

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

RROUTABILITY-DRIVEN FLOORPLANNING OF

ANALOG AND MIXED-SIGNAL CIRCUITS

ZHOU HONGXIA

M.Phil

The Hong Kong Polytechnic University

2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

Routability-Driven Floorplanning of Analog

and Mixed-Signal Circuits

ZHOU Hongxia

A thesis submitted in partial fulfillment of the requirements for the degree

of Master of Philosophy

April 2014

Abstract

The exponential increase in scale and complexity of very large scale integrated

circuits (VLSI) poses a great challenge to the present electronic design au-

tomation (EDA) techniques. As an essential step in the whole EDA layout

synthesis, placement design is attracting more and more attention, especially

the one for analog and mixed-signal integrated circuits. Recently, the experts

in this field observe a variety of analog-specific layout constraints to obtain

high-performance placements. These constraints include symmetry, alignment,

boundary, preplace, abutment, range and maximum separation and addition-

ally the routability of the placement. In order to solve this multi-objective

placement problem, two different approaches are proposed in this thesis. One

employs the sequence pair (SP) representation to solve the placement prob-

lem with mixed constraints. The routability of the placement is improved by

performing module expansion according to the net congestion probability in

the circuits. The other one applies the polish expression (PE) representation

and utilizes the characteristics of the slicing structures to achieve better place-

ment results. Experimental results on area and routability demonstrate that

the two approaches are effective and feasible in solving the complex placement

problem.

i

Acknowledgments

I would like to express the greatest gratitude to those who have supported me

during the period of Mphil study.

The first and deepest thanks I would like to give to my supervisor, Dr. Bruce

Chiu-Wing Sham. He helps me to understand the whole structure and details

of my research. He further provides me with patient and professional guidance,

invaluable suggestions and discussions during two and a half year period.

I am also grateful for the technical support from the staff in the Department

of Electronic and Information Engineering for their assistance.

Finally, I am deeply grateful to my beloved family and friends. Without their

support and encouragement, I cannot overcome tough situations by myself.

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contribution . 3

1.3 Organization . 3

2 EDA of Analog and Mixed-Signal ICs 5

2.1 Overview . 5

2.2 Analog and Mixed-Signal IC Design Flow 8

2.3 Analog and Mixed-Signal IC Layout Synthesis 12

2.3.1 Module Generation . 14

2.3.2 Partitioning . 15

2.3.3 Floorplanning and Placement 16

2.3.4 Routing . 20

2.3.5 Compaction . 21

2.4 Summary . 22

3 Constraints and Geometric Representations for Layout Syn-

thesis 23

3.1 Overview . 23

3.2 Placement Constraints . 24

3.2.1 Symmetry and Common Centroid 24

3.2.2 Alignment . 27

iii

3.2.3 Boundary . 27

3.2.4 Abutment . 28

3.2.5 Clustering and Maximum Separation 30

3.2.6 Preplace and Range . 32

3.3 Slicing and Nonslicing Placement Representations 34

3.3.1 Sequence Pair (SP) . 34

3.3.2 Polish Expression (PE) 37

3.4 Simulated Annealing . 37

3.5 Summary . 40

4 Congestion-Oriented Approach for Non-Slicing Floorplans 41

4.1 Overview . 41

4.2 Problem Formulation . 41

4.3 Methodology . 42

4.3.1 Approach to Obtaining A Candidate Placement 42

4.3.2 Net Congestion in the Approach 47

4.3.3 Number of Possible Routes of Each Node 51

4.3.4 Total Number of Possible Routes 52

4.3.5 Probabilistic Usage Array 53

4.3.6 Detailed Example . 54

4.3.7 Adjustment of Module Size 57

4.4 Experimental Results . 57

4.4.1 Comparisons with Previous Approach 57

4.4.2 Detailed Experiments . 58

4.5 Summary . 61

5 Regularity-Oriented Approach for Slicing Floorplans 62

5.1 Overview . 62

5.2 Problem Formulation . 62

5.3 Overview of the Approach . 63

iv

5.4 Handling of Symmetry Constraint 64

5.4.1 Placement of Symmetry Group 64

5.4.2 Linear Constraint Expressions from Symmetry Constraint

and the Corresponding SF-PE 68

5.5 Handling of Other Constraints 71

5.6 Regularity of Placement . 74

5.6.1 Regular Structure in Placement 77

5.6.2 Representation of Regular Structure 77

5.6.3 Type of Regular Structure 78

5.6.4 Regular Structure Evaluation 79

5.7 Simulated Annealing Process . 81

5.7.1 Set of Moves . 81

5.7.2 Feasible Scan . 82

5.7.3 Simulated Annealing . 82

5.8 Experimental Results . 82

5.9 Summary . 86

6 Conclusion 87

6.1 Conclusion . 87

6.2 Publication . 88

6.3 Future Work . 88

Bibliography 90

v

List of Figures

2.1 General flow of analog or mixed-signal IC design 9

2.2 The process of analog circuit layout synthesis 13

2.3 (a)The schematic of a CMOS operational amplifier, in which the

differential input sub-circuit forms a symmetry group; (b)A lay-

out design with symmetry and clustering constraints of circuit

in (a) . 17

3.1 Example of symmetry constraint 25

3.2 Example of common centroid constraint 25

3.3 Example of alignment constraint 28

3.4 Example of boundary constraint 29

3.5 Example of abutment constraint 29

3.6 (a)Unmerged devices; (b)Merged devices with reduced parasitic

capacitance . 31

3.7 (a)Non-abutted devices; (b)Abutted devices with reduced par-

asitic capacitance . 31

3.8 (a)Example of clustering constraint; (b)Example of maximum

separation constraint . 32

3.9 (a)Example of preplace constraint; (b)Example of range constraint 33

3.10 (a)Example of a slicing floorplan with a slicing order indicated;

(b)Example of a nonslicing floorplan 35

vi

3.11 A sequence pair to represent a packing (X, Y) = (< 4, 3, 1, 6, 2, 5 >

,< 6, 3, 5, 4, 1, 2 >) . 36

3.12 (a) Horizontal constraint graph Gh(V,E) of Figure 3.11; (b)

Vertical constraint graph Gv(V,E) of Figure 3.11 38

3.13 Polish expression representation and slicing tree representation

for a slicing floorplan . 39

4.1 The flow of the congestion-oriented placement algorithm 43

4.2 Dummy nodes and constraint edges for a symmetry group . . . 46

4.3 (a) Placement with high compaction; (b) Placement with con-

sidering the routability issue . 48

4.4 Placement with leaving routing channels 49

4.5 The position graph of the placement in Figure 4.4 50

4.6 Number of possible routes of a single node 52

4.7 Explanation of the source pin and drain pin 53

4.8 Process of calculating possible routes from the forward direction

(Fi) . 55

4.9 Process of calculating possible routes from the reverse direction

(Bi) . 55

4.10 Single probabilistic usage of all nodes (Pi) 56

4.11 Resultant packing with high compaction of data80b 60

4.12 Resultant packing of data80b after adjustment 60

5.1 (a)A placement of a symmetry group; (b)Representative selec-

tion for symmetry pairs and self-symmetry modules 65

5.2 (a) The slicing tree representation of PE in Figure 5.1(a); (b)

The slicing tree representation of SF-PE in Figure 5.1(b) 65

5.3 A invalid slicing tree and its slicing floorplan 66

5.4 Placement with satisfying symmetry constraint (symmetry pair

modules al, ar and bl, br and self-symmetry module cs) 68

vii

5.5 Example of alignment in slicing floorplans 72

5.6 Example to illustrate the algorithm–FindSubexpression(E,I) . . 75

5.7 Illustration of alignment satisfaction 76

5.8 Extraction of row structures . 79

5.9 A placement for S = (2, 1, 3, 5, 4, 6) 80

5.10 Resultant packing of Data80 4 by using PE 85

5.11 Resultant packing of Data80 4 by using SP 86

viii

List of Tables

4.1 Detailed example of calculating Pi 56

4.2 Comparisons with previous approach [1] 58

4.3 Information of benchmark circuits with mixed constraints 59

4.4 Experimental results of different expansions 59

4.5 Detailed changes of overflow and wirelength of data80b 59

5.1 Information of circuits with constraints 83

5.2 Experimental results of SP and PE 84

5.3 Experimental results of different symmetry constraint settings . 85

ix

Chapter 1

Introduction

1.1 Background

Electronic design automation (EDA) is defined as a category of software tools

for designing electronic systems such as printed circuit boards (PCBs) and

integrated circuits (ICs). It is also considered as electronic computer-aided de-

sign (ECAD or just CAD). EDA of very large scale integrated circuits (VLSI)

and systems has significantly effected the development of information technol-

ogy in both computer science and engineering [2,3]. EDA has been developing

solutions to support circuit design for over 40 years. During this time, with

the exponential increase in the scale and complexity of circuit design, it has

made great achievements from the first microprocessor (Intel 4004), with 2250

transistors, to the latest multi-core processor, with over a billion transistors.

Also, EDA has accelerated the theoretical study in computation and modeling,

and successfully employed them into practice. Generally speaking, EDA has

completely changed the way that electronic engineers design and manufacture

ICs.

In recent years, a single chip composed of a large number of transistors leads

to the integration of systems on a chip (SoC), which incorporates both digital

parts and analog parts. The increasing levels of integration available in silicon

1

technology reveals a growing demand for EDA tools. A good EDA tool can

improve the quality of ICs and also increase the design productivity [4].

In most analog and mixed-signal integrated circuits, the digital parts account

for 90% of an integrated circuit in terms of area. However, the designers are

required to put most of the effort into the analog parts where many manual

adjustments are required [5]. Thus, automated floorplanning tools for ana-

log ICs are highly desirable from the designers’ point of view. In analog and

mixed-signal ICs, the designers usually have concerns about the logical cor-

rectness and the physical characteristics. The experts in this field observe a

variety of analog-specific layout constraints and exploit a range of geometric

optimizations to achieve these performance and density goals [6–19]. These

layout constraints include alignment, abutment, symmetry pair layouts, com-

mon centroid, boundary area, preplace & range and clustering & maximum

separation. Obviously, these constraints make the placement problem more

complicated. In addition, the separation of placement and routing results in

another issue in the place-then-route-style floorplanning. EDA designers con-

cern that how they can estimate accurately the routing space to leave around

each module for routing. Over-estimation results in open space, while under-

estimation creates too many blockages for routing and placement is required

to be done again. Thus, in order to ensure that the routing space can be ap-

propriately estimated, we should consider the routability [1, 11, 20–26] during

the floorplanning stage.

2

1.2 Contribution

In order to address the automated floorplanning issues, it is necessary for us to

handle the specified constraints to achieve a satisfying floorplan and simulta-

neously deal with the routability problem. Two efficient methods are proposed

in this thesis that are based on sequence pair (SP) [27] and polish expression

(PE) [28], respectively. One applies the methodology presented in [14] and

generalizes it to solve the placement problem with mixed constraints and the

routability issue. All the required constraints are satisfied by inserting dummy

nodes and constraint edges into the constraint graphs. At the same time, the

routability of the placement is increased by adjusting the dimensions of corre-

sponding modules according to the net congestion. The other method employs

the polish expression and extends the Wong-Liu algorithm [28] to achieve a

slicing floorplan. Regularity concept is introduced in this method in order to

improve the routability of the placement result. It successfully addresses the

constraints for mixed-signal integrated circuits such as symmetry, boundary,

clustering and alignment. It also improves the routability of the placement

result by placing the modules with a large number of regular structures.

Both methods can successfully solve the mixed-constraint placement problem.

In addition, enough white space can be reserved for routing without violating

any constraint.

1.3 Organization

This thesis consists of six chapters. Chapter 2 gives a background introduction

about EDA technologies for mixed-signal ICs, including its applications and

challenges at present. This chapter also presents the analog and mixed-signal

3

IC design flow and a general introduction about each stage of the layout syn-

thesis. Chapter 3 concerns itself with the placement constraints. It also gives

the introduction about two geometric representations and one optimization

algorithm employed in this thesis. Chapter 4 focuses on a congestion-oriented

approach to dealing with the placement problem for analog and mixed-signal

ICs. Chapter 5 covers another method that is proposed to solve the same

problem, placement with considering layout constraints and routability simul-

taneously. Chapter 6 gives conclusions, which mainly includes the overall thesis

briefly and the further work.

4

Chapter 2

EDA of Analog and

Mixed-Signal ICs

2.1 Overview

With the rapid development in IC manufacturing technology, IC industry has

presented a boom unprecedented in history from a single transistor of the 50′s

to ICs accommodating billions of transistors of the present day. The growing

complexity and scale in ICs has brought along design problems as well. These

problems can not be totally solved by hiring more engineers, but increasing

designing productivity could be the best answer here. This has been possible

only by the prevalent use of EDA tools.

In recent years, System-on-Chip (SOC) is becoming more common in modern

VLSI industry because the designers would like to put all electronic compo-

nents for a system into one single chip. Analog circuits generally account for

only a small part of the components on these SoC designs or other emerging

mixed-signal ICs, since digital parts are more easily handled and the previous

trend is to use digital computations in place of analog functions (e.g., replace

analog filtering with digital signal processing). But, in many occasions, analog

circuits are necessarily needed in electronic systems for reasons of cost and

5

performance. Firstly, the input side and output side of a system must be ana-

log circuits. For the input side, the signals received through a sensor (e.g.,

antenna, microphone and wireline) should be amplified and filtered to improve

the signal to noise/distortion ratio for digitalizing. The typicallly used analog

circuits include variable-gain amplifiers, low-noise amplifiers, oscillators, mix-

ers and filters [4]. For the output side, the digital-to-analog-converted signal

must be enhanced in order to drive the external load (e.g., wireline, doud-

speaker, antenna, actuator) with less distortion. The typically used analog

circuits include filters, buffers, drivers, oscillators and mixers. Secondly, the

true mixed-signal circuits of a system which connect the mentioned analog cir-

cuits with the digital-signal-processing part remain to be analog circuits. The

typically used circuits include the sample-and-hold circuits, analog-to-digital

converters, digital-to-analog converters, phase-locked loops and frequency syn-

thesizers. What’s more, stable absolute references (generated by voltage and

crystal oscillator or current reference circuits) are required for the above cir-

cuits. Finally, the largest analog circuits at present are high-performance (low-

power, high-speed) digital circuits, such as advanced microprocessors, most of

which are custom-sized like analog circuits, to push power or speed limits.

