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Abstract 

 

In this research different sensorless methods that could reliably help to remove the 

need to use position sensors in switched reluctance motors(SRM) are developed. 

These methods are different to the conventional ones by providing unique rotor 

positions without relying on premeasured motor magnetic characteristics. The 

approach is systematic and mathematical. 

The relationship among motor phase inductance profiles is investigated and three 

types of functions to model their relationship are presented. Through regression 

analysis the function coefficients are found. Methods to linearize these functions for 

regression are explained. These coefficients are then used to calculate the rotor 

positions at standstill or flying restart. The estimation accuracies and efficiencies of 

the methods using the three functions are compared. These methods are collectively 

called the Linear Regression Position Estimation Methods(LRPEM). 

Two methods for position estimation on a running motor are also developed. A 

special event called Adjacent Phase Inductance Profiles Crossing(APC) when an 

SRM is running is used to turn the motor into a low resolution encoder. The speed and 

position values obtained from this encoder are fed to a Kalman filter where detailed 

rotor position values are produced. The low resolution encoder is used to commutate 

the phases with limited speed and torque capability, while the high resolution outputs 

from the Kalman filter are used for fine commutations. The two commutation 

methods are compared and the effects from mutual couplings, voltage drops and 

magnetic saturation are shown. 
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Chapter 1 

Introduction 

1.1 Foreword 

Switched-reluctance motors are reliable and simple to manufacture. They do not need 

permanent magnet for flux generation and therefore do not have the risks of 

demagnetization or bear the high costs of rare earth metals. On the other hand they 

must be driven by power converters and they cannot run directly off main power. 

Adding to this it is also difficult to control the smoothness of torque and speed. Much 

work has been done on reducing the torque ripples[1-9] and the resulting noisy 

operations[10-16]. Dynamic performance is also greatly improved by various torque 

control strategies[17-24]. In recent years, thanks to advances in power electronics and 

control elements, these types of machines are gaining in popularity and the cost of 

implementation is dropping. But to truly compete with other technologies like the 

induction motor, which is also robust and economical, there are still many hurdles to 

overcome, one of them being the need for position feedback devices. This issue has 

been addressed by many researchers, and many sensorless methods for starting and 

running of switched reluctance motors had been developed[6, 25-46]. For starting the 

motor, the simplest way is to align the rotor to an energized phase. If for some reasons 

rotating the motor arbitrarily is not allowed or becomes difficult, some rough 

estimation of the phase positions are needed. Different starting methods have been 

studied. In [26], flux linkage is obtained by calculating the volt-seconds applied to the 

phases. Then the inductances for the three phases are found by dividing the flux 
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linkage by the measured current. Assuming identical inductance profiles for all the 

phases the positions are then estimated using vector transformations. But this method 

is limited to three-phase SRM. In [32] currents are again measured after an equal 

amount of volt-seconds are applied to a four-phase SRM. By ordering the currents by 

magnitude and using a lookup table, the best phase for starting is determined. In [36] 

the phase next to the phase with the largest current after an equal amount of volt-

seconds is applied is chosen for starting. In [42] cubic spline interpolation is used to 

find the starting position after finding the best phases for the operation. In [39] mutual 

inductance is utilized to estimate the positions of a four-phase SRM. By exciting 

Phase A and B of a four-phase SRM by an alternating current, the induced voltages of 

the adjacent phases are compared and the rotor positions can be determined to within 

15° mechanical accuracy. In [47] the authors describe a method to find the linear 

regions between the aligned and unaligned position by measuring the time for each 

phase to reach a certain threshold current. These methods usually involve applying 

voltage to the motor, and by measuring the resultant phase currents and sometimes 

together with calculated flux linkage, estimate the positions or just determine the best 

phases to turn on[25, 32, 42, 47]. There are also many studies on sensorless control 

the running of SRM. In [26, 48] the phase inductances from a three-phase motor are 

combined into a rotating vector and by orthogonal decomposition the rotor angle is 

found. In [49] a similar vector based method is used to determine the inductance 

vector and direct torque control technique is applied. [38] describes a method that 

relies on premeasured flux-current characteristic of the motor to determine the 

switching position of the phases using flux linkage value. Observers and artificial 

intelligence are sometimes used for position detection during running[6, 28, 30, 35, 45, 

49-54]. In [6] two fuzzy neural network modules are used to identify the turn-on and 
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turn-off positions separately. In [45] a neural network is trained with predefined data 

and a 2D lookup table is created for finding the rotor position. In [51] FEA data is 

used to train the neural network for estimating the positions during running. In [30] 

two sliding mode observers namely the Flux linkage Sliding Mode Observer (FSMO) 

and the Current Sliding Mode Observer (CSMO) are combined to estimated the 

positions of a running SRM. 

In this study methods for both static and dynamic rotor position estimation will be 

presented. These methods do not require knowledge of specific magnetic 

characteristics of the motor used. The static methods provide direct mathematical 

estimations of the positions and the dynamic methods turn the motor into a low 

resolution encoder. These methods can be used in areas where speed control is 

required such as in pumps, fans and electric vehicles. 

1.2 Background 

1.2.1 Inductance Profile of SRM 

Fig. 1–1 shows a general inductance profile for one phase for one electrical period of 

an SRM. The profile takes on a rounded triangular shape with a small slope towards 

the aligned and unaligned positions. The inductance is a function of the rotor angular 

position and current and has its maximum value at the fully aligned position and 

minimum value at the fully unaligned position. The inductance profiles of all phases 

take on a similar shape with an angle offset to the adjacent phases’ determined by the 

number of phases. For a four-phase SRM, each phase is separated by 90° electrical. 

The actual mechanical position of each phase is determined by the number of rotor 

poles on the motor, and is given by: 
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R

e
m

N


   (1-1) 

 

where m represents the mechanical angle, e represents the electrical angle, and RN

the number of rotor poles. Therefore for an 8/6 SRM, each phase’s inductance profile 

has an offset to the adjacent phase’s by 15° mechanical. In this thesis, 0° and 180° 

electrical are defined as the fully unaligned and aligned positions respectively. All 

angle values are assumed electrical unless explicitly stated. 

1.2.2 Regression Analysis 

Regression analysis is a statistical process originally developed for data analysis[55]. 

In the case of single independent variable it models the relationship between the value 

of independent variable x  such and the corresponding conditional mean of dependent 

variable )(xy . When a set of observed data is collected, it uses a parametrically 

defined function known as a regression function to model these data in order to 

understand the trend and characteristics of the data set. To find the coefficients of the 

regression functions many techniques have been developed, both linear and nonlinear. 

 

Fig. 1–1  General Inductance Profile of a switched reluctance motor 
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Linear techniques include ordinary least squares and maximum likelihood estimation 

and nonlinear techniques there are the Gauss-Newton algorithm, gradient descent and 

the Levenberg-Marquardt algorithms. 

In this research for static rotor position estimations, regression analysis will be used 

extensively and the method of ordinary least squares will be used to find the model 

parameters. 

1.2.3 Kalman Filter 

The Kalman Filter was developed in the 1960s by Rudolf E. Kalman. It was first 

described in his paper “A New Approach to Linear Filtering and prediction 

problems”[56]. Since then it has been widely used in navigation, missile guidance, 

and unmanned automobiles. It is a kind of state estimators, by using the system model 

and sensors measuring the states, it employs a correction algorithm with a variable 

estimator gain based on process and measurement noise covariance, to estimate the 

states of the target online even in noisy measurements environment. It is a two-step 

process, in the first step known as the time update step the process model is used to 

predict the current state. In the second called the measurement update step, 

information from sensors is then used to correct the model predicted states. Its power 

lies in the ability to filter out measurements and modeling errors through continuous 

updates of the state predictions with new measurements. It is also an optimal filter, as 

it guarantees that the state estimation minimizes the least squares error. Measurements 

from different sensors with different accuracies and measuring frequencies can also 

be combined to improve states estimations. 

To apply the Kalman filter a model of the target system must be known. It is 

described by a set of differential equations, cast in matrix or state-space format: 
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wGuFxx   (1-2) 

where x  being a column vector containing the states, F  the system dynamics matrix, 

u  the input or control column vector, G  the input matrix, and finally w  as a zero 

mean white-noise process column vector. The filter also requires that the 

measurements are linear related to the states as follow: 

vHxz   (1-3) 

where z  is the measurement vector, H  the measurement matrix, and v  the white 

measurement noise vector. These requirements are actually in line with the definition 

of a linear system model and the measurements from the sensors are considered as the 

system output. In this thesis the discrete Kalman filter is used. Therefore the above 

equations must be converted to their discrete equivalence. The discrete state-space 

equation is given by: 

kkk1k wuBxAx  kk
 (1-4) 

where kx , ku , kw are the discrete versions of their continuous counterparts x , u , w , 

in (1-2) at the sampling instant k. kA  is known as the state transition matrix. It is 

related to the system dynamics matrix F  by 

T

k eF
A   (1-5) 

where F  is assumed constant and T  the sampling period for the discrete system. kB  

is related to the input matrix G  by 




T

tT dtte
0

)( )(GB
F

k  (1-6) 
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The discrete measurement equation is given by 

kkkk vxHz   (1-7) 

which is the discrete counterpart of (1-3). There are also two very important 

parameters, one is the discrete process noise covariance matrix Q  given by 

][ T

kkk E wwQ   (1-8) 

and the discrete measurement noise covariance matrix R  given by 

][ T

kkk E vvR   (1-9) 

where E[_] is the expected value operator and kw  and kv  has zero mean. These 

parameters are needed to calculate the Kalman gain factor. 

The Kalman-filtering equation is then given by: 

)ˆ(ˆˆ
111 kkkkkkkkkkkkk uBHxAHzKuBxAx    (1-10) 

Basically the filter uses the discrete state-space system model to calculate the next 

state from the current state and then added a correction term based on the new 

measurements. The matrix K  is what is known as the Kalman gain matrix. The 

Kalman gain and the covariance matrix of the state estimation error at the sampling 

instant k, represented by kP , is obtained through (1-11) to (1-13) of the following 

Riccati equations: 

1111 





  k

T

kkkk QAPAP  (1-11) 

1)(   k

T

kkk

T

kkk RHPHHPK  (1-12) 
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  kkkk PHKIP )(  (1-13) 

The sign superscript indicates whether the covariance is for the state estimation 

obtained from the previous state through the system model only(minus sign), known 

as a priori error covariance matrix, or for the state estimation after the measurement 

correction step(plus sign), known as posterior error covariance matrix. (1-10) shows 

that a new state vector can be obtained at every execution of the filter equation. It is 

interesting to note that the Kalman gain and the error covariance can be calculated 

offline before running the filter. 

The Kalman filter is used in Chapter 5 for a dynamic position sensorless control 

method. 

1.3 Thesis Outline 

This Thesis is organized as follow: Chapter 2 through Chapter 4 introduce 3 different 

regression functions to model the phase inductance for a four-phase 8/6 SRM. 

Through the coefficients obtained from the functions, the rotor position is estimated. 

