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AAbbssttrraacctt  

Commercial spectrophotometers and current state-of-the-art digital 

camera imaging systems are unable to measure the spectral reflectance 

of yarn dyed fabrics, the former can only measure the average 

reflectance of an area and the latter can only measure the tristimulus 

values derived from the camera’s RGB responses. Multispectral imaging 

systems, on the other hand, have the potential to measure the reflectance 

of a multi-colour object, such as yarn dyed fabrics, since they can record 

both of the spectral and spatial information of a sample. In this thesis, 

colour measurement of yarn dyed fabrics based on the multispectral 

imaging technique is studied. 

The major factor restraining multispectral imaging systems from 

application in textile is the difficulty of correlation the measurement 

results of a yarn dyed fabric to the true colours of the yarns. The spectral 

response of multispectral imaging systems to yarn dyed fabrics is 

dramatically affected by irregular 3D shapes of yarns, inter-reflection 

between neighbouring yarns, and interstices between weft and warp 
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yarns. In this thesis, a novel reflection model is first proposed to estimate 

the interaction between light and a yarn dyed fabric surface. Surface 

texture, illumination occlusion and inter-reflection are taken into account. 

The reflection model is then verified by reducing the influence of texture 

on spectrophotometric colour. Derived from the proposed reflection 

model, reflectance and tristimulus values of yarn dyed fabrics with 

different texture structures are linear. The linear relationship in the 

reflectance space can be used to estimate a theoretical reflectance which 

discounts the influence of texture. Experimental results show that the 

impact of texture on colour for yarn dyed fabric samples in four colour 

centres and twenty-one texture structures can be reduced by 79%, 55%, 

71% and 57%, respectively.  

Based on the proposed reflection model, multispectral imaging 

colour measurement of yarn dyed fabrics are achieved through a series of 

image processing techniques, namely, colour region segmentation, solid-

colour and multi-colour region detection, and weft and warp yarn 

segmentation. Firstly, a yarn dyed fabric image is partitioned into 

dominant colour regions by a Gaussian model. The Gaussian model is 

used to reconstruct the CIELAB colour histograms of dominant colour 
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regions from those of yarns. A hierarchical segmentation structure is 

then devised to obtain dominant colour regions by combining histogram 

segmentation results in three colour channels. Experimental results 

shows the proposed approach has excellent performance for dominant 

colour region segmentation with high computational efficiency. 

Secondly, a dominant colour region is detected as solid-colour or multi-

colour by CIExyY histogram distributions. Derived from the proposed 

reflection model, the CIExyY histogram of a multi-colour yarn dyed 

fabric accords with a combination of two Gaussian distributions, 

whereas for that of a solid-colour yarn dyed fabric, it correlated to one 

Gaussian distribution. Experiments on real yarn dyed fabric samples 

demonstrate that solid-colour and multi-colour yarn dyed fabric regions 

can be distinguished in terms of CIExyY histogram distribution. Finally, 

a multi-colour yarn dyed fabric is segmented to weft and warp yarns by a 

modified K-means clustering method. Experimental results indicate that 

the proposed method can segment weft and warp yarns in yarn dyed 

fabric images, with both high segmentation accuracy and fast processing 

speed. 
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In addition, the proposed reflection model can be utilized to 

accomplish multispectral imaging colour measurement of single yarns. 

Single yarns are the elemental weaving components of yarn dyed fabrics 

and have much simpler structures. The multispectral imaging colour of a 

single yarn is not affected by surface texture and inter-reflection. The 

colour measurement of single yarns is achieved by two steps. Firstly, a 

single yarn is segmented from backgrounds by an image difference 

method. Secondly, the reflectance of a single yarn can be specified by 

different weighting methods. Experimental results show that 

multispectral imaging colour measurement of single yarns can achieve a 

repeatability of 0.1185 CMC(2:1) units and a spatial reproducibility of 

0.2827 CMC(2:1) units. Experimental results also show that single yarns 

measured by multispectral imaging systems can accomplish the similar 

colour matching results as solid-colour yarn dyed fabrics measured by 

spectrophotometers. Finally, an optical-based approach is proposed to 

explore the relation between the multispectral imaging colour of a single 

yarn and the spectrophotometric colour of the corresponding yarn card. 

A colour mapping equation between the single yarn and corresponding 

yarn card can be then found by the simplex optimal method. 

Experimental results show that colour difference between single yarns 
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and corresponding yarn cards reduces from 2.97 to 1.20 CMC(2:1) units 

for 50 pairs of training samples and from 3.09 to 1.37 CMC(2:1) units 

for 50 pairs of testing samples. 
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CChhaapptteerr  11    IInnttrroodduuccttiioonn    

This chapter first introduces the background to colour measurement of 

yarn dyed fabric. The objective and main contributions of this work are 

then addressed. Finally a general outline of the overall structure of this 

thesis is introduced. 

1.1. Background  

1.1.1. Colour Measurement of Yarn Dyed Fabrics 

In textile and garment industries, accurate colour measurement is of 

paramount importance in quality control since colour is one of the most 

significant factors in causing rejection in the appeal and marketability of 

textile products. In general, there are two methods to measure yarn dyed 

fabric colour: visual evaluation and instrumental colour measurement [1]. 

The visual evaluation method assesses the colour of a fabric sample by 

human eyes, whereas the instrumental colour measurement method 

employs instruments to specify sample colour. The widely used 

instruments to measure colour of yarn dyed fabric include tristimulus 
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colorimeters, spectrophotometers, camera imaging systems, and 

multispectral imaging (MSI) systems. 

 Traditionally, all colour assessments of fabric samples were 

carried out by the visual evaluation method. This method can be 

categorized into 'at desk' assessment and light cabinet assessment. Visual 

evaluation of a fabric sample is a subjective process. Inconsistent 

measurement results may exist among different quality inspectors. 

Instrumental colours of fabric samples can be measured by two 

types of instruments. One is the device measuring the spectral 

reflectance of a fabric sample, such as a spectrophotometer and a MSI 

system. The other is the instrument which cannot provide spectral 

information but tristimulus values (a tristimulus colorimeter) or device-

dependent colour (a RGB trichromatic camera imaging system). 

Compared with spectrophotometers and MSI systems, tristimulus 

colorimeters are cost-effective to conduct colour difference between 

standard and sample fabrics but they have limited usage in textile and 

garment industries [2]. For example, it is difficult to accurately identify 

colour match results under different light sources [3 ]. When colour 
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measurements of fabric samples under different illuminants are needed, a 

spectral-based colour measurement system is preferred. 

1.1.2. Sample-induced Effects 

Sample-induced effects, such as translucency, fluorescence, and 

metallics, can hamper accurate colour measurement of a fabric sample 

[1]. There are four specific sample-induced effects when colour 

measurement of yarn dyed fabrics is involved. Firstly, weft and warp 

yarns in a yarn dyed fabric have irregular 3D shapes which cause 

significant colour variation among pixels. This non-uniformity leads to 

difficulty in yarn segmentation and colour specification. Another 

problem associated with 3D shape is pixels on the edge of a yarn would 

have extremely low luminance. Colours of these pixels may fluctuate 

dramatically because pixels with low luminance are extremely sensitive 

to noises. Secondly, there is inter-reflection between weft and warp 

yarns. As a consequence, the instrumental colour of a yarn changes when 

it is cross-woven by different coloured yarns. For example, the colour of 

a white yarn would be reddish when it is cross-woven by a red yarn but 

would be bluish when it is cross-woven by a blue yarn. Thirdly, fibers 

may protrude and overlap with cross-woven yarns. This would cause the 
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colour of a yarn containing the colour information of its cross-woven 

yarns. Finally, there are interstices between weft and warp yarns. 

Colours of pixels on interstices are dramatically different from those of 

pixels on bulk of yarns.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.1 Four types of structures associated with yarn dyed fabrics: (a) solid-colour 

yarn dyed fabrics; (b) multi-colour yarn dyed fabrics; (c) yarn cards; (d) single yarns. 
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1.2. Research Objectives 

As shown in Figure 1.1, there are four types of structures associated with 

yarn dyed fabrics: solid-colour yarn dyed fabrics, multi-colour yarn dyed 

fabrics, yarn cards, and single yarns. Solid-colour yarn dyed fabrics are 

cross-woven by same coloured weft and warp yarns. Multi-colour yarn 

dyed fabrics are interlaced by weft and warp yarns with different colours. 

