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ABSTRACT 

 

Along with the rapid urban development and economic activities, the generation of 

construction and demolition (C&D) waste has increased substantially in many parts of 

the world, in particular in China. In Hong Kong, it has been estimated that the annual 

generation of C&D waste could be as much as 21 million tons. If not managed 

properly, such a huge amount of waste will bring significant environmental problem. 

Since the landfill sites in Hong Kong will be saturated in several years’ time, it is 

important to find a viable way to reuse these waste materials. At the same time, there 

is critical shortage of natural aggregate (NA) in Hong Kong for the production of new 

concrete. The concrete industry globally consumes 8-12 billion tons annually of NA, 
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among them about 4 billion tons are consumed in China. The extraction of NA, such 

as crushed rock and river sand, has significant impact on the environment. Therefore, 

the concrete industry is exploring ways to utilize C&D waste for concrete production 

in order to achieve sustainable development. 

 

Research studies conducted on the recycled aggregate (RA) and the reuse of them in 

new concrete have found that the properties of RA are generally weaker than those of 

NA due to the old mortar attached to the RA, reflected in more angular shape, lower 

bulk and saturated surface dried (SSD) densities, higher water absorption (Wa), 

inferior strength, presence of contaminants (e.g. ceramic) and lower resistance to 

mechanical and chemical actions when compared with NA. Besides, the properties of 

concrete made with RA are generally found inferior to those concrete made with only 

NA due principally to their high absorption and low density, which has hindered its 

use in the production of concrete in practical application, especially for the concrete 

with the requirement of durability. 

 

It is encouraging that a large number of literatures have proved that through adopting 

alternative design and production measures, the properties of concrete made with RA 

can be comparable with those made with NA. The findings are helpful for the reuse of 
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RA in new concrete. However, these finding are generally obtained under a relatively 

ideal situation in the laboratory without considering the case that RAs are generally 

derived from different sources with vastly different properties. Therefore methods 

should be developed to provide estimations of the properties of recycled aggregate 

concrete (RAC) made with different sources and types of RAs. 

 

The aim of this study is to develop a scientific approach for the better prediction of 

the properties of RAC made with RAs derived from different sources, and a large 

experimental programme is conducted to verify the validity of the approach.  

 

Firstly, data from different published literatures worldwide were collected as the 

sample data to construct respective artificial neural networks (ANN) models for 

predicting the compressive strength and elastic modulus. For each model, factors that 

may influence the concrete properties were firstly selected and the collected sample 

data were divided randomly into 3 groups as the training, testing and validation sets, 

respectively. The data number for the latter two sets is no less than 25% of the total 

data. This helped to provide the established models with generalization abilities. After 

training, the optimal models for simulating compressive strength and elastic modulus 

were constructed, respectively, and the network architecture and parameters were also 
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determined. Sensitivity analyses were then made to examine the importance of the 

selected factors, as well as determine which combination of factors could be used to 

construct the best model. 

 

Then three groups with a total of 46 RAC concrete mixes were prepared to examine 

the effect of different RAs on the properties of RAC. The RAs used were categorized 

into 3 groups: (1) RAs derived from laboratory prepared concrete cubes with different 

compressive strength (35-85 MPa); (2) RAs derived from 3 different sources and 

crushed by different methods; (3) RAs contained different amounts of added masonry 

(clay bricks or tiles). As many sources of NAs and RAs are used in these mixes, the 

aggregate characteristics, such as the fineness modulus (FM) of the fine aggregate, 

mortar content (MC), 10% fines value (TFV), Aggregate crushing value (ACV), water 

absorption, SSD specific gravity (SG), impurity (δ) and masonry (m) contents of the 

coarse aggregate (CA), were quantified. Besides, the mechanical properties of the 

hardened concrete like compressive strength (fcu) and splitting tensile strength (ftc), 

elastic modulus (Ec) and durability properties like drying shrinkage and resistance to 

chloride ion (Cl-) penetration were also investigated to examine the influence of 

different qualities or sources, or different masonry contents of RAs on the properties 

of RAC. The experimental results of the above mixes were also used as Cases to test 
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the applicability of the constructed ANN models.  

 

Based on the experimental test results, great variations were noticed in both the 

properties of RAs derived from different sources and those of the produced RAC.  

Also, the traditional relationships established for NAC were found no longer suitable 

for use in RAC.  

 

The results also indicated that, by constructing ANN models using data collected from 

many international literatures as sample data, the compressive strength and elastic 

modulus of RAC made with RAs from different sources could be modeled accurately, 

with the mean absolute percentage error (MAPE) values all in the range of 5.8%-6.6%. 

Besides, it was demonstrated that ANN could be also used to determine the relative 

importance of the factors in affecting the performance of RAC. It was shown that for 

compressive strength prediction, cement type and specimen size were the most 

important parameters, and aggregate moisture condition was the most influential 

parameter amongst all the aggregate characteristics. For elastic modulus prediction, 

although cement type still played an important part, the characteristics of the 

aggregates like types of natural and recycled aggregates used were also critical. 
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CHAPTER 1: INTRODUCTION 

 

This chapter aims to give an introduction to this thesis. Firstly, a brief 

background of this study will be introduced. Then the research objectives of this 

thesis will be identified. Finally, an overall structure will be given to provide the 

readability of this thesis. 

 

1.1 GENERAL 
 

As a “shopping paradise”, Hong Kong may leave many good impressions to 

tourists around the world: the starry Victoria harbor, the skyscrapers, the 

magnificent Tsing Ma Bridge, and also the beautiful Repulse Bay. However, 

people may not have noticed that Hong Kong is also facing a number of pressing 

issues: the highest population density in the world, the increasingly tense housing 

situation, as well as the dilapidated road, etc. 

 

In this case, Hong Kong is also inevitably facing the problem of disposing urban 

solid waste. According to the statistics of the quantities of different types of solid 

waste disposed at various landfills in1991-2011monitored by the Environmental 

Protection Department (EPD, 2013), the proportion of construction and 
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demolition (C & D) waste almost accounted for a 1/4 (3,340 t/d) of the quantity 

of the total waste landfilled in 2012. Also, there was an additional about 60,000 

t/d of inert construction waste disposed of at public filling areas pending for 

reuse in reclamation projects. But government figures show that both the public 

filling areas and landfills are expected to be full by the mid-2010s.  

	  

The extraction of natural resources, such as crushed rock and river sand, has 

significant impact on the environment. Therefore, the concrete industry is 

exploring ways to utilize C&D waste for concrete production in order to achieve 

sustainable development. 

 

However, considering that C & D waste may be derived from different sources 

and activities, such as site clearance, excavation, construction, refurbishment, 

renovation, demolition and road works, accordingly, the produced recycled 

materials at a recycling plant from the different sources of wastes, namely 

recycled aggregate (RA), may be composed of unbound stone, virgin aggregate 

with attached old mortar, hardened mortar and some impurities, such as bricks 

and tiles, sand and dust, timber, plastics, cardboard and paper, and metals. 

Therefore, the properties of RA obtained from different sources may vary 
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significantly due to the fluctuations in compositions and qualities, making it 

difficult for them to be reused in the production of new concrete. 

 

1.2 RESEARCH OBJECTIVES 

	  

The research objectives of this thesis can be summarized as follows: 

Ø To examine the physical and mechanical properties of different types of RAs.  

Ø To evaluate the effect of different types of RAs on the hardened properties of 

recycled aggregate concrete (RAC). 

Ø To construct ANN models that can be capable of predicting the compressive 

strength (fcu) and elastic modulus (Ec) of RAC accurately. 

Ø To evaluate the importance of the selected input variables on the fcu and Ec of 

RAC, respectively, based on the predicted results. 

 

1.3 STRUCTURE OF THE THESIS 

	  

This thesis mainly discusses the use of artificial neural networks (ANN) in 

modeling the fcu and Ec values of concrete made with RAs derived from different 

sources. The structure of this thesis is presented in eight chapters as follows: 
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Chapter 1 gives a brief introduction, the research objectives and the structure of 

this thesis. 

 

In Chapter 2, previous studies on RA and their use in the production of RAC 

are first reviewed. This is followed by the summarization of the factors that may 

affect the properties of RAC. Besides, some basic knowledge of ANN and its 

application in the area of concrete are also reviewed. 

 

In Chapter 3, the full study program is introduced. It presents the properties of 

natural aggregate (NA) and RAs that will be used for concrete production in the 

laboratory, and also presents the sources of the above aggregates, mix 

proportions of concrete prepared, as well as the test methods of the concrete 

properties. Besides, the methodologies of ANN application in this study are also 

indicated. 

 

Chapter 4 presents and discusses the experimental results of aggregate 

characteristics and the properties of hardened concrete made with these 

aggregates. The influence of different sources of RAs on the properties of 

concrete is analyzed. 
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Chapter 5 examines the validity of using some established relationships to 

model the fcu and Ec of RAC prepared in the laboratory. The predicted results of 

these relationships are also compared with the experimental test results. 

 

In Chapter 6, ANN models are constructed based on the data collected from 5 

published literature sources. Then these models are applied to predict the 

properties of RAC documented in the respective literature: to examine whether 

ANN is suitable for use in modeling the properties of RAC according to the 

ANN methods developed by previous researchers, to explore the difference 

between the use of ANN in natural aggregate concrete (NAC) and RAC, and also 

to indicate the problems that need to be resolved to provide the constructed ANN 

model in RAC with generalization ability. 

 

In Chapter 7, large amounts (more than 300) of datasets are collected from 

different published literatures to construct improved ANN models for fcu and Ec 

of RAC, respectively. The improved ANN models are then applied to predict the 

corresponding properties of RAC prepared in Chapter 4. The predicted results 

are also compared with the experimental test results. Sensitivity analysis is then 
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conducted to examine the influence of each input variable on the compressive 

strength/elastic modulus of RAC after the construction of the models. 

 

Chapter 8 summarizes the general remarks concluded from the work. 

Recommendations for future research on the use of ANN in RAC are then 

presented. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 INTRODUCTION 

	  

Along with the rapid urban development and economic activities, the generation 

of C&D wastes has increased substantially in many parts of the world, in 

particular in China. In Hong Kong, it has been estimated that the annual 

generation of C&D wastes could be as much as 21 million tons (EPD 2013). If 

not managed reasonably, such a huge amount of waste will bring significant 

environmental problem. Since the landfill sites in Hong Kong will be saturated in 

only several years’ time, it is important and necessary to find a viable way to 

reuse these waste materials. At the same time, there is critical shortage of natural 

aggregate in Hong Kong for the new concrete production. The concrete industry 

globally consumed 8-12 billion tons annually of natural aggregates (Tu et al. 

2006), among them about 4 billion tons were consumed in China. The extraction 

of natural aggregates, such as crushed rock and river sand, has significant impact 

on the environment. Therefore, the concrete industry is exploring ways to utilize 

C&D wastes for concrete production in order to achieve sustainable 

development. 
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The literature review mainly contains three parts. In the first two parts, the 

reviews of studies on the RA and RAC are conducted. While in the last part, 

basic knowledge of ANN and its application in the area of concrete are reviewed. 

 

2.2 RECYCLED AGGREGATE 

	  

2.2.1 Introduction 

	  

 
Figure 2-1 - Recycled aggregate 

 

As shown in Figure 2-1, RA used in this study can be regarded as a composite 

material containing unbound stone, virgin aggregate with attached old mortar, 

hardened mortar and some impurities. Porous weak mortar may present in RA 

from some sources, and the amount is dependent on the type and process of 
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crushers used. Therefore, the original aggregate and the attached old mortar are 

usually the key components of RA, and the characteristics of RA are determined 

by the type and quality of original aggregate (Gonçalves and de Brito 2010), as 

well as both the quality and quantity of the attached old mortar (Otsuki et al. 

2003; Oikonomou 2005; Deshpande et al. 2011). Besides, RA may also contain 

small amounts of impurities, such as bricks, tiles, glass, asphalt, plastic, wood, 

gypsum, clay, etc. Though the amounts of impurities may be relatively smaller, 

the presence of them may serious degrade the quality of RA.  

 

 

Figure 2-2 -Pilot C & D Material Recycling Facility in Tuen Mun Area 38 (EDB 

2011) 

 

2.2.2 Recycled aggregate 

	  

Recycling technology 
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Due to the large volume and complex composition of C&D waste, crushing, 

sorting and sieving are necessary to produce RA that are suitable for new use.  

 

In Hong Kong, a pilot C&D waste materials recycling plant was established at 

Tuen Mun by the HKSAR government in 2002 (EDB, 2011), as shown in Figure 

2-2. The plant aimed to produce RA for both the use in government projects and 

works like research and development. The target handling capacity of the facility 

was about 2,400 t/d. The procedures adopted in this recycling plant (Fong et al. 

2004) were as follows: 

Ø A vibrating feeder/grizzly. It is used to sort the hard portions from the collected 

inert C&D wastes which are suitable for further recycling; 

Ø A jaw crusher (primary crusher). The crusher can reduce the large pieces of sorted 

materials to smaller sizes, no larger than 200 mm, that can be handled easily by the 

secondary crushers; 

Ø A magnetic separator. Before the sorted materials are fed into the secondary 

crushers, the separator is adopted to remove the impurities and clean the materials; 

Ø Cone crushers (secondary crusher). These crushers can further reduce the clean 

materials into particle sizes no larger than 40 mm; 
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Ø Vibratory screens. After screening, various sizes (0-5 mm, 5-10 mm, 10-20 mm 

and 20-40 mm) of RA can be separated out; 

Ø Storage compartment. It is mainly used for temporary storage of different sized 

RA.  

 

Additionally, the recycling plant also adopted a prudent quality control method 

to control the quality of the incoming wastes. Only the materials satisfying the 

requirement, such as crushed rocks and concrete, were permitted to be processed 

at the plant. While clay bricks and tiles were generally not allowed to be crushed 

at the plant. The produced RA crushed after all the processes were also daily 

sampled and tested.(Fong et al. 2004) 

 

The crushing process plays an extremely important role in affecting the 

properties of RA (Nagataki et al. 2004;Etxeberria et al. 2007a). Based on the 

experimental investigation and image analysis, Nagataki et al. (2004) indicated 

that the quality of RA could be improved through the increase in crushing levels. 

Relative to the RA that only undergoes one level of crushing, three levels of 

crushing can produce RA with lower mortar contents, water absorption value 

(Wa), soundness loss and aggregate crushing value (ACV), while with higher 
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specific gravity value (SG). Besides, they pointed that many levels of processes 

could improve the aggregate properties through eliminating the particles with 

micro-defects and irregular voids. 

 

Apart from the RA collected from recycling plants, laboratory prepared old 

concrete and concrete debris are also usually crushed to produce RA by using 

hammers or simple crushers. In such cases, it is questionable whether the 

produced RA can suitably represent RA obtained from the recycling plant 

(Abbas 2007;Rao et al. 2011). 

 

Besides, the crushing process may sometimes produce voids and cracks in the 

original aggregate, which may affect the properties of the RA produced 

(Nagataki et al. 2004). Such voids and cracks may make the RA less resistant to 

permeation, diffusion, and sulfate ions, etc., leading it poorer in durability 

properties (Olorunsogo and Padayachee 2002; Somna et al. 2012). 

 

Specifications for the use of recycled aggregate 

Taking into account the study of RA has been carried out from different 

countries and regions, there are many differences in the corresponding 
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specifications for the requirements of RA and their applications in concrete. 

Based on the comparison and analyses of the current standards and specifications 

for RA, Goncalves and de Brito (2010)concluded that there were two approaches 

for regulating the use of RA in the concrete production: (1) provide a maximum 

permissible contents of the incorporation ratio of RA, as well as a maximum 

permissible replacement ratio of NA by RA in the concrete production, to ensure 

that the properties of the produced concrete can be comparable with those of the 

NAC; (2) provide correction coefficients for comparing the RAC and the 

corresponding NAC with the same strength class, so engineers can adjust the 

design of structural elements of the concrete made with RA if there are 

differences between the properties of the two concrete. 

 

In Hong Kong, the specifications requirements for the use of RA are shown in 

Table 2-1. And there are two sets of specifications governing the use of RA for 

concrete production (Kou 2006). 

Ø For lower grade applications (C20 concrete), recycled coarse aggregate can be 

allowed to fully replace NA for concrete production. However, Recycled fine 

aggregate is not allowed to be adopted to produce the new concrete. 
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Ø For Higher grade applications (up to C35 concrete), recycled fine aggregate is still 

not allowed to be used in the new concrete, and the replacement ratio of natural 

coarse aggregate by recycled coarse aggregate is limited to no more than 20%; 

Besides, the produced concrete can be only used for general concrete applications 

except in water retaining structures. 

 

It can be noticed that, when using RA to prepare new concrete, only the coarse 

aggregates are allowed. This is mainly due to that recycled fine aggregates 

normally have very high water absorption capacity, rendering them not suitable 

for making new concrete (Etxeberria et al. 2007a), since it would lead to 

excessive drying shrinkage.  

 
Table 2-1- Specification requirements for recycled aggregate for concrete 

production in Hong Kong (Fong et al. 2004) 
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Residual mortar 

Old cement mortar attached to RA is generally considered as the main cause of 

poorer properties of RA compared with those of NA (Oikonomou 2005; Butler et 

al. 2011), reflected in higher Wa, porosity, ACV and Los Angeles abrasion value 

(LAAV), and lower SG and 10% fines value (TFV). As a porous material, the 

porosity of the old cement mortar is mainly determined by the water cement ratio 

(W/C) adopted by the parent concrete (Nagataki 2000). 

 

The properties of RA obtained from different sources vary significantly due to 

the fluctuations in the compositions and qualities of the corresponding parent 

concrete, as well as the quality and quantity of the old attached mortar. It is very 

difficult to prepare new concrete with an acceptable interface between RA and 

new paste when the composition of RA is basically weak mortar, since the 

porosity and absorption of RA are very high in such conditions (Etxeberria et al. 

2006). 

 

The amount of residual old mortar is affected largely by the crushing procedures. 

In general, the more crushing processes are adopted, the more mortar can be 

separated from the original aggregate. For concrete debris that only undergoes 
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one level of crushing, the amount of old mortar in RA can be higher than 50% 

(Nagataki 2004). 

 

The strength of the parent concrete and particle size may also affect the mortar 

content (MC) of RA. For RA crushed from old concrete (Padmini et al.2009), 

more MC may appear in RA produced from the original concrete with higher 

strength, for which the bond strength between aggregate and mortar is higher; 

besides, more MC may be present in smaller sized RA particles due to their 

higher surface areas (Padmini et al. 2009;Domingo et al. 2010). 

 

It is generally agreed that the strength and some other properties of RA can be as 

good as that of NA if the attached cement mortar can be fully removed. A lot of 

efforts have been made to study the influence of the attached old mortar on the 

properties of RA, as well as the ways to remove the mortar, Marta and Gutierrez 

(2009) found that the MC of RA was inversely proportional to its particle size, 

while proportional to the corresponding Wa, LAAV and sulphate content.   

 

Abbas et al. (2009) proposed a new method called the equivalent mortar volume 

(EMV) method. When designing a concrete mix proportion containing RA, they 
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proposed to account for the relative amount and properties of the two 

components and adjust both the NA and new paste content of the mix 

accordingly. The results of the test showed that RAC mixes proportioned by the 

EMV method satisfied the current requirements for concrete exposed to severe 

environments. But it is not feasible in practice to calculate the volume of the 

attached mortar of RAs, since they are seldom derived from a single source 

before crushing in waste recycling plants. 

 

Apart from the old mortar attached, the angular, rough texture and elongated 

particle shape of RA are also attributed to its high water absorption capacity.  

 

Particle density 

Due to the presence of attached mortar, the particle density of RA is generally 

lower than that of the NA (Dhir et al. 1999). For RA that contains certain 

amounts of masonries, such as bricks and tiles, the particle density will be further 

decreased. 
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(a) From old concrete (b) From recycling plant 

Figure 2-3 - Recycled aggregates from different sources 

 

Many researchers indicated that the density of RA is related to the quality of the 

corresponding original concrete from which the aggregate is crushed. Nagataki 

(2002) indicated that the higher the strength of the parent concrete, the higher the 

density of the produced RA, of which the attached mortar was assumed the same 

quantity. Padmini et al. (2009) pointed out that for each particle sized RA 

produced from old concrete of different strength, the density reduced gradually 

with an increase in the strength of the original concrete. They indicated that the 

lower strength concrete was easier to be crushed, and thus more attached mortar 

could be removed from the aggregate. However, by using hammer to crush five 

series of old concrete with 28-day compressive strength from 35 MPa to 100 

MPa, respectively, Kou and Poon (2012) found that the maximum density 

attained for 10mm RA and 20mm RA were not those from RA100, but from 
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RA45 and RA80. This may be due to that it is impossible to produce regular 

particles, like those produced at a recycling plant, by only crushing using 

hammer manually. 

 

The density of RA is also dependent on its particle size. As mentioned above, for 

RAs crushed from old concrete, the smaller the RA size, the higher the 

percentage was the residual mortar attached to the RA. So higher density may be 

obtained by RA of smaller size (Padmini et al. 2009; Tam and Tam 2006). 

 

Water absorption and porosity 

Higher Wa and porosity, the significant characteristics of RA relative to that of 

NA, are related to the porous nature of the old mortar attached to RA (Rao et al. 

2007). Additionally, the Wa may be further increased if the RA contains other 

impurities, such as masonries, wood, clay, etc. The high absorption capacity and 

porosity are also problems that limit the application of RA in structural concrete. 

 

Due to the high absorption capacity, it is recommended that RA should be 

pre-wetted or pre-saturated prior to its use in new concrete (Hansen 1992; 

Etxeberria et al. 2007a). If RA is used in dry condition, it may absorb large 
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amount of free water quickly during mixing, leading to poorer workability and 

hardened properties. But through experimental investigation by comparison of 

the properties of RAC made with RA in different moisture states (oven-dried, 

air-dried and saturated surface-dried (SSD)), Kou et al. (2004) indicated that RA 

in an air-dried state was most suitable for preparing normal strength concrete.  

 

The use of multi-levels of crushing can significantly reduce both the absorption 

capacity and porosity of the RA (Nagataki 2004), since part of the old porous 

cement paste can be removed from the aggregate. 

 

Similar to the particle density, the Wa of RA is also affected by the strength of 

the parent concrete and the particle size. Generally, opposite development trends 

could be observed when comparing the Wa with the corresponding density. The 

higher the parent concrete quality or the smaller the particle size, the lower the 

Wa (Padminiet al. 2009; Tam and Tam 2006). 

 

Mechanical properties 

Though indexes like absorption and density are regarded as the most important 

characteristics of RA (Rao et al. 2011), the mechanical properties also cannot be 
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ignored. Especially for RA used in structural concrete, the physical, mechanical 

and durable properties should be all examined (Zega et al. 2010). 

 

The mechanical properties of RA refer its strength, toughness and abrasion 

resistance. The strength is generally determined by the ACV or TFV test. The 

toughness and abrasion resistance of aggregate can be characterized by the AIV 

and the LAAV test, respectively. 

 

With the presence of old weak mortar, the mechanical properties of RA are 

generally poorer than those of NA due to their higher porosity level and larger 

amount of cracks (Etxeberria et al. 2006), reflecting in comparatively higher 

ACV, AIV and LAAV, and lower TFV. Sri Ravindrarajah and Tam (1985) found 

that the strength of RA played a more important part in affecting high strength 

concrete when compared with that of low-medium strength concrete, Some 

researchers (Etxeberria et al. 2007a; Rao et al. 2011) indicated that the failure 

mode of RAC of medium-high strength was different from that of NAC. For the 

former, it generally occurred in the RA while for the latter, it usually occurred in 

the interfacial transition zone (ITZ) between the aggregate and the cement paste. 
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The mechanical properties of RA are mainly dependent on the quality of the 

original concrete. Generally, the higher the strength of the parent concrete, the 

better the mechanical properties of the produced RA (Ajdukiewicz and 

Kliszczewicz 2002). Some other studies (Paine and Dhir 2010; Kou and Poon 

2012) also proved that RA of good quality was suitable for use in high 

strength/performance concrete. 

 

Impurities 

The presence of impurities may affect the properties of RA seriously, and cause 

fluctuations in the quality of the corresponding RAC (Dosho 2008). 

 

Due to the varying natures of the original wastes, the types and quantities of 

impurities present in RAs from different sources may also vary widely 

(Olorunsogoa and Padayachee 2002; Rao et al. 2011). It is necessary to remove 

the impurities as much as possible prior to the use of RA in new concrete. 

 

2.2.3 Technologies for producing high quality of RA 
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Due to the poor qualities of RAs caused by the old attached mortar, the vast 

majorities of RAs worldwide are limited only for using in the road or road-like 

applications, though they are allowed for structural concrete according to the 

specifications in many countries (Vazquez, 2013). To resolve this problem, there 

were attempts to develop technical approaches to improve the quality of RA. 

Tomosawa and Noguchi (2000) indicated that the quality of RA could be the 

same level as that of NA if the cement mortar was removed from the virgin 

aggregate as much as possible. To achieve this objective, some techniques have 

been proposed as follows: 

 

Conventional recycling process 

As mentioned in Section 2.2.2, the conventional recycling process of RA is 

similar to that use for natural crushed rock production. By a combination of jaw 

and cone crushers, large pieces of waste concrete can be crushed to the required 

particle sizes, and the more the levels of the crushing available, the higher 

portion of the cement mortar can be removed. Yagishita et al. (1994) indicated 

that, compared with RA produced by using impact crusher once only, additional 

or replacement use of roll crushers could improve the quality of RA. 
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However, the production cost will increase proportional to the level of crushing 

processes adopted, while the actual yield of the coarse fraction will reduce on the 

contrary.  So it is necessary to find a balance between the level of crushing 

processes and the requirement of aggregate quality according to the actual 

application (De Juan and Gutierrez 2009).  

 

Mechanical treatments 

This treatment is to grind and remove the attached mortar from the aggregate 

particles by means of mechanical forces, such as eccentric-shaft rotor (Yonezawa 

et al. 2001) and mechanical grinding (Yoda 2003), both of which were developed 

in Japan. As regards the eccentric-shaft rotor treatment, recycled aggregates after 

subjected to the primary crusher are immediately fed into the eccentric mill, 

between the inner and outer rollers, and the coarse aggregate portions are 

separated from the old mortar through grinding in the rotating mill at a high 

speed. While for the mechanical grinding, the cement mortar is partially removed 

from RA through rubbing against iron balls in the numerous of rotating 

partitioned sections of the drum. 

 

Thermal treatments  
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In 1996, Barra (1996) proposed a thermal approach to remove cement mortar 

from the coarse aggregate by using the thermal stress generated in the weak 

mortar through several cycles of 2h’ heating at about 500 °C and soaking in 

water.  

 

By means of a rubber hammer, it was demonstrated that some more weak mortar 

could be further removed, so a combination of thermal with mechanical 

treatments should be more effective.  

 

Thermal-mechanical treatments 

An improved thermal-mechanical treatment, namely heating and rubbing method 

(HRM), was then developed by Shima et al. (1999). In the HRM, RA particles 

are firstly heated at about 300ºC for a period of 40 - 60 min, followed by further 

crushing in a tube mill. The heating would produce fine cracks between the 

cement paste and the aggregate that make the cement paste more brittle due to 

dehydration. In such a case, the crushing of heated RA can remove the cement 

paste more easily. 
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The energy consumption is a problem for the use of HRM to treat RA, but 

life-cycle analysis conducted by the same researcher indicated that using HRM 

could reduce CO2 emissions by using the HRM powder as cement-related inputs. 

(Shima 2003, 2005) 

 

Acid soaking treatments 

In 2007, Tam et al. (2007) proposed an acid soaking method, by pre-soaking 

RAs in three different acidic solutions (HCl, H2SO4, H3PO4), to separate coarse 

aggregate from the cement paste. In this method, RAs are pre-soaked in 0.1 M 

acidic solutions for 24 h, and then cleaned with water. The authors reported an 

improvement of RA with a reduction of 7.27-12.17 % in water absorption values 

after treatment. Besides, they also stated that this method was cost effective to be 

able to treat about 10 tonnes of RAs with the costs of no more than 500 HKD. 

Ismail and Ramli (2013) proved the acid soaking method could be used to 

remove weak mortar on RA surfaces. A linear correlation between the amount of 

mortar loss and the increase of the molarity of the acid was also reported in the 

study. 

