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Abstract

In most statistical and decision problems, nearly no attention is paid to the precise
mathematical form of the loss function. However, the choice of a particular loss
function seriously affects the resulting inferences and estimations. This dissertation
investigates a general class of loss functions based on the reflection or inversion of
a probability density function, Inverted Probability loss function, which was pro-
posed bySpiring and Yeund1998. We modified the Inverted Probability loss
function to be a more generalisation of the original one. To the best of my know-
ledge and belief, it is the first time to establish such results in the literature.

We firmly advocate that there are some novelties in the Inverted Probability
Loss Functions and there are even more applications when applying them. In this
report, we show the broad coverage and the flexibility of the Loss Functions to

make a more robust expected loss.
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Chapter 1

Introduction

This first chapter provides a little background and motivation in the first section,
then exhibits a little information about my main contributions and finally manifests

the organisation of this whole report.

1.1 Background and Motivation

Decision makers in manufacturing industries pay high attention to quality assur-
ance. As a result, the use of statistics for accessing quality receives even larger
attention when Taguchiraguchj 1986 proposed his quality management philo-
sophy and strategy. In decision theory and quality assurance field, loss functions
are used to reflect the monetary loss or economic loss caused by the deterioration
of the product characteristics from the target quality.

However, BergerBerger 1985 even emphasised that the loss function should
be bounded and concave, because the loss function also mimics the negative of the
utility, whereas the squared-error loss, Taguchi quadratic loss in quality control, or

absolute error loss is unbounded and even disturb the convBxityng and Yeung
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(1998 proposed a framework to cover all the unbounded losses from some obser-
vations with some applications in quality control. They also called the losses made
in this framework as The Inverted Probability Loss Functions. All such loss func-
tions enjoy the boundedness and preserves the convexity due to the requirements of
the unimodality. Therefore, it should totally supersede the squared-error one; but
most do not have the interests in studying it and some even choose a conservative
view to prefer the traditional quadratic Loss Functions to the parametric Inverted
Probability Loss Function.

Therefore, this reason already gives a sounded motivation to have a research
about this Inverted Probability Loss Functions to understand how this concept is

unigue and interesting.

1.2 Data set for illustrations

Since it is required to have some applications for realising the results in this report,
a data set is chosen for this purpose. To prevent self-plagiarism and need to re-use
this data many times, we now discuss about the data set here and refer it back when
necessary.

The following data set is fronheung and Spiring2002 2004. It is a real-
isation of the random variable for the perforation pull strength. The data set is as
follows:

Some further background information was also provideldanng and Spiring
(2004. The aim for a lottery ticket seller was to sell the lottery tickets as many
as possible, so it wanted to sell the tickets via vending machines as well such that

any buyers could buy the tickets in a convenient way. For putting the tickets in
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40.6 47.6 495 528 450 51.6 485 583 46.5 535
48.9 58.3 42.0 41.0 473 475 47.0 545 47.7 4438
475 47.0 417 548 426 565 524 559 422 526
50.5 49.7 48.6 58.6 43.7 53.7 47.6 55.0 45.0 54.6
55.0 46.6 51.8 51.0 46.2 53.8 56.9 48.6 47.6 44.0
49.4 53.7 442 520 445 481

Table 1.1: The pull strength data set

a vending machine, the volume should be as large as possible so the cost, for in-
stance, resupply cost, manual cost and transportation cost, was minimised. Inside
a vending machine, the tickets were packed, folded and stacked in columns. The
vending machine had to recognise that the buyer had inserted sufficient funds and
dispensed the tickets with the same face value as the funds inserted through the
dispensing slot. It also needed to identify certain characteristics such that the tick-

ets were dispensed in full and sustained the force of tearing a ticket. To reduce the
force required to tear a ticket, the tickets had to be designed as perforated along the
margins and tough enough not to be torn in half.

Therefore, the tickets had to pass through the pull strength test such that the
design and the process was optimal. If the pull strength was higher than 60 pounds
per square inch (psi), the tickets will not be torn in the perforated margin. How-
ever, if the pull strength was lower than 40, another tickets will be pulled as well.
In either situations, the vending machine is jammed as the next operation or mech-
anism is distorted.

From theTable 1.1and the information provided, the pull strength is the random
variable under interest. Althoudteung and Spiring2002 2004 claimed that this
data set follows a Beta distribution, but we have another thought on this data set.

For dealing with a data set, we propose to have an empirical study beforehand

and give a summary about the ingredients of this pull strength.
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Number of Data 56
Mean 49.401786
Median 48.6
Mode 47.6
Interquartile Range 7.3
Variance 22.519104

Skewness 0.10518813
Excess Kurtosis 0.87615755

Table 1.2: Empirical study of the pull strength

Thus fromTable 1.2 the random variable for pull strength is also close to sym-

metric Gaussian. Further, there is no any constraint that the pull strength must be

in the interval of{40, 60}, even though the maximum loss is attained. That is, there

is still a possibility that the pull strength is beyond the interval but maybe the prob-

ability is very small. We also need a visualisation tool for understanding this data

set to estimate the density. As a result, the empirical distribution is plotted in the

following:

1.0~

0.8

0.6

0.4r-

0.2

45 50 55 60

Figure 1.1: Empirical CDF of the pull length
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For the density of this data set, we also have to use the worst tool for visualisa-
tion, histogram, for which the selection of number of bins is generally problematic.
There are two opposing uncertainties in estimating a density from a histogram. One
is the coarseness of the histogram and then more number of bins generates a better
result. However, the other is the inaccuracy of the height of a bin, so the situation
of larger bins are better. These two are very hard to get a balance.

We decide to fit thel, theory of univariate histogram iBcott (1992 such
that the density estimator is consistent and the mean square error is minimised.
We choose the criteria @cott(1979 andFreedman and Diacon{898]) as two
references to select the bin widths. FRoottmethod, the bin width is chosen to
have &.56n~/%; while for Freedman-Diaconis method, the method is more robust
and the bin width is equal ®(1Q)n~'/3, wherelQ is the interquartile range. Both

histograms from the two methods are illustrateéigure 1.2

Scoti FreedmanDiacon

0.081 0.081

0.061- 0.061-

0.04= 0.04%

0.021- 0.021

45 50 55 60 45 50 55 60

(a) Scott method (b) Freedman—Diaconis method

Figure 1.2: Histograms from each method

From all the information we obtained, the pull strength is seemed to have a
Gaussian distribution. However, the number of data is not very large and we as-
sume that the data set all follow a particular distribution without any exceptional
changes. To estimate the parameters of Gaussian distribution, we choose to use

a bootstrapped estimate. We sample all the data set with replacement and the re-
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sampled values should behave like a particular sample from the original popula-
tion. Statistics of a sample from the original data set should thus simulate sample
statistics for the population. For each resampled data, we use the maximum log-
likelihood method to estimate the parameters in Gaussian distribution. The whole
processes are repeated 10,000 times and we choose the average value of the para-
meters.

The result is that the data set may folldW(49.40, 4.69%). Moreover, we need
a diagnostic checking to know whether the result is significant. Similarly, we also
choose the bootstrapped test to understand whether the data set is Gaussian distrib-
uted and the whole processes are also repeated 10,000 Tiatds.1.3summarises

the results of the hypothesis testing.

Statistic  p-Value

Anderson-Darling 0.473091 0.773567
Cramér-von Mises 0.0820403 0.68014
Jarque-Bera ALM  1.92141  0.290532
Pearsony? 12.75 0.237987
Shapiro-Wilk 0.972673 0.232307

Table 1.3: Test statistics apevalue of each test

Therefore, the,, that the data set follows Gaussian distribution with mean as
49.40 and variance a$.69? is not rejected at even the significance level of 10%.
From now, when we refer to this data, we believe that this data is Gaussian distrib-
uted with V' (49.40, 4.69%). However, the true distribution froeung and Spiring
(2002 is a transformedeta(2.0994, 2.3184, 40, 60). With these two distributions,
we will conduct some comparisons in the following chapters.

For the loss, there is no standard at all and aSpiring and Yeund1998),

‘after lengthy discussion, a loss ... was agreed upon.’ Therefore, it is on a case-by-

case basis. In other words, it is meaningless to simply compare different losses by
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choosing one with the lower expected loss, in which the (almost everywhere) zero
function must be the best candidate if so. As a result, the best and the most suitable

loss function has to be decided by different stack holders with their consent.

1.3 Main Contributions

The research of the Inverted Probability Loss Functions is quite limited to the best
of our knowledge. Hence, our major contributions are to find some evidences to
make a good foundation for it and to extend its usages in a wider range of applic-
ations. Since the research is so limited, many new results are found and presented
in the following chapters.

In Chapter 2, we study briefly about the differences between Taguchi loss and
Spiring—Yeung framework of losses to give a general picture of the loss functions
in quality assurance. A short comparisons on different distributions of process
characteristics are provided as well and it is the first similar study in the literature
to the best of my knowledge.

In Chapter 3, we have introduced a certain new losses and finally modify the
Spiring—Yeung of losses. Moreover, one of the most beautiful result is the discov-
ery of Inverted Student-t loss, which is also a generalisation of Inverted Normal
loss and even unknown Inverted Cauchy loss.

In Chapter 4, we study the common loss function in truncated situation to test
the limit of the Spiring—Yeung framework how to pretend a bounded loss to be an
unbounded loss. In general, the shortcomings of IPLF occur when dealing some
functionals cannot guarantee the existence of a density. We also study the whole

exponential family for constructing the Inverted Probability loss function so far in
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the research literature. Definitely, we also find the reasons why some are more
interesting and discuss what conditions can make a member of exponential family
being applied in Spiring —Yeung framework.

In Chapter 5, we know that the Spiring—Yeung framework will meet its limit
when facing bounded support. Therefore, we study the distribution based on quantile
function, the 5-parameter Generalised Lambda distribution and find some proper-
ties useful for constructing IPLF. Since this distribution has a variable support, it
can easily mimic other distributions with a suitable choice of parameters. This is
also a generalisation of the study $piring and Yeund1998 that they only use
the special case of this distribution to form Inverted Tukey loss.

In Chapter 6, we present some branded-new applications that will use IPLFs
as a tool. Since the loss function under IPLF in a truncated situation does not
work well, other method of transformation needs to be considered. One of the
methods is to (negatively) exponentiate the loss, because exponential function is
an absolutely continuous. The exponentiated loss is where the original loss is ex-
ponentiated and to be fitted in Spiring—Yeung framework. Some common losses
such as quadratic loss, absolute loss, LINEX loss can be exponentiated to make
it bounded by using the framework while preserving all properties of the original
loss. Since Spiring—Yeung framework cannot cover any unbounded losses, but this
approach complements to provide some losses with the similar properties as those
original losses by exponentiating. Further, it also shows that the optimal estimator
from a particular loss is always inadmissible with respect to another loss.

Finally, in Chapter 7, we try to study a general class of conjugate loss, which
wants to explain why the observation of Spiring that the exponentiated loss is a

reflected Gaussian density. It also introduces the Bayes risk compared with the
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frequentist risk. Further, we can have an answer why we choose the Spiring loss is

the most secure loss in conjugate sense.

1.4 Organisation of Thesis

This thesis consists of 8 chapters and the following is a summary. Chapter 1
provides an overview, background and motivation of the whole study. Chapter

2 presents a short review of Loss Functions, the main concept of the whole study.
Some new losses are introduced to have similar results so far in literature in Chapter
3. Chapter 4 discusses introduces the scope and the questions relevant to the study.
This chapter mainly exhibits a lot of concerns in different aspects. Then some pre-
liminary results are demonstrated in Chapter 5. Chapter 6 discusses some applica-
tions. Chapter 7 discusses the loss functions from Inverted Probability framework
from a more rigorous view. Chapter 8 proposes some limitations, what we have

done and concludes the whole thesis.
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1.5 Notations

e IPLF

e CDF

Real number field

k-Cartesian product dR

Borel algebra of X

Inverted Probability Loss Function

cumulative distribution function

Transpose

Loss function

Gamma function

Beta function

Expectation operator

Probability operator

Quantile function

Indicator function such thaX is true

Scalar product

10



Chapter 2

A Short Survey of Loss Functions in

Quality Assurance

This chapter surveys the loss functions in the field of quality assurance and dis-
cusses each major breakthrough in each section. Inverted Probability Loss Func-
tions (IPLFs), as the main theme of this study, will be discussed more deeply and
some later modifications are also well discussed.

To motivate later results, we will study the traditional quadratic loss functions
as a starting point and then follow different arguments by some researchers step-

by-step to bring out the ideas of creating the IPLFs.

2.1 Taguchi-type Loss Function

2.1.1 TaguchiLoss

Taguchi Taguchj 1986 Taguchi et al. 1989 suggested a quadratic or squared-
error Loss Function to motivate and illustrate losses together with the variance of

the product quality from a process target. The form of such quadratic Loss Function

11
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proposed by Taguchi is

L(z,T)=B(z—T) (2.1)

where B > 0 is a constant and’ is the target value Figure 2.1shows one of
the particular example of quadratic loss functions in quality control. Indeed, the

guadratic loss function has its advantages:

e it can be seen as a function approximated by the Taylor series expansion

about the target and up to the quadratic term.

e it fits the widely-used variance and squared-error loss functions and under
a certain conditions of Gauss—Markov theorem, the estimator is minimum

variance unbiased.

—_— Taguchi Los:

Figure 2.1: A Taguchi quadratic loss with= 1 andT = 4
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However, there are some defects associated with this quadratic loss function,
being criticised by SpiringRpiring, 1993 and Sun, Laramée and Rambe8uf
et al, 1996. For instance, the Taguchi loss function increases without bounds; and
this finally led more remedies proposed to overcome some difficulties. Another
problem is that the quadratic loss function is symmetric around the target, which is
not suitable in some situations.

The major solutions are the followings: Ryan loss and Barker loss, while keep-

ing the shape and some properties of Taguchi loss.

2.1.2 Ryan Loss

Ryan Ryan 2012 proposed in 1989 a more general form of the quadratic Loss

Function as below to overcome the unbounded loss:

—_— Ryan Los:

Figure 2.2: A Ryan loss withK, B, T') = (6, 1,4)
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B(x—T) |z—T|<+/K/B
L(z,T)= (2.2)

K jz—T| > /K/B
where K > 0 and B > 0 may not be equal, but both are constants. The
Figure 2.2shows the modifications such that the Taguchi loss becomes bounded.
In comparison with Taguchi loss, the expected loss under Ryan loss is more

controlled and minor because of the boundedness of the loss function.

2.1.3 Barker Loss

It is sometimes impossible to preset a same value of loss realistically and assumes
that the amount of loss is symmetric and then BarBarker, 1990 also introduced

the following quadratic Loss Function:

Bi(zx—T) z<T
L(z,T)= (2.3)

By(x—T)> z>T

whereB; > 0 andB, > 0 are both constants and similar to Ryan oBedoes not
necessarily equal tB8,. Clearly if B; = B,, Barker loss becomes Taguchi loss and
so Barker loss is a generalisation of Taguchi loss. The following giéighye 2.3
shows the Barker loss with asymmetric tolerances or multipliers. From this section
onwards, all these three types together will be referred as Taguchi-type loss.
After all, the Barker loss is unbounded like Taguchi loss, the expected value

under Barker loss is also similar to that of Taguchi loss.
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— Barker Loss

Figure 2.3: A Barker loss withB,, B;) = (1,3) andT = 4

2.2 Spiring Inverted Probability Loss Function

2.2.1 Spiring Loss

Due to the problems aforementioned in Taguchi loss function, some started to ex-
plore another route. Spiringspiring 1993 proposed a new concept of loss func-

tion by using Gaussian distribution as the general form, as he thought that most
experiments or processes follows Gaussian distribution. The general form of this

Reflected Normal loss function is

L($,T):K{ 1 —exp (—%)} andy =A/4 (2.4)

whereA is the Euclidean distance from the target to the point capturing the 99.97%
of the maximum loss from a Gaussian distribution.

Spiring Loss Function is conceptually different from the Taguchi loss. It is
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——  Taguchi Los:

- - Spiring Loss

Figure 2.4: A Spiring loss with K,~,T) = (6,2,4) and a Taguchi loss with

(B, T) = (1,4)

quite interesting that this enjoys, by default, the properties of boundedness and the
freeness of the target valug,

In Figure 2.4 it is shown that a Taguchi loss with the same target will generate
the larger loss when compared with a Spiring loss with the same target and the
maximum loss of a Taguchi loss is infinite. Moreover, the rate of approaching the
maximum loss in Spiring loss is rather slow and smooth enough. In the meanwhile,
compared with Ryan loss of the same target and same maximum loss, Spiring loss
produces a smaller loss with the extreme deviations, as illustratéidume 2.5 In
addition, the rate of approaching the maximum loss is also slower in Spiring loss
than in Ryan loss.

Compared with Taguchi loss, the Spiring loss is also smaller and even less than
the maximum loss. As Ryan loss is also bounded, the Spiring loss is comparable

with Ryan loss, and whatever smaller depends on both parameters.
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— Ryan Los!

- - Spiring Loss

Figure 2.5: A Spiring loss with K,~,T) = (6,2,4) and a Ryan loss with
(K,B,T)=(6,1,4)

2.2.2 Sunet alLoss

Sun, Laramée and Rambeigun et al. 1996 modified the Spiring Loss Function

and proposed a revised one, Modified Reflected Normal loss function, by freeing
Ay =4toA/vy € (0,00). Obviously, Spiring loss function becomes a special
case of this type. As Leung and Spiririgeing and Spiring2002 indicated, the
Modified Inverted Normal Loss Function “was an important step”, bec&use

et al. also figured out a method to fit the actual loss via a nonlinear least squares

method. The modified form proposed Byn et alis

. KA (JJ—T)2
L(z,T)= N —exp{—%(A/'y)Z} {1 — exp <_2—’72>} (2.5)
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Figure 2.6: Suret allosses of Ka, A, T') = (10, 2,4) with differenty’s

where0 < exp {—1 (A/7)*} < 1andK, > 0is fixed. By a simple manipulation,

we have

Therefore, it also includes Taguchi quadratic loss as a limiting case.