As mentioned above, analog circuits play a crucial role in every electronic ap-

plication which interfaces with the external systems. When analog and digital

parts exist in a system, it is necessary to integrate them together to improve

performance and reduce cost. Obviously, the design complexity of today’s

ICs has increased greatly with circuit complexity growing: 1) an increasing

number of transistors are integrated on each IC to perform both analog and

digital functions, and they need to be designed together with the embedded

software; 2) in order to support performance requirements and new functional-

ities of emerging applications, it is necessary to develop new signal processing

techniques and corresponding system architectures; and 3) the expectation for

6

changing process technology parameters needs to be accounted for in the de-

sign cycle because of the rapid development in process technologies.

The application of EDA and verification tools are necessarily needed in order

to deal with the increasing design complexity and meet the time-to-market

constraint. In the digital field, EDA is well developed because a digital sys-

tem can be essentially described by programming language conceptions and

Boolean representation. Also, the functionality of a digital system is easily

represented in algorithmic form. These advantages provide the digital system

design with approaches for logically transition into automation in many as-

pects. Unfortunately, the progress in EDA tools for analog circuits has been

significantly slower. There are several reasons for this different development

between digital and analog designs. First, designers usually consider ana-

log design as less systematic than digital design. Second, analog designers

still haven’t established a higher level of abstraction which can shield all the

device-level and process-level details from the higher level design. In addition,

analog IC design is a complicated labor, which needs specialized knowledge

and rich experience on design techniques. In the analog domain, there exist

a variety of circuit schematics and a large quantity of conflicting constraints.

Finally, analog circuits are more sensitive to the inherent disturbances such

as supply noise, substrate noise and crosstalk. Those differences from digital

design are part of the reasons why the digital algorithms cannot be applied

to analog EDA tools and special analog-targeted tools are needed to be devel-

oped. Therefore, analog designs are mainly achieved manually as a result of

the insufficiently mature analog EDA tools. The design of analog or mixed-

signal ICs is time-consuming and fallible. Though occupying a small scale on

a mixed-signal IC or system, analog circuits usually play as the bottleneck in

the whole design in terms of cost and time.

7

In today’s microelectronics industry, analog EDA tools are in great demand to

help designers with fast and excellent design of analog ICs due to the decreasing

time-to-market restriction and the pressure for electronic products of high

quality and low price. Recently, the analog designers are heavily restricted

by the more and more integrated systems and the continuous pressure for

technology updates and process imgrations. This design difficulty and pressure

can be alleviated by analog EDA tools and they can take over a big part of the

technology retargeting effort and make analog design easier to port or migrate

to new technologies. In addition, analog EDA tools can assist in improving

the quality of the design. Therefore, the exploration and application of analog

EDA is our indispensable work in the future.

2.2 Analog and Mixed-Signal IC Design Flow

In the following section, Figure 2.1 shows the general flow of analog and mixed-

signal IC design. This design flow consists of a top-down synthesis and a

bottom-up verification at each level of the hierarchy. Starting from a system

concept, it conducts the system design first followed by simulation and verifi-

cation. Then, the system design is given as an input to the next architectural

design, which is input to the circuit design, circuit layout and system layout.

Every phase has a feedback loop consisting of simulation and verification. The

various phases in the design process are introduced in detail in the following

part.

1. Conceptual Design: As the product conceptualization phase, it is respon-

sible for gathering specifications and developing the overall product con-

cepts. Designers often apply mathematical tools like Matlab/Simulink

during the phase. Additionally, designers need to set project manage-

ment goals, which includes project planning, tracking and final product

8

Figure 2.1: General flow of analog or mixed-signal IC design

9

cost.

2. System Design: As the primary phase of the actual design, it should de-

sign and partition the whole architecture of the system. It also needs to

define and specify the hardware and software parts in appropriate lan-

guages. Specifically, the hardware components need a behavioral-level

description and the interfaces should be given a specification. In addi-

tion, this phase should determine the implementation issues, including

target technology, package selection and general test strategy. Finally,

the detailed cosimulation techniques are often used here to verify the

system-level partitioning and specifications.

3. Architectural Design: The architectural design phase should decompose

the hardware components into an architecture composed of functional

modules. Each module is required to achieve the specified behavioral de-

scription. In addition, this phase should separate analog modules from

digital ones and define the specifications of the functional modules. The

behavioral mixed-mode simulations are generally used here to verify the

architecture of high level against the specifications.

4. Circuit Design: During this phase, analog modules should be given a con-

crete implementation for the given specifications and obtain their fully

sized device-level circuit schematics in the selected technology process.

This phase is also responsible for making decisions about the appropriate

circuit topology as well as a dedicated sizing of the circuit parameters.

At the same time, the complex analog modules can be further decom-

posed into a set of sub-modules during this process. To ensure a high

yield and robustness, manufacturability considerations like mismatches

10

and tolerances are often taken into account. Then, the resulting circuit

design can be verified by SPICE-type circuit simulations.

5. Circuit Layout: The circuit layout phase plays a role of translating the

electrical schematic of different analog modules into a geometric represen-

tation in the form of a multi-layer layout. It mainly uses area optimiza-

tion to generate layouts. To ensure that the performance characteristics

have few negative effects from layout parasitics, it will do layout para-

sitic extraction and provide detailed simulations at the circuit level for

the extracted circuit.

6. System Layout: During this phase, the system-level placement-and-routing

and power-grid routing are used to generate the system-level layout of

an IC. The analysis of crosstalk and substrate coupling should be taken

into account in the mixed-signal ICs, and it is also necessary to consider

proper measures such as shielding or guarding. In addition, the system

layout needs to insert appropriate test structures in order to make the IC

testable and it also needs to extract interconnect parasitics and perform

detailed verifications like time analysis during this process. The system

can be verified by co-simulating the hardware components with the em-

bedded software.

7. Fabrication and Testing: This phase takes a task of generating the masks

and fabricating ICs. Specifically, in order to elimimate defective devices,

testing is executed during and after fabrication.

11

In the above IC design flow, any of these simulation and verification phases

may detect potential problems, which may make the IC design fail to meet the

target requirements. If that happens, backtracking or redesign will be done,

as indicated by the upward arrow on the left-hand side of Figure 2.1.

The following section in this chapter will focus on the introduction about the

analog and mixed-signal IC layout synthesis, which is also the concentration

of my thesis.

2.3 Analog and Mixed-Signal IC Layout Syn-

thesis

One of the most important stages in the design of analog and mixed-signal

IC is generating the circuit layout. The layout synthesis has a better develop-

ment than the circuit synthesis, largely because it can absorb ideas from the

mature field of digital layout. However, the layout problem is not a simple

geometric one since the layout directly affects the performance of an analog

or mixed-signal circuit. It may induce parasitics, such as the parasitic wire

capacitance and resistance or the crosstalk capacitance between two crossing

or neighboring wires. These induced parasitics have an adverse effect on the

circuit performance. Therefore, it is important to generate the circuit layout

such that the final circuit can realize all performance specifications and the

layout is as compact as possible. The process of layout synthesis is shown in

Figure 2.2.

12

Figure 2.2: The process of analog circuit layout synthesis

13

2.3.1 Module Generation

Given a circuit netlist, module recognition and generation is the first stage

in the layout design. It takes a task of recognizing special analog sections

and generating corresponding analog modules. Module generation is simply

responsible for generating a single module, or a group of closely related mod-

ules, according to the required specifications. Generated modules can be cate-

gorized into three types: transistors, resistors, and capacitors. Each group has

alternative configurations in order to increase the design flexibility and avoid

certain undesired effects, such as mismatch, unwanted parasitic and parameter

variation.

In general, the structures of interdigitization and common centroid [29] can

be applied to control the mismatching of the generated modules. At the same

time, the two structures reduce relative distances between generated modules

thus controlling overall parametric variation [30]. Controlling parameter for

interdigitization is folding amount and the increase of folding parameter will

also improve the interdigitization density. Common centroid structure is gen-

erated by distributing and placing the modules in such a way that they are in

rotational symmetry about a common point. Common centroid structure is

proposed for transistors and capacitors. In order to alleviate unwanted effects

and improve the design flexibility, module generator also supports two more

structures: folding and merging [29]. Specifically, merging is used to make two

modules abut with each other, so that they can share one of their contacts,

thus reducing parasitic capacitance. This method is employed to build stacks

of transistors. Stacked transistors are a set of transistors with the drain node

of one transistor merged with the source node of the next one. This technique

makes it possible to obtain big reductions in area and parasitic capacitance.

14

Module generation is a straightforward automation stage and it is capable of

generating modules when geometric parameters are provided. The next stage

will select the best among all possible module configurations.

2.3.2 Partitioning

Partitioning is indispensable in the design automation of VLSI circuits, both

in the analog and digital fields. It is a technique of breaking an IC or system

into a collection of smaller components [31]. A large system is required to

be decomposed into pieces so that each one can be implemented on separate

interacting components. Partitioning a circuit is simply dividing the modules

or components of the circuit into different groups while minimizing a certain

cost, such as the number or the value of the connetions across the partitions.

Partitioning has become an indispensable and central stage in today’s VLSI

physical design, in large part due to the enormous increase of system com-

plexity in the past as well as the expected further advances of microelectronic

system design and fabrication technology. As we know, the powerful high-level

synthesis tools enable designers to automatically generate huge systems. But,

synthesis and simulation tools are not always capable of handling the complex-

ity of the whole system under development, and they need the partitioning of

the huge system. Also, the partitioning technique allows designers to focus on

crucial components of a system so that the design cycle could be shortened. In

addition, fabrication technology makes increasingly smaller feature sizes and

augmented die dimensions possible, which allows an IC to accommodate sev-

eral millions of transistors. But, circuits are restricted by size and the number

of outside connections. Thus, fabrication technology requires the partitioning

of a large system into small sections. Finally, enormous profit can be obtained

by partitioning a system optimally, because the various sections of the system

can be implemented in proper methods to achieve optimal system performance,

15

low-cost fabrication as well as easy adaptation to changing requirements.

The partitioning problem has been proved to be NP-hard [32], and hence, it

is very difficult to obtain the optimal solution. A large quantity of optimiza-

tion algorithms have been proposed for the partitioning problem. Accord-

ing to the optimization strategy, the techniques are generally categorized into

constructive algorithms, which are general clustering-based [33] and iterative

improvement algorithms which include Tabu Search heuristic algorithm [34],

simulated annealing procedure [35], genetic algorithm [36] and so on. These

two types of algorithms can be combined with each other with the construc-

tive algorithm providing a good initial point for further iterative improvement.

2.3.3 Floorplanning and Placement

In layout design, floorplanning is very closely linked with placement. It is

sometimes very difficult to determine where one starts and the other ends. I

will emphasis on the placement discussion as placement covers floorplanning

in many cases.

Placement is a complex process and it takes a task of assigning exact positions

to circuit modules within the chip area such that a certain cost is minimized.

In general, this cost is simply the total layout area and the estimated inter-

connect length. For the digital circuits, area minimization and wirelength

minimization are the major concerns in this stage. But in the mixed-signal

circuit design, placement has become a fairly complicated problem, because

of circuit sensitivity to substrate noise, supply noise, parasitic disturbances,

crosstalk, mismatch effects, thermal gradients and so on. In order to achieve a

16

placement with satisfying performance, a set of essential constraints are intro-

duced to placement to reduce these inherent negative effects. These constraints

include symmetry, common centroid and other general placement constraints.

Figure 2.3 gives an example about how to implement performance-related con-

straints in the layout synthesis. For symmetry constraint, it requires pairs of

(a) (b)

Figure 2.3: (a)The schematic of a CMOS operational amplifier, in which the
differential input sub-circuit forms a symmetry group; (b)A layout design with
symmetry and clustering constraints of circuit in (a)

modules to be put symmetrically to a horizontal or vertical axis. For common

centroid constraint, it splits modules into a quantity of smaller sub-modules

and places them in rotational symmetry about a common central point. Other

placement constraints, including alignment, preplace, abutment, boundary,

clustering and maximum separation, are also important for placement.

The problem of the constraint-driven placement was extensively studied and

great achievements have been made [6–19]. Most previous studies used simu-

lated annealing to floorplan the modules based on a geometric representation.

Geometric representations such as sequence pair [27], B*-trees [37], O-tree [38]

and TCG-S [39] have been introduced to deal with symmetry constraint [6–14].

Most of these studies addressed only symmetry constraint while [8] addressed

17

common centroid constraint and [12–14] addressed both. An algorithm called

plantage was proposed in [12] which applied a hierarchically bounded enumer-

ation of basic building modules and the B*-tree representation to carry out

analog placement with considering symmetry, common centroid, proximity,

and minimum distance constraints. Paper [13] made use of the symmetry fea-

sible sequence pair (SP) representation to tackle both symmetry and common

centroid constraints efficiently. The other general constraints were handled

in [15] by SP with the constraint graphs. In [14], it proposed an approach

that could deal with all the constraints simultaneously based on a global SP

with center-based corner block list (C-CBL) [8]. In addition, polish expression

(PE) [28] is used to respectively solve constraints like boundary [16], cluster-

ing [17], preplace [18] and range [19]. As we know, device mismatch may cause

significant adverse effects to analog circuits. This kind of mismatch and other

effects induced by layout can be reduced by considering constraints during

placement.