A quadratic function is used in Chapter 2 to model the inductance. In this chapter the 

procedure for finding the least squares solution is introduced, and the position 

estimation method is demonstrated. The system overview and hardware used for the 

experiments are also presented. Chapter 3 and Chapter 4 investigate the use of type V 

exponential functions and co-sinusoidal functions to model the inductance, and the 

approach to extract the position information is shown. The merits and drawbacks of 

the different models are then compared. Chapter 5 presents two methods to estimate 

the rotor positions while the motor is running. The first method makes use of a special 
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magnetic property of a four-phase SRM and the second method utilizes the Kalman 

filter to determine the commutation positions. 
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Chapter 2 

Position Estimation Using Polynomial 

Regression 

2.1 Polynomial Regression 

Polynomial regression is a form of regression analysis[57]. It uses a polynomial 

regression function to model the characteristics of the data set. Polynomial regression 

models usually employ the method of least squares to minimize the difference 

between the regression function and the actual data. Although the dependent and 

independent variables do not have a linear relationship above the first order, it is 

linear in the parameters[57] and linear techniques could be used to find the 

coefficients for the function. 

A polynomial function )(xy with one independent variable x  can be represented by: 





m

n

n

nxaxy
0

)(  (2-1) 

where m represents the order of the polynomial and na the constant coefficients for 

each power of x . A second order polynomial regression function(i.e. a quadratic 

regression function) is pertinent to the method to be developed and its corresponding 

equation is: 

0

1

1

2

2)( axaxaxy   (2-2) 

Given a sequence of data y1,y2,… yL, taken at points x1, x2,... xL, it is desired to find 
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the unknown coefficients 
na of the regression function )(xy  to minimize the 

following sum of squared differences 
sS : 





L

n

nnn

L

n

ns axaxayxyyS
1

2

0

1

1

2

2

1

2 )())((  (2-3) 

To find the values of 2a , 1a , and 
0a  the following matrices are first created: 


































1

1

1

2

2

2

2

1

2

1

LL xx

xx

xx

D  (2-4) 

 


































Ly

y

y

2

1

y  (2-5) 

 



















0

1

2

a

a

a

z  (2-6) 

where D  is a variation of the Vandermonde Matrix[58], y  the vector containing the 

sampled data and z  the vector of coefficient values. 

In matrix notation, the sum of squared differences in equation (2-3) is then given by 
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)()( DzyDzy  T

sS  (2-7) 

The purpose is to find a set of coefficients z that would minimize sS . This least 

squares solution is given by: 

TyyDDDz   )()(ˆ 1 TT  (2-8) 

where ẑ  is the set of coefficients which provides the least squares solution. The 

polynomial regression function is then expressed as: 

0

1

1

2

2
ˆˆˆ)(ˆ axaxaxy nnnn   (2-9) 

and the residuals nr of the solution is given by 

nnn yyr ˆ  (2-10) 

The coefficients thus can be found directly from the least squares operation (2-8). 

To locate the vertex of function (2-9), its derivative is taken: 

12

' ˆˆ2)(ˆ axaxy nnn   (2-11) 

The root of (2-11) is then given by 

2

1

ˆ2

ˆ

a

a
xr   (2-12) 

rx therefore represents the x  coordinate of the vertex of (2-9). To determine whether 

the vertex is the maximum or minimum of the function, the 2nd derivative of equation 

(2-9) is taken and is given by: 

2

'' ˆ2)(ˆ axy nn   (2-13) 
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Therefore by inspecting the polarity of coefficient 2â , the concavity of the curve can 

be known. It follows that rx  is at the maximum if 0ˆ
2 a  and minimum if 0ˆ

2 a . 

2.2 Principle of the Proposed Method 

The last section has provided the background of the method to be developed in this 

section. The method to be developed is for a four-phase 8/6 SRM, but could easily be 

extended to motors with at least three phases. 

As mentioned in Section II, the inductance profile of a phase takes on a rounded 

triangular shape, and each profile is shifted from that of the next phase by 90°. If a 

snapshot of all the phase inductance is taken at any one rotor position, their values can 

be mapped on a single profile. This is shown in Fig. 2–1 which shows the inductance 

of all phases when phase 1 is at 300°. 

 

It is assumed that all motor phases have the same inductance profile. Although the 

profiles among phases might not be exactly the same, they usually will not differ by a 

 

Fig. 2–1  Inductance of all phases at an arbitrary rotor position 
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large extent. By superimposing two 2nd order polynomials on the plot and repeating 

the profile for two periods, Fig. 2–2 follows: 

 

Parabola 1 is a polynomial with its maximum vertex vertically aligned with the fully 

aligned position of the inductance profile, and parabola 2 has its minimum vertex 

vertically aligned with the fully unaligned position of the profile. It can be observed 

that although the polynomials do not follow the actual inductance profile, they have 

great resemblance in the sense that all are symmetric to the midpoint and possess one 

vertex. It is proposed that by best fitting several quadratic functions of phase position 

to a scaled version of the phase inductances, which will be called the relative 

inductances, two curves with the same characteristics as parabola 1 and 2 can be 

obtained. Through solving for the position of one of their vertices, the positions of all 

the phases can be estimated. 

Referring back to Fig. 2–1, at any moment in time the inductances from the 4 phases 

are represented by 4 points on the inductance profile. In order to carry out the best-fit 

operation it is necessary to find these 4 points. To do so a voltage is applied to all 

phases for an equal amount of time and the currents are then measured. In the method 

 

Fig. 2–2  Phase inductance profile repeated for 2 periods and superimposed with 2 parabolas 
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to be developed only the ratio of the inductances is needed and therefore it is not 

necessary to calculate the flux linkage as long as all phases are given the same volt-

seconds. The relationship between volt-seconds and inductance for each phase is: 

I

TV
L e


)(  (2-14) 

where mutual coupling, inductance saturation and resistance are ignored because the 

current to be used will be small. The inductance is a function of the electrical phase 

position e . The product of V  and T  represents the volt-seconds applied to a fully 

demagnetized phase, and I is the resultant phase current. Since only the relative 

inductance is of interest and volt-seconds are equal for all phases, (2-14) can be 

normalized by TV  . The expression becomes: 

I
L erelative

1
)(   (2-15) 

Therefore by measuring the currents after an equal amount of volt-seconds is applied 

to each phase, the relative inductances can be calculated. 

The proposed quadratic equation to represent the relationship between the relative 

inductance )( erelativeL   and the electrical phase angle is: 

0

1

1

2

2)( aaaL eeerelative    (2-16) 

The next step is to apply the regression technique in Section II to find the coefficients 

2a , 1a  and 0a . This is done by replacing the variables nx  in the D  matrix (2-4) with

ne , where ne  represents the electrical angle for phase n, and variables ny  in the y  

vector (2-5) with nrelativeL _ , where nrelativeL _  represents the relative inductance for phase 
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n. 

The D  matrix becomes: 























1

1

1

1

4

2

4

3

2

3

2

2

2

1

2

1

ee

ee

ee

ee









D  (2-17) 

Four arbitrary angles 90° apart within one electrical period will be assigned to the 

phases. The actual values are not important, as they will not affect the results as will 

be explained later. Here arbitrary angles of 270°, 180°, 90° and 0° for phase 1 through 

4, respectively, are used. The D  matrix then becomes: 























100

19090

1180180

1270270

2

2

2

D  (2-18) 

that evaluates to: 





















100

1908100

118032400

127072900

D  (2-19) 

And vector y  (2-5) becomes: 























4_

3_

2_

1_

relative

relative

relative

relative

L

L

L

L

y  (2-20) 

Substituting D  and y  into the least squares solution equation (2-8) and simplifying, 
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the following equation is obtained: 







































4_

3_

2_

1_

0.95000.15000.1500-0.0500

0.0117-0.00720.00940.0050-

5-3.0864e5-3.0864e-5-3.0864e-5-3.0864e

ˆ

relative

relative

relative

relative

L

L

L

L

z  (2-21) 

where the 3 by 4 matrix is T  of equation (2-8). The coefficients of the regression 

function are thus easily found by one matrix operation.  

But there is a problem with this procedure: the polynomial function is found by 

assuming phase 1 at the largest angle and phase 4 the smallest, which is not always 

the situation. In order to find the right curve like parabola 1 or 2 in Fig. 2–2, it is 

necessary to try all the phase order combinations. Therefore the matrix operation of 

equation (2-21) has to be done four times with each phase assigned with the largest 

angle once. This assignment is achieved by circular shifting the relative inductance 

vector y  in equation (2-21). So for example if now phase 2 is assumed to be at the 

largest angle, y  becomes: 























1_

4_

3_

2_

relative

relative

relative

relative

L

L

L

L

y  (2-22) 

and D  becomes: 























1

1

1

1

1

2

1

4

2

4

3

2

3

2

2

2

ee

ee

ee

ee









D  (2-23) 

Notice that although the variables in the D  matrix have changed, their values remain 
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the same and therefore matrix T  does not need to be recalculated. 

Now the coefficients of the new regression function are found by recalculating 

equation (2-21) with the new y  vector. This operation is repeated until every phase 

has been assigned with the largest assumed angle, and thus four regression 

polynomials with one for each phase-ordering are found. The rms residuals, vertex 

positions and concavities of the four functions are then calculated. A candidate 

function for estimation that resembles parabola 1 or 2 must have its vertex located 

between the two phases in the middle, which means between 90° and 180° with our 

angle assumption. This is because there must be at least one phase on any side of the 

fully aligned position or the fully unaligned position in one period of the inductance 

profile. Even if a different angle assumption was made for the D  matrix, the vertex 

will still lie between the positions of the two phases in the middle. Therefore the 

choice of the assumed angle values only affects the boundary angle values for 

choosing the right curve. The polynomial with the smallest rms residuals is also 

preferred, although not strictly required, for the estimation, as its form would 

resemble best to the relative inductance profile it is trying to fit. 

The root of the derivative of the found polynomial would then locate the maximum of 

parabola 1(thus the fully aligned position) or the minimum of parabola 2(the fully 

unaligned position) in Fig. 2–2, depending on the concavity of the curve found. For an 

inductance profile with 0° defined as the fully unaligned position(thus 180° as the 

fully aligned position), the root represents the phase shift from 0° or 180°. Therefore 

the assumed phase positions can be shifted accordingly to find the real positions. The 

estimated electrical positions for the phases are then simply: 
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rnene   º180ˆ  (2-24) 

if the regression function which 

concaves downward is used for 

fitting 

or 

rnene  ˆ  (2-25) 

if the regression function 

which concaves upward is 

used for fitting 

where r  represents the root of the function derivative(i.e. the electrical position of 

the vertex). Other co-ordinate systems with the unaligned position defined as other 

than 0° can be accommodated by proper shifting. The mechanical angle is then given 

by dividing the electrical angle by the number of rotor poles: 

R

ne
nm

N




ˆ
ˆ   (2-26) 

Therefore the mechanical positions for all four phases are found. This method will be 

called the Linear Quadratic Regression Position Estimation Method(LQRPEM). An 

example in the next section will illustrate the method. 

2.3 Illustration of LQRPEM 

In the last section the LQRPEM to estimate startup phase positions was described. In 

this section an example based on simulation of a motor with known magnetic 

characteristic will illustrate the method. The characteristic of the motor chosen is as 

follows: 
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The positions chosen to be estimated are 150°, 60°, 330°, 240° for phase 1 through 

phase 4, respectively. Using Matlab for the simulation and applying volt-seconds of 

0.01Vs, we obtain a corresponding current of 0.1332A, 0.5408A, 1.4706A, and 

0.1709A. By taking the inverse of the current, the relative inductances are found. 