Obviously, a new parameteX is added and<, is the value depending on the
ratio betweeny and A. In the Figure 2.6 we fix the A being equal to 2 and the
Modified Reflected Normal loss function behaves more like a Taguchi loss as
tends to infinity. Asy tends to 0.50, the ratid /v becomes 4 and the loss function
is really the Spiring loss. The advantage of this loss functions is that it bridges the
bounded Spiring loss and the conventional unbounded Taguchi loss by switching
K.

The reason behind the device that the Modified Reflected Normal can work is
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Figure 2.7: The 3D plot of Suet alloss of(Ka, A, T) = (10, 2,4) againstr and
v

the symmetry property and unimodality. The loss functions from efBpating or
Sun et al.also assumed the underlying process as Gaussian distributed. How the
device works is also shown in tiregure 2.7

On the grounds that Siet al. loss is seemed as a bridge between Taguchi loss
and Spiring loss, the expected loss depends on the paramétaris fixed. Hence

the expected loss may be smaller than Spiring loss or as significant as Taguchi loss.

2.2.3 Spiring—Yeung Framework of Loss Functions

Based on the hisSpiring 1993 idea, Spiring furthered proposing a general class
of loss functions $piring and Yeungl1999, referred as Inverted Probability Loss
Functions (IPLF), and tried to use the loss functions witlimodaldistributions

other than Gaussian to fit the need for asymmetric loss.
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The general class of such Inverted Probability Loss Functions can be easily
described as here: Lé(z, 0) be a probability density function (pdf) with a unique
mode atz. T is the target value whefE = & should be matched and in genefal

is a function of other parameters or constants. If we further let

m = Supf(l‘,e) = f(T79>7

reX

then the general form of the Inverted Probability Loss Functions (IPLF) is proposed

as

f(=.0)

L(x,T):K{l— -

} Vo€ X (2.6)

whereX is the support of the distributiofi(z, ) and K > 0 is a constant. Here,
aremark is needed: the pdfz, 0) is irrelevant to the distribution of the character-

istic or the random variable under examined.

2.2.4 Spiring piecewise INLF

If the Gaussian Distribution is considered to create the Inverted Probability Loss
Function, Spiring and Yeung in the same paf@pi(ing and Yeungl1998 even

suggested the following form for the situation with asymmetric loss:

L) — K, [1 — exp (—(x_?Z)} r<T -

K, [1 — exp (—(m_T)Zﬂ x>T

2
2075

whereK; > 0 are constants angf are parameters; but each of them is not neces-
sarily the same. ThEigure 2.8compares the piecewise Taguchi-type loss, Barker

loss with the same target and the Spiring piecewise Inverted Normal loss (INLF)
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- —  Spiring Piecewise Lot

Figure 2.8: A Barker loss witlB,, By, T') = (1,2,4) and Spiring piecewise INLF
with (K, Ky, 02,02, T) = (15,5,4,1,4)
with the same target. Seeing that Barker loss is always unbounded and convex,
Spiring piecewise INLF provides a choice of loss function with bounded maximum
loss. AsFigure 2.8shows, the Spiring loss may give a higher loss than the Barker
loss due to its quasiconvexity, for which Gaussian distribution is logconcave and
so quasiconcave and strongly unimodda(ndorff-Nielsen1978 Dharmadhikari
and Joag-Devi988§ Bertin et al, 1997).

The Spiring piecewise INLF is the first loss with 2 different maximum losses
and this result shows that the expected loss from Spiring piecewise INLF is less
thanmax{ K7, K>}, inturn also less than that by any unbounded losses like Tagu-

chi loss or Barker loss.
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2.2.5 First Modified Spiring—Yeung IPLF

To generalise the Spiring piecewise INLEguation 2.7Spiring and Yeung1998
and proposed anideung and Spiring2002 reaffirmed one more generalised ver-

sion of the IPLF, which is

L(z,T) = (2.8)

wherekK; are two constants and; = sup, f;. This modification can even provide

a convenience in fitting the asymmetric loss, rather than finding a suitable probab-
ility density to fit the more restrictive Spiring—Yeung IPLF. Accordindgstion et al.
(1996, K; may be chosen as a function instead of constant, and therefore we sug-
gest that the novelty of this generalised IPLF is greatly enhanckd ifave more
varieties.

In the literature,f; and f, are normally the same in form but with different
parameters. For instancgpiring and Yeund1998 used both Gaussian densities
andLeung and Spirind2002 used both Beta densities. Hyquation 2.8 f; and
f2 can be two distinct densities and the only requirement is that both densities have
the same mode. More clearly, the left side can be a Gaussian, while the right side
can be a Beta. For more details about the Beta densities applied in the IPLF, it is
formally introduced later.

Figure 2.9depicts the combination of two different losses from the two de-
veloped in the literature, which is unseen before to the best of my knowledge. The
left side before the target is a Gaussian density and the right side after the target is

a Beta density. It is noted that even the maximum loss in both side is different and
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Figure 2.9: A modified IPLF with the left side as INLF withi;, 00, 7) =
(15,1,0.75) and the right side as Inverted Beta loss Wilty,, o, T') = (5,4,0.75)

hence this is also used for asymmetric loss as Spiring piecewise INLF.

2.2.6 Pan-Wang Loss

Pan and Wan@000 later studied the Reflected Normal Loss Functions and thought
deeply with the resultd-quation 2.7of Spiring and Yeung in 1998Spiring and
Yeung 1998. They proposed another more general one with two different modes

L' andU’ for asymmetric loss with Gaussian distribution:

(

K, [1 — exp (—(x;f;)2>] x < L'

Lz, {L'\U}) =10 I'<z<u (29

K, [1 — exp <—%>} x>U
\ 2

where the conditions are the sameEagiation 2.7 L' andU’ are the lower and the
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upper specification limits respectively. An example of Pan—Wang loss is plotted in
Figure 2.10wherel’ = 3 andU’ = 5 and the maximum loss ist and8 from the
left and right respectively.

L
o 14f
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T
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‘““7““‘\'““‘/“““““X
-2 2 4 6 8 10

— Pan-Wang Los:

Figure 2.10: A Pan-Wang Revised Inverted Normal loss function With K,
0%1, 0%2, L', U)=(14,8,2,1, 3,5)

Pan believed that the quality loss does not fall within the acceptable range of
target value K; denotes as the maximum loss if the quality departs from the target
and the lower and upper limit of the acceptable range respectively=fot, 2. o2
are the parameters for the shape of the loss functions. This Pan—Wang loss is modi-
fying Spiring piecewise INLF by revising into a pair of lower specification limits
and upper specification limits’, U"). Definitely with the Gaussian distribution,
Pan—Wang loss is a supplement of the conventional process capability indices, such
asC, andCyy.

Pan Pan and Li2001 Pan and Par2006 Pan 2007 Pan and Par2009 in his

later papers also compared the effectiveness of his Revised Inverted Normal loss
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functions withSpiring piecewise INLF andBarkerloss. Since the criteria are to
compare the bounded loss in quality control and to allow the tolerances inside two
limits, Pan—Wang loss is certainly preferred.

After all, the expected loss under Pan—Wang loss is less than that under Spiring
piecewise INLF, for which a certain interval betweEhandU’ provides zero loss

under Pan—Wang loss but not Spiring piecewise INLF.

2.2.7 |IPLF of other distributions

Since Spiring—Yeung framework of loss, referred as Inverted Probability loss func-
tions (IPLFs) is proposed, other distributions can be applied to describe the partic-
ular loss in different contexts. The general information about the IPLF is already
summarised in th&ubsection 2.2.3We will try to introduce which distributions
were once applied in the literature. However, mainly there were only two literature,
Spiring and Yeund1998 andLeung and Spiring2002, studying the framework
other than INLF or piecewise INLF.

For asymmetric loss, Gamma distribution was suggested and hence under the
Spiring—Yeung IPLF, the Inverted Gamma loss function was created. The Inverted

Gamma loss function has the form:

€T X a—1
L(z,T)=K {1 - [T exp <1 - ?ﬂ } Loeo,00) T K1 g[0,00)

=K {1 — exp [(1 — ) <% — log% — 1)] } Loco,00) + K 1ig(o,00)
(2.10)

The following figure,Figure 2.11 shows two different shapes with different

a. Therefore, it apparently inherit the boundedness of IPLF and the shape may be
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accommendated by choosing the most suitable

Figure 2.11: Inverted Gamma losseq &f, T') = (5, 4) with differenta’s

If the « is well chosen, the Inverted Gamma loss can substitute the INLF and
the quadratic loss but with the flexibility of the shape in depicting the loss. One of
the properties of IPLF is that the preservation of some hierarchies of the underlying
distribution. Considering the fact that the chi-squared distribution is a special case
of gamma distribution and is unimodal, we can slightly reparametrise the Inverted
Gamma loss to have an Inverted Chi-squared loss with degrees of freedadin.

Leung and Spiring2002 suggested to model both symmetric and asymmetric
loss with Beta distribution and so they proposed an Inverted Beta loss function.
Analogously, this Inverted Beta loss allows the change of the shapes. Unlike Inver-
ted Gamma loss, it can further provide a loss with faster rate in either side of the
deviation from the target within a bounded unit suppfrtl]. The Inverted Beta

loss has the following general form:
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1-T

L(z,T) = K {1 - [ - 1) o 21— x)Tr_l} Locoa] + K Lpgon
(2.11)
However, this Inverted Beta loss has a serious drawback in flexibility of choos-
ing parameters. Since the corresponding distribution is Beta distribution, Beta dis-
tribution has a strict conditions to be unimodal: both parameters have to be greater

than 1.

Figure 2.12: Inverted Beta losses(df, ') = (5, 0.5) with differenta’s

Using the framework of IPLF and the conditions of unimodality of Beta distri-
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bution, supposén, 3) is the pair of parameters,

a—1
= ——-7— 1
T 1-2T
= — 2.12
o (1_T>5+1_T (2.12)
T
—1l=—- (-1 T<1
a 1—T(6 ) 0<T <

That is, if the targef” and the parameter are fixed, there is no freedom in adjust-

ing the shape, unlike the Beta distribution that both parameters are able to reform
the shape. As a result, the figure 2Liaung and Spirind2002) is not true. The
following figure, Figure 2.12is the corrected one with the parameter val&ég-

ure 2.13andFigure 2.14further shows the difference of the shape as the tafget

is set away from 0.5.

Since the shape of the loss function deviates too much from an inverted form of
Gaussian distribution or quadratic form, the expected loss under the Inverted Beta
loss functions is also less significant than that under Spiring loss or Taguchi-type
loss.

Further, it only allows to work in the unit range and we have to transform the
data to unit range beforehand, even though this loss is scale invariant against the
generalised Beta distribution. That is, in general we have a data set larger than the
unit supportand” > 1, the maximum and minimum of the data has to be estimated

in order to make a transformation

X = -mn Y is the sampled data (2.13)

Then the problem comes on which an extremum occurs. The dilemma has to be

faced: the extremum is a part of the population itself and the loss has to be totally
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Figure 2.13: Inverted Beta losses(df, ') = (5,0.25) with differenta’s

remade by choosing or the extremum should be neglected.

Up till now, all the loss is only suitable for one characteristic. If there are
more than one characteristics needing to be met, then the loss function has to be
multivariate. Correspondingly, both Taguchi-type loss and IPLF are allowed to
extend the loss to describe more than one dimension of loss. Since Taguchi-type
loss is quadratic and simple, it is easy to vectorise all targets in the meanwhile.
One of the particular example of IPLF by a multivariate Gaussian density, which
Spiring (1993 also discussed but in a bivariate form only.

By definition, the (nondegenerate) multivariate Gaussian derfigitye) with

rank(x) = kis
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Figure 2.14: Inverted Beta losses(df, ') = (5, 0.75) with differenta’s

and so

m= sup fx(x)=T (2.15)

Xcxk
By Equation 2.6 we have the following loss whefE = (T}, Ts,--- ,T})" is

the column vector consisting of target for each characteristic:

L(x,T) = K (1 _ fXZ(f”)> _K (1 —exp {—% (@ —T)' S (@ — T)})
(2.16)
Hence, two types of losses can work with both univariate and multivariate situ-
ations. In this sense, Taguchi-type loss generally requires the independence of
each characteristics while IPLF is allowed that any combinations of characteristic

is correlated. It results that IPLF has more flexibilities in the multivariate case.
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2.3 Fathi and Poonthanomsook Loss Function

Fathi and Poonthanomso¢R007) used the same method as Taguchi and the Loss
Function is the function approximated by the Taylor series expansion about the
target, but up to the quartic term to overcome all the problems of Taguchi loss. Itis

therefore called quartic loss function. The general form is

L(z,T)=By(x —T) 4+ Bs(x —T)’ + By (z — T)* (2.17)

where B;y, B, B, are all constants. This type of loss functions can capture the

asymmetric and symmetric case. Fathi and Poonthanomsook also attempted to

apply the analogous thought of PdPafi and Wang200Q Pan and Lj2001) and

used two moded.” and U’ to fit for the asymmetric and symmetric case. If we

replacell’ = u + ko andL’ = p — lo with i being the meang being the standard

deviation,k and/ are some constants,

LU, T)U$+ U3 (L(L, T)— ByV3 (V) + ¥y))
VI3 () + W)

LU, T)¥} - 93 (L(L, T) + Bs¥? (=97 + 93))
Uiv3 (W + W)

B2 -
(2.18)

B3 =

whereV, =7 - L' ,V, =U'— T andd,, L (z,T) > 0 for all z if B, > 0 and
B} < £B,B,.

B, controls the shape of the quartic loss functions and Taguchi quadratic loss
function is a special case of Fathi-Poonthanomsook loss under the conditions of
Uy, = Uy, LU, T) = L(L', T)andB, = 0. However, it also inherits some
defects of Taguchi one, the quartic Loss Function is unbounded and increases in

a more serious and faster way than Taguchi loss outside the acceptable range.
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Figure 2.15: A Fathi—-Poonthanomsook loss Wiy, Bs, By, 7)) = (1,0.2,0.3,4)
and a Taguchi loss withB, T') = (1,4)
The comparison between Fathi—-Poonthanomsook loss and Taguchi loss with the
same target is illustrated in tHeigure 2.15 The conditions tha#3, > 0 and
—,/23234 < B3 < ,/%BQBLL are both met, but it is observed that even a very
small B, has led to an enormous loss while deviating from the target.

In contrast with Taguchi loss, the Fathi-Poonthanomsook loss often generates a

very heavy expected loss.

2.4 Miscellaneous Concepts

There are some miscellaneous concepts when discovering thoseSpitirg and
Yeung (1998 introduced the concept of “conjugate distribution” for a particular
kind of Inverted Probability Loss Functions. That is, the risk function of the loss

functions with respect to the “conjugate” distribution is in a closed form.
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Spiring and YeungX999 also used some examples to provide an illustration
that the “conjugate distribution” for Inverted Normal loss is the Gaussian density,
while the “conjugate distribution” for Inverted Gamma loss is the Gamma density.

Leung and Spiring20032) utilised the Spiring—Yeung framework and made use
of Beta density to form the Inverted Beta loss. Since the two parameters of Beta
density are also used to describe the shape, this type of loss functions can also fully
be adjusted to the needs of symmetric and asymmetric losses. Besides, the Inverted
Beta loss does not need to truncate at some points to fit for the asymmetric shape
incurred by losses. Both authors tried to show that the “conjugate distribution” for
Inverted Beta loss is the Beta density.

Leung and Spiring2004 gave a summary of some properties of the family
of Inverted Probability Loss Functions so far researched in the papers of Spiring
(Spiring, 1993 Spiring and Yeungl998 Leung and Spiring2002. They focused
their main points at the Loss Inversion Ratio (LIFéffr’LiT) and capture some
properties of LIR. Actually, LIR properties are just simple properties of pdf and
they reconfirmed the results among the earlier IPLF made by Gaussian, Gamma
and Beta densities.

Properties of IPLF irLeung and Spirin2004 when IPLF may be seemed as

a random variable:
A. Boundedness 0< L(z,T) < K,

B. Scale-Invariance L(z,T)= L(kx,kT), Vk.

Pan Pan and Par2006 Pan 2007 Pan and Par2009 related the Loss Func-
tion to the Process Capability Indices, and it created the new opportunities for

research the application side of the loss functions in quality assurance. Further,
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Spiring and Leund2009 also connected the monetary loss, Process Capability
Indices and Taguchi-type loss.

In fact, the standard deviation has become synonymous with the dispersion, the
physical meaning is not necessarily equivalent in either situations of inter-families
of distributions, or intra-family of distributions. Therefore, the actual process
spread and the Process Capability Indices may not provide a coherent indication
over different distributions. It also leads to a new series of questions about the
non-normality circumstances.

Returning to the original Taguchi loss, it is the approximation of Taylor series
expansion up to its quadratic term. Some researchers like the anonymous referee of
(Leung and Spiring2002 prefer the Taguchi form to the parametric fororeung
and Spiring(2002 also cited the conservative view that “no distributional assump-
tions are necessary” and “...the quadratic approach requires only the determination
of a constant and estimates of the process mean and variance”. That is why we
conjecture that the Taguchi-type loss is just a special case of the general class of

the IPLF.

2.5 Numerical Examples

To illustrate the concepts and some nice properties of some losses described in the
previous sections, we refer to the data collecte®éattion 1.2for the following
discussion.

The following table shows the different associated risks or expected losses,
which is the average loss to the customers or society when the target is not aimed

with different particular chosen loss. We have two different distributions for the
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same process characteristics, while Nor(dal40, 4.69?) is our estimated pdf and
the other Betd2.0994, 2.3184, 40, 60) is true. In particular, all the following cal-
culations inTable 2.1use the same setting® = K; = 0.3, Ky = 0.2, KA =
0.3(1—e8) = 0.2999, B = B; = 0.1, B, = 0.15, By = —0.02, By = 0.003, v =

=2, 7% =1 A=2 L[ =50,U =575 T = 55.