In addition to the placement constraints, it is desirable to consider routabil-

ity in this stage due to the technique independence between placement and

routing. During the placement stage, white space is often removed from the

resulting layout in an attempt to minimize a certain cost such as the chip area

or wirelength. But, congestion issue derived from this behavior may deteriorate

the circuit performance and lead to unroutable solutions for routing. It may

also lead to timing correlation problems because detoured routes can cause

mismatch between preroute timing models and post-route timing. Besides,

congestion heavily restricts the flexibility of routing to optimize secondarily

(e.g. crosstalk, via count, antenna rules). When facing routability problems,

designers typically enlarge their floorplans, which may imply schedule delay

and extra expense. Worse yet, this measurement can not ensure that the new

floorplanner will yield a satisfactory solution. Considering routability earlier in

18

the design cycle can save substantial time and resources. Thus, it is necessary

for us to consider the routability issue during placement in order to guarantee

that the final placement can be routable.

There have been a number of methods that were proposed for the routability-

driven placement. In general, we can categorize these previous techniques into

different groups. For the first group, the routabiity component was formulated

and incorporated into the placement optimizing objective. In [20], RUDY con-

gestion estimation technique was proposed for the routaibity-driven placement

and the density term was modified to incorporate both the module density

and routing density. In [21], the net density was integrated into the analytical

placement framework for controlling net congestion. For the second group, it

mainly applied the white space allocation (WSA) or the congestion control

techniques during or after placement. In [22], it proposed to distribute the

white space by adjusting the partition-lines of hierarchically sliced placement

according to the congestion and available white space. In [23], a new two-

stage placement approach was proposed for congestion optimization. It used

the extended bounding box to evaluate the routing of nets and the strategy

of cell perturbation to eliminate the net congestion. In [1], it also presented

a two-stage routability-driven analog placer based on ASF-B* trees [7] and

HB*-trees [40] to control the routing congestion. The third group guided the

placement by the global routing. IPR [24] performed a global routing to guide

the placer. Some other approaches mixed some of the three features. For

instance, an approach was proposed in [25] to optimize RSMT in the global

placement and apply WSA in the detailed placement. In addition to these

methods, in order to alleviate the congestion and improve the routability, the

papers [11, 26] introduced the regular structure to the non-slicing floorplans

based on sequence pair and B*-trees [38] respectively. These regular struc-

tures enable us to assign channels to the placement for routing.

19

As discussed above, in order to achieve high-quality layouts, both problems

of the layout constraints and routability issues should be taken into account

during the placement stage.

2.3.4 Routing

After the accomplishment of the placement design, routing is performed as

another crucial step to bring the design for manufacturing. It aims at find-

ing the geometric layout of all nets. VLSI routing is normally implemented

through consecutive global routing and detailed routing stages. Global rout-

ing is responsible for producing approximate paths for the interconnects of a

circuit by the way of finding paths on a coarse routing grid. Detailed routing is

the stage where the routing layer and exact position of each net are determined.

Global routing has been proved to be a NP-hard problem and is normally tack-

led by heuristic algorithms. Global routing approaches are generally classified

as either concurrent or sequential techniques. The concurrent algorithms do si-

multaneous routing for all the nets [41,42], while the sequential ones impose an

ordering derived from the perceived importance of the nets on routing [43–45].

Detailed routing plays an key role in the design stage for that it is crucial for

design rule satisfaction and routing completion. The quality of its solution

affects a variety of design metrics including chip yield, signal integrity, tim-

ing and so on. Detailed routing has been studied extensively in past years.

In [46], a detailed router was proposed for field-programmable grid arrays

based on Boolean satisfiability and achieved good solution quality. In [47],

it introduced track assignment as an intermediate stage between global and

20

detailed routing, which took a task of assigning the segments extracted from

global routing to routing tracks. In [48], an efficient technique was proposed

to implement escape-routing algorithm for dense pin clusters, which played

as the bottleneck of detailed routing. In [49], an algorithm was proposed for

the whole-chip routing, in which a combinatorial approximation scheme with

min-max resource sharing was introduced for global routing and a shape-based

data structure was introduced for detailed routing. Recently, [50] presented

an effective detailed routing approach with applying regular routing patterns

for potentially better design rule satisfaction. In order to meet all the design

rules, [50] proposed an abstract idea of local optimization based on local shift

and rip-up-and-reroute, assuming that most design rules were complex func-

tions of local and neighboring geometries.

2.3.5 Compaction

Compaction is carried out after the layout has been created and it is a well-

known problem in IC layout generation, whether analog or digital ICs. The

compaction procedure tries to find a ”rift” in the packing we get from last

design phase and eliminate this ”rift” from the layout, thus compacting it.

However, the major limitation of compaction algorithms is that they can be

successfully performed only in one dimension. A two-dimensional compaction

is not necessarily the same as applying two one-dimensional compaction suc-

cessively. Another problem about compaction algorithms is that they may

reduce total area at the cost of destroying the symmetry constraint or other

constraints that the layout generator created so painstakingly. Thus, simple

compaction algorithms should first guarantee the constraints associated with

circuits. In [51], it added symmetry constraint into the constraint graph that

was used for compaction. It was able to make the circuit smaller and keep the

21

placement symmetric at the same time. However, the algorithm [51] worked

only in the horizontal direction. In [52], an approach that combined the uses

of Linear Programming and constraint graph was proposed for the compaction

problem. The graph was created not only from topological relations as in the

standard algorithm, but also from symmetry constraint as in [51].

Another variation of the compaction problem is whether the modules of the

layout have many shape possibilities. If the modules are left flexible until this

point or the modules are allowed to change shapes and dimensions during com-

paction, compaction becomes much more difficult, but much more efficient at

the same time. One algorithm for this problem was presented in [53]. How-

ever, it is not practical that compaction and shape optimization are performed

together, because the compaction phase is too late for changing module shapes.

2.4 Summary

In this chapter, it presented a general introduction about analog and mixed-

signal IC design process. It also provided the knowledge about each stage

of layout synthesis and the main algorithms applied to these stages. At the

same time, my research focused on the floorplanning and placement stage,

which was discussed above with a length. As it referred, a large number of

excellent approaches were proposed to solve the problems of the constraint-

driven placement and the routability-driven placement all the time. However,

it still challenges every researcher to propose a novel method to solve the

complicated placement problems with less runtime, less algorithm complexity

and more excellent circuit performance.

22

Chapter 3

Constraints and Geometric

Representations for Layout

Synthesis

3.1 Overview

Floorplanning or placement design is one of the most important steps in VLSI

physical design, which takes responsibility for assigning the exact positions to

each circuit module on a single chip while optimizing the circuit performance.

During this stage, in order to achieve high performance and reduce cost, EDA

designers may want to set some restrictions on the positions of some modules

in the final layout. For instance, they may try to control the separation be-

tween two circuit parts if there exist a lot of interconnections between them,

or they may want to place them along the boundary of the final packing for

I/O connections. This may also happen in design reuse, designers may want

to keep the positions of some modules unchanged in the new placement. In

addition, the analog designers are interested in a particular type of placement

constraint called symmetry. Some recent literatures on the constraint-driven

placement are discussed in section 2.3.3. These constraints are set for place-

ment in order to guarantee the logical correctness and physical characteristics

23

of the final packing.

This chapter first presents an introduction about the layout-induced con-

straints. It also introduces two different placement representations and one

optimization algorithm “simulated annealing” to well handle the layout con-

straints and effectively narrow the search space.

3.2 Placement Constraints

In an attempt to improve the circuit performance and guarantee its manufac-

turability, experts in EDA field treat the industrial requirements as a set of

constraints to control the positions of some modules in the resulting placement.

Typical placement constraints include symmetry, common centroid, and other

general placement constraints, such as alignment, abutment, preplace, range,

boundary, range, clustering and maximum separation.

3.2.1 Symmetry and Common Centroid

Symmetry constraint is normally denoted by symmetry groups and gives the

constraint that each pair of modules in the group should be placed symmetri-

cally to a common horizontal or vertical axis called symmetric axis as shown

in Figure 3.1. The symmetry groups may accommodate self-symmetry mod-

ules, whose centers should be put on the symmetric axis. Common centroid

constraint means modules belonging to a group should be put in rotational

symmetry about a common central point as indicated by Figure 3.2. Before

explaining why the two constraints are the most important constraints in ana-

log circuit design, we should have some knowledge about the device matching

and parasitic matching issues in analog layout [54].

24

Figure 3.1: Example of symmetry constraint

Figure 3.2: Example of common centroid constraint

25

In analog circuits, unavoidable variations that exist in all processes, can cause

small mismatches in electrical characteristics of identical devices. When the

mismatches become large enough, they may cause significant adverse effect to

circuit performance through inducing electrical problems like offsets. There

have been three major layout factors that are shape, orientation and separa-

tion. These factors directly impact the matching of identical devices. Device

dimension is considered as a factor for that semiconductor processing leads

to unavoidable distortions in the geometry that make up devices. Devices

composed of identical geometry can improve matching by ensuring that both

devices are subject to the same geometric distortions. Also, matching devices

should be placed in the same orientation, because many processing effects in-

troduce anisotropic geometric differences. These two factors require the iden-

tical devices to be placed symmetrically. Besides, with the separation between

devices increasing, the matching characteristics of them seem to be degraded

by spatial variations in process parameters. Mainly because process induces

gradients in parameters such as oxide thickness or mobility. Placing matching

devices in close proximity can reduce the circuit sensitivity to these effects sig-

nificantly. The well-matching devices may be spatially interdigitated in order

to eliminate the effects of global process gradients.

In addition, device matching, particularly of bipolar devices, exhibits a sen-

sitivity to ambient temperature. If two such devices are placed in a random

thermal gradient, a mismatch induced by temperature difference may appear.

Failing to fully balance thermal couplings in a differential circuit may intro-

duce unwanted circuit oscillation. To suppress this, it is common to place

thermally sensitive matching devices symmetrically around thermally gener-

ating noise sources. Because the symmetrically placed sensitive components

are equidistant from the radiating components, their roughly identical ambient

26

temperatures will ensure no mismatch induced by temperature disturbance.

Finally, parasitic capacitive and resistive components of interconnect can intro-

duce matching problems in differential circuits, which consist of two matching

halves. A mismatch in the parasitic capacitance and resistance between the two

matching halves of the circuit may result in offsets and other electrical prob-

lems. The most powerful method for improving interconnect parasitic match-

ing is layout symmetry that requires the placement and wiring of matching

circuits to be identical, or mirror symmetry in the case of differential circuits.

As mentioned above, symmetry and common centroid arrangement for place-

ment is useful for solving the device matching problem and reducing the layout-

induced parasitics and circuit sensitivity to thermal gradients.

3.2.2 Alignment

Alignment constraint indicates that the specified modules are aligned in a row

as shown in Figure 3.3. Due to bus structures or pipelines in actual VLSI

circuits, alignment is designed to facilitate data transfer in bus structure or a

pipeline.

3.2.3 Boundary

Boundary constraint states that some modules are required to be put along

one of the four boundaries: the left, the right, the bottom, or the top boundary

in the final layout as shown in Figure 3.4. During the layout design, we have

to take the manufacturability into account. Thus, these modules furnished

27

Figure 3.3: Example of alignment constraint

with input and output connections should better be placed along the bound-

aries such that they are easier to be connected to certain I/O ads. Besides,

placement is always implemented hierarchically with grouping modules into

different parts and then placement is done independently for each part on the

chip. The boundary constraint is of great use when some modules need to be

put on the boundary of the part in order to abut with some other modules in

the neighboring parts.

3.2.4 Abutment

Abutment constraint means that specified modules should abut with each other

in the resulting placement as shown in Figure 3.5, which is helpful to reduce

interconnect and junction capacitances, and to obtain substantial gain in chip

area. It can also be applied to merge the diffusion regions of MOS transistors

or of other components, such as capacitors, BJT’s, etc.

28

Figure 3.4: Example of boundary constraint

Figure 3.5: Example of abutment constraint

29

There are capacitance and resistance associated with the geometry of the de-

vices themselves. In CMOS circuits, the dominant layout capacitance is gen-

erally associated with MOS gate structures. The gate area, and thus the gate

capacitance, is fixed from the beginning and cannot be minimized in layout.

However, there exists device capacitance which can be reduced by proper lay-

out. For instance, the pn junctions, which form the MOS device source and

drain regions, have a non-linear voltage dependent capacitance that is propor-

tional to the junction area and perimeter. This capacitance can be controlled

by minimizing the size of all diffusions. An large saving in diffusion capaci-

tance can be made by device merging as shown Figure 3.6(a) and (b), in which

devices are placed such that diffusion geometry is shared between electrically

connected devices. This pattern of geometry sharing has the additional benefit

of improving the packing density of a layout. Besides, like interconnect, each

diffused structure has an associated parasitic resistance that is proportional to

its aspect ratio. These resistances can be reduced by minimizing the aspect

ratio of all diffusions, merging diffusions when possible. Abutment constraint

can be designed here to perform this device merging. In addition, if spacing

rules permit, additional capacitance and resistance can be saved by making

adjacent devices abut with each other instead of explicitly wiring. Routing by

abutment is indicated by Figure 3.7(a) and (b).

3.2.5 Clustering and Maximum Separation

Clustering constraint gives the constraint that some modules should be placed

close to each other as shown in Figure 3.8(a) and maximum separation con-

straint gives an upper limit to the separation distance between each pair of

modules as shown in Figure 3.8(b). Actually, clustering constraint can be

30

(a) (b)

Figure 3.6: (a)Unmerged devices; (b)Merged devices with reduced parasitic
capacitance

(a)

(b)

Figure 3.7: (a)Non-abutted devices; (b)Abutted devices with reduced parasitic
capacitance

31

treated as maximum separation constraint by specifying the maximum allow-

able separation distance between two modules. The two constraints are nec-

essary during placement because they can be designed to reduce the degree of

electrical mismatch due to layout effects as mentioned in section 3.2.1. In addi-

tion, the nonideality of inter-device wiring introduces capacitive and resistive

effects that may degrade circuit performance. Specifically, every conductor has

a parasitic capacitance which is proportional to its area. Similarly, every con-

ductor has a finite resistance which is proportional to its aspect ratio like its

length to width ratio. Both parasitic capacitance and resistance can be reduced

by making critical wires as short as possible. This can be enforced by placing

connected modules in close proximity, which means clustering constraint here.