Substituting the values into y of equation (2-21), it becomes: 





































8514.5

6800.0

8491.1

5075.7

0.95000.15000.1500-0.0500

0.0117-0.00720.00940.0050-

5-3.0864e5-3.0864e-5-3.0864e-5-3.0864e

ẑ  (2-27) 

The coefficients for the regression function assuming phase 1 at 270° are thus found. 

As mentioned in Section 2.2, the other functions’ parameters with different angle 

orderings are found by circular shifting the y  vector and redoing the multiplication in 

(2-21). Their rms residuals, derivatives’ roots and concavities are subsequently 

calculated. The final results are shown in Fig. 2–3. 

TABLE 2-1 

SIMULATION MOTOR PARAMETERS 

Parameter Value 

Maximum output power 3kW 
Maximum speed 1500 rpm 
Number of phases 4 

Number of stator poles 8 
Number of rotor poles 6 

Aligned Inductance 0.0838H 

Unaligned Inductance 0.0063H 
Phase resistance 0.192 ohm 
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Fig. 2–3  Results from polynomial regression.  

a)Phase 1 assumed at 270°. 2â =0.000334, 1â =-0.083415, 0â =5.757846, rms 

residuals=0.413836°, function minimum at angle=124.80° 

b)Phase 2 assumed at 270°. 2â =0.000087, 1â =-0.048152, 0â =7.999665, rms 

residuals=2.203262°, function minimum at angle=276.06° 
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It is suggested in the last section that the regression function with the smallest rms 

residuals is preferred for the estimation, but it is not the only choice. As long as the 

function has a minimum or maximum between the angle of 90° and 180°, it could be 

used for the estimation. In fact for each set of relative inductances two curves like 

parabola 1 and parabola 2 of Fig. 2–2 will exist in all situations with one curve 

aligned with the fully aligned position and the other with the fully unaligned position. 

From Fig. 2–3 it could be seen that the curves of (a) and (c) are the right candidates 

 

 

(Cont.)Fig. 2–3  Results from polynomial regression. 

c)Phase 3 assumed at 270°. 2â =-0.000334, 1â =0.084498, 0â =2.039142, rms residuals=0.849871°, 

function maximum at angle=126.42° 

d)Phase 4 assumed at 270°. 2â =-0. 000087, 1â =0.047069, 0â =0.089824, rms residuals=2.639296°, 

function maximum at angle=269.85° 
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for the estimation, since curve (a) has a minimum at 124.80° and curve (c) has a 

maximum at 126.42°. If curve (a) is chosen, the root of its derivative is then the phase 

shift of the unaligned position. Otherwise if curve (c) is chosen, the root would then 

be the phase shift of the fully aligned position. The concavities of the candidate 

functions are used to determine if the vertex is a maximum or minimum and thus 

deciding whether the root is the phase shift of the aligned or unaligned position. 

Therefore if curve (a) is chosen, the estimated angles could be calculated using 

equation (2-25): 













































































8.124

8.34

2.55

2.145

8.124

0

90

180

270

ˆ

ˆ

ˆ

ˆ

4

3

2

1











e

e

e

e

 (2-28) 

And by adjusting the angles to positive values, we have: 

















































2.235

2.325

2.55

2.145

ˆ

ˆ

ˆ

ˆ

4

3

2

1

e

e

e

e









 (2-29) 

If curve (c) is chosen, the estimated angles are calculated using (2-24): 











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




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
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
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





















58.53
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90
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ˆ

ˆ

ˆ

ˆ

2

1
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e

e

e

e









 (2-30) 

Rearranging the order, (2-30) becomes: 
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









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














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
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ˆ
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e
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
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



 (2-31) 

Comparing with the actual angles chosen, both choices will give acceptable 

estimations. But the regression function with the smallest rms residuals should be 

used, the reason for that would be shown in the next section. 

2.4 Simulation Results 

The LQRPEM is simulated using data from 2 different motors with known magnetic 

characteristics. A lookup table that takes phase angle and flux linkage as input is 

created for each motor to supply the current information for the simulations. An 

arbitrary volt-seconds value of 0.01 is chosen. The method is tested on different 

angles for 2 periods starting from one aligned position of 30° mechanical in 0.1° 

increment. Angle estimations are done using both functions of opposite concavities. 

The results for phase 1 are shown in Fig. 2–4 through Fig. 2–7. 
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Fig. 2–5.  Startup angle estimation simulation results of a 5kW four-phase 8/6 switched reluctance 

motor using LQRPEM and the function with negative concavity and larger rms residuals. a) Actual 

angle. b) Estimated angle c) Error in estimations 

 

Fig. 2–4  Startup angle estimation simulation results of a 3kW four-phase 8/6 switched reluctance 

motor using LQRPEM and the function with negative concavity and larger rms residuals. a) Actual 

angle. b) Estimated angle c) Error in estimations 
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It can be seen that the error profiles are periodic in 15° mechanical for all the 

 

Fig. 2–7  Startup angle estimation simulation results of a 5kW four-phase 8/6 switched reluctance motor 

using LQRPEM and the function with positive concavity and smaller rms residuals. a) Actual positions. 

b) Estimated positions c) Error in estimations 

 

Fig. 2–6  Startup angle estimation simulation results of a 3kW four-phase 8/6 switched reluctance motor 

using LQRPEM and the function with positive concavity with smaller rms residuals. a) Actual 

positions. b) Estimated positions c) Error in estimations 
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estimations. This is because the motor phases are 15° mechanical apart, and by using 

identical inductance profile for all the phases in the simulation the current data from 

the lookup table repeat every 15° mechanical. In real situation this would not be the 

case because the inductance profiles of different phases are not exactly equal. An 

abrupt change can also be observed at the same angle because for every 15° two 

phases change from one side of the profile to the other, and therefore the regression 

function used for the position estimations are changed at this same point. This 

condition creates such discontinuities. 

For the two motor inductance profiles used it is observed that the functions with 

positive concavities always give smaller rms residuals than those with negative 

concavities, meaning they fit better to the data. It is believed that is due to the 

relatively flat valley close to the fully unaligned position in most SRM designs, and 

this valley has more resemblance to a parabola. Comparing Fig. 2–4 with Fig. 2–6 and 

Fig. 2–5 with Fig. 2–7 it can also be seen that curve-fits with smaller rms residuals 

give better estimations of the angles and reduce the magnitude of the step change at 

every 15°. Again this is contributed by the fact that a tighter fit follows the inductance 

profile better and at the same time introduces less abrupt changes at the end of a 15° 

period when the function used for the position estimations changes. 

2.5 Hardware Descriptions 

2.5.1 System Setup 

The system schematic is shown in Fig. 2–8 and the setup shown in Fig. 2–9 
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Fig. 2–9  Experiment setup 

 

Fig. 2–8  System schematic of the experiment setup. 
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2.5.2 Converter 

A conventional asymmetric bridge converter is used to drive the SRM. Each phase is 

equipped with a current sensor for control and position estimations. The schematic is 

shown in Fig. 2–10. Hysterisis current control and hard chopping conduction mode is 

used in the dynamic sensorless methods. For the static estimations, a DC bus voltage 

of 36V is used. For the dynamic algorithms the DC bus voltage is set to 65V. A 

higher voltage is used for the dynamic experiments such that a wider speed range can 

be achieved. 

 

2.5.3 Motor 

A four-phase 8/6 switched reluctance motor is used in the experiments. The 

nameplate power is 1.5kW. It is discovered that there is a defect in the inductance 

profile of Phase 2, which has a substantially lower aligned inductance than the others, 

as shown in Fig. 2–11 below: 

 

Fig. 2–10 Converter used for the experiments. 
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But this defect can serve to verify that even though the inductance profiles are not 

ideal, the algorithms to be introduced will still work satisfactorily. 

2.5.4 Load 

The load is provided by a permanent magnet servomotor connected to the SRM via 

couplings with a torque sensor in between. The position read from the servomotor’s 

encoder is used as the position reference. 

2.5.5 Control 

The voltage probing and current measuring control for the static position estimation 

algorithms is implemented on a TMS320F2808 DSP board running at 25kHz, and the 

position estimation is done offline in Matlab. The dynamic position estimation and 

 

Fig. 2–11 Inductance profile for all phases for the two periods used in the experiments for static position 

estimation. 
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control algorithms introduced in Chapter 5 are implemented on the dSPACE DS1104 

board running at a cycle time of 60µs.  

2.6 Experimental Results 

To measure the currents a train of voltage pulses is applied to all phases 

simultaneously at each tested position. The motor phases are energized for about 

400μs, and then de-energized for an equal amount of time plus some delay. The delay 

is to make sure that the phases are fully demagnetized before the next pulse is applied. 

The volt-seconds add up to about 0.0144Vs but this information is not needed. Note 

that the energizing time might not be exactly 400μs as the voltage is applied such that 

the phases are turned off if any phase current reaches above 1A. It is also ensured that 

a resultant current of about 1.5A does not cause much saturation or induce a 

movement of the motor. The peak current is measured at turn off and the current 

probes produce 1V/A. The measurement process is repeated at mechanical angles of 

2.5° apart for 120° starting from a phase 1 aligned position, producing 48 current 

samples for each phase. The measurement results are tabularized in Table 2-2. The 

current waveforms are shown for all phases at phase 1’s mechanical angles of 0°, 10°, 

30° and 50° in Fig. 2–12. The results from the estimations are shown in Fig. 2–13. 

(11b) shows the results for estimation done using the regression function with the 

smallest rms residuals and (11c) with the function with opposite concavities and 

smallest rms residuals. Both give acceptable results but estimations using the smallest 

rms residuals functions have smaller errors in general. Estimations in (11b) have a 

mean absolute error of 1.555° and in (11c) 2.112° mechanical. The obtained results 

have thus verified that the developed LQRPEM can indeed provide a good estimation 
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of the rotor position. 

