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Abstract

This thesis concentrates on the spherical tε-designs on the two-sphere, numerical algo-

rithms for finding spherical tε-designs and numerical approximation on the sphere using

spherical tε-designs.

A set of points on the unit sphere is called a spherical t-design if the average value

of any polynomial of degree at most t over the set is equal to the average value of the

polynomial over the sphere. Spherical t-designs have many important applications in

geophysics and bioengineering, and provide many challenging problems in computational

mathematics. As a generalization of spherical t-design, we define a spherical tε-design

with 0 ď ε ă 1 which provides an integration rule with a set of points on the unit sphere

and positive weights satisfying p1 ´ εq2 ď min weight
max weight

ď 1. The integration rule also gives

the exact integral for any polynomial of degree at most t. Due to the flexibility of choice

for the weights, the number of points in the integration rule can be less for making the

exact integral for any polynomial of degree at most t. To our knowledge, so far there is

no theoretical result which proves the existence of a spherical t-design with pt`1q2 points

for arbitrary t. In 2010 Chen, Frommer and Lang developed a computation-assist proof

for the existence of spherical t-designs for t “ 1, . . . , 100 with pt ` 1q2 points. Based on

the algorithm proposed in that paper, a series of interval enclosures for spherical t-design

was computed. In this thesis we prove that all the point sets arbitrarily chosen in these

interval enclosures are spherical tε-designs and give an upper bound of ε. We then study

the variational characterization and the worst-case error of spherical tε-design. Based on

the reproducing kernel theory and its relationship with the geodesic distance, we propose

a way to compute the worst-case error for numerical integration using spherical tε-design

in Sobolev space.
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Moreover, we propose an approach for finding spherical tε-designs. We show that

finding a spherical tε-design can be reformulated as a system of polynomial equations

with box constraints. Using the projection operator, the system can be written as a

nonsmooth nonconvex least squares problem with zero residual. We propose a smoothing

trust region filter algorithm for solving such problems. We present convergence theorems

of the proposed algorithm to a Clarke stationary point or a global minimizer of the problem

under certain conditions. Preliminary numerical experiments show the efficiency of the

proposed algorithm for finding spherical tε-designs.

Another contribution in this thesis is the numerical approximation on the sphere using

regularized least squares approaches. We consider two regularized least squares problems

using spherical tε-designs: regularized polynomial approximation on the sphere, and regu-

larized hybrid approximation on the sphere using both radial basis functions and spherical

polynomials. For the first approach we apply the `2 regularized form and give an approx-

imation quality estimation. For the second approach we study its `1 regularized form

and solve the problem using alternating direction method with multipliers. Numerical

experiments are given to demonstrate the effectiveness of these two models.

viii



Acknowledgements

The endeavor of carrying out research is a fascinatingly non-isolated activity. This thesis

would not have been possible without the support, encouragement, input and ideas of

many people. I am grateful to the several individuals who have supported me in various

ways during the PhD program and would like to hereby acknowledge their assistance.

First and foremost, I wish to express my deep thanks to my supervisor, Prof. Chen

Xiaojun, for her enlightening guidance, invaluable discussions, insightful ideas and gen-

erous support throughout the years. Without her valuable advice and motherly patient

guidance, I can not make this study possible.

I would like to thank Prof. Huang Tingzhu, Prof. Xiang Shuhuang, Dr. Du Shouqiang

and Dr. Wang Zhengyu for their great encouragement and accompany. I own multiple

thanks to my academic brothers and sisters, Dr. Bian Wei, Dr. An Congpei, Dr. Liu Xin,

Dr. Zhang Yanfang, Dr. Sun Hailin, Ms. Wang Qiyu, Mr. Wang Hong and Mr. Yang

Lei for their spiritual and substantial support. To Dr. Qiao Zhonghua, Dr. Ma Cheng,

Dr. Bian Chuanxin, Dr. Tian boshi, Mr. Yang Jin, Mr. Jin Haiyang, Mr. Zhang Hu,

Ms. Wei Yan, Dr. Hu Yaohua and Mr. Wang Shujun I am grateful for their help and

friendship. The help from the members in DE405, DE407, HJ609 and P115 (Department

of Applied Mathematics) are deeply acknowledged. I gratefully acknowledge The Hong

Kong Polytechnic University for the financial support during the entire period of my

candidature. I also express my gratitude to the supporting status in Department of

Applied Mathematics for their kindly help.

Last but far from least, I would like to express my special thanks to my parents, my

sister and my fiancee for their love, encouragement and support to me.

ix



x



Contents

Certificate of Originality iii

Abstract vii

Acknowledgements ix

List of Figures xiii

List of Tables xv

List of Notations xvii

1 Introduction 1

1.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Unit sphere and spherical geometry . . . . . . . . . . . . . . . . . . 3

1.1.2 Spherical harmonic polynomials . . . . . . . . . . . . . . . . . . . . 5

1.2 Distribution of points on the sphere . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Spherical t-designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 QMC designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Numerical approximation on the sphere . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Regularized least squares problem on the sphere . . . . . . . . . . . 17

1.3.2 Hybrid approximation using radial basis functions and spherical
polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Spherical tε-Designs 27

2.1 Spherical tε-design: a generalization of spherical t-design . . . . . . . . . . 28

2.2 Variational characterization of spherical tε-designs . . . . . . . . . . . . . . 43

2.3 Worst-case error of spherical tε-designs . . . . . . . . . . . . . . . . . . . . 50

xi



3 Filter Algorithm for Finding Spherical tε-Designs 55

3.1 Nonlinear least squares reformulation for finding spherical tε-designs . . . . 56

3.2 Smoothing trust region filter (STRF) algorithm . . . . . . . . . . . . . . . 58

3.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Regularized Least Squares Problem on the Sphere 73

4.1 Regularized weighted approximation using spherical tε-designs . . . . . . . 74

4.2 Regularized hybrid approximation using radial basis function plus polyno-
mials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Regularized weighted least square polynomial approximation using
spherical tε-designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Regularized hybrid approximation using spherical tε-designs . . . . 89

5 Conclusions and Future Work 97

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101

xii



List of Figures

2.1 ε̄ for t “ 2, . . . , 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Possible minimal number N of points for spherical tε-designs . . . . . . . . 70

3.2 Worst-case error for HspS2q and s “ 1.5 . . . . . . . . . . . . . . . . . . . . 71

3.3 Worst-case error for HspS2q and s “ 5.5 . . . . . . . . . . . . . . . . . . . . 72

4.1 Shapes of f , f δ and fcap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Errors for least square approximation of f with zero regularization operator 89

4.3 Errors for least square approximation of f δ with Laplace-Beltrami regular-
ization operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Shapes of f , f δ and its restoration . . . . . . . . . . . . . . . . . . . . . . . 94

xiii



xiv



List of Tables

2.1 Information for interval enclosures ZN for selected t . . . . . . . . . . . . . 41

3.1 Values of rpxq(CPUtime) for spherical tε-design with ε “ 0.1 . . . . . . . . 69

4.1 Residuals (R¨,¨) and CPU time (T¨,¨) with different models for hybrid ap-
proximation with L “ 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Residuals of approximation for f δ . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Residuals of approximation for fcap with L “ 10 . . . . . . . . . . . . . . . 95

xv



xvi



List of Notations

N set of natrual numbers

R set of real numbers

Rn set of n-dimensional real vectors

Rmˆn set of mˆ n real matrices

Sd unit d-sphere

S2 unit 2-sphere

XN point set on the unit sphere

∆ Laplace operator

∆˚ Laplace-Beltrami operator

ωdpxq normalized surface measure on Sd

ωpxq normalized surface measure on S2

Pt space of spherical polynomials with degree not over t

ρp¨q separate distance of a point set

σp¨, ¨q Hausdorff distance between two point sets

∇ gradient operator

L2pΩq space of real square integrable functions defined on the

region Ω

degppq degree of a polynomial p

CpΩq set of real continuous functions defined on the region Ω

HspΩq Sobolev space defined on Ω

F : X Ñ Y a mapping with domain X and range in Y

xvii



Pt polynomial space with degree t on 2-sphere

Un space of n-dimensional rotationally invariant operator

P` `-order Legendre polynomial

hXN mesh norm of point set XN

Tt space of real trigonometric polynomials with order at most

t

Bf subdifferential of the nondifferentiable function f

r¨s rounding up to next integer of a real number

t¨u rounding down to last integer of a real number

A: generalized inverse of a matrix

cont¨u convex hull of a set

Γp¨q Gamma function

xviii



Chapter 1

Introduction

As a long-standing difficult problem, distribution of points on the sphere is widely studied

in recent years. In 1998 Steve Smale proposed a list of eighteen unsolved problems in

mathematics, in which distribution of points on the two-sphere is the ranked 7th problem

among them.

There are numerous applications of distribution of points on the two-sphere. This

problem appears in plenty of academic areas which is relative to numerical integration

and approximation on the sphere. For instance, the earth’s surface is an approximate

sphere S2, and distribution of points is relevant to many problems of geophysics, including

climate modeling, geodetic engineering and global navigation. Especially, polynomial

approximation on S2 has wide applications in coding communications, scattering and

inverse scattering problem, viruses analysis and surface reconstruction.

Based on different purposes and strategies, various kinds of point systems are pro-

posed in recent decades, such as minimal energy points [46], extremal points [55, 63] and

equal area partitioning points [54, 57]. As an important type of point systems, spherical

t-design is a set of points with the average value of any polynomial of degree at most t

over the set equal to the average value of the polynomial over the sphere.

In this thesis we investigate a new concept called spherical tε-design with 0 ď ε ă 1,

which is a generalization of spherical t-design. The organization of this thesis is as follows.

In the rest of Chapter 1 we will introduce some backgrounds about the distribution of

points on the two-sphere, and its applications to numerical approximation and integration
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on the two-sphere.

In Chapter 2 we study the relationship between interval enclosures containing fun-

damental spherical t-designs and spherical tε-designs. We prove that all the point sets

arbitrarily chosen in the interval enclosures proposed in [25] are spherical tε-designs and

give an upper bound of ε. We then study the variational characterization and the worst-

case error of spherical tε-design. Based on the reproducing kernel theory and its relation-

ship with the geodesic distance, we propose a way to compute the worst-case error for

numerical integration using spherical tε-design in Sobolev space.

In Chapter 3 we propose an approach for finding spherical tε-designs. We show that

finding a spherical tε-design can be reformulated as a system of polynomial equations

with box constraints. Using the projection operator, the system can be written as a

nonsmooth nonconvex least squares problem with zero residual. We propose a smoothing

trust region filter algorithm for solving such problems. We present convergence theorems

of the proposed algorithm to a Clarke stationary point or a global minimizer of the problem

under certain conditions. Preliminary numerical experiments show the efficiency of the

proposed algorithm for finding spherical tε-designs.

In Chapter 4 we apply the spherical tε-designs to the numerical approximation on

the sphere using regularized least squares approaches. We consider two regularized least

squares problems using spherical tε-designs: regularized polynomial approximation on

the sphere, and regularized hybrid approximation on the sphere using both radial basis

functions and spherical polynomials. For the first approach we apply the l2 regularized

form and give an approximation quality estimation. For the second approach we study

its l1 regularized form and solve the problem using alternating direction method with

multipliers.

We implement relative algorithms and models in MATLAB 2012b on a Lenovo Think-

center PC equipped with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows

7. Numerical experiments are given to demonstrate the effectiveness of these two models.
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1.1 Spherical harmonics

1.1.1 Unit sphere and spherical geometry

The unit sphere is a nonempty compact subset of Rd`1 defined by

Sd :“ tx “ px1, . . . , xd`1q
T
P Rd`1

| }x}2 “ 1u,

where } ¨ }2 means the Euclidean norm, i.e.,

}x}2 “ xTx “
d`1
ÿ

i“1

x2
i .

The unit sphere S2 “ tx “ px, y, zqT P R3 : x2 ` y2 ` z2 “ 1u can be parameterized

by spherical polar coordinates pθ, ϕq, where θ and ϕ are the polar and azimuthal angles

respectively, satisfying 0 ď θ ď π and 0 ď ϕ ď 2π. That is to say,

x “

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚. (1.1)

One significant property of Sd is that it can be generated from one single point by

application of elements of the group of all (proper) rotations Rd`1 Ñ Rd`1. Note that

with respect to the standard basis in Rd`1, the elements of this group are represented by

the elements of

Ud`1 :“ tS P Rpd`1qˆpd`1q
| SST “ I, detpSq “ 1u. (1.2)

For multivariate continuous functions on the sphere

f : Sd Ñ R,

denote the space of all these functions by CpSdq, provided with the maximum norm, i.e.,

}f}CpSdq “ }f}8 :“ sup
xPSd

|fpxq|.

For f P CpSdq and S P Ud`1, define fS P CpSdq by

fSpxq :“ fpSxq, x P Sd.

If f P V and V is a subspace of CpSdq, fS needs not to be located in V for arbitrary S.
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Definition 1.1. (Rotationally invariant) A subspace V of CpSdq is called rotationally

invariant if x P Sd implies Sx P Sd for all S P Ud`1 and if fS P V holds for arbitrary

f P V, S P Ud`1.

Obviously, CpSdq is rotationally invariant. Moreover, there are elements in CpSdq with

the property that fS “ f for some rotations S. For instance, if f is defined by

fpxq “ gpt ¨ xq, x P Sd,

for some g P Cr´1, 1s and t P Sd, then fS “ f holds for arbitrary S P Ud`1 which keep t

fixed.

In this thesis we will concentrate on studying the point sets on the two-sphere S2.

Denote a point set on S2 by XN “ tx1, . . . ,xNu, the mesh norm of XN describes the

radius of the largest “hole” on the surface of the sphere with none of xi in it.

Definition 1.2. (Mesh norm) The mesh norm hXN of a set XN Ă Sd is defined by

hXN :“ max
xPSd

min
yPXN

cos´1
px ¨ yq. (1.3)

The reproducing kernel is a very useful tool to deal with the representation for ap-

proximation schemes. For detail, we refer to the classical article [4]. Let BpS2q be a class

of functions defined in S2, forming a Hilbert space with inner product x¨, ¨yB and norm

} ¨ }B. The function φpx,yq of x,y P S2 is called a reproducing kernel of B if

1. For every y, φpx,yq as function of x belongs to B.

2. For every y P S2 and every f P B,

fpyq “ xfp¨q, φp¨,yqyB. (1.4)

From the definition we can see that φp¨, ¨q is invariant under rotation, and is bizonal

following the definition below.

Definition 1.3. [67] A function φp¨, ¨q P CpS2ˆS2q is called bizonal if for arbitrary points

x,y P S2, the following holds

φpx,yq “ ψpx ¨ yq

4



for some univariate function ψ : r´1, 1s Ñ R.

1.1.2 Spherical harmonic polynomials

The restriction of a homogeneous polynomial in 3-dimension of degree ` ě 0 to the

sphere S2 is called a spherical polynomial of degree `. Denote the space of all spherical

polynomials on S2 of degree ` ě 0 by Y` :“ Y`pS2q and it is well known that the dimension

of Y` is

dimpY`q “ 2`` 1. (1.5)

Denote the space of square integrable functions on S2 by L2pS2q. Then it is a Hilbert

space with the inner product defined as

pf, gqL2pSdq “

ż

Sd
fpxqgpxqdωpxq, f, g P L2pS2

q, (1.6)

and the induced norm

}f}L2pSdq “

ˆ
ż

Sd
|fpxq|2dωpxq

˙
1
2

, f P L2pS2
q, (1.7)

where ωpxq denotes the normalized surface measure on S2. By Corollary 2.15 in [5], we

have that for ` ‰ `1,

Y` K Y`1 , (1.8)

with respect to the L2pS2q inner product.

If p is a polynomial, then we denote its restriction to S2 by p|S2 , and we define

Pt “ PtpS2
q “ tp|S2 : degppq ď tu , (1.9)

as the space of spherical polynomials of degree ď t. Thus together with (1.8) we can have

that

Pt “ Y0 ‘ Y1 . . .‘ Yt, (1.10)

is a decomposition of Pt into orthogonal subspaces, with the orthogonality based on the

L2pS2q inner product. Therefore, a basis for Pt can be introduced by giving a basis for each
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of the subspaces Y`, ` ą 0. Denote an L2-orthogonal basis of Y` by tY`,k, k “ 1, . . . , 2``1u

for a fixed `. We call Y`,k a spherical harmonic (polynomial) with degree ` and order k.

The spherical harmonics is also the eigenfunction of the Laplace’s equation with the form

as

∆u “ 0 or ∇2u “ 0, (1.11)

where ∆ “ ∇2 is the Laplace operator and u is a scalar function. As their name suggests,

the spherical harmonics arise from solving the angular portion of Laplace’s equation in

spherical coordinates using separation of variables. For d “ 2, tY`,k, ` “ 0, . . . ,8, k “

1, . . . , 2`` 1u is the eigenvalue function set of the Laplace operator. Then from (1.8) we

know that all Y`,k are L2-orthogonal to each other, in the sense that

ż

S2
Y`,kY`1,k1dωpxq “ δ`,`1δk,k1 , `, `1 “ 0, . . . , t; k, k1 “ 1, . . . , 2`` 1, (1.12)

where δ`,`1 is the Kronecker delta. Therefore, tY`,k, ` “ 1, . . . , t, k “ 1, . . . , 2` ` 1 } is a

L2-orthonormal basis of the space Pt. And it is easy to see that

dt “ dimpPtq “
t
ÿ

`“0

2`` 1 “ pt` 1q2. (1.13)

The spherical harmonic basis functions derived in this fashion take on complex values,

but a complementary, strictly real-valued set of harmonics can also be defined. The close

form of real spherical harmonic polynomials Y`,k, ` “ 0, . . . ,8, k “ 1, . . . , 2`` 1 on S2 is

[1, 5]

Y`,kpθ, ϕq “

$

’

’

’

’

&

’

’

’

’

%

N`,kP
``1´k
` pcos θq cos kϕ, k “ 1, . . . , `,

N`,kP
0
` pcos θq, k “ `` 1,

N`,kP
k´`´1
` pcos θq sin kϕ, k “ `` 2, . . . , 2`` 1,

(1.14)

where N`,k are the normalization coefficients

N`,k “

d

2`` 1

4π

p`´ |k ´ `´ 1|q!

p`` |k ´ `´ 1|q!
, k “ 1, . . . , 2`` 1,
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and P` : r´1, 1s Ñ R are the associated Legendre polynomials. Furthermore, the spherical

gradient ∇˚p¨q of Y`,k could be represented as [42, 70]

B

Bϕ
Y`,kpθ, ϕq “

$

’

’

’

’

&

’

’

’

’

%

´kN`,kP
|k|
` pcos θq sin kϕ, k “ ´`, . . . ,´1,

0, k “ 0,

kN`,kP
k
` pcos θq cos kϕ, k “ 1, . . . , `,

(1.15)

sin θ
B

Bθ
Y`,kpθ, ϕq “ `

d

p`` 1q2 ´ k2

p2`` 1qp2`` 3q
Y``1,kpθ, ϕq´p``1q

d

`2 ´ k2

p2`` 1qp2`´ 1q
Y`´1,kpθ, ϕq.

(1.16)

Moreover, for any given Y`,k, we have

1. Y`,kpθ, ϕ` 2πq “ Y`,kpθ, ϕq,

2. |Y`,kp0, ϕq| ă 8,

3. |Y`,kpπ, ϕq| ă 8,

4. }Y`,k}8 ď
b

2``1
4π

for k “ 1, . . . , 2`` 1, ` “ 0, . . . ,8.

Another important result about spherical harmonics is the addition theorem, which is

concerned with the relationship between spherical harmonics and Legendre polynomials.

The addition theorem holds on Sd with d ě 1. Similar with what is defined in S2 case,

we define Yd
` as the space of all spherical polynomials with degree ` on Sd, and let P`,d be

the normalized Gegenbauer polynomial [1], then the addition theorem can be represented

as follows.

