles)”.The 

asynchronous nature of FC1 is that for a space-time intervals in Los Angeles, the closer its 

date to 15th of any months, the larger its degree of membership to FC1. Compared with FC1, 

in FC2, the differences among the degrees of memberships of different space-time intervals 

within the range “k days before and after 15th of each month, in Los Angeles” are smaller. 

Regarding FC1, if frequent itemsets are found on the space-time intervals having non-zero 
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degrees of membership, the closer their date components to 15th of any months, the larger 

the chance that FC1 is found to be a frequent fuzzy calendar-map pattern. On the other hand, 

for FC2, only if there are a large enough number of space-time intervals in the range “k days 

before and after 15th of each month, in Los Angeles”, FC2 will be found to be a frequent 

fuzzy calendar-map pattern.  

You may note that when k is defined as 0, the experiment will become non-fuzzy. In 

this experiment, k is set to be 3. The support threshold is defined to be 0.07. The weighting 

value α to control the contribution of asynchronous space-time intervals is defined to be 1 

minus fuzzy match ratio threshold, i.e. α = 1 - fm. We start from a comparatively large fuzzy 

match ratio threshold. Then, the threshold will be gradually decremented until patterns 

meeting user requirements can be discovered. Since α is equal to 1 minus fuzzy match ratio 

threshold, the larger the fuzzy match ratio threshold, the larger the impact of precise space-

time intervals. In this way, the spatio-temporal association rules discovered will occur in 

some relatively synchronous space-time intervals. However, if there are no interesting 

patterns found with a comparatively large value of α, this means that not many frequent 

patterns occur in those relatively synchronous space-time intervals. Hence, we will continue 

to decrement the fuzzy match ratio threshold and repeat the mining process, in order to 

consider a larger contribution of asynchronous space-time intervals. The reason is that the 

smaller the fuzzy match ratio threshold, the larger the value of α and so, the more 

emphasized the impact of asynchronous space-time intervals.  

In this experiment, in order to explain the effects of introducing “fuzziness” into the 

mining process, we intentionally add some synthetic frequent itemsets near the inquired 

calendar-map patterns. And then, we compare and see if the frequent itemsets can be found 

with ordinary calendar-map patterns and also fuzzy calendar-map patterns. This is to prove 

that using fuzzy calendar-map patterns can in fact find some frequent itemsets, which appear 

in asynchronous space-time intervals and cannot be discovered by ordinary calendar-map 

patterns. We first generate a group of frequent itemsets with the allowed maximum length 

equal to 7. The total number of frequent itemsets generated is Q, which is calculated as: 
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We then randomly add some of the frequent itemsets in the range “5 days before and after 

15th of each month, in Los Angeles”.  
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Fig. 19. Experiment 4: The membership functions of the fuzzy calendar-map pattern FC1. 

 

Fig. 20. Experiment 4: The membership functions of the fuzzy calendar-map pattern FC2. 
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Table 7 shows the quantity of frequent itemsets obtained with the ordinary calendar-

map patterns (*, *, 15, United States, California, Los Angeles) (namely the General row) 

and the fuzzy calendar-map patterns (namely the FC1 and FC2 rows), as well as the quantity 

of the intentionally added frequent itemsets into the calendar-map patterns (namely the 

Target columns), while the fuzzy match ratio threshold (Fm) varies from 0.5 to 0.8.  

From Table 7, we can see that some asynchronous spatio-temporal patterns in the data 

set can be found with the fuzzy calendar-map patterns. With FC1 and FC2, we are able to 

mine different patterns because of their different characteristics. Hence, from Table 7, we 

discover a phenomenon that if different membership functions of fuzzy calendar-map 

patterns are being used, different mining results will be achieved. For example, when Fm >= 

0.7, even with the same fuzzy match ratio threshold, we still can discover some of our added 

frequent itemsets with FC2, but not FC1. Therefore, the conclusion is that users should be 

aware of the aynchronous nature of their interested calendar-map patterns, in designing the 

membership functions to fuzzify the calendar-map patterns. 

 

Table 7.  Experiment 4: Comparison of the number of frequent itemsets mined with an 

ordinary calendar-map pattern and fuzzy calendar-map patterns. 

Fm=0.5 Fm=0.6 Fm=0.7 Fm=0.8  

Total Target Total Target Total Target Total Target 

General 216 0 180 0 143 0 125 0 

FC1 556 240 488 240 434 240 381 240 

FC2 564 240 502 240 209 0 145 0 

 

5.6 Experiment 5 
To compare the runtime of our proprosed new spatio-temporal association rule mining 

algorithm while we change the level of the concept hierarchies or branch degree, we 

generate five types of data sets shown in Table 8 with some default values such as the 

replacement rate is 0.01 and the others are just like what mention in Table 5. 
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Table 8.  Experiment 5: Data sets for the simulation. 

Data Sets Branch Degrees Hierarchies Number of Transactions Number of Items 

B=2;H=5 2 5 10M 1000 

B=2;H=4 2 4 10M 1000 

B=2;H=3 2 3 10M 1000 

B=3;H=3 3 3 10M 1000 

B=4;H=3 4 3 10M 1000 

 

The simulation results of the runtime are summarized in Figure 21, where the runtime 

is the length of mining time with each of the data sets in Table 8. The support varies from 

0.1% to 1% and the results indicate that the runtime gap is increasing as the minimum 

support decreases. At high support values, each data set takes about the same time in 

generating a few rules and most of the time is spent on scanning the data sets, with our 

proposed new algorithm for spatio-temporal association rule mining. 

In Figure 21, the lines (B=2;H=3), (B=3;H=3) and (B=4;H=3) correspond to the results, 

when we change the branch degree from 2 to 4. The performance deteriorates as the branch 

degree increases. The reason is that the number of contexts increases as the branch degree 

increases and we have to spend more time on finding the rules under these different contexts. 

The lines (B=2;H=3), (B=2;H=4) and (B=2;H=5) correspond to the results, when we 

change the number of hierarchies in the concept tree from 3 to 5. The results are reasonable, 

because the algorithm need to spend more time on combining the relation between time 

periods and places from different levels. Even worst, since the number of contexts increases 

as the hierarchies are lengthened, the algorithm also has to spend time on finding rules under 

these different contexts. 
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Fig. 21. Experiment 5: Compare the performance for different branch degree and hierarchies.  

 

5.7 Experiment 6 
To compare the runtime of our proposed new spatio-temporal association rule mining 

algorithm while changing the replacement rate, we generate five types of data sets as shown 

in Table 9 with some parametric settings such as the number of transactions is 10M, the 

number of levels in the time and place hierarchy is 3 and the branch degree is 4. The others 

parameters will have their default values as mentioned in Table 5.  

 

Table 9.  Experiment 6: Data sets for the simulation. 

Data Sets Branch Degrees Hierarchies Replacement Rate Number of Items

R=0.001;B=4;H=3 4 3 0.001 1000 

R=0.005;B=4;H=3 4 3 0.005 1000 

R=0.01;B=4;H=3 4 3 0.01 1000 

R=0.015;B=4;H=3 4 3 0.015 1000 

R=0.02;B=4;H=3 4 3 0.02 1000 

 

The simulation results of the runtime are summarized in Figure 22, where the runtime 

is the length of mining time with each of the data sets in Table 9. The support varies from 

0.1% to 1% and the results indicate that the runtime gap is increasing as the minimum 
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support decreases. At high support values, each data set takes about the same time in 

generating a few rules and most of the time is spent on scanning the data sets with our 

proposed new algorithm for spatio-temporal association rule mining. 