 

 

 

(a) 

 

(b) 

Fig. 2–12  Current waveforms for all phases at Phase 1 mechanical positions of a)0º b)10º 

c)30º d)50º. Trace 1,2,3,4 corresponds to Phase 1,2,3,4 respectively. 
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(c) 

  

(d) 

(Cont.)Fig. 2–12  Current waveforms for all phases at Phase 1 mechanical positions of a)0º b)10º c)30º 

d)50º. Trace 1,2,3,4 corresponds to Phase 1,2,3,4 respectively. 
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TABLE 2-2 

MEASURED PHASE CURRENTS AND ACTUAL PHASE 1 MECHANICAL POSITION 

Phase 1 current(A) Phase 2 current(A) Phase 3 current(A) Phase 4 current(A) Actual phase 1 angle(deg) 

0.184 0.42 1.44 0.5 30 

0.22 0.42 1.56 0.62 32.5 

0.24 0.38 1.44 0.82 35 

0.26 0.34 1.18 1.24 37.5 

0.3 0.3 0.82 1.44 40 

0.34 0.28 0.62 1.54 42.5 

0.42 0.28 0.52 1.54 45 

0.52 0.3 0.46 1.52 47.5 

0.74 0.32 0.4 1.42 50 

1.16 0.34 0.38 1.14 52.5 

1.36 0.36 0.34 0.76 55 

1.44 0.4 0.32 0.62 57.5 

1.46 0.48 0.32 0.5 0 

1.42 0.58 0.32 0.46 2.5 

1.3 0.78 0.34 0.44 5 

1.06 1.16 0.36 0.4 7.5 

0.68 1.42 0.38 0.38 10 

0.5 1.52 0.44 0.36 12.5 

0.38 1.56 0.52 0.34 15 

0.32 1.54 0.62 0.36 17.5 

0.26 1.42 0.84 0.38 20 

0.24 1.22 1.2 0.4 22.5 

0.22 0.78 1.46 0.42 25 

0.22 0.62 1.56 0.44 27.5 

0.2 0.48 1.6 0.5 30 

0.22 0.42 1.56 0.6 32.5 

0.24 0.38 1.46 0.78 35 

0.26 0.34 1.2 1.2 37.5 

0.3 0.32 0.82 1.44 40 

0.34 0.3 0.64 1.52 42.5 

0.4 0.28 0.52 1.54 45 

0.5 0.28 0.46 1.52 47.5 

0.7 0.3 0.4 1.42 50 

1.1 0.32 0.38 1.2 52.5 

1.34 0.36 0.34 0.78 55 

1.42 0.4 0.32 0.62 57.5 

1.44 0.48 0.3 0.5 0 

1.4 0.58 0.32 0.46 2.5 

1.28 0.8 0.34 0.42 5 

0.98 1.24 0.36 0.4 7.5 

0.64 1.46 0.4 0.38 10 

0.48 1.56 0.44 0.36 12.5 

0.36 1.58 0.52 0.34 15 

0.32 1.54 0.64 0.36 17.5 

0.26 1.4 0.9 0.38 20 

0.24 1.06 1.32 0.42 22.5 

0.22 0.72 1.52 0.44 25 

0.22 0.58 1.58 0.46 27.5 

0.2 0.46 1.58 0.52 30 

 



 
 

 

Fig. 2–13  Startup angle estimation experiment results of a 1.5kW four phase 8/6 switched reluctance motor using LQRPEM. a)Actual positions. b)Estimated 

positions using functions with smallest rms residuals c)Estimated positions using functions with the smallest rms residuals with opposite concavities as the 

functions in b). d)Error in estimations: blue curve – errors for b). red curve –errors for c). e)Concavity of the curve with the smallest rms residuals. 

3
5 
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2.7 Summary 

In this chapter the LQRPEM for sensorless starting of switched-reluctance motor has 

been developed. It is based on a polynomial model of the phase inductance profiles of 

the motor. The main feature is that no specific magnetic information is needed and no 

calculation of flux linkage or current gradients is necessary. Only current 

measurement is needed and hence the method is robust and can be easily adapted to 

any switched-reluctance motor. The calculations are straight forward that they only 

involve simple matrix and algebraic operations. The utilization of all four phases for 

the estimations also reduces errors introduced by individual phase. The validity of 

LQRPEM has been confirmed by both simulation and experiments. The error in the 

estimation of the position is very small with a mean absolute error of 1.555° in the 

experiment. It is therefore believed to be a promising method for sensorless driving of 

SRM. 
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Chapter 3 

Position Estimation Using Type V Exponential 

Function 

3.1 Introduction 

In the last chapter a quadratic function is utilized to estimate the positions of the 

motor phases at startup. It provides acceptable results although a polynomial function 

does not follow the inductance profile closely. In this chapter we will investigate a 

new type of function that has more resemblance to the inductance profile and 

therefore provide even more accurate results. 

3.2 Type V Exponential Function 

A type V exponential function is described by V. Sit and M. Poulin-Costello for 

modeling data[59]. It will be used in this chapter to model the inductance profile. 

Again the function parameters will be found using regression analysis where linear 

least squares technique will be used to estimate the coefficients of the function. 

A type V exponential function )(xf with one independent variable x takes the 

following form: 

2)()( cxabxf   (3-1) 

where parameter a  controls the maximum or minimum value of the function, b  the 



38 

concavity, and c  the x  co-ordinate of the vertex of )(xf . This function cannot be 

used directly in linear regression analysis and has to be linearly transformed into the 

following form: 

0

1

1

2

2))(ln( axaxaxf   (3-2) 

where 
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Given a sequence of data y1,y2,… yL, taken at points x1, x2,... xL, it is desired to find 

the unknown coefficients na of the regression function to minimize the following sum 

of squared differences sS : 
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Note from equation (3-6) that instead of trying to find the least squares solution from 

the original data, it is proposed here to find the least squares solution from their 
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natural logarithm instead. This greatly simplifies the calculation and gives sufficient 

accuracy. To find the values of 2a , 1a , and 0a  the same D  and z  matrix (2-4) and 

(2-6) from the last chapter are used. But the y  vector now becomes: 
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Using the least squares solution equation (2-8), the following exponential function is 

found: 

0
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2 ˆˆˆˆ)(ˆ axaxa
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  (3-8) 

Like the quadratic function from last chapter, type V exponential function also has a 

vertex, which can be found from its first derivative: 

0
1

1
2

2 ˆˆˆ

12

' )ˆˆ2(ˆ axaxa

nn
nneaxay


  (3-9) 

And its root is: 
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The concavity is again given by finding its second derivatives: 
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and substituting with rx : 
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Therefore the polarity of coefficient 2â  determines the concavity of the regression 

function. It follows that nŷ  at rx  is at the maximum if 0ˆ
2 a  and minimum if 0ˆ

2 a . 

It can also be observed that type V exponential function and quadratic function has 

the same equation for the root and the same concavity condition. 

3.3 Method Derivation 

In the last section the general form of the type V exponential function is presented. In 

this section the procedure of estimating the phase positions will be described. This 

procedure will be named the Linear Exponential Regression Position Estimation 

Method(LERPEM). As was done for the derivation of LQRPEM in Chapter 2, in the 

proposed estimation function nx̂ and nŷ  in (3-8) are replaced by e  and )( erelativeL  : 

0
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2)(
aaa

erelative
eeeL



  (3-13) 

Therefore the relative inductance is modeled as having an exponential relationship 

with e . Fig. 3–1 below shows two type V exponential curves together with two 

periods of the inductance profile. 
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Curve 1 is a type V function that has a maximum vertex and curve 2 is another one 

with a minimum vertex. Unlike those of a polynomial function the two curves have 

very different shapes. Curve 1 is much more similar to the inductance profile whereas 

curve 2 looks like a parabola. For this reason it is therefore proposed that only curve 1 

is used for the estimations. Later in the chapter examples will be given to illustrate 

this point. 

The D  matrix for solving for the coefficients are the same as in equation (2-19) of 

Chapter 2, restated here: 
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But vector y  is now: 

 

Fig. 3–1  Inductance of the phases repeated for 2 periods and superimposed with 2 Type V exponential 

functions 
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Substituting D  and y  into the least squares solution equation (2-8), the coefficient 

vector ẑ  becomes: 
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Similar to what was done with LQRPEM, y  has to be circular shifted to find the 

regression functions for all the angle combinations. The criteria to choose the correct 

function are also similar except that instead of using a regression function with the 

smallest rms residuals, the regression function with a maximum vertex as curve 1 in 

Fig. 3–1 is preferred as explained before. The procedure for finding the phase 

positions from the regression function is exactly the same as with LQRPEM. In the 

next section an example will be given to demonstrate the method. 

3.4 An Example of LERPEM 

In the last section the LERPEM is developed. This section will show an example of 

applying the method to estimate one arbitrary position. A motor as described by Table 

2-1 is used. The angles chosen are 36°, 306°, 216°, 126°, for Phase 1 through Phase 4, 

respectively. Through the same simulation steps as described in section 2.3, the 

corresponding currents are obtained as 1.1852A, 0.6461A, and 0.1396A, 0.1020A. 
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Following the procedure described in section 3.3, the four regression functions found 

are shown in Fig. 3–2. 

Therefore the functions that can be used for position estimations are curve in Fig. 3–

2b and Fig. 3–2c with their vertex positions between 90° and 180°. The estimated 

angles are then 
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For estimations using the curve in Fig. 3–2b, and 
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 (3-17) 

for estimations using the curve in Fig. 3–2c. 

Comparing with the chosen phase angles, the curve of Fig. 3–2b gives more accurate 

estimations, which agrees with the hypothesis that the curve with a maximum vertex 

provides better results. 
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Fig. 3–2  Results from exponential regression.  

a)Phase 1 assumed at 270°. 2â =-0.000023, 1â =-0.002044, 0â =1.950714, rms 

residuals=2.581960˚, maximum point at angle=-43.85˚ 

b)Phase 2 assumed at 270°. 2â =-0.000109, 1â =0.031540, 0â =-0.161798, rms residuals=0.229864 

˚, maximum point at angle=145.06˚ 
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3.5 Simulation Results 

The same simulation as with LPRPEM is done with two motors as in Chapter 2, and 

the results are shown in Fig. 3–3 through Fig. 3–6: 

 

 

(Cont.)Fig. 3–2  Results from exponential regression. 

c)Phase 3 assumed at 270°. 2â =0.000023, 1â =0.001026, 0â =0.214877, rms residuals=3.593118˚, 

minimum point at angle=-22.00˚ 

d)Phase 4 assumed at 270°. 2â =0.000109, 1â =-0.030521, 0â =2.052427, rms residuals=0.900348˚, 

minimum point at angle=140.38˚ 
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Fig. 3–4  Startup angle estimation simulation results of a 5kW four phase 8/6 switched reluctance motor 

using the curve with positive concavity. a) Actual angle. b) Estimated angle c) Error in estimations 

 

Fig. 3–3  Startup angle estimation simulation results of a 3kW four phase 8/6 switched reluctance motor 

using the curve with positive concavity. a) Actual angle. b) Estimated angle c) Error in estimation 
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Thus the simulation results further confirm that estimations done with the preferred 

regression function with a maximum vertex are more accurate. On the other hand the 

 

Fig. 3–6  Startup angle estimation simulation results of a 5kW four phase 8/6 switched reluctance motor 

using the preferred curve. a) Actual angle. b) Estimated angle c) Error in estimations 

 

Fig. 3–5  Startup angle estimation simulation results of a 3kW four phase 8/6 switched reluctance motor 

using the preferred curve. a) Actual angle. b) Estimated angle c) Error in estimation 
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results given by the function with a minimum vertex are similar to those given with a 

quadratic function, which is unsurprising due to the closeness in shape between the 

two curves. 

To further compare the results, simulation is also performed using the inductance 

profile of phase 1 from the experimental 1.5kW motor. All other phases are assumed 

to have the same and symmetric inductance profile as phase 1. The results are shown 

in Fig. 3–7. 

 

It can be seen from the results that the estimation accuracies are not affected by the 

power ratings of the motors, as long as the phases are symmetric and balanced. 

 

Fig. 3–7  Startup angle estimation simulation results of a 1.5kW four phase 8/6 switched reluctance 

motor using the preferred curve. a) Actual positions. b) Estimated positions c) Error in estimations. 
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3.6 Experimental Results 

Using the same data obtained with the experiment described in section 2.5, the 

developed LERPEM is used to estimate the phase positions with the preferred 

function. The final results are shown in Fig. 3–8. 

 

The positions estimated have a mean absolute error of 0.88° mechanical, and given 

the highly peculiar inductance profile of phase 2, the results therefore have shown that 

the LERPEM method can indeed provide very good estimates of the phase positions 

even without the assumption that all phases have the same inductance profile values. 

