

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

TOWARDS MORE TRUSTWORTHY TRUST-

BASED SYSTEMS FOR ANONYMITY AND

WEB SECURITY

ZHOU PENG

Ph.D

The Hong Kong Polytechnic University

2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Computing

Towards More Trustworthy Trust-based Systems for

Anonymity and Web Security

Zhou Peng

A thesis submitted in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy

January 2014

Abstract

In today’s Internet, trust has been widely used to design anonymity and security enhanced sys-

tems. Some of these trust-based systems have been successfully deployed in the Internet for a

long time and benefit a large population of Internet users. In particular, trust-based onion rout-

ing network is a representative example for the use of trust in protecting anonymity. As one of

the most popular onion routing systems, Tor serves more than 3 millions of Internet users. It

hides Internet users’ identities behind a circuit of selected onion routers but runs a high risk of

being compromised by attackers who employ malicious onion routers to launch correlation-like

attacks. Without an effective trust model, it is very difficult for Internet users to evade attackers’

routers when establishing onion circuits. As a result, recent research proposes trust-based onion

routing to thwart the correlation-like attacks. Using a priori trust that users have readily assigned

to routers’ owners, attackers’ routers are likely to be identified and excluded from users’ onion

circuits.

As an example to demonstrate the effectiveness and popularity of trust in protecting security,

we study the public key infrastructure (PKI for short) which has been successfully deployed

in the web for more than two decades. This infrastructure employs a well-known certification

based trust model for website authentication. Based on this trust model, modern browsers trust

a group of trust anchors (also known as root certificate authorities or CAs for short) in advance,

and authenticate remote websites by checking whether the site certificate is signed by one of the

pre-trusted trust anchors.

Although trust-based systems are widely used for securing anonymous communications and

web services, recent studies reveal that the use of trust could incur new problems. For example,

despite that trust-based onion routing successfully defeats correlation-like attacks by using a

priori trust among users, the use of trust for onion routing still suffers from two challenging

problems due to the inherent weakness of trust. One is the biased trust distributions among

users, and the other is how to verify the correctness of trust one person assigns to the other.

The biased distribution will reduce the entropy (i.e., anonymity) of the whole routing system

and hence induce a new inference attack, whereas the incorrect trust could render trust-based

onion routing ineffective in protecting anonymity. On the other hand, the trust-based systems

ii

iii

that secure web services are also vulnerable due to the inadequate use of trust. For instance, the

certification based trust model can be subverted globally if a single trust anchor is compromised.

The root cause is that the trust model treats every trust anchor equally and accepts site certificate

issued by any one of the pre-trusted trust anchors. This serious design flaw has been exploited

to successfully hijack around 300, 000 Gmail users. As a result, these problems largely limit the

effectiveness of even the state-of-the-art trust-based systems.

Motivated by these challenges, the overall objective of this thesis is to make the aforementioned

trusted-based systems more trustworthy. We present our research results in three parts. First, we

propose the use of trust degree and global trust to address the biased trust distribution problem.

Our trust degree based routing algorithm encourages users to select the onion routers that are

trusted by more other users with a higher probability, hence reducing the possibility that the

user’s identity can be inferred by attackers. The global trust, on the other hand, is designed to

guide users to discover and trust more honest routers, thus mitigating the bias of trust distribu-

tions. We also aggregate group trust from mutual friends to verify the correctness of users’ trust

assignments. The group trust is designed based on a key insight: the trust from a group of honest

people is more likely to be correct than the trust from a single honest person. We design a novel

trust graph based onion routing algorithm that offers these new trust features, and show that this

algorithm is more effective than existing trust-based onion routing systems.

Second, we use an active approach to correct the flaw in the certification based trust model. Our

approach is designed to maximize the protection against man-in-the-middle attacks by actively

exhausting available trust anchors and exploiting Internet path diversity. Equipped with our ap-

proach, compromising a single trust anchor cannot compromise the entire trust model. Instead,

subverting the entire trust model requires compromising a large number of trust anchors and

hijacking nearly all the Internet paths to victim websites. Our approach consists of four distinct

countermeasures, each of which has a unique tradeoff between the ease of deployment and the

capability of defending against various man-in-the-middle attacks. These new countermeasures

overcome the weaknesses of the existing countermeasures, which can neither defend first-time

authentication nor resist man-in-the-middle attacks with two compromised trust anchors. We

confirm the effectiveness of our approach using a real-world certificate data set and Internet

experiments.

Third, relating to web security, we also survey the landscape of file download vulnerabilities

across different domains and countries, and discover the weak protection against this vulner-

ability in many web systems today. Our further investigation discloses the root causes of this

weak protection: existing protection systems against file download vulnerability rely on either

ad hoc user input sanitization mechanisms (whose implementations are error-prone) or directory

based permission control (that suffers from undesirable flexibility). Based on this observation,

we propose FileGuard, a new protection system that secures file download in the script engine

iv

layer. The basic idea is to isolate the web files from the rest of local filesystem through the

embedding of dedicated ownership information into extended file attributes. Using this own-

ership information, a reliable and fine-grained access control can be performed to block illegal

file downloads. FileGuard can mitigate the impact of erroneous implementations, because it

provides a unified protection regardless of specific file download logic and achieves desirable

flexibility due to per-file ownership statement. We have implemented a proof-of-concept proto-

type of FileGuard by modifying the source code of PHP5 script engine and have confirmed that

FileGuard can provide more reliable protections.

v

Publications

The following published papers are the partial outputs of my PhD studies in HK PolyU.

Journal Articles

J3: Peng Zhou, Xiapu Luo and Rocky K. C. Chang, “Inference Attacks Against Trust-based

Onion Routing: Trust Degree to the Rescue”, Computers & Security, Elsevier, vol. 57,

pages: 3522-3544, 2013.

J2: Peng Zhou, Xiapu Luo, Ang Chen and Rocky K. C. Chang, “SGor: Trust Graph based

Onion Routing”, Computer Networks, Elsevier, vol. 39, pages: 431-446, 2013.

J1: Xiapu Luo, Edmond W. W. Chan, Peng Zhou and Rocky K. C. Chang, “Robust Network

Covert Communications Based on TCP and Enumerative Combinatorics”, IEEE Trans-
actions on Dependable and Secure Computing (TDSC), vol. 9, pages: 890-902, 2012.

Conference Papers

C4: Peng Zhou, Xiapu Luo and Rocky K. C. Chang, “More Anonymity Through Trust Degree

in Trust-based Onion Routing”, ICST/ACM SecureComm, pages: 273-291, 2012.

C3: Xiapu Luo, Peng Zhou, Junjie Zhang, Roberto Perdisci, Wenke Lee, and Rocky K.C.

Chang, “Exposing Invisible Timing-based Traffic Watermarks with BACKLIT”, ACSAC,

pages: 197-206, 2011.

C2: Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Rocky K. C. Chang, and Wenke Lee, “A

Combinatorial Approach to Network Covert Communications with Applications in Web

Leaks”, IEEE/IFIP DSN, pages: 474-485, 2011.

C1: Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and

Roberto Perdisci, “HTTPOS: Sealing Information Leaks with Browser-side Obfuscation

of Encrypted Flows”, ISOC/USENIX NDSS, pages:381-400, 2011.

http://www.sciencedirect.com/science/article/pii/S0167404813001363
http://www.sciencedirect.com/science/article/pii/S0167404813001363
http://www.sciencedirect.com/science/article/pii/S1389128613002594
http://www.sciencedirect.com/science/article/pii/S1389128613002594
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6255743
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6255743
http://link.springer.com/chapter/10.1007/978-3-642-36883-7_17
http://link.springer.com/chapter/10.1007/978-3-642-36883-7_17
http://dl.acm.org/citation.cfm?id=2076760
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958260
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958260
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958260
http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_3.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_3.pdf

vi

Acknowledgements

In the past four years, my research career is filled with joyful and “painful” experiences. During

this period, a lot of people gave me selfless help, useful suggestions, critical comments and

encouraging feedbacks when I encountered problems in my research and daily life. Without

their help and support, I can hardly imagine that I can complete my thesis on time. To this end,

I must express my sincere gratitude to them.

At first, I should thank my supervisor, Prof. Rocky K. C. Chang. He spends a large amount of

his resources to help me grow from a fresh student to an independent researcher. He opens the

door of network science to me, and teaches me how to write a high quality research paper and

how to present research topics in a scientific manner. I think I will continuously benefit from his

guidance in my future research. Moreover, I would like to express my thanks to my labmates,

Xiapu Luo, Edmond W. W. Chan, Waiting W. T. Fok, Ricky K. P. Mok, Weichao Li, Ang Chen

and Daoyuan Wu. Many of my research ideas are inspired from the discussion with them. Last,

but the most important, I must appreciate my parents. Without their love and support, I cannot

focus on my research for such a long time.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Three Trust-based Systems for Anonymity and Web Services 2

1.1.1 Trust-based Onion Routing . 2
1.1.2 Certification based Trust Model . 3
1.1.3 File Download Protection . 4

1.2 Problems . 5
1.2.1 Biased Trust Distributions . 5
1.2.2 The Correctness of Trust . 6
1.2.3 Disastrous Vulnerability in Certification based Trust Model 6
1.2.4 Unreliable File Download Protection 7

1.3 Major Contributions . 8
1.3.1 More Trustworthy Trust-based Onion Routing 8
1.3.2 More Trustworthy Certification based Trust Model 9
1.3.3 More Trustworthy File Download Protection 10

1.4 Thesis Structure . 10

2 Literature Review 11
2.1 Anonymous Communications . 11

2.1.1 Anonymous Communication Techniques 12
2.1.2 Attacks Against Onion Routing . 13
2.1.3 Trust-based Systems for Onion Routing 15

2.2 Certification based Trust Model . 16
2.2.1 SSL/TLS Man-in-the-middle Attacks 17
2.2.2 Existing Countermeasures Against Man-in-the-middle Attacks 19

2.3 File Download Vulnerabilities on the Web . 20
2.3.1 Related Web Vulnerabilities . 20
2.3.2 Existing Countermeasures Against File Download Vulnerability 22

3 Trust Degree based Onion Routing 23
3.1 Inference Attack Model in Trust-based Onion Routing 25

3.1.1 The Anonymity . 26
3.1.2 Trust Graph . 26
3.1.3 Threat Scenario . 27
3.1.4 Inference Attack Model . 28

vii

Contents viii

3.1.4.1 Model Requirements . 28
3.1.4.2 Model Design . 29

3.2 Trust Degree to the Rescue . 31
3.2.1 Model Analysis . 32
3.2.2 Routing Algorithm with Trust Degree 33

3.2.2.1 Optimization for Single Hop Router Selection 34
3.2.2.2 Optimization for Multiple Hops Router Selection 36
3.2.2.3 Algorithm Limitation . 39

3.3 Investigating the Effectiveness of Trust Degree 41
3.3.1 Datasets . 41
3.3.2 Trust-based Algorithm benefits by incorporating Trust Degree 42
3.3.3 Downhill Algorithm benefits by incorporating Trust Degree 43

4 Trust Graph based Onion Routing 48
4.1 SGor Overview . 49

4.1.1 Design Goals . 49
4.1.2 Basic Assumptions . 50
4.1.3 Threat Model . 52
4.1.4 Trust Model . 54
4.1.5 SGor Architecture and Major Components 55

4.1.5.1 SGor Architecture . 55
4.1.5.2 Major Components . 56

4.2 SGor Design . 57
4.2.1 Group Trust . 57

4.2.1.1 Robust Trust Path . 58
4.2.1.2 Group Trust Definition . 58
4.2.1.3 Group Trust Aggregation Algorithm 60

4.2.2 Global Trust . 61
4.2.3 Trust Graph based Router Selection 62
4.2.4 SGor Analysis . 65

4.2.4.1 The Capability of Evading Adversaries’ Routers 65
4.2.4.2 The Capability of Defeating Inference Attacks 67

4.3 Evaluation . 67
4.3.1 Datasets . 67
4.3.2 Evaluating The Capability of Evading Malicious Routers 68

4.3.2.1 Group Trust’s Effectiveness in evading Adversaries’ Routers: 69
4.3.2.2 Global Trust’s Impact: . 70
4.3.2.3 Simulation of SGor and Trust-based Onion Routing: 71

4.3.3 Evaluating The Capability of Defeating Inference Attacks 72
4.3.4 Comparing SGor with Other Global Trust-based Schemes 74
4.3.5 Evaluating The Leakage of A Priori Trust Relationships 75
4.3.6 Evaluating SGor’s Overheads . 76

4.3.6.1 Storage Overheads . 76
4.3.6.2 Communication Overheads 77
4.3.6.3 Additional Traffic . 78

4.4 Syntactic Graph based Analysis . 80

Contents ix

5 Active Approach for Certification based Trust Model 86
5.1 Threat Model . 88
5.2 Design of Active Approach . 89

5.2.1 Formalization . 89
5.2.2 Client-side Countermeasures . 89

5.2.2.1 Client-side Countermeasure ¬ 89
5.2.2.2 Client-side Countermeasure 90
5.2.2.3 Client-side Countermeasure ® 91

5.2.3 Server-side Countermeasure . 91
5.2.4 Comparison in the Literature . 92

5.3 Evaluation . 92
5.3.1 Evaluation of client-side countermeasure ¬ 92
5.3.2 Evaluation of client-side countermeasure ® 93
5.3.3 Evaluation of performance overhead 95

6 File Download Vulnerability Study and New Defense 97
6.1 Background . 99

6.1.1 Threats to File Download Scripts . 99
6.1.2 Drawbacks of Existing Defenses . 101

6.1.2.1 User Input Sanitization . 101
6.1.2.2 Directory based Permission Control 103

6.2 Vulnerability Survey in Today’s Web . 104
6.2.1 Sampling Methodologies . 104

6.2.1.1 Step One, Collecting Suspicious URL Samples 104
6.2.1.2 Step Two, File Download Vulnerability Discovery 105

6.2.2 Empirical Study of File Download Vulnerabilities in the Web 108
6.2.2.1 Scripting Language Study 109
6.2.2.2 Global Distribution Study 110
6.2.2.3 Popularity Study . 110

6.2.3 Attacks Using File Download Vulnerabilities 111
6.2.3.1 System Intrusion . 112
6.2.3.2 Database Intrusion . 112
6.2.3.3 White-box Analysis . 113
6.2.3.4 Other Attacks . 114

6.3 FileGuard Design . 115
6.3.1 Preliminaries . 116

6.3.1.1 Threat Model . 116
6.3.1.2 Basic Assumption . 116
6.3.1.3 Design Goals . 117

6.3.2 FileGuard Design . 117
6.3.3 Prototype Implementation . 119

6.4 Performance Evaluation . 121

7 Conclusion and Future Research 123
7.1 Conclusions . 123
7.2 Future Directions . 124

Contents x

A 126
A.1 The proof of Theorem 1 . 126
A.2 The proof of Theorem 2 . 127

Bibliography 129

List of Figures

1.1 An example of correlation-like attacks in onion routing network. 3
1.2 An example of website authentication using the certification based trust model. 4
1.3 An example of vulnerable file download script. 5
1.4 An example of man-in-the-middle attack against the certification based trust

model. 7

3.1 An example to show the effectiveness of trust degree in defeating inference attacks. 33
3.2 Attackers only observe the last hop in ui’s circuit. 34
3.3 Router selections in multiple hops are correlated. 36
3.4 The comparison of E(Y [ui|CO]) between trust-based algorithm and this algo-

rithm embedded with our optimal solution in the two real-world social network-
ing datasets [1]. Each point represents a ui. y-axis indicates the E(Y [ui|CO])
when ui adopts the trust-based algorithm while x-axis is theE(Y [ui|CO]) when
ui runs the trust-based algorithm embedded with our optimal solution. A smaller
E(Y [ui|CO]) means a better protection of anonymity against inference attacks. 46

3.5 The comparison of E(Y [ui|CO]) among the trust-based algorithm, the down-
hill algorithm and the downhill algorithm embedded with our optimal solution
in the two real-world social networking datasets [1]. Each point represents a
ui. x-axis indicates the E(Y [ui|CO]) using the downhill algorithm embedded
with our optimal solution, y-axis is the E(Y [ui|CO]) using the downhill algo-
rithm and z-axis is the E(Y [ui|CO]) using the trust-based algorithm. A smaller
E(Y [ui|CO]) indicates a better protection of anonymity against inference at-
tacks. 47

4.1 Threat models. 53
4.2 Two layered hierarchical architecture of SGor. 56
4.3 Examples of forged trust paths. 58
4.4 If v1 is an honest person but v2 is an adversary, the group trust Φ12 equals to the

number of incorrect trust edges in the robust trust paths from v1 to v2. 59
4.5 The Steps of Group Trust Aggregation Algorithm. 61
4.6 An example of trust graph based router selection. 62
4.7 The real-world group trust distributions of P (Φij). 69
4.8 The probability P (Aj |Φij) with different Φij in four settings of λ and β. 70
4.9 The probability P (Aj |Li) when Li is from 1 to 50. 71
4.10 The CDFs of the ratio of selecting adversaries’ routers in 10, 000 rounds of

router selection simulation in SGor and trust-based onion routing. 72
4.11 The CDFs of Deg(vj) for SGor and trust-based onion routing. 73
4.12 The CDF of Ei in Pisces and SGor with Φh = 2. 75

xi

List of Figures xii

4.13 The CDF of the fraction of trust relationships that are leaked to each third person
who calculates group trust. 76

4.14 The CDF of the number of trust edges stored in each person’s trust table in SGor. 77
4.15 The CDFs of the number of parallel communications during different number

of communication round trips in SGor with Φh = 2 and Li = 3. 78
4.16 The CDFs of additional traffic introduced by group trust aggregation (in terms

of the number of tokens per trust edge) in SGor. 79
4.17 The CDFs of additional traffic introduced by global trust propagation (in terms

of the number of traffic units transmitted in each trust edge) in SGor when Φh =
2 and Li = 3. 80

4.18 The group trust distributions of P (Φij) in syntactic graphs. 82
4.19 The probability P (Aj |Φij) with different Φij in four settings of λ and β. 83
4.20 The probability P (Aj |Li) when Li is from 1 to 50. 84

5.1 Three threat models for different man-in-the-middle variants. 88
5.2 The number of issuers of n randomly selected certificates. 94
5.3 Internet paths from a host in Hong Kong to three different Google servers. . . . 94
5.4 The performance overheads in terms of connection delay and computation cost

for client-side countermeasure ¬. 96

6.1 File download process and existing defenses. 100
6.2 The distribution of file download vulnerabilities for scripting languages. 109
6.3 The distribution of file download vulnerabilities for top 15 countries. 111
6.4 The popularity of file download vulnerabilities. 111
6.5 White-box analysis results of PHP scripts using RIPS-0.54 [2]. We download

these PHP source codes by exploiting the s-vul in a vulnerable website. 114
6.6 FileGuard to protect local files and web files against vulnerable file download

scripts. 119
6.7 The layout of FileGuard prototype implementation. 120
6.8 The performance overhead introduced by FileGuard in terms of time cost (in

microseconds). 121

List of Tables

3.1 Important Notations in Chapter 3. 25
3.2 The basic statistics of the two datasets [1]. 42
3.3 The maximum ∆E and the percentage of users who meet a particular condition

of ∆E in each graph. 43
3.4 The two cases for the three observed positions. 44

4.1 Important Notations in Chapter 4. 50
4.2 The Two Interaction Social Graphs after Preprocess. 68
4.3 Statistics in Six Syntactic Graphs. 80
4.4 The selection of Li given a Φh for SGor to guarantee P (Aj |Li) < P (Aj |Φij =

1) in different Syntactic Graphs. 85

5.1 A comparison of our approach and the existing solutions in the literature. . . . 93
5.2 The number of different routers between the paths to the Google server 1 in

Hong Kong and other Google servers located in different regions. 95
5.3 Performance overheads introduced by our approach. 96

6.1 Regular expressions for parameter recognition. 106
6.2 The definition of three types of vulnerabilities. 107
6.3 The proportion of suspicious URLs and vulnerabilities for top 15 countries. . . 110
6.4 The websites containing c-vul that open default ports of SSH, Telnet and VNC

in the Internet. 112
6.5 The websites containing w-vul that open default ports of MySql, MSSql and

Oracle in the Internet. 113

xiii

Chapter 1

Introduction

Nowadays, the Internet is becoming an essential part of human’s daily life and work. It provides

a very efficient and cost-effective information channel which can significantly reduce commu-

nication distance among human beings across the globe. Due to this advantage, more and more

human beings participate to the Internet and rely on online services for their daily activities. For

example, people can communicate with their friends and colleagues through e-mails or instant

messages in a very quick manner. They can also share their status and any other information to

their unfamiliar audiences by means of (micro)blogs, forums or online social networks. By us-

ing online shopping and banking services, people can purchase life necessities and almost other

goods they demand without going out to traditional stores and malls. Moreover, e-health can

help optimize the use of medical resources while e-government can facilitate public resource us-

age. Benefiting from these attractive Internet services, the population of Internet users expands

rapidly. As reported in a very recent statistical survey [3], the number of Internet users exceeds

2.4 billions in June 2012 (i.e., more than 34.3% of world total population).

Along with the increasing popularity of online activities, Internet privacy and security become

hot-button research topics. For example, to ensure Internet users visiting the Internet without re-

vealing their addresses and locations, a large number of anonymous communication techniques

[4–9] have been designed and deployed. Among these techniques, onion routing is perhaps the

most popular one. Its prototype system, Tor [9], has been deployed in the Internet for more than

ten years and already used by thousands of millions of Internet users. Moreover, to prevent users

from being attacked by impersonated websites, a certification based trust model [10] has been

applied on the web. This model helps Internet users certify the authenticity of Internet websites

by checking whether these sites can provide domain-bounded site certificates signed by a pre-

trusted authority (i.s., a trust anchor). Internet websites, on the other hand, are also threatened by

web vulnerabilities. By exploiting these vulnerabilities, malicious Internet users could attack,

1

Chapter 1. Introduction 2

or even completely compromise, vulnerable sites. For this reason, the design of vulnerability-

free web applications (i.s., web applications run in a trustworthy snadbox) is extremely valuable

although it is not a trivial task.

To ensure Internet privacy and security, trust-based systems have attracted considerable atten-

tions in recent studies. Although these systems have shown success experiences in the use of

trust to address challenging privacy and security issues, they also incur new problems. To this

end, we conduct an in-depth research to investigate state-of-the-art trust-based systems in this

thesis. Our research aims to analyze the key problems of existing trust-based systems and at-

tempts to propose solutions to solve those new problems.

1.1 Three Trust-based Systems for Anonymity and Web Services

In our research, we are mainly focusing on the study of three trust-based systems: trust-based

onion routing system [11–15], certification based trust model [10, 16, 17] and file download

protection system [18]. These three systems represent state-of-the-art trust-based methods for

securing anonymity and web security in their respective domains. Our findings and results can

also shed light to the in-depth research for other trust-based systems.

1.1.1 Trust-based Onion Routing

Onion routing [7–9] is perhaps one of the most popular low-latency anonymous communication

systems running in the Internet. It wraps users’ traffic using successive layers of encryption

along a circuit of selected onion routers, hence hiding the initial users behind the onion circuits.

However, recent research has found that existing onion routing is subject to various correlation-

like attacks [19–27]. These attacks can completely deanonymize users’ onion circuits in case

when users unconsciously select attackers’ onion routers in their circuits. For example, attackers

can passively analyze traffic characteristics and patterns [19–22, 25, 26] or actively embed traffic

watermarks [19, 23, 24, 27] to correlate the onion routers controlled by them. By this mean,

attackers can largely reduce the anonymity protected by onion routing systems, especially when

a large fraction of the network is compromised. Figure 1.1 illustrates a typical example of

correlation-like attacks in onion routing network. As can be seen, if the first and the last onion

router in a user’s circuit are both controlled by an attacker, the user and the web server this user

visits can be correlated and revealed directly.

To defeat correlation-like attacks, recent research proposes the use of trust for excluding at-

tackers’ routers. For example, Krishna et al. [11] restrict users to only select onion routers from

their 1- and 2-hop friends in an online social network. Drac [13] and Pisces [15] perform random

Chapter 1. Introduction 3

User
Web Server

Onion Routing Network

Correlation-like Attack
Attacker’s routerAttacker’s router

FIGURE 1.1: An example of correlation-like attacks in onion routing network.

walks through social links on top of an online social network to discover honest routers. Each

directed social link represents a trust that one person assigns to another person. However, these

three studies cannot present a theoretical analysis for attack models and optimal trust-based rout-

ing algorithms. To fill in this gap, Johnson et al. provide a general model for trust-based onion

routing [12]. This model includes completely theoretical attack models and discusses corre-

sponding optimized trust-based onion routing algorithms in the presence of these attack models.

Moreover, Johnson et al. design an enhanced model to analyze trust-based onion routing in

practical scenarios [14]. This practical model considers that different users have different distri-

butions of local trust among onion routers, since users are usually attacked by different attackers

in the wild. This practical model also studies how the accuracy of trust assignments affects the

effectiveness of trust-based onion routing. These trust-based onion routing algorithms have suc-

cessfully demonstrated the effectiveness of trust in protecting anonymity. They can enhance the

protection of onion routing even if a significant fraction of the network is compromised.

1.1.2 Certification based Trust Model

Certification based trust model is designed to employ browser-trusted certificates for website

authentication [10]. As an essential part of public key infrastructure deployed in the Internet,

this trust model relies on a group of trust anchors (also known as certificate authorities or CAs

for short) that are pre-installed in browsers (e.g., Chrome, Firefox or Internet Explorer), and

authenticates remote websites on behalf of Internet users by means of checking whether the

website certificates are issued from one of pre-installed trust anchors. If yes, the website passes

authentication. Otherwise, it fails. This model exploits trust’s delegatability to help Internet

users thwart impersonation attacks [28] and man-in-the-middle attacks [29]. Figure 1.2 shows

an example of website authentication scenario using the certification based trust model. In this

example, Internet users pass the authentication of a remote web server since the server’s site

certificate is signed by one of trust anchors.

Chapter 1. Introduction 4

User
Web Server

A group of trust anchors

Router

One of trust anchors

signs site certificate

Verify whether the

certificate is signed by

one of trust anchors

FIGURE 1.2: An example of website authentication using the certification based trust model.

1.1.3 File Download Protection

In today’s Internet, web is becoming a readable and writable medium for sharing and managing

files that are stored across globally distributed web servers. Along with this trend, a large number

of web applications provide file management services (such as file upload, download and online

editing etc.). These services usually implement a spectrum of file operation functions by means

of server-side scripts, and releases these functions to the public in the form of dynamic URLs.

Among these functions, file download is a very basic primitive that is responsible for publishing

and delivering files to remote web users across the Internet. However, since server-side script

engine inherits web server permissions to access local filesystem, it can read many sensitive

local files by default. As a result, without additional protections, file download scripts can be

exploited to download any sensitive files the web server has read permission to. We call these

vulnerable scripts file download vulnerabilities.

Figure 1.3 demonstrates a typical example of File download vulnerability on the web. By ex-

ploiting this kind of vulnerabilities, malicious Internet users could illegally download sensitive

files (such as source code of server-side scripts, web configuration files and critical system files)

stored on online services’ local filesystem. The leakage of these sensitive local files could result

in disastrous consequences. For example, if web configuration files are downloaded, malicious

users could launch database intrusion as a consequence. Even worse, if password files (e.g.,

/etc/passwd or /etc/shadow in Linux) are leaked, system intrusion becomes possible.

To prevent these dangerous file download vulnerabilities, user input sanitization mechanisms

can be implemented in server-side scripts [30, 31] and directory based permission control can be

configured in web server or server-side script engine. These protection methods ensure that only

trustworthy file read operations can be performed by file download scripts, hence preventing

sensitive files from being leaked through these scripts.

Chapter 1. Introduction 5

server-side script engine

web server

local filesystem

local files web files

Vulnerable file download script

local file request
local file download

web file request
web file download

FIGURE 1.3: An example of vulnerable file download script.

1.2 Problems

Although the aforementioned three trust-based systems have successfully demonstrated the ef-

fectiveness and advantages in protecting anonymity and web services, they still face challenges

due to the new problems caused by the use of trust. More importantly, the use of trust for pro-

tecting anonymity could reduce the entropy of the whole anonymity network because the trust

distributions are usually biased, while existing trust-based protections for Internet security are

either flawed or unreliable. We will elaborate on those new problems in the following subsec-

tions.

1.2.1 Biased Trust Distributions

The use of trust for onion routing has successfully demonstrated its effectiveness in excluding

malicious routers from users’ onion circuits and thus defeating correlation-like attacks. How-

ever, since normal users usually have knowledge only for a small group of onion routers and

different users have knowledge for different small fractions of the network, the resulting trust

distributions are usually biased. This kind of biased distributions can largely reduce the entropy

of the whole onion routing network, hence leading to a new kind of attacks, called inference

attacks [14]. More precisely, an attacker who knows a priori trust relationships has a high prob-

ability to guess the initial user of an onion circuit if this attacker can observe a router in targeted

circuit (i.e., inference attack). Although prior research has proposed a downhill algorithm [14]

to mitigate this kind of attacks, this algorithm is still based on local trust and cannot address the

root cause: biased local trust distribution leading to inference attacks.

Chapter 1. Introduction 6

1.2.2 The Correctness of Trust

In contrast to biased trust distributions, the correctness of trust is also hardly to be guaranteed

in trust-based onion routing. In particular, existing trust-based onion routing computes trust

only according to users’ own knowledge, but this knowledge could be inaccurate and incorrect

[12, 14]. If an onion routing user wrongly trusts an attacker, trust-based onion routing has

no effective ways to remove this incorrect trust assignment. Even worse, if trust-based onion

routing relies on a large number of incorrect trusts for onion routing, it cannot provide better

protection of anonymity than the onion routing without trust. To the best of our knowledge,

no prior studies have proposed solutions to enhance the correctness of trust for onion routing.

Instead, they only theoretically analyzed the impacts of the correctness and accuracy of trust on

anonymity protection [14].

1.2.3 Disastrous Vulnerability in Certification based Trust Model

Although certification based trust model has been successfully deployed on the web for more

than two decades, it has been found vulnerable to a disastrous flaw: the compromised of a single

trust anchor can subvert the entire trust model globally. The root cause is that end users do not

have the knowledge about which certificate authority is the legal issuer of which site certificate.

As a result, the attackers who compromise one certificate authority (usually the weakest one)

can issue faked site certificates which can be used to launch man-in-the-middle attacks. As

shown in Figure 1.4, the man-in-the-middle attackers can replace the real site certificate with

a faked one which is issued by a compromised trust anchor. Internet users cannot be aware

of this replacement since the compromised trust anchor is also pre-trusted by browsers. This

vulnerability has made severe impacts to the real world. For example, two real-world certificate

authorities, Comodo [32] and DigiNotar [33], were found compromised in 2011. Attackers

employed them to issue faked certificates for popular websites, and launched man-in-the-middle

attacks to successfully hijack around 300, 000 Iranian’s Google mail connections [34].

Patching this dangerous flaw is very challenging, because man-in-the-middle attacks with differ-

ent vantage points and attacking patterns pose different levels of threats to the trust model. The

state-of-the-art countermeasures do not make full use of trust the certification based trust model

provides, hence probably becoming ineffective against man-in-the-middle variants. On the one

hand, notary based solutions (such as Perspectives [35] and Crossbear [36]) deploy a third-party

service to collect different copies of a suspicious site certificate through globally distributed

hosts and alert a possible man-in-the-middle attack to end users if these copies are not the same.

This countermeasure explores a portion of Internet path diversity to detect man-in-the-middle.

However, the third-party service can be regarded as an additional trust anchor and the compro-

mise of this trust anchor can also subvert the entire trust model. Even if the third-party cannot be

Chapter 1. Introduction 7

User
Web Server

A group of trust anchors

A compromised trust anchor

Man-in-the-middle vantage point

i.e., a compromised router

One of trust anchors

signs site certificate

Verify whether the

certificate is signed by

one of trust anchors

FIGURE 1.4: An example of man-in-the-middle attack against the certification based trust
model.

compromised, this solution is still ineffective against the man-in-the-middle attacks whose van-

tage points are near to web servers [36]. On the other hand, some recent studies [37, 38] propose

the use of pre-shared secrets (e.g., a password in [37] or an HTTP cookie in [38]) to enhance

site authentication. Although this kind of countermeasures introduces new information from the

design space outside trust model, it cannot establish trust on the first time authentication, which

is a very important property the certification based trust model intends to protect.

1.2.4 Unreliable File Download Protection

Defenses against file download vulnerability have been existing for a long time. As a result,

some may believe this is a solved problem. However, we find that existing defenses still have

a number of practical drawbacks, hence making this vulnerability still prevalent in today’s web.

On the one hand, sanitizing sensitive user inputs before using these inputs as file names to access

local filesystem is an effective defense. However, this defense requires customized implemen-

tations for different file download logics and therefore becomes easy to introduce insufficient or

erroneous protections. Moreover, since an enterprise web server often consists of legacy scripts

that are deployed by different web administrators, at different times, and for different purposes,

it is very difficult to assure all these scripts are not vulnerable. On the other hand, directory

based permission control is another kind of mainstream defenses. Although this defense can

restrict web server permission to some specified directories and forbids any file read operations

outside, it is not flexible and falls victim to multiple file download scripts. For example, if the

web server permission is specified to a web application’s home directory, the local files such as

server-side scripts and web configuration files inside this home directory cannot be protected.

Even if the specified directories do not contain any local files, the files managed by one web

application can also be illegitimately downloaded through other irrelevant file download scripts

running in the same web server.

Chapter 1. Introduction 8

By sampling the landscape of file download vulnerabilities across different domains and coun-

tries, we confirm the weak protection of file download scripts in today’s web. In particular,

we have collected 19, 137 suspicious file download scripts by means of Google search engine,

and successfully discovered 6, 060 (or 31.7% of our sample set) vulnerabilities. Among these

vulnerabilities, we have found 5, 807 (or 30.3%) can download script source codes, 4, 285 (or

22.4%) can retrieve web configurations, and 1, 987 (or 10.4%) can expose critical system files.

Our further experiments confirm a high probability of disastrous consequences that our discov-

ered vulnerabilities can induce (i.e., 12.8% of our discovered vulnerabilities can result in system

intrusion and 17.8% can lead to database intrusion). Our results motivate us to reconsider new

defense to enhance the protection of file download scripts.

1.3 Major Contributions

In this thesis, our contributions primarily lie in an comprehensive analysis of fundamental chal-

lenges and tradeoffs in existing trust-based systems which employ trust to protect anonymity and

web services. Our major contributions also cover the proposal of more trustworthy solutions to

enhance these trust-based systems.

1.3.1 More Trustworthy Trust-based Onion Routing

In trust-based onion routing, biased trust distributions and incorrect trust assignments are two

key limitations that hinder the effective use of trust for protecting anonymity. To mitigate these

limitations, we design novel more trustworthy trust-based onion routing algorithms. These al-

gorithms exploit new trust features from a trust graph to address biased trust distributions and

incorrect trust assignments. More importantly, we make two major contributions as follows.

First, we uncover trust degree, an essential feature of routing anonymity that is effective in

defeating inference attacks but has been overlooked in the design of existing trust-based onion

routing. We conduct an isolated model based analysis to understand why the trust degree is

effective and how it can be used to resist inference attacks. In particular, we present a model to

exclusively reason about inference attacks in trust-based onion routing. This model isolates the

anonymity compromised by inference attacks from other attacks (e.g., correlation-like attacks),

and hence derives an exclusive design space that reveals trust degree as the key feature against

inference attacks. To show the usefulness of our model, we design a new routing algorithm

by taking into account of trust degree. Our algorithm can protect anonymity against inference

attacks without sacrificing the capability against attackers’ routers. To confirm the effectiveness

of trust degree in defeating inference attacks under real-world settings, we compare trust-based

Chapter 1. Introduction 9

routing algorithms with and without considering trust degree through experiments based on

real-world social networking datasets.

Second, we propose SGor, a trust graph based onion routing algorithm that mitigates the key

limitations of trust in protecting anonymity. SGor is novel with three unique properties. First,

SGor aggregates group trust from mutual friends to verify the correctness of users’ trust assign-

ments. Second, SGor employs an adaptive trust propagation algorithm to derive global trust

from trust graph. The global trust removes the restriction of users’ local knowledge and defeats

inference attacks by guiding users to discover and trust more honest routers (i.e., reducing the

bias of trust distribution). Third, SGor is designed to operate in a fully decentralized manner.

This decentralized design mitigates the leakage of a priori trust relationships. We evaluate SGor

with simulation-based experiments using several real-world social trust datasets. The experi-

mental results confirm that SGor can mitigate key limitations in the use of trust for protecting

anonymity but introduces only a few overheads.

1.3.2 More Trustworthy Certification based Trust Model

To protect against man-in-the-middle attacks with a single compromised trust anchor, we pro-

pose an active approach to harden the flawed certification based trust model. The idea is to

collect a priori trust from more trust anchors and Internet path diversity instead of just one trust

anchor, hence making the trust model more trustworthy. Our approach presents the first attempt

to maximize the protection against man-in-the-middle attacks not beyond the certification based

trust model. Its novelty primarily lies in three aspects. First, our approach is proposed to address

a critically important problem discovered in the use of certification based trust model for today’s

web: the compromise of a single trust anchor can subvert the entire trust model globally. This

problem poses a serious security threat and has caused a number of disastrous consequences

in today’s web [32–34]. Second, compared with prior countermeasures, such as notary-based

solutions [35, 36] and pre-shared secrets methods [37, 38], our approach can defeat all kinds

of man-in-the-middle attack variants and does not remove the capability against man-in-the-

middle attacks during the first time authentication. Moreover, our approach is the first solution

that can maximize the use of trust for website authentication purposes. Third, although the

idea of defending against man-in-the-middle attacks through the collection of a priori trust from

more trust anchors and Internet path diversity is easy to understand, rendering it practice still

faces many challenges. As a result, we have designed four different countermeasures to adapt

our approach to different attacking scenarios and available resources. Each countermeasure has

a unique tradeoff between the difficulty of deployment and the capability against man-in-the-

middle variants. For example, if a web server refuses to adopt server-side countermeasure to

enhance the protection for the users who visit this server, the Internet users can only deploy

client-side countermeasures to protect themselves.

Chapter 1. Introduction 10

1.3.3 More Trustworthy File Download Protection

Motivated by the high volume of vulnerable file download scripts we have discovered in today’s

web, we propose FileGuard, a more trustworthy defense that protects local filesystem against

vulnerable file download scripts through the embedding of dedicated ownership information into

extended file attributes. Compared with user input sanitization mechanisms, FileGuard can be

instrumented in script engine layer and thus provide unified protections regardless of different

file download logics. This design can significantly reduce the chance of erroneous protection

implementations. Moreover, FileGuard is more flexible than directory-based permission control

since its permission control runs on file basis. To show the correctness of FileGuard design,

we modify the source code of PHP5 script engine to implement a proof-of-concept prototype.

Our experiments using this prototype implementation successfully confirm the negligible per-

formance overhead introduced by FileGuard.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. We conduct a comprehensive literature

review in Chapter 2. We discuss inference attacks against trust-based onion routing in Chapter

3. We also reveal trust degree as a rescue to defeat this kind of attacks in this section. Moreover,

we design SGor, a trust graph based onion routing algorithm that can mitigate key limitations

in the use of trust for protecting anonymity in Chapter 4. In Chapter 5, we elaborate on the

disastrous vulnerability in certification based trust model and propose an active approach to

harden this flawed trust model. In Chapter 6, we study file download vulnerabilities in today’s

web. Our study uncovers the root cause of this vulnerability and hence leads to more trustworthy

defenses. To this end, we conclude our current research and look ahead several future research

directions in Chapter 7.