Beta Normal % Change

Taguchi Loss 4.8615 5.3327 9.69%
Ryan Loss 0.2661 0.2709 1.83%
Barker Loss 4.8840 5.3861 10.28%
Spiring Loss 0.2287 0.2356 3.01%
Sunet alwithy — 0 Loss 0.2999 0.2999 1.31071%%
Sunet alwithy =2 Loss 0.2287 0.2356 3.01%
Sunet alwith v — oo Loss 3.6450 3.9982 9.69%
Spiring Piecewise Loss 0.2314 0.2361 2.01%
Pan—Wang Loss 0.1069 0.1093 2.26%
Inverted Gammder = 5) Loss 0.0105 0.0116 9.82%
Inverted Betale = 3) Loss 0.1200 0.1262 5.13%
Fathi—-Poonthanomsook Loss 31.176 38.602 23.82%

Table 2.1: (Frequentist) risk associated with different losses

Obviously, the boundedness and the shape of the loss control the robustness of
the risk associated with the loss. In general, the Inverted Probability loss function
with Normal distribution is more robust than others. However, the most robust one
is Ryan loss, which is bounded and does not penalise the off-targets very seriously.
As expected, the worst one is Fathi-Poonthanomsook loss for its higher order ex-
pansion. That is, if the distribution of the process characteristic has a long tail or

it is mostly off-target, the Fathi-Poonthanomsook loss will provide an enormous

expected loss.
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2.6 Comments

The uses of loss functions are more and more popular in quality assurance while
the industry needs a more flexible and realistic loss functions. Although in gen-
eral conventional quadratic loss or Taguchi loss are adopted, more thoughts on
“exotic” losses such as Spiring—Yeung Inverted probability loss framework (IPLF)
have gained some attentions from some researchers.

This survey provides a short summary on the loss function being used and ex-
amined in the quality assurance. Although it is not exhaustive, most major well-
discussed and current research results have been included. Some comparisons have
also been conducted to examine different risks associated with losses and different
distributions of process characteristics. If the loss is bounded, the expected loss
will be more robust and in general the expected loss from Spiring—Yeung IPLF

does not deviate too much.



Chapter 3

Prospects and Developments

There are very few literature comparingg Taguchi—type losses with Spiring—type
losses. Even if there are some discussions between two, they were judged and con-
sidered on a different platform, as if deciding between an apple and an orange. In
this chapter, we introduce some new concepts from the ingredients of the materials
whatsoever. In particular, we will place more attention on the Inverted Student-t

loss.

3.1 Ryan-Barker Loss

To have a fair comparison with the Spiring piecewise INLFSmbsection 2.2,4

we need to find another loss with similar properties. Hence, we introduce a slight
modification for Barker loss with the techniques of Ryan loss. We will refer this
loss as Ryan—Barker loss which is also suitable for asymmetric loss or symmetric
loss. This loss can be seen as a generalisation of all Taguchi-type loss. The form

of the Ryan—Barker loss is:

37
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K1 I‘ST— Kl/Bl

Bl(l'—T)z T— Kl/Bl<ZE§T
3.1)

L(z,T)
BQ(IE—T)Q T<ZE§T+\/K2/BQ

K, [L’>T+\/m

where K, K5, By, By are all constants greater than 0, but not necessarily equal.

In the following figure Figure 3.1 both Spiring piecewise INLF and Ryan—Barker
loss are bounded and monotonically increasing while the process is off target, but
it does not show any advantages over others.

L

14

12[ "\

—  Ryan-Barker Lost

- —  Spiring Piecewise Lo

Figure 3.1: A Ryan—Barker loss withi;, K, By, B2, T) = (15,5,1,2,4) and
Spiring piecewise INLF with K, K, 07 ,07_,T) = (15,5,4,1,4)

This loss enjoys both the merits of boundedness from Ryan loss and asymmetry
from Barker loss, resulting in a expectation of a value less than the maxim#mn of

and K,. When comparing with Spiring piecewise INLF, both shape and expected
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value are also very close and it is possible to replace Spiring piecewise INLF with

this loss.

3.2 Second Modified Spiring—Yeung IPLF

Similarly, a more generalised version th&nbsection 2.2.5an be proposed by
adding the modifications from Pan—-Wang lossSimbsection 2.2.6the following

generalised IPLF can be

(

Kl[l—m} T < ay

mi

L(z, {a1,a2}) = 0 ar <z < ay (3.2)

Kg[l—m} T > ay

m
\ 2

where the conditions are the sameEagiation 2.8anda; < a». Itis reminded that
fi; > 0 and the losd. is a constant outside the supportfaf Both f; can also be two
distinct densities and we require that < oo. Without this further condition on
m;, the loss will be kept as maximum loss except at the target. As aforementioned,
to have a just and fair comparison between two losses, the major properties of the

two have to be matched. The Pan—Wang loss has the properties:

e the loss is bounded
e the loss may be asymmetric

e the loss may be zero for an interval.

Therefore, Pan—Wang loss is now included in this framew&dgation 3.2
wherea; = L anda, = U. Itis also possible that; = a, = T in Equation 2.8

As a result, this second modified IPLF is the most generalised version so far.
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3.3 Ryan-Barker—Pan Loss

Therefore, using the analogous methods to produce a Ryan—Barker loss, we also
propose another slight modification frofguation 3.1to form a new loss. This
loss is referred as Ryan—Barker—Pan loss to give all the credibility to these three

discoverers.

K z<a; — \/m

Bi(r —a)? ay—+/K/Bi<z<a
L(z,{a1,a2}) = S a1 <x < ag (3.3)
By (z — a)? a2<x§a2+\/m

K, T > ag+ \/m

\

in which all conditions are the same Bguation 3.1anda; < ay. We also trans-
form the parametrisation such that = a; andU’ = a,. Evidently, this loss is
also a generalisation of Ryan—Barker los&guation 3.11n consequence, we can
have a comparison with the same ground.

Clearly, both losses have the same amount of parameters and also satisfy both
criteria of boundedness and the allowance of the tolerance limits. Definitely, the
IPLF has more flexibilities in changing the rate of approaching the maximum loss.
Without this advantage, both are equally acceptable.

When comparing with Pan—Wang loss, both shape and expected value are also

very close. In consequence, this loss is also possible to replace Pan—Wang loss.
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— Pan-Wang Los:

- - Ryan-BarkerPan Los:

Figure 3.2: A Pan-Wang loss witli;, K, 02,03, L', U’) = (14,8,2,1,3,5) and
5)

Ryan—Barker—Pan loss witlk(,, K, By, By, L', U’') = (14, 8, 1.5, 3, 3, 5)

3.4 Inverted Student-t Loss

The loss function approach in quality assurance was initiatetalgychi(1986 to
assess and monitor the losses associated with the process characteristic deviating
from the target preset. However, due to the undesirable performance of the Taguchi
loss, many practitioners and researchers have tried to propose other loss functions
to meet their needs.

SinceSpiring(1993 initiated the Spiring loss or Spiring piecewise INLF, Spiring—
Yeung framework of loss (IPLF) has been promoted and mostly INLF is adopted.
It still does not know whether the modifications frddun et al.(1996 to relate
the Taguchi loss irsection 2.1only works on INLF. In this section, we try to de-
velop a more general loss than INLF by applying the Spiring—Yeung IPLF. While

preserving the nice properties of Spiring—Yeung IPLF, a family of symmetric loss
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based on an inverted Student-t density is proposed. For asymmetric loss, the most
generalised frameworlkgquation 3.2can be applied to adjust the choice of a par-
ticular loss. Some statistical properties of this Inverted Student-t loss will be dis-
cussed and the results are illustrated.

Similar to the INLF Spiring 1993 Spiring and Yeung1998, the Student-t
density has many new properties like Gaussian density. With the Spiring—Yeung
IPLF framework, some properties associated with the family of Student-t distribu-
tions are needed to be checked for the development of Inverted Student-t loss.

The process target is needed to be the same as the unimodal point of the density
to be inverted in Spiring—Yeung IPLF. Student-t density is symmetric in the full
real lineR and always have the mode at O, then the ideal target must be 0 as well.
For a more general case with target equal to other values, we have to consider non-
central Student-t density or nonstandard Student-t density. It is noted that no matter
which Student-t density is chosen, Student-t density is not a member of exponential
family. As the mode of a non-central Student-t density is not analytically solvable,
we choose the nonstandard Student-t density as the one appliedEguagon 2.6

Student-t density was proposed by William Sealy Gossetin 1909 under a pseud-
onym “Student”. In the case of a nonstandard Student-t pdf with0 ando # 0,

the functional form for all: € R is

f(x|T,0,V):\/;+(zl)<1+%<x;T)> _ (3.4)

where B(, -) is a Beta function.
The nonstandard Student-t density has a forovas 7'+ oY, whereY” follows

Student-t distribution, resulting in the mode’&sTherefore, by settin@’ equal to
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Figure 3.3: A nonstandard Student-t with, o, v) = (4, 1, 10)

the target,

m=sup f(x | T,o,v) = f(T|T,0,v)

X (3.5)

Vva®B(3,3)

and the resulting Inverted Student-t loss is

L(z,T) = K{l _ M}

f(T|T,o,v)

1 T\ 2 — (3.6)
K 1—<1+—($_ )) . zeR
1% g

Figure 3.3andFigure 3.4clearly describe the relationships between the non-

standard Student-t density and the Inverted Student-t lossAvith1. Further, we
know that when, — 1 the Student-t density will be a nonstandard Cauchy density

with a mode and a median @tand scaler. Whenry — oo, the Student-t density
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will be a Gaussian distributiony (T, o2).
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— Inverted Studentt Loss

Figure 3.4: An Inverted Student-t loss with, o, v) = (4,1, 10)

This Inverted Student-t density can be seemed as a generalisation of Spiring
INLF. For different degrees of freedom we can have a look at thieigure 3.5
Whenv is closer to 1, the rate of approaching the maximum loss of 1 is slower.
When thev is close toxo, it is closer to be an INLF, which is shown iigure 2.4

If we further accept the modification &un et alto relate the Taguchi loss, we

need to add the paramet&rto amend the loss. The new loss function is defined as

K 1 (z—T\*\ °
Lz, T) = 1 —exp (—1A/2(A/U)2) L= (1 * v ( o > ) ’ zeR,
(3.7)

where K4 is not the maximum loss, but the value of the loss at a certain ratio
deviating from the targetFigure 3.6shows the influences of differert/o and

illustrates the flexibilities of this new generalised Inverted Student-t loss. The user
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Figure 3.5: Inverted Student-t losses(dt o) = (4, 1) with differentv’s

L
2.50

2.00

Figure 3.6: Generalised Inverted Student-t losse§Iof\,v) = (4,2,10) with
differento’s



CHAPTER 3. PROSPECTS AND DEVELOPMENTS 46

can adjust the ratio according to their own experience and own knowledge of the
loss. Aso increases, the loss will close to be a Taguchi loss and ignores the effect
of the maximum value. In conclusion, we have some properties of this generalised
Inverted Student-t loss:

Wheno tends ta),

Ka 1 (z—T\*\ °
lim L(z,T) = li 1—11+-
S ) = O o (—1/2(8 o)) ( *v ( o ) )
=KA(1—1,-7) = Kalyzr
(3.8)
wherel,_r is the indicator function that = 7. That is, it converges to a uniform
loss equal to the maximum loss except at the discontinuify. at

Wheno tends tooo,

Ka 1 (z—T\?\ °
A ) = I T o (C1/2(8 o)) ( Y ( o ) )
. KA(l + l/) 9
== Ay D)
(3.9)
. : . : Ka(l
Apparently, it is the Taguchi loss #quation 2..with B = A&j )

Whenv tends ta0,

lim L(z,T) = lim -— eXp(f(l%(A/J)Q) 1- (1 n % <x;T)2> :
_ Ka
- { - Ja/0}

(3.10)

It is another constant loss however the process meets the target.
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Whenv tends tooo,

Jim L(z,T) = lim +— exp (_K1A/2(A/U)2) 1— <1 + % (x ; T)2> -5
gEmErvieat el

As predicted, the Inverted Student-t loss will be the Spiring INLF/as> oo.

(3.11)

Analogously, the generalised Inverted Student-t loss will be &ual. loss as
v — oo Withy = o.

Apparently, a question may be raised why the modificatioBuf et al(1996
only works on Spiring INLF and the Inverted Student-t loss, but not in general. If
we have a deep investigation on the amendmeif ahe termexp [—1/2(A/0)?]
is a smooth function. It has the effect when the loss being applied is also smooth
enough. In addition, another stop of the modifications is a Taguchi loss, a sym-
metric loss in the full real planR. Hence, it is also necessary that all the losses
under modification have some common properties. In other words, this modifica-
tion works like a bridge to link two sides together, but the two sides have to be close
enough. Such as the half-plane asymmetric Inverted Gamma loss or the bounded
asymmetric Inverted Beta loss cannot have such a method to relate to the Taguchi
loss.

The loss function is a tool to depict the loss incurred from the process char-
acteristics when it is not on target. In most of the times, we need to consider the

average loss associated with a chosen loss, which is easily evaluated and compared.
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The risk function is

B Ka - 1(z=T\* °
s 7= [ T s | (“u( - )) A
(3.12)

but generally not a closed form, even if the process charactekistias a Student-t
distribution. Fortunately, in general, it is still easily computable in numerical.

In practice, if the loss function is chosen, the parameters of the loss are needed
to estimate to reflect the decision about the loss from the process. In many cases,
only partial information is provided whet€ is set to the loss when the associated
loss is atl" £ A. Similar to the Suret al Loss inSun et al.(1996 and IBLF in
Leung and Spirind2002, additional “secondary information” on the losses at a
set of some additional points are required to solve the whole representation of the
loss function to meet the objective to accurately depict the losses with the target in
mind. To determine the shape parameteendo, we suggest to use the similar
methods by Suet al by using a nonlinear least square search procedure by

n

. 2
in 2 [Li — L(y;, T)] (3.13)

whereL; are some additional points ¢fyy, L1),- - -, (Yn, Ln)}-

The shape of the Inverted Student-t loss by definition is already scale invariant
under a linear transformation. That is, if the Inverted Student-t loss is based on
another nonstandard Student-t distribution, a similar shape with different scales
and locations of an Inverted Student-t loss will be obtained with the relationship of
the originaly = a + bxz. As a result, the risk is also scale invariant under a linear

transformation.
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3.5 IPLF as arandom variable

In probability and statistics, sometimes we need to calculate the expected value of a
function ofg(X'), but we only know the probability density of. Correspondingly,

many statisticians or practitioners want to find the expected loss or the (frequentist)
expected risk of a loss function. Hence, the law of the unconscious statistician can

be applied by simply calculating

E[L(X,T)] = / L(z,T)dFy (3.14)

X

and to be more correctly speaking for a estimated density, the equation is

~

E[L(X,T)] = /X L(z,T)dFy (3.15)

However, as the risk function is used as a tool to examine the statistical proced-
ure, we will abuse the notation to use the former equation to represent the above
equation if there is an ambiguity.

The general form of the expected value of the IPLF relatdeipoation 2.6s

E[L(x,T)]—/K{l—M} Fy(de)

X

:K{l—%/}(f(x,T) Fy (d:c)} (3.16)

m

— k{1~ ~Blf )

m

Since0 < f(z,T) < m, 0 < E[f(z,T)/m] < 1and so0 < E[L(z,T)] < K.
The central moments of orderof the IPLF with respect to the distribution of the

underlying process, utilised to find the variance, skewness and kurtosis of the loss
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functions, related t&quation 2.6s

L(z,T) - ]E[ 2, T)]

L{ (- ) a7} @
/X{ [fn; |- } Petdey (3.17)
o [ 2= DY (LY e
)[R = (5

SONEH
0
provided thaff [{ f(x, T')}"] exists finitely.

1=

Lemma 3.5.1. Everyr® central moment of IPLF is bounded below By (1 —

2= {r mod 2} and above byx" (2" —1).

Proof. Suppos&” denotef(x,T')/m andp, be ther-th central moment of". As

shown inEquation 3.1%and0 < E[Y"] < 1 forall r,

=Y, 0 () e (]
<K' (ZL:/O * (27;) - 1) (2 -1 K

(3.18)

and }
o=y v (1) @y | {H2D
> KT (_ ZL:/OzJ (27*@) N 1) {r (mod 2)) (3.19)
=K (1-2"""{r (mod2)}
wherer (mod 2) = 0 is even and= 1 whenr is odd. O

FromLemma 3.5.1some bounds of the variance, skewness and kurtosis of the

IPLF can be found.
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Corollary 3.5.2. Variance of the IPLF is bounded and Skewness of the IPLF is

bounded below by -3.

Proof. By Lemma 3.5.1substituting- = 2,

0<V[LX,T)] = < K*(2-1) = K* (3.20)

Substitutingr = 2 andr = 3,

ps  KP(1—27)
Skew[L(X,T)] = 75 > e =3 (3.21)
Ho
while the upper bound of skewness may be infinite. m

Apparantly, thisCorollary 3.5.2gives the same special result keung and
Spiring (2009).

However, without the knowledge of probability density ¥f it is impossible
to use the law of the unconscious statistician. It is unlike the Taguchi loss that the

associated risk function is always

E[L(X,T)] =Blo* + (u — T)?] (3.22)

provided that the distribution o has a finite second moment. As a res8ltjring
and Yeung1998 introduced the concept of “conjugate loss” that the loss has to be
chosen with respect to the density.%f

Under IPLF, the support of the density with respect to loss has to be considered
carefully. Outside the support of the associated density in creating the loss for
interests, the IPLF attains the maximum loss rather than zero. In other words, if the

suppport of the chosen associated density is less than the process density, it may
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give a great trouble in calculation. For examplel.eung and Spirind20032), it is
claimed that the risk from Inverted Beta loss has a closed form for all distributions,
but in fact it only works if the fixed support of the distribution is equivalent to that
of the Inverted Beta loss. The following illustration shows the more general case

where we retain the parameter

whereb = (a« —1)(1 - T)/T.

3.6 Numerical Examples

To illustrate the concepts and some nice properties of some losses described in the
previous sections, we refer to the data collecte®éattion 1.2for the following
discussion.