(a) (b)

Figure 3.8: (a)Example of clustering constraint; (b)Example of maximum sep-
aration constraint

3.2.6 Preplace and Range

Preplace constraint requires some modules to be preplaced and remain un-

changed during the layout design as shown in Figure3.9(a). In VLSI physical

design, it is common that the locations of some macro cells, such as ROM,

32

RAM, and central processing unit core, are fixed in a prior place and the other

components of circuits need to be placed in the rest area of the chip. Simi-

larly, in printed circuit board (PCB) design, it often happens that the exact

positions of connectors are determined before designing the placement of other

components. Expert designers treat these situations as a problem of placement

with preplaced modules. Not only the circuit components, but also other ob-

stacles in any type, are candidates to be regarded as preplaced modules. For

instance, a substrate or holes of the substrate can be treated as preplaced

modules, and the rest components are required to be placed with no overlap

with these preplaced modules. In addition, the problem of floorplanning with

irregular boundaries can be addressed by treating the protruding parts along

the boundaries as preplaced modules. What’s more, in practical industrial

manufacturing, some areas should be reserved for final package. Hence, during

the placement stage, we use some preplaced modules to occupy these areas to

handle this problem.

(a) (b)

Figure 3.9: (a)Example of preplace constraint; (b)Example of range constraint

Range constraint requires some modules to be placed within a given rectan-

gular region in the final placement as shown in Figure 3.9(b). Actually, it is a

33

general situation of the preplace constraint and the preplace constraint can be

regarded as a range constraint by specifying the rectangular region such that

it has the same dimension as the module itself.

3.3 Slicing and Nonslicing Placement Repre-

sentations

Floorplan or placement is generally categorized into two types: slicing and

non-slicing. A slicing placement, normally represented by slicing tree or polish

expression [28], can be obtained by bisecting the chip area recursively with a

horizontal or vertical line. The advantage of slicing placement is obvious in

that its smaller encoding cost and solution space bring fast runtime and it is

flexible to deal with soft, pre-placed, hard and rectilinear modules. However,

optimal solutions might not be in the solution space of the slicing placement in

real designs. It is only a small subset of all feasible packing and is not general

enough. Due to this, a lot of efforts have been devoted to creating representa-

tions for non-slicing placement. A nonslicing placement is a placement that is

not a slicing one. The non-slicing placement is efficient to represent any kind

of packing and more flexible in dealing with existing constraints. Figure 3.10

illustrates the difference between slicing and nonslicing floorplans. In the fol-

lowing section, we will introduce two presentations respectively for slicing and

nonslicing floorplans.

3.3.1 Sequence Pair (SP)

In this thesis, sequence pair (SP) [27] is used to represent a placement, which

is the most popular non-slicing topological representation. In the majority

34

(a) (b)

Figure 3.10: (a)Example of a slicing floorplan with a slicing order indicated;
(b)Example of a nonslicing floorplan

of cases, sequence pair representation is adequate for high-performance place-

ment, as most constraints can be handled easily. A SP (s1, s2) is a pair of

sequences of n elements representing a list of n modules and it indicates the

relationship between each pair of modules as follows:

s1 = (...A...B...), s2 = (...A...B...) (s1 = (...B...A...)) (3.1)

For two modules A and B, s−1
1 (A) (s−1

2 (A)) represents the position of module

A in s1 (s2), if s
−1
1 (A) < s−1

1 (B) and s−1
2 (A) < s−1

2 (B) then it means mod-

ule A is to the left of module B in the placement. If s−1
1 (A) < s−1

1 (B) and

s−1
2 (A) > s−1

2 (B) then it means module A is above module B. An example of

sequence pair is show in Figure 3.11.

Given a sequence pair for a placement, we can use a pair of constraint graphs

to represent the horizontal and vertical relationships between the module po-

sitions [15, 27]. A horizontal (vertical) constraint graph Gh(V,E) (Gv(V,E))

is a directed and vertex-weighted graph, in which the vertices represent the

modules and the edges represent the horizontal (vertical) relationships between

35

Figure 3.11: A sequence pair to represent a packing (X, Y) = (<
4, 3, 1, 6, 2, 5 >,< 6, 3, 5, 4, 1, 2 >)

the modules. A horizontal constraint graph can be constructed by inserting an

edge from module A to module B labeled wA where wA is the width of module

A if s1 = (...A...B...),s2 = (...A...B...). Similarly, a vertical constraint graph

can be obtained by inserting an edge from module B to module A labeled

hA where hA is the height of module A if s1 = (...A...B...), s2 = (...B...A...).

Furthermore, two extra nodes should be inserted to the horizontal constraint

graph: a source node representing the left boundary with zero weighted out-

going edges to all the leftmost nodes and a sink node representing the right

boundary with zero weighted in-coming edges from all the rightmost nodes.

Similarly, we can add such nodes to the vertical constraint graph: a source

node representing the bottom boundary and a sink node representing the top

boundary.

With the constraint graphs, we are capable of obtaining the minimum area

packing corresponding to a sequence pair. For the horizontal constraint graph,

an edge (A,B) with a weight m indicates that module B must be at least m

36

units to the right of module A. Similarly, for the vertical constraint graph,

an edge (A,B) with a weight n indicates that module B must be at least n

units above module A. Therefore, the x and y coordinates of each module are

determined as the minimum by finding the longest path between the source

node and the node of the module in Gh and Gv, respectively. The minimum

width and height of the packing are computed as the longest path length be-

tween the source node and the sink node in Gh and Gv. Figure 3.12 shows the

horizontal and vertical constraint graphs constructed according to Figure 3.11.

Next, through adding the constraint edges and dummy nodes to the two vertex

weighted directed acyclic graphs, all the constraints can be enforced [14].

3.3.2 Polish Expression (PE)

A slicing floorplan can be represented by an oriented rooted binary tree, called

a slicing tree as shown in Figure 3.13. Each internal node of the tree is de-

noted by a + or a ∗, corresponding to a horizontal or a vertical cut respectively.
Each leaf represents a basic module and is denoted by a number from 1 to n.

A polish expression (PE) [28] can be obtained by traversing a slicing tree in

postorder. A normalized polish expression is a PE with no consecutive ∗ or +

in it. Previous work in [28] proved that a normalized PE with length 2n − 1

can generate only one corresponding slicing floorplan with n modules.

3.4 Simulated Annealing

In this thesis, I have chosen to base the layout optimization on simulated an-

nealing [54], which is perhaps the best known and most mature in terms of

wide-spread application on industrial layout problems. In the following sec-

tion, we will review the basic idea of simulated annealing in more detail.

37

(a)

(b)

Figure 3.12: (a) Horizontal constraint graph Gh(V,E) of Figure 3.11; (b) Ver-
tical constraint graph Gv(V,E) of Figure 3.11

38

Figure 3.13: Polish expression representation and slicing tree representation
for a slicing floorplan

Simulated annealing is based on an analogy with thermodynamics of a crys-

talline solid solidifying from a melt. When temperature is sufficiently high, the

atoms in the melt move randomly in some degree. Individual atoms are free

to move such that the total energy of the system either increases or decreases.

With the temperature of the melt decreasing, atomic perturbations that may

result in an increment in the system energy are less likely to occur and the total

energy of the system decreases. When the temperature of the melt is lowered

slowly enough, all atoms will eventually reach their lowest energy stage and

the system will reach its maximum ordered crystalline state.

The mapping of the placement problem into simulated annealing is accom-

plished as follows. Given a group of placeable modules in a random state

with specifying an initial temperature, T0, the placer is able to relocate one or

more modules by performing many small placement moves. After each move,

a cost-function is evaluated to determine the effect of this move on such qual-

ity measures as the total chip-area or the estimated net-length. If the change

39

in the cost-function, �C, is less than or equal to zero, the overall quality of

the placement has improved or remained unchanged and the new placement is

retained. If �C is positive, the overall quality of the placement has decreased.

These uphill moves are accepted with probability based on the Metropolis

relation [55], that is

Pr[uphill] ∝ exp(−� C/T) (3.2)

If the move is rejected, the placement is returned to its previous state. The sys-

tem is considered to be in thermal equilibrium after a sufficiently large number

of successful moves. At this point, a new lower temperature is calculated and

the process begins anew. Eventually, as the placement no longer improves, the

layout is considered to be frozen and the optimization is complete.

3.5 Summary

This chapter gave an overview of specified placement constraints for analog

layout synthesis. It also introduced two representations and the main op-

timization algorithm that were applied to solve the complicated placement

problem. In addition, this chapter explored the difference between slicing and

nonslicing floorplans.

40

Chapter 4

Congestion-Oriented Approach

for Non-Slicing Floorplans

4.1 Overview

In section 2.3.3, it gave a detailed discussion about the specified constraints

for analog placement and the necessity of incorporating routing issue during

placement. In this chapter, I have applied the method proposed in [14] and

generalized it to handle the constraint-driven placement problem. At the same

time, I propose a new approach to adjusting the resulting placement to allow

routing. Experimental results show that this approach is effective to minimize

routing congestion with less placement area and time-consuming.

4.2 Problem Formulation

In this work, I have an input of a set of n modules of areas Ai and aspect ratio

bounds [li, ui], where n = 1, 2, ..., n, together with the following:

1. A set of m symmetry groups H1, H2, ..., Hm, where each symmetry group

Hi has self-symmetry modules and symmetry pairs.

41

2. A set of n general placement constraints G1, G2, ..., Gn, where each place-

ment constraint Gi represents a constraint in placement between two

arbitrary modules, including abutment, boundary, alignment, maximum

separation, preplace and range constraints.

3. A set of k multi-pin nets N1, N2, ..., Nk, where each net Ni denotes its

connected modules.

The objective of this work is to output a high routability placement result

such that the estimated wirelength and total layout area are minimized. At

the same time, the placement result satisfies all the specified constraints.

4.3 Methodology

Simulated annealing is employed as the basic search-engine to optimize the

placement solution with minimum chip area and wirelength. Figure 4.1 il-

lustrates the flow of the congestion-oriented placement algorithm. From the

placement flow, we can see that a preliminary candidate placement that meets

all the specified constraints can be obtained from the first stage and it is given

as an input to the second stage to estimate the net congestion of each module.

The method of getting the candidate placement is proposed in [14, 15] and

it will be discussed in the following part. With the net congestion, the size

of corresponding modules will be expanded to reserve enough space for the

subsequent channel routing.

4.3.1 Approach to Obtaining A Candidate Placement

Firstly, a random SP is created and an initial scan should be carried out to see

whether its corresponding placement satisfies certain constraints. Then, con-

straint graphs are built according to the generated SP. In the next stage, new

constraint edges and dummy nodes are added into Gh and Gv to enforce all

42

Figure 4.1: The flow of the congestion-oriented placement algorithm

the specified constraints. Some of the new inserted edges have variable weights

and it is necessary to calculate their weights with getting rid of positive cycles

and minimizing the packing area. A set of random moves are performed to

generate different placements during the annealing process. Finally, one place-

ment with minimum cost and satisfying all the constraints can be obtained

from the annealing process.

Fast Initial Scan

Each sequence pair represents a placement packing, but not all of them are

subject to these constraints. It needs to identify these feasible candidates

from all possible sequence pairs in order to narrow the search space. The fast

initial scan is used to screen out some infeasible ones. This step can check the

43

constraints as follows:

1. Alignment constraint align(h,A,B) requires modules A and B to keep

the same order in s1 and s2 , while align(v, A,B) requires modules A

and B to keep the reverse order in s1 and s2 .

2. Abutment constraint abut(l, A,B) and abut(r, A,B) mean modules A

and B must at least keep the same form in s1 and s2 , while abut(t, A,B)

and abut(b, A,B) mean modules A and B must at least keep the reverse

form in s1 and s2 .

3. Boundary constraint boundary(x,A) means if module A abuts with the

left (right) boundary of the packing, there is no module B such that B

is before (after) A in s1 and s2. Similarly, there is no module B such

that B is before (after) A in s1 and after (before) A in s2 if module A

abuts with the bottom (top) boundary.

4. Symmetry constraint requires the modules which belong to the symmetry

group to meet the two conditions:

For horizontal symmetry groups:

s−1
1 (A) < s−1

1 (B) ⇐⇒ s−1
2 (sym(B)) < s−1

2 (sym(A)) (4.1)

For vertical symmetry groups:

s−1
1 (A) < s−1

1 (B) ⇐⇒ s−1
2 (sym(A)) < s−1

2 (sym(B)) (4.2)

Note that A and B are any two distinct modules in the symmetry group,

s−1
1 (X) (s−1

2 (X)) represents the position of module X in s1 (s2), and

sym(X) represents the symmetry counterpart of X (sym(X) of a self-

symmetry module X is X itself).

44

Handling of General Placement Constraints

According to the introduction about SP and the corresponding constraint

graphs in last chapter, constraint edges can be added to constraint graphs

to enforce the general placement constraints. For example, align(v, A,B) re-

quires an edge between A and B with weight 0 in the vertical constraint graph.

The other general constraints can be handled in a similar way. The method is

proposed in paper [15].

Handling of Symmetry Constraint

For a symmetry group Hi including si = pair(Hi) (symmetry pairs (X1, Y1),

(X2, Y2) · · · (Xsi , Ysi)) and ri = self(Hi) (self-symmetry modules Z1, Z2 · · ·Zri),

we should first see if Hi is symmetric horizontally or vertically with an initial

scan as described above. Then constraint edges are inserted into the horizontal

constraint graph to align the symmetry pairs in Hi vertically (if the symmetry

axis is in the vertical direction) as shown in Figure 4.2. Also, a dummy node di

is inserted into the horizontal constraint graph to denote the symmetric axis of

Hi. In order to guarantee equidistance between symmetry pairs with respect

to the axis, four constraint edges should be added, e(di, Xj), e(Xj, di), e(di, Yj)

and e(Yj, di) with weights (−xij, xij, xij − w(Yj), and −(xij − w(Yj)), respec-

tively, for each j = 1 · · · si where w(Yj) denotes the width of module Yj (note

that w(Xj) = w(Yj)) and xij − w(Yj) is a positive real number. For each

self-symmetry module Zj where j = 1 · · · ri, a pair of edges should be added,

e(Zj, di) and e(di, Zj) with weights w(Zj)/2 and −w(Zj)/2 to guarantee that

Zj is placed symmetrically to the axis. Next, we needs to calculate the value

of xij for j = 1 · · · si such that there exist no positive cycle in the graph and

max1�j�sixij is minimized. The algorithm to determine the value of xij is dis-

cussed in [14].

