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Abstract

In most statistical and decision problems, nearly no attention is paid to the precise

mathematical form of the loss function. However, the choice of a particular loss

function seriously affects the resulting inferences and estimations. This dissertation

investigates a general class of loss functions based on the reflection or inversion of

a probability density function, Inverted Probability loss function, which was pro-

posed bySpiring and Yeung(1998). We modified the Inverted Probability loss

function to be a more generalisation of the original one. To the best of my know-

ledge and belief, it is the first time to establish such results in the literature.

We firmly advocate that there are some novelties in the Inverted Probability

Loss Functions and there are even more applications when applying them. In this

report, we show the broad coverage and the flexibility of the Loss Functions to

make a more robust expected loss.
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Chapter 1

Introduction

This first chapter provides a little background and motivation in the first section,

then exhibits a little information about my main contributions and finally manifests

the organisation of this whole report.

1.1 Background and Motivation

Decision makers in manufacturing industries pay high attention to quality assur-

ance. As a result, the use of statistics for accessing quality receives even larger

attention when Taguchi (Taguchi, 1986) proposed his quality management philo-

sophy and strategy. In decision theory and quality assurance field, loss functions

are used to reflect the monetary loss or economic loss caused by the deterioration

of the product characteristics from the target quality.

However, Berger (Berger, 1985) even emphasised that the loss function should

be bounded and concave, because the loss function also mimics the negative of the

utility, whereas the squared-error loss, Taguchi quadratic loss in quality control, or

absolute error loss is unbounded and even disturb the convexity.Spiring and Yeung

1



CHAPTER 1. INTRODUCTION 2

(1998) proposed a framework to cover all the unbounded losses from some obser-

vations with some applications in quality control. They also called the losses made

in this framework as The Inverted Probability Loss Functions. All such loss func-

tions enjoy the boundedness and preserves the convexity due to the requirements of

the unimodality. Therefore, it should totally supersede the squared-error one; but

most do not have the interests in studying it and some even choose a conservative

view to prefer the traditional quadratic Loss Functions to the parametric Inverted

Probability Loss Function.

Therefore, this reason already gives a sounded motivation to have a research

about this Inverted Probability Loss Functions to understand how this concept is

unique and interesting.

1.2 Data set for illustrations

Since it is required to have some applications for realising the results in this report,

a data set is chosen for this purpose. To prevent self-plagiarism and need to re-use

this data many times, we now discuss about the data set here and refer it back when

necessary.

The following data set is fromLeung and Spiring(2002, 2004). It is a real-

isation of the random variable for the perforation pull strength. The data set is as

follows:

Some further background information was also provided inLeung and Spiring

(2004). The aim for a lottery ticket seller was to sell the lottery tickets as many

as possible, so it wanted to sell the tickets via vending machines as well such that

any buyers could buy the tickets in a convenient way. For putting the tickets in
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40.6 47.6 49.5 52.8 45.0 51.6 48.5 58.3 46.5 53.5
48.9 58.3 42.0 41.0 47.3 47.5 47.0 54.5 47.7 44.8
47.5 47.0 41.7 54.8 42.6 56.5 52.4 55.9 42.2 52.6
50.5 49.7 48.6 58.6 43.7 53.7 47.6 55.0 45.0 54.6
55.0 46.6 51.8 51.0 46.2 53.8 56.9 48.6 47.6 44.0
49.4 53.7 44.2 52.0 44.5 48.1

Table 1.1: The pull strength data set

a vending machine, the volume should be as large as possible so the cost, for in-

stance, resupply cost, manual cost and transportation cost, was minimised. Inside

a vending machine, the tickets were packed, folded and stacked in columns. The

vending machine had to recognise that the buyer had inserted sufficient funds and

dispensed the tickets with the same face value as the funds inserted through the

dispensing slot. It also needed to identify certain characteristics such that the tick-

ets were dispensed in full and sustained the force of tearing a ticket. To reduce the

force required to tear a ticket, the tickets had to be designed as perforated along the

margins and tough enough not to be torn in half.

Therefore, the tickets had to pass through the pull strength test such that the

design and the process was optimal. If the pull strength was higher than 60 pounds

per square inch (psi), the tickets will not be torn in the perforated margin. How-

ever, if the pull strength was lower than 40, another tickets will be pulled as well.

In either situations, the vending machine is jammed as the next operation or mech-

anism is distorted.

From theTable 1.1and the information provided, the pull strength is the random

variable under interest. AlthoughLeung and Spiring(2002, 2004) claimed that this

data set follows a Beta distribution, but we have another thought on this data set.

For dealing with a data set, we propose to have an empirical study beforehand

and give a summary about the ingredients of this pull strength.
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Number of Data 56

Mean 49.401786
Median 48.6
Mode 47.6

Interquartile Range 7.3
Variance 22.519104
Skewness 0.10518813

Excess Kurtosis 0.87615755

Table 1.2: Empirical study of the pull strength

Thus fromTable 1.2, the random variable for pull strength is also close to sym-

metric Gaussian. Further, there is no any constraint that the pull strength must be

in the interval of[40, 60], even though the maximum loss is attained. That is, there

is still a possibility that the pull strength is beyond the interval but maybe the prob-

ability is very small. We also need a visualisation tool for understanding this data

set to estimate the density. As a result, the empirical distribution is plotted in the

following:

45 50 55 60

0.2

0.4

0.6

0.8

1.0

Figure 1.1: Empirical CDF of the pull length
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For the density of this data set, we also have to use the worst tool for visualisa-

tion, histogram, for which the selection of number of bins is generally problematic.

There are two opposing uncertainties in estimating a density from a histogram. One

is the coarseness of the histogram and then more number of bins generates a better

result. However, the other is the inaccuracy of the height of a bin, so the situation

of larger bins are better. These two are very hard to get a balance.

We decide to fit theL2 theory of univariate histogram inScott (1992) such

that the density estimator is consistent and the mean square error is minimised.

We choose the criteria ofScott(1979) andFreedman and Diaconis(1981) as two

references to select the bin widths. ForScottmethod, the bin width is chosen to

have a3.5σ̂n−1/3; while for Freedman–Diaconis method, the method is more robust

and the bin width is equal to2(IQ)n−1/3, whereIQ is the interquartile range. Both

histograms from the two methods are illustrated inFigure 1.2.

45 50 55 60

0.02

0.04

0.06

0.08

Scott

(a) Scott method

45 50 55 60

0.02

0.04

0.06

0.08

FreedmanDiaconis

(b) Freedman–Diaconis method

Figure 1.2: Histograms from each method

From all the information we obtained, the pull strength is seemed to have a

Gaussian distribution. However, the number of data is not very large and we as-

sume that the data set all follow a particular distribution without any exceptional

changes. To estimate the parameters of Gaussian distribution, we choose to use

a bootstrapped estimate. We sample all the data set with replacement and the re-
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sampled values should behave like a particular sample from the original popula-

tion. Statistics of a sample from the original data set should thus simulate sample

statistics for the population. For each resampled data, we use the maximum log-

likelihood method to estimate the parameters in Gaussian distribution. The whole

processes are repeated 10,000 times and we choose the average value of the para-

meters.

The result is that the data set may followN(49.40, 4.692). Moreover, we need

a diagnostic checking to know whether the result is significant. Similarly, we also

choose the bootstrapped test to understand whether the data set is Gaussian distrib-

uted and the whole processes are also repeated 10,000 times.Table 1.3summarises

the results of the hypothesis testing.

Statistic p-Value

Anderson-Darling 0.473091 0.773567
Cramér-von Mises 0.0820403 0.68014
Jarque-Bera ALM 1.92141 0.290532

Pearsonχ2 12.75 0.237987
Shapiro-Wilk 0.972673 0.232307

Table 1.3: Test statistics andp-value of each test

Therefore, theH0 that the data set follows Gaussian distribution with mean as

49.40 and variance as4.692 is not rejected at even the significance level of 10%.

From now, when we refer to this data, we believe that this data is Gaussian distrib-

uted withN(49.40, 4.692). However, the true distribution fromLeung and Spiring

(2002) is a transformedBeta(2.0994, 2.3184, 40, 60). With these two distributions,

we will conduct some comparisons in the following chapters.

For the loss, there is no standard at all and as inSpiring and Yeung(1998),

‘after lengthy discussion, a loss ... was agreed upon.’ Therefore, it is on a case-by-

case basis. In other words, it is meaningless to simply compare different losses by
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choosing one with the lower expected loss, in which the (almost everywhere) zero

function must be the best candidate if so. As a result, the best and the most suitable

loss function has to be decided by different stack holders with their consent.

1.3 Main Contributions

The research of the Inverted Probability Loss Functions is quite limited to the best

of our knowledge. Hence, our major contributions are to find some evidences to

make a good foundation for it and to extend its usages in a wider range of applic-

ations. Since the research is so limited, many new results are found and presented

in the following chapters.

In Chapter 2, we study briefly about the differences between Taguchi loss and

Spiring–Yeung framework of losses to give a general picture of the loss functions

in quality assurance. A short comparisons on different distributions of process

characteristics are provided as well and it is the first similar study in the literature

to the best of my knowledge.

In Chapter 3, we have introduced a certain new losses and finally modify the

Spiring–Yeung of losses. Moreover, one of the most beautiful result is the discov-

ery of Inverted Student-t loss, which is also a generalisation of Inverted Normal

loss and even unknown Inverted Cauchy loss.

In Chapter 4, we study the common loss function in truncated situation to test

the limit of the Spiring–Yeung framework how to pretend a bounded loss to be an

unbounded loss. In general, the shortcomings of IPLF occur when dealing some

functionals cannot guarantee the existence of a density. We also study the whole

exponential family for constructing the Inverted Probability loss function so far in
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the research literature. Definitely, we also find the reasons why some are more

interesting and discuss what conditions can make a member of exponential family

being applied in Spiring –Yeung framework.

In Chapter 5, we know that the Spiring–Yeung framework will meet its limit

when facing bounded support. Therefore, we study the distribution based on quantile

function, the 5-parameter Generalised Lambda distribution and find some proper-

ties useful for constructing IPLF. Since this distribution has a variable support, it

can easily mimic other distributions with a suitable choice of parameters. This is

also a generalisation of the study inSpiring and Yeung(1998) that they only use

the special case of this distribution to form Inverted Tukey loss.

In Chapter 6, we present some branded-new applications that will use IPLFs

as a tool. Since the loss function under IPLF in a truncated situation does not

work well, other method of transformation needs to be considered. One of the

methods is to (negatively) exponentiate the loss, because exponential function is

an absolutely continuous. The exponentiated loss is where the original loss is ex-

ponentiated and to be fitted in Spiring–Yeung framework. Some common losses

such as quadratic loss, absolute loss, LINEX loss can be exponentiated to make

it bounded by using the framework while preserving all properties of the original

loss. Since Spiring–Yeung framework cannot cover any unbounded losses, but this

approach complements to provide some losses with the similar properties as those

original losses by exponentiating. Further, it also shows that the optimal estimator

from a particular loss is always inadmissible with respect to another loss.

Finally, in Chapter 7, we try to study a general class of conjugate loss, which

wants to explain why the observation of Spiring that the exponentiated loss is a

reflected Gaussian density. It also introduces the Bayes risk compared with the
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frequentist risk. Further, we can have an answer why we choose the Spiring loss is

the most secure loss in conjugate sense.

1.4 Organisation of Thesis

This thesis consists of 8 chapters and the following is a summary. Chapter 1

provides an overview, background and motivation of the whole study. Chapter

2 presents a short review of Loss Functions, the main concept of the whole study.

Some new losses are introduced to have similar results so far in literature in Chapter

3. Chapter 4 discusses introduces the scope and the questions relevant to the study.

This chapter mainly exhibits a lot of concerns in different aspects. Then some pre-

liminary results are demonstrated in Chapter 5. Chapter 6 discusses some applica-

tions. Chapter 7 discusses the loss functions from Inverted Probability framework

from a more rigorous view. Chapter 8 proposes some limitations, what we have

done and concludes the whole thesis.
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1.5 Notations

• R Real number field

• Rk k-Cartesian product ofR

• BX Borel algebra of X

• IPLF Inverted Probability Loss Function

• CDF cumulative distribution function

• ᵀ Transpose

• L Loss function

• Γ(∙) Gamma function

• B(∙) Beta function

• E Expectation operator

• P Probability operator

• Q(∙) Quantile function

• 1X Indicator function such thatX is true

• 〈∙, ∙〉 Scalar product



Chapter 2

A Short Survey of Loss Functions in

Quality Assurance

This chapter surveys the loss functions in the field of quality assurance and dis-

cusses each major breakthrough in each section. Inverted Probability Loss Func-

tions (IPLFs), as the main theme of this study, will be discussed more deeply and

some later modifications are also well discussed.

To motivate later results, we will study the traditional quadratic loss functions

as a starting point and then follow different arguments by some researchers step-

by-step to bring out the ideas of creating the IPLFs.

2.1 Taguchi-type Loss Function

2.1.1 Taguchi Loss

Taguchi (Taguchi, 1986; Taguchi et al., 1989) suggested a quadratic or squared-

error Loss Function to motivate and illustrate losses together with the variance of

the product quality from a process target. The form of such quadratic Loss Function

11
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proposed by Taguchi is

L (x, T ) = B (x − T )2 (2.1)

whereB > 0 is a constant andT is the target value.Figure 2.1shows one of

the particular example of quadratic loss functions in quality control. Indeed, the

quadratic loss function has its advantages:

• it can be seen as a function approximated by the Taylor series expansion

about the target and up to the quadratic term.

• it fits the widely-used variance and squared-error loss functions and under

a certain conditions of Gauss–Markov theorem, the estimator is minimum

variance unbiased.
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Taguchi Loss

Figure 2.1: A Taguchi quadratic loss withB = 1 andT = 4
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However, there are some defects associated with this quadratic loss function,

being criticised by Spiring (Spiring, 1993) and Sun, Laramée and Ramberg (Sun

et al., 1996). For instance, the Taguchi loss function increases without bounds; and

this finally led more remedies proposed to overcome some difficulties. Another

problem is that the quadratic loss function is symmetric around the target, which is

not suitable in some situations.

The major solutions are the followings: Ryan loss and Barker loss, while keep-

ing the shape and some properties of Taguchi loss.

2.1.2 Ryan Loss

Ryan (Ryan, 2012) proposed in 1989 a more general form of the quadratic Loss

Function as below to overcome the unbounded loss:
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Ryan Loss

Figure 2.2: A Ryan loss with(K,B, T ) = (6, 1, 4)
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L (x, T ) =






B (x − T )2 |x − T | <
√

K/B

K |x − T | ≥
√

K/B

(2.2)

whereK > 0 and B > 0 may not be equal, but both are constants. The

Figure 2.2shows the modifications such that the Taguchi loss becomes bounded.

In comparison with Taguchi loss, the expected loss under Ryan loss is more

controlled and minor because of the boundedness of the loss function.

2.1.3 Barker Loss

It is sometimes impossible to preset a same value of loss realistically and assumes

that the amount of loss is symmetric and then Barker (Barker, 1990) also introduced

the following quadratic Loss Function:

L (x, T ) =






B1 (x − T )2 x < T

B2 (x − T )2 x ≥ T

(2.3)

whereB1 > 0 andB2 > 0 are both constants and similar to Ryan one,B1 does not

necessarily equal toB2. Clearly ifB1 = B2, Barker loss becomes Taguchi loss and

so Barker loss is a generalisation of Taguchi loss. The following graph,Figure 2.3,

shows the Barker loss with asymmetric tolerances or multipliers. From this section

onwards, all these three types together will be referred as Taguchi-type loss.

After all, the Barker loss is unbounded like Taguchi loss, the expected value

under Barker loss is also similar to that of Taguchi loss.
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Barker Loss

Figure 2.3: A Barker loss with(B1, B2) = (1, 3) andT = 4

2.2 Spiring Inverted Probability Loss Function

2.2.1 Spiring Loss

Due to the problems aforementioned in Taguchi loss function, some started to ex-

plore another route. Spiring (Spiring, 1993) proposed a new concept of loss func-

tion by using Gaussian distribution as the general form, as he thought that most

experiments or processes follows Gaussian distribution. The general form of this

Reflected Normal loss function is

L (x, T ) = K

{

1 − exp

(

−
(x − T )2

2γ2

)}

andγ = Δ/4 (2.4)

whereΔ is the Euclidean distance from the target to the point capturing the 99.97%

of the maximum loss from a Gaussian distribution.

Spiring Loss Function is conceptually different from the Taguchi loss. It is
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Taguchi Loss

Figure 2.4: A Spiring loss with(K, γ, T ) = (6, 2, 4) and a Taguchi loss with
(B, T ) = (1, 4)

quite interesting that this enjoys, by default, the properties of boundedness and the

freeness of the target value,T .

In Figure 2.4, it is shown that a Taguchi loss with the same target will generate

the larger loss when compared with a Spiring loss with the same target and the

maximum loss of a Taguchi loss is infinite. Moreover, the rate of approaching the

maximum loss in Spiring loss is rather slow and smooth enough. In the meanwhile,

compared with Ryan loss of the same target and same maximum loss, Spiring loss

produces a smaller loss with the extreme deviations, as illustrated inFigure 2.5. In

addition, the rate of approaching the maximum loss is also slower in Spiring loss

than in Ryan loss.

Compared with Taguchi loss, the Spiring loss is also smaller and even less than

the maximum loss. As Ryan loss is also bounded, the Spiring loss is comparable

with Ryan loss, and whatever smaller depends on both parameters.
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Figure 2.5: A Spiring loss with(K, γ, T ) = (6, 2, 4) and a Ryan loss with
(K,B, T ) = (6, 1, 4)

2.2.2 Sunet al Loss

Sun, Laramée and Ramberg (Sun et al., 1996) modified the Spiring Loss Function

and proposed a revised one, Modified Reflected Normal loss function, by freeing

Δ/γ = 4 to Δ/γ ∈ (0,∞). Obviously, Spiring loss function becomes a special

case of this type. As Leung and Spiring (Leung and Spiring, 2002) indicated, the

Modified Inverted Normal Loss Function “was an important step”, becauseSun

et al. also figured out a method to fit the actual loss via a nonlinear least squares

method. The modified form proposed bySun et al.is

L (x, T ) =
KΔ

1 − exp
{
−1

2
(Δ/γ)2

}

{

1 − exp

(

−
(x − T )2

2γ2

)}

(2.5)
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Figure 2.6: Sunet al losses of(KΔ, Δ, T ) = (10, 2, 4) with differentγ’s

where0 < exp
{
−1

2
(Δ/γ)2} < 1 andKΔ > 0 is fixed. By a simple manipulation,

we have

lim
γ→∞

L (x, T ) =
KΔ

Δ2
(x − T )2 = B (x − T )2

Therefore, it also includes Taguchi quadratic loss as a limiting case.

Obviously, a new parameterΔ is added andKΔ is the value depending on the

ratio betweenγ andΔ. In theFigure 2.6, we fix theΔ being equal to 2 and the

Modified Reflected Normal loss function behaves more like a Taguchi loss asγ

tends to infinity. Asγ tends to 0.50, the ratioΔ/γ becomes 4 and the loss function

is really the Spiring loss. The advantage of this loss functions is that it bridges the

bounded Spiring loss and the conventional unbounded Taguchi loss by switching

K.

The reason behind the device that the Modified Reflected Normal can work is
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Figure 2.7: The 3D plot of Sunet al loss of(KΔ, Δ, T ) = (10, 2, 4) againstx and
γ

the symmetry property and unimodality. The loss functions from eitherSpiringor

Sun et al.also assumed the underlying process as Gaussian distributed. How the

device works is also shown in theFigure 2.7.

On the grounds that Sunet al. loss is seemed as a bridge between Taguchi loss

and Spiring loss, the expected loss depends on the parameterγ if Δ is fixed. Hence

the expected loss may be smaller than Spiring loss or as significant as Taguchi loss.

2.2.3 Spiring–Yeung Framework of Loss Functions

Based on the his (Spiring, 1993) idea, Spiring furthered proposing a general class

of loss functions (Spiring and Yeung, 1998), referred as Inverted Probability Loss

Functions (IPLF), and tried to use the loss functions withunimodaldistributions

other than Gaussian to fit the need for asymmetric loss.
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The general class of such Inverted Probability Loss Functions can be easily

described as here: Letf(x, θ) be a probability density function (pdf) with a unique

mode at̂x. T is the target value whereT = x̂ should be matched and in generalT

is a function of other parameters or constants. If we further let

m = sup
x∈X

f (x, θ) = f(T, θ),

then the general form of the Inverted Probability Loss Functions (IPLF) is proposed

as

L (x, T ) = K

[

1 −
f (x, θ)

m

]

∀x ∈ X (2.6)

whereX is the support of the distributionf(x, θ) andK > 0 is a constant. Here,

a remark is needed: the pdff(x, θ) is irrelevant to the distribution of the character-

istic or the random variable under examined.