A yarn card consists of single yarns weaving on a flat spool. For solid-

colour yarn dyed fabrics and yarn cards, their colours can be precisely 

and accurately measured by a spectrophotometer. For multi-colour yarn 

dyed fabrics and single yarns, however, a spectrophotometer cannot 

directly measure their colours. One has to manually separate weft and 

warp yarns of a multi-colour yarn dyed fabric and then weave them on 

different yarn cards. Single yarns have to be carefully weaved on yarn 

cards before measuring their colours. Another limitation of 

spectrophotometers is the spatial resolution of a sample is lost. A 

spectrophotometer can only measure the average colour of a sample. 

While digital camera imaging systems can provide spatial information of 

a yarn dyed fabric, only the device-dependent colour, i.e., RGB colour, 

can be provided. Although attempts to estimate tristimulus values or 
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reflectance from RGB values exist, the spectral information provided by 

a digital camera imaging system is not as accurate as that measured by a 

spectrophotometer. In contrast, a MSI system can provide both the 

spectral and spatial information of a sample. Up to present, there is no 

relevant work in exploring accurate colour measure of yarn dyed fabrics 

by MSI systems. Thus, the aim of this study is to investigate colour 

measurement of yarn dyed fabrics, especially multi-colour yarn dyed 

fabrics and single yarns, with a high degree of colour accuracy based on 

the multispectral imaging system.  

To achieve colour measurement of multi-colour yarn dyed fabrics 

by a MSI system, the following image processing techniques are 

included:  

1. To segment yarn dyed fabric images into dominant colour 

regions 

2. To detect solid-colour and multi-colour yarn dyed fabric regions  

3. To segment weft yarn and warp yarns in a multi-colour yarn 

dyed fabric region 
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To accomplish colour measurement of single yarns by a MSI 

system, the following methods are included:  

1. To measure the colour of a single yarn 

2. To map the colour of a single yarn measured by a MSI system to 

the colour of the corresponding yarn card measured by a 

spectrophotometer 

The above mentioned methods to measure colours of multi-colour 

yarn dyed fabrics and single yarns are based on a reflection model which 

estimates the interaction between light and yarn dyed fabric surface. The 

reflection model is verified by estimating the influence of texture on 

colour. 

1.3. Research Significance and Value 

The outcome of this study would make a significant contribution to 

colour measurement of yarn dyed fabrics. The details are as follows: 

1. The study would contribute to accurate reproduction, simulation 

and visualization of fabrics, especially multi-coloured ones, and 

hence assisting e-communication, e-commerce in textile and 

garment industries. 
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2. The study would contribute to colour quality control of yarn 

dyed fabrics in textile and garment industries. 

3. The segmentation results of colour regions and weft and warp 

yarns would facilitate computer-aid structure analysis of yarn 

dyed fabrics. 

4. The findings of this study would assist interpreting how the 

texture structures of fabrics and inter-reflection between yarns 

influence colours. 

5. The colour specification methods of single yarns can be applied 

to specifying the colour of a 3-dimensional object captured by  

camera imaging systems. 

6. Colour measurement results of single yarns and colour mapping 

between single yarns and yarn cards would assist colour 

reproduction based on single yarns. 

1.4. Outline of the Work 

This thesis has been divided into 9 chapters as outlined as follows. 

Chapter 1 (this chapter) gives a brief introduction about the thesis, 

including the background to colour measurement of yarn dyed fabrics, 
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objectives, significance and value of the research, and the structure of the 

thesis. 

Chapter 2 provides a literature review related to colour 

measurement of yarn dyed fabrics. 

In Chapter 3, the methodology of colour measurement of yarn 

dyed fabric is first introduced. Secondly, a new reflection model is 

proposed to estimate the light reflected by yarn dyed fabric surfaces. The 

model takes the surface texture, illuminant occlusion and inter-reflection 

between neighbouring yarns into account. Finally, the reflection model is 

verified by reducing the influence of texture on colour measured by a 

spectrophotometer.  

Chapter 4 investigates the method to detect dominant colour 

regions standing out conspicuously in yarn dyed fabric images. A 

probabilistic model is proposed to associate the colour of a dominant 

colour region with colours of yarns. Based on this model, the colour 

histograms of a dominant colour region are first estimated from those of 

yarns in a yarn dyed fabric image. Then, a hierarchical segmentation 

structure is devised to detect dominant colour regions in the image.  
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Chapter 5 explores the approach to efficiently segment solid-

colour and multi-colour regions in a real yarn dyed fabric image. 

According to the reflection model introduced in Chapter 3., the 

chromaticity histograms of a solid-colour region accord with one 

Gaussian distribution whereas those of a multi-colour region highly 

agree with a combination of two Gaussian distributions.  

Chapter 6 studies the method to segment weft and warp yarns in 

multi-colour yarn dyed fabric images. Interstices between weft and warp 

yarns are firstly detected. A modified K-means clustering approach is 

then utilized to separate weft and warp yarns. 

In Chapter 7, the method to accurately measure the colour of a 

single yarn is investigated. A single yarn is firstly segmented from 

background by image difference method. The colour of the single yarn is 

then specified by different weighting methods. 

In Chapter 8, the colour mapping method between single yarns and 

yarn cards is studied. The spectral response of a spectrophotometer to a 

yarn card is firstly introduced. Secondly, the relationship between the 

colour of a yarn card measured by a spectrophotometer and the colour of 
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the corresponding single yarn measured by a MSI system is modeled. 

Thirdly, colour mapping between single yarns and corresponding yarn 

cards is converted to an optimization problem. Finally, the simplex 

method is used to find the optimal solution. 

Finally, Chapter 9 closes the thesis with a summary of the main 

work performed and the directions for further studies. 
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CChhaapptteerr  22    LLiitteerraattuurree  RReevviieeww  

A detailed literature survey is given in this chapter to provide the 

background information related to colour measurement of yarn dyed 

fabrics. 

2.1. Colour Measurement Methods of Yarn Dyed 

Fabrics 

2.1.1. Visual colour evaluation methods 

There are two methods to conduct visual colour evaluation in textile and 

garment industries. The earliest one is so-called 'at desk' assessment, in 

which people evaluate fabrics at the desk or the place of manufacture. 

This measurement method cannot obtain reliable results owing to 

inconsistent viewing condition and ambient light. Another limitation of 

this method is that assessment results are subjective, which implies 

evaluation results by an inspector may be different from those by another 

one. 
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In order to eliminate the influence of inconsistent illumination on 

colour assessment, light cabinets [4,5] are utilized to evaluate samples in 

textile and garment industries. Standardized light sources, such as CIE 

Standard Illuminant D65 stimulators, Light source A, and Light source F 

[6], are applied. Consistent viewing conditions are achieved by a sloping 

board inside a light cabinet. However, colour assessment in a light 

cabinet is also a subjective process, which indicates that inconsistent 

measurement results may exist among different quality inspectors. 

2.1.2. Tristimulus Colorimeters 

A tristimulus colorimeter is the simplest instrument to measure the 

objective colour of a fabric [2]. Typically, a tristimulus colorimeter 

consists of a light source, three filters (red, green and blue) and a data 

processor. The light source provides consistent light to illuminate a 

fabric sample at the 45 angle to its normal. The three filters are 

specially designed to match the response of human eyes to colours. The 

data processor directly calculates the tristimulus values of a sample from 

the output of three filters.  
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Colorimeters are cost-effective to measure colour difference 

between samples. However, the absolute accuracy is limited because the 

light source and filters just approximately match the CIE (International 

Commission on Illumination) definitions [3]. Another limitation is 

incapacity to metamerism [3]. Metamerism can be defined as a pair of 

colours having the same tristimulus values but different spectral stimuli 

[7]. Metamerism can be also termed that the visual match of two samples 

is reached for an observer under specified viewing conditions but their 

spectral stimuli are different [ 8 ]. Metamerism problem implies that 

tristimulus values of a fabric sample measured by a colorimeter under 

one illuminant cannot be utilized to predict tristimulus values of the 

sample illuminated by other illuminants. 

2.1.3. Spectrophotometers 

Spectrophotometers are the most widely used instruments to measure 

instrumental colours of fabric samples in textile and garment industries. 

A spectrophotometer primarily consists of four parts: a light source, a 

spectral analyzer, a detector array and a data post-processing system. 