 

However, there are potential problems that the chloride and sulfate content of RA 
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may be increased respectively after treatment with the hydrochloric and sulfuric 

acids. Although the chloride and sulphate contents were reported (Tam et al. 

2007) still within the limits according to the respective standards of 0.05% and 

1%, and the pH values were still within the alkaline group (above 8.5 pH), it is 

still a concern that durability problems may be caused by the increase in the 

chloride and sulfate content of the aggregates. 

 

Microwave treatments 

In 2010, Ong et al. (2010) proposed to use microwave irritation to separate old 

attached mortars from the original aggregates in RA. In this method, high 

different thermal stresses are generated in the porous mortar due to the short-time 

microwave heating, leading to the formation of grain boundary and 

embrittlement of the mortar, and finally the mortar lumps cracked into smaller 

pieces that can be removed easily (Akbarnezhad et al. 2011, Lippiatt and 

Bourgeois 2012, Choi et al. 2014). 

 

The Microwave treatments have been reported to be quite effective (Quattrone et 

al. 2014) with no potential durability concerns to the treated RA (Akbarnezhad et 

al. 2011). But it is yet to be applied in any practical production of RA. 



 

 28 

 

Surface treatments 

In all the above-mentioned treatment methods, due to the high heat or intense 

mechanical stresses adopted to remove the mortar, the treated RA may be 

damaged. Also, these treatment methods are energy intensive.  

 

Other researchers have proposed to improve the properties of RA by using 

surface treatments, such as treatment by polymer (Kou and Poon 2010, Spaeth 

and Tegguer 2013), treatment by mineral admixtures (Katz 2004, Younis and 

Pilakoutas 2013), and treatment by nano-materials (Kutcharlapati et al. 2011) 

and by using microorganisms (Qiu et al. 2014). None of these have been applied 

in practice in commercial production of RA 

 

2.3 RECYCLED AGGREGATE CONCRETE 

	  

There are still many potential problems hindering the widely application of RA 

in concrete production (Wang et al. 2008) including: 

Ø Lack of standards that can be generally applied to guide the use of RA; 

Ø Few effective and economical processing methods for producing RA that can be 

used for structural concrete; 
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Ø Lack of adequate knowledge concerning the trend of the strength development of 

RAC;  

Ø Lack of study on the durability of RAC in sever environment. 

 

It is generally accepted that the properties of RAC are inferior to those of NAC. 

Sri Ravindrarajah and Tam (1985) attributed the poor properties to the use of RA: 

(1) more total porosity of the RAC relative to that of NAC for the large amounts 

of porous paste within RA; (2) weaker mechanical strength of RA than NA; (3) 

more amounts of weak bond areas in RAC compared with that of NAC; (4) the 

effect of multiple cold joints in RA between the new and old mortar.  

 

With increasing attention paid to the research of RA, many experimental 

investigations of the fresh and hardened properties of RAC have been conducted. 

Some of the results are reviewed as follows. 

 

2.3.1 Fresh properties 

	  

Generally, concrete mixes made with RA can be designed according to the 

approach adopted for that made with NA, except that the high absorption 

capacity of RA must be taken into account to calculate the actual water content. 



 

 30 

To obtain the same workability, as reported by many researchers (Hansen and 

Narud 1983; Sri Ravidrarajah and Tam 1985), concrete made with RA requires 

about 5% extra water relative to the normal concrete. If same water content is 

used, the workability of RAC is lower than that of the NAC (Topcu and Sengel 

2004). As accepted, the poorer workability of RAC compared with that of NAC 

could be attributed to the high absorption capacity and porosity of RA, since it 

may absorb large amounts of water quickly during mixing. While Rashwan and 

AbouRizk (1997) indicated that the workability of fresh RAC could be affected 

by the shape and texture of the RA used. Several researchers (Hansen 

1992;Sagoe-Crentsil et al. 2001; Etxeberria et al. 2007) have suggested that RA 

should be pre-wetted or saturated prior to their use in concrete production to 

improve the workability.  

 

Also, due to the high absorption capacity and porosity of RA, fresh concrete 

made with 100% RA generally contains higher air contents (Katz 2003). 

 

With respect to the density of the fresh RAC, in which RA with low SG is 

employed, the value is lower when compared with that of the corresponding 

NAC. Rao et al. (2007) indicated that the higher air content in the RAC might 
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further decrease its density. 

 

2.3.2 Mechanical Properties 

	  

Compressive strength 

It has been reported in many literatures (Hansen and Marga 1998; Sri 

Ravindrarajah et al. 2000; Rahal 2007) that the fcu of RAC was lower than that of 

the NAC using the similar mix proportions, due to the poorer quality of RA 

relative to NA. While the results of some other studies (Dhir et al. 1999; 

Limbachiya et al. 2000; Limbachiya 2004) indicated that using RA to replace 

20-30% NA could still produce concrete with fcu values comparable and even 

higher than that of NAC, and thereafter the strength of RAC would reduce 

gradually with the increase in replacement ratio. The result was verified by the 

study of Etxeberria et al. (2007a) in which RA was used to substitute 25% NA to 

produce concrete of medium strength (30-45MPa), and they also recommended 

that a lower effective W/C and a higher cement content (C) could be adopted for 

RAC made with 50% or 100% RA to keep the compressive strength same as that 

of NAC. The findings of Kou and Poon (2012) further demonstrated that RAs 

from parent concrete of high strength (80-100MPa) could be used to fully replace 

NA to prepare high performance concrete with mechanical properties equal to 
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that of NAC. 

 

Splitting tensile strength 

The presence of large amounts of old cement mortar is a main drawback of RA 

that makes it difficulty in producing RAC with properties comparable with those 

of NAC. However, the attached old mortar can be beneficial to the development 

of the splitting tensile strength (ftc) of RAC, since the residual cement paste can 

improve the interfacial transition zone (ITZ) between the RA and the new mortar 

matrix, and thus enhance the bond strength and the ftc of RAC (Sri Ravindrarajah 

and Tam 1985;Etxeberria et al. 2007a; Kou and Poon 2008). 

 

While in some other studies, a reduction in ftc was noticed when RA was used to 

replace NA for concrete production. Tabsh and Abdelfatah (2009) indicated that 

the reduction could reach about 25-30% in RAC when compared with that of 

NAC. 

 

Flexural strength 

The flexural strength of concrete reduced (Ahmed and Struble 1995; Acker 1998; 

Masood et al. 2001; Bretschneider 2004; Kumutha and Vijai 2010) when RA was 
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used to substitute NA, and the reduction grew gradually with the increase in the 

replacement ratio and could reach as high as 50% if 100% RA was used 

(Kumutha and Vijai 2010). Sri Ravindrarajah and Tam (1985) found that it was 

difficult to distinguish whether the 28-day flexural strength of RAC was 

decreased or increased relative to that of NAC. Limbachiya (2004) reported that 

similar flexural strength to that of NAC could be achieved by concrete made with 

RA, when the designated strength for both concrete was equal.  

 

Modulus of elasticity 

For structural concrete, Ec is a very important mechanical index, reflecting the 

ability of the concrete to resist deformation. It is generally accepted that the Ec of 

concrete made with RA is lower than that of concrete made with NA. Corinaldesi 

(2011) reported that Ec of RAC made with 30% coarse NA replaced by RA was 

about 17% lower than that of NAC under the condition of same compressive 

strength. And the author also pointed out that the reduction in Ec of RAC relative 

to that of the corresponding NAC was affected by the particle size of the RA 

used, and the larger the RA size, the higher the reduction in the Ec of the 

produced RAC. Etxeberria et al. (2007) attributed the weak modulus of RAC to 

the lower modulus of RA relative to that of NA, since the modulus of elasticity 
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for concrete depends largely on the modulus of aggregate. Though there are 

many models for predicting the Ec of NAC, some researchers (Kim et al. 2012) 

found that these models were no longer suitable for use in calculating the Ec of 

RAC, so they also suggested that it was necessary to develop alternative 

approaches for modeling the Ec of RAC. 

 

Drying shrinkage and creep 

Due to the presence of old porous mortar in RA, the drying shrinkage and creep 

of concrete made with RA are generally higher than those of the corresponding 

NAC. A study conducted by Domingo et al. (2010) showed significantly higher 

creep and shrinkage values were recorded for RAC, and were about 70% and 

50% exceeded those of the corresponding NAC, respectively. Limbachiya et al. 

(2000) reported that the higher shrinkage and creep values of RAC relative to 

conventional concrete could be partly due to the more cementitious material used 

in RAC, since when designing the mix proportions of RAC with the 28-day 

strength equal to that of the NAC, the cement quantity was sometimes increased 

and thus the effective W/C was reduced accordingly. Kou et al. (2011) attributed 

the higher shrinkage of RAC to both the presence of old cement paste in RA and 

its lower stiffness. While Sri Ravindrajah and Tam (1985) explained the higher 
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shrinkage of RAC for the combined efforts of higher proportions of shrinkage 

mortar and increased quantity of free water, and they also indicated that the 

higher designated strength the RAC, the greater the increase in drying shrinkage. 

Gomez-Soberon (2002) found a proportional relationship between the increase in 

the shrinkage of RAC and the replacement ratio of NA by RA, and the author 

also found that the shrinkage rate of RAC was much rapid at early ages, and 

thereafter slowed down with time. Besides, the author suggested that the use of 

RA to replace no more than 30% NA could be capable of producing ‘good’ 

concrete without the use of shrinkage inhibitors.  

 

Sri Ravindrajah and Tam (1985) attributed the higher creep of RAC relative to 

that of NAC to two reasons: (1) the decrease in restraint to volume changes of 

the cement paste by the aggregate of lower modulus;(2) the higher proportions of 

creeping mortar. Some researchers (Sri Ravindrajah and Tam 1985; de Pauw et 

al. 1998; Limbachiya et al. 2000) reported that the creep coefficient values of 

RAC were dependent largely on the strength of the parent concrete, and the 

values reduced with the decrease in the strength.  

 

Durability 
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The long-term durability problems are the primary reasons that hamper the 

application of RA for structural use (Tu et al. 2006; Etxeberria et al. 2007b). 

Permeability, carbonation, freeze-thaw resistance, and sulphate resistance are 

some main indexes that used to evaluate the durability properties of RAC. 

 

Poorer durability properties were noticed in RAC when compared with those in 

NAC by the study carried out by Olorunsogo and Padayachee (2002), in which 

the chloride conductivity and water sorptivity of RAC both increased with the 

increase in the replacement ratio of NA by RA. The authors attributed these to 

the cracks and fissures formed in RA during the crushing processes. 

 

The experimental results of Limbachiya et al. (2000) showed that coarse RA 

crushed from rejected precast elements could be used to replace NA to produce 

high performance concrete with comparable durability properties, such as 

resistance to chloride diffusion, chloride-induced corrosion, freeze/thaw and 

abrasion, to the corresponding conventional concrete. 

 

It was suggested that the replacement of cement by appropriate amounts of 

mineral admixtures, such as fly ash, ground granulated blast furnace slag, silica 
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fumes and metakaolin, could be capable of improving the durability properties of 

RAC (Kou et al. 2011), since these admixtures are helpful to form optimal gel, 

modify pore structure, and improve the microstructure of the ITZ as well as the 

bond strength between the new cement paste and RA. 

 

Kou and Poon (2010) proposed an approach to enhance the durability properties 

of RAC by the impregnation RA with polyvinyl alcohol solution, and they 

concluded that the durability properties of concrete made with such RA were 

improved, with the drying shrinkage values decreased and resistance to chloride 

penetration enhanced to levels similar to those of NAC. 

 

2.3.3 Factors that may affect the properties of RAC 

	  

Due to the complexity of RA, the factors that may affect the properties of RAC 

have been studied in many literatures. 

 

Mix proportions 

As expected, the mix proportions, such as water content (W), C, W/C, total 

aggregate-cement ratio (A/C), fine aggregate percentage (Sp), are main factors 

affecting the properties of concrete. These factors will also undoubtedly 
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influence the properties of RAC, and in the study of Kou (2006),the influence of 

these factors on the fresh properties of RAC was analyzed in detail. 

 

Replacement ratio of NA by RA 

Many researchers (Topcu 1997; Limbachiya et al. 2000; Kou 2006; Guan 2011; 

Kotrayothar 2012) have studied the influence of replacement ratio of NA by RA 

(r) on the mechanical properties of RAC, and most of the findings indicated that 

the properties of RAC, especially the durability would become poorer gradually 

with the increase in replacement ratio. It is however believed that there is no 

influence on the strength of RAC when using RA to substitute 20-30% of NA 

(Dhir et al. 1999; Limbachiya et al. 2000; Limbachiya 2004), but the properties 

of RAC will get poorer gradually with more RA replacement adopted. Levy and 

Helene indicated that the durability of RAC produced with 20% of NA replaced 

by RA, from old concrete or masonries, could be comparable and even better 

than those of NAC. 

 

Significant variations could be noticed on the mechanical properties of RAC 

made with different RA replacement through a comparative summary of some 

previous studies (Tam et al. 2007), as shown in Table 2-2.  
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Table 2-2 - A summary of previous studies on properties of RAC (Tam et al. 2007) 

 

 

Characteristics of aggregate 

Considering that RAs are generally derived from different practical sources, the 

properties of RAs may vary greatly, and the properties of RAC made with such 

RAs will be affected accordingly. 

 

(1) Residual mortar 

The residual cement mortar in RA render it different from NA, and is also 
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considered as the main cause of poorer properties of RA compared with those of 

NA (Otsuki et al. 2003; Etxeberria et al. 2007a; Gonçalves and de Brito 2010; 

Deshpande et al. 2011). Some other studies (Otsuki et al. 2003; Oikonomou 2005; 

Deshpande et al. 2011) also reported that the quality and amount of residual 

cement mortar attached to RAs varied significantly different sources of the RAs 

used. The great difference would affect the properties of new concrete prepared 

with such aggregates. 

 

Huge efforts have been made to study the influence of the attached cement 

mortar on the properties of RA, including methods to measure the amount of MC, 

and the ways to remove the mortar, de Juan and Gutiérrez (2009)indicated that 

the MC was inversely proportional to the size of the RA, and the larger amount of 

attached mortar would lead to lower density, but higher values of Wa, LAAV and 

sulphate contents. 

 

(2) Processing procedure of RA 

Through comparing the long-term properties of concrete made with NA and 

three sources of RAs, Kou and Poon (2008) found that although the compressive 

strength of RAC, irrespective of the source of RA, were all lower than that of the 
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corresponding NAC, the rate of increase in the strength with curing age were 

different for RAC made with RAs from different sources. Among all the concrete, 

RAC made with RA crushed from old concrete by hammer manually had the 

biggest increase in compressive strength after five years’ curing relative to other 

RAs which were crushed using mechanical facilities in different recycling plants. 

This is mainly due to the presence of more porous old mortar in RA crushed by 

hammer, which could enhance the cement-aggregate bonding, including the 

formation of new cement hydrates that would penetrate into the RA. Florea and 

Brouwers (2013) adopted three crushing methods to process the laboratory 

prepared concrete, they concluded that crushing method played a significant role 

in the quality of the produced RA, and an optimized method could be used to 

produce RA with better quality. 

 

(3) Type of the virgin aggregate 

For the properties of RA used for the production of RAC, the virgin aggregate 

type originally contained in the RA is very important. This is mainly because the 

differences in the composition, particle shape and surface texture of different 

NAs will cause their properties vary largely, which may then affect the properties 

of the produced RA and RAC. Zega et al. (2010) pointed out that the virgin 
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aggregate type sometimes could even play a more important part in affecting the 

properties of RA than the W/C of the original concrete. 

 

(4) Quality of parent concrete 

The quality of parent concrete is a key factor in affecting the mechanical 

properties of RAC. Topcu (1997) found that the fcu of RAC made with 100% RA 

could be decreased to only about 14% of that of the NAC. That may be due to 

the poor quality of RA used in the study, with a 30 min Wa of about 7%. But 

RAC made with RA derived from high quality parent concrete and underwent 

appropriate mechanical crushing processes had better fcu and ftc (Nagataki et al. 

2004). And it is believed that the fcu of RAC can be comparable and even higher 

than that of the original concrete (Ajdukiewicz and Kliszczewicz 2002). Ryu 

(2002) indicated that the mechanical properties of RAC were mainly determined 

by the weaker quality between the old and new ITZ.  

 

Poon et al. (2004) pointed out that the strength development of the RAC 

prepared with RA derived from high performance concrete was faster than that 

from NAC. They attributed the results to the differences in porosity and pore 

structure of the two types of RAs, and the possible interactions between the RAs 
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and the cement paste, since the physical properties and bond strength of RA 

made from high performance concrete were better than those from normal 

concrete. Ajdukiewicz and Kliszewicz (2002) compared the properties of RAC 

made with different replacement ratios, W/C, RAs with different strengths (high, 

medium or low strength), and RA at different moisture conditions. They 

concluded that the strength of RAC was about10-25% lower than that of NAC. 

They also concluded that the fcu or ftc loss of RAC prepared with low strength 

RA was more significant than that of concrete prepared with high strength RA, 

and the extent of the reduction was related to many parameters, such as the type 

of concrete used for producing RA (high, medium or low strength), r, W/C and 

the moisture conditions of the RA. 

 

(5) Moisture condition of RA 

For NAC, the moisture state of the aggregate generally would not affect the 

properties of concrete produced, since the absorption capacity of NA is usually 

low. However, considering the extremely high porosity and absorption capacity 

of RA, the situation is extremely different. 

 

When RA is used in the dry condition, the high absorption capacity may cause it 
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to absorb much mixing water rapidly and lead to lower workability of the fresh 

concrete. So many researchers (Hansen 1992; Sagoe-Crentsil et al. 2001; 

Etxeberria et al.2007a) suggested that the RA should be kept in a pre-wetted or a 

saturated state prior to use.   

 

However, Kou (2006) argued that the high water content inside the RA particles 

might result in ‘‘bleeding’’ during casting if the RA is in the SSD state. He 

pointed out that the fcu of the produced concrete made with such RA would be 

reduced, and he further suggested that the use of SSD or over wetted RA in 

preparing RAC should be avoided. 

 

But Etxeberria et al. (2007a) indicated that wet processing of RA could get 

concrete with better properties. While Mefteh et al. (2013) examined the fresh 

and hardened properties of RAC made with RA in different moisture states (dry, 

pre-wetted and SSD), and they found that the use of RA in the dry condition 

could produce concrete with the highest strength. Poon et al. (2004) pointed that 

the optimal moisture condition of RA for concrete production was neither dry 

nor saturated, but the air dry (as-received) state. This viewpoint was also 

consistent with the experimental results of Pelufo et al. (2009). 
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Mixing procedure 

Tam et al. (2005; 2006) indicated that relative to traditional mixing method for 

NAC, a two-stage mixing approach could fill up the cracks and pores present in 

the RA through a premixing process, thus making the RAC denser and forming a 

stronger ITZ around RA. Accordingly, the mechanical properties of the produced 

RAC could be improved. 

 

Cement type 

As accepted, the strength of concrete is affected significantly by the water binder 

ratio, the extent of hydration, the curing condition and the curing ages (T). It is 

the chemical reaction between the hydraulic cement and water-hydration that 

makes the produced concrete strong and durable. So the cement type (TC) is a 

key factor that may affect the properties of normal and recycled concrete. 

 

Jankovic et al. (2011) indicated that for concrete made with rapid hardening 

Portland cement (CEM I), it generally had lower porosity and higher strength 

when compared with the concrete made with cement of other types. This is 

mainly due to the higher fineness of CEM I. Mas et al. (2012) also noticed the 
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great differences in the reduction of the strength of RAC made with recycled 

mixed aggregate when different types of cement were adopted. Therefore, the 

cement type used should be also considered when comparing the experimental 

results of RAC obtained by different researchers. 

 

Masonry content 

In many countries, including China, clay bricks and tiles constitute a large 

fraction of the construction and building wastes. The presences of these materials 

make it more difficult to recycle and reuse the wastes. This is mainly because 

that the Wa and porosity of masonry materials are generally several times higher 

than those of the NA and crushed concrete, and may be harmful to the properties 

of produced concrete.  

 

Khalaf (2006) indicated that the properties of concrete made with crushed clay 

bricks were affected largely by the quality of the original bricks, and the fcu of 

concrete made with crushed bricks of high quality could even exceed that of the 

concrete made with NA. While another study (Debieb and Kenai, 2008) found 

that the percentage of entrained air in concrete increased with the increase in the 

replacement ratio of NA by crushed bricks, and the fcu of brick aggregate 
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concrete was about 10-35% lower than that of the corresponding normal concrete. 

As regards the Ec, Correia et al. (2006) reported a decrease of about 30-40% for 

the recycled brick concrete in comparison with that of the corresponding NAC. 

 

A review of literatures made by Paine and Dhir (2010) concluded that the 

properties of concrete containing recycled bricks, such as compressive, tensile 

and flexural strength, and elastic modulus, were generally poorer than those of 

the traditional concrete, since crushed bricks were usually porous and weak. But 

they also pointed out that the use of crushed bricks in concrete might improve the 

resistance to the carbonation, alkali-silica reaction and freeze-thaw attack. 

 

Impurities  

Apart from the attached cement mortar, impurities present in the RA, such as 

glass, asphalt, plastic, wood, gypsum, clay, etc, are also regarded as key 

components that may have adverse effects on the properties of new concrete 

(Kesegic et al. 2008;Chen et al. 2003; Poon and Chan 2007; Debieb et al. 2010), 

especially on the durability. Therefore, most of the specifications governing the 

use of RAC generally impose a maximum allowable quantity of impurities 

content (δ) in RA, to ensure the properties of RAC can be comparable with that 
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of NAC. According to the specification on RA in Hong Kong (Fong et al. 2004), 

the content of wood and other materials less dense than water in RA should be no 

more than 0.5 wt. %, while the content of other foreign materials (including 

metals, plastics, clay lumps, glass, asphalt, etc) in RA should be lower than 1 wt. 

%. 

 

Problems of the use of RA in new concrete 

With increasing attention paid to the research of RCA, it is generally realized 

that the reuse of RCA to replace NA for concrete production can save large 

quantities of natural resources. However, the properties of concrete made with 

RAs should meet the requirements designed for NAC. So it is necessary to 

accurately assess the characteristics of RAs from different sources, as predict as 

the influence of RA quality and its effect on the properties of new concrete. 

Unlike NAC, for which various mature and reliable design codes and empirical 

formula have already been established for facilitating the prediction of the 

hardened properties as well as the design of the mix proportions, there is still no 

standard method addressing the mix design procedure for RAC, not to mention 

reliable and generalized mathematical models for the prediction of its hardened 

properties. 
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As a modeling tool, artificial neural networks (ANN) has been widely used in a 

variety of engineering applications since the mid-1980s, and it has also been 

demonstrated to have superior capacities in modeling more complex 

relationships in various engineering applications due to its generalization 

property. However, currently ANN is mainly used in concrete made only with 

NA, and is rarely adopted in RAC because the more complex composition of RA, 

although Topçu and Sarıdemir (2008) conducted a trial on predicting the 

compressive and tensile strengths of RAC containing silica fume. 

 

This research aims to investigate whether or not ANN can be used to model the 

properties of concrete made with RAs from different sources. 

 

2.4 ARTIFICIAL NEURAL NETWORKS 

	  

2.4.1 Introduction of artificial neural networks 

	  

Artificial Intelligence 

With the rapid development of the science and technology, automation and 

artificial intelligence (AI) have received increasingly wider application in various 
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fields. As we all know that computers have superior memory capacity, rapider 

processing power and higher calculation accuracy when compared to human 

brain. Considering that the strong computing capacity and accuracy of computer 

in numerical and logical computation, it can expand the ability of the brain 

greatly, thus help much work in the daily lives of human beings get more 

effective solution. However, computer itself cannot think, it is the logical rules 

preset by human that make it run orderly, and what the computer can do is to 

perform the simple or complex programs wrote by human. At present, it is still 

difficult for the computer to deal with some problems that need it study 

independently. 

 

The highest level of intelligence is biological intelligence (BI), among which the 

most intelligent is definitely human beings. There are more than 10 billion 

neuron cells in human brain, which can record about 86 million messages every 

day. The transmission of such cells is mainly relying on the electrical pulses and 

chemical kinetics, and information can be passed from one cell to another one 

through releasing neurotransmitter. Different neurotransmitters carry different 

signals: some are excitability, while some are inhibitory. The excited signal can 

lead the muscles cells shrinkage or help the glandular cells increase secretion 



 

 51 

through prompting the discharge of neuron fibers; while the suppressed signal 

may prevent the discharge of neuron fibers, thereby inhibiting the contraction of 

muscle and lead the muscle relax. 

It requires only about 0.001-0.003 seconds for the neurotransmitters to transmit 

one message. Therefore, human brain, a complex, nonlinear and parallel 

information processing system, can be regarded as an intelligent computer. 

Though the computing speed and accuracy of brain cannot be compared with the 

computer, human brain can be able to run with psychological processes, such as 

thinking and judging perceptually. Thanks to such abilities of thinking and 

logical reasoning, human beings are able to survive, adapt and change the world.  

 

It may be very interesting to apply the ability of brain like logical reasoning to 

the computer, the intelligent computer, namely AI can then help people better 

know and change the world. But how to make the computer intelligence is a 

major problem. 

 

AI was first studied as an independent field at a conference in Dartmouth College 

in 1956 (Crevier 1993). It aims to study how to develop or manufacture artificial 

intelligent machines or systems that can be capable of simulating the intelligence 
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of human. The object of the field mainly includes robotics, voice recognition, 

image recognition, natural language processing and expert systems. 

 

The study of AI was mainly focused on symbol processing and logical reasoning 

in the early stage, namely symbolism intelligence (SI), but such methods became 

increasingly powerless when dealing with some complex nonlinear and uncertain 

issues with the development of science and technology. Then the computation 

intelligence (CI) was developed, which can be able to help the computers more 

intelligent and more flexibility in the service of humanity with compared to SI. 

This is contributed to the CI can be capable of learning from data, without the 

need to establish a precise mathematical model for the problems to be solved, 

which is also the most important feature of the CI.  

 

With the depth theoretical and technical study of AI, many achievements have 

gradually entered in to peoples’ daily life. Industrial automation is closely related 

to the AI, since the study and application of AI in control industry can not only 

enrich the theory and technology, thus promote the development of the whole 

field if AI, but also further expand the application of AI. So this study is very 

important and valuable. 
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Artificial neural networks 

ANN is one of the main methods of CI, it is a nonlinear adaptive information 

processing system that is consisted of a large number of interconnected 

processing units. As mentioned in the previous section, a human brain contains 

over 10 billion neurons (Pelvig et al. 2008); each neuron is connected to several 

thousand other neurons through synapses, forming a complex biological neural 

network (BNN). Accordingly, the ANN aims to process information by 

simulating the method of BNN in processing information and data. 

 

(1) The definition of ANN 

So far, there is no formal definition of ANN. In the opinion of Hecht-Nielsen 

(1989), a neural network is a parallel, distributed information processing 

structure consisting of processing elements (which can possess a local memory 

and can carry out localized information processing operations) interconnected 

together with unidirectional signal channels called connections. While for 

Kohohen (1995; 1997), ANN is adaptive to a wide range of simple modules in 

parallel interconnection network, which can simulate the organization of 

biological nervous systems made of real world objects, interactive response. 
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ANN is a simplified model constructed from the abstraction of brain neural 

networks by using the methods of mathematics and physics and the point of 

signal processing. Simply speaking, ANN is an information processing system 

that aimed to model the structure and function of the brain.   

 

(2) The development of ANN 

From the 1940s, with the breakthrough progress in the research of the 

neuroanatomical, neurobiology and neuronal electrophysiological processes, 

people has grasped increasingly more knowledge of the internal structure, 

composition and the basic unit of the brain, more and more studies have been 

conducted to the use of ANN. So far, the study of ANN can be divided into three 

stages.   

 

Early stage 

In 1943, the computational model for neuron networks, first proposed by 

McCulloch and Pitts (1943) and was based on mathematics and algorithms, is 

still in use today and has a direct impact on the progress of this field. Therefore, 

the two researchers can be regarded as pioneers in the study of ANN, and some 
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of their findings are still used as the basis of ANN until now. 

 

In 1948, John von Neumann, a founding figure in computer science, proposed a 

regenerated automata network structure consisted of simple neurons through 

comparing the difference between the brain structure and stored program 

computer. He is also regarded as one of the pioneers in ANN research. 