The following table shows the different associated risks or expected losses,
which is the average loss to the customers or society when the target is not aimed
with different particular chosen loss. We have two different distributions for the
same process characteristics, while Nor(dal40, 4.69?) is our estimated pdf and

the other Betd2.0994, 2.3184, 40, 60) is true. In particular, all the following cal-
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culations inTable 2.1use the same setting® = K; = 0.3, Ky = 0.2, KA =
0.3(1—e7®) =0.2999, B = B, = 0.1, B, = 0.15, By = —0.02, B, = 0.003, v =

Y1 :2, ")/2:1, L,:50, U/:575,T:55

Beta Normal % Change

Ryan—Barker Loss 0.2622 0.2657 1.35%
Spiring Piecewise Loss 0.2314 0.2361 2.01%
Ryan—Barker—-Pan Loss 0.1386 0.1418 2.25%
Pan—-Wang Loss 0.1069 0.1093 2.26%
Spiring Loss 0.2287 0.2356 3.01%
Sunet alwith v — 0 Loss 0.2999 0.2999 1:31071%%
Sunetalwithy =2Loss 0.2287 0.2356 3.01%
Sunet alwith y — oo Loss 3.6450 3.9982 9.69%
Inverted Student4v — 0, 0 = 2) Loss 0.7622 0.7622 1:6107%%
Inverted Studentfv = 1, 0 = 2) Loss 0.5658 0.5801 2.53%
Inverted Studentfr = 10, 0 = 2) Loss 0.5775 0.5943 2.91%
Inverted Student-tv — oo, 0 = 2) Loss 0.5810 0.5985 3.01%
Inverted Studenttr = 10, 0 — 0) Loss 0.2999 0.2999 0.001%
Inverted Student{r = 10, 0 — oo) Loss 4.009  4.398 9.69%

Table 3.1: (Frequentist) risk associated with different new proposed losses

From Table 3.1 it shows that the first two pairs of losses are very close and
sometimes the new proposed ones have lower changes when the distribution changes.
A slight modification of Taguchi-type losses makes them also enjoy the nice prop-
erties of IPLF. Hence, it is still hard to judge which loss is better and is up to
the taste of the decision makers. For the final Inverted Student-t loss, its flexibil-
ity makes it able to mimic both a conventional Taguchi-type and a Spiring—Yeung
IPLF. Further, Inverted Student-t Loss also generalises some cases such as constant
loss, but there is a trade-off on the impossibility to have a risk in closed form to

reduce the computational demand.
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3.7 Conclusion

This chapter develops some new losses with some new flexibilities, such as Ryan—
Barker loss, and clarifies that most modifications for either side can also use in
another side. One of the most eminent is that the Spiring—Yeung framework is
also generalised to include other kind of losses in the literature as its special case.
Different directions and some cautions are issued in finding expected losses with

IPLF.



Chapter 4

Scope of IPLF

This chapter illustrates that many different loss functions are just a special case of
IPLF, though they are well established in their own field. It also enlarges the scope
of IPLF extensively from some losses of Taguchi-type to a more general class of

losses.

4.1 Ryan loss and bounded Taguchi-type loss

Beforehand it is no harm to understand the definition of generalised IPLF before
any further discussions. IPLF was proposedSipiring and Yeundg1999 as a
framework of some losses and bounded losses on fitting the asymmetric and sym-
metric loss. For simplicity and convenience, we will restate the the definition of

generalised IPLF ifequation 3.2

Definition 4.1.1 (Inverted Probability Loss FunctionSupposef;(x,0;) be the

probability density function (pdf) with anigue mode at; and a; be the target

55
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value. Then, let; = z,; in making a transformation such that

m; = sup f; (z,0;) = fi(a;, 0;) < oo Vi
zeX;

The form of the Inverted Probability Loss Functions (IPLF) is proposed as

(

Kl[l—m} T < ag

mi

Vr € ‘)(D L(ZE, {a17a2}) = 9 0 a1 <z < agy (41)

KQ[l_M} T > Qo

\ m2

wherelX; is the support of the distributioffi (=, 6;) and K; > 0 may be a constant

or a function,i = 1, 2.

To show that the bounded Taguchi-type is a special case of IPLF, we first have to
find an appropriate distribution having the form(of-7")2. In the IPLF framework,
it is simpler to setu; = a, = T and f; = f> without loss of generality. We
propose a new statistical distribution, Inverted-U quadratic distribution, in short
IUQuada, b). This distribution has the following probability density function (pdf)

with two parameters; andb:

6(x —a)(b—x)
(b—a)®

fz) = (4.2)

where the support i8 € [a, b] and O elsewhere.
Notice that neither of or b are scale or location parameters, buta is a scale
parameter, and is the location parameter. The next theorem will establish this

fact.

Theorem 4.1.2.1f a random variableX follows I[UQuad0, b—a), then the random
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variable X + «a follows IlUQuada, b).

Proof. If X is lUQuad0, b — a), by Equation 4.2we have

Fx(z) = % Yz € [0,b — al. (4.3)
By simple manipulation,
[xta(®) = Fy o (x) = Fy(z —a) = fx(z — a), (4.4)
SO
6(x —a)(b—
fX-f—a('r) = <$ (b Ci)i)g m) Vo € [a,b]. (45)
This proves thaX + a is a [IUQuada, b) random variable. O

The parameterg andb can be any real numbers with the conditionao b.
With some investigations, this lUQu@ad b) is found to be a Beta distribution with

4 parameters. Hence, we have the following theorem.
Theorem 4.1.3.1UQuad(q, b) is a linear transformation of Beta(2,2).

Proof. SupposeX follows IUQuada,b). Considering the density &f = (X —

a)/(b— a), by Theorem 4.1.2then we obtain

b—a

y -yt
B(2,2)

Iy () = [x/(-a) (y + L) = fx(a+ (b—a)y)
(4.6)

=6y(l—y) = y € 10,1]

where B-,-) is the Beta function. Owing to the transformation being linear and

one-to-one, these two distributions have the same properties. O
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As a result, this distribution is a transformed Beta, and so it is absolutely con-

tinuous and has a finite support. The mode is also easy to be known. Here are some

summary of some basic properties:

Support x € |a, b
Mean aT+b
Median aT+b
Mode “T“’
Variance (b—a)®
20
Skewness 0
Excess Kurtosis _g
pdf W—ba_—w
CDF (xfa)(b(fl;;?’afo)
at(__ at— ebt at—
MGE 6( e (—2+ t(abt;;;ts (2+at—bt))
6( iat(_2j—at+bt)+e (2i— at—l—bt))
CF (a—b)36°

Table 4.1: Distributional properties of Inverted-U quadratic distribution

It is undeniable that this Inverted-U quadratic is absolutely continuous and un-
a-+b

imodal. Now, we can apply the Spiring—Yeung IPLF framework and’let

be the ideal target and fixed. Then= sup,c(,, f(z) = f(T) = —a) Thus,

} YV € [a,b]

f }( =)

B'(x — T)*Luciap + K Liglap

(4.7)

whereB’ = (b‘ff;)Q and K are both constants.

Evidently, this particular loss from IPLF is the same as Ryan lodsgna-
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Figure 4.1: Inverted-U Quadratic density(af b) = (1,7)

10— %

08/

06

02l /
I N\ /
L N )

— IUQuad Los: '

Figure 4.2: IPLF from Inverted-U Quadratic density(efb) = (1, 7) with target
at4
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tion 2.2 by setting: = T — /K /B’ andb = T + /KB’ respectively. This loss

is also a particular case of Inverted Beta Idssung and Spiring2002). Figure 4.1
andFigure 4.2plot the density and the loss made from IPLF. However, for the gen-
eral unbounded Taguchi loss, or the conventional quadratic loss, it cannot be fully
described in IPLF.

Seeing that IPLF is based on the probability density, the associated probability
density having a bounded support will cause the IPLF bounded. Apparently, there
is no density for the squared terfX — 7')? maintaining the support of the full
real planeR. Additionally, the shortcoming of IPLF is that it is also scale invariant
(Leung and Spiring2004. It is only possible to modifyK to be a piecewise

constant like

K =

b—a)?
( 4 ) K,]lxe[a,b] + K”]lwi[a,b} (48)

whereK’ and K are constants and not necessarily the same.

Taking the expected value of the loss for a particular random varighbteone
of the way to represent the usefulness of the loss. The expected value of a loss
function is also called the frequentist risk. However, the frequentist risk of this loss
is seemed rather simple but the result is not user-friendly and not solvable by hand.

We let X follow Gaussian distribution with meanand variancer? with o > 0,
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E[L(x,T)]:/XL(x,T)dFX:K{l—/X%dFX}
xhio [ 1D e
{ [a,b] }

m

K _a +b2+u a2 462442 9
:m (\/_6 207 { ((a—u)(b—u)+0)

{erf ( \/_U> erf(“\/—%u)} + (a— b)z}

+2v20 (< pe T + (= D) )>

(4.9)
where erfzr) = f [y exp(—t?) dt. As proved irTheorem 4.1.8hat the IlUQuagh, b)
is a transformed Beta, 2) density.
Referring to the data set iBection 1.2if 7" = 55, K = 0.3, a = 50 and
b = 60, the expected losB[L(X,T')] = 0.214, which is more or less similar to the

expected loss under Ryan loss.

4.2 Bounded Fathi—-Poonthanomsook Loss

Recall from theSection 2.3the Fathi-Poonthanomsook-type form is

L(z, T)=By(x —T)*+ Bs(x — T)* + By(x — T)*

where By, B; and B, are all constants. However, in order to maker, T') fit

for their purposefathi and Poonthanomso@R007) later needed,.L > 0 and
requiredB, > 0 and B3 < %BQB4. In general, all constants are assumed as real
and thereforé3, > 0, By € {z € R | 2 < §B,B,} andB, > 0.

This loss is a quartic polynomial and hence absolutely continuous and unboun-
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ded in the real plane. Here, we try to connect IPLF with this type in a reverse
process. Taking the differentiation and substituting: 7' by x, then we need to
check the determinant of a cubic equatihrwith the conditions such that it has

only one real root.

Oy L = 2Byx + 3B3x® + 4Bya®
A=0-0+36B5B; —128B,B5 — 0
= 48B3 (9B; — 32B,B,) (4.10)
< 4B; (24ByBy — 32B,By)

<0

Hence, the loss function has only one real rdotwhich is the minimum point.

In other words, the related Inverted probability distribution is also unimodal at
T and absolutely continuous. By the familiar techniques to deal with bounded
Taguchi-type inSection 4.1we can also suggest a suitable but more complex dis-
tribution having the functional form oft — T')* + (z — T)* + (¢ — T)" to get a
bounded Fathi—-Poonthanomsook loss. For simplicity, we wouldugeand F’ as

the constants and call this distribution as “Inverted U-quartic distribution”, in short
lUQuartic (a, b, d, A, B, F') . The following Table 4.2collects some properties of
this distribution.

The Inverted-U quartic distribution is similar to the Inverted-U quadratic dis-
tribution, not having any possibilities with a support of an infinite range. Indeed,
[ (x—T)" dz = ooif p > —1 anda < 0. Hence, both distributions only exist
with a finite support. The main difference between the IUQuad) and IlUQuartic

(a,b,d, A, B, F) is that the parametefis required to ensure the associated density



CHAPTER 4. SCOPE OF IPLF 63

Support x € [a,b]
Mean —6(a —b)?B + 20A(a + b)d + 3(a — b)*(a + b)dF
40Ad + 6(a — b)2dF
Mode atb
2
Variance 28(a—b)2 (20A%d(5d—4)—27B2(a—b)? ) +24Ad(35d—34) F (a—b)*+9d(7d—8) F2 (a—b)°

84(3dF (a—b)2+20Ad)*

d 240/d atb\2 Wb\ 3 Y
PDF oot <2OA<a—b>3+3<a—b>5F> [A (w=52)" +B(x—5")" + F(r-%57) ]
A>0, F>0, B<AF, b>a,d >4

Table 4.2: Distributional properties of Inverted-U quartic distribution

fulfilling the condition of nonnegativity.
Due to the fact that this distribution IUQuartie, b, d, A, B, F') under the con-
ditions aforementioned is a polynomial, it is absolutely continuous and unimodal.

We can then follow the steps required in Spiring—Yeung IPLF framework.

Let T = ath be the ideal target and fixed. Them = sup,c(,, f(z) =
d+1
T)= . Th
f(T) a0 —a) < 0. Thus,
L(z,T)

iy

240 [A(:L’—“TJ“I’)Q—l—B(x—“TJ“b)s—i-F(x—“TJ“b)ﬂ
(d+1)[20A(b — a)? + 3(b — a)*F|

240AK a+b\? [240BK a+b\°

-FE ) P )
2400 K a+b\*
P )

= [Bé(x - T)2 + Bé(l‘ — T)3 + BQ(I — T)ﬂ ]lxe[a,b] + K]lmé[a,b]

=K

(4.11)

where By, Bj, Bj and K are all constants andl = (d + 1)[20A(b — a)? +

3(b—a)*F)]. Other parameters b, d, A, B andF are predetermined and have to
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Figure 4.3: Inverted-U Quartic density 0f, b,d, A, B, F') = (1,7,4,1,0.2,0.3)
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Figure 4.4: IPLF from Inverted-U Quartic density @, b,d, A, B, F) =
(1,7,4,1,0.2,0.3)
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follow the requirements ifable 4.2 Evidently, L > 0 normally in most cases.

Referring to the data set fBection 1.2if 7" = 55, K = 0.3, a = 50, b = 60,
d=4,A=1,B=—-0.2andF = 0.3, the expected log5[L (X, T)] = 0.199. This
bounded loss is now tamed such that the expected loss is also below the maximum
loss.

Since we have a bounded Fathi-Poonthanomsook loss, then we also have the
associated density lUQuartic and IUQuartic loss from Spiring—Yeung framework.
Figure 4.3andFigure 4.4illustrates the associated density and the loss respectively.

If all have an alert, then all notice that under IPLF, every loss function made is
bounded and fits the requirement of the boundedness what B&geyef 1985

also discussed about an appropriate loss function. The above result is the same as
Equation 2.1 vhen K is set extremely large.

Summing up these two sections, IPLF is a novel framework and covers most
cases as long as the loss function has a unique minimum point. Now, we conclude

with a theorem:

Theorem 4.2.1.For any absolutely continuous loss function with a unique min-
imum, there exists at least a corresponding unimodal probability density such that

it fits the Spiring—Yeung framework of loss function.

Proof. Trivial if the loss functionL is bounded. IfZ is unbounded, then it is pos-
sible to approximate.(z,T) = K [1 — f(z)/f(T)] = f(z) = f(T)[1— £]

with a suitablek. O
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4.3 Bounded LINEX loss

Various loss functions has been developed in the literature to suit different needs.
Upon different loss, the most popular is still the unbounded symmetric loss, such as
squared error loss, that is, Taguchi loss in quality control. However, many authors,
such aBerger(1985; Robert(1996 2007) criticise the usage of the squared error
loss, which is nice in mathematical convenience rather than appropriateness of the
true loss representation.

In some decision problems, some types of asymmetric losses are proposed. One
of the most eminent examples is LINEX, which was proposeddnan (1975 and
populated byZellner(1989. It was also described iAresg2002).

SupposeX be the variable that needs to meet a target from a decision. The

asymmetric LINEX loss is defined by:

L(z,T) = b{e?®™") —a(x —T) — 1}. (4.12)

for b > 0 anda # 0. This loss is very flexible in capturing asymmetric loss and
the shape changes according to the paramgteecause it controls the weights in
exponential side and the linear side. Evidently, both exponential and linear parts
are unbounded and so the overall loss is unbounded.

To adjust the LINEX loss being bounded, we try to use the Spiring—Yeung
framework to tame the loss. Without loss of generality, wé let iK', the multiplier.
Suppose we would like to have a maximum losgsaslhen the associated density

is
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/X[f(x)/f(T)} dr =1/f(T) = / [1— L(z,T)/K] da

X

d
= / 2 — e ta(z —T)] do

—aT
— 62_a (2¢% — 2e™ — a(c — d)e* (4 + a(c + d — 2T)))
(4.13)
and
1
fl@) =52~ D 1 a(x —T) + |a| e) (4.14)
e—aT (2eac_9ead _g(c—d)eaT a(c+d— .
whereG = (e 2 ( 25) (a+o(crd 2T))) + (—c+d)e |a| and the support is

[c,d]. Sincef(z) requires to be a pdf, the parametes needed to make sure that
f is nonnegative.

f
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Figure 4.5: Density from bounded LINEX 64, ¢,d, e, T) = (3,2,5,5,4)

Without loss of generality, we also assumie= 1. Then, it is very easy to

check thatn = sup, f = f(T) < co. Therefore, by the Spiring—Yeung IPLF, we
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have the inverted loss from the density above.

L(z,T) :K{l— f(x)}

J(T)
— e(—T+z) —
_x 1_2 e +a(=T +z) +elal (4.15)
1+ ela
@) —q(x —T)—1
=K Leele Kl,¢
{ 1+ elal } eled) T 1 Laglea

When comparing the IPLF loss from the bounded LINEX density, it is probably
worse than the one proposed Wen and Levy(2001gb). The BLINEX by Wen
and Levy (20010 has a support of the full plane, but under IPLF, our loss only

works on a compact set.

L
0.5

0.4
0.3

0.2 S

0.1 .

2.0 2.5 3.0 3.5 4.0 4.5 5.0

—  Bounded LINEX

Figure 4.6: Bounded LINEX IPLF ofa, ¢, d,e,T) = (3,2, 5,5,4)

The shortcoming of IPLF is due to the fact that it is based on a density, whereas
a density has to be greater than zero and defined on a compact set mostly. On

the contrary, a random variable may have an infinite support that the losses from
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IPLF may not have. In consequence, it adds a lot of difficulties in calculating the
frequentist risk and makes higher chances prone to error. The methgenand
Levy (20011 is described as below:

Let the initial unbounded loss b€ (z,T'),

L(z,T) =

1
—K(1-
( 1—|—K‘1L’(x,T)>

where K can change the shape and the maximum loss simultaneously, like the

(4.16)

modification ofSun et al(1996. This method also has the capability of keeping
the support of the initial unbounded loss, which is more superior than IPLF.
Therefore, we should have a rethink whether it is possible to have any new
methods to fit the condition of a density to enlarge the scope of IPLF.
Referring to the data set for illustration Bection 1.2if 7" = 55, K = 0.3,
a = 0.5, ¢ =40,d = 60 ande = 16, the expected loss fdEquation 4.15s
E[L(X,T)] = 0.090. Under some investigations, the expected loss under Taguchi

loss is probably larger.