The light source provides consistent illumination at a CIE-recommended 

illuminating and viewing geometry[9]. The spectral analyzer splits the 
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light reflected by a sample into spectral components. The splitting 

accuracy of a spectral analyzer determines the performance 

characteristics of a spectrophotometer. The detector array is composed of 

a number of photosensitive diodes placed side by side and insulated from 

one another. They record the spectral components of the light reflected 

by a sample. The data post-processing system is responsible for data 

processing tasks such as colour conversion from reflectance to CIE 

colour spaces and colour difference calculation.  

A spectrophotometer can provide accurate and precise spectral 

resolution for fabric samples. The spectral reflectance is independent of 

characteristics of acquisition systems and illuminants, i.e., the 

measurement results of a spectrophotometer can be transformed to any 

colour space and can be interpreted for any other illuminants.  

However, there are three limitations when spectrophotometers are 

employed to measure colours of yarn dyed fabrics. Firstly, 

spectrophotometers assume the colour of a yarn dyed fabric is solid, i.e., 

weft and warp yarns have the same colour. In order to measure the 

colour of a multi-colour yarn dyed fabric, one needs to manually 

separate weft and warp yarns. It is time and energy consuming, and 
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prone to error because of inconsistency in preparing yarn samples. 

Secondly, the size of a measured sample is limited. In general, the 

aperture size of a spectrophotometer is 3mm to 26mm. As a consequence, 

spectrophotometers cannot be utilized to measure colours of samples 

with size smaller than 3mm. Finally, spectrophotometers cannot provide 

the spatial resolution of a sample. A spectrophotometer yields a result of 

the averaged reflection within its aperture. Thus, the texture information 

is lost when a spectrophotometer is used.  

A large number of spectrophotometers are commercially available, 

such as products provided by Datacolor International, X-Rite, Hunter 

Lab, and Konica Minolta. The widely used spectrophotometers in textile 

and garment industries include ColorEye 7000A from X-Rite Colour 

Management Co. Ltd and Datacolor 600 and 650 from Datacolor 

International. 

2.1.4. Digital camera imaging systems 

Digital camera imaging systems are developed to obtain the spatial 

information of a sample when measuring its colour. A digital camera 

imaging system stimulates the colour vision response of human eyes to a 
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sample just as a tristimulus colorimeter does [10]. However, the three 

filters and the data processor are replaced by a digital camera. The 

camera is used to output the colour image of a sample in the red (R), 

green (G), and blue (B) channels. Each pixel of the image is a vector in a 

three dimensional space, made up from the red, green and blue channels 

[11]. A light source box with one or more standard illuminants is used to 

provide controlled and consistent illumination.  

Digital camera imaging systems can conduct colorimetric 

measurement on samples with complicated patterns, texture structures 

and multi-colour components, a task which is impossible for 

spectrophotometers [12,13]. Camera imaging systems are non-contact 

systems which do not destruct samples unlike spectrophotometers do. 

They do not limit the size of a sample and can measure solid-colours and 

multi-colours.  

However, camera imaging systems suffer from three limitations. 

Firstly, the output of a digital camera is device-dependent colour, i.e., the 

colours measured by different camera imaging systems are not identical 

[14]. In order to employ a camera imaging system as a tristimulus 

colorimeter, the RGB output data must be transformed into device-
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independent coordinates, usually the tristimulus values. This 

transformation process is called camera characterisation which 

determines the overall measurement accuracy of a digital camera 

imaging system [12]. Different camera characterisation methods have 

been proposed by Berns et al. [15,16] , Mullikin et al. [17], Pointer et al.  

[18], Hong et al. [19], Barnard and Funt [20], Green [21],Verdu et al.  

[22], Cheung et al.  [23], Ji et al.  [24]. Secondly, the measurement 

results of a sample under one illuminant cannot be used to predict the 

colour illuminated by other illuminants [3,14]. In order to detect the 

instrumental colours of a sample illuminated by different lighting 

sources, several standard illuminants are needed in a digital camera 

imaging system. Finally, the ability of a digital camera imaging system 

to detect eye-camera metamerism is insufficient. Eye-camera 

metamerism is defined as colours of two samples appearing the same to 

human eyes but being different by digital camera imaging systems 

[17,25]. A digital camera imaging system may detect the eye-camera 

metamerism for one set of training samples but may not for other testing 

samples [12]. The results from characterisation methods are derived to 

perform best for just training samples. Some testing samples may yield 

bad eye-camera metamerism. While characterised digital camera 
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imaging systems have been used in colour appearance assessment [26] 

and colour fastness evaluation [ 27 , 28 , 29 , 30 ], its spectral accuracy 

hampers increasing applications in the textile and garment industries. 

Three digital camera imaging systems are commercially available, 

DigiEye system from VeriVide Limited [31], CAM 500 system from 

Tintometer Group [32 ], and Viewport system from Datacolor [ 33 ]. 

DigiEye can output the tristimulus values and spectral data which are 

recovered from RGB values. CAM 500 can measure the surface colour 

of textiles and assess their visual appearance. Datacolor Viewport
TM

 can 

capture the RGB images of non-solid samples and conduct color 

matching. 

2.1.5. Multispectral imaging systems 

In order to fully understand the colour of a fabric, both of the spatial 

information and spectral information are important. The spectral 

information can avoid illuminant metamerism and yield illuminant-

independent colour. The spatial information can help understand 

important knowledge of the sample, such as texture and gloss which 

have great impacts on how human beings interpret colours. Multispectral 
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imaging (MSI) systems can provide both the spectral and spatial 

information of a sample [34,35,36,37,38]. MSI systems were initially 

developed for remote sensing, astrophysics and military applications [39] 

but rapidly used in other fields, such as medicine [40], agriculture [41], 

art conservation [42], and skin analysis [43].  

Typically, a MSI system consists of four parts: an illuminating 

system, a monochrome digital camera, a filter system including several 

filters (more than 3), and a data post-processing software. The 

illuminating system is responsible for providing controlled and 

consistent light. The monochrome digital camera captures sample images 

in different bandwidths. The filter system allows light passing though in 

a particular bandwidth. The powerful data post-processing software 

exploits the information contained in the spectral and spatial data. One of 

challenges for a MSI system is to reconstruct reflectance of samples 

from the response of a monochrome digital camera. Several reflectance 

reconstruction techniques have been proposed. These methods include 

Wiener estimation [44,45,46,47,48], pseudoinverse method [23,35,49], 

finite-dimensional modeling [23], and hybrid-based method [ 50 ]. 

Another challenge is the volume spectral and spatial data which are 
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difficult to handle, view and interpret [51]. For example, one classical 

task is to group pixels with similar characteristics into regions by their 

spectral signatures. 

One MSI system is commercially available, can:scan and can:view  

from Caddon printing & imaging GmbH [52]. Can: scan can capture the 

spectral colours of samples with complex coloured patterns and 

structured surfaces. Can:view can display the sample images measured 

by can:scan.  

While multispectral imaging systems can accurately provide both 

of the spectral and spatial information of yarn dyed fabrics, they cannot 

be directly used to conduct colour matching and colour reproduction of 

yarn dyed fabrics. The spectral response of a MSI system to a fabric 

sample can be vastly influenced by many factors, such as texture, glossy, 

areal density and linear density. The major factor restraining MSI 

systems from application in textile is how to correlate the measurement 

results of a fabric sample to its true colour. There is no physical model 

which can estimate the influence of the above mentioned factors on the 

colour of a yarn dyed fabric measured by a MSI system, i.e., the 

reflection from the yarn dyed fabric cannot be estimated. 
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2.2. The Employed Multispectral Imaging System 

A MSI system, namely Imaging Colour Measurement (ICM), was 

developed to measure colours of yarn dyed fabrics. The ICM system was 

composed by a monochrome digital camera, a filter wheel with 16 

narrowband filters, an autofocus step motor and a circular light source. 

The monochrome digital camera captured an image with 1040*1392 

pixels. The filter wheel split the spectrum of visible light into 16 bands. 

The step motor controlled the focus of the camera by rotating its aperture. 

The circular light source provided a 45°/0° CIE D65 illumination which 

can eliminate the influence of gloss on colour.  