2.2.4 Spiring piecewise INLF

If the Gaussian Distribution is considered to create the Inverted Probability Loss

Function, Spiring and Yeung in the same paper (Spiring and Yeung, 1998) even

suggested the following form for the situation with asymmetric loss:

L (x, T ) =






K1

[
1 − exp

(
− (x−T )2

2σ2
1

)]
x < T

K2

[
1 − exp

(
− (x−T )2

2σ2
2

)]
x ≥ T

(2.7)

whereKi > 0 are constants andσ2
i are parameters; but each of them is not neces-

sarily the same. TheFigure 2.8compares the piecewise Taguchi-type loss, Barker

loss with the same target and the Spiring piecewise Inverted Normal loss (INLF)
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Figure 2.8: A Barker loss with(B1, B2, T ) = (1, 2, 4) and Spiring piecewise INLF
with (K1, K2, σ

2
1, σ

2
2, T ) = (15, 5, 4, 1, 4)

with the same target. Seeing that Barker loss is always unbounded and convex,

Spiring piecewise INLF provides a choice of loss function with bounded maximum

loss. AsFigure 2.8shows, the Spiring loss may give a higher loss than the Barker

loss due to its quasiconvexity, for which Gaussian distribution is logconcave and

so quasiconcave and strongly unimodal (Barndorff-Nielsen, 1978; Dharmadhikari

and Joag-Dev, 1988; Bertin et al., 1997).

The Spiring piecewise INLF is the first loss with 2 different maximum losses

and this result shows that the expected loss from Spiring piecewise INLF is less

thanmax{K1, K2}, in turn also less than that by any unbounded losses like Tagu-

chi loss or Barker loss.
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2.2.5 First Modified Spiring–Yeung IPLF

To generalise the Spiring piecewise INLF,Equation 2.7, Spiring and Yeung(1998)

and proposed andLeung and Spiring(2002) reaffirmed one more generalised ver-

sion of the IPLF, which is

L (x, T ) =






K1

[
1 − f1(x,T )

m1

]
x < T

K2

[
1 − f2(x,T )

m2

]
x ≥ T

(2.8)

whereKi are two constants andmi = supX fi. This modification can even provide

a convenience in fitting the asymmetric loss, rather than finding a suitable probab-

ility density to fit the more restrictive Spiring–Yeung IPLF. According toSun et al.

(1996), Ki may be chosen as a function instead of constant, and therefore we sug-

gest that the novelty of this generalised IPLF is greatly enhanced ifKi have more

varieties.

In the literature,f1 andf2 are normally the same in form but with different

parameters. For instance,Spiring and Yeung(1998) used both Gaussian densities

andLeung and Spiring(2002) used both Beta densities. ByEquation 2.8, f1 and

f2 can be two distinct densities and the only requirement is that both densities have

the same mode. More clearly, the left side can be a Gaussian, while the right side

can be a Beta. For more details about the Beta densities applied in the IPLF, it is

formally introduced later.

Figure 2.9depicts the combination of two different losses from the two de-

veloped in the literature, which is unseen before to the best of my knowledge. The

left side before the target is a Gaussian density and the right side after the target is

a Beta density. It is noted that even the maximum loss in both side is different and
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Figure 2.9: A modified IPLF with the left side as INLF with(K1, σ2, T ) =
(15, 1, 0.75) and the right side as Inverted Beta loss with(K2, α, T ) = (5, 4, 0.75)

hence this is also used for asymmetric loss as Spiring piecewise INLF.

2.2.6 Pan–Wang Loss

Pan and Wang(2000) later studied the Reflected Normal Loss Functions and thought

deeply with the results,Equation 2.7of Spiring and Yeung in 1998 (Spiring and

Yeung, 1998). They proposed another more general one with two different modes

L′ andU ′ for asymmetric loss with Gaussian distribution:

L (x, {L′, U ′}) =






K1

[
1 − exp

(
− (x−L′)2

2σ2
1

)]
x < L′

0 L′ ≤ x ≤ U ′

K2

[
1 − exp

(
− (x−U ′)2

2σ2
2

)]
x > U ′

(2.9)

where the conditions are the same asEquation 2.7. L′ andU ′ are the lower and the
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upper specification limits respectively. An example of Pan–Wang loss is plotted in

Figure 2.10whereL′ = 3 andU ′ = 5 and the maximum loss is14 and8 from the

left and right respectively.
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Figure 2.10: A Pan–Wang Revised Inverted Normal loss function with(K1, K2,
σ2

L1
, σ2

L2
, L′, U ′) = (14, 8, 2, 1, 3, 5)

Pan believed that the quality loss does not fall within the acceptable range of

target value.Ki denotes as the maximum loss if the quality departs from the target

and the lower and upper limit of the acceptable range respectively fori = 1, 2. σ2
i

are the parameters for the shape of the loss functions. This Pan–Wang loss is modi-

fying Spiring piecewise INLF by revisingT into a pair of lower specification limits

and upper specification limits(L′, U ′). Definitely with the Gaussian distribution,

Pan–Wang loss is a supplement of the conventional process capability indices, such

asCp andCpk.

Pan (Pan and Li, 2001; Pan and Pan, 2006; Pan, 2007; Pan and Pan, 2009) in his

later papers also compared the effectiveness of his Revised Inverted Normal loss
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functions withSpiring piecewise INLF andBarker loss. Since the criteria are to

compare the bounded loss in quality control and to allow the tolerances inside two

limits, Pan–Wang loss is certainly preferred.

After all, the expected loss under Pan–Wang loss is less than that under Spiring

piecewise INLF, for which a certain interval betweenL′ andU ′ provides zero loss

under Pan–Wang loss but not Spiring piecewise INLF.

2.2.7 IPLF of other distributions

Since Spiring–Yeung framework of loss, referred as Inverted Probability loss func-

tions (IPLFs) is proposed, other distributions can be applied to describe the partic-

ular loss in different contexts. The general information about the IPLF is already

summarised in theSubsection 2.2.3. We will try to introduce which distributions

were once applied in the literature. However, mainly there were only two literature,

Spiring and Yeung(1998) andLeung and Spiring(2002), studying the framework

other than INLF or piecewise INLF.

For asymmetric loss, Gamma distribution was suggested and hence under the

Spiring–Yeung IPLF, the Inverted Gamma loss function was created. The Inverted

Gamma loss function has the form:

L(x, T ) = K

{

1 −
[ x

T
exp

(
1 −

x

T

)]α−1
}

1x∈[0,∞) + K1x/∈[0,∞)

= K
{

1 − exp
[
(1 − α)

( x

T
− log

x

T
− 1
)]}

1x∈[0,∞) + K1x/∈[0,∞)

(2.10)

The following figure,Figure 2.11, shows two different shapes with different

α. Therefore, it apparently inherit the boundedness of IPLF and the shape may be
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accommendated by choosing the most suitableα.
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Figure 2.11: Inverted Gamma losses of(K,T ) = (5, 4) with differentα’s

If the α is well chosen, the Inverted Gamma loss can substitute the INLF and

the quadratic loss but with the flexibility of the shape in depicting the loss. One of

the properties of IPLF is that the preservation of some hierarchies of the underlying

distribution. Considering the fact that the chi-squared distribution is a special case

of gamma distribution and is unimodal, we can slightly reparametrise the Inverted

Gamma loss to have an Inverted Chi-squared loss with degrees of freedomd = 2α.

Leung and Spiring(2002) suggested to model both symmetric and asymmetric

loss with Beta distribution and so they proposed an Inverted Beta loss function.

Analogously, this Inverted Beta loss allows the change of the shapes. Unlike Inver-

ted Gamma loss, it can further provide a loss with faster rate in either side of the

deviation from the target within a bounded unit support,[0, 1]. The Inverted Beta

loss has the following general form:
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L(x, T ) = K

{

1 −
[
T (1 − T )

1−T
T

]1−α [
x(1 − x)

1−T
T

]α−1
}

1x∈[0,1] + K1x/∈[0,1]

(2.11)

However, this Inverted Beta loss has a serious drawback in flexibility of choos-

ing parameters. Since the corresponding distribution is Beta distribution, Beta dis-

tribution has a strict conditions to be unimodal: both parameters have to be greater

than 1.
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Figure 2.12: Inverted Beta losses of(K,T ) = (5, 0.5) with differentα’s

Using the framework of IPLF and the conditions of unimodality of Beta distri-
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bution, suppose(α, β) is the pair of parameters,

T =
α − 1

α + β − 2
α, β > 1

α =

(
T

1 − T

)

β +
1 − 2T

1 − T

α − 1 =
T

1 − T
(β − 1) 0 < T < 1

(2.12)

That is, if the targetT and the parameterα are fixed, there is no freedom in adjust-

ing the shape, unlike the Beta distribution that both parameters are able to reform

the shape. As a result, the figure 2 inLeung and Spiring(2002) is not true. The

following figure,Figure 2.12is the corrected one with the parameter value.Fig-

ure 2.13andFigure 2.14further shows the difference of the shape as the targetT

is set away from 0.5.

Since the shape of the loss function deviates too much from an inverted form of

Gaussian distribution or quadratic form, the expected loss under the Inverted Beta

loss functions is also less significant than that under Spiring loss or Taguchi-type

loss.

Further, it only allows to work in the unit range and we have to transform the

data to unit range beforehand, even though this loss is scale invariant against the

generalised Beta distribution. That is, in general we have a data set larger than the

unit support andT > 1, the maximum and minimum of the data has to be estimated

in order to make a transformation

X =
Y − Ŷmin

Ŷmax − Ŷmin

, Y is the sampled data (2.13)

Then the problem comes on which an extremum occurs. The dilemma has to be

faced: the extremum is a part of the population itself and the loss has to be totally
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Figure 2.13: Inverted Beta losses of(K,T ) = (5, 0.25) with differentα’s

remade by choosingα or the extremum should be neglected.

Up till now, all the loss is only suitable for one characteristic. If there are

more than one characteristics needing to be met, then the loss function has to be

multivariate. Correspondingly, both Taguchi-type loss and IPLF are allowed to

extend the loss to describe more than one dimension of loss. Since Taguchi-type

loss is quadratic and simple, it is easy to vectorise all targets in the meanwhile.

One of the particular example of IPLF by a multivariate Gaussian density, which

Spiring(1993) also discussed but in a bivariate form only.

By definition, the (nondegenerate) multivariate Gaussian densityfX(x) with

rank(x) = k is

fX(x) =
1

√
(2π)k det(Σ)

exp

{

−
1

2
(x − T )ᵀΣ−1 (x − T )

}

(2.14)
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Figure 2.14: Inverted Beta losses of(K,T ) = (5, 0.75) with differentα’s

and so

m = sup
X∈X k

fX (x) = T (2.15)

By Equation 2.6, we have the following loss whereT = (T1, T2, ∙ ∙ ∙ , Tk)
ᵀ is

the column vector consisting of target for each characteristic:

L(x, T ) = K

(

1 −
fX(x)

T

)

= K

(

1 − exp

{

−
1

2
(x − T )ᵀΣ−1 (x − T )

})

(2.16)

Hence, two types of losses can work with both univariate and multivariate situ-

ations. In this sense, Taguchi-type loss generally requires the independence of

each characteristics while IPLF is allowed that any combinations of characteristic

is correlated. It results that IPLF has more flexibilities in the multivariate case.
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2.3 Fathi and Poonthanomsook Loss Function

Fathi and Poonthanomsook(2007) used the same method as Taguchi and the Loss

Function is the function approximated by the Taylor series expansion about the

target, but up to the quartic term to overcome all the problems of Taguchi loss. It is

therefore called quartic loss function. The general form is

L (x, T ) = B2 (x − T )2 + B3 (x − T )3 + B4 (x − T )4 (2.17)

whereB2, B3, B4 are all constants. This type of loss functions can capture the

asymmetric and symmetric case. Fathi and Poonthanomsook also attempted to

apply the analogous thought of Pan (Pan and Wang, 2000; Pan and Li, 2001) and

used two modesL′ andU ′ to fit for the asymmetric and symmetric case. If we

replaceU ′ = μ + kσ andL′ = μ− lσ with μ being the mean,σ being the standard

deviation,k andl are some constants,






B2 =
L (U ′, T ) Ψ3

1 + Ψ3
2 (L (L′, T ) − B4Ψ

3
1 (Ψ1 + Ψ2))

Ψ2
1Ψ

2
2 (Ψ1 + Ψ2)

B3 =
L (U ′, T ) Ψ2

1 − Ψ2
2 (L (L′, T ) + B4Ψ

2
1 (−Ψ2

1 + Ψ2
2))

Ψ2
1Ψ

2
2 (Ψ1 + Ψ2)

(2.18)

whereΨ1 = T − L′ , Ψ2 = U ′ − T and∂xxL (x, T ) > 0 for all x if B4 > 0 and

B2
3 < 8

3
B2B4.

B4 controls the shape of the quartic loss functions and Taguchi quadratic loss

function is a special case of Fathi–Poonthanomsook loss under the conditions of

Ψ1 = Ψ2, L(U ′, T ) = L(L′, T ) andB4 = 0 . However, it also inherits some

defects of Taguchi one, the quartic Loss Function is unbounded and increases in

a more serious and faster way than Taguchi loss outside the acceptable range.
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Figure 2.15: A Fathi–Poonthanomsook loss with(B2, B3, B4, T ) = (1, 0.2, 0.3, 4)
and a Taguchi loss with(B, T ) = (1, 4)

The comparison between Fathi–Poonthanomsook loss and Taguchi loss with the

same target is illustrated in theFigure 2.15. The conditions thatB4 > 0 and

−
√

8
3
B2B4 < B3 <

√
8
3
B2B4 are both met, but it is observed that even a very

smallB4 has led to an enormous loss while deviating from the target.

In contrast with Taguchi loss, the Fathi-Poonthanomsook loss often generates a

very heavy expected loss.

2.4 Miscellaneous Concepts

There are some miscellaneous concepts when discovering those IPLF.Spiring and

Yeung(1998) introduced the concept of “conjugate distribution” for a particular

kind of Inverted Probability Loss Functions. That is, the risk function of the loss

functions with respect to the “conjugate” distribution is in a closed form.
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Spiring and Yeung (1998) also used some examples to provide an illustration

that the “conjugate distribution” for Inverted Normal loss is the Gaussian density,

while the “conjugate distribution” for Inverted Gamma loss is the Gamma density.

Leung and Spiring(2002) utilised the Spiring–Yeung framework and made use

of Beta density to form the Inverted Beta loss. Since the two parameters of Beta

density are also used to describe the shape, this type of loss functions can also fully

be adjusted to the needs of symmetric and asymmetric losses. Besides, the Inverted

Beta loss does not need to truncate at some points to fit for the asymmetric shape

incurred by losses. Both authors tried to show that the “conjugate distribution” for

Inverted Beta loss is the Beta density.

Leung and Spiring(2004) gave a summary of some properties of the family

of Inverted Probability Loss Functions so far researched in the papers of Spiring

(Spiring, 1993; Spiring and Yeung, 1998; Leung and Spiring, 2002). They focused

their main points at the Loss Inversion Ratio (LIR),
f (x, T )

m
and capture some

properties of LIR. Actually, LIR properties are just simple properties of pdf and

they reconfirmed the results among the earlier IPLF made by Gaussian, Gamma

and Beta densities.

Properties of IPLF inLeung and Spiring(2004) when IPLF may be seemed as

a random variable:

A. Boundedness 0 ≤ L(x, T ) ≤ K;

B. Scale-Invariance L(x, T ) = L(kx, kT ), ∀k.

Pan (Pan and Pan, 2006; Pan, 2007; Pan and Pan, 2009) related the Loss Func-

tion to the Process Capability Indices, and it created the new opportunities for

research the application side of the loss functions in quality assurance. Further,
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Spiring and Leung(2009) also connected the monetary loss, Process Capability

Indices and Taguchi-type loss.

In fact, the standard deviation has become synonymous with the dispersion, the

physical meaning is not necessarily equivalent in either situations of inter-families

of distributions, or intra-family of distributions. Therefore, the actual process

spread and the Process Capability Indices may not provide a coherent indication

over different distributions. It also leads to a new series of questions about the

non-normality circumstances.

Returning to the original Taguchi loss, it is the approximation of Taylor series

expansion up to its quadratic term. Some researchers like the anonymous referee of

(Leung and Spiring, 2002) prefer the Taguchi form to the parametric form.Leung

and Spiring(2002) also cited the conservative view that “no distributional assump-

tions are necessary” and “...the quadratic approach requires only the determination

of a constant and estimates of the process mean and variance”. That is why we

conjecture that the Taguchi-type loss is just a special case of the general class of

the IPLF.

2.5 Numerical Examples

To illustrate the concepts and some nice properties of some losses described in the

previous sections, we refer to the data collected inSection 1.2for the following

discussion.

The following table shows the different associated risks or expected losses,

which is the average loss to the customers or society when the target is not aimed

with different particular chosen loss. We have two different distributions for the
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same process characteristics, while Normal(49.40, 4.692) is our estimated pdf and

the other Beta(2.0994, 2.3184, 40, 60) is true. In particular, all the following cal-

culations inTable 2.1use the same settings:K = K1 = 0.3, K2 = 0.2, KΔ =

0.3(1−e−8) = 0.2999, B = B1 = 0.1, B2 = 0.15, B3 = −0.02, B4 = 0.003, γ =

γ1 = 2, γ2 = 1, Δ = 2, L′ = 50, U ′ = 57.5, T = 55.

Beta Normal % Change

Taguchi Loss 4.8615 5.3327 9.69%
Ryan Loss 0.2661 0.2709 1.83%

Barker Loss 4.8840 5.3861 10.28%

Spiring Loss 0.2287 0.2356 3.01%
Sunet alwith γ → 0 Loss 0.2999 0.2999 1.3×10−10%
Sunet alwith γ = 2 Loss 0.2287 0.2356 3.01%

Sunet al with γ → ∞ Loss 3.6450 3.9982 9.69%
Spiring Piecewise Loss 0.2314 0.2361 2.01%

Pan–Wang Loss 0.1069 0.1093 2.26%

Inverted Gamma-(α = 5) Loss 0.0105 0.0116 9.82%
Inverted Beta-(α = 3) Loss 0.1200 0.1262 5.13%

Fathi–Poonthanomsook Loss 31.176 38.602 23.82%

Table 2.1: (Frequentist) risk associated with different losses

Obviously, the boundedness and the shape of the loss control the robustness of

the risk associated with the loss. In general, the Inverted Probability loss function

with Normal distribution is more robust than others. However, the most robust one

is Ryan loss, which is bounded and does not penalise the off-targets very seriously.

As expected, the worst one is Fathi–Poonthanomsook loss for its higher order ex-

pansion. That is, if the distribution of the process characteristic has a long tail or

it is mostly off-target, the Fathi–Poonthanomsook loss will provide an enormous

expected loss.
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2.6 Comments

The uses of loss functions are more and more popular in quality assurance while

the industry needs a more flexible and realistic loss functions. Although in gen-

eral conventional quadratic loss or Taguchi loss are adopted, more thoughts on

“exotic” losses such as Spiring–Yeung Inverted probability loss framework (IPLF)

have gained some attentions from some researchers.

This survey provides a short summary on the loss function being used and ex-

amined in the quality assurance. Although it is not exhaustive, most major well-

discussed and current research results have been included. Some comparisons have

also been conducted to examine different risks associated with losses and different

distributions of process characteristics. If the loss is bounded, the expected loss

will be more robust and in general the expected loss from Spiring–Yeung IPLF

does not deviate too much.



Chapter 3

Prospects and Developments

There are very few literature comparingg Taguchi–type losses with Spiring–type

losses. Even if there are some discussions between two, they were judged and con-

sidered on a different platform, as if deciding between an apple and an orange. In

this chapter, we introduce some new concepts from the ingredients of the materials

whatsoever. In particular, we will place more attention on the Inverted Student-t

loss.

3.1 Ryan–Barker Loss

To have a fair comparison with the Spiring piecewise INLF inSubsection 2.2.4,

we need to find another loss with similar properties. Hence, we introduce a slight

modification for Barker loss with the techniques of Ryan loss. We will refer this

loss as Ryan–Barker loss which is also suitable for asymmetric loss or symmetric

loss. This loss can be seen as a generalisation of all Taguchi-type loss. The form

of the Ryan–Barker loss is:

37
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L(x, T ) =






K1 x ≤ T −
√

K1/B1

B1(x − T )2 T −
√

K1/B1 < x ≤ T

B2(x − T )2 T < x ≤ T +
√

K2/B2

K2 x > T +
√

K2/B2

(3.1)

whereK1, K2, B1, B2 are all constants greater than 0, but not necessarily equal.