 

However, the ANN research was limited to theoretical investigation till the 

creation of perceptron (Rosenblatt 1958), an algorithm for pattern recognition 

based on a two-layer learning computer network. Since then, a growing number 

of studies have tried to apply the ANN to many applications, such as character 

recognition, voice recognition and sonar signal recognition. The development of 

the adaptive linear neuron in 1960 (Widrow and Hoff 1960), also helped to form 

the foundation of many nonlinear multilayer adaptive networks proposed in later 

studies. 

 

Recession stage 

However, many researches mistakenly thought that the digital computer was the 

solution to all the problems like AI, pattern recognition and expert system. Much 
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lesser effort was given to ANN research gradually. Besides, the publication of 

machine learning research by Minsky and Papert (1969) was also a reason that 

made the ANN research stagnated, since they indicated two serious problems 

with the ANN. One was that a single-layer ANN was not able to handle the 

exclusive-or circuit. The other one was that the computers at that time were not 

fast enough to process the large ANN models. 

 

Revival stage 

The recession stage of ANN lasted until the early 1980s when the development 

of digital computers was encountering difficulties in many application areas. 

Meanwhile, the breakthrough in the field of ANN caused another boom for its 

research. In 1986, the development of a back-propagation (BP) algorithm 

(Rumelhart et al. 1986) enabled enormous potentials for application of neural 

networks. The BP algorithm is able to overcome the limitations of perceptron as 

it can also be used in nonlinear cases. The research on ANN has since entered 

into the revival stage.  

 

(3) The working principle of ANN 

ANN is an information processing system that aims to model the structure and 
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function of the brain. So it is necessary to introduce the structure and features of 

the brain before introducing the working principle of ANN. 

 

Biological neuron 

A nerve cell, namely neuron was first defined by Wilhelm Waldeyer in 1888 

(Cremer and Cremer 1998), and three years later, he created the neuron theory. 

In his theory as seen in Figure 2-4,a neuron is a basic unit of the nervous system, 

and generally constituted by soma and processes, which can be divided into 

dendrite and axon. The dendrite can accept an impulse and transmit it to the 

soma; while the axon can pass the impulse to the terminals, which are the 

branches of the axon. A neuron generally has only one axon and one or more 

dendrite. So it can be said that a typical feature of a neuron to process signals is it 

has many inputs and a single output. The soma acts as the role of information 

processing, when the pulse transmitted to the presynaptic neuron through the 

axon reaches certain intensity, exceeding the threshold potential, the presynaptic 

neuron will release a chemical called neurotransmitter to the gap junctions of a 

synapse.  
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Figure 2-4 - A simple biological neuron 

 

In a nervous system, each neuron is interconnected to some other neurons, and 

signals are transmitted from the axon of one neuron to the soma and dendrites of 

other neurons. A synapse is just the junction of the signal transmission from one 

neuron to other neurons. Signals of synapse can be either excitatory or inhibitory. 

The excitatory signal can lead the muscles cells shrinkage or help the glandular 

cells increase secretion through prompting the discharge of neuron fibers; while 

the suppressed signal may prevent the discharge of neuron fibers, thereby 

inhibiting the contraction of muscle and lead the muscle to relax. 

 

A biological neural network is formed by the interconnected neurons through 

synapses, it receives a variety of information from both inside and outside the 

body by the sensory organs and nerves, and passes them to the central nervous 
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system. After analysis and synthesis of the information, the control information 

is sent through motor nervous to achieve the contact of the body with the internal 

and external environment, thus coordinate the various functions of the whole 

body. The structure and function of each neuron are all simple, but the behavior 

of the biological neuron networks constituted by a large number of these neurons 

is much more complicated. 

 

Artificial neuron 

In an ANN, the way for the biological neurons to transmit information is 

simulated by artificial neurons as shown in Figure 2-5. Variables (x1,x2, …,xn), 

represent the input signals, and are given the corresponding weights (w1,w2, …, 

wn)-acting as the size of synapses-at the nodes (dendrites), respectively. Then the 

modified signals (variables are multiplied by the corresponding weights) are 

linked to the specified Y node (soma). Once the sum of these modified signals 

exceeds a threshold value (θ), the artificial neuron will generate a signal of its 

own. The value at the Y node can be calculated through the activation function as 

Eq. (2-1): 

 
Y=f(.)=f[ ] (2-1) 
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Figure 2-5 - An artificial neuron 

 

 
Figure 2-6 - A simple neuron model 

 

The activation function plays an important role in the process of transmitting 

information from the input variables to the Y node: It is used to control the 

activating function of the inputs to the output and conduct function convention to 

both the inputs and the output; besides, it can transform the inputs, may be in 

unspecified ranges, into the output in a specified range. 
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Neural networks 

Just like the BNN, an ANN as shown in Figure 2-6(Anderson 1983; Akkurt et al. 

2003) is consisted of a number of interconnected groups of artificial neurons, 

each of which is fully connected to the other through connection weights and 

receives an input signal from the neurons linked to it. These weights, present the 

effect of each input parameter in the previous layer on the process element, 

respectively, can be adjusted to produce an output needed. Information is 

transmitted to the output layer from the input layer in one direction, along with 

which learning process is conducted to minimize the deviation between the 

actual values and output values. In most cases an ANN is an adaptive system that 

can change its model according to relevant information that flows through the 

network during the learning phase. An ANN can be used to model nearly any 

complex relationships between the inputs and the outputs data.  

 

Generally, ANN can be said to be superior to other traditional computational 

methods (Arslan and Ince 1996). The superiority of ANN will show only when 

the traditional methods are poor or not able to solve the problems, and such 

superiority is more obvious when the problem’s nature is not clear or the 
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problem cannot be expressed by using any mathematics models, such as in 

failure analysis and prediction. The other advantage of ANN is that it has greater 

flexibility and adaptability when there is a large amount of original data for the 

problem but rules or formulas are no longer applicable. 

 

2.4.2 Back-propagation Neural Networks 
 

Among various ANN architectures, the back-propagation neural networks 

(BPNN) is one of the simple and most applicable networks being used in 

modeling the performances of concrete, mainly due to it can adjust the weights 

of each layer based on the errors present at the network output. A typical 

structure of BPNN model consists of an input layer, one or more hidden layers 

and an output layer, and each layer consists of numerous neurons. 

 

The neural network based modeling process involves five main aspects: (1) data 

acquisition, analysis and problem representation; (2) architecture determination; 

(3) learning process determination; (4) training of the networks; and (5) testing 

of the trained network for generalization evaluation (Öztaş et al. 2006). More 

details regarding the construction of ANN can be found in the quoted references 

(Hornik et al. 1989; 1990; Topcu and Saridemir 2008; Trtnik et al. 2009).  
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The training set of BPNN contains two stages, one is feed-forward stage and the 

other is back-propagation stage. In the former stage, the input layer neurons pass 

the input mode onto the hidden layer. Each of the hidden layer neurons computes 

a weighted sum of its input, and passes the sum through its activation function 

and presents the activation value to the output layer. Following the computation 

of a weighted sum of each neuron in the output layer, the sum is passed through 

its activation function, resulting in one output value for the network. Usually, a 

sigmoidal function (f (.)) is used. The output is calculated according to Eq.(2-2): 

 

 
(2-2) 

 

where wji is the connection weight from the neuron i in the lower layer to neuron 

j in the upper layer and an initially small random value, oi is the output of the 

neuron i, and b is the bias value. 

 

The error of network is passed backwards from the output layer to the input layer, 

and the weights are adjusted based on some learning strategies so as to reduce 

the network error to an acceptable level. In this study, the error arose during the 

training and testing in ANN and fuzzy logic models can be expressed as a 

( )∑ +−+= bowf
iji

j exp1
1
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root-mean-squared error (RMS) and is calculated using Eq.(2-3)according to 

Pala et al (2007) and Oztaş et al (2006), the absolute fraction of variance (R2) 

and mean absolute percentage error (MAPE) are computed by Eq. (2-4) and Eq. 

(2-5), respectively. 

 

 

(2-3) 

 

(2-4) 

 
(2-5) 

 

where t and o are the predicted and actual output of the network, respectively, 

and p is the total number of training and testing patterns.  

 

2.4.3 The construction of ANN model 

	  

The selection and process of sample data (normalization) 

First of all, enough sample data of good representation and accuracy is the 

primary requirement for establishing a model using BPNN. These sample data 

should be randomly divided into three parts, namely training sample, validation 

sample and testing sample and the latter two parts are at least 20% of the total 

sample. This is to avoid the occurrence of over-fitting in the training process as 
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well as to evaluate the performance and generalization abilities of the constructed 

model. In addition, the balance among the sample modes should be also 

considered for division of the sample data.  

 

The determination of the input and output variables is also very important. The 

selection of the input variables is generally based on the professional knowledge 

of the researcher by analyzing the factors that may influence the output 

parameter. In the case there are sufficient sample data, the more parameters 

selected in the input layer, the higher accuracy of the model may achieve. 

However, the choice of excessive input variables without the support of enough 

sample data may lead to poor training and instability of the network. So it is 

better to conduct sensitivity analyses after the network training to reduce and 

optimize the input variables. For each ANN, there may be one or more output 

variables based on the needs of the researcher. But in general, under the 

condition of using the same amount of sample data, using several ANN models 

and each with only one output may be more convenient and is able to produce 

better predictions compared to a model with several outputs.  

 

It is necessary to preprocess the original sample data of both the input and output 
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variables. As varieties of sigmoid functions are generally adopted as the 

activation function in the hidden layer of BPNN, the input and output values are 

required to be in the range of 0-1 to enhance the model’s training speed and 

sensitivity, as well as to avoid the saturated zone of the sigmoid functions. 

Therefore, the sample data of BPNN should be preprocessed. Researchers can 

preprocess either the different sets of variables separately, or all the variables 

using a unified formulae based on the need. There are a variety of methods for 

normalization. No matter which method is used, the outputs of the model after 

training of the preprocessed data should be unnormalized to get back the actual 

values. Besides, it is better to normalize the sample data to a narrower range, 

such as 0.1-0.9 and 0.2-0.8, to ensure the generalization ability of the established 

model. 

 

The selection of number of hidden layer  

In general, a three-layer network with one hidden layer should be the optimum 

when constructing a BPNN model. More hidden layers (≥ 2) may reduce the 

error, thus improve the accuracy of the network, but it will also make the 

network more complex and thereby increase its training time, besides, it may 

make the network more prone to over-fitting. While a network without a hidden 
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layer is equivalent to regression analysis, so there is no need to discuss such kind 

of network for constructing BPNN with high accuracy. It seems that the lower 

error can be obtained more easily by adding the nodes of the hidden layer than 

increasing the number of hidden layer, and many studies have pointed out that 

the predicted results of BPNN with one hidden layer and appropriate hidden 

layer neurons can approach the actual values with the best accuracy. 

 

The selection of nodes number in hidden layer 

In addition to the number of hidden layer, the selection of number of nodes in the 

hidden layer is also very important. The number of hidden layer nodes is 

generally believed as the main reason that leads to the occurrence of over-fitting 

in the training process. However, there are still no established methods for 

researchers to determine the best node number. So researchers are generally 

required to adjust the nodes number, by a trial and error method to determine the 

best value. The process is quite time-consuming.  

 

As mentioned above, the use of an inappropriate node number in the hidden layer 

may lead the network over-fit. To avoid such phenomenon, as well as to provide 

the network with sufficient high accuracy and generalization ability, it is better to 
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select the as few as possible node number to start with given the condition of the 

network is able to meet the required accuracy. 

 

The determination of the parameters for network training  

(1) Weight and threshold 

Weight and threshold, are connections between the input and output neurons, and 

play the role of synapse in a biological neural network. BP algorithm involves 

two parts: forward propagation of the input signal and back propagation of the 

error: for each propagation, the network will calculate an output based on the 

input data, and compare it with the actual output. The error between which will 

then be passed in the opposite direction. During the process, the weight and 

threshold are adjusted and corrected to minimize the error of the network. The 

modified weight and threshold will be then applied to the next propagation till 

the network reaches the expected error or the maximum training epochs. The 

initial weight and threshold are generally generated by the system. 

 

(2) Learning rate  

Learning rate can determine the training speed of the network through modifying 

the weights and thresholds during each propagation. So an appropriate learning 
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rate is very important to establish a good model. A too big value may cause 

network instability, while it may take too long and be difficult to convergence if 

the learning rate is too small. Generally, a smaller learning rate (0.01-0.3) will be 

a priority to ensure the stability of training. 

 

(3) Momentum coefficient 

The addition of momentum coefficient in BP algorithm can avoid the training of 

the network being trapped into a local minimum, and its value is generally set in 

the range of 0-1. 

 

2.4.4 Sensitivity analysis 
 

Sensitivity analysis, an uncertainty analysis technique in relation to quantitative 

analysis, is a study how sensitive of the prediction results of the model to the 

change of selected input parameters. It also determines the significance of these 

uncertainty factors on the results (Khatri and Sirivivatnanon 2004; El-Dash and 

Ramadan 2006; Zhang et al. 2006). So it is necessary to apply the sensitivity 

analysis to the constructed ANN model to further study the influence of each 

input variable on the output. By conducting sensitivity analysis, Jain et al. (2008) 

determined the effect of the constituents of concrete mixes to the desired 
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workability.  

 

Many methods have been tried for sensitivity analysis. Dias and Pooliyadda 

(2001) adopted a rational approach by carrying out sensitivity analysis to 

examine how concrete strength would be affected by the input parameters. A 

Taylor series was used to determine the importance of each parameter to the 

chloride diffusion coefficient (Sun et al. 2011). Lu et al. (2001) analyzed the 

sensitivity of BPNN based on Monte Carlo simulation, and successfully applied 

the results to some applications. Nyarko et al. (2011) identified the most 

important parameters in affecting the damage level of a structure through 

comparing the networks errors of all possible combinations of input variables. 

 

2.4.5 Application of neural networks in natural aggregate concrete 

	  

Civil engineering applications of ANN have recently been successfully used in 

many areas (Adeli 2001): (1) structural engineering (Vanluchene and Roufai 

1990; Chen et al. 1995); (2) construction engineering (Karim and Adeli1999; 

Adeli and Saleh 1999); (3) Environmental and water resources engineering (Guo 

2001); (4) Traffic engineering (Saito and Fan 2000); (5) Highway engineering 

(Owusu-Ababio 1998); (6) Geotechnical engineering (Juang et al. 1999;Shahin et 
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al. 2008). 

 

While for concrete, the current application of ANN is mainly performed to model 

the fresh or hardened properties (Lee 2003; Yeh 2006; Ahmet et al. 2006; David 

et al. 2013) and mix design (Yeh 1999; Oh et al. 1999; Wang and Ni 1999; Garg 

2003; Kim et al. 2013). 

 

Strength prediction 

Over the last two decades, ANN has been used by many investigators for 

predicting the mechanical properties of concrete for its high accuracy and 

non-destructive procedure. And the application of neural networks has been 

widely documented for normal concrete (Ozturan et al. 2008; Yousif and 

Abdullah 2009), high performance concrete (Kasperkiewicz et al. 1995; Yeh 

1998), structural lightweight concrete (Mirza and El-Bisy 2006; Alshihri et al. 

2009), self-compacting concrete (Nehdi et al. 2001; Suryadi et al. 2011; Uysal 

and Tanyildizi 2012) and RAC (Topcu and Sarıdemir 2008; Chan et al. 2012). 

Lee (2003) proposed some ANN architectures to model the fcu of concrete. 

Through collecting sample data from different published literatures, Noorzaei et 

al. (2007) developed ANN models by using these data that were capable of 
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predicting the 28d fcu of concrete accurately.  

 

Some researchers (Alilou and Teshnehlab 2010; Hasan and Kabir 2011) adopted 

the ANN approach to estimate the 28d fcu of concrete based on the strength tested 

at earlier ages. Bilgehan and Turgut (2010) evaluated the fcu of concrete cores by 

using ANN based on the ultrasonic pulse velocity and density results of many 

cores taken from different concrete structures with different ages and unknown 

mix proportions. Atici (2011) developed an ANN approach to estimate the fcu of 

concrete that contains various amounts of mineral admixtures at different curing 

times, and compared the predicted results with those modeled by multiple 

regression analysis. Based on the results, the author indicated that the ANN 

method was more suitable for use, though the method of multiple regression 

analysis had many advantages. Sobhani et al. (2010) developed some models to 

estimate the 28d fcu of no-slump concrete by adopting three approaches: 

regression analysis, neural networks and adaptive network-based fuzzy inference 

systems. They found that the latter two AI-based approaches performed better 

than the traditional regression models. Dias and Pooliyadda (2001) successfully 

developed BPNN models for predicting the strength and slump of concrete with 

admixtures, and also examined the effect of the input factors on the strength 
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through sensitivity analysis. Most of the studies related to the strength prediction 

by ANN are focused on the fcu, only a few literatures discussed the use of ANN 

for modeling the ftc (Topcu and Sarıdemir 2008), flexural strength (David and 

Chioma 2013) and shear strength (Young II et al. 2008). 

 

Slump and density 

There are also many studies discussing the application of neural networks in 

estimating the slump or/and density of concrete. Chine et al. (2010) developed an 

BPNN model for predicting the slump of concrete by using the concrete mix 

proportions as inputs, and the predicted accuracy of networks was proved much 

better than that of traditional multiple regression analysis. Yeh (2007) and 

Mazloom (2013) also successfully modeled the slump flow of concrete by using 

neural networks. By selecting five input variables including water-cementitious 

material ratio, TC,C, and the amounts of silica fume and superplasticizer, Rasa et 

al. (2009) successfully constructed an ANN model for estimating the 28d density 

and fcu of concrete with high accuracy. 

 

Elastic modulus 

Ec is a very important mechanical parameter, reflecting the ability of the concrete 
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to deform elastically. However, the testing procedures for determining the Ec of 

concrete are rather complex and time consuming, making it difficult to obtain the 

value in engineering applications (Demir 2008). Some studies (Hanet al.2003; 

Liu 2007; Demir 2008) on the use of ANN for predicting the Ec of concrete have 

proved that ANN performed better than some other methods like traditional 

regression analysis. 

 

Other properties 

Parichatprecha and Nimityongskul (2009) constructed a reliable and accurate 

ANN model to predict the chloride ions (Cl-) permeability of concrete that 

performed better than regression analysis. Bal and Buyle-Bodin (2013) 

developed a multilayer ANN model that provided good predictions on the drying 

shrinkage of concrete. Another study conducted by Karthikeyan et al. (2008) 

used neural networks in high performance concrete could not only predict the 

shrinkage strain effectively, but also capable of producing similar creep strain 

values as the experimental results. Lu and Liu (2009) developed two ANN 

models for estimating the carbonation depth of concrete, and found that both 

models had high generalization abilities. Zhong et al. (2004) indicated that ANN 

could also be applied to predict the service life of concrete under sulphate 
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erosion. 

 

2.4.6 Application of neural networks in recycled aggregate concrete 

	  

However, currently ANN are mainly used in concrete made only with NA, and is 

rarely adopted in the concrete containing RA due to the complex composition, 

although Topcu and Saridemir (2008) made a trial on predicting the fcu and ftc 

values of RAC containing silica fume. Han and Zhang (2008) used ANN with 

the Levernberg-Marquart algorithm to predict the 28-day fcu of RAC. Li and 

Yang (2009) used the ANN method to design the mix proportion of RAC. 

Although the ANN models constructed by the above researchers generally 

performed satisfactory using data from their own studies, whether or not these 

models are suitable to forecast data from other sources have not been proved. 

 

2.5 SUMMARY 

	  

• Compared with NA, RA derived from concrete debris contains large 

amounts of old attached mortar. The attached old cement mortar and the 

original aggregate used are usually the key components affecting the 

properties of the RA. RAs may also, besides crushed concrete, contain 
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impurities, such as bricks, tiles, glass, asphalt, plastics, wood, gypsum, clay, 

etc. Though in small amounts, their presence may seriously deteriorate the 

quality of RA. Taking into account that RAs may be collected from 

different sources and produced by using different recycling methods (e.g. 

type and effort of crushers used), the properties of RA may vary greatly. 

 

• Concrete made with RA generally performs poorer than the corresponding 

NAC, and the unstable performance of RA obtained from variable sources 

and produced by different crushing methods will definitely cause 

fluctuations in the properties of RAC. The properties of RAC made with 

high quality RA can be comparable with that of NAC, but those made with 

poorer RA are relatively weaker and less durable. Such large differences in 

concrete properties made with different sources of RA are rarely noticed in 

concrete made with the “virgin” material - NA. This may be the reason why 

RA is not commonly used in structural concrete, but mostly only as road 

sub-base or backfilling materials. 

 

• It is necessary to accurately assess the characteristics of RA from different 

sources, as well as the influence of RA on the properties of the new concrete. 
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Unlike NAC, for which mature and reliable design codes and empirical 

formula have already been established for mix design and prediction of the 

hardened properties, there is still no standard method addressing the mix 

design procedure for RAC, not to mention reliable and generalized models 

for the prediction of its hardened properties. 

 

• The use of ANN in the area of concrete technology has been reviewed, and 

it has been demonstrated by many literature that ANN is capable of 

providing good predictions of hardened properties of NAC. 

 

• Few studies have been performed on using ANN in the area of RAC. 

 

A large number of studies have been carried out to explore ways to improve the 

properties of RA, thus to enhance the properties of RAC made with the improved 

RA. The improvement of the quality of RA is important; but it is also necessary 

to develop an effective method that is capable of predicting the properties of 

RAC made with RAs derived from different sources. To achieve the research 

objectives, there are still outstanding problems to be resolved based on the 

review results of the literatures : 
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• There is significant discreteness on the test results reported in the literatures 

on the properties of RAs and that of the corresponding RAC, so it is 

necessary to verify the results by experimental investigation the nature of 

different types of RAs, as well as their influence on the properties of the new 

concrete. 

 

• Due to the complex nature of RA, there are many more factors that may 

affect the properties of RAC compared with those of NAC. In such cases, 

traditional regression analysis may be not suitable for use in modeling the 

properties of RAC. The use of ANN in RAC has been rarely reported, and 

the few existing literatures on the use of ANN in RAC and NAC have barely 

taken the full benefits of ANN. Therefore, there is a need to optimize the 

ANN method. 

 

• As there are too many factors that may affect the properties of concrete made 

with different sources of RAs, it is necessary to examine the relative 

importance of these factors in order to facilitate the use of RAs in new 

concrete production. 
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CHAPTER 3: STUDY PROGRAM 

	  

 
Figure 3-1 - The structure of the study program 
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3.1 INTRODUCTION 

	  

The above diagram (Figure 3-1) summarizes the work carried out in this PhD 

study to achieve the desired objectives. 

 

As shown in Figure 3-1, the study program mainly contains two parts: 

experimental program and the ANN application. In the experimental program, a 

series of concrete mixes are prepared in the laboratory to investigate the effects 

of different types of RAs on the properties of RAC, and also to obtain the fcu and 

Ec values at different curing ages. Then the feasibilities of some established 

relationships in modeling the above properties are evaluated. For the part of 

ANN application, the obtained experimental results tested at 28 days are firstly 

used as cases to investigate the general applicability of the constructed ANN 

models. These models are also aimed to study the influence of each aggregate 

characteristic examined on the fcu and Ec of RAC, respectively. 

 

3.2 EXPERIMENTAL PROGRAM 
 

3 groups with a total of 46 RAC concrete mixes are prepared to examine the 

effect of different RAs on the properties of RAC. The RAs used are categorized 

into 3 groups:  
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Ø Group1: RAs derived from laboratory prepared concrete cubes with different 

compressive strength (35-85 MPa);  

Ø Group 2: RAs derived from 3 different sources and crushed by different methods;  

Ø Group 3: RAs contain different amounts of added masonry (clay bricks or tiles). 

The performance of materials, mix proportions of concrete, and test methods of the 

concrete properties are mainly introduced in this chapter. 

 

For the first Group, 5 series of natural aggregate concrete mixtures are prepared 

with different water to cement ratios to obtain concrete of different strength. The 

hardened concrete specimens of each series are then crushed by hammer 

manually to produce RAs of different specified particle sizes after 90 days’ water 

curing. The crushed RAs from each series, together with NA, are used to prepare 

high strength concrete with a same W/C of 0.35, and appropriate amounts of 

superplasticizer are added to achieve a similar slump value of 120-150 mm for 

all mixtures. The aim of this experimental programme is to examine the 

performance difference of different types of RA and concrete mixtures made by 

these aggregates. 
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While for the second Group, four series of concrete mixtures are prepared using 

NA and three types of RAs. The RAs are obtained by different crushing methods 

and derived from different batches. In each series, four concrete mixes with 

different 28d target cube strength between 30 MPa and 80 MPa are prepared, and 

the corresponding water to cement ratios range from 0.68 to 0.34. For each 

concrete mix, a control concrete (NC) is prepared with 100% NA, while RC1, 

RC2 and RC3 are made with 100% RA1, RA2 and RA3, respectively. For 

concrete made with different types of aggregates, appropriate amounts of 

superplasticizer are used to achieve a similar slump value of 70-90 mm for Series 

I to Series III and 120-150 mm for Series IV. The aim of this experimental 

programme is to examine the performance difference of different sources of RA 

and concrete mixtures made by these aggregates. Besides, the influence of 

different sources of RA on the properties of RAC with different designed 

strength is also investigated. 

 

With respect to the third Group, the performance of RAC made with coarse 

aggregates containing different masonry contents is studied. Firstly, the 

performance of RAC made with NA replaced by 0, 50 and 100% RA is 

examined. Furthermore, crushed bricks and tiles are respectively employed as 
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masonry and added to the RA. The volume replacement ratio of RA by crushed 

bricks and tiles are 0, 5, 10, 15% and 0, 5%, 10%, respectively. 

 

3.2.1 Materials 

	  

Cement 

ASTM Type I ordinary Portland cement from China Cement (H.K) Co. Ltd., 

with a density and specific surface area of 3.15 g/cm3 and 3519.5 cm2/g, is used. 

The chemical compositions of the cement are shown in Table 3-1. 

 
Table 3-1 - Chemical compositions of cement 

Materials 
Composition w/% 

LOI SiO2 Fe2O3 Al2O3 CaO MgO SO3 

Cement 2.97 19.61 3.32 7.33 63.15 2.54 2.13 

 

Fine aggregate 

The very high water absorption values of recycled fine aggregates would render 

them not suitable for producing new concrete (Etxeberria et al. 2007a), since it 

would lead to excessive drying shrinkage. So this study only discusses the use of 

recycled coarse aggregates in new concrete. Natural river sand and crushed stone 

fines (CSF) are adopted as natural fine aggregate for concrete production. 
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Figure 3-2 - Laboratory mini-crusher 

 

Natural coarse aggregate 

Two sources of crushed granite are used as natural coarse aggregate for concrete 

production. There are large differences between the properties of the two 

aggregates, which will be discussed in the following section. 

 

Recycled coarse aggregate 

Nine types of recycled concrete aggregates and two types of masonry aggregates 

are adopted as recycled coarse aggregate. Their sources and preparation methods 

are described as follows: 

Ø RA1-RA5: RA1-RA5 (10-20 mm and 5-10 mm) are obtained from crushing 

(manually by hammer) old concrete cubes (150 mm) that have been previously 
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prepared in our laboratory. The strength of the old concrete cubes increased 

gradually from RA1 to RA5. 

Ø RA6: RA6 (10-20 mm) is collected from a construction waste recycling plant in 

Hong Kong which processes both crushed concrete and excavated rock from 

construction and demolition activities. The plant utilizes a range of crushing and 

sieving processes to produce the RA; RA6 (5-10 mm) is obtained from further 

crushing the RA6 (10-20 mm) by a laboratory mini crusher; 

Ø RA7: RA7 (10-20 mm) is also collected from the same recycling plant, but the 

source of the construction waste is different, so the composition and properties of 

RA6 (10-20 mm) and RA7 (10-20 mm) are not the same; RA7 (5-10 mm) is 

obtained by crushing concrete lump from a demolition site, which was originally 

larger than 200 mm in size, manually (using a hammer) and crushed to 50-80 mm 

and then by a laboratory mini-crusher, as shown in Figure 3-1.  