45

Figure 4.2: Dummy nodes and constraint edges for a symmetry group

46

Simulated Annealing Process

Simulated annealing is employed as the basic searching engine to identify the

optimum result among all the feasible placement candidates. During the an-

nealing process, a set of moves are performed to perturb a current candidate

solution. These moves includes the five types as follows:

1. Swapping two symmetry groups;

2. Swapping two modules of the same symmetry group;

3. Moving an asymmetric module;

4. Rotating a symmetry group;

5. Changing the aspect ratio of a soft module.

During the simulated annealing process, the cost function cost(F) = area(F)+

λ∗wire(F) is used to evaluate a placement F , where area(F) denotes the area

of F , and wire(F) denotes the total wirelength obtained by the half perimeter

method. The parameter λ is a factor that specifies the relative importance

between area and wirelength.

4.3.2 Net Congestion in the Approach

A placement with high compaction (Figure 4.3(a)) can be achieve by the imple-

mentation of the mentioned placement. Obviously, compaction in placement

may lead to unroutable solutions and result in timing correlation problems be-

cause of detoured nets. To make the resulting placement favorable for routing,

we need separate the modules with high net congestion to leave enough space

so that all nets can be routed successfully in the next stage(Figure 4.3(b)).

47

Figure 4.3: (a) Placement with high compaction; (b) Placement with consid-
ering the routability issue

Assuming that route nets in Figure 4.4, my approach mainly focuses on leaving

channels for the subsequent routing. The modules are allowed to occupy their

respective dash area first as shown in Figure 4.4 and then release them to con-

struct the routing channels in the final placement. This approach emphasizes

on expanding the module dimension appropriately to control the final pack-

ing area. In order to achieve this goal, the probabilistic analysis [56] model

is generalized here to determine which modules need to expand and the ex-

panding level. In the new proposed model, a module with high net congestion

probability means that more nets are likely to route through its surrounding

area. Accordingly, enough white space should be left for routing these nets.

Therefore, this module needs a dimension expansion during placement to oc-

cupy more area in an attempt to leave enough routing space in the end.

To estimate the net congestion probability, the probabilistic congestion model

should be built first.

The following assumptions are proposed for this model.

48

Figure 4.4: Placement with leaving routing channels

Assumption 1 : All nets are routed through the locations of the modules.

Assumption 2 : All nets are optimally routed with shortest length. Therefore,

detoured nets are not allowed and all nets should be routed within a rectan-

gular region determined by the pins of the nets.

Assumption 3 : The net congestion probability analysis is done exclusively for

two-pin nets. Multi-pin nets are handled by being divided into a set of two-pin

nets by Minimum Spanning Tree.

Assumption 1 gives a constraint that the nets should be routed through the

corresponding modules. This assumption makes it possible to build a position

graph for net congestion calculation according to the candidate placement re-

sult as indicated by Figure 4.5. It also ensures that the module expansion

approach can be used to gain enough space for channel routing. This con-

gestion model is a graph-based model. Each node in Figure 4.5 represents a

module in placement and the position graph is obtained from Figure 4.4 by

49

inserting an edge between any two adjacent modules. Take module 4 in Fig-

ure 4.4 as an example, it is adjacent to modules 1, 2, 5, 6, 7 and 8 in different

directions. Accordingly, edges between node 4 and nodes 1, 2, 5, 6, 7 and

8 are added to the position graph when converting Figure 4.4 to Figure 4.5.

Assumption 2 ensures that all nets can be routed within a length range, since

the router is more likely to choose the shortest path for each net. Therefore,

modules with high net congestion should be assigned to enough capacity to

reduce the number of detoured nets and avoid unroutable solutions in routing.

Assumption 3 is proposed to simplify the model.

Figure 4.5: The position graph of the placement in Figure 4.4

According to assumption 1 and assumption 2, a net connecting module 1 and

module 5 has to be routed via module 2 or module 4 in Figure 4.4. Assump-

tion 2 can be used to determine a monotonic direction when routing a net

and the work is carried out according to the Manhattan distance between the

net source pin and all the possible via modules. The placement of Figure 4.4

can be taken as a detailed example to illustrate my approach. Assuming that

50

we need to find a route between module 1 and module 12, the routing re-

gion will be rectangular with the source pin as the upper left corner and the

drain pin as the lower right corner. Thus, all possible modules for routing the

net will be those within this area including modules 1, 2, 3, 4, 5, 6, 7, 8 and 12.

In my graph mesh, the probabilistic congestion of each node is defined to be its

total probabilistic usage contributed by routing all nets. The congestion prob-

ability of each node represents the number of possible routing tracks via the

corresponding module since the routing area is incorporated in the module. In

my work, the congestion probability can be explained in two steps. First, for a

single net, the net congestion probability can be defined as the ratio between

the number of routes via this node and the number of total routes for routing

this net. Then, based on this definition, the congestion probability of each

module can be defined as the sum of the net congestion probability of routing

all nets. The larger the probability is, the worse the congestion will be. Given

a placed netlist, we can analyse the congestion probability for every node in

the mesh.

4.3.3 Number of Possible Routes of Each Node

In order to illustrate this congestion model, a simple example is given to show

the calculation of possible routes passing through each node. In Figure 4.6, for

the single node 4, there are 3 and 2 edges from two different directions. It is

obvious that there are 6 possible routes travelling through node 4. The number

of possible routes is determined by the number of edges from two directions

and the following discussion is based on this rule.

51

Figure 4.6: Number of possible routes of a single node

4.3.4 Total Number of Possible Routes

Definition 1 : Define Fi, Bi respectively as the number of possible routes en-

tering each node from the forward direction and reverse direction to route a

two-pin net, where i represents the module sequence number. For each net,

we only need to consider these nodes within the rectangular routing region.

Given a two-pin net, assuming that the source pin is located in module m, and

the drain pin in module l. The two pins are equivalent and they can exchange

their roles during the calculation. Then, Fl and Bm can represent the total

number of possible ways to route a two-pin net.

Lemma 1 :

Fm = Bl = 1 (4.3)

Proof : If there are only two nodes to route this net, then there is only one

possible route. For the nodes that come after the source node in the position

graph, there is only one route entering them from the source node as shown in

Fig.4.7. Therefore, Fm and Bl are always equal to one.

Definition 2 : Define NF
i and NB

i as the aggregations of nodes that have edges

entering node i from two directions. Take Figure 4.6 as an example, then

NF
4 = {1, 2, 3}, NB

4 = {5, 6} (4.4)

52

Corollary 1 : Assuming that the number of nodes to route a net is more than 2,

the total number of possible routes Fl or Bm can be computed using following

equations.

Fl =
∑
k∈NF

l

Fk (4.5)

Bm =
∑
k∈NB

m

Bk (4.6)

Proof : In order to optimally route the two-pin net, all routes must entering the

drain pin or leaving the source pin as shown in Figure 4.7. The sets of routes

from the previous nodes of the drain pin are mutually exclusive. According to

this corollary, the total number of routes can be calculated iteratively.

Figure 4.7: Explanation of the source pin and drain pin

4.3.5 Probabilistic Usage Array

Definition 3 : Define array P as the probabilistic usage of all nodes. Pi repre-

sents the probabilistic usage of node i. For each net, Pi has a real value when

the node i is located within the routing area of this net. For any net, the P

array has the following properties:

Pm = Pl = 1 (4.7)

Equation 4.7 indicates that routes consume exactly one track of the source pin

and drain pin, because of the fact that any optimal route must travel through

53

the two pins.

For the other nodes within the routing area, routes enter the node and leave

the node at the same time. Let us denote Ii and Oi to represent the number

of routes entering node i from the two directions. According to Corollary 1 ,

Pi can be computed by the following equations.

Ii =
∑
k∈NF

i

Fk (4.8)

Oi =
∑
k∈NB

i

Bk (4.9)

Pi =
Ii ∗Oi

Fl

(4.10)

4.3.6 Detailed Example

I will further introduce the method of computing probabilistic usage array with

a simple example. Assuming that we need to find a route between module 1

and module 12 in Figure 4.4, the iterative calculation of possible routes is

carried out from both directions. The whole process is shown in Figure 4.8,

Figure 4.9 and Figure 4.10. Take node 2 in Figure 4.5 as an example, its net

congestion probability will be the ratio of the number of possible routes via

node 2 and the total number of possible routes between node 1 and node 12.

Given a set of two-pin net in Figure 4.4, Table 4.1 shows the value of P array

of every single net and its total value of all nets. Table 4.1 also demonstrates

that the three biggest net congestion areas are distributed in modules 2, 5 and

8. Accordingly, these three modules can be expanded to reserve enough space

for routing as shown in Figure 4.4.

54

Figure 4.8: Process of calculating possible routes from the forward direction
(Fi)

Figure 4.9: Process of calculating possible routes from the reverse direction
(Bi)

55

Figure 4.10: Single probabilistic usage of all nodes (Pi)

Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

net 1,12 1 0.64 0.14 0.71 0.57 0.14 0.57 1 0 0 0 1

net 1,7 1 0 0 1 0 0 1 0 0 0 0 0

net 3,10 0.19 0.69 1 0.75 0.63 1 0.75 0.38 0 1 0 0

net 3,8 0 0 1 0 1 0 0 1 0 0 0 0

net 2,12 0 1 0.5 0 1 0 0 1 0 0 0 1

net 2,8 0 1 0 0 1 0 0 1 0 0 0 0

P ′
i 2.19 3.33 2.64 2.46 4.20 1.14 2.32 4.38 0 1 0 2

Table 4.1: Detailed example of calculating Pi

56

4.3.7 Adjustment of Module Size

When accomplishing the work of prerouting all nets, the net congestion prob-

ability can be used to expand the dimensions of high-congested modules for

the following placement. The criterion to implement this work is as follows:

A′
i = Ai ∗ (1 + λ ∗ P ′

i) (4.11)

Where P ′
i is the sum probability of routing all nets via module i, the constant

λ is determined by the width of wires and the compaction of the candidate

placement, and Ai, A
′
i represent the original area and adjusted area of module i.

4.4 Experimental Results

In this section, the experimental results are presented. My placer is carried

out in C and run on a Linux operating system with an Intel Xeon 1.6GHz

CPU and 16GB memory. Two groups of experiments are conducted to test

the effectiveness of our approach.

4.4.1 Comparisons with Previous Approach

I have compared my approach mainly with previous approach [1] on handling

the same problem. In this group of experiment, I use the same parameters

and evaluation metrics with that in [1], based on the same data sets, ami33

and ami49, from MCNC benchmarks circuits. The two columns in Table 4.2

respectively show the results with placement expansion by performing my ap-

proach and previous approach [1]. In order to compare the two approaches, I

list the placement area, the wirelength estimated by half perimeter method,

the estimated number of routing overflow from FastRoute 4.1 [43], and the

57

runtime. We can see that my approach performs much better in terms of both

area and runtime.

Our Approach Previous Approach [1]
Data

area(%) WL(mm) OF Time(s) area(%) WL(mm) OF Time(s)

ami33 105.01 45.08 0 18.69 113.25 47.73 0 556

ami49 103.67 775.63 0 35.24 115.32 677.24 0 1337

*WL represents wirelength and OF represents overflow.

Table 4.2: Comparisons with previous approach [1]

4.4.2 Detailed Experiments

In order to study the effectiveness of this congestion-oriented approach, I have

set another data for experiments with more modules, more complicated con-

straints and more nets. The information of benchmark circuits is shown in

the Table 4.3. Table 4.4 contains the results of placement before and after

module expansion. The comparison between them can illustrate the feasibility

of my approach in improving the routability of the placement. Figure 4.11

and Figure 4.12 respectively represent the placement of the same circuit be-

fore and after module expansion, the differences between them testify that my

placer can assign corresponding channels for routing. Considering the regu-

larity methodology in papers [26, 57], if the modules are of different sizes, it

will increase the deadspace significantly to leave some channels in the place-

ment result. However, my method performs module expansion according to

the possible net congestion and avoids the problem of introducing much extra

deadspace. In this section, FastRoute 4.1 [43] is employed to confirm the ef-

fectiveness of this approach. There are two routing layers in the experiment

and each module is implemented as routing blockage. Hence, the placement

result should be expanded large enough to enable all the nets to be routed

58

successfully. Table 4.5 is a detailed result about the corresponding changes

of overflow and wirelength when adjusting the degree of expansion. Table 4.5

shows that the wirelength fluctuates all the time, because in the given range,

although the augmenting area determines the increase of total wirelength, the

more corresponding routing space increases the possibility for these nets to

find shorter paths simultaneously.

Module Sym. General Net
Data Set

No. Group No. Const. No. No.

Data40a 40 1 4 60

Data80a 80 5 6 98

Data80b 80 5 10 98

Table 4.3: Information of benchmark circuits with mixed constraints

λ = 0.0 λ = 0.085 λ = 0.15
Data

DS OF WL DS OF WL DS OF WL

Data40a 0.08 257 N 0.20 0 5833 0.29 0 5812

Data80a 0.14 895 N 0.43 0 11933 0.58 0 12217

Data80b 0.13 775 N 0.38 0 12031 0.52 0 12129

*DS represents deadspace and N means when the value of overflow is too large,
wirelength is meaningless. And actually the FastRoute 4.1 can not route all the nets
in the experiments at this time.