The focus of the monochrome camera was auto-adjusted by the 

algorithm proposed by Shen et al. [53]. The optimal focus position 

maximizes the symmetry of the focus measure distribution and is 

determined by distance metrics. The reflectance of a yarn dyed fabric 

sample was reconstructed by the adaptive Wiener estimation algorithm 

[48]. The proposed reflectance reconstruction method adaptively 

selected training samples for the autocorrelation matrix calculation in 
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Wiener estimation, without a prior knowledge of the spectral information 

of the samples being imaged [48].  

Table 2.1 The technical specification of the ICM system 

Repeatability (NIST White Tiles) Average: 0.03 CMC(2:1) units  

 

Uniformity of illumination (NIST White Tiles) 

Maximum: 0.1 CMC(2:1) units 

Average: 0.01 CMC(2:1) units 

 

 

 

 

 

 
Inter-instrument agreement between ICM system 

and benchmark reflection spectrophotometers 

 

Average spectral reflectance accuracy: 0.0024 

RMS errors 

 

Maximum spectral reflectance accuracy: 0.0089 

RMS errors 

 

Average colorimetric accuracy: 0.23 CMC(2:1) 

units 

 

Maximum colorimetric accuracy: 0.62 CMC(2:1) 
units 

Measurement time Less than 25 seconds 

Spectral wavelength accuracy Less than 1 nm 

Optical configuration 450/00 

Spectral range 400 nm - 700 nm 

Measurement sizes 5.5 cm*7.5 cm 

As shown in Table 2.1, the repeatability of the ICM system on 

measuring the National Institute of Standards and Technology (NIST) 

white tiles is 0.03 CMC(2:1) units. When the ICM system is used to 

measure the NIST white tiles, the maximum and average colorimetric 

errors of uniformity are 0.1 and 0.01 CMC(2:1) units. The inter-

instrument agreements between the ICM system and a benchmark 

reflection spectrophotometer (Datacolor 650) are 0.0089 and 0.0024 
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RMS (rooted mean square) with the maximum and average spectral 

reflectance accuracy errors when the Digital Colorchecker SG from 

Gretagmacbeth were used. The maximum and average colorimetric 

accuracy are 0.62 and 0.23 CMC(2:1) units compared to the benchmark 

spectrophotometer. 

2.3. Reflection Models 

2.3.1. Dichromatic Reflection Model 

The dichromatic reflection model [ 54 ] is proposed to estimate the 

reflection from inhomogeneous dielectric surfaces, such as paints, wood, 

papers and plastics. According to the dichromatic reflection model, 

reflection from an inhomogeneous dielectric surface can be decomposed 

into two additive parts: body reflection and interface reflection [54]. 

Body reflection occurs due to interaction between incident light and 

pigment particles within a material. Interface reflection arises at the 

interface between two materials with different refractive indexes. Body 

reflection modifies the spectral distribution of the light and reflects in 

random directions. Body reflection is also called diffuse reflection and 

represents the characteristics of materials. Interface reflection is also 
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called specular reflection, i.e., it is highly directional. Interface reflection 

only depends on incident light. Body and interface reflections can be 

further separated into two independent components [54]: a wavelength 

factor and a geometric term.  

In order to reveal the true colour of a sample, the interface 

reflection component should be removed from the measured colour 

because this component only contains the colour information of light 

source. A large number of attempts to separate body and interface 

reflections have been studied by Artusi et al. [55], Mallick et al. [56], 

Shen et al. [57, 58,59], Tan and Ikeuchi [60], Yang et al. [61].  

2.3.2. Phong Reflection Model 

The Phong reflection model proposed by Phong [62] is an empirical 

model to estimate the local illumination of points on a surface. The 

Phong reflection model is widely used computer graphics software to 

shade surfaces [63,64,65,66,67]. The Phong reflection model describes 

the reflected light by a surface as a combination of ambient light, diffuse 

reflected light, and specular reflected light: 
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where pI , ai , dmi , , and smi ,  denote the intensities of a surface point, 

ambient lighting, diffuse and specular components of the light source m , 

ak , dk , and sk  represent the ambient reflection, diffuse reflection, and 

specular  reflection constants, mL̂  and mR̂  express the illuminant direction 

and the direction of the perfectly reflected ray related to the light source, 

N̂ , V̂  and   are the normal at the point, the viewer direction, and the 

shininess constant for the surface,  BA ˆ,ˆ  denotes the dot product of 

vectors Â  and B̂ . 

2.3.3. Oren–Nayar Reflectance Model 

The Oren–Nayar reflectance model [68] is proposed by Oren and Nayar 

to estimate the diffuse reflection from rough surfaces. The Oren–Nayar 

reflectance model is widely used to predict the appearance of natural 

surfaces, such as concrete [69] and sand [70,71]. According to the Oren–

Nayar reflectance model, the radiance of the reflected light rL  can be 

modeled as : 

 iriir LBAL  ]}tansin)]cos(,0max[{cos 



 (2- 2) 
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where iL  and   denote the radiance of the incoming light and the albedo 

of the surface, ),( ii   and ),( rr   represent the directions of incident light 

and viewing. A , B ,  , and   are determined by the following equations: 
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where the measure of the roughness of the surface, determined as the 

variance of a Gaussian slope distribution of the surface. 

When a surface is flat, i.e., 0 , we have 1A  and 0B . The 

Nayar reflectance model is simplified to the Lambertian model [72]: 

 iir LL  



cos   (2- 4) 

2.4. Influence of Texture on Colour 

The surface texture of a fabric is one of the most important factors to 

influence its colour. A number of studies have been conducted to explore 

how the texture of a fabric affects its colour. These studies can be 
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divided into three directions: the influence of texture on colour 

difference [73,74,75,76,77,78,79,80], the influence of texture on colour 

attributes [117,81], and the relationship between texture descriptors and 

colours
 
[114,115,116,82].  

Kuehni and Marcus [73] were the pioneers in studying the effect of 

texture structures of fabrics on their visual colour difference. They found 

the minimum value to perceive a colour difference between different 

fabric texture structures under standardized laboratory conditions was 

one CIELAB unit. Xin et al. [74] investigated the effect of texture 

structures on visual colour difference using 15 texture images captured 

by a high performance scanner and simulated on CRT. They found the 

visual colour difference of the textured pairs reduced around 35% to 43% 

compared with the solid colour pair. Han et al. [75] explored the 

influence of texture structures of fabrics on their colours using real fabric 

samples and their reproduced CRT pairs. They found the visual colour 

difference of textured sample pairs accorded with that of physical 

samples better than no-textured colour pairs. Kandi and Tehran [76] 

explored the impact of surface texture on visual and instrumental colour 

difference using knitted polyester fabrics with eight different texture 
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structures. The visual colours were assessed by the greyscale method 

[83]. The instrumental colour difference were calculated by formulas 

CIEDE2000 (2:1), CMC (2:1), CIE94 (2:1) and CIELAB. They found 

the texture structures had a significant influence on the performance of 

colour difference formulae and the CIEDE2000 (2:1) formula had the 

best ability to predict the visual colour difference for the textured textiles. 

Montag and Berns [77] employed simulated texture of thread wound on 

a card to explore the influence of texture on suprathreshold lightness 

tolerances. They found lightness tolerances were larger when the 

lightness values of the samples increased. They concluded that the factor 

of the effect of texture on tolerance thresholds was almost 2 for textured 

samples as compared to the uniform samples. Huertas et al. [78,79,80] 

studied the influence of texture structures on the visual suprathreshold 

colour tolerances of lightness, chroma and hue by simulated randomly 

distributed dots over homogeneous samples. They found the random-dot 

textures increased the lightness tolerance more than the chroma and hue 

ones. 

In order to fully understand the influence of texture structures on 

colour, the lightness, chroma and hue difference of textured fabrics were 



Chap.2. Literature review 

31 

 

analyzed. Shao et al. [117] investigated the influence of texture 

structures on instrumental and visual colours using knitted fabrics. They 

found that there was strong inconsistency between instrumental and 

visual colours. The absolute difference between textured and jersey 

samples in the lightness, chroma and hue attributes was also evaluated. 

They concluded that texture structures had an impact on lightness, 

chroma and hue. Luo
 
et al. [81] investigated how the surface texture of a 

fabric influences its luminance and chromaticity coordinates. They 

concluded that colour difference between fabrics with different texture 

structures was mainly caused by luminance rather than chromaticity. 