 

Fig. 3–8  Startup angle estimation experiment results of a 1.5kW four-phase 8/6 switched reluctance 

motor using LERPEM. a)Actual positions. b)Estimated positions c)Error in estimations d)rms residuals 

from the curve fit.  
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3.7 Summary 

In this chapter LERPEM for sensorless starting of switched-reluctance motor is 

presented. A type V exponential function is used to model the inductance profile. This 

function is superior to the quadratic function of Chapter 2 that it resembles the 

inductance profile of an SRM more closely. The mean absolute error from the 

experiment is 0.88° mechanical. Compared with LQRPEM from Chapter 2 the 

LERPEM can provide more accurate estimates of the phase positions. 
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Chapter 4 

Position Estimation Using Co-sinusoidal 

function 

4.1 Introduction 

In Chapter 2 and Chapter 3 two different methods were developed to estimate the 

phase positions of a four-phase SRM through finding the vertex positions of the 

inductance modeling functions. Although they give accurate information for the 

positions, one drawback is that the correct angle order that fits the profile has to be 

found first and several calculations and comparisons have to be done before being 

able to make the final estimations. In this chapter we are going to investigate a new 

model where the trial and error process can be eliminated and thus providing a 

simpler algorithm for finding the phase positions. 

4.2 Co-sinusoidal Regression Model 

4.2.1 IEEE Standard 1057 

In this chapter a co-sinusoidal function for fitting the inductance profile will be 

investigated. The function analysis are based on content from The IEEE Standard 
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1057 which was originally developed by an IEEE committee to provide common 

terminology and test methods for describing the performance of waveform 

recorders[60, 61]. It was approved by the IEEE Standards Board on June 14, 1994 and 

revised in 2007. An important aspect of this standard is the use of sine wave signal 

and fitting algorithms to evaluate the performance of the recorders. Several algorithms 

for sine wave fitting based on the least square method were presented in [61] and the 

three parameter(known frequency) least squares fit to sine wave data using matrix 

operations will be adopted here in developing the regression model. 

4.2.2 Cosine Regression Function 

A co-sinusoidal curve superimposed on two inductance periods is shown in Fig. 4–1. 

 

 

Fig. 4–1  Inductance of the phases repeated for 2 periods and superimposed with one co-sinusoidal 

function. 
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Unlike the quadratic and the exponential functions that each requires two curves of 

different concavities to model the inductance correctly, one co-sinusoidal function can 

model the inductance profile indefinitely. As can be observed in Fig. 4–1 the function 

can be considered as a 180° shifted cosine function with a DC offset. Therefore the 

modeling function to be used is defined as the following: 

CML nenrelative  )cos(_   (4-1) 

where nrelativeL _ represents the relative inductance of phase n, M  the amplitude, ne  

the phase n’s electrical position,   the phase shift, and C  the offset. Like the 

quadratic or type V exponential function this function is not linear in parameter and 

therefore cannot be solved directly with linear least squares method. This problem is 

solved by transforming (4-1) into linear form using trigonometric identities: 

CBAL nenenrelative  )sin()cos(_   (4-2) 

where 

22 BAM   (4-3) 

)(tan 1

A

B
   for A>=0 (4-4) 

 


  )(tan 1

A

B
 for A<0 (4-5) 

The special condition for the inverse tangent is to ensure that   falls into the correct 
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quadrant. 

4.2.3 Method Derivation 

Now that the regression function is defined, its coefficients A, B and C can be found 

with the least squares method described in Chapter 2 and Chapter 3, with the 

following modifications to the regression matrix D : 
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The sample vector y  remains the same as the relative inductance of the phases, as: 
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And the coefficient vector z  as: 
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With the same angle assignments as before, the D  matrix becomes: 
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which simplifies to: 
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Substituting this D  matrix and the y  vector into the least squares solution equation 

(2-8), the solution coefficient vector ẑ  is obtained as: 
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The ^ superscript indicates a least squares solution quantity. The coefficients Â , B̂ , 

Ĉ  are thus found. Using these coefficients, the amplitude M̂ , phase shift ̂  and bias 

Ĉ  of the cosine expression (4-1) can be found using equations (4-3) through (4-5).  

To determine the position of each phase it is only needed the value of the phase shift 

angle ̂ . M̂  and Ĉ  could give us an approximation of the aligned and unaligned 

inductances if the value of the volt-seconds applied is provided, but the accuracy is 

limited. The estimated electrical position is then simply: 
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  °180ˆ
nene  (4-12) 

If ne̂ < 0° or >360°, it is needed to be wrapped around to fall between 0° and 360°. 

The 180° degree adjustment in (4-12) is needed to transform the angles to the co-

ordinate system of our inductance profile, which is a 180° shifted cosine curve. Other 

co-ordinate systems can easily be accommodated by proper shifting. The development 

of this method is completed and we will call it the Linear Sinusoidal Regression 

Position Estimation Method(LSRPEM). 

4.3 Simulation Results 

The simulated results from applying LSRPEM to the same two motors as in Chapter 2 

and Chapter 3 are shown below in Fig. 4–2 and Fig. 4–3. 
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Fig. 4–3  Startup angle estimation simulation results using LSRPEM of a 5kW four-phase 8/6 switched 

reluctance motor. a) Actual angle. b) Estimated angle c) Error in estimation 

 

Fig. 4–2  Startup angle estimation simulation results using LSRPEM of a 3kW four-phase 8/6 switched 

reluctance motor. a) Actual angle. b) Estimated angle c) Error in estimation 
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By comparing the simulation results from Fig. 3–5 with those of Fig. 4–2, and Fig. 3–

6 with those of Fig. 4–3, it can be seen that LSRPEM gives slightly better estimates 

than LERPEM with an ideal inductance profile which is symmetric about the aligned 

position and identical among phases. 

4.4 Experimental Results 

The LSRPEM is applied to the same experimental data as in Chapter 2 and Chapter 3. 

The results are shown in Fig. 4–4. The estimates have a mean absolute error of 1.50°, 

and a maximum error of 4.16°. The results show that in real situations LERPEM gives 

better estimates than LSRPEM. 
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4.5 Models Comparison 

In the last few chapters several models for sensorless rotor position estimation of 

switched reluctance motors are introduced. In this section their rms residuals resulting 

from the curve fit and the estimation accuracies will be shown and compared. 

Fig. 4–5 and Fig. 4–6 show the estimation errors and the residuals from the different 

modeling methods, through simulation of the 3kW motor and the 5kW motor. It is 

noted that with the 3kW inductance profile, the sinusoidal method gives the most 

accurate results while the Type V method provides the smallest root mean square 

 

Fig. 4–4  Startup angle estimation experimental results using LSRPEM of a 1.5kW four-phase 8/6 

switched reluctance motor. a) Actual angle. b) Estimated angle c) Error in estimation 
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residuals. The positions estimated by the Type V method are also quite accurate. The 

polynomial method performs worst in both quantities. With the 5kW profile, the 

sinusoidal method again gives the most accurate estimates, while Type V produces 

the smallest rms residuals. The polynomial method still performs the poorest. From 

the results of both profiles, it can be concluded that small residuals always leads to 

small errors, but large residuals do not necessarily produce the worst estimates. 

 

 

Fig. 4–5  Position estimation errors and rms residuals for the different methods using simulation result 

from the 3kW motor. a)Estimation Error. b)rms residuals 
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The results using data from the experimental 1.5kW motor are plotted in Fig. 4–7 

below. 

 

Fig. 4–6  Position estimation errors and rms residuals for the different methods using simulation result 

from the 5kW motor. a)Estimation Error. b)rms residuals 
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It can be noticed from Fig. 4–7 that the Type V method fares better under imperfect 

conditions. This is due to the fact that the Type V curve fits the motor’s inductance 

profile best, shown by the smaller residuals. It would then be more robust to 

inductance discrepancies because of the nature of least squares fitting. TABLE 4-1 

summarizes the results. The calculation time is obtained by running the formulae 

programmed in C on a TI DSP F28335. All the calculations are done in fixed-point 

mathematics. It can be seen that the sinusoidal method is the fastest while Type V has 

the longest calculation time because of the logarithmic operations. With some more 

 

Fig. 4–7  Position estimation errors and rms residuals for the different methods using experimental 

result from the 1.5kW motor. a)Estimation Error. b)rms residuals 
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modern processors with dedicated hardware for these operations, it is believed the 

clock cycles can be largely reduced. 

 

4.6 Summary 

In this chapter the sinusoidal method called LSRPEM for position estimation at motor 

start-up is presented, and the results are compared with those obtained by the methods 

in Chapter 2 and Chapter 3. The accuracy of the estimations is similar to that of the 

LQRPEM and lower than LERPEM. Like those from the previous chapters, the merit 

in the new method lies in its purely mathematical approach and it has done away with 

the step of finding the right ordering of the phase positions needed in the previous two 

methods, facilitating a faster execution time. 

TABLE 4-1 

COMPARISON OF THE DIFFERENT ESTIMATION METHODS 

Category Sinusoidal Type V Polynomial 

3kW Avg. Absolute Estimation Error(°) 0.065 0.146 0.830 

3kW Avg. Residuals(°) 0.382 0.042 0.578 

5kW Avg. Absolute Estimation Error(°) 0.141 0.348 0.766 

5kW Avg. Residuals(°) 0.206 0.062 0.289 

Experiment Avg. Absolute Estimation Error(°) 1.50 0.88 1.56 

Experiment Avg. Residuals(°) 0.383 0.138 0.237 

Calculation Time(Clock Cycles)  216 3708 552 
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Chapter 5 

Position Estimation under Dynamic Conditions 

5.1 Introduction 

In the last three chapters, position estimation is based on static or free running 

conditions when there is no active phase and each can be applied with a probing 

voltage pulse train. In this chapter two dynamic position estimation methods will be 

introduced. With these two methods it is possible to control a running motor without 

position sensors. 

Many methods on sensorless rotor position estimation under dynamic situations have 

been studied in the past. They can be crudely categorized into two groups, namely the 

energized phase methods and the un-energized phase methods. With the energized 

phase methods, the active phases are used for the estimation of positions. In [38] flux 

linkage method is used where the estimated flux of the active phase is compared with 

a reference value to commutate the phases. In [62] the change in current gradient is 

used to determine a commutation point close to the aligned position. In [63] the 

measured voltage and current are used to calculate the flux linkage, and through 

recursive least squares method the position is estimated from a lookup table. With the 

un-energized phase methods, inactive phases are used and in most cases probing 
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voltage pulses are applied to the motor phases and through the resultant phase 

currents, voltages or the derivatives of such, rotor position is estimated. In [64] a 

Fourier model of the inductance profile using the aligned and unaligned inductance is 

developed and inductance obtained using voltage injection method from an idle phase 

is used to look up the position from the model. Reference [65] describes a method that 

injects a voltage pulse to an idle phase to trigger a voltage resonance response. 

Through measuring this response the position is determined using a lookup table. In 

[66] voltage pulses are applied to an idle phase and the switching moment is 

determined by the measured current. Some methods combine both active and inactive 

phases, such as [67, 68]. 

The methods that will be introduced in this chapter use both the active and inactive 

phases to estimate the rotor position. Following the idea of the static methods 

introduced in the previous chapters, the methods to be developed do not require 

specific magnetic information of the motor to be known and only rely on the general 

properties of the phase inductance profile. 