Ø RA8: RA8 (10-20 mm and 5-10 mm) is obtained from crushing (manually and by a 

laboratory mini-crusher) old concrete prisms that had been previously prepared in 

our laboratory with an original 28th day compressive strength of about 45 MPa. 

Ø RA9: RA9 (10-20 mm and 5-10 mm) are both collected from the same recycling 

plant. 
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Ø Bricks and tiles: bricks (10-20 mm and 5-10 mm) and tiles (5-10 mm) are obtained 

by crushing (manually by hammer) brick and tile specimens purchased from the 

market. They are used as the added masonry of NA or RA. 

 

Table 3-2 - Constituents of recycled aggregates 

Aggregate Type 

(20 mm) 

Constituents (% by mass) 

Rock/Concrete Brick Tile Clay Metal Other impurities 

RA1-RA5 

RA6  

100 

98.2 

- 

0.8 

- 

0.6 

- 

0.2 

- 

0.15 

- 

0.05 

RA7  96.05 2.1 0.75 0.35 0.15 0.65 

RA8  99 0.8 0.2 0 0 0 

RA9 96.9 1.6 0.4 0.1 0.1 0.9 

 

Aggregate properties 

The constituents and properties of the aggregates used in this study are shown in 

Table 3-2 and Table 3-3, respectively. 

 

Figure 3-3 shows the grading limits of the fine aggregate required by BS 882-103, 

and the fine aggregates used in this study are all within the limits. However, the 

fineness modulus (FM) values of the fine aggregates showed in Table 3-3 

indicate that crushed stone fines (FNA1 and FNA2) are much coarser than river 

sand. 
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As regards the constituents of RAs, it can be noted from Table 3-2 that RAs 

collected from the recycling plant generally contains certain amounts of 

impurities, such as bricks, tiles, glass, asphalt, plastics, wood, gypsum, clay, etc. 

Taking into account that RAs might be collected from varying sources using 

different recycling methods (e.g. type and effort of crushers used), the relative 

proportions of the above constituents may vary greatly. 

 
Table 3-3 - Aggregate characteristics  

Aggregate type 
Particle Size SGSSD Wa MC ACV (%) TFV (KN) 

FM 
mm g/cm3 % % 10-14mm 10-14mm 

NAs 
NA1 20 2.66 0.71 0 15.8 259 / 

NA2 20 2.6 1.01 0 21.7 155 / 

RAs 

RA1 20 2.41 6.38 47.8 19.3 131 / 

RA2 20 2.42 5.18 47.9 19.7 154 / 

RA3 20 2.44 5.36 52 19.5 151 / 

RA4 20 2.45 5.3 62.3 20.3 147 / 

RA5 20 2.46 5.36 69 20.4 155 / 

RA6 20 2.48 3.36 21 22.5 143 / 

RA7 20 2.36 6.14 35.1 23.4 133 / 

RA8 20 2.36 6.44 62 23.9 127 / 

RA9 20 2.49 3.85 22 21.5 149 / 

Masonries 
Brick 20 1.99 21.74 0 27.1 44 

 
Tile 10 2.03 14.82 0 19.1 105 

 

Fine  

aggregate 

FNA1 5 2.62 0.76 0 / / 3.28 

FNA2 5 2.63 0.94 0 / / 2.19 

FNA3 5 2.61 0.44 0 / / 2.94 

 

From Table 3-3, it can be seen that the most significant difference between NAs 

and RAs is that RAs usually contain a large amount of attached mortar and old 
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cement paste, about 20-35% of the total mass for RAs collected from the 

recycling plant. The percentage is even higher for the RAs crushed from old 

concrete (to about 62%). This amount is normally related to the properties of the 

original concrete from which the RA is derived and the production process of the 

RA. 

 

 

Figure 3-3 - Sand grading according to BS 882 

	  

Due to the presence of large amounts of old attached mortar, lower SSD specific 

gravity (SGSSD), higher Wa and inferior strength are the primary features of RA 

when compared with NA, which can be seen clearly from Table 3-3. It can be 

also noticed that the strength of RAs used all satisfy the requirement of BS 882 

for aggregate used for concrete production. Some of the values are even 

comparable with that of the NA2. Different RAs from different sources also 
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show different strength. Poorer properties can be noticed for the crushed tiles and 

bricks, with SGSSD only about 2 g/cm3 and the Wa value over 10%. The case is 

more obvious for the crushed bricks, with ACV and TFV 27.1% and 44 kN, 

respectively. 

 

Water 

Standard tap water is used for preparing all the concrete mixes. Distilled water is 

used for the chloride diffusivity test of concrete. 

 

Superplasticizer 

Superplasticizer, obtained from Hong Kong Grace Construction Products 

Limited with a density of 1,210 kg/m3, is used to adjust the workability of fresh 

concrete. 

 

3.2.2 Concrete mixtures 

	  

Mix proportions 

As introduced above, 3 groups with a total of 46 mixes of concrete are prepared 

to examine the properties of RAC from different perspectives. The details mix 

proportions of the concrete mixtures made are shown in Table 3-4 - Table 3-6. 
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(1) Case I - RAC made with RAs from Group 1 

For RAs of Group 1, NAC made with NA1, namely NAC, is firstly prepared 

with C of 440 kg/m3 and a W/C of 0.35. Then 100% of RA1-RA5 is used as a 

volume replacement of NA1 to produce recycled high strength concrete 

(RC1-RC5), respectively. For all six mixes, CSF with a FM value of 3.28 is used. 

The mix notations of the mixes are shown in Table 3-4. 

 

(2) Case II - RAC made with RAs from Group 2 

For the RAs of Group 2, four series of concrete mixes are prepared using NA2 

and three types of RAs (RA6-RA8). In each series, four concrete mixes with 

different 28-day target cube strength between 30MPa and 80MPa are prepared, 

and the corresponding W/C ranges from 0.68 to 0.34. For each concrete mix, NC 

is prepared with 100% NA, while RC6, RC7 and RC8 are made with 100% RA1, 

RA2 and RA3, respectively. For concrete made with different types of 

aggregates, appropriate amounts of superplasticizer are used to achieve a similar 

slump value of 70-90 mm for Series I to Series III and 120-150mm for Series IV. 

River sand with a FM value of 2.19 is used in all the 16 mixtures.  

 

(3) Case III - RAC made with RAs of Group 3 
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For RAs of Group 3, crushed bricks and tiles are added respectively as a 

constituent of RA to prepare concrete mixtures. In part I, the control concrete 

made with only NA1 as coarse aggregate, namely Control, is firstly prepared 

with a C of 380 kg/m3 and a W/C of 0.5. Then crushed bricks and tiles are used 

as 5, 10, 15% by volume replacement of NA1, respectively. The produced 

concrete are named as B(T)5, B(T)10 and B(T)15, respectively. In part II, NAC 

made with only NA2 as coarse aggregate, namely r0, is prepared with a C of 370 

kg/m3 and a W/C of 0.5. RA9 is used as 0, 50, 100% by volume replacements of 

NA to produce RAC (r0, r50 and r100). On this basis, crushed bricks and tiles 

are employed as added masonry, respectively. The volume replacement ratios of 

RA by crushed brick and tile are 0, 5, 10, 15% and 0, 5%, 10%, respectively. The 

mix notations of the mixes are shown in Table 3-6. 

 
Table 3-4 - Mix proportions of concrete mixtures of Case I 

Notation W/C 
Mix Proportion (kg/m3) 

Water Cement CSF NA RA 

NAC 0.35 155 440 666 1166 0 

RC1 0.35 155 440 666 0 1070 

RC2 0.35 155 440 666 0 1077 

RC3 0.35 155 440 666 0 1083 

RC4 0.35 155 440 666 0 1090 

RC5 0.35 155 440 666 0 1094 

 

A “Crocker Brand” pan mixer with a maximum capacity of 0.11 m3, shown as 
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Figure 3-4, is used to prepare all the mixes. For each concrete mixture, the 

mixing procedures are as follows: 

Ø Coarse aggregate (20mm and 10mm), cement, and fine aggregate are put into the 

mixer sequentially and dry mixing for 2 minutes 

Ø Water with superplastizer is added to the mixer with another 2 min of mixing 

Ø Flipping the concrete around the edge of the mixer manually to provide the water 

can be absorbed by the cement and aggregate uniformly 

Ø Immediately after that, further mixing for 1 minute to ensure uniformity of the 

concrete before slump test. 

 

Table 3-5 - Mix proportions of concrete mixtures of Case II 

Notion Mix V (%)1 
Proportions (kg/m3) 

Cement Water Sand 10mmCA2 20mmCA2 

Series I 

W/C=0.68 

NC30 0 

300 205 697 

376 752 

C30RA6 100 366 709 

C30RA7 100 340 687 

C30RA8 100 343 684 

Series II 

W/C=0.51 

NC45 0 

350 180 706 

381 762 

C45RA6 100 371 718 

C45RA7 100 345 696 

C45RA8 100 348 693 

Series III 

W/C=0.44 

NC60 0 

425 185 696 

359 718 

C60RA6 100 350 678 

C60RA7 100 325 657 

C60RA8 100 328 654 

Series IV 

W/C=0.34 

NC80 0 

485 165 685 

726 363 

C80RA6 100 700 339 

C80RA7 100 650 329 

C80RA8 100 655 327 
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1V: replacement ratio of NA by RA; 2CA-coarse aggregate. 

 
Specimens casting and curing 

Then all specimens are cast in steel moulds and compacted using a vibrating 

table. The 100 mm cubes and 70×70×285 mm prisms are adopted to test the 

compressive strength and drying shrinkage of concrete, respectively. While the 

100×200 mm cylinders are used to evaluate the splitting tensile strength, static 

modulus of elasticity and chloride-ion penetration of concrete. The specimens are 

demolded after curing for 24 hours at a controlled laboratory environment, and 

then three cube specimens are used to test the 1-day compressive strength 

immediately, the rest of the specimens are cured in a water curing tank (Figure 

3-5) at 27±1 ºC until the corresponding test ages are reached.  

 
Table 3-6 - Mix proportions of concrete mixtures of Case III 

Sources Notation 
RA 

(%) 

Masonry 

(%) 

Constituents (kg/m3) 

Water Cement Sand NA RA9 brick tile 

Part I 

Control 0 0 190 380 710 1110 0 0 0 

T5 5 100 190 380 710 1055 0 0 44 

T10 10 100 190 380 710 999 0 0 88 

T15 15 100 190 380 710 944 0 0 132 

b5 5 100 190 380 710 1055 0 43 0 

b10 10 100 190 380 710 999 0 86 0 

b15 15 100 190 380 710 944 0 129 0 

Part II 

ro 0 0 185 370 732 1090 0 0 0 

r50 50 0 185 370 732 545 463 0 0 

r100 100 0 185 370 732 0 924 0 0 

b5r50 50 5 185 370 732 545 463 18 0 

b5r100 100 5 185 370 732 0 924 37 0 
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b10r50 50 10 185 370 732 545 463 40 0 

b10r100 100 10 185 370 732 0 924 81 0 

b15r50 50 15 185 370 732 545 463 63 0 

b15r100 100 15 185 370 732 0 924 125 0 

T5r50 50 5 185 370 732 545 463 0 23 

T5r100 100 5 185 370 732 0 924 0 46 

T10r50 50 10 185 370 732 545 463 0 48 

T10r100 100 10 185 370 732 0 924 0 94 

 

 
Figure 3-4 - “Croker” concrete mixer 

	  

 
Figure 3-5 - water curing tank 

 

3.2.3 Test methods 
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Testing of aggregate 

(1) Composition of recycled aggregate 

The main composition of NA and fine aggregates is crushed stone or river sand. 

However, the composition is more complex for RAs, which may contain large 

amounts of attached old mortar. Besides, RAs may also, besides crushed 

concrete, contain impurities, such as bricks, tiles, glass, asphalt, plastics, wood, 

gypsum, clay, etc. Though in small amounts, their presence may serious 

deteriorate the quality of RA. So the determination of RA composition is very 

important. In this study, only the RAs of 10-20 mm are used to measure/qualify 

the masonry and impurity contents according to BS 8500 Part 2.  

 

 
Figure 3-6 - Test procedures of mortar content of coarse aggregates 

 

(2) Mortar content 

As there is no standard method in measuring old cement mortar amounts in RAs, 
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the test of the MC is based on a hydrochloric acid dissolution method (Yagishita 

et al 1994) as shown in Figure 3-6: 

Ø Firstly, the aggregate samples with particle size of 5-10 mm or 10-20 mm, after 

washing by distilled water and sieving to remove ad fine particle, are dried in an 

oven at a temperature of 105 °C for 24h. 

Ø Then, appropriate amount of the sample (m1) is taken and immersed in a solution 

of 10% hydrochloric acid for 8h. 

Ø Next, the sample is washed again by water to remove the loose particles, and dried 

in an oven at a temperature of 105 °C for 24h. 

Ø In this way, most of the attached cement mortar on the RAs can be easily removed, 

and the remaining mortar can be removed manually by a hammer and a steel brush. 

Ø The sample is sieved through a 5mm sieve to obtain the mass of the original 

aggregate (m2). 

Ø The mortar content is calculated using Equation (3-1). For each type of aggregate, 

6 samples are tested to obtain the average value. 

 
MC (%) = (m1- m2) / m1 × 100   (3-1)   

 

(3) Physical properties 

The physical properties of all aggregates investigated in this study, such as 
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aggregate grading, SGSSD and Wa, are quantified according to BS 882. 

 

For river sand and crushed stone fines, the graduation varies largely. The method 

of BS 882-103 is used to determine the grading of the two types of fine aggregate. 

Their FM values are also calculated. 

 

Mechanical properties 

ACV and TFV are used as the indexes to determine the mechanical properties of 

coarse aggregates. BS 882-110 and BS 882-111 are adopted as the approaches to 

quantify the ACV and TFV of each type of aggregate (10-14mm), respectively.  

 

Testing of concrete 

(1) Slump test 

In this study, the slump test is carried out according to BS 1881-102. For 

concrete made with RAs, appropriate amounts of superplasticizer are added to 

achieve a similar slump value as that of the corresponding normal aggregate 

concrete. 

 
ρ = (m2-m1)/m1 × 1000   (3-2)   
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(2) Density test of hardened concrete 

The density test of hardened concrete for NAC and RAC are according to BS 

1881: Part 114 by using the equipment as shown in Figure 3-7. The detailed 

procedures are as follows: 

Ø Immediately after the specimen (assumed to be in wet condition) are removed from 

the curing tank, it is put into the stirrup and then immersed into the water to obtain 

the mass of the specimen in water, m1 (in kg) 

Ø Then remove the specimen from water and wipe off surplus water from its surface 

using a dry towel, followed by weighing in a balance, m2 (in kg) 

Ø Calculate the density of the specimen ρ (in kg/m3) using Equation (3-2). For each 

group, 3 specimens are tested to obtain the average value. 

 

 
Figure 3-7 - Equipment for density test 
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Figure 3-8 - Compression machine 

	  

  

Figure 3-9 - Specimen and machine used for elastic modulus test 

	  

(3) Compression and tensile splitting strength test 

The fcu and ftc of the concrete are determined using a compression machine 

(Figure 3-8) with a loading capacity of 3000kN. They are determined in 

accordance to BS 1881-116 and BS 1881-116, respectively. The load applied in 

the compressive and splitting tensile tests are kept at a constant rate of 
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0.2MPa/sec and 0.85 kN/sec, respectively. For each mix, three cube and two 

cylinder specimens are tested at the corresponding test days to obtain the average 

value for the fcu and ftc, respectively. 

 

(4) Static modulus of elasticity test 

The cylinders as shown in Figure 3-9 used for determining the static modulus of 

elasticity are capped by using a sulphur-clay mixture. The Ec of the concrete, 

determined as the mean value of the results of two specimens, is assessed 

following the procedure described in ASTM C 469 using a Denison compression 

machine (Figure 3-9) at the test ages of 28 and 90 days, respectively. 

 

(5) Chloride-ion penetration test 

The chloride diffusivity of concrete is determined in accordance with ASTM 

C1202. The penetration tests are performed by using two 100×50 mm cylinder 

specimens, which are cut from the cast 100×200 mm cylinder specimens. The 

test is carried out at the ages of 28 and 90 days, respectively. 

 

Prior to the test, the surface of each cylinder is coated with two layers of epoxy. 

The coated cylinders are evacuated in a desiccator (Figure 3-10) using a vacuum 
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pump for 6 hours, and then soaked in distilled water for 18 hours with the 

vacuum pump still running. Thereafter, the chloride permeability can be 

determined by using the testing apparatus shown in Figure 3-11. The detailed 

procedures are as follows: 

Ø The water saturated cylinder with the coated surface is firstly placed in the 

apparatus; 

Ø One end of the cylinder is exposed to a 3% sodium chloride (NaCl) solution, while 

the other end is exposed to a sodium hydroxide (NaOH) solution; 

Ø Applying a constant potential of 60V across the ends of the cylinder; 

Ø Then the current across the cylinder is recorded every 30 minutes for the 6-hour 

test period; 
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Figure 3-10 - Desiccator with a vacuum pump 

 

According to Equation (3-3), the total charge passed in coulomb during the 

6-hour test period can be calculated. 

 

 
Figure 3-11 - Apparatus for chloride permeability test 

 
Q=900(I0+2I30+2I60+······+2I300+2I330+2I360) (3-3) 
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where Q = charge passed (coulombs); 

I0 = current measured immediately after the potential is applied, and 

It = current measured at t min after the potential is applied. 

 

 

Figure 3-12 - Apparatus for drying shrinkage test 

 

(6) Drying shrinkage test 

The drying shrinkage test in this study is carried out in accordance with ASTM 

C157. Immediately after the concrete prisms are demolded, the initial length of 

each specimen is determined by using the apparatus as shown in Figure 3-12. 

Then the specimens are placed in a drying-chamber, with the temperature and 

relative humidity kept at 23±2 °C and 50±5 %, respectively, until the next 

measurements at other test ages. 
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3.3 ANN APLICATION 

	  

In this research study, large amounts of data related to the fcu and Ec of RAC are 

collected from different published literatures for conducting ANN models with 

generalization ability.  

 

Firstly, to examine whether ANN is suitable for use in modeling the properties of 

RAC, ANN methods developed by previous researchers are adopted to build 

models to evaluate the properties of RAC documented in some published 

literatures.  

 
 

Then large amounts (more than 300) of datasets are collected from different 

published literature for constructing improved ANN models for the fcu and Ec of 

RAC, respectively. The improved ANN models are then applied to predict the 

corresponding properties of concrete mixtures prepared in this study. The 

predicted results are also compared with the experimental test results. Sensitivity 

analysis is finally conducted to examine the influence of each input variable on 

the fcu/Ec of RAC after the construction of the models. 

 

The developed ANN models are further improved through including more 
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aggregate characteristics as input variables to investigate the significance of each 

aggregate characteristic and to determine the best combinations of factors that 

may affect the fcu and Ec of RAC. 
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CHAPTER 4: EXPERIMENTAL TEST RESULTS 

 

4.1 INTRODUCTION 

	  

This chapter presents and discusses the experimental results of aggregate 

characteristics and the properties of hardened concrete made with these 

aggregates. The influence of different sources of RAs on the properties of 

concrete is analyzed. 

 

4.2 TEST RESULTS OF CASE I 

	  

To obtain RAs of different qualities, five parent concretes with 28-day 

compressive strength from 30MPa to 85MPa were prepared and then crushed by 

hammer after 90 days’ curing to sizes of 5-10mm and 10-20mm, respectively. To 

examine the qualities of these RAs, their physical properties, such as MC, Wa and 

density, as well as mechanical properties like ACV and TFV, were tested. The 

influence of RAs of different qualities on the properties of RAC was also 

investigated. The details of the experimental results are discussed below. 
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4.2.1 Aggregate properties 

	  

Figure 4-1(a) shows that the amount of old mortar in the recycled coarse 

aggregates is large and it constitutes over 45% of the total aggregate by weight. 

The value increased to nearly 70% with the increase of the target strength of the 

original concrete. This is mainly because the RA, obtained through crushing old 

concrete manually by a hammer, may have more residual mortar left on them 

when compared with that produced by a mechanical rock-crushing machine. 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4-1 - Test results of recycled aggregates 

 



 

 108 

As expected, RAs have higher water absorption values and lower densities, and 

the specific gravity of RAs increase slightly with the increase of the strength 

grade of the parent concrete. The above finding is different from that of Padmini 

et al. (2009) who pointed out that with the increase of parent concrete quality, the 

density would decrease gradually since lower density mortar would lead to lower 

density. The difference between the two studies may be attributed to the different 

sources of parent concrete and different crushing methods used.  

 

Lower density and higher Wa values than those of NA can be noticed for RA 

(Figure 4-1(b) and (c)). The densities of RA are about 90% of that of NA and the 

value increases gradually from RA1 to RA5. The Wa value of RA2 is the 

smallest among all the RAs, but is still about 7 times that of NA. 

 

Figures 4-1(d) and (e) show the mechanical properties of the coarse aggregates. 

It is accepted that the mechanical properties of RA are inferior to that of NA. The 

TFV of RAs is 60% lower than that of NA used, but the RAs (except RA1) still 

have TFV similar to NA used in Hong Kong (Kou, 2006). 

 

4.2.2 Concrete properties 
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The slump value of the concrete prepared with RAs with different qualities can 

be adjusted to the range of 100-150mm with the addition of appropriate amounts 

of superpalsticizer.  

 

The hardened properties of the new concrete made with NA and RAs of different 

qualities after 28 days’ curing are shown in Table 4-1. 

 
Table 4-1 - Test results of concrete mixtures at 28 days 

Notation Density (g/cm3) fcu (MPa) ftc (MPa) Ec (GPa) Cl- (Coulombs) 

NAC 2.432 69.6 4.05 32.3 2376 

RC1 2.338 59.4 2.84 26.18 3366 

RC2 2.403 69.8 3.79 27.26 3146 

RC3 2.407 67.8 4.15 27.05 3126 

RC4 2.396 68.7 4.32 26.85 2896 

RC5 2.355 62.1 3.62 26.8 3105 

 

 
Figure 4-2 - 28d densities of concrete mixtures 

 

Density  
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The 28-day density values of the new concrete mixtures are shown in Figure 4-2. 

As expected, the hardened densities of all RAC are generally lower than that of 

NAC due to the lower density of RA. Among all the RAC, the densities of RC3 

and RC1 are the largest and the lowest, respectively.  

 

Compressive strength 

The development of fcu of the new concretes is shown in Figure 4-3. As expected, 

the compressive strength of NC increases with age in all the concrete specimens. 

It can be noticed that the strength of the old concrete plays an important part in 

affecting the compressive strength of the new concrete mixtures. The minimum 

fcu values (about 10 MPa lower than that of NC) are obtained in the concrete 

made with RA1, which is as expected for its worst quality among all the 

aggregates investigated. However, the compressive strength of NC made with 

RA5 is not the highest, just slightly higher than that of RAC1, this is mainly due 

to the presence of a larger amount of attached mortar in RA5. From Figure 4-4, it 

is noticed that the fcu values of RC2 to RC4, (especially RC2) can be comparable 

to that of NAC after 7-day curing. This may be partly contributed by the 

angularity of RAs and residual mortar on the surface, resulting in better bonding 

strength between the new paste and the old mortar.  
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The results also in line with the previous conclusion (Kou and Poon, 2012) that 

RAs crushed from higher strength parent concrete can be used to replace 100% 

NA for preparing HSC, except that in this work CFS is used in both the parent 

and new concrete.   

 

 
Figure 4-3 - Development of compressive strength of NC with curing ages 

	  

 
Figure 4-4 - Relative compressive strength of NC with curing ages 
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Tensile splitting strength 

The development of the ftc is similar to that of the fcu as shown in Figure 4-5. 

Figure 4-6 shows that the ftc values of RC3 and RC4 after 7 days’ curing can be 

comparable, or even exceed that of NAC. This may be mainly due to the rough 

surface of the particle of these RAs, which can further improve the 

microstructure of the ITZ and thus increase the bond strength between the new 

cement paste and RAs. As shown in Figure 4-7, the relationship between the ftc 

and the corresponding fcu of the concrete mixes is poor, with a correlation 

coefficient of only about 0.54. This may be attributed to NA and RAs, as well as 

RAs of different qualities, play different roles in the ftc and fcu of RAC. 

 

 

Figure 4-5 - Tensile splitting strength of NC with curing ages 
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Figure 4-6 - Relative tensile splitting strength of NC with curing ages 

 

 
Figure 4-7 - Relationship between the tensile splitting strength and the compressive 

strength of NC 

 

Static modulus of elasticity 

The development trends of the static modulus of elasticity values of the concrete 

mixes are similar at 28 days and 90 days, which can be seen clearly in Figure 4-8, 

from which it can be concluded that all the static modulus of elasticity values of 

RAC decrease sharply to only a little more than 80% of that of the corresponding 
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NAC. The presence of attached old mortar in RAs is the main reason that leads 

the reduction in the elastic modulus of RAC, since the elastic modulus of 

concrete is related to the modulus of elasticity of the aggregates and the cement 

matrix, and their relative proportions used in the concrete. 

	  

 
Figure 4-8 - Static modulus of elasticity of NC with curing ages 

 

Figure 4-9 shows the relationship between the Ec and fcu of all mixes at both 28 

and 90 days. The relationship stipulated by ACI 318-95and BS EN 1992-1-1are 

also plotted to compare the present findings with that of the codes. The 

regression equation based on the 28 and 90 days experimental results in this 

study can be expressed as follow:  

 
Ec= 0.6929fcu

0.8836          R2=0.5555 (4-1) 
 

where fcu and Ec are expressed in MPa and GPa, respectively. 
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Figure 4-9 - Relationship between the elastic modulus and the compressive strength 

of NC 

	  

 
Figure 4-10 - Chloride ion penetration of concrete mixtures 

 

The relationship between Ec and fcu based on the experimental results has a poor 

correlation with R2 value of only about 0.5555, this is mainly due to the complex 

nature of RAs. The factors affecting the EC and fcu of RAC may be not the same. 

The poor correlation has further proven the premise of this study that it is 

difficult to model the mechanical properties of concrete made with RAs from 
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different sources just based on the empirical relationships developed for natural 

aggregate concrete. It can be also noticed from Figure 4-9 that both ACI 318-95 

and BS EN 1992-1-1 overestimate the Ec values of the RAC. 

 

Chloride ion penetrability 

Similar trends of resistance to chloride ion penetration of the concrete mixes at 

28 day and 90 day are shown in Figure 4-10.The results indicate that more 

charges passed through the concrete made with RAs than that in the control 

concrete. This can be attributed to the presence of old cement mortar in RAs, 

leading to higher porosities. Regarding the resistance to chloride ion penetration 

of all the recycled concrete, RAC3 performs the best, while RAC1 performs the 

worst as expected. 

 

To sum up, RAs crushed from old concrete show higher water absorption and 

ACV and lower specific density and TFV than those of NA. The new concrete 

made with RAs performs comparable in compressive strength and splitting 

tensile strength, but poorer in elastic modulus and resistance to chloride ion 

penetration, when compared with the control concrete made with NA. RAs from 

different strength of parent concrete, crushed by hamper, contain large amount of 
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attached old mortar that play important part on the properties of new concrete, 

leading its properties more difficult to predict.  

 

4.3 TEST RESULTS OF CASE II 

	  

4.3.1 Aggregate properties 

 
Table 3-3 shown in Chapter 3 lists the experimental results of the physical and 

mechanical properties of the aggregates investigated.  

 

 

Figure 4-11 - Relationships between mortar content and other properties of 

aggregates 
 

Compared with NA, it can be noticed from Table 3-2 that the RA examined in 

this section generally has lower density and TFV, while their Wa and ACV are 

higher than those of NA. 
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As mentioned above, RAs used in this study can be regarded as a composite 

material containing unbound stone, virgin aggregate with attached old mortar, 

hardened mortar and some impurities. The amount of MC in RA6 is the lowest, 

since it was processed in the recycling plant that contains large amounts of 

crushed rocks. For RA7, the major source is old clean concrete, thus the MC, 

especially in the (5-10mm) fraction, is higher than that of RA6. RA8 has the 

highest MC, since it only underwent one crushing process in the laboratory. 