In the following figure,Figure 3.1, both Spiring piecewise INLF and Ryan–Barker

loss are bounded and monotonically increasing while the process is off target, but

it does not show any advantages over others.
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Figure 3.1: A Ryan–Barker loss with(K1, K2, B1, B2, T ) = (15, 5, 1, 2, 4) and
Spiring piecewise INLF with(K1, K2, σ

2
L1

, σ2
L2

, T ) = (15, 5, 4, 1, 4)

This loss enjoys both the merits of boundedness from Ryan loss and asymmetry

from Barker loss, resulting in a expectation of a value less than the maximum ofK1

andK2. When comparing with Spiring piecewise INLF, both shape and expected
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value are also very close and it is possible to replace Spiring piecewise INLF with

this loss.

3.2 Second Modified Spiring–Yeung IPLF

Similarly, a more generalised version thanSubsection 2.2.5can be proposed by

adding the modifications from Pan–Wang loss inSubsection 2.2.6. the following

generalised IPLF can be

L (x, {a1, a2}) =






K1

[
1 − f1(x,a1)

m1

]
x < a1

0 a1 ≤ x ≤ a2

K2

[
1 − f2(x,a2)

m2

]
x > a2

(3.2)

where the conditions are the same asEquation 2.8anda1 ≤ a2. It is reminded that

fi ≥ 0 and the lossL is a constant outside the support offi. Bothfi can also be two

distinct densities and we require thatmi < ∞. Without this further condition on

mi, the loss will be kept as maximum loss except at the target. As aforementioned,

to have a just and fair comparison between two losses, the major properties of the

two have to be matched. The Pan–Wang loss has the properties:

• the loss is bounded

• the loss may be asymmetric

• the loss may be zero for an interval.

Therefore, Pan–Wang loss is now included in this framework,Equation 3.2

wherea1 = L anda2 = U . It is also possible thata1 = a2 = T in Equation 2.8.

As a result, this second modified IPLF is the most generalised version so far.
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3.3 Ryan–Barker–Pan Loss

Therefore, using the analogous methods to produce a Ryan–Barker loss, we also

propose another slight modification fromEquation 3.1to form a new loss. This

loss is referred as Ryan–Barker–Pan loss to give all the credibility to these three

discoverers.

L(x, {a1, a2}) =






K1 x ≤ a1 −
√

K1/B1

B1(x − a1)
2 a1 −

√
K1/B1 < x < a1

0 a1 ≤ x ≤ a2

B2(x − a2)
2 a2 < x ≤ a2 +

√
K2/B2

K2 x > a2 +
√

K2/B2.

(3.3)

in which all conditions are the same asEquation 3.1anda1 ≤ a2. We also trans-

form the parametrisation such thatL′ = a1 andU ′ = a2. Evidently, this loss is

also a generalisation of Ryan–Barker loss inEquation 3.1. In consequence, we can

have a comparison with the same ground.

Clearly, both losses have the same amount of parameters and also satisfy both

criteria of boundedness and the allowance of the tolerance limits. Definitely, the

IPLF has more flexibilities in changing the rate of approaching the maximum loss.

Without this advantage, both are equally acceptable.

When comparing with Pan–Wang loss, both shape and expected value are also

very close. In consequence, this loss is also possible to replace Pan–Wang loss.
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Figure 3.2: A Pan–Wang loss with(K1, K2, σ
2
1
, σ2

2, L
′, U ′) = (14, 8, 2, 1, 3, 5) and

Ryan–Barker–Pan loss with(K1, K2, B1, B2, L′, U ′) = (14, 8, 1.5, 3, 3, 5)

3.4 Inverted Student-t Loss

The loss function approach in quality assurance was initiated byTaguchi(1986) to

assess and monitor the losses associated with the process characteristic deviating

from the target preset. However, due to the undesirable performance of the Taguchi

loss, many practitioners and researchers have tried to propose other loss functions

to meet their needs.

SinceSpiring(1993) initiated the Spiring loss or Spiring piecewise INLF, Spiring–

Yeung framework of loss (IPLF) has been promoted and mostly INLF is adopted.

It still does not know whether the modifications fromSun et al.(1996) to relate

the Taguchi loss inSection 2.1only works on INLF. In this section, we try to de-

velop a more general loss than INLF by applying the Spiring–Yeung IPLF. While

preserving the nice properties of Spiring–Yeung IPLF, a family of symmetric loss
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based on an inverted Student-t density is proposed. For asymmetric loss, the most

generalised framework,Equation 3.2, can be applied to adjust the choice of a par-

ticular loss. Some statistical properties of this Inverted Student-t loss will be dis-

cussed and the results are illustrated.

Similar to the INLF (Spiring, 1993; Spiring and Yeung, 1998), the Student-t

density has many new properties like Gaussian density. With the Spiring–Yeung

IPLF framework, some properties associated with the family of Student-t distribu-

tions are needed to be checked for the development of Inverted Student-t loss.

The process target is needed to be the same as the unimodal point of the density

to be inverted in Spiring–Yeung IPLF. Student-t density is symmetric in the full

real lineR and always have the mode at 0, then the ideal target must be 0 as well.

For a more general case with target equal to other values, we have to consider non-

central Student-t density or nonstandard Student-t density. It is noted that no matter

which Student-t density is chosen, Student-t density is not a member of exponential

family. As the mode of a non-central Student-t density is not analytically solvable,

we choose the nonstandard Student-t density as the one applied in theEquation 2.6.

Student-t density was proposed by William Sealy Gosset in 1909 under a pseud-

onym “Student”. In the case of a nonstandard Student-t pdf withν > 0 andσ 6= 0,

the functional form for allx ∈ R is

f(x | T, σ, ν) =
1

√
νσ2B

(
ν
2
, 1

2

)

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2

. (3.4)

where B(∙, ∙) is a Beta function.

The nonstandard Student-t density has a form asX = T +σY , whereY follows

Student-t distribution, resulting in the mode asT . Therefore, by settingT equal to
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Figure 3.3: A nonstandard Student-t with(T, σ, ν) = (4, 1, 10)

the target,

m = sup
x

f(x | T, σ, ν) = f(T | T, σ, ν)

=
1

√
νσ2B

(
ν
2
, 1

2

)
(3.5)

and the resulting Inverted Student-t loss is

L(x, T ) = K

{

1 −
f(x | T, σ, ν)

f(T | T, σ, ν)

}

= K





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2





, x ∈ R.

(3.6)

Figure 3.3andFigure 3.4clearly describe the relationships between the non-

standard Student-t density and the Inverted Student-t loss withK = 1. Further, we

know that whenν → 1 the Student-t density will be a nonstandard Cauchy density

with a mode and a median atT and scaleσ. Whenν → ∞, the Student-t density
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will be a Gaussian distribution,N(T, σ2).
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Figure 3.4: An Inverted Student-t loss with(T, σ, ν) = (4, 1, 10)

This Inverted Student-t density can be seemed as a generalisation of Spiring

INLF. For different degrees of freedomν, we can have a look at theFigure 3.5.

Whenν is closer to 1, the rate of approaching the maximum loss of 1 is slower.

When theν is close to∞, it is closer to be an INLF, which is shown inFigure 2.4.

If we further accept the modification ofSun et al.to relate the Taguchi loss, we

need to add the parameterΔ to amend the loss. The new loss function is defined as

L(x, T ) =
KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2





, x ∈ R,

(3.7)

whereKΔ is not the maximum loss, but the value of the loss at a certain ratio

deviating from the target.Figure 3.6shows the influences of differentΔ/σ and

illustrates the flexibilities of this new generalised Inverted Student-t loss. The user



CHAPTER 3. PROSPECTS AND DEVELOPMENTS 45

2 4 6 8
x

0.2

0.4

0.6

0.8

1.0

L

5

2

1

Figure 3.5: Inverted Student-t losses of(T, σ) = (4, 1) with differentν’s
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Figure 3.6: Generalised Inverted Student-t losses of(T, Δ, ν) = (4, 2, 10) with
differentσ’s
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can adjust the ratio according to their own experience and own knowledge of the

loss. Asσ increases, the loss will close to be a Taguchi loss and ignores the effect

of the maximum value. In conclusion, we have some properties of this generalised

Inverted Student-t loss:

Whenσ tends to0,

lim
σ→0

L(x, T ) = lim
σ→0

KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2






= KΔ(1 − 1x=T ) = KΔ1x 6=T

(3.8)

where1x=T is the indicator function thatx = T . That is, it converges to a uniform

loss equal to the maximum loss except at the discontinuity atT .

Whenσ tends to∞,

lim
σ→∞

L(x, T ) = lim
σ→∞

KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2






=
KΔ(1 + ν)

Δ2ν
(x − T )2

(3.9)

Apparently, it is the Taguchi loss inEquation 2.1with B =
KΔ(1 + ν)

Δ2ν
.

Whenν tends to0,

lim
ν→0

L(x, T ) = lim
ν→0

KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2






=
KΔ

1 − exp

{

−
1

2
(Δ/σ)2

}

(3.10)

It is another constant loss however the process meets the target.
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Whenν tends to∞,

lim
ν→∞

L(x, T ) = lim
ν→∞

KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2






=
KΔ

1 − exp

{

−
1

2
(Δ/σ)2

}

(

1 − exp

{

−
1

2

(
x − T

σ

)2
})

(3.11)

As predicted, the Inverted Student-t loss will be the Spiring INLF asν → ∞.

Analogously, the generalised Inverted Student-t loss will be Sunet al. loss as

ν → ∞ with γ = σ.

Apparently, a question may be raised why the modification ofSun et al.(1996)

only works on Spiring INLF and the Inverted Student-t loss, but not in general. If

we have a deep investigation on the amendment ofK, the termexp [−1/2(Δ/σ)2]

is a smooth function. It has the effect when the loss being applied is also smooth

enough. In addition, another stop of the modifications is a Taguchi loss, a sym-

metric loss in the full real planeR. Hence, it is also necessary that all the losses

under modification have some common properties. In other words, this modifica-

tion works like a bridge to link two sides together, but the two sides have to be close

enough. Such as the half-plane asymmetric Inverted Gamma loss or the bounded

asymmetric Inverted Beta loss cannot have such a method to relate to the Taguchi

loss.

The loss function is a tool to depict the loss incurred from the process char-

acteristics when it is not on target. In most of the times, we need to consider the

average loss associated with a chosen loss, which is easily evaluated and compared.
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The risk function is

E[L(x, T )] =

∫

R

KΔ

1 − exp (−1/2(Δ/σ)2)





1 −

(

1 +
1

ν

(
x − T

σ

)2
)− ν+1

2





dFX

(3.12)

but generally not a closed form, even if the process characteristicX has a Student-t

distribution. Fortunately, in general, it is still easily computable in numerical.

In practice, if the loss function is chosen, the parameters of the loss are needed

to estimate to reflect the decision about the loss from the process. In many cases,

only partial information is provided whereKΔ is set to the loss when the associated

loss is atT ± Δ. Similar to the Sunet al Loss inSun et al.(1996) and IBLF in

Leung and Spiring(2002), additional “secondary information” on the losses at a

set of some additional points are required to solve the whole representation of the

loss function to meet the objective to accurately depict the losses with the target in

mind. To determine the shape parametersν andσ, we suggest to use the similar

methods by Sunet al by using a nonlinear least square search procedure by

min
ν>0, σ>0

n∑

i=1

[Li − L(yi, T )]2 (3.13)

whereLi are some additional points of{(y1, L1), ∙ ∙ ∙ , (yn, Ln)}.

The shape of the Inverted Student-t loss by definition is already scale invariant

under a linear transformation. That is, if the Inverted Student-t loss is based on

another nonstandard Student-t distribution, a similar shape with different scales

and locations of an Inverted Student-t loss will be obtained with the relationship of

the originaly = a + bx. As a result, the risk is also scale invariant under a linear

transformation.
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3.5 IPLF as a random variable

In probability and statistics, sometimes we need to calculate the expected value of a

function ofg(X), but we only know the probability density ofX. Correspondingly,

many statisticians or practitioners want to find the expected loss or the (frequentist)

expected risk of a loss function. Hence, the law of the unconscious statistician can

be applied by simply calculating

E[L(X,T )] =

∫

X
L(x, T )dFX (3.14)

and to be more correctly speaking for a estimated density, the equation is

Ê[L(X,T )] =

∫

X
L(x, T )dF̂X (3.15)

However, as the risk function is used as a tool to examine the statistical proced-

ure, we will abuse the notation to use the former equation to represent the above

equation if there is an ambiguity.

The general form of the expected value of the IPLF related toEquation 2.6is

E [L (x, T )] =

∫

X
K

{

1 −
f (x, T )

m

}

FX(dx)

= K

{

1 −
1

m

∫

X
f (x, T ) FX (dx)

}

= K

{

1 −
1

m
E [f (x, T )]

}

(3.16)

Since0 ≤ f(x, T ) ≤ m, 0 ≤ E[f(x, T )/m] ≤ 1 and so0 ≤ E[L(x, T )] ≤ K.

The central moments of orderr of the IPLF with respect to the distribution of the

underlying process, utilised to find the variance, skewness and kurtosis of the loss
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functions, related toEquation 2.6is

E [{L (x, T ) − E [L (x, T )]}r]

=

∫

X

{

K

(

1 −
f (x, T )

m

)

− E [L (x, T )]

}r

FX (dx)

= Kr

∫

X

{

E

[
f (x, T )

m

]

−
f (x, T )

m

}r

FX (dx)

= Kr

∫

X

r∑

i=0

(
r

i

){

E

[
f (x, T )

m

]}r−i{

−
f (x, T )

m

}i

FX (dx)

= Kr

r∑

i=0

(−1)i

(
r

i

){

E

[
f (x, T )

m

]}r−i

E

({
f (x, T )

m

}i
)

(3.17)

provided thatE [{f(x, T )}r] exists finitely.

Lemma 3.5.1. Everyrth central moment of IPLF is bounded below byKr(1 −

2r−1){r mod 2} and above byKr(2r−1 − 1).

Proof. SupposeY denotef(x, T )/m andμr be ther-th central moment ofY . As

shown inEquation 3.17and0 ≤ E
[
Y r
]
≤ 1 for all r,

μr = Kr
∑r

i=0
(−1)i

(
r

i

)

{E [Y ]}r−i E
[
Y i
]

≤ Kr

(∑br/2c

i=0

(
r

2i

)

− 1

)

=
(
2r−1 − 1

)
Kr

(3.18)

and

μr = Kr
∑r

i=0
(−1)i

(
r

i

)

{E [Y ]}r−i E

[{
f (x, T )

m

}i
]

≥ Kr

(

−
∑br/2c

i=0

(
r

2i

)

+ 1

)

{r (mod 2)}

= Kr
(
1 − 2r−1

)
{r (mod 2)}

(3.19)

wherer (mod 2) = 0 is even and= 1 whenr is odd.

FromLemma 3.5.1, some bounds of the variance, skewness and kurtosis of the

IPLF can be found.
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Corollary 3.5.2. Variance of the IPLF is bounded and Skewness of the IPLF is

bounded below by -3.

Proof. By Lemma 3.5.1, substitutingr = 2,

0 ≤ V [L(X,T )] = μ2 ≤ K2(2 − 1) = K2 (3.20)

Substitutingr = 2 andr = 3,

Skew[L(X,T )] =
μ3

μ
3/2
2

≥
K3(1 − 22)

K3
= −3 (3.21)

while the upper bound of skewness may be infinite.

Apparantly, thisCorollary 3.5.2gives the same special result inLeung and

Spiring(2004).

However, without the knowledge of probability density ofX, it is impossible

to use the law of the unconscious statistician. It is unlike the Taguchi loss that the

associated risk function is always

E[L(X,T )] =B[σ2 + (μ − T )2] (3.22)

provided that the distribution ofX has a finite second moment. As a result,Spiring

and Yeung(1998) introduced the concept of “conjugate loss” that the loss has to be

chosen with respect to the density ofX.

Under IPLF, the support of the density with respect to loss has to be considered

carefully. Outside the support of the associated density in creating the loss for

interests, the IPLF attains the maximum loss rather than zero. In other words, if the

suppport of the chosen associated density is less than the process density, it may
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give a great trouble in calculation. For example, inLeung and Spiring(2002), it is

claimed that the risk from Inverted Beta loss has a closed form for all distributions,

but in fact it only works if the fixed support of the distribution is equivalent to that

of the Inverted Beta loss. The following illustration shows the more general case

where we retain the parameterα.

E[L(X,T )] =

∫

X
K

{

1 −
f(x, T )

m

}

dFX

= K

{

1 −
1

m

∫

X
f(x, T )dFX

}

= K

{

1 − C

∫

[0,1]

(
x(1 − x)(1−T )/T

)α−1
dFX

}

= K

{

1 − C

∫

[0,1]

xα−1(1 − x)b dFX

}

6= K

{

1 − C

∫

R
xα−1(1 − x)b dFX

}

(3.23)

whereb = (α − 1)(1 − T )/T .

3.6 Numerical Examples

To illustrate the concepts and some nice properties of some losses described in the

previous sections, we refer to the data collected inSection 1.2for the following

discussion.

The following table shows the different associated risks or expected losses,

which is the average loss to the customers or society when the target is not aimed

with different particular chosen loss. We have two different distributions for the

same process characteristics, while Normal(49.40, 4.692) is our estimated pdf and

the other Beta(2.0994, 2.3184, 40, 60) is true. In particular, all the following cal-
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culations inTable 2.1use the same settings:K = K1 = 0.3, K2 = 0.2, KΔ =

0.3(1−e−8) = 0.2999, B = B1 = 0.1, B2 = 0.15, B3 = −0.02, B4 = 0.003, γ =

γ1 = 2, γ2 = 1, L′ = 50, U ′ = 57.5, T = 55.

Beta Normal % Change

Ryan–Barker Loss 0.2622 0.2657 1.35%
Spiring Piecewise Loss 0.2314 0.2361 2.01%

Ryan–Barker–Pan Loss 0.1386 0.1418 2.25%
Pan–Wang Loss 0.1069 0.1093 2.26%

Spiring Loss 0.2287 0.2356 3.01%
Sunet alwith γ → 0 Loss 0.2999 0.2999 1.3×10−10%
Sunet alwith γ = 2 Loss 0.2287 0.2356 3.01%

Sunet al with γ → ∞ Loss 3.6450 3.9982 9.69%

Inverted Student-t(ν → 0, σ = 2) Loss 0.7622 0.7622 1.6×10−8%
Inverted Student-t(ν = 1, σ = 2) Loss 0.5658 0.5801 2.53%

Inverted Student-t(ν = 10, σ = 2) Loss 0.5775 0.5943 2.91%
Inverted Student-t(ν → ∞, σ = 2) Loss 0.5810 0.5985 3.01%

Inverted Student-t(ν = 10, σ → 0) Loss 0.2999 0.2999 0.001%
Inverted Student-t(ν = 10, σ → ∞) Loss 4.009 4.398 9.69%

Table 3.1: (Frequentist) risk associated with different new proposed losses

From Table 3.1, it shows that the first two pairs of losses are very close and

sometimes the new proposed ones have lower changes when the distribution changes.

A slight modification of Taguchi-type losses makes them also enjoy the nice prop-

erties of IPLF. Hence, it is still hard to judge which loss is better and is up to

the taste of the decision makers. For the final Inverted Student-t loss, its flexibil-

ity makes it able to mimic both a conventional Taguchi-type and a Spiring–Yeung

IPLF. Further, Inverted Student-t Loss also generalises some cases such as constant

loss, but there is a trade-off on the impossibility to have a risk in closed form to

reduce the computational demand.
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3.7 Conclusion

This chapter develops some new losses with some new flexibilities, such as Ryan–

Barker loss, and clarifies that most modifications for either side can also use in

another side. One of the most eminent is that the Spiring–Yeung framework is

also generalised to include other kind of losses in the literature as its special case.

Different directions and some cautions are issued in finding expected losses with

IPLF.



Chapter 4

Scope of IPLF

This chapter illustrates that many different loss functions are just a special case of

IPLF, though they are well established in their own field. It also enlarges the scope

of IPLF extensively from some losses of Taguchi-type to a more general class of

losses.

4.1 Ryan loss and bounded Taguchi-type loss

Beforehand it is no harm to understand the definition of generalised IPLF before

any further discussions. IPLF was proposed inSpiring and Yeung(1998) as a

framework of some losses and bounded losses on fitting the asymmetric and sym-

metric loss. For simplicity and convenience, we will restate the the definition of

generalised IPLF inEquation 3.2.