In Figure 22, the lines (R=0.001;B=4;H=3), (R=0.005;B=4;H=3), (R=0.01;B=4;H=3), 

(R=0.015;B=4;H=3) and (R=0.02;B=4;H=3) correspond to the results, when we change the 

replacement rate from 0.001 to 0.02. There are no apparent changes in performance, as in 

the case of increasing the branch degree, when we change the replacement rate. The curves 

become gentle for support threshold ≥ 0.25%. The results show that the influences of 

replacement rate on runtime are not obvious. 
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Fig. 22. Experiment 6: Compare the performance for different replacement rates.  

 

5.8 Experiment 7 
To compare the number of discovered patterns with different numbers of transactions (D) 

support thresholds (S), we generate eight groups of data sets as shown in Table 10.  

 

Table 10.  Experiment 7: Data sets for the simulation. 

Data Sets Support Threshold Number of Transactions Number of Items 

D=5M;B=4;H=3;S=0.25 0.25% 5M 1000 

D=10M;B=4;H=3;S=0.25 0.25% 10M 1000 
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D=15M;B=4;H=3;S=0.25 0.25% 15M 1000 

D=20M;B=4;H=3;S=0.25 0.25% 20M 1000 

D=5M;B=4;H=3;S=0.5 0.5% 5M 1000 

D=10M;B=4;H=3;S=0.5 0.5% 10M 1000 

D=15M;B=4;H=3;S=0.5 0.5% 15M 1000 

D=20M;B=4;H=3;S=0.5 0.5% 20M 1000 

 

The two lines (B=2;H=3;S=0.25) and (B=2;H=3;S=0.5) correspond to the two sets of 

results with the support thresholds 0.25% and 0.5% respectively. The data points on the 

lines are captured when we change the number of transactions from 50000 to 200000. From 

Figure 23, we can deduce that the number of discovered patterns will increase if the number 

of transactions increases. Also, more patterns can be discovered with a lower support 

threshold. This is because a higher minimum support will prune more candidate itemsets, of 

which the support values do not exceed the threshold. Therefore, with a higher support 

threshold, fewer numbers of patterns can be discovered. 
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Fig. 23. Experiment 7: The number of patterns in different support thresholds.  

 

5.9 Experiment 8 
In this experiment, we test the proposed meta-mining algorithm for effectiveness when it is 

used to discover the underlying regularities and differences embedded in data sets.  We 

generated six data sets for experimentation.  Each tuple in these data sets is characterized by 
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3 attributes: X, Y, and Z.  Each of these attributes can take on two values: T and F.  Each 

data set contains 1,000 tuples.  We generated the first five data sets, D1, …, D5, according to 

the following association relationships: 

 

X = F ∧ Y = F ⇒ Z = F 

X = F ∧ Y = T ⇒ Z = T 

X = T ∧ Y = F ⇒ Z = T 

X = T ∧ Y = T ⇒ Z = F. 

 

The remaining data set, D6, was generated according to the following association 

relationships: 

 

X = F ∧ Y = F ⇒ Z = F 

X = F ∧ Y = T ⇒ Z = F 

X = T ∧ Y = F ⇒ Z = F 

X = T ∧ Y = T ⇒ Z = T. 

To further examine the performance of our algorithm in the presence of uncertainty, 

5% of noise was added randomly to the data sets by randomly changing the value of Z in 50 

tuples (i.e., 5% of all tuples) from F to T or vice versa.  We applied our proposed meta-

mining algorithm to Dj to discover rules and stored the discovered rules in Rj, j = 1, …, 6.  

The discovered rules together with their adjusted residuals are given in Table 11. 

 

Table 11.  Experiment 8: Rules discovered in the data sets. 

Rule 
Set Rule Adjusted 

Residual 
X = F ∧ Y = F ⇒ Z = F 16.10 
X = F ∧ Y = T ⇒ Z = T 16.61 
X = T ∧ Y = F ⇒ Z = T 16.61 R1 

X = T ∧ Y = T ⇒ Z = F 17.13 
X = F ∧ Y = F ⇒ Z = F 15.96 
X = F ∧ Y = T ⇒ Z = T 16.03 
X = T ∧ Y = F ⇒ Z = T 16.18 

R2 

X = T ∧ Y = T ⇒ Z = F 16.25 
X = F ∧ Y = F ⇒ Z = F 15.96 
X = F ∧ Y = T ⇒ Z = T 15.74 
X = T ∧ Y = F ⇒ Z = T 16.76 

R3 

X = T ∧ Y = T ⇒ Z = F 16.54 
X = F ∧ Y = F ⇒ Z = F 16.40 R4 
X = F ∧ Y = T ⇒ Z = T 16.03 
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X = T ∧ Y = F ⇒ Z = T 16.76  
X = T ∧ Y = T ⇒ Z = F 16.40 
X = F ∧ Y = F ⇒ Z = F 17.02 
X = F ∧ Y = T ⇒ Z = T 16.73 
X = T ∧ Y = F ⇒ Z = T 16.73 R5 

X = T ∧ Y = T ⇒ Z = F 16.43 
X = F ∧ Y = F ⇒ Z = F 7.98 
X = F ∧ Y = T ⇒ Z = F 9.95 
X = T ∧ Y = F ⇒ Z = F 9.62 R6 

X = T ∧ Y = T ⇒ Z = T 27.55 
 

As shown in Table 11, Apriori was first used to uncover all the underlying association 

relationships embedded in the six data sets.  Our proposed meta-mining algorithm was next 

used to mine meta-rules from the rule sets R1, …, R6.  Table 12 shows the regular meta-rules 

discovered from the rule sets. 

 

Table 12.  Experiment 8: Regular meta-rules discovered in the rule sets. 

Regular Meta-Rule Adjusted 
Residual 

X = F ∧ Y = F ⇒ Z = F 2.60 
X = F ∧ Y = T ⇒ Z = T 2.13 
X = T ∧ Y = F ⇒ Z = T 2.13 

 

The regular meta-rule “X = F ∧ Y = F ⇒ Z = F” is supported by six rules (one in each 

rule set), whereas the meta-rules “X = F ∧ Y = T ⇒ Z = T” and “X = T ∧ Y = F ⇒ Z = T” are 

supported by five rules (one in each of R1, …, R5).  All of them represent the regularities in 

the rule sets, which in turn reflect the characteristics in common in the data sets. 

Let us consider the meta-rule “X = F ∧ Y = T ⇒ Z = T” as an example.  It is supported 

by five rules.  Its antecedent “X = F ∧ Y = T” is supported by 6 rules, whereas its consequent 

“Z = T” is supported by 11 rules.  Assuming that they are independent of each other, the 

meta-rule is expected to be supported by 2.75 (= 11 × 6 / 24) rules.  We next need to decide 

whether 5 is significantly larger than 2.75.  To do so in an objective manner, we propose to 

use the adjusted residual analysis.  The adjusted residual is 2.13, which is greater than 1.96 

(the 95th percentile of the normal distribution).  We therefore conclude that the meta-rule is 

supported by a sufficiently large number of rules and hence it represents one of the 

regularities in the rule sets (i.e., a regular meta-rule). 

It is important to note that the meta-rule “X = T ∧ Y = T ⇒ Z = F” is also supported by 
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five rules (one in each of R1, …, R5).  Its antecedent “X = T ∧ Y = T” and its consequent  

“Z = F” are supported by 6 and 13 rules, respectively.  Therefore, we expect that 3.25  

(= 13 × 6 / 24) rules would support this meta-rule.  To objectively decide whether 5 is 

significantly larger than 3.25, we make use of the adjusted residual analysis.  The adjusted 

residual is found to be 1.66 (< 1.96).  Hence we conclude that the meta-rule is not supported 

by a sufficiently large number of rules. 

In addition to discovering regular meta-rules, our algorithms can also discover 

differential meta-rules for representing the distinctive relationships in only a few rule sets.  

