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Abstract

In this thesis, we focus on regression analysis of longitudinal data that often 

occur in medical follow-up studies and observational investigations. The analysis of 

these data involves two processes. One is the underlying recurrent event process of 

interest and the other is the observation process that controls observation times. Most of 

the existing methods, however, rely on some restrictive models or assumptions such as 

the Poisson assumption. For this, we propose a more general and robust estimation 

approach for regression analysis of longitudinal data with related observation times. 

The asymptotic properties of the proposed estimators are established and numerical 

studies indicate that the proposed method works well for practical situations.

Keywords: Estimating equation; Informative observation process; Longitudinal 

data; Model checking; Robust estimation.
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Chapter 1

Introduction

This dissertation discusses the statistical analysis of longitudinal data with 

informative observation times. First, we will propose a general model for longitudinal 

data with informative observation times, provide a robust estimation approach for

regression parameters, and discuss the properties of the estimators. Next, we will study 

the diagnostic tests for the proposed model. In the third part, finite sample properties of 

the proposed estimators are studied via Monte Carlo experiments. Forth, we analyze the 

bladder cancer study data conducted by the Veterans Administration Cooperative 

Urological Research Group (VACURG) with the proposed model and apply the 

diagnostic tests to assess the appropriateness of the model. Finally, conclusions and 

related future research are presented.

1.1 Motivation

In medical follow-up studies and social-demographical studies, longitudinal 

data arise naturally. The most obvious feature of longitudinal data is the repeated 

observations on some variables. In addition, observation times and frequencies among 

subjects are different. In the bladder cancer study, Sun and Wei (2000) and Zhang 

(2002) discussed a set of longitudinal data arising from a bladder cancer follow-up 

study conducted by the Veterans Administration Cooperative Urological Research 

Group (VACURG).
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In the bladder cancer study, 118 patients with superficial bladder tumors were 

selected. After their tumors were removed, each patient was allocated randomly to one 

of the three treatments. There were 48 patients allocated to placebo, 38 to thiotepa, and 

32 to pyridoxine. In the study, the patients visited clinical centers on a regular basis, and 

if new tumors were found, the number of bladder tumors was recorded and then the 

tumors were removed. New tumors had been found subsequently among many patients 

since the removal of tumors in the beginning of the study. Visiting times were not the 

same of all patients and the censoring times vary among patients. The clinical visit 

times, the number of recurrent tumors between clinical visits, the number of initial 

tumors, the size of the largest initial tumor, and the type of treatment were recorded for 

each patient in the study.

An objective of the study is to assess the treatment effect on the tumor 

recurrence rate. Sun and Wei (2000); Wellner and Zhang (2000); Zhang (2002); 

Wellner and Zhang (2007) among others have analyzed the data under the assumption

that the observation times were noninformative. Patients in thiotepa group, however, 

tend to have clinical visit more often than those in the placebo group. One possibility is 

that tumor recurrence rate in thiotepa group is relatively higher than other groups and 

hence, patients needed to consult doctors more often. The correlation between the tumor 

recurrence rate and the observation time should not be ignored. Ignorance of the 

dependence may need to estimation biased. Analysis of the bladder cancer study data 

based on the assumption that the observation times follow a Poisson process were 

provided in Hu et al. (2003), Sun et al. (2005), Li et al. (2010), and Zhao and Tong 

(2011). Such assumption may be appropriate for some applications. Nevertheless, there 
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is no theoretical justification of the appropriateness of such assumption. Hence, the 

assumption may not be realistic in other situations.

1.2 Literature Review

The analysis of longitudinal data has recently attracted considerable attention. 

These data frequently occur in medical follow-up studies and observational 

investigations. For the analysis of longitudinal data, a number of methods have been 

developed, mostly under the assumption that the longitudinal response process and the 

observation process are independent completely, or conditionally independent given 

covariates. For example, Diggle et al. (1994) presented an excellent summary on some 

commonly used methods such as the estimating equation and random-effect model 

approaches. Lin and Ying (2001) and Welsh et al. (2002) discussed general 

semiparametric regression analysis of longitudinal data when both observation times 

and the censoring times could depend on covariates.

A common situation where observation times are informative is that those 

observation times are either subject-dependent or response variable-dependent. In a 

bladder cancer study, Sun and Wei (2000) and Zhang (2002) discussed a set of 

longitudinal data arising from a bladder cancer follow-up study conducted by the 

Veterans Administration Cooperative Urological Research Group; in this study, some 

patients had significantly more clinical visits than others and thus the occurrence of 

bladder tumors of a patient and the visit times may be related. Lipsitz et al. (2002) 

presented a set of longitudinal data from a study of children with acute lymphoblastic 

leukemia that involved correlated response and observation processes. The same could 
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be true for other medical follow-up studies, but there is limited research on the analysis 

of longitudinal data when the longitudinal response process of interest may be 

correlated with the observation process given the covariates. That is, the observation 

times may be informative. Sun et al. (2005) studied semiparametric models that allow 

observation times to be correlated with the longitudinal process; Sun et al. (2007) 

proposed a joint model for the longitudinal process and the observation process, where 

both processes may be correlated through a shared latent variable or frailty, and used 

the estimating equation approach to estimate the regression parameters; Liang et al. 

(2009) discussed a joint model through two random effects, where the relationship 

between the random effects is specified and a parametric distribution assumption for a 

random effect is required. A common and key assumption of these methods is that the 

observation process is a Poisson process.

The aim of this thesis is to consider more general joint models for longitudinal 

data with dependent observation times, to develop an estimating equation approach for 

estimation of regression parameters, and to establish the asymptotic properties of the 

estimators.

1.3 Outline of Thesis

The thesis is organized as follows. In Chapter 2, we will begin with introducing 

the notation and assumptions and the models. A robust estimation procedure is 

presented for the parameters of interest and the asymptotic properties of the resulting 

estimators are established. In Chapter 3, a model checking procedure is presented. 