Definition 4.1.1 (Inverted Probability Loss Function). Supposefi(x, θi) be the

probability density function (pdf) with aunique mode at̂xi and ai be the target

55
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value. Then, letai = x̂i in making a transformation such that

mi = sup
x∈Xi

fi (x, θi) = fi(ai, θi) < ∞ ∀i

The form of the Inverted Probability Loss Functions (IPLF) is proposed as

∀x ∈ Xi, L (x, {a1, a2}) =






K1

[
1 − f1(x,θ1)

m1

]
x < a1

0 a1 ≤ x ≤ a2

K2

[
1 − f2(x,θ2)

m2

]
x > a2

(4.1)

whereXi is the support of the distributionfi(x, θi) andKi > 0 may be a constant

or a function,i = 1, 2.

To show that the bounded Taguchi-type is a special case of IPLF, we first have to

find an appropriate distribution having the form of(x−T )2. In the IPLF framework,

it is simpler to seta1 = a2 = T and f1 = f2 without loss of generality. We

propose a new statistical distribution, Inverted-U quadratic distribution, in short

IUQuad(a, b). This distribution has the following probability density function (pdf)

with two parameters,a andb:

f(x) =
6(x − a)(b − x)

(b − a)3
(4.2)

where the support isx ∈ [a, b] and 0 elsewhere.

Notice that neither ofa or b are scale or location parameters, butb−a is a scale

parameter, anda is the location parameter. The next theorem will establish this

fact.

Theorem 4.1.2.If a random variableX follows IUQuad(0, b−a), then the random
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variableX + a follows IUQuad(a, b).

Proof. If X is IUQuad(0, b − a), by Equation 4.2, we have

fX(x) =
6x(b − a − x)

(b − a)3
, ∀x ∈ [0, b − a]. (4.3)

By simple manipulation,

fX+a(x) = F ′
X+a(x) = F ′

X(x − a) = fX(x − a), (4.4)

so

fX+a(x) =
6(x − a)(b − x)

(b − a)3
∀x ∈ [a, b]. (4.5)

This proves thatX + a is a IUQuad(a, b) random variable.

The parametersa andb can be any real numbers with the condition ofa < b.

With some investigations, this IUQuad(a, b) is found to be a Beta distribution with

4 parameters. Hence, we have the following theorem.

Theorem 4.1.3.IUQuad(a, b) is a linear transformation of Beta(2,2).

Proof. SupposeX follows IUQuad(a, b). Considering the density ofY = (X −

a)/(b − a), by Theorem 4.1.2, then we obtain

fY (y) = fX/(b−a)

(

y +
a

b − a

)

= fX(a + (b − a)y)

= 6y(1 − y) =
y2−1(1 − y)2−1

B(2, 2)
y ∈ [0, 1]

(4.6)

where B(∙, ∙) is the Beta function. Owing to the transformation being linear and

one-to-one, these two distributions have the same properties.
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As a result, this distribution is a transformed Beta, and so it is absolutely con-

tinuous and has a finite support. The mode is also easy to be known. Here are some

summary of some basic properties:

Support x ∈ [a, b]

Mean a+b
2

Median a+b
2

Mode a+b
2

Variance (b−a)2

20
Skewness 0

Excess Kurtosis −6
7

pdf 6(x−a)(b−x)
(b−a)3

CDF (x−a)2(3b−a−2x)
(b−a)3

MGF
6(eat(−2+at−bt)+ebt(2+at−bt))

(a−b)3t3

CF
6(eiat(−2i−at+bt)+eibt(2i−at+bt))

(a−b)3t3

Table 4.1: Distributional properties of Inverted-U quadratic distribution

It is undeniable that this Inverted-U quadratic is absolutely continuous and un-

imodal. Now, we can apply the Spiring–Yeung IPLF framework and letT =
a + b

2

be the ideal target and fixed. Thenm = supx∈[a,b] f(x) = f(T ) =
3

2(b − a)
. Thus,

L(x, T ) = K

{

1 −
f(x, T )

m

}

= K

{
(a + b − 2x)2

(a − b)2

}

∀x ∈ [a, b]

= K

{
2

b − a

}2(

x −
a + b

2

)2

= B′(x − T )21x∈[a,b] + K1x/∈[a,b]

(4.7)

whereB′ = 4K
(b−a)2

andK are both constants.

Evidently, this particular loss from IPLF is the same as Ryan loss inEqua-
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Figure 4.1: Inverted-U Quadratic density of(a, b) = (1, 7)
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Figure 4.2: IPLF from Inverted-U Quadratic density of(a, b) = (1, 7) with target
at4
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tion 2.2 by settinga = T −
√

K/B′ andb = T +
√

K/B′ respectively. This loss

is also a particular case of Inverted Beta loss (Leung and Spiring, 2002). Figure 4.1

andFigure 4.2plot the density and the loss made from IPLF. However, for the gen-

eral unbounded Taguchi loss, or the conventional quadratic loss, it cannot be fully

described in IPLF.

Seeing that IPLF is based on the probability density, the associated probability

density having a bounded support will cause the IPLF bounded. Apparently, there

is no density for the squared term(X − T )2 maintaining the support of the full

real planeR. Additionally, the shortcoming of IPLF is that it is also scale invariant

(Leung and Spiring, 2004). It is only possible to modifyK to be a piecewise

constant like

K =
(b − a)2

4
K ′1x∈[a,b] + K ′′1x/∈[a,b] (4.8)

whereK ′ andK ′′ are constants and not necessarily the same.

Taking the expected value of the loss for a particular random variableX is one

of the way to represent the usefulness of the loss. The expected value of a loss

function is also called the frequentist risk. However, the frequentist risk of this loss

is seemed rather simple but the result is not user-friendly and not solvable by hand.

We letX follow Gaussian distribution with meanμ and varianceσ2 with σ > 0,
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E[L(x, T )] =

∫

X
L(x, T )dFX = K

{

1 −
∫

X

f(x, T )

m
dFX

}

= K

{

1 −
∫

[a,b]

f(x, T )

m
dFX

}

=
K

√
π(a − b)2

e−
a2+b2+μ2

2σ2

(
√

πe
a2+b2+μ2

2σ2

{

2
(
(a − μ)(b − μ) + σ2

)

{
erf

(
b − μ
√

2σ

)

− erf

(
a − μ
√

2σ

)}
+ (a − b)2

}

+ 2
√

2σ

(

(a − μ)e
a2+2bμ

2σ2 + (μ − b)e
2aμ+b2

2σ2

))

(4.9)

where erf(x) = 2√
π

∫ x

0
exp(−t2)dt. As proved inTheorem 4.1.3that the IUQuad(a, b)

is a transformed Beta(2, 2) density.

Referring to the data set inSection 1.2, if T = 55, K = 0.3, a = 50 and

b = 60, the expected lossE[L(X,T )] = 0.214, which is more or less similar to the

expected loss under Ryan loss.

4.2 Bounded Fathi–Poonthanomsook Loss

Recall from theSection 2.3, the Fathi–Poonthanomsook-type form is

L (x, T ) = B2(x − T )2 + B3(x − T )3 + B4(x − T )4

whereB2, B3 andB4 are all constants. However, in order to makeL(x, T ) fit

for their purpose,Fathi and Poonthanomsook(2007) later needed∂xxL > 0 and

requiredB4 > 0 andB2
3 < 8

3
B2B4. In general, all constants are assumed as real

and thereforeB2 > 0, B3 ∈
{
x ∈ R | x2 < 8

3
B2B4

}
andB4 > 0.

This loss is a quartic polynomial and hence absolutely continuous and unboun-
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ded in the real plane. Here, we try to connect IPLF with this type in a reverse

process. Taking the differentiation and substitutingx + T by x, then we need to

check the determinant of a cubic equationΔ with the conditions such that it has

only one real root.

∂xL = 2B2x + 3B3x
2 + 4B4x

3

Δ = 0 − 0 + 36B2
2B

2
3 − 128B4B

3
2 − 0

= 4B2
2

(
9B2

3 − 32B2B4

)

< 4B2
2 (24B2B4 − 32B2B4)

< 0

(4.10)

Hence, the loss function has only one real root,T , which is the minimum point.

In other words, the related Inverted probability distribution is also unimodal at

T and absolutely continuous. By the familiar techniques to deal with bounded

Taguchi-type inSection 4.1, we can also suggest a suitable but more complex dis-

tribution having the functional form of(x − T )2 + (x − T )3 + (x − T )4 to get a

bounded Fathi–Poonthanomsook loss. For simplicity, we would useA,B andF as

the constants and call this distribution as “Inverted U-quartic distribution”, in short

IUQuartic (a, b, d, A,B, F ) . The followingTable 4.2collects some properties of

this distribution.

The Inverted-U quartic distribution is similar to the Inverted-U quadratic dis-

tribution, not having any possibilities with a support of an infinite range. Indeed,

∫∞
a

(x − T )p dx = ∞ if p ≥ −1 anda ≤ 0. Hence, both distributions only exist

with a finite support. The main difference between the IUQuad(a, b) and IUQuartic

(a, b, d, A,B, F ) is that the parameterd is required to ensure the associated density
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Support x ∈ [a, b]

Mean
−6(a − b)2B + 20A(a + b)d + 3(a − b)2(a + b)dF

40Ad + 6(a − b)2dF

Mode
a + b

2

Variance
28(a−b)2(20A2d(5d−4)−27B2(a−b)2)+24Ad(35d−34)F (a−b)4+9d(7d−8)F 2(a−b)6

84(3dF (a−b)2+20Ad)2

PDF d+1
d(b−a)

+
(

240/d
20A(a−b)3+3(a−b)5F

) [
A
(
x − a+b

2

)2
+ B

(
x − a+b

2

)3
+ F

(
x − a+b

2

)4]

A > 0, F > 0, B2 < 8
3
AF, b > a, d ≥ 4

Table 4.2: Distributional properties of Inverted-U quartic distribution

fulfilling the condition of nonnegativity.

Due to the fact that this distribution IUQuartic(a, b, d, A,B, F ) under the con-

ditions aforementioned is a polynomial, it is absolutely continuous and unimodal.

We can then follow the steps required in Spiring–Yeung IPLF framework.

Let T =
a + b

2
be the ideal target and fixed. Thenm = supx∈[a,b] f(x) =

f(T ) =
d + 1

d(b − a)
< ∞. Thus,

L(x, T )

= K

{

1 −
f(x, T )

m

}

= K






240
[
A
(
x − a+b

2

)2
+ B

(
x − a+b

2

)3
+ F

(
x − a+b

2

)4]

(d + 1)[20A(b − a)2 + 3(b − a)4F ]






=

[
240AK

L

](

x −
a + b

2

)2

+

[
240BK

L

](

x −
a + b

2

)3

+

[
240CK

L

](

x −
a + b

2

)4

=
[
B′

2(x − T )2 + B′
3(x − T )3 + B′

4(x − T )4
]
1x∈[a,b] + K1x/∈[a,b]

(4.11)

whereB′
2, B′

3, B′
4 and K are all constants andL = (d + 1)[20A(b − a)2 +

3(b−a)4F ]. Other parametersa, b, d, A, B andF are predetermined and have to
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Figure 4.3: Inverted-U Quartic density of(a, b, d, A,B, F ) = (1, 7, 4, 1, 0.2, 0.3)
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Figure 4.4: IPLF from Inverted-U Quartic density of(a, b, d, A,B, F ) =
(1, 7, 4, 1, 0.2, 0.3)
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follow the requirements inTable 4.2. Evidently,L > 0 normally in most cases.

Referring to the data set inSection 1.2, if T = 55, K = 0.3, a = 50, b = 60,

d = 4, A = 1, B = −0.2 andF = 0.3, the expected lossE[L(X,T )] = 0.199. This

bounded loss is now tamed such that the expected loss is also below the maximum

loss.

Since we have a bounded Fathi–Poonthanomsook loss, then we also have the

associated density IUQuartic and IUQuartic loss from Spiring–Yeung framework.

Figure 4.3andFigure 4.4illustrates the associated density and the loss respectively.

If all have an alert, then all notice that under IPLF, every loss function made is

bounded and fits the requirement of the boundedness what Berger (Berger, 1985)

also discussed about an appropriate loss function. The above result is the same as

Equation 2.17whenK is set extremely large.

Summing up these two sections, IPLF is a novel framework and covers most

cases as long as the loss function has a unique minimum point. Now, we conclude

with a theorem:

Theorem 4.2.1.For any absolutely continuous loss function with a unique min-

imum, there exists at least a corresponding unimodal probability density such that

it fits the Spiring–Yeung framework of loss function.

Proof. Trivial if the loss functionL is bounded. IfL is unbounded, then it is pos-

sible to approximateL(x, T ) = K [1 − f(x)/f(T )] =⇒ f(x) = f(T )
[
1 − L

K

]

with a suitableK.
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4.3 Bounded LINEX loss

Various loss functions has been developed in the literature to suit different needs.

Upon different loss, the most popular is still the unbounded symmetric loss, such as

squared error loss, that is, Taguchi loss in quality control. However, many authors,

such asBerger(1985); Robert(1996, 2001) criticise the usage of the squared error

loss, which is nice in mathematical convenience rather than appropriateness of the

true loss representation.

In some decision problems, some types of asymmetric losses are proposed. One

of the most eminent examples is LINEX, which was proposed byVarian(1975) and

populated byZellner(1986). It was also described inPress(2002).

SupposeX be the variable that needs to meet a target from a decision. The

asymmetric LINEX loss is defined by:

L(x, T ) = b{ea(x−T ) − a(x − T ) − 1}. (4.12)

for b > 0 anda 6= 0. This loss is very flexible in capturing asymmetric loss and

the shape changes according to the parametera, because it controls the weights in

exponential side and the linear side. Evidently, both exponential and linear parts

are unbounded and so the overall loss is unbounded.

To adjust the LINEX loss being bounded, we try to use the Spiring–Yeung

framework to tame the loss. Without loss of generality, we letb = K, the multiplier.

Suppose we would like to have a maximum loss asK. Then the associated density

is



CHAPTER 4. SCOPE OF IPLF 67

∫

X

[
f(x)/f(T )

]
dx = 1/f(T ) =

∫

X

[
1 − L(x, T )/K

]
dx

=

∫ d

c

[
2 − ea(x−T ) + a(x − T )

]
dx

=
e−aT

2a

(
2eac − 2ead − a(c − d)eaT (4 + a(c + d − 2T ))

)

(4.13)

and

f(x) =
1

G
(2 − ea(x−T ) + a(x − T ) + |a| e) (4.14)

whereG =
e−aT (2eac−2ead−a(c−d)eaT (4+a(c+d−2T )))

2a
+(−c+d)e |a| and the support is

[c, d]. Sincef(x) requires to be a pdf, the parametere is needed to make sure that

f is nonnegative.
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Figure 4.5: Density from bounded LINEX of(a, c, d, e, T ) = (3, 2, 5, 5, 4)

Without loss of generality, we also assumeK = 1. Then, it is very easy to

check thatm = supX f = f(T ) < ∞. Therefore, by the Spiring–Yeung IPLF, we
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have the inverted loss from the density above.

L(x, T ) = K

{

1 −
f(x)

f(T )

}

= K

{

1 −
2 − ea(−T+x) + a(−T + x) + e |a|

1 + e |a|

}

= K

{
ea(x−T ) − a(x − T ) − 1

1 + e |a|

}

1x∈[c,d] + K1x/∈[c,d]

(4.15)

When comparing the IPLF loss from the bounded LINEX density, it is probably

worse than the one proposed byWen and Levy(2001a,b). The BLINEX by Wen

and Levy(2001b) has a support of the full plane, but under IPLF, our loss only

works on a compact set.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

0.1

0.2

0.3

0.4

0.5
L

Bounded LINEX

Figure 4.6: Bounded LINEX IPLF of(a, c, d, e, T ) = (3, 2, 5, 5, 4)

The shortcoming of IPLF is due to the fact that it is based on a density, whereas

a density has to be greater than zero and defined on a compact set mostly. On

the contrary, a random variable may have an infinite support that the losses from
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IPLF may not have. In consequence, it adds a lot of difficulties in calculating the

frequentist risk and makes higher chances prone to error. The method ofWen and

Levy (2001b) is described as below:

Let the initial unbounded loss beL′(x, T ),

L(x, T ) =
L′(x, T )

1 + L′(x, T )/K

= K

(

1 −
1

1 + K−1L′(x, T )

) (4.16)

whereK can change the shape and the maximum loss simultaneously, like the

modification ofSun et al.(1996). This method also has the capability of keeping

the support of the initial unbounded loss, which is more superior than IPLF.

Therefore, we should have a rethink whether it is possible to have any new

methods to fit the condition of a density to enlarge the scope of IPLF.

Referring to the data set for illustration inSection 1.2, if T = 55, K = 0.3,

a = 0.5, c = 40, d = 60 and e = 16, the expected loss forEquation 4.15is

E[L(X,T )] = 0.090. Under some investigations, the expected loss under Taguchi

loss is probably larger.

4.4 IPLF from Natural Regular Exponential Family

This section mainly focuses on the regular exponential family. In the previous

studies of Spiring (Spiring and Yeung, 1998; Leung and Spiring, 2002, 2004), he

and his research team tried to study one by one IPLF from the distribution from

regular exponential family: Gaussian, Gamma and finally Beta. However, there are

a lot of rooms for further studying other regular exponential family members and

an overview of the whole regular exponential family.
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In this section, we will study the exponential family first, then deal with the

Spiring–Yeung IPLF to discuss which members of the exponential family can be

utilised. Finally, we will also try to explain why certain properties for Spiring–

Yeung IPLF work.

4.4.1 A Brief Introduction of Exponential Family

A family {Pθ} of distributions in exponential family is usually written as the dens-

ities of the form (Barndorff-Nielsen, 1978; Brown, 1986; Lehmann and Casella,

1998; Liese and Miescke, 2008) with

dP (x | θ) = exp
{

η(θ)ᵀl(x) − ψ (η(θ))
}

μ(dx) (4.17)

whereμ is the appropriate dominating measure. In general, it is either Lebesgue

measure or counting measure.θ denotes the parameter in scalar or vector form.ψ,

l andη are some appropriate functions, perhaps they are continuous or not.η(θ)ᵀ

denotes the transpose ofη(θ) if η(θ) is a vector or matrix.

From what we learnt, this form can be further simplified with choosing a suit-

able dominating measure, re-parameterizing and reducing the information needed

by sufficiency. Hence, the most minimal form is

dP (x | η) = exp
{

ηᵀl(x) − ψ (η)
}

(4.18)

The natural parameter spaceN is an important concept in exponential family,

and it can further decompose the whole exponential family

N =

{

η ∈ Rk | 0 <

∫
exp
{

ηᵀl(x)
}

dν(x) < ∞

}
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If there exists aPη for eachη ∈ N , the whole family{Pη} is full by definition.

With an additional condition of the openness ofN inRk, id est, ∀η ∈ N : ∃ε > 0 3

Bε(η) ⊆ N , then it is called as theregular exponential family. Ifl(x) = x, then it

is anaturalexponential family.ψ(∙) is a normalising real-valued function while its

importance and uses can be shown below by using the characteristic functionϕ(∙)

of the general form of the regular exponential family:

1 =

∫

X
dP(x | η)

=

∫

X
exp
{

ηᵀl(x) − ψ(η)
}

dν

ψ(η) = log

[∫

X
exp
{

ηᵀl(x)
}

dν

]

(4.19)

ϕ(u) = E[exp(iuᵀX) | η]

=

∫

Ω

exp
{

iuᵀl(x) + ηᵀl(x) − ψ(η)
}

dν

= exp
{

ψ(η + iu) − ψ(η)
}∫

X
exp
{

(η + iu)ᵀl(x) − ψ(η + iu)
}

dν

= exp
{

ψ(η + iu) − ψ(η)
}

(4.20)

Hence, since the characteristic functionϕ(∙) is one of the generating function of all

the moments of the random variableX, the differentiability and the smoothness of

ψ(∙) controls the existence of all moments and the shape of the density ofX.

From now on, two main assumptions have to be made. The parameter set is

open and nonempty and the regular exponential family has full rank. The results of

Barndorff-Nielsen(1978) andBar-Lev et al.(1992) also indicated that full natural

regular exponential family and even full regular exponential family also contains

the infinite-divisible elements and self-decomposable elements. Under the condi-

tions in the Theorem 3.2 inBar-Lev et al.(1992) and Yamazato result (Lukacs,
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1983), some distributions, no matter whether they are univariate or multivariate,

in the family, such as Gaussian, Gamma, Beta, Hyperbolic, Pareto, are unimodal.