 

The influence of the quantity of MC on aggregate properties is shown in Figure 

4-11. The most sensitive indexes are Wa and TFV. The Wa of RAs increases 

drastically while the TFV decrease gradually with the increase in MC. It seems 

that the TFV is more sensitive than ACV in evaluating the strength of RA. It can 

be explained for the weaker materials in RA are vulnerable to be crushed before 

the specified load (400kN) is reached. The test results indicate that RA6 has the 

best quality among all the RAs used in this section. The properties of RA7 and 

RA8 are nearly the same. More impurities and clay bricks are found present in 

RA7 while RA8 contains more old mortar, rendering both of them weaker than 

RA6. 
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Table 4-2 - Properties of concrete mixes 

Notion Mix 

ftc 

(MPa) 

fcu 

(MPa) 

Ec 

(GPa) 

Cl- 

(Coulombs) 

shrinkage 

(10-6) 

28d 28d 90d 28d 90d 28d 90d 112d 

Series I 

W/C=0.68 

NC30 2.55 34.5 39.4 25.1 26.6 4651 3627 494 

C30RA6 2.47 35 39.8 20.85 25.18 5238 3911 449 

C30RA7 2.4 29.2 34 21.9 22.83 5315 4903 596 

C30RA8 1.9 27.7 28.4 20.49 21.5 8071 5951 664 

Series II 

W/C=0.51 

NC45 3.16 48.3 53 30.68 31.1 4562 3151 554 

C45RA6 3.39 47.6 51.3 28.86 30.68 4498 3263 518 

C45RA7 2.59 42 47 24.46 25.91 4986 4104 650 

C45RA8 2.58 42.9 46.3 26.55 27.22 6215 4957 604 

Series III 

W/C=0.44 

NC60 3.81 61.6 69.6 32.36 34.5 4196 2826 560 

C60RA6 3.9 60 67.7 29.42 33.42 3961 3311 611 

C60RA7 3.74 53.7 55.5 24.61 26.3 5423 4271 709 

C60RA8 3.42 53.2 58.6 28.5 27.94 5585 4010 635 

Series IV 

W/C=0.34 

NC80 4.28 80.5 88.3 35.43 36.88 2630 2027 515 

C80RA6 4.65 78.2 84.1 34.76 35.49 2936 2351 529 

C80RA7 4.1 71.2 74.3 29.52 29.92 3556 2858 644 

C80RA8 4.16 65.4 73.3 30.62 30.74 5382 3864 682 

 

4.3.2 Concrete properties 

	  

Table 4-2 lists the test results of different series of concrete mixes. 

 

Density  

As expected, the densities of the hardened concrete made with RAs are lower 

than those prepared with NA, which can be seen in Figure 4-12. Good 

relationships are established between the densities of the concrete and the 
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corresponding aggregates used, with the correlation coefficients R2 all exceed 

0.85. 

 

Compressive strength 

The comparison of fcu of concrete made with NA and RAs is shown in Figure 

4-13. As expected, the fcu of the concrete made with RAs are generally lower 

than that made with NA, whatever W/C is used; besides, the strength of all the 

concrete made with NA and RAs increase with ages.  

 

It can be noticed from Figure 4-13 that the fcu of new concrete decreases 

significantly (over 10% at both 28th and 90th day) when RA7 and RA8are used to 

fully replace NA to produce new concrete. This may be due to the large amounts 

of old mortar present in them. With the reduction in w/c ratio, it is increasingly 

difficult for RA7 and RA8 to produce concrete that can satisfy the target strength. 

For Series IV, the strength values are about 11% and 18% lower than the target 

strength of 80 MPa when RA7 and RA8arefully used, respectively. This might 

be contributed to the poor qualities of RA7 and RA8. 
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Figure 4-12 - Relationship between specific gravity of aggregates and density of 

concrete 

	  

 
Figure 4-13 - Effect of different aggregates on compressive strength of concrete 

mixtures 

 

For concrete made with RA6, the produced fcu value is comparable with that of 

the control mix (even exceeds the control in the case of C30 concrete). With the 

increase in target strength, the difference between the strength, for concrete made 

with NA and RA1, increases gradually to about 2.9% and 4.8% for C80 at 28 
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days and 90 days, respectively. However, it can be noticed from Table 4-2 that 

the concrete made with RA6 is still able to reach the target strength of 60MPa 

after 28 days’ curing. So it is feasible to adopt RAs of high quality to prepare 

concrete with fcu to that of normal concrete. 

 

 

Figure 4-14 - Effect of different aggregates on tensile splitting strength of concrete 

mixtures 

 

Tensile splitting strength  

The results shown in Figure 4-14 indicate that concrete made with RA6 has 

higher ftc (except C30) than the corresponding NAC. The increase may be due to 

the presence of the attached MC, which can enhance the bonding between the RA 

and the new cement paste (Sri Ravindrarajah and Tam 1985). Furthermore, the 

rough surface of the RAs can further improve the microstructure of the ITZ (Kou 

and Poon 2008), and thus lead to a high ftc value.  
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On the contrary, although RA7 and RA8 have larger amounts of attached mortar 

than RA6, the excessive amounts of porous mortar lead to a decrease in ftc.  

 

 

Figure 4-15 - Relationship between 28d compressive strength and tensile splitting 

strength 

 

As shown in Figure 4-15, the ftc of concrete has a good correlation with the 

corresponding fcu, and the correlation coefficient R2reaches to a high value of 

about 0.93. 

 

Static modulus of elasticity  

The results of the Ec value tests are shown in Figure 4-16. With respect to the 

value of the control concrete, a significant decline in Ec values can be noted for 



 

 124 

concrete made with RAs and the decrease is more obvious for concrete made 

with RA7 and RA8. 

 

The Ec of concrete made with RA6are almost as good as those made with NA in 

all the mix series at both 28 and 90 days of curing. As the Ec of concrete is 

related to the quality of coarse aggregate, a comparison between mechanical 

strength (TFV and ACV) of NA and RA6 in Table 3-3 further proves that good 

quality RA is able to fully replace NA to produce concrete with comparable Ec 

value.  

 

 

Figure 4-16 - Effect of different aggregates on elastic modulus of concrete mixtures 
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Figure 4-17 shows the relationship between Ec and the corresponding fcu of all 

mixes at both 28 and 90 days. The regression equation based on the 28 and 90 

days experimental results in this study can be expressed as Equation (4-2):  

 
Ec= 4.7863fcu

0.4485         R2=0.8281 (4-2) 

 

where fcu and Ec are expressed in MPa and GPa, respectively. 

	  

 
Figure 4-17 - Relationship between the compressive strength and elastic modulus 
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Figure 4-18 - Effect of different aggregates on penetration of concrete mixtures 

 

When aggregates of Group 2 used, the relationship between Ec and fcu based on 

the experimental results has a good correlation with a R2 value of about 0.8281. 

However, both ACI 318-95 and BS EN 1992-1-1 still overestimate the Ec of the 

RAC, which can be noticed from Figure 4-17. This may be due to that only one 

parameter, compressive strength, was used to evaluate the corresponding elastic 

modulus value in such relationships. More parameters, such as aggregate 

characteristics and cement types, should be considered to be included for better 

estimation of the properties of the recycled aggregate concrete. 
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Figure 4-19 - Effect of different aggregates on shrinkage of concrete mixtures 

	  

Chloride ion penetrability  

Figure 4-18 shows the effect of different types of aggregates and W/C on the 

resistance of Cl- penetration of the hardened concrete. The results indicate that 

concrete made with RAs generally have poorer resistance to Cl- penetrability, 

and the ability of decreases with the trend: RA6> RA7> RA8. However, it is 

interesting that the resistance to Cl- penetration of concrete made with RA6is the 

best in all the mix series, and can be even comparable with those prepared with 

NA, especially in Series II and III mixes at 28 days. 
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Figure 4-20 - Drying shrinkage of concrete made with different types of aggregates 

 

Drying shrinkage  

Figure 4-19 illustrates the effects of NA and RAs on the drying shrinkage of the 

concrete at 112 days, the trends of which are similar to that on the Cl- penetration. 

For concrete made with RA of better quality, lower shrinkage values are 

generally recorded. 

 

The drying shrinkage development of concrete made with different coarse 

aggregates in all series is presented in Figure 4-20. As expected, the drying 

shrinkage values of all the concrete mixtures increase with the curing days. 

Similar to the Cl- test results, the drying shrinkage of concrete made with RA6 is 

the least in all series, and can be also comparable with that of concrete made with 

NA. 
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As a summary, through examining both the RAC prepared with different target 

strengths and RAC made with various types of RAs, this section has established 

some relationships between the amount and nature of the attached old cement 

mortar on the properties of RAs and RAC.  

 

The experimental results show that the mortar contents attached to RAs obtained 

from different sources vary greatly, and this may be related to original mortar 

content and the level of prior mechanical crushing received. The presence of 

residual mortar in RAs leads to their poorer aggregate properties, including lower 

density and crushing strength values. The results also indicate that RA of good 

quality can be used to fully replace NA to produce concrete with mechanical and 

durability properties comparable to those made with NA. 

 

4.4 TEST RESULTS OF CASE III 

	  

This section mainly studies the properties of NAC or RAC incorporated with 

large amounts of added masonry. The use of 5%, 10% and 15% crushed bricks 

and tiles as aggregate replacement of concrete mixtures are firstly examined. The 

test results of concrete made with such mixed aggregates after 28 days’ curing 
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are shown in Table 4-3. Then RA is used to substitute 50% and 100% NA by 

volume, while crushed clay bricks and tiles are used as the masonry added 

aggregates as before. The effects of different masonry contents on the properties 

of new concrete are investigated. The 28 days test results are listed in Table 4-4. 

 

4.4.1 Aggregate properties 

	  
In this part, apart from two sources of NA, one source of RA, together with 

crushed bricks and crushed tiles are also examined. The experimental results of 

the physical and mechanical properties of the aggregates can be seen in Table 

3-3.  

Table 4-3 - Test results of the use of masonry in natural aggregate concrete 

Notation Density (g/cm3) fcu (MPa) ftc (MPa) Ec (GPa) Cl-  (Coulombs) 

Control 2.384 54.4 3.19 31.51 31.51 

T5 2.351 54.4 2.97 30.94 30.94 

T10 2.325 54.9 3.11 29.14 29.14 

T15 2.293 52.5 3.37 27.09 27.09 

B5 2.357 54.2 3.22 29.54 29.54 

B10 2.331 52.3 3.17 27.5 27.5 

B15 2.309 46.9 2.87 23.18 23.18 
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Table 4-4 - Test results of the use of masonry in recycled aggregate concrete 

Mixes 
fcu (MPa) Ec (GPa) 

1d 4d 7d 28d 90d 28d 90d 

r0 21.3 / 44.1 50.2 53.3 30.45 33.86 

r50 20 40.2 44.1 50.3 53.6 29.58 30.35 

r100 18 40.1 43 49.2 51.3 26.78 27.86 

b5r50 18.6 38.2 a 41.7 48.4 54.1 29.03 30 

b5r100 15.9 34.7 a 35 44 45.9 27.1 27.9 

b10r50 25.3 b / 39.1 47.5 54 27 28.26 

b10r100 23.9 b / 34.6 42.4 45.4 26.69 27.85 

b15r50 21.6 37.5 38.8 46.7 50.5 24.42 26.14 

b15r100 17.5 31.5 33.9 41.1 42.1 24.15 25.58 

T5r50 20 34.9 c 41.4 49.1 54 27.39 30.13 

T5r100 18.5 / 36.5 44.7 47.4 25.69 26.15 

T10r50 19.2 37.6 42.5 50.7 52.8 26.72 28.87 

T10r100 14.4 28.6 34.4 39.9 42 24.55 25.55 
a, b, c measured at the age of 5 days, 2 days and 3 days, respectively. 

 

It can be noticed from Table 3-3 that there are also large differences between the 

properties of the two NAs used, especially in ACV and TFV. Compared with 

NAs, RA has lower density and TFV, while owns higher Wa and ACV. These are 

more obvious to the brick and tile aggregates. The large absorption and weak 

quality may limit the use of the added masonries in concrete. 

	  

4.4.2 Concrete properties 

	  

Density 

As shown in Table 4-3, the densities of the hardened concrete made with NA 

partly replaced by masonries are much lower than that of the control mix. This is 



 

 132 

mainly due to the lower density of crushed bricks or tiles relative to that of the 

crushed granite. 

 

 
Figure 4-21- Effect of different masonry contents on compressive strength of 

natural concrete mixtures 

 

Compressive strength 

The effect of 0-15% of crushed bricks or tiles on the fcu of concrete is shown in 

Figure 4-21. It can be seen from the Figure that the use of 5% and 10% crushed 

tiles to substitute natural granite is able to produce concrete with the comparable 

fcu. The fcu of concrete made with 15% NA replaced by crushed tiles is only 

slightly lower than the corresponding control mix, 3.5% and 4.8% at 28 and 90 

days, respectively. A trend of gradual reduction in the fcu of concrete can be 

noticed when crushed bricks are used to partly replace the granite by volume. 
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The reduction is larger than that of concrete made with same volume of crushed 

tiles, about 13.8% at 28days. 

 

 

Figure 4-22- Effect of crushed bricks on the compressive strength of RAC 

 

The effects of crushed bricks and tiles on the fcu of RAC are shown in Figures 

4-22 and 4-23, respectively. It can be seen from the two Figures that the use of 

50% RA to replace crushed granite can improve the fcu of concrete slightly, and 

the strength of RAC are still comparable to the corresponding NAC even 15% 

bricks or 10% tiles contents. However, a reduction of the strength is noticed 

when crushed granite is fully substituted by the RA, about 2.2% at 28 days, and 

the reduction is more significant when RA with larger amounts of masonries 

added. According to the test results, the 28-day fcu of RAC made with 15% brick 



 

 134 

and 10% tile are about 18.1% and 20.5% lower than that of the NAC, 

respectively. 

 

 

Figure 4-23 - Effect of crushed tiles on the compressive strength of RAC 

 

 
Figure 4-24 - Effect of different masonry contents on tensile splitting strength of 

natural concrete mixtures 

 

Tensile splitting strength 
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The effect of crushed bricks or tiles on the ftc of NAC is shown in Figure 4-24. 

Opposite development trends are noticed to the concrete made with added bricks 

and tiles. When using crushed tiles to replace 5% NA, the ftc of concrete 

decreases from 3.19MPa to 2.97MPa. However, with the increase of the 

replacement ratio, the strength increases gradually. The strength of concrete with 

15% crushed tiles is even 5.6% higher than the corresponding NAC. While for 

concrete made with bricks incorporation, the ftc decreases with the increase in the 

added brick contents. The lowest strength is about 2.87MPa when the volume 

ratio of added bricks to total coarse aggregate is 15%. 

 

 

Figure 4-25 - Relative tensile splitting strength of RAC made with added bricks 

 

Figure 4-25 and Figure 4-26 show the ratio of ftc of RAC made with bricks and 

tiles at different ages respectively to that of the normal concrete at 28 days. The 
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ftc of concrete reduces with the increase in the replacement ratio of NA by RA, 

and the reduction increases when crushed tiles are used as the added masonries in 

RA, since the smooth surface of the crushed tiles may lead to a weaker bonding 

and ITZ of the concrete relative to that of the crushed bricks. 

	  

 

Figure 4-26 - Relative tensile splitting strength of RAC made with added tiles 

 

 

Figure 4-27 - Relationship between the tensile splitting strength and the 

compressive strength of RAC made with added masonries 
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As shown in Figure 4-27, the ftc of concrete has a good correlation with the 

corresponding fcu, with a correlation coefficient of about 0.83. 

	  

 

Figure 4-28 - Effect of different masonry contents on elastic modulus of natural 

concrete mixtures 

 

Elastic modulus 

The test results of Ec of NAC made with the masonry addition are shown in 

Figure 4-28. The relative Ec of RAC made with crushed bricks or tiles to that of 

the corresponding NAC are shown in Figure 4-29 and Figure 4-30, respectively. 

A sharp decline of Ec values is noted for the concrete mixtures when crushed 

granite was replaced by RAs or masonries, and the decrease is more obvious for 

concrete of the latter one.  
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Figure 4-31 and Figure 4-32 show the relationship between the Ec and fcu of 

NAC and RAC with the added masonries at both 28 and 90 days. The regression 

equations between the Ec values and the corresponding fcu can be expressed as 

follows:  

 
Ec= 0.4053fcu

1.0528              R2=0.6825   (4-3) 
  
Ec= 2.3028fcu

0.6413              R2=0.5634    (4-4) 
 

where fcu and Ec are expressed in MPa and GPa, respectively. 

 

 

Figure 4-29 - Relative elastic modulus of RAC made with added bricks 
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Figure 4-30 - Relative elastic modulus of RAC made with crushed tiles 

 

 

Figure 4-31 - Relationship between compressive strength and elastic modulus of 

NAC with added masonries 
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Figure 4-32 - Relationship between compressive strength and elastic modulus of 

RAC with added masonries 

	  

Poor correlations shown in Equation 4-3 and Equation 4-4 indicate that the Ec 

value of NAC/RAC made with added masonries (Group 3) cannot be expressed 

effectively by only the corresponding fcu value. Similar to the results of Case I, 

this may be due to the more complex nature of mixed aggregates used in this 

section. Also, it can be noticed from Figure 4-31 and Figure 4-32 that both ACI 

318-95 and BS EN 1992-1-1 also overestimate the Ec of concrete with added 

masonries. 

	  

4.5 SUMMARY 

	  
This chapter presents the experimental test results of the properties of concrete 

made with RAs derived from different sources. The properties of aggregates used 
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in the concrete are also examined. The following conclusions can be drawn based 

on test results: 

 

4.5.1 For Group 1 RA: RAs derived from laboratory prepared concrete 
cubes with different compressive strength (35 MPa-85 MPa): 
 

• The test results indicate that the properties of RAs are generally poorer than 

that of NA; RA2 and RA1 own the best and worst properties among the 

total five RAs examined, respectively. 

 

• The experimental results on fcu and ftc indicate that RA2-RA4 can be used to 

fully replace NA to produce high strength concrete with mechanical 

properties comparable to concrete made with NA. 

 

• Test results on Ec point that the elastic modulus values of concrete made 

with RA of different qualities are lower than that of the corresponding NAC. 

Both ACI 318-95 and BS EN 1992-1-1 overestimate the Ec of concrete 

made with RAs of different qualities. 

 

• Among all the RAC, the resistance to Cl- penetration of RAC3 is the best, 

while that of RAC1 is the worst. 
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4.5.2 For Group 2 RA: RAs derived from 3 different sources and crushed by 
different methods: 
 

• The MC attached to RAs obtained from different sources varies largely, and 

this may be related to original MC and the degree of prior mechanical 

crushing received. 

 

• The presence of residual mortar in RAs leads to their poorer properties, 

including poorer SGSSD and mechanical strength. 

 

• The hardened density of concrete made with RA, generally lower than that 

made with NA, has a good correlation with the SGSSD of the RA used. 

 

• The experimental results on ftc, fcu and Ec indicate that RA of good quality 

can be used to fully replace NA to produce concrete with mechanical 

properties comparable with that of concrete made with NA. 

 

• The test results on the resistance to Cl- penetration show that good quality 

RA can be used to produce concrete with comparable durability properties. 
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• Both ACI 318-95 and BS EN 1992-1-1 overestimate the Ec of concrete 

made with different sources of RA produced using different methods. 

 

4.5.3 For Group 3 RA: RAs contain different amounts of added masonries 
(crushed clay bricks or tiles): 
 

• The physical and mechanical properties of crushed bricks and tiles are much 

weaker than those of the NA, and they also cannot be comparable with 

those of the other RA. This limits their possible use on in concrete. 

 

• Due to the lower SGSSD of bricks and tiles relative to that of NA, the 

hardened density of concrete made with the added bricks or tiles is lower 

than that of the corresponding NAC. 

 

• Both ACI 318-95 and BS EN 1992-1-1 overestimate the Ec of concrete 

made with the added masonries. 
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CHAPTER 5: MODELING THE TEST RESULTS BY 

USING ESTABLISHED RELATIONSHIPS 

 

5.1 INTRODUCTION 
 

In the last chapter, codes like ACI 318-95 and BS EN 1992-1-1 were found to 

overestimate the Ec of RAC made with RAs from different sources. It seems that 

the above relationships are no longer applicable to concrete made with RA due to 

the significant difference in properties between RA and NA. This chapter 

examines the validity of using established relationships to model the fcu and Ec of 

RAC prepared in the laboratory. The predicted results of these relationships are 

also compared with the experimental test results. 

 

5.2 EMPIRICAL EQUATIONS BETWEEN ELASTIC 
MODULUS AND COMPRESSIVE STRENGTH 
 

Some empirical relationships have been proposed by researchers (Sri 

Ravindrarajah and Tam 1985; Dillmann 1998; Dhir et al. 1999; Mellmann 1999) 

based on their laboratory studies on testing concrete produced with RA. These 

equations are given as follow. 

 

Sri Ravindrarajah and Tam (1985): 
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Ec = 7.77 fcu
0.33 (5-1) 

Dhir et al. (1999): 

Ec = 0.37 fcu + 13.1 (5-2) 

Dillmann(1998): 

Ec = 0.63443 fcu + 3.0576  (5-3) 

Mellmann (1999): 

Ec= 0.378 fcu + 8.242    (5-4) 

 

where fcu and Ec are expressed in MPa and GPa, respectively. 

 

However, the applicability of such equations in predicting the Ec value of RAC 

has been questioned (Xiao et al. 2006; Corinaldesi 2010). This is mainly because 

although the developed relationships may fit the researchers’ own experimental 

data well, they cannot be used to predict the results of other researchers’ due to 

the diverse nature of RA used in different studies. 

 

The comparison between the modeling results of the above equations and the 

experimental test results are shown in Table 5-1 - Table 5-3, respectively. 
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Table 5-1 - Modeling results of elastic modulus of Case I 

Mix 
Experimental results Modeling Ec (GPa) Relative error (%) 

fcu (MPa) Ec (GPa) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) 

Case I 

69.6 32.3 31.51 38.85 47.21 34.55 2.44 20.28 46.17 24.77 

59.4 27.43 29.91 35.08 40.74 30.7 9.03 27.88 48.53 6.07 

69.8 27.26 31.54 38.93 47.34 34.63 15.71 42.8 73.66 19.1 

67.8 27.02 31.24 38.19 46.07 33.87 15.62 41.32 70.51 34.27 

68.7 26.85 31.38 38.52 46.64 34.21 16.86 43.46 73.72 21.27 

62.1 26.79 30.35 36.08 42.46 31.72 13.28 34.67 58.48 13.86 

75.3 36.1 32.34 40.96 50.83 36.71 10.41 13.47 40.8 5.39 

63 28.67 30.49 36.41 43.03 32.06 6.36 27 50.08 8.85 

76.3 30.9 32.48 41.33 51.46 37.08 5.12 33.76 66.55 20.92 

74.8 30.98 32.27 40.78 50.51 36.52 4.17 31.62 63.05 32.01 

72.7 30 31.97 40 49.18 35.72 6.56 33.33 63.94 35.14 

66.3 28.48 31.01 37.63 45.12 33.3 8.89 32.13 58.43 36.77 

Average 
      

9.54 31.81 59.49 21.54 

 

Table 5-2 - Modeling results of elastic modulus of Case II 

Mix 
Experimental results Modeling Ec (GPa) Relative error (%) 

fcu (MPa) Ec (GPa) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) 

Case II 

34.5 25.1 25 25.87 24.95 21.28 0.41 3.05 0.62 39.11 

35 20.85 25.12 26.05 25.26 21.47 20.46 24.94 21.16 44.16 

29.2 21.9 23.66 23.9 21.58 19.28 8.03 9.15 1.45 30.28 

27.7 20.49 23.25 23.35 20.63 18.71 13.47 13.95 0.69 41.52 

48.3 30.68 27.93 30.97 33.7 26.5 8.95 0.95 9.85 26.08 

47.6 28.86 27.8 30.71 33.26 26.23 3.68 6.42 15.23 24.9 

42 24.46 26.67 28.64 29.7 24.12 9.05 17.09 21.44 8.92 

42.9 26.55 26.86 28.97 30.27 24.46 1.17 9.13 14.03 13.11 

61.6 32.36 30.27 35.89 42.14 31.53 6.47 10.91 30.22 16.54 

60 29.42 30.01 35.30 41.12 30.92 1.99 19.99 39.78 15.53 

53.7 24.61 28.93 32.97 37.13 28.54 17.54 33.97 50.86 5.61 

53.2 28.5 28.84 32.78 36.81 28.35 1.19 15.03 29.16 8.38 

80.5 35.43 33.06 42.89 54.13 38.67 6.68 21.04 52.78 109.15 

78.2 34.76 32.75 42.03 52.67 37.80 5.79 20.93 51.52 22.88 

71.2 29.52 31.75 39.44 48.23 35.16 7.55 33.62 63.38 22.82 

65.4 30.62 30.87 37.30 44.55 32.96 0.82 21.81 45.49 18.04 
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39.4 26.6 26.12 27.68 28.05 23.14 1.81 4.05 5.47 14.87 

39.8 25.18 26.2 27.83 28.31 23.29 4.07 10.51 12.42 16.69 

34 22.83 24.88 25.68 24.63 21.09 8.97 12.48 7.88 19.12 

28.4 21.5 23.44 23.61 21.08 18.98 9.04 9.8 1.97 19.55 

53 31.1 28.80 32.71 36.68 28.28 7.39 5.18 17.95 2.42 

51.3 30.68 28.49 32.08 35.6 27.63 7.12 4.57 16.05 1.74 

47 25.91 27.68 30.49 32.88 26.01 6.84 17.68 26.88 3.83 

46.3 27.22 27.55 30.23 32.43 25.74 1.2 11.06 19.15 3.48 

69.6 34.5 31.51 38.85 47.21 34.55 8.66 12.61 36.85 29.36 

67.7 33.42 31.23 38.15 46.01 33.83 6.57 14.15 37.67 28.97 

55.5 26.3 29.24 33.64 38.27 29.22 11.19 27.89 45.51 6.96 

58.6 27.94 29.77 34.78 40.24 30.39 6.56 24.49 44.01 16.83 

88.3 36.88 34.09 45.77 59.08 41.62 7.57 24.11 60.19 40.4 

84.1 35.49 33.54 44.22 56.41 40.03 5.49 24.59 58.96 43.62 

74.3 29.92 32.2 40.59 50.20 36.33 7.62 35.67 67.77 19.64 

73.3 30.74 32.06 40.22 49.56 35.95 4.28 30.84 61.23 20.72 

Average 
      

6.8 16.61 30.24 22.98 

 

 

Table 5-3 - Modeling results of elastic modulus of Case III 

Mix 
Experimental results Modeling Ec (GPa) Relative error (%) 

fcu(MPa) Ec(GPa) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) Eq.(5-1) Eq.(5-2) Eq.(5-3) Eq.(5-4) 

Case III 

54.4 29.85 29.05 33.23 37.57 28.81 2.68 11.32 25.86 9.06 

54.4 28.42 29.05 33.23 37.57 28.81 2.22 16.92 32.2 7.51 

54.9 27.44 29.14 33.41 37.89 28.99 6.19 21.77 38.08 0.53 

52.5 27.09 28.71 32.53 36.37 28.09 5.99 20.06 34.24 0.03 

54.2 27.49 29.02 33.15 37.44 28.73 5.55 20.6 36.21 5.6 

52.3 25.46 28.68 32.45 36.24 28.01 12.63 27.46 42.33 0.15 

46.9 23.18 27.66 30.45 32.81 25.97 19.34 31.38 41.55 7.46 

48.4 29.03 27.95 31.01 33.76 26.54 3.71 6.81 16.31 11.93 

44 27.1 27.09 29.38 30.97 24.87 0.05 8.41 14.29 11.17 

47.5 27 27.78 30.68 33.19 26.2 2.89 13.61 22.94 7.64 

42.4 26.69 26.76 28.79 29.96 24.27 0.25 7.86 12.24 13.42 

46.7 24.42 27.62 30.38 32.69 25.89 13.12 24.4 33.85 1 

41.1 24.15 26.48 28.31 29.13 23.78 9.67 17.21 20.63 7.46 

49.1 27.39 28.09 31.27 34.21 26.8 2.54 14.15 24.89 12.15 

44.7 25.69 27.23 29.64 31.42 25.14 5.99 15.37 22.29 3.94 
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50.7 26.72 28.38 31.86 35.22 27.41 6.23 19.23 31.82 5.48 

39.9 24.55 26.23 27.86 28.37 23.32 6.83 13.49 15.57 9.07 

48.2 30.45 27.91 30.93 33.64 26.46 8.33 1.59 10.47 24.3 

50.3 29.58 28.31 31.71 34.97 27.26 4.29 7.2 18.22 10.46 

49.2 26.78 28.1 31.3 34.27 26.84 4.94 16.89 27.97 3.81 

60.5 31.51 30.09 35.49 41.44 31.11 4.51 12.62 31.52 98.73 

59.9 30.94 29.99 35.26 41.06 30.88 3.07 13.97 32.71 99.82 

60 29.14 30.01 35.3 41.12 30.92 2.97 21.14 41.12 106.12 

57.6 28.08 29.6 34.41 39.6 30.01 5.43 22.55 41.03 106.89 

59.4 30.27 29.91 35.08 40.74 30.7 1.2 15.88 34.6 101.4 

57.6 28.05 29.6 34.41 39.6 30.01 5.54 22.68 41.18 107 

54.8 24.24 29.12 33.38 37.82 28.96 20.14 37.69 56.04 119.46 

54.1 30 29 33.12 37.38 28.69 3.34 10.39 24.6 95.64 

45.9 27.9 27.47 30.08 32.18 25.59 1.55 7.82 15.33 91.73 

54 28.26 28.98 33.08 37.32 28.65 2.55 17.06 32.05 101.39 

45.4 27.85 27.37 29.9 31.86 25.4 1.73 7.35 14.4 91.21 

50.5 26.14 28.35 31.79 35.1 27.33 8.44 21.6 34.26 104.56 

42.1 25.58 26.7 28.68 29.77 24.16 4.36 12.11 16.37 94.43 

54 30.13 28.98 33.08 37.32 28.65 3.81 9.79 23.85 95.1 

47.4 26.15 27.76 30.64 33.13 26.16 6.16 17.16 26.69 100.04 

52.8 28.87 28.77 32.64 36.56 28.2 0.36 13.04 26.62 97.68 

42 25.55 26.67 28.64 29.7 24.12 4.4 12.09 16.26 94.4 

51.3 33.86 28.49 32.08 35.6 27.63 15.85 5.25 5.15 81.61 

53.6 30.35 28.91 32.93 37.06 28.5 4.75 8.51 22.12 93.91 

51.3 27.86 28.49 32.08 35.6 27.63 2.28 15.15 27.8 99.19 

Average 
      

5.65 15.49 27.14 53.31 

 

5.2.1 Modeling results of Case I 
 

For recycled high strength concrete made with RAs produced from parent 

concrete of different qualities, the relationship between the tested and predicted 

Ec, at 28 and 90 days, and the corresponding tested fcu values are shown in Figure 

5-1. From the Figure, it can be noticed that apart from the equation established 
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by Sri Ravindrarajah and Tam (1985), the other three equations all overestimate 

the Ec values based on the tested fcu values. When Equation 5-1 is adopted, the 

produced mean relative error, as shown in Table 5-1, reaches to about 9.54%.  