Table 13 gives the differential meta-rules discovered from the rule sets. 

 

Table 13.  Experiment 8: Differential meta-rules discovered in the rule sets. 

Differential Meta-Rule Adjusted 
Residual 

X = F ∧ Y = T ⇒ Z = F –2.13 
X = T ∧ Y = F ⇒ Z = F –2.13 

 

For example, the meta-rule “X = T ∧ Y = F ⇒ Z = F” is supported by only one rule in 

R6.  Its antecedent “X = T ∧ Y = F” and consequent “Z = F” are supported by 6 and 13 rules, 

respectively.  Hence 3.25 (= 13 × 6 / 24) rules are expected to support this meta-rule.  We 

find that 1 is significantly less than 3.25 as the adjusted residual is –2.13 (< –1.96).  We 

conclude that the meta-rule is supported by a sufficiently small number of rules and hence it 

represents a distinguishing relationship (i.e., a differential meta-rule). 

Let us consider the meta-rule “X = T ∧ Y = T ⇒ Z = T,” which is also supported by one 

rule in R6.  Its antecedent “X = T ∧ Y = T” is supported by 6 rules, whereas its consequent  

“Z = T” is supported by 11 rules.  We expect it would be supported by 2.75 (= 11 × 6 / 24) 

rules.  The adjusted residual is –1.66 (> –1.96) and hence 1 is not significantly less than 2.75.  

We therefore conclude that the meta-rule is not supported by a sufficiently small number of 

rules. 

5.10 Experiment 9 
To evaluate our proposed methodology for mining change meta-rules, a case study has been 

conducted to measure how well the methodology performs its intended task of detecting 

significant changes. Data are prepared from an online e-shop, established by the Daka 

Development Limited in Hong Kong, which sells various consumer electronic goods. The 
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datasets contain customers’ profiles and purchasing history such as age, job, sex, address, 

registration year, cyber money, number of purchases, total purchase amount, number of 

visits, and payment method. We constructed a data warehouse which stores all historical 

data of each individual customer of the e-shop. We then extracted two datasets from the e-

shop and loaded into the data warehouse so as to detect significant changes of customer 

purchasing behavior in it later on. The first dataset contains profiles and purchasing history 

of all customers from the United States, who had bought more than one product in 2004. 

The second dataset not only contains the same pieces of information, but also data of 

customers from the United States, who had made one additional purchase in 2005. After 

preprocessing the data by cleansing and discretization, the Apriori algorithm [Agrawal, and 

Srikant 1994] was applied to discover association rules in each of the datasets. We 

constrainted the consequent parts of the discovered association rules can only have the 

number of purchases or the total sales amount as output variables. In the condition of 

minimum support equal to 1%, minimum confidence equal to 80% and maximum allowed 

length of frequent itemsets equal to 3, we found 127 association rules in the first dataset and 

104 association rules in the second dataset. Given the Rule Matching Threshold (RMT) 

equal to 0.4, we found 101 change meta-rules and 24 significant change meta-rules with our 

meta-mining approach. The number of change meta-rules for each type of change is 

summarized in Table 14. 

 

Table 14.  Experiment 9: Number of change meta-rules for each type of change. 

Type of change No. of change meta-
rules 

No. of significant change meta-rules 

Emerging Patterns 92 17 (Degree of change > 0.4) 

Unexpected Changes 6 4 (Degree of change > 0.3) 

Added/Perished Rules 3 3 (Degree of change > 0.01) 

 

Significant emerging patterns, unexpected changes, added/perished rules are 

summarized in Table 15, 16, and 17 respectively. 
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Table 15.  Experiment 9: Significant emerging patterns (degree of change > 0.4). 

Rule Support t
ir  (Or kt

jr + ) 
)( i

t rSup  )( j
kt rSup +  ijα  (> 0.4) 

1) Visit=Low, Job=Specialist⇒OrdCnt=Low 0.037 0.078 1.11 

2) Visit=Low, ReservedMoney=Low⇒OrdCnt=Low 0.177 0.368 1.08 

3) Visit=Low, ReservedMoney=Low⇒Sales=Low 0.177 0.368 1.08 

4) Visit=High, Job=Specialist⇒OrdCnt=High 0.021 0.04 0.90 

5) Visit=High, Job=Specialist⇒Sales=High 0.021 0.04 0.09 

6) Visit=High, Addr=Christiansted⇒OrdCnt=High 0.01 0.017 0.7 

7) Visit=High, Addr=Jacksonville⇒OrdCnt=High 0.015 0.025 0.67 

8) Visit=High, Addr=Jacksonville⇒Sales=High 0.015 0.025 0.67 

9) ReservedMoney=Low, Job=Student⇒Sales=Low 0.011 0.018 0.64 

… … … … 

17) Visit=Low, Addr=ChungBuk⇒OrdCnt=Low 0.01 0.014 0.40 

 

Table 16.  Experiment 9: Significant unexpected changes (degree of change > 0.3). 

t
ir  kt

jr +  δij δ’ij αij 

1)Sex=F, Addr=Kansas City⇒ 

OrdCnt=Low (Support: 0.034) 

Visit=High,Addr=Kansas 

City⇒OrdCnt=High (Support: 0.015) 

0.5 0.5 0.85 

2) Registry=This Year, Addr=Kansas 

City⇒OrdCnt=Low (Support: 0.032) 

Visit=High,Addr=Kansas 

City⇒OrdCnt=High (Support: 0.015) 

0.5 0.5 0.79 

3) Payment=Cash, Addr=Kansas 

City⇒OrdCnt=Low 

Visit=High,Addr=Kansas 

City⇒OrdCnt=High (Support: 0.015) 

0.5 0.5 0.58 

4) ReservedMoney=Low, Addr=Kansas 

City⇒OrdCnt=Low 

Visit=High,Addr=Kansas 

City⇒OrdCnt=High (Support: 0.015) 

0.5 0.5 0.31 
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Table 17.  Experiment 9: Significant added/perished rules (degree of change > 0.01). 

t
ir  Support αij 

1) Age=Teen⇒Sales=Low 0.018 0.018 

2) Sex=F, Age=Teen⇒Sales=Low 0.015 0.015 

3) Age=Thirtith, Addr=Jacksonville⇒Sales=Low 0.012 0.012 

 

From the change meta-rules 4) and 5) in Table 15, we can see a rapid growth (90% 

growth) in sales for customers, who are both specialists and frequent visitors. Although the 

support values of the meta-rules are low (0.021, 0.04), these type of customers have a high 

potential to become loyal customers in the near future due to their high growth rate in sales. 

Therefore, a marketing campaign, which aims to encourage their revisiting, is believed to be 

worthy and beneficial to the company. The sales pattern is also supported by the change 

meta-rule 1) in Table 15.  

From the change meta-rules 6), 7) and 8) in Table 15, we can see a rapid growth in 

sales for customers, who live in Christiansted or Jacksonville city and visit the e-shop 

frequently. Without the meta-mining approach, the marketing manager may misunderstand 

that customers who live in Christiansted or Jacksonville city and visit the e-shop frequently 

are not important because the low support values of the association rules 6), 7) and 8) in 

Table 15, mined with Apriori, show that they are now not high-sales customers. However, 

their rapid growth in sales reflects that they are potential customers in the coming future. 

With regard to unexpected changes, we identified 4 significant changes. From the 

change meta-rule 1) in Table 16, we can see that the sales of female customers who live in 

Kansas City are low from the first dataset. However, in the second dataset, we can deduce 

that sales for customers, who visit the e-shop frequently and live in Kansas City, are high, 

even if they are female. It means that the importance of customers who live in Kansas City 

and visit the e-shop frequently is gradually increasing. Therefore, a change in the existing 

marketing strategy and plan is required. The change meta-rules 2), 3) and 4) in Table 16 can 

also be interpreted similarly.  