Table 4.4: Experimental results of different expansions

λ 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.1 0.11 0.12 0.13 0.14 0.15

DS 0.33 0.35 0.36 0.37 0.38 0.40 0.41 0.42 0.45 0.46 0.48 0.50 0.52

OF 54 42 16 0 0 0 0 0 0 0 0 0 0

WL 11603 11443 11553 12031 12013 11423 11379 11637 11479 11676 11774 12151 12129

Table 4.5: Detailed changes of overflow and wirelength of data80b

59

Figure 4.11: Resultant packing with high compaction of data80b

Figure 4.12: Resultant packing of data80b after adjustment

60

4.5 Summary

In this chapter, an approach was proposed in order to solve the routability-

driven placement problem with mixed constraints in analog and mixed-signal

integrated circuits. The specified constraints were enforced by augmenting ad-

ditional constraint edges and dummy nodes to the constraint graphs. The net

congestion probability analysis was used to successfully tackle the routability

issue during the placement stage. Experimental results demonstrated the fea-

sibility of my method. It not only improved the routability of the final packing

without consuming much placement area, but also guaranteed that the final

placement satisfied all the constraints after placement expansion.

61

Chapter 5

Regularity-Oriented Approach

for Slicing Floorplans

5.1 Overview

In last chapter, an approach based on non-slicing structures was proposed for

the multi-objective placement problem and the algorithm of solving the whole

problem was apparently complicated. In this chapter, another approach is

proposed in order to solve the same problem. This approach can take into

account some specified constraints, especially the symmetry constraint and it

tackles the routability issue based on the characteristics of polish expression.

Experimental results demonstrate that my method is effective and feasible in

solving the constraint-driven slicing floorplanning problems.

5.2 Problem Formulation

In this section, I have an input of a set of n modules of areas Ai and aspect

ratio bounds [li, ui], where n = 1, 2, ..., n, together with the following:

1. A set of m symmetry groups H1, H2, ..., Hm, where each symmetry group

Hi has self-symmetry modules and symmetry pairs.

62

2. A set of n general placement constraints G1, G2, ..., Gn, where each place-

ment constraint Gi represents a constraint in placement between two ar-

bitrary modules, including boundary, clustering, alignment constraints.

3. A set of k multi-pin nets N1, N2, ..., Nk, where each net Ni denotes its

connected modules.

The goal of this approach is to obtain a high routability placement result while

minimizing the total area and wirelength. At the same time, the placement

result satisfies all the specified constraints.

5.3 Overview of the Approach

In this chapter, I propose another efficient approach that can handle differ-

ent constraints simultaneously, including symmetry constraint, boundary con-

straint, alignment constraint and clustering constraint. Also, the new proposed

floorplanner is capable of generating a placement that has a better performance

in the routing stage because of high regularity [26].

I have chosen to base the layout optimization on simulated annealing and se-

lected the polish expression [28] as the representation in this approach. In

order to handle the symmetry constraint in the slicing floorplan without vio-

lating other constraints and adding extra chip area, each symmetry group is

regarded as a super-module in PE that represents a floorplan. The internal

structures of every symmetry group are handled specifically to satisfy the sym-

metry constraint. During the annealing process, different PEs are generated by

a set of random moves and each PE consists of the super-modules representing

the symmetry groups and other modules in the circuits. In every step of the

annealing process, the symmetry groups are handled first and then packed,

63

and a PE x is then automatically generated. After that, the other general

constraints can be checked by just scanning the PE. If all the constraints are

satisfied at the same time and we can pack accordingly to obtain one feasi-

ble floorplanning result and get the coordinates by building its corresponding

slicing tree. Details on the approach to handling the symmetry constraint and

other placement constraints are presented in the following parts.

5.4 Handling of Symmetry Constraint

5.4.1 Placement of Symmetry Group

In this part, a symmetric-feasible polish expression (SF-PE) is proposed to

handle the symmetry constraint. The symmetry constraint states that each

pair of modules in the symmetry group should be placed symmetrically to

a common horizontal or vertical axis called symmetric axis. The symmetry

group may contain some self-symmetry modules, the centers of which should

be put on the symmetric axis. To suppress the circuit sensitivity due to process

variations and thermal gradients, modules of a symmetry group are normally

placed quite close to each other. In order to achieve such a placement, the

symmetry modules of a group are treat as a symmetry island [7] in my ap-

proach. This is why the symmetry groups are treated as super-modules in a

PE.

Before the introduction of SF-PE, representatives for symmetry pairs or self-

symmetry modules should be defined first.

Definition 1 : The representative ml
i of a symmetry pair (mi,m

′
i) is mi (the

left or the lower module of the symmetry pair), while the representative ml
i of

a self-symmetry module is itself ms
i .

64

Figure 5.1: (a)A placement of a symmetry group; (b)Representative selection
for symmetry pairs and self-symmetry modules

Figure 5.2: (a) The slicing tree representation of PE in Figure 5.1(a); (b) The
slicing tree representation of SF-PE in Figure 5.1(b)

65

Figure 5.3: A invalid slicing tree and its slicing floorplan

Take the symmetry group in Figure 5.1(a) as an example, the representative

ml
1 of the symmetry pair (m1,m

′
1) is m1, and ml

0 is the representative of self-

symmetry modulems
0. The representative of each module in a symmetry group

is shown in Figure 5.1(b).

From Figure 5.1(b), we can see that each symmetry pair or self-symmetry

module must have its representative module when dealing with the symmetry

constraint. So, the number of the representative modules in a symmetry group

should be equal to the number of symmetry pairs and self-symmetry modules.

So, the SF-PE has a definition as follows.

Definition 2 : A SF-PE representation is a PE containing only the representa-

tive modules that correspond to the symmetry groups.

Based on the two definitions above, it is obvious that the corresponding PE of

Figure 5.1(a) ism3m1m2∗+m
′
3m

′
2m

′
1∗+∗mo+, and a SF-PE for this symmetry

66

group should be ml
3m

l
1m

l
2∗+ml

o+. Their respective slicing tree representations

are shown in Figure 5.2.

From the new representation of a symmetry group, we can see that the repre-

sentative of a symmetry pair is flexible in a SF-PE, which means that it can

be placed in any position in its corresponding slicing tree. But in order to

make the SF-PE really feasible for a symmetry placement, the self-symmetry

modules should have some restrictions in a SF-PE representation.

Lemma 1 : Given a SF-PE with a vertical axis, the self-symmetry modules

should be placed if and only if there is no module to the right of them. This

feature shown in the slicing tree is that the self-symmetry module is not in the

left subtree of any internal node labeled ∗.

Proof : Because in a symmetry group, the self-symmetry modules are placed

symmetrically only if their centers are placed on the symmetric axis. Hence, in

a SF-PE, there is no module placed to the right of the self-symmetry modules,

which also indicates they should be placed on the right boundary in their cor-

responding sub-floorplan. For example, the illegal location for a self-symmetry

module ml
0 is show in Figure 5.3(a). Based on the SF-PE of this slicing tree,

it is impossible to obtain a symmetry placement by adjusting the coordinate

of ml
0. In a regular PE, there are three legal moves [28] to perform to get

different placements. Similarly, these moves are allowed in a SF-PE. But after

each move, it is necessary to take an initial scan to check the boundary infor-

mation for self-symmetry modules, which aims to see whether the new SF-PE

is feasible to achieve a symmetry sub-floorplan.

67

Figure 5.4: Placement with satisfying symmetry constraint (symmetry pair
modules al, ar and bl, br and self-symmetry module cs)

5.4.2 Linear Constraint Expressions from Symmetry Con-

straint and the Corresponding SF-PE

In order to get a valid packing for a symmetry group from a SF-PE and its

slicing tree, the coordinates of these modules need to be adjusted according to

a group of linear constraint expressions.

First, I will introduce the approach to obtaining the linear constraint expres-

sions from the SF-PE representation of a horizontal-symmetry group. If the

modules are represented as ab ∗ (ab+), which indicates that module a is to

the left of (under) module b, the following inequality in x(y) direction can be

derived[8]:

x(a) + w(a) ≤ x(b) (y(a) + h(a) ≤ y(b)) (5.1)

Note that x(a) and x(b) are the x coordinate of the left edge of modules a and

b, and w(a) is the width of module a. (y(a) and y(b) are the y coordinate of

the lower edge of modules a and b, and h(a) is the height of module a.)

68

Basically, the linear constraint expressions are set to guarantee that the self-

symmetry modules satisfy the constraint, because each symmetry pair is rep-

resented by the left half of it and its representative is flexible in the SF-PE.

Therefore, the complexity of the expressions is determined by the number of

self-symmetry modules. In Figure 5.4, two module pairs (al, ar) and (bl, br)

and a self-symmetry module cs are symmetric to a vertical symmetric axis.

Let Axisx represent the x coordinate of the symmetric axis. Symmetry con-

straint can be converted into linear constraint expressions using SF-PE. For

self-symmetry module cs with its representative cl, the linear constraint ex-

pression in x direction is as follows:

x(cl) + w(cl)/2 = Axisx (5.2)

In y direction, the linear constraint expression is

y(bl) = y(cl) (5.3)

For the symmetry pair modules, the linear constraint expressions in x direction

are

x(al) + w(al) ≤ Axisx (5.4)

x(bl) + w(bl) ≤ x(cl) (5.5)

x(bl) ≤ x(al) (5.6)

The linear constraint expression in y direction we have here is

y(al) ≥ max(h(bl), h(cl)) + y(bl) (5.7)

Because module bl is supposed to be the left-bottom module of the symmetry

group, x(bl) and y(bl) are already known. Therefore, it is possible to obtain

the set of constraint expressions.

69

The objective function is that the area of the symmetry group should be as

compact as possible since it is part of the total area cost. In y direction, the

expression is

H = max(h(bl), h(cl)) + h(al) (5.8)

Where H represents the minimum total height of this symmetry group. Since

H is constant in this equation, the total area is determined by the longest path

in x direction. The objective function in the linear programming is Axisx −
x(bl), whose value should be as small as possible.

W = 2 ∗ (Axisx − x(bl)) (5.9)

Where W is the total width of this symmetry group.

After obtaining the value of Axisx, x coordinate and y coordinate of all the

modules in this group can be determined.

Axisx − (x(al) + w(al)) = x(ar)− Axisx (5.10)

y(al) = y(ar) (5.11)

Axisx − (x(bl) + w(bl)) = x(br)− Axisx (5.12)

y(bl) = y(br) (5.13)

Calculation in the two directions is considered independently in the work. For

a horizontal symmetry group, it only needs to list the linear expressions in x

direction due to the compaction requirement. Take Figure 5.4 as an example,

when SF-PE (blcl ∗ al+) and the width of modules w(al) = 3, w(bl) = 2 and

w(cl) = 3 are given. Then the following expressions in x direction can be

obtained:

x(al) + 3 ≤ Axisx (5.14)

x(bl) + 2 ≤ x(cl) (5.15)

70

x(cl) + 1.5 = Axisx (5.16)

x(al) ≤ x(bl) (5.17)

Then, remove redundant expressions and obtain

x(al) ≤ x(bl) (5.18)

x(al) + 3− Axisx ≤ 0 (5.19)

Axisx − 3.5 ≥ x(bl) (5.20)

Finally, a group of constraint expressions are determined with two variables

and three expressions.

Linear programming is used just for the symmetry group. The algorithm [28]

is executed to calculate the rest modules’ coordinates. During the simulated

annealing process, the coordinate (0, 0) is assigned to the left-bottom mod-

ule of the symmetry group in each perturbation in order to obtain the size

information of this super-module. When getting the final packing, the new co-

ordinate information will substitute (0, 0) to determine the absolute position

of symmetry modules.

5.5 Handling of Other Constraints

In this thesis, the methods in paper [16] and paper [17] are respectively applied

to satisfy the boundary and clustering constraints. These methods are imple-

mented by only looking at the valid PE and no real packing is needed. The

following part provides a detailed introduction about how to satisfy alignment

constraint in placement.

71

Alignment constraint requires the modules to align vertically along the left or

the right side, or align horizontally along the top or the bottom side. Due to

the features of a slicing floorplan that it can be obtained by recursively parti-

tioning a rectangle in two by either a vertical or a horizontal line, it is not a

difficult job to satisfy the alignment constraint during floorplanning. All the

modules in Figure 5.5 that align along the same partitioning line must align

with each other. For instance, modules B, C and D, modules E and F are

able to form two alignment groups. Therefore, the problem of checking the

specified alignment modules can be treated as the problem of checking that if

these modules share one partitioning line.

Figure 5.5: Example of alignment in slicing floorplans

In paper [28], it introduced the definition that a slicing structure is a rectangle

dissection that can be obtained by recursively cutting rectangles into smaller

rectangles. It is obvious that modules sharing one cutting line must belong to

such a slicing structure. For a polish expression α = α1α2, ..., αn, we define a

subexpression β = αiαi+1, ..., αi+m where k ≥ 1 and i + m ≤ n to represent

72

such a slicing structure. To make this subexpression valid to represent a sub-

tree in the whole slicing tree, the first element αk in β should be an operand

and the number of operands should be equal to the number of operators plus

one.

My method emphasizes on checking the alignment constraint by figuring out

the partitioning line of these modules. It is implemented by scanning the PE

with no need to build the slicing tree. In order to achieve this goal, the shortest

subexpression including these modules should be picked out first. The algo-

rithm about how to find the shortest valid subexpression for alignment group

(a, b) (a is before b in PE) is shown in Algorithm 1.

Algorithm 1: FindSubexpression(a,b)

Input:
α = α1α2, ..., α2n−1 is a given PE;

Output:
Shortest valid subexpressions containing modules a and b;

1: αt = a;
2: first = end = t;
3: while (b is not in e yet) do
4: end = end+ 1;
5: if (αend is an operator) then
6: Find k such that e = αfirst−kαfirst−k+1, ..., αend

is the shortest valid subexpression containing αt and αend;
7: first = first− k;
8: else
9: Find k such that e = αfirst, ..., αend+k−1αend+k

is the shortest valid subexpression containing αt and αend;
10: end = end+ k;
11: end if
12: end while
13: return e

The complexity of this algorithm is O(n). Figure 5.6 illustrates the steps of the

algorithm in picking out the shortest subexpression containing modules E and

73

I. If the alignment group has more than two members, we can check them from

the left member to the right member one by one through this algorithm. After

the subexpression is picked out, the alignment constraint can be converted into

a boundary constraint in this subexpression. For example, if the modules are

required to align horizontally to the top side, it indicates that all the mod-

ules in the sub-floorplan have to be placed on the upper boundary, which also

means that all the modules are not in the left subtree of any internal node

labeled + in the slicing tree. The algorithm proposed in [16] can be applied

here to solve the boundary constraint. This can be done efficiently in linear

time by scanning the subexpression once. Figure 5.7(a) shows that modules

E and I are on the upper boundary of their corresponding sub-floorplan. It is

apparent that they satisfy the alignment constraint. In comparison, modules

E and L in Figure 5.7(b) do not share the same boundary and are not able

to align with each other. If modules in the subexpression do not satisfy the

alignment constraint, random moves will be performed in this subexpression

until we get a valid one.