Theorem 1.4. [5] (Addition Theorem) Let tY
pdq
`,k : k “ 1, . . . ,Mpd, `qu be an orthog-

onal basis of Yd
` , i.e.,

ż

Sd
Y
pdq
`,k pxqY

pdq
`,k1 pxqdωdpxq “ δkk1 , 1 ď k, k1 ďMpd, `q.

Then

Mpd,`q
ÿ

k“1

Y
pdq
`,k pxqY

pdq
`,k pyq “Mpd, `qP`,dpx ¨ yq @x,y P Sd. (1.17)

7



Another important result is Berstein’s inequality. Define the set of trigonometric

polynomials Tct by

Tct “

#

p : ppθq :“
t
ÿ

k“´t

ake
ikθ, ak P C

+

. (1.18)

A real trigonometric polynomial of degree at most t is an element of Tct taking only real

values on the real line. We denote by Tt the set of all real trigonometric polynomials of

degree at most t.

Theorem 1.5. [16] (Bernstein’s Inequality) The inequality

}ppmq}CmpRq ď tm}p}CmpRq (1.19)

holds for every p P Tt, where } ¨ }CmpRq denotes the uniform norm on CmpRq.

8



1.2 Distribution of points on the sphere

1.2.1 Spherical t-designs

Firstly, we show the definition of spherical t-design which was first introduced in the

groundbreaking paper [36] by Delsarte, Goethals and Seidel.

Definition 1.6. (Spherical t-design) Let XN “ tx1, . . . ,xNu be a set of N points on

the unit sphere Sd, and let Pt :“ PtpSdq be the linear space of restrictions of polynomials

of degree at most t in d` 1 variables to Sd. The set XN is a spherical t-design if

1

N

N
ÿ

j“1

ppxjq “
1

|Sd|

ż

Sd
ppxqdωdpxq (1.20)

holds for all spherical polynomials p P Pt, where dωdpxq denotes the normalized surface

measure on Sd.

In the past decades, spherical t-designs have been extremely studied, see [2, 3, 6,

7, 8, 9, 25, 43, 47, 64]. The existence of spherical designs for all values t was proved

by Seymour and Zaslavsky [60] in 1984. However, the number of points N needed to

construct a spherical t-design is a long-standing open problem.

For each t, d P N denote by Npd, tq the minimal number of points in a spherical t-design

in Sd. The following lower bound

Npd, tq ě

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

˜

d` k

d

¸

`

˜

d` k ´ 1

d

¸

if t “ 2k,

2

˜

d` k

d

¸

if t “ 2k ` 1,

(1.21)

is proved in [36]. Spherical t-designs attaining this bound are called tight. It has been

proved that the vertices of a regular t` 1-gon form a tight spherical t-design on the circle

S1, so we have Np1, tq “ t ` 1, see [36]. Exactly eight tight spherical designs are known

for d ě 2 and t ě 4. All such configurations of points are highly symmetrical and optimal

from many different points of view, see [33, 35]. Unfortunately, tight designs rarely exist.

9



In particular, Bannai and Damerell [7, 10] have shown that tight spherical designs with

d ě 2 and t ě 4 may exist only for t “ 4, 5, 7 or 11.

In [50, 61] a well known lower bound of the number of positive weight quadrature

points was established for general regions. Denote Ω Ď Rd by a region which is either the

closure of a connected open domain, or a smooth closed lower-dimensional manifold in

region Rd.

Lemma 1.7. [61] If a quadrature rule is exact for all polynomials of degree ď 2t on the

region Ω, then the number of quadrature points N satisfies N ě dtpΩq, where dtpΩq is the

dimension of PtpΩq.

Recently, a lot of remarkable work for the value of Npd, tq has been raised. In

1993, Korevaar and Meyers [47] proved that Npd, tq ď Cdt
pd2`dq{2 and conjectured that

Npd, tq ď Cdt
d, where Cd is a sufficient large positive constant depending only on d. This

conjecture have been proved by Bondarenko, Radchenko and Viazovska [14] in 2011. In

addition, Bondarenko, Radchenko and Viazovska [15] proved the existence of well sepa-

rated spherical t-designs for all N ě Cdt
d for some unknown Cd ą 0.

Theorem 1.8. [14] For d ě 2, there exists a constant Cd depending only on d such that

for every N ě Cdt
d there exists a spherical t-design on Sd with N points.

For d “ 2, there is an even stronger conjecture by Hardin and Sloane [43] saying that

Np2, tq ď 1
2
t2 ` opt2q as t Ñ 8. Numerical evidence supporting the conjecture was also

given [43, 64].

In 2011, Chen, Frommer and Lang [25] proposed a computational-assisted proof for

the existence of spherical designs on S2 with N “ pt ` 1q2 for all values of t ď 100. In

[25], an algorithm based on interval arithmetic is proposed to calculate a series of sets of

small interval enclosures containing spherical designs.

It is well known that there are many equivalent conditions for a set XN Ă S2 to be a

spherical t-design. Among them the following proposition plays a significant role in the

study of this problem:
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Proposition 1.9. [36, 64] A finite set XN “ tx1, . . . ,xNu is a spherical t-design if and

only if the Weyl sums

N
ÿ

i“1

Y`,kpxiq “ 0, k “ 1, . . . , 2`` 1, ` “ 1, . . . , t. (1.22)

Based on this proposition, Chen and Womersley [28] reformulated the problem of

finding a spherical t-design with N “ pt ` 1q2 points as a system of underdetermined

nonlinear equations. A generalized result was then proved in [2] for the case N ě pt`1q2.

Define the function Ct : S2
ˆ ¨ ¨ ¨ ˆ S2

loooooomoooooon

N times

Ñ RN´1 by

CtpXNq :“ EGtpXNqe, (1.23)

where

E :“ r1,´IN´1s P RpN´1qˆN , (1.24)

GtpXNq :“ YtpXNq
TYtpXNq, (1.25)

e :“ p1, 1, . . . , 1qT P Rpt`1q2 , (1.26)

and 1 :“ p1, . . . , 1qT P RN´1, (1.27)

and

pYtqi,`2`kpXNq “ Y`,kpxiq, i “ 1, . . . , N, k “ 1, . . . , 2`` 1, ` “ 0, . . . , t.

Proposition 1.10. [2] Let N ě pt ` 1q2, and suppose that XN “ tx1, . . . ,xNu is a

fundamental system of Pt. Then XN is a spherical t-design if and only if CtpXNq “ 0.

By Proposition 1.9 we can guess that for any fixed t and N “ pt ` 1q2, spherical

t-design is not unique, since equation (1.22) is nonlinear with respect to the points with

maximal degree t. The matrix GtpXNq which is constructed by some spherical t-designs

may be singular, or ill-conditioned, which is not suitable for polynomial approximation

and interpolation. To overcome this challenge, a new concept called well-conditioned

(extremal) spherical t-design was proposed in [2].
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Definition 1.11. (Extremal spherical designs) A set XN “ tx1, . . . ,xNu Ă S2 of

N ě pt ` 1q2 points is an extremal spherical t-design if the determinant of the matrix

HtpXNq :“ YtpXNqYtpXNq
T P Rpt`1q2ˆpt`1q2 is maximal subject to the constraint that XN

is a spherical t-design.

In [2], the well conditioned spherical t-designs with N ě pt`1q2 points are constructed

by maximizing the determinant of a Gram matrix which satisfies undetermined nonlinear

equations. Interval methods are then used to prove the existence of a true spherical t-

design and to provide a guaranteed interval containing the true spherical t-design. The

well-conditioned spherical designs are proved to have well separated properties.

Some other noteworthy work is that Sloan and Womersley [64] analyzed some varia-

tional characterization of spherical designs and proposed another approach to find spher-

ical t-design with N ď pt`1q2 using the found variational characterization. Furthermore,

Brauchart, Saff, Sloan, and Womersley studied the worst-case error of numerical integra-

tion for functions in Sobolev spaces using spherical designs in [19], and demonstrated the

effectiveness numerical integration using spherical designs compared to some other point

systems.

1.2.2 QMC designs

Denote the space of square integrable functions on Sd by L2pSdq. It is a Hilbert space

with the inner product

xf, gyL2pSdq “

ż

Sd
fpxqgpxqdωdpxq, f, g P L2pSdq, (1.28)

and the induced norm

}f}L2pSdq “

ˆ
ż

Sd
|fpxq|2dωdpxq

˙
1
2

, f P L2pSdq. (1.29)

The Sobolev space HspSdq can be defined for s ě 0 as the set of all functions f P L2pSdq

whose Laplace-Fourier coefficients

12



f̂`,k “ xf, Y`,kyL2pSdq “

ż

Sd
fpxqY`,kpxqdωdpxq (1.30)

satisfy

8
ÿ

`“0

Mpd,`q
ÿ

k“1

p1` λ`q
s
ˇ

ˇ

ˇ
f̂`,k

ˇ

ˇ

ˇ

2

ă 8, (1.31)

where the λ` “ `p`` d´ 1q. Obviously, by letting s “ 0 we can obtain H0pSdq “ L2pSdq.

Define the norm of HspS2q as

}f}Hs “

«

8
ÿ

`“0

2``1
ÿ

k“1

1

α
psq
`

f̂ 2
`,k

ff
1
2

, (1.32)

where the sequence of positive parameters α
psq
` should satisfy

α
psq
` „ p1` λ`q

´s
„ p`` 1q´2s. (1.33)

Correspondingly, we define the inner product in HspS2q as

xf, gyHs “
8
ÿ

`“0

2``1
ÿ

k“1

1

α
psq
`

f̂`,kĝ`,k. (1.34)

The results in this section are based on the explicit expression for the “worst-case

error” in [19]. In [19] the worst-case integration error is established based on the concept of

reproducing kernel. Using the relationship between reproducing kernel and point distance,

an efficient way to calculate the the worst-case error is found.

Definition 1.12. [19] (Worst-case error) For a Banach space B of continuous functions

on Sd and denote its norm by } ¨ }B, the worst-case error for the integration rule QrXN s

with node set XN “ tx1, . . . ,xNu approximating the integral Ipfq, with QrXN spfq and

Ipfq defined by

QrXN spfq :“
1

N

N
ÿ

j“1

fpxjq, Ipfq :“

ż

Sd
fpxqdωdpxq, (1.35)
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is given by

EBpQrXN sq :“ sup
 

|QrXN spfq ´ Ipfq| : f P B, }f}B ď 1
(

. (1.36)

In [19] Brauchart, Saff, Sloan and Womersley studied the equal weight numerical in-

tegration and raised a concept called QMC (Quasi-Monte Carlo) designs. They discussed

the integration of functions in Sobolev space HspSdq with s ą d{2. And the so-called

QMC designs represent a kind of sequence with its worst-case error converges to zero

with its number of points N Ñ 8 with a certain order.

Definition 1.13. [19] (QMC designs) Given s ą d
2
, a sequence pXNq of N-point con-

figurations on Sd with N Ñ 8 is said to be a sequence of QMC designs for HspSdq if there

exists a positive number cps, dq ą 0, independent of N , such that

sup
f P Hs

}f}s ď 1

ˇ

ˇ

4π

N

N
ÿ

j“1

fpxiq ´

ż

Sd
fpxqdωdpxq

ˇ

ˇ ď
cps, dq

N s{d
. (1.37)

For brevity of notations, denote the worst-case error of a quadrature rule QrXN , ws

on HspSdq by

Es,dpQrXN , wsq “ sup
fPHs,}f}sď1

|QrXN , wspfq ´ Ipfq| . (1.38)

For sequences of positive weight cubature rules there have been some results about its fast

convergence property in Sobolev spaces, as shown in the following theorem. This theorem

was first proved for the case s “ 3{2 and d “ 2 in [44], then extended to all s ą 1 for

d “ 2 in [45], and finally extended to all s ą d{2 and all d ě 2 in [18].

Theorem 1.14. [18] Given s ą d{2, there exists a positive number cps, dq depending on

the HspSdq-norm such that for every N-point spherical t-design XN on Sd there holds

Es,dpQrXN sq ď cps, dqN´ s
d . (1.39)

In the following of this subsection, we will discuss the worst-case error of spherical

tε-design on HspS2q. Again for brevity of notations we denote EspQrXN sq :“ Es,2pQrXN sq

in the following. We will use the reproducing kernel theory to analyze the worst-case
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error. The Riesz representation theorem and the additional theorem assures the existence

of a reproducing kernel of

Kspx,yq “

8
ÿ

`“0

p2`` 1qα
psq
` P`px ¨ yq

“

8
ÿ

`“0

2``1
ÿ

k“1

α
psq
` Y`,kpxqY`,kpyq, (1.40)

where P` denotes the Legendre Polynomial with degree `.

Proposition 1.15. [18] For s ą 1, let HspS2q be the Hilbert space with norm (1.32),

where the sequence α
psq
` satisfies (1.33), and let Ks be given by (1.40). Then, for a equal

weight quadrature rule QrXN s with node set XN “ tx1, . . . ,xNu Ă S2,

EspQrXN sq “
1

N

¨

˝

8
ÿ

`“1

2``1
ÿ

k“1

α
psq
`

˜

N
ÿ

i“1

Y`,kpxiq

¸2
˛

‚

1
2

. (1.41)

In what follows, we will firstly introduce some theoretical results about the equal

weight case. The following theorem, obtained by appealing to results of Brandolini et al.

[17], asserts that if pXNq is a sequence of QMC designs for HspS2q, then it is also so for

all coarser Sobolev spaces Hs1pS2q with 1 ă s1 ă s.

Theorem 1.16. [17] Given są 1, let pXNq be a sequence of QMC designs for HspS2q.

Then pXNq is a sequence of QMC designs for Hs1pS2q, for all s satisfying 1 ă s1 ď s.

According to this theorem, for every sequence of QMC designs pXNq, there exists a

number s˚ such that pXNq is a sequence of QMC design for all s satisfying 1 ă s ă s˚,

and is not a QMC design for s ą s˚, that is

s˚ :“ s˚rpXNqs :“ sup
 

s : pXNq is a sequence of QMC designs for Hs
pS2
q
(

. (1.42)

When s˚ “ `8, we call the sequence pXNq “generic” QMC design.

Proposition 1.17. Given s ą 1, a sequence of QMC design for HspS2q is asymptotically

uniformly distributed on S2.
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Reproducing kernels for HspS2q for s ą 1 can be constructed utilizing powers of dis-

tances, provided the power 2s ´ 2 is not an even integer. Indeed, it is known (cf., e.g.,

[11, 18]) that the signed power of the distance, with sign p´1qL`1 with L :“ Lpsq :“ ts´1u,

has the following Laplace-Fourier expansion:

p´1qL`1
|x´ y|2s´2

“ p´1qL`1V2´2spS2
q `

8
ÿ

`“1

a
psq
` p2`` 1qP`px ¨ yq, (1.43)

where

V2´2spS2
q :“

ż

S2

ż

S2
|x´ y|2s´2dωpxqdωpyq “ 22s´1 Γp3{2qΓpsq

?
πΓp1` sq

, (1.44)

and

a
psq
` :“ V2´2spS2

q
p´1qL`1p1´ sq`

p1` sq`
, ` ě 1. (1.45)

Here

p1´ sq`
p1` sq`

:“
Γp1` sq

Γp1´ sq

Γp`` 1´ sq

Γp`` 1` sq
„

Γp1´ sq

Γp1` sq
`´2s

„ `´2s.

By Proposition 1.15 the worst-case error on HspS2q could be obtained as [18]

1. for 1 ă s ď 2,

EspQrXN sq “

˜

V2´2spS2
q ´

1

N2

N
ÿ

i“1

N
ÿ

j“1

|xi ´ xj|
2s´2

¸
1
2

, (1.46)

2. for s ą 2,

EspQrXN sq “

˜

1

N2

N
ÿ

i“1

N
ÿ

j“1

“

QLpxi ¨ xjq ` p´1qL`1
|xi ´ xj|

2s´2
‰

´ p´1qL`1V2´2spS2
q

¸
1
2

,

(1.47)

where

QLpx ¨ yq :“
L
ÿ

`“1

pp´1qL`1´`
´ 1qa

psq
` p2`` 1qP`px ¨ yq, x,y P S2.
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1.3 Numerical approximation on the sphere

Much attention are given to the numerical approximation problem on the sphere in recent

decades, which could be applied to solve physical problems arising in plenty of science

landscapes such as geophysics, astrophysics, and surface reconstruction. In this section

we review the two regularized approaches for numerical approximation on the sphere.

1.3.1 Regularized least squares problem on the sphere

Numerical approximation for continuous functions on the unit sphere is widely studied in

recent decades. Among the methods and models for this problem, polynomial approxi-

mation is a basic approach and has long been paid much attention. A regularized discrete

least squares form polynomial approximations on the unit sphere is usually considered:

S2 “ tx “ px, y, zqT P R3 : x2 ` y2 ` z2 “ 1u arising as minimizers

min
pPPL

N
ÿ

j“1

pppxjq ´ fpxjqq
2
` λ

N
ÿ

j“1

pRLppxjqq
2 (1.48)

where f is a given continuous function with values (possibly noisy) given at N points XN .

The regularizer, RL : PL Ñ PL, is a linear operator which can be chosen in different ways,

and λ ą 0 is a parameter. Usually we assume always that the problem is well posed,

which requires the number N to be at least dimpPLq “ pL` 1q2.

All approximations of the form (1.48) are special cases of the penalized least squares

method, studied in a general context by [71].

It is easy to see that tY`,k, ` “ 0, . . . , L, k “ 1, . . . , 2``1u is a basis of PL with L2pSdq

norm. Then for arbitrary p P PL, there is a unique vector α “ pα`kq P RpL`1q2 such that

ppxq “
L
ÿ

`“0

2``1
ÿ

k“1

α`kY`,kpxq, x P S2. (1.49)

We can define the regularizing operator RL in its most general rotationally invariant
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form by its action on p P PL:

RLppxq “
L
ÿ

`“0

β`

2``1
ÿ

k“1

Y`,kpxqpY`,k, pqL2 (1.50)

“

L
ÿ

`“0

β`

ż

S2

p2`` 1q

4π
P`px ¨ yqppyqdωpyq, (1.51)

where β0, β1, . . . , βL are at this point arbitrary non-negative numbers, which may depend

on L.

Given a continuous function f defined on S2, let f :“ fpXNq be the column vector

f “ rfpx1q, . . . , fpxNqs
T
P RN ,

and let YL :“ YLpXNq P RNˆpL`1q2 be a matrix of spherical harmonics evaluated at the

points of XN , with elements

pYLqi,`2`kpXNq “ Y`,kpxiq, i “ 1, . . . , N, k “ 1, . . . , 2`` 1, ` “ 0, . . . , L.

Substituting of (1.49) into (1.48), the problem (1.48) reduces to the following discrete

regularized least squares problem

min
αPRpL`1q2

}YLα´ f}22 ` λ}RT
Lα}

2
2, λ ą 0, (1.52)

where RL :“ RLpXNq “ BYT
L P RpL`1q2ˆN , with B a positive semi-definite diagonal

matrix defined by

B :“ diagpβ0, β1, β1, β1
loooomoooon

3

, . . . , βL, . . . , βL
loooomoooon

2L`1

q P RpL`1q2ˆpL`1q2 . (1.53)

Thus the matrix RL is determined by the elements of the diagonal matrix B and the

choice of the points XN . The problem (1.52) is a convex unconstrained optimization

problem. Its solution set coincides with the solution set of the system of linear equations

TLα “ YT
Lf , (1.54)

where TL :“ TLpXNq is given by

TL “ pHL ` λBHLBq P RpL`1q2ˆpL`1q2 , (1.55)
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HL :“ HLpXNq “ YT
LYL P RpL`1q2ˆpL`1q2 . (1.56)

To guarantee that (1.48) always has a unique solution even when λ “ 0, we always

impose conditions on XN that ensure that the matrix HL is non-singular. We denote that

solution by α :“ αpL,XN ,Bq P RpL`1q2 , and the corresponding polynomial approximation

by

pL,N “
L
ÿ

`“0

2``1
ÿ

k“1

α`,kY`,k. (1.57)

As stated before, we assume that XN is a spherical t-design for some t ě L. It is

useful to consider separately the cases L ď t ă 2L and t ě 2L, because in the first case

important issues arise from the conditioning of the least squares problem (1.52), while in

the second case, An, Chen, Sloan, Womersley [3] prove that the matrix becomes diagonal

and hence the linear algebra becomes trivial.