Finally, three perished rules are found in Table 17. In 2004, most of their customers 

were aged around twentith and sales of the other age groups were very low. But in 2005, we 

can find a trend that the age of customers covers a wider range. Therefore, additional 

services and products for the elderly and teenagers may be needed. 
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The results of this case study show that our methodology for mining change meta-rules 

can discover some hidden, interesting and non-trivial patterns that originary association rule 

mining approaches cannot find. 
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Chapter 6 

 Future Work 
 

The future work can include several directions.  

First, we would like to explore other meaningful semantics of spatio-temporal 

association rules and extend our techniques to solve the corresponding data mining 

problems.  

Second, we would like to consider spatio-temporal patterns in data mining problems 

other than association rule mining, such as clustering.  

Third, mining spatio-temporal patterns involves investigating not only large itemset 

space and pattern space, but also a large amount of data collected in a long history. It is thus 

crucial to develop parallel or distributed algorithms for large scale data mining. It would 

also be interesting to devise online and incremental algorithms for this problem.  

Fourth, building the concept hierarchy trees or the calendar-map patterns need 

background knowledge to determine the granularities of dimension atoms, and control the 

generalization process. We would like to involve appropriate existing technologies such as 

cluster or segmentation tools in Customer Relationship Management (CRM) to build the 

concept hierarchy tree in each dimension for different application domain. There can be 

more than one way to define hierarchy trees of time and location. Our method assumes one 

hierarchy of time and location defined by domain experts in this phase. Future work may 

include handling of multiple hierarchies of time and location as well as automating the 

hierarchy formation. 

Fifth, we would like to design a user interface for representing the rules discovered 

friendly to help users make use of the discovered patterns. 

Sixth, the entire work mentioned in this thesis can be further strengthened with more 

systematic studies and empirical studies with different discretization methods and multiple 

date sources of spatio-temporal data. 

Last but not the least, more experiments and numerical analysis can be done in the 

future. Experiments are now conducted in one run. We may make multiple runs and get 

averages as well as use t-test to see if the difference is significant. 
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Chapter 7 

Conclusions 
 

This work presented a new approach to solve the association rule mining problem handling 

the spatial and temporal dimension, i.e., the problem of spatio-temporal association rule 

mining. We have proposed an algorithm to discover calendar-map-based spatio-temporal 

association rules that appear over any time intervals and locations in a spatio-temporal 

database. An example of a calendar-map-based spatio-temporal association rule is “turkey 

and pumpkin are frequently purchased together in the United States in the week before 

Thank-giving.” It is also an example where existing algorithms fail to mine quite evident 

spatio- temporal association rules, which justifies the need of a new approach.  

From the perspective of a strategist, rules must not only be discovered, but also be 

suitable for human natural thinking. In other words, rules will not have usability if they do 

not have readability. For example, executive personnel may not concern about what kind of 

rules would be held in a single location day by day, but rather to know what kind of the 

rules would be held in a country as a whole every season. Since different executives will 

require different interpretation of the discovered rules for different scenarios and these 

scenarios under different granularities of time-and-place will have different business 

knowledge, the new method that we developed aims to achieve this goal and meet such 

dynamic needs by adopting calendar-map schemas. 

A user-defined calendar-map schema, e.g., (year, month, day, country, province, city), 

a combination of the calendar schema (year, month, day) and the map schema (country, 

province, city), is adopted to specify the interested time intervals and locations as calendar-

map patterns. Then, in every space-time interval, the frequent 2-itemsets are discovered 

along with their 1-star calendar-map patterns. After that, the information of the rest k-star 

calendar patterns of the frequent 2-itemsets is aggregated from their 1-star calendar-map 

patterns. Thus, the minimal number of calendar-map patterns are generated and counted in 

the database. Further, to avoid multiple scans over the database, all candidate itemsets are 

generated from discovered frequent 2-itemsets and the Apriori downward property is 

utilized to generate the minimal number of their candidate calendar-map patterns. Finally, 

all frequent itemsets and their calendar-map patterns are discovered in one shot. Calendar-

map-based spatio-temporal association rules are then obtained.  

We have also proposed a way to extend Apriori, the most well-known association rule 
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mining algorithm, to mine calendar-map-based spatio-temporal association rules. 

Experimental results have shown that our proposed new method is more efficient than the 

Apriori-like approach. An explanation of the experiment results is that the number of 

database scanning time in Apriori-like approaches increases with the maximum allowed 

length of frequent itemsets but our method scans the target database at most twice. After the 

first scanning and before the second scanning, our method generates all k-itemsets and the 

candidates of their associated calendar-map patterns from frequent 2-itemsets and their 

frequent calendar-map patterns. Moreover, our method makes use of the nature of calendar-

map patterns. It collects itemset counts from 1-star calendar-map patterns to further reduce 

the database scanning time and therefore increase the overall execution efficiency. One 

limitation of our proposed algorithm is that the number of k-itemsets can be very large to be 

kept in the memory. It depends on the minimum support threshold and the maximum 

allowed length of frequent itemsets defined. However, our algorithm requires at most two 

database scans. Therefore, this is a tradeoff between database and memory usage. 

Furthermore, our method keeps only 1-star calendar-map patterns and filters out candidate 

itemsets with match ratio. This can help reduce the number of candidate itemsets and 

therefore memory usage. Apriori-like algorithms doesn't have this mechanism to reduce the 

memory usage. 

In this thesis, we proposed two classes of spatio-temporal association rules, spatio-

temporal association rules with respect to precise match and spatio-temporal association 

rules with respect to fuzzy match, to represent regular association rules along with their 

spatio-temporal patterns in terms of calendar-map schemas. We mine spatio-temporal 

association rules with respect to fuzzy match with the use of fuzzy calendar-map patterns, 

which can be used to discover patterns often occurring in a particular time interval at a 

particular location but asynchronously, i.e. not exactly. The reasonale behind is that there is 

inevitably some time shift or location shift even for some very regular patterns or human 

behaviour. An immediate advantage is that the-corresponding data mining problem requires 

less prior knowledge than the prior methods and hence may discover more unexpected rules.  

This study proposes to mine a set of rules from the rules sets discovered by a data 

mining algorithm.  These rules are called meta-rules because they are rules about rules.  We 

define the problems of discovering the underlying regularities, differences, and changes 

hidden in rule sets and propose a new approach to dealing with these problems.  We refer to 

the proposed approach as a meta-mining approach since it mines previous mining results. 

Given a collection of rule sets, each of which is discovered in a data set, the meta-

mining of regularities is concerned with the discovery of association relationships that are 
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supported by a sufficiently large number of rules in the rule sets.  They are in common in 

different data sets (i.e., the regularities) and hence they are called regular meta-rules.  The 

regular meta-rules are especially useful for an interstate or international company to better 

make business decisions that are beneficial to the company as a whole. 

The meta-mining of differences from the rule sets aims at revealing rules that are 

supported by a sufficiently small number of rules.  They represent the distinguishing 

characteristics of the few data sets.  They are therefore referred to as differential meta-rules.  

The differential meta-rules are very useful for an international company to better make 

decisions that are beneficial to specific branches. 

In addition to discovering regularities and differences, we also propose to discover the 

changes in rules over time.  The goal in meta-mining changes from rule sets is to uncover 

the regularities governing how the rules change over time (i.e., the change meta-rules).  

Change meta-rules reflect change in the underlying characteristics hidden in the data.  They 

can be used for human examination and for predicting how the rules will change in the 

future.  Unless one takes changes into consideration, one can only predict based on  

historical data and the prediction cannot lead to any change because it will no longer be 

valid.  Knowing the changes in advance allows a business organization not only to provide 

new products and services to satisfy the changing needs of its customers, but also to design 

corrective actions to stop or delay undesirable changes.  