5.2 General Phase Inductance Profile property 

The general inductance against position plot for all phases superimposed is shown in 

Fig. 5–1: 
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where the electrical positions for individual phases are shown on the x-axis. It can be 

noticed from the figure that the inductance profiles of two adjacent phases cross path 

at a particular point near the unaligned position, specifically at 45° for one and 315° 

for the other, on their own position axis. This event will be called “Adjacent Phase 

Inductance profiles crossing”, abbreviated as APC, for the rest of this work. APCn/m 

will then stand for the APC of phase n and m, where phase n is at 45° and m at 315°. 

If the rotor is moving in the same direction, in one electrical cycle 4 APCs will occur. 

This special property will be used in the position estimation and phase switching 

schemes to be developed in this chapter for running a four-phase 8/6 SRM. 

 

Fig. 5–1  General phase inductance profiles for all phases of an 8/6 SRM. Inductance profile crossing 

points for adjacent phases shown. 
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5.3 Using Kalman Filter For SRM Control 

Chapter 1 gave an introduction of the Kalman filter. There are numerous literatures 

describing the use of Kalman filters in motor control to estimate the speed, position, 

and torque [35, 37, 69-79]. In [73] the extended Kalman filter was used to estimate 

the speed and rotor flux of an induction motor, and the estimates were then utilized 

for vector control. In [76] an alternate approach was taken where the states estimated 

were the speed and the stator flux, and they were used in direct torque control of the 

induction motor. The authors of [80] used an unscented Kalman filter to better 

estimate the true mean and covariance of a nonlinear permanent magnet synchronous 

motor model. The use of Kalman filters in the control of switched reluctance motors 

was also described in [29, 81]. In [29] models of different complexities were 

presented and compared. In [81] the extended Kalman filter was applied to find the 

speed, position and current of the motor. With all these methods, the magnetic 

characteristics of the motor must be known such that a process model can be built. 

Given the multitude of studies on motor control utilizing the Kalman filter, it is still 

not commonly seen in practice. One contributing factor is the need of a large amount 

of machine data to build up the model, which is sometimes impossible or difficult to 

obtain in a manufacturing environment. Calculation complexity also prohibits its use 
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in low end microcontrollers. Rapid advances in DSP technologies have now made it 

possible to include the filter in the control software, but the complexity of the motor 

model is still needed to be reduced such that the amount of data required is more 

practical for real life applications. 

The same issues also plague the use of the filter in the control of switched reluctance 

motors, because a large amount of machine details are required. The nonlinearity 

nature of the motor model due to magnetic saturation further aggravates the problems, 

making it necessary to provide to the model the inductance/flux linkage at different 

position and current combinations, and the necessity to use the extended Kalman filter 

or other nonlinear variations of the filter for estimating the system states. 

On the other hand, Kalman filters have been successfully and widely used in 

navigation, ever since their first well known application in the Apollo 11 spacecraft. 

Many modern navigation systems also utilize the filter as a core component in the 

control. Inspecting the models that the filter used in these applications reveals the 

reason: the models are relatively simple and do not require large amount of 

information on the controlled target. The dynamic equations governing the models 

mostly involve simple kinematic equations of acceleration, velocity and position. 

These information, or states of the process, can be obtained easily from sensors. This 

is in contrast with the common models used in switched reluctance motors that have 



69 

states that can only be obtained indirectly through some prior knowledge of the 

motors, and only through the usage of nonlinear methods. This chapter will describe a 

method that utilizes the discrete Kalman filter using simple dynamic state equations, 

and the estimated states are used directly in controlling the motor. 

5.4 The State Space model 

5.4.1 Conventional State Space model 

In [29] the system states for a four-phase switched reluctance motor is formulated as 

follow: 
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where In stands for current of phase n. Similar to the state vector of (5-1), in common 

practice for sensorless control using the filter the state vector comprises speed, 

position, current and load torque. The position is determined by the inductance at a 

certain current level and speed is not directly measured but only as a function of 

output torque and load torque. Including the output torque in the state equations is 
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very complex since it is necessary to know the change in co-energy with respect to 

position at every angle and current. System states are mingled with each other with 

some states dependent on the others through linear and non-linear relationships. 

Applying the model requires in-depth knowledge of the motor and also large amount 

of data memory in the control systems. The nonlinear dynamic relationships also 

prohibit the use of linear Kalman filter and therefore stability and optimality are not 

guaranteed. In this study these problems are resolved by modification of the general 

model such that it only involves linear kinematic relationships. Measurements are also 

made available for all states to enhance the predictions from the filter. 

5.4.2 Proposed State Space model 

The proposed discrete state space model for the SRM in the form of (1-4) is as follow: 
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where s represents the position and T  the sampling period. The state vector 
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x  (5-3) 

consists only of position and speed. The usual states of current and torque are omitted 

to avoid having to know the precise model of the motor. There is no input vector u in 

this model and kw is the zero mean process noise vector where the effects of torque 
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and load are modeled as part of the speed process noise. This assumption is valid as 

long as the speed can reach a steady state in a reasonable time. The measurements of 

the states to be used for the filter will be made available with the special switching 

techniques shown in the next section.  

5.5 Position Estimation Procedure and Phase Switching 

Strategy 

The proposed method comprises two switching schemes, one for low speed control 

and the other for high speed. Under the low speed switching scheme, which will 

hereafter be referred to as Type I switching mode, the general characteristics of the 

inductance profile is utilized for phase switching. In the high speed scheme, which 

will be called the Type II switching mode, the Kalman filter is used. Type I switching 

is also needed to prime the Kalman filter for Type II switching, which will be shown 

later. The flux linkage relationship, described by (2-14), is again used for comparing 

the magnitudes of the phase inductance. 

5.5.1 Type I Switching Mode 

The first switching mode has dual functionality: first it starts up the motor and keeps 

it running, second it prepares the Kalman filter for Type II switching by providing 
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position and speed measurements. This is accomplished by utilizing the APC event of 

the SRM inductance profile described in section 5.2. The simulated current waveform 

under Type I switching mode for the first 0.08s after the motor starts is shown below 

in Fig. 5–2. 

 

Under this mode, each phase is turned on between 45° and 135°, meaning also only 

one phase will be on at any time. To start the motor, static methods developed from 

the previous chapters are used to determine the starting phase, which lies between 45° 

and 135°. When the motor starts running probing voltage pulses are applied to the two 

phases which will have the next APC. This is illustrated In Fig. 5–2. For this 

 

Fig. 5–2  Current switching waveforms for all phases of an 8/6 SRM under Type I Switching Mode. 

a)Current waveforms. b) Actual Electrical Positions 
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simulation the motor starts with Phase 1 aligned. Therefore Phase 2 is the first active 

phase and Phase 3 and 4 are the next APC phases. Probing pulses with the same 

amount of volt-seconds are applied to these two phases and their current measured. 

When the difference in current values between the two probing phases changes sign, it 

is an indication that APC3/4 has occurred. This happens at around 0.03s in the figure. 

It is known from section 5.2 and also can be seen in the figure that, at this time Phase 

2 reaches 135°, phase 3 is at 45° and phase 4 at 315°. Phase 2 will then be turned off 

and Phase 3 turned on. The new probe phases become Phase 4 and Phase 1, since their 

APC will happen next. 

To keep the motor running this switching and probing sequence continues, such that 

at each APC the APC phase which is at 45° is turned on and the current active phase 

turned off. Fig. 5–2 shows the switching sequence. Under this switching sequence the 

motor will keep running, and each phase will turn on at an angle of 45° and turn off at 

135°. This gives a dwell angle of 90° electrical for each active phase which for an 8/6 

SRM is equivalent to 15° mechanical. The drawbacks of this switching scheme are 

1)Compared with a theoretical maximum dwell span of 180° this imposes a limitation 

on the maximum speed and torque of the motor. 2)Only one phase is active at a time. 

These limitations could be removed once the controller goes into Type II switching 
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mode, to be described in the forthcoming subsection. Nevertheless, under this 

switching scheme the motor is able to run normally.  

As a consequence of the above switching process, the position and speed information 

required by the Kalman filter can also be obtained, since at each profile crossing the 

position of the rotor is known, and four such crossings occur and thus four positions 

can be detected in one electrical cycle with an 8/6 SRM. For instance when phase 1 is 

active, phase 2 and 3 will be probing. When APC2/3 happens, phase 2 will be at 45°, 

which also corresponds to phase 1’s position of 135°. When phase 2 is active, phase 3 

and 4 are the probing phases. APC3/4 will occur at phase 3’s position of 45°, which 

also is phase 1’s position of 225°. And by the same token at APC4/1, phase 1 will be 

at 315° when phase 4 reaches its turn on angle, again at 45°. Therefore 4 distinct 

positions can be identified at each APC within one electrical cycle. Now that these 

positions are available, the speed of rotation can also be found. Since each phase is 

turned on at the same position in every cycle, the time between same-phase APCs are 

equal to the time needed to travel one electrical cycle. With the very accurate timer in 

the DSP, this time can be measured precisely. Thus using this information the speed 

of the rotor can be determined. By dividing 360° by this time, the speed in electrical 

degrees per second can be found. Although theoretically it is also known that the 

distance between sequential APCs is 90°(since there are four crossings in one cycle), 
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it is usually not a good idea to use the time between sequential phase crossings for 

speed calculation since inductance among phases varies and it cannot be guaranteed 

that sequential APCs are 90° apart. Two APCs of the same phase-pair are much more 

reliable for determining the angular distance travelled.  

The speed for the first electrical cycle after starting cannot be determined, because as 

explained above it is calculated by the time between two same-phase APCs. But after 

the first cycle speed information is available every 90°, i.e. once at every APC. After 

feeding these speed and position measurements to the filter, the estimated states of 

speed and position can then be obtained. 

5.5.2 Type II Switching Mode 

Under Type II switching mode, with the position information available from the filter, 

the turn-on and turn-off angles can be chosen freely. The simulation result illustrating 

the scheme is shown below in Fig. 5–3. 
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The turn on angle is chosen to be 15° and the turn off angle 126°. The position 

information is provided by the Kalman filter, shown in plot c). It is shown in the 

figure that the phases are commutated correctly. The choice of the probe phases are 

still the two phases to have the next APC but the probing process is different to Type I 

since it might not be possible to apply probing pulses of equal volt-seconds to the two 

phases when one of them become active before their APC, as in the current case with 

the turn-on angle at 15°. This is shown in the expanded current waveforms in Fig. 5–4. 

As can be seen phase 1 becomes active before APC1/2, so now only to phase 2 the 

probing pulses can be applied and phase 1 has to be switched according to the set 

 

Fig. 5–3  Current switching waveforms for all phases of an 8/6 SRM under Type II Switching Mode. 

a)Current waveforms. b)Actual Electrical Positions c) Estimated Phase 1 Electrical Position from filter 
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reference current. Therefore the APC1/2 event cannot be detected by just comparing 

the probe phase current magnitudes as in Type I mode but their relative inductances 

have to be found first by dividing the difference between on-time and off-time of the 

probe phases by the measured current value. Some errors might be introduced by the 

various voltage drops and mutual inductive couplings that lead to volt-seconds 

difference. In the experiment section their effects will be shown. 