Theorem 1.18. [3] Assume f P CpS2q. Let L ě 0 be given, and let XN “ tx1, . . . ,xNu

be a spherical t-design on S2 with t ě 2L. Then

HL “ YT
LYL “

N

4π
IpL`1q2 P RpL`1q2ˆpL`1q2 , (1.58)

while (1.54) has a unique solution

α`k “
4π

Np1` λβ2
` q

N
ÿ

j“1

Y`,kpxjqfpxjq, (1.59)

and the unique minimizer of (1.48) is given by

pL,Npxq “
4π

N

L
ÿ

`“0

2``1
ÿ

k“1

Y`,kpxq

1` λβ2
`

N
ÿ

j“1

Y`,kpxjqfpxjq

“

L
ÿ

`“0

2`` 1

p1` λβ2
` qN

N
ÿ

j“1

P`px ¨ xjqfpxjq. (1.60)

The choice of the regularized operator RL is multiple. In [3] several interesting choices

of the regularizing matrix B are discussed:
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1 The choice B “ 0, gives the unregularized problem. This choice includes (depending

on N, L and t) the classical interpolation problem (when N “ pL ` 1q2), quasi-

interpolation (when N ą pL ` 1q2q, hyperinterpolation [22] (when t ě 2L), and

orthogonal projection in the limit tÑ 8 with fixed L.

2 Choices of B related to “filtered” polynomial approximation [65], in which the diagonal

elements β` of B are chosen so that

1

1` λβ2
`

“ h

ˆ

`

L

˙

, ` “ 0, . . . , L´ 1, (1.61)

where hpxq is a prescribed “filter” function on R`, vanishing for x ą 1. The moti-

vation is that, as we shall see, for t ě 2L such approximations can have excellent

approximation properties in the uniform norm if h is well chosen. We shall see that

they may also therefore be good candidates when t ă 2L.

3 Choices related to the Laplace-Beltrami operator ∆˚. ( Laplace-Beltrami regularizers).

The Laplace-Beltrami regularizer has proved to be effective in recovering functions

form contaminated data.

1.3.2 Hybrid approximation using radial basis functions and
spherical polynomials

Another important approach of numerical approximation on the sphere is the hybrid ap-

proximation scheme, which is widely applied to deal with approximation to continuous

functions on the sphere [39, 62, 72]. It employs both the radial basis functions and spheri-

cal harmonic polynomials as the basis of approximation by adding an orthogonal condition

to guarantee the efficiency. Usually, the radial basis functions could approximate rapidly

varying data over short distance effectively, whereas the spherical harmonic polynomials

are more suitable for slowly varying data on a global scale.

In this subsection we will discuss approximating a continuous function f P CpS2q

using both radial basis functions (RBF) and spherical harmonic polynomials, where CpS2q
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denotes all continuous functions defined on S2. We assume that the values of f are given

at a distinct data point set XN “ tx1, . . . ,xN , N P Nu.

To construct the radial basis functions, we choose all points in XN as the center points

and employs a (strictly) positive definite kernel φ [58, 72, 73] which satisfies

N
ÿ

i“1

N
ÿ

j“1

αiφpxi,xjqαj ě 0, (1.62)

for any point set of XN Ă S2 and for all N P N, with equality for distinct points xj only

if α1 “ α2 “ . . . “ αN “ 0. Then the RBFs are defined as φp¨,xjq with j “ 1, . . . , N .

Additionally, we assume that φ is zonal, which means

φpxi,xjq “ φpxi ¨ xjq,

for arbitrary i, j “ 1, . . . , N , where xi ¨ xj denotes the Euclidean inner product in R3.

According to the addition theorem, a zonal radial basis function has an expansion of the

form

φp¨,xq “
8
ÿ

`“0

φ̂`P`p¨,xq “
8
ÿ

`“0

φ̂`
2`` 1

2``1
ÿ

k“1

Y`,kp¨qY`,kpxq, (1.63)

where φ̂` ą 0, ` “ 0, . . . ,8 when φ is a strictly positive kernel.

We define the RBF approximation space as

XN,φ “ XN “ spantφp¨,xjq : xj P XNu.

Furthermore, denote by

Fφ “ spantφp¨,xjq : xj P S2, j P 1, . . . , N, N P Nu,

which is a reproducing kernel pre-Hilbert space [72] under the inner product

C

N
ÿ

i“1

αiφp¨,xiq,
N
ÿ

j“1

α1jφp¨,xjq

G

φ

“

N
ÿ

i“1

N
ÿ

j“1

αiα
1
jφpxi,xjq, (1.64)

and the norm
›

›

›

›

›

N
ÿ

i“1

αiφp¨,xiq

›

›

›

›

›

φ

“

N
ÿ

i“1

N
ÿ

j“1

αiαjφpxi,xjq, (1.65)
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with αj P R, j “ 1, ¨ ¨ ¨ , N . Let Nφ be the completion of Fφ and then we can obtain that

Nφ is a reproducing kernel Hilbert space (RKHS).

Now let XN Ă S2 be fixed. Then the approximation of f P CpS2q with both RBFs

and spherical harmonics can be defined as

ΛX,Lf “
N
ÿ

j“1

αjφp¨,xjq `
L
ÿ

`“0

2``1
ÿ

k“1

β`,kY`,k, (1.66)

with the orthogonal condition

N
ÿ

j“1

αjvpxjq “ 0, @v P PL, (1.67)

where αj, j “ 1, . . . , N , β`,k, ` “ 0, . . . , L, k “ 1, . . . , 2` ` 1, are the coefficients of

the RBFs and spherical harmonics, and L denotes the maximal degree of the spherical

harmonics applied in the approximation. The values of f are given at the N -point set

XN “ tx1, . . . ,xNu Ă S2, and we insist that XN is a fundamental system of degree L, see

[2, 29, 62]. Thus the approximation ΛX,Lf is to find an element u P XN and a v P PL as

u “
N
ÿ

j“1

αjφp¨,xjq,

v “
L
ÿ

`“0

2l`1
ÿ

k“1

β`,kY`,k,

satisfying condition (1.66) and (1.67). To obtain the approximation, we can directly force

ΛX,Lfpxiq “ fpxiq, i “ 1, . . . , N . Then let f :“ fpXNq be the column vector with

f :“ rfpx1q, . . . , fpxNqs
T
P RN ,

A :“ ApXNq P RNˆN and Q :“ QpXNq P RNˆpL`1q2 with their entries as

Ai,j :“ φpxi,xjq, i, j “ 1, . . . , N, (1.68)

and

Qi,`k :“ Y`,kpxiq, i “ 1, . . . , N, ` “ 0, . . . , L, k “ 1, . . . , 2`` 1, (1.69)
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and substitute (1.68), (1.69) to (1.66), (1.67), we could obtain a saddle point linear system

as
„

A Q
QT 0

 „

α
β



“

„

f
0



. (1.70)

Since the kernel we choose for constructing the RBFs is strictly positive definite, the

matrix A here is positive definite. Moreover, the fact that XN is a fundamental system

implies that Q is of full column rank. Under these two conditions, equation p1.70q is

well-posed and has a unique solution.

Condition (1.67) is added to guarantee the polynomial accuracy and the efficiency

of the approximation (1.66). Under the assumption that Q is of full column rank, the

approximation form (1.66) with condition (1.67) has an algebraic accuracy with degree

L. That means, when the function f is a spherical polynomial with its order no greater

than L, the condition will guarantee that ΛX,Lf ” f no matter how the point set XN is

chosen.

To keep the efficiency of the approximation with both RBFs and spherical harmon-

ics, the obtained linear combination of RBFs u is expected to be φ–orthogonal or L2–

orthogonal to the spherical harmonic space PL. In this sense we can have that xu, vyφ “ 0

or xu, vyL2 “ 0 for arbitrary element v P PL. Since Y`,k, ` “ 1, . . . , L, k “ 1, . . . , 2`` 1 is

a basis of PL, the orthogonal condition could be presented as

xu, Y`,kyφ “ 0 for ` “ 0, . . . , L, k “ 1, . . . , 2`` 1, (1.71)

or

xu, Y`,kyL2 “ 0 for ` “ 0, . . . , L, k “ 1, . . . , 2`` 1. (1.72)

From the definition of the two different inner products and φ̂` ą 0, ` “ 0, . . . ,8 in (1.63)
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we can obtain that

xu, Y`,kyφ “

C

N
ÿ

j“1

αjφp¨,xjq, Y`,k

G

φ

“

N
ÿ

j“1

αj xφp¨,xjq, Y`,kyφ

“

N
ÿ

j“1

αjY`,kpxjq “ 0, for ` “ 1, ..., L, k “ 1, ...2`` 1,

and

xu, Y`,kyL2 “ x

N
ÿ

j“1

αjφp¨,xjq, Y`,kyL2

“

N
ÿ

j“1

αj

ż

S2
φpx,xjqY`,kpxqdωpxq

“

N
ÿ

j“1

αj

ż

S2

8
ÿ

`1“0

φ̂`
2`` 1

2``1
ÿ

k1“1

Y`1,k1pxqY`1,k1Y`,kpxqdωpxq

“

N
ÿ

j“1

αj
φ̂`

2`` 1
Y`,kpxjq “ 0, for ` “ 1, ..., L, k “ 1, ...2`` 1,

which are both equivalent to the equation

QTα “ 0. (1.73)

Le Gia, Watson, Sloan in [48] indicated that problem (1.70) can also be explained as a

constrained optimization problem as

min
uPXN

1

2
}u´ f}2φ (1.74)

s.t. xu, Y`,kyφ “ 0, ` “ 0, . . . , L, k “ 1, . . . , 2`` 1,

where the } ¨ }φ is defined as in (1.65). The problem can be reformulated as

min
α
αTAα ´ αT f

s.t. QTα “ 0.

(1.75)
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By introducing the vector β as the Lagrangian multiplier and deriving the KKT condition

of this problem we can also obtain system (1.70).
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Chapter 2

Spherical tε-Designs

In this chapter we will introduce a new class of point sets on the unit sphere S2 which is

called spherical tε-design on the unit sphere S2. Spherical tε-design is a generalization of

the spherical t-design.

A spherical t-design provides an equal weight cubature rule with its algebraic accuracy

as degree t for numerical integration on the whole sphere, which, further, also performs

well for numerical integration of spherical functions belonging to Sobolev spaces. Different

from spherical designs, spherical tε-design relaxes the weights to be chosen in a small

interval around 4π
N

with respect to a positive parameter ε. With this kind of positive

weights we can get numerical integration with polynomial precision using fewer points

than spherical t-designs.

This chapter is organized as following. In Section 2.1 we mainly introduce the defini-

tion of spherical tε-designs and discuss its relationship with these points in the interval

enclosures of spherical t-design calculated in [25]. In Section 2.2 we generalize some results

in [64] about the variational characterization of spherical t-designs to spherical tε-designs.

In Section 2.3 we analyze the worse-case error for spherical tε-design when applied to

numerical integration on the unit sphere S2.

In this chapter, we assume that all the point sets located on the unit sphere are

distinct, which means that each point in the set is different from others.
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2.1 Spherical tε-design: a generalization of spherical

t-design

The definition of spherical tε-design is presented as following:

Definition 2.1. (Spherical tε-deisgn) A spherical tε-design with 0 ď ε ă 1 on S2

is a set of points Xε
N :“ txε1, . . . ,x

ε
Nu Ă S2 such that the cubature rule with weights

w “ pw1, . . . , wNq
T satisfying

4π

N
p1´ εq ď wi ď

4π

N
p1´ εq´1, i “ 1, . . . , N, (2.1)

is exact for all spherical polynomials of degree at most t, that is,

N
ÿ

i“1

wippx
ε
iq “

ż

S2
ppxqdωpxq @p P Pt. (2.2)

From Definition 2.1 we can see that the spherical tε-design is a kind of positive weight

cubature rule and ε restricts the differences among each weights wi, i “ 1, . . . , N round

the mean value at 4π
N

. Especially, when ε “ 0, spherical tε-design reduces to the spherical

t-design that is an equally weighted (wi “
4π
N

) cubature rule [28, 2]. Since the existence of

spherical t-designs has been proved for arbitrary t and they are special spherical tε-designs

with ε “ 0, we have the existence of spherical tε-designs. In this section we will study the

relationship between spherical tε-design and spherical t-design when they have the same

number of points.

Let w “ pw1, . . . , wNq
T and define YpXε

Nq P RNˆdt with elements

Yi,`2`kpX
ε
Nq “ Y`,kpx

ε
iq, i “ 1, . . . , N, k “ 1, . . . , 2`` 1, ` “ 0, . . . , t.

Let a “ 4πp1´εq
N

e and b “ 4πp1´εq´1

N
e where e “ p1, . . . , 1qT P RN . Then we could obtain

the following proposition.

Proposition 2.2. The set Xε
N :“ txε1, . . . ,x

ε
Nu Ă S2 is a spherical tε-design if and only if

YpXε
Nq

Tw ´
?

4πe1 “ 0 and w ´midpa, w, bq “ 0, (2.3)
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where

pmidpa, w, bqqi “ midpai, wi, biq “

$

&

%

ai, wi ă ai
wi, ai ď wi ď bi
bi, wi ą bi

i “ 1, . . . , N.

Proof. It is easy to see that w´midpa, w, bq “ 0 if and only if a ď w ď b. Hence,we only

need to prove the equivalence between (2.2) and the first equality in (2.3).

Assume (2.2) holds. Since Y0,1pxq is a spherical harmonic of degree 0 with

ż

S2
Y0,1pxq

TY0,1pxqdωpxq “ 1

and the fact that
ż

S2
dωpxq “ 4π,

we have Y0,1pxq ” 1{
?

4π and

N
ÿ

i“1

wiY0,1px
ε
iq “

ż

S2
Y0,1pxqdωpxq “ Y0,1pxq

ż

S2
dωpxq “

?
4π.

Moreover, from that tY`,k, k “ 1, . . . , 2`` 1, ` “ 0, . . . , tu is a set of L2-orthonormal basis

functions of Pt, we obtain

N
ÿ

i“1

wiY`,kpx
ε
iq “

ż

S2
Y`,kpxqdωpxq “

?
4π

ż

S2
Y`,kpxqY0,1pxqdωpxq “ 0

for k “ 1, . . . , 2`` 1, and 1 ď ` ď t. This implies the first equality in (2.3).

Now we assume that the first equality in (2.3) holds. Then we obtain that

N
ÿ

i“1

wiY0,1px
ε
iq “

?
4π “

ż

S2
Y0,1pxqdωpxq,

and

N
ÿ

i“1

wiY`,kpx
ε
iq “ 0 “

ż

S2
Y`,kpxqdωpxq, for ` “ 1, . . . , t, k “ 1, . . . , 2`` 1.
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Moreover, for any p P Pt, there exists a unique group of numbers p`,k satisfying

p “
t
ÿ

`“0

2l`1
ÿ

k“1

p`,kY`,k.

Hence (2.2) is derived as the following

ż

S2
ppxqdωpxq “

t
ÿ

`“0

2``1
ÿ

k“1

p`,k

ż

S2
Y`,kpxqdωpxq

“

t
ÿ

`“0

2``1
ÿ

k“1

p`,k

N
ÿ

i“1

wiY`,kpx
ε
iq

“

N
ÿ

i“1

wi

t
ÿ

`“0

2``1
ÿ

k“1

p`,kY`,kpx
ε
iq “

N
ÿ

i“1

wippx
ε
iq.

Let X0
N “ tx

0
1, . . . ,x

0
Nu Ă S2 be a spherical t-design system and corresponding matrix

Y0 P RNˆdt is defined as

pY0qi,`k “ Y`,kpx
0
i q, i “ 1, . . . , N ; k “ 1, . . . , 2`` 1, ` “ 0, . . . , t.

For two points xi,xj on the sphere S2, as is well known, the geodesic distance between

them is defined as

distpxi,xjq “ cos´1
pxi ¨ xjq,

and for a point set XN “ tx1, ¨ ¨ ¨ ,xNu Ă S2, the separate distance of XN is defined as

ρpXNq “ min
i‰j

cos´1
pxi ¨ xjq,

which represents the minimal geodesic distance between two different points in XN .

In addition, we define the distance from the point x P S2 to the set XN by

distpx, XNq “ min
1ďiďN

distpx,xiq “ min
1ďiďN

cos´1
px ¨ xiq,

which can also be seen as the geodesic distance from x to its projection on XN . And

based on this definition, we denote the Hausdorff distance between two point sets XN
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and X 1
N as

σpXN , X
1
Nq “ maxt max

1ďiďN
distpx1i, XNq, max

1ďiďN
distpxi, X

1
Nqu

“ maxtmax
i

min
j

cos´1
px1i ¨ xjq,max

j
min
i

cos´1
px1i ¨ xjqu. (2.4)

Note that σpXN , X
1
Nq “ σpX 1

N , XNq and σpXN , X
1
Nq “ 0 if and only if XN “ X 1

N .

Remark 2.3. For two point sets XN and X 1
N , if σpXN , X

1
Nq ă

1
2
ρpXNq, then for each

xi P XN there exists a unique x1j P X
1
N satisfying x1j P Cpxi, 1

2
ρpXNqq, where

Cpxi,
1

2
ρpXNqq “ tx P S2

| cos´1
px ¨ xiq ď

1

2
ρpXNqu.

From the remark we know that, for two point sets X 1
N , XN Ă S2, if the Hausdorff

distance between them is smaller than separate distance of X 1
N , then every cap region

Cpxi, 1
2
ρpXNqq includes a unique point in X 1

N . Based on this uniqueness property, in

what follows we will let x1i be the point in Cpxi, 1
2
ρpXNqq for simplicity if we assume

σpXN , X
1
Nq ă

1
2
ρpXNq.

In the following part we will investigate the relationship between spherical t-designs

and spherical tε-designs when they are all fundamental systems with N “ pt`1q2. Let the

point set XN “ tx1, . . .xNu Ă S2 be a fundamental system with order t and N “ pt` 1q2.

We denote Y “ YpXNq P RNˆpt`1q2 by

Yi,`2`k “ Y`,kpxiq for i “ 1, . . . , N, ` “ 1, . . . , t, k “ 1, . . . , 2`` 1,

which is nonsigular and thus there exists a unique vector w P RN such that

YT
¨ w “

?
4πe1. (2.5)

Correspondingly, for a spherical t-design point set X0
N we have known that [64]

YT
0 ¨

4π

N
e “

?
4πe1. (2.6)

Then together with these two equalities and Theorem 2.1 in [37], if }pYT
0 q
:ppY0´YqT q} ă

1 we can obtain that
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}w ´ 4π
N
e}

}4π
N
e}

ď
}pYT

0 q
:} ¨ }pY0 ´YqT }

1´ }pYT
0 q
:pY0 ´YqT }

, (2.7)

where pYT
0 q
: is the generalized inverse of YT

0 . Since X0
N is a fundamental system with

order t and N “ pt` 1q2, Y0 is also nonsingular and we have

}w ´ 4π
N
e}

}4π
N
e}

ď
}pYT

0 q
´1} ¨ }pY0 ´YqT }

1´ }pYT
0 q
´1pY0 ´YqT }

. (2.8)

By the definition of matrix pY0 ´YqT we have

`

pY0 ´YqT
˘

`2`k,i
“ Y`,kpx

0
i q ´ Y`,kpxiq.