Chapter 2

Literature Review

To defend against the growing number of Internet attacks, a large number trust-based systems

have been proposed and widely deployed in today’s Internet. For example, SybilGuard [39],

SybilLimit [40] and many other similar systems [41–44] have been proposed using a priori trust

from social networks to thwart Sybil attack [45], which is perhaps the most dangerous attack in

peer-to-peer networks [46]. Moreover, a large number of reputation systems have been designed

to ensure the reliability of distributed computing [47–49] and online services [50–52]. These

systems could calculate the reputation based on performance (such as quality of services) [53–

55], past behaviors [47, 56] or users’ feedbacks and recommendations [57].

Although there are huge number of trust-based system studies in the literature, we review only

the past works that are closely related to our research in this Chapter. In particular, we first sur-

vey existing anonymous communication systems and major threats to these systems in Section

2.1. We then elaborate on the certification based trust model, an essential part of HTTPS proto-

col in today’s web, in Section 2.2. After those two, we discuss file download vulnerabilities in

Section 2.3.

2.1 Anonymous Communications

In today’s Internet, users always expect to prevent their Internet behaviors (such as who is talk-

ing to whom) and addresses (usually in the form of IP addresses) from leaking to others when

they visit the Internet. For this reason, anonymous communication is becoming a very impor-

tant part of Internet communications. With this trend, a number of anonymous communication

techniques and systems are proposed in the past three decades, such as MIX-net [4], DC-net [5],

Crowds [6] and onion routing [7–9]. Among those techniques, onion routing is the most popular

one since its prototype implementation Tor [9] has been deployed in the Internet for nearly ten

11

Chapter 2. Literature Review 12

years and attracted global interests from Internet users. According to Tor project’s official report

[58], there are more than 4 millions of users visiting Internet through Tor till November 2013.

In the following sections, we will analyze existing anonymous communication techniques in

details (see Section 2.1.1). We will also demonstrate the need of trust-based methods for anony-

mous communications through the survey of existing attacks (see Section 2.1.2) and report state-

of-the-art trust-based anonymous communication systems as consequence (see Section 2.1.3).

2.1.1 Anonymous Communication Techniques

MIX-net [4] and its practical variants [59, 60] are perhaps the first anonymous communication

design in the literature. The basic idea is to buffer and mix multiple users’ messages using some

relays or proxies (or call mixers) before sending them to destinations. By this mean, third parties

other than senders and receivers cannot identify the source and destination of messages. MIX-

net has severe performance issue because it should wait to buffer enough messages for mixing.

Although more messages that are used to mix can lead to a better anonymity of MIX-net, the

network also requires a longer delay to wait more messages to mix and forward. For this reason,

MIX-net are usually used for latency-tolerate anonymous communications, such as transmitting

electronic mails.

DC-net [5] is another typical anonymous communication technique inspired by the dining cryp-

tographers problem. DC-net assumes a group of cryptographers sit around in a dinner table.

These cryptographers agree with each other to make an anonymous payment but eager to know

whether none of them paid the menu. They achieve this using a two-stage protocol. In the

first stage, every two neighbor cryptographers share a secret bit (1 or 0 with equal probability).

That is, each cryptographer can have two shared secret bits on his hand. In the next stage, ev-

ery cryptographer publicly announce the exclusive OR (XOR for short) result of his two shared

secret bits but the cryptographer who paid the dinner just invert his result. By this way, if the

XOR result of all the announced bits is 0, none of these cryptographers paid the dinner. Oth-

erwise, some cryptographer paid it but we cannot confirm who is the payer. This protocol can

anonymously transmit one bit information to the public in each round of announcement. It can

be easily extended to transmit longer messages by running this protocol many times. Although

DC-net looks like simple and useful, it is hard to be applied to practical scenarios because of

three limitations. First, it cannot support the message transmission by more than two cryptog-

raphers simultaneously. Second, the DC-net can be subverted if one cryptographer is malicious.

Third, the DC-net is not scalable because each round of transmission requires the participation

of all the cryptographers.

Crowds [6] is a famous anonymous communication system designed for world wide web. This

system is designed based on the concept of “blending into a crowd”. That is, an initial user’s

Chapter 2. Literature Review 13

web requests can be forwarded through a group of other users and ultimately reach the destina-

tion web server. By this way, the web server and third parties cannot identify who is the initial

user. Compared with Mix-net, Crowds has a shorter communication latency and thus can sup-

port instant web transactions. And compared with DC-net, Crowds is scalable and can support

anonymous communications carried out by multiple senders. Although Crowds shows many

advantages compared with other anonymous communication systems, it still suffers from a seri-

ous issue: all the users who participate into the forwarding of initial user’s request can observe

the destination of this request. For this reason, Crowds cannot protect destination anonymity if

some participants are malicious.

Onion routing [7, 8] and its second generation protocol, Tor [9] are proposed to ensure both

source and destination anonymity. It can effectively prevent local attackers from knowing who

is talking to whom. The core protocol of onion routing is to forward an initial user’s message

through a circuit of onion routers. The initial user encrypt his message using the public keys of

all the routers in a layered structure, and each router can only decrypt one layer of the message

using its own private key. By this mean, each router can know only its predecessor and successor,

but cannot identify the source and destination of the message. Compared with Crowds, onion

routing is also a low-latency anonymous communication protocol but can protect destination

anonymity.

Rather than the four aforementioned anonymous communication techniques, there are many

other anonymous communication systems in the literature. For example, Anonymizer [61] is a

popular commercial system that can provide powerful anonymity and security protections. The

freenet [62] enables users to anonymously chat on forums, share documents, browse and publish

articles in the Internet without fear of being blocked or censored. I2P [63] is an anonymity

network using similar algorithms like onion routing but offering better protection against traffic

analysis. We do not elaborate on those systems here, because they are industrial products and

nearly all the basic methods they use are covered by Mix-net, DC-net, Crowds and onion routing.

2.1.2 Attacks Against Onion Routing

With the blooming of anonymity systems, attacking techniques against these systems are also

becoming hot research topics. Since different anonymity systems are designed by considering

different attack models and our research focuses on trust-based onion routing, our survey here

will mainly consider the attack model used by onion routing networks. In particular, Mix-net

and DC-net are designed to thwart global attackers who can observe the whole anonymous

communication infrastructure, while Crowds and onion routing are not. The latter two consider

only the local attackers. Under local attacking model, the major attack against Crowds is a so-

called predecessor attack [64]. By launching this attack, malicious participants can log their

Chapter 2. Literature Review 14

predecessors for a long time and have a very high probability to successfully guess the initial

user as the predecessor is likely the most frequent one appearing in the log.

Although predecessor attack is very effective in compromising source anonymity, it cannot at-

tack destination anonymity which is also protected by onion routing. Instead, another kind of

attacks, called correlation-like attacks, pose major threats to onion routing networks in the litera-

ture [19–27]. According to whether attackers can manipulate anonymity traffic, correlation-like

attacks can be roughly grouped into two categories: passive correlation-like attack [19, 21, 22,

25, 26] and active correlation-like attack [19, 20, 23, 24, 27]. In the former attack, attackers can

correlate the source and destination of an anonymity communication by passively analyzing the

characteristics and patterns of anonymity traffic. In the latter one, attackers can actively embed

traffic watermarks to reveal the communication anonymity. We will elaborate on the details of

techniques used by various correlation-like attacks in the literature as follows.

Paul et al. [19] present a preliminary study to investigate potential attacks against onion rout-

ing systems. This study considers a comprehensive adversary model, where the compromised

routers controlled by attackers may be a single one, multiple ones with a randomly fixed distri-

bution or multiple ones with dynamic distributions from time to time. In order to correlate the

source and destination of an anonymity traffic, the attackers can first employ one compromised

router to mark the traffic by passively analyzing traffic features or actively delaying/corrupting

this traffic. After that, attackers can use another compromised router to recognize the character-

istics of this traffic on the other end. This paper gives a whole picture of security issues in onion

routing systems, but does not discuss the cost of a successful attack.

Murdoch et al. [20] propose the first low-cost traffic analysis algorithm to deanonymize onion

routing networks. The basic idea of this attack is to use a compromised web server to actively

embed timing patterns into a traffic and utilize a compromised onion routers to measure the

traffic load in other routers. If the traffic pattern created by the compromised server has been

found in an onion router’s traffic, attackers can directly correlate this router with the web server.

Since onion routing follows a low-latency design, the timing delay compromised web server

embeds into the traffic could be small (i.e., low-cost). Evans et al. [24] extend the basic idea of

this attack to a more practical congestion attack. The extended attack exploits a design flaw of

onion routing to maliciously amplify bandwidth by building long circuits which loop back on

themselves, hence becoming practical even on heavily loaded onion routing networks.

Bauer et al. [22] describe a low-resource routing attacks against onion routing networks. This

attack is not required to actively embed traffic watermarks into the anonymity traffic (i.e., low-

resource). Instead, the attack can exploit the flawed circuit building algorithm to compromise

anonymity. In particular, attackers can recognize whether the routers under their control are

located at the first hop or last hop of onion circuits by analyzing circuit building traffic. Once

attackers’ routers are selected in the first and the last hops of an onion circuit, the source and

Chapter 2. Literature Review 15

destination of this anonymity circuit can be revealed and correlated (i.s., anonymity is compro-

mised).

Overlier et al. [21] study how to expose hidden services that are deployed with the help of

onion routing networks. In this research, the authors find that a hidden server can be revealed

by attackers if attackers’ routers are chosen as the first hop router in the server’s circuit to the

rendezvous point. Attackers can impersonate as the client using the same router and passively

analyze traffic characteristics to correlate the traffic across the same machine (the same machine

impersonates as the first hop router in hidden server’s circuit and the client who visits the hidden

server). To prevent this attack, the authors also propose countermeasures. They suggest to set

up some entry guard nodes polices to help hidden servers select trustworthy routers as their

first hop router (the entry router). The entry guard nodes could be the routers that are behaving

normally in the network for a long time. However, Alex et al. [65] find that the entry guard

nodes are not sufficient to completely protect hidden services. Instead, they find practical flaws

in the design and implementation of Tor. These flaws enable attackers to measure, shut down

and deanonymize hidden services even with entry guards [65].

Ling et al. [23] report a new cell counter based attack against onion routing protocol. This attack

is designed to embed watermarks into the variation of cell counter of the target anonymity traffic.

The last hop onion router controlled by attackers can recognize this watermarks to correlate the

destination and source of the traffic. This attack is highly efficient and effective, but hardly to

be evaded since it exploits the application level design flaws. The same group of authors also

extend the basic idea of this protocol-level attack to a more general versions and discuss them

in-depth in their following papers [27, 66, 67]. Moreover, Zhu et al. [25] discuss correlation-like

attacks in a high level, and Hopper et al. [26] conduct a comprehensive analysis on how much

anonymity can be leaked through the traffic transmission latency in onion routing networks.

2.1.3 Trust-based Systems for Onion Routing

Although those correlation-like attacks exploit very different techniques to compromise anonymi-

ty in onion routing networks, they have a common requirement: the onion routers under their

control are selected by users to establish onion circuits. As a result, identifying and exclud-

ing attackers’ routers from users’ onion circuits could effectively limit correlation-like attacks.

However, due to the lack of effective trust models, it is very difficult for users to evade attackers’

routers in existing onion routing networks. The attackers who control a large fraction of onion

routers have a high probability to launch correlation-like attacks to compromise the anonymity

of a large number of users. To this end, the use of trust for onion routing attracts considerable

attention in recent research. With the help of trust that users have readily assigned to routers’

Chapter 2. Literature Review 16

owners, onion routing users can effectively identify and exclude attackers’ routers from their

onion circuits.

Krishna et al. [11] propose the first trust-based onion routing algorithm. This algorithm in-

tegrates trust from online social networks to protect onion routing circuits. In particular, this

algorithm enables onion routing users to establish onion circuits by selecting onion routers only

from their first or second hop friends from online social networks, hence preventing attackers’

routers. This algorithm could induce a very skewed router selection probabilities distribution

and thus result in a significant reduction of the entropy (i.e., anonymity) of the entire onion

routing network.

Drac [13] is another social trust based onion routing system. It allows users to select trustworthy

routers through a traditional random walk [68] on top of an online social network. Although

random walk can implicitly mitigate the bias of router selection probabilities distribution, it

suffers from a new node degree attack [15]. The reason is that, traditional random walk will

converge to a stable distribution (within a fast-mixing domain) which is proportional to each

node’s degree, while attackers are easy to deliberately enlarge the degree of the routers under

their control. To address this problem, a new system, Pisces [15], is proposed. Pisces performs

Metropolis-Hastings random walks [69] instead of traditional random walks through an online

social network to discover honest routers. The Metropolis-Hastings algorithm can effectively

thwart node degree attacks since the converged distribution of such random walk is irrelative to

the degree of each node.

Johnson et al. [12] propose a theoretical model for reasoning about trust-based onion routing.

This model discuss a complete attack model and design new onion routing algorithms based on

trust to optimize the protection against correlation-like attacks. In contrast to the purely theoreti-

cal discuss, Johnson et al. also present a following paper to discuss practical scenarios [14]. This

work addresses many practical challenges in the design of trust-based onion routing algorithms.

For example, this work studies the accuracy and correctness of trust in trust-based onion routing

design. It also discusses the biased trust distribution issues and proposes a downhill algorithm

[14] to mitigate this issue as well. However, all existing trust-based onion routing systems can-

not solve the trust correctness issue and biased trust distribution issue completely. To this end,

we are mainly motivated to conduct an in-depth research to design more trustworthy trust-based

onion routing solutions in this thesis.

2.2 Certification based Trust Model

Secure Sockets Layer (SSL for short) and its successor, Transport Layer Security (TLS for

short), are perhaps the de facto Internet encryption/decryption standard [70–72], both of which

Chapter 2. Literature Review 17

are designed using theoretically proofed cryptographic algorithms. They are widely used by In-

ternet applications and protocols (such as HTTPs, SSH and IMPAs etc.) to ensure communica-

tion confidentiality and integrity. Moreover, SSL/TLS apply authentication using a certification

based trust model which complies with a X.509 public key infrastructure (PKI) [10]. However,

this trust model is missing or flawed implemented in many SSL/TLS based applications (e.g.,

SSH and HTTPs), hence making the authentication in these applications vulnerable to various

man-in-the-middle attacks [29]. In this section, we first review SSL/TLS man-in-the-middle at-

tacks in Section 2.2.1. We then discuss existing countermeasures against these attacks in Section

2.2.2.

2.2.1 SSL/TLS Man-in-the-middle Attacks

SSL/TLS rely on a certification based trust model to enable communication authentication. For

example, if one end A will communicate with the other end B through SSL/TLS, A should trust a

set of trust anchors in advance, and B need to provide a X.509 certificate to A for authentication.

A authenticates B’s identity by performing two verifications: one is whether the certificate’s

subject name or alternative name is the same as the address of B in the communication (i.e., B’s

IP address or domain name), and the other is whether the certificate is signed by one of trust

anchors pre-trusted by A. If both verifications succeed, A regards B as legitimate. Otherwise, a

man-in-the-middle attack possibly occurs.

Trust-on-first-use man-in-the-middle [35] Although SSL/TLS provide the certification based

trust model for authentication purpose, not all the applications on top of SSL/TLS apply this

model. For example, OpenSSH [73] is designed using SSL/TLS libraries to ensure secure re-

mote login. However, it does not implement the certification based trust model to tackle man-

in-the-middle attacks. Instead, OpenSSH Client prompts users to query whether they accept a

certificate provided by an OpenSSH server during the first time communication. Users should

make a decision based on their knowledge and experiences. As a result, the users who are not

well educated and have not sufficient security experiences are unlikely to identify fake certifi-

cates and make incorrect decision, hence being vulnerable to man-in-the-middle attacks in the

first time connections. The missing of certification based authentication is also prevalent in open

source third-party libraries [74] and smart phone apps [75].

The null-prefix attacks [76] Modern browsers (e.g., Firefox, Chrome and Internet Explorer)

have implemented the certification based trust model in their native code, hence being able

to thwart trust-on-first-use man-in-the-middle attacks. However, their implementations contain

flawed logics in processing X.509 certificates. In particular, browsers treat strings in X.509

certificates using C language which interprets the character \0 as the end of a string. However,

certificate authorities process X.509 certificates using ASN.1 notation format [77]. This format

Chapter 2. Literature Review 18

follows PASCAL string style and does not treat \0 as the end of a string. Instead, a string length

is required when processing the string. To this end, attackers can purchase a valid certificate from

a legal certificate authority (i.e., one of trust anchor) by setting the subject name of this certificate

as “www.google.com\0.malicious.com”. The certificate authority can sign this certificate as the

domain “malicious.com” belongs to attackers. However, modern browsers will interpret this

certificate as belonging to the domain “www.google.com”, since they read strings by ending at

\0. By this way, attackers can cheat certificate authorities to sign certificates to any domains.

And then, they can use these null-prefix certificates to launch man-in-the-middle attacks and

impersonate any domains.

OCSP attacks [78] The online status certificate protocol (OCSP for short) is a sub protocol of

HTTPs. Its main usage is to help check against revoked or compromised certificates. How-

ever, an implementation flaw found in this protocol can make the checking ineffective, hence

enabling man-in-the-middle attacks using revoked and compromised certificates. The flaw oc-

curs because OCSP response status is not covered by signature and many browsers will ignore

the authentication if the status is “tryLater (3)”. As a result, attackers can use any revoked cer-

tificates to launch man-in-the-middle attacks. They need only to send “tryLater (3)” status to

browsers to bypass OCSP protocol. In this scenario, no any warnings will show to users in the

browsers.

SSL strip attacks [79, 80] SSL Strip is a very insidious SSL/TLS man-in-the-middle attacks. It

sniffs HTTP traffic and tries to discover HTTPs links among HTTP responses. When an HTTPs

link is found, SSL strip attackers use HTTP to replace the HTTPs and send the faked HTTP

link to browsers. From browsers’ point of view, they cannot differentiate whether the original

links are HTTPs based or HTTP based. As a result, browsers could establish unencrypted con-

nection (i.e., HTTP connection) to the SSL strip man-in-the-middle vantage point, while the

SSL strip vantage point can construct HTTPs connection to remote web servers. By this mean,

SSL strip attackers can monitor and modify all the traffic between browsers and remote HTTPs

web servers. The authors deploy SSL strip attacks in a campus network for running a 24 hours

experiment, and successfully steal more than 200 usernames and passwords from leading mail

services such as gmail and yahoo. This experiment confirm the effectiveness and undetectability

of this attack.

Man-in-the-middle attacks with a single compromised trust anchor [32–34] In contrast to

aforementioned man-in-the-middle attacks, a more severe man-in-the-middle attack has been

found along with a disastrous design flaw in the certification based trust model: a single compro-

mised trust anchor can issue legal certificates to any domains, hence making man-in-the-middle

possible to be against any domains. The root cause is that browsers cannot differentiate which

trust anchor is the legal signer of which domain’s certificate. Since this attack is hard to be

evaded and can make disastrous consequences, it is becoming a hot topic in recent research. In

Chapter 2. Literature Review 19

this thesis, we will concentrate our study of SSL/TLS man-in-the-middle attacks to this attack,

and discuss its countermeasures in-depth.

2.2.2 Existing Countermeasures Against Man-in-the-middle Attacks

To address various SSL/TLS man-in-the-middle attacks, a lot of solutions have been proposed

in the literature. Originally, the certification based trust model is an effective method that is

designed to defeat man-in-the-middle attacks in the first time connection. However, this model

is not implemented in all SSL/TLS based applications. OpenSSH is a typical example which

does not apply this model for authentication. For this reason, a hunter system, called Perspective

[35], has been designed to help those vulnerable applications defend against trust-on-first-use

man-in-the-middle attacks. Perspective exploits Internet diversity to evade man-in-the-middle

vantage points. The basic idea is to collect certificate samples of the same web server through

a number of globally distributed certificate hunters around the world. Since globally distributed

hunters are unlikely to be hijacked by man-in-the-middle vantage points at the same time, some

hunters could receive the real certificate and raise a warning to indicate potential man-in-the-

middle attacks.

To eliminate the null-prefix attacks and OCSP attacks, simply patching vulnerable browsers is

enough. For thwarting the SSL strip attacks, a complete solution should be to strictly force

all the HTTP traffic encrypted. As a response to this requirement, the Internet Engineering

Task Force (IETF for short) proposes a new HTTP Strict Transport Security standard (HSTS for

short) [81]. However, the population of websites that apply HSTS is extremely low in today’s

web. According to a recent HSTS usage statistics report [82], only less than 700 websites

implement HSTS among the top 1 million sites (i.e., the usage ratio is less than 0.07%). The

reason of this low ratio for HSTS usage is perhaps that HTTPs will incur high performance

overhead for encryption/decryption but most of contents are not necessarily confidential (such

as images and videos). As a result, to make a tradeoff between performance and protection,

some solutions such as SSLLock [83] have bee proposed. SSLLock enables websites to host

their secure contents in a special subdomain. This subdomain strictly follows HTTPs protocol

but other domains remain the same HTTP protocol. By this way, SSLLock can well balance the

performance overhead and protection capability against SSL strip attacks.

To defeat the man-in-the-middle attacks with a single compromised trust anchor, there exist

three kinds of solutions in the literature. First, although Perspective [35] is not designed orig-

inally for this attack, it can thwart man-in-the-middle attacks with a single compromised trust

anchor since its key idea is to evade man-in-the-middle vantage points. The following works

such as CrossBear [36], NoAttackNecessary [84], HTTPS everywhere [85] and Convergence

[86] extend the basic idea of Perspective with an in-depth analysis and employ global hunters

Chapter 2. Literature Review 20

to discover the real cases of this attack in the Internet. However, as these prior systems provide

detection results to end users as third-party services, the compromise of the third-party service

can also subvert the entire trust model (we can consider the third-party service as an additional

trust anchor). Second, Italo et al. [37] propose the use of a pre-shared password to defeat this

attack, while Michael et al. [38] suggest to bind an HTTP cookie to a client-side certificate and

use this pre-shared information to detect consequent man-in-the-middle attacks. Both of them

employ some pre-shared secrets to address this problem, but fail to protect the first time authen-

tication, which is an essential property the certification based trust model attempts to protect.

Third, several website certificate pining protocols for SSL/TLS [87] have been proposed in the

literature to tackle man-in-the-middle attacks. Typical examples are like DNS-Based authenti-

cation of named entities (DANE for short) [88], trust assertions for certificate keys [89], HTTP

public key pinning extension [90] and the Monkeysphere project [91]. Although these pining

methods are very effective in protecting some important domains and websites whose certifi-

cates are pre-stored in the browsers, they are not scalable to support the certificates expiration

or withdraw, and even worse cannot provide a general and adaptive protection to all the Internet

websites. In this thesis, our research focuses on the maximizing protection against SSL/TLS

man-in-the-middle attacks by fully utilizing Internet diversity and available trust anchors. Our

solutions are more trustworthy compared with prior solutions.

2.3 File Download Vulnerabilities on the Web

File download vulnerability (also known as directory or path traversal attack [92]) is one of the

most harmful vulnerabilities in today’s web. It could lead to disastrous consequences including

but not limited to system intrusions and database intrusions. The root cause of this vulnerability

is the missing or insufficient quarantine of untrusted user inputs, which is similar as many oth-

er popular web vulnerabilities such as cross-site scripting (XSS for short), SQL injection and

command injection etc.. In this section, we first review file download vulnerability and its re-

lated web vulnerabilities in Section 2.3.1. We then survey existing countermeasures against file

download vulnerabilities in Section 2.3.2.

2.3.1 Related Web Vulnerabilities

According to the ranking of top 10 web vulnerabilities reported by open web application security

project (OWASP for short) [93] in the year of 2013, file download vulnerability belongs to

both the security misconfiguration category and sensitive data exposure category. These two

categories are ranked as the 5th and 6th positions, respectively. Moreover, the first and third

rank web vulnerabilities are injection and cross-site scripting, both of which are due to the

Chapter 2. Literature Review 21

similar root cause as file download vulnerability. In this sub section, we will elaborate on these

three web vulnerabilities and explain their root causes.

Injection Vulnerability retains as the top 1 web vulnerability from the year of 2010 to 2013.

This ranking indicates that this vulnerability is the most prevalent vulnerabilities across the web

and could result in disastrous consequences. Generally, this vulnerability can be grouped into

two sub categories, one is SQL injection [94] and the other is command injection [95]. Although

the root cause of SQL injection and command injection is the same: unauthorized SQL or sys-

tem commands cannot be sanitized by vulnerable web applications and hence being executed

unwittingly, they have very different consequences. In particular, SQL injection can at most

break into back end databases while command injection could compromise the whole operating

systems. Due to the widespread presence and disastrous consequences, injection vulnerabili-

ty is a very hot research topic [96–99] and the research for its countermeasures also attracts

considerable attentions from both industrial and academical communities [100–109].

Cross-site scripting vulnerability (i.e., XSS) [110] is another prevalent vulnerabilities across

the web. It is ranked as the 2nd position in 2010 OWASP report and the 3rd position in 2013 re-

port. The root cause of XSS is similar as injection vulnerabilities: unauthorized user inputs can-

not be sanitized by vulnerable web applications. However, the executor of those unauthorized

contents is the front-end java script engine rather than the back-end databases and operating sys-

tems. Therefore, XSS cannot be used to attack web services directly. Instead, this vulnerability

is usually exploited to steal web user credentials which are stored in browsers and bound to spe-

cific domains, hence breaking the same origin policy [111]. According to whether the injected

cross-site scripts can be transmitted to the web server, XSS can be grouped into two categories:

server-side XSS and client-side XSS (also known as DOM-based XSS) [112]. The server-side

XSS can be further divided into stored XSS and reflected XSS, where the former one can enable

attacking payload to be stored in the back-end database but the latter one cannot. To defeat

server-side XSS, user input sanitization mechanisms can be implemented in either client-side

scripts (e.g., java scripts) or server-side scripts (e.g., PHP, JSP or ASP.NET). In contrast to the

server-side XSS, the client-side XSS allows browsers to execute the injected attacking payloads

without any communications to the remote web servers. As a result, only client-side sanitiza-

tion is effective in defeating the client-side XSS. In the literature, the comprehensive research

on preventing both the server-side and client-side XSS has already conducted [113–118].

File download vulnerability occurs due to the use of unsanitized user inputs as file names to

access local filesystem. Its consequences depend on which permission the web server runs on.

For example, if a web server is configured to run on a root privilege, vulnerable web application-

s can enable malicious users to download any critical system files such as the /etc/shadow

in Linux. Even if web servers are configured with a lesser privilege, they also have implicit

read access to world-readable files in the system. In Linux systems, the file /etc/passwd

Chapter 2. Literature Review 22

and many other files in /etc/ directory fall into this category (a file is world-readable if the

others reference mode of this file is set to ”r” in Linux). Compared with injection vulnerabil-

ity, this vulnerability targets to attacking local filesystems rather than databases and operating

systems. Compared with XSS which is for stealing sensitive data in client side, file download

vulnerability can be exploited to steal sensitive files (including session files) from web servers

directly. However, all these three kinds of vulnerabilities share the same root cause: the missing

or insufficient sanitization of user inputs. We call them input validation vulnerabilities.

2.3.2 Existing Countermeasures Against File Download Vulnerability

Defending against file download vulnerabilities have been studied for a long time and several

methods have been proposed in the literature. Roughly, those defending methods can be clas-

sified into three groups: user input sanitization, web server permission control and machine

learning based detection algorithms. However, all these methods still suffer from a number of

practical drawbacks.

First, there exist a number of alternative sanitization mechanisms such as black-listing or white-

listing file names and sensitive key words elimination. These mechanisms have very different

implementation requirements. For example, to implement a black-listing method based on ex-

tension name, developers need to consider all the possible extension names sensitive files may

use. While the implementation of white-listing methods requires only the knowledge of ex-

tension names for the download-enabled files. Moreover, to implement a sensitive key words

elimination method, whether the web application uses relative path or absolute path to access

local filesystem should be considered. These diverse requirements make the implementation of

user input sanitization mechanisms error-prone. Second, the permission control for web servers

is too coarse to protect many system files, especially the files that are world-readable. Although

modern web servers can limit their read permission to some specific directories, the sensitive

files (usually the source codes of server-side scripts) are still vulnerable. Moreover, since the

directory based permission control cannot differentiate which directory is bound to which we-

b application, an vulnerable application can be exploited to illegally download files belonging

to other web applications. Third, although machine learning based detection algorithms attract

broad interests in recent research [119–121], they can hardly reduce detection false positives to

zero. Due to these practical drawbacks, we are motivated to design a more reliable method for

defending against file download vulnerability in this thesis.

Chapter 3

Trust Degree based Onion Routing

Recently, trust-based onion routing has become a hot research topic [11–15], because it can ef-

fectively protect anonymity even if a significant fraction of the network is compromised. Onion

routing protects anonymity by hiding user identities behind onion circuits. Each onion circuit

is comprised of a sequence of layered onion routers. However, since existing onion routing

networks such as Tor [9] do not deploy identity checking mechanisms to verify the identities

of onion routers, the anonymity protected by onion routing suffers a serious threat from various

correlation-like attacks [20–26, 122]. Using traffic watermarking or traffic analysis techniques,

the attackers who control the first and the last routers in users’ onion circuits can correlate these

routers in the same circuit, and hence reveal which user visits which destination. To tackle these

correlation-like attacks, trust-based onion routing [12, 14] has been proposed. By incorporat-

ing trust for routing algorithms, trust-based onion circuits can be constructed using trustworthy

onion routers and therefore significantly limit correlation-like attacks.

Although trust-based onion routing is proved effective against correlation-like attacks, it induces

a new kind of attacks, called inference attacks, due to biased a priori trust distributions [14].

As trust-based onion routing cannot be designed to protect anonymity by means of obscurity,

the powerful attackers who have the knowledge of a priori trust relationships among users and

routers are potentially existing. These attackers have a high probability to guess the initiate user

of a trust-based onion circuit if they can observe onion routers in this circuit (i.e., inference

attacks). As discussed in [14], the inference attack poses a major threat to trust-based onion

routing because it can largely reduce the anonymity protected by trust-based onion circuits.

Defeating the inference attack in trust-based onion routing is a very challenging problem, be-

cause different users usually have preferences for different sets of onion routers according to

trust. The state-of-the-art countermeasures usually make a tradeoff between the capability a-

gainst inference attacks and the capability against attackers’ routers (e.g., correlation-like at-

tacks are performed based on these routers), and show their effectiveness in terms of overall

23

Chapter 3. Trust Degree based Onion Routing 24

anonymity [13–15]. These countermeasures cannot differentiate the anonymity compromised

by inference attacks from other attacks, hence missing opportunities to disclose key features

against inference attacks in the design space. For example, a downhill algorithm is proposed to

construct trust-based onion circuits using a decreasing trust threshold along these circuits [14].

Trust threshold is an indirect feature that can only mitigate inference attacks by sacrificing the

capability against attackers’ routers. Moreover, although onion routing through social networks

[13, 15] shows better protection of the overall anonymity, the features used to thwart inference

attacks cannot be isolated and analyzed independently.

To effectively protect anonymity against inference attacks, a fundamental challenge is to dis-

cover the key features in the design space. These features can offer distinct advantages for

the design of effective and free-of-tradeoff countermeasures, but unfortunately have not been

discovered by previous studies.

In this chapter, we address this fundamental challenge by deriving and analyzing a novel in-

ference attack model. We first model trust-based onion routing as a probabilistic hypergraph,

and then isolate the design space for inference attacks by truncating this hypergraph. Based on

the analysis of this isolated design space, we uncover trust degree as the key feature against

inference attacks. We design a proof of concept routing algorithm by taking advantage of our

findings, and confirm the effectiveness of trust degree in protecting anonymity under real-world

settings.

We list our main contributions in this chapter as follows.

1. We present a novel attack model to isolate the anonymity compromised by inference at-

tacks from other attacks. Compared with generic models that focus on overall anonymity,

our model can exclusively reason about inference attacks without being affected by irrel-

evant features.

2. By analyzing our model, we uncover trust degree as the key feature against inference

attacks. Trust degree is very effective in preventing inference attacks, but is overlooked

due to the generic model based analysis in prior research.

3. We design a proof of concept routing algorithm by taking into account of trust degree. Our

routing algorithm makes no tradeoffs between the capability against inference attacks and

the capability against attackers’ routers. It can be embedded into existing trust-based

routing algorithms [12, 14], or even existing inference attack countermeasures (e.g., the

downhill algorithm [14]), to further strengthen the protection of anonymity.

4. We compare trust-based routing algorithm and the downhill algorithm with and without

considering trust degree using real-world social networking datasets. The results confirm

that trust degree is a very effective feature against inference attacks.

Chapter 3. Trust Degree based Onion Routing 25

Although we concentrate on the analysis of inference attacks in this chapter, we expect the prin-

ciple of isolating design space for a particular attack could be applied broadly. The isolated

attack model is attractive due to its ability of extracting key features. These features are usu-

ally very effective against the particular attack, but hard to be discovered by the analysis using

generic models.

Chapter Structure: The remainder of this chapter is organized as follows. We first present a

novel attack model to isolate inference attacks in Section 3.1. We then reveal trust degree as the

key feature against inference attacks and present a new routing algorithm by taking advantage

of trust degree in Section 3.2. Finally, we confirm the effectiveness of trust degree based routing

algorithm using real-world social networking datasets in Section 3.3.

For the ease of reference, we also summarize important notations used by this chapter in Table

3.1.

TABLE 3.1: Important Notations in Chapter 3.

Notation Definition

G A trust graph. G = (U ∪R,U ×R)

U , R U is a set of onion routing users, R is a set of owners of onion routers
t(u, r) A trust level an user u ∈ U assigns to a router’s owner r ∈ R

H = (U ∪R,U ×R`) A probabilistic hypergraph to model onion routing network.
` The length of onion circuits that users can make in the network

(u,C) ∈ U ×R` An onion circuit C that is initiated by user u
Ck The k-th router in onion circuit C

Pr[C|u] The probability that user u has to initiate the onion circuit C
Pr[Ck|u] The probability that user u uses to select the router Ck ∈ R

O ⊆ {k : 1 ≤ k ≤ `} The set of circuit positions observed by inference attackers
Y [ui|CO] The success probability that attackers have to guess ui by observing CO

3.1 Inference Attack Model in Trust-based Onion Routing

In this section, we reason about inference attacks in trust-based onion routing. We first describe

the anonymity that onion routing can protect in Section 3.1.1. We then elaborate on the trust

which can be used to prevent attackers’ routers but induces inference attacks in Section 3.1.2.

After listing the attacking capabilities that inference attackers have in Section 3.1.3, we propose

a novel attack model to isolate the anonymity compromised by inference attacks in Section 3.1.4.

Chapter 3. Trust Degree based Onion Routing 26

3.1.1 The Anonymity

Onion routing protocols are designed to prevent an attacker from linking users and destinations

that the users visit in the Internet. There are two kinds of anonymity that onion routing can

protect. One is user anonymity and the other is destination anonymity. The user anonymity con-

cerns the protection of user identities, while the destination anonymity considers the protection

of which destination users visit. Since Johnson et al. [14] argued in their work that the desti-

nation anonymity can be best protected using a single hop onion circuit consisting of the most

trusted router, we focus on user anonymity in our design.

3.1.2 Trust Graph

Following prior research of trust-based onion routing [11–15], we consider the trust that users

have readily assigned to onion router owners in this thesis. This notion of trust contains two-

fold meanings [12, 14]. One is the probability that the router’s owner is an attacker itself. A

lower probability means a higher level of trust. The other meaning is the difficulty that an honest

person’s router can be compromised by attackers. A higher level of difficulty indicates a higher

level of trust. Using this notion of trust, the capability of evading attackers’ routers can be

measured in terms of the level of trust.

By applying this notion of trust to the whole trust-based onion routing network, we model a

priori trust relationships among users and onion routers as a weighted directed trust graph G.

Let U be the set of users. Let R be the set of onion routers (or the owners of onion routers). We

have G = (U ∪R,U ×R), where U ∪R is the set of vertices and U ×R is the set of directed

edges in G. Each edge (u, r) ∈ U × R represents a trust relationship from a user u ∈ U to an

onion router r ∈ R and is associated with a weight t(u, r) to indicate the level of this trust. Note

that, since a person can play the role as a user and a router’s owner at the same time, G is not a

bipartite graph (generally U
⋂
R 6= ∅).

Since users need outside knowledge to estimate the trustworthiness of onion routers, Johnson et

al. [12, 14] argue that users can only have a very coarse level of trust for onion routers. Almost

existing research [11–15] designs their trust-based onion routing algorithms by considering two

distinct levels of trust. We follow this setting and consider our trust model with two trust levels:

t(u, r) = 1 means u trusts r while t(u, r) = 0 represents u distrusts r.

Chapter 3. Trust Degree based Onion Routing 27

3.1.3 Threat Scenario

To perform an inference attack, attackers are required to observe at least one onion router in a

user’s onion circuit and have the knowledge of a priori trust distributions over the network. For

this reason, we consider the attackers have the following attacking capabilities:

The capability of observing routers in onion circuits: Here, we consider attackers have two

means to observe onion routers in users’ onion circuits. First, we consider the destinations

(e.g., web servers) that users visit through onion circuits are certainly controlled by attackers.

Attackers can employ these destinations to observe the last router in users’ circuits. Second,

we consider attackers can deploy or compromise onion routers in the network. Although trust-

based routing algorithms can be used to evade attackers’ routers with a high confidence, trust-

based circuits are not necessarily free of attackers’ routers. Attackers can exploit their routers

which are used in users’ onion circuits to observe adjacent routers in the circuits. Note that,

since onion routing is not designed to defend against the attackers who can monitor the whole

communication infrastructure (e.g., an ISP level attacker) [8, 9], attackers are assumed to have

no chance to observe routers if they cannot control destinations or onion routers in users’ onion

circuits.

The capability of correlating observed onion routers: Attackers can actively embed traffic water-

marks or passively analyze traffic pattern using the routers and destinations under their control,

and hence correlate observed onion routers in the same onion circuit [20–25, 122]. If the in-

ference attack is performed by merely observing a single router (e.g., the last router) of onion

circuits, this capability is not pre-requisite.

The capability of locating the observed routers: Attackers can identify which positions the

observed routers are located in onion circuits [14]. For example, since the real-world onion

routing system Tor is hard coded to construct three-router onion circuits [9], attackers can locate

the positions of the routers under their control easily. In particular, as the last router can be

observed by the destination, attackers can confirm that a router stays at the last hop if this router

can be observed by the destination. If attackers can observe the last router through another

router under their control, this “another” router is certainly located at the second hop. Otherwise

it locates at the first hop. Moreover, if onion circuits contain more than three routers, attackers

can also estimate the positions of their routers by analyzing the control traffic when establishing

onion circuits [23, 122]. Since attackers use the routers under their control to observe adjacent

routers, if the hops of attackers’ routers can be identified, the hops of observed routers can be

located as well.