4.4 IPLF from Natural Regular Exponential Family

This section mainly focuses on the regular exponential family. In the previous

studies of Spiring $piring and Yeungl998 Leung and Spiring2002 2004, he

and his research team tried to study one by one IPLF from the distribution from

regular exponential family: Gaussian, Gamma and finally Beta. However, there are
a lot of rooms for further studying other regular exponential family members and

an overview of the whole regular exponential family.
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In this section, we will study the exponential family first, then deal with the
Spiring—Yeung IPLF to discuss which members of the exponential family can be
utilised. Finally, we will also try to explain why certain properties for Spiring—

Yeung IPLF work.

4.4.1 A Brief Introduction of Exponential Family

A family {PPy} of distributions in exponential family is usually written as the dens-
ities of the form Barndorff-Nielsen 1978 Brown, 1986 Lehmann and Casella

1998 Liese and Miescke2008 with

dP (x| 0) = exp{n(0)TI(x) = ¥ (n(0)) pyu(da) (4.17)

wherey is the appropriate dominating measure. In general, it is either Lebesgue
measure or counting measutedenotes the parameter in scalar or vector fofm.
[ andn are some appropriate functions, perhaps they are continuous af(Agt.
denotes the transposemq®) if () is a vector or matrix.

From what we learnt, this form can be further simplified with choosing a suit-
able dominating measure, re-parameterizing and reducing the information needed

by sufficiency. Hence, the most minimal form is

dP (| n) = exp{yTi(x) — v (1)} (4.18)

The natural parameter spageis an important concept in exponential family,

and it can further decompose the whole exponential family

N = {n ERF|0 < /exp{nTl(w)} dv(z) < oo}
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If there exists &, for eachn € N, the whole family{I, } is full by definition.
With an additional condition of the opennessofn R*,idestvn € N : 3¢ > 0 >
B.(n) € N, then itis called as theegular exponential family. Ifi(x) = x, then it
is anatural exponential familyz/(-) is a normalising real-valued function while its
importance and uses can be shown below by using the characteristic fupgtion

of the general form of the regular exponential family:

1= /X dP(z | )
= /Xexp{nTl(x) —w(n)} dv (4.19)

¥(n) = log UX exp{nTl(x)} dy]

p(u) = Elexp(iu’X) | 1]
= /Qexp{iuTl(ac) +n7l(x) — w(n)} dv
—exp{ut+ i) - v} |

X

exp{(n i) Tl(x) — (1 + iu)} dv

- eXp{@b(n + iu) — @b(n)}
(4.20)

Hence, since the characteristic functipf) is one of the generating function of all
the moments of the random variab{ge the differentiability and the smoothness of
¥ (+) controls the existence of all moments and the shape of the density of

From now on, two main assumptions have to be made. The parameter set is
open and nonempty and the regular exponential family has full rank. The results of
Barndorff-Nielsen(1978 andBar-Lev et al.(1992 also indicated that full natural
regular exponential family and even full regular exponential family also contains
the infinite-divisible elements and self-decomposable elements. Under the condi-

tions in the Theorem 3.2 iBar-Lev et al.(1992 and Yamazato resulL(ikacs
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1983, some distributions, no matter whether they are univariate or multivariate,
in the family, such as Gaussian, Gamma, Beta, Hyperbolic, Pareto, are unimodal.
Hence, all can be used to produce the relevant loss function with the Spiring—Yeung
general class. Léf’ be the unique mode less than infinity,

- ~ dP(=|n)
L(z,T) = K{l supy d P(z | 77)}

(-

exp{nTi(w) = () | @2

However, with the implicit assumption of unimodality, not all members can
work under IPLFs. Due to different definition of unimodality in continuous type
distribution and discrete type distribution, we have to divide into two cases.

If v = —logdP is quasi-convex, the distribution is unimodalyifis convex,
the distribution will be strongly unimodal. Since convexity implies quasi-convexity
but not the converse, it is apparently that strongly unimodality automatically im-
plies unimodality. Since unimodality is a very weak property that only a limited
of fruitful results are obtained. In the latter part, we only focus on the strongly
unimodal members, even if unimodality is already enough for setting IPLFs.

One of the major remarkable results for studying strongly unimodality is shown
in the next theorem, which is well proven in many literature, sucBasdorff-
Nielsen(1978; Brown (1986; Dharmadhikari and Joag-D€%¥989; Bertin et al.

(1997.

Theorem 4.4.1.Any marginal distributions or convolutions of a strongly unimodal
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distributions are again strongly unimodal.

Thatis, if the distribution is strongly unimodal, then the marginal is also strongly
unimodal. Hence, Dirichlet distribution with all parametersl is strongly unim-
odal, the marginal distribution of Dirichlet, Beta distribution with all parameters
> 1, is also strongly unimodal.

For the strongly unimodal members, they have some common properties:

A. All moments exist. Bertin et al, 1997

B. Marginal distribution and convolutions of strongly unimodal of same type

are strongly unimodal againBérndorff-Nielsen19798

C. [f()]> > f(i—1)f(i+1),i € Z for discrete members. Barndorft-

Nielsen 1978 Bertin et al, 1997

4.4.2 Spiring—Yeung IPLF Framework with Exponential Fam-

iy
In consequence, only those members having the strongly unimodal properties is
suitable for setting IPLFs without any problems for fitting the requirements of un-
imodality and boundedness. All members belong to the natural regular exponential
family. That is, if the density is from other families, such as curved exponential
family, it is not guaranteed that the density can be applied in Spiring—Yeung IPLF
framework.

The followings are those continuous members in the exponential family suitable

for IPLFs:
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e Multivariate Normal

e Gamma with shape parameterl

e Laplace with known mean

e Generalized inverse Gaussian with power parameter of 1

e Multivariate Hyperbolic

e Dirichlet with all parameters 1

e Wishart

Because there is still no process following discrete distribution, the loss func-
tion as a discrete function is very limited. This result opens a new door to the uses
of discrete pdfs. Until now, the study on Spiring—Yeung IPLF is quite limited, there
is also none of the research about the discrete distribution in the loss functions as
well. Under the framework of IPLF, it is possible to make a discrete loss with the

following strongly unimodal members in the exponential family:

e Poisson

e Negative Binomial with shape parameterl

e k-Negative Multinomial with shape parameterk

e Multinomial

e Multivariate Hyperbolic

e Multivariate hypergeometric

Another interesting investigation is that the Spiring—Yeung framework does not
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have any explicit requirements in the normalising real-valued functien On the
contrary, this normalising real-valued function controls whether all moments exist
and therefore the density has a unique mode or not. Some restrictions are implicit

that(-) is able to infinitely often differentiable.

4.4.3 Rationale behind Spiring—Yeung IPLF

The Spiring—Yeung IPLF framework was discovered by Spiring and Yeung in an
ad-hocway by just plucking some common densities from full regular exponential
family. There are certain restrictions and rooms for further study.

In general, the Spiring—Yeung IPLF framework requires to find the mode as the
target and change the parameter space to include the mode. Itis not trivial to assure
that it works most of the time. The form will transform to a different expression of
parametrising an exponential family to get the mean equivalent to the mode. For
example, to construct the Inverted Beta losd.@ung and Spiring2002 has to
change the Beta distribution with parameters(3) to that with parameterd’, o).

I would like to call this re-parametrisation as “modal value parametrisation”.
Similar to the mean value parametrisation, we need the following theorem to char-
acterise for regular exponential family, which is proveBnown (1986); Liese and

Miescke(2008.

Theorem 4.4.2.The mapping

g:n = Vip(n) =E, [I(z)] (4.22)

is a diffeomorphism oV onto the open set(N°), whereN° is the interior of N.

In regular exponential family, we can always represent the exponential family
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in the modal value parametrisation, forale N°, by Py, T € ¢'(N°) to change

the parametrisation such thaf,;) = 7' by using the theorem above. That s, it is
always possible to change the parametrisation to be that one of thEnwieere

the number of parameters is unchanged. On the contrary, if the density does not
belong to regular exponential family, the re-parametrisation may fail and it may not

be used in Spiring—Yeung IPLF framework, even though the density is unimodal.

4.4.4 Re-examining the “Conjugate Distribution”

As the form is explicit now, we can switch our focus to study the concept of “con-

jugate distribution” inSection 2.4 FromEquation 3.16
E[L(x,T)]isin closed form<«—= E[f(z,T)]is in closed form

Hence, the focus may be changed to lookEéf(x, T))]. Meanwhile, f(z,T) is
also a pdf with reparameterization and so have its own supfprtSuppose the

underlying distribution is a member in the exponential family,
Blf(@.T) = [ 1) dB@ |0
X
- [ teneo{ii@ s @29
XNX,

[ ew{wite) = v} av

That is, to check thakE[f(x,T")] is in closed form, two conditions have to be

met:
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A.  f(z,T) has to match the mathematical form of the exponential family such

that it can be written as the same density with some new parameters;

B. The second term needs to vanish and thus it is necessary tothdang

larger than or equal t&’'.

In summary, if the expected loss is in closed form &iftd} is full and regular,
f(z,T) has to be in the same member of exponential family as well. It is also the
reason why an IPLF from a particular density with respect to its density gives the

expected loss in closed form.

4.5 Conclusion

This chapter studied whether it is possible to get the associated density with the
given loss functions. The shortcoming of IPLF is formed by a density function,
but the density function may be only valid in a bounded support. This situation
occurs in such as bounded Taguchi-type, bounded Fathi loss and bounded LINEX
as some particular examples. IPLF can mimic them when these are bounded, but
not in the most available form. In the final part, the common IPLF in literature is
formed from the exponential family member. Many IPLFs from the exponential
family members are well studied and the conditions whether which members from
exponential family are examined. Finally, this chapter also gives some explanations

why some will give an expected loss in closed form.



Chapter 5

Generalised Lambda Distribution

and IPLF

The Generalised Lambda distribution is a distribution based on the quantiles in-
stead of the realisation of a random variable and hence the support is in a variable
range from bounded range to infinite range. In general, it is also very powerful
and extensive such that it can approximate any univariate probability density. This
chapter discusses the Generalised Lambda distribution and follows the practice of

Spiring and Yeun@1998 in a more restrictive Tukey lambda distribution in IPLF.

5.1 Introduction

In Spiring and Yeund1999, Tukey lambda distribution was also discussed, but
this distribution is completely contrast to the ones frequently used, which are some
members of exponential family. Tukey lambda distribution is based on quantile
function, which is the inverse of the common probability function. The Tukey

lambda distribution was first initiated Hastings et al(1947 and studied in depth

78
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by Tukey (1960. After various research, the Tukey lambda distribution was gen-
eralised from a 3-parameters distribution to a Generalised Lambda distribution of
4 parameters biramberg and Schmeis@972 1974 andRamberg et al(1979.
This Generalised Lambda distrbution was also studied extensively in the excel-
lent monographs bikarian and Dudewic£200Q 2011) and we will use them as
the main references. In the meanwhile, a different parametrisation of 4-parameter
GLD was suggested iRreimer et al(1988. With a few discussions iilchrist
(2002, a 5-parameter GLD was proposed.

The Generalised Lambda distribution, in short GLD, is absolutely continuous
distribution. Since it is based on quantiles rather than the realisation of a random
variable, we simply have a review on those basic concepts on quantiles.

For any random variabl& , the cumulative distribution function (cdf) of is
(700’1‘]

Obviously, if we further know that the distribution is absolutely continuous with

respect to another measure, $ayhen

dr
A= [t = [ p@uae) (5.2
wheref(x) is referred as probability density function (pdf)ifis Lebesgue meas-
ure or probability mass function (pmf) ji is counting measure. Then we will
further define the quantile function as follows:

Qp) =Fx' (p):=inf{x | Fx(p) >y}, 0<p<L (5.3)

zeR
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where the domain af(p) is bounded and the range may be infiniteXlhas an ab-
solutely continuous distribution (with respect to Lebesgue meas(é)y (z)) =
xandFx(Q(p)) = p.

One particular example is the standard Uniform distribution. The following

shows the distribution, density and quantile respectively. # U (0, 1), then

fZ(Z) = 11,ze[o,u

Fr(2) = 21.cpq) + L1 (5.4)

QZ(ZU) = ylye[OJ]

wherel. is the indicator function.

In this chapter, we propose to extend the IPLF with the Generalised Lambda
distribution which is a natural generalisation of Tukey symmetric lambda distribu-
tion used inSpiring and Yeun@1999. This distribution with new parametrisation
also gives a reasonable interpretation why it is defined such a way to cover any 4-
parameter Generalised Lambda distribution. Numerical examples are also provided
to demonstrate the applications of how to select the parameters and calculate the

expected loss.

5.2 Generalised Lambda Distribution

The most general expression for the Generalised Lambda distribution with 5 para-
meters\;, A2, A3, Ag, A5, in short, GLD (A1, A2, A3, A4, A5), IS Stated in terms of a

guantile function of the form:
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1— X5 14 X5

A1) — l—pM—1|1
)\2)\3 (p ) )\2)\4 (( p) ) pe[O,l]

(5.5)

Q| M1, A2, Az, Agy As) = [ A+

Evidently, when\; = 0 and\, = 1, A3 = Ay, = A and)\; = 0, this GLD
(0,1, A, A, 0) is the Tukey symmetric lambda distribution describedlukey (1960
andSpiring and Yeund1998. This form of 5-parameter GLD is briefly described
as a natural generalisation of 4-parametégilchrist (2002, but we use a different
parametrisation. So far in the literature, there are two different parameterisations
for 4-parameter GLD, both also defined by a quantile function as well. The first

one was proposed dyamberg and Schmeis@972 1974 and the form is

>\3_1_ )\4
Qp | My Aoy Ags Aa) = A+ 2 (Ap), 0<p<1, (5.6)
2

whereas the second one was proposebfigymer et al(1989.

M1 (I—pM—1
Q(p | M, Aoy Ay Ag) = Ay + 2 +( ) . 0<p<l1. (57
/\2)\3 )\2)\4

The 4 parameters control the shape, the location and the scale. In addition, GLD
is an absolutely continuous distribution. It seems that this GLD is also a member

of location-scale family, which is proved in the next theorem.

Theorem 5.2.1.GLD (A1, A\, A3, A4, A5) belongs to the location-scale family, where

A1 is the location parameter and, is the scale parameter.
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Proof. Let X ~ GLD (0,1, A3, \4, A5), by Equation 5.5

(1=

Qx(p) = N [pAS — 1]

e
A4

(1 - p)’\4 —1] Lpefo,1) (5.8)

ConsideringX’ = \; + % by the change of measure,

and therefore by the absolutely continuity of GLD, Iét ((z — A1)X\2) = p, we

have

QX(P) = )\2($ - )\1)

1-A 1+ A
= 2 [P —1] = =21 = p)™ = 1]| Lyepuy (5.10)
A3 A4
1_/\5 3 1+/\5 4
x::P1+ vl s v vl St 28 _141“””

Similarly, taking the quantile function with respectXd, we have

1—Xs

NS R
SYS YRl LA

A2y

Qx (p) =T = {)\1 + [(1 —p)A4 — 1]:| ﬂpe[O,l] (511)

This proves thaf(’ also follows GLD(\1, A2, A3, A4, A5), Where); is the location

parameter and, is the scale parameter. ]

By Theorem 5.2.1it is easy to know thak, cannot be 0, because it is a scale
parameter. Tha, A3 and)\, has no restrictions. In a special case of GLD, Tukey
3-parameter symmetric lambda distribution will converge to a standard logistic dis-
tribution when\s = Ay = A — 0.

In this most general GLD);, is the location parameter and is the scale para-
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meter. For convenience, we only allow > 0. While the left tail is controlled by
A3, the right tail is controlled by\,. A5 is used to control some part of skewness
and has to be bounded byl and1. Without loss of generality, we sgt = 0 and

A; = —1 and)\, = 1 to see whethek; and )\, can be zero. Since

A3

lim Q(p) = lim b

=lo
A3—0 A—0 A3 &b

we can remove the discontinuity @by setting(p*s — 1)/p = logp when\; = 0.
Similarly, this is also applied fok,. In sum,A;, A3, Ay € R, Ay > 0 and )5 €
(—1,1).

For being used in IPLF, the density is inevitable and necessary, but it is im-
possible to write the density in full for GLD. We also need the density form of
this GLD and it is needed to have a further discussion on choosing the density as

unimodal and bounded.

Lemma 5.2.2.For the GLD(\, A2, A3, A4, A5), the probability density function for

a random variableX with bothAs, Ay, # 0is

A2
1
(1= As)p™ L+ (1 + As) (1 — pa—t POV

fx(r) = (5.12)

wherep = Fx(z).

Proof. Since byTheorem 5.2.1GLD (A1, A2, A3, A4, A5) IS a location-scale fam-
ily. Hence, by the properties of location-scale family, we can only consider GLD

(0,1, A3, Ag, A5) without loss of generality as
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wherea andt are the scale and location parameter respectively.
Hence, forX’ ~ GLD (0,1, A3, A4, A\5), we have, by the Inverse Function The-

orem andEquation 5.3hat,

B 1
- Qo (Fxi(x))

1
TS NI RS S ITE e e B

1

B 1
(1= As)pht+ (1+ Ag) (1 —pya b O

fxi(x) = Fyi(x)

wherep = Fx/(x) and the general probability density function follows by mul-
tiplying the parametek, and transforming back to the original form of the random

variable analogous tdheorem 5.2.1 [

Obviously, a functionf(x) is a probability density function if it satisfies the
conditions of nonnegativity and almost surely boundedness and it integrates to 1
over the whole space. Since we requike > 0 and A5 € (—1,1), under this
parametrisation, GLDA;, A2, A3, A4, A5) always have a vaild density and this situ-
ation is unlikeKarian and Dudewic£200Q 2011 that they have to specify which
regions of the parametefas, \4) to make GLD valid.

Since0 < p < 1in Equation 5.5after considering the other cases aethma 5.2.2

we immediately have the following§heorem 5.2.3

Theorem 5.2.3.The GLD(\y, A, A3, A4, A5) of Equation 5.5s valid in the para-

meter space wherg;, A3, Ay, € R, Ay > 0 and X5 € (—1,1). In particular, the
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GLD (A, A2, A3, A4, A5) has a valid density as follows:

A2
0=l & (11 ag) (1 = ot peton A A 70,
A2
]]‘ pr—
A=) /p+ () = ppat o A3 =0, 470,
A
) = : 1 A3 £0, N\ =0
(I=X5)p= 1+ (1+X5)/(1—p) pE(0,1) 37 0, A\ ,
A2
(1= As)/p+ (1 + As) /(1 —p) <Y 3=X =0,
0 otherwise.
| (5.14)

where0 < p = Fx(x) < 1.