Chapter 4 reports some simulation results obtained for assessing the finite sample 
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properties of the proposed estimates. The bladder cancer study data is analyzed in

Chapter 5. Chapter 6 concludes with some discussion and remarks.
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Chapter 2

Longitudinal Data Analysis with Informative 

Observation Times

In this chapter, a semiparametric joint model of longitudinal data with 

informative observation times is developed. Next, estimators of regression parameters 

in the model are proposed. The asymptotic properties of the proposed estimators, 

including the consistency, rate of convergence, and asymptotic normality are then 

presented.

2.1 Introduction

Studies based on longitudinal data analysis often assume that the observation 

process is independent of the longitudinal outcome process. The observation process, 

however, may be correlated with the longitudinal outcomes in practice. Hu et al. (2003), 

Sun et al. (2005), Li et al. (2010), and Zhao and Tong (2011) among other proposed 

models that consider the correlation between the longitudinal outcomes and the 

observation process. Most of these models, however, assume that the observation 

process is a Poisson process.

In this chapter, we develop a joint model that, given the covariates, the 

longitudinal outcome and the observation process can be correlated and their 

relationship is specified by a link function and a latent variable, while the link function 

and the distributional form of the latent variable are unspecified.
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2.2 Statistical Models

Consider a longitudinal study that consists of � independent subjects and let 

�(t) denote the longitudinal response variable of interest before or at time � for subject

� . Suppose that for each subject, there exists a �-dimensional vector of covariates 

denoted by �� . Given �� and an unobserved positive random variable �� that is 

independent of ��, the mean function of �(�) has the form

�{�(�)|��, ��} = ��(�) + ���� + 
(��) (2.1)

Here, ��(�) is a completely unknown continuous baseline mean function, � is a vector 

of unknown regression parameters, and 
(�) is a completely unspecified link function. 

For subject �, suppose that �(�) is observed only at finite time points ��� < � <
���� , where �� denotes the potential number of observation times, � = 1, … , �. That is, 

only the values of �(�) at these observation times are known and we have panel count 

data on the �(�)'s. Let �� denote the follow-up time associated with subject � and thus 

�(�) is observed only at these ��� 's with ��� � �� , � = 1, … , � . Define  !�(�) =
 �(min(�, ��)) , where  �(�) = " #$��� � �%���&� , � = 1, … , � . Then  !�(�) is a point 

process characterizing the � th subject's observation process and jumps only at the 

observation times.

For the observation process, we will assume that  �(�) satisfies the following 

rate function model

�{' �(�)|��, ��} = ��*(��)'-�(�), (2.2)
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where *(�) is a completely unspecified positive function as 
(�) and .�(�) is a 

completely unknown continuous baseline function. One may consider model (2.2) as 

the generalization of a non-homogeneous Poisson process with the intensity function

/(�|��, ��) = ��*(��)'-�(�), (2.3)

where *(��) = exp(���0) and '-�(�) = /�(�) which is a baseline intensity function.

Under model (2.2), one does not need the Poisson assumption anymore. In the 

following, �(�) and  �(�) are assumed to be independent given (��, ��) . Also �� is 

independent of {�,  �, ��, ��} and {�(�),  �(�), ��, ��, 0 � � � 3}�&�4 are independent 

and identically distributed, where 3 denotes the length of the study. Here, the main goal 

is to estimate regression parameter �.

2.3 Inference Procedure

To estimate �, note that if the latent variables �� 's are known, model (2.1) would 

become the usual linear mean model. Unfortunately, the �� 's are unknown in practice. 

One natural way for this is to estimate the �� 's first and then treat them as known. In the 

following, we take a different approach motivated by that proposed in Sun and Wei 

(2000) among others.

Specifically, define

5� = 6 �$���%#$��� � 3%
7�

�&�
= 8 �(�)' !�(�)9

� ,
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where :� =  !�(��), the total number of observations on subject �, � = 1, … , �. Then, 

we have the following results.

Theorem 2.1

�(5�|��) = �(��)�$-�(��)%*(��)(����)
+ *(��) 8 [�(��)��(�) + �{
(��)��}] Pr(�� ; �) '-�(�)9

�

and

�(:�|��) = �(��)�{-�(��)}*(��).

Proof of Theorem 2.1 The approach is first finding �(5�|��, ��), and then applying the 

law of total expectation to obtain �(5�|��). Similarly, we first obtain �(:�|��, ��), and 

apply the law of total expectation to obtain �(:�|��).

�(5�|��, ��) = � ?8 �(�)' !�(�)9
� |��, ��@

= � ?8 �(�)#(� � ��)' �(�)9
� |��, ��@

= 8 �{�(�)#(� � ��)' �(�)|��, ��}9
�

= 8 �{�(�)|��, ��}�{#(� � ��)|��, ��}�{' �(�)|��, ��}9
�

= 8 $��(�) + ���� + 
(��)% Pr(� � ��) ��*(��)'-�(�)9
�
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= 8 ��(�) Pr(� � ��)��*(��) '-�(�)9
� + 8 ���� Pr(� � ��) ��*(��)'-�(�)9

�

+ 8 
(��) Pr(� � ��) ��*(��)'-�(�)9
�

= ��*(��) 8 ��(�) Pr(� � ��) '-�(�)9
� + ������*(��) 8 Pr(� � ��) '-�(�)9

�

+ 
(��)��*(��) 8 Pr(� � ��) '-�(�)9
� .