 

 

Fig. 5–4  Expanded current switching waveforms for all phases of an 8/6 SRM under Type II Switching 

Mode. a)Current waveforms. b)Actual Electrical Positions 
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5.6 Some Implementation Issues 

In the last section the methods for sensorless control of SRM utilizing the Kalman 

filter was described. In this section some practical aspects affecting the physical 

implementation will be discussed. 

5.6.1 Update frequency of the Kalman filter 

The measurable states in the system model are the position and velocity, and they are 

used in the Kalman filter equations. Two issues must be resolved before the filter can 

be applied using these states, which is the availability of the measurements and the 

time between measurements, discussed below. 

a) Availability Of Measurements 

In a general implementation, for every iteration of the Kalman-filtering equation (1-10) 

there is a measurement update, meaning the filter expects to have the state 

measurements available to correct the estimations. It is not possible in the present case 

since position and speed info only arrives every 90 electrical degrees, and to use the 

filter as a position estimator for commutation it must be run more frequently. 

b) Asynchronous Measurements 
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Since the measurements come at instants of phase crossings, the time intervals 

between measurements are not deterministic and dependent on speed. This again will 

affect the time between measurement updates when using the filter. This particular 

form known as multi-rate system is investigated in previous research works[82-86]. 

But if the filter is run in multi-rate the process noise covariance kQ and the state 

transition matrix kA  are different at each filter execution. This is because kA contains 

the value of the execution period, which is now variable, and kQ  will propagate 

through time, therefore the time between filter executions will affect its value. This 

can be shown by inspecting equation (1-11) for the calculation of the state estimation 

covariance, repeated here: 
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Expanding kA in the first term we get 
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Comparing this to the state estimation covariance if the filter is run with a period of 

nT: 
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Therefore for filters with different execution periods, at the same time instant if the 

state estimation covariance kP  is to agree, their process noise covariance kQ  must be 

different. After every iteration of the filter the past process noise covariance 

propagates. It is therefore important to realize that, even though the Kalman filter can 

be run with any desired frequency, the choice of the discrete process noise covariance 

has to be prudent such that its propagation downstream is considered. If the sampling 

periods are varying, then kQ  has to be recalculated for each iteration of the filter. 

For the reasons above the filter in the present application will run with a fixed 

sampling period T  much smaller than the measurement period, and with an empirical 
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choice of the process noise covariance kQ . This will guarantee a frequent position 

and speed output from the filter, a constant state transition matrix and process noise 

covariance vector for ease of implementation, and a state estimation covariance which 

can be calculated offline if desired. To take care of the missing data between 

measurements, the Riccati equation is modified such that the measurement update 

step is skipped when measurements are not available. This can be accomplished by 

setting the Kalman gain to zero in (1-10). The point to pay attention to is therefore the 

choice of kQ  and to make sure measurement updates are frequent enough such that 

the state estimation follows the actual states closely. This can assure the convergence 

of the filter. 

5.7 Simulation Results 

Simulations are done with several scenarios to show the system behavior of the two 

control methods. Type I switching is always used to start the motor and prime the 

Kalman filter. Hysteresis current control and hard chopping is used for the 

simulations. 



82 

5.7.1 Type I only switching with applied load 

The settings used for this simulation are shown in TABLE 5-1 and results shown in Fig. 

5–5. The plots begin after the motor has reached a steady state no-load speed. 

 

The speed estimates from the filter have a mean error of 0.762rpm with motor 

unloaded and 0.987rpm loaded. The position estimates have a mean mechanical error 

of -1.465° unloaded and -0.450° loaded. The simulation step time is set at 60 

microseconds in order to match the real time execution cycle time of the dSPACE 

hardware in the experiment section. If this step time is reduced the errors are also 

smaller. Speed estimations have a larger error at load change but in general the filter 

performance is satisfactory. Position estimates lag the actual ones at no load with 

higher speed because the larger execution step size of the Kalman filter and some 

control logic lead to delayed position information. Therefore as expected position 

errors reduce under load when the speed is lower. 

TABLE 5-1 

SIMULATION SETTINGS FOR TYPE I SWITCHING 

Time(s) Control Type Set Current(A) Load(Nm) On Angle(°) Off Angle(°) 

t<3.6 I 6 0 45 135 

3.6≤t<9 I 6 2.3 45 135 

9≤t<12 I 6 0 45 135 

 



 

 

 

Fig. 5–5  Simulation results using Type I switching method with and without load a)Set Current and Load. b)Actual Speed c)Estimated Speed Error d)Estimated 

Position Error 

8
3 
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5.7.2 Type II switching 

The settings used for the simulation are shown in TABLE 5-2 and results shown in Fig. 

5–6. The recording starts after the motor has reached a steady state no-load speed. 

 

For the time range shown, the speed estimates from the filter have a mean error of 

1.014rpm with motor unloaded and 0.450rpm loaded. The position estimates have a 

mean mechanical error of -0.884° unloaded and -0.640° loaded. Notice that under 

Type II switching without considering the resistive voltage drop, the active phase 

which carries a larger current will have a larger apparent relative inductance(because 

volt-seconds is larger than actual), causing an earlier than actual detection of phase 

inductance crossing. This could reduce the effect of the longer simulation step time, 

leading to a smaller position lag. But in general due to the almost perfect conditions 

both Type I and Type II switching produce good results. It could also be seen that 

since it is now possible to turn on the winding earlier, the torque is increased and thus 

a higher speed is reached using Type II switching. 

TABLE 5-2 

SIMULATION SETTINGS FOR TYPE II SWITCHING 

Time(s) Control Type Set Current(A) Load(Nm) On Angle(°) Off Angle(°) 

t<2.9 II 6 0 15 126 

2.9≤t<7.9 II 6 2.3 15 126 

7.9≤t<12 II 6 0 15 126 

 



 

 

Fig. 5–6  Simulation results using Type II switching method with and without load a)Set Current and Load. b)Actual Speed c)Estimated Speed Error d)Estimated 

Position Error 

8
5 
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5.7.3 Type I to Type II transition 

The settings used for the simulation are shown in TABLE 5-3 and results shown in Fig. 

5–7. It shows the system behavior when switching scheme changes from Type I to 

Type II. The recording starts from motor idle state. 

 

It is observed that the filter takes some times from the idle state to produce the correct 

position and speed detection, as expected. But this will not affect the startup 

performance of the motor since Type I switching does not use the Kalman filter’s 

outputs. The speed change from Type I to Type II is gentle enough that the Kalman 

filter’s output does not show a big error during the mode transition. 

 

TABLE 5-3 

SIMULATION SETTINGS FOR TYPE I TO II TRANSITION 

Time(s) Control Type Set Current(A) Load(Nm) On Angle(°) Off Angle(°) 

t<2 I 6 0 45 135 

2≤t<4 II 6 0 15 126 

 



 

 

 

Fig. 5–7  Simulation results using Type I and Type II switching methods with load a)Set Current. b)Actual speed c)Speed Estimation delta d)Position Estimation delta. 

8
7 
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5.8 Experimental Results 

The experimental setup was described in section 2.5. The motor is the same one used 

for the static methods but the applied voltage is now changed to 65V. The results are 

shown below. 

 

Fig. 5–8 shows the phase current waveforms and the corresponding phase 1 position 

of the motor at no load for Type I switching scheme. It can be seen that phase 2 has a 

higher maximum current then the other. This is due to its lower inductance as shown 

in Fig. 2–11. Although the set reference current is 6A actual phase currents cannot 

 

Fig. 5–8  Current waveforms under Type I switching without load a)Phase Currents. b)Phase 1 Mechanical 

Position 
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reach this value due to the speed of the motor leading to short turn on time. The 

triangular shaped current pulses are the probing currents. Fig. 5–9 shows the same 

waveforms with the motor under a 2.3Nm load. It can be seen that now all phases can 

reach a current of 6A due to the lower speed of the motor. The figure is expanded into 

Fig. 5–10 for a better view of the waveforms. Fig. 5–11 illustrates the Kalman filter 

performance under Type I switching. The speed estimates from the filter have a mean 

error of 0.50rpm with motor unloaded and 1.03rpm loaded. The position estimates 

have a mean mechanical error of 1.05° unloaded and 2.64° loaded. The mean speed 

error is slightly higher when the motor is loaded due to the higher current that leads to 

higher torque ripples, but the effect is small. Differing to the simulation results, the 

position estimates has a positive delta. This is probably contributed by the effect of 

the mutual inductance which was not considered in the simulations. But the overall 

results agree. 
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Fig. 5–12 shows the current waveforms and the corresponding phase 1 position under 

Type II switching scheme. In general the current waveforms are not so consistent 

among phases due to the error in the position estimates used for phase switching. The 

different inductance profile of phase 2 also contributes to its higher current amplitude. 

Fig. 5–13 shows the same quantities with the motor under a 2.3Nm load. Here the 

phase current waveforms are more consistent since it is now possible to reach the full 

reference current of 6A. Fig. 5–14 illustrates the Kalman filter performance under 

Type II switching. The speed estimates from the filter have a mean error of 2.69rpm 

with motor unloaded and 0.53rpm loaded. The position estimates have a mean 

 

Fig. 5–9  Current waveforms under Type I switching with load a)Phase currents. b)Phase 1 Mechanical 

Position 
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mechanical error of 3.49° unloaded and 4.39° loaded. As expected, due to volt-

seconds errors, the position estimates have larger errors than Type I. The speed 

estimates are still quite good since using APCs from the same phase-pairs eliminate 

these volt-seconds errors. 

 

 

 

Fig. 5–10  Current waveforms under Type I switching mode with load in expanded view. a)Phase 

currents. b)Phase 1 Mechanical Position 

 



 

 

 

 

Fig. 5–11  Kalman Filter performance under Type I switching. a)Actual Speed b)Filter Speed Estimation error c)Filter Position Estimation Error 

9
2 
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Fig. 5–13  Current waveforms under Type II switching with load a)Phase currents. b)Phase 1 

Mechanical Position 

 

 

Fig. 5–12  Current waveforms under Type II switching without load a)Phase currents. b)Phase 1 

Mechanical Position 

 

 



 

 

 

 

Fig. 5–14  Kalman Filter performance under Type II switching. a)Actual Speed b)Filter Speed Estimation error c)Filter Position Estimation error 

9
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Fig. 5–15  Kalman Filter performance with no switching. a)Actual Speed b)Filter Speed Estimation error c)Filter Position Estimation error 

9
5 



 

 

 

 

Fig. 5–16  Kalman Filter performance when switching goes from Type I to Type II. a)Actual Speed b)Filter Speed Estimation error c)Filter Position Estimation error 

9
6 
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Fig. 5–15 shows a special case where there is no active phase and the SRM is driven 

by an external servo motor at 1000rpm. This is to test the filter performance with 

minimal mutual inductive influence. The mean speed estimation error is found to be-

0.74rpm and the mean position estimation error is 0.51°. It thus shows that without 

the influence of mutual inductance the position estimation accuracy improves. 