Let Q`,k be the restriction of Y`,k on the great circle through x0
i and xi, see [64]. Then

Q`,k is a trigonometric function and by Bernstein’s inequality (1.19) we can obtain

|Y`,kpx
0
i q ´ Y`,kpxiq| “ |Q`,kpx

0
i q ´Q`,kpxiq|

ď cos´1
px0

i ¨ xiq sup |Q1`,k|

ď cos´1
px0

i ¨ xiqpt` 1q sup |Q`,k|

ď cos´1
px0

i ¨ xiqpt` 1q sup
xPS2

|Y`,kpxq|. (2.9)

For a point set X0
N Ă S2, given a positive number σ˚, denote the neighborhood with

respect to σ˚ of XN by

CpX0
N , σ

˚
q “

 

XN Ă S2 : σpXN , X
0
Nq ă σ˚

(

.

The following theorem shows that for any fundamental spherical t-design under certain

conditions, such that for any point set contained in this neighborhood is a spherical tε-

design.

Lemma 2.4. Assume that the spherical t-design X0
N is a fundamental system with order

t and N “ pt`1q2. Then there exists a positive number σ˚ ă 1
2
ρpX0

Nq such that any point

set XN satisfying 0 ď σpXN , X
0
Nq ă σ˚ is a fundamental spherical tε-design.
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Proof. For all Y`,kpxq with ` ď t denote their upper bound by

Mt “ max
0ď`ďt, 1ďkď2``1

sup
xPS2

|Y`,kpxq| “

c

2t` 1

4π
. (2.10)

Then for a point set XN P CpX0
N ,

1
2
ρpX0

Nqq, with inequality (2.9) we have

|Y`,kpx
0
i q ´ Y`,kpxiq| ďMtpt` 1qσpXN , X

0
Nq,

for i “ 1, . . . , N, ` “ 0, . . . , t, k “ 1, . . . , 2`` 1. Then it is easy to obtain that

}pY0 ´YqT }8 ď Npt` 1qMtσpXN , X
0
Nq “ pt` 1q3MtσpXN , X

0
Nq, (2.11)

by the definition of matrix norm } ¨ }8. For fixed t it is obvious that we can let

σ1 “
1

pt` 1q3Mt}pYT
0 q
´1}8

,

so that for any set XN satisfying σpXN , X
0
Nq ă σ1 the condition }pYT

0 q
´1}¨}pY0´YqT }8 ă

1 is satisfied. Then together by the fact

}I´ pYT
0 q
´1Y}8 ď }pY

T
0 q
´1
}8}Y

T
0 ´YT

}8 ă 1,

It can be concluded that Y is always nonsigular for point set XN satisfying σpXN , X
0
Nq ă

σ1, which implies that XN is a fundamental system.

Now let

σ˚ “
1

2
σ1 “

1

2}pYT
0 q
´1}8Mtpt` 1q3

.

Together with inequality (2.8) we have

}w ´
4π

N
e}8 “

4π

N

}w ´ 4π
N
e}8

}4π
N
e}8

ď
4π

N

}pYT
0 q
´1}8}pY0 ´YqT }8

1´ }pYT
0 q
´1pY0 ´YqT }8

ă
4π

N

}pYT
0 q
´1}8Mtpt` 1q3σ˚

1´ }pYT
0 q
´1}8Mtpt` 1q3σ˚

ď
4π

N
,

which implies that w is a positive vector. Then σ˚ is the positive number which satisfies

the lemma.
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Corollary 2.5. Let X0
N be a fundamental spherical t-design with order t and N “ pt`1q2.

Then XN is a fundamental spherical tε-design if

σ ă
1

2
ρpX0

Nq and σ ď
ε

}pYT
0 q
´1}8Mtpt` 1q3

.

Proof. By the fact that σpXN , X
ε
Nq ă σ1, we can have

}w ´
4π

N
e}8 ď

4π

N

}pYT
0 q
´1}8Mtpt` 1q3σ

1´ }pYT
0 q
´1}8Mtpt` 1q3σ

ď
4π

N

ε

1´ ε
.

Then we have

w ě p1´
ε

1´ ε
q
4π

N
e ą

4πp1´ εq

N
e,

and

w ď p1`
ε

1´ ε
q
4π

N
e “

4πp1´ εq´1

N
e.

We complete the proof.

In the above theorem and corollary we have both assumed that there exists a funda-

mental spherical t-design for N “ pt`1q2. Until now, there have been a lot of ways about

how to calculate the spherical t-designs in 2-dimensional case, such as [2, 43, 64]. But

as is well known, there is no theoretical result which proves the existence of a spherical

t-design with pt` 1q2 nodes or less. However, Chen, Frommer and Lang in [25] proposed

computer-assisted proof of spherical t-designs with N “ pt ` 1q2 for t ď 100. In this

paper, they propose a computational algorithm based on interval arithmetic which, for

given t ď 100, upon successful completion has proved the existence of a spherical t-design

with pt`1q2 nodes on S2 Ă R3 and computed narrow interval enclosures which are known

to contain a well-conditioned fundamental spherical t-design. From Corollary 2.5 we can

know that, if the range of of interval enclosure is small enough, we can definitely say that

any point set selected from these interval enclosures is a fundamental spherical tε-design.

In the following part, we will emphasize on the relationship between spherical tε-design

and the interval enclosures proposed in [25].
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Now let

XN “ trxsi “ Cpxc,i, γiq Ă S2, i “ 1, . . . , Nu (2.12)

be a set of spherical caps, with xc,i as the center and γi as the radius of each cap. We say

that XN is an interval enclosure of a point set XN if xi P rxsi for i “ 1, . . . , N . Denote

the radius of XN by

radpXNq “ max
1ďiďN

γi,

and the separate distance of XN by

ρpXNq “ min
i ‰ j

xi P rxsi,xj P rxsj ,

cos´1
pxi ¨ xjq.

In [25], the points xi, i “ 1, . . . , N, on the sphere are presented by spherical coordinates

with θi and ϕi as stated in Chapter 1, and then they seek intervals rθsi, rϕsi such that

there is a well-conditioned spherical t-design in the interval set ZN “ trzs1, . . . , rzsNu, in

which the interval for each point is defined by

rzsi “

¨

˚

˚

˚

˚

˝

sinprθsiq cosprϕsiq

sinprθsiq sinprϕsiq

cosprθsiq

˛

‹

‹

‹

‹

‚

, i “ 1, . . . , N. (2.13)

In this sense, different from the interval enclosure defined in this section, each interval

enclosure calculated in [25] is a rectangle as rθsiˆrϕsi, whereas in our section we deal with

a spherical cap. To deal with this difference, we need to construct a series of spherical

caps which include the spherical rectangles in [25]. For the spherical rectangle rθsiˆrϕsi “
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r
¯
θi, θ̄is ˆ r

¯
ϕi, ϕ̄is, we denote a pair of its four vertice as

xi,1 “

¨

˚

˚

˚

˚

˝

sinp
¯
θiq cosp

¯
ϕiq

sinp
¯
θiq sinp

¯
ϕiq

cosp
¯
θiq

˛

‹

‹

‹

‹

‚

, xi,2 “

¨

˚

˚

˚

˚

˝

sinp
¯
θiq cospϕ̄iq

sinp
¯
θiq sinpϕ̄iq

cosp
¯
θiq

˛

‹

‹

‹

‹

‚

,

xi,3 “

¨

˚

˚

˚

˚

˝

sinpθ̄iq cospϕ̄iq

sinpθ̄iq sinpϕ̄iq

cospθ̄iq

˛

‹

‹

‹

‹

‚

, xi,4 “

¨

˚

˚

˚

˚

˝

sinpθ̄iq cosp
¯
ϕiq

sinpθ̄iq sinp
¯
ϕiq

cospθ̄iq

˛

‹

‹

‹

‹

‚

.

By the symmetric property of of the spherical rectangle rθsi ˆ rϕsi, we can know that

there exists a point xc,i P rθsi ˆ rϕsi with its spherical coordinate as pθci ,
1
2
p
¯
ϕi ` ϕ̄iqq

satisfying

distpxc,i,xi,jq “ distpxc,i,xi,kq for j, k “ 1, 2, 3, 4. (2.14)

Also note that all the points with whose geodesic distance to x1
i and x4

i are located on a

great circle
$

&

%

x2 ` y2 ` z2 “ 1

ax` by ` cz “ 0
, (2.15)

with a, b, c P R, which crosses p1
2
p
¯
θi ` θ̄iq,

¯
ϕiq, the geodesic middle point of x1

i and x4
i , is

orthogonal to the line segment through these two points. Therefore, the center point xic

will also located on this great circle. By the fact that pπ
2
,
¯
ϕi `

π
2
q is also on this great

circle, we can then uniquely obtain the proportion of a, b, c. Then the center point xc,i

can be obtained by substituting its azimuthal angle 1
2
p
¯
ϕi ` ϕ̄iq to the form of the great

circle. After that, let

γi “ distpxc,i,x
1
i q, (2.16)

and then the cap region Cpxic, γiq is a spherical cap and we can have that

rzsi Ď Cpxc,i, γiq.
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By this strategy, we can obtain the center point xc,i with its distance to the four

vertice equal to each other, and the generated spherical cap has a minimal possible radius.

However, in this process, for each interval rzsi, we need first obtain the close form of the

great circle including xc,i by substituting two points into (2.15). Then, we substitute the

azimuthal angles of xc,i to the great circle and obtain the polar angle of xc,i and then

calculate the radius. This approach is time-consuming and will import more round-off

errors. Since the measure of intervals rθsi ˆ rϕsi are usually very small, this approach is

not recommended to use. Instead, we will create another strategy which is coarser but

more suitable for our problem.

For the interval enclosure set rzsi, by x̃i we denote the point with its spherical coor-

dinate as p1
2
p
¯
θi ` θ̄iq,

1
2
p
¯
ϕi ` ϕ̄iqq, with its cartesian coordinate as

x̃i “

¨

˚

˚

˚

˚

˝

sinp1
2
pθ̄i `

¯
θiqq cosp1

2
pϕ̄i `

¯
ϕiqq

sinp1
2
pθ̄i `

¯
θiqq sinp1

2
pϕ̄i `

¯
ϕiqq

cosp1
2
pθ̄i `

¯
θiqq

˛

‹

‹

‹

‹

‚

. (2.17)

Note that its spherical coordinate is the center point of the interval rθsiˆrϕsi but x̃i itself

is not necessary to be the center point of rzsi. Still, we have that

distpx̃i,x
1
i q “ distpx̃i,x

1
i q, distpx̃i,x

3
i q “ distpx̃i,x

4
i q. (2.18)

And we know that the distance between x̃i and any point in rzsi does not exceed the

maximum of the four in (2.18) when the measures of rθsi and rϕsi are sufficiently small.

Therefore, if we let

γi “ maxtdistpx̃i,x
1
i q , distpx̃i,x

3
i qu, (2.19)

then we can have

rzsi Ď Cpx̃i, γiq. (2.20)

Similarly, we define the radius of ZN by

radpZNq “ max
1ďiďN

 

maxtdistpx̃i,x
1
i q , distpx̃i,x

3
i qu

(

, (2.21)
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and the separate distance by

ρpZNq “ min
i ‰ j

1 ď i, j ď N

tdistpx̃i, x̃jq ´ γi ´ γju. (2.22)

Then we can have the following theorem.

Theorem 2.6. Let XN defined by (2.12) and ZN defined by (2.13) be two interval en-

closure sets containing a fundamental spherical t-design X0
N and assume that radpXNq ă

ρpXNq, radpZNq ă ρpZNq. Then all the point sets XN with xi P rxsi, i “ 1, . . . N, are

fundamental spherical tε-designs with

ε “ Ct,1pt` 1q3, (2.23)

where

Ct,1 “ 2radpXNqMt max
XNPXN

}pYT
q
´1
}8.

And all the point sets XN with xi P rzsi, i “ 1, . . . N, are fundamental spherical tε-designs

with

ε “ Ct,2pt` 1q3, (2.24)

where

Ct,2 “ 2radpZNqMt max
XNPZN

}pYT
q
´1
}8.

Proof. First we prove the formula (2.23). Since for X0
N we have xi P rxsi for i “ 1, . . . , N ,

we can have

ρpX0
Nq ď ρpXNq.

And for arbitrary XN with xi P rx
0si, i “ 1, . . . N, we also have

σ “ σpXN , X
0
Nq ď max

1ďiďN
cos´1

p
¯
xi ¨ x̄iq “ 2radpXNq.

Thus together by the assumption radpXNq ă ρpXNq we have σ ă 1
2
ρpX0

Nq. And together
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with the fact

σ ď 2radpXNq

“
ε

Mt maxXNPXN }pY
T q´1}8

ď
ε

}pYT
0 q
´1}8Mtpt` 1q3

,

we can obtain (2.23) according to Corollary 2.5.

For the interval enclosure ZN , we define a new set of spherical caps on the sphere as

X̃N “ tCpx̃i, γiq, i “ 1, . . . , Nu ,

with x̃i, γi defined by (2.17) and (2.19). Then by (2.21) and (2.22) we have radpX̃Nq “

radpZNq and ρpX̃Nq “ ρpZNq. With similar process of proving (2.23), we can obtain (2.24)

and complete the proof.

The next problem we need to solve is that how to calculate the value or an upper

bound of maxXNPXN }pY
T q´1}8, and then we can give the upper bound of ε, denoted by

ε̄, for the interval enclosure provided in [25].

Denote xc,i by the center of the interval closure rxsi. Let Xc,N “ txc,1, . . . ,xc,Nu Ă S2,

and for simplicity we denote Yc “ YpXc,Nq. By Corollary 2.7 in [66] we conclude that

for arbitrary XN with xi P rxsi, i “ 1, . . . , N , we have

}pYT
q
´1
}8 ď

}pYT
c q
´1}8

1´ κpYT
c q
}YT

c ´YT }8

}YT
c }8

.

Additionally, since each xc,i is the center of rxsi, which implies that σpXN , Xc,Nq ď

radpXNq, then together with inequality (2.11) we can obtain

}pYc ´YqT }8 ď pt` 1q3MtradpXNq.

Finally we can conclude that if radpXNq ă
}YT

c }8

Mtpt` 1q3κpYT
c q

, the upper bound of infinity

norm of pYT q´1 can be estimated as
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max
XNPXN

}pYT
q
´1
}8 ď

}pYT
c q
´1}8

1´ κpYT
c q
pt` 1q3MtradpXNq

}YT
c }8

. (2.25)

Now we prepare to calculate the upper bound of ε for the interval inclosures proposed

in [25], which we denote by ε̄ here. Based on this relationship, now we can calculate the

ε̄ for the interval enclosures proposed in [25]. Then according to Theorem 2.6 we can say

that arbitrary point set chosen from the interval enclosure set XN satisfying xi P rxsi for

i “ 1, . . . , N is a fundamental spherical tε-design. The data containing the enclosures for

the parameterization of the spherical t-designs and the programs can be downloaded from

the web site http://www-ai.math.uni-wuppertal.de/SciComp/SphericalTDesigns.
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10−14.4(t+ 1)6.6

Figure 2.1: ε̄ for t “ 2, . . . , 100

In Fig. 2.1 we report the upper bound of ε for interval enclosures computed in [25] for

t “ 2, . . . , 100 (for t “ 1 we have known an exact form of spherical t-design so that we

would not consider this case here), based on formula (2.23) and (2.25). In this figure we
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also plot a function

y “ 10´14.4
pt` 1q6.6, (2.26)

to approximately discribe the track of ε̄ with respect to t. From the figure we can conclude

that the upper bound of ε grows with the increase of t. Additionally, from (2.25) we know

that the condition number of YT
c is also of great importance in this process. Since the

interval enclosures provided by [25] seek to include a well-conditioned spherical t-design,

the growth of upper bound of ε keeps stable for all the t considered here.

Table 2.1: Information for interval enclosures ZN for selected t

t rad(ZN) ρpZNq ε̄ ε for Xc,N

10 1.843454e-12 3.396362e-01 2.148389e-08 6.694645e-14

20 1.515848e-11 1.805783e-01 1.744486e-06 1.783018e-13

30 5.588085e-11 1.249714e-01 2.510650e-05 2.480238e-13

40 1.044163e-10 9.203055e-02 1.285961e-04 5.339063e-13

50 2.199182e-10 7.638945e-02 5.906459e-04 5.057066e-13

60 4.006638e-10 6.302748e-02 2.043721e-03 6.747935e-13

70 6.143914e-10 5.421869e-02 5.594428e-03 8.820722e-13

80 1.220430e-09 4.771142e-02 1.722072e-02 1.151368e-12

90 2.089473e-09 4.264961e-02 4.686558e-02 1.228462e-12

100 2.273791e-09 3.846343e-02 7.549403e-02 1.880540e-12

We also report some information of the interval enclosures and their theoretical upper

bound of ε for some selected t in Table 2.1. The radius and separate distance for XN are

shown in the table as the second and the third column. We can see that the radius of

each interval enclosures is far smaller than their separate distance, which means that the

assumption in the above lemmas and theorems are satisfied. For a fixed t, with all the

interval prθsi, rφsiq P ZN , i “ 1, ¨ ¨ ¨ , N , we choose their middle points and build a new

point set X̃N “ tx̃1 ¨ ¨ ¨ , x̃Nu, with x̃i defined by (2.17). For each new point set X̃N we

compute its ε so that it forms an spherical tε-design. As shown in the table, the ε’s for

each X̃N are all very close to zero but they still do not equal to, and they are growing
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with the increase of t. This means that X̃N which is selected properly from the interval

enclosures is still not a spherical t-design, but a spherical tε-design.
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2.2 Variational characterization of spherical tε-designs

In this section we focus on investigating the variational characterization of spherical tε-

designs on S2. In [64] Sloan and Womersley proposed some variational characterizations

for spherical t-designs. In this section, we will generalize their results to spherical tε-

designs case. Different from spherical t-design case, in spherical tε-design case the weights

is allowed to be chosen in an interval, instead of restricting them to be equal to each

other. Therefore, other than only the set of points, the weights are also variables in the

study of spherical tε-designs. Now we denote by the matrix Y1 “ Y1pX
ε
Nq P RNˆpdt´1q

with

pY1qi,`2`kpX
ε
Nq “ Y`,kpxiq, i “ 1, . . . , N ; k “ 1, . . . , 2`` 1, ` “ 1, . . . , t.

Let QrXε
N , ws be the integration rule with node set Xε

N and weights w approximating

the integral Ipfq, which are defined by

QrXε
N , wspfq “

N
ÿ

i“1

wifpxiq, (2.27)

and

Ipfq “

ż

S2
fpxqdωpxq. (2.28)

where ωpxq is the surface measure. For the cubature rule QrXε
N , ws we define a quantity

function as

AtpX
ε
N , wq “

1

2
}YT

1 pX
ε
Nqw}

2
2 “

1

2
wTY1pX

ε
NqY

T
1 pX

ε
Nqw. (2.29)

Obviously, by the definition of Y1pX
ε
Nq, this non-negative function AtpX

ε
N , wq : S2ˆRÑ

R can also represented as

AtpX
ε
N , wq “

1

2

N
ÿ

i“1

N
ÿ

j“1

wiwjΨpxi,xjq, (2.30)

where

Ψpxi,xjq “
t
ÿ

`“1

2``1
ÿ

k“1

Y`,kpxiqY`,kpxjq.

43



According to the new notation (2.29), we can reformulate proposition (2.2) as the follow-

ing.

Remark 2.7. Xε
N :“ tx1, . . . ,xNu Ă S2 is a spherical tε-design if and only if there exists

a vector w satisfying
ˆ

eTw
w ´midpa, w, bq

˙

“

ˆ

4π
0

˙

, (2.31)

where e “ p1, . . . , 1qT P RN , such that

AtpX
ε
N , wq “ 0.