To explore how texture structures affect colours, the relationship 

between textures of fabrics and their instrumental and visual colours was 

studied. In general, a group of fabric samples with different texture 

structures are first collected to conduct an experiment. These samples are 

then measured by a spectrophotometer to obtain their instrumental 

colours. The visual difference between a standard sample and batch 

samples is assessed by subjects to study the influence of texture on 

visual colour. The greyscale method [83] is commonly used to perform 

this visual assessment. The textures of these samples are quantified by 
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different texture descriptors. Finally, the relationship between the 

instrumental or visual colour difference and the texture are established. 

Xin et al. [114] employed the half-width of histogram as the texture 

descriptor and found there was high correlation between the visual 

colour difference and the texture feature. Kandi et al. [115] investigated 

the relationship between the instrumental and visual colour difference of 

fabrics and their texture parameters described by Gabor functions. They 

found there was good correlation between the visual colour difference 

and Gabor function values. Kitaguchi et al. [116] studied the relationship 

between the visual assessment results and several texture descriptors 

such as the co-occurrence matrices, run length, grey level difference and 

neighbouring grey level dependence statistics. They concluded that there 

was good relationship between visual assessment results and texture 

features from co-occurrence and grey level difference but poor 

correlation between perceptual results and textures described by run 

length and neighbouring grey level dependence statistics. Trussell et al. 

[82] investigated the mathematical model associating visual colour and 

texture. The model was based on a combination of the optical transfer 

function of the human eye and its interaction with the power distribution 

of the texture pattern in the frequency domain. 
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The influence of texture on instrumental colour measured in 

different geometries was also studied by Kandi et al. [84 ]. Colour 

changes with texture structures for the d/8 and 45/0 geometries were 

evaluated. It was found that the influences of texture on instrumental 

colour measured in d/8 geometry and 45/0 are similar. 

2.5. Colour Region Segmentation of Fabrics 

Two approaches have been investigated to segment colour regions in 

fabric images. One approach applied clustering algorithms and the other 

was based on classical image segmentation methods of still images.  

2.5.1. Clustering Algorithms 

Clustering is a method to divide data into classes so that items in the 

same class are as similar as possible and items in different classes are as 

dissimilar as possible [85]. Clustering methods can be categorized into 

hard clustering and fuzzy clustering [85]. In the hard clustering method, 

a hard partition is determined to divide each data element into exactly 

one class. In the fuzzy clustering method, data elements can belong to 

more than one class and a set of membership functions are used to 
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indicate the strength of data elements associating with particular classes. 

One of the most widely used fuzzy clustering algorithms is the fuzzy C-

means clustering (FCM) algorithm [85, 86 ]. Some researchers have 

employed the FCM algorithm to segment fabric colour. Pan et al. [87,88] 

used the FCM algorithm to obtain the number of yarn colours and 

layouts of yarns. Kuo et al. [89] employed the FCM algorithm in the 

RGB colour space to achieve colour segmentation of printed fabrics.  

2.5.2. Segmentation Methods of Still Images 

The colour region segmentation of a fabric image can be viewed as a 

particular application of still image segmentation techniques in textile 

and garment fields. The segmentation methods of still images can be 

mainly categorized into: histogram-based methods [90,91], region-based 

methods [92,93,94,95,96], edge-based methods [97,98,99], hybrid-based 

methods [100,101,102], and graph-based methods [103,104].  

Histogram-based segmentation methods 

The histogram of an image is a discrete function which counts the 

number of pixels with the same value in the image [105]. Histogram-

based segmentation methods assume that pixels whose values are within 
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a certain range belong to the same class, i.e., an object and its 

background would correspond to different peaks of the histogram [106]. 

A threshold can be chosen as the valley between two peaks to segment 

an object from its background.  

Histogram-based segmentation methods are computationally 

efficient. Good segmentation results can be achieved for images 

including distinct objects. However, histogram-based segmentation 

methods neglect the spatial information of an image. As a result, it 

cannot guarantee that segmentation results are contiguous. Another 

limitation of histogram-based segmentation method is the difficulty to 

automatically determine segmentation thresholds from a complicated 

histogram. 

Region-based segmentation methods 

Region-based segmentation methods group pixels into different regions 

by defined properties. Two approaches are included: region growing 

approaches [92,93] and region split-merge approaches [94,95,96]. 

Region growing approaches start from some seed points, and examine 

their neighbouring pixels, then attach pixels to the region provided 

attributes of these pixels are within a predefined range. The process is 
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iterated until all pixels in an image have been assigned to a region. In 

contrast, region split-merge approaches start from the root of a tree 

which represents the whole image. A parent node of the tree is split into 

four son nodes if the parent node is non-uniform (the splitting process). 

Inversely, son nodes are merged if they are homogeneous (the merging 

process). The splitting and merging process continues recursively until 

no further splitting or merging are possible.  

Region-based methods take spatial information into account during 

segmentation and can correctly separate regions that have the same 

defined properties. However, the segmentation performance of region-

based methods depends on the manually tuned thresholds and initial 

seeds. Another disadvantage is the heavy computation.  

Edge-based segmentation methods 

Image segmentation can also be achieved by detecting object edge. 

Edge-based segmentation methods measure the dissimilarity, or sharp 

changes, between neighbouring pixels. Sharp change between pixels is 

believed corresponding to discontinuities in depth and surface 

orientation, changes in material properties and variation in scene 

illumination [107]. Ideally, edge detection results in a set of connected 
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points that indicate the boundaries of objects. However, Over-

segmentation would occur in edge-based segmentation methods if edges 

are ill-defined [108].  

Hybrid-based segmentation methods 

Hybrid-based segmentation methods combine region-based methods and 

edge-based methods to obtain good segmentation results. Unfortunately, 

it still remains problematic to fuse region and edge features. ` 

Graph-based segmentation methods 

Graph-based image segmentation techniques view an image as a graph in 

which each node corresponds to a pixel and edges link neighbouring 

pixels. Each edge is valued as a weight to show the relation strength 

between pixels it connects [104]. The objective of segmentation result is 

to find minimum cuts in the graph. Graph-based methods suffer from 

high computational complexity. 

2.6. Colour Reproduction of Yarn Dyed Fabrics 

In textile and garment industries, the recipe to dye yarns constructing a 

yarn dyed fabric is predicted by the colorant formulation system based 

on spectrophotometric measurements [109]. Five steps are included to 
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estimate the dye recipe accurately matching for a standard solid-colour 

yarn dyed fabric or yarn card. Firstly, a dye calibration database is built 

for different dyes based on the Kubelka-Munk model [110]. The dye 

calibration database finds the relationship between dye concentrations 

and sample K/S values. Dyestuffs with different concentrations are used 

to dye yarns. The reflectance values of these dyed samples are then 

measured by a spectrophotometer, followed by K/S calculation. The 

relation between the dyestuff concentrations and the K/S values can be 

found by regression methods. Based on the dye database, secondly, 

several recipe candidates to match the colour of a standard sample are 

predicted by the colorant formulation system. Thirdly, a batch sample is 

carefully dyed based on the best recipe among others. Fourthly, 

computer colour matching experiments between the standard and batch 

samples are conducted to verify the recipe accuracy. Finally, a recipe is 

corrected when the coloration results are not satisfied, i.e., the colour 

difference between the standard and a batch sample is larger than a 

tolerance.  
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2.7. Conclusion 

In this chapter, a detailed literature survey is given to provide the 

background information related to colour measurement of yarn dyed 

fabrics. Firstly, methods to conduct colour measurement of yarn dyed 

fabrics and the employed multispectral imaging system are introduced. 

Secondly, reflection models to estimate the interaction between light and 

sample surfaces are briefly presented. Thirdly, detail reviews of the 

influence of texture on colour are given. Fourthly, colour region 

segmentation algorithms are detailed reviewed. Finally, colour 

reproduction of yarn dyed fabrics is described. 
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CChhaapptteerr  33    MMeetthhooddoollooggyy  ooff  CCoolloouurr  

MMeeaassuurreemmeenntt  ooff  YYaarrnn  DDyyeedd  FFaabbrriiccss  

This chapter first introduces the methodology of colour measurement of 

yarn dyed fabrics based on the multispectral imaging technique. 