 

 

Figure 5-1 - Modeling results using empirical equations in Case I 

 

The poor performance of the above relationships may be due to the following 

reasons: (1) a low water to cement ratio of only 0.35 is used in the production of 

RAC made with RAs of Case I; (2) crushed stone fines with a FM value of 3.28 

is used in this study, while river sand is generally adopted by most of the studies 

of others; (3) some other parameters, for example, the cement type used in this 

study may be different from that of the references. 

 

5.2.2 Modeling results of Case II 
 



 

 150 

A comparison between the predicted Ec values by the empirical equations and the 

actual ones in RAC of Case II is shown in Figure 5-2. Relative to the modeling 

results in Case I, the performance of the empirical equations in Case II is slightly 

better. However, the equations established by Dillmann (1998) and Dhir et al. 

(1999) still overestimate the Ec values, and most of the predicted results 

produced by Equation 5-3 are not satisfactory.  

 

 
Figure 5-2 - Modeling results using empirical equations in Case II 

 

Similar to the modeling results of Case I, Equation 5-1 still has the best 

predictions, and the average relative error is only 6.8%. Besides, the errors of 

most of the predictions are lower than 10%. 
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Figure 5-3 -Modeling results of empirical equations in Case III 

 

5.2.3 Modeling results of Case III 
 

Figure 5-3 shows that the performance of each empirical equation in predicting 

the elastic modulus of RAC in Case III. Similarly, Eqs.(5-2- 5-4) cannot prove 

their applicability in modeling the Ec values of RAC made with RAs containing 

added masonries. But the predictions of Equation 5-1 can be nearly comparable 

with the actual tested values, and the average relative error the equation is only 

5.65%. 

 

Above all, most of the empirical equations proposed by one researcher cannot be 

used to predict the results of other researchers’ due to the diverse nature of RAs 

and the variations of some other parameters used in different studies.  
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5.3 REGRESSION ANALYSIS BETWEEN RAC PROPERTIES 
AND AGGREGATE CHARACTERISTICS 

 

5.3.1 Modeling elastic modulus using aggregate properties 
 

The Ec of concrete is also a function of the modulus of elasticity of the 

aggregates and the cement matrix, and their relative proportions used in the 

concrete. It is well known that the Ec of the RA used in RAC vary greatly. 

 

de Brito and Robles (2008) suggested that the Ec of RAC could be modeled by 

using the density or the Wa values of the mixed aggregates, as shown in Figure 

5-4. Through the collation of a large number of data from different sources and 

regression analyses, they modeled the ratio between the 28d Ec of RAC and that 

of the corresponding normal aggregate concrete (EBR/EBC) by correlation with 

the SGSSD and the Wa values of the RA, respectively. The proposed relationships 

are as follow:   

 

EBR/ EBC = -2.1506(1 - DBR/DBC) + 1 (5-5) 

EBR/ EBC = -0.0457(abBR/abBC- 1) + 1 (5-6) 

 

where BR and BC denote recycled aggregate and reference concrete, respectively; 
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DBR and DBC are the density of in RAC and the reference NAC, respectively; abBR 

and abBC are the water absorption of aggregates in RAC and the reference NAC, 

respectively.  

 

The predicted Ec values of some of the testing sets by regression analysis (using 

Equations 5-5 and 5-6) are listed in Table 5-4,and they are also compared with 

the actual test values. The application of Equation 5-5 and Equation 5-6 in all the 

three Cases using the author’s data are also shown in Figures 6-5 (a) and (b), 

respectively. From the Figure, it can be noticed that large discrepancy is resulted 

by using the two equations to predict the Ec of RAC made with the added 

masonry. This is mainly attributed to the lower density and higher absorption 

values of the masonry (crushed bricks and tiles), when compared with those of 

recycled concrete aggregate.  

 

Table 5-4 - Modeling results of elastic modulus by using Eqs.(5-5) and (5-6) 

Mix 
Tested 

Ec(GPa) 

Predicted 

Ec(GPa) 

Relative 

error (%) Mix 
Tested 

Ec(GPa) 

Predicted 

Ec(GPa) 

Relative 

error (%) 

Eq.(5-5) Eq.(5-6) Eq.(5-5) Eq.(5-6) Eq.(5-5) Eq.(5-6) Eq.(5-5) Eq.(5-6) 

Case 

I 

27.43 28.23 25.21 2.93 21.4 

Case 

III 

28.42 20.17 9.95 29.01 64.98 

27.26 28.39 26.7 4.13 25.83 27.44 20.21 10.03 26.35 63.44 

27.02 28.7 26.46 6.24 30.64 27.09 20.24 10.11 25.28 62.7 

26.85 28.86 26.52 7.49 35.2 27.49 19.56 0.2 28.84 99.26 

26.79 29.02 26.44 8.32 39.23 25.46 19.6 0.33 23 98.7 

28.67 31.55 28.18 10.06 1.71 23.18 19.64 0.45 15.27 98.06 

30.9 31.73 29.84 2.67 3.43 29.58 29.61 29.13 0.09 1.53 
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30.98 32.08 29.57 3.56 4.54 26.78 28.82 27.89 7.61 4.15 

30 32.26 29.64 7.52 1.19 29.03 29.4 28.7 1.29 1.14 

28.48 32.43 29.55 13.88 3.76 27.1 28.41 27.03 4.82 0.26 

Ave. 
   

6.68 16.69 27 29.2 28.26 8.14 4.66 

      
26.69 27.98 26.13 4.84 2.09 

Case 

II 

20.85 26.1 23.39 25.18 12.19 24.42 28.99 27.81 18.7 13.9 

21.9 27.1 21.43 23.74 2.13 24.15 27.55 25.21 14.06 4.41 

20.49 28.1 21.22 37.14 3.56 27.39 29.42 28.86 7.4 5.36 

28.86 28.78 28.58 0.27 0.98 25.69 28.43 27.34 10.66 6.4 

24.46 26.94 26.16 10.16 6.97 26.72 29.22 28.58 9.37 6.97 

26.55 26.94 25.9 1.49 2.45 24.55 28.03 26.76 14.18 9.01 

29.42 30.41 30.19 3.36 2.63 30.94 21.3 10.51 31.17 66.04 

24.61 28.52 27.71 15.9 12.61 29.14 21.33 10.59 26.79 63.66 

28.5 28.52 27.44 0.08 3.72 28.08 21.37 10.67 23.91 62.01 

34.76 33.29 33.06 4.23 4.9 30.27 20.65 0.22 31.78 99.29 

29.52 31.25 30.37 5.87 2.87 28.05 20.69 0.35 26.23 98.75 

30.62 31.25 30.07 2.04 1.81 24.24 20.73 0.47 14.47 98.04 

25.18 24.97 24.79 0.84 1.55 30.35 32.92 32.39 8.47 6.72 

22.83 23.39 22.72 2.45 0.5 27.86 32.04 31.02 15.02 11.33 

21.5 23.39 22.49 8.79 4.6 30 32.7 31.91 8.99 6.37 

30.68 29.18 28.97 4.9 5.58 27.9 31.59 30.06 13.22 7.73 

25.91 27.31 26.52 5.42 2.36 28.26 32.47 31.42 14.88 11.19 

27.22 27.31 26.25 0.34 3.55 27.85 31.11 29.06 11.72 4.34 

33.42 32.42 32.19 2.99 3.68 26.14 32.23 30.93 23.31 18.32 

26.3 30.41 29.55 15.62 12.34 25.58 30.63 28.04 19.74 9.61 

27.94 30.41 29.26 8.83 4.71 30.13 32.71 32.09 8.57 6.5 

35.49 34.65 34.41 2.36 3.04 26.15 31.61 30.4 20.89 16.24 

29.92 32.53 31.61 8.73 5.65 28.87 32.5 31.78 12.56 10.09 

30.74 32.52 31.3 5.81 1.81 25.55 31.17 29.76 21.99 16.47 

Ave. 
   

8.19 4.42 Ave. 
   

16.18 32.21 
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(a) density (b) water absorption 

Figure 5-4 - Relationship between elastic modulus and aggregate performance (de 

Brito and Robles 2008) 

 

 
(a) Equation 5-5                           (b) Equation 5-6 

Figure 5-5 - The performance of Eq.(5-5) and Eq.(5-6) in modeling the elastic 

modulus of our data 

 

As shown in Table 5-4, the performance of Eq.(5-5) and Eq.(5-6) in modeling 

the Ec of Case I and Case II is also unstable. Good predictions can only be 

obtained when Equation 5-5, using the specific gravity of aggregate as a 

parameter, is applied to Case I with the mean relative error about 6.68%. 
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However, the error increases to about 8.19% when the relationship is used to 

predict the Ec values of Case II (with some prediction errors exceeding 25%). As 

regards Equation 5-6, the performance is just opposite. Although its mean error 

is only about 4.42% in modeling the Ec of Case II, its performance in Case I is 

poor, with an average relative error of 16.69%.  

 

  
(a) density (b) water absorption 

Figure 5-6 - Relationship between compressive strength and aggregate 

performance (de Brito and Robles 2008) 

 

5.3.2 Modeling compressive strength using aggregate properties 
 

Besides Ec, the fcu of RAC can also be predicted by established relationships, as 

shown in Figure 5-6, by de Brito and Robles (2008) based on the specific gravity 

and the water absorption values of the RA. The established relationships are as 

follows: 
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fcBR/ fcBC = -1.7693 (1 - DBR/DBC) + 1 (5-7) 

fcBR/ fcBC = -0.0308 (abBR/abBC- 1) + 1 (5-8) 

 

where BR and BC denote recycled aggregate and reference concrete, respectively; 

DBR and DBC are the density of in RAC and the reference NAC, respectively; abBR 

and abBC are the water absorption of aggregates in RAC and the reference NAC, 

respectively.  

 

  

(a) Equation 5-5 (b) Equation 5-6 

Figure 5-7 - Performance of Eq.(5-7) and Eq.(5-8) in modeling the compressive 

strength of our data 

 

Based on the three Cases, the comparison between the actual tested fcu values and 

the predicted ones produced by Eq.(5-7) and Eq.(5-8) is listed in Table 5-5.  
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Figure 5-7 gives the modeling results of Case I - Case III by Eq.(5-7) and 

Eq.(5-8). Similarly, the established relationships also perform poorly in modeling 

the fcu of RAC made with the added masonries as RA. Noticeably, both 

equations can produce good predictions when they are applied to Cases I-II. The 

average relative errors of Eq.(5-7) and Eq.(5-8) in predicting the fcu of Case I are 

about 6.87% and 7%, respectively. The errors can be further reduced to only 

5.83% and 5.54%, respectively, when the two Equations are used to model the fcu 

values of Case II. 

 

Above all, there are limitations on using the relationships based on the SG and 

Wa values of RA in modeling the fcu or Ec of RAC.  

 

Table 5-5 - Modeling results of the compressive strength by using Eq.(5-7) & 

Eq.(5-8) 

Mix 
Tested fcu 

(MPa) 

Predicted fcu 

(MPa) 

Relative 

error (%) 
Mix 

Tested fcu 

(MPa) 

Predicted fcu 

(MPa) 

Relative 

error (%) 

Eq.(5-7) Eq.(5-8) 
Eq.(5-7

) 

Eq.(5-8

) 
Eq.(5-7) Eq.(5-8) 

Eq.(5-7

) 

Eq.(5-8

) 

Case 

I 

59.4 62.39 59.31 5.03 0.15 

Case 

III 

54.4 39.89 29.96 26.67 44.92 

69.8 62.66 61.47 10.23 11.94 54.9 39.94 30.06 27.24 45.25 

67.8 63.23 61.12 6.75 9.85 52.5 39.99 30.15 23.82 42.57 

68.7 63.5 61.21 7.56 10.9 54.2 38.98 17.99 28.09 66.81 

62.1 63.79 61.09 2.71 1.63 52.3 39.04 18.14 25.36 65.31 

63 67.5 64.17 7.14 1.85 46.9 39.09 18.29 16.65 61 

76.3 67.79 66.5 11.15 12.84 50.3 49.06 48.73 2.47 3.12 

74.8 68.4 66.13 8.55 11.6 49.2 47.98 47.36 2.47 3.74 

72.7 68.7 66.22 5.5 8.91 48.4 48.78 48.25 0.79 0.3 
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66.3 69.01 66.09 4.09 0.31 44 47.43 46.4 7.79 5.45 

Ave. 
   

6.87 7 47.5 48.5 47.77 2.11 0.56 

      
42.4 46.85 45.4 10.5 7.08 

Case 

II 

35 32.76 32.92 6.4 5.95 46.7 48.22 47.27 3.25 1.22 

29.2 31.07 31.1 6.42 6.52 41.1 46.26 44.38 12.56 7.99 

27.7 31.07 30.91 12.18 11.57 49.1 48.8 48.43 0.61 1.36 

47.6 45.84 46.07 3.69 3.22 44.7 47.46 46.74 6.17 4.56 

42 43.46 43.51 3.48 3.59 50.7 48.54 48.12 4.27 5.08 

42.9 43.46 43.23 1.31 0.76 39.9 46.92 46.1 17.59 15.54 

60 58.54 58.82 2.43 1.97 59.9 44.37 33.32 25.93 44.37 

53.7 55.59 55.64 3.52 3.61 60 44.42 33.43 25.96 44.28 

53.2 55.59 55.29 4.49 3.93 57.6 44.48 33.53 22.78 41.79 

78.2 76.5 76.87 2.17 1.7 59.4 43.35 20 27.03 66.32 

71.2 72.69 72.75 2.09 2.18 57.6 43.41 20.18 24.63 64.97 

65.4 72.68 72.29 11.13 10.53 54.8 43.48 20.34 20.66 62.88 

39.8 37.41 37.59 6 5.54 53.6 52.08 51.74 2.83 3.47 

34 35.49 35.52 4.37 4.48 51.3 50.95 50.28 0.69 1.98 

28.4 35.49 35.3 24.95 24.28 54.1 51.79 51.23 4.26 5.3 

51.3 50.3 50.55 1.94 1.46 45.9 50.36 49.26 9.71 7.33 

47 47.69 47.74 1.47 1.58 54 51.5 50.72 4.64 6.08 

46.3 47.69 47.43 3.01 2.45 45.4 49.74 48.21 9.57 6.18 

67.7 66.15 66.46 2.29 1.83 50.5 51.19 50.19 1.37 0.62 

55.5 62.81 62.86 13.17 13.27 42.1 49.12 47.12 16.67 11.93 

58.6 62.81 62.47 7.18 6.6 54 51.81 51.42 4.05 4.78 

84.1 83.91 84.32 0.22 0.26 47.4 50.39 49.63 6.31 4.7 

74.3 79.73 79.8 7.31 7.4 52.8 51.53 51.1 2.4 3.23 

73.3 79.72 79.29 8.76 8.17 42 49.82 48.95 18.61 16.54 

Ave. 
   

5.83 5.54 Ave. 
   

12.4 21.63 

 

5.4 SUMMARY 

 

This chapter presents the comparison of the experimental test results of Ec and fcu 

of RAC made with RAs from different sources with the predicted results using 
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some established empirical relationships and regression analysis. The following 

conclusions can be drawn: 

 

• Due to the diverse nature of RAs and different parameters that might have 

been considered in different previous studies, the empirical equations, 

which express the Ec as functions of the corresponding fcu, cannot be used 

for RAC. 

 

• For the relationships proposed by de Brito and Robles which model the fcu 

or Ec of RAC by making reference to two RA characteristics (density and 

water absorption), the accuracy is limited. Also their uses require prior 

knowledge of information related to the reference normal concrete. 
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CHAPTER 6: FEASIBILITY STUDY ON THE USE OF 

ANN IN RAC 

 

6.1 INTRODUCTION 

 

In Chapter 2, the detailed basic knowledge of ANN and its application in 

concrete has been provided. It can be noticed that, although ANN has been 

widely adopted in many areas of normal concrete, such as properties prediction 

and mix design, currently it is mainly used in concrete made only with NA, and 

is rarely adopted in the concrete containing RA due to the complex composition 

of such aggregates. It is of interest to study whether ANN can be used in 

concrete made with RA as well.  

 

In this chapter, several groups of RAC data sets including 28d fcu and Ec values, 

collected from 5 different literatures (Koulouris 2005;Kou 2006; Dhir and Paine 

2007; Guan 2011; Kotrayothar 2012), are used as the sample data sets to 

construct respective ANN models according to the method described in Section 

2.4.3.The above literatures are selected mainly due to that these literatures 

contain large amounts of experimental data related to the RAC properties, 
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respectively, which are conductive to be used to conduct ANN models. For ease 

of expression, data from the above literatures are designated as K05, K06, D07, 

G11 and K12, respectively.  

 

In the first part, each model is constructed to predict the Ec of RAC based on the 

given fcu values. While in the last two parts, the Ec and fcu values of RAC are 

modeled, respectively, by using the mix proportions as input variables. The main 

objectives of this chapter are as follows: 

Ø To examine whether ANN is suitable for use in modeling the properties of RAC 

according to the traditional methods, 

Ø To explore the difference between the use of ANN in NAC and RAC, 

Ø To indicate the problems that need to be resolved to provide the constructed ANN 

model in RAC with generalization capacity.     

 

For each model, the dataset is randomly divided into three groups, acting as the 

training set, validation set and testing set, respectively. To provide the reliability 

of the modeling results, the ratio of the latter two sets to the total dataset is no 

less than 25%. The indexes like MAPE, R2 and RMS are used to assess the 

performance of networks. 
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6.2 MODELING THE ELASTIC MODULUS OF RAC BY 
USING THE CORRESPONDING COMPRESSIVE 
STRENGTH VALUES 
 

Various correlation relationships, including design codes and empirical equations, 

usually express Ec as a function of fcu. Similarly, by using ANN, Ec can also be 

modeled with only fcu values as input variable.  

 

 

Figure 6-1 - ANN model for EC with the fcu as input variable 

 

As shown in Figure 6-1, there are 3 layers in the constructed ANN model, with 1 

neuron in the input layer, 5 neurons in the hidden layer and 1 neuron in the 

output layer. The network architecture and parameters selected are as follows: 

Ø Number of input layer units = 1 

Ø Number of hidden layers = 1 
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Ø Number of hidden layer units = 5 

Ø Number of output layer units = 1 

Ø Momentum rate = 0.9 

Ø Learning rate = 0.01 

Ø Learning cycle=1000 

 
 

Table 6-1 - Performance of networks with compressive strength as input variable 

Sets Index K06 K12 K05 G11 D07 

Total No. 80 47 30 39 94 

Training 

Number 60 35 22 29 70 

R2 0.9955 0.9963 0.9937 0.9974 0.9973 

MAPE (%) 5.13 5.43 8.08 4.09 3.8 

RMS 1.9295 2.3034 1.5953 1.6025 1.2651 

Testing 

Number 10 6 4 5 12 

R2 0.9885 0.9929 0.987 0.9984 0.9979 

MAPE (%) 8.81 6.76 10.44 3.74 3.56 

RMS 3.0088 3.0337 2.4833 1.2574 1.0888 

Validation 

Number 10 6 4 5 12 

R2 0.9972 0.9909 0.9979 0.9984 0.9907 

MAPE (%) 4.85 8.07 5.94 3.38 7.14 

RMS 1.4757 3.3592 1.1333 1.2287 2.2396 

 

 

The detailed performance of all constructed ANN models, reflected by R2, RMS 

and MAPE, are shown in Table 6-1. Figures 6-2- 6-6 also show the performance 

of ANN using the respective data sources. 
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Figure 6-2 - A comparison between the predicted values and the tested ones of K06 

 

 

Figure 6-3 - A comparison between the predicted values and the tested ones of K12 

 

The approximation capability of ANN is proved, as shown in Table 6-1, with R2 

in the training set of each source over 0.993, and it may even close to 1 if 

appropriate hidden layers and neurons are selected. However, its performance in 

the testing and validation sets is not as well: for the dataset of Koulouries (K05), 

the MAPE index in the testing set exceeds 10%. The poor performance may be 
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attributed to the factors affecting the fcu and Ec of RAC may be not the same. 

Obviously, such high error in modeling the researchers’ respective datasets infers 

the models would be more unreliable if used to predict the data sets of other 

researchers. 

 

 

Figure 6-4 - A comparison between the predicted values and the tested ones of K05 

 

This can be also used to explain why some established regression relationships 

are unable to be generally applied, since good performance in the training set 

does not necessary imply similar performance in the testing set, especially in the 

case that the datasets adopted for verifying the relationships are collected from 

unrelated sources. Therefore, for the better prediction of the properties of RAC, it 

is necessary to use more factors, such as concrete mixes and aggregate 

characteristics, as the input variables to establish the ANN model. 
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Figure 6-5 - A comparison between the predicted values and the tested ones of G11 
 

 
Figure 6-6 - A comparison between the predicted values and the tested ones of D07 

 

6.3 MODELING THE ELASTIC MODULUS OF RAC BY 
USING THE MIXS AND AGGREGATE CHARACTERISTICS 
 

In this section, the datasets used are the same as in Section 6.2, but more factors 

that may affect the Ec of RAC, such as concrete mix proportions and aggregate 

characteristics, are used as the inputs of each of the model, as shown in Figure 
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6-7. Table 6-2lists some details of each dataset. 

 
Table 6-2 - Details of each dataset 

Source K06 K12 K05 G11 D07 

Concrete Mixes 

W-kg/m3 160-225 120-240 165-186 225 180-190 

C-kg/m3 260-410 300-600 180-411 385-750 214-311 

S-kg/m3 582-729 720 465-835 562-835 614-853 

NA-kg/m3 0-1140 0-1080 0-1270 0-940 0-1168 

RA-kg/m3 0-1107 0-1080 0-1260 0-840 0-1156 

FA-kg/m3 0-143.5 / / / / 

w/b 0.32-0.55 0.3-0.6 0.4-1.03 0.3-0.58 0.61-0.84 

A/b 3.02-4.67 3-6 4.14-10.98 1.75-4.61 5.11-9.17 

sp 0.37-0.41 0.4 0.27-0.43 0.4-0.5 0.39-0.43 

r(RA/NA)-% 0-100 0-100 0-100 0-100 0-100 

r(FA/b)-% 0-0.35 / / / / 

Characteristics of recycled aggregates 

Wa-(%) 3.77 2.68 5.2 4.34-5.96 3.5-28 

SGSSD-(g/cm3) 2.53 2.52 2.375 2.36-2.46 1.94-2.65 

ACV-(%) / 22.31 / 21.7-25 / 

TFV-(KN) 126 / / / / 

AIV-(%) / / / / 13-27 

LAV-(%) / / / 32.9-38.6 29-60 

Brick-(%) / / 3.17 / 0-100 

Impurity-(%) / / 4.1 / 0-0.7 

Some other parameters 

NA type Crushed granite   /           Un-crushed gravel Crushed granite/ 

Cement type OPC52.5 OPC OPC OPC 42.5N / 

Aggregate moisture air-dried SSD air-dried / / 

FM of Sand 2.11 / / / / 

Crushing method plant plant / plant / 

Hardened Properties 

fc-(MPa) 25.2-76.7 25.3-80.4 7.7-38.7 34.3-82.6 10-39.5 

Ec-(GPa) 22.2-38.7 26.1-51.8 5.5-28.8 27.8-35.2 13.5-22.5 

 / represents the feature of the 1st column is not used or introduced in the collected dataset. 
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Figure 6-7 - ANN models with the concrete mixes and aggregate characteristics as 

input variables 

 

For K06, crushed granite, river sand and OPC 52.5 were used to prepare NAC, 

with water-cement ratios ranged from 0.4 to 0.55. RA from a recycling plant was 

used to replace coarse aggregate by 0, 20, 50 and 100%, respectively, and Class 

F fly ash was adopted as a partial replacement or addition of cement in some 

mixes. Both standard water curing and steam curing were adopted. The 

maximum particle size of the coarse aggregate was 20 mm, and the use of RA 

was at an air-dried state. So the selected input variables for building the ANN 

model are the amounts (kg) of water, cement, fly ash, sand, NA and RA used in 1 

m3of concrete mixture, water to binder ratio, aggregate to binder ratio, the 

percentage of sand in the total aggregate, the replacement ratio of NA by RA, the 

ratio of fly ash to the total binder used and the curing method. 
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For the dataset of K12, the amount of sand used in all the mixes was kept 

constant at 720 kg/m3, RA with a maximum particle size of 20mm was used at a 

saturated surface dried condition, and OPC was adopted. The main parameters 

considered in this study were the RA replacement ratios, water to cement ratios 

and aggregate to cement ratios, which were in the ranges of 0-100 %, 0.35-0.6 

and 3-6, respectively. Therefore, only seven factors are selected as the inputs of 

the constructed ANN model, and they are: the amount (kg) of water, cement, NA 

and RA used water to cement ratio, aggregate to cement ratio, and the 

replacement ratio of NA by RA.  