5.6 Regularity of Placement

In the analog layout, it is perceived that regular structures such as symmetry

and array serve suppression of device mismatch and high routability. As is

discussed in section 3.2.1, common centroid and symmetry are common ana-

log styles to reduce such mismatching. But such constraints are normally

restricted to only critical modules whose mismatching affects the circuit per-

formance due to the complex of constraint control. Then, regular structures

in placement begin to draw attention from expert designers, for that it is not

restricted to certain modules. It is obvious that regular structures can con-

tribute to improving the routability by minimizing the number of vias and wire

74

(a)

(b)

(c)

(d)

Figure 5.6: Example to illustrate the algorithm–FindSubexpression(E,I)

75

(a)

(b)

Figure 5.7: Illustration of alignment satisfaction

76

bends which are also crucial to control the layout parasitic. At the same time,

surrounding the regular structures, it is possible for us to leave white space for

routing during the placement stage, thus resulting in improving the packing

performance significantly. Consequently, regularity is of important value in

the research of placement design. My new method is proved to be effective in

improving the routability of placement by calculating the regularity, which is

proposed in paper [26]. The method is discussed as follows.

5.6.1 Regular Structure in Placement

It is widely accepted that there are four types of placement structures, array,

row, symmetry and random. Among these structures, the intensity of regu-

larity is perceived as array > row > symmetry > random. On the contrary,

the flexibility of the area efficiency of them is regarded as array < row <

symmetry < random. It is perceived that the regularity of a typical analog

placement often assists to suppress device mismatch and wire parasitic as well

as improve placement routability, while the flexibility contributes to yielding

smaller chip area. Therefore, it is important to balance the regularity and

flexibility during placement.

5.6.2 Representation of Regular Structure

In the research of regularity, a new representation [26] was proposed to repre-

sent a topology of a placement, which is derived from sequence pair.

A single-sequence can be represented by S = (a1, a2, · · · , an)|an ∈ 1, 2, · · · , n.
It is defined as an = s−1

1 (s2(n)) from a SP (s1, s2), which means S will be the

same as s2 if each module is renamed as s1 = (1, 2, · · · , n). For instance, given

77

a sequence pair, (s1, s2) = (d, b, c, a; a, b, c, d), we can get its corresponding

single-sequence S = (4, 2, 3, 1).

5.6.3 Type of Regular Structure

In [26], it mainly discussed three regular structures based on a single-sequence.

Their definitions are given in the following.

Given a subsequence X (X ⊂ S) with two or more numbers, the maximum

and minimum numbers of X are MX and mX . If MX − mX + 1 = |X|,
X is thought to represent a rectangular extractable subsequence. Take S =

(3, 4, 1, 6, 7, 5, 8, 2) as an example, subsequences (3, 4), (6, 7), (6, 7, 5), (6, 7, 5, 8)

and (3, 4, 1, 6, 7, 5, 8, 2) are rectangular extractable.

A rectangular extractable X with ak+1 − ak = 1 (ak+1, ak ∈ X) is able to form

a horizontal single row. Similarly, X with ak+1 − ak = −1 (ak+1, ak ∈ X) is a

vertical single row. The row structure is shown in Figure 5.8.

Given an adjacent subsequence pair (Xi, Xi+1) of S, Xi and Xi+1 are vertical

stackable if mXi
− MXi+1

= 1. If a rectangular-extractable subsequence X

consists of more than one horizontal single rows that are vertical stackable, X

is regarded as a topology of horizontal multi-row. Similarly, vertical multi-row

can be defined. Moreover, if each row of the multi-row subsequence X has the

same length, X constitutes a topology of an array.

78

Figure 5.8: Extraction of row structures

5.6.4 Regular Structure Evaluation

A new evaluation method was proposed in [26] to continuously calculate the

amount of regular structures in placement.

Given S, we can generate a different sequence S ′ = (a′1, a
′
2, · · · a′n−1), where

a′k = ak+1 − ak. For example, given S = (2, 1, 3, 5, 4, 6) as shown in Figure 5.9,

we can get the corresponding S ′ = (−1, 2, 2,−1, 2). S ′ is regarded as the dif-

ference of S.

The regularity value can be calculated from the following 5 steps:

1. Ik,l is subsequence of S: Ik,l = ai|k ≤ i ≤ k + l − 1, where Ik,l represents

the k − th subsequence with length l.

2. Maximum and Minmum of Ik,l: Mk,l = maxai∈Ik,l(ai),mk,l = minai∈Ik,l(ai).

79

Figure 5.9: A placement for S = (2, 1, 3, 5, 4, 6)

3. Accumulation of Row structures: �k,l

l = 1 : �k,l = 0

l = 2 : �k,l =

⎧⎪⎨
⎪⎩
1 if |a′k| = 1

0 otherwise

l = 3 : �k,l = �k,l−1 +�k+1,l−1 (5.21)

As mentioned above, |a′k| = 1 is the necessary condition to form a hor-

izontal or vertical single-row with two modules. Therefore, �k,l is used

to accumulate the amount of row structures.

4. Accumulation of repetitive structures: Rk,l

l ≤ 2 : Rk,l = 0

l ≥ 3 : Rk,l = Rk,l−1 +Rk+1,l−1 −Rk+1,l−2 + r, r =

⎧⎪⎨
⎪⎩
1 ifa′k = a′k+l−2

0 otherwise

(5.22)

Note that a′k denotes the relation between ak and ak+1, a′k = a′k+l−2

indicates that the relation of ak and ak+1 equals that of ak+l−2 and ak+l−1.

Given S = (· · · , v + 3, v + 2, v + 1, v, · · · , u + 3, u + 2, u + 1, u, · · ·), its

80

corresponding placement has a repetitive structure, because (u + 3) −
(v + 3) = (u+ 2)− (v + 2) = (u+ 1)− (v + 1) = u− v.

5. Maximum and minimum of width and height:

W(k,l) = max
ai∈Ik,l

wid(s1(ai)), w(k,l) = min
ai∈Ik,l

wid(s1(ai))

H(k,l) = max
ai∈Ik,l

hei(s1(ai)), h(k,l) = min
ai∈Ik,l

hei(s1(ai)) (5.23)

Note that wid(x) and hei(x) represent the width and the height of mod-

ule x, respectively.

Finally, we can get the regularity from the following equation:

Creg =
∑
1≤l≤n

∑
1≤k≤n−l+1

Cuni(k, l)

�k,l ·Rk,l + ε
(5.24)

Where ε is a sufficient small constant. Cuni(k, l) = W(k,l)−w(k,l)+H(k,l)−h(k,l),

and it is designed to uniform the physical dimensions inside a regular structure.

5.7 Simulated Annealing Process

5.7.1 Set of Moves

Simulated annealing is carried out in my approach by employing the following

four kinds of moves M1,M2,M3 and M4. Each move can help to generate a

new PE, which results in a different floorplan.

M1: Swapping two adjacent operands in the global expression.

M2: Interchanging the operators in a chain, which is a substring of operators

in PE.

M3: Swapping two adjacent operand and operator.

81

M4: Employing M1, M2 or M3 in a SF-PE to obtain a different super-module

consisting of symmetry modules.

5.7.2 Feasible Scan

In Wong-Liu algorithm [28], there is a 1− 1 correspondence between the set of

normalized polish expression of length 2n− 1 and the set of slicing structures

with n basic rectangles. In order to achieve the feasible floorplan from a PE, a

new PE from each perturbation during the annealing process should be checked

to see whether it has the properties of normalized polish expression.

5.7.3 Simulated Annealing

In the simulated annealing, the temperature is set to be 106 in the begin-

ning and drops at a rate of 0.99999. n random moves are performed at each

temperature until we get a different valid PE.

5.8 Experimental Results

In this section, the experimental results are presented. The floorplanner is

carried out in C language and run on a Linux operating system with an Intel

Xeon 1.6GHz CPU and 16GB memory. Two groups of experiments are con-

ducted to show the effectiveness of the new proposed approach.

I compare this approach mainly with the previous approach [58] (introduced

in chapter 4) on handling the same problem. I use the same data sets on the

two floorplanners. In order to study their efficiency, I list the area, running

time and regularity value. The method of computing regularity is introduced

in section 5.6 and we can see that it is defined by SP. Hence, a PE should

be first converted to a SP to compute the regularity value. The information

82

of circuits is shown in Table 5.1, including circuit module number, symmetry

constraint number, other constraint number and net number.

Module Sym. Other Net
Data Set

No. Group No. Const. No. No.

ami33 33 1 2 49

ami49 49 1 2 151

Data80a 80 5 3 98

Data80b 80 5 3 98

Data80c 80 5 3 98

Data100a 100 6 3 141

Data100b 100 6 3 141

Data100c 100 6 3 141

Data80 4 80 4 3 98

Data80 5 80 5 3 98

Data80 6 80 6 3 98

Data100 4 100 4 3 141

Data100 5 100 5 3 141

Data100 6 100 6 3 141

Table 5.1: Information of circuits with constraints

Table 5.2 respectively shows the results from the approach in this chapter and

the one in chapter 4. It is obvious that the newly proposed approach per-

forms better in terms of placement area. In the runtime column, the newly

proposed approach is becoming to show its advantage as the circuit module

number increases. In addition, it can produce a better placement result with

high routabiliy before extra adjustment, which is supported by the result of

regularity. In the regularity column, the lower of the regularity indicates the

more regular structures in the placement. By assigning channels around these

regular structures, the placement results are more suitable for routing. Ap-

parently, there will be less difficulty if the problems of layout constraints and

regularity are solved independently. Paper [14] successfully solved the problem

83

of mixed constraints by SP and paper [26] improved the regularity of the place-

ment by incorporating it as part of the primary objective. If the two problems

are treated by SP at the same time, the conflicts between various objectives

will lead to the consumption of extra chip area. In this section, I propose

to use PE as the representation for the constraint-driven placement problem.

The features of PE ensure the regularity of the final packing. Therefore, both

goals can be achieved simultaneously with less chip area and less runtime.

PE SP [58]
Data

DS time reg str(%) DS time reg str(%)
(%) (s) [26] [26] (%) (s) [26] [26]

ami33 11.5 65.83 281.9 81.8(%) 12.0 18.72 1092.0 24.2(%)

ami49 3.0 107.81 2090.6 79.6(%) 5.1 34.72 183600.9 0.0(%)

Data80a 9.9 134.24 113.9 82.5(%) 13.0 124.55 9713.9 10.0(%)

Data80b 8.5 130.05 351.3 85.0(%) 11.6 166.46 28303.3 7.5(%)

Data80c 8.6 123.25 175.7 91.25(%) 11.0 151.58 44058.2 7.5(%)

Data100a 11.3 166.11 924.1 90.0(%) 14.8 212.87 20083.9 6.0(%)

Data100b 9.4 175.96 562.4 83.0(%) 12.2 280.63 18364.1 4.0(%)

Data100c 11.6 162.99 751.5 89.0(%) 12.7 280.81 11313.0 6.0(%)

*DS represents deadspace, reg [26] represents regularity value and str [26] represents
the ratio to total modules of modules in topological arrays and rows[%].

Table 5.2: Experimental results of SP and PE

Table 5.3 gives the placement results from circuits with different symmetry

groups. For the approach in chapter 4, as the number of symmetry groups

increases, the floorplanner takes more time to find the optimum result during

the annealing process. On the contrary, the approach proposed in this chapter

considers the symmetry group as a super-module, which indicates that more

symmetry groups lead to less elements in PE. Therefore, this floorplanner per-

forms faster when the number of symmetry groups increases.

Finally, two placement results are presented in Figure 5.10 and Figure 5.11,

84

PE SP [58]
Data Set

deadspace(%) time(s) deadspace(%) time(s)

Data80 4 11.1 143.38 12.7 121.25

Data80 5 9.9 134.26 12.9 125.11

Data80 6 9.2 123.59 12.1 134.96

Data100 4 9.6 188.44 12.4 232.67

Data100 5 10.9 171.86 12.8 245.94

Data100 6 11.7 161.72 12.7 280.50

Table 5.3: Experimental results of different symmetry constraint settings

which are respectively obtained from the regularity-oriented approach and the

previous approach [58]. The differences between them testify that the approach

proposed in this chapter makes it possible to assign proportional channels for

routing.

Figure 5.10: Resultant packing of Data80 4 by using PE

85

Figure 5.11: Resultant packing of Data80 4 by using SP

5.9 Summary

In this chapter, an efficient approach was proposed for the slicing floorplanning

problem with mixed layout constraints. The complicated floorplanning prob-

lem was successfully tackled with less area cost and runtime. Experimental

results demonstrated the feasibility of my approach. It not only dealt with the

symmetry constraint in slicing floorplans which had never been accomplished

before, but also improved routability significantly by containing a large number

of regular structures in the final packing.

86

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, I focused on the placement design for analog and mixed-signal

ICs. In recent years, a series of layout constraints and the issues of floor-

plan routability have been presented in EDA field to obtain satisfactory place-

ments. Hence, two novel approaches were proposed in order to solve this

multi-objective placement problem.

In chapter 4, a two-stage approach was proposed for the placement prob-

lem which could satisfy mixed constraints and improve the routability of the

placement simultaneously. All the specified constraints are enforced by in-

serting constraint edges and dummy nodes into the constraint graphs during

the placement stage. The preliminary placement is used to estimate the net

congestion probability of each module. Then based on that, the dimensions of

modules with high net congestion are adjusted to reserve enough space for the

subsequent channel routing. Compared with previous approach [59], a graph-

based model is used in this thesis. As compared to the grid-based model, the

graph-based model can leave appropriate routing space between the modules

in an attempt to allow routing at the end. At the same time, the expansion

process does not violate any constraint. Compared with another approach [1],

87

our congestion probability model contains less over-congested regions. This

can avoid the problem of over-expanding.