Next, applying the law of total expectation, we have

�(5�|��) = �{A�(5�|��, ��)|��}
= � ?A��*(��) 8 ��(�) Pr(� � ��) '-�(�)9

� + ������*(��) 8 Pr(� � ��) '-�(�)9
�

+ 
(��)��*(��) 8 Pr(� � ��) '-�(�)9
� B ��@

= �(��)*(��) 8 ��(�) Pr(� � ��) '-�(�)9
� + �����(��)*(��) 8 Pr(� � ��) '-�(�)9

�

+ �{
(��)��}*(��) 8 Pr(� � ��) '-�(�)9
�

= *(��) 8 [�(��)��(�) + �{
(��)��}] Pr(� � ��) '-�(�)9
�

+ �����(��)*(��)�$-�(��)%.

For the second equation, first note that :� =  !�(��) =  �(min(��, ��)) =  �(��) =
" #$��� � ��%���&� . Also, �{' �(�)|��, ��} = ��*(��)'-�(�) and :� =  �(��) =
C ' �(�)D�� . Hence, we have
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�(:�|��, ��) = � ?A8 ' �(�)D�
� B ��, ��@

= 8 �{A' �(�)|��, ��}D�
�

= 8 ��*(��)'-�(�)D�
� .

Applying the law of total expectation, we have

�(:�|��) = �{A�(:�|��, ��)|��}
= � ?A8 ��*(��)'-�(�)D�

� B ��@

= *(��)� ?A�� 8 '-�(�)D�
� B ��@

= *(��)�{��-�(��)}
= *(��)�{��}�{-�(��)}

Hence,

*(��) = �(:�|��)�{��}�{-�(��)}
E

Theorem 2.2

�(5�|��) = �(:�|��)(���� + F),
where
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F = C [�(��)��(�) + �{
(��)��}]G(�� ; �)'-�(�)9� �(��)�$-�(��)% ,

is an unknown parameter. 

Proof of Theorem 2.2

�(5�|��) = �(��)�$-�(��)%*(��)(����)
+ *(��) 8 [�(��)��(�) + �{
(��)��}] Pr(�� ; �) '-�(�)9

�
= �(:�|��)(����)

+ �(:�|��)�{��}�{-�(��)} 8 [�(��)��(�) + �{
(��)��}] Pr(�� ; �) '-�(�)9
�

= �(:�|��) H���� + C [�(��)��(�) + �{
(��)��}] Pr(�� ; �) '-�(�)9� �{��}�{-�(��)} I
= �(:�|��)(���� + F)

E
For estimation of �, motivated by the equation above, we propose to use the 

following class of estimating functions

J(��) = 6 K� ���{5� L :����� ��}4

�&�
= 0, (2.4)

where the K� ’s are some weights that could depend on �� , ���� = (���, 1) and ��� =
(��, F).

Let �M� = $�M�, F�%�
denote the solution to equation (2.4). Then we have
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�M� = H6 K�:��������
4

�&�
I

N�
6 K� ���5�

4

�&�
.

2.4 Asymptotic Theory

In this section, we will sketch the proofs for the consistency and asymptotic 

normality of the proposed estimate OQR. For this, we will employ the notation defined in 

the previous sections and assume that ST(UV ; W) > 0 . We also define Y =
Z{\V^V_RV_RV� } and assume that Y is positive definite.

First we will consider the consistency of  �M�. We first prove two lemmas.

Lemma 1

J( ��� )� = " a�� bc 0

where a� = K� ���{5� L :����� ���}.

Lemma 2

1� dd�� J(��) = L 1� 6 K� :��������
4

�&�
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converges uniformly to a negative matrix L�{K� :�������� } over �� for any value of 

���.

Proof of lemma 2 K� :�������� are independent for � = 1, … , �. By the law of large 

number, �
4 " K� :��������4�&� converges to the expectation �{K� :�������� }.

E
Corollary 1

The solution �M� of the estimating equation J(��) = 0 is unique and consistent. 

Now we turn to prove the asymptotic normality of the proposed estimator �M�.

Theorem 2.3 (Asymptotic Normality of OQR)

f�$�M�4 L ���% has an asymptotically normal distribution with mean zero and 

covariance matrix gN�h(gN�)� .

Proof of theorem 2.3

Obtaining Taylor series expansion of J(�) at ���, we have

J(��) = J( ��� ) + dJ(��)d�� (�� L ���) + jb(1)

Since J$�M�4% = 0, we have

0 = J$�M�4% = J( ��� ) + dJ$�M�4%d�� $�M�4 L ���% + jb(1)
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dJ$�M�4%d�� $�M�4 L ���% = LJ( ��� ) + jb(1)
1� dJ$�M�4%d�� f�$�M�4 L ���% = L J( ��� )

f� + jb(1)

gf�$�M�4 L ���% = J( ��� )
f� + jb(1) 

f�$�M�4 L ���% = gN�
f� J( ��� ) + jb(1) 

f�$�M�4 L ���% = gN�
f� 6 a�

4

�&�
+ jb(1)

where a� = K� ���{5� L :����� ���}.
It thus follows that f�$�M�4 L ���% has an asymptotically normal distribution with 

mean zero and covariance matrix gN�h(gN�)� that can be consistently estimated by 

g�N�h�$g�N�%�
where h = �{a�a��} and g� and h� are given as

g� = 1� 6{K� :�������� }4

�&�

h� = 1� 6 a��a���
4

�&�

with

a�� = K� ���k5� L :��M�����l.
E
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The finite sample properties of the proposed estimator will be studied in chapter 

4 via a simulation study.
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Chapter 3

Model Diagnostics

In practice, in addition to the estimation of �, one may also be interested in 

checking the adequacy of models given the observed data. To develop a procedure for 

this, define

o(�) = C [�(��)��(q) + �{
(��)��}]G(�� ; q)'-�(q)s� �(��)�$-�(��)% .
Since � uC {�(q) L ��� ��}' !�(q)s� |��v = �(:�|��)o(�), we can estimate o(�) by

oM(�) = " C k�(q) L �M���l' !�(q)s�4�&� " :�4�&�
Furthermore, for each �, � = 1, … , �, define the residual

w��(�) = 8 k�(q) L �M���l' !�(q)s
� L :�oM(�).