Note that equality (2.2) implies

1
?

4π
eTw “

ÿ

i“1

wiY0,1 “
?

4π,

and

YT
1 pX

ε
Nqw “ 0.

Remark 2.8. The quantity function AtpX
ε
N , wq is rotationally invariant, i.e., let SXε

N “

tSxε1, . . . , SxεNu Ă S2 with S P U3, then there always holds

AtpSX
ε
N , wq “ AtpX

ε
N , wq. (2.32)

Proof. By the addition theorem 1.4 we can have

Ψpxεi ,x
ε
jq “

t
ÿ

`“1

2`` 1

4π
P`px

ε
i ¨ x

ε
jq, @xεi ,x

ε
j P S2.
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Then

AtpSX
ε
N , wq “

1

2

N
ÿ

i“1

N
ÿ

j“1

wiwjΨpSxεi , Sxεjq

“
1

2

N
ÿ

i“1

N
ÿ

j“1

wiwj

t
ÿ

`“1

2`` 1

4π
P`ppSxεiq ¨ pSxεjqq

“
1

2

N
ÿ

i“1

N
ÿ

j“1

wiwj

t
ÿ

`“1

2`` 1

4π
P`ppx

ε
iq
TSTSxεjq

“
1

2

N
ÿ

i“1

N
ÿ

j“1

wiwjΨpx
ε
i ,x

ε
jq

“ AtpX
ε
N , wq.

We complete the proof.

The remark illustrates that, like spherical t-designs on the sphere, spherical tε-designs

can be mapped upon each other via a rotation on the sphere and regarded to be equivalent

with respect to the quantity function At, even when they have different weights.

The second result discusses the bound of the quantity function for arbitrary point set

on the sphere S2.

Lemma 2.9. Let t ě 1. If w satisfies (2.31), then

0 ď AtpX
ε
N , wq ď πpt2 ` 2tq. (2.33)
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Proof. Recall the notation (2.30) and by Addtion Theorem 1.4 we can obtain that

AtpX
ε
N , wq “

1

2

N
ÿ

i“1

N
ÿ

j“1

wiwjΨpx
ε
i ,x

ε
jq

“
1

2

N
ÿ

i“1

N
ÿ

j“1

wiwj

t
ÿ

`“1

2`` 1

4π
P`px

ε
i ¨ x

ε
jq

ď
1

8π

N
ÿ

i“1

N
ÿ

j“1

wiwj

t
ÿ

`“1

2`` 1

ď
t2 ` 2t

8π
¨

1

2
p

N
ÿ

i“1

wiq
2

“
1

2
¨
t2 ` 2t

8π
p4πq2

“ πpt2 ` 2tq.

The proof is completed.

In the following part we need a notion of stationary points and stationary quadratures.

Usually, a point x P S2 is called a stationary point of f P C1pS2q if p∇˚qfpxq “ 0, where

∇˚ denotes the surface gradient [39] of f . Similarly, we say that pXε
N , wq with Xε

N Ă S2,

w P RN is a stationary point of AtpX
ε
N , wq when ∇˚xi

AtpX
ε
N , wq “ 0 for i “ 1, . . . , N

and ∇wAtpX
ε
N , wq “ 0. If we have ∇˚xi

εAtpX
ε
N , wq “ 0 for i “ 1, . . . , N , we say that

∇˚AtpXε
N , wq “ 0.

Lemma 2.10. Assume that t ě 1 and for Xε
N there exists a w which satisfies (2.31) and

∇˚AtpXε
N , wq “ 0. Then either Xε

N is an spherical tε-design, or there exists a nonconstant

polynomial pXε
N
P Pt with each xεi P X

ε
N , i “ 1, . . . , N , as its stationary point.

Proof. First we denote that α`,kpX
ε
N , wq “

řN
i“1wiY`,kpxiq. Then we have that

AtpX
ε
N , wq “

1

2

t
ÿ

l“1

2l`1
ÿ

k“1

α`,kpX
ε
N , wq

2
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and for i “ 1, . . . , N ,

∇˚xiAtpX
ε
N , wq “

t
ÿ

`“1

2l`1
ÿ

k“1

α`,kpX
ε
N , wqp∇˚xεiα`,kqpX

ε
N , wq.

From the equality

p∇˚xεiα`,kqpX
ε
N , wq “ wip∇˚Y`,kqpxiq, ` “ 1, . . . , t, k “ 1, . . . , 2`` 1

we could have that

∇˚xiAtpX
ε
N , wq “

t
ÿ

l“1

2l`1
ÿ

k“1

wiα`,kpX
ε
N , wqp∇˚Y`,kqpxεiq

“ p∇˚pXε
N
qpxεiq, (2.34)

where

pXε
N
“

t
ÿ

l“1

2l`1
ÿ

k“1

wiα`,kpXN , wqY`,k (2.35)

From (2.34) and (2.35) we see that if ∇˚xεiAtpX
ε
N , wq “ 0 for i “ 1, . . . , N , then either

α`,kpX
ε
N , wq “ 0 , ` “ 1, . . . , t, k “ 1, . . . , 2` ` 1, in which case XN is an spherical tε-

design, or pXε
N

is a non-constant polynomial in Pt which has a stationary point at each

xεi P XN .

Based on the above lemma we can conclude another result for the characterization of

spherical tε-design.

Theorem 2.11. Let t ě 1 and w satisfy (2.31). Suppose that we have ∇˚AtpXε
N , wq “ 0,

and the mesh norm of Xε
N satisfies hXε

N
ă 1{pt` 1q. Then Xε

N is a spherical tε-design.

Proof. We assume that Xε
N is not a spherical tε-design and seek a contradiction.

Since Xε
N is a stationary point of At which is not a spherical tε-design, from Lemma

2.10 we conclude that there exists a nonconstant polynomial p “ pXε
N
P Pt with each

xεi P X
ε
N as its stationary point. Define

qj “ ej ¨∇˚p, j “ 1, 2, 3,
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where ej, j “ 1, 2, 3 are the unit vectors in the direction of the coordinate xj, j “ 1, 2, 3,

and the dot indicates the inner product in R3. By the stationary property of p, each qj

for j “ 1, 2, 3 satisfies

qjpx
ε
iq “ 0 for i “ 1, . . . , N. (2.36)

Since p is a nonconstant polynomial, we have that at least one qj, j “ 1, 2, 3 is not

identically zero. We assume this q is qj. According (1.15) and (1.16) we obtain that

q P Pt`1. Let x0 P Sd be a point at which }q} attains its maximum value }q}8. By

the definition of the mesh norm hXε
N

and the assumption of the theorem, there exists an

xεi P X
ε
N such that

cos´1
pxεi ¨ x0q ď hXε

N
ă

1

t` 1
.

Now let Q be the restriction of q to the great circle through xεi and x0, parameterised

by arc length, and let q1 denote its derivative. Since Q is a trigonometric polynomial of

degree ď t` 1,it follows from the Bernstein’s inequlity (1.5) that

sup |Q1| ď pt` 1q}Q}8.

Thus

|qpx0q ´ qpxiq| ď sup |Q1| cos´1
px0 ¨ x

ε
iq

ď pt` 1q cos´1
px0 ¨ x

ε
iq}Q}8

ă }Q}8,

and in consequence

|qpxεiq| ě |qpx0q| ´ |qpx0q ´ qpx
ε
iq|

ą |qpx0q| ´ }Q}8 “ 0,

which is a contradiction with (2.36). We complete the proof.

In [64] Sloan and Womersley discussed the mean value of the quantity function At for

spherical t-designs which here can be defined as

Āt :“ p4πq´N
ż

S2
¨ ¨ ¨

ż

S2
AtpXN , wqdωpx

ε
1q ¨ ¨ ¨ dωpx

ε
Nq. (2.37)
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We can also generate this result to spherical tε-design case as the following.

Theorem 2.12. The mean value defined by (2.37) has the value

Āt “
t2 ` 2t

8π

N
ÿ

i“1

wi.

Proof. By the definition of Āt and separating the diagonal and the off-diagonal terms of

the double sum in (2.30), we can obtain that

Āt “ p4πq´N
ż

S2
¨ ¨ ¨

ż

S2
AtpXN , wqdωpx

ε
1q ¨ ¨ ¨ dωpx

ε
Nq

“ p4πq´N
ż

S2
¨ ¨ ¨

ż

S2

1

2

N
ÿ

i“1

N
ÿ

j“1

wiwjΨpx
ε
i ,x

ε
jqdωpx

ε
1q ¨ ¨ ¨ dωpx

ε
Nq

“
1

2

«

p4πq´1
N
ÿ

i“1

w2
i

ż

S2
Ψpxεi ,x

ε
iqdωpx

ε
iq

`p4πq´2
N
ÿ

i“1

N
ÿ

j“1,j‰i

wiwj

ż

S2

ż

S2
Ψpxεi ,x

ε
jqdωpx

ε
iqdωpx

ε
jq

ff

.

By the fact

ż

S2
Ψpxεi ,x

ε
iqdωpx

ε
iq “

t
ÿ

`“1

2``1
ÿ

k“1

ż

S2
Y 2
`,kpx

ε
iqdωpx

ε
iq

“

t
ÿ

`“1

2``1
ÿ

k“1

1 “ t2 ` 2t,

and

ż

S2
Ψpxεi ,x

ε
jqdωpx

ε
iqdωpx

ε
jq “

t
ÿ

`“1

2``1
ÿ

k“1

ż

S2
Y`,kpx

ε
iqY`,kpx

ε
jqdωpx

ε
iqdωpx

ε
iq “ 0,

we can obtain

Āt “
t2 ` 2t

8π

N
ÿ

i“1

wi.
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2.3 Worst-case error of spherical tε-designs

In this section we will investigate the worse-case error for numerical integration on the

Sobolev spaces defined on the sphere using spherical tε-designs. Until now, there are a lot

of remarkable work about the constructive theory of functions including interpolation and

cubature on the sphere. In some of the early work, the main tool of analyzing multivariate

functions is to trace back them to univariate problems by product argument[31, 59].

In the recent development, the reproducing kernel theory is applied to analyze these

problems[18, 19, 44, 45, 72]. In this section, since the Sobolev spaces are finite-dimensional

rotationally invariant subspaces of CpS2q, the bizonal reproducing kernel will naturally

be used in the analysis.

Similar with what is defined in Section 1.2, we define

QrXN , wspfq :“
N
ÿ

j“1

wi
4π
fpxjq, Ipfq :“

ż

Sd
fpxqdωdpxq, (2.38)

and

Es,dpQrXN , wsq :“ sup
 

|QrXN , wspfq ´ Ipfq| : f P Hs
pSdq, }f}Hs ď 1

(

. (2.39)

And for simplicity we denote EspQrXN , wsq “ Es,2pQrXN , wsq. Together with the prop-

erty of reproducing kernel Ksp¨, ¨q defined in (1.40) and the addition theorem, we can
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have

`

EspQrXN , wsq
˘2

“

»

– sup
f P Hs

}f}s ď 1

|QrXN , wspfq ´ Ipfq|

fi

fl

2

“

»

– sup
f P Hs

}f}s ď 1

ˇ

ˇ

ˇ

ˇ

ˇ

C

f,
N
ÿ

i“1

wi
4π
Ksp¨,xq

G

s

´

ż

S2
fpxqdωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

2

“

»

– sup
f P Hs

}f}s ď 1

ˇ

ˇ

ˇ

ˇ

ˇ

C

f,
N
ÿ

i“1

wi
4π
Ksp¨,xq

G

s

´

ż

S2
xf,Ksp¨,xqysdωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

2

“

»

– sup
f P Hs

}f}s ď 1

ˇ

ˇ

ˇ

ˇ

ˇ

C

f,
N
ÿ

i“1

wi
4π
Ksp¨,xq

G

s

´ xf,

ż

S2
Ksp¨,xqdωpxqys

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

2

“

»

– sup
f P Hs

}f}s ď 1

ˇ

ˇ

ˇ

ˇ

ˇ

C

f,
N
ÿ

i“1

wi
4π
Ksp¨,xq ´

ż

S2
Ksp¨,xqdωpxq

G

s

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

2

“

›

›

›

›

›

N
ÿ

i“1

wi
4π
Ksp¨,xq ´

ż

S2
Ksp¨,xqdωpxq

›

›

›

›

›

2

s

.

Then with the fact that
ż

S2
Kspx, ¨qdωpxq “ α

psq
0 ,

the worst-case error could be represented as

pEspQrXN , wsqq
2
“

»

–

8
ÿ

`“1

2``1
ÿ

k“1

α
psq
`

˜

N
ÿ

i“1

wi
4π
Y`,kpxiq

¸2
fi

fl

“

8
ÿ

`“1

2``1
ÿ

k“1

α
psq
`

N
ÿ

i“1

N
ÿ

j“1

wiwj
16π2

Y`,kpxiqY`,kpxjq

“

N
ÿ

i“1

N
ÿ

j“1

wiwj
16π2

8
ÿ

`“1

2``1
ÿ

k“1

α
psq
` Y`,kpxiqY`,kpxjq. (2.40)

Now we recall formula (1.43), which describes the the Laplace-Fourier transformation
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of the signed distances between two points on S2:

p´1qL`1
|x´ y|2s´2

“ p´1qL`1V2´2spS2
q `

8
ÿ

`“1

a
psq
` p2`` 1qP`px ¨ yq,

where

V2´2spS2
q :“

ż

S2

ż

S2
|x´ y|2s´2dωpxqdωpyq “ 22s´1 Γp3{2qΓpsq

?
πΓp1` sq

,

and

a
psq
` :“ V2´2spS2

q
p´1qL`1p1´ sq`

p1` sq`
, ` ě 1.

Thus we have

p´1qL`2
pV2´2spS2

q ´ |x´ y|2s´2
q “

8
ÿ

`“1

a
psq
` p2`` 1qP`px ¨ yq (2.41)

“

8
ÿ

`“1

a
psq
`

2``1
ÿ

k“1

Y`,kpxqY`,kpyq. (2.42)

Note that for a
psq
` we have

a
psq
` „ 22s´1 Γpd`1

2
qΓpsq

?
πp´1qL`1Γpd

2
` sq

`´2s as `Ñ 8, (2.43)

and when 1 ă s ď 2, which means L “ Lpsq “ ts ´ d{2u “ 0, we have a
psq
` ą 0 for all

` “ 1, . . . ,8. Therefore, we regard the left hand side of (2.41) as the reproducing kernel

of HspS2q, which is

Kspx,yq “ V2´2spS2
q ´ |x´ y|2s´2,

and then we obtain

pEspQrXN , wsqq
2
“

N
ÿ

i“1

N
ÿ

j“1

wiwj
16π2

pV2´2spS2
q ´ |xi ´ xj|

2s´2
q. (2.44)

For the case s ą 2, we know that a
psq
` ą 0 does not hold for all ` “ 1, . . . ,8. In this

situation, similar with (1.47) in Section 1.2, we let

Kspx,yq “ p1´ p´1qL`1
qV2´2spS2

q `QLpx ¨ yq ` p´1qL`1
|x´ y|2s´2,
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with

QLpx ¨ yq :“
L
ÿ

`

pp´1qL`1´`
´ 1qa

psq
` p2`` 1qP`px ¨ yq, x,y P S2,

which changes the signs if the negative coefficients a
psq
` in (1.43). Then we can obtain that

the worst-case error on HspS2q with s ą 2 can be represented as

pEspQrXN , wsqq
2
“

N
ÿ

i“1

N
ÿ

j“1

wiwj
16π2

`

QLpxi ¨ xjq ` p´1qL`1
|xi ´ xj|

2s´2
´ p´1qL`1V2´2spS2

q
˘

.

(2.45)
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Chapter 3

Filter Algorithm for Finding

Spherical tε-Designs

In this chapter we develop an efficient algorithm to find spherical tε-designs on S2. By

the result shown in Section 2, Chapter 2, we reformulate the problem for finding spherical

tε-design as a system of polynomial equations with box constrains. Using the projection

operator, the system can be written as a nonsmooth nonconvex least squares problem

(3.2) with zero residual.

Throughout this chapter, }¨} represents the Euclidean norm and R`` “ tα P R|α ą 0u.
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3.1 Nonlinear least squares reformulation for finding

spherical tε-designs

We represent the points xi P S2 using spherical coordinates with angles θi, ϕi. Since (2.3)

is rotationally invariant with respect to Xε
N , we fix x1 at the north pole and x2 on the

zero meridian as [28]

x1 “

¨

˝

0
0
1

˛

‚, x2 “

¨

˝

sinpθ2q

0
cospθ2q

˛

‚, xi “

¨

˝

sinpθiq cospϕiq
sinpθiq sinpϕiq

cospθiq

˛

‚, i “ 3, . . . , N.

Let xθ “ pθ2, . . . , θNq
T , xϕ “ pϕ3, . . . , ϕNq

T , x “ pxTθ , x
T
ϕ , w

T qT P R3N´3 and

rpxq “

ˆ

rI1pxq
rI2pwq

˙

“

ˆ

YT pxθ, xϕqw ´
?

4πe0

w ´midpa, w, bq

˙

, (3.1)

where rpxq : R3N´3 Ñ Rpt`1q3 is a locally continuous but not differentiable function. A

solution of the nonsmooth equation rpxq “ 0 defines a spherical tε-design. It is difficult

to solve (3.1) directly and we consider its least squares form as

min
xPR

fpxq “
1

2
}rpxq}2. (3.2)

Then a global minimizer of (3.2) is a solution of (3.1), which also forms a spherical tε-

design.

In general, f : Rn Ñ R in (3.2) is nonconvex and nonsmooth. In the presence of

nonsmoothness and noncovexity, most optimization methods only guarantee convergence

to a Clarke stationary point of the objective function f [23, 24, 32, 40].

In this chapter, we propose a smoothing trust region filter (STRF) algorithm to find

a global minimizer of f . This algorithm combines smoothing approximations [20, 24, 26],

trust region methods [34, 52] and filter algorithms [38, 41]. Using a smoothing function

of f , we can construct a good quadratic approximation of f in a certain region at each

iteration. The smoothing trust region method [26] can reduce the objective values and

guarantee convergence to a Clarke stationary point, but has no convergence results to a

global minimizer. The filter method [38, 41] is a technique for finding a global minimizer
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of a twice continuously differentiable function under certain conditions, but application to

a nonsmooth nonconvex minimization problem has not been investigated. The proposed

STRF algorithm is a novel combination of these optimization techniques for nonsmooth

and nonconvex least squares problems.
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3.2 Smoothing trust region filter (STRF) algorithm

We use the ideas in [41] to construct the filter, which partition rpxq into p sets tripxquiPIj , j “

1, ¨ ¨ ¨ , p, with t1, ¨ ¨ ¨ ,mu “ I1

Ť

¨ ¨ ¨
Ť

Ip. For readability and simplicity, we explain how

to construct the filter with a disjoint partition. Let

rpxq “

¨

˚

˝

rI1pxq
...

rIppxq

˛

‹

‚

, Θjpxq “ }rIjpxq}, j “ 1, . . . , p, Θpxq “

¨

˚

˝

Θ1pxq
...

Θppxq

˛

‹

‚

,

where rIj : Rn Ñ Rmj and
řp
j“1mj “ m.

Obviously, a vector x is a solution of (3.2) with fpxq “ 0 if and only if Θpxq “ 0.

We say that a vector x1 dominates a vector x2 whenever Θpx1q ď Θpx2q. If x1 domi-

nates x2, we do not need to consider x2 anymore.

At the kth iteration, the filter F is a subset of tΘpx0q,Θpx1q, . . . ,Θpxkqu. A new trial

point x`k is acceptable for the filter F if and only if there is j P t1, . . . , pu such that

Θjpx
`
k q ă Θjpx`q ´ γmint}Θpx`k q}, }Θpx`q}u, @Θpx`q P F , (3.3)

where γ P p0, 1{
?
pq is a positive constant.