In order to have a clearer picture of the positions where APCs occur, the identified 

APCs for each phase pair in all electrical cycles within the experiment time range are 

isolated and shown in Fig. 5–17 through Fig. 5–24. Each figure shows the difference 

between the actual detected and expected APC positions for each type of switching 

schemes and for the condition with no active phase. Fig. 5–17 through Fig. 5–20 

shows the difference at no load and Fig. 5–21 through Fig. 5–24 shows the difference 

when the motor is loaded at 2.3Nm. The difference between the actual detected APC 

position and the expected APC position will be denoted by PAPC 

Fig. 5–17 shows the difference between actual and expected positions when APC4/1 

happens. The expected phase 1 position should be 52.5 mechanical. It can be seen that 

when there is no active phase the expected and actual positions have 0° mean 

difference. With Type I switching the difference is -1° and with Type II the difference 

is -4°. Under loaded conditions, shown in Fig. 5–21, with Type I switching the 
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difference is -2.1° and with Type II the difference is -5.4°. Loaded condition with no 

active phase is not tested. 

Fig. 5–18 shows the difference between actual and expected positions when APC1/2 

occurs. The expected phase 1 position should be 7.5° mechanical. When there is no 

active phase the expected and actual positions have -0.9° mean difference. With Type 

I switching the mean difference is -1.5° and with Type II the mean difference is -3.9°. 

Under loaded conditions, shown in Fig. 5–22, with Type I switching the difference is 

-2.7° and with Type II the difference is -4.4°. Again loaded condition with no active 

phase is not tested. 

Fig. 5–19 shows the difference between actual and expected positions when APC2/3 

happens. This expected phase 1 position should be 22.5° mechanical. When there is 

no active phase the expected and actual positions have -1.2° mean difference. At no 

load, with Type I switching the mean difference is -1.8° and with Type II the mean 

difference is -4.8°. Under loaded conditions, shown in Fig. 5–23, with Type I 

switching the difference is -2.6° and with Type II the difference is -4.5°. 

Fig. 5–20 shows the difference between actual and expected position when APC3/4 

takes place. This expected phase 1 position should be 37.5° mechanical. When there 

is no active phase the expected and actual positions have a mean difference of -1°. 
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With Type I switching the mean difference is -1.2° and with Type II the mean 

difference is -2.9°. Under loaded conditions, shown in Fig. 5–24, with Type I 

switching the difference is -3.05° and with Type II the difference is -4.03°. 

With these results, some observations can be made. Since the detection method is the 

same for the case with Type I switching mode and with no active phase mode, the 

difference in the detected position can only be contributed by the effect from mutual 

inductance. It seems that the mutual inductance will cause premature detections of the 

APCs. With Type II switching, the detected APC positions are even smaller than 

those of Type I, which is believed to be contributed by the errors when calculating the 

total volt-seconds when the various voltage drops are not considered. Under loaded 

conditions, the effect of mutual inductance is even more pronounced, which can be 

seen by the more negative PAPCs. However, the lower motor speed under loaded 

condition also can contribute to a smaller position lag caused by the execution time of 

the program. It is interesting to see that although phase 2 has a very different aligned 

inductance, this has very little effect on its detected APC positions. It is believed to 

have to do with its similar unaligned inductance to the other phases. With this 

characteristic inductance profile among phases are similar near the unaligned position 

where the APCs are detected. 
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Fig. 5–18  Position variations from expected at APC1/2 under different switching conditions with 

no load. Red lines indicate mean values. a)No switching. b)Type I switching c)Type II switching 

 

 

Fig. 5–17  Position variations from expected at APC4/1 under different switching conditions with 

no load. Red lines indicate mean values. a)No switching. b)Type I switching c)Type II switching 
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Fig. 5–20  Position variations from expected at APC3/4  under different switching conditions with 

no load. Red lines indicate mean values. a)No switching. b)Type I switching c)Type II switching 

 

 

Fig. 5–19  Position variations from expected at APC2/3 under different switching conditions with 

no load. Red lines indicate mean values. a)No switching. b)Type I switching c)Type II switching 
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Fig. 5–22  Position variations from expected at APC1/2 under different switching conditions under 

load. Red lines indicate mean values. a)Type I switching b)Type II switching 

 

 

Fig. 5–21  Position variations from expected at APC4/1 under different switching conditions under 

load. Red lines indicate mean values. a)Type I switching b)Type II switching 
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Fig. 5–24  Position variations from expected at APC3/4 under different switching conditions under 

load. Red lines indicate mean values. a)Type I switching b)Type II switching 

 

 

Fig. 5–23  Position variations from expected at APC2/3 under different switching conditions under 

load. Red lines indicate mean values. a)Type I switching b)Type II switching 
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5.9 Comparison to other methods 

TABLE 5-4 compares the two dynamic methods against three other methods described 

in the literature. 

 

Comparing to other methods, it can be seen that the type I and II switching 

methodologies can provide reasonable estimations of position and speed without 

lookup tables created using specific magnetic information on the motors used 

5.10 Summary 

In this chapter two sensorless methods using the general inductance characteristic of 

four-phase 8/6 SRM are presented. The first method, Type I switching mode uses the 

intersection of the inductance profiles of two adjacent phases for commutation, and at 

the same time provides measurements to the Kalman filter. The second method Type 

TABLE 5-4 

COMPARISON OF DIFFERENT DYNAMIC METHODS 

 Type I Type II Ref 30 Ref 63 Ref 68 

Lookup Tables Needed No No Yes Yes Yes 

Position Estimated Yes Yes Yes Yes Yes 

Average Position Error(°) ~3 ~5 ~3 ~2 ~0.9 

Speed Estimated Yes Yes Yes Yes No 

Average Speed Error(%) ~0.5 ~0.16 ~0.1 ~0.5 N/A 
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II switching mode then uses the output from the Kalman filter to remove the 

switching constraints imposed by the first method to raise the motor output torque and 

speed capability. The speed and filter performance from the two switching schemes 

are shown and the effects of mutual inductance are investigated. Simulation and 

experimental results have shown the validity of the methods. It is shown that both 

switching schemes provide reasonably accurate commutation while Type I provides 

slightly accurate results under loaded condition. Mutual inductance is shown to have a 

lead effect on the crossing point detection which cause earlier than expected 

commutation. This is acceptable since an earlier turn on position actually has a 

beneficial effect to the average torque and an earlier turn off position does not affect 

the torque by much.  

 



106 

Chapter 6 

Conclusion 

In this thesis different methods to estimate rotor position of a four-phase SRM have 

been developed and tested. The static methods, which estimate positions with no 

active phases, are all based on linear regression analysis, using different functions to 

connect the different phase inductances together. Through these connections the 

model parameters are found and then used to estimate the rotor positions. Different 

model functions have different accuracies and complexities and the choice should be 

based on available system resources. Type V exponential regression function provides 

the best position estimates and the co-sinusoidal function consumes the least 

resources. Two methods were developed to detect rotor position while the motor is 

running. The first method is based on the general characteristic of the inductance 

profile of a four-phase SRM, and phase commutations are done at fixed rotor 

positions. The second method utilizes the Kalman filter to estimate rotor position and 

based on this information carry out the commutations of the phases. All the 

techniques developed in this thesis have the unique advantage that no specific 

magnetic information is required to be known or stored, while providing specific rotor 

position information. This chapter summarizes the methods developed and the 

contributions made. 
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6.1 Developed Techniques for Position Estimations 

Chapter 2 modeled the inductance relation among phases using a quadratic regression 

function. By using linear regression technique the parameters of the fitting functions 

for different positions were found. The vertices of the functions were then used to find 

the rotor positions. The developed technique was referred to as the Linear Quadratic 

Regression Position Estimation Method(LQRPEM). 

Chapter 3 used a type V exponential function to model the inductance relationship 

among phases. A special form of least squares technique is used to find the 

parameters of the fitting functions. The vertex positions were again used to estimate 

the positions of the rotor. Compare with the LQRPEM this new method has improved 

accuracies for the estimates, even with the non-ideal phase 2 inductance profile. The 

developed technique was referred to as the Linear Exponential Regression Position 

Estimation Method(LERPEM). 

Chapter 4 used a cosine function as the model function to link the different phase 

inductances together, and the phase positions are estimated by finding the phase shift 

of the model functions. The method was referred to as the Linear Sinusoidal 

Regression Position Estimation Method(LSRPEM). LSRPEM is more straightforward 

and numerically efficient compared with the LQRPEM and LERPEM, where it is 

needed to find the correct orderings of the phases on the inductance profile. A co-

sinusoidal function can link the inductances from different phases across cycles and 

therefore can eliminate the comparison steps required by both LQRPEM and 

LERPEM. Simulation results have shown that out of the three methods, theoretically 

LSRPEM can provide the best estimates. However, using data from experiments, 
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LERPEM gives the best results, indicating that it is more robust and useful in 

practical situations where phases have different inductance profile values. 

All the developed static techniques are collectively called the Linear Regression 

Position Estimation Methods(LRPEM). 

Chapter 5 introduced two techniques for rotor position detection and phase 

commutation. In the first technique, called the Type I switching mode, current pulses 

were applied to the inactive phases to identify APC events. These events were then 

used to commutate the phases and at the same time, unique rotor position and speed 

information were extracted. By using a Kalman filter, the position information was 

interpolated to provide fine rotor positions. Under Type II switching mode the 

positions are then used for phase commutations. While Type I switching imposes 

some speed and torque limitations, Type II switching can utilize the full speed and 

torque capability of the motor. Experimental results have shown that both switching 

schemes can successfully control the motor in both unloaded and loaded situations. 

6.2 Main Contributions 

There are several significant contributions from this research: 

1) Fastest static algorithms 

The series of static algorithms developed are the fastest methods available to 

estimate rotor positions for a four-phase 8/6 SRM. The approach is 

mathematical, there is no need to compare and sort the magnitudes of the 

measured currents which are unreliable. No lookup table is required and only a 
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few lines of codes are enough to implement the methods. The estimated 

positions also have adequate accuracies. 

2) Fine Position estimations without magnetic characteristic information 

In comparison with conventional sensorless methods, including those for 

permanent magnet and induction motors[69-80], no specific magnetic 

characteristics of the SRM are required to estimate fine rotor positions. This is 

advantageous for their practical applications. 

3) Robust using information from four phases. 

With the static techniques all four phases are utilized to estimate the positions 

with a regression function. With the dynamic techniques, the Kalman filter 

combines information from all four phases. Detrimental effects from sampling 

errors and unbalanced, imperfect inductance profiles are thus minimized. This 

advantage is demonstrated through the experimental motor with a peculiar 

phase 2 inductance. 

4) Applicable to all SRM with three phases or more 

The presented methods are not restrictive. All the methods can be used to 

estimate positions for SRM with at least three phases. Calculation overhead is 

minimal with increasing number of phases. For the static techniques each 

additional phase induces only two extra multiply-and-add operations. For the 

dynamic techniques there is almost no extra overhead. 
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6.3 Future Research 

For the developed static techniques, it is discovered that different model functions 

will give different accuracies under unbalanced phase inductance situations. It is 

hoped some other modeling functions can be found that can provide better robustness 

of the estimating scheme. 

The static methods can also be further extended to the application on running motors, 

where the effects of various voltage drops, mutual couplings and inductance 

saturation will have a larger impact on the estimation quality. Measures should be 

taken so that these effects could be minimized and better methods to estimate volt-

seconds should be found. 

In the current research for the dynamic methods, no considerations were given to the 

effects of voltage drops, mutual couplings or inductance saturation. This leads to 

larger deviations of the estimated positions from the actual ones, especially when 

under Type II switching mode. Future effort will be to concentrate on how to mitigate 

the various effects in order to achieve better estimation results. 
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