3.1 Function Form of Covariates

To check the functional form for the yth component of � in (2.1) formally, we 

consider the process

��(�) = 1
f� 6 #$��� � �%w!�

4

�&�
,

where w!� = w��(3).
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Let 

z� = 1� 6 :�
4

�&�
,

z�(�) = 1� 6 #$��� � �%:�
4

�&�
,

and

~�(3, �) = 1� 6 ?#$��� � �% L z�(�)
z� @ �� !�(3)4

�&�
.

To apply the statistics ��(�), we rely on the following theorem.

Theorem 3.1 (Approximation of the Null Distribution of ��(�))

The null distribution of ��(�) can be approximated the zero-mean Gaussian process

���(�) = 1
f� 6 ?#$��� � �% L z�(�)

z� @ w!�
4

�&�
�� L ~�(3, �)� 1

f� 6 'M�
4

�&�
��,

where 'M� is the vector g�N�a�� without the last entry and (��, … , �4) are independent 

standard normal variables independent of the data. 

Proof of Theorem 3.1

Assume that the limits of z�, z�(�), and ~�(3, �) exist and are denoted by ��, ��, and 

��(3, �), respectively. Define

w� = 8 {�(q) L ����}' !�(q)9
� L :�o(3).

To prove the weak convergence of a(�, �), first using Lemma A.1 of Lin and 

Ying (2001) and functional version of the Taylor expansion, we have



28 
 

��(�) = 1
f� 6 ?#$��� � �% L ��(�)

�� @ w�
4

�&�
L ��(3, �)�f�$�M L ��% + jb(1).

The tightness of the first term on the right-hand side of the above follows 

directly from the arguments in Appendix A.5 of Lin et al. (2000). The second term is 

also tight because f�$�M L ��% converge in distribution and �(3, �) is a deterministic 

function. Thus, ��(�) is tight. Let '� be the vector  gN�a� without the last entry. Then, 

we can further write ��(�) as

��(�) = 1
f� 6 ?#$��� � �% L ��(�)

�� @ w�
4

�&�
L ��(3, �)� 1

f� 6 '�
4

�&�
+ jb(1).

It thus follows from the multivariate central limit theorem and the tightness of ��(�)
that ��(�) converges weakly to a zero-mean Gaussian process that can be approximated 

by the zero-mean Gaussian process

���(�) = 1
f� 6 ?#$��� � �% L z�(�)

z� @ w!�
4

�&�
�� L ~�(3, �)� 1

f� 6 'M�
4

�&�
��.

E

Thus, using the simulation approach presented in Lin et at. (2000), the null 

distribution of ��(�) can be approximated by that of ���(�). In other words, one can 

approximate the distribution of ��(�) by the empirical distribution of a large number of 

realizations of ���(�) given by repeatedly generating the standard normal random 

sample (��, … , �4) given the observed data. To assess the functional form of the yth 
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component of covariates, one can plot a few realizations, say 20, from ��(�) along with 

the observed ��(�) to see if they can be regarded as arising from the same population. 

More formally, we can apply the supremum test statistic sup����(�)�, where the �-

value can be obtained by comparing the observed value of sup����(�)� to a large 

number of realizations of sup�����(�)�.
3.2 Goodness-of-Fit Test

To test the goodness-of-fit of models (2.1) and (2.2), we apply the statistic 

a(�, �) = 1
f� 6 #(�� � �)w��(�)4

�&�
,

where the event #(�� � �) means that each of the components of �� is not larger than 

the corresponding component of �. Note that a(�, �) is the cumulative sum of w��(�)
over the values of ��’s. Similar to ��(�) and ��(�), the null distribution of a(�, �) can 

be approximated by the zero-mean Gaussian process

a�(�, �) = 1
f� 6 ?#(�� � �) L z(�)(�)z� @ w��(�)4

�&�
�� L ~(�, �)� 1

f� 6 'M�
4

�&�
��

where

z� = 1� 6 :�
4

�&�
,

z(�)(�) = 1� 6 #(�� � �):�
4

�&�
,

and
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~(�, �) = 1� 6 ?#(�� � �) L z(�)(�)z� @ :���
4

�&�
.

Similar to ��(�) , one can approximate the distribution of a(�, �) by the 

empirical distribution of a large number of realizations of a�(�, �) given by repeatedly 

generating the standard normal random sample (��, … , �4) given the observed data. 

Thus for checking the overall fit of models (2.1) and (2.2) based on a(�, �), the �-value 

of the omnibus test can be obtained by comparing the observed value of sups,�|a(�, �)|
to a large number of realization of sups,��a�(�, �)�.
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Chapter 4

Simulation

We conducted three simulation studies to assess the performances of the 

proposed inference procedure and the diagnostic tests. The purpose of the first one was 

to evaluate the finite sample properties of the proposed estimator, while in the second 

study, we compared the proposed estimator to that given in Zhao et al. (2012). In the 

third simulation study, we evaluate the sizes and powers of the diagnostic tests when the 

sample size is finite.