The capability of accurately estimating a priori trust distributions: As discussed in [14], highly

capable attackers usually have the capability of collecting the knowledge of a priori trust distri-

butions over the network. They can make accurate estimation to reveal trust relationships among

Chapter 3. Trust Degree based Onion Routing 28

users and onion routers using outside knowledge. For example, if a user is a member of an orga-

nization, this user is more likely to trust the routers deployed by this organization. If both users

and routers’ owners are members of social networks, attackers can profile the trust relationships

by crawling online social networks [123, 124]. Moreover, since trust-based onion routing algo-

rithms are always set up by default in softwares and shared in the public, attackers who have the

knowledge of a priori trust relationships can also accurately estimate users’ trust-based router

selection probabilities [12, 14].

3.1.4 Inference Attack Model

We present a model for exclusively reasoning about inference attacks in the context of trust-

based onion routing. Unlike generic models that consider overall anonymity, our model targets

on isolating the anonymity compromised by inference attacks and therefore results in an exclu-

sive design space for the analysis of inference attacks.

3.1.4.1 Model Requirements

To derive the exclusive design space, our model should satisfy the following requirements:

1. Making inferences to guess the initiate user of onion circuits should be the only method

that can be used to compromise anonymity in our model.

2. The design space inside of our model should be sufficient for interpreting inference at-

tacks.

3. The design space outside of our model should be preserved.

The first requirement is used to exclude the anonymity compromised by other attacks. For

example, if both the first and last routers of an onion circuit are controlled by attackers, the

initiate user can be deanonymized immediately. This case should not be considered in our

model.

The second requirement expects to protect the design space of inference attacks from being af-

fected by other attacks, even if these attacks are pre-requisites of inference attacks. For example,

although attackers can benefit inference attacks by means of controlling more routers and hence

observing more routers in users’ onion circuits, how attackers compromise onion routers and

correlate these routers of the same circuit are out of scope of our model. As a result, given an

onion circuit, which hops are observed and which are not can be simply assumed as a known

constant in our model.

Chapter 3. Trust Degree based Onion Routing 29

The last requirement is for eliminating the impacts on the design space outside of our model.

With this requirement, our model should prevent the analysis of inference attacks from inducing

side effects to the capability against other attacks, hence preserving the design space outside of

our model.

3.1.4.2 Model Design

We propose a probabilistic model to meet the three aforementioned requirements, and hence

isolate the design space of inference attacks in trust-based onion routing. Our model is built on

top of the trust graph presented in Section 3.1.2.

Definition 3.1. [Onion Routing Overview] We model a trust-based onion routing network as a

probabilistic hypergraph H = (U ∪R,U ×R`) 1. ` is the length of onion circuits that users can

make in the network. Each edge (u,C) ∈ U ×R` represents an onion circuit C that is initiated

by user u through trust-based onion routing. C ∈ R` consists of ` routers and Ck, 1 ≤ k ≤ `

is the k-th router in C. A weight Pr[C|u] is associated with the edge (u,C) to represent the

probability that user u has to initiate the onion circuit C.

As users initiate trust-based onion circuits by selecting routers for each hop independently,

Pr[C|u] can be calculated as Pr[C|u] =
∏`
k=1 Pr[Ck|u]. Where Pr[Ck|u] represents the

probability that user u uses to select the router Ck ∈ R in the k-th hop of his onion circuit.

Trust-based onion routing algorithms determine Pr[Ck|u] according to the trust level t(u,Ck)

and the position k in the onion circuit. It can be seen, the hypergraphH models trust-based onion

routing by capturing a priori trust-based onion circuits distributions over the whole network.

Although the hypergraph H can show the picture of the whole trust-based onion routing, it

cannot well interpret the network exposed to inference attackers. Generally, inference attackers

usually have the chance to only observe a partial onion circuits. As a result, we introduce a sub

hypergraph H(O) ⊆ H to capture the network from the view of inference attacks.

Definition 3.2. [Inference Attack Overview] We cut a sub hypergraph H(O) = (U ∪R,U ×
R|O|) to represent the part of trust-based onion routing that is exposed to inference attacks,

where O ⊆ {k : 1 ≤ k ≤ `} is the set of circuit positions observed by inference attackers

and |O| ≤ ` is the size of set O. Each edge (u,CO) ∈ U × R|O| represents a sub sequence of

routers in u’s onion circuit C (i.e., CO = {Ck, k ∈ O} v C). These routers can be observed

by inference attackers. The weight Pr[CO|u] associated with each edge (u,CO) indicates the

probability that user u has to construct an onion circuit with the sub sequence of routers CO.

1The operator × is a cartesian product operator and R` stands for the cartesian product of ` Rs.

Chapter 3. Trust Degree based Onion Routing 30

In trust-based onion routing, Pr[CO|u] can be calculated as Pr[CO|u] =
∏
k∈O Pr[Ck|u],

because user u can select the router Ck in the k-th hop of his onion circuit according to trust

t(u,Ck) independently.

The set O is resulted from how attackers control onion routers in users’ circuits, but makes

impacts on the effectiveness of inference attacks. It could affect the independence of inference

attack analysis. The hypergraph H(O) apparently excludes this side effect because it considers

the setO as a deterministic constant input. As a result,H(O) is required by our model to support

the second model requirement listed in Section 3.1.4.1,

However, H(O) is not sufficient to preserve the capability against other attacks. If we optimize

Pr[CO|u] based on the hypergraph H(O), it is possible to transfer selection probabilities from

the routers with higher trust level to the routers with lower trust level. This side effect could

induce the attacks that are prevented by trust (e.g., correlation-like attacks). To overcome this

challenge, we further narrow down the hypergraph H(O) by considering only the onion circuits

in which the routers for each hop are equally trusted by a user. As discussed in Section 3.1.2,

the routers that a user equally trusts have the same possibility of being controlled by this user’s

attackers [12, 14].

Without loss of generality, we consider a user ui ∈ U who visits the Internet using trust-based

onion circuits. Let Re ⊆ R be a set of routers that ui equally trusts, such as ∀r ∈ Re,

t(ui, r) = te. Hence, R can be divided into several disjoint Res with different tes. That is,

R = {R1, R2, . . . , Rν} = {Re|1 ≤ e ≤ ν} and ∀Re, Re′ ⊂ R,Re
⋂
Re′ = ∅. Where ν is the

number of distinct trust levels and we can simply consider t1 > t2 > · · · > tν . Although we set

ν = 2 for our experiments according to the discussion in Section 3.1.2, we use ν to describe our

model in general.

To restrict our model to the routers that ui equally trusts and hence support the third model

requirement in Section 3.1.4.1, we introduce the notion of hypergraph H(O,R
|O|
e) as follows.

Definition 3.3. [Exclusive Design Space] We decompose the hypergraph H(O) into several

sub hypergraphs H(O,R
|O|
e) = (U ∪R,U ×R|O|e), where R|O|e ∈ {R1, R2, . . . , Rν}|O|. In this

hypergraph, given a position k ∈ O, all the routers in this position should be from the set Re
(i.e., ∃k ∈ O,∀Ck ∈ H(O,R

|O|
e), t(ui, Ck) = te).

By using O and R|O|e , the hypergraph H(O,R
|O|
e) can isolate an exclusive design space for the

independent analysis of inference attacks. Inference attack countermeasures that are designed

based on H(O,R
|O|
e) does not necessarily sacrifice the capability against attackers’ routers. We

note that H(O,R
|O|
e) is from the view of a particular user ui and different ui ∈ U could result

in different H(O,R
|O|
e) for analysis.

Chapter 3. Trust Degree based Onion Routing 31

Now, we turn to the interpretation of inference attacks in the hypergraphH(O,R
|O|
e). According

to the first model requirement from Section 3.1.4.1, making inferences to guess the initiate user

of onion circuits is the only way to deanonymize users in our model. We then give a function to

describe this kind of deanonymization in our model.

Definition 3.4. [Isolated Anonymity] Let Y [ui|CO] be the success probability that inference

attackers have to guess the initiate user ui by observing a sub sequence of routers CO in ui’s

onion circuit. Y [ui|CO] can be calculated as:

Y [ui|CO] =
Pr[CO|ui]∑

u∈U
Pr[CO|u]

. (3.1)

With Definition 3.4, we have two implicit assumptions: First, inference attackers have the

knowledge of the isolated hypergraph H(O,R
|O|
e). This hypergraph contains sufficient a pri-

ori trust information for the calculation of Y [ui|CO]. Second, we calculate Y [ui|CO] without

taking unobserved hops (i.e., k /∈ O) into consideration, although these unobserved hops can

benefit inference attacks with some additional information (i.e., inference attackers have the

knowledge that the routers used in these unobserved hops are not controlled by them). We ex-

clude the guessing based on these unobserved hops, because the distribution of attackers’ routers

in the network can affect this guessing and hence prevent the independent analysis of inference

attacks in our model. That is, the second model requirement listed in Section 3.1.4.1 cannot be

satisfied if these unobserved hops are taken into account.

To sum up, our isolated attack model can fulfill all the three model requirements that we have

presented in Section 3.1.4.1 using the four model definitions. In particular, the first requirement

is addressed by the use of definition 3.4, because this definition considers inference attacks

as the only method that can be used to compromise anonymity. The second requirement is

fulfilled using the definition 3.2 and definition 3.4. The definition 3.2 isolates the portion of

onion routing network that is exposed to inference attackers and thus prevent the influences from

other attacking techniques. The definition 3.4 expresses how to interpret inference attacks. Both

of these two definitions cooperate to isolate a sufficient design space for interpreting inference

attacks. The third requirement is addressed by the definition 3.3. This definition can isolate an

exclusive design space for the independent analysis of inference attacks, hence preventing the

impacts to the design space of other attacks.

3.2 Trust Degree to the Rescue

In this section, we study why trust degree is effective and how it can be used to resist inference

attacks. We first analyze our inference attack model and discover trust degree as the key feature

Chapter 3. Trust Degree based Onion Routing 32

against inference attacks in Section 3.2.1. We then design a new routing algorithm by taking

into account of trust degree to resist inference attacks in Section 3.2.2. We also discuss several

limitations of our proposed routing algorithm in this section.

3.2.1 Model Analysis

In our inference attack model, a user ui’s anonymity can be measured in terms of the prob-

ability Y [ui|CO]. A lower Y [ui|CO] indicates inference attackers have more difficulties to

deanonymize ui by making inferences based on the observation of CO. To make the Y [ui|CO]

prone to analysis, we separate variables from constants2 in the Eq. (3.1) as below.

Y [ui|CO] =
Pr[CO|ui]

Pr[CO|ui] +
∑

u∈U\ui
Pr[CO|u]

. (3.2)

It can be seen from Eq. (3.2), the calculation of Y [ui|CO] is apparently determined by
∑

u∈U\ui
Pr[CO|u] which is the only constant regardless of the probability that ui uses to select CO
(i.e., Pr[CO|ui]). A larger

∑
u∈U\ui Pr[CO|u] leads to a lower Y [ui|CO]. As a result, given

two sequences of onion routers C ′O and CO, ui’s anonymity can be better protected by us-

ing C ′O rather than CO in the context of inference attacks if
∑

u∈U\ui Pr[C
′
O|u] is larger than∑

u∈U\ui Pr[CO|u].

Given a user, we define the trust degree of a set of routers as the sum of trust or trust-based

selection probabilities from other users to this set of routers. Therefore, the
∑

u∈U\ui Pr[CO|u]

in Equation 3.2 is the (trust) degree of the sequence of onion routers CO in the hypergraph

H(O,R
|O|
e). These probabilities are determined by trust in trust-based onion routing. According

to the analysis of Eq. (3.2), we find that the trust degree
∑

u∈U\ui Pr[CO|u] is very effective

in defeating inference attacks. We measure the effectiveness in terms of Y [ui|CO], the success

probability that inference attackers have to guess the initiate user. A smaller Y [ui|CO] indicates

a better anonymity protection. It can be seen in Eq. (3.2), users who select a sequence of onion

routers with a higher trust degree can have a better protection of their anonymity in the face of

inference attacks, because a larger
∑

u∈U\ui Pr[CO|u] apparently results in a smaller Y [ui|CO].

Figure 3.1 presents an example to demonstrate the effectiveness of trust degree in resisting

inference attacks. In this example, Bob and Ken are two volunteers who deploy onion routers.

Alice, as a user of the trust-based onion routing, trusts Bob and Ken equally. Pete is an attacker

who knows a priori trust relationships among users and onion routers. If Pete observes Bob’s

router in Alice’s onion circuit, he can deanonymize Alice immediately, because Alice is the only
2From ui’s point of view, the variables are the parameters under ui’s control, while the constants are the parame-

ters out of ui’s control.

Chapter 3. Trust Degree based Onion Routing 33

one using Bob’s router (i.e., Bob is trusted only by Alice). However, Pete cannot deanonymize

Alice by observing Ken’s router immediately, because many other users can also select Ken’s

router (i.e., Ken is also trusted by many other users).

Pete

Trust
KenBob

Other users

Observe

Web Server

Pete
Trust

Alice

Observe

Web Server

Alice or others?

Routers

?
?

?

Trust

Alice!

Routers

FIGURE 3.1: An example to show the effectiveness of trust degree in defeating inference
attacks.

In Figure 3.1, Alice can be interpreted as ui in the Equation 3.2, and other users are u ∈ U \ ui.
Since there is only one position being exposed to inference attacks, we have |O| = 1. The routers

deployed by Ken and Bob consist of R|O|e . Alice (i.e., ui) should determine his probability for

selecting Ken’s router or Bob’s router (i.e., Pr[CO|ui], CO ∈ R|O|e).

Although previous studies have not discovered trust degree as the key feature against inference

attacks, they have proposed routing algorithms to resist inference attacks by implicitly and indi-

rectly exploiting trust degree. For example, the downhill algorithm [14] can enlarge trust degree

by decreasing trust threshold, while social network based onion routing [13, 15] increase trust

degree through random walks on top of social networks. However, since these algorithms are

not designed based on an isolated design space, they usually reduce the capability against at-

tackers’ routers. Here, we conduct a very different research. Our contributions primarily lie in

the disclosure of why trust degree is effective and how it can be used to defeat inference attacks

without sacrificing the capability against attackers’ routers.

3.2.2 Routing Algorithm with Trust Degree

To prove the effectiveness of trust degree in resisting inference attacks, we design a new routing

algorithm by considering trust degree in this section. We investigate a user ui in the context

of a population of other users whose router selection probabilities are known in advance (i.e.,

∀u ∈ U \ ui, P r[CO|u] are constants). Our algorithm targets on minimizing the expectation of

Y [ui|CO] by optimizing the distribution of Pr[CO|ui] in the hypergraph H(O,R
|O|
e). Although

there are different functions can be used to measure Y [ui|CO] when optimizing the distribution

of Pr[CO|ui], we choose the expectation of Y [ui|CO] as our measure because previous studies

used it to show the effectiveness of their trust-based onion routing algorithms [12, 14].

Chapter 3. Trust Degree based Onion Routing 34

Let E(Y) be the expectation of Y [ui|CO]. It can be calculated as:

E(Y) =
∑

CO∈R
|O|
e

Pr[CO|ui] · Y [ui|CO]. (3.3)

We call E(Y) an “expectation” although it could not satisfy
∑

CO∈R
|O|
e
Pr[CO|ui] = 1. In the

hypergraph H(O,R
|O|
e), we usually have

∑
CO∈R

|O|
e
Pr[CO|ui] ≤ 1.

By targeting to minimize E(Y), the design of the routing algorithm that takes into account of

trust degree can be formalized as an optimization problem as follows.

min E(Y), s.t. ∀k ∈ O,
∑
Ck∈Re

Pr[Ck|ui] = θke. (3.4)

Where, θke ≤ 1 is the sum of probabilities that ui uses to select routers from Re for the k-th

position of his onion circuit. Apparently, for ∀k ∈ O,
∑ν

e=1 θke = 1. ν is the number of distinct

trust levels (see Section 3.1.4.2). In the isolated design space H(O,R
|O|
e), θke is determined

by trust-based routing algorithms and should be kept as an unchanged value when solving the

optimization problem described in Eq. (3.4). Since routers belonging to Re are equally trusted

by ui, keeping θke unchanged can preserve ui’s capability against the routers controlled by

attackers. As a result, by solving the optimization problem described in Eq. (3.4) subject to

θke, we can design routing algorithm for ui to resist inference attacks without sacrificing the

capability against attackers’ routers.

3.2.2.1 Optimization for Single Hop Router Selection

To solve the optimization problem listed in Eq. (3.4), we first consider the simplest scenario

in which only one position of ui’s onion circuit can be observed by inference attackers (i.e.,

|O| = 1). It could be the case that attackers control the destination (e.g., a web server) and

observe the last router (i.e., the router in the last position ` in Figure 3.2).

ui

Initial user Web server Observe Onion circuit

Router Attacker

ℓ

Position

FIGURE 3.2: Attackers only observe the last hop in ui’s circuit.

In this setting, the optimization problem can be simplified to the following equation:

min E(Y [ui|C`]), s.t.
∑
C`∈Re

Pr[C`|ui] = θ`e. (3.5)

Chapter 3. Trust Degree based Onion Routing 35

Theorem 4.1 gives the solution of the simplified optimization problem described in Eq. (3.5).

The proof of this theorem can be found at Appendix A.1.

Theorem 3.5. Subject to θ`e, the expectation E(Y [ui|C`]) that inference attackers have to

deanonymize the user ui by observing the last hop (i.e., the position `) of the circuit can be

minimized to:

min E(Y [ui|C`]) =
θ2
`e

θ`e +
∑

C`∈Re

∑
u∈U\ui

Pr[C`|u]
.

The corresponding optimal distribution of Pr[C`|ui] is in proportion to the trust degree of C`.

Gievn
∑

C`∈Re
Pr[C`|ui] = θ`e, for ∀C` ∈ Re:

Pr[C`|ui] ∝
∑

u∈U\ui

Pr[C`|u].

Theorem 4.1 describes the optimal router selection probability distribution over the set Re for

the last position of onion circuit (i.e., the position `). By applying Theorem 4.1 to all the

{R1, R2, · · · , Rν} respectively, ui can have an optimal router selection distribution over the

whole router set R.

Steps for the use of the optimal single hop router selection algorithm: By using Theorem 4.1,

users can apply the optimal single hop router selection strategy to existing trust-based routing

algorithms with four steps:

Step 1: The user ui can first divide the set of routers R into several mutually disjoint sub sets

Res according to different trust level tes. Each Re contains routers with the same trust level te
from ui’s point of view (i.e., for each r ∈ Re, t(ui, r) = te).

Step 2: The user ui determines θ`e for each Re according to trust-based algorithms.

Step 3: For each Re, ui finds the optimal distribution of Pr[C`|ui] using Theorem 4.1.

Step 4: After having the optimal distribution of Pr[C`|ui] for all the Re ⊆ R, ui can obtain the

optimal distribution of Pr[C`|ui] for R by concatenating the optimal distribution of Pr[C`|ui]
for all the Re ⊆ R.

Using these steps, ui can minimize the expectation of being deanonymized by the inference at-

tackers who can observe the last hop of ui’s onion circuit (i.e., the position ` in the circuit), but

does not sacrifice the capability of evading the routers controlled by attackers (because of keep-

ing θ`e as the same as it in trust-based algorithms). To implement this optimal router selection,

the user ui is required to have the knowledge of a priori distributions that other users have to

select routers for this position in their circuits.

Chapter 3. Trust Degree based Onion Routing 36

3.2.2.2 Optimization for Multiple Hops Router Selection

Now, we seek the solution of the optimization problem described by Eq. (3.4) in general. In this

scenario, multiple positions of ui’s onion circuit can be observed by inference attackers (i.e.,

|O| ≥ 1). This solution can be used to derive an optimal multi-hop routing algorithm that takes

trust degree into account.

Intuitively, we expect the optimal solution for multiple hops can be achieved by applying the

optimal single hop solution to each hop independently. That is, we expect the optimal Pr[Ck|ui]
solved by Theorem 4.1 can be used for each hop k ∈ O independently and hence lead to the

minimized E(Y [ui|CO]). However, this intuitive solution does not work, because the router

selections for different hops are correlated.

Figure 3.3 gives an example to show the correlated router selections in multiple hops. In this

example, ui equally trusts routers r1, r2 and r3. If attackers can only observe the position 3

in ui’s onion circuit, we should use a larger probability to select r1 than r2 in the position 3,

because r1 is trusted by two other users (i.e., u1 and u2) but r2 is trusted by only one (i.e., u3).

However, if attackers can also observe the position 2 and ui has already selected the router r3

in this position (i.e., C2 = r3), the attackers can deanonymize ui immediately if ui selects r1 in

the position 3. The reason is that, except ui, no other users trust both r1 and r3 in Figure 3.3. As

a result, to minimize inference attacks, the router selection algorithm for the position 3 should

be different if the router readily used in the position 2 is different.

ui Web Server

Observe
Onion

Circuit

Router Attackers

1 2 3

Other users

r1 r2

r3 r1 ? r2

Trust

Position

u1 u2 u3

FIGURE 3.3: Router selections in multiple hops are correlated.

With no loss of generality, we consider the elements in set O are indexed in an ascending order.

Let (n) be the n-th element in the set O. Let (n−) be the first n − 1 elements in the set O and

(n+) be the last |O| − n elements in set O. As a result, C(n) = Ck if the n-th element in set O

is the position k. Moreover, C(n−) denotes the sub sequence {C(1), C(2), · · · , C(n−1)} v CO,

while C(n+) stands for the sub sequence {C(n+1), C(n+2), · · · , C(|O|)} v CO.

Chapter 3. Trust Degree based Onion Routing 37

For example, if O = {1, 3} (this indicates |O| = 2), we have the following assignments. First,

(1) = 1 and (2) = 3. Second, (1−) = ∅, (2−) = {1} and (3−) = {1, 3}. Third, (0+) =

{1, 3}, (1+) = {3} and (2+) = ∅. Fourth, C(1) = C1 and C(2) = C3. Fifth, C(1−) = ∅,

C(2−) = C(1) = C1 and C(3−) = {C(1), C(2)} = {C1, C3}. And last, C(0+) = {C(1), C(2)} =

{C1, C3}, C(1+) = C(2) = C3 and C(2+) = ∅.

As the router selections for multiple hops are correlated, we cannot calculate Pr[CO|u] using

Pr[CO|u] =
∏
k∈O Pr[Ck|u], because this calculation assumes the multi-hop router selections

are independent. Instead, Pr[CO|u] can be calculated in a more general version as follows.

Pr[CO|u] =

|O|∏
n=1

Pr[C(n)|u,C(n+)]. (3.6)

Where Pr[C(n)|u,C(n+)] represents the conditional probability that the user u uses to select the

router C(n) for the (n)-th position in his onion circuit in case the user u has already selected

routers C(n+1), C(n+2), · · · , C(|O|) for the (n+ 1), (n+ 2), · · · , (|O|)-th positions in the circuit

respectively.

Based the Eq. (3.6), the optimization problem that is described in Eq. (3.4) can be transformed

to a general version as:

min E(Y), s.t. ∀(n) ∈ O,
∑

C(n)∈Re

Pr[C(n)|ui, C(n+)] = θ(n)e. (3.7)

Note that, since trust-based onion routing algorithms implement router selections for multiple

hops according to trust independently, Pr[C(n)|ui, C(n+)] = Pr[C(n)|ui] if the user ui uses

trust-based routing algorithms. To derive inference attack countermeasures without tradeoffs,

we find the solution of Eq. (3.7) in the isolated design space H(O,R
|O|
e), in which the θ(n)e is

pre-defined when ui runs trust-based routing algorithms (i.e., θ(n)e =
∑

C(n)∈Re
Pr[C(n)|ui]).

This value of θ(n)e is kept as a constant in the design space H(O,R
|O|
e). As a result, in the

process of solving the optimization problem described in Eq. (3.7), for a given n, no matter

which routers C(n+1), C(n+2), · · · , C(|O|) have been readily used in the positions (n+ 1), (n+

2), · · · , (|O|), the summarized probability that ui uses to select routers C(n) ∈ Re cannot be

changed. That is,
∑

C(n)∈Re
Pr[C(n)|ui, C(n+)] should be continuously equal to the constant

θ(n)e that is pre-determined by trust-based routing algorithms.

Theorem 3.6 gives the solution of the general optimization problem described in Eq. (3.7). The

proof of this theorem is presented at Appendix A.2.

Theorem 3.6. Subject to θ(n)e, 1 ≤ n ≤ |O|, the expectation E(Y [ui|CO]) that inference

attackers have to deanonymize the user ui by observing a sub sequence CO of the onion circuit

Chapter 3. Trust Degree based Onion Routing 38

can be minimized to:

min E(Y) =

|O|∏
n=1

θ2
(n)e

|O|∏
n=1

θ(n)e +
∑

CO∈R
|O|
e

∑
u∈U\ui

Pr[CO|u]

.

Since the selection order makes no effects to the solution of the optimization problem, we simply

give the optimal distribution for ∀(n) ∈ O,Pr[C(n)|ui, C(n+)] by considering ui selects routers

CO in an descending order (i.e., selectingC(n) in the order from n = |O| to n = 1). In this case,

when we consider Pr[C(n)|ui, C(n+)], the routers C(n+1), C(n+2), · · · , C(|O|) that are used in

the positions (n+ 1), (n+ 2), · · · , (|O|) are readily known (i.e., C(n+) is a known value). The

optimal distribution of Pr[C(n)|ui, C(n+)] for each (n) ∈ O is as below.

Given
∑

C(n)∈Re
Pr[C(n)|ui, C(n+)] = θ(n)e,

for ∀C(n) ∈ Re:

Pr[C(n)|ui, C(n+)] ∝
∑

C(n−)∈Rn−1
e

∑
u∈U\ui

|O|∏
n=1

Pr[C(n)|u,C(n+)].

Theorem 3.6 describes the optimal probability distributions for selecting the sequence of routers

CO from R
|O|
e . By implementing Theorem 3.6 to all the {R1, R2, · · · , Rν}|O| respectively, ui

can have an optimal distribution for selecting the sequence of routers CO over the whole set

R|O|.

Theorem 3.6 derives an optimal routing algorithm. This algorithm does not make any tradeoffs

between the capability against inference attacks and the capability against attackers’ routers. It

can be embedded into existing trust-based routing algorithms to further enhance the anonymity

protection.

Steps for the use of the optimal multi hops router selection algorithm: By using Theorem

3.6, users can apply the optimal multi hops router selection strategy to existing trust-based rout-

ing algorithms with four steps:

Step 1: The user ui can first divide the set of routers R into several mutually disjoint sub sets

Res according to different trust level tes, such as R = {R1, R2, . . . , Rν}. Given the set of

circuit positions O observed by inference attackers, ui can choose R|O|e ∈ {R1, R2, . . . , Rν}|O|,
where each Re ∈ R|O|e contains routers with the same trust level te from ui’s point of view (i.e.,

for each r ∈ Re, t(ui, r) = te).

Step 2: The user ui determines θ(n)e for any (n) andRe ∈ R|O|e according to trust-based routing

algorithms.

Chapter 3. Trust Degree based Onion Routing 39

Step 3: For each R|O|e , ui finds the optimal distribution of Pr[CO|ui] using Theorem 3.6.

Step 4: After having the optimal distribution ofPr[C`|ui] for all theR|O|e ∈ {R1, R2, . . . , Rν}|O|,
ui can obtain the optimal distribution of Pr[CO|ui] for {R1, R2, . . . , Rν}|O| by concatenating

the optimal distribution of Pr[CO|ui] for all the R|O|e ∈ {R1, R2, . . . , Rν}|O|.

Using these steps, ui can minimize the expectation of being deanonymized by the inference

attackers who can observe the set of positions O in onion circuit. To use our algorithm, the user

ui is required to have the knowledge of which positions can be observed by attackers (i.e., the

set O), as well as a priori distributions that other users have to select routers for these positions

in their onion circuits (i.e., Pr[C(n)|u,C(n+)] for (n) ∈ O and u ∈ U \ ui).

3.2.2.3 Algorithm Limitation

We use the optimal solution described in Theorem 4.1 and Theorem 3.6 as a proof of concept

routing algorithm to show the effectiveness of trust degree based routing algorithm in theory,

although we acknowledge this algorithm contains several limitations in practice. In this sec-

tion, we describe these limitations and discuss possible solutions to work around them. This

discussion gives a perspective of practical algorithms in the future.

Large requirements of a priori knowledge: The user ui who selects routers using our algorithm is

required to have the knowledge of the hypergraphH(O,R
|O|
e). This knowledge is two-fold. One

is the set O and the other is Pr[C(n)|u,C(n+)]s for (n) ∈ O, u ∈ U \ui. We note that inference

attackers are also required to have the knowledge of Pr[C(n)|u,C(n+)]s. As these inference

attackers are deemed to exist, the users who have the same knowledge are certainly existing as

well. In addition to Pr[C(n)|u,C(n+)]s, these users also need to know which positions of onion

circuits can be observed by attackers (i.e., the set O). This requirement is practical and depends

on how users construct onion circuits according to trust. For example, if users select routers with

high level trust for all the positions in their onion circuits, the set O is likely to only contain the

last position (i.e., O = {`}). However, if users adopt the downhill algorithm for router selection

and the trust thresholds after the k-th position is low enough, O could contain the last `− k+ 1

positions with a high probability (i.e., O = {k, k+ 1, · · · , `}). Due to the large requirements of

a priori knowledge about the onion routing network, the users who can benefit from our optimal

solution could be very few (i.e., the number of users who can apply Theorem 4.1 and Theorem

3.6 is very small). They are usually the government users or security officers. Compared with

normal users, these favored users could be highly capable of collecting the information about

other users and require stronger anonymity protection.

Deadlock problem: We design our algorithm by investigating a user ui in the context of a popu-

lation of other users whose router selection probabilities are already known. This consideration

Chapter 3. Trust Degree based Onion Routing 40

implicitly assumes that other users’ router selection probabilities are stable. However, this as-

sumption does not hold if there are more than one user who adopts our algorithm in the network.

For example, consider two users ui and u′i who could select the router Ck for the k-th position of

their circuits using our algorithm. The probability Pr[Ck|ui] that ui uses to select Ck is deter-

mined according to the probability Pr[Ck|u′i] that u′i uses to select Ck, while the Pr[Ck|u′i] on

the other hand is calculated based on Pr[Ck|ui]. Therefore, a deadlock occurs. To work around

this issue, we suggest two possible solutions. First, each user ui who adopts our algorithm can

initiate Pr[Ck|ui] by assuming Pr[Ck|u]s for u ∈ U \ ui are calculated using trust-based algo-

rithms at first, and then update Pr[Ck|ui] periodically afterwards. When ui updates Pr[Ck|ui],
he is required to know the Pr[Ck|u]s of the users uwho also adopt our algorithm in current time

period. This can be achieved by sharing the Pr[Ck|u]s among all the users u who adopt our al-

gorithm in each period. By this way, all the users who adopt our algorithm can work together to

play a race condition game, and their router selection probabilities approximate to the optimal

values as time passing. Second, we can adjust our algorithm to let user ui select routers accord-

ing to other users’ trust rather than other users’ selection probabilities. For example, Theorem

4.1 can use Pr[Ck|ui] ∝
∑

u∈U\ui t(u,Ck) to replace Pr[Ck|ui] ∝
∑

u∈U\ui Pr[Ck|u]. This

method could cause the optimal solution degenerating to a near-optimal solution.

Impacts on other users: When the user ui adopts our algorithm, he could reduce the probability

of selecting some routers. Consider the probability Pr[Ck|ui] that ui uses to select the router

Ck is reduced, the other users who also trust and select Ck will become more likely to be

guessed throughCk. We argue this impact in two aspects. First, the government users or security

officers who have the knowledge of H(O,R
|O|
e) can directly adopt our algorithm to avoid this

impact. Second, since the users who can run our algorithm in the network are few, the selection

probability reduction of a particular router is usually small and therefore makes a little impact.

Moreover, compared with the users who can adopt our algorithm (they are usually government

users or security officers), the normal users require relatively weak anonymity protection. As

a result, although these normal users cannot avoid this impact using our algorithm, they could

tolerate such a little impact.

Although our optimal algorithm suffers from the three aforementioned limitations, we still

choose it to investigate the effectiveness of trust degree in protecting anonymity because: 1),

as a proof of concept routing algorithm, it provides the upper bound of trust degree’s effective-

ness in protecting anonymity; 2), these limitations can be worked around or only make tolerable

impacts.

Chapter 3. Trust Degree based Onion Routing 41

3.3 Investigating the Effectiveness of Trust Degree

In this section, we investigate the effectiveness of trust degree in resisting inference attacks using

two real-world social networking datasets from [1]. We show this effectiveness by comparing

E(Y) between a raw routing algorithm with and without considering trust degree. The raw

algorithm with considering trust degree represents the algorithm embedded with our optimal

solution (see Theorem 4.1 and Theorem 3.6), while the raw algorithm without considering trust

degree is the algorithm itself. In this investigation, we consider two raw algorithms. One is the

traditional trust-based onion routing algorithm that is proposed to defeat correlation-like attacks

by [12, 14], and the other is the downhill algorithm that is proposed to mitigate inference attacks

by [14].

The organization of this section is as follows. We first describe the two real-world datasets that

we use for our investigation in Section 3.3.1. We then investigate trust degree’s effectiveness

in enhancing the traditional trust-based routing algorithm and the downhill algorithm in Section

3.3.2 and 3.3.3, respectively.

3.3.1 Datasets

We employ two public social networking datasets [1] for our investigation. The authors of these

two datasets crawled the New Orleans regional network in Facebook from December 29th, 2008

to January 3rd, 2009. One dataset contains a friendship graph and the other is an interaction

graph. In a friendship graph, a directed edge represents a person is recorded in another person’s

friend list in Facebook. While in an interaction graph, if there is a directed edge, beside that

a person must be another person’s friend, these two people also need to have direct commu-

nications through social medias (e.g., post walls in Facebook). Recent studies [1, 125] argued

that the interaction graph can better represent the trust among human beings than the friendship

graph in the real world. However, to investigate the effectiveness of trust degree in diverse trust

settings, we conduct our evaluation using both of the two graphs.

In these two datasets, we regard the start point of each directed edge as a user and the end point

of the edge as a volunteer who deploys an onion router. We therefore map the friendship graph

or the interaction graph to a trust graph G = (U
⋃
R,U × R), where U is the set of users and

R is the set of routers (or the set of routers’ owners). Note that, a person can be a user and a

router’s owner simultaneously (i.e., U
⋂
R 6= ∅). As discussed in Section 3.1.2, we consider

two distinct levels of trust in our evaluation (i.e., ν = 2). In particular, for ∀(u, r) ∈ U × R, if

the edge (u, r) exists in the dataset, we consider the user u trusts the router r (i.e., t(u, r) = 1).

Otherwise, we regard the user u distrusts the router r (i.e., t(u, r) = 0).

Chapter 3. Trust Degree based Onion Routing 42

We exclude the users who trust only one router from our evaluation, because trust-based routing

algorithms cannot benefit from trust degree for these users. Table 3.2 summarizes basic statistics

of our evaluated datasets which do not include the users who trust only one router.

TABLE 3.2: The basic statistics of the two datasets [1].

Dataset # of users # of routers # of edges

Friendship graph 53, 609 63, 406 1, 539, 193

Interaction graph 30, 988 37, 467 262, 684

3.3.2 Trust-based Algorithm benefits by incorporating Trust Degree

In this section, we investigate the effectiveness of trust degree by embedding our optimal so-

lution into the traditional trust-based onion routing algorithm. This algorithm is proposed by

[12, 14] and can be used to construct trust-based onion circuits to defeat correlation-like attacks.

In our investigation, we consider each user in the real-world social networking datasets (listed

in Table 3.2) as ui one by one. ui is the user in the context of a population of other users whose

router selection distributions are known by ui in advance. We show the effectiveness of trust

degree by comparing E(Y [ui|CO]) between the traditional trust-based onion routing algorithm

and this algorithm embedded with our optimal solution. A smaller E(Y [ui|CO]) in a particular

algorithm indicates this algorithm is more effective in resisting inference attacks. For the ease

of reference, we call the traditional trust-based onion routing algorithm as trust-based algorithm

in the remainders of this section.

Given a user ui, the set of routers R can be divided into two disjoint sub sets R1 and R2 ac-

cording to the two distinct trust levels t1 = 1 and t2 = 0. ∀r ∈ R1, t(ui, r) = t1 = 1 while

∀r ∈ R2, t(ui, r) = t2 = 0. Using the trust-based algorithm, the user ui can select the routers

from R1 uniformly at random but cannot use the routers from R2 in any positions of his onion

circuits [12, 14]. For this reason, ui has the same probability 1/|R1| for selecting each router

from R1.

When embedding our optimal solution (see Theorem 4.1 and Theorem 3.6) into the trust-based

algorithm, we have θk1 = 1 and θk2 = 0 where k ∈ O. Note that, as our optimal solution

enables ui to select routers according to other users’ router selection distributions (i.e., Pr[CO|u]

for ∀u ∈ U \ ui), we consider other users employ the trust-based algorithm for their router

selections.

Figure 3.4 illustrates the distributions of E(Y [ui|CO]) when ui uses trust-based algorithm

(shown in y-axis) and this algorithm embedded with our optimal solution (shown in x-axis).

Each point in the figures represents a user that we consider as ui in the datasets. If a point is

Chapter 3. Trust Degree based Onion Routing 43

located at the left-top side of the red diagonal line, it indicates this ui’s anonymity can be better

protected against inference attacks by taking advantage of our optimal solution. It can be seen

in Figure 3.4, all the points are located at the left-top side of the red diagonal lines regardless

how many positions can be observed by inference attackers (we consider |O| = 1, 2, 3 in our

investigation).

We measure trust degree’s effectiveness in protecting anonymity in terms of ∆E, which can

be calculated by using the E(Y [ui|CO]) in trust-based algorithm to divide the E(Y [ui|CO]) in

trust-based algorithm embedded with our optimal solution.

∆E =
E(Y [ui|CO]) in trust based algorithm

E(Y [ui|CO]) in trust degree based solution
. (3.8)

∆E > 1 indicates the trust-based algorithm that takes advantage of trust degree can better

protect anonymity against inference attacks than the trust-based algorithm without considering

trust degree. A larger ∆E means more effectiveness of trust degree.

As shown in Table 3.3, trust degree leads all the users to have smaller, or at least the same,

E(Y [ui|CO]) compared with the trust-based algorithm which does not take advantage of trust

degree (i.e., 100% users have ∆E ≥ 1). Moreover, for more than 99.6% users, trust degree

can help them reduce E(Y [ui|CO]) (i.e., more than 99.6% users have ∆E > 1). The largest

reduction is up to 340.6 times (i.e., max(∆E) = 340.6). Our results confirm that trust-based

algorithm can benefit a lot from trust degree in resisting inference attacks under real-world

settings.

TABLE 3.3: The maximum ∆E and the percentage of users who meet a particular condition
of ∆E in each graph.

Datasets and |O| max ∆E ∆E ≥ 1 ∆E > 1 ∆E > 2 ∆E > 10

Friendship graph, |O| = 1 31.1 100% 99.6% 37.4% 0.4%

Friendship graph, |O| = 2 340.6 100% 100% 85.4% 17.1%

Friendship graph, |O| = 3 186.4 100% 100% 85.9% 7.5%

Interaction graph, |O| = 1 15.2 100% 99.8% 35.5% 0.8%

Interaction graph, |O| = 2 61.8 100% 100% 77.7% 5.7%

Interaction graph, |O| = 3 33.6 100% 100% 78.1% 0.8%

3.3.3 Downhill Algorithm benefits by incorporating Trust Degree

In this section, we investigate the effectiveness of trust degree by embedding our optimal solu-

tion into the downhill algorithm. The downhill algorithm is proposed by [14] and can be used to

mitigate inference attacks by sacrificing the capability of evading attackers’ routers. The same

as we have done in Section 3.3.2, we consider all the users in the two datasets as to be ui one

Chapter 3. Trust Degree based Onion Routing 44

by one. We compare E(Y [ui|CO]) among the trust-based algorithm, the downhill algorithm

and the downhill algorithm embedded with our optimal solution. A smaller E(Y [ui|CO]) in a

particular algorithm means this algorithm can better protect anonymity against inference attacks.