The experimental results on synthetic data sets for meta-mining also show that our 

algorithms are effective for discovering the underlying regularities, exceptions, and changes 

embedded. 

In conclusion, our proposed spatio-temporal data mining approach is very effective not 

only in mining rules from data sets, but also in mining meta-rules from rule sets.  The 

discovered meta-rules effectively represent the underlying regularities, differences, and 

changes hidden in the rule sets, which in turn reflect the regularities, the differences, and the 

change of characteristics in the data sets. 

To the best of our knowledge, this is the first work, which extends the association 

patterns (sometimes called association rule discovery problem) to the spatial-temporal 

databases, where each transaction is associated with a timestamp and location. Hence, in the 

comparative studies with existing research efforts, we can only compare the performance of 

our proposed new algorithm with that of the Spatio-temporal Apriori, our extension of the 

most well-known association rule mining algorithm. Likewise, we did not find a work on 
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meta-mining similar to ours, which aims to discover meta-rules from two or more sets of 

association rules. We tested our algorithms with both synthetic and real data. Our methods 

are able to effectively discover those synthetic patterns in tests with synthetic data. In tests 

with real data, the mined patterns have been verified by the business users of the spatio-

temporal database to be non-trivial and interesting. Therefore, the uniqueness and the 

preciseness in mining both asssocation rules and meta-association rules in spatio-temporal 

databases are the main contribution of this thesis. 

 



 

110 

References 
 

Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., and Swami, A. (1992) “An Interval 

Classifier for Database Mining Applications,” in Proc. of the 18th Int’l Conf. on Very 

Large Data Bases, Vancouver, British Columbia, Canada, pp. 560–573. 

Agrawal, R. and Psaila, G. (1995) “Active Data Mining,” in Proc. of the 1st Int’l Conf. on 

Knowledge Discovery and Data Mining, Montreal, Canada. 

Agrawal, R. and Shafer, J. C. (1996) “Parallel Mining of Association Rules,” in IEEE Trans. 

on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962–969. 

Agrawal, R. and Srikant, R. (1994) “Fast Algorithms for Mining Association Rules,” in 

Proc. of the 20th Int’l Conf. on Very Large Data Bases, Santiago, Chile, pp. 487–499. 

Agrawal, R. and Srikant, R. (1995) “Mining Sequential Patterns,” in Proc. of the 11th IEEE 

Int’l Conf. on Data Engineering, Taipei, Taiwan, pp. 3–14. 

Agrawal, R., Imielinski, T., and Swami, A. (1993a) “Database Mining: A Performance 

Perspective,” in IEEE Trans. on Knowledge and Data Engineering, vol. 5, no. 6, pp. 

914–925. 

Agrawal, R., Imielinski, T., and Swami, A. (1993b) “Mining Association Rules between 

Sets of Items in Large Databases,” in Proc. of the ACM SIGMOD Int’l Conf. on 

Management of Data, Washington D.C., pp. 207–216. 

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (1995) “Fast 

Discovery of Association Rules,” in Advances in Knowledge Discovery and Data 

Mining, Chapter 12, AAAI/MIT Press, 1995. 

Agrawal, R., Mehta, M., Shafer, J., Srikant, R., Arning, A., and Bollinger, T. (1996) “The 

Quest Data Mining System,” in Proc. of the 2nd Int’l Conf. on Data Mining and 

Knowledge Discovery, Portland, OR, pp. 244–249. 

Au, W. H. and Chan, K. C. C. (1998) “An Effective Algorithm for Discovering Fuzzy Rules 

in Relational Databases,” in Proc. of the 7th IEEE Int’l Conf. on Fuzzy Systems, 

Anchorage, AK, pp. 1314–1319. 

Au, W. H. and Chan, K. C. C. (1999) “FARM: A Data Mining System for Discovering 

Fuzzy Association Rules,” in Proc. of the 8th IEEE Int’l Conf. on Fuzzy Systems, Seoul, 

Korea, pp. 1217–1222. 



 

111 

Au, W. H. and Chan, K. C. C. (2001) “Classification with Degree of Membership: A Fuzzy 

Approach,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose, CA, pp. 35–

42. 

Au, W. H. and Chan, K. C. C. (2002a) “An Evolutionary Approach for Discovering 

Changing Patterns in Historical Data,” in B. V. Dasarathy (Ed.), Data Mining and 

Knowledge Discovery: Theory, Tools, and Technology IV, Proc. of SPIE Vol. 4730, pp. 

398–409. 

Au, W. H. and Chan, K. C. C. (2002b) “Fuzzy Data Mining for Discovering Changes in 

Association Rules over Time,” in Proc. of the 11th IEEE Int’l Conf. on Fuzzy Systems, 

Honolulu, HI, pp. 890–895. 

Au, W. H. and Chan, K. C. C. (2003) “Mining Fuzzy Association Rules in a Bank-Account 

Database,” in IEEE Trans. on Fuzzy Systems, vol. 11, no. 2, pp. 238–248. 

Au, W. H. and Chan, K. C. C. (2005) “Mining Changes in Association Rules: A Fuzzy 

Approach,” in Fuzzy Sets and Systems, vol. 149, no. 1, pp. 87–104. 

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994) Time Series Analysis: Forecasting 

and Control, 3rd Ed., Englewood Cliffs, NJ: Prentice-Hall. 

Bradley, P., Fayyad, U., and Reina, C. (1998) “Scaling Clustering Algorithms to Large 

Databases,” in Proc. of the 4th Int’l Conf. on Knowledge Discovery and Data Mining, 

New York, NY, pp. 9–15. 

Bright, M., Hurson, A., and Pakzad, S. (1992) “A Taxonomy and Current Issues in 

Multidatabase Systems,” in IEEE Computer, vol. 25, no. 3, pp. 50–60. 

Brin, S., Motwani, R., Silverstein, C. (1997a) “Beyond Market Baskets: Generalizing 

Association Rules to Correlations,” in Proc. of the ACM SIGMOD Int’l Conf. on 

Management of Data, Tucson, AZ, pp. 265–276. 

Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997b) “Dynamic Itemset Counting and 

Implication Rules for Market Basket Data,” in Proc. of the ACM SIGMOD Int’l Conf. 

on Management of Data, Tucson, AZ, pp. 255–264. 

Brunk, C., Kelly, J., and Kohavi, R. (1997) “MineSet: an integrated system for data 

mining,” in David Heckerman, Heikki Mannila, Daryl Pregibon (Eds.) Proc. 3rd Int. 

Conf. On Knowledge Discovery and Data Mining (KDD-97). Newport Beach. 

California. USA. AAAI Press, 37-42. 



 

112 

Chan, K. C. C. and Au, W. H. (1997a) “An Effective Algorithm for Mining Interesting 

Quantitative Association Rules,” in Proc. of the 12th ACM Symp. on Applied 

Computing, San Jose, CA, pp. 88–90. 

Chan, K. C. C. and Au, W. H. (1997b) “Mining Fuzzy Association Rules,” in Proc. of the 

6th Int’l Conf. on Information and Knowledge Management, Las Vegas, NV, pp. 209–

215. 

Chan, K. C. C. and Au, W. H. (2001) “Mining Fuzzy Association Rules in a Database 

Containing Relational and Transactional Data,” in A. Kandel, M. Last, and H. Bunke 

(Eds.), Data Mining and Computational Intelligence, New York, NY: Physica-Verlag, 

pp. 95–114. 