4.1 Finite Sample Properties of OQ
For the first study, we considered the situation where there exist two covariates, 

���’s and ��	’s which are the Bernoulli distribution with success probability 0.5 and 

uniform distribution over interval (0, 1) respectively. The latent variable �� ’s were 

generated from the gamma distribution with shape parameter 10 and scale parameter 

10. Also, we consider two cases of 
(��). The first one is 
(��) = �(�� L �[��])/
����[��] which is a linear function, while the second is  
(��) = �(ln �� L �[ln ��])/
����[ln ��] which is a nonlinear function. Here � characterizes the relationship 

between the observation process and the longitudinal response process. When � > 0,

the two processes are positively correlated; when � = 0, the two processes have no 

correlation given the covariates; when � < 0 , the two processes are negatively 

correlated. Here, three situations with � = L0.5 , 0 , and 0.5 were considered. The 

follow-up time �� is generated from the uniform distribution over [3/2, 3] with 3 = 18.
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With respect to the observation process  �(�), three set-ups were considered as 

follows:

a. For the first case, given ��, ��, and �� , the number of observation times :�
was assumed to follow the Poisson distribution with mean

�(��|��, ��) = ����(��) exp(���0) = ���� exp(���0)3 ,

� = 1, 2, … , � , where 0 = (1,1)� was considered.  The observation times 

(���, … , ��7) were taken to be the order statistics of a random sample of size :�
from the uniform distribution over (0, ��).

b. For the second case, given ��, ��, and ��, the number of observation times :�
was assumed to follow the Poisson distribution with mean

�(��|��, ��) = ����(��) exp(���0) = ���� u��2 + 1v exp(���0)
3 u32 + 1v ,

� = 1, 2, … , � , where 0 = (1,1)� was considered.  The observation times 

(���, … , ��7) were taken to be the order statistics of a random sample of size :�
from the cumulative function

�	2 + �
��	2 + ��

#(0 � � � ��).

c. For the third case, given ��, ��, and ��, the interarrival times were assumed to 

follow Weibull distribution with shape parameter 0.5 and scale parameter 
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��D� ���$����%
9� . The :� was the number of observation times which were less 

than ��.

For the response variable, it was assumed that

�(�) = ��(�) + ���� + 
(��) + ��,
where ��(�) = sin(�) and �� follows normal distribution with mean 0 and variance 0.1.

We took 0 = (1, 1)� and � = (1, 1)� , representing effects of the covariates on the 

observation scheme and the response variable. For K� , we consider K� = 1. For each 

setting, we considered � = 100 and 200. All the results reported here were based on 

1,000 Monte Carlo replications.

Tables 4.1 – 4.6 present the simulation results obtained on estimation of �. All tables 

include the estimated bias (BIAS) given by the average of proposed estimates of �
minus the true value, the sample standard error (SSE) of the proposed estimates, the 

mean of the estimated standard error (ESE), and the empirical 95% coverage 

probabilities (CP). These results indicate that the proposed estimate seems to be 

unbiased and the proposed variance estimation procedure provides reasonable 

estimates. Also the results on the empirical coverage probabilities indicate that the 

normal approximation seems to be appropriate.
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Table 4.1. Simulation results of �� and �	 with a homogeneous Poisson process and 
linear 
(�).

 
� = 100 � = 200 

�� �	 �� �	 
� = 0.5

Bias 0.0000 0.0143 L0.0010 L0.0003 
SSE 0.1246 0.2544 0.0903 0.1664 
ESE 0.1214 0.2235 0.0877 0.1621 
CP 0.9440 0.9080 0.9480 0.9340 

� = 0     
Bias 0.0002 0.0003 L0.0002 0.0005 
SSE 0.0156 0.0290 0.0113 0.0193 
ESE 0.0155 0.0271 0.0110 0.0193 
CP 0.9490 0.9260 0.9380 0.9470 

� = L0.5     
Bias L0.0011 L0.0018 0.0007 0.0039 
SSE 0.1218 0.2417 0.0885 0.1717 
ESE 0.1206 0.2219 0.0883 0.1633 
CP 0.9480 0.9170 0.9480 0.9380 
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Table 4.2. Simulation results of �� and �	 with a homogeneous Poisson process and 
nonlinear 
(�).

 
 � = 100 � = 200 
 �� �	 �� �	 

� = 0.5     
Bias L0.0011 L0.0083 L0.0032 L0.0057 
SSE 0.1183 0.2181 0.0781 0.1411 
ESE 0.1130 0.2093 0.0751 0.1402 
CP 0.9390 0.9400 0.9300 0.9410 

� = 0     
Bias L0.0002 L0.0015 L0.0002 0.0011 
SSE 0.0161 0.0292 0.0111 0.0198 
ESE 0.0155 0.0269 0.0110 0.0192 
CP 0.9350 0.9180 0.9510 0.9480 

� = L0.5     
Bias 0.0006 0.0047 0.0031 0.0078 
SSE 0.1102 0.2032 0.0779 0.1394 
ESE 0.1050 0.1940 0.0745 0.1392 
CP 0.9320 0.9300 0.9370 0.9440 
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Table 4.3. Simulation results of �� and �	 with a non-homogeneous Poisson process
and linear 
(�).  

 
 � = 100 � = 200 
 �� �	 �� �	 

� = 0.5     
Bias L0.0081 0.0051 L0.0043 L0.0067 
SSE 0.1366 0.2441 0.0939 0.1807 
ESE 0.1245 0.2275 0.0903 0.1666 
CP 0.9230 0.9410 0.9390 0.9220 

� = 0     
Bias 0.0003 0.0014 L0.0002 0.0007 
SSE 0.0150 0.0264 0.0107 0.0189 
ESE 0.0149 0.0254 0.0106 0.0181 
CP 0.9490 0.9450 0.9490 0.9420 

� = L0.5     
Bias 0.0021 0.0128 0.0017 0.0124 
SSE 0.1335 0.2513 0.0938 0.1714 
ESE 0.1252 0.2255 0.0916 0.1689 
CP 0.9290 0.9190 0.9370 0.9490 

 



37 
 

Table 4.4. Simulation results of �� and �	 with a non-homogeneous Poisson process
and nonlinear 
(�).