Secondly, a novel reflection model is proposed to estimate the light 

reflected by a yarn dyed fabric surface. Finally, the reflection model is 

then verified by reducing the influence of texture on colour measured by 

spectrophotometers. 
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3.1. Colour Measurement of Yarn Dyed Fabrics 

(1) (2) (3)

(a) (b)
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(b)-(1): colour measurement of single 
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(b)-(2): colour mapping between 
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a MSI system

Yarn cards measured by 
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Figure 3.1 The colour measurement schematic of yarn dyed fabrics: (a) colour 

measurement of multi-colour yarn dyed fabrics; (b) colour measurement of single 

yarns; (c) reflection model of yarn dyed fabrics. 

This thesis focuses on colour measurement of multi-colour yarn dyed 

fabrics and yarn cards based on the multispectral imaging technique 

since colours of solid-colour yarn dyed fabrics and yarn cards can be 

acquired by spectrophotometers. A novel reflection model is proposed to 
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estimate the light reflected by a yarn dyed fabric surface. Based on the 

reflection model, colour measurement of multi-colour yarn dyed fabrics 

includes three steps: dominant colour region segmentation, solid-colour 

and multi-colour region detection, and weft and warp yarn segmentation, 

as shown in Figure 3.1a. Figure 3.1b shows that two steps are included in 

colour measurement of single yarns: single yarn segmentation and colour 

mapping between single yarns and yarn cards. The following sections of 

this chapter introduce the proposed reflection model. The following 

chapters investigate the methods for colour measurement of multi-colour 

yarn dyed fabrics and single yarns. 

3.2. Reflection Model of Yarn Dyed Fabrics 

According to the dichromatic reflection model [54], reflection from an 

inhomogeneous dielectric surface is composed by body reflection )(bI , 

and interface reflection )(iI , which can be modeled as: 

 
1

( ) ( ) ( )

( ) ( ) ( )
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b i
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  
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 
  (3.1) 

where )(L  and   denote the radiance of a sample and the wavelength, 

)(E  and 1( )R   represent the illuminant spectrum and the nominal 
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reflectance of the sample, bm  and im  are the geometric terms for body 

and interface reflections. bm  and im  are determined by the geometry 

between the illuminant and the sample. 

As mentioned in Section 2.3, the body reflection component 

relates to the colour of a yarn dyed fabric. The body and interface 

reflection components can be separated by different methods. 

Consequently, only the body reflection component is considered in the 

proposed reflection model. For a yarn dyed fabric with only diffuse 

reflection, the radiance at the surface position ),( YY qp , ),,( YY qpL  , is a 

product of a geometric term ),( YYb qpm  and a wavelength factor 

)(),,( 1  RqpE YY : 

 
)(),,(),(),,( 1  RqpEqpmqpL YYYYbYY      (3.2) 

where ),,( YY qpE   and 1( )R   denote the irradiance at ),( YY qp  and the 

nominal reflectance of the measured yarn. 

As shown in Figure 3.2, two illuminants shine light on ),( YY qp  

[ 111 ]: a system illuminant and an ambient illuminant. The system 

illuminant is the light source of a colour measurement instrument, 

yielding beams ),,( YYD qpE    as illustrated by the red lines in Figure 3.2. 



Chap.3. Methodology of colour measurement of yarn dyed fabrics 

45 

 

The ambient illuminant stems from light reflected by neighbouring yarns, 

),,( YYA qpE  , as plotted by the blue line in Figure 3.2.  
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Figure 3.2 The reflection schematic in a yarn dyed fabric.   

The light from the system illuminant may be masked and 

shadowed, as shown by the dotted red line in Figure 3.2. An occlusion 

term ]1,0[),( YY qpH  is used to indicate the percent of the light reaching 

),( YY qp : 

 )(),(),,(  EqpHqpE YYYYD   (3.3) 

where )(E  denotes the system illuminant spectrum. 0),( YY qpH

represents that the light is completely occluded. In contrast, 1),( YY qpH  

refers to no occlusion. 

The light from the ambient illuminant are integrated over the entire 

hemisphere ),( YY qp : 
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where i


 denotes the incident angle of ambient light,  )(imb


 and ),( iE


  

represent the geometric term and reflected light from the direction i


, 

2 ( )R   is the nominal reflectance of the neighbouring yarn.  

),( iE


  is also composed by two parts, light from the system 

illuminant ),( iEDA


  and light from ambient illuminant ),( iEAA


 .  

),( iEDA


  may be also masked and occluded. We have: 
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where )(iH


 represents the percentage of beams from the system 

illuminant reaching the corresponding position on the neighbouring yarn.   

Substituting Eqn (3.3) and Eqn (3.5) into Eqn (3.2), we get: 
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 (3.6) 
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According to the one-bounce model [ 112 ], inter-reflection 

diminishes dramatically with each bounce. Therefore, the last term of 

Eqn (3.6) can be assumed to be negligible since it represents two 

bounces of inter-reflection. If we represent the ambient integral in the 

second term of Eqn (3.6) as an ambient coefficient ),( YY qpA , i.e.,  





),(

)()(),(

YY qp

bYY idiHimqpA


, we have: 
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 (3.7) 

Eqn (3.7) expresses that the light reflected by a yarn dyed fabric is 

influenced by a yarn surface coefficient ),( YYb qpm , a system illuminant 

occlusion coefficient ),( YY qpH  and an inter-reflection coefficient 

),( YY qpA . These three coefficients change with surface positions of a 

yarn dyed fabric. According to the Oren–Nayar reflectance model
 
[113], 

the yarn surface parameter can be specified as )cos(),( YYb qpm , where 

  is the incident angle at ),( YY qp . Consequently, the surface texture of a 

yarn dyed fabric can significantly influence ),( YYb qpm . ),( YY qpH  and 

),( YY qpA  represent effects of the system light source and neighbouring 

yarns on the light reflected by a yarn dyed fabric. 
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3.3. Reflection Model Verification 

The proposed reflection model is verified by estimating how the texture 

of a yarn dyed fabric dictates its instrumental colour measured by a 

spectrophotometer.   

3.3.1. Background 

Texture is one of the most important factors in affecting the colour of a 

fabric in textile and garment industries [114,115,116,117]. While fabric 

samples normally have different texture structures, the underlying 

assumption is that fabrics are flat when a piece of equipment is used to 

measure their colours [118]. The most widely used instruments in textile 

and garment industries to achieve colour measurement are 

spectrophotometers. A spectrophotometer can be considered as a 

combination of two subsystems: an optical subsystem and a detection 

subsystem. The optical subsystem generates light to illuminate a sample. 

It is composed of light source, integrating sphere, and lenses. The 

detection subsystem measures the radiant flux of the light reflected by a 

sample. It consists of detector array and spectral analyzer. Generally, 

there are two sets of optical and detection subsystems within a 
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spectrophotometer: a set of sample subsystem and a set of reference 

subsystem. The sample subsystem illuminates a fabric sample and 

detects its reflected radiant flux. The reference subsystem generates and 

detects a reference beam. The ratio of the radiant flux reflected by the 

sample to that of the reference beam is defined as the spectral reflectance 

of the sample. According to the proposed reflection model in Section 3.1, 

the surface texture of a yarn dyed fabric has a great impact on both its 

instrumental and perceived colors. Thus, yarn dyed fabrics with different 

texture structures but cross-woven by same coloured yarns have different 

colours when a spectrophotometer is used. 