Hence, all can be used to produce the relevant loss function with the Spiring–Yeung

general class. LetT be the unique mode less than infinity,

L(x, T ) = K

{

1 −
dP(x | η)

supX dP(x | η)

}

= K

{

1 −
f(x)

f(T )

}

= K





1 −

exp
{

ηᵀl(x) − ψ (η)
}

exp
{

ηᵀl(T ) − ψ (η)
}






= K
{

1 − exp
{

ηᵀ[l(x) − l(T )]
}}

(4.21)

However, with the implicit assumption of unimodality, not all members can

work under IPLFs. Due to different definition of unimodality in continuous type

distribution and discrete type distribution, we have to divide into two cases.

If υ = − log dP is quasi-convex, the distribution is unimodal; ifυ is convex,

the distribution will be strongly unimodal. Since convexity implies quasi-convexity

but not the converse, it is apparently that strongly unimodality automatically im-

plies unimodality. Since unimodality is a very weak property that only a limited

of fruitful results are obtained. In the latter part, we only focus on the strongly

unimodal members, even if unimodality is already enough for setting IPLFs.

One of the major remarkable results for studying strongly unimodality is shown

in the next theorem, which is well proven in many literature, such asBarndorff-

Nielsen(1978); Brown (1986); Dharmadhikari and Joag-Dev(1988); Bertin et al.

(1997).

Theorem 4.4.1.Any marginal distributions or convolutions of a strongly unimodal
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distributions are again strongly unimodal.

That is, if the distribution is strongly unimodal, then the marginal is also strongly

unimodal. Hence, Dirichlet distribution with all parameters≥ 1 is strongly unim-

odal, the marginal distribution of Dirichlet, Beta distribution with all parameters

≥ 1, is also strongly unimodal.

For the strongly unimodal members, they have some common properties:

A. All moments exist. (Bertin et al., 1997)

B. Marginal distribution and convolutions of strongly unimodal of same type

are strongly unimodal again. (Barndorff-Nielsen, 1978)

C. [f (i)]2 > f (i − 1) f (i + 1) , i ∈ Z for discrete members. (Barndorff-

Nielsen, 1978; Bertin et al., 1997)

4.4.2 Spiring–Yeung IPLF Framework with Exponential Fam-

ily

In consequence, only those members having the strongly unimodal properties is

suitable for setting IPLFs without any problems for fitting the requirements of un-

imodality and boundedness. All members belong to the natural regular exponential

family. That is, if the density is from other families, such as curved exponential

family, it is not guaranteed that the density can be applied in Spiring–Yeung IPLF

framework.

The followings are those continuous members in the exponential family suitable

for IPLFs:
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• Multivariate Normal

• Gamma with shape parameter≥ 1

• Laplace with known mean

• Generalized inverse Gaussian with power parameter of 1

• Multivariate Hyperbolic

• Dirichlet with all parameters≥ 1

• Wishart

Because there is still no process following discrete distribution, the loss func-

tion as a discrete function is very limited. This result opens a new door to the uses

of discrete pdfs. Until now, the study on Spiring–Yeung IPLF is quite limited, there

is also none of the research about the discrete distribution in the loss functions as

well. Under the framework of IPLF, it is possible to make a discrete loss with the

following strongly unimodal members in the exponential family:

• Poisson

• Negative Binomial with shape parameter≥ 1

• k-Negative Multinomial with shape parameter≥ k

• Multinomial

• Multivariate Hyperbolic

• Multivariate hypergeometric

Another interesting investigation is that the Spiring–Yeung framework does not
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have any explicit requirements in the normalising real-valued functionψ(∙). On the

contrary, this normalising real-valued function controls whether all moments exist

and therefore the density has a unique mode or not. Some restrictions are implicit

thatψ(∙) is able to infinitely often differentiable.

4.4.3 Rationale behind Spiring–Yeung IPLF

The Spiring–Yeung IPLF framework was discovered by Spiring and Yeung in an

ad-hocway by just plucking some common densities from full regular exponential

family. There are certain restrictions and rooms for further study.

In general, the Spiring–Yeung IPLF framework requires to find the mode as the

target and change the parameter space to include the mode. It is not trivial to assure

that it works most of the time. The form will transform to a different expression of

parametrising an exponential family to get the mean equivalent to the mode. For

example, to construct the Inverted Beta loss inLeung and Spiring(2002) has to

change the Beta distribution with parameters(α, β) to that with parameters(T, α).

I would like to call this re-parametrisation as “modal value parametrisation”.

Similar to the mean value parametrisation, we need the following theorem to char-

acterise for regular exponential family, which is proven inBrown(1986); Liese and

Miescke(2008).

Theorem 4.4.2.The mapping

g : η 7→ ∇ψ(η) = Eη [l(x)] (4.22)

is a diffeomorphism ofN onto the open setg(N◦), whereN◦ is the interior of N.

In regular exponential family, we can always represent the exponential family
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in the modal value parametrisation, for allη ∈ N◦, byPg′(l), T ∈ g′(N◦) to change

the parametrisation such thatEg′(l) = T by using the theorem above. That is, it is

always possible to change the parametrisation to be that one of them isT where

the number of parameters is unchanged. On the contrary, if the density does not

belong to regular exponential family, the re-parametrisation may fail and it may not

be used in Spiring–Yeung IPLF framework, even though the density is unimodal.

4.4.4 Re-examining the “Conjugate Distribution”

As the form is explicit now, we can switch our focus to study the concept of “con-

jugate distribution” inSection 2.4. FromEquation 3.16,

E[L(x, T )] is in closed form⇐⇒ E[f(x, T )] is in closed form

Hence, the focus may be changed to look atE[f(x, T )]. Meanwhile,f(x, T ) is

also a pdf with reparameterization and so have its own support,Xp. Suppose the

underlying distribution is a member in the exponential family,

E[f(x, T )] =

∫

X
f(x, T ) dP(x | η)

=

∫

X∩Xp

f(x, T ) exp
{

ηᵀl(x) − ψ(η)
}

dν

+

∫

X∩X {p

exp
{

ηᵀl(x) − ψ(η)
}

dν

(4.23)

That is, to check thatE[f(x, T )] is in closed form, two conditions have to be

met:
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A. f(x, T ) has to match the mathematical form of the exponential family such

that it can be written as the same density with some new parameters;

B. The second term needs to vanish and thus it is necessary to haveXp being

larger than or equal toX .

In summary, if the expected loss is in closed form and{Pη} is full and regular,

f(x, T ) has to be in the same member of exponential family as well. It is also the

reason why an IPLF from a particular density with respect to its density gives the

expected loss in closed form.

4.5 Conclusion

This chapter studied whether it is possible to get the associated density with the

given loss functions. The shortcoming of IPLF is formed by a density function,

but the density function may be only valid in a bounded support. This situation

occurs in such as bounded Taguchi-type, bounded Fathi loss and bounded LINEX

as some particular examples. IPLF can mimic them when these are bounded, but

not in the most available form. In the final part, the common IPLF in literature is

formed from the exponential family member. Many IPLFs from the exponential

family members are well studied and the conditions whether which members from

exponential family are examined. Finally, this chapter also gives some explanations

why some will give an expected loss in closed form.



Chapter 5

Generalised Lambda Distribution

and IPLF

The Generalised Lambda distribution is a distribution based on the quantiles in-

stead of the realisation of a random variable and hence the support is in a variable

range from bounded range to infinite range. In general, it is also very powerful

and extensive such that it can approximate any univariate probability density. This

chapter discusses the Generalised Lambda distribution and follows the practice of

Spiring and Yeung(1998) in a more restrictive Tukey lambda distribution in IPLF.

5.1 Introduction

In Spiring and Yeung(1998), Tukey lambda distribution was also discussed, but

this distribution is completely contrast to the ones frequently used, which are some

members of exponential family. Tukey lambda distribution is based on quantile

function, which is the inverse of the common probability function. The Tukey

lambda distribution was first initiated inHastings et al.(1947) and studied in depth

78
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by Tukey(1960). After various research, the Tukey lambda distribution was gen-

eralised from a 3-parameters distribution to a Generalised Lambda distribution of

4 parameters byRamberg and Schmeiser(1972, 1974) andRamberg et al.(1979).

This Generalised Lambda distrbution was also studied extensively in the excel-

lent monographs byKarian and Dudewicz(2000, 2011) and we will use them as

the main references. In the meanwhile, a different parametrisation of 4-parameter

GLD was suggested inFreimer et al.(1988). With a few discussions inGilchrist

(2002), a 5-parameter GLD was proposed.

The Generalised Lambda distribution, in short GLD, is absolutely continuous

distribution. Since it is based on quantiles rather than the realisation of a random

variable, we simply have a review on those basic concepts on quantiles.

For any random variableX, the cumulative distribution function (cdf) ofX is

FX(x) = P[X ≤ x] =

∫

(−∞,x]

dFX (5.1)

Obviously, if we further know that the distribution is absolutely continuous with

respect to another measure, sayμ, then

FX(x) =

∫

(−∞,x]

dFX

dμ
μ(dx) =

∫

(−∞,x]

f(x) μ(dx) (5.2)

wheref(x) is referred as probability density function (pdf) ifμ is Lebesgue meas-

ure or probability mass function (pmf) ifμ is counting measure. Then we will

further define the quantile function as follows:

Q(p) = F−1
X (p) := inf

x∈R
{x | FX (p) ≥ y} , 0 ≤ p ≤ 1. (5.3)
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where the domain ofQ(p) is bounded and the range may be infinite. IfX has an ab-

solutely continuous distribution (with respect to Lebesgue measure),Q(FX(x)) =

x andFX(Q(p)) = p.

One particular example is the standard Uniform distribution. The following

shows the distribution, density and quantile respectively. IfZ ∼ U(0, 1), then

fZ(z) = 1z∈[0,1]

FZ(z) = z1z∈[0,1] + 1z≥1

QZ(y) = y1y∈[0,1]

(5.4)

where1∙ is the indicator function.

In this chapter, we propose to extend the IPLF with the Generalised Lambda

distribution which is a natural generalisation of Tukey symmetric lambda distribu-

tion used inSpiring and Yeung(1998). This distribution with new parametrisation

also gives a reasonable interpretation why it is defined such a way to cover any 4-

parameter Generalised Lambda distribution. Numerical examples are also provided

to demonstrate the applications of how to select the parameters and calculate the

expected loss.

5.2 Generalised Lambda Distribution

The most general expression for the Generalised Lambda distribution with 5 para-

meters,λ1, λ2, λ3, λ4, λ5, in short, GLD(λ1, λ2, λ3, λ4, λ5), is stated in terms of a

quantile function of the form:
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Q(p | λ1, λ2, λ3, λ4, λ5) =

[

λ1 +
1 − λ5

λ2λ3

(pλ3 − 1) −
1 + λ5

λ2λ4

((1 − p)λ4 − 1)

]

1p∈[0,1]

(5.5)

Evidently, whenλ1 = 0 andλ2 = 1, λ3 = λ4 = λ andλ5 = 0, this GLD

(0, 1, λ, λ, 0) is the Tukey symmetric lambda distribution described inTukey(1960)

andSpiring and Yeung(1998). This form of 5-parameter GLD is briefly described

as a natural generalisation of 4-parameter inGilchrist (2002), but we use a different

parametrisation. So far in the literature, there are two different parameterisations

for 4-parameter GLD, both also defined by a quantile function as well. The first

one was proposed byRamberg and Schmeiser(1972, 1974) and the form is

Q(p | λ1, λ2, λ3, λ4) = λ1 +
pλ3 − (1 − p)λ4

λ2

, 0 ≤ p ≤ 1, (5.6)

whereas the second one was proposed byFreimer et al.(1988).

Q(p | λ1, λ2, λ3, λ4) = λ1 +
pλ3 − 1

λ2λ3

+
(1 − p)λ4 − 1

λ2λ4

, 0 ≤ p ≤ 1. (5.7)

The 4 parameters control the shape, the location and the scale. In addition, GLD

is an absolutely continuous distribution. It seems that this GLD is also a member

of location-scale family, which is proved in the next theorem.

Theorem 5.2.1.GLD (λ1, λ2, λ3, λ4, λ5) belongs to the location-scale family, where

λ1 is the location parameter andλ2 is the scale parameter.
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Proof. Let X ∼ GLD (0, 1, λ3, λ4, λ5), by Equation 5.5,

QX(p) =

[
1 − λ5

λ3

[
pλ3 − 1

]
−

1 + λ5

λ4

[(1 − p)λ4 − 1]

]

1p∈[0,1] (5.8)

ConsideringX ′ = λ1 + X
λ2

, by the change of measure,

FX′(x) = P[X ′ ≤ x] = P
[
X ≤

(
x − λ1

)
λ2

]
= FX

(
(x − λ1)λ2

)
(5.9)

and therefore by the absolutely continuity of GLD, letFX

(
(x − λ1)λ2

)
= p, we

have

QX(p) = λ2(x − λ1)

=

[
1 − λ5

λ3

[
pλ3 − 1

]
−

1 + λ5

λ4

[(1 − p)λ4 − 1]

]

1p∈[0,1]

x =

[

λ1 +
1 − λ5

λ2λ3

[
pλ3 − 1

]
−

1 + λ5

λ2λ4

[(1 − p)λ4 − 1]

]

1p∈[0,1]

(5.10)

Similarly, taking the quantile function with respect toX ′, we have

QX′(p) = x =

[

λ1 +
1 − λ5

λ2λ3

[
pλ3 − 1

]
−

1 + λ5

λ2λ4

[(1 − p)λ4 − 1]

]

1p∈[0,1] (5.11)

This proves thatX ′ also follows GLD(λ1, λ2, λ3, λ4, λ5), whereλ1 is the location

parameter andλ2 is the scale parameter.

By Theorem 5.2.1, it is easy to know thatλ2 cannot be 0, because it is a scale

parameter. Theλ1, λ3 andλ4 has no restrictions. In a special case of GLD, Tukey

3-parameter symmetric lambda distribution will converge to a standard logistic dis-

tribution whenλ3 = λ4 = λ → 0.

In this most general GLD,λ1 is the location parameter andλ2 is the scale para-
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meter. For convenience, we only allowλ2 > 0. While the left tail is controlled by

λ3, the right tail is controlled byλ4. λ5 is used to control some part of skewness

and has to be bounded by−1 and1. Without loss of generality, we setλ1 = 0 and

λ5 = −1 andλ2 = 1 to see whetherλ3 andλ4 can be zero. Since

lim
λ3→0

Q(p) = lim
λ→0

pλ3 − 1

λ3

= log p,

we can remove the discontinuity at0 by setting(pλ3 − 1)/p = log p whenλ3 = 0.

Similarly, this is also applied forλ4. In sum,λ1, λ3, λ4 ∈ R, λ2 > 0 andλ5 ∈

(−1, 1).

For being used in IPLF, the density is inevitable and necessary, but it is im-

possible to write the density in full for GLD. We also need the density form of

this GLD and it is needed to have a further discussion on choosing the density as

unimodal and bounded.

Lemma 5.2.2.For the GLD(λ1, λ2, λ3, λ4, λ5), the probability density function for

a random variableX with bothλ3, λ4 6= 0 is

fX(x) =
λ2

(1 − λ5)pλ3−1 + (1 + λ5)(1 − p)λ4−1
1p∈(0,1) (5.12)

wherep = FX(x).

Proof. Since byTheorem 5.2.1, GLD (λ1, λ2, λ3, λ4, λ5) is a location-scale fam-

ily. Hence, by the properties of location-scale family, we can only consider GLD

(0, 1, λ3, λ4, λ5) without loss of generality as

f(x) = af(a(x + t))
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wherea andt are the scale and location parameter respectively.

Hence, forX ′ ∼ GLD (0, 1, λ3, λ4, λ5), we have, by the Inverse Function The-

orem andEquation 5.5that,

fX′(x) = F ′
X′(x) =

1

Q′
X′(FX′(x))

=
1

(1 − λ5) [FX′(x)]λ3−1 + (1 + λ5) [1 − FX′(x)]λ4−1

=
1

(1 − λ5)pλ3−1 + (1 + λ5) (1 − p)λ4−1
1p∈[0,1]

(5.13)

wherep = FX′(x) and the general probability density function follows by mul-

tiplying the parameterλ2 and transforming back to the original form of the random

variable analogous toTheorem 5.2.1.

Obviously, a functionf(x) is a probability density function if it satisfies the

conditions of nonnegativity and almost surely boundedness and it integrates to 1

over the whole space. Since we requireλ2 > 0 and λ5 ∈ (−1, 1), under this

parametrisation, GLD(λ1, λ2, λ3, λ4, λ5) always have a vaild density and this situ-

ation is unlikeKarian and Dudewicz(2000, 2011) that they have to specify which

regions of the parameters(λ3, λ4) to make GLD valid.

Since0 ≤ p ≤ 1 in Equation 5.5, after considering the other cases andLemma 5.2.2,

we immediately have the followingTheorem 5.2.3.

Theorem 5.2.3.The GLD(λ1, λ2, λ3, λ4, λ5) of Equation 5.5is valid in the para-

meter space whereλ1, λ3, λ4 ∈ R, λ2 > 0 andλ5 ∈ (−1, 1). In particular, the
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GLD (λ1, λ2, λ3, λ4, λ5) has a valid density as follows:

fX(x) =






λ2

(1 − λ5)pλ3−1 + (1 + λ5)(1 − p)λ4−1
1p∈(0,1) λ3, λ4 6= 0,

λ2

(1 − λ5)/p + (1 + λ5)(1 − p)λ4−1
1p∈(0,1) λ3 = 0, λ4 6= 0,

λ2

(1 − λ5)pλ3−1 + (1 + λ5)/(1 − p)
1p∈(0,1) λ3 6= 0, λ4 = 0,

λ2

(1 − λ5)/p + (1 + λ5)/(1 − p)
1p∈(0,1) λ3 = λ4 = 0,

0 otherwise.

(5.14)

where0 ≤ p = FX(x) ≤ 1.

To find the density suitable for IPLF, the investigation of the possible shapes of

the density is needed to ensure that there is only one relative extreme point. The

point is also where the GLD(λ1, λ2, λ3, λ4, λ5) has a relative maximum or relative

minimum, but we also make sure that the point is a relative maximum.

Theorem 5.2.4.The local extremes of the GLD(λ1, λ2, λ3, λ4, λ5) density occur

at values ofp where

g(p) =
pλ3−2

(1 − p)λ4−2
=

(λ4 − 1)(1 + λ5)

(λ3 − 1)(1 − λ5)
(5.15)

for anyλ3 6= 1 andλ4 in R without any restrictions.

Proof. Since GLD(λ1, λ2, λ3, λ4, λ5) is under location-scale family byTheorem 5.2.1,

the location and shape parameter is irrelevant to the shape, we only consider the

“standard” GLD(0, 1, λ3, λ4, λ5) without loss of generality. ByTheorem 5.2.3, we
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have

fX(x) =






1

(1 − λ5)pλ3−1 + (1 + λ5)(1 − p)λ4−1
1p∈(0,1) λ3, λ4 6= 0,

1

(1 − λ5)/p + (1 + λ5)(1 − p)λ4−1
1p∈(0,1) λ3 = 0, λ4 6= 0,

1

(1 − λ5)pλ3−1 + (1 + λ5)/(1 − p)
1p∈(0,1) λ3 6= 0, λ4 = 0,

1

(1 − λ5)/p + (1 + λ5)/(1 − p)
1p∈(0,1) λ3 = λ4 = 0

(5.16)

and 0 otherwise. DifferentiatingfX(x) with respect tox, we get

f ′
X(x) =

(
df

dp

)(
dp

dx

)

=

(
df

dp

)

fX(x)

=






− (1−λ5)(λ3−1)pλ3−2−(1+λ5)(λ4−1)(1−p)λ4−2

[(1−λ5)pλ3−1+(1+λ5)(1−p)λ4−1]
3 1p∈(0,1) λ3, λ4 6= 0,

−
− 1−λ5

p2 −(1−p)λ4−2(λ4−1)(1+λ5)

[(1−λ5)/p+(1+λ5)(1−p)λ4−1]
3 1p∈(0,1) λ3 = 0, λ4 6= 0,

−
−pλ3−2(−1+λ3)(λ5−1)+

1+λ5
(1−p)2

[(1−λ5)pλ3−1+(1+λ5)/(1−p)]
3 1p∈(0,1) λ3 6= 0, λ4 = 0,

−
− 1−λ5

p2 +
1+λ5

(1−p)2

[(1−λ5)/p+(1+λ5)/(1−p)]3
1p∈(0,1) λ3 = λ4 = 0

(5.17)

and 0 otherwise.

Therefore, we have 4 different cases to be considered. SincefX(x) ≥ 0, we

can getf ′
X(x) = 0 by setting the numerator equal to 0.