 
 � = 100 � = 200 
 �� �	 �� �	 

� = 0.5     
Bias 0.0065 L0.0070 L0.0002 L0.0053 
SSE 0.1207 0.2327 0.0776 0.1532 
ESE 0.1174 0.2146 0.0776 0.1447 
CP 0.9380 0.9210 0.9510 0.9400 

� = 0     
Bias 0.0002 0.0005 L0.0003 L0.0004 
SSE 0.0161 0.0268 0.0109 0.0183 
ESE 0.0149 0.0253 0.0106 0.0181 
CP 0.9240 0.9340 0.9370 0.9400 

� = L0.5     
Bias L0.0057 0.0075 0.0036 0.0040 
SSE 0.1115 0.2141 0.0814 0.1572 
ESE 0.1087 0.1986 0.0816 0.1514 
CP 0.9340 0.9280 0.9520 0.9400 
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Table 4.5. Simulation results of �� and �	 with a non-Poisson process and linear 
(�).

 
 � = 100 � = 200 
 �� �	 �� �	 

� = 0.5     
Bias L0.0027 L0.0002 L0.0029 L0.0051 
SSE 0.1304 0.2491 0.0946 0.1802 
ESE 0.1252 0.2289 0.0914 0.1674 
CP 0.9420 0.9230 0.9430 0.9370 

� = 0     
Bias 0.0006 0.0010 0.0003 0.0007 
SSE 0.0138 0.0246 0.0096 0.0176 
ESE 0.0136 0.0240 0.0096 0.0170 
CP 0.9420 0.9230 0.9490 0.9310 

� = L0.5     
Bias 0.0023 0.0085 0.0050 0.0039 
SSE 0.1279 0.2475 0.0923 0.1766 
ESE 0.1257 0.2292 0.0910 0.1686 
CP 0.9450 0.9240 0.9500 0.9340 
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Table 4.6. Simulation results of �� and �	 with a non-Poisson process and nonlinear 
(�).  
 

 � = 100 � = 200 
 �� �	 �� �	 

� = 0.5     
Bias L0.0027 L0.0151 L0.0028 L0.0078 
SSE 0.1080 0.1984 0.0848 0.1561 
ESE 0.1039 0.1912 0.0829 0.1541 
CP 0.9400 0.9320 0.9440 0.9380 

� = 0     
Bias 0.0001 L0.0017 L0.0001 L0.0001 
SSE 0.0139 0.0252 0.0100 0.0175 
ESE 0.0136 0.0240 0.0096 0.0170 
CP 0.9470 0.9320 0.9460 0.9470 

� = L0.5     
Bias 0.0026 0.0105 L0.0023 L0.0018 
SSE 0.0975 0.1807 0.0751 0.1424 
ESE 0.0939 0.1724 0.0774 0.1447 
CP 0.9300 0.9250 0.9530 0.9430 
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4.2 Robustness

To further investigate the robustness of the proposed estimate and also why one 

may need to use the proposed estimate instead of the estimates developed under 

restricted models such as that given in Zhao et al. (2012), we perform a simulation 

study to compare the estimates given in Zhao et al. (2012).

For this second study, we considered the situation where there exist one 

covariate, �� ’s which is the Bernoulli distribution with success probability 0.5. The 

latent variable ��’s were generated from the gamma distribution with shape parameter 5
and scale parameter 5. Also, we consider two cases of 
(��). The first one is 
(��) =
�(�� L �[��])/����[��] which is a linear function, while the second is  
(��) =
�(ln �� L �[ln ��])/����[ln ��] which is a nonlinear function. Here � characterizes 

the relationship between the observation process and the longitudinal response process. 

When � > 0 , the two processes are positively correlated; when � = 0 , the two 

processes have no correlation given the covariates; when � < 0, the two processes are 

negatively correlated. Here, three situations with � = L0.5, 0, and 0.5 were considered.

With respect to the observation process  �(�), three set-ups were considered as 

in the first study, For the response variable, it was assumed that

�(�) = ��(�) + ��� + 
(��) + ��,
where ��(�) = sin(�) or ln(1 + �) and �� follows Normal distribution with mean 0 and 

variance 0.1. We took 0 = 1 and � = 1, representing effect of the covariate on the 

observation scheme and the response variable. We also K� = 1 for simplicity. For each 

setting, we considered � = 100 and 200. All the resuls reported here were based on 
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1000 Monte Carlo replications. Here, we use ZTS to denote the estimate presented in 

Zhao et al. (2012). Table 4.7 gives the estimated bias (BIAS) which is the average of 

the estimates minus the true value, and the sample standard error (SSE) of the estimates,

which is obtained for the estimate of � proposed here and given in Zhao et al. (2012) 

based on the simulated data. For  �(�) following Poisson processes, we also considered 

the relative efficiency (RE) which is the ratio of sample variance of ZTS to that of the 

proposed estimator. Comparison of the relative efficiency is ignored for non-Poisson 

process because ZTS’s estimator is clearly biased and it is not meaningful to compare 

the efficiency. 

Simulation studies suggest that when the observation process  �(�) does not 

follow a Poisson Process, the estimate proposed here seems to be unbiased, while the 

estimate given in Zhao et al. (2012) is clearly biased. On the other hand, ZTS’s 

estimators perform better in terms of efficiency in general. It is reasonable because the 

proposed method has relaxed on the Poisson assumption about the observation process. 

This can be further confirmed in the simulation studies where � = 0. In this case, the 

efficient of the proposed method is better. Meanwhile, the BIAS of the proposed 

estimator are relatively stable compared to ZTS’s. In other words, in general, the 

proposed estimation procedure seems to be more robust.
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Table 4.7. Estimation results of � based on the proposed method and ZTS. 