Unlike trust-based algorithm which limits ui to only select the routers ui trusts (i.e., ui has the

probability to select r if and only if t(ui, r) = t1 = 1), the downhill algorithm enables ui to se-

lect routers uniformly at random from sets with a decreasing trust threshold along onion circuits

[14]. Let t(n) be the trust threshold used in the position (n) ∈ O of ui’s onion circuits, where

(n) represents the n-th element in the observed position set O. Using the downhill algorithm,

we have t(n) ≤ t(n′) if the position (n′) is closer to ui than the position (n) (i.e., (n′) < (n)).

Since we consider only two distinct trust levels in our evaluation (i.e., t1 = 1 and t2 = 0), ui
uses the probability 1/|R1| to select routers from R1 for the position (n) ∈ O if t(n) = 1, and

uses the probability 1/|R| to select routers from R = {R1, R2} for the position (n) ∈ O if

t(n) = 0.

When embedding our optimal solution (see Theorem 4.1 and Theorem 3.6) into the downhill

algorithm, we have θ(n)1 = 1, θ(n)2 = 0 for the position with threshold t(n) = 1, and θ(n)1 =

|R1|/|R|, θ(n)2 = |R2|/|R| for the position with threshold t(n) = 0. Where R1 is the set of

routers with ∀r ∈ R1, t(ui, r) = t1 = 1 and R2 is the set of routers with ∀r ∈ R2, t(ui, r) =

t2 = 0.

In this evaluation, we consider three positions of onion circuits can be observed by inference

attackers (i.e., |O| = 3). According to the number of observed positions using trust threshold

t(n) = 1, we have two different cases in our evaluation. Table 3.4 lists these two cases. The case

¬ has only one observed position with t(n) = 1 while the case has two observed positions

with t(n) = 1.

TABLE 3.4: The two cases for the three observed positions.

Position in O (1) (2) (3)

Thresholds in Case ¬ t(1) = 1 t(2) = 0 t(3) = 0

Thresholds in Case t(1) = 1 t(2) = 1 t(3) = 0

Figure 3.5 shows the E(Y [ui|CO]) in the downhill algorithm embedded with our optimal so-

lution, the downhill algorithm and trust-based algorithm for each ui in the two datasets listed

in Table 3.2. It can be seen, although the downhill algorithm can better protect anonymity a-

gainst inference attacks than trust-based algorithm, our optimal solution can be embedded into

the downhill algorithm to further improve the effectiveness of resisting inference attacks. Unlike

the downhill algorithm that sacrifices the capability against attackers’ routers to mitigate infer-

ence attacks, our optimal solution makes no tradeoffs because it takes advantage of trust degree

among equally trusted routers.

Chapter 3. Trust Degree based Onion Routing 45

To sum up, we have successfully demonstrated that trust degree is very effective in resisting

inference attacks and can be used to further enhance the protection of anonymity in trust-based

onion routing under real-world settings.

Chapter 3. Trust Degree based Onion Routing 46

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(a) One position (i.e., |O| = 1) observed by inference at-
tackers in the friendship graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(b) Two positions (i.e., |O| = 2) observed by inference
attackers in the friendship graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(c) Three positions (i.e., |O| = 3) observed by inference
attackers in the friendship graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(d) Single position (i.e., |O| = 1) observed by inference
attackers in the interaction graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(e) Two positions (i.e., |O| = 2) observed by inference
attackers in the interaction graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Trust−based + Trust Degree

T
ru

st
−

ba
se

d

(f) Three positions (i.e., |O| = 3) observed by inference
attackers in the interaction graph.

FIGURE 3.4: The comparison of E(Y [ui|CO]) between trust-based algorithm and this algo-
rithm embedded with our optimal solution in the two real-world social networking datasets [1].
Each point represents a ui. y-axis indicates the E(Y [ui|CO]) when ui adopts the trust-based
algorithm while x-axis is the E(Y [ui|CO]) when ui runs the trust-based algorithm embedded
with our optimal solution. A smaller E(Y [ui|CO]) means a better protection of anonymity

against inference attacks.

Chapter 3. Trust Degree based Onion Routing 47

0
0.5

1

0

0.5

1
0

0.5

1

Downhill + Trust DegreeDownhill

T
ru

st
−

ba
se

d

(a) Case ¬ in the friendship graph.

0
0.5

1

0

0.5

1
0

0.5

1

Downhill + Trust DegreeDownhill

T
ru

st
−

ba
se

d

(b) Case in the friendship graph.

0
0.5

1

0

0.5

1
0

0.5

1

Downhill + Trust DegreeDownhill

T
ru

st
−

ba
se

d

(c) Case ¬ in the interaction graph.

0
0.5

1

0

0.5

1
0

0.5

1

Downhill + Trust DegreeDownhill

T
ru

st
−

ba
se

d

(d) Case in the interaction graph.

FIGURE 3.5: The comparison of E(Y [ui|CO]) among the trust-based algorithm, the downhill
algorithm and the downhill algorithm embedded with our optimal solution in the two real-world
social networking datasets [1]. Each point represents a ui. x-axis indicates the E(Y [ui|CO])
using the downhill algorithm embedded with our optimal solution, y-axis is the E(Y [ui|CO])
using the downhill algorithm and z-axis is the E(Y [ui|CO]) using the trust-based algorithm. A

smaller E(Y [ui|CO]) indicates a better protection of anonymity against inference attacks.

Chapter 4

Trust Graph based Onion Routing

In contrast to trust degree based onion routing, we also propose a more complete solution, called

trust graph based onion routing, to further harden existing trust-based onion routing systems.

This new trust graph based routing algorithm can address two key limitations that state-of-the-

art trust-based onion routing protocols suffer from in protecting anonymity. One is the incorrect

trust assignments and the other is biased trust distributions. To the best of our knowledge, no

prior research has provided solutions that enhance the correctness of trust assignments in trust-

based onion routing. Moreover, although several inference attack countermeasures have been

proposed, the root cause of this attack has not been addressed. For example, to thwart inference

attacks, a downhill algorithm [14] employs a decreasing trust threshold along onion circuits.

Even our previous trust degree based algorithm takes only other users’ trust into consideration.

These counters cannot reduce the bias of a priori trust distributions, hence missing the opportu-

nity to further enhance the protection against inference attacks.

We call our new algorithm SGor, a novel trust graph based onion routing that mitigates key lim-

itations in the use of trust for protecting anonymity. SGor is designed based on two key insights.

First, if people can assign trust to others according to their own knowledge independently, the

trust from a group of honest people is more likely to be correct than the trust from a single hon-

est person. Based on this observation, SGor aggregates group trust from mutual friends. The

group trust enables users to verify the correctness of their trust assignments by consulting their

friends’ independent opinions. Second, although users have no immediate knowledge for their

unfamiliar routers, these routers are not necessarily controlled by adversaries. This observation

motivates us to propose an adaptive trust propagation algorithm. By guiding users to discover

more honest routers even if they have no immediate knowledge about these routers, the proposed

algorithm can derive global trust from a trust graph. The global trust leads honest routers to be

trusted and selected by more users and thus impedes inference attacks by alleviating the bias of

trust distributions.

48

Chapter 4. Trust Graph based Onion Routing 49

Moreover, SGor is designed to run in a fully decentralized manner. This design benefits SGor in

two aspects. First, our decentralized algorithms do not require users to expose their local trust

relationships to other third parties (e.g., a centralized server). Since inference attacks can only

be successfully launched with the knowledge of a priori trust relationships, this design assists

SGor to evade inference attacks by mitigating the leakage of a priori trust relationships. Second,

the removal of a centralized server can help SGor adapt efficiently to a large-scale trust graph

with low costs.

To sum up, our contributions in this chapter are three-fold:

1. We propose SGor, a new onion routing protocol that protects anonymity using a trust

graph.

2. We design novel decentralized algorithms to derive group trust and global trust from the

trust graph. The group trust can be used to enhance the correctness of trust assignments,

and the global trust is effective in reducing the bias of trust distributons. Using these new

trust features, SGor mitigates key limitations in the use of trust for protecting anonymity.

3. We evaluate SGor with extensive simulation-based experiments using real-world social

trust datasets. The experimental results confirm that SGor can make an effective use of

the trust graph to protect anonymity but introduce only a few overheads.

The remainder of this chapter is organized as follows. We first present a high level overview of

SGor in Section 4.1. After elaborating on the design of SGor in Section 4.2, we evaluate it using

real-world social trust datasets in Section 4.3.

For the ease of reference, we summarize important notations used by this chapter in Table 4.1.

4.1 SGor Overview

In this section, we describe SGor in a high level. We first set design goals for SGor in Section

4.1.1. We then list basic assumptions in Section 4.1.2. After elaborating on threat model and

trust model in Section 4.1.3 and Section 4.1.4 respectively, we present an overview of SGor with

its architecture and major components in Section 4.1.5.

4.1.1 Design Goals

To effectively protect anonymity using trust, SGor is expected to meet the following four key

requirements:

Chapter 4. Trust Graph based Onion Routing 50

TABLE 4.1: Important Notations in Chapter 4.

Notation Definition

G A trust graph. G = (V,E)

V , E V is a set of nodes in G, E is a set of edges in G
Φij The group trust that a person vi has in another person vj
Φh A minimum group trust threshold
tij A random token the person vi generates and sends to his friend vj
Cij The number of routers to which vi can propagate trust through the friend vj
Li The maximum number of hops to which vi can propagate trust
Ri The number of routers a person vi expects to collect through trust propagation
Tij The number of vi’s tickets that the person vj receives

P (Aj |Φij) The probability that vj is adversary given vi has group trust Φij for vj
rj The number of routers that the person vj deploys in SGor

P (Aj |Li) The probability that vj is adversary given vi propagates trust to vj through Li hops
λ P (Φij |Aj) follows a Poisson distribution with a parameter λ
β P (Aj) is independent and identically distributed with a parameter β ∈ (0, 1)

Trust Graph: To evade malicious routers and thwart correlation-like attacks, SGor is required

to have the capability of constructing onion circuits using trust from a trust graph.

Group Trust: To verify the correctness of trust assignments, SGor is required to have the ca-

pability of aggregating group trust from mutual friends.

Global Trust: To reduce the bias of trust distributions and hence defeat inference attacks, SGor

is required to have the capability of deriving global trust from a trust graph.

Decentralization: To prevent users’ trust relationships from leaking to any third parties and

adapt efficiently to a large scale trust graph, SGor is required to have a fully decentralized

architecture.

These requirements work together to distinguish SGor from past works in the literature [11–15].

4.1.2 Basic Assumptions

We make three basic assumptions for the design of SGor.

1. Users and routers’ owners in an onion routing network are also members of a trust net-

work.

2. Users and routers’ owners can assign trust to others according to their own knowledge

independently.

Chapter 4. Trust Graph based Onion Routing 51

3. Users and routers’ owners can run user-agents in their own machines (e.g., in-browser

add-ons, desktop or mobile phone installs) to support SGor’s decentralized router selec-

tion process in a fully automatic manner.

Assumption 1 defines the potential population who can use SGor. For example, if we derive a

trust graph from an online social network and apply it to SGor, the members of this online social

network can use SGor to protect their anonymity when they visit Internet services. As reported

by SocialBakers (www.socialbakers.com) in July 2012, Facebook, the most popular online so-

cial network, has more than 870 million members. Moreover, there are more than 2.2 billion In-

ternet users in the world according to a report from InternetWorldStats (www.internetworldstats.com)

in December 2011. Apparently, if SGor adopts Facebook as its trust graph, at least 40% Internet

users who have accounts in Facebook can use SGor when they access Internet through onion

routing.

With assumption 2, SGor is built upon a trust graph with independent trust assignments. If

users can assign trust to others independently, they can avoid the influence of incorrect trust

over a group of people. Otherwise, the group trust could have weak capability of verifying the

correctness of trust assignments. For example, if Bob assigns trust to Pete due to the reason

that Bob’s friend Alice has already trusted Pete (i.e., Bob’s trust on Pete is correlated with

Alice), Alice cannot rely on the group trust from Bob to verify the correctness of her trust

in Pete, because Bob’s trust is inherited from Alice. In real world, the friendship graph of an

online social network is more likely to have correlated trust assignments, because people usually

make friends by consulting their old friends’ friendship circles. Unlike that, the interaction

graph [1, 125] admits trust assignments if and only if users have direct communications, hence

being more independent. For this reason, we evaluate SGor by adopting the interaction graph

in Section 4.3. We acknowledge that, even we adopt interaction graph, it is still very difficult

to have completely independent trust assignments, since collusion attacks are popular in many

social context and their defenses are also well studied. For this reason, we could adopt some

typical solutions to address this problem, although it is out of the scope of this thesis.

With assumption 3, users can select onion routers from others and onion routers’ owners can

provide onion routers to others in a fully decentralized and automatic manner. For example, if

SGor adopts the interaction graph of Facebook as its trust graph, we can develop a Facebook

App (developers.facebook.com) for SGor. All the users and routers’ owners run this App in their

own machines. The running Apps communicate with each others in the Internet to accomplish

the decentralized router selection process automatically. The communication traffic is encrypted

to prevent potential leakage.

http://www.socialbakers.com/countries/continents
http://www.internetworldstats.com/stats.htm
http://developers.facebook.com

Chapter 4. Trust Graph based Onion Routing 52

4.1.3 Threat Model

To compromise users’ anonymity protected by (trust-based) onion routing networks, we consid-

er adversaries have the following attacking capabilities:

The capability of compromising onion routers: First, we assume adversaries can arbitrarily

deploy their own malicious routers to existing onion routing networks. This assumption holds

in real-world onion routing networks such as Tor [9], because these networks are open to accept

any volunteer’s routers without checking their identities. Although some networks have runtime

monitoring systems to exclude malicious routers, these systems are usually based on the uptime

of normally behaving. As a result, smart adversaries can easily bypass these monitoring systems

by operating their routers in normal behaviors for a long period. Second, we assume adversaries

can exploit hacking techniques to compromise some honest routers which contain security vul-

nerabilities. This assumption adapts to advanced adversaries who master powerful computer

network skills. Third, we simply assume that Internet services visited by onion routing users

are already controlled by adversaries. This assumption allows us to design SGor by considering

the worst scenario, because users can visit any Internet servers through onion routing and it is

nearly impossible to confirm which servers are compromised and which are not.

The capability of locally observing onion routers: We assume that adversaries can observe

onion routers in users’ onion circuits. This capability is required by the adversaries who perform

inference attacks. However, since existing onion routing protocols are not designed to resist

global adversaries who can monitor the whole communication infrastructure of onion routing

networks (e.g., ISP-level or state-level adversaries) [7, 9], we also assume that adversaries can

only employ compromised onion routers to observe adjacent routers in onion circuits or use

compromised Internet servers to observe the last router in onion circuits.

The capability of correlating malicious onion routers: We assume that adversaries can corre-

late the onion routers and Internet servers under their control in the same onion circuit (i.e., the

capability of performing correlation-like attacks). This assumption holds in real-world attacking

scenarios, because several prior studies have demonstrated that various traffic watermarking and

analysis techniques are effective in correlating two compromised endpoints (e.g., onion routers

or Internet servers) in the same onion circuit [24–26, 126–128]. Figure 4.1(a) illustrates an ex-

ample of the correlation-like attack against onion routing networks. In this example, Alice is a

user who has no effective method to verify router identities. Pete is an adversary who control

onion routers. If Alice selects Pete’s routers as the first router in her onion circuit and visits an

Internet server under Pete’s control, Pete can correlate Alice and the server Alice is visiting.

The capability of attracting incorrect trust: We assume that adversaries can exploit user-

s’ inaccurate knowledge to attract incorrect trust assignments. Since trust-based onion routing

computes trust according to users’ own knowledge about routers’ owners, if users mistakenly

Chapter 4. Trust Graph based Onion Routing 53

trust an adversary, they could trust all the routers controlled by this adversary. Figure 4.1(b)

shows an example of an incorrect trust assignment in trust-based onion routing. If Alice makes

a mistake to trust an adversary Pete, she could select Pete’s routers in her onion circuit. More-

over, although we agree that adversaries can easily deploy a large number of fake accounts in

trust graph (i.e., Sybil attack [45]), it is very difficult for them to gain incorrect trust from a

large number of honest humans. Previous social network based Sybil defences also adopt this

assumption because this assumption widely holds in real-world social networks [44].

The capability of collecting a priori trust relationships: We assume that adversaries can

collect a priori trust relationships of a trust graph. For example, if we apply an online social

network as a trust graph to SGor, adversaries could employ a crawler to run a brute scan of this

social network. This approach can reveal the local trust relationships of users who open their

private information to the public [123, 129]. To obtain the trust relationships of users who could

only expose their private information to their friends, adversaries could employ socialbots [130]

to make friends with these users, or estimate these users’ relationships using the leakage of their

friends’ trust relationships (i.e., link privacy leakage [131]). Using a priori trust relationships,

adversaries can perform inference attacks and hence largely reduce users’ anonymity protected

by trust-based onion routing. Figure 4.1(c) demonstrates an example of inference attack against

trust-based onion routing. In this demonstration, Pete is an adversary who knows a priori trust

relationships. If Pete observes Ken’s routers in an onion circuit, he can guess Alice as the initiate

user of this circuit because Ken is only trusted by Alice. However, Ken’s routers are honest in

fact. Other users do not trust Ken just because they have no knowledge about Ken. It is not due

to that they confirm Ken is an adversary.

Alice

Web ServerRouters

PetePete Pete

or

correlated

(a) Threat model for correlation-like attack.

Web Server

Routers

KenBob

Trust

Alice

Alice

Pete

Incorrect trust

(b) Threat model for incorrect trust.

Alice
Web ServerRouters

Pete
Bob

Trust

Other users

Ken

Observe

Alice!

No trust in Ken due to

no direct knowledge

(c) Threat model for inference attack.

FIGURE 4.1: Threat models.

Chapter 4. Trust Graph based Onion Routing 54

4.1.4 Trust Model

We model SGor’s trust graph as a directed graph G = (V,E). V is the set of nodes in G.

A node vi ∈ V represents a person in the trust graph. E is the set of edges in G. An edge

vi → vj = eij ∈ E indicates that the person vi ∈ V assign local trust to another person vj ∈ V
in the trust graph (i.e., a trust edge represents a local trust assignment). |V | and |E| are the

numbers of nodes and edges in G, respectively. As discussed in [12, 14], users can only assign

coarse level trust to others. SGor therefore only considers two levels of local trust assignments,

trust and distrust. If vi → vj exists, vi trusts vj . Otherwise, vi distrusts vj . Though this binary

trust definition is enough for our design, we note that SGor can be extended to a continuous trust

definition (e.g., trust value is a real number between 0 and 1). We will investigate this extension

in our future work. Moreover, we consider the trust is positively transitive [132]. That means a

friend of Alice’s friend is still a friend of Alice.

We can sample SGor’s trust graph G using any real-world trust networks. For example, we can

derive a social trust graph from an online social network or adopt a reputation-based trust graph

from an online community. We can also design an open community that facilitates users and

routers’ owners to evaluate the trustworthiness of each other independently, hence generating a

customized trust graph to support SGor. In our research, we mainly focus on the design of SGor

using online social networks because this choice makes SGor easy to be applied in the Internet.

In the literature, there are two acknowledged models that can be used to sample the trust graph

G from an online social network. One is the friendship model and the other is the interaction

model [1, 125]. They have different capability to express the trust that already exists in online

social networks. We take an example from Facebook to show the difference. We first assume

Alice and Ken are two persons with accounts in Facebook. If Alice attempts to make a friend

with Ken, she sends a friend request to Ken. If Ken confirms this request, they are shown in

each other’s friendship list. The friendship model take this kind of relationship as trust. The

interaction model is built on top of the friendship model. If Alice has local trust with Ken in

an interaction model, only being a friend of Ken is not enough. Alice also needs bi-directional

communications with Ken through online social networks (e.g., posting messages with each

other in walls or tagging each other in photos).

SGor employs the interaction graph to sample G because of two reasons. First, the local trust

in the interaction graph is more independent. A person may be easy to make a new friend who

is already a friend of his old friends, but they are less likely to have bi-directional communica-

tions with each other if they are not acquaintances. Second, recent research has advocated that

interaction graphs can better represent real world trust than friendship graphs [1, 125].

For the ease of description in the following sections, although we do not use the friendship graph

to sample G, we also regard vj as vi’s friend if vi assigns local trust to vj (i.e., vi → vj exists).

Chapter 4. Trust Graph based Onion Routing 55

4.1.5 SGor Architecture and Major Components

In this section, we gives a high level overview to introduce SGor’s architecture and major com-

ponents.

4.1.5.1 SGor Architecture

SGor provides trust graph based onion routing by “overlaying” a trust network on top of the

onion routing infrastructure. SGor has a two layered hierarchical architecture. The upper layer

is for trust graph based router selection, and the underlayer is for onion routing. To communicate

with remote Internet servers through SGor, users should first select onion routers according to

trust in the trust graph layer. They then use the selected routers to establish onion circuits in the

onion routing layer. We note that SGor is novel due to its trust graph layer. The onion routing

layer runs the same protocol as traditional onion routing networks.

In SGor, each person in the trust network layer can arbitrarily play any roles in the onion routing

layer. In particular, a person can act as onion routing user who requires onion routers from

others. This person can also operate as a router owner who provides onion routers to others.

Moreover, a person can work as both of an onion routing user and a router owner concurrently,

or play neither of the two roles in the onion routing layer. In the last case, the person merely

assists other people to propagate trust over the trust graph.

Figure 4.2 illustrates an example of the architecture of SGor. In this example, a person v1

attempts to visit a (sensitive) Internet server through SGor. People v2-v6 provide onion routers

in SGor. v7 and v8 are two adversaries. In the trust graph layer, although v1 makes a mistake

to trust the adversary v7, SGor has a chance to exclude v7 because no other v1’s friends trust v7

(i.e., no other ways can be used to verify the correctness of v1 → v7). Moreover, although v1

only has local trust in v2 and v3, SGor can propagate v1’s trust to other persons v4-v6 in the trust

graph. Through v2, v1’s trust can be propagated to v4 and v5, and further to v6. However, for

security concern, v3 cannot propagate v1’s trust to v8 because no means can be used to verify

the correctness of the local trust v3 → v8. In the onion routing layer, v1 constructs onion circuits

using onion routers derived from the trust graph layer. Since SGor calculates trust features in

the trust graph layer, onion routing users can evade all the onion routers deployed by the person

whom they do not trust (e.g., v8 has two routers in Figure 4.2. If v1 does not trust v8, he can

circumvent the two routers deployed by v8).

Chapter 4. Trust Graph based Onion Routing 56

e64=v6 -> v4

e65=v6 -> v5

v1

v2

v7

Trust Graph Layer

Web Server

Onion Routing Layer

Onion routing

user

Trust

Onion Routers

Adversaries

V1's Trust Table

V6's Trust Table

v3

v5

v4 v6

v8

v1 v7
v2

v3

v6

v8
v8

v4

v5

e12=v1 -> v2

e13=v1 -> v3

e17=v1 -> v7
Incorrect

trust

FIGURE 4.2: Two layered hierarchical architecture of SGor.

4.1.5.2 Major Components

SGor consists of three major components in its trust graph layer: trust management, trust aggre-

gation and trust propagation. They work together to meet aforementioned design requirements

for SGor (Refer to Section 4.1.1).

Trust Management: This component provides functionalities for managing local trust relation-

ships. Since SGor is designed to run without any central servers, SGor users have to manage

local trust relationships for themselves. As shown in Figure 4.2, each SGor user has a trust table

to store local trust for their friends. This design results in two advantages. First, this design does

not require any people to expose their local trust to any others, hence mitigating the leakage of

a priori trust relationships. Second, this design adapts SGor to a large scale trust graph with a

low cost in the storage. Rather than all the trust relationships in the entire trust graph, each SGor

user is only required to store trust relationships for their friends.

Trust Aggregation: This component aggregates group trust from mutual friends, hence offering

countermeasures to remove incorrect trust assignments. A person’s friend receives group trust

when this friend is also trusted by many other friends. The group trust can be used to remove

incorrect trust assignments, because people can verify the correctness of their local trust assign-

ments by consulting other friends’ independent opinions. This component has a basic function

to aggregate group trust from mutual friends. Moreover, since people could join and leave the

Chapter 4. Trust Graph based Onion Routing 57

trust network dynamically, and update their local trust assignments when their knowledge is

renewed, this component also provides an additional function to handle this dynamic behavior.

Trust Propagation: This component computes global trust by propagating local trust though

trust graph, hence leading honest routers to be trusted by more users. This component plays

the key role in reducing the bias of trust distribution and hence resisting inference attacks. We

implement an adaptive trust propagation algorithm for this component. Using this algorithm, a

person can propagate trust from the people who trust him to the other people whom he trusts.

For example, Alice trusts Bob and Bob trusts Ken. If Bob propagates the trust from Alice to

Ken, Alice could also trust Ken. Moreover, to mitigate the risk of mistakenly propagating trust

to adversaries, SGor takes a counter that adapts trust propagation capacity to group trust (i.e.,

people use group trust to limit the maximum number of people to whom they can propagate trust

through a friend). Back to the foregoing example, if Alice has a higher level group trust in Bob,

she can propagate trust through Bob to more other people. But if Alice has a lower level group

trust in Bob, she could just propagate trust through Bob to fewer, or even none, other people. By

adaptively propagating trust over the entire trust graph, people can discover more honest routers

and thus mitigate the bias of trust distributions. In return, these honest routers can be trusted and

selected by more users and become more effective in thwarting inference attacks.

4.2 SGor Design

In this section, we elaborate on the design of SGor. First, we apply an algorithm to aggregate

group trust from mutual friends in Section 4.2.1. Second, we propose an adaptive trust propaga-

tion algorithm to derive global trust from trust graph in Section 4.2.2. Based on these two new

trust features, we design a trust graph based router selection algorithm in Section 4.2.3. All our

proposed algorithms run in a fully decentralized manner. We also analyze SGor’s capability of

protecting anonymity using a probabilistic model in Section 4.2.4.

4.2.1 Group Trust

SGor employs group trust to verify the correctness of local trust assignments. In this section, we

discuss the details for aggregating group trust. We first describe the concept of robust trust path

by analyzing security concerns of trust path. We then give the definition of group trust based on

robust trust path. Afterwards, we design a decentralized algorithm to aggregate group trust on

top of a trust graph.

Chapter 4. Trust Graph based Onion Routing 58

4.2.1.1 Robust Trust Path

In trust graph G = (V,E), we consider vi has a trust path to vj if vi can reach vj through a

sequence of successive trust edges. A trust path from vi to vj implicitly indicates that vi trusts

vj , hence providing an unique way for vi to confirm that vj is not an adversary (the local trust

vi → vj is correct).

We consider that a trust path is robust if this path cannot be arbitrarily forged through a single

incorrect trust edge. However, not all the trust paths are necessarily robust. For example, if vi
assigns incorrect local trust to two adversaries vj and vk (i.e., vi → vj and vi → vk exist in G),

the adversary vk can forge unlimited number of trust paths from vi to vj because adversaries can

arbitrarily trust other adversaries. Figure 4.3 demonstrates forged trust paths. v1 has assigned

an incorrect local trust to v2 (i.e., v1 → v2 is incorrect). If v3 is also an adversary (i.e., v1 → v3

is incorrect), he can arbitrarily forge trust paths from v1 to v2. As shown in this figure, the

adversary v3 has forged 2, 3 and 4 trust paths from v1 to v2.

v1

v2 v3

v4

v1

v2 v3

v4

v5

v1

v2 v3

v4

v6

v5

2 forged
trust paths

Adversary
Honest
person

Incorrect
trust edge

Arbitrary trust edges
between adversaries

3 forged
trust paths

4 forged
trust paths

FIGURE 4.3: Examples of forged trust paths.

Here, we find that the trust paths consisting of no more than two trust edges are robust. We give

an example to explain this finding. Considering two trust paths from vi to vj , vi → vk → vj is a

robust trust path while vi → vk → vm → vj is not. The reason is that, if vk is an adversary, he

can arbitrarily trust any other adversaries like vm, hence forging an unlimited number of trust

paths like vi → vk → vm → vj . However, the adversary vk can only forge one robust trust path

vi → vk → vj from vi to vj .

Since robust trust paths cannot be arbitrarily forged by adversaries (i.e., one incorrect trust edge

can only corrupt one robust trust path), they can provide robust ways to confirm that a local trust

assignment is correct.

4.2.1.2 Group Trust Definition

Let Φij be the group trust vi has in vj . Φij can be calculated by counting up the number of

robust trust paths from vi to vj . We have Φij = 0 if the trust edge vi → vj does not exist.

Chapter 4. Trust Graph based Onion Routing 59

If vi is an honest person but vj is an adversary, Φij reflects the number of incorrect trust edges

accompanied with the incorrect trust edge vi → vj . Theorem 4.1 proves this nature.

Theorem 4.1. If vi is an honest person, vj is an adversary and Φij = N , there must exist N

incorrect trust edges in the robust trust paths from vi to vj .

Proof. We use mathematical induction for the proof.

Base case: Consider Φij = 1, vi can only have one robust trust path to vj , i.e., vi → vj .

Meanwhile, this robust trust path consists of only one trust edge vi → vj . As a result, if vj is an

adversary, we have 1 incorrect trust edge vi → vj .

Inductive step: Assuming Theorem 4.1 holds for Φij = N , we show that Theorem 4.1 also

holds for Φij = N + 1. Compared with Φij = N , vi has an additional robust trust path to the

adversary vj when Φij = N + 1. We can simply assume this additional path is vi → vk → vj .

We consider two cases for this path: (i) vk is an adversary and (ii) vk is an honest person. For

case (i), vi → vk is an additional incorrect trust edge. While for case (ii), vk → vj is incorrect

because vj is an adversary. As a result, if Φij = N indicates N incorrect trust edges in the

robust trust paths from vi to the adversary vj , Φij = N + 1 can lead to N + 1 incorrect trust

edges.

Figure 4.4 gives examples for Theorem 4.1. It can be seen that if Φ12 = 1 and v2 is an adversary,

we have only 1 incorrect trust edge, i.e., v1 → v2. However, if Φ12 = 2, 2 incorrect trust edges

are accompanied. In particular, v1 → v2 and v3 → v2 are incorrect if v3 is an honest person, or

v1 → v2 and v1 → v3 are incorrect if v3 is an adversary. Similarly, Φ12 = 3 confirms that there

are 3 incorrect trust edges.

v3v2v2

v1

v3

v1v1

v2

v1

v2 v4v3

v1

v2 v4v3

v1

v2 v4v3

Φ12=1 Φ12=2

Φ12=3 v1

v2 v4v3

Adversary Honest
person

Incorrect
trust edge

Correct
trust edge

Arbitrary trust edges
between adversaries

FIGURE 4.4: If v1 is an honest person but v2 is an adversary, the group trust Φ12 equals to the
number of incorrect trust edges in the robust trust paths from v1 to v2.

Since group trust Φij is the total number of robust trust paths from vi to vj , a larger Φij indicates

that vi can obtain more robust means to confirm that vj is not an adversary. SGor therefore use

Φij to validate the correctness of vi → vj . In the design of SGor, users can set a minimum group

Chapter 4. Trust Graph based Onion Routing 60

trust threshold Φh, and have more confidence to confirm that vi → vj is correct (i.e., vj is not

an adversary) if Φij ≥ Φh.

4.2.1.3 Group Trust Aggregation Algorithm

SGor applies a decentralized algorithm to aggregate the group trust Φij by counting the number

of vi’s friends who have vj as a mutual friend of vi. This algorithm is based on two observations.

First, if vi has a robust trust path vi → vk → vj through vk to vj , vj is a mutual friend of vi and

vk. Second, the group trust Φij is the total number of robust trust paths from vi to vj .

This group trust aggregation algorithm runs three steps in a fully decentralized manner. The

communications between any two people in the trust graph layer are assumed to be encrypted.

Step 1: At first, an initiate person generates random tokens on the fly, and maps different tokens

to different friends. The initiate person sends each token to this token’s mapped friend. Since

every token is marked by the initiate person, the receivers can confirm these tokens are initial

tokens because they are sent and marked by the same person. As shown in Figure 4.5, v1 has

trust edges to v2, v3, v4 and v5. To aggregate group trust for these friends, v1 generates and

maps random tokens t12, t13, t14 and t15 to v2, v3, v4 and v5, respectively. v1 then sends these

initial tokens to their mapped friends (i.e., sending t1x to vx, where x = 2, 3, 4, 5).

Step 2: When a person receives an initial token, he will further forward this token to his friends.

These forwarded tokens are sent and marked by different people. Receivers regard them as

second hand tokens. As shown in Figure 4.5, v2 forwards t12 to v3, while v3 and v5 forward

t13 and t15 to v4. Actually, v2, v3, v4 and v5 should forward the tokens received from v1 to all

of their friends, even if these friends are not v1’s friends. We omit this process in Figure 4.5 to

make a clear demonstration.

Step 3: When a person receives second hand tokens, he can take actions depending on whether

he has already received an initial token with the same marker of the second hand tokens. If it

is not the case, this person will discard these second hand tokens. Otherwise, he will send the

initial token and all the second hand tokens back to the initiate person who marks them. The

initiate person calculates the group trust for each of his friends by counting the number of tokens

returned from these friends. In Figure 4.5, v2, v3, v4 and v5 return 1, 2, 3 and 1 tokens to v1,

respectively. Hence, v1 obtains Φ12 = 1, Φ12 = 2, Φ13 = 3 and Φ14 = 1.

Since the proposed group trust aggregation algorithm operates in a fully decentralized manner,

there are three scenarios that a person has to start running this algorithm: (i), a fresh person

first joins SGor; (ii), a person changes local trust assignments to his friends; (iii), a person has

friends who change their local trust assignments to these friends’ friends.

Chapter 4. Trust Graph based Onion Routing 61

v1

v4 v5v3

Aggregation Algorithm Steps

v2

v1

v4 v5v3v2

v1

v4 v5v3v2

v1

v4 v5v3v2

Trust Graph

Step 1 Step 2 Step 3

Φ12=1 Φ13=2 Φ14=3 Φ15=1

T12
T13

T14

T15

T12 T13 T15

T12

T12
 T13

 T13
 T14
 T15 T15

T12 T13 T14 T15 Random tokens generated by v1

Trust

Initial
tokens

Second hand tokens

FIGURE 4.5: The Steps of Group Trust Aggregation Algorithm.

4.2.2 Global Trust

SGor employs global trust from trust graph to thwart inference attacks. We consider a person

vi has global trust in another person vj if vi has at least one trust path to vj . Using global trust,

onion routing users can trust routers even if they have no direct knowledge for these routers’

owners.

SGor derives global trust through trust propagation. Considering people vi and vj , vi has global

trust in vj if and only if vi can propagate his trust to vj through a trust path. However, if people

naively propagate trust through any trust paths without any constraints, they cannot limit the

number of adversaries who receive global trust during trust propagation. For example, if vk can

propagate vi’s trust but vk is an adversary, vk can arbitrarily propagate vi’s trust to any other

adversaries.

To address this problem, we propose an adaptive trust propagation algorithm. The key idea

is to limit the number of people to whom a person can propagate trust through a friend. The

limitation is determined by the group trust that this person has in this friend. This algorithm

defends trust propagation against adversaries in two aspects. First, even if an honest person

mistakenly propagates trust to an adversary, this adversary can only further propagate trust to

a limited number of other adversaries. Second, since a larger group trust received by a friend

indicates a lower probability that this friend is an adversary, the friend who is less likely to be

an adversary can propagate trust to more others than the friend who is more likely to be an

adversary.

We denote the trust propagation capacity Cij as the number of routers (note that one person

could deploy multiple routers) to which vi can propagate trust through the friend vj . In our

proposed adaptive trust propagation algorithm, Cij must be proportionate to Φij , such as:

Cij = d Φij∑
Φik≥Φh

Φik
·
∑

Φik≥Φh
Cike. (4.1)

Chapter 4. Trust Graph based Onion Routing 62

where, d∗e is a ceiling function. Φh is a group trust minimum threshold. SGor employs Φh to

filter out ineligible friends because they are more likely to be wrongly trusted.
∑

Φik≥Φh
Cik

is the total number of routers to which vi can propagate trust through eligible friends, while∑
Φik≥Φh

Φik is the sum of group trust that vi has in the eligible friends.

Using the adaptive trust propagation algorithm, if an adversary vk can propagate vi’s trust, he

can only propagate vi’s trust to at most Cik other adversaries.

4.2.3 Trust Graph based Router Selection

Based on group trust and global trust, SGor proposes a novel trust graph based router selection

algorithm. This algorithm has three parameters to be set in advance. One is group trust min-

imum threshold Φh. The other two are Ri and Li. The parameter Ri determines the number

of candidate routers that a person vi expects to collect through trust propagation. vi constructs

onion circuits by selecting routers uniformly at random from these Ri candidate routers. The

parameter Li limits the maximum number of hops to which vi can propagate trust.

SGor implements the trust graph based router selection algorithm using a ticket distribution

mechanism. This algorithm consists of three steps:

0

v1

v4

v5

v3

v2

Trust Graph

Φ13=2

Φ14=4

v7

v6

v9

v8

v0

v1

v4

v3 v7

v6

v9

v8

v0

Φ36=2

Φ37=2

Φ48=2

Φ49=3

Φ40=2 (I), Flooding-based
Router Discovery

v1

v4

2
v3

4

v7

v6

1
0

v9

v8

v0

1
1

1

Ticket Distribution

L1=2

Φ34=2

Group Trust
Minimum Threshold

Φh=2

v1

v4

v3
v7

v6

v9

v8

v0

v0

v9

v8

v6

v3
v6

v8
v4

v9 v0

v1

v4

v3
v7

v6

v9

v8

v0
(II), Probabilistic
Router Discovery

P(vk)=0.5

k=3,6R1=6

L1=1 L1=0

0Φ74=2

P(vk)=0.25k=0,4,8,9 P
(v

0)=1

P(v9)=1

P(v8)=1

P
(v

6
)=

1

1

1

v1 has P(vk)=1/6

k=3,6,0,4,8,9

FIGURE 4.6: An example of trust graph based router selection.

Initial Step: When a person vi (i.e., an onion routing user) attempts to construct onion circuits,

he should create Ri tickets at first. Each ticket has a time-to-live field which specifies the maxi-

mum number of hops the ticket can be transmitted. vi initializes this field to Li. Afterwards, vi
distributes these Ri tickets to vi’s friends in whom vi has group trust no smaller than Φh. The

amount of tickets that can be distributed to each eligible friend is calculated according to Eq.

(4.1), where
∑

Φik≥Φh
Cik = Ri.

Ticket Distribution Step: If a person vj receives Tij vi’s tickets, vj consumes rij tickets to

provide rij candidate routers to vi. vj determines rij depending on Tij and rj (i.e., rj is the

amount of onion routers that vj deploys in SGor). If Tij ≤ rj , rij = Tij and vj stops the ticket

distribution. Otherwise, rij = rj . For the remaining Tij− rj tickets, vj first sets Li = Li−1. If

Li = 0, vj discards these remaining tickets and stops the ticket distribution. Otherwise, vj will

Chapter 4. Trust Graph based Onion Routing 63

further distribute the remaining tickets to vj’s eligible friends who will repeat the ticket distri-

bution step. The amount of tickets distributed to each of vj’s eligible friends is also computed

using Eq. (4.1), where
∑

Φjk≥Φh
Cjk = Tij − rj . When distributing vi’s tickets, the ticket

distribution step is performed by different people in parallel. Hence, some people could receive

vi’s tickets more than one time (i.e., the duplicated ticket distribution).