While the impact of texture on colour has been studied for more 

than three decades, quantitative relationships, such as linearity or 

correlation, between texture and instrumental colour, including colour 

difference, lightness, chroma and hue, are found difficult to be 

established.  
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3.3.2. Influence of Texture on Colour  
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Figure 3.3 The basic optics within a spectrophotometer 

Figure 3.3 shows the basic optics within a spectrophotometer. Given the 

detector area dA , the optical system efficiency  , and the maximum 

aperture diameter of the lens system F , the contribution of the surface 

position ),( YY qp  to the flux at the detector, ),,( YY qp , is given by 

[119,120]: 

 
),,(

4
),,(

2 YY
d

YY qpL
F

A
qp 


   ( 3.8) 

where ),,( YY qpL   and   denote the radiance at ),( YY qp  and the 

wavelength, respectively. 
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For yarn dyed fabrics with different textures in a colour centre, 

1 2( ) ( )R R   in Eqn (3.7) as the weft and warp yarns have the same 

colour. )(1 R  and )(2 R  can be abbreviated as ( )R  . Substituting Eqn 

(3.7) into Eqn (3.8), the total radiant flux at the detector is: 
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    (3.9) 

Eqn (3.9) expresses that the radiant flux at the detector of a 

spectrophotometer is determined by three parameters: the geometric term

),( YYb qpm , the occlusion coefficient ),( YY qpH  and the inter-reflection 

coefficient ),( YY qpA . These three parameters change with surface 

positions. According to the Oren–Nayar reflectance model
 
[113], the 

geometric term can be specified as )cos(),( YYb qpm , where   is the 

incident angle at ),( YY qp . In peak areas of a surface, the contribution of 

),(),( YYYYb qpAqpm  to the total radiant flux is insignificant compared to 

),(),( YYYYb qpHqpm  because the occlusion coefficient and geometric term 
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are close to 1 but the inter-reflection coefficient is near to 0. However, 

the contribution of ),(),( YYYYb qpHqpm  is slightly in valley areas because 

the incident angles are large, i.e., ),( YYb qpm  is close to 0. In the transition 

areas between peak and valley areas, both of ),(),( YYYYb qpAqpm  and 

),(),( YYYYb qpHqpm  contribute to the measured colours. The contribution 

of ),(),( YYYYb qpHqpm  becomes less with positions more approaching 

valley areas. 

While the surface of a yarn dyed fabric can be divided into peak, 

valley and transition areas, the possibility of pixels locating in peak areas 

is much larger than valleys and transition areas since the real yarn cross-

sectional shape approximates race-track [121], lens [122] or shoulder 

squareness [123] rather than ideal circle, as shown in Figure 3.4. In 

addition, the integrating sphere of a spectrophotometer would cause the 

intensity of light from the direct illuminant larger than light from the 

ambient illuminant. Hence, the term /),(),(
,


YY qp

YYYYYYb dqdpqpAqpm  


YY qp

YYYYYYb dqdpqpHqpm
,

),(),(  can be assumed to be negligible for a yarn 

dyed fabric sample when a spectrophotometer is used to measure its 

colour: 
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Figure 3.4 The ideal and real yarn cross-sectional shapes of fabrics: (a) ideal yarn 

cross-sectional shape: circle; (b) real yarn cross-sectional shape: race-track; (c) real 

yarn cross-sectional shape: lens; (d) real yarn cross-sectional shape: shoulder 

squareness 

The reference subsystem within a spectrophotometer measure the 

colour of the beam reflected by the sphere wall, which give a measure of 

the light incident on the fabric sample
 
[124]. The flux at the detector of 

the reference subsystem is: 
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where rA  denotes the aperture area of the spectrophotometer. 

Combining Eqn  (3.10) and Eqn  (3.11), the spectral response of a 

spectrophotometer to a yarn dyed fabric can be modeled as: 
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   (3.12) 

where 
r

qp

YYYYYYb AdqdpqpHqpmR

YY

/),(),()(
,

  is termed as the magnitude of 

the measured reflectance, ( )R   denotes the spectral direction in the 

reflectance space.  

The expression in Eqn  (3.12) defines a set of lines with identical 

direction but different magnitudes in the reflectance space. The direction 

of the lines is determined by the spectral direction of the nominal 

reflectance of fabrics, ( )R  . The magnitudes depend on the geometric 

terms ),( YYb qpm , the occlusion coefficient ),( YY qpH , and the magnitude 
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of the nominal reflectance ( )R  . ),( YYb qpm  and ),( YY qpH  change with 

surface positions of textured fabrics. 

The normalized reflectance is defined as: 
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Eqn  (3.13) expresses the normalized reflectance curves of fabrics 

with different texture surfaces are identical which only depend on the 

nominal reflectance of these samples, i.e., )(R . 

Given the CIE colour matching functions )(x , )(y , )(z , the 

tristimulus values of these fabric samples can be specified as [125]: 
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 (3.14) 

where k  is a normalising factor given by 


 dyEk )()(/100 . 

The expression in Eqn (3.14) reveals that fabric samples with 

different texture structures define a line in the CIEXYZ colour space. 

The direction of the line is defined as ,)()()([


 dxRE  

,)()()(


 dyRE  TdzRE ])()()(


  . 

The chromaticity coordinates of these fabric samples are computed 

as [125]: 
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  (3.15) 

Eqn (3.15) reveals that the chromaticity coordinates of fabric 

samples with different texture structures are identical.  

The CIELAB colours of these fabric samples can be transformed 

from their tristimulus values [125], we have: 
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  (3.17) 

Eqn (3.16) and Eqn (3.17) show the colour transformation from 

CIEXYZ to CIELAB space is non-linear. As a consequence, the linearity 
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in the reflectance space (Eq.(2.12)) and CIEXYZ space (Eq.(2.14)) is 

lost in the CIELAB space for fabric samples with different texture 

structures. Assuming linear dependence of spectral reflectance with 

texture, therefore, it is messy to estimate the influence of texture 

structures of fabric samples on their colors in the CIELAB space. 

3.3.3. Results and Discussion 

Preparation of Samples 

84 knitted cotton yarn dyed fabric samples were prepared for the 

experiment. These samples were in four colour centres recommended by 

the CIE [126]: green, gray, red and blue (Figure 3.5a). In each colour 

centre, the single jersey structure, i.e., the plain structure, was defined as 

the standard texture (Figure 3.5b-Std.).  The batch texture structures in 

each colour centre included 20 different textures widely used in knitwear 

structures (Figure 3.5b-2~21). The standard and batch samples in each 

color center were knitted by one same colored yarn using a Shima Seiki 

Knitting Machine. 

The MACBETH Color-Eye 7000A Spectrophotometer was used to 

measure the instrumental colours of these samples. The specular 



Chap.3. Methodology of colour measurement of yarn dyed fabrics 

59 

 

component excluded (SCE) and UV excluded modes were applied to 

eliminate the influence of specular light and UV on samples. 

 
(a) 

 
(b) 

Figure 3.5 The prepared physical knitted yarn dyed fabric samples: (a) samples in 4 

colour centres: green, gray, red and blue; (b) the used 21 texture structures. 

Reflectance Space 

The first experiment analyzed how texture structure affects measured 

reflectance. Figure 3.6 shows the reflectance and normalized reflectance 

curves of all the samples. As shown in Figure 3.6a, the reflectance 

curves of samples in each colour centre have the same direction (the 

shape of curves) but slightly different magnitudes. Figure 3.6b shows the 

normalized reflectance curves of samples in each colour centre are 

approximately the same. The results shown in Figure 3.6 demonstrate 

that fabric samples with different texture surfaces define a set of lines 
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with identical direction but different magnitudes in the reflectance space. 

The normalized reflectance of these samples is identical.   

In order to check the degree of similarity among the normalized 

reflectance curves of samples in each color center, the angle between the 

normalized reflectance curves of batch samples and the standard sample 

in each color center is calculated [127]: 
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where )(B

b
R  and )(S

b
R  denote the normalized reflectance of a batch 

sample and the corresponding standard sample in each colour centre. The 

normalized reflectance curves between the batch and standard samples 

are identical when the angle is equal to 0. The dispersion of two 

normalized reflectance curves is larger with increasing angles. 
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(a) (b) 

Figure 3.6 The reflectance and normalized reflectance curves of all samples: (a) the 

reflectance curves of samples in green, gray, red and blue colour centres (from top to 

bottom); (b) the normalized reflectance curves of samples in green, gray, red and 

blue colour centres (from top to bottom). Noted that all the curves in (a) and (b) are 

drawn with the same scale. 

Figure 3.7 shows the angles between the normalized reflectance 

curves of batch and standard samples in each colour centre. The angles 

of samples with texture No. 20 are smallest, i.e., 0.16, 0.16, 0.08, and 
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0.40 for the green, gray, red, and blue samples. This stems from that 

texture Std and texture No.20 are visually similar, as shown in Figure 

3.5b. Samples with texture No.18, No.7, and No.21 produce the largest, 

second largest and third largest angles for all of the samples, i.e., 1.01, 

0.86, and 0.86. This result highly agrees with the large perceived 

differences between texture Std and texture No.18, No.7, and No.21. The 

average angles are 0.51, 0.41, 0.66, and 0.80 for the samples in green, 

gray, red and blue. The small angles between the normalized reflectance 

curves of the batch and standard samples in each color center 

demonstrate that their normalized reflectance curves resemble in the 

normalized reflectance space, which echoes the results shown in Figure 

3.6b. 