� = 100 � = 200
��(�) ZTS Proposed RE ZTS Proposed RE

� = 0.5
Homogeneous Poisson

sin (�) 0.0029 -0.0020 1.1179 -0.0065 0.0002 1.0815 

log(1 + �) 0.0059 -0.0017 2.0788 -0.0035 0.0008 1.9560 

      

Non-homogeneous Poisson
sin (�) 0.0270 0.0020 1.0519 0.0299 0.0054 1.0978 

log(1 + �) 0.0301 0.0005 1.6661 0.0345 0.0050 1.7591 

      

Non-Poisson
sin (�) -0.3469 0.0034 3.0331 -0.3465 0.0034 3.1248 

log(1 + �) -0.3376 -0.0011 2.8982 -0.3491 0.0024 2.7552 

� = 0       

Homogeneous Poisson
sin (�) -0.0003 0.0007 1.8728 0.0001 0.0015 1.5488 

log(1 + �) -0.0026 0.0010 11.4730 0.0005 -0.0004 10.9011 

      

Non-homogeneous Poisson
sin (�) 0.0333 0.0001 1.5154 0.0322 0.0005 1.5624 

log(1 + �) 0.0335 -0.0005 5.1719 0.0308 -0.0007 5.2976 

      

Non-Poisson
sin (�) -0.3508 0.0005 8.5140 -0.3427 -0.0006 9.2894 

log(1 + �) -0.3501 -0.0003 4.1698 -0.3408 -0.0023 3.8843 

� = L0.5       

Homogeneous Poisson
sin (�) 0.0026 -0.0016 1.0547 -0.0051 -0.0022 1.1340 

log(1 + �) 0.0009 -0.0053 1.6433 -0.0037 -0.0013 1.8634 

      

Non-homogeneous Poisson
sin (�) 0.0254 -0.0026 1.1616 0.0275 0.0067 1.1144 

log(1 + �) 0.0282 -0.0048 1.6780 0.0292 0.0063 1.4315 

      

Non-Poisson
sin (�) -0.3551 -0.0008 2.6833 -0.3390 -0.0007 2.6811 

log(1 + �) -0.3349 -0.0057 2.4942 -0.3455 0.0022 2.4725 
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4.3 Finite Sample Properties of Diagnostic Tests

In the third study, we examined the adequacy of the large-sample approximation to the 

null distribution of the proposed test statistics of the diagnostic tests for practical sample 

sizes. For both diagnostic tests, we considered the situation where there exists one 

covariate, ��� 's which follows the uniform distribution over {1, 2, 3, 4, 5}. The latent 

variable �� 's were generated from the gamma distribution with shape parameter 5 and 

scale parameter 5 (equivalently, mean 25 and variance 125). Similar to the first and the 

second study, We consider two cases of 
(��). In the first case, we took 


(��) = � (�� L 25) f125ª .
In the second case, we took 


(��) = � $log �� L �(log ��)% �«��(log ��)¬ .
The follow-up time �� is generated from the uniform distribution over [3 2ª , 3] with 

3 = 18. With respect to the observation process  �(�), three set-ups were considered as 

in the first simulation study. For the diagnostic test of the functional form of the 

covariate, the response variable was assumed to be

�(�) = ��(�) + (��)�� + 
(��) + ��

and for the diagnostic test of the goodness-of-test of models (2.1) and (2.2), the 

response variable was assumed to be

�(�) = ��(�) + (����) + 
(��) + ��
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where ��(�) = sin(�) and ��~¯(0, 0.25). We took K� = 1, representing effect of the 

covariate on the response variable. For each setting, we considered � = 100 and 200,

� = 0.5 and ° = 1, 1,2, 1.4, … , 2.8. All the results reported here were based on 1000 

Monte Carlo replications. Table 4.8 and 4.9 give the empirical sizes and powers of our 

tests. The empirical sizes of the tests are close to the nominal ones, 5%. This suggests 

that the null distributions of the proposed test statistics are well approximated.
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Table 4.8: Empirical Sizes and Powers of Diagnostic Test for the Functional Form of a 
Covariate.

� = 100 � = 200
Linear 
(��) Nonlinear 
(��) Linear 
(��) Nonlinear 
(��)° I II III I II III I II III I II III

1.0 0.056 0.050 0.047 0.055 0.052 0.047 0.059 0.053 0.044 0.055 0.055 0.052
1.2 0.138 0.132 0.079 0.121 0.137 0.108 0.197 0.181 0.191 0.248 0.237 0.190
1.4 0.299 0.270 0.257 0.269 0.308 0.255 0.511 0.527 0.529 0.660 0.652 0.569
1.6 0.388 0.448 0.338 0.349 0.420 0.334 0.818 0.814 0.764 0.879 0.866 0.764
1.8 0.452 0.525 0.426 0.412 0.512 0.428 0.945 0.955 0.890 0.973 0.967 0.883
2.0 0.542 0.613 0.514 0.508 0.610 0.514 0.991 0.996 0.967 0.995 0.995 0.957
2.2 0.661 0.698 0.620 0.618 0.695 0.611 0.999 1.000 0.994 0.999 1.000 0.984
2.4 0.722 0.801 0.682 0.718 0.810 0.700 0.999 0.999 0.996 1.000 1.000 0.997
2.6 0.812 0.880 0.798 0.815 0.873 0.782 1.000 1.000 1.000 1.000 1.000 1.000
2.8 0.884 0.917 0.835 0.875 0.918 0.844 1.000 1.000 1.000 1.000 1.000 1.000

NOTE: I, II, and III refer to observation processes according to setup 1, 2, and 3 specified in the first simulation study respectively.

Table 4.9: Empirical Sizes and Powers of Diagnostic Test for the Goodness-of-fit.