To eliminate the duplicated ticket distribution, people should only distribute tickets to the eligi-

ble friends who have not received vi’s tickets before. The intuitive mechanism is to allow people

querying their friends whether they have already received vi’s tickets before they distribute tick-

ets. However, this mechanism is not resilient to attacks. Adversaries can simply claim they have

never received vi’s tickets and repeatedly defraud tickets.

Here, we propose a regressive checking mechanism to effectively avoid both the duplicated ticket

distribution and the ticket frauds. Using this mechanism, the ticket owner vi maintains a list that

records the people who have already received vi’s tickets. For each person vj who attempts to

distribute vi’s tickets, vj should first check with vi and exclude the friends who have already

recorded in vi’s list. vj then distributes vi’s tickets to vj’s remaining friends. Meanwhile, vi
adds these remaining friends to vi’s list.

Router Discovery Step: SGor has two candidate mechanisms for this step: (I), flooding-based

router discovery; and (II), probabilistic router discovery.

Using the flooding-based router discovery, any person vj who receives vi’s tickets should pro-

vide rij candidate routers to vi. These candidate routers are sent to vi alongside the backward

path from vj to vi. Therefore, vi can receive
∑

vj∈Vi rij = R∗i candidate routers in total, where

Vi is the set of people who receive vi’s tickets. R∗i ≤ Ri because some vi’s tickets could be dis-

carded in the ticket distribution step. vi constructs onion circuits by selecting routers uniformly

at random from theseR∗i candidate routers, hence resulting in a selection probability 1
R∗i

for each

candidate router. However, since all the R∗i candidate routers are sent back alongside backward

trust paths to vi, the flooding-based router discovery runs a high risk of exposing honest routers

to others.

To mitigate the exposure of honest routers, we propose a probabilistic router discovery mech-

anism. Using this mechanism, a person vj ∈ Vi can only response one candidate router to the

person who distributes tickets to vj . Let Vij be the set of people who receive vi’s tickets from vj

(i.e., Vij is the set of vj’s eligible friends who receive vi’s tickets). Let P (vk) be the probability

that vj sends back a router from vk to vj’s predecessor, where vk ∈ Vij ∨ vj . The probabilistic

router discovery sets P (vk) to P (vk) = rik∑
vm∈Vij∨vj

rim
. The same as the flooding-based router

discovery, this probabilistic router discovery can also result in a selection probability 1
R∗i

for

each candidate router. Since each person only sends back a single router to its predecessor, the

probabilistic router discovery mitigates the chance of exposing honest routers to adversaries.

Chapter 4. Trust Graph based Onion Routing 64

Figure 4.6 demonstrates an example of the trust graph based router selection algorithm. In this

example, each person is assumed to deploy a single router in SGor (i.e., ri = 1, i = 0 . . . 9).

v1 is the person who attempts to construct onion circuits. The parameters are set as Φh = 2,

R1 = 6 and L1 = 2. In the initial step, v1 generates R1 = 6 tickets and set L1 = 2 to the

time-to-live field of these tickets. v1 then distributes 2 tickets to v3 and 4 tickets to v4 according

to Eq. (4.1) (i.e., C13 = d Φ13
Φ13+Φ14

e · R1 = 2 and C14 = d Φ14
Φ13+Φ14

e · R1 = 4). When v3 and

v4 receive T13 = C13 = 2 and T14 = C14 = 4 tickets respectively, each of them consumes one

because each person deploys a single router. For the remaining tickets (v3 has T13 − r3 = 1

and v4 has T14 − r4 = 3), since L1 = L1 − 1 = 1 > 0, v3 and v4 can further distribute these

tickets to their eligible friends. v3 has two eligible friends v6 and v7, while v4 has three (v8, v9

and v0). Although Φ34 = 2 ≥ Φh, v3 can exclude v4 from the set of v3’s eligible friends using

the regressive checking mechanism as v4 has already received v1’s tickets from v1.

Using Eq. (4.1), v3 can calculate C36 = d Φ36
Φ36+Φ37

e · (T13 − r3) = 1 and C37 = d Φ37
Φ36+Φ37

e ·
(T13 − r3) = 1. However, v3 only has T13 − r3 = 1 remaining tickets. In this case, v3 can

simply decide to distribute 1 ticket to v6 but 0 ticket to v7, or vice versa. Upon receiving tickets,

v6, v8, v9 and v0 stop the ticket distribution due to two reasons. One is L1 = L1 − 1 = 0, and

the other is that they have no remaining tickets after they consume one. v1 collects onion routers

from the users who consume v1’s tickets. As can be seen in Figure 4.6, both of the two router

discovery mechanisms can result in 1
6 selection probability for each candidate router, although

v3 and v4 differently act in these two mechanisms. In the flooding-based router discovery, v3

and v4 simply send back all the routers they receive to v1. While in the probabilistic router

discovery, v3 uses the probability 0.5 to choose v3’s router or v6’s router for responding v1, and

v4 employs the probability 0.25 to chose responded routers.

We note that SGor is not the first one that uses ticket distribution mechanism. The Sybil-resilient

rating system has already used it to defeat Sybil attacks [42]. However, SGor’s ticket distribution

is novel in several aspects. First, SGor distributes tickets according to group trust, hence having

better capability of preventing tickets being distributed to adversaries. Second, since people

consume tickets based on the number of routers they deploy, SGor can have better capability of

evading adversaries’ routers if honest people can deploy more routers. Third, to evade duplicated

ticket distribution, the Sybil-resilient rating system requires a central server for calculating the

shortest path in advance. Unlike that, SGor proposes a novel regressive checking mechanism to

evade the duplicated ticket distribution. This checking mechanism does not require a centralized

server.

Chapter 4. Trust Graph based Onion Routing 65

4.2.4 SGor Analysis

In this section, we analyze SGor’s capability of protecting anonymity using a probabilistic mod-

el. We first discuss whether SGor can effectively evade adversaries’ routers from users’ onion

circuits. We then investigate whether SGor can effectively defend against inference attacks.

4.2.4.1 The Capability of Evading Adversaries’ Routers

Since SGor employs group trust and global trust to discover honest routers, we analyze how

group trust and global trust affect the capability of evading adversaries’ routers, respectively.

Group Trust: In this analysis, we focus on answering the question how likely a person vj is an

adversary if an honest person vi has group trust Φij in vj .

Let Iij be the event that an honest user vi assigns incorrect trust to an adversary vj (i.e., vi → vj

is an incorrect trust assignment). P (Iij) is the probability that the event Iij occurs. Since local

trust assignments (i.e., trust edges) in SGor’s trust graph G = (V,E) are independent (see

Section 4.1.2 and 4.1.4), the events Iij for different vi, vj are independent with each other. We

therefore have P (Iij , Ikl) = P (Iij) ·P (Ikl) for ∀vi, vj , vk, vl ∈ V , where P (Iij , Ikl) is the joint

probability that both events Iij and Ikl happen concurrently.

Let Aj be the event that the user vj ∈ V is an adversary. P (Aj) is the probability that vj is an

adversary.

Let Fij be the set of the people who are trusted by vi and meanwhile trust vj (i.e., for ∀vk ∈ Fij ,
there must exist vi → vk → vj). Let Λij ⊆ Fij be the set of people who are adversaries

belonging to Fij .

P (Φij = N |Aj) is the probability that vi has group trust Φij = N for vj on condition that vj is
an adversary. We can calculate P (Φij = N |Aj) as:

P (Φij = N |Aj) = P (Iij) ·
∑

Λij⊆Fij

∏
vk∈Λij

P (Ak)P (Iik)·∏
vk∈Fij\Λij

(1− P (Ak))P (Ikj).
(4.2)

where, P (Iij) is the probability that vi assigns incorrect trust to the adversary vj . P (Ak)P (Iik)

represents the probability that vi assigns incorrect trust to vk and vk is another adversary who

can forward vi’s trust to the adversary vj . (1− P (Ak))P (Ikj) is the probability that vi assigns

trust to an honest person vk but vk assigns incorrect trust to the adversary vj .

Since Φij = N indicates N robust trust paths from vi to vj (see Theorem 4.1), it is intuitive to

have a corollary as below.

Chapter 4. Trust Graph based Onion Routing 66

Corollary 4.2. P (Φij = N + 1|Aj) ≤ P (Φij = N |Aj).

Proof. Compared with Φij = N , vi has one more robust trust path to vj when Φij = N + 1.

We can simply assume this additional path is vi → vk → vj . Hence, we have:

P (Φij = N + 1|Aj)
= (P (Ak)P (Iik) + (1− P (Ak))P (Ikj)) · P (Φij = N |Aj)
≤ (P (Ak) + (1− P (Ak))) · P (Φij = N |Aj)
= P (Φij = N |Aj).

P (Aj |Φij = N) is the probability that vj is an adversary on condition that vi has group trust
Φij = N for vj . According to Bayes’ theorem, we can have:

P (Aj |Φij = N) =
P (Φij=N |Aj)·P (Aj)

P (Φij=N) . (4.3)

If the probabilities P (Aj) and P (Φij) follow uniform distribution, P (Aj |Φij = N) is propor-

tionate to P (Φij = N |Aj). Hence P (Aj |Φij = N + 1) ≤ P (Aj |Φij = N). That is to say,

if an honest people vi has a larger group trust in another people vj , vj is less likely to be an

adversary. As a result, SGor has a better capability of evading adversaries’ routers from users’

onion circuits by using a larger Φh.

However, it is not the fact that the probabilities P (Aj) and P (Φij) are uniformly distributed in

practice. Hence, to show the effectiveness of group trust, we will do more practical evaluations

using real-world datasets in Section 4.3.

Global Trust: In this analysis, we focus on answering the question how likely a person vj is an

adversary if an honest person vi can propagate global trust to vj through a Li-hop trust path.

If an honest person vi propagates global trust to vj through a Li-hop trust path, the probability
that vj is an adversary can be calculated using a recursive function:

P (Aj |Li) = P (Ak|Li − 1) + (1− P (Ak|Li − 1)) · P (Aj |Φkj). (4.4)

where, vk precedes vj in the trust path from vi to vj . If vk is an adversary, vj must be an

adversary. Otherwise, vj has the probability P (Aj |Φkj) to be an adversary. The base case of

the recursive Eq. 4.4 is P (Am|Li = 1) = P (Am|Φim), where vm is the first person after vi in

the trust path from vi to vj .

Since a larger Li leads to a higher P (Aj |Li), a smaller Li can help SGor achieve a better

capability of evading adversaries’ routers from users’ onion circuits.

Chapter 4. Trust Graph based Onion Routing 67

4.2.4.2 The Capability of Defeating Inference Attacks

To analyze SGor’s capability of defeating inference attacks, we investigate how many users

an onion router can be trusted and selected by in average. In SGor, global trust is used to

guide people to trust more others in the trust graph, hence allowing honest routers to be trusted

and selected by more users in return. We note that, if a router can be selected by more users,

inference attackers are hard to guess the initiate user of an onion circuit by observing this router.

SGor uses an adaptive trust propagation algorithm to derive global trust. This algorithm has two

parameters Li and Φh (see Section 4.2.3). Li is used to limit the distance of trust propagation

and Φh is the group trust minimum threshold that can be used to prevent trust propagation from

adversaries.

Since a larger Li and a smaller Φh could lead more routers’ owners to be globally trusted, SGor

obtains a better capability of thwarting inference attacks by using a larger Li and a smaller Φh.

However, as discussed in Section 4.2.4.1, a larger Li and a smaller Φh also result in a worse

capability of evading adversaries’ routers. As a result, SGor should choose appropriate Φh

and Li to balance the capability of evading adversaries’ routers and the capability of defeating

inference attacks. Section 4.3 will evaluate SGor on top of real-world social trust datasets and

show appropriate Φh and Li for these datasets.

4.3 Evaluation

In this section, we evaluate SGor using two real-world social trust datasets. We first describe the

datasets in Section 4.3.1. We then evaluate SGor’s capability of evading adversaries’ routers and

the capability of defeating inference attacks in Section 4.3.2 and 4.3.3, respectively. We compare

SGor with other global trust-based routing protocols in terms of deanonymization expectation

in Section 4.3.4. After evaluating the leakage of a priori trust relationships in Section 4.3.5, we

also evaluate the overheads introduced by SGor in terms of storage and communication round

trips in Section 4.3.6.

4.3.1 Datasets

We adopt two real-world social interaction graph datasets to evaluate SGor. One dataset con-

tains post wall interactions between users in a New Orleans regional network in Facebook [1].

This interaction graph has 46, 952 nodes and 876, 993 trust edges. The other dataset is the col-

lection of one month interactions from another Facebook anonymous regional network [125]. It

includes 431, 995 nodes and 781, 862 trust edges.

Chapter 4. Trust Graph based Onion Routing 68

In our evaluated interaction graphs, each node represents a person who registers an account in

Facebook. Each trust edge indicates a local trust that one person assigns to another person (see

Section 4.1.4). We assume any person can play the role as an onion routing user or an onion

router owner, or both or none of them (see Section 4.1.5.1).

We preprocess these two datasets following a similar manner as X-Vine [133] and SybilLimit

[40] did. In particular, we remove the nodes with low degrees (e.g., the sum of outdegree

and indegree is less than 5). This process can guarantee all the nodes in our evaluation have

reasonable connectivity to the trust graph. We also eliminate the self-linked edges (e.g., vi →
vi) because these trust edges could mislead group trust computation. After these appropriate

preprocesses, we use the truncated datasets to evaluate SGor.

Table 4.2 summarizes basic statistics of these two truncated datasets. The average degree takes

both outdegree and indegree into consideration. It is calculated by using the number of edges

to divide the number of nodes in the graph (i.e., |E||V |). The density of a graph is defined as

the number of edges in the graph divided by the number of edges in a complete graph (i.e.,
|E|

|V |·(|V |−1)). Both the average degree and graph density are graph properties that can be used to

show whether a graph is well connected or not. A larger average degree and density leads to a

more tight-knit graph.

TABLE 4.2: The Two Interaction Social Graphs after Preprocess.

Dataset # of Nodes # of Edges Avg. degree Graph density

New Orleans [1] 27, 601 231, 035 8.37 3× 10−4

Anonymous [125] 83, 034 305, 711 3.68 4.4× 10−5

To have a better understanding of how graph properties (i.e., average degree and graph density)

affect the parameter selection in SGor (the selection of Φh and Li), we generate six synthetic

graphs using a tool NetworkX [134] for investigation. We put the results based on synthetic

graphs in Section 4.4.

4.3.2 Evaluating The Capability of Evading Malicious Routers

In this section, we first evaluate group trust’s effectiveness in evading adversaries’ routers. We

then show global trust’s impacts to this effectiveness. Afterwards, we compare SGor with state-

of-the-art trust-based onion routing to show SGor’s improvement in protecting users from ad-

versaries’ routers.

Chapter 4. Trust Graph based Onion Routing 69

4.3.2.1 Group Trust’s Effectiveness in evading Adversaries’ Routers:

We measure group trust’s effectiveness in evading adversaries’ routers in terms of the probability

P (Aj |Φij = N). A smaller P (Aj |Φij = N) indicates a smaller probability that vj is an

adversary given group trust Φij = N . According to Eq. 4.3, P (Aj |Φij = N) is determined by

P (Φij = N), P (Φij = N |Aj) and P (Aj).

Based on the two real-world datasets listed in Table 4.2, we calculate practical distributions of

P (Φij). In New Orleans dataset, Φij ranges from 1 to 31. While in the anonymous dataset, 1 ≤
Φij ≤ 18. Figure 4.7 illustrates histograms of P (Φij) for the two datasets. It can be seen that

the two datasets have the similar distributions of Φij . A larger Φij results in a smaller P (Φij).

Moreover, there are more Φijs having a smaller value in the Anonymous dataset than those in

the New Orleans dataset. This is probably due to the lower graph density in the Anonymous

dataset. We have further investigated this phenomenon using syntactic graphs in Appendix A.2.

1 5 10 15 20 25 31
0

0.1

0.2

0.3

0.4

ij

P
(

ij)

(a) New Orleans Dataset [1].

1 5 10 15 18
0

0.2

0.4

0.6

ij

P
(

ij)

(b) Anonymous Dataset [125].

FIGURE 4.7: The real-world group trust distributions of P (Φij).

According to Theorem 4.1 and Eq. 4.2, P (Φij = N |Aj) is determined by the probabilities of

events that honest people assign incorrect trust to adversaries. Since incorrect trust assignments

are human behaviors, we can model these behaviors as a Poisson process with an average incor-

rect trust assignments probability λ (i.e., P (Φij = N |Aj) follows a Poisson distribution with a

parameter λ). A large λ indicates that a large number of people in SGor assign incorrect trust to

adversaries. Since it is very difficult for adversaries to attract incorrect trust from a large number

of honest human beings [44], SGor is not designed for a large λ. Therefore, we only consider a

small λ in our evaluation.

We consider adversaries as independent and identically distributed, i.e., the events Aj are i.i.d.

In this case, P (Aj) for ∀vj ∈ V is equal to a constant β ∈ (0, 1). A large β indicates a large

fraction of the network is compromised by adversaries.

Chapter 4. Trust Graph based Onion Routing 70

We evaluate the effectiveness of group trust Φij in protecting an honest person vi from an adver-

sary vj’s routers by investigating P (Aj |Φij) for different Φijs in the two real-world datasets. A

smaller P (Aj |Φij) means a local trust assignment vi → vj is less likely to be incorrect, hence

indicating a better capability of evading adversaries’ routers. In this evaluation, we consider

λ = 0.1 or λ = 0.05 and β = 0.5 or β = 0.1. Figure 4.8 shows the evaluation results. It can

be seen that a larger Φij leads to a smaller P (Aj |Φij) (i.e., a better capability of evading adver-

saries). In particular, for the dataset [1], P (Aj |Φij) drops about 1068 times when the group trust

climbs from Φij = 1 to 31. For the dataset [125], P (Aj |Φij) declines around 1035 times when

the group trust grows up from Φij = 1 to 18. Moreover, P (Aj |Φij) with a setting of smaller λ

and β is smaller than that with a setting of larger λ and β. This indicates that group trust is more

effective in evading adversaries when honest people make less incorrect local trust assignments

in SGor and adversaries control a smaller fraction of the SGor network.

0 10 20 31
10

−70

10
0

ij

P
(A

j|
ij)

=0.1, =0.5
=0.1, =0.1
=0.05, =0.5
=0.05, =0.1

(a) New Orleans Dataset [1].

0 5 10 15 18
10

−40

10
0

ij

P
(A

j|
ij)

=0.1, =0.5
=0.1, =0.1
=0.05, =0.5
=0.05, =0.1

(b) Anonymous Dataset [125].

FIGURE 4.8: The probability P (Aj |Φij) with different Φij in four settings of λ and β.

4.3.2.2 Global Trust’s Impact:

We evaluate the global trust’s impacts on the capability of evading adversaries’ routers by in-

vestigating P (Aj |Li). A smaller P (Aj |Li) indicates that vj is less likely to be an adversary

if an honest person vi propagate global trust to vj through a trust path consisting of Li trust

edges. When SGor derives global trust using adaptive trust propagation algorithm, P (Aj |Li) is

determined by the length of the trust path Li and the group trust of each trust edge in the trust

path. The group trust of each trust edge must be no smaller than a minimum threshold Φh (see

Section 4.2.3). A larger Li results in a larger P (Aj |Li), while a larger Φh leads to a smaller

P (Aj |Li).

To evaluate global trust’s impact, we investigate P (Aj |Li) when Li varies in different cases

of Φh. We compare P (Aj |Li) with P (Aj |Φij = 1). P (Aj |Φij = 1) represents how likely

vj is an adversary if vi has local trust in vj . P (Aj |Li) < P (Aj |Φij = 1) indicates that the

Chapter 4. Trust Graph based Onion Routing 71

people who receive global trust through a trust path consisting of Li trust edges are less likely

to be adversaries than the people who receive local trust. As a result, if SGor can achieve

P (Aj |Li) < P (Aj |Φij = 1) using appropriate Li and Φh, the global trust could not degrade

the capability of evading adversaries’ routers.

Figure 4.9 shows the probability P (Aj |Li) when Φh = 2, 3, 4 and Li increases from 1 to 50. In

this evaluation, we use the setting of λ = 0.1 and β = 0.5, and consider the worst case that the

trust propagation is through the trust paths where any trust edges vk → vm have Φkm = Φh.

In the dataset [1], for the case Φh = 2, P (Aj |Li) becomes larger than P (Aj |Φij = 1) when

Li > 12. For the other cases Φh = 3 and Φh = 4, P (Aj |Li) remains smaller than P (Aj |Φij =

1) even if Li grows up to 50. While in the dataset [125], for the cases Φh = 2 and Φh = 3,

P (Aj |Li) is larger than P (Aj |Φij = 1) when Li > 5 and Li > 30 respectively. Based on this

evaluation, to maintain the capability of evading adversaries’ routers, SGor should propagate

global trust through the trust paths no longer than Li = 12 if Φh = 2 in the dataset [1], and no

longer than Li = 5 if Φh = 2 or Li = 30 if Φh = 3 in the dataset [125]. It can be seen, SGor

can choose a larger Li for trust propagation in the graph with higher density (i.e., the dataset [1]

has a higher graph density than the dataset [125]).

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

L
i

P
(A

j|L
i)

h
=2

h
=3

h
=4

P(A
j
|

ij
=1)

(a) New Orleans Dataset [1].

1 10 20 30 40 50
0

0.2

0.4

0.6

L
i

P
(A

j|L
i)

h
=2

h
=3

h
=4

P(A
j
|

ij
=1)

(b) Anonymous Dataset [125].

FIGURE 4.9: The probability P (Aj |Li) when Li is from 1 to 50.

4.3.2.3 Simulation of SGor and Trust-based Onion Routing:

To show SGor’s advantage in evading adversaries’ routers compared with trust-based onion

routing, we simulate router selections based on the two real-world datasets with setting of λ =

0.1 and β = 0.5. In this simulation, SGor sets Li = 1, Φh = 2, 3, 4 and Ri to a large enough

value, respectively. SGor uses Φh to filter the routers whose group trust is smaller than Φh and

propagates global trust to at most Li hops. We note that the trust-based onion routing operates

in the same manner as SGor with Li = 1 and Φh = 1. We also assume each person deploys

a single router in the network. We generate a pseudo random value π ∈ [0, 1] for each person

Chapter 4. Trust Graph based Onion Routing 72

vj who deploys an onion router. From an honest person vi’s point of view, vj is regarded as an

adversary if π < P (Aj |Li).

We simulate a person vi as an honest person to select a router deployed by other people using

existing trust-based onion routing algorithms [12, 14] or the trust graph based algorithm pro-

posed in Section 4.2.3. We define a round of simulation by iterating all the people in the two

real-world datasets to operate as vi one by one. We conduct 10, 000 rounds of router selection

simulations for trust-based onion routing and SGor with Li = 1, Φh = 2, 3, 4, respectively.

In each round of simulation, we measure the capability of evading adversaries’ routers using the

ratio of selecting adversaries’ routers. This ratio is calculated by using the number of people

who select adversaries’ routers in each round to divide the total number of people. A smaller

ratio means a better capability of evading adversaries’ routers.

Figures 4.10(a) and 4.10(b) show the cumulative distribution function (CDF) of the ratio of

selecting adversaries’ routers in our simulations. It can be seen that SGor outperforms trust-

based onion routing in both the New Orleans dataset [1] and the anonymous dataset [125]. In

particular, SGor with parameters Φh = 2 and Li = 1 has more than 10 times improvement for

evading adversaries’ routers. When the parameter Φh is increased to 4, the improvement extends

to around 1, 000 times.

10
−4

10
−3

10
−2

10
−10

0.2

0.4

0.6

0.8

1

The Ratio of Selecting Adversaries’ routers

C
D

F

Trust−based
SGor,

h
=2, L

i
=1

SGor,
h
=3, L

i
=1

SGor,
h
=4, L

i
=1

(a) New Orleans Dataset [1].

10
−4

10
−3

10
−2

10
−10

0.2

0.4

0.6

0.8

1

The Ratio of Selecting Adversaries’ Routers

C
D

F

Trust−based
SGor,

h
=2, L

i
=1

SGor,
h
=3, L

i
=1

SGor,
h
=4, L

i
=1

(b) Anonymous Dataset [125].

FIGURE 4.10: The CDFs of the ratio of selecting adversaries’ routers in 10, 000 rounds of
router selection simulation in SGor and trust-based onion routing.

4.3.3 Evaluating The Capability of Defeating Inference Attacks

We evaluate an honest onion router’s capability of defeating inference attacks by investigating

the number of users who can select this router. A network (SGor or trust-based onion routing)

has a better capability of resisting inference attacks if more honest onion routers can be selected

by more users.

Chapter 4. Trust Graph based Onion Routing 73

Let Deg(vj) be the number of people who can select the onion routers deployed by vj . In trust-

based onion routing, a person vi can select another person vj’s routers if and only if vi has local

trust in vj (i.e., vi → vj exists in G). Hence, Deg(vj) is the in-degree of the node vj in the trust

graph G. While in SGor, vi can select vj’s routers in two cases. One is Φij ≥ Φh if vi → vj

exists. The other is vi can propagate global trust to vj using the adaptive trust propagation

algorithm described in Section 4.2.2 and 4.2.3.

We use Deg(vj) as a measure to compare the capability of defeating inference attacks between

SGor and trust-based onion routing. A larger Deg(vj) indicates a better capability of defeating

inference attacks. We consider SGor with parameters Li = 2, 3 and Φh = 2. We also choose

Ri as a value which is large enough to guarantee SGor can propagate trust to Li = 2 or 3. Our

evaluation adopts the two real-world datasets listed in Table 4.2 and considers all the people to

be as vj one by one.

Figure 4.11 shows the CDF ofDeg(vj) for SGor and trust-based onion routing in our evaluation.

Compared to trust-based onion routing, SGor with Φh = 2 and Li = 1 suffers a distribution

of slightly smaller Deg(vj)s because Φh = 2 filter trust edges whose group trust is smaller

than 2. This slight degradation does not make a significant impact on the capability of defeating

inference attacks, because these removed trust edges are likely to be incorrect trust assignments.

When Li is increased to 2, SGor reaches a distribution with much larger Deg(vj)s than trust-

based onion routing. The value of Deg(vj) is further increased when Li grows up to 3 in SGor.

These results show that SGor with a larger Li can have a better capability of defeating inference

attacks. By referring back to Figure 4.9, we note that SGor with Φh ≥ 2 and Li ≤ 5 retains

a better capability of evading adversaries’ routers than trust-based onion routing. As a result,

SGor apparently demonstrates a better capability of defeating inference attacks and evading

adversaries’ routers simultaneously.

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

Deg(V
j
)

C
D

F

Trust−based
SGor,

h
=2,L

i
=1

SGor,
h
=2,L

i
=2

SGor,
h
=2,L

i
=3

(a) New Orleans Dataset [1].

10
0

10
1

10
20

0.2

0.4

0.6

0.8

1

Deg(v
j
)

C
D

F

Trust−based
SGor,

h
=2,L

i
=1

SGor,
h
=2,L

i
=2

SGor,
h
=2,L

i
=3

(b) Anonymous Dataset [125].

FIGURE 4.11: The CDFs of Deg(vj) for SGor and trust-based onion routing.

Chapter 4. Trust Graph based Onion Routing 74

4.3.4 Comparing SGor with Other Global Trust-based Schemes

Although Section 4.3.2 and 4.3.3 have proved SGor’s better performance of protecting anonymi-

ty than trust-based routing approaches that utilize local trust [11, 12, 14], we need to further

compare SGor with prior studies which also apply global trust to onion routing. In the literature,

there are two projects, Drac [13] and Pisces [15], that fall into this category. However, since

Pisces has been proved to have better capability of protecting anonymity than Drac [15], we

only compare SGor with Pisces because Pisces represents the state-of-the-art techniques using

global trust.

To have a fair comparison between SGor and Pisces, we propose the use of deanonymization

expectation to measure the anonymity each user can obtain from the two schemes. This measure

takes both the capabilities of evading adversaries’ routers and defeating inference attacks into

account.

LetEi be the person vi’s deanonymization expectation. Ei can be calculated asEi =
∑

vj∈zi
Pij ·

Eij . Where zi is the set of persons whose router can be selected by vi. Pij is the probability

that the person vi uses to select the person vj’s router. It is determined by different trust-based

routing algorithms. Eij is the average probability that vi can be deanonymized due to the s-

election of vj’s router. We have Eij = P (Aj |Li) · 1 + (1 − P (Aj |Li)) · P (vi|vj) · µ. The

constant 1 in P (Aj |Li) · 1 is the probability that vi can be deanonymized when vj is an adver-

sary. This probability equals to 1 because the adversary vj can launch correlation-like attacks

to deanonymize vi directly. P (vi|vj) represents the probability that adversaries can guess vi by

observing vj’s router (i.e., inference attacks) when vj is not an adversary. µ is the probability

that adversaries can observe routers in onion circuits. We choose a small µ = 0.01 in our eval-

uation, because adversaries can only observe routers by exploiting adversaries’ routers or web

servers (see Section 5.1), but the web servers adversaries can control are relatively few and users

rarely select adversaries’ routers for onion routing after using trust-based algorithm (see Figure

4.8). Li which is the number of hops vi can propagate trust in SGor equals to the number of

random walk steps in Pisces. Apparently, a smaller Ei indicates a better capability of protecting

anonymity.

In our experiments, we compare SGor and Pisces by considering the setting of λ = 0.1 and

β = 0.5. We choose Φh = 2 for SGor. Moreover, we consider Li = 2 and Li = 3 in our

comparison. That is, SGor propagates trust through 2 or 3-hop trust path while Pisces launches

2 or 3-step metropolis-hastings random walks on top of the New Orleans dataset [1] and the

Anonymous dataset [125], respectively. Although we cannot guarantee the random walk can

globally converge within Li = 2 or Li = 3 steps (it depends on whether the graph is fast-

mixing), Pisces employs metropolis-hastings algorithm to guarantee the reach probability of

each router during the random walk is approximately uniform distributed [15].

Chapter 4. Trust Graph based Onion Routing 75

Figure 4.12 shows the results of our comparison. Apparently, SGor achieves a better capability

in protecting anonymity (in terms of a smaller deanonymizaiton expectation Ei). SGor outper-

forms Pisces because SGor employs group trust to rate limit trust propagation. This idea can

effectively prevent adversaries from compromising global trust in trust propagation.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

E
i

C
D

F

Pisces

SGor, Φ
h
=2

(a) Dataset [1] when Li = 2.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

E
i

C
D

F

Pisces
SGor, Φ

h
=2

(b) Dataset [125] when Li = 2.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

E
i

C
D

F

Pisces
SGor, Φ

h
=2

(c) Dataset [1] when Li = 3.

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

E
i

C
D

F

Pisces

SGor, Φ
h
=2

(d) Dataset [125] when Li = 3.

FIGURE 4.12: The CDF of Ei in Pisces and SGor with Φh = 2.

4.3.5 Evaluating The Leakage of A Priori Trust Relationships

Since SGor is designed to run in a fully decentralized manner, it is not required to leak a priori

trust relationships to any third parties, such as a centralized server. However, as the calculation

of group trust is based on mutual friends information, people’s friends could expose some of

their trust edges to a third person who computes group trust. For example, if vi has two robust

trust paths to vj , one is vi → vj and the other is vi → vk → vj , to calculate Φij , vk’s trust edge

vk → vj could be leaked to vi. As a result, SGor could leak some of people’s trust relationships

to other people.

We measure the trust relationships leaked to a third person in terms of the fraction of leaked trust

edges. The fraction can be calculated by using the number of trust edges that are leaked to an

Chapter 4. Trust Graph based Onion Routing 76

individual third person during group trust calculation to divide the total number of trust edges in

SGor’s trust graph. A larger fraction indicates a larger amount of trust edges leaked.

Figure 4.13 shows the CDF of the fraction of trust relationships that are leaked to each third

person who computes group trust. It can be seen that the leaked fraction is negligible (less

than 0.0002). Although a large number of adversaries could collude with each others (i.e.,

Sybil attacks), they cannot effectively enlarge the fraction of leaked trust relationships, because

adversaries should compromise trust with two honest people to leak these two people’s trust

relationship through group trust computation. However, it is very difficult for adversaries to

compromise trust with a large number of honest people. Previous Sybil defences (e.g., Sybil-

Limit [40]) are usually designed based on this observation. As a result, the adversaries who

perform inference attacks cannot benefit a lot from the decentralized design of SGor when they

collect a priori trust relationships.

10
−6

10
−5

10
−4

10
−30

0.2

0.4

0.6

0.8

1

The Fraction of Leaked Trust Relationships

C
D

F

(a) New Orleans Dataset [1].

10
−6

10
−5

10
−4

10
−30

0.2

0.4

0.6

0.8

1

The Fraction of Leaked Trust Relationships

C
D

F

(b) Anonymous Dataset [125].

FIGURE 4.13: The CDF of the fraction of trust relationships that are leaked to each third person
who calculates group trust.

4.3.6 Evaluating SGor’s Overheads

To support trust graph based onion routing, SGor introduces overheads because it performs

additional storage and communication in the trust graph layer. In this section, we evaluate these

overheads in terms of storage in Section 4.3.6.1, communication round trips in Section 4.3.6.2,

and additional traffic in Section 4.3.6.3. The results confirm that SGor only induces very few

overheads due to its decentralized design.

4.3.6.1 Storage Overheads

Benefit from the decentralized design, SGor is not required to deploy a centralized server to

manage the entire trust graph. Instead, each person in SGor has a trust table to store his own

local trust assignments, i.e., trust edges from this person to this person’s friends (see Section

Chapter 4. Trust Graph based Onion Routing 77

4.1.5.2). As a result, the storage overheads introduced by SGor are due to the additional storage

space required by the trust table.

We evaluate the storage overheads by investigating the number of trust edges stored in each

person’s trust table. Figure 4.14(a) and 4.14(b) plot the CDF of this number for the people in

datasets [1] and [125], respectively. It can be seen that most of people (around 80%) have less

than 20 trust edges stored in their trust table. Compared to the total number of trust edges in

these two datasets (as shown in Table 4.2, the total number of trust edges is 231, 035 in dataset

[1] and 305, 711 in dataset [125]), the number of trust edges stored in each person’s trust table

is relatively small. As a result, SGor introduces a few storage overheads for each person.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

The Number of Trust Edges in a Person’s Trust Table

C
D

F

(a) New Orleans Dataset [1].

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

The Number of Trust Edges in a Person’s Trust Table

C
D

F

(b) Anonymous Dataset [125].

FIGURE 4.14: The CDF of the number of trust edges stored in each person’s trust table in
SGor.

4.3.6.2 Communication Overheads

As described in Section 4.2.3, onion routing users need to run a trust graph based algorithm

to discover honest routers in SGor. This algorithm induces additional communications among

people (through people’s user-agents) in the trust graph layer.

We evaluate SGor’s communication overheads in terms of communication round trips. A com-

munication round trip is the time delay of a bi-directional communication between two people in

the trust graph layer. Since SGor operates in a fully decentralized manner, most communications

between different two people can be performed in parallel. According to SGor’s decentralized

algorithms (see Sections 4.2.1.3 and 4.2.3), the number of additional communication round trips

introduced by SGor can be calculated by summing up one and a half round trips (for group trust

computation) and the length of the longest trust path through which SGor propagates global

trust (i.e., Li + 1.5). These additional communication round trips are only determined by the

parameter Li and cannot be affected by the size of trust graph. Since Li + 1.5 is a very small

value compared with the size of a trust graph, SGor introduces a few communication overheads

even if it adopts a large scale trust graph.

Chapter 4. Trust Graph based Onion Routing 78

We investigate the number of parallel communications when people run trust graph based router

selection algorithm in SGor. This number indicates the benefits that SGor can obtain from the

decentralized design to reduce communication overheads. A larger number of parallel commu-

nications means more efficiency benefits.

Figure 4.15 shows the CDFs of the number of parallel communications during different number

of communication round trips. In this evaluation, people are simulated to run decentralized

ticket distribution algorithm to discover honest routers on top of the datasets [1] and [125]. We

consider Φh = 2 and Li = 3. It can be seen that more communication round trips could result

in more parallel communications. This is the reason why a large scale trust graph does not

introduce a serious communication overhead in SGor.

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

The Number of Parallel Communications

C
D

F

The First Round Trip
The First Two Round Trips
The First Three Round Trips

(a) New Orleans Dataset [1].

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

The Number of Parallel Communications

C
D

F

The First Round Trip
The First Two Round Trips
The First Three Round Trips

(b) Anonymous Dataset [125].

FIGURE 4.15: The CDFs of the number of parallel communications during different number
of communication round trips in SGor with Φh = 2 and Li = 3.

4.3.6.3 Additional Traffic

In contrast to the additional communications, SGor also introduces additional traffic to the net-

work. This overhead is caused by group trust aggregation and adaptive global trust propagation.

When SGor aggregates group trust using the decentralized token-based algorithm (see Section

4.2.1.3), we measure the additional traffic in terms of the number of tokens transmitted in each

trust edge. When a person calculates group trust for his friends, two kinds of trust edges are

involved. One includes the edges from this person to his friends, and the other includes the edges

from this person’s friends to the friends of this person’s friends. The tokens can be distributed

through the first kind of edges at first, and then further forwarded via the second kind of edges.

At last, appropriate tokens can be sent back to the initiate user through the first kind of edges

again. The number of tokens transmitted in each trust edge is computed by using the number of

tokens transmitted on the fly to divide the number of trust edges involved.

Chapter 4. Trust Graph based Onion Routing 79

Figure 4.16 illustrates the CDF of the average number of tokens transmitted in each trust edge.

Apparently, the additional traffic introduced by group trust calculation is not large because no

more than 2 tokens per trust edge are inserted into the network. However, there is an interesting

observation that the New Orleans dataset introduces less additional traffic than the Anonymous

dataset, although the group trust in the former dataset is statistically larger than that in the latter

dataset. The reason of this observation is because a large number of people in the Anonymous

dataset have none friends even if they are friends of other people. These people cannot induce

the second kind of trust edges during group trust calculation, hence resulting a small number of

trust edges when we compute the number of tokens per trust edge.

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Additional Traffic in terms of
The Number of Tokens per Trust Edge

C
D

F

(a) New Orleans Dataset [1].

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Additional Traffic in terms of
The Number of Tokens per Trust Edge

C
D

F

(b) Anonymous Dataset [125].

FIGURE 4.16: The CDFs of additional traffic introduced by group trust aggregation (in terms
of the number of tokens per trust edge) in SGor.

Beside group trust aggregation, the adaptive global trust propagation also injects additional traf-

fic into the network. We measure this kind of additional traffic in terms of traffic units that are

conveyed in each trust edge. We use traffic unit as the measure, because global trust propagation

could induce three different kinds of additional traffic. As described in Section 4.2.3, our global

trust propagation algorithm consists of a tickets forwarding, a regressive checking mechanism

for evading duplicated ticket distribution and a router collection. Each tickets forwarding injects

one unit of additional traffic as it only forwards the number of remaining tickets through trust

edges. For the regressive checking mechanism, the checking request and the checking response

consume one traffic unit each. For the router collection, each router transmitted in the trust edge

induces one additional traffic unit.