In chapter 5, I proposed another approach by extending a previous algo-

rithm [28] for the same placement issue. The extended algorithm was suc-

cessfully applied, and therefore the regularity of the final packing could be

guaranteed by the slicing structures. The symmetry constraint was satisfied

by treating the symmetry groups as super-modules in the global PEs. The

proposed approach is a novel method with handling the symmetry constraint

in slicing floorplans which has never been accomplished before. In addition,

the floorplanner generates a large number of regular structures and the corre-

sponding placement result is more suitable for routing.

Both approaches successfully solved the complex placement problem and the

experimental results showed the efficiency of the approaches on area cost, run-

time and routability.

6.2 Publication

My research works have been published in the 5th Asia Symposium on Quality

Electronic Design (ASQED 2013) and the IEEE Computer Society Annual

Symposium on VLSI (ISVLSI 2014), respectively. The first paper [58] proposed

a congestion-oriented approach for routablity-driven nonslicing floorplans. The

other paper [60] proposed a regularity-oriented approach for slicing floorplans.

6.3 Future Work

The drawback of my placement design is that the approaches lack manufacture

technology for further testing. I propose the following tasks that can be done

88

in the future. Some industry benchmarks can be used to test the efficiency

and commercial values. In addition, I only used a global router “FastRoute

4.1” [43] for evaluations in this thesis. Detailed router may be used and the

results will be more convincing.

89

Bibliography

[1] C. W. Lin, C. C. Lu, J. M. Lin, and S. J. Chang. Routability-driven

Placement Algorithm for Analog Integrated Circuits. Proceedings of ACM

International Symposium on Physical Design, pages 71–78, Mar 2012.

[2] R. Brayton and J. Cong. NSF Workshop on EDA: Past, Present, and

Future (Part 1). IEEE Design and Test of Computers, pages 68–74, 2010.

[3] R. Brayton and J. Cong. NSF Workshop on EDA: Past, Present, and

Future (Part 2). IEEE Design and Test of Computers, pages 62–74, 2010.

[4] G. G. E and R. A. Rutenbar. Computer-Aided Design of Analog and

Mixed-Signal Integrated Circuits. Proceedings of IEEE Journals and Mag-

azines, pages 1825–1854, Dec 2000.

[5] C. Toumazou, G. S. Moschytz, and B. Gilbert. Trade-Offs in Analog

Circuit Design. Kluwer Academic Publishers, 2002.

[6] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy. On the Exploration

of the Solution Space in Analog Placement with Symmetry Constraints.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, pages 177–191, Feb 2004.

[7] P. H. Lin and S. C. Lin. Analog Placement Based on Novel Symmetry-

Island Formulation. Proceedings of IEEE/ACM Design Automation Con-

ference, pages 465–470, Jun 2007.

90

[8] Q. Ma, E. F. Y. Young, and K. P. Pun. Analog Placement with Common

Centroid Constraints. Proceedings of IEEE/ACM International Confer-

ence on Computer-Aided Design, pages 579–585, Nov 2007.

[9] Y. C. Tam, E. F. Y. Young, and C. Chu. Analog Placement with Sym-

metry and Other Placement Constraints. Proceedings of IEEE/ACM In-

ternational Conference on Computer-Aided Design, pages 349–354, Nov

2006.

[10] J. M. Lin, G. M. Wu, Y. W. Chang, and J. H. Chuang. Placement with

Symmetry Constraints for Analog Layout Design Using TCG-S. Pro-

ceedings of Asia and South Pacific Design Automation Conference, pages

1135–1138, Jan 2005.

[11] P. Y. Chou, H. C. Ou, and Y. W. Chang. Heterogeneous B*-trees for Ana-

log Placement with Symmetry and Regularity Considerations. Proceed-

ings of IEEE/ACM International Conference on Computer-Aided Design,

pages 512–516, Nov 2011.

[12] M. Strasser, E. Eick, H. Grab, U. Schlichtmann, and F. M. Johannes.

Deterministic Analog Circuit Placement Using Hierarchically Bounded

Enumeration and Enhanced Shape Functions. Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, pages 306–313, Nov

2008.

[13] L. F. Xiao and E. F. Y. Young. Analog Placement with Common Centroid

and I-D Symmetry Constraints. Proceedings of Asia and South Pacific

Design Automation Conference, pages 353–360, Jan 2009.

[14] Q. Ma, L. F. Xiao, Y. C. Tam, and E. F. Y. Young. Simultaneous Handling

of Symmetry, Common Centroid , and General Placement Constraints.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, pages 85–95, Jan 2011.

91

[15] E. F. Y. Young, C. C. N. Chu, and M. L. Ho. Placement Constraints

in Floorplan Design. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, pages 735–745, Jul 2004.

[16] E. F. Y. Young, D. F. Wong, and H. H. Yang. Slicing Floorplans with

Boundary Constraints. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 1385–1389, Sep 1999.

[17] W. S. Yuen and E. F. Y. Young. Slicing Floorplan with Clustering Con-

straint. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, pages 652–658, May 2003.

[18] E. F. Y. Young and D. F. Wong. Slicing Floorplans with Pre-Placed mod-

ules. Proceedings of IEEE/ACM International Conference on Computer-

Aided Design, pages 252–258, Nov 1998.

[19] E. F. Y. Young, D. F. Wong, and H. H. Yang. Slicing Floorplans with

Range Constraint. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, pages 272–278, Feb 2000.

[20] P. Spindler and F. M. Johannese. Fast and Accurate Routing Demand

Estimation for Efficient Routability-Driven Placement. Proceedings of

Design, Automation and Test in Europe Conference and Exhibition, pages

1–6, Apr 2007.

[21] K. Tsota, C. K. Koh, and V. Balakrishnan. Guiding Global Placement

with Wire Density. Proceedings of IEEE/ACM International Conference

on Computer-Aided Design, pages 212–217, Nov 2008.

[22] C. Li, M. Xie, C. K. Koh, J. Cong, and P. H. Madden. Routability-Driven

Placement and White Space Allocation. Proceedings of IEEE/ACM In-

ternational Conference on Computer-Aided Design, pages 394–401, Nov

2004.

92

[23] F. B. Mao, Y. C. Ma, N. Xu, S. H. Liu, Y. Wang, and X. L. Hong.

Congestion-Driven Floorplanning Based on Two-Stage Optimizaiton.

Proceedings of IEEE International Conference on ASIC, pages 1298–1301,

Oct 2009.

[24] M. Pan and C. Chu. IPR: An Integrated Placement and Routing Algo-

rithm. Proceedings of IEEE/ACM Design Automation Conference, pages

59–62, Jun 2007.

[25] J. A. Roy and I. L. Markov. Seeing the Forest and the Trees: Steiner

Wirelength Optimization in Placement. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, pages 632–644, Apr

2007.

[26] S. Nakatake, M. Kawakita, T. Ito, M. Kojima, M. Kojima, K. Izumi, and

T. Habasaki. Regularity-Oriented Analog Placement with Diffusion Shar-

ing and Well Island Generation. Proceedings of Asia and South Pacific

Design Automation Conference, pages 305–311, Jan 2010.

[27] H .Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI Mod-

ule Placement Based on Rectangle-Packing by the Sequence-Pair. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, pages 1518–1524, Dec 1996.

[28] D. F. Wong and C. L. Liu. A New Algorithm for Floorplan Design.

Proceedings of IEEE/ACM Design Automation Conference, pages 101–

107, Jun 1986.

[29] E. Yilmaz and G. Dundar. New Layout Generator for Analog CMOS Cir-

cuits. Proceedings of European Conference on Circuit Theory and Design,

pages 36–39, Aug 2007.

93

[30] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers. Matching

Properties of MOS Transistors. IEEE Journal of Solid-State Circuits,

pages 1433–1439, Oct 1989.

[31] F. M. Johannes. Partitioning of VLSI Circuits and Systems. Proceedings

of IEEE/ACM Design Automation Conference, pages 83–87, Jun 1996.

[32] Y. C. Wei and C. K. Cheng. Ratio Cut Partitioning for Hierarchical De-

signs. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, pages 911–921, Jul 1991.

[33] J. H. Li and L. Behjat. A Connectivity Based Clustering Algorithm with

Application to VLSI Circuit Partitioning. IEEE Transactions on Circuits

and Systems II:Express Briefs, pages 384–388, May 2006.

[34] S. K. Lodha and D. Bhatia. Bipartitioning Circuits Using TABU Search.

Proceedings of Annual IEEE International ASIC Conference, pages 223–

227, Sep 1998.

[35] G. F. Nan, M. Q. Li, and J. S. Kou. Two Novel Encoding Strategies Based

Genetic Algorithm for Circuit Partitioning. Proceedings of International

Conference on Machine Learning and Cybernetic, pages 2182–2188, Aug

2004.

[36] F. Lin and G. M. He. An Improved Genetic Algorithm for Multi-Objective

Optimization. Proceedings of International Conference on Parallel and

Distributed Computing, Applications and Technologies, pages 938–940,

Dec 2005.

[37] P. N. Guo, C. K. Cheng, and T. Yoshimura. An O-Tree Representation of

Non-Slicing Floorplan and its Applications. Proceedings of IEEE/ACM

Design Automation Conference, pages 268–273, Jun 1999.

94

[38] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu. B*-Trees: A New

Representation for Non-Slicing Floorplans. Proceedings of IEEE/ACM

Design Automation Conference, pages 458–463, 2000.

[39] J. M. Lin and Y. W. Chang. TCG-S: Orghogonal Coupling of P*-

Admissible Representations for General Floorplans. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, pages 968–

980, Jun 2004.

[40] M. P. H. Lin, H. Zhang, M. D. F. Wong, and Y. W. Chang. Thermal-

driven Analog Placement Considering Device Matching. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

pages 325–336, Mar 2011.

[41] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. BoxRouter 2.0: A Hybrid

and Robust Global Router with Layer Assignment for Routability. ACM

Transactions on Design Automation of Electronic Systems, Mar 2009.

[42] T. H. Wu, A. Davoodi, and J. T. Linderoth. GRIP: Global Routing via

Integer Programming. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 72–84, Jan 2011.

[43] Y. Xu, Y. H. Zhang, and C. Chu. FastRoute 4.0: Global Router with

Efficient Via Minimization. Proceedings of Asia and South Pacific Design

Automation Conference, pages 576–581, Jan 2009.

[44] Y. J. Chang, T. H. Lee, and T. C. Wang. GLADE: A Modern Global

Router Considering Layer Directives. Proceedings of IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pages 319–323, Nov 2010.

[45] T. H. Lee, Y. J. Chang, and T. C. Wang. An Enhanced Global Router

with Consideration of General Layer Directives. Proceedings of ACM In-

ternational Symposium on Physical Design, pages 53–60, 2011.

95

[46] G. J. Nam, K. A. Sakallah, and R. A. Rutenbar. A New FPGA Detailed

Routing Approach via Search-Based Boolean Satisfiability. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

pages 674–684, Jun 2002.

[47] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou. Track Assign-

ment: A Desirable Intermediate Step between Global Routing and De-

tailed Routing. Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, pages 59–66, Nov 2002.

[48] M. M. Ozdal. Detailed-Routing Algorithms for Dense Pin Clusters in

Integrated Circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 340–349, Mar 2009.

[49] M. Gester, D. Muller, T. Nieberg, C. Panten, C. Schulte, and J. Vygen.

Algorithms and Data Structures for Fast and Good VLSI Routing. Pro-

ceedings of IEEE/ACM Design Automation Conference, pages 459–464,

Jun 2012.

[50] Y. H. Zhang and C. Chu. RegularRoute: An Efficient Detailed Router

Applying Regular Routing Patterns. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, pages 1655–1668, Sep 2013.

[51] R. Okuda, T. Sato, H. Onodera, and K. Tamariu. An Efficient Algorithm

for Layout Compaction Problem with Symmetry Constraints. Proceed-

ings of IEEE/ACM International Conference on Computer-Aided Design,

pages 148–151, Nov 1989.

[52] E. Felt, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincenteli. An

Efficient Methodology for Symbolic Compaction of Analog ICs with Mul-

tiple Symmetry Constraints. Proceedings of European Design Automation

Conference, pages 148–153, Sep 1992.

96

[53] K. Okada, H. Onodera, and K. Tamaru. Compaction with Shape Opti-

mization. Proceedings of IEEE Custom Integrated Circuits Conference,

pages 545–548, May 1994.

[54] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley. Analog

Device-Level Layout Automation. Kluwer Academic Publishers, 1994.

[55] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equation of State Calculations by Fast Computing Machines.

Journal of Chemical Physics, Jun 1953.

[56] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng. Estimating

Routing Congestion Using Probabilistic Analysis. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 32–41,

Jan 2002.

[57] S. Nakatake. Structured Placement with Topological Regularity Evalua-

tion. Proceedings of Asia and South Pacific Design Automation Confer-

ence, pages 215–220, Jan 2007.

[58] H. X. Zhou, C. W. Sham, and H. L. Yao. Congestion-Oriented Approach

in Placement for Analog and Mixed-Signal Circuits. Proceedings of the

Fifth Asia Symposium on Quality Electronic Design, pages 97–102, Aug

2013.

[59] L. F. Xiao, E. F. Y. Young, X. Y. He, and K. P. Pun. Practical Place-

ment and Routing Techniques for Analog Circuit Designs. Proceedings of

IEEE/ACM International Conference on Computer-Aided Design, pages

675–679, Nov 2010.

[60] H. X. Zhou, C. W. Sham, and H. L. Yao. Slicing Floorplans with Han-

dling Symmetry and General Placement Constraints. Proceedings of IEEE

Computer Society Annual Symposium on VLSI, pages 112–117, Jul 2014.

97