� = 100 � = 200
Linear 
(��) Nonlinear 
(��) Linear 
(��) Nonlinear 
(��)° I II III I II III I II III I II III

1.0 0.051 0.054 0.044 0.053 0.052 0.043 0.050 0.052 0.048 0.054 0.053 0.050
1.2 0.145 0.142 0.079 0.136 0.126 0.095 0.179 0.187 0.175 0.227 0.209 0.155
1.4 0.282 0.317 0.244 0.298 0.303 0.266 0.514 0.512 0.557 0.657 0.650 0.540
1.6 0.365 0.392 0.355 0.359 0.400 0.358 0.793 0.808 0.752 0.854 0.871 0.753
1.8 0.430 0.513 0.443 0.415 0.501 0.425 0.947 0.955 0.894 0.965 0.976 0.885
2.0 0.514 0.606 0.496 0.501 0.609 0.505 0.993 0.995 0.965 0.992 0.994 0.961
2.2 0.648 0.695 0.627 0.603 0.698 0.591 1.000 1.000 0.980 0.998 0.999 0.992
2.4 0.755 0.796 0.722 0.713 0.784 0.703 0.999 1.000 0.995 1.000 1.000 0.997
2.6 0.795 0.887 0.776 0.801 0.855 0.790 1.000 1.000 0.999 1.000 1.000 0.999
2.8 0.863 0.917 0.832 0.868 0.905 0.851 1.000 1.000 1.000 1.000 1.000 1.000

NOTE: I, II, and III refer to observation processes according to setup 1, 2, and 3 specified in the first simulation study respectively.
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Chapter 5

Application

To illustrate the proposed methodology, we consider a bladder cancer study 

conducted by the Veterans Administration Cooperative Urological Research Group 

(Andrews and Herzberg (1985); Byar (1980); Sun and Wei (2000); Wellner and Zhang 

(2000); Zhang (2002)). In the study, the patients with superficial bladder tumors were 

randomly assigned to one of three treatment groups – placebo, thiotepa, and pyridoxine.

During the study, many patients had multiple recurrences of the bladder tumors and all 

recurrences between visits were recorded and removed at clinical visits; the number of 

visits and visit time points varied greatly from patient to patient. At the beginning of the 

study, for each patient, two important baseline covariates were reported; the number of 

initial tumors and the size of the largest initial tumor. Following Sun and Wei (2000), 

we restrict our attention to the patients in the placebo (47) and the thiotepa (38) groups.

5.1. Estimation

For the analysis, we took �(�) to be the logarithm of the number of observed 

tumors at time �, plus 1 to avoid 0, � =  1, . . . , 118. We set the first component of �� to 

1 if the � th patient was given the pyridoxin treatment and 0 otherwise, the second

component of �� to 1 if the �th patient was given the thiotepa treatment and 0 otherwise

and the third and the forth components of �� to the number of initial tumors and the size 

of the largest initial tumor of the � th patient, respectively, � =  1, . . . , 118 . The 
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longitudinal process of the bladder tumors �(�) and the clinical visit process were 

described by models (2.1) and (2.2). 

The proposed application of the estimation procedure with K� = 1 gave 

�M = (L0.0085, L0.3232, 0.0729, L0.0102)� with estimated standard errors (0.1437, 

0.0928, 0.0269, 0.0267), and thus � -values (0.9530, 0.0005, 0.0069, 0.7016),

respectively. These results indicate that the thiotepa treatment significantly reduced the 

occurrence rate of the bladder tumors and the number of initial tumors has a significant 

positive effect on the tumor recurrence rate. However, the pyridoxin treatment and the 

size of the largest initial tumor did not have significant effect on the occurrence rate of 

the bladder tumors. Sun et al. (2007) applied their method to analyze the same data and 

obtained that the thiotepa treatment had a significant effect in reducing the recurrence of 

bladder tumors, but they did not detect the effect of the initial number of bladder tumors 

on the recurrence rate of the bladder tumor. The reason for this difference between the 

two application results may be due to the misspecification of the relationship between 

the longitudinal response process and the observation process in Sun et al. (2007).

5.2 Model Diagnostics

Consider the application of the model-checking procedures given in Chapter 3 

to the data. Treating the four covariates separately, we found sup� |�±(�)| = 2.650
with the � -value of 0.441 , sup� |�	(�)| = 3.210 with the � -value of 0.121 ,

sup� |��(�)| = 2.451 with the �-value of 0.725, sup� |��(�)| = 3.039 with the �-

value of 0.349. All four �-values suggest that the linear form of the covariates is 

approriate. To illustrate the graphical procedure for checking functional form of 

covariate, the observed process ��(�) along with 20 realizations of the process ���(�)
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and the observed process ��(�)along with 20 realizations of the process ���(�) are 

depicted in Figures 5.1 and 5.2, respectively. Both graphical and numerical 

procedures suggest the appropriateness of the linear form of the covariates.

Figure 5.1 The observed process ��(�) along with 20 realizations of the process ���(�)
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Figure 5.2 The observed process ��(�)along with 20 realizations of the process ���(�)
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To assess the overall fit of models (2.1) and (2.2), we obtain sups,� |a(�, �)| =
3.133 with the � -value of 0.486 . This suggests that these models seem to be 

appropriate for the bladder cancer data considered here.
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Chapter 6

Conclusions

This dissertation investigates regression analysis of longitudinal data when the 

observation times or process may be related to the underlying recurrent event process of 

interest. For the problem, some general and robust models were presented and an estimating 

equation-based estimation procedure was developed. The proposed estimate is consistent and 

asymptotically normally distributed. Simulation studies indicate that the estimation procedure 

works well for practical situations. Also a goodness-of-fit procedure was given for the 

proposed models.

One main advantage of the proposed inference procedure is that it allows the 

correlation between the recurrent event process of interest and the observation process in a 

general format. This is very important since the format of the relationship between the two 

processes is generally unknown in practice and could be very complicated and thus a flexible 

model may be more preferred. Also the proposed approach does not require the Poisson 

assumption, which plays some main roles in existing procedures but can be questionable in 

many situations. Compared to the estimation procedure presented by Zhao et al. (2012), our 

method is more robust.

In the estimation equation approach, the weight is an important element that 

improves the efficiency of estimation. 
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