We remove Θpx`q from the filter F if

D Θpxjq P F , such that Θpx`q ´ γ}Θpx`q}e ě Θpxjq, (3.4)

where e “ p1, . . . , 1qT . The inequality in (3.4) implies that xj dominates x`.

To overcome the nonsmoothness of r, we use a smoothing function r̃p¨, µq of r.

Definition 3.1. (Smoothing function) Let r : Rn Ñ Rm be a locally Lipschitz contin-

uous function. We call r̃ : Rn ˆ R`` Ñ Rm a smoothing function of r, if for any fixed

µ P R``, r̃p¨, µq is continuously differentiable in Rn and for any fixed x̂ P Rn,

lim
xÑx̂,µÓ0

r̃px, µq “ rpx̂q.
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A smoothing function r̃ defines a smoothing function f̃ of f and a smoothing least

squares problem of (3.2) as the following

min
xPRn

f̃px, µq :“
1

2
}r̃px, µq}2. (3.5)

By Definition 3.1, for any fixed µ ą 0, f̃p¨, µq is continuously differentiable in Rn and for

any fixed x̂ P Rn

lim
xÑx̂,µÓ0

f̃px, µq “ fpx̂q.

In this paper, we assume that the smoothing function r̃ satisfies the following condition

|r̃ipx, µq ´ ripxq| ď κpµq, i “ 1, . . . ,m, (3.6)

where κ : R`` Ñ R` satisfies κpµ1q ď κpµ2q for µ1 ď µ2, and κpµq Ñ 0 as µÑ 0.

Denote Jpx, µq “ ∇xr̃px, µq and gpx, µq “ ∇xf̃px, µq “ Jpx, µqT r̃px, µq.

The smoothing trust region method computes a trial point x`k “ xk`dk for some step

dk by a quadratic approximation function qkpdq of f̃px, µq in a trust region txk`d | }d} ď

∆ku, where ∆k is the radius of the trust region. Namely, dk is the unique solution of the

following quadratic program

min
}d}ď∆k

qkpdq :“ f̃pxk, µkq ` gpxk, µkq
Td`

1

2
dTBkd (3.7)

where Bk “ Jpxk, µkq
TJpxk, µkq `

?
µkI.

The term
?
µI in Bk plays a regularization role and ensures the nonsingularity of

Bk. When both smoothing and regularization techniques are used in an algorithm, it is

recommended to let the smoothing parameter go to zero faster than the regularization

parameter for good numerical performance [27].
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Smoothing Trust Region Filter (STRF) Algorithm

Step 0: Initialization. Given constants 0 ă ∆̄ ă 8, 0 ă η1 ă η2 ă 1, 0 ă γ1 ă 1 ă
γ2, 0 ă σ ă 1, 0 ă γ ă 1{

?
p, 0 ă β ă 8, an initial vector x0 P Rn, the radius of a

trust region ∆0 P p0, ∆̄q, the smoothing parameter µ0 ą 0, and filter F “ tΘpx0qu.

Step 1: Define a trial point. Compute dk by (3.7) and set x`k “ xk ` dk.

Step 2: Evaluate the reduction at the trial step. If dk “ 0, set xk`1 “ xk,
∆k`1 “ ∆k, and go to Step 5. Otherwise, compute

ρk “
f̃pxk, µkq ´ f̃px

`
k , µkq

qkp0q ´ qkpdkq
.

Step 3: Update the trust-region radius. Set

∆k`1 “

$

&

%

mintγ2∆k, ∆̄u if ρk ě η2, }dk} “ ∆k,
γ1∆k if ρk ď η1,
∆k otherwise,

Step 4: Test to accept the trial step.

• x`k is acceptable for the current filter by (3.3): Set xk`1 “ x`k and add Θpx`k q
to the filter if ρk ă η1. Update F by (3.4).

• x`k is not acceptable for the current filter: If ρk ě η1, set xk`1 “ x`k . Other-
wise, set xk`1 “ xk.

Step 5. Update the smoothing parameter. If mintfpxkq, }∇xf̃pxk, µkq}u ď βµk,
set µk`1 “ σµk. Otherwise, set µk`1 “ µk. Go to Step 1.
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3.3 Convergence analysis

Now we investigate the convergence of the STRF algorithm. We first consider the case

that infinitely many values are added to the filter in the STRF algorithm.

Theorem 3.2. Assume that r̃ satisfies condition (3.6). If infinitely many values of Θpxkq

are added to the filter by the STRF algorithm, then

lim
kÑ8

}Θpxkq} “ lim
kÑ8

fpxkq “ 0.

Proof. Let Θk “ Θpxkq, Θ`
k “ Θpx`k q and Θj,k “ Θjpxkq, j “ 1, . . . , p.

Let tkiu index the subsequence of iterations at which Θki “ Θ`
ki´1 is added to the

filter. Assume by contradiction that there exists a subsequence tkνu Ď tkiu such that

}Θkν} ě ε for some ε ą 0. Since tΘkνu is bounded, there exists a further subsequence

tk`u Ď tkνu such that

lim
`Ñ8

Θk` “ Θ̄. (3.8)

Since tk`u Ď tkνu Ď tkiu and }Θkν} ě ε for all ν, we know that for all `, mint}Θk`´1
}, }Θk`}u ě

ε and Θk` is acceptable for the filter. Hence for each `, there exists a j P t1, ¨ ¨ ¨ , pu such

that

Θj,k` ´Θj,k`´1
ă ´γmint}Θk`´1

}, }Θk`}u ď ´γε. (3.9)

However, by (3.8), we get Θj,k` ´Θj,k`´1
Ñ 0, as `Ñ 8. This is a contradiction. Hence,

we obtain

lim
iÑ8

}Θki} “ 0. (3.10)

Now, we consider any ` R tkiu and let kip`q be the last iteration before ` such that

Θkip`q was added to the filter. By the definition of tkip`qu and (3.10), we have

lim
`Ñ8

fpxkip`qq “ 0. (3.11)

Moreover, we have µkip`q Ñ 0 as ` Ñ 8 by Step 5 of the STRF algorithm. Hence, using

µk`1 ď µk, we obtain µk Ñ 0 as k Ñ 8.
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From the condition on the smoothing function (3.6), we derive

|f̃pxkip`q , µkip`qq ´ fpxkip`qq| “
1

2
|}r̃pxkip`q , µkip`qq}

2
´ }rpxkip`qq}

2
|

“
1

2
|

m
ÿ

j“1

pr̃2
j pxkip`q , µkip`qq ´ r

2
j pxkip`qqq|

ď
1

2

m
ÿ

j“1

|r̃jpxkip`q , µkip`qq ´ rjpxkip`qq| ¨ |r̃jpxkip`q , µkip`qq ` rjpxkip`qq|

ď
1

2

m
ÿ

j“1

κpµkip`qq|r̃jpxkip`q , µkip`qq ` rjpxkip`qq|

ď
1

2

m
ÿ

j“1

κpµkip`qqpκpµkip`qq ` 2|rjpxkip`qq|q

ď
m

2
κ2
pµkip`qq ` κpµkip`qq}rpxkip`qq}1

ď
m

2
κ2
pµkip`qq ` κpµkip`qq

?
m}rpxkip`qq}2

ď
m

2
κ2
pµkip`qq ` κpµkip`qq

b

2mfpxkip`qq. (3.12)

Hence from (3.11) and µk Ñ 0, we obtain

lim
`Ñ8

f̃pxkip`q , µkip`qq “ 0. (3.13)

By Step 2 and Step 4 of the STRF algorithm, if Θpxkip`q`1q is not included in the filter,

then we have

f̃pxkip`q , µkip`qq ´ f̃pxkip`q`1, µkip`qq ě 0,

which, together with (3.13), implies

lim
lÑ8

f̃pxkip`q`1, µkip`qq “ 0. (3.14)

Using the similar argument in (3.12), we can show

|f̃pxkip`q`1, µkip`qq ´ fpxkip`q`1q| ď
m

2
κ2
pµkip`qq ` κpµkip`qq

b

2mf̃pxkip`q`1, µkip`qq (3.15)
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which, together with (3.14) and

lim
`Ñ8

|f̃pxkip`q`1, µkip`qq´fpxkip`q`1q| ď lim
`Ñ8

p
m

2
κ2
pµkip`qq`κpµkip`qq

b

2mf̃pxkip`q`1, µkip`qqq “ 0,

we obtain

lim
`Ñ8

fpxkip`q`1q “ 0.

By recurrence relations, we get

lim
kÑ8

fpxkq “ 0 and lim
kÑ8

}Θpxkq} “ 0. (3.16)

We complete the proof.

Now, we study the convergence of the STRF algorithm without assuming that infinitely

many values of Θpxkq are added to the filter.

We say that f has bounded level sets, if for any α ě 0, the level set tx | fpxq ď αu is

bounded.

If f has bounded level sets and condition (3.6) holds, then the smoothing function f̃

has bounded level sets for any fixed µ ą 0. In fact, using the argument in (3.12) and

(3.15) with condition (3.6) and µ ď µ0, for any α ą 0, the following holds

tx | f̃px, µq ď αu Ď tx | fpxq ď α ` m
2
κ2pµq ` κpµq

?
2mαu

Ď tx | fpxq ď α ` m
2
κ2pµ0q ` κpµ0q

?
2mαu.

(3.17)

Lemma 3.3. Suppose that f has bounded level sets and ∇f̃p¨, µq is Lipschitz continuous

for any fixed µ ą 0, then

lim
kÑ8

µk “ 0. (3.18)

Proof. Let K contain all iterations at which µk`1 “ σµk, namely,

K “ t k | mintfpxkq, }∇xf̃pxk, µkq}u ď βµku. (3.19)

If K is an infinite set, then limkÑ8 µk “ 0. Moreover, from Theorem 3.2, if infinitely

many values of Θk are added to the filter, then limkÑ8 µk “ 0. Hence, in the following,
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we will prove that K is an infinite set in the case when only finitely many values of Θk

are added to the filter.

Assume by contradiction that K is finite and only finitely values of Θk are added to

the filter. Then there exists a nonnegative integer k̂, such that for all nonnegative integers

j, Θpx`
k̂`j
q are not added to the filter and µk̂`j “ µk̂. This means

f̃pxk̂`j, µk̂q ´ f̃pxk̂`j`1, µk̂q ě 0, for j ě 0 (3.20)

and

mintfpxk̂`jq, }∇xf̃pxk̂`j, µk̂q}u ą βµk̂, for j ě 0. (3.21)

By (3.17) and the assumption that f has bounded level sets, we know that f̃p¨, µk̂q has

bounded level sets. Hence, in such case, the STRF Algorithm reduces to Algorithm 4.1

for solving the smooth optimization problem with the objective f̃p¨, µk̂q in [52]. From the

assumption of this Lemma, ∇f̃p¨, µk̂q is Lipschitz continuous, and thus Bk is bounded.

Note that dk is the exact solution of (3.7). All conditions of Theorem 4.6 in [52] hold.

Similar to the proof of Theorem 4.6 in [52], we can show

lim
jÑ8

}∇xf̃pxk̂`j, µk̂q} “ 0. (3.22)

This contradicts to (3.21). Hence (3.18) holds.

Since r is locally Lipschitz continuous, f is locally Lipschitz continuous and almost

everywhere differentiable. The Clarke subdifferential of f at x P Rn can be defined by

Bfpxq “ contv |∇fpzq Ñ v, f is differentiable at z, z Ñ xu,

where “con” denotes the convex hull. A vector x is called a Clarke stationary point of

f if 0 P Bfpxq. To show that any accumulation point of txku generated by the STRF

algorithm is a Clarke stationary point of f , we need functions ri, i “ 1, . . . ,m to be

regular and their smoothing functions r̃i to satisfy the gradient consistency.

Definition 3.4. [32] A function h : Rn Ñ R is said to be regular at x P Rn if for all

v P Rn, the directional derivative exists and

hpx; vq “ lim
tÓ0

hpx` tvq ´ hpxq

t
“ lim sup

yÑx,tÓ0

hpy ` tvq ´ hpyq

t
.
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Definition 3.5. (Gradient consistency)[24] A smoothing function h̃ of h : Rn Ñ R is

said to satisfy the gradient consistency if

contv |∇xh̃px
k, µkq Ñ v, for xk Ñ x, µk Ó 0u “ Bhpxq.

Theorem 3.6. Assume that r̃i satisfies condition (3.6) and the gradient consistency, for

i “ 1, . . . ,m, f has bounded level sets and ∇f̃p¨, µq is Lipschitz continuous for any fixed

µ ą 0. Then the sequences txku and tµku generated by the STRF algorithm satisfy

lim inf
kÑ8

}∇xf̃pxk, µkq} “ 0. (3.23)

In addition, if ri is regular i “ 1, . . . ,m, then any accumulation point of txku is a Clarke

stationary point of f .

Proof. We consider two cases. Case I. lim infkÑ8 fpxkq “ 0.

In this case, we have

lim inf
kÑ8

}rpxkq}
2
“ lim inf

kÑ8

m
ÿ

j“1

r2
j pxkq “ 0.

From condition (3.6) and Lemma 3.3, we get µk Ñ 0, and

0 ď lim inf
kÑ8

|r̃jpxk, µkq| ď lim inf
kÑ8

p|rjpxkq| ` κpµkqq “ 0, for j “ 1, . . . ,m.

Since ri is Lipschitz continuous, the Clarke subdifferential Bri is bounded. Hence from

the gradient consistency of ri, we can get }∇xr̃ipxk, µkq} is bounded and

lim inf
kÑ8

}∇xf̃pxk, µkq} “ lim inf
kÑ8

}∇xr̃pxk, µkq
T r̃pxk, µkq} “ 0.

Case II. lim infkÑ8 fpxkq ą 0.

In this case, there exist k̄ and ε ą 0, such that for k ą k̄, fpxkq ě ε. By Lemma 3.3,

µk Ñ 0. Thus from mintfpxkq, }∇xf̃pxk, µkq}u ď βµk, we have

lim inf
kÑ8

}∇xf̃pxk, µkq} “ 0.

Hence we complete the proof for (3.23).
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If ri is regular and r̃i satisfies the gradient consistency, then by Proposition 2.1

in [12], r̃2
i is a smoothing function of r2

i and satisfies the gradient consistency. Since

fpxq “ 1
2

řm
i“1 r

2
i pxq is a convex composite function of r2

i pxq, f̃px, µq “
1
2

řm
i“1 r̃

2
i px, µq is

a smoothing function of f and satisfies the gradient consistency, which means

contv|∇fpzq Ñ v, f is differentiable at z, z Ñ xu “ contv|∇f̃pz, µq Ñ v, z Ñ x, µ Ó 0u.

Hence, from (3.23), any accumulation point of txku is a Clarke stationary point of f .

Example 3.7. To explain the smoothing approximation and gradient consistency, we

consider the following example. Let

rpxq “Mx`maxp0, xq ` q, whereM “

ˆ

1 1
1 1

˙

and q “

ˆ

1
´1

˙

.

At x̄ “ p0, 0qT , rpxq and fpxq are not differentiable. Since r1 and r2 are convex, by

Proposition 2.3.6 in [32], they are regular. By Corollary 3 in [32], the Clarke gradient of

fpxq at x̄ is

Bfpx̄q “
1

2
pBr2

1pxq ` Br
2
2pxqq

“ contv |∇r1pxqr1pxq `∇r2pxqr2pxq Ñ v, x1 ‰ 0, x2 ‰ 0, xÑ x̄u

“ t

ˆ

α1 1
1 α2

˙ˆ

1
´1

˙

, α1, α2 P r1, 2su.

Since 0 P Bfpx̄q, x̄ is a stationary point.

We use the smoothing function

ϕpt, µq “

"

maxp0, tq if |t| ą µ
2

t2

2µ
` t

2
`

µ
8

otherwise

for maxp0, tq, and

r̃pxq “Mx` Φpx, µq ` q

for rpxq where Φpx, µq “ pϕpx1, µq, ϕpx2, µqq
T . It is easy to see that 0 ď ϕ1pt, µq ď 1. In

particular, ϕ1p´µ
2
, µq “ 0 and ϕ1pµ

2
, µq “ 1. Hence, we find that f satisfies the gradient

consistency, that is,

contv|∇f̃px, µq “ ∇r̃px, µqT r̃px, µq Ñ v, xÑ x̄, µ Ó 0u “ Bfpx̄q.
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More examples and results on the smoothing approximation, regularity and gradient

consistency can be found in [20, 21, 24].
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3.4 Numerical results

All numerical experiments in this thesis are implemented in MATLAB 2012b on a Lenovo

Thinkcenter PC equipped with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running

Windows 7.

In this section we report numerical results of the STRF algorithm for solving non-

smooth nonconvex least squares problems (3.2) arising from spherical tε-designs. The

problem is highly nonlinear and have many stationary points at which the residual is not

zero. Numerical results show that the STRF algorithm is efficient and robust for finding

global minimizers of the problem.

The values of parameters in the STRF algorithm are chosen as follows: ∆0 “ 10´1,

∆ “ 1012, η1 “ 0.2, η2 “ 0.8, γ1 “ 0.8, γ2 “ 1.25, σ “ 0.95, µ0 “ 0.5, γ “ 0.01, β “ 10.

To use the STRF algorithm, we need a smoothing function r̃ of r and the Jacobian

of r̃. Since rI1 : R3N´3 Ñ Rpt`1q3 is differentiable, we only define a smoothing function of

rI2 : RN Ñ RN as follows:

pr̃I2pw, µqqi “

$

’

’

’

’

&

’

’

’

’

%

wi ´ ai wi ă ai ´ µ,
wi ´

1
4µ
pwi ´ aiq

2 ´ 1
2
pwi ´ aiq ´ µ{4´ ai ai ´ µ ă wi ă ai ` µ,

0 ai ` µ ď wi ď bi ´ µ,
wi `

1
4µ
pwi ´ biq

2 ´ 1
2
pwi ´ biq ` µ{4´ bi bi ´ µ ă wi ă bi ` µ,

wi ´ bi wi ą bi ` µ.

The function rI2 is Lipschitz continuous and regular. The smoothing function r̃I2 satisfies

the gradient consistency. Moreover, fpxq “ 1
2
}rpxq}2 “ 1

2
rpxqT rpxq is continuously differ-

entiable and has bounded level sets. Hence all conditions on r and f in the last section

hold.

The function f is nonconvex with many stationary points. It is hard to find a global

minimizer of f by using most existing methods. We use this example to test the STRF

algorithm and compare it with smoothing trust region (STR) algorithm and fmincon,

lsqnonlin, fsolve codes in Matlab. To guarantee the fairness of the comparison, we use

same parameters in STR and STRF algorithms, and same initial points for all algorithms

and codes.
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First we generate N points distributed evenly on the whole sphere. The points are

generated by “The Recursive Zonal Equal Area Sphere Partitioning (EAP) Toolbox” pro-

posed by P. Leopardi, which could be downloaded from http://sourceforge.net/projects/eqsp/.

Next, we add a small random perturbation on the points to create more initial point set-

s with the same cardinalities. All the perturbation obeys a uniform distribution with

expectation as 0.1. We choose initial weights w0
i “

4π
N
, i “ 1, . . . , N .

In Table 3.1 we show numerical results for finding spherical t0.1-designs with different

t and N points on the sphere. The final value of the residual }rpxq} and the CPU time

(CPUtime) are reported in the table. Compared with other methods, the STRF algorithm

can find a good numerical global minimizer efficiently.