Case A:λ3, λ4 6= 0, f ′
X(x) = 0 if and only if

g(p) =
pλ3−2

(1 − p)λ4−2
=

(λ4 − 1)(1 + λ5)

(λ3 − 1)(1 − λ5)
(5.18)

Case B:λ3 = 0, λ4 6= 0, f ′
X(x) = 0 if and only if

g(p) =
1

p2(1 − p)λ4−2
= −

(λ4 − 1)(1 + λ5)

1 − λ5

(5.19)
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Case C:λ3 6= 0, λ4 = 0, f ′
X(x) = 0 if and only if

g(p) = pλ3−2(1 − p)2 = −
1 + λ5

(λ3 − 1)(1 − λ5)
(5.20)

Case D:λ3 = λ4 = 0, f ′
X(x) = 0 if and only if

g(p) =
(1 − p)2

p2
=

1 + λ5

1 − λ5

(5.21)

Combining the results of the 4 cases, the theorem is obtained.

Evidently, the shape of the GLD is controlled by the functiong and we will

referg as the shape function of GLD. By investigating the shape function, we have

the following theorem for the unimodality of GLD.

Before we can further discuss the shape functiong(∙), we have to rewritefX(x)

in terms of the quantile functionQ(p). It is easy to observe fromLemma 5.2.2that

f ′
X(x) =

d

dx
fX(x) =

d

dp

(
1

Q′
X(p)

)(
1

Q′
X(p)

)

= −
Q′′

X(p)

[Q′
X(p)]3

1p∈(0,1)

(5.22)

wherep = FX(x). That is,Q′′
X(p) = 0 ⇐⇒ g(p) = (λ4−1)(1+λ5)

(λ3−1)(1−λ5)
. Analogously,

differentiatingf ′
X(x) again with respect tox, we have by the chain rule,

f ′′
X(x) =

d

dx
f ′

X(x) =
d

dp

(

−
Q′′

X(p)

[Q′
X(p)]3

)(
1

Q′
X(p)

)

=

(
3 [Q′′

X(p)]2 [Q′
X(p)]2 − [Q′

X(p)]3 Q′′′
X(p)

[Q′
X(p)]6

)(
1

Q′
X(p)

)

=
3 [Q′′

X(p)]2 Q′
X(p) − [Q′

X(p)]2 Q′′′
X(p)

[Q′
X(x)]6

1p∈(0,1)

(5.23)
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Thus, the quantile functionQX(p) and its derivatives can fully explain the shape,

the convexity and the unimodality of GLD.

The focus is on a particular pointx0 such thatf ′
X(x0) = 0 andfX(x0) > 0.

Consequently, a corresponding pointp0 defined to bep0 = FX(x0) will have the

condition thatg(p0) = (λ4−1)(1+λ5)
(λ3−1)(1−λ5)

and henceQ′′
X(p0) = 0. As a result, it can be

simplified to

f ′′
X(x0) =

{

−
Q′′′

X(p0)

[Q′
X(p0]

4

}

1p∈(0,1) (5.24)

Apparently,f ′′
X has the opposite sign asQ′′′

X when we want to know more about the

stationary pointx0. For the convenience, we also show the third derivative ofQ′′′
X

below.

Q′′′
X(p) =






− p−3+λ3 (−2 + λ3) (−1 + λ3) (−1 + λ5)

+ (1 − p)−3+λ4 (−2 + λ4) (−1 + λ4) (1 + λ5)

λ3, λ4 6= 0,

2−2λ5

p3 + (1 − p)−3+λ4 (−2 + λ4) (−1 + λ4) (1 + λ5) λ3 = 0, λ4 6= 0,

−p−3+λ3 (−2 + λ3) (−1 + λ3) (−1 + λ5) −
2(1+λ5)
(−1+p)3

λ3 6= 0, λ4 = 0,

2
(

1
(1−p)3

+ 1
p3 +

(
1

(1−p)3
− 1

p3

)
λ5

)
λ3 = λ4 = 0.

(5.25)

where 0 otherwise andQ′′′
X(x) is only well defined while0 < p < 1.

We now can prove a theorem on the unimodality of GLD with both conditions

from the properties of shape functiong defined inEquation 5.15andQ′′′
X(p).

Theorem 5.2.5.The GLD(λ1, λ2, λ3, λ4, λ5) is unimodal when bothλ3, λ4 > 2 or

bothλ3, λ4 < 1.
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Proof. First of all, we have to ensure that GLD has a unique local extremum. By

Theorem 5.2.4, we have the shape functiong in Equation 5.15with the form

g(p) =
pλ3−2

(1 − p)λ4−2
1p∈(0,1) (5.26)

Differentiatingg again with respect top,

g′(p) = (1 − p)1−λ4xλ3−3 [−2 + (p − 1)λ3 + pλ4]1x∈(0,1)

= C [(p − 1) (λ3 − 2) + p (λ4 − 2)]1p∈(0,1)

(5.27)

whereC ≥ 1. Apparently, when bothλ3, λ4 > 2, g′(p) > 0 for all p ∈ (0, 1). It is

obvious thatg is a also continuous function.

lim
p→0+

g(p) = 0 and lim
p→1−

g(p) = ∞ (5.28)

Therefore,g(x) is monotonic increasing when bothλ3, λ4 > 2 andg(p) pass

through each point exactly once.g(p) holds the only critical point of the density of

the GLD once such that there exists only one pointp̃ with g(p̃) = (λ4−1)(1+λ5)
(λ3−1)(1−λ5)

.

However, it does not tell us that the relative extremum is a maximum or a min-

imum. ByEquation 5.24andEquation 5.25, f ′′
X(x) < 0 ⇐⇒ Q′′′

X(p) > 0. That is,

supposeQX(p̃) = x̃, f ′′
X(x̃) < 0 for all p asλ3, λ4 > 2, this unique local extreme

x̃ is the mode of the GLD(λ1, λ2, λ3, λ4, λ5).

Similarly, when bothλ3, λ4 < 2, g′ < 0 for all p ∈ (0, 1). In addition,

limx→0+ g(p) = ∞ andlimx→1− g(p) = 0. Therefore,g(x) is monotonic decreas-

ing when bothλ3, λ4 < 2 and leading to a unique solution ofg(p)− (λ4−1)(1+λ5)
(λ3−1)(1−λ5)

=

0. However,Q′′′
X(p) > 0 as bothλ3, λ4 < 1 such thatf ′′

X(x̃) < 0 if x̃ = QX(p̃) with
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p̃ is the solution. Combining the two conditions,λ3, λ4 < 1 will also guarantee the

unimodality of GLD.

TheTheorem 5.2.5recognises which regions of parameters will get a unimodal

shape for GLD(λ1, λ2, λ3, λ4, λ5). Moreover, byGilchrist (2002), the tails of the

density ofX are also controlled byλ3 andλ4 respectively. Ifλ3 ≤ 0, the left tail

range will be(−∞, λ1), whereasλ4 > 0, the left tail range will be(λ1−λ2/λ3, λ1).

Analogously, ifλ4 ≤ 0, the right tail range will be(λ1,∞), whereasλ4 > 0, the

right tail range will be(λ1, λ1 + λ2/λ4). That is, a GLD(λ1, λ2, λ3, λ4, λ5) with

unique mode can capture both unbounded support and bounded support.

0.4 0.2 0.2 0.4
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f

GLD 0,1,5,3,0

GLD 0,1,3,5,0

Figure 5.1: Densities of GLD(0, 1, 3, 5, 0) and GLD(0, 1, 5, 3, 0)

We can further show our examination by using the reciprocal rule of the quantile

function. SupposeY = 1/X and let the pth-quantile ofY beyp with a correspond-
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ing valuexp

p = FY (yp) = P(Y ≤ yp) = P(X > xp) = 1 − FX(xp) (5.29)

Clearly,yp = 1/xp = 1/QX(1 − p) and we obtainQX(1 − p)Q1/X(p) = 1.

2.5 3.0 3.5 4.0
x

1

2

3

4

f

GLD 3,1,1.2,4,0.75

GLD 3,1,1.2,4,0

Figure 5.2: Densities of GLD(3, 1, 1.2, 4, 0) and GLD(3, 1, 1.2, 4, 0.75)

In general,λ5 6= 0, the two tails of GLD is not symmetric, but ifλ5 = 0, then

Q1/X(p) = 1/QX(1−p) = 1/

[

λ1 +
1

λ2λ4

(pλ4 − 1) −
1

λ2λ3

((1 − p)λ3 − 1)

]

1p∈[0,1]

(5.30)

which is the reciprocal of the symmetric image of quantile function where the pair

(λ3, λ4) is reversed. Hence, the reciprocal ofX is described by the quantile func-

tion. TheFigure 5.1shows clearly the symmetric properties aboutλ3 andλ4 where

the pair of parameters is interchanged . Whenλ5 is very close to−1 or 1, it can

nullify the effect of eitherλ3 or λ4 and amplify the other tail. It is possible to make
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a non-unimodal density may become unimodal, which is illustrated inFigure 5.2.

For the shape of GLD(λ1, λ2, λ3, λ4, λ5) distributions, it can also be well stud-

ied with the shape functiong, the second derivative of the quantile function,Q′′
X

and the third derivative of the quantile function,Q′′′
X . This also matches the table

provided inGilchrist (2002) for 4-parameter GLD. With the similar approach in

Theorem 5.2.5, the following result is summarised in theTable 5.1:

λ3 λ4 Distributional Form

(−∞, 1) (−∞, 1) Unimodal
[1,∞) (−∞, 1) Monotone decreasing

1 1 Uniform
(1, 2] [1, 2] U-shaped
(2,∞) [1, 2] S-shaped
(2,∞) (2,∞) Unimodal

Table 5.1: Shapes of Generalized Lambda distributions

5.3 Application with IPLF

After discussing the Generalised Lambda distribution, we will discuss how to use

in the IPLF framework. IPLF was proposed bySpiring and Yeung(1998) for a

general class of loss. The main procedure is as follows.

Definition 5.3.1(Inverted Probability Loss Function). Supposefi(x, θ) be the prob-

ability density function (pdf) with a unique mode atx̂i andai be the target value.

Then, letai = x̂i to make a transformation such that

mi = sup
x∈Xi

fi (x, θi) = fi(ai, θi) < ∞ ∀i
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The form of the Inverted Probability Loss Functions (IPLF) is proposed as

∀x ∈ Xi, L (x, {a1, a2}) =






K1

[
1 − f1(x,θ1)

m1

]
x < a1

0 a1 ≤ x ≤ a2

K2

[
1 − f2(x,θ2)

m2

]
x > a2

(5.31)

whereXi is the support of the distributionfi(x, θ) andKi > 0 may be a constant

or a function.

Evidently, this definition is a more general form. We can setK1 = K2 = 1 and

a1 = a2 = T without loss of generality. For GLD(λ1, λ2, λ3, λ4, λ5) able to suit

IPLF, it is necessary to be unimodal and hence bothλ3, λ4 < 1 or bothλ3, λ4 > 2

by Theorem 5.2.5.

In order to develop the loss from different target from this distribution, we need

to characterise the target of interest with this distribution, theλ1 may be needed

to be modified by choosing the target valuex(p̃). λ1 is the location parameter by

Theorem 5.2.1. That is,

x(p) =

[

λ1 +
1 − λ5

λ2λ3

[
pλ3 − 1

]
−

1 + λ5

λ2λ4

[(1 − p)λ4 − 1]

]

1p∈[0,1] (5.32)

Obviously, byTheorem 5.2.4, for any local extrema, they also satisfy the equal-

ity in Equation 5.15. The equation is not solvable by hand, since it is a nonlinear

equation without knowing the degrees, which is a situation unlike the 3-parameter

Tukey symmetric lambda density inSpiring and Yeung(1998). Although it is not

solved algebraically without specifyingλ3, λ4 andλ5, it guarantees the existence

of the solution and is solvable after realising the parameter values.
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For instance, if we know that(λ2, λ3, λ4, λ5) = (1, 0.5,−2,−0.1), then it is

appropriate byTheorem 5.2.5for being used in IPLF. It is easily figured out that

the support of the density is(−2,∞). FromEquation 5.15, we can also solve the

optimal p̃. By machine solving,̃p = 0.194479. As a result, byLemma 5.2.2,

sup f(x(p) | λ2, λ3, λ4, λ5) =
λ2

(1 − λ5)p̃λ3−1 + (1 + λ5)(1 − p̃)λ4−1

= 0.237177

(5.33)

Then, the target value has to be chosen to getx(p̃), sayT , so

λ1 = x(p̃) −
1 − λ5

λ2λ3

[
p̃λ3 − 1

]
+

1 + λ5

λ2λ4

[(1 − p̃)λ4 − 1]

= T + 0.986287

(5.34)

This is also the one mistake often made to assume that theλ1 = T .

By the Spiring–Yeung framework, he IPLF based on this distribution can be

written as

L(x(p), T ) = K

{

1 −
fX(x)

0.237177

}

= K

{

1 −
1

0.237177[1.1p−0.5 + 0.8(1 − p)−3]

} (5.35)

Therefore, the corresponding distribution for this IPLF is GLD(T + 0.986287,

1, 0.5, −2, −0.1). The associated graph,Figure 5.3andFigure 5.4illustrate the

loss from the Generalised Lambda distribution.

Definitely, the Inverted Tukey loss inSpiring and Yeung(1998) is a special

case of this IPLF from the Generalised Lambda distribution, as Tukey distribution
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Figure 5.3: Density of GLD(T + 0.986287, 1, 0.5, −2, −0.1) with T = 2
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Figure 5.4: Associated IPLF from GLD(T + 0.986287, 1, 0.5, −2, −0.1) with
T = 2
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is GLD (λ1, 1, λ, λ, 0) in the nonstandard form. With the unbounded support,λ3, λ4

has to be chosen both less than 0. With the bounded support,λ3, λ4 can be both

chosen to be inside(0, 1) or both greater than 2. This is one of the most flexible

family of distributions so that it may ease the problem that the IPLF not able to

extend to infinite support.

Referring to the data set for illustration inSection 1.2, if T = 55, the associ-

ated density for loss is GLD(T + 0.986287, 1, 0.5, −2, −0.1) andK = 0.3, the

expected lossE[L(X,T )] = 0.271, with a similar value as Ryan loss, which are

both generally much less than Taguchi loss.

5.4 Conclusion

This chapter introduced the new 5-parameter Generalised Lambda distribution and

discussed some properties of this distribution. Moreover, the IPLF formed by this

distribution extended the class of loss functions to a new level that IPLF can also

work in a variable support.



Chapter 6

Applications of IPLFs

This chapter presents a few applications by using IPLFs to illustrate some related

concepts. Under different contexts, the IPLF covers often too large for different

problems. We would choose Spiring INLF, the IPLF derived from Gaussian dens-

ity, as a particular example.

6.1 Process Capability Index with Exponential Squared

Loss

6.1.1 Introduction

Loss function is a recent well-known useful tool in making a decision or evaluating

a decision rule in situations where uncertainties are involved. Since the introduction

of Taguchi philosophy (Taguchi, 1986; Taguchi et al., 1989), the loss function has

been adopting by decision theoretic statisticians and economists for many years.

We briefly introduce the relationships between both the loss functions and process

capability indices.

97
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Taguchi has introduced the quadratic loss function (Taguchi, 1986) to illustrate

the need in consideration of target while assessing quality since 1986. He promotes

the use of loss functions by suggesting that small deviations from the target result in

a loss of quality. However, criticisms have been addressed to the Taguchi quadratic

loss function by certain experts (Berger, 1985; Tribus and Szonyi, 1989; Box and

Tiao, 1992). Some modifications by truncating the quadratic loss function at the

points where the function intersects the maximum loss were also promoted (Tribus

and Szonyi, 1989). Abdolshah et al.(2009) made good use of Taguchi loss function

together with a capable process reject rates to develop a new process capability

index, Taguchi-based Process Capability Index (TPCI).

Kane (1986) stated that capability indices were receiving increased usage in

process assessments and purchasing decisions in the automotive industry, and the

indices were of particular interest.Johnson(1992) mentioned that these indices

were not related to cost failing to customer desires though these indices were

simple to compute and are convenient for use by quality professionals because they

were based on traditional specification limits.Chen and Chou(2001) extended the

main work fromJohnson(1992) and this work was the first time to explore the

relationship between process capability indices and expected square error losses.

Leung et al.(2012) even found out the relationship of all current PCIs with expec-

ted weighted squared error losses instead of just simple squared error losses.

In this study, we try to use the Spiring–Yeung framework of loss functions to

create certain new PCIs, which can compare with TPCI. Numerical examples are

also provided to demonstrate the applications of each loss function associated with

each PCI used.
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6.1.2 Loss-based Process Capability Index

In general, all PCIs are some ratios between the difference of the specification

limits and the variabilities of the processes subject to the target. For example, from

Kane(1986),

Cp =
U ′ − L′

6σ

Cpk =
min{U ′ − μ, μ − L′}

3σ

(6.1)

whereU ′ andL′ are the upper specification limit and lower specification limit re-

spectively. In practice, bothU ′ andL′ are pre-known constants. If there are target

T , probablyT can replaceμ for calculating the most appropriate PCI.

PCI is always a linear comparison between the difference of the specification

limits and the actual variation with or without some modifications with respect to

the target. However, the comparison between the loss is neglected. PCI should be

able to capture the capability of a process with respect to the loss within the limits

in comparison with the actual expected loss of the process. When the process is

capable, the expected loss will be small when comparing with the expected loss

within the limits.

Since we always have a bounded loss and the loss is quantifiable in an infinite

support, the Taguchi-loss based Process Capability Index proposed inAbdolshah

et al. (2009) will overestimate the loss involved. Therefore, we propose a similar

loss-based Process Capability Index with Spiring–Yeung Inverted probability loss

based on normal distribution such that it is more accurate to depict the loss with a

more reasonable ground.
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Figure 6.1: Different limits for a process and loss functions withT = 4.5

6.1.3 Spiring–Yeung Inverted Probability based PCI

Figure 6.1shows a particular process with different pairs of lower and upper limits.

For any processes, the process mean may not be equivalent to the target value we

need and the sample data is often within the range fromXmin andXmax. Definitely,

if the limits are(L′
1, U

′
1), then the process is incapable by any means of PCIs. Ana-

logously, while the tolerance is larger such that the limits are extended to(L′
2, U

′
2),

the process will be capable. In general, any PCIs are used to compare the inter-

val between the variance with some penalty subject to target and the specification

limits, such asCp.

If we focus on the area of the loss involved under the loss function, it is evident

to see that the area covered betweenXmin andXmax is smaller than the area of the

limits if the process is capable. Therefore, in our opinion, it is also satisfactory to

compare the area under the loss.
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Given thatSmith(1987) had already proposed the same loss as the exponential

squared error loss beforeSpiring(1993), we would like to downplay the importance

of Spiring and call it exponential squared error loss, but in short, we still call it

Spiring loss.

The process mean may not be equal to the target in general. Hence, we need

to make the loss function being 0 when it hits exactly on target instead of on the

mean. The exponential squared error loss-based PCI is defined to be

ESPCI =

∫
[L′,U ′]

L(x, T )dFX
∫

[Xmin,Xmax]
L(x, T )dFX

(6.2)

whereFX is the probability distribution ofX andL(x, T ) = K
{

1 − exp
(
− (x−T )2

2γ2

)}

with T being the target andK being the maximum loss.

If X ∼ N(μ, σ2), then both the denominator and the nominator terms are rather

complicated. For example, the nominator term for[L′, U ′] is

∫

[L′,U ′]

L(x, T )dFX

=
1

2

{

−Erf

[
L′ − μ
√

2σ

]

+ Erf

[
U ′ − μ
√

2σ

]

+

e
− (T−μ)2

2(γ2+σ2) γ

(

Erf

[
γ2(L′−μ)+(L′−T )σ2

√
2γσ

√
γ2+σ2

]

− Erf

[
γ2(U ′−μ)+(−T+U ′)σ2

√
2γσ

√
γ2+σ2

])

√
γ2 + σ2

}

(6.3)

where Erf[x] =
∫

(−∞,x)
2 exp(−t2)√

π
dt and it is approximated by its Taylor–Maclaurin

function below.

∫

(−∞,x)

2 exp(−t2)
√

π
dt ≈

2
√

π

(

x −
x3

3
+

x5

10
−

x7

42
+

x9

216
−

x11

1320
+ ∙ ∙ ∙

)

(6.4)



CHAPTER 6. APPLICATIONS OF IPLFS 102

The denominator term is also similar to the nominator term but the integration

range changes from[L′, U ′] to [Xmin, Xmax].

Except the exponential squared loss,L(x, T ) can be replaced by any losses

within the class of Spiring–Yeung framework (Spiring and Yeung, 1998). The

above PCI with exponential squared loss can be seemed as an example or illustra-

tion on how to create a IPLF-based PCI.