Figure 4.17 demonstrates the CDFs of the number of traffic units transmitted in each trust edge

during global trust propagation in SGor when Φh = 2 and Li = 3. It can be seen that the

additional traffic is relatively small (no more than 7 traffic units are transmitted in each trust

edge). Moreover, although the probabilistic router discovery mechanism is originally proposed

to mitigate the chances of router exposure during trust propagation, our result confirms that

this mechanism is also effective in reducing additional traffic compared with the flooding-based

router discovery.

Chapter 4. Trust Graph based Onion Routing 80

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Additional Traffic in terms of
The Number of Traffic Units per Trust Edge

C
D

F

Probabilistic Router Discovery
Flooding−based Router Discovery

(a) New Orleans Dataset [1].

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Additional Traffic in terms of
The Number of Traffic Units per Trust Edge

C
D

F

Probabilistic Router Discovery
Flooding−based Router Discovery

(b) Anonymous Dataset [125].

FIGURE 4.17: The CDFs of additional traffic introduced by global trust propagation (in terms
of the number of traffic units transmitted in each trust edge) in SGor when Φh = 2 and Li = 3.

4.4 Syntactic Graph based Analysis

Our syntactic graph based analysis is presented here to investigate how graph properties (e.g.,

average degree and density) affect the parameter (e.g., Φh and Li) selection in SGor. In partic-

ular, we generate syntactic graphs by calling the function barabasi albert graph() in

NetworkX [134]. This function returns a random scale-free graph based on a Barabási-Albert

preferential attachment model [135]. The trust graphs following this model are widely observed

in nature and human-made systems, which include social networks.

We have generated six syntactic graphs with different sizes, average degrees and graph densities.

Table 4.3 summarizes the statistics of these six graphs.

TABLE 4.3: Statistics in Six Syntactic Graphs.

Dataset # of Nodes # of Edges Avg. degree Graph density

Syntactic Graph ¬ 1, 000 4, 975 4.98 5× 10−3

Syntactic Graph 1, 000 10, 879 10.9 1.1× 10−2

Syntactic Graph ® 1, 000 51, 975 52.0 5.2× 10−2

Syntactic Graph ¯ 1, 000 97, 900 98.0 9.8× 10−2

Syntactic Graph ° 2, 000 9, 975 5.00 2.5× 10−3

Syntactic Graph ± 2, 000 106, 975 53.5 2.7× 10−2

We show the group trust (i.e., P (Φij)) distributions of these six graphs in Figures 4.18(a)-

4.18(f). By analyzing these figures as well as consulting Table 4.3, we confirm that a larger

average degree or a higher graph density results in a larger value of P (Φij). Moreover, com-

pared with graph density, the average degree is more appropriate for indicating the group trust

distribution. For example, although the density of syntactic graph ° is roughly a half of the

Chapter 4. Trust Graph based Onion Routing 81

density in the graph ¬, their group trust distributions are similar because they have roughly the

same average degree.

Based on the group trust distributions, we also plot the probability P (Aj |Φij) with different

Φij in four settings of λ and β in Figures 4.19(a)-4.19(f). These figures show the P (Aj |Φij)

consistently decreases when Φij increases. Moreover, the P (Aj |Φij) can reach a smaller value

in the graph which has higher average degree and graph density.

To investigate how graph properties (i.e., average degrees and graph densities) affect the global

trust propagation, we show P (Aj |Li) in these six graphs in Figures 4.20(a)-4.20(f). In these

figures, the P (Aj |Φij = 1) represents how likely vj is an adversary if vi has local trust in vj .

If P (Aj |Li) < P (Aj |Φij = 1), that means the people who receive global trust through a trust

path consisting of Li trust edges are less likely to be adversaries than the people who receive

local trust. As a result, when SGor can achieve P (Aj |Li) < P (Aj |Φij = 1) using appropriate

Li and Φh, the trust propagation could not degrade the capability of resisting adversaries.

To maintain the capability of resisting adversaries during trust propagation, we summarize ap-

propriate Li according to different Φh in SGor for these six syntactic graphs in Table 4.4. Ap-

parently, the graph with larger average degree and higher density supports a larger Li for trust

propagation without reducing the capability of evading adversaries.

Chapter 4. Trust Graph based Onion Routing 82

1 2 4 5
0

0.2

0.4

0.6

0.8

Φ
ij

P
(Φ

ij)

(a) Syntactic Graph ¬.

2 4 6 8 10
0

0.2

0.4

0.6

Φ
ij

P
(Φ

ij)

(b) Syntactic Graph .

10 30 41
0

0.05

0.1

0.15

Φ
ij

P
(Φ

ij)

(c) Syntactic Graph ®.

20 60 80
0

0.02

0.04

Φ
ij

P
(Φ

ij)

(d) Syntactic Graph ¯.

1 2 4 5
0

0.2

0.4

0.6

0.8

Φ
ij

P
(Φ

ij)

(e) Syntactic Graph °.

10 30 41
0

0.1

0.2

Φ
ij

P
(Φ

ij)

(f) Syntactic Graph ±.

FIGURE 4.18: The group trust distributions of P (Φij) in syntactic graphs.

Chapter 4. Trust Graph based Onion Routing 83

0 1 2 4 5

10
−5

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(a) Syntactic Graph ¬.

0 10
10

−20

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(b) Syntactic Graph .

0 10 30 41
10

−100

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(c) Syntactic Graph ®.

0 20 60 80

10
−200

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(d) Syntactic Graph ¯.

0 1 2 3 4 5
10

−10

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(e) Syntactic Graph °.

0 10 30 41
10

−100

10
0

Φ
ij

P
(A

j|Φ
ij)

λ=0.1, β=0.5
λ=0.1, β=0.1
λ=0.05, β=0.5
λ=0.05, β=0.1

(f) Syntactic Graph ±.

FIGURE 4.19: The probability P (Aj |Φij) with different Φij in four settings of λ and β.

Chapter 4. Trust Graph based Onion Routing 84

1 10 20 30 40 50
0

0.7

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(a) Syntactic Graph ¬.

1 10 20 30 40 50
0

0.6

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(b) Syntactic Graph .

1 10 20 30 40 50
0

0.7

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(c) Syntactic Graph ®.

1 10 20 30 40 50
0

0.9

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(d) Syntactic Graph ¯.

1 10 20 30 40 50
0

0.8

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(e) Syntactic Graph °.

1 10 20 30 40 50
0

0.6

L
i

P
(A

j|L
i)

Φ
h
=2

Φ
h
=3

Φ
h
=4

P(A
j
|Φ

ij
=1)

(f) Syntactic Graph ±.

FIGURE 4.20: The probability P (Aj |Li) when Li is from 1 to 50.

Chapter 4. Trust Graph based Onion Routing 85

TABLE 4.4: The selection of Li given a Φh for SGor to guarantee P (Aj |Li) < P (Aj |Φij = 1)
in different Syntactic Graphs.

Dataset Avg. degree Graph density Φh Li

Syntactic Graph ¬ 4.98 5× 10−3

Φh = 2 Li ≤ 2

Φh = 3 Li ≤ 26

Φh = 4 Li up to 50

Syntactic Graph 10.9 1.1× 10−2

Φh = 2 Li ≤ 5

Φh = 3 Li up to 50

Φh = 4 Li up to 50

Syntactic Graph ® 52.0 5.2× 10−2

Φh = 2 Li ≤ 14

Φh = 3 Li up to 50

Φh = 4 Li up to 50

Syntactic Graph ® 98.0 9.8× 10−2

Φh = 2 Li ≤ 33

Φh = 3 Li up to 50

Φh = 4 Li up to 50

Syntactic Graph ® 5.00 2.5× 10−3

Φh = 2 Li ≤ 1

Φh = 3 Li ≤ 14

Φh = 4 Li up to 50

Syntactic Graph ® 53.5 2.7× 10−2

Φh = 2 Li ≤ 11

Φh = 3 Li up to 50

Φh = 4 Li up to 50

Chapter 5

Active Approach for Certification
based Trust Model

The authentication for Internet websites is critically important for web security, because it en-

ables end users to verify the identities of Internet websites and hence prevent their sensitive data

from leaking to the sites they do not trust. Today’s web deploys a certification based trust model

for site authentication [16, 17]. This model relies on a group of trust anchors (known as certifi-

cate authorities) to establish trust by means of issuing legal certificates to websites. End users

authenticate remote websites by checking whether the site certificates are (directly or indirectly)

issued by a trust anchor. Web servers implement this model using the HTTPS protocol (HTTP

over SSL/TLS), and web browsers have already pre-installed a default set of trust anchors for

website authentication purposes.

Although the certification based trust model has been placed on the web for more than two

decades, it is recently found with a disastrous security flaw: the compromise of a single trust

anchor can subvert the entire trust model globally. The root cause is that end users do not

have the knowledge about which certificate authority is the legal issuer of which site certificate.

As a result, the attackers who compromise one certificate authority (usually the weakest one)

can issue faked site certificates which can be used to launch man-in-the-middle attacks. For

example, two real-world certificate authorities, Comodo [32] and DigiNotar [33], were found

compromised in 2011. Attackers employed them to issue faked certificates for popular websites,

and launched man-in-the-middle attacks to successfully hijack around 300, 000 Iranian’s Google

mail connections [34].

Patching this dangerous flaw is a very challenging problem, because the man-in-the-middle

attacks with different vantage points and attacking patterns pose different levels of threats to the

trust model. The state-of-the-art countermeasures do not make full use of trust the certification

based trust model provides, hence probably becoming ineffective against man-in-the-middle

86

Chapter 5. Active Approach for Certification based Trust Model 87

variants. On the one hand, notary based solutions (such as Perspectives [35] and Crossbear [36])

deploy a third-party service to collect different copies of a suspicious site certificate through

globally distributed hosts and alert a possible man-in-the-middle attack to end users if these

copies are not the same. This countermeasure explores a portion of Internet path diversity to

detect man-in-the-middle. However, the third-party service can be regarded as an additional

trust anchor and the compromise of this trust anchor can also subvert the entire trust model.

Even if the third-party cannot be compromised, this solution is still ineffective against the man-

in-the-middle attacks whose vantage points are near to web servers [36]. On the other hand,

some recent studies [37, 38] propose the use of pre-shared secrets (e.g., a password in [37] or

an HTTP cookie in [38]) to enhance site authentication. Although this kind of countermeasures

introduces new information from the design space outside trust model, it cannot establish trust

on the first time authentication, which is a very important property the certification based trust

model intends to protect.

In this chapter, we propose an active approach to harden the flawed certification based trust

model. The basic idea is to maximize the protection against SSL/TLS man-in-the-middle attacks

by actively seeking a priori trust from trust model (including available trust anchors and Internet

path diversity) as much as possible. Our approach consists of four countermeasures, each of

which has a unique tradeoff between the difficulty of deployment and the capability against

man-in-the-middle variants. We believe our approach is the first solution that can maximize the

use of trust for website authentication purposes.

In summary, we list our three major contributions in this chapter as follows:

1. We study how to maximize the use of trust in the certification based trust model for the

first time.

2. We design four distinct countermeasures against SSL/TLS man-in-the-middle attacks with

few compromised trust anchors. Our countermeasures have different capabilities against

man-in-the-middle variants and require different efforts for deployment.

3. We have evaluated our approach using a public certificate data set and Internet experi-

ments. The experimental results confirm the effectiveness of our approach.

The remainder of this chapter is organized as follows. We first the threat model of compromised

trust anchor based man-in-the-middle attacks in Section 5.1. We then design our approach which

consists of four countermeasures in Section 6.2.1, After that, we evaluate our countermeasures

using a real-world certificate data sets and Internet experiments in Section5.3.

Chapter 5. Active Approach for Certification based Trust Model 88

5.1 Threat Model

In this section, we describe the threat models for different man-in-the-middle variants against the

certification based trust model on the web. These variants contain different man-in-the-middle

vantage points and attacking patterns, hence posing different threats to the trust model.

Figure 5.1 illustrates three man-in-the-middle variants considered in this letter. All three are

assumed with a single compromised trust anchor (i.e., the trust anchor B in Figure 5.1). For the

man-in-the-middle variant ¬, the vantage point is close to the victim web user (e.g., a gateway

or a wireless access point of the victim user is compromised by man-in-the-middle attackers).

Moreover, this threat model considers that the attackers indiscriminately hijack all the HTTPS

connections from the victim user to any remote websites (i.e., the attacking pattern is non-

selective hijacking). Compared with variant ¬, the man-in-the-middle variant is smarter

because it will only intercept the connections to its interested websites (i.e., the attacking pattern

is selective hijacking). The real-world attack reported by [34] falls into threat model . In

contrast to ¬ and in which the vantage point is near the web user, threat model ® considers

that the man-in-the-middle vantage point is nearby web servers. This man-in-the-middle variant

is harder to detect, because nearly all the Internet paths to the victim web server necessarily pass

through this kind of vantage point. There is also another new variant if ®’s hijacking pattern

becomes selective. But we do not discuss this variant in this letter, because it makes lesser

impact as compared with variant ® and it is also easier to be detected.

server A

Victim User

server B

 vantage point

Man-in-the-middle variant ①,
vantage point near web user, non-selective hijacking

Trust anchor A

Cert A

issue

Trust anchor C

Cert B

issue

Trust anchor B

Cert A

issue

Trust anchor B

Cert B

issue

server A

Victim User

Server B

vantage point

Man-in-the-middle variant ②,
vantage point near web user, selective hijacking

Trust anchor A

Cert A

issue

Trust anchor C

Cert B

issue

Trust anchor B

Cert A

issue

Trust anchor C

Cert B

issue

server A

Victim User

 vantage point

Man-in-the-middle variant ③,
vantage point near web server, non-selective hijacking

Trust anchor A

Cert A

issue
Trust anchor B

Cert A

issue

Victim User

Trust anchor B

Cert A

issue

Trust anchor A

Cert A

issue

Trust anchor B has been compromised

Internet

Internet

Internet

FIGURE 5.1: Three threat models for different man-in-the-middle variants.

Chapter 5. Active Approach for Certification based Trust Model 89

5.2 Design of Active Approach

We elaborate on the details of our active approach in this section. Our approach contains three

client-side countermeasures and one server-side countermeasure against the three man-in-the-

middle variants described in Section 5.1. These countermeasures maximize the protection by

exhausting available trust anchors and exploiting Internet path diversity.

5.2.1 Formalization

Let T be the set of trust anchors in the certification based trust model on the web. Let W be the

set of web servers and U be the set of web user hosts in the Internet. Let P = {u w|u ∈
U,w ∈W} be the set of Internet paths from any user host to any web server. Let S be the set of

websites in the Internet. Since a website can be served by multiple web servers behind, we have

a subset of web servers Ws ⊆ W to serve a website s ∈ S. We use | ∗ | to denote the size of a

set, where ∗ could be T , W , U , P , S or any other set. Let Cw be the certificate placed on the

web server w ∈W for site authentication. Let I(Cw) be the issuer of Cw. In certification based

trust model, a web server w can be authenticated as a legal server that serves website s ∈ S if

Eq. (5.1) is satisfied.

I(Cw) ∈ T, where w ∈Ws. (5.1)

In this letter, we design countermeasures against man-in-the-middle attacks by actively exhaust-

ing available trust anchors in T and exploiting Internet path diversity from P .

5.2.2 Client-side Countermeasures

To counter the three different man-in-the-middle variants, we propose three corresponding client-

side solutions.

5.2.2.1 Client-side Countermeasure ¬

We propose client-side countermeasure ¬ to defeat man-in-the-middle variant ¬. This coun-

termeasure is based on a key insight that a large number of site certificates a web user actively

collects could be issued by the same trust anchor if man-in-the-middle variant ¬ is launched

with a single compromised trust anchor. As a result, we design a client-side countermeasure ¬

by enabling a web user to actively connect n different websites for requesting site certificates

and confirm a man-in-the-middle if these n certificates are issued from less than µ trust an-

chors. These n websites can be randomly selected or intended to choose if the web user knows

Chapter 5. Active Approach for Certification based Trust Model 90

some site certificates’ issuers in advance. Let Sn ⊆ S be the set of the n selected websites. A

man-in-the-middle is confirmed if Eq. (5.2) is satisfied.

|{I(Cw) ∈ T |w ∈Ws, s ∈ Sn}| < µ. (5.2)

The parameter n indirectly determines the number of trust anchors that can be used to defeat

man-in-the-middle variant ¬. A larger n leads to a higher probability that the collected site

certificates are issued by more different trust anchors. If we choose nwebsites whose certificates

are issued from |T | different trust anchors, all the available trust anchors can be used to resist

man-in-the-middle. The parameter µ defines the number of compromised trust anchors our

countermeasure can tolerate (i.e., our countermeasure can detect the man-in-the-middle with

up to µ compromised trust anchors). A larger µ can protect the trust model against man-in-

the-middle with more compromised trust anchors, but meanwhile suffers from a higher false

positive, especially if n is not large enough. We will show how to select appropriate n and µ in

Section 5.3.1.

5.2.2.2 Client-side Countermeasure

Client-side countermeasure ¬ is ineffective against man-in-the-middle variant , because this

variant only intercepts few site certificates the attackers are interested in.

To detect this variant on the client side, additional SSL/TLS tunnels are required. We therefore

propose a client-side countermeasure by actively deploying m globally distributed SSL/TLS

tunnel points to defeat the man-in-the-middle variant . The Internet paths from tunnel points to

websites can bypass the man-in-the-middle vantage points which is near the web user. However,

the Internet paths from a web user to tunnel points are still subject to the man-in-the-middle. To

take care of this issue and maximize the protection, we install certificates issued from different

trust anchors in different tunnel points. LetH be the set of tunnel points deployed in the Internet.

Let C1
h be the certificate installed in SSL/TLS tunnel point h ∈ H and Cwh be the web server

w’s certificate received through tunnel point h ∈ H . Our countermeasure detects a man-in-the-

middle if the received tunnel point certificates are issued from less than m trust anchors or a

web server’s certificates received through two different tunnels are different. To be precise, a

man-in-the-middle can be confirmed if Eq. (5.3) is satisfied.

|{I(C1
h) ∈ T |h ∈ H}| < m or ∃h, h′ ∈ H,Cwh 6= Cwh′ . (5.3)

Chapter 5. Active Approach for Certification based Trust Model 91

By this way, to hijack the connections between a web user and m deployed tunnel points, man-

in-the-middle attackers are required to compromise m additional trust anchors. Obviously, de-

ploying m = |T | tunnel points can maximize the protection because all the available trust

anchors are used.

5.2.2.3 Client-side Countermeasure ®

Countermeasure cannot defeat man-in-the-middle variant ®, because it can hardly set up a

tunnel point to access a web server without passing the man-in-the-middle vantage point closed

to this server. To address this problem, we propose a client-side countermeasure ® by enabling

web users to actively collect site certificates from other web servers of the same website. The

key insight of this countermeasure is that popular websites usually deploy a large distributed

system of servers across the Internet to serve end users from different regions with high avail-

ability and performance (i.e., content delivery network). These web servers are likely to use

the certificates issued from the same trust anchor, while the man-in-the-middle vantage point

near one web server is unlikely to be close to other servers, especially the ones located in a dif-

ferent geographical region. This countermeasure detects a man-in-the-middle if the certificates

received from different web servers of the same website are issued by different trust anchors.

Recall that Ws is a set of web servers serving behind website s, then a man-in-the-middle can

be confirmed if Eq. (5.4) is satisfied.

∃w,w′ ∈Ws, I(Cw) 6= I(Cw′). (5.4)

5.2.3 Server-side Countermeasure

We propose a unified solution to defeat all the three man-in-the-middle variants on the server

side. Our solution enables web servers to actively deploy η certificates issued by η different

trust anchors for site authentication. Web users recognize a man-in-the-middle if the η received

certificates from the same web server are issued by less than η trust anchors. Let Cw[j] be the j-

th certificate received from the server w, where j = 1, ..., η. A man-in-the-middle is confirmed

if Eq. (5.5) is satisfied.

|{I(Cw[j]) ∈ T |j = 1, 2, ..., η}| < η. (5.5)

By this mean, to subvert the entire trust model, man-in-the-middle attackers need to compromise

at least η trust anchors. Obviously, deploying η = |T | certificates in a web server can maximize

the protection of this web server as available trust anchors are exhausted.

Chapter 5. Active Approach for Certification based Trust Model 92

5.2.4 Comparison in the Literature

We compare our approach with existing countermeasures in Table 5.1. As can be seen, our ap-

proach is the first solution that can defeat all three man-in-the-middle variants with up to |T |
compromised trust anchors and protect both the first-time authentication and subsequent au-

thentications. We achieve this result by utilizing a priori trust knowledge from the certification

based trust model as much as possible. Although the server-side countermeasure has the best

capability against man-in-the-middle attacks as compared with the other three client-side coun-

termeasures, this countermeasure is more difficult to deploy, because it requires the modification

of SSL/TLS internals in both client side and server side.

5.3 Evaluation

Although we can fully control the parameters of client-side countermeasure (i.e., m) and

server-side countermeasure (i.e., η) for guaranteing their effectiveness, some of the parameters

in client-side countermeasures ¬ (i.e., µ) and ® (i.e., Ws) are out of our direct control. For this

reason, we evaluate client-side countermeasures ¬ and ® in this section. We also evaluate the

performance overhead introduced by our approach.

5.3.1 Evaluation of client-side countermeasure ¬

We employ a publicly available certificate data set released by [70] for our evaluation. The

authors of [70] scanned the entire IPv4 space in 2010 and successfully collected more than 1.5

million valid certificates. These certificates are issued from 963 certificate authorities. In our

experiments, we only consider the authorities which issue more than 5, 000 certificates in the

data set as trust anchors. The resulted data set contains 1, 426, 139 valid site certificates issued

from 32 trust anchors. That is, |T | = 32 in our experiments.

We regard an experiment round as a uniformly random selection of n certificates from the data

set. We consider n = 100 to 1, 000 and conduct 1, 000 rounds of experiment for each n. In each

round, we investigate the number of distinct issuers (i.e., trust anchors) of these n certificates.

The parameter µ is determined according to this investigation. Figure 5.2 shows the results. We

can see that, for n = 100, we should not use µ > 15 because it could result in false positives.

While for n > 800, it is safe for us to use µ = 30, which approximates the maximum protection

µ = |T | = 32.

Chapter 5. Active Approach for Certification based Trust Model 93

TABLE 5.1: A comparison of our approach and the existing solutions in the literature.

of compromised Implementation
man-in-the-middle variants trust anchors Level Side

Certification based trust model [16, 17] ≤ 1 N/A N/A
Notary-based solutions [35, 36] ≤ 1 Application Client
Notary-based solutions [35, 36] ≤ 2 Application Client

Pre-shared secrets [37, 38] ≤ |T | SSL/TLS internal Client+Server
Our approach (client-side ¬) ≤ µ→ |T | Application Client
Our approach (client-side) ≤ m→ |T | Application Client
Our approach (client-side ®) ≤ |T | Application Client
Our approach (server-side) ≤ η → |T | SSL/TLS internal Client+Server

First-time authentication
man-in-the-middle variants variant ¬ variant variant ®

Certification based trust model [16, 17] × × ×
Notary-based solutions [35, 36] X X ×
Notary-based solutions [35, 36] × × ×

Pre-shared secrets [37, 38] × × ×
Our approach (client-side ¬) X × ×
Our approach (client-side) X X ×
Our approach (client-side ®) × × X

Our approach (server-side) X X X

Subsequent authentications
variant ¬ variant variant ®

Certification based trust model [16, 17] × × ×
Notary-based solutions [35, 36] X X ×
Notary-based solutions [35, 36] × × ×

Pre-shared secrets [37, 38] X X X

Our approach (client-side ¬) X × ×
Our approach (client-side) X X ×
Our approach (client-side ®) × × X

Our approach (server-side) X X X

5.3.2 Evaluation of client-side countermeasure ®

We conduct Internet experiments to evaluate the client-side countermeasure ®. We choose

Google as the victim website because it has been attacked by real-world man-in-the-middle

[34]. Figure 5.3 shows the Internet paths from a machine located in Hong Kong to two Google

servers in Hong Kong and one Google server in Japan. The site certificates collected from these

Chapter 5. Active Approach for Certification based Trust Model 94

500 1000
15

32

n

of

 d
is

tin
ct

 is
su

er
s

FIGURE 5.2: The number of issuers of n randomly selected certificates.

three Google servers are issued from the same trust anchor. It can be seen that if attackers have

compromised the router 216.239.43.17 which nears the Google server 1 in Hong Kong, we can

detect this man-in-the-middle attack by fetching the certificate from the Google server 2 in Hong

Kong or the Google server in Japan.

xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx Host in HK

xxx.xxx.xxx.xxx 203.188.117.69 202.40.161.10

209.85.248.62

216.239.43.17

74.125.128.100

Google server 1 in HK

209.85.253.71

74.125.128.102

Google server 2 in HK

209.85.248.60

209.85.251.225

66.249.94.123

66.249.94.34

209.85.241.103

209.85.250.249

74.125.235.83Google server in JP

FIGURE 5.3: Internet paths from a host in Hong Kong to three different Google servers.

We conduct further experiments to traceroute the Google servers deployed in six other countries,

including Singapore, Australia, America, Canada, German and Russia. We measure Internet

path diversity between two paths using the number of different routers between them. Table 5.2

shows the diversity between the paths to Google server 1 in Hong Kong and eight other Google

servers located in different regions. A larger number indicates a higher probability of evading

man-in-the-middle vantage point near the Google servers.

Chapter 5. Active Approach for Certification based Trust Model 95

TABLE 5.2: The number of different routers between the paths to the Google server 1 in Hong
Kong and other Google servers located in different regions.

Country HK(2) SG JP AU US CA DE RU

of different routers 1 2 6 6 13 6 16 13

We also note that not all administrative domains have deployed CDN. Therefore, we investigate

the Alexa top 1000 domains (500 of them open HTTPS services) and report the CDN support

rate based on these 500 HTTPS domains. In particular, we scan these 500 domains’ underlying

web servers from seven regions including Hong Kong, Japan, Singapore, Australia, Canada,

German and Russia. We successfully find 266 domains supported by more than one web server.

We also examine the certificates deployed in these domains’ web servers. We confirm that for

256 domains the web servers belonging to the same domain have deployed site certificates issued

from the same trust anchor. For the other 10 domains, we conduct a careful check and find the

certificates that are issued from different trust anchors are either self-signed certificates or the

certificates signing for other domains. Our client-side countermeasure ® cannot be impeded by

these erroneous certificates, because they can be easily identified and removed. After excluding

the web servers deploying erroneous certificates, these 10 domains still contain more than one

web server. As a result, our client-side countermeasure ® can be carried out in these 266 out of

500 (i.e., 53.2%) domains.

5.3.3 Evaluation of performance overhead

Our approach could introduce additional connection delay and computation cost due to addi-

tional certificate verification. We evaluate these performance overheads by simulating additional

tasks in parallel. Our performance evaluation is performed using a virtual machine located in

our laboratory with 8 core 2.67GHz CPU and 6 GB memory.

We run our evaluation for each countermeasure 100 times. For the evaluation of the client-

side countermeasure ¬, we randomly choose n = 100 to n = 1000 IP addresses from the

certificate data set [70]. For the evaluation of the client-side countermeasure , we randomly

select m = 32 PlanetLab nodes around the world as SSL/TLS tunnel points and connect back

to the Hong Kong Google server through these nodes. For the client-side countermeasure ®,

we conduct the evaluation based on the Google servers listed in Table 5.2. For the server-side

countermeasure, we consider η = 32. We present our result in Figure 5.4 and Table 5.3. As

can be seen, if we do not choose a large n (i.e., n ≤ 100) for the client-side countermeasure ¬,

the performance cost (computation cost plus connection delay) is relatively small (i.e., less than

1.2 seconds). Note that, the connection delay for server-side countermeasure is N/A, because

this countermeasure does not introduce connections to additional web servers. Instead, it only

Chapter 5. Active Approach for Certification based Trust Model 96

introduces additional connections to the same web server, and these connections cannot result

in larger RTTs. We also note that our approach could introduce different overheads if we choose

different countermeasure parameters.

TABLE 5.3: Performance overheads introduced by our approach.

Countermeasure Client-side ¬ Client-side Client-side ® Server-side

Computation cost Fig. 5.4 461± 39 ms 55± 10 ms 202± 30 ms
Connection delay Fig. 5.4 744± 25 ms 341± 17 ms N/A

500 1000
0

2000

4000

6000

8000

10000

n

T
im

e
D

el
ay

 (
m

s)

Computation Cost
Connection Delay

FIGURE 5.4: The performance overheads in terms of connection delay and computation cost
for client-side countermeasure ¬.

Chapter 6

File Download Vulnerability Study and
New Defense

Today’s web is now becoming a readable and writable medium for sharing and managing files

that are stored on globally distributed web servers. Along with this trend, today’s web con-

sists of a large number of web applications which provide file management services (such as

file upload, download and online editing etc.). These applications usually implement a range

of file operation functions by means of server-side scripts, and releases these functions in the

form of dynamic URLs. Among these functions, file download is a very basic primitive that

is responsible for publishing and delivering web managing files to remote web users. For the

ease of description, we regard the files stored on web server’s filesystem but managed by web

applications as web managing files, and other files on the filesystem as local files.

A file download vulnerability occurs if remote web users can download unauthorized (local)

files from a web server through a file download script. These files could be source code of

server-side scripts, web configuration files, critical system files and unauthorized web managing

files. The root cause of this vulnerability is the ambiguous permission server-side scripts use

for local filesystem access. More precisely, server-side script runs on web server permission

with a particular user and group privilege. This permission is too coarse-grained to isolate web

managing files from local filesystem and cannot differentiate the files managed by different web

applications.

Defenses against file download vulnerability have been existing for a long time. As a result,

some may believe this is a solved problem. However, we find that existing defenses still have

a number of practical drawbacks, hence making this vulnerability still prevalent in today’s web.

On the one hand, sanitizing sensitive user inputs before using these inputs as file names to access

local filesystem is an effective defense. However, this defense requires customized implemen-

tations for different file download logics and therefore becomes easy to introduce insufficient or

97

Chapter 6. File Download Vulnerability Study and New Defense 98

erroneous protections. Moreover, since an enterprise web server often consists of legacy scripts

that are deployed by different web administrators, at different times, and for different purposes,

it is very difficult to assure all these scripts are not vulnerable. On the other hand, directory

based permission control is another kind of mainstream defenses. Although this defense can

restrict web server permission to some specified directories and forbids any file read operations

outside, it is not flexible and falls victim to multiple file download scripts. For example, if the

web server permission is specified to a web application’s home directory, the local files such as

server-side scripts and web configuration files inside this home directory cannot be protected.

Even if the specified directories do not contain any local files, the files managed by one web

application can also be illegitimately downloaded through other irrelevant file download scripts

running in the same web server.

By sampling the landscape of file download vulnerabilities across different domains and coun-

tries, we confirm the weak protection of file download scripts in today’s web. In particular,

we have collected 19, 137 suspicious file download scripts by means of Google search engine,

and successfully discovered 6, 060 (or 31.7% of our sample set) vulnerabilities. Among these

vulnerabilities, we have found 5, 807 (or 30.3%) can download script source codes, 4, 285 (or

22.4%) can retrieve web configurations, and 1, 987 (or 10.4%) can expose critical system files.

Our further experiments confirm a high probability of disastrous consequences that our discov-

ered vulnerabilities can induce (i.e., 12.8% of our discovered vulnerabilities can result in system

intrusion and 17.8% can lead to database intrusion). Our results motivate us to reconsider new

defense to enhance the protection of file download scripts.

The design of our defense targets to provide (1) error-proof protection (providing unified pro-

tection regardless of specific file download logics), (2) flexible protection (providing per-file

permission control), and (3) mutually independent protection (providing effective protection

against web managing files leaking through irrelevant file download scripts). We therefore pro-

pose a new defense called FileGuard, which takes advantage of script engine to embed dedicated

ownership information into web managing files. This ownership information is different from

the ownership information recognized by operating systems, as well as can be used to isolate

web managing files from local filesystem and differentiate the files managed by different web

applications. Our design chooses extended file attributes as the storage to embed the dedicated

ownership, although we note that other file properties can also be used for this purpose.

FileGuard is novel in three aspects. First, compared with user input sanitization, FileGuard is

error-proof because it provides a unified protection in script engine layer and thus cannot be

affected by specific file download logics. Second, in contrast to directory based permission con-

trol, FileGuard is flexible since its permission control can be performed on file basis. Third,

FileGuard can embed different ownership to the files managed by different web applications,

hence preventing web managing files from being downloaded through irrelevant file download

Chapter 6. File Download Vulnerability Study and New Defense 99

scripts. We have implemented a prototype of FileGuard on top of PHP5 script engine and evalu-

ated this prototype in terms of effectiveness, performance overhead and development costs. Our

experimental results show that, compared with existing defenses, FileGuard can provide better

protection against file download vulnerabilities but induces only a few performance overheads

and development costs.

To sum up, we make two major contributions in this chapter:

• We report on 6, 060 (or 31.7% of our sample dataset) file download vulnerabilities across

different domains and countries. Our results reveal the prevalence of file download vul-

nerabilities in today’s web, and implicitly confirm the practical drawbacks of existing

defenses.

• We propose FileGuard, a new defense that can provide error-proof, flexible and mutually

independent protections against file download vulnerabilities.

The remainder of this chapter is organized as follows. Section 6.1 revisits the background of file

download scripts and practical drawbacks of existing defenses. Section 6.2 reports our sampling

results of file download vulnerabilities in today’s web and potential attacks using these vulner-

abilities. Section 6.3 presents the design of FileGuard and the implementation of its prototype.

Section 6.4 evaluates the performance of our FileGuard prototype implementation.

6.1 Background

In this section, we elaborate on why file download scripts on the web are vulnerable, as well as

survey existing defenses for this issue.

6.1.1 Threats to File Download Scripts

Modern web servers are designed to run on a particular user and group permission for accessing

local filesystem. Server-side scripts inherit this permission to perform authorized file system

operations, such as reading allowed files as requested by remote web users and sending these

files back to the users for their downloading. Figure 6.1(a) illustrates a file download process

on the web. A remote web user initiates a file download request through his browser. This

request is sent to web server using HTTP or HTTPS protocol in the Internet. Upon receiving

this request, web server calls corresponding server-side script read functions to copy the file from

local filesystem to memory, and then send it back to the web user in HTTP response packets.

Chapter 6. File Download Vulnerability Study and New Defense 100

Web ServerBrowser

Filesystem Script engine

File request

File download
HTTP(S)

Call
script

Execute File operation

File copy

Read

(a) A file download process on the web.

server-side script engine

web server

local filesystem

local files web managing files

sanitization

web application 2web application 1

erroneous sanitization

local file request
local file response

local file request
no file response

file download script file download script

(b) User input sanitization.

server-side script engine

web server

web application 2web application 1

local filesystem

other
directories directory 1

local files

directory 2

web managing files

vulnerable file download script file download script

(c) Directory based permission control.

FIGURE 6.1: File download process and existing defenses.

According to Figure 6.1(a), we find that ¬ remote web users are in charge of determining which

file (possibly including file path) they attempt to download, server-side scripts use web server

permission to read files in response to remote web users. These two findings indicate a potential

threat to file download scripts. That is, a malicious web user can request arbitrary files the web

server has read permission on. A higher permission the web server runs on can lead to a more

Chapter 6. File Download Vulnerability Study and New Defense 101

serious threat. For example, if a web server is configured with root privilege, server-side scripts

can use this privilege to read entire local filesystem. Although modern web servers use a lesser

privilege in default, this privilege is still too coarse-grained to protect file download scripts.

First, this permission cannot isolate all the local files from web managing files. We consider

an Apache web server running in Linux operating system as an example to show the coarse

privilege issue. In this example, Apache is configured to run with a user and group account

www-data by default. Although this setting is intended to only allow read permissions on the

files whose owner or group is www-data (these files are web managing files because they are

uploaded and created by server-side script which runs on web server permission), it also causes

implicit read access to other world-readable files in the system. A file is world-readable if the

others reference mode of this file is set to “r”. In Linux, a number of local files are necessarily

world-readable, because they are shared with all the Linux users. For example, any Linux user

can perform the command “ls -l” for specified files and directories to display their ownership

information, but this information should be read from a password file /etc/passwd. As a

result, the password file is necessarily world-readable and runs a high risk of being illegally

downloaded with the default web server permission. The coarse privilege issue is not limited to

Apache and Linux, any other web servers and operation systems suffer from the same problem.

Second, the default web server permission can neither differentiate web managing files managed

by different web applications, because all the web applications run on top of the same web server.

6.1.2 Drawbacks of Existing Defenses

In today’s web, a number of defenses have been proposed to protect file download scripts. These

defenses can be roughly grouped into two categories. One is user input sanitization, and the other

is directory based permission control.

6.1.2.1 User Input Sanitization

From script developers’ point of view, user input sanitization is an effective defense that they

can implement to protect their own file download scripts. The basic idea is to sanitize dangerous

characters from the URL parameters which convey user specified file and path names. However,

since different file download scripts usually have different download logics, the implementations

of user input sanitization are quite different and easy to introduce errors. Figure 6.1(b) shows

a file download vulnerability due to the erroneous sanitization. We note that there necessarily

exist a large number of possibilities that could lead to erroneous sanitization, but we discuss

only four typical ones here to help readers understand this problem.

Chapter 6. File Download Vulnerability Study and New Defense 102

Absolute Path or Relative Path: Some file download scripts sanitize parent path operand (i.e.,

../) to prevent unauthorized local filesystem access. Although this kind of sanitization is effec-

tive for relative path traversal, it cannot protect the scripts which treat user inputs as absolute

file paths for filesystem access, because absolute path can traversal the entire filesystem without

requiring parent path operands. Therefore, if a file download script only sanitizes parent path

operand but use absolute file path to access local filesystem, this sanitization is an erroneous

protection.

Partial Sanitization: Some file download scripts can use multiple URL parameters to convey

file paths, but only sanitize some of these parameters. The partial sanitization could lead to

file download vulnerabilities. Code listing 6.1 shows a real-world example. As can be seen, al-

though the vulnerable script prevents the download of php source codes by sanitizing the param-

eter “file extension” (Lines 3-8 in code listing 6.1), malicious users can easily craft a download

URL with parameters like “source=/download.php&file extension=pdf” to bypass this protec-

tion, because the effective file path is conveyed through the parameter “source” (Lines 2 and 10

in code listing 6.1).

1 <?php

2 $ f i l e = s u b s t r (t r i m (u r l d e c o d e ($ GET [’ s o u r c e ’])) , 1) ;

3 $ f i l e e x t e n s i o n = t r i m (s t r t o l o w e r (u r l d e c o d e ($ GET [’ f i l e e x t e n s i o n ’]))) ;

4

5 s w i t c h ($ f i l e e x t e n s i o n) {
6

7 / / The f o l l o w i n g are f o r e x t e n s i o n s t h a t s h o u l d n ’ t be downloaded (s e n s i t i v e s t u f f , l i k e

php f i l e s)

8 c a s e ” php ” : d i e (”Cannot be used f o r ” . $ f i l e e x t e n s i o n . ” f i l e s !”) ; b r e a k ;

9 }
10 @ r e a d f i l e ($ f i l e) ;

11 ?>

LISTING 6.1: Partial Sanitization Issue

Incomplete Black List: Some file download scripts handle a black list of extension names to

prevent local files with these extension names from being illegitimately downloaded. However,

it is very difficult to have a complete black list. The code listing 6.2 shows a real-world example

of incomplete black list. In this example, the script uses a black list not to be dloaded for

sanitization. This list is apparently incomplete, because the Linux password file /etc/passwd

and many other critical system files cannot be protected using this list.