Table 3.1: Values of rpxq(CPUtime) for spherical tε-design with ε “ 0.1

t, N fmincon lsqnonlin fsolve STR STRF

4, 12 1.41e-07(1.39) 1.91e-05(0.281) 3.28e-15(0.185) 2.64e-03(1.94) 7.78e-11(0.038)

9, 45 8.54e-07(10.1) 2.00e-04(2.29) 3.96e-06(1.89) 6.81e-03(6.26) 9.39e-11(0.35)

12, 80 1.16e-06(52.5) 3.19e-04(13.8) 3.95e-06(15.8) 1.01e-2(12.1) 7.12e-11(0.888)

14, 105 1.61e-06(107) 4.99e-03(66.1) 3.68e-06(46.8) 1.06e-3(22.3) 9.68e-11(2.07)

19, 190 7.66e-06(492) 1.1e-02(189) 2.78e-07(207) 3.06e-04(70.5) 9.79e-11(12.1)

21, 235 1.91e-06(856) 1.18e-04(193) 3.98e-08(310) 1.89e-03(115) 9.35e-11(98)

24, 305 2.30e-05(2064) 6.13e-04(382) 8.66e-07(689) 1.56e-03(220) 9.05e-11(36)

Note that there is no theoretical result which proves the existence of a spherical t-design

with N ď pt ` 1q3 points for arbitrary t. In [25], using a computational algorithm based

on interval arithmetic, Chen-Frommer-Lang proved the existence of a spherical t-design

with N “ pt ` 1q3 points on the unit sphere S2 Ă R3 for t “ 1, 2, . . . , 100. In [64], Sloan

and Womersley, conjectured the existence of a spherical t-design with N “ rpt`1q3{2s`1

points on the unit sphere S2 Ă R3 for some small t, where r¨s denotes rounding up to
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Figure 3.1: Possible minimal number N of points for spherical tε-designs

next integer. We believe that with the flexibility of choice for the weights, the number

of points for a spherical tε-design can be less than rpt ` 1q2{2s ` 1. To see the minimum

number of points for a spherical tε-design, we solve the least squares problem with rpxq

defined in (3.1) for rpt ` 1q3{3s ď N ď rpt ` 2q2{2s ` 1 with different ε and t. Figure

3.4 shows the minimal values N such that }rpxq} ď 10´10 with t “ 21, 25 and ε “ 10´α,

α “ 0.5 ` i ˆ 0.1, i “ 0, 1, . . . , 11. From Figure 3.1, we see that the bigger value of ε we

choose, the smaller number of points for a spherical tε-design we need.

Since we have develop a way for finding spherical tε-designs by the STRF algorithm

proposed in this chapter, now it is possible for us to implement the worst-case error of

spherical tε designs on HspS2q obtained in Section 2.3. In what follows we will calculate the

worst-case errors of the spherical tε-designs found in the previous part of this section. In

this experiment we choose ε “ 0.1 for spherical tε-designs. For comparison, the worst-case

errors for spherical t-designs on HspS2q will also be implemented.

The worst-case errors in HspS2q for s “ 1.5 ps ă d{2` 1q are illustrated in Figure 3.2.

For all spherical t0.1-designs, the worst-case error with s “ 1.5 is calculated using (2.44)

and the distance kernel, and for spherical t-designs the worst-case error are calculated by

(1.46). From the figure we can see that in this case, the computed worst-case errors of

spherical t-designs and spherical t0.1-designs essentially lie on the same curve, which is

similar to the numerical results shown in [19, Fig.1]. Based on Fig. 3.2 and [19, Fig.1], we
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can conjecture that the worst-case errors of both QMC designs which include spherical

t-designs and spherical tε-designs decay in the same speed with respect to the number of

points in the case s ă d{2` 1.

Figure 3.3 plots the worst-case errors for s “ 5.5 of both spherical t-designs and

spherical t0.1-designs. For spherical t-designs the worst-case errors with s “ 5.5 are

calculated using the generalized distance kernel and (1.47) (for which L “ 4), and for

spherical tε-designs the worst-case errors are calculated using (2.45). From the figure we

can see that the worst-case errors of spherical tε-designs decay faster than the ones of

spherical t-design with respect to the number of points.
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Chapter 4

Regularized Least Squares Problem

on the Sphere

In this chapter we investigate two regularized problems for numerical approximation of

continuous functions on S2 using spherical tε-designs.

In the first section we consider a regularized weighted least squares problem only using

spherical polynomials. In the second section we consider a generalized regularized least

squares problem of hybrid approximation using both radial basis functions and spherical

polynomials. Numerical results are presented in the last section.
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4.1 Regularized weighted approximation using spher-

ical tε-designs

In this section we consider the polynomial approximation of continuous functions on the

unit sphere S2 arising as minimizers of the regularized weighted discrete least squares

form

min
pPPL

N
ÿ

j“1

wjpppxjq ´ fpxjqq
2
` λ

2
ÿ

j“1

pRLppxjqq
2 (4.1)

where wj ą 0, j “ 1, . . . , N are the weights for each term of the least squares, f P CpS2q

has its values given at N points XN “ tx1, . . . ,xNu Ă S2, λ ą 0 is the regularization

parameter, and RL is the regularization parameter which is linear and can be chosen in

different ways. Note that tY`,k, k “ 1, . . . , 2` ` 1, ` “ 0, . . . , Lu is a basis of PL, so we

can represent ppxq as a linear combination of the basis as

p “
L
ÿ

`“0

2``1
ÿ

k“1

α`,kY`,k.

Let the entries of matrix YL P RNˆpL`1q2 be

pYLq`2`k,i “ Y`,kpxiq, ` “ 0, . . . , L, k “ 1, . . . , 2`` 1, i “ 1, . . . , N,

and f “ pfpx1q, . . . , fpxNqq
T . We could reformulate the problem as

min
αPRpN`1q2

}diagp
?
wqpYLα ´ fq}22 ` λ}RLα}

2
2, (4.2)

where

diagp
?
wq “

»

—

–

?
w1

. . .
?
wN

fi

ffi

fl

,

and RL “ RLpXNq “ BLYT
L P RpL`1q2ˆN with BL defined as in (1.53).

Problem (4.2) is a quadratic convex programming and it is easy to verify that (4.2)

has a unique optimal solution. Deriving the first and second order optimality condition,

the minimizer of (4.2) satisfies the following linear system

`

HL ` λRT
LRL

˘

α “ YT
Ldiagpwqf , (4.3)
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where

HL “
`

diagp
?
wqYL

˘T
diagp

?
wqYL “ YT

LdiagpwqYL P RpL`1q2ˆpL`1q2 .

Theorem 4.1. Assume f P CpS2q. Let L ě 0 be given , and let XN “ tx1, . . . ,xNu Ă S2

be a spherical tε-design on S2 with respect to w with t ě 2L .Then

HL “ YT
LdiagpwqYL “ IpL`1q2 , (4.4)

while (4.2) has the unique solution

α`,k “
1

1` β2
`

N
ÿ

j“1

wjY`,kpxjqfpxjq, (4.5)

and the unique minimizer of (4.1) is given by

pL,Npxq “

L
ÿ

`“0

2``1
ÿ

k“1

Y`,kpxq

1` β2
`

N
ÿ

j“1

wjY`,kpxjqfpxjq

“

L
ÿ

`“0

2`` 1

4πp1` β2
` q

N
ÿ

j“1

wjP`px ¨ xjqfpxjq (4.6)

Proof. Note that when XN is a spherical tε-design,

pHLq`2`k,p`1q2`k1 “

N
ÿ

i“1

wiY`,kpxiqY`1,k1pxiq

“

ż

S2
Y`,kY`1,k1dωpxq

“ δ``1δkk1 ,

with the third equal sign established by the orthonormality of spherical harmonics. Sub-

stitute HL “ IpL`1q2 to system (4.3) and we can obtain the equality (4.5) and (4.6).

It is interesting to note that when wj “
4π
N

for all j “ 1, . . . , N , Theorem 4.1 achieves

the same result with Theorem 2.1 in [3]. That is to say, problem (4.1) is indeed a gen-

eralized form of problem (1.48) by adding the weights wi to each element of the least

squares part. Therefore, we can also generalize some other conclusions in (4.1) to our
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problem. The following theorem tells the convergence of model (4.1) that polynomial

approximation (1.48) using spherical tε will converges to a continuous form.

Theorem 4.2. Let f P CpS2q, and let L ě 0 be given. Assume that the sets Xε
Nt
“

txε1,t, . . . ,x
ε
Nt,t
u for t “ 1, 2, . . . form a sequence of spherical tε-designs with

wt “ rw1,t, . . . , wNt,ts
T and t ě 2L. Then the unique minimizer pL,Nt P PL of (1.48) has

the uniform limit pL as tÑ 8, that is

lim
tÑ8

}pL,Nt ´ pL}CpS2q “ 0, (4.7)

where pL P PL denotes the unique minimizer of the continuous regularized least squares

problem

min
pPPL

!

}f ´ p}2L2
` λ}RLp}

2
L2

)

, λ ą 0. (4.8)

Proof. We have seen already that pL,Nt is uniquely determined when t ě 2L, and that in

this case pL,Nt is given explicitly by (4.6). It is easy to see that the minimizer of problem

(4.8) is in a similar way given by

pLpxq “
L
ÿ

`“0

2`` 1

p1` λβ2
` q4π

ż

P`px ¨ yqfpyqdωpyq. (4.9)

Since the sums over ` in (1.60) and (4.9) are finite, to prove the theorem it is sufficient to

prove that for 0 ď ` ď L

lim
tÑ8

Nt
ÿ

j“1

wj,tP`px ¨ xj,tqfpxj,tq “

ż

P`px ¨ yqfpyqdωpyq. (4.10)

Noting that P`px ¨ yqfpyq is a continuous function of y for each fixed x P S2, the result

now follows from the well known result that, for a positive weight quadrature rule with

polynomial degree of accuracy L, the quadrature rule applied to a continuous function g

converges to the integral of g as L Ñ 8. For an explicit proof for the case of the sphere

(and indeed for an error estimate) see [45, Therorm 10] combined with Jackson’s theorem

[53, Theorem 3.3].
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Based on the numerical results in Section 3.4, we know that due to the flexibility of

choice for the weights, the number of points for constructing a spherical tε-design can be

less than constructing a spherical t-design. In another way, using same number of points

we may construct a spherical tε-design but may not be able to construct a spherical t-

design. That is to say, a spherical tε-design can have higher algebraic accuracy than the

spherical designs constructed using same number of points. As is shown in the numerical

results in Section 3.4, spherical tε-designs have a smaller worst-case error than spherical

t-designs.
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4.2 Regularized hybrid approximation using radial

basis function plus polynomials

In this section we will investigate the hybrid approximation scheme using both radial basis

functions (RBFs) and spherical polynomials. As is shown in Subsection 1.3.2, approxi-

mating a function f P CpS2q using formula (1.66) and (1.67) leads to solving a “saddle

point” linear system (1.70).

It is well known that (1.70) is an effective model for approximation problem in many

cases. Now we consider a gerneralized least squares formula for hybrid approximation.

Firstly, instead of using the data point set XN as the center point set of RBFs, we use a

different point set XN˚ “ tx
˚
1 ,x

˚
2 , . . . ,x

˚
N˚
u as the center point set to construct the RBFs.

As we declared in the last section, in the original saddle point model (1.70) the data

point set is directly chosen as the center point set when we creating RBFs. However, no

theoretical result has been established to insist this choice as far as we know. Naturally,

we have some new notations about this new center point set as matrix A P RNˆN‹ and

Q˚ P RNˆpL`1q2 defined by

Ai,j :“ φpxi,x
˚
j q, i “ 1, . . . , N, j “ 1, . . . , N˚, (4.11)

and

pQ˚qi,`2`k :“ Y`,kpx
˚
i q, i “ 1, . . . , N˚, k “ 1, . . . , 2`` 1, ` “ 0, . . . , L. (4.12)

Then the orthogonal condition (1.67) is equivalent to

QT
˚α “ 0. (4.13)

In this case, we still always assume that XN˚ to be a fundamental system, which implies

that Q˚ is of full column rank. Now we consider the new linear system

„

A Q
Q˚ 0

 „

α
β



“

„

f
0



. (4.14)

If we here assume that N ą N˚ and A is of full column rank, this system will be over

determined and has no solution. In this case, instead of equation (4.14), we consider its
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least squares form as

min
α,β

1

2
}Aα `Qβ ´ f}22 (4.15)

s.t. QT
˚α “ 0,

or

min
α,β

1

2
αQ˚Q

T
˚α (4.16)

s.t. Aα `Qβ ´ f “ 0.

The solution of problem (4.15) satisfies the condition (1.67) strictly whereas the solution

of problem (4.16) interpolates the data f exactly. To meet a balance of this two aspects,

we consider its penalized form as a more general case. we plus the two objective functions

in the two models with a penalized parameter multiplied on one of them, and then can

obtain its l2 ´ l2 penalized form as

min
α,β

1

2
}Aα `Qβ ´ f}22 ` λ}Q

T
˚α}2, (4.17)

where λ is the regularized or penalized parameter to balance the approximation and the

orthogonal condition. This problem is a smooth convex unconstrained programming. By

deriving its first order necessary condition, we can obtain a linear system which is easy

to solve.

Moreover, we usually want the orthogonal condition to hold for as many ` and k,

` “ 0, . . . , L, k “ 1, . . . , 2` ` 1, as possible. That is to say, we want the vector QT
˚α as

sparse as possible. Based on this point of view, the l2 ´ l0 is more advisable to consider:

min
α,β

1

2
}Aα `Qβ ´ f}22 ` λ}Q

T
˚α}0. (4.18)

This problem is non-lipschitz nonconvex and can have multiple local minimizers. However,

we should note that problem (4.18) is non-convex and NP hard [30, 49, 51]. Hence we

79



should consider an approximation of this model instead. A good approximation is that

replacing the `0 norm by `p norm, with the form as

min
α,β

1

2
}Aα `Qβ ´ f}22 ` λ}Q

T
˚α}p, (4.19)

where 0 ă p ă 1, which is named low order penalty problem. However, the problem is

nonsmooth and nonconvex. For the convenience of computing, a convex approximation

form is expected to make this problem easier to solve. As the closest convex form of model

(4.18), we take the `1 regularization replacing the `0 one. Thus problem (4.15) becomes

non-smooth but convex programming as

min
α,β

1

2
}Aα `Qβ ´ f}22 ` λ}Q

T
˚α}1. (4.20)

Remark 4.3. The solution of the saddle point system (1.70), if exists, is also an optimal

solution of optimization problem (4.15), (4.18),(4.19) and (4.20) when choosing XN˚ “

tx˚1 ,x
˚
2 , . . . ,x

˚
N˚
u “ XN .

The existence of solution for system (1.70) guarantees that the optimal values of all

objective functions in (4.20), (4.15), (4.19) and (4.18) equals to 0.

Remark 4.4. Systems (4.20), (4.15), (4.19) and (4.18) all guarantee the exactness for

polynomials of degree ď L. That is, for @f P PL, pα˚, β˚q is the optimal solution for all

the four problems, in which α˚ “ 0 and β˚ satisfies

f “
L
ÿ

l“0

2``1
ÿ

k“1

β˚`,kY`,k,

where β˚ “ pβ˚`,kq, ` “ 0, . . . , L, k “ 1, . . . , 2`` 1. In this situation, β˚ is unique and all

the objective functions equal to 0.

The } ¨ }1 regularizer in (4.20) is to guarantee condition (1.73) which forces u, the

linear combination of RBFs, separated from the spherical harmonic polynomial space PL

and λ is the regularization parameter to balance the two parts. This leads to (4.20) as a

non-smooth and convex optimization problem. The problem also requires that both XN
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and XN˚ are fundamental systems [2] which guarantee that both Q and Q˚ are of full

column rank.

Now we consider using the alternating direction method (ADM) to solve the problem

(4.20). The motivation of this method is to solve a separable programming by separating

it into two or more easier subproblems. Since the method requires that the objective

function is separable, first we introduce an auxiliary variable vector y “ QT
˚α P RpL`1q2

and (4.26) can be reformulated into a constrained optimization problem as

min
α,β

1

2
}Aα `Qβ ´ f}22 ` λ}y}1 (4.21)

s.t. QT
˚α ´ y “ 0

which is a structured convex constrained optimization problem and can be solved by the

ADM method. Let z be the Lagrangian multiplier and 0 ă ρ ď 1 be the augmented La-

grangian parameter for the linear constraint QT
˚x´y “ 0, then the augmented lagrangian

function of (4.21) is

Lpx,y, zq “
1

2
}Aα `Qβ ´ f}22 ` λ}y}1 ´ zT pQT

˚α ´ yq `
ρ

2
}QT

˚α ´ y}22. (4.22)

Then a framework of the alternating direction method for problem (4.20) could be given

as Algorithm 4.2.
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Algorithm 4.2: ADM for the l1–regularized hybrid approximation problem

Step 0: Initialization. Make an initial guess v0 “ py0, z0q.

Step 1: Find a new x. For given pyk, zkq, solve the convex quadratic programming

xk`1
“

ˆ

αk`1

βk`1

˙

“ arg min

"

1

2
}Aα `Qβ ´ f}22 ´ pz

k
q
T
pQT

˚α ´ ykq

`
ρ

2
}QT

˚α ´ yk}22

)

.

(4.23)

Step 3: Find a new y. Use zk and the obtained xk`1 to solve the convex separable
quadratic programming

yk`1
“ arg min

!

λ}y}1 ´ pz
k
q
T
pQT

˚α
k`1

´ yq `
ρ

2
}QT

˚α
k`1

´ y}22

)

. (4.24)

Step 4: Update the lagrangian operator. Update zk as zk`1 “ zk ´ ρpQT
˚α

k`1´

yk`1q and go back to step 2 until convergence.

In step 2, by deriving its first-order optimality condition, solving (4.23) could lead to

seeking the solution of the following linear system:

„

ATA` ρQ˚Q
T
˚ ATQ

QTA QTQ

 „

αk`1

βk`1



“

„

AT f ` ρQ˚y
k `Q˚z

k

QT f



. (4.25)

Now we denote by

M “
“

A Q
‰

, x “

„

α
β



, B “
“

QT
˚ 0

‰

and

J “

„

M
B



“

„

A Q
QT
˚ 0



where M P RNˆpN˚`pL`1q2q, B P RpL`1q2ˆpN˚`pL`1q2q and

J P RpN`pL`1q2qˆpN˚`pL`1q2q.

Lemma 4.5. Linear system (4.25) has a unique solution if

rank pJq “ N˚ ` pL` 1q2.
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Proof. For (4.25) we could obtain that

„

ATA` ρQ˚Q
T
˚ ATQ

QTA QTQ



“

„

AT

QT



“

A Q
‰

` ρ

„

Q˚
0



“

QT
˚ 0

‰

“MTM ` ρBTB.

The above matrix is invertible if and only if the zero vector is the unique solution of the

system

Jx “ 0.

Then we can get that

N˚ ` pL` 1q2 ď rank pJq ď N˚ ` pL` 1q2.

Now we consider the subproblem (4.24) in step 3. The format of problem (4.20) could

be simplified as

min
x

1

2
}Mx´ f}22 ` λ}Bx}1 (4.26)

s.t. Bx´ y “ 0.

We denote by pBxk`1qi as the ith column of the vector Bxk`1. Then problem (4.24) can

be reformulated as

yk`1
“ arg min

$

&

%

λ

pL`1q2
ÿ

i“1

|yi| ´

pL`1q2
ÿ

i“1

pzkqippBxk`1
qi ´ yiq

`
ρ

2

pL`1q2
ÿ

i“1

ppBxk`1
qi ´ yiq

2

,

.

-

“ arg min

$

&

%

pL`1q2
ÿ

i“1

pλ|yi| ´ pz
k
qippBxk`1

qi ´ yiq `
ρ

2
ppBxk`1

qi ´ yiq
2
q

,

.

-

(4.27)

We see that (4.27) is a separable optimization problem. Then the problem can be sepa-

rated to pL` 1q2 one-dimension subproblems as
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yk`1
i “ arg min

!

λ|yi| ` pz
k
qiyi `

ρ

2
ppBxk`1

qi ´ yiq
2
)

(4.28)

and by the first order optimal condition, we have that

0 P λBp|yi|q ´ zki ´ ρpBxk`1
qi ` ρyi,

where Bp|yi|q denotes the subdifferential of the nondifferentiable convex function |yi|. We

could note that this step is equivalent to a scalar shrinkage process and the following

theorem is developed based on the relative conclusion in [68].