Chan, K. C. C. and Wong, A. K. C. (1990) “APACS: A System for the Automatic Analysis 

and Classification of Conceptual Patterns,” in Computational Intelligence, vol. 6, no. 3, 

pp. 119–131. 

Chan, K. C. C. and Wong, A. K. C. (1991) “A Statistical Technique for Extracting 

Classificatory Knowledge from Databases,” in [Piatetsky-Shapiro and Frawley 1991], 

pp. 107–123. 

Chan, K. C. C., Au, W. H., and Choi, B. (2002) “Mining Fuzzy Rules in a Donor Database 

for Direct Marketing by a Charitable Organization,” in Proc. of the 1st IEEE Int’l Conf. 

on Cognitive Informatics, Calgary, Alberta, Canada, pp. 239–246. 

Cheeseman, P. and Stutz, J. (1996) “Bayesian Classification (AutoClass): Theory and 

Results,” in [Fayyad et al. 1996b], pp. 153–180. 

Cheung, D. W., Han, J., Ng, V. T., and Wong, C. Y. (1996b) “Maintenance of Discovered 

Association Rules in Large Databases: An Incremental Updating Technique,” in Proc. 

of the 12th Int’l Conf. on Data Engineering, New Orleans, LA, pp. 106–114. 

Cheung, D. W., Han, J., Ng, V. T., Fu, A. W., and Fu, Y. (1996a) “A Fast Distributed 

Algorithm for Mining Association Rules,” in Proc. of the 4th Int’l Conf. on Parallel and 

Distributed Information Systems, Miami Beach, FL, pp. 31–42. 

Collins. (1995) Road Atlas Britain, HarperCollins, London. 

Delgado, M., Marín, N., Sánchez, D., and Vila, M. A. (2003) “Fuzzy Association Rules: 

General Model and Applications,” in IEEE Trans. on Fuzzy Systems, vol. 11, no. 2, pp. 

214–225. 

Dempster, A. P. (1967) “Upper and Lower Probabilities Induced by a Multi-Valued 

Mapping,” in Annals of Mathematical Statistics, vol. 38, pp. 325–339. 



 

113 

Ester, M., Frommelt, A., Kriegel, H. P., and Sander, J. (1998) “Algorithms for 

Characterization and Trend Detection in Spatial Databases,” in Proc. of KDD’98, pp. 

44–50. 

Ester, M., Kriegel, H. P., and Sander, J. (1997) “Spatial Data Mining: A Database 

Approach,” in Proc. of SSD’97, pp. 47–66. 

Estivill-Castro, V. and Lee, I. (2000) “AUTOCLUST+: Automatic Clustering of Point-Data 

Sets in the Presence of Obstacles,” in Proc. of TSDM’00, pp. 133–146. 

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996a) “From Data Mining to 

Knowledge Discovery: An Overview,” in [Fayyad et al. 1996], pp. 1–34. 

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.) (1996b) 

Advances in Knowledge Discovery and Data Mining, Menlo Park, CA; Cambridge, 

MA: AAAI/MIT Press. 

Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth, P. (1997) “From Data Mining to 

Knowledge Discovery: An Overview,” in U.M. Fayyad, G. Piatetsky-Shapiro, P. 

Smyth & R. Uthurusamy (Eds.) Advances in Knowledge Discovery and Data Mining, 

AAAI/MIT Press, pp. 1–29. 

Ganti, V., Gehrke, J., Ramakrishnan, R., and Loh, W. Y. (1999a) “A Framework for 

Measuring Changes in Data Characteristics,” in Proc. of the 18th ACM SIGMOD-

SIGACT-SIGART Symp. on Principles of Database Systems, Philadelphia, PA, pp. 126–

137. 

Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A. L., and French, J. C. (1999b) 

“Clustering Large Data Sets in Arbitrary Metric Spaces,” in Proc. of the 15th Int’l Conf. 

on Data Engineering, Sydney, Australia, pp. 502–511. 

Gaul, W. and Säuberlich, F. (1999) “Classification and positioning of data mining tools,” in 

W. Gaul & H. Locarek-Junge (Eds.) Classification in the Information Age. Berlin: 

Springer, pp. 143–152. 

Gehrke, J., Ramakrishnan, R. and Ganti, V. (1998) “RainForest - a Framework for Fast 

Decision Tree Construction of Large Data sets,” in Proceedings of the 24th 

International Conference on Very Large Data Bases, San Francisco, pp. 416-427. 

Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. (2003), “Mining frequent patterns in 

data streams at multiple time granularities,” in Next Generation Data Mining, H. 

Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha, Eds. Menlo Park, CA: AAAI/MIT. 



 

114 

Guo, D., Peuquet, D., and Gahegan, M. (2002) “Opening the black box: interactive 

hierarchical clustering for multivariate spatial patterns,” in Proc. of ACM GIS’02, pp. 

131–136. 

Hadjieleftheriou, M., Kollios, G., Gunopulos, D., and Tsotras, V. J. (2003) “On-Line 

Discovery of Dense Areas in Spatio-temporal Databases,” in Proc. of SSTD’03, pp. 

306–324. 

Han, J. , Dong, G., and Yin, Y. (1999) “Efficient Mining of Partial Periodic Patterns in Time 

Series Database,” in Proc. of the 15th IEEE Int’l Conf. on Data Engineering, Sydney, 

Australia, pp. 106–115. 

Han, J. and Fu, Y. (1995) “Discovery of Multiple-Level Association Rules from Large 

Databases,” in Proc. of the 21st Int’l Conf. on Very Large Data Bases, Zurich, 

Switzerland, pp. 420–431. 

Han, J. and Fu, Y. (1996) “Exploration of the Power of Attribute-Oriented Induction in Data 

Mining,” in [Fayyad et al. 1996b], pp. 399–421. 

Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A., 

Stefanovic, N., Xia, B., and Zaiane, O. R. (1996) “DBMiner: A System for Mining 

Knowledge in Large Relational Databases,” in Proc. of the 2nd Int’l Conf. on Data 

Mining and Knowledge Discovery, Portland, OR, pp. 250–255. 

Han, J., Koperski, K., Stefanovic, N. (1997) “GeoMiner: A System Prototype for Spatial 

Data Mining,” in Proc. of SIGMOD’97, pp. 553–556. 

Han, J., Pei, J., and Yin, Y. (2000) “Mining Frequent Patterns without Candidate 

Generation,” in Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, Dallas, 

TX, 2000, pp. 1–12. 

Hastie, T., Tibshirani, R., and Friedman, J. (2001) The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction, Springer Verlag, ISBN: 0-387-95284-5. 

Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2000) “Algorithms for Association Rule 

Mining – A General Survey and Comparison,” in Proc. of ACM SIGKDD Explorations, 

2(1), pp. 58–64. 

Hirota, K. and Pedrycz, W. (1999) “Fuzzy Computing for Data Mining,” in Proc. of the 

IEEE, vol. 87, no. 9, pp. 1575–1600. 

Houtsma, M. and Swami, A. (1995) “Set-Oriented Mining for Association Rules in 

Relational Databases,” in Proc. of the 11th Int’l Conf. on Data Engineering, Taipei, 

Taiwan, pp. 25–33. 



 

115 

Hüllermeier, E. (2001) “Implication-Based Fuzzy Association Rules,” in Proc. of the 5th 

European Conf. on Principles of Data Mining and Knowledge Discovery, Freiburg, 

Germany, pp. 241–252. 

Imielinski, T., Virmani, A., and Abdulghani, A. (1996) “DataMine: Application 

Programming Interface and Query Language for Database Mining,” in Proc. of the 2nd 

Int’l Conf. on Data Mining and Knowledge Discovery, Portland, OR, pp. 256–262. 

Indulska, M. and Orlowska, M. E.. (2002) “Gravity based spatial clustering,” in Proc. of 

ACM-GIS’02, pp. 125–130. 