To find the density suitable for IPLF, the investigation of the possible shapes of
the density is needed to ensure that there is only one relative extreme point. The
point is also where the GLDA, A5, A3, A4, A5) has a relative maximum or relative

minimum, but we also make sure that the point is a relative maximum.

Theorem 5.2.4.The local extremes of the GLD\;, A2, A3, A4, \5) density occur

at values op where

P A
= T T D ) 529

for any A3 # 1 and \4 in R without any restrictions.

Proof. Since GLD(\1, A2, A3, A4, A5) is under location-scale family bpheorem 5.2.1
the location and shape parameter is irrelevant to the shape, we only consider the

“standard” GLD(0, 1, A3, \4, A5) without loss of generality. Bfheorem 5.2.3we
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have

1
(1= As)ps 1+ (14 As)(1 — p)haT Lye1) A3, A1 #0,
1
1
- —_ Ag—1 pe(o’l)
Fe(@) = { A= 26)/p+ (14 As)(1 —p)™

A3 =0, Ay # 0,

1
(1= Xs)p= L+ (14 X5)/(1 —p) p€(0,1) 3#0, \y =0,
1
(T =) /p+ (L+ As)/(1—p) PEOY s =\ =0
(5.16)

and 0 otherwise. Differentiatingy () with respect tar, we get

@ = () (2) = (L) s

_ (1=25)As—1D)p*3—2—(14X5) Aa—1)(1 P)*4_21
[(1=25)p*s =1 4(14-A5) (1—p) e~ 1]
_ 1= 5 Ag—2
—(1-p)*M 72 (Aa—1)(1+A5)
_ [(1 )P (L) (L 1]3 ﬂpe(o,l) )\3 = 07 )\4 7£ 07

—p*372(—1+A3)(A5—1)+ 125

pe@1) A3, Aq # 0,

— (1-p)? _
(120514 (1+28)/(1—p)]" Lpe(o,n) Ay #0, Ay =0,
_ 1= A5+71+A5
L A= A= 0
L [(=xs)/p+(1+25)/(1—p)P ~PEOD) : A
(5.17)

and 0 otherwise.
Therefore, we have 4 different cases to be considered. Sipce > 0, we
can getf’ () = 0 by setting the numerator equal to O.

Case A\s, Ay # 0, fi%(x) = 0 if and only if

B p>\3_2 o ()\4 — 1)(1 + /\5)
T T (- ) (519
Case B\; =0, \y # 0, fi(xz) =0ifand only if
g9(p) = 1 QDA (5.19)

p*(1 —p)ra—2 1—Xs
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Case CA\3 # 0, \y =0, fi(z) =0ifand only if

A
g(p) =p¥ (1 —p)’=-— e _15(15_ ™ (5.20)

Case D:\3 = A\, =0, f4(z) = 0if and only if

(1_17)2_ L+ As
p? 1=

g(p) = (5.21)

Combining the results of the 4 cases, the theorem is obtained. [

Evidently, the shape of the GLD is controlled by the functipand we will
referg as the shape function of GLD. By investigating the shape function, we have
the following theorem for the unimodality of GLD.

Before we can further discuss the shape funcgioih we have to rewritg y (x)

in terms of the quantile functiof)(p). It is easy to observe fromemma 5.2.2hat

Jxlx) = %fx(x) - dip (@'Xl@)) (@'Xl@))

§ (5.22)
_ % (p) Lpe(o.1
RO

wherep = Fx(z). Thatis,Q%(p) = 0 <= g(p) = G2=3553. Analogously,

differentiating ' (x) again with respect to, we have by the chain rule,

)= g f = g, (_ [Qs,i(((pp;]?’) (@'Xl@))
_ (3[ L) Q) — [@;@)P@;’g(p)) ( 1 ) (5.23)

Q% (p)]° Q' (p)

_ 3[Rk Qx(p) — [Qx ()] QX (p)
(@ (2))°

]lpe((),l)



CHAPTER 5. GENERALISED LAMBDA DISTRIBUTION AND IPLF 88

Thus, the quantile functio® x (p) and its derivatives can fully explain the shape,
the convexity and the unimodality of GLD.

The focus is on a particular point, such thatf’ (z¢) = 0 andfx(z¢) > 0.
Consequently, a corresponding pojgtdefined to beyy = Fx(z() will have the

condition thatg(po) = {=3553 and hence) (po) = 0. As a result, it can be

— (e-na

simplified to

"

Y (20) = {_ﬁ} Lpe(o,) (5.24)
X

Apparently,f% has the opposite sign 857 when we want to know more about the
stationary pointz,. For the convenience, we also show the third derivative'f

below.

)
—p I (224 X)) (=1 4+ A3) (=1 + Xs)
)\3a)\4 7£ Oa

+ (1 —p) M (=24 M) (=1 + M) (14 X5)

%) = 225 4+ (1—p) 3 (=24 M) (=14 M) (T+X5) A3 =0,0 #0,

p

_p73+)\3 (_2 + /\3) (—1 + )\3) (—1 + )\5) — (2911)]‘)‘32 A3 7é 0, A = 0,

2 (s + 3+ (s — ) %) A=Ay =0,
(5.25)

where 0 otherwise an@’/(z) is only well defined while) < p < 1.
We now can prove a theorem on the unimodality of GLD with both conditions

from the properties of shape functigrdefined inEquation 5.1%ndQ’% (p).

Theorem 5.2.5.The GLD(\1, A2, A3, A4, A5) is unimodal when boths, A, > 2 or

both\s, A4 < 1.
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Proof. First of all, we have to ensure that GLD has a unique local extremum. By

Theorem 5.2.4we have the shape functignn Equation 5.15vith the form

9(p) = mﬂpé(o,l) (5.26)
Differentiatingg again with respect tp,

g (p) =1 —p) MM =24 (p — 1)As + pAa] Lueo)
(5.27)

=Cllp—1)(As—2)+p A\ —2)] L)

whereC' > 1. Apparently, when boths, A, > 2, ¢'(p) > Oforall p € (0,1). Itis

obvious thay is a also continuous function.

lim ¢g(p) =0 and lim g(p) = o0 (5.28)

p—0+ p—1—

Therefore,g(z) is monotonic increasing when boM, Ay > 2 andg(p) pass

through each point exactly oncg(p) holds the only critical point of the density of

(A—=1)(A+Xs)

the GLD once such that there exists only one pginith g(p) = G D)

However, it does not tell us that the relative extremum is a maximum or a min-
imum. ByEquation 5.2&andEquation 5.25f% (z) < 0 < Q%(p) > 0. Thatis,
suppos&)x(p) = z, f5% (&) < 0 for all p asAs, Ay > 2, this unique local extreme
7 is the mode of the GLDA;, Ao, A3, Mg, As5).

Similarly, when bothA;, Ay < 2, ¢ < 0 for all p € (0,1). In addition,

lim, o+ g(p) = oo andlim,_,;_ g(p) = 0. Thereforeg(z) is monotonic decreas-

ing when both\s, A, < 2 and leading to a unique solution gfp) — %

0. However,Q% (p) > 0 as both\;, \y < 1 such thatf} (z) < 0if £ = Qx(p) with
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p is the solution. Combining the two conditions,, A4 < 1 will also guarantee the

unimodality of GLD. ]

TheTheorem 5.2.5ecognises which regions of parameters will get a unimodal
shape for GLD(\, A2, A3, A4, A5). Moreover, byGilchrist (2002, the tails of the
density of X are also controlled by; and A4 respectively. IfA; < 0, the left tall
range will be(—oo, A1), whereas\, > 0, the left tail range will b&X; — Ao/ A3, A\1).
Analogously, ifA\; < 0, the right tail range will beg\;, o), whereas\; > 0, the
right tail range will be(A;, A1 + A\a/A\y). Thatis, @ GLD(A1, A2, A3, A4, A5) With

unique mode can capture both unbounded support and bounded support.

2 . 0.2 0.4
—  GLD(0,1,3,5,0

~- GLD(0,1,5,3,0
Figure 5.1: Densities of GLI, 1, 3,5,0) and GLD(0, 1, 5, 3,0)

We can further show our examination by using the reciprocal rule of the quantile

function. Suppos& = 1/X and let the f#-quantile ofY” bey, with a correspond-
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ing valuez,,

— GLD(3,1,1.24,0

~- GLD(3,1,1.2,4,0.75
Figure 5.2: Densities of GLIP3, 1,1.2,4,0) and GLD(3,1,1.2,4,0.75)
In general \; # 0, the two tails of GLD is not symmetric, but ¥; = 0, then

1

- )\2)\3 ((1 _p))‘S - 1) ﬂpG[O,l}

(5.30)

Qux(p) =1/Q@x(1=p) =1/ |\ + (p™ —1)

A2y

which is the reciprocal of the symmetric image of quantile function where the pair
(A3, A\4) is reversed. Hence, the reciprocalX¥fis described by the quantile func-
tion. TheFigure 5.1shows clearly the symmetric properties abdyand\, where

the pair of parameters is interchanged . Whens very close to-1 or 1, it can

nullify the effect of either\; or A\, and amplify the other tail. It is possible to make
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a non-unimodal density may become unimodal, which is illustratédgare 5.2
For the shape of GLDA;, A2, A3, A4, A5) distributions, it can also be well stud-
ied with the shape functiop, the second derivative of the quantile functiapf,
and the third derivative of the quantile functiapy. This also matches the table
provided inGilchrist (2002 for 4-parameter GLD. With the similar approach in

Theorem 5.2.5the following result is summarised in tiable 5.1

A3 A\ Distributional Form
(—00,1) (—00,1) Unimodal
[1,00) (—o00,1) Monotone decreasing
1 1 Uniform
(1,2] [1,2] U-shaped
(2,00) 1, 2] S-shaped
(2,00)  (2,00) Unimodal

Table 5.1: Shapes of Generalized Lambda distributions

5.3 Application with IPLF

After discussing the Generalised Lambda distribution, we will discuss how to use
in the IPLF framework. IPLF was proposed Bypiring and Yeund1998 for a

general class of loss. The main procedure is as follows.

Definition 5.3.1(Inverted Probability Loss Functionpuppos¢;(zx, #) be the prob-
ability density function (pdf) with a unique modeigtand a; be the target value.

Then, leta; = z; to make a transformation such that

m; = sup f; (z,0;) = fi(a;, 0;) < oo Vi
zeX;
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The form of the Inverted Probability Loss Functions (IPLF) is proposed as

Vo € Xi, L(ZL’, {(Il,ag}) = 0 a; S T S as (531)

whered; is the support of the distributioffi (=, 6) and K; > 0 may be a constant

or a function.

Evidently, this definition is a more general form. We canfset= K, = 1 and
a; = az = T without loss of generality. For GLDA, Ay, A3, A4, A5) able to suit
IPLF, it is necessary to be unimodal and hence bgth\, < 1 or bothAs, A\, > 2
by Theorem 5.2.5

In order to develop the loss from different target from this distribution, we need
to characterise the target of interest with this distribution, Xhenay be needed
to be modified by choosing the target valug). \; is the location parameter by

Theorem 5.2.1That is,

1— X5 14+ X5

— |\ Az _
z(p) 1+ ol [p } W

[(1—=p™ =1]| Ly (5.32)

Obviously, byTheorem 5.2.4for any local extrema, they also satisfy the equal-
ity in Equation 5.15 The equation is not solvable by hand, since it is a nonlinear
eqguation without knowing the degrees, which is a situation unlike the 3-parameter
Tukey symmetric lambda density 8piring and Yeund1998. Although it is not
solved algebraically without specifyinkg, A\, and A5, it guarantees the existence

of the solution and is solvable after realising the parameter values.
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For instance, if we know that\s, A3, A4, A5) = (1,0.5,—2,—0.1), then it is
appropriate byrheorem 5.2.50r being used in IPLF. It is easily figured out that
the support of the density {s-2, o). FromEquation 5.15we can also solve the

optimalp. By machine solvingp = 0.194479. As a result, byremma 5.2.2

Ao
(1= 2s)ph™t + (T4 X)L =M (5 33

sup f(2(p) | A2y Ags As As) =

= 0.237177

Then, the target value has to be chosen targg}, say7’, so

14 X5

~ 11— )\5 ~\ ~\
A = B Pt | 1— )M —1
1 = z(p) o [ |+ .y [(1-p) ] .39
— T + 0.986287

This is also the one mistake often made to assume that;theT'.

By the Spiring—Yeung framework, he IPLF based on this distribution can be

written as

L(z(p),T) = K{l B O];);—Slj")??}

(5.35)
—K{1- !
- 0.237177[1.1p=05 + 0.8(1 — p)~3]

Therefore, the corresponding distribution for this IPLF is GUD+ 0.986287,
1, 0.5, =2, —0.1). The associated grapkjgure 5.3andFigure 5.4illustrate the
loss from the Generalised Lambda distribution.

Definitely, the Inverted Tukey loss i8piring and Yeund199§ is a special

case of this IPLF from the Generalised Lambda distribution, as Tukey distribution
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Figure 5.3: Density of GLOT + 0.986287, 1, 0.5, —2, —0.1) with T = 2
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Figure 5.4: Associated IPLF from GLDI" + 0.986287, 1, 0.5, —2, —0.1) with
T=2
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isGLD (A, 1, A\, A\, 0) in the nonstandard form. With the unbounded suppagrt),
has to be chosen both less than 0. With the bounded suppoM, can be both
chosen to be insid@), 1) or both greater than 2. This is one of the most flexible
family of distributions so that it may ease the problem that the IPLF not able to
extend to infinite support.

Referring to the data set for illustration Bection 1.2if 7" = 55, the associ-
ated density for loss is GLIDI" 4 0.986287, 1, 0.5, —2, —0.1) and K’ = 0.3, the
expected los&[L(X,T)] = 0.271, with a similar value as Ryan loss, which are

both generally much less than Taguchi loss.

5.4 Conclusion

This chapter introduced the new 5-parameter Generalised Lambda distribution and
discussed some properties of this distribution. Moreover, the IPLF formed by this
distribution extended the class of loss functions to a new level that IPLF can also

work in a variable support.



Chapter 6

Applications of IPLFs

This chapter presents a few applications by using IPLFs to illustrate some related
concepts. Under different contexts, the IPLF covers often too large for different
problems. We would choose Spiring INLF, the IPLF derived from Gaussian dens-

ity, as a particular example.

6.1 Process Capability Index with Exponential Squared

Loss

6.1.1 Introduction

Loss function is a recent well-known useful tool in making a decision or evaluating
a decision rule in situations where uncertainties are involved. Since the introduction
of Taguchi philosophyTaguchj 1986 Taguchi et al.1989, the loss function has
been adopting by decision theoretic statisticians and economists for many years.
We briefly introduce the relationships between both the loss functions and process

capability indices.

97
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Taguchi has introduced the quadratic loss functitagchj 1986 to illustrate
the need in consideration of target while assessing quality since 1986. He promotes
the use of loss functions by suggesting that small deviations from the target result in
a loss of quality. However, criticisms have been addressed to the Taguchi quadratic
loss function by certain expertBérger 1985 Tribus and Szonyil989 Box and
Tiao, 1992. Some modifications by truncating the quadratic loss function at the
points where the function intersects the maximum loss were also proniotbdy
and Szonyi1989. Abdolshah et al(2009 made good use of Taguchi loss function
together with a capable process reject rates to develop a new process capability
index, Taguchi-based Process Capability Index (TPCI).

Kane (1986 stated that capability indices were receiving increased usage in
process assessments and purchasing decisions in the automotive industry, and the
indices were of particular interesiohnson(1992 mentioned that these indices
were not related to cost failing to customer desires though these indices were
simple to compute and are convenient for use by quality professionals because they
were based on traditional specification limi@&hen and Cho(2001) extended the
main work fromJohnson(1992 and this work was the first time to explore the
relationship between process capability indices and expected square error losses.
Leung et al(2012 even found out the relationship of all current PCls with expec-
ted weighted squared error losses instead of just simple squared error losses.

In this study, we try to use the Spiring—Yeung framework of loss functions to
create certain new PCls, which can compare with TPCI. Numerical examples are
also provided to demonstrate the applications of each loss function associated with

each PCI used.
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6.1.2 Loss-based Process Capability Index

In general, all PCls are some ratios between the difference of the specification
limits and the variabilities of the processes subject to the target. For example, from

Kane(1989,

U —-r

7 (6.1)
min{U’" — p, p — L'}

30

Cpr, =
whereU’ and L' are the upper specification limit and lower specification limit re-
spectively. In practice, both’ and L’ are pre-known constants. If there are target
T, probablyT” can replace: for calculating the most appropriate PCI.

PCl is always a linear comparison between the difference of the specification
limits and the actual variation with or without some modifications with respect to
the target. However, the comparison between the loss is neglected. PCI should be
able to capture the capability of a process with respect to the loss within the limits
in comparison with the actual expected loss of the process. When the process is
capable, the expected loss will be small when comparing with the expected loss
within the limits.

Since we always have a bounded loss and the loss is quantifiable in an infinite
support, the Taguchi-loss based Process Capability Index propogdutioishah
et al. (2009 will overestimate the loss involved. Therefore, we propose a similar
loss-based Process Capability Index with Spiring—Yeung Inverted probability loss
based on normal distribution such that it is more accurate to depict the loss with a

more reasonable ground.
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Figure 6.1: Different limits for a process and loss functions Witk 4.5

6.1.3 Spiring—Yeung Inverted Probability based PCI

Figure 6.1shows a particular process with different pairs of lower and upper limits.
For any processes, the process mean may not be equivalent to the target value we
need and the sample data is often within the range kg and X ax. Definitely,
if the limits are(L/, U;), then the process is incapable by any means of PClIs. Ana-
logously, while the tolerance is larger such that the limits are extenddd,1&’}),
the process will be capable. In general, any PCls are used to compare the inter-
val between the variance with some penalty subject to target and the specification
limits, such ag’,,.