Remark 4.6. The solution of (4.28) could be given by the formulation

yk`1
i “

1

ρ

`

max
 

0, ρpBxk`1
qi ` pz

k
qi ´ λ

(

´max
 

0,´ρpBxk`1
qi ´ pz

k
qi ´ λ

(˘

.

(4.29)

Now we consider the stopping criterion of the proposed algorithm. By deriving the

first-order optimality condition (4.21), we have

$

’

’

’

&

’

’

’

%

MTMx´MT f ´BTz “ 0,

0 P λBp}y}1q ` z,

Bx´ y “ 0.

(4.30)

Hence problem (4.21) has the following variational inequality characterization: find

ω P Ω :“ RN˚`3pL`1q2 such that

ω P Ω, λp|y1| ´ |y|q ` xω1 ´ ω, F pωqy ě 0, @ω1 P Ω, (4.31)

where

ω “

¨

˝

x
y
z

˛

‚ and F pωq “

¨

˝

MTMx´MT f ´BTz
z

Bx´ y

˛

‚ . (4.32)

Let pxk`1,yk`1, zk`1q P Ω be generated by Algorithm 1. We denote by Ω˚ “ tpx˚,y˚, z˚qu

the solution set of problem (4.21). Note that system (4.25) is equivalent to find an xk`1

satisfying
@

x1 ´ xk`1,MTMxk`1
´MT f ´BTzk ` ρBTBxk`1

´ ρBTyk
D

ě 0,

@x1 P RN˚`pL`1q2 .
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Simultaneously, we have

λp|y1| ´ |yk`1
|q ´

C

¨

˝

x1 ´ xk`1

y1 ´ yk`1

z1 ´ zk`1

˛

‚,

¨

˝

MTMxk`1 ´MT f ´BTzk`1

zk`1

ρpBxk`1 ´ yk`1q

˛

‚`

¨

˝

ρBT pyk`1 ´ ykq
0

zk`1 ´ zk

˛

‚

G

ě 0

(4.33)

for any px1,y1, z1q P Ω. Therefore, pxk`1,yk`1, zk`1q is a solution of (4.21) if and only if

yk “ yk`1 and zk`1 “ zk. Then we could establish a stopping criterion for Algorithm 1

according to this conclusion:

maxt}yk ´ yk`1
}2, }z

k
´ zk`1

}2u ď ε, (4.34)

where ε ą 0.
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4.3 Numerical results

In this section we establish some numerical experiments to test the efficiency of the ap-

proximation models proposed in the above section. The codes of the ADM are written

by Matlab 2011b, and all the numerical experiments are done on a Lenovo Thinkcenter

PC equipped with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows 7.

In this thesis we do not pay much attention to the choice of regularized parameter λ in

(4.19). We know that choosing a suitable parameter is an important process in regularized

models. It may influence the result of approximation directly and how to choose a “good”

λ is still an open problem. As a part of remedy of that, we would try several different

selections of λ, as λ “ 10´6, 10´5, ¨ ¨ ¨ , 106, and record the best case among them into the

table.

In the coming numerical experiment, to test the two models (4.1) and (4.20) mentioned

in previous sections in this chapter, three functions with the different property are tested.

1. Franke function:

fpxq “fpx, y, zq “ 0.75 expp´p9x´ 2q2{4´ p9y ´ 2q2{4´ p9z ´ 2q2{4q

` 0.75 expp´p9x` 1q2{49´ p9y ` 1q{10´ p9z ` 1q{10q

` 0.5 expp´p9x´ 7q2{4´ p9y ´ 3q2{4´ p9z ´ 5q2{4q

´ 0.2 expp´p9x´ 4q2 ´ p9y ´ 7q2 ´ p9z ´ 5q2q, px, y, zq P S2.

(4.35)

2. Franke function with noise added:

f δpxq “ fpxq ` δpxq, (4.36)

where for each x, δpxq is a sample of a normal random variable with mean 0 and

standard deviation σ “ 0.1.

3. Franke function plus a cap function:

fcappxq “ fpxq ` gpxq “ fpxq `

$

’

&

’

%

ρ cos
´

π arccospxc¨xq
2r

¯

, x P Cpxc, rq,

0, otherwise,

(4.37)

where xc “ p´0.5, 0.5,
?

0.5qT , and r “ 0.5 and ρ “ 1
r
.
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(a) f

(b) fδ

(c) fcap

Figure 4.1: Shapes of f , f δ and fcap
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The Franke Function f , which is modified by Renka [56] is continuous differentiable on

S2. The second function f δ presents a noised data with its original function as a continu-

ous differentiable function. The third function fcap is a continuous but non-differentiable

function on S2. The shapes of the three functions are shown in Figure 4.1.

4.3.1 Regularized weighted least square polynomial approxima-
tion using spherical tε-designs

In this section we will test the model (4.1) proposed in Section 4.1. We will use the

spherical tε-designs found by the STRF algorithm proposed in Section 3.2 as the data

point sets. For comparison, we will also implement the model (1.48) proposed in [3] using

spherical t-designs proposed in [64] as data point sets.

In this experiment we will use the spherical t0.1-designs which are found in Section 3.2

and the spherical t-design proposed in [64] as the point set for polynomial approximation.

We will record the uniform errors and L2 errors to measure the approximation quality.

We all know that it is a complicated and time-consuming process to calculate the precise

value of the uniform norm and L2 norm of a function on the sphere. Here we choose a

large-scaled and well distributed point set Xt Ă S2 to be the test set and use it to estimate

the errors. Then the uniform error and L2 error of the approximation are estimated by

}f ´ pL,N}CpS2q « max
xPXt

|fpxq ´ pL,Npxq|, (4.38)

and

}f ´ pL,N}L2 «

˜

4π

Nt

Nt
ÿ

i“1

pfpxiq ´ pL,Npxiqq
2

¸
1
2

, (4.39)

where Nt denotes the number of points in Xt. In this experiment, we choose Xt to be an

equal area partitioning point set [57] with 105 points.

For both spherical tε-designs and spherical t-designs we always let L “ tt{2u. Under

this setting the solution of model (4.1) can be directly obtained by formula (4.6). Fig.

4.2 shows the errors of for the least squares approximation of f with RL “ 0 (or λ “ 0).
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From the figure it can be seen that, the L2 errors using spherical tε-designs decay faster

than the ones using spherical t-designs, although the uniform errors of them look close to

each other.
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uniform error using spherical t−design
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 error using spherical t−design
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L
2
 error using spherical t

0.1
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Figure 4.2: Errors for least square approximation of f with zero regularization operator

Fig. 4.2 shows the errors for least squares approximation of f δ with Laplace-Beltrami

operators with λ “ 0, 10´6 using spherical tε-designs. From the figure we can see that

when λ “ 10´6, both the uniform errors and L2 errors are smaller than the case with

λ “ 0, which implies that Laplace-Beltrami regularization can improve the approximation

quality for noisy case.

4.3.2 Regularized hybrid approximation using spherical tε-designs

In this section we will examine the approximation quality of propose model (4.20) in

Section 4.2. In this experiment, we apply the “Wendland” function [72] as the kernel of

RBFs, which is a kind of piece wise function with compact support to approximate it. It

has been proved to be positive definite on S2. The function is defined as

φpx,yq “ ψp|x´ y|q “ ψp
a

2´ 2x ¨ yq, x,y P S2,
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Figure 4.3: Errors for least square approximation of f δ with Laplace-Beltrami regulariza-
tion operator

where ψprq could be one of the three choices as

ψ0prq “ p1´ rq
2
` P C

0
pRq, (4.40)

ψ2prq “ p1´ rq
4
`p4r ` 1q P C2

pRq, (4.41)

ψ4prq “ p1´ rq
6
`p35r2

` 18r ` 3q P C4
pRq, (4.42)

where ψi, i “ 0, 2, 4 are all continuous but only ψ2, ψ4 are differentiable on R. In our

experiment, numerical tests have proved that approximation residuals do not vary so much

by choosing different RBFs, so here we will only apply the kernel ψ2 which is continuous

differentiable on R to construct the RBFs. Sometimes scaling of the compact support is

employed to improve the approximation, but scaling also results in large condition number

of A, which will lead to long solving time, which will influence the solving time for each

different method in different extent. Hence for fairness of the comparison we will not use

scaling in this experiment if nothing announced.

We choose two different types of point sets as the data set and center point set for

RBFs. One type is a set with its points (approximately) uniformly distributed on the

whole sphere. The minimal energy [57], extremal spherical design [29] and well conditioned
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spherical t-design [2] systems are all uniformly distributed point systems. Here we will

use the spherical tε-designs proposed in our thesis as the data point set and the center

point set. In this experiment we will set ε “ 0.1 to construct the spherical tε-designs and

denote these sets as “WD” (well distributed) set for brevity of notations.

The other type is a non-uniformly distributed set with points distributed densely in

a small cap region and relatively sparsely in the rest region of the sphere. Obviously,

this kind of point sets will lead to ill conditioned matrix and cost more solving time.

We will generate this set XN using equal area partitioning (EAP) method, see [57]. The

basic scheme is that we first generate some points densely and uniformly in a cap region

using EAP and then generate points sparsely in the rest region. We set the proportion

of density between the dense region and sparse region are five. In each time of test, we

apply the same type of the data set and center point set. That means if a non-uniformly

distributed point set is selected as data point set in one test, then the center point set will

also be selected as non-uniformly with the same cap region and vice versa. We should

also note that the theory of keeping matrix M of full column rank is still not studied.

But in practical tests it is not difficult to choose the data set and center set to make this

condition hold.

Now we consider using the model (4.20) to approximate the Franke function. We

choose the both two types of point set mentioned above: scattered data systems (SD),

which represent the non-uniformly distributed point sets, and spherical tε-designs, which

represent the uniformly distributed point sets.

We denote Λp,q as the approximation obtained by problem (4.19) and then the residual

could be obtained as

Rp,q “ }Λp,qf ´ f}CpS2q « max
xPXt

|Λp,qfpxq ´ fpxq|.

Simultaneously, we present the residual norm when we apply the saddle point system

(1.70) to get approximation, as

RX,L “ }ΛX,Lf ´ f}CpS2q « max
xPXt

|ΛX,Lfpxq ´ fpxq|
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Table 4.1: Residuals (R¨,¨) and CPU time (T¨,¨) with different models for hybrid approxi-
mation with L “ 10

Type(N ,N˚) R2,1(T2,1q R2,2(T2,2q R1,1(T1,1) RX,L(TX,L)

Methods ADM MINRES SDPT3 MINRES

WD(2000,400) 0.0433(0.02) 0.0471(0.05) 0.687(55) 0.0446(0.01)

WD(4000,800) 0.0165(0.23) 0.0360(0.14) 0.0305(198) 0.0221(0.08)

WD(6000,1200) 0.0068(0.25) 0.0372(0.39) 0.0076(490) 0.0095(0.25)

WD(8000,1600) 0.0040(0.56) 0.0377(0.81) 0.0076(927) 0.0071(0.63)

WD(10000,2000) 0.0018(0.69) 0.0368(0.87) 0.0031(2438) 0.0031(0.69)

SD(1993,399) 0.0535(0.03) 0.0563(0.06) 0.0845(46) 0.0514(0.04)

SD(3979,801) 0.0261(0.13) 0.0450(0.22) 0.0336(216) 0.0336(0.10)

SD(5974,1194) 0.0109(0.27) 0.0437(0.79) 0.0162(698) 0.0150(0.52)

SD(7964,1592) 0.0080(0.57) 0.0438(1.5) 0.0151(1132) 0.0126(1.39)

SD(9954,1993) 0.0040(0.95) 0.0438(2.5) 0.0076(1828) 0.0071(2.47)

in the table, of which both the center point set and data set are XN˚ . Here we use an

equal area partitioning point set [57] with 106 points distributed uniformly on the sphere

to deal with this process. We collect the infinity norms of the approximation residuals

and CPU time in seconds for solving process for each model as presented in Table 4.1.

The other three models are the l2 ´ l2 problem (4.17), l1 ´ l1, which simply change

all the norm } ¨ }2 in (4.17) to } ¨ }1, and the saddle point system (1.70). Since the

l2 ´ l2 case can be reformulated as a linear system, we will solve it by the minimal

residual method (MINRES), as what is applied to equation (1.70). For l1 ´ l1 we would

employ an existing software or package to solve it. There are many popular methods and

packages to solve a convex problem, such as the SPG [13], which is written in Fortran

77 and is proved to be efficient for many continuous differentiable optimization problems.

92



In our experiment we would apply a package called CVX which is written by Matlab for

convenience. The SDPT3 solver [69] is chosen in this package, which employs an infeasible

primal-dual predictor-corrector path-following method and could deal with varieties of

convex problem.

We can obtain some other interesting conclusions from the table. It is natural to see

that all residuals R2,1, R2,2, R1,1 and RX,L generally decrease when N˚ turns larger, which

means that the approximation is more accurate. For the same scale it is obvious to see

that R2,1 is always the smallest among the residuals. Also we could see that ADM is an

efficient solver for our model. For same scale and same type of point sets, ADM needs the

least time to solve the l2 ´ l1 model. For similar scale but different types of point sets,

l2 ´ l1 model using ADM costs similar time for both the SD and the WD case, whereas

other models need much more time to solve for SD case than the WD case.

In the next experiment we will approximate f using noised data f δ defined by (4.36).

The saddle point model (1.70) will also be compared with (4.19) for restoration of the

original function. The approximate infinity norms of residuals are still recorded to measure

the approximation quality. Since we have found that the equal area partition point systems

behave well in Table 4.1, in this experiment we only choose the spherical t0.1-designs for

test. The infinity norms of the residual are still recorded to measure the quality of the

approximation.

The residuals of approximating f δ using different models in different scales of point

systems are presented in the Table 4.2.

From the table we could find that for noisy case, the regularized models, including

l2´ l1, l2´ l2 and l1´ l1, process more accurate restoration for the original target function.

Especially, the l2 ´ l1, l2 ´ l2 model still own similar residuals and perform better than

the l1 ´ l1 model.

In Figure 4.4 we present the shapes of Franke function f and the noisy function f δ.

Restorations using model appearing in the above tables are also given in the figure. From

Table 4.2 we have already seen that the residuals using l2 ´ l1 and l2 ´ l2 models are

smaller than other model.
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Table 4.2: Residuals of approximation for f δ

N ,N˚,L R2,1 R2,2 R1,1 RX,L

121,36,5 0.3312 0.3187 0.3915 0.3968

441,121,5 0.1129 0.1129 0.1708 0.1646

961,256,5 0.1035 0.1035 0.1134 0.1395

961,256,10 0.1039 0.1039 0.1152 0.1449

1681,441,5 0.0959 0.0959 0.1179 0.1585

1681,441,10 0.0861 0.0861 0.1255 0.1591

(a) restoration by `2 ´ `1 (b) restoration by `2 ´ `2

(c) restoration by `1 ´ `1 (d) restoration by saddle point system

Figure 4.4: Shapes of f , f δ and its restoration
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Table 4.3: Residuals of approximation for fcap with L “ 10

N ,N˚ R2,1 R2,2 R1,1 RX,L

1993,399 0.1007 0.1040 0.1456 0.1467

2987,598 0.0708 0.0836 0.1096 0.1232

3979,801 0.0673 0.0814 0.0793 0.1101

4980,994 0.0565 0.0745 0.0826 0.0925

5974,1194 0.0490 0.0749 0.0625 0.0745

The third experiment is supposed to approximate the Franke function plus cap func-

tion, denoted by fcap.

Note that fcap is a continuous but non-differentiable function on the sphere. Thus,

when approximating fcap using differentiable functions, errors near the cap boundary often

are much larger than other parts. To get a close estimate of the uniform residual for this

case, we choose the test set Xt to be a type with points distributed densely around the

cap boundary. Similarly, to obtain better approximation, we will choose points denser in

the cap region than the rest region. Also we should note that in each region the points

could be uniformly distributed, which may lead to good approximation. In this sense, we

apply the SD point systems as the center point set and data point set.

In this experiment we set the scaling parameter σ “ 0.5, which means that in the

RBFs kernel ψiprq the variable r is replaced by r
σ

to reduce the compact support area of

each function.

Table 4.3 shows that for any scale of point set we choose, the l2 ´ l1 model keeps the

best approximation among the four models. In this sense, we could say that our model

(4.20) is suitable for the hybrid approximation on the sphere.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we basically studied the spherical tε-designs on the two-sphere S2, which

is a generalization of spherical t-design with 0 ď ε ă 1. Due to the flexibility of choice

for the weights, the number of points in the integration rule can be less for making the

exact integral for any polynomial of degree at most t than spherical t-design. In Chapter

2 we prove that all the point sets arbitrarily chosen in the interval enclosures proposed

by Chen, Frommer and Lang in 2010 are spherical tε-designs and give an upper bound

of ε. We then study the variational characterization and the worst-case error of spherical

tε-design. Based on the reproducing kernel theory and its relationship with the geodesic

distance, we propose a way to compute the worst-case error for numerical integration

using spherical tε-design in Sobolev space.

In Chapter 3 we propose an approach for finding spherical tε-designs. We show that

finding a spherical tε-design can be reformulated as a system of polynomial equations

with box constraints. Using the projection operator, the system can be written as a

nonsmooth nonconvex least squares problem with zero residual. We propose a smoothing

trust region filter algorithm for solving such problems. We present convergence theorems

of the proposed algorithm to a Clarke stationary point or a global minimizer of the

objective function under certain conditions. Preliminary numerical experiments show the

efficiency of the proposed algorithm for finding spherical tε-designs.

In Chapter 4 we consider two regularized least squares problems: regularized poly-
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nomial approximation on the sphere using spherical tε-designs, and regularized hybrid

approximation on the sphere using both radial basis functions and spherical polynomials

using spherical tε-designs. For the first problem we apply the l2 regularized form and

give an approximation quality estimation, and for the second one we study its l1 regu-

larized form and solve the problem using alternating direction method with multipliers.

Numerical experiments are given to demonstrate the effectiveness of these two models.
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5.2 Future work

In this thesis we propose a new concept named spherical tε-design, which is a generalization

of spherical t-design with all its quadrature weight to be positive. We investigates this new

concept from multiple aspects and achieve some results, but there are still some problems

which are interesting to study in the future.

In Chapter 3, we propose the STRF algorithm for finding spherical tε-design. The

STRF is applicable for solving nonsmooth nonconvex least squares problem with zero

residual and have many applications besides finding spherical tε-designs. We propose

its global convergence theory in Chapter 3, and we wish to study its local convergence

property in the future.

As is shown in Section 3.4, we have found some spherical tε designs with different ε

and t. And the points we need to construct spherical tε-designs are less than spherical

t-designs. And based on the Figure 3.4 we can see that for spherical tε design minimal

number of points N decays with the increase of ε but the theory of the relationship

between each other is not constructed. In the future we will try to establish some theory

to explain this phenomenon.

Another work which is worthy to study in the future is that we seek to find spherical

tε-designs which possess a smaller worst-case error in Sobolev spaces. Following the result

in Section 3.3, minimizing a worst-case error among spherical tε-designs leads to solving

an optimization problem

min
w,XNĂS2

N
ÿ

i“1

N
ÿ

j“1

wiwjp´1qL`1
|xi ´ xj|

2s´2

s.t.

$

’

’

’

&

’

’

’

%

N
ÿ

i“1

wiY`,kpxiq “ 0, ` “ 1, . . . , t, k “ 1, . . . , 2`` 1,

w ´midpa, w, bq “ 0.

(5.1)

The problem is non-differentiable expect when s “ 2. With the flexibility of the weight

w, a smaller minimal wosrt-case error than spherical t-design is expected.
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