Programming Errors: Human-made errors are the primary cause of erroneous user input san-

itization. This kind of errors is nearly impossible to be eliminated, because it depends on

Chapter 6. File Download Vulnerability Study and New Defense 103

the programming capabilities and experiences the script developers have. Back to the exam-

ple in the code listing 6.2, this script misuses the function substr() by setting its second pa-

rameter to 1. This setting could strip the first character of the extension name. That is, “f-

name=download.php” can result the extension name to “php”, and hence bypass the protection

because the forbidden extension name stored in the not to be dloaded array is “.php”.

1 <?php

2 $ fn = $ GET [’ fname ’] ;

3

4 $ n o t t o b e d l o a d e d = a r r a y (” . htm ” , ” . h tml ” , ” . s h t m l ” , ” . dh tml ” , ” . php ”) ;

5 $ e x t e n s i e = s t r r c h r ($fn , ” . ”) ;

6 i f (! i n a r r a y (s u b s t r ($ e x t e n s i e , 1) , $ n o t t o b e d l o a d e d) && (s t r p o s ($fn , ” . . ”) ===

f a l s e)) {
7

8 r e a d f i l e ($ fn) ;

9 } e l s e {
10 / / message when downloading a f o r b i d d e n f i l e

11 echo ” $ m s g n o t a l l o w e d ” ;}
12 ?>

LISTING 6.2: Incomplete Black List and Programming Errors

6.1.2.2 Directory based Permission Control

From web administrators’ point of view, server-side permission control is a very promising

defense, because it can protect file download scripts without considering the detailed logics

of these scripts. This kind of defenses usually restricts web server permission to some pre-

defined directories and cannot perform fine-grained access control inside these directories. That

is, this defense cannot protect the local files stored on these pre-defined directories. Moreover,

the directory based permission control cannot differentiate which directory is configured for

which web application, hence becoming ineffective to prevent web managing files from being

illegitimately downloaded through irrelevant file download scripts.

Figure 6.1(c) shows an example of directory based permission control. In this example, web

server is configured to have read permission for directories 1 and 2. The directory 1 is intended

to store web managing files of web application 1, while the directory 2 is for web application

2. We assume web application 1 has a vulnerable file download script. Due to the directory

based permission control, malicious web users cannot retrieve local files outside the directory

1 through the vulnerable script. However, the local files inside directory 1 are still possible to

be downloaded. Even worse, malicious users can exploit this vulnerable script to bypass web

application 2’s authentication and illegally download web managing files stored on the directory

2.

Chapter 6. File Download Vulnerability Study and New Defense 104

6.2 Vulnerability Survey in Today’s Web

In this section, we sample the landscape of file download vulnerabilities across different domains

and countries, and surprisingly confirm the weak protection of file download scripts in today’s

web. In particular, we first describe the methodologies that we use for sampling file download

vulnerabilities in Section 6.2.1. We then report the vulnerabilities we have discovered in Section

6.2.2. We also discuss the possibly disastrous consequences of file download vulnerabilities in

Section 6.2.3.

6.2.1 Sampling Methodologies

We sample file download vulnerabilities from today’s web in two steps. In step one, we collect

suspicious file download URL samples by means of Google search engine. In step two, we test

these URL samples and check whether they are vulnerable.

6.2.1.1 Step One, Collecting Suspicious URL Samples

We collect suspicious file download URLs from the Internet by means of Google search engine.

We are interested in the sample URLs which are named as download.ext. The ext could be php,

jsp, aspx or asp. They represent four types of server-side script language accordingly: PHP (i.e.,

Hypertext Preprocessor), JSP (i.e, Java Server Pages), ASP.NET (with a “.aspx” extension) and

its predecessor ASP (i.e., Active Server Pages). We choose these four because they are used by

more than 95% Internet websites in today’s web [136].

We implement a crawler to automate our collection process. Our crawler manipulates Firefox to

access Google search pages using Selenium WebDriver [137]. However, since Google sets up

several restrictions to prevent illegal use of their results, we should work around these restric-

tions before running our collection process. On the one hand, Google will present CAPTCHA if

it suspects the user of the search engine is not a human. Solving Google’s CAPTCHA without

human efforts is very challenging. Although several automated tools (such as CAPTCHA Mon-

ster [138]) has been released for this problem, the success rate of breaking Google’s CAPTCHA

cannot be guaranteed. For this reason, we do not use this kind of tools for our experiment.

Instead, we propose two methods to reduce human interactions during the crawl of Google re-

sults. One is setting the number of results that can be shown in one page from the default value

10 to the maximum value 100. This setting can largely reduce the frequency that our crawler

should interact with Google, hence mitigating the probability of encountering CAPTCHA. The

other method is to set up a list of Firefox profiles in advance. These profiles contain differ-

ent HTTPS proxies and user session settings. In case a CAPTCHA appears, our crawler can

Chapter 6. File Download Vulnerability Study and New Defense 105

choose a new profile to continue the collection because Google’s detection is bound to IP ad-

dress and user account. After all the prepared profiles are exhausted, manual efforts are required

to fix CAPTCHA for all these profiles in one time. We note that our crawler works in a semi-

automated manner but it is easy to make our crawler fully automated if we can find an effective

Google CAPTCHA solver.

On the other hand, Google search engine will only report the first one thousand relevant results

even if there are thousands of millions of results that match users’ key words. Even worse,

these reported results usually contain a large number of duplicated URLs (the values of URL

parameters are different). As a result, to collect suspicious URLs as much as possible, we should

append dummy key words associated with download.ext to drive Google search engine to report

more results. Our used key word pattern is like below:

a l l i n u r l : download . e x t ? key f i l e t y p e : e x t s i t e : t o p . c o u n t r y

The allinurl, filetype and site are Google search operators [139], while the blue words are the

parameters in our pattern. Each parameter can be enumerated as different values in our experi-

ments as follows. ext = (php,jsp,aspx,asp), key = (Empty,file,path,filename,filepath,fname), top

= (Empty,edu,ac,gov,org,com,co,net,biz) and country could be Empty or 254 country domain

suffixes such as uk, cn, and ca. We note that we can collect more suspicious URL samples if we

choose more values for these pattern parameters.

We run our crawler to collect suspicious URL samples from the 7th May 2013 to the 12th May

2013. We remove the URLs whose domains cannot be connected and finally have 19, 137 valid

suspicious URL samples in total.

6.2.1.2 Step Two, File Download Vulnerability Discovery

In this step, we target to detect file download vulnerabilities from the URL samples we have

collected in step one. We first employ regular expression to recognize the URL parameters that

appear to transmit file name or path or path concatenating file name. We then replace original file

name with a representative server-side script name and enumerate possible paths. We confirm

a vulnerability if we can successfully download the representative script in our test. We also

choose representative web configuration file and critical system file, and test whether these files

can be downloaded through the suspicious URL.

In our experiment, a suspicious download URL usually has the following format:

h t t p (s) : / / domain / p a t h t o s c r i p t / download . e x t ? p a r a 1 = v a l u e 1&p a r a 2 = v a l u e 2 &. . .& paraN=

valueN

Chapter 6. File Download Vulnerability Study and New Defense 106

In this example, there exist N URL parameters (i.e., paran is the name of a parameter while

valuen is the value of the parameter paran, n = 1, ..., N). To download an expected file, web

users need to specify the file name and sometimes the path to file in corresponding URL param-

eters. We apply regular expressions to identify which parameter is likely to contain this kind of

information. We recognize the file name according to the pattern of its extension name (i.e., .pdf,

.doc, .mp3 etc..). We identify the path to file using different regular expressions for two differ-

ent cases, one is absolute path and the other is relative path. To recognize absolute path to file,

we employ regular expression to match the string that is started with / or [A − Za − z] : (e.g.,

/uploads and C : /uploads are both absolute paths). For the relative path to file, it should be a

string that contains the special character / but does not match the regular expression of absolute

path to file (e.g., uploads/news is a relative path). Unfortunately, some relative path to files

may not contain /, such as download.php?dir=news where news is a relative directory but does

not contain the character /. To take care of this issue, we have two candidate approaches. One

is to blindly consider all the parameters whose value does not contain / and extension name

as the relative path to file, and the other is to regard a parameter as relative path to file if this

parameter’s name contains sub string “dir” or “path” or “fold”. We choose the second approach

because it can cover almost cases in our experiment. Moreover, since some paths could use \
rather than /, we preprocess parameter values by replacing all the \ with / before the parameter

recognition.

Table 6.1 lists the regular expressions that we use for parameter recognition. If a parameter

matches both the file name and path to file, this parameter is recognized as a path concatenating

file name, such as /uploads/a.pdf .

TABLE 6.1: Regular expressions for parameter recognition.

Parameter Regular expression

File name value \.[A− Za− z0− 9]{3, 4}$
Abs. path to file value Λ(/|([A− Za− z] :))
Rel. path to file value Λ(?!/|([A− Za− z] :))[Λ/] + /

Rel. path to file name (dir|path|fold)
value Λ[Λ/\.] + $

To test whether a suspicious download URL is vulnerable, we utilize the URL to download a

representative sensitive file. If the suspicious URL can successfully download the representative

file, we confirm it as a vulnerability. Otherwise, it is not.

In our experiment, we group file download vulnerabilities into three categories according to

their capabilities of downloading different sensitive files. If a vulnerability can leak the source

code of server-side scripts, we call it s-vul. If a vulnerability can be used to download web

configuration files, we call it w-vul. And if a vulnerability can retrieve critical system files, we

Chapter 6. File Download Vulnerability Study and New Defense 107

call it c-vul. Table 6.2 presents the details of our definitions. Apparently, a vulnerability can

simultaneously belong to more than one category.

TABLE 6.2: The definition of three types of vulnerabilities.

Type s-vul w-vul c-vul

Sensitive Files Source Codes Web Configurations System Files

To detect s-vul, we choose the download script itself as a representative server-side script (i.e.,

download.ext). We note that a successful retrieval of download.ext does not guarantee

a s-vul has the capability of downloading the entire set of server-side script source codes in the

website. However, we choose it as representative because it shows s-vul’s minimal capability.

To perform a valid test, we have to replace recognized file name with the representative script

name. We also need to prepare an appropriate path to replace the path to file because

the location of our representative file is usually different from the location of original file. We

enumerate possibly appropriate paths to find the path that can lead to the exploit (we call it

path to exploit). Our enumeration is based on the path to file and the representative

script’s leading path (i.e., path to script).

Let s be the number of directories within path to script and let f be the number of di-

rectories within path to file. Since absolute path to file is started with the top direc-

tory but relative path to file implicitly means the current path (i.e., path to script)

or some other paths specified in server-side script is leading to this path to file, our path

enumeration is different for absolute path to file and relative path to file. For ab-

solute path to file, we use path pattern like path to file/{../}f+kpath to script, where

{../}f+k denotes f + k consecutive ../. While for relative path to file, we use pattern like

path to file/{../}s+f+kpath to script, where {../}s+f+k indicates s+f+k consecutive ../.

In our experiment, we enumerate k from 0 to 8. Although these patterns can detect a large por-

tion of s-vul, they heavily rely on the parent path operator (i.e., ../). As a result, these patterns

cannot disclose the vulnerable script that has sanitized the parent path operator.

To detect s-vul in the scripts that have stripped ../, we enumerate additionally possible paths.

For absolute path to file, the additional path pattern is {path to file}−m/path to script,
where the {path to file}−m indicates a path to file in which the last m directories have

been stripped. Apparently, 0 ≤ m ≤ f . While for the relative path to file, we only

consider two additional paths. One is ./ and the other is an empty path.

To have a more comprehensive study of file download vulnerabilities in the web, we try further

exploits to detect w-vul and c-vul. For detecting w-vul, we choose different representative web

configuration files for different server-side scripting languages. We choose WEB-INF/web.xml

in JSP and web.config in ASP.NET. Since developers write web configuration files for ASP

Chapter 6. File Download Vulnerability Study and New Defense 108

and PHP in an ad hoc manner, we use index.(asp|php) or default.(asp|php) as the

representative. These configurations are usually stored in web server home directory. To test

whether a suspicious URL can download web configuration, we use representative web config-

uration file to replace the original file name in corresponding URL parameters. We try similar

path enumerations as we choose for testing s-vul but remove path to script in these paths,

because web configurations are usually stored in website home directory. If we can successfully

download the representative configuration, we regard this URL as a w-vul.

For discovering c-vul, we choose win.ini as the representative in Windows and /etc/passwd

(or /etc/shadow) in Linux. To discover c-vul, we first use win.ini or passwd to replace

the original file name in the URL parameters. We also enumerate similar paths as we use for the

discovery of s-vul, but replace path to script with sys path. The sys path could be

/windows/ or C:/windows/ in Windows system and /etc/ in Linux.

6.2.2 Empirical Study of File Download Vulnerabilities in the Web

In our experiments, we have successfully discovered 6.060 vulnerabilities from the 19, 137 sus-

picious URLs (i.e., 31.7% URLs are vulnerable in our dataset). Among these vulnerabilities,

5, 807 are s-vul, 4, 285 are w-vul and 1, 987 are c-vul.

It can be seen, a number of vulnerabilities can be used to only download source codes or web

configurations or critical system files or some of them. There are two major reasons causing this

result. First, many vulnerabilities exist due to insufficient sanitization. Compared with the to-

tally missing of sanitization, insufficient checks could limit the consequences of vulnerabilities.

For example, if a server-side script only sanitizes parent path operators, the resulted vulnera-

bility can still download sensitive files in current directory or sub directories. Moreover, if a

script applies an incomplete black list to only sanitize script’s extension names, the correspond-

ing vulnerability may be able to still retrieve critical system files. Second, server-side script

engines have their own mechanisms to protect filesystem although these protections are usually

disabled in default. We take PHP as an example to explain this kind of protection. Website

administrators who take care of filesystem security can enable the safe mode and specify an

open basedir string in php.ini1. Since the PHP safe mode only allows an PHP script to

read the file which has the same UID (owner) as this script, this mode is very effective in pre-

venting vulnerable scripts from reading world-readable critical files. Moreover, the open basedir

string can limit the files that PHP scripts can read to a specified directory-tree.

We conduct empirical study of file download vulnerabilities based on our experiment results.

Our study covers three aspects. We first analyze our discovered vulnerabilities according to

different scripting languages. We then illustrate the geographical distribution of vulnerabilities
1http://www.php.net/manual/en/ini.core.php

Chapter 6. File Download Vulnerability Study and New Defense 109

for different countries. At last, we study the popularity of the websites where the vulnerabilities

are found according to the Alexa top 1 million site ranking list [140].

6.2.2.1 Scripting Language Study

Our experiments cover four popular scripting languages (i.e., PHP, JSP, ASP.NET and ASP).

Figure 6.2 illustrates the distribution of the three types of vulnerabilities (including s-vul, w-vul

and c-vul) among the four scripting languages. We also plot the number of suspicious URLs

for each scripting language in this figure. PHP contains the largest number of s-vul, w-vul and

c-vul, while JSP is involved with fewest s-vul and w-vul. This result is probably due to the

biased samples collected by our crawler which collects much more suspicious PHP URLs than

JSP URLs. Moreover, it collects roughly the same number of suspicious URLs for ASP and

ASP.NET. Since ASP is the predecessor version of ASP.NET, it is not surprising to see more

vulnerabilities in ASP than those in ASP.NET.

An interesting observation is that, although JSP has fewest s-vul and w-vul, its c-vul are more

than those in ASP and ASP.NET. The reason is relevant to the type of operation systems the

scripting languages run. In our experiment result, we only discover 285 win.iniwhile harvest

1, 702 /etc/passwd. This result indicates that the stolen of critical system file in Windows

system is more difficult than that in Linux system. Since JSP is a platform-independent scripting

language but ASP and ASP.NET can only work in Windows system, it is reasonable for JSP to

have more c-vul even if its s-vul and w-vul are less than those in ASP and ASP.NET.

PHP JSP ASP.NET ASP
0

2000

4000

6000

8000

10000

Scripting Language

N
um

be
r

of
 U

R
Ls

suspicious URL
s−vul
w−vul
c−vul

FIGURE 6.2: The distribution of file download vulnerabilities for scripting languages.

Chapter 6. File Download Vulnerability Study and New Defense 110

6.2.2.2 Global Distribution Study

In this section, we study global distribution of file download vulnerabilities among different

countries. We recognize the country code of a suspicious URL according to the top domain of

this URL (e.g., .kr, .cn, .it etc.). If the top domain name is not a country code (such kind of top

domain could be .edu, .org, .com etc.), we query such URLs’ country code by means of whois

services. If even the whois service can neither recognize a URL’s country code, we regard this

URL as from an unknown country. We finally have 793 out of the 19, 137 suspicious URLs from

unknown country.

In our experiment results, we have successfully collected suspicious URLs from 190 countries.

We have discovered s-vul, w-vul and c-vul from 133, 119 and 101 countries respectively. We sort

these countries according to the number of suspicious URLs within each country in descending

order. Note that we simply exclude the unknown country from our ranking.

Table 6.3 lists the number of suspicious URLs and the three types of vulnerabilities that belong

to the top 15 countries and other countries. Although the top 15 countries are less than 10%

of all the 190 countries, they contain more than a half of suspicious URLs. The file download

vulnerabilities in the top 15 countries are also majority.

TABLE 6.3: The proportion of suspicious URLs and vulnerabilities for top 15 countries.

Total Top 15 countries Other countries

suspicious URL 19, 137 10, 758 (56.2%) 8, 379 (43.8%)
s-vul 5, 807 3, 491 (60.1%) 2, 316 (39.9%)
w-vul 4, 285 2, 532 (59.1%) 1, 753 (40.9%)
c-vul 1, 987 1, 112 (56.0%) 875 (44.0%)

We perform an in-depth study for the three types of vulnerabilities in the top 15 countries, and

aim to understand the distribution of vulnerabilities among these countries in details. Figure

6.3 demonstrates this distribution. As clearly shown, Korea (kr) is the top country that contains

the most suspicious URLs. America (us) takes the second place and Mainland China (cn) is

behind. The order of the three types of vulnerabilities is slightly different from the order of

suspicious URLs. For example, even the number of suspicious URLs from German (de) is the

fourth largest, its vulnerabilities are less than those in Italy (it) which is ranked as the sixth place

in terms of the number of suspicious URLs.

6.2.2.3 Popularity Study

In this section, we study the popularity of file download vulnerabilities according to the ranking

of vulnerable websites in the Alexa top 1 million domain list [140]. We plot three CDF curves to

Chapter 6. File Download Vulnerability Study and New Defense 111

kr us cn de uk it nl dk se fr au ru br eu ch
0

500

1000

1500

Country Code

N
um

be
r

of
 U

R
Ls

suspicious URL
s−vul
w−vul
c−vul

FIGURE 6.3: The distribution of file download vulnerabilities for top 15 countries.

show the distribution of our discovered s-vul, w-vul and c-vul among the top 1 million domains

in Figure 6.4. It can be seen, for all the three types of vulnerabilities, around 15% of them

belong to the top 1 million domains, and their distributions are very similar. Moreover, there

are 23 s-vul, 13 w-vul and 2 c-vul belonging to the top 1000 domains. Our study confirms the

existence of file download vulnerabilities in top domains, and some are among the very popular

sites.

0 2 4 6 8 10
x 10

5

0

0.05

0.1

0.15

Website Rank in Alexa

C
D

F

s−vul
w−vul
c−vul

FIGURE 6.4: The popularity of file download vulnerabilities.

6.2.3 Attacks Using File Download Vulnerabilities

In this section, we discuss potential attacks that exploit the file download vulnerability. Except

the system intrusion which has been studied by [141], other attacks we describe here have not

been comprehensively discussed in prior academic research.

Chapter 6. File Download Vulnerability Study and New Defense 112

6.2.3.1 System Intrusion

If the system password files (e.g., /etc/shadow or passwd in Linux or C:/windows/sys-

tem32/config/SAM in Windows) are leaked, the system runs a very high risk of being com-

promised. Since the file download vulnerability cannot read SAM file from Windows, we on-

ly discuss the use of c-vul to break into Linux in our study. In Linux systems, the leak of

/etc/shadow and the leak of /etc/passwd show different levels of security risks. If the

/etc/shadow is exposed, attacker can employ password breaking tools such as the John the

Ripper password cracker2 to crack system passwords offline. However, if attackers can only

have /etc/passwd through the c-vul, they must guess and try passwords online.

Beside system password files, a successful intrusion also requires the targeted systems to have at

least one system remote login service opening to the Internet. For the sake of security, website

administrators usually close this kind of services in their websites or restrict these services to

the Intranet. To investigate which websites are likely to be compromised, we employ nmap3 to

scan the default ports of three popular remote login services for the websites that have c-vul. The

three services are SSH (default port is 22), Telnet (default port is 23) and VNC remote controller

(default port is 5900). We put our scanning results in Table 6.4. It can be seen, more than 30% c-

vul have chances to result a successful system intrusion. We acknowledge that our results could

overestimate the possibility of system intrusion because websites could be deployed behind a

NAT and share the same public IP address with many other Intranet machines.

TABLE 6.4: The websites containing c-vul that open default ports of SSH, Telnet and VNC in
the Internet.

Critical File # of c-vul SSH (22) Telnet (23) VNC (5900)

/etc/passwd 1, 702 746 (43.8%) 34 (2.00%) 23 (1.35%)
/etc/shadow 96 31 (32.3%) 1 (1.04%) 1 (1.04%)

6.2.3.2 Database Intrusion

Compared with system intrusion, the use of w-vul to break into back-end database is more

feasible because the database credentials (including the account name and password) are usually

stored using plain texts in web configuration files. The password cracking is not required for this

kind of intrusion. However, to perform a successful database intrusion, attackers must have a

connection to administrative management services of back-end database in the Internet. For this

reason, we scan official database administration services for the websites which suffer w-vul.

We consider three popular database softwares. They are MySql (default port of administration
2http://www.openwall.com/john/
3http://nmap.org/

Chapter 6. File Download Vulnerability Study and New Defense 113

service is 3306), Microsoft SQL server (default port is 1433) and Oracle database (we only

consider the default port 1521 in Oracle. We note our results underestimate the Oracle intrusion

possibility because Oracle could have many other default ports for administrative management).

Table 6.5 presents our scanning results. In average, there are more than 25% websites suffering

from w-vul having at least one open database administrative management service in the Internet.

In particular, PHP and JSP suffer more public MySql services, while ASP.NET and ASP are

more common to be involved with public Microsoft SQL server services.

TABLE 6.5: The websites containing w-vul that open default ports of MySql, MSSql and
Oracle in the Internet.

Script # of w-vul MySql (3306) MSSql (1433) Oracle (1521)

PHP 2, 500 888 (35.5%) 38 (1.52%) 23 (0.92%)
JSP 286 35 (12.2%) 13 (4.55%) 19 (6.64%)

ASP.NET 769 72 (9.36%) 96 (12.5%) 4 (0.52%)
ASP 730 84 (11.5%) 111 (15.2%) 17 (2.32%)
Total 4, 285 1, 079 (25.2%) 258 (6.02%) 63 (1.47%)

Moreover, the management of back-end databases can also be achieved through the web. For

example, the phpMyAdmin4 is a widely used administration tool for managing MySql over the

web. It provides direct access to back-end MySql database using HTTP interfaces. As a result,

even if databases’ official administrative management services are not open to the Internet, at-

tackers still have chances to access the back-end database in case the web-based management

services are enabled. We investigate the 2, 500 PHP websites which have w-vul and successfully

discover 81 (3.24%) sites running phpMyAdmin.

6.2.3.3 White-box Analysis

In contrast to the system and database intrusion, s-vul have a basic capability of download-

ing server-side script source codes. This capability enables white-box analysis of victim web-

sites. Although the vulnerability is not indispensable for performing white-box analysis on open

source websites, it is necessary for analyzing commercial websites. Compared with black-box

analysis, the white-box analysis can cover all possible execution paths and hence have higher

probabilities to reveal a complete set of web vulnerabilities in the targeted site. As a result, the

difficulty of attacking commercial websites is largely reduced.

To demonstrate the effectiveness of white-box analysis in attacking commercial sites, we ex-

ploit the s-vul to download server-side script source codes from a vulnerable website. This site

deploys commercial PHP applications and belongs to the top 1000 Alexa site ranking list. We

illegitimately download 13 important server-side scripts using the s-vul. These scripts include
4http://www.phpmyadmin.net/

Chapter 6. File Download Vulnerability Study and New Defense 114

admin pages, login pages etc.. To analyze these PHP source codes, we employ RIPS [2], an

open source static detection tool that can analyze PHP source codes for finding vulnerabilities.

We have successfully discover 17 severe vulnerabilities (among them, 10 are SQL injection

while the other 7 are cross-site scripting) by running white-box analysis of the 13 important

PHP scripts. We put the analysis results in Figure 6.5. Moreover, we believe a careful human

analysis of these source codes can yield more sophisticated vulnerabilities.

FIGURE 6.5: White-box analysis results of PHP scripts using RIPS-0.54 [2]. We download
these PHP source codes by exploiting the s-vul in a vulnerable website.

6.2.3.4 Other Attacks

The use of file download vulnerabilities can also induce many other attacks, such as FTP intru-

sion, SMTP abusing, known vulnerabilities discovery and the breaking of file download authen-

tication. We will just briefly describe some of these exploits in this chapter and we believe our

discussion only covers a sub set of potential attacks.

There are two kinds of FTP intrusion that could be induced by the file download vulnerabilities.

One is the intrusion of FTP server which is deployed in the victim website, while the other is the

intrusion of third-party FTP servers that the victim website is configured to access automatically.

For the first case, the FTP intrusion is similar as system intrusions we have discussed in Section

6.2.3.1. Attackers can exploit /etc/passwd or /etc/shadow or FTP configuration file to

perform this intrusion. But for the second case, attackers should use file download vulnerabilities

to download the files which contain the preset third-party FTP credentials. This information is

likely written in server-side scripts. For example, PHP provides a function ftp login() to log

Chapter 6. File Download Vulnerability Study and New Defense 115

into third-party FTP servers. The second parameter of this function is the username of the FTP

server and the third parameter is the password. As a result, locating the function ftp login() and

tracking its parameters are very useful in revealing third-party FTP credentials.

Some websites also have the functionality of sending e-mails through SMTP services automat-

ically. This functionality cause the possibility of SMTP credentials leakage through the file

download vulnerabilities. Using SMTP credentials, attackers can abuse SMTP services to send

faked e-mails (such as broadcasting spam).

The use of file download vulnerabilities to discover vulnerable softwares is also attractive, be-

cause these vulnerable installs usually have known vulnerabilities. To detect vulnerable soft-

wares, attackers can enumerate the latest vulnerable softwares and test to download some repre-

sentative files (e.g., readme files, version files, configuration files etc.) of these softwares from

C:/Program Files in Windows or /usr/local/ in Linux. If the download is success-

ful, attackers can search known vulnerabilities of this software from Internet. By exploiting the

known vulnerabilities, attackers have chances to break into the system and escalate privileges.

More importantly, the use of vulnerable file download scripts to download web files that are

managed by other web applications, even if these applications are well protected and only allow

authenticated users to download. Attackers can exploit vulnerable scripts running in the same

web server to download any web files without authentication. This kind of exploit cannot be

prevented by any of existing defenses (such as user input sanitization and directory based access

control), and therefore motivate us to design new defence to address this problem.

6.3 FileGuard Design

To address the challenges in defending against vulnerable file download scripts, we propose

a new system, called FileGuard, which implements a fine-grained permission control in script

engine layer. Compared with ad hoc user input sanitization, FileGuard is more resilient to

erroneous implementations since it resides in script engine and does not depend on specific file

download logics. Moreover, FileGuard controls permission on file basis which is finer-grained

than existing directory based control methods.

In this section, we elaborate on the design of FileGuard. In particular, we first describe the threat

model, basic assumption and design goals in Section 6.3.1. We then present the detailed design

of FileGuard in Section 6.3.2. After that, we demonstrate the feasibility and effectiveness of

our design using a prototype implementation in Section 6.3.3. This prototype of FileGuard is

implemented by modifying the source code of PHP5, which is one of the most popular server-

side script engine in today’s web.

Chapter 6. File Download Vulnerability Study and New Defense 116

6.3.1 Preliminaries

In the following sub sections, we present preliminaries of FileGuard which include the threat

model (Section 6.3.1.1), basic assumption (Section 6.3.1.2) and its design goals (Section 6.3.1.3).

6.3.1.1 Threat Model

We design FileGuard by considering a practical threat model where the operating system of

web server has not been compromised. Attackers cannot create, delete or modify any files

in the targeted web server. Instead, they behave as malicious web users who can only exploit

vulnerable file download script to steal sensitive files. We assume this kind of attackers have two

key capabilities. One is the capability of finding vulnerable file download script in targeted web

servers, and the other is the capability of locating where the sensitive files they are of interest.

To discover vulnerable file download scripts, attackers can employ a crawler to scan the targeted

web servers and test whether suspicious file download scripts are vulnerable, which is similar

as the technique we have used for our empirical study (see Section 6.2.1). This technique is

practical although it requires human efforts in some cases.

To successfully download sensitive files, attackers should identify where these files are located

at first. However, the difficulty of such localization depends on which type of sensitive files

they are of interest. For example, the critical system files always have fixed location in partic-

ular operating systems (such as /etc/passwd and /etc/shadow in Linux), while the web

configuration files are also fixed in particular web servers and server-side script engine (such as

web.config in ASP.NET framework running in IIS). Moreover, the location of any server-side

scripts can also be detected by crawling the web sites, no matter they belong to which web ap-

plications. Based on these observations, we simply assume the attacker are capable to locate the

path of any sensitive files they try to download in this paper.

6.3.1.2 Basic Assumption

We have a basic assumption for the design of FileGuard: all the web managing files are upload-

ed, modified and downloaded only through server-side scripts. However, we note that many web

administrators could manage web files through other methods, such as FTP or SSH or any other

remote login systems. To cope with this requirement, we develop a specific tool to enable any

web files to be compatible with FileGuard, even if they are out of control by server-side scripts.

We will elaborate the detailed techniques in Section 6.3.2.

Chapter 6. File Download Vulnerability Study and New Defense 117

6.3.1.3 Design Goals

To effectively limit file download vulnerabilities and significantly reduce the effects from human

errors, we list three goals in the design of FileGuard as follows.

1. The separation of web files from the rest of local filesystem.

2. The separation of web files belonging to one web application from any other applications.

3. No side effects introduced to the web managing flies, hence not rendering them unable to

be processed as usual.

The first goal is to protect local files from being downloaded illegally. These local files contain

critical system files, web configuration files and server-side scripts themselves. The leakage of

these local files could cause disastrous consequences to the web server (see Section 6.2.3). The

second goal is to enable web applications to protect their web files from leaking through vul-

nerable scripts belonging to other web applications which runs on the same web server. Before

FileGuard, this goal cannot be achieved by any existing defending methods. The last goal is to

prevent FileGuard from damaging the web files. For example, FileGuard should not be able to

change the contents or types of any web files because this kind of modification could render web

files from being reading and managing by their traditional editing program.

6.3.2 FileGuard Design

We design FileGuard to prevent file download vulnerabilities by implementing identity based

access control in script engine layer. FileGuard consists of two components. One is the identity

insertion function. This function can add specific identity to web files when they are uploaded

into local filesystem. The other is the identity based access control mechanism. This mechanism

can determine whether they are allowed to be read and downloaded through script engine based

on the identities of web files.

To implement FileGuard, a key challenge is how to embed additional identities into web files by

script engine. As required by the third design goal (see 6.3.1.3), we cannot insert identities by

modifying the contents of web files. Although we could use dedicated string pattern to embed

additional identities into the names of web files, we do not choose this mean because it could

limit the usability of web files. That is, if we do so, web administrators and web developers lose

the opportunity to name the web files as they want. In this thesis, we use extended file attributes

as the medium to store the additional identities for FileGuard. We note that there should exist

other mediums for this purpose, although we choose extended file attributes here to demonstrate

the feasibility of FileGuard design.

Chapter 6. File Download Vulnerability Study and New Defense 118

Extended file attributes is a file system feature that is supported by almost filesystems in main-

stream operating systems (such as the UFS1 and UFS2 filesystems in FreeBSD, the ext2, ext3,

ext4, JFS, ReiserFS, XFS, Btrfs and OCFS2 filesystems in Linux, HFS+ filesystem in MAC OS

as well as FAT and HTFS filesystems in Windows). This attribute can associate computer files

with meta information that are not interpreted by the filesystem, hence making nearly no side

effects to the web files. FileGuard contains a modified version of file upload functions in script

engine, which embed dedicated extended file attributes to any files uploaded through script en-

gine. Since local files in the filesystem do not have this kind of attributes by default, FileGuard

can easily differentiate which files are local and which are not by checking the extended file

attributes when the file read function is called in script engine. Figure 6.6(a) demonstrates how

FileGuard protects the local files from being downloaded through vulnerable scripts in the script

engine layer. As can be seen, FileGuard can embed an extended file attribute into each web

managing file during its upload process, and then allow the download of these files by checking

corresponding attributes. In contrast, since the local files do not contain such kind of attributes,

FileGuard can block the download of these local files as well.

To protect web files from being downloaded through the vulnerabilities belonging to any other

web applications, FileGuard also allows web developers to keep their own identity as a secret and

set it to the extended file attributes in their own web applications. By this way, the file download

scripts can be used to only download the web files which contain the attributes the download

scripts have already known. The vulnerable scripts belonging to other web applications cannot

be used to download the web files associated with secret attributes, because they cannot prove

to FileGuard that they know the secret. As can be seen in Figure 6.6(b), the web files uploaded

through web application 1 contain different attributes compared with those files uploaded via

web application 2. In this case, if the file download script in web application 2 is vulnerable, it

cannot be used to download the web files managed by web application 1 because this vulnerable

script does not know web application 1’s secret attribute.

To sum up, FileGuard has three distinct advantages compared with existing methods:

• Compared with ad hoc user input mechanism, FileGuard minimizes human efforts in ap-

plication level development, hence mitigating the possibility of vulnerable implementa-

tion of file download logics.

• Compared with directory based permission control, FileGuard performs a finer-grained

permission control on file basis.

• Compared with all the existing methods, FileGuard is the first solution that can prevent

illegal downloads of web files through the vulnerabilities in other web applications.

Chapter 6. File Download Vulnerability Study and New Defense 119

server-side script engine

web server
web application 2web application 1

local filesystem

local files web managing files

FileGuard

Extended file attribute

(a) FileGuard to protect local files.

server-side script engine

web server

web application 2web application 1

local filesystem

local files web managing files

Add extended file attribute

Two different extended file attributes

FileGuard

Add extended file attribute

(b) FileGuard to protect the web files against vulnerable scripts residing in other
web applications.

FIGURE 6.6: FileGuard to protect local files and web files against vulnerable file download
scripts.

6.3.3 Prototype Implementation

To demonstrate the feasibility and effectiveness, we implement a prototype of FileGuard here

by modifying the source code of PHP5 (version 5.5.6) script engine in Linux. Before the de-

scription of the implementation details, we present the background of file upload and download

process handled by PHP5 at first. This background description helps us make a deep under-

standing of how file upload and download is implemented in PHP5.

PHP5 is designed to follow the RFC1867 [142] to handle form-based file upload process. Upon

web server receiving remote files from web clients through HTTP POST command, the PHP5

script engine is called to write these files to local filesystem. The PHP5 engine implements

Chapter 6. File Download Vulnerability Study and New Defense 120

a function SAPI POST HANDLER FUNC() for this task and first store the uploaded files in

a temporary file path (default in /tmp, but can be changed in php.ini file). The file name is

randomly generated using the pattern “php******” (each * represents a random character). To

copy the uploaded files to specified directories and using specified names, server-side scripts

should explicitly call a PHP function move uploaded file(). This function has two parameters,

the first is for the temporary file path and the second is for the specified file path. Server-side

script can access the glabal array $ FILES to locate the temporary file path. On the side of

file download, PHP5 has a number of functions to open a file and read it to the web. In our

implementation, we consider only the readfile() function since it is the most popular file read

function used by existing server-side scripts.

In Linux, an extended file attribute can be added to a file using a system call [143]. To set an

extended file attribute to a file using the name and path of this file, the system call number is 226.

While to retrieve an extended file attribute from a file, the call number is 229. And to remove an

extended file attribute, the call number is 235. Moreover, Linux has four namespaces for extend-

ed file attributes. They are user, trusted, security and system. We choose the user namespace

in our implementation since it can be recognized in user space by any Linux system. To this

end, we implement the prototype of FileGuard by adding the system call to insert extended file

attributes in PHP function move uploaded file() and using the system call to read extended file

attributes in PHP function readfile(). We also check whether the retrieved extended file attribute

is correct, and refuse the read of a file without an expected attribute.

Figure 6.7 illustrates the layout of our FileGuard prototype implementation based on PHP5

script engine. It demonstrates how FileGuard handles the file upload process and performs

access control to prevent illegal file download. Each file uploaded through FileGuard could be

associated with an extended file attribute as its identity, and FileGuard can check the extended

file attribute when the file is downloaded. Only the files which have legal attribute can be allowed

to be downloaded. FileGuard will remove the extended file attribute from the copy of the file

which is downloaded.

PHP5 script engine

PHP_FUNCTION(move_uploaded_file)

SAPI_POST_HANDLER_FUNC(rfc1867_post_handler)

PHP script

move_uploaded_file()

Web server

PHP_FUNCTION(readfile)
PHP script

readfile()

Local Filesystem

Temporary file Specified file
move

File upload POST

syscall() to set extended file attribute syscall() to get extended file
attribute and check whether

it can be read or not. syscall() to
remove the attribute from the

downloaded copy if it can be read

File download

FIGURE 6.7: The layout of FileGuard prototype implementation.

Chapter 6. File Download Vulnerability Study and New Defense 121

6.4 Performance Evaluation

In this section, we evaluate the performance overhead introduced by FileGuard. In particular,

FileGuard consumes more time for file upload and download since it needs to set, get or remove

extended file attributes to the file managed by script engine. As a result, we investigate the timing

cost required by the system calls for setting, getting and removing an extended file attribute in

Linux. We test these system calls for the files in different size (from 5K to 500M), and run the

system call for each file 100 times. We present the experimental results in Figure 6.8.

0

50

100

5k 50k 500k 5M 50M 500M

M
ic

ro
se

co
nd

s

5K 50K 500K 5M 50M 500M
File size

(a) The time cost of setting an extended file attribute.

0

50

100

150

200

5k 50k 500k 5M 50M 500M

M
ic

ro
se

co
nd

File size
5K 50K 500K 5M 50M 500M

(b) The time cost of getting an extended file attribute.

0

100

200

5k 50k 500k 5M 50M 500M

M
ic

ro
se

co
nd

500K5K 50K 5M 50M 500M
File size

(c) The time cost of removing an extended file attribute.

FIGURE 6.8: The performance overhead introduced by FileGuard in terms of time cost (in
microseconds).

Chapter 6. File Download Vulnerability Study and New Defense 122

As can be seen, the time cost is relatively small (around 20 microseconds in average) in setting,

getting and even removing the extended file attributes. Moreover, this timing cost does not

depend on the size of files. The 5K file has the similar timing cost compared with the 500M file

in all the Figures 6.8(a), 6.8(b) and 6.8(c). Based on this experimental result, we can confirm that

FileGuard can induce only negligible performance overhead for defending against file download

vulnerabilities.