6.1.4 Numerical Example

Referring back toSection 1.2, we have a data set for pull strength and it follows

N(49.40, 4.692). Some information is summarised inTable 6.1.

Number of Data 56

Mean, X̄ 49.40
SD,s 4.79

Min, Xmin 40.6
Max, Xmax 58.6

Table 6.1: Summary of the pull strength for PCI

With the loss specified as exponential squared loss withγ = 2, the specification

for the loss is also summarised inTable 6.2.

Upper limit, U ′ 60
Lower limit, L′ 40

Target, T 55

Table 6.2: Specifications of PCI

SinceU ′ andL′ are located similar to the location ofXmax andXmin, the pro-

cess is expected to be capable. The ESPCI is also calculated as follows:
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ESPCI =

∫
[40,60]

L(x, 55)dF̂X

∫
[40.6,58.6]

L(x, 55)dF̂X

=1.026

(6.5)

which matches our expectation that this process is capable.

6.1.5 Conclusion

In this part, a certain extension and a new series of PCI based on Spiring–Yeung

IPLF in Spiring and Yeung(1998) was designed. Besides, it is also an extension of

TPCI proposed inAbdolshah et al.(2009) in which the mean of the process may be

different from the target of the loss. This new PCI is also from a bounded loss and

hence it strikes a balance between being realistic and sensitive to the loss function.

6.2 On an Admissibility Problem

6.2.1 Introduction

Except quality control, one of the widest uses of loss function is the statistical

estimation of some parameters. This can be seemed as a decision problem and it

is also well studied in many monographs and books such asSmith(1987); Berger

(1985); Leonard and Hsu(2001); Robert(2001).

Suppose there exists a random variableX depending on the parameterθ, where

θ ∈ Θ, a well-behaved parameter space. To choose the best parameter, one of

the most common decision rule is a rule having the smallest expected loss in the

wholeΘ with a particular loss function. In general, the parameterΘ is too large

and so a certain principles further shrink the space. One of the basic principles, the
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admissibility principle of the parameter, reduces the choice of the best parameter.

In this part, we limit to study the statistical models and decision problems hav-

ing special invariance properties. Under this situation, by adopting the invariance

principle, both the family of distributions and the search for best decisions are re-

stricted to be in the class of the same invariance properties (Liese and Miescke,

2008). The invariance property we discuss is the location invariance in particular.

t. That is, the group of measurable transformation is a homemorphism and we

use the notation inLiese and Miescke(2008) to represent the location invariance.

Therefore, the group of transformation is

Ul = {R⊕n | x + c1, x ∈ Rn, c ∈ R} (6.6)

where1 = (1, ∙ ∙ ∙ , 1)ᵀ andR⊕n as an additive group.

Let X1, ∙ ∙ ∙ , Xn be some random variables from a densityfθ(x) = f(x − θ).

Hence, if the loss is of the formL(θ, d) = L(d−θ), then the whole class is location

invariant.

It is also possible to use the IPLF in the parameter space, but in general IPLF

which is bounded in the domain makes the problem too difficult and complex.

Therefore, we have to introduce some transformations on IPLF with the unbounded

support such that it is smooth enough in the whole real plane.

6.2.2 Exponentiated Loss from IPLF

For most unbounded loss, such as quadratic losses, one of the most enjoyable prop-

erties is the mathematical tractability and easy computability in most cases. Al-

though it has been heavily criticised by many authors, say,Berger(1985); Lehmann
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and Casella (1998); Robert(2001), this main feature outperforms the distortion or

the deviation of the utility function underlying. We believe that the main reason to

drive this features is due to the smoothness of quadratic function in the whole real

plane.

In Berger(1985), the utility function is derived from some axioms and by defin-

ition, the loss is defined to be an affine transformation of the negative of the utility

function. Therefore, loss function is well defined. Quadratic losses then implies

quadratic utility which is not acceptable or realistic. As a result, some researchers

tried to propose some loss functions having the smoothness in the full real plane

while having to keep the loss more realistic and less distorted.

Smith(1980, 1987) andSpiring(1993) also understood the inappropriateness of

the unboundedness in most cases and wanted to prevent the derivation of the utility

function behind. They both suggested using an exponential square loss instead,

while Spiring(1993) thought that it was a modification of Gaussian density. It is to

consider any exponentiated loss with the initial loss being unbounded and smooth

like squared loss. After exponentiating the loss, the new loss is bounded, smooth

and absolutely continuous. With the more general Spiring–Yeung framework of

losses inEquation 3.2, Inverted Probability Loss Functions (IPLFs), and Theorem

3.2.1, there always exists an associated density such that the loss can fit in IPLF.

The general form of the exponentiated loss by settingD(θ, d) be the unbounded

loss is

L(θ, d) = K

{

1 − exp

[

−
D(θ, d)

C

]}

(6.7)

whereK > 0 andC > 0 andexp [−C−1D(θ, d)] will be a probability density ker-

nel. C is considered to be a constant andd denotes a decision function to estimateθ

based on some random variablesXi. Without loss of generality, we also setK = 1.
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If D(θ, d) is a quadratic error loss, then

D(θ, d) = (d − θ)2. (6.8)

It is verified that
∫
R exp[−C−1(d − θ)2]dθ =

√
πC andD(θ, d) = 0 ⇐⇒

L(θ, d) = 0 ⇐⇒ θ = d. The associated density of this loss function is

Θ ∼ N(d,
√

C/2). (6.9)

Analogously, ifD(θ, d) is a absolute loss, then

D(θ, d) = |d − θ| . (6.10)

It is also able to verify that
∫
R exp [−C−1 |d − θ|] dθ = 2C andD(θ, d) = 0 ⇐⇒

L(θ, d) = 0 ⇐⇒ θ = d. Hence, it is clear to understand that the associated

density of this loss function is

Θ ∼ La(d, C), (6.11)

whereLa(∙) is the Laplace distribution.

Further, ifD(θ, d) is a conventional LINEX loss, then

D(θ, d) = ea(d−θ) − a(d − θ) − 1, a 6= 0. (6.12)

It is easy to check that
∫
R exp

[
−C−1

{
ea(d−θ) − a(d − θ) − 1

}]
dθ = 1/ |a| e1/C

C1/CΓ
(

1
C

)
whereΓ(∙) is a Gamma function.D(θ, d) = 0 ⇐⇒ L(θ, d) = 0 ⇐⇒
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θ = d. The associated density of this loss function is

f(θ) =
exp

[
−C−1

{
ea(d−θ) − a(d − θ) − 1

}]

1/ |a| e1/CC1/CΓ
(

1
C

)

=
|a|C− 1

C

Γ
(

1
C

) exp

{
a(θ − d) − ea(θ−d)

C

}

=
|a|C− 1

C

Γ
(

1
C

) exp

{
−z − e−z

C

}

, z = −a(d − θ)

(6.13)

which seems that it is a transformation of a Gumbel distribution where the para-

metera 6= 0 instead of simplya > 0. If a > 0, it is clearly a conventional Gumbel

distribution asC = 1.

Hence, all the exponentiated losses under IPLF are bounded and the associated

density may be found. These exponentiated losses does not only preserve the prop-

erties of the original loss, such as symmetric and location invariant, but they also

make the tractability possible, which is not possible in those pretending the loss in

a bounded support.

6.2.3 Estimation

SupposeX have a random variable following Gaussian distribution with a real

unknown meanθ and known varianceσ2. Given some observed dataX1, ∙ ∙ ∙ , Xn,

the posterior distribution is also Gaussian distribution with meanμ andτ 2, where

μ andτ are functions of
∑

xi andσ2. In addition, Gaussian distribution belongs to

the groupUl.

Our aim is to estimateθ by a certain kind of exponentiated loss from IPLF in

Equation 6.7. Since the exponentiated loss is bounded by 0 and 1, it is smooth

enough and the support is in the full plane, it is always able to find the minimumθ

to find the best estimator̂θ by using the first order condition. We then use the same
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approach asZellner(1986) in comparing LINEX and quadratic loss.

Let θ̂ be the estimator ofθ. Under the exponentiated loss from IPLF, there

exists a parameter̂θ∗ minimizing the posterior expected loss which is the form as

E[L(θ, θ̂)] =

∫

R
L(θ, θ̂)dFΘ|X

=1 −
1

√
2πτ 2

∫

R
exp

{

−
D(θ, θ̂)

C
−

1

2

(
θ − μ

τ

)2
}

dθ

=1 −
1

√
2πτ 2

∫

R
exp

{

−
D(θ̂ − θ, 0)

C
−

1

2

(
θ − μ

τ

)2
}

dθ

=1 −
1

√
2πτ 2

∫

R
exp





−

D(x, 0)

C
−

1

2

(
x − θ̂ + μ

τ

)2




dx

(6.14)

whereC > 0 andJ = −D(x,0)
C

− 1
2

(
x−θ̂+μ

τ

)2

.

As a result, we set the Bayes estimate under the exponentiated loss from IPLF

asθ∗ which is to minimise the expected loss with respect toθ̂. We also denote

θ̂∗ = arg minθ̂ E[L(θ̂, θ)]. Certainly, sinceD(x, 0) is smooth enough, we can solve

this by taking partial differentiation with respect toθ̂ and setting it to 0 to solve the

following equation.

0 =
∂

∂θ̂
E[L(θ, θ̂)] = −

1
√

2πτ 2

∫

R
exp J

(
∂J

∂θ̂

)

dx

= −
1

√
2πτ 2

∫

R
exp J

(
x − θ̂ + μ

τ 2

)

dx

(6.15)

Suppose we setκ(θ̂) = E[L(θ̂, θ)]. Evidently, κ(∙) is bounded and ifD(∙)

is chosen to be differentiable,κ is also differentiable. Owing to the fact that the

derivative ofκ(∙) changes from negative to positive, andκ(∙) tends to 1 in either
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extremes, there exists only oneθ̂∗ solving the equation as the minimum. In sum-

mary, under exponentiated loss of IPLF, the Bayes estimate is unique and solvable

when dealing with the Gaussian likelihood with Gaussian prior problem.

6.2.4 Admissibility Under Noninformative Prior

Under noninformative prior, it is normally to chooseθ̂ = μ, the frequentist least-

square estimator. However, under the above exponentiated loss from IPLF,θ̂∗ will

be chosen as the parameter, which is the Bayes estimator.

We assume the true loss is the frequentist quadratic loss. Therefore, the expec-

ted loss for̂θ = μ is

R1(θ, θ̂) =E[L1(θ, θ̂)]

=
1

√
2πτ 2

∫

R
[θ̂ − θ]2 exp





−

1

2

(
θ − θ̂

τ

)2




dθ

=τ 2

(6.16)

Correspondingly, ifD(x, 0) is not in the form ofx2, then

R1(θ, θ̂
∗) =E[L1(θ, θ̂

∗)]

=
1

√
2πτ 2

∫

R
[θ̂∗ − θ]2 exp





−

1

2

(
θ − θ̂

τ

)2




dθ

=τ 2 +
(
θ̂∗ − θ̂

)2

>τ 2

(6.17)

Hence, the estimator̂θ∗ from exponentiated loss is not square-error admissible

unless the form ofD(x, 0) = x2 in general.
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In the opposite, we assume that the true loss is the exponentiated loss from

IPLF. Therefore, the expected loss or risk function of exponentiated loss from IPLF

for θ̂ = μ is

R2(θ, θ̂) =1 −
1

√
2πτ 2

∫

R
exp





−

D(θ, θ̂)

C
−

1

2

(
θ − θ̂

τ

)2




dθ

=1 −
1

√
2πτ 2

∫

R
exp

{

−
D(x, 0)

C
−

1

2

(x

τ

)2
}

dx

(6.18)

which is free ofθ.

Correspondingly, the risk of the exponentiated loss from IPLF forθ̂∗ is

R2(θ, θ̂
∗) =1 −

1
√

2πτ 2

∫

R
exp





−

D(x, 0)

C
−

1

2

(
x − θ̂∗ + μ

τ

)2




dx

(6.19)

which is also free ofθ. That is, both risks are constant functions over the space

θ ∈ Θ. However, sincêθ∗ is the optimized and the risk with respect to its loss is

the lowest,R2(θ, θ̂
∗) < R2(θ, θ̂). As a result, the estimator̂θ is not exponentiated

loss admissible.

Since exponentiated loss is a family containing many bounded losses and here

the loss is set arbitrarily that it may be an exponentiated absolute loss or an ex-

ponentiated LINEX loss, the estimator admissible in one loss is not admissible in

other loss obviously.
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6.2.5 Conclusion

We develop and focus on a certain exponentiated loss which make some unboun-

ded loss become bounded by using the Spiring–Yeung IPLF. This special class of

bounded loss functions has some useful properties of the corresponding unboun-

ded loss. Further, this class of losses is applied to a Bayesian estimation of normal

mean and we study the admissibility of the estimator which is the argument of min-

imising the particular loss. It further shows that the best estimator of a particular

loss is always inadmissible with respect to other losses.



Chapter 7

A General Class of Conjugate Loss

Inverted Probability loss was discovered bySpiring (1993) with the observation

that the exponentiated square loss can be written as1− f(x)/f(T ), wheref is the

Gaussian density andT is the mode. This loss has a property that some expected

loss has a closed form when combined with another Gaussian distribution. How-

ever, it is from anad-hocapproach without any rigorous grounds. In this chapter,

we will explain it clearly that any analogous loss can be formed from the conjugate

direction.

7.1 Introduction

In many statistical and decision problems, very little importance has been placed

for the loss functions, but the choice of a particular loss function can seriously affect

the results, such as estimation of parameters or inference. In making or evaluating

a decision, the loss function is used in terms of the utility of the decision maker

(Berger, 1985; Robert, 2001; Press, 2002). The loss is generally bounded and not

convex, so the conventional quadratic loss is not adequate to reflect the true loss in

112
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the given situation.

Similarly, in the field of statistical quality control,Taguchi(1986) proposed the

quadratic loss to estimate the actual economic loss.Spiring (1993) was the first

one in this field adopting the Inverted Normal loss function instead of the quadratic

loss, and therefore it is a more reasonable choice. Actually,Smith (1987) already

proposed the same Spiring loss function as the exponential squared error loss before

Spiring(1993), because of the symmetry and the boundedness in the properties of

such loss functions (Leonard and Hsu, 2001). However, the technicalities sharply

increase with the distributions other than the normal distribution when using the

Inverted Normal loss function.

In this chapter, we first develop a class of conjugate loss functions which is

bounded and similar to the loss function developed inSpiring and Yeung(1998).

Other situations relevant to this class are also examined.

7.2 Statistical Decision Theoretical Framework

Beforehand, we have to set up the framework of the statistical decision theory

utilised in the field of quality assurance and reliability settings. This statistical

decision theory framework can be found in many literature, such asLiese and

Miescke(2008); Robert(2001); Blackwell and Girshick(1979); Lehmann and Ro-

mano(2005); Smith (1987); Pace and Salvan(1997); Leonard and Hsu(2001);

Berger(1985); French and Rios(2000). We choose to followFerguson(1967)

andBlackwell and Girshick(1979) closely with their logical steps, but in a more

general form.

Generally, in this field, the expected loss is the evaluation criterion to select the
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manufacturing processes, but the most controversy is the practical determination

of the form of the loss function by the decision-makers. Therefore, the following

is to fit the framework such that the systematic approach is available for further

discussion.

Since the performance of a process is random and fluctuated, we have to de-

rive and construct from the axiomatic system of the Probability theory proposed

in Kolmogorov(1933). Clearly, in mathematical terms, it is a measurable space

(Ω,F), where

• Ω is the set or space of all possible elementary events;

• F is the Borelσ-algebra ofΩ, that is, the collection of the subsets of events.

Evidently,Ω and∅ = Ω{ both belong toF , that is, the situation of allowing

all events occurs almost surely. For convenience, we denoteF = BΩ.

For every setA =
⊎n

i=1 Ai ∈ F with disjoint A1, ∙ ∙ ∙ , An ∈ F , there exists a

σ-additive nonnegative functionP such thatP (A) =
∑n

i=1P (Ai) andP (Ω) = 1.

In other words,P is a probability on the measurable space(Ω,F).

Mostly the data is collected from the process under study through the observa-

tion of a real-valued random variableX, and the exact information of the probab-

ility space induced byX is unknown. Hence, statistics, especially parametric, is

based on the statistical modelM =
(
Rk,BRk ,Pθ = Pθ ◦ X−1

)
, whereθ ∈ Θ for

X to estimate the best unknownθ from the possible value in the setΘ. In other

words, the major problem in statistics is to determine the best valueθ̂ from the

collected data ofX and then to build up the best probability model
(
Rk,BRk ,Pθ̂

)

accordingly. The setP = {Pθ | θ ∈ Θ} is the family of probability distributions

with the parameterθ belonging toΘ as a condition. In general,P can be detached
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from the statistical modelM and it is possible to verify between two sets of fam-

ily of probability distributionsP andQ without assuming a particularΘ on the

common measurable space(R,BR).

For decision-maker facing the statistical problem, he has his own thought and

the decision space isD , where theD is the set of all possible decisions. In partic-

ular, D = Θ or D = Rk is generally the most common case in some fields, such

as quality assurance and reliability settings. Here, we assume that his action is

made in one-to-one correspondence to his decision, and therefore the action space

is equivalent to the decision space in the topological and measurable sense.

Definition 7.2.1 (Loss Functions). A loss function is any functionL(d, θ) from

D × Θ toR. If L(d, θ) is bounded, it is proper; otherwise, it is improper.

Since utility always exists with some axioms inDeGroot(2004); von Neumann

and Morgenstern(2004), loss function can be simply interpreted as the negation of

the utility and also exists in all situations. Therefore, the objective of maximizing

the utility is the same as the objective of minimizing the loss. We further assume

that loss functions are also bounded from below, that is,

inf
d∈D

inf
θ∈Θ

L∗(d, θ) ≥ −C > −∞ C ∈ R+,

Clearly, withDefinition 7.2.1, a proper loss function also satisfies the condition that

supD∈D L∗(d, θ) ≤ C, whereC ∈ R+. In many situations, it is more convenient to

talk in terms of nonnegative losses, and hence it is also assumed in this dissertation

that we focus on the following loss

L(d, θ) = L∗(d, θ) − C
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instead. Note that the decision is unaffected when the loss is under affine trans-

formation. Though the simple loss function being the negation of the utility, other

types also appear in the literature. Aregret lossfunction can also be adopted and

defined asL′ = supd∈D U(d, θ) − U(d, θ), whereU(∙) is the utility function. This

loss is seemed to be more realistic, as it measures the loss by not choosing the op-

timal choice without control of the occurrence ofθ. Nevertheless,Berger(1985)

claimed thatL, L∗, L′ are equivalent in Bayesian analysis of the Statistical De-

cision Framework.

After constructing the loss function, it is to desire to find the optimal decision

with respect toθ. In general,θ is too complex and it is impossible or very difficult

task without a manipulation ofθ at the time of decision making. Under a particular

decisiond, the set of observations{X = x} influences the relative correctness of

the estimation ofθ and the efficiency. Further,X follows a set of distribution

P. In other words, the decisiond depends on the outcome of{X = x} and is

maintained as a functiond = d(X), whered : Rk → D . Therefore, the loss

function is constructed to make(x, θ) 7→ L(d(x), θ) ∈ R. From this viewpoint, we

can describe the loss function as a random vector(d,X) on the statistical model.

A natural method of determining the best decision is to select according to the

expected loss or risk function over all possibleX when the decision is made and to

choose the one with the minimum expected loss.

Definition 7.2.2(Frequentist Risk).

Given a statistical modelM = (Rk,BRk ,Pθ) and a loss functionL : D ×Θ → R,

the expected loss or frequentist risk function (in short, frequentist risk) of a decision
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d ∈ D is given by

R∗(d, θ) = Eθ L(d, θ), θ ∈ Θ,

=

∫
L(d(x), θ)Pθ (dx)

=

∫
L(d(x), θ)dFθ(x),

(7.1)

whereFθ(x) = Pθ

(
X ∈ (−∞, x)

)
, the cumulative distribution function ofX |

Θ = θ. In simpler words, the frequentist risk is taking an average of the loss

function overR on the condition of a particularΘ = θ.

In Bayesian analysis,Θ also follows another prior distribution at the time of

decision making. Hence, there is another probability space forθ, (Θ,BΘ,T).