Ishibuchi, H., Yamamoto, T., and Nakashima, T. (2001) “Fuzzy Data Mining: Effect of 

Fuzzy Discretization,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose, 

CA, pp. 241–248. 

Janikow, C. Z. (1998) “Fuzzy Decision Trees:  Issues and Methods,” in IEEE Trans. on 

Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 28, no. 1, pp. 1–14. 

Kacprzyk, J. and Zadrozny, S. (2001) “On Linguistic Approaches in Flexible Querying and 

Mining of Association Rules,” in H. L. Larsen, J. Kacprzyk, S. Zadrozny, T. Andreasen, 

and H. Christiansen (Eds.), Flexible Query Answering Systems: Recent Advances, Proc. 

of the 4th Int’l Conf. on Flexible Query Answering Systems, Heidelberg, Germany: 

Physica-Verlag, pp. 475–484. 

Knorr, E. M. and Ng, R. T. (1996a) “Finding Aggregate Proximity Relationships and 

Commonalities in Spatial Data Mining,” in IEEE Trans. Knowl. and Data Eng., 8(6), 

pp. 884–897. 

Knorr, E. M. and Ng, R. T. (1996b) “Extraction of Spatial Proximity Patterns by Concept 

Generalization,” in Proc. of KDD’96, pp. 347–350. 

Koperski, K. and Han, J. (1995) “Discovery of Spatial Association Rules in Geographic 

Information Databases,” in Proc. of SSD'95, pp. 47–66. 

Koperski, K., Adhikary, J., and Han, J. (1996) “Spatial Data Mining: Progress and 

Challenges,” in Proc. of ACM SIGMOD’96. 

Kurgan, L. A. and Cios, K. J. (2004) “Meta Mining Architecture for Supervised Learning,” 

in Proc. of the 7th Int’l Workshop on High Performance and Distributed Mining, Lake 

Buena Vista, FL, pp. 18–26. 

Lee, D. H. and Kim, M. H. (1997) “Database Summarization Using Fuzzy ISA 

Hierarchies,” in IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics, 

vol. 27, no. 4, pp. 671–680. 



 

116 

Li, Y., Wang, X. S., and Jajodia, S. (2000) “Discovering Temporal Patterns in Multiple 

Granularities,” in Proc. of TSDM’00, pp. 5–19. 

Liu, B., and Hsu, W. (1996) “Post-Analysis of Learned Rules,” in Proceedings of the 

Thirteenth National Conference on Artificial Intelligence (AAAI-96). 

Liu, B., Hsu, W., and Chen, S. (1997) “Using general impressions to analyze discovered 

classification rules,” in Proceedings of the Third International Conference on 

Knowledge Discovery and Data Mining (KDD-97). 

Liu, B., Hsu, W., and Ma, Y. (1998) “Integrating Classification and Association Rule 

Mining,” in Proc. of the 4th Int’l Conf. on Knowledge Discovery and Data Mining, New 

York, NY, pp. 80–86. 

Liu, B., Hsu, W., and Ma, Y. (2001) “Discovering the Set of Fundamental Rule Changes,” 

in Proc. of the 7th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, 

San Francisco, CA, pp. 335–340. 

Liu, B., Hsu, W., Han, H. S., and Xia, Y. (2000) “Mining Changes for Real-Life 

Applications,” in Proc. of the 2nd Int’l Conf. on Data Warehousing and Knowledge 

Discovery, London Greenwich, U.K. 

Liu, H., Lu, H., and Yao, J. (1998) “Identifying Relevant Databases for Multidatabase 

Mining,” in Proc. of the 2nd Pacific-Asia Conf. on Knowledge Discovery and Data 

Mining, Melbourne, Australia, pp. 210–221. 

Lu, H., Setiono, R., and Liu, H. (1995) “NeuroRule: A Connectionist Approach to Data 

Mining,” in Proc. of the 21st Int’l Conf. on Very Large Data Bases, Zurich, Switzerland, 

pp. 478–489. 

Lu, W., Han, J., and Ooi, B. C. (1993) “Discovery of General Knowledge in Large Spatial 

Databases,” in Proc. of Far East Workshop on GIS, pp. 275–289. 

Maimon, O., Kandel, A., and Last, M. (1999) “Information-Theoretic Fuzzy Approach to 

Knowledge Discovery in Databases,” in R. Roy, T. Furuhashi, and P. K. Chawdhry 

(Eds.), Advances in Soft Computing – Engineering Design and Manufacturing, London, 

U.K.: Springer-Verlag, pp. 315–326. 

Mannila, H., Toivonen, H., and Verkamo, A. I. (1994) “Efficient Algorithms for 

Discovering Association Rules,” in Proc. of the AAAI Workshop on Knowledge 

Discovery in Databases, Seattle, WA, pp. 181–192. 



 

117 

Mannila, H., Toivonen, H., and Verkamo, A. I. (1995) “Discovering Frequent Episodes in 

Sequences,” in Proc. of the 1st Int’l Conf. on Knowledge Discovery and Data Mining, 

Montreal, Canada, pp. 210–215. 

Mannila, H., Toivonen, H., and Verkamo, A. I. (1997) “Discovery of frequent episodes in 

event sequences,” in Report C-1997-15, University of Helsinki, Department of 

Computer Science. 

Matheus, C. J., Chan, P. K., and Piatetsky-Shapiro, G. (1993) “Systems for Knowledge 

Discovery in Databases,” in IEEE Trans. on Knowledge and Data Engineering, vol. 5, 

no. 6, pp. 903–913. 

Mehta, M., Agrawal, R., and Rissanen, J. (1996) “SLIQ: A Fast Scalable Classifier for Data 

Mining,” in Proc. of the 5th Int’l Conf. on Extending Database Technology, Avignon, 

France, pp. 18–32. 

Mitra, S., Pal, S. K., and Mitra, P. (2002) “Data Mining in Soft Computing Framework: A 

Survey,” in IEEE Trans. on Neural Networks, vol. 13, no. 1, pp. 3–14. 

Ng, R. and Han, J. (1994) “Efficient and effective clustering method for spatial data 

mining,” in Proc. of VLDB’94, pp. 144–155. 

Ng, R. T. and Han, J. (2002) “CLARANS. A Method for Clustering Objects for Spatial Data 

Mining,” in IEEE Trans. Knowl. Data Eng., 14(5), pp. 1003–1016. 

Padmanabhan, B., and Tuzhilin, A. (1999) “Unexpectedness as a measure of interestingness 

in knowledge discovery,” in Decision Support Systems (27), pp. 303–318. 

Park, J. S., Chen, M. S., and Yu, P. S. (1995a) “An Effective Hash-Based Algorithm for 

Mining Association Rules,” in Proc. of the ACM SIGMOD Int’l Conf. on Management 

of Data, San Jose, CA, pp. 175–186. 

Park, J. S., Chen, M. S., and Yu, P. S. (1995b) “Efficient Parallel Data Mining for 

Association Rules,” in Proc. of the 4th Int’l Conf. on Information and Knowledge 

Management, Baltimore, MD, pp. 31–36. 

Piatetsky-Shapiro, G. and Frawley, W. J. (Eds.) (1991) Knowledge Discovery in Databases, 

Menlo Park, CA; Cambridge, MA: AAAI/MIT Press. 

Povinelli, R. J. (2000) “Identifying Temporal Patterns for Characterization and Prediction of 

Financial Time Series Events,” in Proc. of TSDM’00, pp. 46–61. 