If we focus on the area of the loss involved under the loss function, it is evident
to see that the area covered betwégp, and .X,,.. is smaller than the area of the
limits if the process is capable. Therefore, in our opinion, it is also satisfactory to

compare the area under the loss.
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Given thatSmith (1987 had already proposed the same loss as the exponential
squared error loss befo&piring (1993, we would like to downplay the importance
of Spiring and call it exponential squared error loss, but in short, we still call it
Spiring loss.

The process mean may not be equal to the target in general. Hence, we need
to make the loss function being 0 when it hits exactly on target instead of on the

mean. The exponential squared error loss-based PCl is defined to be

\[[L/,U’] L(x7 T) dFX

L(z,T)dFy (6-2)

ESPCI =

ﬁthlin 7Xmax}

whereFy is the probability distribution ok andZ(z, T) = K { 1 — exp (—%) }
with 7" being the target and” being the maximum loss.
If X ~ N(u,c?),then both the denominator and the nominator terms are rather

complicated. For example, the nominator term[fot U] is

/ L(z,T)dFy
L', U]

el =]

2 V20 V20 (6.3)
_ (T-w? 2/ 71 , 2 20771 N2
2(2+02) Erf | L& -+ "T)o” | pEpf | 2=+ (THU )0
. e Y ( |: \/570\/72_’_02 \/570\/72+U2
/72 + 0-2
where Erfz] = [ (—o0.2) %L\/(;% dt and it is approximated by its Taylor—-Maclaurin

function below.

/ 2 exp(—t?) 2 ( R R LA ot )
e (AR S S
Coow) VT NG 3710 427216 1320

(6.4)
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The denominator term is also similar to the nominator term but the integration
range changes frofd’, U’] t0 [ X i, Xmax]-

Except the exponential squared logg;x, 7') can be replaced by any losses
within the class of Spiring—Yeung frameworksgiring and Yeung1998. The
above PCI with exponential squared loss can be seemed as an example or illustra-

tion on how to create a IPLF-based PCI.

6.1.4 Numerical Example

Referring back td&Section 1.2we have a data set for pull strength and it follows

N (49.40, 4.69?). Some information is summarisedTable 6.1

Number of Data 56

Mean, X 49.40
SD, s 4.79
Min, X, 40.6
Max, X .x 58.6

Table 6.1: Summary of the pull strength for PCI

With the loss specified as exponential squared lossyith2, the specification

for the loss is also summarisedTable 6.2

Upper limit, U’ 60
Lower limit, L/ 40
Target, T’ 55

Table 6.2: Specifications of PCI

SinceU’ and L’ are located similar to the location &f,,,., and X, the pro-

cess is expected to be capable. The ESPCI is also calculated as follows:
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»[.[40,60] L(l’, 55) dFX

ESPCI =

[40.6,58.6]

=1.026

which matches our expectation that this process is capable.

6.1.5 Conclusion

In this part, a certain extension and a new series of PCI based on Spiring—Yeung
IPLF in Spiring and Yeun@1998 was designed. Besides, it is also an extension of
TPCI proposed i\bdolshah et al(2009 in which the mean of the process may be
different from the target of the loss. This new PCl is also from a bounded loss and

hence it strikes a balance between being realistic and sensitive to the loss function.

6.2 On an Admissibility Problem

6.2.1 Introduction

Except quality control, one of the widest uses of loss function is the statistical
estimation of some parameters. This can be seemed as a decision problem and it
is also well studied in many monographs and books su@naith (1987); Berger
(1985; Leonard and Hs(001); Robert(2001).

Suppose there exists a random variakldepending on the parametgmwhere
0 € O, a well-behaved parameter space. To choose the best parameter, one of
the most common decision rule is a rule having the smallest expected loss in the
whole © with a particular loss function. In general, the paraméiés too large

and so a certain principles further shrink the space. One of the basic principles, the
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admissibility principle of the parameter, reduces the choice of the best parameter.
In this part, we limit to study the statistical models and decision problems hav-
ing special invariance properties. Under this situation, by adopting the invariance
principle, both the family of distributions and the search for best decisions are re-
stricted to be in the class of the same invariance propettiesd and Miescke
2008. The invariance property we discuss is the location invariance in particular.
t. That is, the group of measurable transformation is a homemorphism and we
use the notation ihiese and Miesck¢2008 to represent the location invariance.

Therefore, the group of transformation is

U ={Rg, |z +cl, 2z € R" c e R} (6.6)
wherel = (1,--- ,1)T andRg,, as an additive group.
Let X, ---, X, be some random variables from a dengifyx) = f(x — 0).

Hence, if the loss is of the for(0, d) = L(d—0), then the whole class is location
invariant.

It is also possible to use the IPLF in the parameter space, but in general IPLF
which is bounded in the domain makes the problem too difficult and complex.
Therefore, we have to introduce some transformations on IPLF with the unbounded

support such that it is smooth enough in the whole real plane.

6.2.2 Exponentiated Loss from IPLF

For most unbounded loss, such as quadratic losses, one of the most enjoyable prop-
erties is the mathematical tractability and easy computability in most cases. Al-

though it has been heavily criticised by many authors,Bagger(1985; Lehmann
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and CasellaX998; Robert(2001), this main feature outperforms the distortion or
the deviation of the utility function underlying. We believe that the main reason to
drive this features is due to the smoothness of quadratic function in the whole real
plane.

In Berger(1985, the utility function is derived from some axioms and by defin-
ition, the loss is defined to be an affine transformation of the negative of the utility
function. Therefore, loss function is well defined. Quadratic losses then implies
guadratic utility which is not acceptable or realistic. As a result, some researchers
tried to propose some loss functions having the smoothness in the full real plane
while having to keep the loss more realistic and less distorted.

Smith(1980Q 1987 andSpiring(1993 also understood the inappropriateness of
the unboundedness in most cases and wanted to prevent the derivation of the utility
function behind. They both suggested using an exponential square loss instead,
while Spiring (1993 thought that it was a modification of Gaussian density. Itis to
consider any exponentiated loss with the initial loss being unbounded and smooth
like squared loss. After exponentiating the loss, the new loss is bounded, smooth
and absolutely continuous. With the more general Spiring—Yeung framework of
losses inEquation 3.2Inverted Probability Loss Functions (IPLFs), and Theorem
3.2.1, there always exists an associated density such that the loss can fit in IPLF.
The general form of the exponentiated loss by setfing, d) be the unbounded

loss is

b0y~ {1 - [-2)) -

whereK > 0 andC' > 0 andexp [—C~*D(6, d)] will be a probability density ker-
nel. C'is considered to be a constant ahdienotes a decision function to estiméte

based on some random variables Without loss of generality, we also s&t= 1.
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If D(6,d) is a quadratic error loss, then

D(6,d) = (d — 6)* (6.8)

It is verified that [, exp[-C~'(d — 0)*]df = vnC andD(0,d) = 0 <=

L(#,d) =0 <= 6 = d. The associated density of this loss function is

0 ~ N(d,\/C/2). (6.9)

Analogously, ifD(6, d) is a absolute loss, then

D(6,d) = |d—0]. (6.10)

Itis also able to verify thaf, exp [-C~' |[d — 0]} d§ = 2C' andD(0,d) = 0 <=
L(#,d) =0 <= 6 = d. Hence, itis clear to understand that the associated

density of this loss function is

© ~ La(d,C), (6.11)

whereLa(-) is the Laplace distribution.

Further, if D(0, d) is a conventional LINEX loss, then

D0,d) =e" —q(d—0)—1, a#0. (6.12)

It is easy to check thaf, exp [-C~'{e*@~" —a(d —0) — 1}] df = 1/ |a| €!/°

CYCT (&) wherel'(-) is a Gamma functionD(6,d) = 0 < L(6,d) =0 <
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0 = d. The associated density of this loss function is

_exp [—C~ {0 —qa(d —0) — 1}]

10) = 1/ |al et/cCt/eT (%)
JajCE a(f — d) — e*0=
=T (%) eXp{ C } (6.13)
la| C— —z—€7* B
= F(%) exp{ C }, z_—a(d—Q)

which seems that it is a transformation of a Gumbel distribution where the para-
metera # 0 instead of simply: > 0. If a > 0, it is clearly a conventional Gumbel
distribution ag’' = 1.

Hence, all the exponentiated losses under IPLF are bounded and the associated
density may be found. These exponentiated losses does not only preserve the prop-
erties of the original loss, such as symmetric and location invariant, but they also
make the tractability possible, which is not possible in those pretending the loss in

a bounded support.

6.2.3 Estimation

SupposeX have a random variable following Gaussian distribution with a real
unknown mear and known variance?. Given some observed datg, - - - , X,,,
the posterior distribution is also Gaussian distribution with meamd 2, where
w andr are functions o~ z; ando?. In addition, Gaussian distribution belongs to
the group/;.

Our aim is to estimaté by a certain kind of exponentiated loss from IPLF in
Equation 6.7 Since the exponentiated loss is bounded by 0 and 1, it is smooth
enough and the support is in the full plane, it is always able to find the minithum

to find the best estimatérby using the first order condition. We then use the same
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approach aZellner(1986 in comparing LINEX and quadratic loss.
Let § be the estimator of. Under the exponentiated loss from IPLF, there

exists a parametér minimizing the posterior expected loss which is the form as

E[L(0, )] = /R L(9,0) dFoyx

D
—1—

l\DlH

1
v 22 R }

! D) - 90_1( u (6.14)
B V2112 JR P 2

=1

R 2
D —0
_(m +,u) du
T

o 2
whereC > 0 and.J = —w -1 (@H) .

1
V2172 ]R

As a result, we set the Bayes estimate under the exponentiated loss from IPLF
asf#* which is to minimise the expected loss with respecé.toWe also denote
§* = arg min; E[L(6, §)]. Certainly, sinceD(z, 0) is smooth enough, we can solve
this by taking partial differentiation with respectéand setting it to O to solve the

following equation.

OZ%E[L(Q,é)]: W pr( )dx

— 0+ I
= expJ | ———— | dz
\/ 2mw72 / P < T2 )

Suppose we set(d) = E[L(,0)]. Evidently, () is bounded and ifD(-)

(6.15)

is chosen to be differentiable, is also differentiable. Owing to the fact that the

derivative ofx(-) changes from negative to positive, and) tends to 1 in either
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extremes, there exists only ofie solving the equation as the minimum. In sum-
mary, under exponentiated loss of IPLF, the Bayes estimate is unique and solvable

when dealing with the Gaussian likelihood with Gaussian prior problem.

6.2.4 Admissibility Under Noninformative Prior

Under noninformative prior, it is normally to choode= 4, the frequentist least-
square estimator. However, under the above exponentiated loss fromJfRui,
be chosen as the parameter, which is the Bayes estimator.

We assume the true loss is the frequentist quadratic loss. Therefore, the expec-

ted loss ford = 11 is

Rl (67 é) = ]E[Ll(ea é)]

2
:\/%/[é—O]Qexp —% (H) 49 (6.16)
T JR T

:7‘2

Correspondingly, ifD(x, 0) is not in the form ofr?, then

Hence, the estimatdt from exponentiated loss is not square-error admissible

unless the form oD (z, 0) = z* in general.
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In the opposite, we assume that the true loss is the exponentiated loss from
IPLF. Therefore, the expected loss or risk function of exponentiated loss from IPLF

for = pis

C

which is free off.

Correspondingly, the risk of the exponentiated loss from IPLF/fas

R 2
- 1 D(z,0) 1 (xz—60"+u
Ry(0,0") =1 — /ex — —— | — dx
2 ) V272 Jr P ¢ 2 < T )

(6.19)

which is also free of). That is, both risks are constant functions over the space
9 € ©. However, sinc* is the optimized and the risk with respect to its loss is
the lowest,R,(0,0*) < Ry(6,0). As a result, the estimatdris not exponentiated
loss admissible.

Since exponentiated loss is a family containing many bounded losses and here
the loss is set arbitrarily that it may be an exponentiated absolute loss or an ex-
ponentiated LINEX loss, the estimator admissible in one loss is not admissible in

other loss obviously.
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6.2.5 Conclusion

We develop and focus on a certain exponentiated loss which make some unboun-
ded loss become bounded by using the Spiring—Yeung IPLF. This special class of
bounded loss functions has some useful properties of the corresponding unboun-
ded loss. Further, this class of losses is applied to a Bayesian estimation of normal
mean and we study the admissibility of the estimator which is the argument of min-
imising the particular loss. It further shows that the best estimator of a particular

loss is always inadmissible with respect to other losses.



Chapter 7

A General Class of Conjugate Loss

Inverted Probability loss was discovered $piring (1993 with the observation

that the exponentiated square loss can be writtdn-ag(x)/f(T), wheref is the
Gaussian density arifl is the mode. This loss has a property that some expected
loss has a closed form when combined with another Gaussian distribution. How-
ever, it is from arad-hocapproach without any rigorous grounds. In this chapter,
we will explain it clearly that any analogous loss can be formed from the conjugate

direction.

7.1 Introduction

In many statistical and decision problems, very little importance has been placed
for the loss functions, but the choice of a particular loss function can seriously affect
the results, such as estimation of parameters or inference. In making or evaluating
a decision, the loss function is used in terms of the utility of the decision maker
(Berger 1985 Robert 200L Press2002. The loss is generally bounded and not

convex, so the conventional quadratic loss is not adequate to reflect the true loss in

112
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the given situation.

Similarly, in the field of statistical quality controlaguchi(1986 proposed the
guadratic loss to estimate the actual economic |I&siring (1993 was the first
one in this field adopting the Inverted Normal loss function instead of the quadratic
loss, and therefore it is a more reasonable choice. Actuaithith (1987 already
proposed the same Spiring loss function as the exponential squared error loss before
Spiring (1993, because of the symmetry and the boundedness in the properties of
such loss functiondeonard and Hsw2001). However, the technicalities sharply
increase with the distributions other than the normal distribution when using the
Inverted Normal loss function.

In this chapter, we first develop a class of conjugate loss functions which is
bounded and similar to the loss function develope&jiring and Yeund1998.

Other situations relevant to this class are also examined.

7.2 Statistical Decision Theoretical Framework

Beforehand, we have to set up the framework of the statistical decision theory
utilised in the field of quality assurance and reliability settings. This statistical
decision theory framework can be found in many literature, suchiese and
Miescke(2008; Robert(2001); Blackwell and GirshicK1979; Lehmann and Ro-
mano (2005; Smith (1987); Pace and Salva(l997); Leonard and Hs200J);
Berger(1989; French and Rio2000. We choose to followFerguson(1967)
andBlackwell and Girshic1979 closely with their logical steps, but in a more
general form.

Generally, in this field, the expected loss is the evaluation criterion to select the
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manufacturing processes, but the most controversy is the practical determination
of the form of the loss function by the decision-makers. Therefore, the following
is to fit the framework such that the systematic approach is available for further
discussion.

Since the performance of a process is random and fluctuated, we have to de-
rive and construct from the axiomatic system of the Probability theory proposed
in Kolmogorov(1933. Clearly, in mathematical terms, it is a measurable space

(Q, F), where

e ()isthe set or space of all possible elementary events;

e F is the Borels-algebra of2, that is, the collection of the subsets of events.
Evidently,Q and() = QF both belong taF, that is, the situation of allowing

all events occurs almost surely. For convenience, we deRctel3.

For every setd = |4, A; € F with disjoint A,--- , A, € F, there exists a
o-additive nonnegative functidR such thatP (A) = >, P (4;) andP (2) = 1.
In other words/P is a probability on the measurable spage 7).

Mostly the data is collected from the process under study through the observa-
tion of a real-valued random variahlé, and the exact information of the probab-
ility space induced byX is unknown. Hence, statistics, especially parametric, is
based on the statistical mod&f = (R*, Bg«, Py = Py o X '), whered € © for
X to estimate the best unknovéhfrom the possible value in the sét In other
words, the major problem in statistics is to determine the best vafuem the
collected data ofX’ and then to build up the best probability mooﬁ’“, BRk,Pé)
accordingly. The se3 = {IPy | 0 € ©} is the family of probability distributions

with the parametef belonging to© as a condition. In generah, can be detached
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from the statistical modeM and it is possible to verify between two sets of fam-
ily of probability distributions®3 and Q without assuming a particul@ on the
common measurable spade, Bg).

For decision-maker facing the statistical problem, he has his own thought and
the decision space &, where theZ is the set of all possible decisions. In partic-
ular,Z = © or 2 = RF is generally the most common case in some fields, such
as quality assurance and reliability settings. Here, we assume that his action is
made in one-to-one correspondence to his decision, and therefore the action space

is equivalent to the decision space in the topological and measurable sense.

Definition 7.2.1 (Loss Functions) A loss function is any functioi(d, §) from

2 x ©toR. If L(d,0) is bounded, it is proper; otherwise, it is improper.

Since utility always exists with some axiomsDeGroot(2004); von Neumann
and Morgenster(2004), loss function can be simply interpreted as the negation of
the utility and also exists in all situations. Therefore, the objective of maximizing
the utility is the same as the objective of minimizing the loss. We further assume
that loss functions are also bounded from below, that is,

inf inf L*(d,0) > —C' > —o0 C e Ry,
de 0co

Clearly, withDefinition 7.2.1 a proper loss function also satisfies the condition that
suppey L*(d,8) < C, whereC' € R, . In many situations, it is more convenient to
talk in terms of nonnegative losses, and hence it is also assumed in this dissertation

that we focus on the following loss

L(d,0) = L*(d,0) — C
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instead. Note that the decision is unaffected when the loss is under affine trans-
formation. Though the simple loss function being the negation of the utility, other
types also appear in the literature.régret lossfunction can also be adopted and
defined ad.’ = sup,c, U(d,0) — U(d, 8), whereU(-) is the utility function. This

loss is seemed to be more realistic, as it measures the loss by not choosing the op-
timal choice without control of the occurrence @&f NeverthelessBerger(1985
claimed thatZ, L*, L’ are equivalent in Bayesian analysis of the Statistical De-
cision Framework.