 

For the dataset of K05, OPC - CEM I 42.5 N was used, un-crushed Thames 

valley gravel (5-20 mm) was used as the NA, RA, derived from C&D debris, was 

adopted to replace the NA by 0, 30, 50, 70 and 100%, respectively. Besides, 

air-entrainment was also adopted in some mixes. The corresponding water to 

cement ratios varied between 0.4 and 1.03. The inputs of ANN model for this 

dataset are: the quantity (kg) of water, cement, sand, NA and RA used, water to 

cement ratio, aggregate to cement ratio, the replacement ratio of NA by RA and 

whether or not the air-entrainment agent is added. 
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Table 6-3 - Networks performance with mixes and aggregate characteristics as 

input variables 

Sets Index Kou Kotrayothar Koulouries Guan Dhir and Paine 

Total No. 80 47 30 39 94 

Training  

Number 60 35 22 29 70 

R2 0.998 0.9983 0.9979 0.9994 0.9988 

MAPE (%) 3.26 3.19 5.53 2.1 2.84 

RMS 1.2585 1.5223 0.898 0.7736 0.8376 

Testing  

Number 10 6 4 5 12 

R2 0.9976 0.9993 0.9994 0.9989 0.9983 

MAPE (%) 3.7 2.05 2.98 3.28 3.8 

RMS 1.453 1.0054 0.5711 1.0761 1.0029 

Validation  

Number 10 6 4 5 12 

R2 0.996 0.9995 0.9985 0.9992 0.9966 

MAPE (%) 4.25 2 5.98 2.08 4.9 

RMS 1.9264 0.835 0.9504 0.8866 1.4285 

 

For the dataset of G11, concrete of three grades were designed with water to 

cement ratios of 0.3, 0.375 and 0.584, respectively. OPC - CEM I 42.5N, river 

sand and crushed granite were used. Besides, RA of 5-20 mm collected from four 

recycling plants was used to substitute crushed granite at 0, 20, 50 and 100% 

levels. As the amounts of water in all the mixes were kept at 225 kg/m3, the 

following inputs are adopted for the construction of the ANN model: the 

amounts (kg) of cement, sand, NA and RA used, water to cement ratio, aggregate 

to cement ratio, sand percentage in the total aggregate, replacement ratios of NA 

by RA and aggregate characteristics, such as Wa, SGSSD, LAAV and ACV. The 

use of many aggregate characteristics as inputs is to better represent the 
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properties of different aggregates. 

 

 

Figure 6-8 - A comparison between the predicted values and the tested ones of K06 

 

For the dataset of D07, the properties of cement, sand and NA were not 

introduced in detail. Many types of RA were used including three types of 

crushed old concrete, three types of crushed bricks, eight combinations of 

crushed bricks and crushed concrete, and three commercially sourced RAs. Two 

W/C ratios were used: 0.61 and 0.84. Besides, many replacement ratios of NA by 

RA were also examined. The input variables selected for the ANN model are the 

amounts of cement, sand, NA and RA used, W/C ratio, aggregate to cement ratio, 

sand percentage to the total aggregate, replacement ratios of NA by RA and 

aggregate characteristics, such as Wa, SGSSD, LAAV, AIV, brick and impurity 

contents. 
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The performance of all the constructed ANN models, as reflected by indexes 

such as R2, RMS and MAPE, are shown in Table 6-3. Figures 6-8-6-12 also 

show the performance of each model in the training, validation and testing sets, 

respectively. 

 

 
Figure 6-9 - A comparison between the predicted values and the tested ones of K12 

 

 

Figure 6-10 - A comparison between the predicted values and the tested ones of 

K05 
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By comparing Figures 6-8-6-12 with Figures 6-2-6-6, it can be noticed clearly 

that the Ec values are fitted more accurately when more variables related to the 

mixes and aggregate characteristics are used as the inputs of the ANN models. 

 

 

Figure 6-11 - A comparison between the predicted values and the tested ones of 

G11 

 

 
Figure 6-12 - A comparison between the predicted values and the tested ones of 

D07 

 

As shown in Table 6-3, the correlation coefficient R2 values are all higher than 
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0.9975 and 0.996 in the training and validation and testing sets, respectively. 

Noticeably, the MAPE values of the testing and validation sets are all very small, 

between 2% and 5.98%, and can be comparable with those in the training sets.  

 

The results show that ANN is able to model the Ec of RAC accurately when 

suitable input variables are selected, irrespective of the types and sources of RA 

used. 

 

6.4 MODELING THE COMPRESSIVE STRENGTH OF RAC 
BY USING THE MIXS AND AGGREGATE 
CHARACTERISTICS 

 

Similarly, the same input variables are used for the ANN models for the fcu of 

RAC as shown in Table 6-2. The performance of all ANN models, reflected by 

R2, RMS and MAPE, are shown in Table 6-4. Figures 6-13- 6-17 also indicate 

the performance of each model in the training, the validation and the testing sets, 

respectively. 
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Table 6-4 - Networks parameters and the performance 

Sets Index K06 K12 K05 G11 D07 

Total No. 104 47 30 39 94 

Training 

Number 78 35 22 29 70 

R2 0.9978 0.9978 0.9984 0.9981 0.9991 

MAPE (%) 3.92 4.27 4.61 3.57 2.91 

RMS 2.5377 1.9295 1.0732 2.5144 1.0738 

Testing 

Number 13 6 4 5 12 

R2 0.9982 0.9893 0.9974 0.9933 0.9976 

MAPE (%) 4.01 7.06 6.75 6.39 5.02 

RMS 1.9276 3.0088 1.2921 5.2856 1.7396 

Validation 

Number 13 6 4 5 12 

R2 0.9976 0.9976 0.999 0.9981 0.9978 

MAPE (%) 4.05 6.02 3.36 3.96 5.3 

RMS 2.5463 1.4757 1.0057 2.0396 1.8963 

 

 

Figure 6-13 - A comparison between the predicted values and the tested ones of 

K06 
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Figure 6-14 - A comparison between the predicted values and the tested ones of 

K12 

 

Similar to the performance of ANN models for Ec, the use of ANN models with 

suitable input variables is also able to produce accurate prediction of the fcu 

values. The correlation coefficients R2 all exceed 0.9933 in all datasets, and the 

MAPE values are range from 2.91% to 4.61%. Although the MAPE values of 

some datasets in the testing and validation sets are slightly higher, at about 6-7%, 

the errors are still be acceptable. 
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Figure 6-15 - A comparison between the predicted values and the tested ones of 

K05 

 

 

Figure 6-16 - A comparison between the predicted values and the tested ones of 

G11 
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Figure 6-17 - A comparison between the predicted values and the tested ones of 

D07 

 

6.5 LIMITATIONS 

 

Although the constructed ANN model for the dataset used in predicting the fcu or 

Ec of RAC performed well, it does not mean that the models have generalization 

abilities for other datasets due to the following reasons: 

Ø Only one source of RA was used in each of the dataset of Kou, Kotrayothar and 

Koulouries, so it may be unreliable when using the developed models to evaluate 

the properties of RAC made RAs from some other sources. As pointed out in the 

Chapter 2, the characteristics of NA and RAs (compositions, aggregate type, 

moisture state, graduation, maximum particle size of coarse aggregate, crushing 

method of RA, etc.) play important roles in affecting the properties of RAC. As 
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such, the accuracy of ANN model may be improved if some of these 

characteristics can be selected as the input variables.   

Ø For ANN model, one limitation is that the values of each input variable used for 

testing should be in the same ranges of that used for training. Accordingly, the 

predictions produced will be also in the ranges of the outputs of the training set. It 

can be noticed from Table 6-2 that the ranges of input variables in each dataset are 

not wide enough for generalization. 

Ø The special features of some datasets must be noticed. For K06, in addition to the 

traditional concrete mixes, fly ash was adopted as the replacement or addition of 

cement, and steam curing of the prepared concrete was used. Similarly, 

air-entraining agent, used in K05, was not adopted by the other datasets. In such 

cases, the applications of the constructed models may be limited. 

Ø The type of cement used in each dataset is not always the same. The cement type 

used in K06 was OPC 52.5, while that used in the other literatures was OPC 42.5N. 

The predictions of the ANN model may be poor if the difference in cement type is 

ignored.  

 

6.6 SUMMARY 

 

Through collecting data from 5 published literatures, five ANN models are 
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established in this chapter to predict the fcu and Ec of RAC for each selected 

dataset. The following conclusions can be drawn: 

 

• When using fcu of RAC as the only input variable to model the 

corresponding elastic modulus through ANN, the approximation capability 

of ANN is proved, with R2 in the training set of each dataset over 0.993. 

However, the performance in the testing and validation sets is not as good, 

and some MAPE values in the testing set even exceed 10%. This is mainly 

due to that the factors affect the fcu and Ec of RAC may be not the same, and 

the relative importance of such factors play on the two properties are also 

different. 

 

• When more parameters related to the mix proportions and aggregate 

characteristics are included as the input variables, the constructed models 

can produce better predictions for both the Ec and fcu. For models on Ec, the 

R2 values are all higher than 0.9975 and 0.996 in the training set and 

validation and testing sets, respectively, and the MAPE values of all models 

in the testing and validation sets are very small, between 2% and 5.98%. For 

models on fcu, the R2 values exceed 0.9933 in all data sets, and the MAPE 

values range from 2.91% to 4.61% in the training set. Although the MAPE 
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values of some datasets in the testing and validation sets are slightly higher, 

about 6% -7%, the values are still acceptable. 

 

• When using ANN to train and test data from the same source, the 

constructed model is capable of modeling the Ec or fcu of RAC when 

suitable input variables are selected, no matter how many types of RAs are 

used, whether mineral or chemical admixtures are adopted in the mixtures, 

and which curing method is adopted. 

 

• However, it is difficult for a specific ANN model developed from a 

specified dataset to produce good predictions for other datasets due to the 

limitations of ANN and the dataset itself. 
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CHAPTER 7: USING ANN FOR PREDICTING THE 

MECHAINCAL PROPERTIES OF RAC MADE WITH 

RAs DERIVED FROM DIFFERENT SOURCES 

 

7.1 INTRODUCTION 

 

The better ability of ANN in fitting the mechanical properties of RAC relative to 

that of the regression analysis has been demonstrated in the last chapter. When 

the data used for training and testing of the ANN models are from a same source, 

the networks are able to model the Ec or fcu of RAC quite accurately.  

 

But as stated in Chapter6, the main limitation of the developed ANN model is 

only a few factors have been taken into account, and the range of the values of 

the factor is also narrow. A systematic combination of dataset from different 

literatures through ANN may be able to solve this problem, since the use of 

networks can learn the influence of inputs to the output from each respective 

dataset. 

 

This chapter tries to establish improved ANN models with generalization 
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abilities, similar to an expert system, in predicting the fcu and Ec of RAC. For 

each model, a large amount of data is collected from different published 

literatures, in which the factors that will be selected as the input variables are 

indicated. The improved ANN models are then applied to predict the 

corresponding properties of RAC prepared in Chapter 4. The predicted results 

are also compared with the experimental test results. Sensitivity analysis is 

finally conducted to examine the influence of each input variable on the fcu/Ec of 

RAC after the construction of the models. 

 

 
Figure 7-1 - Flow chart of development of ANN models 
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7.2 THE ANN MODEL FOR ELASTIC MODULUS OF RAC 

 

The flow chart describing the development of the ANN models in this chapter is 

shown in Figure 7-1, Based on the development work described in Chapters 4-6, 

the types and number of input variables for the models have been determined and 

are given in Table 7-1.  

 

Table 7-1 - Ranges of variables of data sets in the constructed ANN models  

Factors 

Input and 

output 

Variables (Unit) 

Data used in 

ANN16-Ec 

Min. 
Max

. 

Mix proportions 

(5 variables) 

C (kg/m3) 180 750 

W/C 0.3 1.03 

A/C 1.75 
10.9

8 

Sp 0.18 0.57 

r(%) 0 100 

Characteristic of coarse aggregate 

(3 variables) 

Wa (%) 0.26 28 

SGSSD (g/cm3) 1.44 2.79 

DCA (mm) 16 32 

Constituents of recycled coarse aggregate 

(2 variables) 

δ (%) 0 6 

m (%) 0 100 

Type and preparation methods of coarse 

aggregate 

(3 variables) 

k 1 4 

TNA 0 3 

TRA 0 3 

Cement type 

(2 variables) 

SC 0.2 0.25 

GC 32.5 52.5 

Specimen size (1 variable) CS 1 1.05 

Output value(1 variable for each model) 
  

28 day elastic modulus Ec(GPa) 13.5 43.7 
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It should be noted that there are still some other factors that may affect the Ec or 

fcu of RAC, such as mixing methods, and the fineness modulus of sand, etc. 

However, as few literatures have reported data with all these factors, the 

inclusion of such factors into the input variables will significantly reduce the 

amount of data that can be adopted in the ANN models. Therefore, they are 

ignored in this study. 

 

7.2.1 The selection of input and output variables 
 

For predicting the Ec of RAC using ANN models, an appropriate selection of 

input variables is essential. As some of the factors that may affect the Ec of 

concrete are qualitative indexes that are not suitable to be used directly in ANN, 

a transformation of such qualitative indexes into quantitative ones is necessary. 

As can be seen in Table 7-1, the input and output variables, together with the 

detailed description of how to convert the qualitative factors into the required 

ones are described.  

 

Mix proportions (5 variables) 

The amounts of different constituents, such as W, C, fine and coarse aggregates 

contents are undoubtedly the main factors affecting the Ec of the concrete. In this 
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Chapter, C, W/C, A/C, Sp and r are selected as the factors for mix proportions. 

 

Aggregate characteristics (8 variables) 

(1) Characteristic of coarse aggregate (3 variables) 

The characteristics of coarse aggregates are very important, such as maximum 

particle size (DCA), SGSSD and Wa values, which affect the RAC strength. As the 

sources and crushing processes from which the RAs are obtained could be quite 

different, the properties of the coarse aggregates used vary greatly.  

 

In this study, the SGSSD and Wa values of the mixed coarse aggregate are 

calculated by Eq. (7-1) - Eq. (7-3). 

 

r = (MRA/SGRA) /(MRA/SGRA + MNA/SGNA) (7-1) 

SGCA = [SGRA × r + SGNA×(100-r)] /100 (7-2) 

Wa= [WaRA× r + WaNA×(100-r)] /100 (7-3) 

 

where r (replacement ratio, %) is the volume fraction of coarse RA in RAC; MRA 

and MNA are the quantities (kg/m3) of coarse RA and NA in RAC, respectively; 

SGCA, SGNA and SGRA (g/cm3) are saturated surface dry specific gravity of the 

mixed coarse aggregates, natural coarse aggregates and recycled coarse 
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aggregates, respectively; Wa, WaNA and WaRA are the water absorption values (%) 

of the mixed coarse aggregates, natural coarse aggregates and recycled coarse 

aggregates, respectively. 

 

(2) Constituents of recycled coarse aggregate (2 variables) 

Also, RA produced from old concrete test specimens are generally 100% crushed 

concrete, while RA obtained from old buildings or old pavement usually contain 

small amounts of soft soils, natural stones, clay bricks, and other impurities like 

paper, wood, glass, tiles and metals (Poon et al. 2004). A number of studies 

(Agrela et al. 2011; Yang et al. 2011) have been done on assessing the effect of 

mixed recycled aggregates on the properties of RAC and the results suggested a 

higher level of masonry content in RA can be allowed for concrete applications 

but the possible adverse effect of the impurities on the properties of RAC, 

especially the durability, should not be ignored (Chen et al. 2003; Poon and Chan 

2007; Debieb et al. 2010). Therefore, the calculation of masonry and impurity 

content of coarse aggregate used in ANN are as Equations 7-4 and 7-5, 

respectively. 

 

m= r × mRA/100 (7-4) 
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δ = r × δRA/100 (7-5) 

 

where m and mRA are masonry content of coarse aggregate and RA in RAC, 

respectively; δ and δRA are impurity content of coarse aggregate and RA in RAC, 

respectively. 

 

(3) Type and preparation methods of coarse aggregate (3 variables) 

The data used in the training set of the ANN models are collected from published 

literature based on the results of other studies. The types and processing methods 

of the RAs used in these past studies will affect their properties (e.g. moisture 

states, level of contamination, % of adhered mortar etc.). Zega et al. (2009) 

indicated that the type of NA used in the old concrete played an important role in 

affecting the properties of RA, and the importance of which, sometimes is even 

higher than the effect of the W/C of the virgin concrete. Besides, the influence of 

the parent concrete of RA (Padmini et al. 2009) and crushing process (Etxeberria 

et al. 2007a) on RA also should not be overlooked. The moisture states (oven dry, 

air dry or SSD) of the RA also should be taken into account (Gunaydın and 

Dogan 2004). In this study, NA type, RA type and moisture states of coarse 

aggregate are selected as the input variables. Indexing this non-quantitative 

parameters are illustrated as follows: 
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For NA type, TNA is a coefficient depends on the quality (Mehta and 

Monteiro2006) and quantity of NA used in RAC: 

Ø 0 = no NA is used; 

Ø 1 = sandstone or gravel is used as NA; 

Ø 2 = limestone or dololite stone is used as NA; 

Ø 3 = granite is used as NA. 

 

For RA type, TRA is a coefficient depends on the crushing process and quantity of 

RA used in RAC: 

Ø 0 = no RA is used; 

Ø 1 = demolition waste collected from recycling plants, where several crushing 

processes are generally adopted, is used as RA; 

Ø 2 = demolition waste crushed by hammer or simple crusher in laboratory is used as 

RA; 

Ø 3 = old concrete specimen crushed by hammer or simple crusher in laboratory is 

used as RA. 

 

For moisture condition, k is a coefficient represents the moisture state of the 
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coarse aggregate: 

Ø 1 = coarse aggregate is used in oven dry condition when mixed; 

Ø 2 = coarse aggregate is used in air dry condition without pre-wetted when mixed; 

Ø 3 = coarse aggregate is used in air dry condition with pre-wetted for a few minutes 

when mixed; 

Ø 4 = coarse aggregate is pre-wetted for 24h to SSD or wet condition when mixed; 

 

For example, for RAC made with 50% crushed granite replaced by RA in dry 

condition, and the RA is crushed from old concrete cube by hammer, the input 

data of TNA, TRA and k in ANN model are 3, 3 and 1, respectively. 

 

Cement type (2 variables) 

The type of cement used also plays an important part in affecting the mechanical 

properties of RAC (Mas et al. 2012). In this study, the cement type used in the 

concrete mixes of the data sets of the ANN model is transformed into two 

quantitative variables as follows: 

 

(1) GC is a coefficient depends on the strength grade of cement used in RAC: 

Ø 32.5 = CEM 32.5; 
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Ø 42.5 = CEM 42.5; 

Ø 52.5 = CEM 52.5. 

 

(2) SC is a coefficient according to the rate of hydration of the cement used in 

RAC (Jankovic et al. 2011): 

Ø 0.2 = rapid hardening high strength cements (R), such as CEM 42.5R and CEM 

52.5; 

Ø 0.25 = normal and rapid hardening cements (N), such as CEM 32.5R and CEM 

42.5; 

 

For example, for RAC made with CEM 42.5R as cement, the input data of GC 

and SC in ANN model are 42.5 and 0.2, respectively.  

 

Specimen size (1 variable) 

Taking into account that different researchers used specimens of different sizes 

(viz. 100×200mm and 150×300mm cylinders), the influence of the size of the 

specimens should be considered (Baalbaki et al. 1992). The corresponding 

quantitative variables (CS) used in the ANN are as follows: 

Ø 1 = 100 × 200 mm cylinders are used to test the Ec values; 
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Ø 1.05 = 150 × 300 mm cylinders are used to test the Ec values. 

 

Output parameter 

Elastic modulus: The 28-day Ec values used in the training set are taken from the 

published sources as mentioned earlier.  

 

7.2.2 Data collection 
 

Although thousands of data related to the Ec of RAC are collected from 

published literatures, only part of them can be adopted as the dataset to construct 

ANN model, since the information of some factors, selected as the inputs of 

networks, may be not available in these literatures.  

 

According to the input variables determined in Section 7.2.1, a total 324 sets of 

experimental data from 21 international published literatures (de Juan and 

Gutierrez2004; Koulouris2005; Kou 2006; Dhir and Paine 2007; Hu 2007; 

Casuccio et al. 2008; Kou and Poon 2008 & 2011; Yanget al.2008; Ahmed 2009; 

Bassan et al. 2009; Cabo et al. 2009; Gomez-Soberon 2009; Zega and Di Maio 

2009; Belen et al. 2011a & 2011b; Guan 2011; Obispo 2011; Rao et al. 2011; 

Safiuddin et al. 2011; Vieira et al. 2011) are adopted as the sample data, among 
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which 224, 50 and 50 datasets are used for training, testing and validation, 

respectively. Besides, the author’s own experimental results (see Chapter 4: 

Cases I- III) are used as cases to test the generalization capacity of the 

constructed model. The performance of networks model in Cases I- III is also 

compared with that of the traditional regression analysis, respectively. 

 

7.2.3 Construction of the ANN model 
 

The BPNN, adopted in this research, has 16 neurons (variables) in the input layer 

and one unit in the output layer as illustrated in Figure 7-2. The values of 

network parameters considered in this approach are as follows: number of hidden 

layers = 0, 1, and 2; number of hidden neurons = 5-50; learning rate = 0.01, 0.1, 

0.3, 0.5, 0.7, 0.9, 1.0, and 2.0; momentum factor = 0.0, 0.3, 0.5, 0.7, 0.9 and 1; 

and learning cycles = 500, 1000, 5000, 10000, 15000 and 20000 (each cycle 

covers the entire database available for training).  
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Figure 7-2-The constructed ANN model (ANN16-Ec) for elastic modulus 

 

Based on the error of integral testing and validation sets after a series of trials, 

the best network architecture and parameters that maximize the R2 values of the 

testing data are as follows: 

Ø Number of input layer units = 16 

Ø Number of hidden layers = 1 

Ø Number of hidden layer units = 40 

Ø Number of output layer units = 1 

Ø Momentum rate = 0.9 

Ø Learning rate = 0.01 

Ø Learning cycle=15000  

 

7.2.4 Results and discussion 
 

The performance of ANN16-Ec, reflected by indexes likeR2, RMS and MAPE, is 
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shown in Table 7-2. The indexes in the Table, as well as the plot of predicted vs 

actual values shown Figure 7-3 all demonstrate that ANN16-Ec is capable of 

predicting the Ec values adequately. In addition, Table 7-2 also shows the 

application of the constructed ANN16-Ec to Case I-Case III can also produce 

good predictions with MAPE values between 4.65% and 7.13%, while the 

correlation coefficient R2 are in the range of 0.9904- 0.995. 

 

  

Figure 7-3 - The performance of ANN16-Ec 

 

Table 7-2- Performance of ANN16-Ecin all sets and Cases 

Sets R2 RMS MAPE (%) 

Training 0.9966 1.537 4.152 

Testing 0.992 2.311 5.88 

Validation 0.9918 2.346 6.574 

Case I 0.995 1.9603 4.65 

Case II 0.9923 2.3585 5.86 

Case III 0.9904 2.2365 7.13 
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Table 7-3- Predicted results of ANN16-Ec in Case I 

 

Experimental results Predicted results 

Ec (GPa) SD (GPa) COV (%) E'c(GPa) Error (%) 

Case I 

32.3 1.98 6.13 36.78 13.88 

26.18 1.4 5.12 25.26 3.52 

27.26 0.3 1.11 26.36 3.3 

27.05 0.97 3.59 26.22 3.06 

26.85 1.38 5.14 26.29 2.08 

26.8 0.03 0.1 26.25 2.06 

Average 
  

3.53 
 

4.65 

 

A detailed comparison between the predictive values and the experimental ones 

for Case I-Case III are as shown in Table7-3- Table 7-5. It can be noticed that 

most of the predictions have an error lower than 10%. Relative to the coefficient 

of variations (COV) of the experimental test results, the MAPE values of the 

predictions by ANN are just slightly higher, about 1.12, 0.82 and 2.77%, 

respectively. The MAPE value of 7.13% for Case III is slightly higher, and it 

may be mainly due to the lack of sufficient data related to the RA containing 

added masonries in the training set of the networks. 
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Table 7-4- Predicted results of ANN16-Ecin Case II 

 

Experimental results Predicted results 

Ec(GPa) SD (GPa) COV (%) E'c (GPa) Error (%) 

Case II 

25.1 0.62 3.07 24.44 2.64 

20.85 0.4 2.42 21.66 3.86 

21.9 0.52 2.39 20.29 7.35 

20.49 2.89 15.68 20.88 1.91 

30.68 0.41 1.63 29.86 2.68 

28.86 0.6 2.07 24.69 14.46 

24.46 0.78 3.18 22.88 6.44 

26.55 0.09 0.35 23.81 10.32 

32.36 0.38 1.16 33.39 3.18 

29.42 5.01 19.53 27.49 6.55 

24.61 1.24 5.03 25.85 5.02 

28.5 4.22 16.54 27.19 4.58 

35.43 1.36 3.96 35.8 1.05 

34.76 0.17 0.49 30.13 13.31 

29.52 0.27 0.91 28.20 4.49 

30.62 0.69 2.21 29.93 2.26 

Average 
  

5.04 
 

5.63 

 

Application of ANN16-Ec to Case I 

As shown in Figure 7-4, both the predicted and experimental results indicate that 

the Ec values of all RAC are much lower than that of the NAC. The chart 

comparison between the predicted results and the tested ones of Case I is shown 

in Figure 7-4. Among all the five recycled concrete mixtures, the largest and 

lowest predictions by ANN16-fcare RC1 and RC2, respectively, which also match 

the experimental results. 
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Application of ANN16-Ec to Case II 

 

Table 7-5- Predicted results of ANN16-Ec in Case III 

 

Experimental results Predicted results 

Ec (GPa) SD (GPa) COV (%) E'c (GPa) Error (%) 

Case III 

31.51 3.87 14.29 31.09 1.32 

30.94 0.25 0.87 28.62 7.5 

29.14 4.83 16.18 28.26 3.02 

27.09 0.29 1.07 27.9 2.98 

29.54 2.9 9.81 28.48 3.57 

27.5 1.1 4 27.99 1.78 

23.18 0.95 4.09 27.49 18.59 

30.45 1.62 4.82 31.17 2.36 

29.58 0.76 2.5 27.72 6.28 

26.78 0.81 3.04 24.59 8.16 

29.03 0.47 1.61 25.68 11.55 

27.1 0.34 1.21 23.4 13.66 

27 0.57 2.12 25.54 5.4 

26.69 0.2 0.74 22.55 15.5 

24.42 2.38 9.73 25.36 3.84 

24.15 0.45 1.85 21.38 11.46 

27.39 0.09 0.3 25.84 5.67 

25.69 0.34 1.3 23.6 8.15 

26.72 0.57 2.08 25.71 3.77 

24.55 1.35 5.49 22.60 7.96 

Average 
  

4.36 
 

7.13 

 

The detailed comparison of the predicted and the tested results in Case II is 

shown in Figure 7-5. According to the predictions, under the condition of the 

same W/C, the NAC has the highest Ec, followed by recycled concrete made 

with RA6 and RA8, while the Ec values of concrete made with RA7 are the 
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lowest. The trends are quite similar to the experimental results except for the C30 

concrete. The test results show that the Ec of RAC made with RA7 is the largest 

when using the three types of RAs to fully replace NA to produce C30 concrete, 

although RA7 is regarded as the weakest among all the three RAs examined. 

This may be due to the strength of aggregate has little influence on the properties 

of concrete of lower strength. 

 

Besides, the predicted elastic modulus of all concrete mixtures, prepared by 

either NA or RAs, increase gradually with the reduction of W/C. The prediction 

is also consistent with the experimental test results.  

 

 

Figure 7-4 - A comparison of the predictions by ANN16-Ec with the test results in 

Case I 
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Figure 7-5 - A comparison of the predictions by ANN16-Ec with the test results in 

Case II 

 

 
Figure 7-6 - Ec-value predictions of ANN16-Ec for NAC made with added masonry 

 

Application of ANN16-Ec to Case III 

For the concrete mixtures containing small amounts of crushed clay bricks or 

tiles, the comparisons of the predicted Ec values and the experimental results are 

shown in Figure 7-6 to Figure 7-8.   
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According to the predictions, a general trend of reduction in Ec Values with the 

increase of the masonry percentage can be noticed from all the three Figures. The 

trend is also verified by the experimental results. 

 

 
Figure 7-7 - Ec-value predictions of ANN16-Ec for RAC made with crushed clay 

bricks 

 

 
Figure 7-8 - Ec-value predictions of ANN16-Ec for RAC made with crushed tiles 
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Above all, the constructed ANN model for Ec (ANN16-Ec) is not only able to 

produce good predictions in the testing and validation sets, but also be capable of 

applying to the Cases of our own experimental data. Relative to the predicted 

results based on the traditional regression analysis, which were discussed in the 

Chapter 5, steady and accuracy are proved to be the significant characteristics of 

ANN model. 