Prodromidis, A. L., Chan, P. K., and Stolfo, S. J. (2000) “Met-Learning in Distributed Data 

Mining Systems: Issues and Approaches,” in H. Kargupta and P. Chan (Eds.), 



 

118 

Advances in Distributed and Parallel Knowledge Discovery, Menlo Park, CA; 

Cambridge, MA: AAAI/MIT Press, pp. 79–112. 

Ribeiro, J., Kaufman, K., and Kerschberg, L. (1995) “Knowledge Discovery from Multiple 

Databases,” in Proc. of the 1st Int’l Conf. on Knowledge Discovery and Data Mining, 

Montreal, Canada, pp. 240–245. 

Roddick, J. and Lees, B. G. (2001) “Paradigms for spatial and spatio-temporal data mining,” 

in Geographic Data Mining and Knowledge Discovery, H. Miller and J. Han (Eds), 

Taylor & Francis. 

Roddick, J. F. and Spiliopoulou, M. (2002) “A Survey of Temporal Knowledge Discovery 

Paradigms and Methods,” in IEEE Trans. on Knowledge and Data Engineering, vol. 14, 

no. 4, pp. 750–767. 

Roddick, J. F. and Spiliopoulou, M. (1999) “A Bibliography of Temporal, Spatial and 

Spatio-Temporal Data Mining Research,” in SIGKDD Explorations 1(1), pp. 34–38. 

Roddick, J. F., Hornsby, K., and Spiliopoulou, M. (2000) “An Updated Bibliography of 

Temporal, Spatial, and Spatio-temporal Data Mining Research,” in Proc. of TSDM’00, 

pp. 147–164. 

Savasere, A., Omiecinski, E., and Navathe, S. (1995) “An Efficient Algorithm for Mining 

Association Rules in Large Databases,” in Proc. of the 21st Int’l Conf. on Very Large 

Data Bases, Zurich, Switzerland, pp. 432–444. 

Shafer, G. (1976) Mathematical Theory of Evidence, Princeton, NJ: Princeton University 

Press. 

Shafer, J., Agrawal, R., and Mehta, M. (1996) “SPRINT: A Scalable Parallel Classifier for 

Data Mining,” in Proc. of the 22nd Int’l Conf. on Very Large Data Bases, Mumbai 

(Bombay), India, pp. 544–555. 

Silberschatz, A. and Tuzhilin, A. (1996) “What Makes Patterns Interesting in Knowledge 

Discovery Systems,” in IEEE Trans. on Knowledge and Data Engineering, vol. 8, no. 6, 

pp. 970–974. 

Silberschatz, A., Stonebraker, M., and Ullman, J. (1996) “Database Research: Achievements 

and Opportunities into the 21st Century,” in SIGMOD Record, vol. 25, no. 1, pp. 52–63. 

Smyth, P. and Goodman, R. M. (1992) “An Information Theoretic Approach to Rule 

Induction from Databases,” in IEEE Trans. on Knowledge and Data Engineering, vol. 

4, no. 4, pp. 301–216. 



 

119 

Spiliopoulou, M. and Roddick, J. F. (2000) “Higher Order Mining: Modelling and Mining 

the Results of Knowledge Discovery,” in N. F. F. Ebecken and C. A. Brebbia (Eds.), 

Data Mining II – Proc. of the 2nd Int’l Conf. on Data Mining Methods and Databases 

for Engineering, Finance, and Other Fields, Southampton, U.K.: WIT Press, pp. 309–

320. 

Srikant, R. and Agrawal, R. (1995) “Mining Generalized Association Rules,” in Proc. of the 

21st Int’l Conf. on Very Large Data Bases, Zurich, Switzerland, pp. 407–419. 

Srikant, R. and Agrawal, R. (1996a) “Mining Quantitative Association Rules in Large 

Relational Tables,” in Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, 

Montreal, Canada, pp. 1–12. 

Srikant, R. and Agrawal, R. (1996b) “Mining sequential patterns: Generalizations and 

performance improvements,” in Proc. of EDBT’00, pp.3–17. 

Stolorz, P. E., Nakamura, H., Mesrobian, E., Muntz, R. R., Shek, E. C., Santos, J. R., Yi, J., 

Ng, K., Chien, S. Y., Mechoso, C. R., and Farrara, J. D. (1995) “Fast Spatio-Temporal 

Data Mining of Large Geophysical Datasets,” in Proc. of KDD’95, pp. 300–305. 

Suzuki, E. (1997) “Autonomous discovery of reliable exception rules,” in Proceedings of 

the Third International Conference on Knowledge Discovery and Data Mining (KDD-

97). 

Tan, P. N., Kumar, V., and Srivastava, J. (2002) “Selecting the right interestingness measure 

for association patterns,” in Proc. of ACM SIGKDD’02, pp. 31–41. 

Toivonen, H. (1996) “Sampling Large Databases for Association Rules,” in Proceedings of 

the 22nd International Conference on Very Large Data Bases, San Francisco, pp. 134-

145, 1996. 

Tsoukatos, I. and Gunopulos, D. (2001) “Efficient Mining of Spatiotemporal Patterns,” in 

Proc. of SSTD’01, pp.425–442. 

Tung, A. K. H., Hou, J., and Han, J. (2001) “Spatial Clustering in the Presence of 

Obstacles,” in Proc. of ICDE’01, pp. 359–367. 

Tung, A. K. H., Ng, R. T., Lakshmanan, L. V. S., and Han, J. (2000) “Geo-Spatial 

Clustering with User-Specified Constraints,” in Proc. of MDM/KDD’00, pp. 1–7. 

Wrobel, S. (1997) “An Algorithm for Multi-Relational Discovery of Subgroups,” in Proc. of 

the 1st European Symp. on Principles of Data Mining and Knowledge Discovery, 

Trondheim, Norway, pp. 367–375. 



 

120 

Wu, X. and Zhang, S. (2003) “Synthesizing High-Frequency Rules from Different Data 

Sources,” in IEEE Trans. on Knowledge and Data Engineering, vol. 15, no. 2, pp. 353–

367. 

Yager, R. R. (1991) “On Linguistic Summaries of Data,” in [Piatetsky-Shapiro and Frawley 

1991], pp. 347–363. 

Yao, J. and Liu, H. (1997) “Searching Multiple Databases for Interesting Complexes,” in 

Proc. of the 1st Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 

Singapore, pp. 198–210. 

Zadeh, L. A. (1965) Fuzzy Sets. Information and Control, 8, pp. 338-353. 

Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W. (1997) “New algorithms for fast 

discovery of association rules,” in Proc. of KDD’97. 

Zaki, M. (2001) “Efficient enumeration of frequent sequences,” in Proc. of CIKM’01, pp. 

68–75. 

Zhang, B., Hsu, M., and Dayal, U. (2000) “K-Harmonic Means - A Spatial Clustering 

Algorithm with Boosting,” in Proc. of TSDM’00, pp. 31–45. 

Zhang, S., Wu, X., and Zhang, C. (2003) “Multi-Database Mining,” in IEEE Computational 

Intelligence Bulletin, vol. 2, no. 1, pp. 5–13. 

Zhang, S., Zhang, C., and Wu, X. (2004) Knowledge Discovery in Multiple Databases, 

London, U.K.: Springer-Verlag. 

Zhang, T., Ramakrishnan, R., and Livny, M. (1996) “BIRCH: An Efficient Data Clustering 

Method for Very Large Databases,” in Proc. of the ACM SIGMOD Int’l Conf. on 

Management of Data, Montreal, Canada, pp. 103–114. 

Zhong, N., Yao, Y., and Ohsuga, S. (1999) “Peculiarity Oriented Multi-Database Mining,” 

in Proc. of the 3rd European Conf. on Principles of Data Mining and Knowledge 

Discovery, Prague, Czech Republic, pp. 136–146. 

 
 


	theses_copyright_undertaking
	b21167680