After constructing the loss function, it is to desire to find the optimal decision
with respect td. In generalf is too complex and it is impossible or very difficult
task without a manipulation @f at the time of decision making. Under a particular
decisiond, the set of observationsX = x} influences the relative correctness of
the estimation of) and the efficiency. FurtherX follows a set of distribution
B. In other words, the decisiod depends on the outcome ¢X = x} and is
maintained as a functiod = d(X), whered: R* — 9. Therefore, the loss
function is constructed to maKe, ) — L(d(x),0) € R. From this viewpoint, we
can describe the loss function as a random veetok ) on the statistical model.

A natural method of determining the best decision is to select according to the
expected loss or risk function over all possibievhen the decision is made and to

choose the one with the minimum expected loss.

Definition 7.2.2 (Frequentist Risk)
Given a statistical modeM = (R*, Bgx, Py) and a loss functior : 2 x © — R,

the expected loss or frequentist risk function (in short, frequentist risk) of a decision
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d € Zis given by
R*(d,0) = Eq L(d,0), 0 € 0O,

— / L(d(x),0) Py (dz) (7.1)
_ / L(d(x), 0)dFy(x),

where Fy(z) = Py(X € (—o0,)), the cumulative distribution function of |
© = 0. In simpler words, the frequentist risk is taking an average of the loss

function overR on the condition of a particula® = 6.

In Bayesian analysi¥y) also follows another prior distribution at the time of
decision making. Hence, there is another probability space fd®, Be,T).
However, in practice, it is very embarrassing to allow the improper prior that
T(©) = oo, such as noninformative prior and Jeffreys prior, while the improper
prior appears frequently. Similar @efinition 7.2.2and with the condition tha®
beingo-finite, we have the joint distribution dB, X) as follows. Suppose there
are two suitable dominating measuyeandv for P, andT, the joint distribution

of (X, ©) is given by

[Py T] (A) = / / 14(z,0) Py(dz)T(d6), A € Bar ® Bo
(7.2)

_ / / La(a,0)f(x | O)(0)d (1 © v)

where f(z | 6)7(0) is the Radon-Nikodym derivative dfy ®T with respect to
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u ® v. Therefore, the marginal distribution 6f X can be found as

o £(x]6)m(6)
T (4) = / LT oo

- [0 ([ s) e>w<e>du)_l (GoDwn) o

- [10) (dwaoﬁ; ikl (a:>> <—3(<%§3 ($,9))

v(df), AeB©)

and we can obtain the general Bayesian expected loss as the following definition:

Definition 7.2.3(Bayesian Expected Loss)
Given a statistical modeM = (R*, Bgx,Py), a parameter measurable space
(0,B(0),T), a loss functionL : 2 x © — R, the Bayesian expected loss (in

short, Bayes loss) of a decisidne 2 with a observationX = z is given by

R(d, 0) = /@ L(d.O)TY(d6), de2 -

= Ex L(d(z),9).

In simpler words, Bayes loss is taking an average of the loss functiontdwer

the condition ofX = z.

Now, we have introduced the three ingredients rigourously enough to form the
basis of the Bayesian Statistical Decision Theory. Summarising that the three major

ingredients are:

¢ the set]’ for the observations;
e the loss functiorn.(d(z), §) associated with the decisions; and

e the prior probability measur8y given the observatioX = x.

With the three ingredients, a statistical decision problem can be described in
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the following definition.

Definition 7.2.4 (Statistical Decision Problem)
A statistical decision problem can always be described by a tripi¢, 2, L),

whereM is a statistical modelZ is a decision space and is a loss function.

7.3 Bounded Loss and Advantages

A proper loss is a loss function bounded from below and bounded by above for all
values off andd. The research target of this dissertation is mainly on the proper

loss. Some problems may occur when the loss function is not proper. If the loss
function is not bounded, the frequentist risk or the Bayes loss may be infinite or
undefined for some values of or even all valueg.dfor instance, if the distribution

of X is Cauchyz,~) given by

Fx(z|0,v) = %arctan (%_9) + %, z €R
then it is easily checked that all moments are undefined and that the frequentist
loss with respect to either conventional absolute loss or a quadratic loss function
is always undefined regardless of the decision. Another possible example is when
the distribution ofX is Uniform(0, 0), the natural conjugate measure é@will be
chosen as Pare(e,,, o), whereas the concept of conjugate families is defined later.

The distribution is given by

Fo(f | 2m, ) = [1 - (7)“} Lysu, (6).
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If « =1, itis easily shown that all moments higher than the first order are infinite
and that the marginal distribution f& | X = z is Paretomax{z, z,,},2). There-
fore, any moments higher than the second order for this posterior distribution are
infinite. The Bayes loss with respect to the conventional quadratic loss function
is always infinite regardless of the decision, but that with respect to the absolute
loss function works. In both cases, we cannot figure out the optimal decision or
compare different decisions in any valuesiof

Sometimes, the optimal decisions arising from the improper loss functions are
not robust when the distributions 6f and X are not absolutely correct and may

change slightly. The more detailed example can be fouriRbinert(2007).

7.4 Conjugate Loss

Since the most common parametric distributions are also from the exponential fam-
ily, we assume that the prior distribution is a member of exponential family for
convenience. Examples of the exponential family are Beta, Dirichlet, Wishart,
Gamma, Gaussian, Exponential and Poisson. This family can be characterised by
its density with a suitable dominating measure.

As the exponential family is well-researched, many literature have discussed it
fully. The main references on this topic drehmann and Casel({@999; Lehmann
and Roman@2005); Liese and Miesck€2008. Some monographic treatments on
exponential families can also be found Barndorff-Nielsen(1978 and Brown
(1986. We mainly follow the procedures &rown (1986.

Similar in Section 7.2we have to firmly base on a measurable sp&tesg)

(because the random variable is real-valued) and a dominating meesuch that
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we have a sounded mathematical support. ForraayH, H being the parameter

space,

Q) = [ Latw)esp{an). @) ~ /()] Gl (de), A€ BR), (75)

whereS(x) is called the statistic ok, a(-) andG(z) are some well-behaved con-

tinuous functions.Q, is the probability measure induced by the real-valuéd

and the whole seéB = {Q, | n € H} is the exponential family. Then the density

f(z | n) can be defined as the Radon-Nikodym derivative with respgct tohere

= dQ,
dy/

= exp[(a(n), S(@)) —v/(n)|G(x), z€R neH.

S | )

(z)
(7.6)

Brown (1986 noticed and proved that the aforementioned settings can be fur-
ther reduced by focusing oki = S(X') and reparametrising with = «a(n) and
using another suitable dominating measure, /sap a minimal form or reduced
form. Analogously, in practice it is often more convenient to study the family of
induced distributions in Euclidean spa@®,. Hence, the statistical model for the
minimal form of the member of standard exponential family can then be rewritten

asM'’' = (R*, Bgs,Pg = Q, 0 S71). That s, for everyd € R¥,
Po(4) = (@0 57) (4) = [ Laesp[(05) = wi)]u(ds), @)

and

f(s]10)=—=—(s) =exp[(0,s) — v(0)], s € RF. (7.8)
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If there exists &, for eachd € ©, the family3 = {P, | 0 € ©} isfull. With a
further condition of the openness ©fin R*, id est V € H : 3¢ > 0 > B.(n) C
‘H, then it is called as thesgular exponential family. Under the regularity and
fullness conditions, the distribution is in minimal form if and only if it belongs to
the natural exponential family. Here we further assume that the parameter space
H or © is open and the statistic set fulfilgan {S;} = R* to ensure the validity
of the regularity condition. Any member of exponential family in this dissertation
satisfies the said assumptions and is natural for convenience. To further discuss the

conjugate concepts, we need a new definition as below.

Definition 7.4.1 (Conjugate Families)A family of probability measur& of ©,
T = {T, | n € H}, is said to be conjugate for the probability measigif for
everyTy is formed inEquation 7.3 the posterior measure or marginal measure

© | X is also a member of the same Set

For exponential family member, there is a simple way to obtain the natural
conjugate family of distribution, such as prior distribution in Bayesian analysis.
The natural conjugate is important because the marginal distributién|oX or
the posterior distribution in Bayesian analysis can be easily identified with a slight
change in parameters when comparing to the prior or marginal. We also assume
that the spacéo, Be) is also measurable and well-behaved.

Then, we introduce the family of natural conjugate Ry, T. Suppose the

hyperparameter if isn = (w, A\) € H. On the spacéO, Bg) we have,

T, (0) = / Ta exp[(w,@) — XY (0) + E(w,\)|v(dF), AeB(©O) (7.9
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wherev is the suitable dominating measure and) is the normalising factor with

sup E(-) < oo and

E(w,\) = log {— / exp[<w, 6) — Aww)} u(dG)} (7.10)

It is straightforward to observe th@ty also belongs to the exponential family.
With T,, , as prior and the observation follows, a member of exponential family,

we further have

(]P)g ®Tw’)\) (A) = // ILA(ZE,Q) Pg(dI)T%)\(de), A€ B(Rk) X B(@)
- // exp [<9, 24w — (A+1)3(0) + Ew, )\)} d(p®v)
A
— // exp[(@,x +w) — Yy (0)|dv
4 (7.11)
whereyy () = (A + 1)¢(+) andv = exp E(w, \) (1 ® v). It follows that the joint
probability measure also belongs to the exponential familty and the joint density of
(0, X) trivially is the Radon-Nikodym derivative with respectii® v, the suitable

dominating measure with

d[Py @T, ]

f(,0) = d[p @ v]

(x,0) = exp[(&, r4+w)— A+ 1Y) + E(w, )\)}
(7.12)

From Equation 7.3andDefinition 7.4.1 we can find the marginal distributici®
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as follows:

(Py ®Ty ) (x,d)
J (Py Ty ) (x,d6)’
exp[(&, r4+w)y— A+ DY)+ E(w, )\)}
[exp[(6, z +w) — 1 (0) + E(w,\)]dv

/
/
_ / 146 exp[(0, 7 +w) — (A + 1)¥(0) + E(w, \)]
/
/

A € B(©)

v(do)

exp[E(w, \) — B(x + @, A+ 1)] [ Tryuorsa(dO) v(df)

La(f)exp[(0, 2 + w) — (A + 1)Y(0) + E(w + 2, A+ 1)]v(df)
L4(0) exp[(0, 2 + w) — 11 (0)]v1(dF)

(7.13)
wherey; (-) = (A+ 1)¥ () andy, (+) = exp E(x + w, A + 1)v(-) is the dominating
measure fofl*. The conditional density o®, given X = z, denoted as (¢ | )

conventionally, with respect tg, is

dTX
dl/l

(0] z) = (0) = exp[(0,z + w) — (A + 1)y(0)] (7.14)

In decision problems, we have to go further to analyse the Bayesian expected
loss or the Frequentist risk, hence we need to introduce the loss furigtiof) for
the loss from decisiod when thef is chosen. The best decision is that having the
lowest expected loss, either the expectatioDiinition 7.2.2or Definition 7.2.3
where both® and X | © follows natural exponential family. Therefore, if the loss
function is in a form convenient in calculating the expected loss, the analysis will
be as nice as the posterior analysis in Bayesian decision theory. ection 7.3
unbounded loss does not always make the expected loss exist and finally it is no
way to solve the decision theorem in general. Further, some losses from unbounded
loss functions can change seriously while there is a slight change in the probability

measure. Therefore, the bounded loss with the properties that the loss is bounded
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below from 0 and bounded above By are examined here. We propose to use a

conjugate loss function in the following form:

L(d,0) = K{1-Ud0)}, K#0
Lmd,e)::cxd)exp[«xjxd)>—-X@w¢meﬂ (7.15)

Gl = [ ew[6.5() - Adju(o)] a0

wherez(-), \(-) andG(-) are some appropriate functionsdandd andg(-|6(-))
is the density of a member of exponential family obviously.is the multiplier;
without loss of generality, we can s&t = 1. G(d) is an important normalising
factor such that. is bounded within0, K). G(-) has a property that < G(-) <
oo. Whend = 6, L(d, ) = 0. There are many special cases with this loss.

SinceU is bounded by 1[.(d, #) can be simplified as

L(d,0) =1—g:1(0 ]| 2(d)) (7.16)

whereg; is analogous t@, the density of a member of exponential family. Since
this loss is formed from the density, it is also callederted Probability Loss Func-
tion in Spiring and Yeund1998. For some parameté the frequentist risk of a

decisiond with 4(-) = ¢ by Definition 7.2.2is

muﬁyi/u¢mmm@

:/{1_Gwﬁmﬂw@u»—quwﬂ}mMWJﬁ—wme

(7.17)
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whereE; (w,7) = [ exp[(0,w) — T(0)]dp. butin general it is unknown until we
know the particular form of(-) andA(-).

Except for the frequentist risk, we can also consider the Bayes loss for this loss.
For some hyperparametéts, \) € H, the Bayes loss of a decisiawith §(-) = ¢

by Definition 7.2.3given X = z is

R(d,0) = / L(d,0)T*(d6)
- / {1 —G(d) exp[w,gz(d)) . X(d)w(e)} } O t@)=O+DU0), (dg)

—1_ /G(d)e(e,z+w+i(d)>[S\(d)+/\+1]w(9)yl(d9)

Bz +w, A+ 1)G(d)

Ew+x+2(d),\(d) + A+ 1)

(7.18)
whereE(+) is defined inEquation 7.10R(+) is in terms of all known functions and
variables. Notice that the Bayes loss is unchanged if the random variable follows
a probability measure belonging to exponential family. Whatever the observation
is seen, the prior and the posterior distributions are of the same form, while this
conjugate Bayes loss is still of the same form. Therefore, this loss can always be
in closed form and form a closed family.

There are another special case that we should examine. Assume z, a

constant functionL(d, #) can be simplified as

L(d,0) =1 — G(d)exp | (8, z) — X(d)p(0)
(7.19)

=1-G(d)H(z)ga(x | 0)

where g»(-) is analogous tgy(-), a member of exponential family, but with the

parameter ofc instead ofd. H(-) is the appropriate normalising function for the
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parameter:. For some parametér the frequentist risk of a decisiahis

muﬁyi/u¢@mm@

= [ {1 Gt explit.) = X@v (o)} exp[(6.2) — (6) ()

= 1-G(d)
(7.20)

For the Bayes loss of some hyperparameters\) € H, the Bayes loss of a

decisiond with zZ(-) = z by Definition 7.2.3given X = z is

m¢®:/iuﬁmﬂw)
::/{1—(%dﬁmpB&x>—X@D¢wﬂ}e@ﬁw*ﬁﬂwwbﬂd@

:1—GMX/wa&mﬁwﬁ—(M@+A+&>M@}m@%

B+ w A+1)G(d)
E(w+2z,Md) + A+ 1)

(7.21)

In general, a uniqgue minimum for the loss is one of the best features that there
exists only one unique optimal choice. Certainly, this is controlled by the shape of
g1. If o = —log g1 is convex, then the density is logconcave and strongly unimodal
(Dharmadhikari and Joag-DglP88. Then, the loss has only one unique minimum
if the mode ofq, is atd = d.

From another point of view, the first order condition has to be satisfied if it
is differentiable. We can differentiate and set the equation to be 0 to solve the
unknown. We fixd to let the loss as a function @ then in order to meet the

minimum atfd = d and we get

E(d) — Md)y'(0) =0 (7.22)



CHAPTER 7. A GENERAL CLASS OF CONJUGATE LOSS 128

Hence, we can further simplify the loss by eliminating the whole té(rd) —

z(0) as follows:

By convention, we sek(d, § = d) = 0 and thus

G(d) = exp | (¥(d) — it/ (@) Ad))| (7.24)

From the above argument, this loss is always bounded by 0 and 1 and in general
it is smooth and continuous. The advantage over quadratic loss is that this always
lead to a finite expected loss with respect to any probability distributions.

In summary, the conjugate loss is of the form

L(d,0) =1 - G(d)exp [ (00/(6) — ¥:(6), A(@) )]
=1 —exp | (¥(d) = (0) + 03/(d) — [y ()], A(d))|

(7.25)

and\(d) is the only free variable. if’(d) is a scalar, then we can further simplify

to

L(d,0) = 1 = exp [ {w(d) = ¥(6) + ¥/(d)(0 — d), A(d))| (7.26)

Expandingy(-) of 6 in Taylor series whed is close toY when)(-) is analytic,

we get

L(d,0) ~ 1 —exp K—%w”(d)(d —6)?, X(d% (7.27)
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That is, for fixedd, A(d) is a constant or can be written as a multiple/6{d).
In a local sense, whedis very close ta@, any conjugate losses under exponential
family we proposed will be approximately equivalent to the Spiring loss described
in Chapter 2.

Therefore, when there is no specific condition and considering around a target
6, the best and safest choice should be the Spiring loss, that is, the more general
form of Spiring—Yeung Inverted Probability loss framework based on normal dis-

tribution.

7.5 Conclusion and Further Remarks

This chapter analyses some conjugate losses in a more rigorous foundations from
the conjugate view. However, this chapter has a lot of generalisations which can be
researched. How to minimise the loss with more observed data, how to optimise

the loss is also a big topic in this kind of losses.



Chapter 8

Further Discussions and Prospects

In this report, we have done a lot of investigations for Inverted Probability loss
functions. However, there are still some problems not being solved.

Over the past decades, loss functions are increasingly important in the quality
control and statistical usage. In all 7 chapters, we have developed the Spiring—
Yeung framework from a just limited example to a wide range of possibilities in
both the traditional quadratic type loss and the bounded loss.

However, the shortcoming of IPLF is also based on a density function, but
the existence of a density function is not strong enough such that it can include
any unbounded loss in general. With the "exponentiated" technique, it is possible
to map an unbounded loss into the framework of Spiring—Yeung framework and
enjoy a lot of properties that the original unbounded loss has.

Some applications are included for illustrations in Chapter 6. The family of
Spiring—Yeung framework provides a wide range of bounded loss functions that
can be used in many situations.

Although we have tried to re-study the Spiring—Yeung framework in a rigorous

way, it is not very successful as it is due to the time limit. This framework is based

130
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on observation that the exponentiated square loss can be written as an normalised
inverted Gaussian density. Actually, from the direction of constructing conjugate
loss, we would confirm that it is the dual of viewing whether the loss is a function

of the variable itself or a target as a variable itself. If both sides can be written as
a density, then two views are dual. The major question is that whether the whole
framework can be put in rigor and how to put it back in the statistical field. We will

study it in future.
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