 

7.3 THE ANN MODEL FOR COMPRESSIVE STRENGTH OF 
RAC 

 

7.3.1 The selection of input and output variables 

 

To ease analysis, the same input variables as those for Ec prediction are selected 

for constructing the networks model of fcu. However, it should be noticed that CS 

used in the networks for fcu are as follows: 

Ø 1 = 100mm cubes are used to test the fcuvalues; 

Ø 0.95 = 150mmcubes are used to test the fcuvalues. 

 

The ranges of the input and output variables of the model are shown in Table 

7-6. 
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Table 7-6 - Ranges of variables of data sets in the constructed ANN models 

Factors 

Input and 

output  

Variables (Unit) 

Data used in 

ANN16-Ec 

Min. 
Max

. 

Mix proportions 

(5 variables) 

C (kg/m3) 250 750 

W/C 0.248 
0.74

5 

A/C 1.752 7.86 

Sp 0.286 
0.57

6 

r(%) 0 100 

Characteristic of coarse aggregate 

(3 variables) 

Wa (%) 0.3 28 

SGSSD (g/cm3) 1.926 
2.72

5 

DCA (mm) 10 32 

Constituents of recycled coarse aggregate 

(2 variables) 

δ (%) 0 10.4 

m (%) 0 30 

Type and preparation methods of coarse 

aggregate 

(3 variables) 

k 1 4 

TN 0 3 

TR 0 3 

Cement type 

(2 variables) 

SC 0.2 0.25 

GC 32.5 52.5 

Specimen size (1 variable) CS 0.95 1 

Output value(1 variable) 
  

28 day compressive strength fcu(MPa) 23 100 

 

7.3.2 Data collection 

 

According to the input variables determined in Section 7.3.1, a total of 409 sets 

of experimental data from 23 international published literatures (Ravindrarajah 

and Tam 1985; Barra and Vazquez 1998; de Pauw and Thomas 1998; Knights 
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1998; Dhir et al. 1999; Goncalves et al. 2004; Poon et al. 2004; Kou 2006; 

Cachim 2007; Dhir and Paine 2007; Ahmed 2009; Kou and Poon 2009; Padmini 

et al. 2009; Rashid et al. 2009; Zhou et al. 2009; Corinaldesi 2010 & 2011; 

Meddah et al. 2010; Belen et al. 2011a & 2011b; Guan 2011; Vieira et al. 2011; 

Kotrayothar 2012) are adopted as the sample data, among which 309, 50 and 50 

data are used for training, testing and validation, respectively. Besides, the 

author’s own experimental results (See Chapter 4: Cases I- III) are used as cases 

to test the generalization capacity of the constructed model. 

 

 

Figure 7-9 - The constructed ANN model (ANN16-fcu) for compressive strength 

 

7.3.3 Construction of the ANN model 
 

As illustrated in Figure 7-9, the constructed ANN model for fcu also has 16 

neurons (variables) in the input layer and one unit in the output layer. The 

network architecture and parameters are also chosen as follows. 
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Ø Number of input layer units = 16 

Ø Number of hidden layers = 1 

Ø Number of hidden layer units = 40 

Ø Number of output layer units = 1 

Ø Momentum rate = 0.9 

Ø Learning rate = 0.01 

Ø Learning cycle=15000  

 

7.3.4 Results and discussion 

 

Table 7-7 - Performance of ANN16-fcu 

Sets R2 RMS MAPE (%) 

Training 0.9955 3.14 5.518 

Testing 0.9912 4.334 6.558 

Validation 0.9925 4.048 6.562 

Case I 0.9969 3.7214 5.51 

Case II 0.9932 3.7214 5.66 

Case III 0.9979 2.2484 3.51 

 

The performance of ANN16-fcu can be seen in Table 7-7 and Figure 7-10. Similar 

to ANN16-Ec, ANN16-fcu also has good fitting in the training, testing and 

validation sets, with R2 values of 0.9955, 0.9912 and 0.9925, respectively. 

Additionally, the application of ANN16-fcu to the researcher’s own experimental 

data (Case I - Case III) all has satisfactory predictions, as shown in Table 7-7. 

Compared with the performance of ANN16-fcu in the training set, lower MAPE 
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and higher R2 values are produced when the model is applied to Case I - Case III. 

This further proves the model’s generalized capacity. 

 

  

Figure 7-10 - The performance of ANN16-fcu 

     

Application of ANN16-fc to Case I 

The comparison between the predicted results and the tested ones of Case I is 

shown in Table 7-8 and Figure 7-11. Similar trends are noticed from the 

predicted and actual fcu values. Among the five RAC mixtures, RC1 and RC2 

have the largest and lowest predicted fcu values, respectively. This is also verified 

by the experimental results. 
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Table7-8- Predicted results of ANN16-fcu in Case I 

 

Experimental results Predicted results 

fcu (MPa) SD (MPa) COV (%) f'cu (MPa) Error (%) 

Case I 

69.6 2.62 3.76 74.26 6.69 

59.4 2.07 3.48 64.15 8.00 

69.8 0.68 0.97 66.13 5.26 

67.8 1.63 2.4 65.56 3.31 

68.7 1.27 1.85 65.55 4.58 

62.1 1.86 3 65.32 5.19 

Average 
  

2.58 
 

5.51 

 

Table 7-9 - Predicted results of ANN16-fcu in Case II 

 

Experimental results Predicted results 

fcu (MPa) SD (MPa) COV (%) f'cu(MPa) Error(%) 

Case II 

34.5 0.9 2.98 35.44 2.71 

35 0.18 0.65 35.81 2.30 

29.2 2.11 7.24 32.69 11.96 

27.7 3.31 12.92 31.07 12.15 

48.3 2.39 4.94 48.36 0.13 

47.6 0.55 1.17 45.64 4.13 

42 1.06 2.53 43.84 4.37 

42.9 1.2 2.81 42.28 1.45 

61.6 1.36 2.21 62.47 1.41 

60 2.46 4.11 52.17 13.05 

53.7 2.02 3.76 51.35 4.38 

53.2 1.97 3.71 49.87 6.26 

80.5 2.37 2.95 78.66 2.29 

78.2 4.18 5.37 64.48 17.54 

71.2 0.28 0.4 67.17 5.66 

65.4 0.78 1.19 64.93 0.72 

Average 
  

3.68 
 

5.66 

 

The predicted fcu values of RAC are all lower than that of the NAC. It is slightly 
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different from the experimental results that the strength values of RAC made 

with high quality RA are comparable with that of the NAC. The differences may 

be due to the lack of data related to high strength concrete in constructing the 

networks model of ANN16-fcu. 

 

Table 7-10 - Predicted results of ANN16-fcu in Case III 

 

Experimental results Predicted results 

fcu (MPa) SD (MPa) COV (%) f'cu(MPa) Error(%) 

Case III 

54.4 1.66 3.05 53.15 2.30 

54.4 1.01 1.86 52.37 3.73 

54.9 0.51 0.93 51.57 6.06 

52.5 2.87 5.47 51.19 2.50 

54.2 2.39 4.41 52.47 3.20 

52.3 1.35 2.58 51.73 1.09 

46.9 2.52 5.37 51.33 9.45 

50.2 1.83 3.8 53.36 6.30 

50.3 0.55 1.1 49.27 8.02 

49.2 0.25 0.5 45.80 6.91 

48.4 0.31 0.64 48.83 0.88 

44 0.79 1.83 44.73 1.66 

47.5 0.26 0.54 48.16 1.40 

42.4 2.64 6.88 43.71 3.09 

46.7 1.88 3.79 47.12 0.90 

41.1 0.72 1.75 42.21 2.71 

49.1 1.91 3.89 48.44 1.34 

44.7 1.36 3.04 43.71 2.21 

50.7 2.03 4.01 47.53 6.24 

39.9 0.63 1.58 42.37 6.19 

Average 
  

2.85 
 

3.51 

  

Application of ANN16-fcu to Case II 
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Figure 7-12 gives the detailed comparison of the predicted and the tested results 

in Case II. The errors of most of the predictions are in the ranges of the standard 

deviation (SD). The situation is more obvious for the predictions of NAC, as 

shown in Table 7-9. 

 

As shown in the Figure, it is noted that with the decrease in W/C, the predicted 

fcu values of all the concrete mixtures, prepared by either NA or RAs, increase 

gradually. The predictions are consistent with the trend of the experimental test 

values. The predictions of C30 concrete are generally slightly lower than the test 

results, and the increase of the predicted values for RAC is slower than that NAC 

with the increase of the target strength. The predicted strength of C80 concrete 

made with NA2 and RAs are lower than the experimental tested values. This can 

be also attributed to the lack of data related to high strength concrete in 

constructing the networks model ANN16-fcu. 
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Figure 7-11 - A comparison of the predictions by ANN16-fcu with the test results in 

Case I 

 

Application of ANN16-fc to Case III 

The performances of the networks in Case III (Table 7-10) are shown in Figure 

7-13 - Figure 7-15. For NAC made with 0-15% NA replaced by crushed clay 

bricks or tiles, a reduction of compressive strength with the increase of the 

replacement ratio can be noticed in Figure 7-13. The general trend is similar to 

those of the experimental results. 
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Figure 7-12 - A comparison of the predictions by ANN16-fcu with the test results in 

Case II 

 

 
Figure 7-13 - fcu predictions by ANN16-fcu for NAC made with added masonry 
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Figure 7-14 - fcu predictions by ANN16-fcu for RAC made with crushed clay bricks 

 

For RAC made with RA partially replaced by crushed clay bricks or tiles, as 

shown in Figure 7-14 and Figure 7-15, respectively, the predicted results show a 

reduction in fcu of RAC with an increase of the replacement ratio. The reduction 

is more obvious when 100% RA is used as the coarse aggregate. These predicted 

trend matches well with the experimental results.  

 

In summary, similar to ANN16-Ec for elastic modulus, ANN16-fcu can also 

perform well in predicting the fcu values of all the collected datasets and the 

author’s own experimental data in the Cases.  
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Figure 7-15 - fcu predictions by ANN16-fcu for RAC made with crushed tiles 

 

7.4 SENSITIVITY ANALYSIS 

 

7.4.1 Introduction 
 

Following the review of literatures in Section 2.4.4, sensitivity analyses are 

conducted to determine the best combination of factors for each model. As there 

are two input variables used to represent the characteristic of cement type, so the 

two variables are considered as a factor. To ease the analysis, the concrete mix 

proportions (5 variables) are designated as “certainties”, while the other factors 

(10 variables) are named as “uncertainties”. For the analysis, two approaches are 

adopted as shown in Figure 7-16.  

Ø Factor addition method (FAM). This method is carried out to examine whether the 

selection of the “uncertainties” is reasonable. Networks (ANN5) with 
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only ”certainties” (5 variables) as input variables are first trained, then the resulted 

error is compared with that generated from the models when each uncertainty is 

sequentially added to the “certainties”. The larger the reduction in the error value, 

the more important role played by the respective “uncertainty”, and vice versa.  

 

Ø Factor reduction method (FRM). After applying the FAM, the uncertain factors 

that cannot reduce the error value of ANN5 are removed, and the remained 

“uncertainties” are then assessed to determine their importance to the output 

according to FRM. Using FRM, the networks with each “uncertainty” removed 

from the inputs of ANN16-fcu or ANN16-Ec are trained, and the resulted MAPE 

values are compared with that of ANN16-fcu or ANN16-Ec.  For each uncertain 

factor tested, the smaller the increase in the error value means the more important 

the factor is in the model, and vice versa. Then the least important factor is 

removed from the input variables to construct a new model (ANN14). This iteration 

is used continuously for each uncertain factor till only the “certainties” are left. In 

this way, the significance of each “uncertainty” to the output can be determined. 
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Figure 7-16 - Flow chart of sensitivity analysis 

 

Considering that the predicted results of networks may change slightly each time 

even with the same model, the networks is trained 5 times and the average values 

of MAPEs of the testing set and the validation set are used as the final indicator 

of the network error. 

 

7.4.2 Results and discussion 

 

The performance of the constructed ANN models in predicting fcu (ANN16-fcu) 

and Ec (ANN16-Ec) of RAC, respectively, as well as a comparison relative to the 

models (ANN5-fcu, and ANN5-Ec) with only certainties as input variables, is 

shown in Table 7-11 and Figure 7-17. 
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Table 7-11 - Performance of ANN models 

Sets Model R2 RMS 
MAPE 

(%) 
Model R2 RMS 

MAPE 

(%) 

Training 

ANN16-fc

u 

0.995

5 
3.14 5.518 

ANN16-E

c 

0.999

6 

1.53

7 
4.152 

Testing 
0.991

2 

4.33

4 
6.558 0.992 

2.31

1 
5.88 

Validatio

n 

0.992

5 

4.04

8 
6.562 

0.991

8 

2.34

6 
6.574 

Training 

ANN5-fcu 

0.986 5.56 9.624 

ANN5-Ec 

0.988

9 

2.80

1 
7.845 

Testing 0.98 
6.65

8 
11.188 

0.982

8 
3.41 10.555 

Validatio

n 
0.977 

7.01

7 
12.294 

0.981

1 

3.56

5 
10.408 

 

 
Figure 7-17 - Performance of the constructed ANN models with all 16 variables and 

only “certainties” (5 variables) as inputs 

 

As can be seen from Table 7-11, the indexes shown in the testing and validation 

sets prove that the constructed ANN models (ANN16-fcu and ANN16-Ec) both 

have strong generalization ability, and are capable of predicting the compressive 
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strength and elastic modulus of RAC made with RAs from different sources 

accurately. However, when only mixes of RAC are used as input variables, it is 

nearly impossible for the networks (ANN5-fcuand ANN5-Ec) to convergence, and 

indicators data are also significantly worse than those of the control models 

(ANN16-fcu and ANN16-Ec), with the MAPE values all exceed 10%. This also 

proves the importance of the uncertain factors on the properties of RAC. 

 

 

Figure 7-18 - Influence of each “uncertain” on the properties of RAC relative to 

models with only “certainties” as inputs 

 

The results of FAM, as shown in Figure 7-18, indicate that the addition of all 

uncertain factors are useful to reduce the predictive error of the networks (ANN5). 

Among all the uncertainties, cement type and specimen size are the most 

effective factor for improving the performance of ANN5-fcu and ANN5-Ec, with a 

reduction of the MAPE values to 8.36% and 8.62%, respectively. However, their 
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performance can still not be comparable with those of the optimal models (6.56% 

and 6.23%). While it would take a huge amount of time if all the combinations 

were tried out one by one by using the FAM, so the FRM was adopted to further 

determine the relative importance of each uncertainty.  

 

Table 7-12 - Errors of network for fcu measured by FRM (%) 

 
TNA TRA Wa δ m SGSSD DCA k CS TC 

ANN16-fcu 

(6.56*) 
7.15 7.42 7.23 7.25 7.43 7.33 7.61 8.02 7.47 7.91 

TNA 
 

7.16 7.29 7.39 7.67 7.6 7.8 7.89 7.94 7.63 

TRA 
  

7.33 7.34 7.47 7.36 7.5 8.02 7.74 8.86 

Wa 
   

7.41 7.54 7.58 8.07 8.13 7.79 8.39 

δ 
    

7.44 7.6 8.03 7.73 7.6 8.17 

m 
     

7.49 7.54 7.76 7.87 8.46 

SGSSD 
      

7.78 7.78 8.41 8.71 

DCA 
       

8.08 8.15 8.56 

k 
        

8.36 10.15 

CS 
         

11.74 

 

The detailed results of each of the network for fcu and Ec by adopting FRM can 

be noticed in Tables 7-12 and 7-13, respectively. For fcu, as shown in Table 7-12, 

the error of network with all factors as input variables (ANN16-fcu) is about 

6.56%. When each “uncertainty” is sequentially excluded from the input 

variables, the networks error increases slightly between 7.15% and 8.02%, 

among which the least rise belongs to the combination without NA type as inputs, 

so the NA type is regarded as the least important factor to the fcu of RAC.  
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Table 7-13 - Errors of network for Ec measured by FRM (%) 

 
Wa CS δ m SGSSD DCA TRA k TC TNA 

ANN16-Ec(6.23*) 6.09 6.69 6.52 6.57 6.24 6.44 6.39 6.46 7.14 6.7 

Wa 
 

6.16 6.39 6.67 6.72 6.2 6.52 6.95 6.72 6.62 

CS 
  

6.38 6.68 6.7 6.6 6.94 7.44 8.12 6.87 

δ 
   

6.62 6.65 6.99 7.21 6.67 7.69 7.9 

m 
    

7.1 7.17 7.23 7.4 8.05 7.33 

SGSSD 
     

7.25 7.46 7.83 8.15 8.28 

DCA 
      

7.37 7.3 8.68 8.77 

TRA 
       

7.44 8.73 9.46 

k 
        

8.77 9.17 

TC 
         

10.08 

For Tables 7-12 and 7-13, figures with * represent the MAPEs of the control ANN model 

(ANN16-fcuor ANN16-Ec); 

Other figures represent the MAPEs of the networks when the factors, both in the corresponding 

column and before the corresponding rows, were removed from the inputs of ANN16; 

Figures in bold mean that the MAPE of the networks was the lowest among the corresponding 

row. 

 

In the next cycle, TRA is experimentally verified as the second least important 

factor in all the “uncertainties” in affecting the fcu of RAC, and its removal from 

the model only causes a minimal increase of about 0.01% in error value.  

 

Using this method, the “uncertainties” are removed based on their impact on the 

fcu in descending order. As shown in Figure 7-19, the orders of importance of the 

“uncertainties” are as follows: 
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Cement type - Specimen size - Aggregate moisture - Particle size - Specific 

gravity - Masonry content - Impurity content - Water absorption - RA type - NA 

type. 

 

 

Figure 7-19 - Errors of network for fcu with the remove of “uncertainties” 

sequentially according to their importance 

 

It can be concluded that the physical properties of the aggregate, such as 

aggregate type, water absorption and specific gravity, impurity and masonry 

content, play relatively minor roles in determining the fcu of RAC compared with 

other “uncertainties” like cement type, specimen size, aggregate moisture and 

particle size.  
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While for the elastic modulus (Table 7-13), the case is slightly different. Firstly, 

relative to ANN16-Ec, the error of the network without using water absorption in 

the inputs drops slightly to about 6.09%. This may be due to that specific density 

is able to sufficiently represent the characteristics of RAs for the prediction of 

elastic modulus. Secondly, it seems that the aggregate type plays a more 

important role in affecting the Ec than that in the fcu prediction. 

 

 

Figure 7-20 - Errors of network for Ec with the removal of “uncertainties” 

sequentially according to their importance 

 

Besides, the orders of importance of other “uncertainties” are similar to that for 

the fcu (Figure 7-20), and they are: 

 

NA type - Cement type -Aggregate moisture - RA type - Particle size - Specific 

gravity - Masonry content - Impurity content - Specimen size - Water absorption. 
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However, some of the uncertain factors are generally kept constant when using 

RA to produce new concrete in practice, such as the cement type, the specimen 

size, the types of NA and RA, and the aggregate particle size. So it may be more 

important to determine the relative importance of the rest of the uncertain factors. 

It can be noted from Figures 7-19 and 7-20 that, the order of importance of these 

uncertain factors, is exactly the same both for the compressive strength and the 

elastic modulus, as follows : 

 

Aggregate moisture - Specific gravity - Masonry content - Impurity content - 

Water absorption. 

 

This may be the reason why many researchers choose to model the elastic 

modulus of RAC by using the corresponding compressive strength value.  

 

It can also be concluded that, when designing mix proportions of RAC in 

practice, better RAC mechanical properties may be achieved by using RA with 

an appropriate moisture condition, higher density, lower masonry and impurity 

contents, and lower water absorption values. 
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To sum up, it is better to use all the selected uncertain factors, together with 

certainties, to construct the ANN models to predict the compressive 

strength/elastic modulus of RAC made with RAs from different sources, since 

the removal of any certain factor will cause the use of an incomplete mix 

proportion, while the removal of any uncertain factor may lead to an increase in 

the predicted error (except Wa for ANN-Ec). Besides, the importance of each 

uncertain factor to the compressive strength prediction is also not completely 

similar to that to the elastic modulus. This can be used to explain why many 

established correlation relationships between the elastic modulus of RAC and the 

corresponding compressive strength are not satisfactory. 

 

The importance of the selected uncertainties to compressive strength/elastic 

modulus concluded from FAM and FRM analysis is slightly different due to the 

following reasons: (1) FAM is conducted according to ANN5-fcu/ANN5-Ec,while 

FRM is based on ANN16-fcu/ANN16-Ec; (2) FAM is mainly used to preliminarily 

examine whether each selected uncertain factor is reasonable while FRM is to 

finally determine which combination of factors is optimal and the significance of 

each “uncertainty” to the compressive strength and elastic modulus, respectively; 
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(3) the use of FRM through removing one uncertainty may be affected by the 

other uncertain factors, since some of the uncertain factors are closely related, 

such as factors relating to aggregate characteristics. So it is necessary to further 

examine the importance of each aggregate characteristic to the properties of 

RAC. 

 

7.5 SUMMARY 

 

• The constructed ANN models (ANN16-fcu and ANN16-Ec) both have strong 

generalization ability, and are able to predict the fcu and Ec of RAC made 

with RAs from different sources accurately, with the MAPE values all in the 

range of 5.8%-6.6%. 

 

• The generalization capacities of both ANN16-fcu and ANN16-Echave been 

proven by the researcher’s own experimental results (Case I - Case III). 

Compared to the predicted results based on the traditional regression 

analysis, the ANN method can produce better predictions. 
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• The results of the factor addition method demonstrate that the addition of 

each “uncertainty” in this study is useful to reduce the predictive error. 

 

• The factor reduction method is able to further assess the importance of each 

uncertain factor in the ANN model. For fcu, cement type and specimen size 

are the most important factors, and the aggregate moisture content is the 

most influential factor amongst all aggregate characteristics. While for Ec, 

although cement type still plays an important role, aggregate characteristics 

like NA type and RA type should also be taken into account. 

 

• After carrying out the sensitivity analysis, the networks for Ec can be used 

to provide better predicting when water absorption of coarse aggregate is 

removed from the input variables. 
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CHAPTER 8: CONCLUSION AND 

RECOMMENDATIONS FOR FUTURE WORK 

 

8.1 CONCLUSION 

 

A comprehensive study of the use of artificial neural networks for predicting the 

compressive strength and elastic modulus of recycled aggregate concrete made 

with different types of recycled aggregates is presented in this thesis. Besides the 

literature review, the research has been divided into three parts: (1) experimental 

investigations of the properties of several types of recycled aggregates and the 

prepared recycled aggregate concrete (Chapter 3 - Chapter 4); (2) examination of 

the application of established empirical equations in predicting the compressive 

strength and elastic modulus of recycled aggregate concrete (Chapter 5); (3) the 

trial of using artificial neural networks to model the properties of recycled 

aggregate concrete based on selected published literatures (Chapter 6); (4) 

through collecting data from large number of different published literatures 

worldwide as the sample datasets, networks models with generalization abilities 

are constructed for predicting the compressive strength and elastic modulus of 

recycled aggregate concrete. Sensitivity analyses are also made to examine the 
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importance of the selected factors and determine which combination of factors 

could be used to construct the best model. (Chapter 7); 

 

The following conclusions can be drawn from the present study: 

 

8.1.1 Experimental test results 
 
Properties of RAC made with RAs derived from laboratory prepared concrete 

cubes with different compressive strength (35-85 MPa): 

Ø The test results of physical and mechanical performance indicate that the properties 

of RA is generally poorer than that of natural aggregate, RA2 and RA1 have the 

best and worst performance among the total five RAs, respectively. 

Ø The experimental results on compressive strength and splitting tensile strength 

indicate that RA2-RA4 can be used to fully replace NA to produce high strength 

concrete with mechanical properties comparable to the concrete that are made with 

NA.  

Ø The test results on elastic modulus point that the elastic modulus values of concrete 

made with recycled aggregates of different qualities are lower than that of the 

corresponding natural aggregate concrete. 

Ø In all the RAC, the resistance to chloride ion penetration of RAC3 is the best, 

while the resistance ability of RAC1 is the worst. 

 
Properties of RAC made with RAs derived from 3 different sources and 

crushed by different methods: 
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Ø The mortar contents attached to RAs obtained from different sources vary greatly, 

and this may be related to original mortar content and the degree of prior 

mechanical crushing received. 

Ø The hardened density of RAC is generally lower than that of NAC, and has a good 

correlation with the specific gravity of the RAs used. 

Ø The experimental results on compressive strength, splitting tensile strength and 

elastic modulus indicate that RA of good quality can be used to fully replace NA to 

produce concrete with mechanical properties comparable to concrete that made 

with NA.  

Ø The test results on the resistance to chloride ion penetration and drying shrinkage 

of concrete show that the durability properties of the concrete made with a good 

quality RA can be comparable to those made with NA. 

 

Properties of RAC made with RAs contained different amounts of added masonries 

(clay bricks or tiles): 

Ø The physical and mechanical properties of crushed clay bricks and tiles are much 

weaker that those of NA, and are even cannot be comparable with those of RA, 

which limit the use of RA that contains high percentage of masonries in concrete. 
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Ø Due to the lower specific gravity of brick and tile, the hardened density of the 

concrete made with brick or tile addition is lower than the corresponding NAC. 

 

8.1.2 Predicted properties of RAC by established relationships 
 

Ø For concrete made with NA and RAs from different sources, the established 

relationships between the elastic modulus and compressive strength show that the 

elastic modulus value is difficult to be expressed effectively by only the 

corresponding strength value. ACI 318-95 and BS EN 1992-1-1 are also proved to 

overestimate the elastic modulus of RAC. 

Ø The empirical equations previously developed by different researchers expressing 

elastic modulus as a function of the corresponding compressive strength cannot be 

used to provide a general prediction due to the diverse nature of RAs and different 

parameters that might have been considered in different previous studies. 

Ø There are also limitations on the use of the relationship to predict compressive 

strength and elastic modulus based on the water absorption and specific gravity of 

RA. 

 

8.1.3 Use of ANN in RAC 
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Ø When using compressive strength of RAC as the only input variable to model the 

corresponding elastic modulus by ANN, the performance in the testing and 

validation sets is not very well. 

Ø When more parameters related to the mix proportions and aggregate characteristics 

are included as the input variables, the constructed models can produce better 

predictions. 

Ø However, ANN model based on only one source of dataset is very difficult for 

application in predicting the corresponding performance of another dataset due to 

the limitations of ANN and the dataset itself. 

 

For ANN models constructed by using data collected from many international 

literatures as sample data, the following conclusions can be drawn: 

Ø The constructed ANN models (ANN16-fcu and ANN16-Ec) both have strong 

generalization ability, and is capable of predicting the compressive strength and 

elastic modulus of RAC made with RAs from different sources accurately, with the 

MAPE values all in the range of 5.8%-6.6%. 

Ø The generalization capabilities of both ANN16-fcu and ANN16-Ecare proved by the 

author’s own experimental results (Case I - Case III). The networks can produce 

better predictions. 
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Ø The results of the Factor Addition Method demonstrate that the addition of each 

uncertain factor in this study is helpful to reduce the predictive error of both 

networks for compressive strength and elastic modulus. 

Ø The results of the Factor Reduction Method can further determine the importance 

of each uncertain factor to the performance of RAC predicted by ANN. For 

compressive strength, cement type and specimen size are the most important 

parameters, and aggregate moisture condition is the most influential parameter in 

all aggregate characteristics. While for elastic modulus, although cement type still 

plays an important part, aggregate characteristics like NA type and RA type also 

cannot be ignored. 

 

8.2 RECOMMENDATIONS FOR FUTURE WORK 

 

Although it has been demonstrated that ANN is capable of predicting the 

compressive strength and elastic modulus of recycled aggregate concrete made 

with recycled aggregates derived from different sources, it is still of interest to 

know whether other properties of RAC like workability, durability and 

deformation properties (as shown in Figure 8-1) can be also modeled by ANN.   
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Also, an ANN based expert system, as shown in Figure 8-2, may be developed to 

provide guidance in designing the mix proportions of RAC. Besides, the ANN 

method can be also used in some other areas of RAC, such as in concretes made 

also with recycled fine aggregates or mineral admixtures.  

 

	  
Figure 8-1– Proposed use of ANN method in future studies 

	  

	  
Figure 8-2– Proposed expert system for mix design of RAC	  
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