Chapter 7

Conclusion and Future Research

7.1 Conclusions

In this thesis, we have conducted an in-depth research to investigate the fundamental limitations

of existing trust-based systems. We mainly focus our research on three trust-based systems that

are designed for enhancing anonymity and security protections in the web. We have found that

the use of trust for these systems does not meet the best practice in the state-of-the-art. Instead,

trust usually introduces new problems in protecting anonymity and security, as well as does

not achieve the best usage. Based on these findings, we propose more trustworthy solutions

to further enhance the three trust-based systems we have studied in this thesis. Our research

indicates that the use of trust for anonymous communications and web services stays in a very

early stage, much more research efforts are required in this field.

For trust-based onion routing, we reveal two fundamental limitations for the use of trust in pro-

tecting anonymity for the first time. One is the biased trust distributions which could reduce the

overall entropy of onion routing systems. While the other is the incorrect trust assignments that

may render trust-based onion routing getting worse anonymity protection. To overcome these

two limitations, we propose trust degree based and trust graph based solutions. The former so-

lution enables users to hide using the routers trusted by more other users, hence increasing the

overall entropy of the system even it cannot reduce the bias of trust distributions. In contrast, the

latter solution proposes the use of global trust to alleviate the levels of biased trust distributions.

Moreover, trust graph based onion routing employs group trust to address incorrect trust assign-

ment problem. These two solutions are proved effective in enhancing anonymity protections

through both mathematical proofs and experiments with real-world social data sets.

For the flawed certification based trust model in public key infrastructure, we have designed an

optimal method to maximize the protection against SSL/TLS man-in-the-middle attacks. Our

123

Chapter 7. Conclusion and Future Research 124

method exhausts available trust anchors and exploit Internet diversity as much as possible, hence

getting nearly the largest protection the trust model can provide. Our research confirms that: a

priori trust within certification based trust model can be fully utilized to maximize the protection

against SSL/TLS man-in-the-middle attacks.

For file download vulnerabilities, we perform a large-scale survey in the Internet and confirm

the weak protection of this vulnerability in today’s web. This bad result motivates us to design

a new file download protection system, called FileGuard. FileGuard is implemented in script

engine layer in order to mitigate the possibility of human errors, and can provide a finer-grained

permission control on file basis. We implement a prototype of FileGuard by modifying the

source code of PHP5, and confirm its negligible performance overhead.

Based on our research, we reveal a lot of problematic use of trust for securing anonymous

communications and web services, hence shedding light that there still exists much room for

further improvement in even the state-of-the-art trust-based systems. Our more trustworthy

solutions are designed based on these findings, and have demonstrated better performance in

protecting anonymity and security.

7.2 Future Directions

We have presented a comprehensive study of three popular trust-based systems in this thesis, and

reveal that the use of trust to protect anonymity and security is a conundrum. On the one hand,

trust is very effective in defeating a lot of traditional attacks in the Internet. But on the other

hand, the use of trust always induces new attacks which target to the trust itself. Although our

research leads to more trustworthy solutions to enhance the three selected trust-based systems,

we cannot guarantee that our solutions reach the best results. Moreover, our studies do not

cover the improvement of other trust-based systems. These two could be our future research

directions.

First, we can do further research on the three trust-based systems we have studied in this thesis.

For example, our proposed trust graph based onion routing still suffers from social engineering

attacks. We thus call for new ideas to address this problem in the future. Moreover, although

our active approach is designed to maximize the protection against SSL/TLS man-in-the-middle

attacks, it requires the nearly re-design of existing SSL/TLS protocol internals. This requirement

makes our approach very difficult to be deployed in the Internet quickly. For this reason, the

studies on lightweight solutions are very attractive in the future research. Besides, the FileGuard

stays in a very early design stage. We will extend the basic idea of FieGuard and design a more

secure system which implements mandatory access control in script engine layer.

Chapter 7. Conclusion and Future Research 125

Second, we can extend our research area to other trust-based systems in our future studies. For

example, we can do an in-depth analysis to discover fundamental problems in trust-based Sybil

defenses [39–44]. These systems employ a priori trust from social networks to resist Sybil attack

[45] in peer-to-peer networks [46]. However, they are usually designed based on the assumption

that attackers are difficult to compromise honest people’s trust and make friends with them.

This assumption is too strong in many practical scenarios. Therefore, we will consider how to

remove this assumption in our future work. Moreover, we will study how to build up a reliable

trust infrastructure to enhance the whole Internet. This infrastructure is essentially required by

the design of named data networking [144], which is a new architecture standard in the future

Internet.

Appendix A

A.1 The proof of Theorem 1

Proof. We first consider a simple optimization problem as follows.

min (x · x

x+ a
+ y · y

y + b
), s.t. x+ y = β.

Where x and y are variables while a and b are constants. Let f(x) = x · x/(x+ a) + (β − x) ·
(β − x)/(β − x+ b). Then the above optimization problem can be simplified as:

min f(x) = min(x · x

x+ a
+ (β − x) · β − x

β − x+ b
).

It is known that, if f(x) has an extreme value and f(x)’s second derivative is larger than 0, this

extreme value is f(x)’s minimum value. And this minimum value can be obtained by letting

f(x)’s first derivative equals to 0. Such that, if f ′′(x) = d2f(x)/d2x > 0, f(x) can reach its

minimum value when f ′(x) = df(x)/dx = 0.

When β = x+ y > x, a > 0 and b > 0, we can prove that f ′′(x) > 0. In this case, we find the

minimum value of f(x) by solving the quadratic equation f ′(x) = 0.

We have two roots of f ′(x) = 0. One is a positive value and the other is a negative value. We

only consider the positive result, x = β · a/(a+ b). Applying this x to f(x), we have:

min f(x) = min (x · x

x+ a
+ (β − x) · β − x

β − x+ b
) =

β2

a+ b+ β
.

Since x+ y = β, we have:

x2

x+ a
+

y2

y + b
≥ β2

a+ b+ β
=

(x+ y)2

a+ b+ x+ y
. (A.1)

To satisfy the equality, we have x = β · a/(a+ b) and y = β · b/(a+ b) (i.e., x ∝ a and y ∝ b).

126

Chapter A. 127

Now, we turn back to the optimization problem described in Eq. (3.5). By iteratively applying

the inequality (A.1) to E(Y [ui|C`]), we have:

E(Y [ui|C`]) =
∑
C`∈Re

Pr[C`|ui] · Y [ui|C`]

=
∑
C`∈Re

Pr[C`|ui] ·
Pr[C`|ui]

Pr[C`|ui] +
∑

u∈U\ui
Pr[C`|u]

≥
(

∑
C`∈Re

Pr[C`|ui])2∑
C`∈Re

Pr[C`|ui] +
∑

C`∈Re

∑
u∈U\ui

Pr[C`|u]

=
θ2
`e

θ`e +
∑

C`∈Re

∑
u∈U\ui

Pr[C`|u]
.

(A.2)

To satisfy all the equalities and achieve the minimal value, we have ∀C` ∈ Re, P r[C`|ui] ∝∑
u∈U\ui Pr[C`|u] subject to θ`e =

∑
C`∈Re

Pr[C`|ui].

Therefore, Theorem 4.1 is proved.

A.2 The proof of Theorem 2

Proof. We first consider a function as follows.

∑
C(1)∈Re

|O|∏
n=1

Pr[C(n)|ui, C(n+)]
2

|O|∏
n=1

Pr[C(n)|ui, C(n+)] +
∑

u∈U\ui

|O|∏
n=1

Pr[C(n)|u,C(n+)]

, (A.3)

subject to
∑

C(1)∈Re

Pr[C(1)|ui, C(1+)] = θ(1)e. As the operator
∑

C(1)∈Re

is irrelevant to
|O|∏
n=2

Pr[C(n)|ui, C(n+)],

we can consider it as a constant in the function (A.3). Simply let Ω =
|O|∏
n=2

Pr[C(n)|ui, C(n+)].

By applying the inequality (A.2) to the function (A.3), we can prove the minimal value of the

function (A.3) as below.

(θ(1)eΩ)2

θ(1)eΩ +
∑

C(1)∈Re

∑
u∈U\ui

|O|∏
n=1

Pr[C(n)|u,C(n+)]

. (A.4)

Chapter A. 128

To achieve this minimum value, for ∀C(1) ∈ Re, subject to
∑

C(1)∈Re

Pr[C(1)|ui, C(1+)] = θ(1)e,

we have:

Pr[C(1)|ui, C(1+)] ∝∑
C(1−)∈R1−1

e

∑
u∈U\ui

|O|∏
n=1

Pr[C(n)|u,C(n+)].
(A.5)

where, C(1−) = ∅ and R1−1
e = R0

e = ∅.

Now, we turn back to the optimization problem described in Eq. (3.7).

E(Y [ui|CO]) =
∑

CO∈R
|O|
e

Pr[CO|ui]2

Pr[CO|ui] +
∑

u∈U\ui
Pr[CO|u]

.

where, Pr[CO|ui] =
|O|∏
n=1

Pr[C(n)|ui, C(n+)], and the operator
∑

CO∈R
|O|
e

can be extended to∑
CO∈R

|O|
e

=
∑

C(|O|)∈Re

· · ·
∑

C(1)∈Re

.

By considering that each operator
∑

C(j)∈Re

is irrelevant to
|O|∏

n=j+1
Pr[C(n)|ui, C(n+)], we can

iteratively apply the similar optimization process like (A.4) and (A.5) to E(Y [ui|CO]), and

therefore prove:

min E(Y) =

|O|∏
n=1

θ2
(n)e

|O|∏
n=1

θ(n)e +
∑

CO∈R
|O|
e

∑
u∈U\ui

Pr[CO|u]

.

To reach this minimal value, for ∀C(n) ∈ Re, subject to∑
C(n)∈Re

Pr[C(n)|ui, C(n+)] = θ(n)e, we have:

Pr[C(n)|ui, C(n+)] ∝∑
C(n−)∈Rn−1

e

∑
u∈U\ui

|O|∏
n=1

Pr[C(n)|u,C(n+)].

Therefore, Theorem 3.6 is proved.

Bibliography

[1] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. On the evolu-

tion of user interaction in facebook. In Proceedings of the 2nd ACM workshop on Online

social networks, pages 37–42. ACM, 2009.

[2] http://rips-scanner.sourceforge.net/, 2013.

[3] Internet world stats. http://www.internetworldstats.com/stats.htm,

2012.

[4] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–90, 1981.

[5] David Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. Journal of cryptology, 1(1):65–75, 1988.

[6] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions. ACM

Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

[7] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications

of the ACM, 42(2):39–41, 1999.

[8] Micheal G Reed, Paul F Syverson, and David M Goldschlag. Anonymous connections

and onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494,

1998.

[9] Nick Mathewson, Paul Syverson, and Roger Dingledine. Tor: the second-generation

onion router. In Proceedings of the 12th USENIX Security Symposium, 2004.

[10] Dave Cooper. Internet x. 509 public key infrastructure certificate and certificate revoca-

tion list (crl) profile. 2008.

[11] Krishna Puttaswamy, Alessandra Sala, and Ben Y Zhao. Improving anonymity using

social links. In Proceedings of the 4th Workshop on Secure Network Protocols, pages

15–20. IEEE, 2008.

129

http://rips-scanner.sourceforge.net/
http://www.internetworldstats.com/stats.htm

Bibliography 130

[12] Aaron Johnson and Paul Syverson. More anonymous onion routing through trust. In

Proceedings of the 22nd IEEE Computer Security Foundations Symposium, pages 3–12.

IEEE, 2009.

[13] George Danezis, Claudia Diaz, Carmela Troncoso, and Ben Laurie. Drac: An architec-

ture for anonymous low-volume communications. In Proceedings of the 10th Privacy

Enhancing Technologies Symposium (PETS), pages 202–219. Springer, 2010.

[14] Aaron M Johnson, Paul Syverson, Roger Dingledine, and Nick Mathewson. Trust-based

anonymous communication: Adversary models and routing algorithms. In Proceedings

of the 18th ACM conference on Computer and communications security, pages 175–186.

ACM, 2011.

[15] Prateek Mittal, Matthew Wright, and Nikita Borisov. Pisces: Anonymous communication

using social networks. preprint arXiv:1208.6326, 2012.

[16] Nada Kapidzic. Creating security applications based on the global certificate management

system. Computers & Security, 17(6):507–515, 1998.

[17] Carl M Ellison. The nature of a useable pki. Computer Networks, 31(8):823–830, 1999.

[18] Helen Kapodistria, Sarandis Mitropoulos, and Christos Douligeris. An advanced web

attack detection and prevention tool. Information Management & Computer Security, 19

(5):280–299, 2011.

[19] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an analysis of

onion routing security. In Proceedings of the International Workshop on Design Issues in

Anonymity and Unobservability, pages 96–114. Springer, 2001.

[20] Steven J Murdoch and George Danezis. Low-cost traffic analysis of tor. In Proceedings

of the IEEE Symposium on Security and Privacy, pages 183–195. IEEE, 2005.

[21] Lasse Overlier and Paul Syverson. Locating hidden servers. In Proceedings of the IEEE

Symposium on Security and Privacy, page 15pp. IEEE, 2006.

[22] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.

Low-resource routing attacks against tor. In Proceedings of the ACM workshop on Pri-

vacy in electronic society, pages 11–20. ACM, 2007.

[23] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new cell

counter based attack against tor. In Proceedings of the 16th ACM conference on Computer

and communications security, pages 578–589. ACM, 2009.

[24] Nathan S Evans, Roger Dingledine, and Christian Grothoff. A practical congestion attack

on tor using long paths. In Proceedings of the 17th USENIX Security Symposium, pages

33–50, 2009.

Bibliography 131

[25] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. Correlation-based

traffic analysis attacks on anonymity networks. IEEE Transactions on Parallel and Dis-

tributed Systems, 21(7):954–967, 2010.

[26] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. How much anonymity does

network latency leak? ACM Transactions on Information and System Security (TISSEC),

13(2):13, 2010.

[27] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Weijia Jia, and Wei Zhao. Protocol-level

attacks against tor. Computer Networks, 2012.

[28] Jason Mortensen. Website impersonation attacks: Who is really be-

hind that mask. http://www.concise-courses.com/infosec/

website-impersonation-attacks/, 2013.

[29] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle attack to the

https protocol. IEEE Security & Privacy, 7(1):78–81, 2009.

[30] Stanley RM Oliveira and Osmar R Zaı̈ane. Protecting sensitive knowledge by data saniti-

zation. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICD-

M), pages 613–616. IEEE, 2003.

[31] Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda,

Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic analy-

sis to validate sanitization in web applications. In Proceedings of the IEEE Symposium

on Security and Privacy, pages 387–401. IEEE, 2008.

[32] Jacob Appelbaum. Detecting certificate authority compromises and web browser col-

lusion. https://blog.torproject.org/blog/detecting-certificate-authority-compromises-and-

web-browser-collusion, 2011.

[33] Black tulip report of the investigation into the Diginotar Certificate Authority Breach.

Technical report, Fox-IT, 2012.

[34] Charles Arthur. Rogue web certificate could have been used to attack iran dis-

sidents. http://www.guardian.co.uk/technology/2011/aug/30/faked-web-certificate-iran-

dissidents, 2011.

[35] Dan Wendlandt, David G Andersen, and Adrian Perrig. Perspectives: Improving ssh-

style host authentication with multi-path probing. In Proceedings of the USENIX Annual

Technical Conference, 2008.

[36] Ralph Holz, Thomas Riedmaier, Nils Kammenhuber, and Georg Carle. X.509 forensics:

Detecting and localising the SSL/TLS men-in-the-middle. In Proceedings of the Euro-

pean Symposium on Research in Computer Security (ESORICS). 2012.

http://www.concise-courses.com/infosec/website-impersonation-attacks/
http://www.concise-courses.com/infosec/website-impersonation-attacks/

Bibliography 132

[37] Italo Dacosta, Mustaque Ahamad, and Patrick Traynor. Trust no one else: Detecting

MITM attacks against SSL/TLS without third-parties. In Proceedings of the European

Symposium on Research in Computer Security (ESORICS). 2012.

[38] Michael Dietz, Alexei Czeskis, Dirk Balfanz, and Dan S Wallach. Origin-bound certifi-

cates: A fresh approach to strong client authentication for the web. In Proceedings of the

20th USENIX Security Symposium, 2012.

[39] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and Abraham Flaxman. Sybilguard:

defending against sybil attacks via social networks. ACM SIGCOMM Computer Commu-

nication Review, 36(4):267–278, 2006.

[40] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit: A near-

optimal social network defense against sybil attacks. In Proceedings of the IEEE Sympo-

sium on Security and Privacy, pages 3–17. IEEE, 2008.

[41] George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil nodes using social net-

works. In Proceedings of the 16th Annual Network & Distributed System Security Con-

ference (NDSS), 2009.

[42] Dinh Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan Subramanian. Sybil-

resilient online content voting. In Proceedings of the 6th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), volume 9, pages 15–28, 2009.

[43] Abedelaziz Mohaisen, Nicholas Hopper, and Yongdae Kim. Keep your friends close:

Incorporating trust into social network-based sybil defenses. In Proceedings of the

30th IEEE International Conference on Computer Communications (INFOCOM), pages

1943–1951. IEEE, 2011.

[44] Haifeng Yu. Sybil defenses via social networks: a tutorial and survey. ACM SIGACT

News, 42(3):80–101, 2011.

[45] John R Douceur. The sybil attack. In Peer-to-peer Systems, pages 251–260. Springer,

2002.

[46] Geoffrey Fox. Peer-to-peer networks. Computing in Science & Engineering, 3(3):75–77,

2001.

[47] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system for peer-to-peer

networks. In Proceedings of the 13th international workshop on Network and operating

systems support for digital audio and video, pages 144–152. ACM, 2003.

[48] Michael Kinateder and Kurt Rothermel. Architecture and algorithms for a distributed

reputation system. In Trust Management, pages 1–16. Springer, 2003.

Bibliography 133

[49] Yao Wang and Julita Vassileva. Trust and reputation model in peer-to-peer networks.

In Proceedings of the 3rd International Conference on Peer-to-Peer Computing, pages

150–157. IEEE, 2003.

[50] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation sys-

tems. Communications of the ACM, 43(12):45–48, 2000.

[51] Audun Jsang and Roslan Ismail. The beta reputation system. In Proceedings of the 15th

bled electronic commerce conference, pages 41–55, 2002.

[52] Paul Resnick and Richard Zeckhauser. Trust among strangers in internet transactions:

Empirical analysis of ebay’s reputation system. Advances in applied microeconomics,

11:127–157, 2002.

[53] Sravanthi Kalepu, Shonali Krishnaswamy, and Seng Wai Loke. Verity: a qos metric for

selecting web services and providers. In Proceedings of the 4th International Conference

on Web Information Systems Engineering Workshops, pages 131–139. IEEE, 2003.

[54] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service selection and

ranking with trust and reputation management. In On the Move to Meaningful Internet

Systems 2005: CoopIS, DOA, and ODBASE, pages 466–483. Springer, 2005.

[55] Ziqiang Xu, Patrick Martin, Wendy Powley, and Farhana Zulkernine. Reputation-

enhanced qos-based web services discovery. In Proceedings of the IEEE International

Conference on Web Services, pages 249–256. IEEE, 2007.

[56] Chrysanthos Dellarocas. Immunizing online reputation reporting systems against unfair

ratings and discriminatory behavior. In Proceedings of the 2nd ACM conference on Elec-

tronic commerce, pages 150–157. ACM, 2000.

[57] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-to-peer

electronic communities. IEEE Transactions on Knowledge and Data Engineering, 16(7):

843–857, 2004.

[58] Tor metrics portal: Users. https://metrics.torproject.org/users.html,

2013.

[59] Ceki Gulcu and Gene Tsudik. Mixing e-mail with babel. In Proceedings of the Sympo-

sium on Network and Distributed System Security, pages 2–16. IEEE, 1996.

[60] Markus Jakobsson. A practical mix. In Advances in Cryptology, pages 448–461. Springer,

1998.

[61] https://www.anonymizer.com/.

[62] https://freenetproject.org/.

https://metrics.torproject.org/users.html
https://www.anonymizer.com/
https://freenetproject.org/

Bibliography 134

[63] http://www.i2p2.de/.

[64] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. The predecessor

attack: An analysis of a threat to anonymous communications systems. ACM Transac-

tions on Information and System Security (TISSEC), 7(4):489–522, 2004.

[65] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hidden

services: Detection, measurement, deanonymization. In Proceedings of the IEEE Sym-

posium on Security and Privacy. IEEE, 2013.

[66] Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen Fu. Extensive analysis and

large-scale empirical evaluation of tor bridge discovery. In Proceedings of the 31st IEEE

International Conference on Computer Communications (INFOCOM), pages 2381–2389.

IEEE, 2012.

[67] Zhen Ling, Junzhou Luo, Kui Wu, and Xinwen Fu. Protocol-level hidden server discov-

ery. In Proceedings of the 32nd IEEE International Conference on Computer Communi-

cations (INFOCOM), pages 1043–1051. IEEE, 2013.

[68] George H Weiss and Robert J Rubin. Random walks: theory and selected applications.

Advances in Chemical Physics, 52:363–505, 1983.

[69] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorith-

m. The American Statistician, 49(4):327–335, 1995.

[70] Peter Eckersley and Jesse Burns. An observatory for the SSLiverse. URL: www. eff.

org/files/DefconSSLiverse. pdf, 2010.

[71] Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. The SSL landscape: a

thorough analysis of the x. 509 pki using active and passive measurements. In Proceed-

ings of the 2011 ACM SIGCOMM conference on Internet measurement conference, pages

427–444. ACM, 2011.

[72] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. Analysis of

the https certificate ecosystem. In Proceedings of the Internet Measurement Conference,

2013.

[73] http://www.openssh.com/.

[74] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vi-

taly Shmatikov. The most dangerous code in the world: validating SSL certificates in

non-browser software. In Proceedings of the ACM conference on Computer and commu-

nications security, pages 38–49. ACM, 2012.

http://www.i2p2.de/
http://www.openssh.com/

Bibliography 135

[75] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars Baumgärtner, and

Bernd Freisleben. Why eve and mallory love android: An analysis of android SSL (in)

security. In Proceedings of the ACM conference on Computer and communications secu-

rity, pages 50–61. ACM, 2012.

[76] Moxie Marlinspike. Null prefix attacks against SSL/TLS certificates. Blackhat, 2009.

[77] http://www.oss.com/asn1/resources/asn1-made-simple/

introduction.html.

[78] Moxie Marlinspike. Defeating ocsp with the character ’3’. Blackhat, 2009.

[79] Moxie Marlinspike. New tricks for defeating SSL in practice. Black Hat DC, 2009.

[80] Moxie Marlinspike. More tricks for defeating SSL in practice. Black Hat USA, 2009.

[81] Jeff Hodges, Collin Jackson, and Adam Barth. Http strict transport security (hsts). URL:

http://tools. ietf. org/html/draft-ietf-websec-strict-transport-sec-04, 2012.

[82] http://trends.builtwith.com/docinfo/HSTS.

[83] Adonis PH Fung and KW Cheung. SSLock: sustaining the trust on entities brought

by SSL. In Proceedings of the 5th ACM Symposium on Information, Computer and

Communications Security, pages 204–213. ACM, 2010.

[84] Bernhard Amann, Robin Sommer, Matthias Vallentin, and Seth Hall. No attack necessary:

The surprising dynamics of SSL trust relationships. 2013.

[85] https://www.eff.org/https-everywhere.

[86] http://convergence.io/.

[87] Gabor Toth and Tjebbe Vlieg. Public key pinning for TLS using a trust on first use model.

2013.

[88] Paul Hoffman and Jakob Schlyter. The DNS-based authentication of named entities

(dane) transport layer security (TLS) protocol: TLSA. Technical report, RFC 6698, Au-

gust, 2012.

[89] Moxie Marlinspike. Trust assertions for certificate keys. 2013.

[90] Chris Evans and Chris Palmer. Public key pinning extension for http. 2011.

[91] http://web.monkeysphere.info/.

[92] https://www.owasp.org/index.php/Path_Traversal.

[93] https://www.owasp.org/index.php/Main_Page.

http://www.oss.com/asn1/resources/asn1-made-simple/introduction.html
http://www.oss.com/asn1/resources/asn1-made-simple/introduction.html
http://trends.builtwith.com/docinfo/HSTS
https://www.eff.org/https-everywhere
http://convergence.io/
http://web.monkeysphere.info/
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/index.php/Main_Page

Bibliography 136

[94] Chris Anley. Advanced sql injection in sql server applications. White paper, Next Gener-

ation Security Software Ltd, 2002.

[95] Zhendong Su and Gary Wassermann. The essence of command injection attacks in web

applications. In ACM SIGPLAN Notices, volume 41, pages 372–382. ACM, 2006.

[96] William GJ Halfond and Alessandro Orso. Amnesia: analysis and monitoring for neu-

tralizing sql-injection attacks. In Proceedings of the 20th IEEE/ACM international Con-

ference on Automated software engineering, pages 174–183. ACM, 2005.

[97] Bradley W Hill. Command injection in xml signatures and encryption. Information

Security Partners, 2007.

[98] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for

injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages 32–41. ACM, 2007.

[99] Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D Ernst. Automatic

creation of sql injection and cross-site scripting attacks. In Software Engineering, 2009.

ICSE 2009. IEEE 31st International Conference on, pages 199–209. IEEE, 2009.

[100] Stephen W Boyd and Angelos D Keromytis. Sqlrand: Preventing sql injection attacks. In

Applied Cryptography and Network Security, pages 292–302. Springer, 2004.

[101] Gregory Buehrer, Bruce W Weide, and Paolo AG Sivilotti. Using parse tree validation

to prevent sql injection attacks. In Proceedings of the 5th international workshop on

Software engineering and middleware, pages 106–113. ACM, 2005.

[102] William GJ Halfond and Alessandro Orso. Combining static analysis and runtime mon-

itoring to counter sql-injection attacks. In ACM SIGSOFT Software Engineering Notes,

volume 30, pages 1–7. ACM, 2005.

[103] William GJ Halfond, Alessandro Orso, and Panagiotis Manolios. Using positive tainting

and syntax-aware evaluation to counter sql injection attacks. In Proceedings of the 14th

ACM SIGSOFT international symposium on Foundations of software engineering, pages

175–185. ACM, 2006.

[104] WG Halfond, Jeremy Viegas, and Alessandro Orso. A classification of sql-injection

attacks and countermeasures. In Proceedings of the IEEE International Symposium on

Secure Software Engineering, Arlington, VA, USA, pages 13–15, 2006.

[105] Sruthi Bandhakavi, Prithvi Bisht, P Madhusudan, and VN Venkatakrishnan. Candid:

preventing sql injection attacks using dynamic candidate evaluations. In Proceedings

of the 14th ACM conference on Computer and communications security, pages 12–24.

ACM, 2007.

Bibliography 137

[106] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao. A static

analysis framework for detecting sql injection vulnerabilities. In Proceedings of the 31st

Annual International Computer Software and Applications Conference, volume 1, pages

87–96. IEEE, 2007.

[107] Yuji Kosuga, K Kernel, Miyuki Hanaoka, Miho Hishiyama, and Yu Takahama. Sania:

syntactic and semantic analysis for automated testing against sql injection. In Proceedings

of the 23rd Annual Computer Security Applications Conference, pages 107–117. IEEE,

2007.

[108] Michael Martin and Monica S Lam. Automatic generation of xss and sql injection attacks

with goal-directed model checking. In Proceedings of the 17th conference on Security

symposium, pages 31–43. USENIX Association, 2008.

[109] Wei Gao, Thomas Morris, Bradley Reaves, and Drew Richey. On scada control system

command and response injection and intrusion detection. In eCrime Researchers Summit

(eCrime), pages 1–9. IEEE, 2010.

[110] Kevin Spett. Cross-site scripting. SPI Labs, 2005.

[111] Jesse Ruderman. The same origin policy, 2001.

[112] http://en.wikipedia.org/wiki/Cross-site_scripting#

Server-side_versus_DOM-based_vulnerabilities.

[113] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. Noxes: a

client-side solution for mitigating cross-site scripting attacks. In Proceedings of the ACM

symposium on Applied computing, pages 330–337. ACM, 2006.

[114] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel,

and Giovanni Vigna. Cross site scripting prevention with dynamic data tainting and static

analysis. In Proceedings of the 14th Annual Network & Distributed System Security

Conference (NDSS), 2007.

[115] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnera-

bilities. In Proceedings of the 30th ACM/IEEE International Conference on Software

Engineering, pages 171–180. IEEE, 2008.

[116] Prithvi Bisht and VN Venkatakrishnan. Xss-guard: precise dynamic prevention of cross-

site scripting attacks. In Detection of Intrusions and Malware, and Vulnerability Assess-

ment, pages 23–43. Springer, 2008.

[117] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization to enforce in-

formation flow tracking and thwart cross-site scripting attacks. In Proceedings of the 16th

Annual Network & Distributed System Security Conference (NDSS), 2009.

http://en.wikipedia.org/wiki/Cross-site_scripting#Server-side_versus_DOM-based_vulnerabilities
http://en.wikipedia.org/wiki/Cross-site_scripting#Server-side_versus_DOM-based_vulnerabilities

Bibliography 138

[118] Mike Ter Louw and VN Venkatakrishnan. Blueprint: Robust prevention of cross-site

scripting attacks for existing browsers. In Proceedings of the 30th IEEE Symposium on

Security and Privacy, pages 331–346. IEEE, 2009.

[119] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based attacks. In

Proceedings of the 10th ACM conference on Computer and communications security,

pages 251–261. ACM, 2003.

[120] Mehdi Kiani, Andrew Clark, and George Mohay. Evaluation of anomaly based character

distribution models in the detection of sql injection attacks. In Proceedings of the 3rd

International Conference on Availability, Reliability and Security, pages 47–55. IEEE,

2008.

[121] Rajagopal Gaarudapuram Sriraghavan and Luca Lucchese. Data processing and anomaly

detection in web-based applications. In Proceedings of the IEEE Workshop on Machine

Learning for Signal Processing, pages 187–192. IEEE, 2008.

[122] Xinwen Fu, Zhen Ling, J Luo, W Yu, W Jia, and W Zhao. One cell is enough to break

tor’s anonymity. Black Hat DC, 2009.

[123] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online social

networks. In Proceedings of the ACM workshop on Privacy in the electronic society,

pages 71–80. ACM, 2005.

[124] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Proceed-

ings of the 30th IEEE Symposium on Security and Privacy, pages 173–187. IEEE, 2009.

[125] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna PN Puttaswamy, and Ben Y Zhao.

User interactions in social networks and their implications. In Proceedings of the 4th

ACM European conference on Computer systems, pages 205–218. ACM, 2009.

[126] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new cell-

counting-based attack against tor. IEEE/ACM Transactions on Networking, 20(4):1245–

1261, 2012.

[127] Amir Houmansadr and Nikita Borisov. Swirl: A scalable watermark to detect correlated

network flows. In Proceedings of the 18th Annual Network & Distributed System Security

Conference (NDSS), 2011.

[128] Xiapu Luo, Junjie Zhang, Roberto Perdisci, and Wenke Lee. On the secrecy of spread-

spectrum flow watermarks. In Proceedings of the European Symposium on Research in

Computer Security (ESORICS), pages 232–248. Springer, 2010.

Bibliography 139

[129] Yabing Liu, Krishna P Gummadi, Balachander Krishnamurthy, and Alan Mislove. An-

alyzing facebook privacy settings: User expectations vs. reality. In Proceedings of the

ACM SIGCOMM conference on Internet measurement conference, pages 61–70. ACM,

2011.

[130] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu. The social-

bot network: when bots socialize for fame and money. In Proceedings of the 27th Annual

Computer Security Applications Conference, pages 93–102. ACM, 2011.

[131] Alan Mislove, Bimal Viswanath, Krishna P Gummadi, and Peter Druschel. You are who

you know: inferring user profiles in online social networks. In Proceedings of the 3rd

ACM international conference on Web search and data mining, pages 251–260. ACM,

2010.

[132] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation

of trust and distrust. In Proceedings of the 13th international conference on World Wide

Web, pages 403–412. ACM, 2004.

[133] Prateek Mittal, Matthew Caesar, and Nikita Borisov. X-vine: Secure and pseudonymous

routing using social networks. arXiv preprint arXiv:1109.0971, 2011.

[134] NetworkX. http://networkx.github.io/.

[135] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

science, 1999.

[136] Usage of server-side programming languages for websites. http://w3techs.com/

technologies/overview/programming_language/all, 2013.

[137] Selenium Projects. http://seleniumhq.org.

[138] Captcha Monster. http://captchamonster.com/.

[139] Google guide, search operators. http://www.googleguide.com/advanced_

operators_reference.html.

[140] http://www.alexa.com/topsites, 2013.

[141] Ninj@S3c. Arbitrary file download: Breaking into the sys-

tem. http://resources.infosecinstitute.com/

arbitrary-file-download-breaking-into-the-system/, 2013.

[142] Rfc1867. http://www.ietf.org/rfc/rfc1867.txt.

[143] Linux system calls. http://linasm.sourceforge.net/docs/syscalls/

filesystem.php.

[144] Named data networking. http://named-data.net/.

http://networkx.github.io/
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://seleniumhq.org
http://captchamonster.com/
http://www.googleguide.com/advanced_operators_reference.html
http://www.googleguide.com/advanced_operators_reference.html
http://www.alexa.com/topsites
http://resources.infosecinstitute.com/arbitrary-file-download-breaking-into-the-system/
http://resources.infosecinstitute.com/arbitrary-file-download-breaking-into-the-system/
http://www.ietf.org/rfc/rfc1867.txt
http://linasm.sourceforge.net/docs/syscalls/filesystem.php
http://linasm.sourceforge.net/docs/syscalls/filesystem.php
http://named-data.net/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Three Trust-based Systems for Anonymity and Web Services
	1.1.1 Trust-based Onion Routing
	1.1.2 Certification based Trust Model
	1.1.3 File Download Protection

	1.2 Problems
	1.2.1 Biased Trust Distributions
	1.2.2 The Correctness of Trust
	1.2.3 Disastrous Vulnerability in Certification based Trust Model
	1.2.4 Unreliable File Download Protection

	1.3 Major Contributions
	1.3.1 More Trustworthy Trust-based Onion Routing
	1.3.2 More Trustworthy Certification based Trust Model
	1.3.3 More Trustworthy File Download Protection

	1.4 Thesis Structure

	2 Literature Review
	2.1 Anonymous Communications
	2.1.1 Anonymous Communication Techniques
	2.1.2 Attacks Against Onion Routing
	2.1.3 Trust-based Systems for Onion Routing

	2.2 Certification based Trust Model
	2.2.1 SSL/TLS Man-in-the-middle Attacks
	2.2.2 Existing Countermeasures Against Man-in-the-middle Attacks

	2.3 File Download Vulnerabilities on the Web
	2.3.1 Related Web Vulnerabilities
	2.3.2 Existing Countermeasures Against File Download Vulnerability

	3 Trust Degree based Onion Routing
	3.1 Inference Attack Model in Trust-based Onion Routing
	3.1.1 The Anonymity
	3.1.2 Trust Graph
	3.1.3 Threat Scenario
	3.1.4 Inference Attack Model
	3.1.4.1 Model Requirements
	3.1.4.2 Model Design

	3.2 Trust Degree to the Rescue
	3.2.1 Model Analysis
	3.2.2 Routing Algorithm with Trust Degree
	3.2.2.1 Optimization for Single Hop Router Selection
	3.2.2.2 Optimization for Multiple Hops Router Selection
	3.2.2.3 Algorithm Limitation

	3.3 Investigating the Effectiveness of Trust Degree
	3.3.1 Datasets
	3.3.2 Trust-based Algorithm benefits by incorporating Trust Degree
	3.3.3 Downhill Algorithm benefits by incorporating Trust Degree

	4 Trust Graph based Onion Routing
	4.1 SGor Overview
	4.1.1 Design Goals
	4.1.2 Basic Assumptions
	4.1.3 Threat Model
	4.1.4 Trust Model
	4.1.5 SGor Architecture and Major Components
	4.1.5.1 SGor Architecture
	4.1.5.2 Major Components

	4.2 SGor Design
	4.2.1 Group Trust
	4.2.1.1 Robust Trust Path
	4.2.1.2 Group Trust Definition
	4.2.1.3 Group Trust Aggregation Algorithm

	4.2.2 Global Trust
	4.2.3 Trust Graph based Router Selection
	4.2.4 SGor Analysis
	4.2.4.1 The Capability of Evading Adversaries' Routers
	4.2.4.2 The Capability of Defeating Inference Attacks

	4.3 Evaluation
	4.3.1 Datasets
	4.3.2 Evaluating The Capability of Evading Malicious Routers
	4.3.2.1 Group Trust's Effectiveness in evading Adversaries' Routers:
	4.3.2.2 Global Trust's Impact:
	4.3.2.3 Simulation of SGor and Trust-based Onion Routing:

	4.3.3 Evaluating The Capability of Defeating Inference Attacks
	4.3.4 Comparing SGor with Other Global Trust-based Schemes
	4.3.5 Evaluating The Leakage of A Priori Trust Relationships
	4.3.6 Evaluating SGor's Overheads
	4.3.6.1 Storage Overheads
	4.3.6.2 Communication Overheads
	4.3.6.3 Additional Traffic

	4.4 Syntactic Graph based Analysis

	5 Active Approach for Certification based Trust Model
	5.1 Threat Model
	5.2 Design of Active Approach
	5.2.1 Formalization
	5.2.2 Client-side Countermeasures
	5.2.2.1 Client-side Countermeasure 172
	5.2.2.2 Client-side Countermeasure 173
	5.2.2.3 Client-side Countermeasure 174

	5.2.3 Server-side Countermeasure
	5.2.4 Comparison in the Literature

	5.3 Evaluation
	5.3.1 Evaluation of client-side countermeasure 172
	5.3.2 Evaluation of client-side countermeasure 174
	5.3.3 Evaluation of performance overhead

	6 File Download Vulnerability Study and New Defense
	6.1 Background
	6.1.1 Threats to File Download Scripts
	6.1.2 Drawbacks of Existing Defenses
	6.1.2.1 User Input Sanitization
	6.1.2.2 Directory based Permission Control

	6.2 Vulnerability Survey in Today's Web
	6.2.1 Sampling Methodologies
	6.2.1.1 Step One, Collecting Suspicious URL Samples
	6.2.1.2 Step Two, File Download Vulnerability Discovery

	6.2.2 Empirical Study of File Download Vulnerabilities in the Web
	6.2.2.1 Scripting Language Study
	6.2.2.2 Global Distribution Study
	6.2.2.3 Popularity Study

	6.2.3 Attacks Using File Download Vulnerabilities
	6.2.3.1 System Intrusion
	6.2.3.2 Database Intrusion
	6.2.3.3 White-box Analysis
	6.2.3.4 Other Attacks

	6.3 FileGuard Design
	6.3.1 Preliminaries
	6.3.1.1 Threat Model
	6.3.1.2 Basic Assumption
	6.3.1.3 Design Goals

	6.3.2 FileGuard Design
	6.3.3 Prototype Implementation

	6.4 Performance Evaluation

	7 Conclusion and Future Research
	7.1 Conclusions
	7.2 Future Directions

	A
	A.1 The proof of Theorem 1
	A.2 The proof of Theorem 2

	Bibliography