However, in practice, it is very embarrassing to allow the improper prior that

T(Θ) = ∞, such as noninformative prior and Jeffreys prior, while the improper

prior appears frequently. Similar toDefinition 7.2.2and with the condition thatΘ

beingσ-finite, we have the joint distribution of(Θ, X) as follows. Suppose there

are two suitable dominating measuresμ andν for Pθ andT, the joint distribution

of (X, Θ) is given by

[
Pθ ⊗T

]
(A) =

∫∫
1A(x, θ)Pθ(dx)T(dθ), A ∈ BRk ⊗ BΘ

=

∫∫
1A(x, θ)f(x | θ)π(θ)d

(
μ ⊗ ν

)
(7.2)

wheref(x | θ)π(θ) is the Radon-Nikodym derivative ofPθ ⊗T with respect to
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μ ⊗ ν. Therefore, the marginal distribution ofΘ|X can be found as

TX(A) =

∫
1A(θ)

f(x|θ)π(θ)
∫

f(x|θ)π(θ)dν
ν(dθ), A ∈ B(Θ)

=

∫
1A(θ)

(∫
f(x | θ)π(θ)dν

)−1(
d (Pθ ⊗T)

d (μ ⊗ ν)
(x, θ)

)

=

∫
1A(θ)

(
d
[
(Pθ ◦X−1) ⊗ T

]

dμ
(x)

)−1(
d (Pθ ⊗T)

d (μ ⊗ ν)
(x, θ)

)

(7.3)

and we can obtain the general Bayesian expected loss as the following definition:

Definition 7.2.3(Bayesian Expected Loss).

Given a statistical modelM = (Rk,BRk ,Pθ), a parameter measurable space

(Θ,B(Θ),T), a loss functionL : D × Θ → R, the Bayesian expected loss (in

short, Bayes loss) of a decisiond ∈ D with a observationX = x is given by

R(d, θ) =

∫

Θ

L(d, θ)TX(dθ), d ∈ D

= EX L(d(x), θ).

(7.4)

In simpler words, Bayes loss is taking an average of the loss function overΘ on

the condition ofX = x.

Now, we have introduced the three ingredients rigourously enough to form the

basis of the Bayesian Statistical Decision Theory. Summarising that the three major

ingredients are:

• the setP for the observations;

• the loss functionL(d(x), θ) associated with the decisions; and

• the prior probability measureTX given the observationX = x.

With the three ingredients, a statistical decision problem can be described in
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the following definition.

Definition 7.2.4(Statistical Decision Problem).

A statistical decision problem can always be described by a triple(M, D , L),

whereM is a statistical model,D is a decision space andL is a loss function.

7.3 Bounded Loss and Advantages

A proper loss is a loss function bounded from below and bounded by above for all

values ofθ andd. The research target of this dissertation is mainly on the proper

loss. Some problems may occur when the loss function is not proper. If the loss

function is not bounded, the frequentist risk or the Bayes loss may be infinite or

undefined for some values of or even all values ofd. For instance, if the distribution

of X is Cauchy(x0, γ) given by

FX(x|θ, γ) =
1

π
arctan

(
x − θ

γ

)

+
1

2
, x ∈ R

then it is easily checked that all moments are undefined and that the frequentist

loss with respect to either conventional absolute loss or a quadratic loss function

is always undefined regardless of the decision. Another possible example is when

the distribution ofX is Uniform(0, θ), the natural conjugate measure forΘ will be

chosen as Pareto(xm, α), whereas the concept of conjugate families is defined later.

The distribution is given by

FΘ(θ | xm, α) =
[
1 −

(xm

θ

)α]
1θ≥xm(θ).
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If α = 1, it is easily shown that all moments higher than the first order are infinite

and that the marginal distribution forΘ | X = x is Pareto(max{x, xm}, 2). There-

fore, any moments higher than the second order for this posterior distribution are

infinite. The Bayes loss with respect to the conventional quadratic loss function

is always infinite regardless of the decision, but that with respect to the absolute

loss function works. In both cases, we cannot figure out the optimal decision or

compare different decisions in any values ofd.

Sometimes, the optimal decisions arising from the improper loss functions are

not robust when the distributions ofΘ andX are not absolutely correct and may

change slightly. The more detailed example can be found inRobert(2001).

7.4 Conjugate Loss

Since the most common parametric distributions are also from the exponential fam-

ily, we assume that the prior distribution is a member of exponential family for

convenience. Examples of the exponential family are Beta, Dirichlet, Wishart,

Gamma, Gaussian, Exponential and Poisson. This family can be characterised by

its density with a suitable dominating measure.

As the exponential family is well-researched, many literature have discussed it

fully. The main references on this topic areLehmann and Casella(1998); Lehmann

and Romano(2005); Liese and Miescke(2008). Some monographic treatments on

exponential families can also be found inBarndorff-Nielsen(1978) and Brown

(1986). We mainly follow the procedures ofBrown(1986).

Similar in Section 7.2, we have to firmly base on a measurable space(R,BR)

(because the random variable is real-valued) and a dominating measureμ such that
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we have a sounded mathematical support. For anyη ∈ H, H being the parameter

space,

Qη(A) =

∫
1A(x) exp

[
〈a(η), S(x)〉 − ψ′(η)

]
G(x)μ′(dx), A ∈ B(R), (7.5)

whereS(x) is called the statistic ofX, a(∙) andG(x) are some well-behaved con-

tinuous functions.Qη is the probability measure induced by the real-valuedX

and the whole setP = {Qη | η ∈ H} is the exponential family. Then the density

f(x | η) can be defined as the Radon-Nikodym derivative with respect toμ′, where

f(x | η) =
dQη

dμ′
(x)

= exp
[
〈a(η), S(x)〉 − ψ′(η)

]
G(x), x ∈ R, η ∈ H.

(7.6)

Brown (1986) noticed and proved that the aforementioned settings can be fur-

ther reduced by focusing onX = S(X) and reparametrisingη with θ = a(η) and

using another suitable dominating measure, sayμ, to a minimal form or reduced

form. Analogously, in practice it is often more convenient to study the family of

induced distributions in Euclidean space,Rk. Hence, the statistical model for the

minimal form of the member of standard exponential family can then be rewritten

asM′ = (Rk,BRk ,Pθ = Qη ◦ S−1). That is, for everyA ∈ Rk,

Pθ(A) =
(
Qη ◦ S−1

)
(A) =

∫
1A(s) exp

[
〈θ, s〉 − ψ(θ)

]
μ(ds), (7.7)

and

f(s | θ) =
dPθ

dμ
(s) = exp

[
〈θ, s〉 − ψ(θ)

]
, s ∈ Rk. (7.8)
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If there exists aPθ for eachθ ∈ Θ, the familyP = {Pθ | θ ∈ Θ} is full. With a

further condition of the openness ofΘ in Rk, id est, ∀η ∈ H : ∃ε > 0 3 Bε(η) ⊆

H, then it is called as theregular exponential family. Under the regularity and

fullness conditions, the distribution is in minimal form if and only if it belongs to

the natural exponential family. Here we further assume that the parameter space

H or Θ is open and the statistic set fulfillsspan {Si} = Rk to ensure the validity

of the regularity condition. Any member of exponential family in this dissertation

satisfies the said assumptions and is natural for convenience. To further discuss the

conjugate concepts, we need a new definition as below.

Definition 7.4.1 (Conjugate Families). A family of probability measureT of Θ,

T = {Tη | η ∈ H}, is said to be conjugate for the probability measurePθ if for

everyTX is formed inEquation 7.3, the posterior measure or marginal measure

Θ | X is also a member of the same setT.

For exponential family member, there is a simple way to obtain the natural

conjugate family of distribution, such as prior distribution in Bayesian analysis.

The natural conjugate is important because the marginal distribution ofΘ | X or

the posterior distribution in Bayesian analysis can be easily identified with a slight

change in parameters when comparing to the prior or marginal. We also assume

that the space(Θ,BΘ) is also measurable and well-behaved.

Then, we introduce the family of natural conjugate forPθ, T. Suppose the

hyperparameter inT is η = (ω, λ) ∈ H. On the space(Θ,BΘ) we have,

Tω,λ (θ) =

∫
1A exp

[
〈ω, θ〉 − λψ (θ) + E (ω, λ)

]
ν (dθ) , A ∈ B(Θ) (7.9)
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whereν is the suitable dominating measure andE(∙) is the normalising factor with

sup E(∙) < ∞ and

E(ω, λ) = log

{

−
∫

exp
[
〈ω, θ〉 − λψ(θ)

]
ν(dθ)

}

(7.10)

It is straightforward to observe thatTX also belongs to the exponential family.

With Tω,λ as prior and the observation followsPθ, a member of exponential family,

we further have

(Pθ ⊗Tω,λ) (A) =

∫∫
1A(x, θ)Pθ(dx)Tω,λ(dθ), A ∈ B(Rk) × B(Θ)

=

∫∫

A

exp
[
〈θ, x + ω〉 − (λ + 1)ψ(θ) + E(ω, λ)

]
d
(
μ ⊗ ν

)

=

∫∫

A

exp
[
〈θ, x + ω〉 − ψ1(θ)

]
dυ

(7.11)

whereψ1(∙) = (λ + 1)ψ(∙) andυ = exp E(ω, λ)(μ ⊗ ν). It follows that the joint

probability measure also belongs to the exponential familty and the joint density of

(Θ, X) trivially is the Radon-Nikodym derivative with respect toμ⊗ν, the suitable

dominating measure with

f(x, θ) =
d
[
Pθ ⊗Tω,λ

]

d
[
μ ⊗ ν

] (x, θ) = exp
[
〈θ, x + ω〉 − (λ + 1)ψ(θ) + E(ω, λ)

]
.

(7.12)

FromEquation 7.3andDefinition 7.4.1, we can find the marginal distributionTX
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as follows:

TX(A) =

∫
1A(θ)

(Pθ ⊗Tω,λ) (x,dθ)
∫

(Pθ ⊗Tω,λ) (x,dθ)
, A ∈ B(Θ)

=

∫
1A(θ)

exp
[
〈θ, x + ω〉 − (λ + 1)ψ(θ) + E(ω, λ)

]

∫
exp
[
〈θ, x + ω〉 − ψ1(θ) + E(ω, λ)

]
dν

ν(dθ)

=

∫
1A(θ)

exp
[
〈θ, x + ω〉 − (λ + 1)ψ(θ) + E(ω, λ)

]

exp
[
E(ω, λ) − E(x + ω, λ + 1)

] ∫
Tx+ω,λ+1(dθ)

ν(dθ)

=

∫
1A(θ) exp

[
〈θ, x + ω〉 − (λ + 1)ψ(θ) + E(ω + x, λ + 1)

]
ν(dθ)

=

∫
1A(θ) exp

[
〈θ, x + ω〉 − ψ1(θ)

]
ν1(dθ)

(7.13)

whereψ1(∙) = (λ + 1)ψ(∙) andν1(∙) = exp E(x + ω, λ + 1)ν(∙) is the dominating

measure forTX . The conditional density ofΘ, givenX = x, denoted asπ(θ | x)

conventionally, with respect toν1 is

π(θ | x) =
dTX

dν1

(θ) = exp
[
〈θ, x + ω〉 − (λ + 1)ψ(θ)

]
(7.14)

In decision problems, we have to go further to analyse the Bayesian expected

loss or the Frequentist risk, hence we need to introduce the loss functionL(d, θ) for

the loss from decisiond when theθ is chosen. The best decision is that having the

lowest expected loss, either the expectation inDefinition 7.2.2or Definition 7.2.3,

where bothΘ andX | Θ follows natural exponential family. Therefore, if the loss

function is in a form convenient in calculating the expected loss, the analysis will

be as nice as the posterior analysis in Bayesian decision theory. As inSection 7.3,

unbounded loss does not always make the expected loss exist and finally it is no

way to solve the decision theorem in general. Further, some losses from unbounded

loss functions can change seriously while there is a slight change in the probability

measure. Therefore, the bounded loss with the properties that the loss is bounded
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below from 0 and bounded above byK are examined here. We propose to use a

conjugate loss function in the following form:

L(d, θ) = K {1 − U(d, θ)} , K 6= 0

U(d, θ) = G(d) exp
[
〈θ, x̃(d)〉 − λ̃(d)ψ(θ)

]

G(d)−1 =

∫
exp
[
〈θ, x̃(d)〉 − λ̃(d)ψ(θ)

]
dθ

(7.15)

wherex̃(∙), λ̃(∙) andG(∙) are some appropriate functions ofd andθ andg(∙|θ̃(∙))

is the density of a member of exponential family obviously.K is the multiplier;

without loss of generality, we can setK = 1. G(d) is an important normalising

factor such thatL is bounded within(0, K). G(∙) has a property that0 < G(∙) <

∞. Whend = θ, L(d, θ) = 0. There are many special cases with this loss.

SinceU is bounded by 1,L(d, θ) can be simplified as

L(d, θ) = 1 − g1(θ | x̃(d)) (7.16)

whereg1 is analogous tog, the density of a member of exponential family. Since

this loss is formed from the density, it is also calledInverted Probability Loss Func-

tion in Spiring and Yeung(1998). For some parameterθ, the frequentist risk of a

decisiond with θ̃(∙) = θ by Definition 7.2.2is

R∗(d, θ) =

∫
L(d, θ)Pθ(dx)

=

∫ {
1 − G(d) exp

[
〈θ, x̃(d)〉 − λ̃(d)ψ(θ)

]}
exp
[
〈θ, x〉 − ψ(θ)

]
dμ

= 1 − G(d)

∫
exp

{
〈θ, x + x̃(d)〉 −

[
λ̃(d) + 1

]
ψ(θ)

}
dμ

= 1 − G(d)E1(x + x̃(d), λ̃(d) + 1)

(7.17)
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whereE1(ω, τ ) =
∫

exp
[
〈θ, ω〉 − τψ(θ)

]
dμ. but in general it is unknown until we

know the particular form of̃x(∙) andλ̃(∙).

Except for the frequentist risk, we can also consider the Bayes loss for this loss.

For some hyperparameters(ω, λ) ∈ H, the Bayes loss of a decisiond with θ̃(∙) = θ

by Definition 7.2.3givenX = x is

R(d, θ) =

∫
L(d, θ)TX(dθ)

=

∫ {
1 − G(d) exp

[
〈θ, x̃(d)〉 − λ̃(d)ψ(θ)

]}
e〈θ,x+ω〉−(λ+1)ψ(θ)ν1(dθ)

= 1 −
∫

G(d)e〈θ,x+ω+x̃(d)〉−[λ̃(d)+λ+1]ψ(θ)ν1(dθ)

= 1 −
E(x + ω, λ + 1)G(d)

E(ω + x + x̃(d), λ̃(d) + λ + 1)
(7.18)

whereE(∙) is defined inEquation 7.10. R(∙) is in terms of all known functions and

variables. Notice that the Bayes loss is unchanged if the random variable follows

a probability measure belonging to exponential family. Whatever the observation

is seen, the prior and the posterior distributions are of the same form, while this

conjugate Bayes loss is still of the same form. Therefore, this loss can always be

in closed form and form a closed family.

There are another special case that we should examine. Assumex̃(∙) = x, a

constant function,L(d, θ) can be simplified as

L(d, θ) = 1 − G(d) exp
[
〈θ, x〉 − λ̃(d)ψ(θ)

]

= 1 − G(d)H(x)g2(x | θ)

(7.19)

whereg2(∙) is analogous tog(∙), a member of exponential family, but with the

parameter ofx instead ofθ. H(∙) is the appropriate normalising function for the
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parameterx. For some parameterθ, the frequentist risk of a decisiond is

R∗(d, θ) =

∫
L(d, θ)Pθ(dx)

=

∫ {
1 − G(d) exp[〈θ, x〉 − λ̃(d)ψ(θ)]

}
exp
[
〈θ, x〉 − ψ(θ)

]
μ(dx)

= 1 − G(d)

(7.20)

For the Bayes loss of some hyperparameters(ω, λ) ∈ H, the Bayes loss of a

decisiond with x̃(∙) = x by Definition 7.2.3givenX = x is

R(d, θ) =

∫
L(d, θ)TX(dθ)

=

∫ {
1 − G(d) exp

[
〈θ, x〉 − λ̃(d)ψ(θ)

]}
e〈θ,x+ω〉−(λ+1)ψ(θ)ν1(dθ)

= 1 − G(d)

∫
exp

[
〈θ, 2x + ω〉 −

(
λ̃(d) + λ + 1

)
ψ(θ)

]
ν1(dθ)

= 1 −
E(x + ω, λ + 1)G(d)

E(ω + 2x, λ̃(d) + λ + 1)
(7.21)

In general, a unique minimum for the loss is one of the best features that there

exists only one unique optimal choice. Certainly, this is controlled by the shape of

g1. If ϕ = − log g1 is convex, then the density is logconcave and strongly unimodal

(Dharmadhikari and Joag-Dev, 1988). Then, the loss has only one unique minimum

if the mode ofg1 is atθ = d.

From another point of view, the first order condition has to be satisfied if it

is differentiable. We can differentiate and set the equation to be 0 to solve the

unknown. We fixd to let the loss as a function ofθ, then in order to meet the

minimum atθ = d and we get

x̃(d) − λ̃(d)ψ′(θ) = 0 (7.22)
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Hence, we can further simplify the loss by eliminating the whole termx̃(d) −

x̃(θ) as follows:

L(d, θ) = 1 − G(d) exp
{
〈θ, x̃(d)〉 − λ̃(d)ψ(θ)

}

= 1 − G(d) exp
{〈

θ, λ̃(d)ψ′(θ)
〉
− λ̃(d)ψ(θ)

}

= 1 − G(d) exp
{〈

θ[ψ′(θ)]ᵀ − ψ(θ), λ̃(d)
〉}

(7.23)

By convention, we setL(d, θ = d) = 0 and thus

G(d) = exp
[〈

ψ(d) − d[ψ′(d)]ᵀ, λ̃(d)
〉]

(7.24)

From the above argument, this loss is always bounded by 0 and 1 and in general

it is smooth and continuous. The advantage over quadratic loss is that this always

lead to a finite expected loss with respect to any probability distributions.

In summary, the conjugate loss is of the form

L(d, θ) =1 − G(d) exp
[〈

θψ′(θ) − ψ(θ), λ̃(d)
〉]

=1 − exp
[〈

ψ(d) − ψ(θ) + θψ′(d) − d[ψ′(d)]ᵀ, λ̃(d)
〉] (7.25)

andλ(d) is the only free variable. Ifψ′(d) is a scalar, then we can further simplify

to

L(d, θ) = 1 − exp
[〈

ψ(d) − ψ(θ) + ψ′(d)(θ − d), λ̂(d)
〉]

(7.26)

Expandingψ(∙) of θ in Taylor series whend is close toθ whenψ(∙) is analytic,

we get

L(d, θ) ≈ 1 − exp

[〈

−
1

2
ψ′′(d)(d − θ)2, λ̃(d)

〉]
(7.27)
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That is, for fixedd, λ̂(d) is a constant or can be written as a multiple ofψ′′(d).

In a local sense, whend is very close toθ, any conjugate losses under exponential

family we proposed will be approximately equivalent to the Spiring loss described

in Chapter 2.

Therefore, when there is no specific condition and considering around a target

θ, the best and safest choice should be the Spiring loss, that is, the more general

form of Spiring–Yeung Inverted Probability loss framework based on normal dis-

tribution.

7.5 Conclusion and Further Remarks

This chapter analyses some conjugate losses in a more rigorous foundations from

the conjugate view. However, this chapter has a lot of generalisations which can be

researched. How to minimise the loss with more observed data, how to optimise

the loss is also a big topic in this kind of losses.



Chapter 8

Further Discussions and Prospects

In this report, we have done a lot of investigations for Inverted Probability loss

functions. However, there are still some problems not being solved.

Over the past decades, loss functions are increasingly important in the quality

control and statistical usage. In all 7 chapters, we have developed the Spiring–

Yeung framework from a just limited example to a wide range of possibilities in

both the traditional quadratic type loss and the bounded loss.

However, the shortcoming of IPLF is also based on a density function, but

the existence of a density function is not strong enough such that it can include

any unbounded loss in general. With the "exponentiated" technique, it is possible

to map an unbounded loss into the framework of Spiring–Yeung framework and

enjoy a lot of properties that the original unbounded loss has.

Some applications are included for illustrations in Chapter 6. The family of

Spiring–Yeung framework provides a wide range of bounded loss functions that

can be used in many situations.

Although we have tried to re-study the Spiring–Yeung framework in a rigorous

way, it is not very successful as it is due to the time limit. This framework is based

130
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on observation that the exponentiated square loss can be written as an normalised

inverted Gaussian density. Actually, from the direction of constructing conjugate

loss, we would confirm that it is the dual of viewing whether the loss is a function

of the variable itself or a target as a variable itself. If both sides can be written as

a density, then two views are dual. The major question is that whether the whole

framework can be put in rigor and how to put it back in the statistical field. We will

study it in future.
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