 

Figure 3.7 The angles of the normalized reflectance curves of batch and standard 

samples in green, gray, red and blue. 
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Besides the normalized reflectance, the magnitude of measured 

reflectance was also analyzed. Given a measured reflectance of a sample 

],,[ 21 nrrrR  , the magnitude of the reflectance is defined as [128]: 

 



n

i

irR
1

2   (3.19) 

where n  denotes the number of spectral bands. 

Figure 3.8 shows the magnitudes of measured reflectance of 

samples in each colour centre. The reflectance magnitudes is in the 

ranges [1.01, 1.11], [1.66, 1.81], [1.57, 1.66] and [0.64, 0.73] for samples 

in green, gray, red and blue. It can be observed that the texture structure 

of a fabric would cause its reflectance magnitude fluctuation, which 

coheres the results shown in Figure 3.6a. 

When considering a reflectance curve as a vector, reflectance can 

be expressed as a combination of direction (normalized reflectance) and 

magnitude. With Figure 3.7 showing that fabrics with different texture 

structures have approximately identical normalized reflectance, whereas 

Figure 3.8 showing that their reflectance magnitude values vary with 

texture structures, it can be concluded that the texture surface of a fabric 
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sample dominantly influences the magnitude of reflectance rather than 

its direction. 

 
Figure 3.8  The reflectance magnitudes of samples in green, gray, red and blue. 

  
(a) (b) 

  
(c) (d) 

Figure 3.9 The colour distributions of samples in the CIEXYZ space. (a)-(d) 

tristimulus distributions of green, gray, red and blue samples. 
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CIEXYZ colour space 

The second experiment examined how the texture structure of a fabric 

sample affects its tristimulus and chromaticity coordinates. Figure 3.9 

shows colour distributions of all the samples in the CIEXYZ space. 

Least squares regress method
 
[129] was used to fit tristimulus values to a 

line. The correlation values between tristimulus values and regressed 

lines are 0.994, 0.997, 0.913 and 0.997 for the green, gray, red and blue 

samples. The high correlation values demonstrate that colours of fabric 

samples with different texture structures approximately define a line in 

the CIEXYZ colour space.  

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure 3.10 The chromaticity coordinates and tristimulus values of all samples: (a), 

(c), (e), and (g) the chromaticity coordinates of green, gray, red and blue samples; (b), 

(d), (f), and (h) the tristimulus values of green, gray, red and blue samples.  

Table 3.2 The standard deviation (std) of chromaticity coordinates and tristimulus 

values of all samples. 

 std of x std of y std of X std of Y std of Z 

Green Samples 0.0007 0.0009 0.3750 0.5175 0.5952 

Gray Samples 0.0000 0.0004 0.6305 0.6644 0.6770 

Red Samples 0.0022 0.0002 0.4410 0.3427 0.2209 

Blue Samples 0.0008 0.0012 0.2578 0.2645 0.6128 

Figure 3.10 depicts chromaticity coordinates and tristimulus values 

of samples in green, gray, red and blue. It can be observed that the 

chromaticity coordinates of samples in each colour centre are 

approximately identical. However, their tristimulus values dramatically 
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vary with texture structures. The standard deviation [130] was used to 

quantify chromaticity and tristimulus difference between samples with 

different textures in each colour centre. As shown in Table 3.2, the 

standard deviations of chromaticity coordinates are less than 0.0012 for 

all samples. However, the standard deviations of tristimulus values for 

these samples are more than 0.2.. 

CIELAB colour space 

The third experiment analyzed the CIELAB colours of these samples. 

Least squares regress method [129] was utilized to fit CIELAB colours 

to a line. As shown in Figure 3.11, the correlation values between the 

CIELAB colours and the regressed lines are 0.081, 0.161, 0.044 and 

0.372 for samples in green, gray, red and blue. Comparing Figure 3.11 

with Figure 3.9, we can conclude that colour distributions are much less 

linear in the CIELAB space than the CIEXYZ space. 

  
(a) (b) 
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(c) (d) 

Figure 3.11 The colour histograms in the CIELAB space. (a)-(d) the CIELAB colour 

histograms of the green, gray, red and blue samples. 

Removing the effect of texture on colour 

The linear relationship between the measured reflectance of fabrics with 

different textures can be utilized to estimate a theoretical reflectance 

which discounts the influence of texture on colour. For a fabric sample 

with the  j-th texture in the colour centre iC , its theoretical reflectance 

,
( )

T i

jR   can be expressed as: 

 
, , ,
( ) ( ) ( )

T i T i T i

j j jR R R    (3.20) 

where 
,
( )

T i

jR   and 
,
( )

T i

jR   denote the magnitude and the normalized 

reflectance  of  
,
( )

T i

jR  . 

As shown in Eqn (3.12), the magnitude 
,
( )

b i

jR   is determined by 

the surface variable ( 
YY qp

YYYYYYb dqdpqpHqpm
,

),(),( ), the aperture size ( rA ) 



Chap.3. Methodology of colour measurement of yarn dyed fabrics 

69 

 

and the nominal reflectance magnitude ( ( )iR  ). A reasonable 

assumption is that the surface variable is approximately identical for two 

samples with same texture but in different colour centres 1C  and 2C  

( ,1( )j

bR   and ,2 ( )j

bR  ). Comparing to the corresponding samples with 

standard texture in  1C  and 2C  ( ,1( )s

bR   and ,2 ( )s

bR  ), as a consequence, 

multiple relationships )()(
1,1,  s

b b
RR

 
and )()(

2,2,  s

b b
RR  can 

approximate to be identical. For a sample with measured reflectance 

, ( )j

b iR  , we can estimate its multiple relationship of reflectance 

magnitude compared to the corresponding standard sample 

( , ,( ) / ( )j s

j b i b iM R R  ) as the mean of multiple relationship of reflectance 

magnitudes among samples in all the colour centres: 
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where N  denotes the number of colour centres, here,  4N  .  

Given the measured reflectance , ( )j

b iR    for the sample with j-th 

texture in the colour centre iC , the magnitude of theoretical reflectance 

,
( )

T i

jR   can be estimated as: 
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The normalized reflectance 
,
( )

T i

jR   can be estimated as , ( )j

b iR   

because samples with different texture structures in a colour centre have 

the same normalized reflectance (Eqn (3.14) and Figure 3.7). 

Figure 3.12 shows the multiple relationships of reflectance 

magnitude for the green, gray, red and blue samples. In each colour 

centre, the sample with single jersey (Figure 3.5-Std) was chosen as the 

standard texture. It can be observed that samples with same texture in 

different colour centres have approximately identical multiple 

relationship in terms of reflectance magnitude.  Some outliers exist in 

Figure 3.12, such as samples with No. 17 texture structure, yet the 

deviation is high, which may be caused by non-uniformity during 

preparing samples. The color differences between batch and standard 

samples before and after removing texture effect were calculated by the 

CMC(2:1) formula, which is one of the color difference formulas widely 

adopted in textile. The standard sample in each color center is the one 

with the standard texture. Figure 3.13 shows colour difference before 

and after removing texture effect for each sample. The standard samples 
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in each colour centre are the ones with the standard texture. As shown in 

Figure 3.13, the colour difference after removing texture effect is much 

smaller. The average colour difference values before texture effect 

removal are 0.39, 0.30, 0.31, 0.32 CMC(2:1)  units for samples in green, 

gray, red and blue. The average colour difference values after removing 

texture effect are 0.08, 0.13, 0.09 and 0.14 CMC(2:1) units for these 

samples. The influence of texture on colour is reduced by 79%, 55%, 71% 

and 57% for the green, gray, red, and blue samples respectively. 

 
Figure 3.12 The multiple relationships of samples in terms of reflectance magnitude. 

In each colour centre, samples with single jersey (Figure 3.5-Std) are chosen as 

standards.  
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(c) (d) 

Figure 3.13 The colour difference between samples with different texture structures 

and the stand texture structure before and after removing texture effect. 

3.4. Conclusion 

The methodology of colour measurement of yarn dyed fabrics is first 

introduced in this chapter. A novel reflection model is then proposed to 

estimate the light reflected by a yarn dyed fabric. The model expressed 

that the light reflected by a fabric surface is composed by two parts: the 

occluded light from the system illuminant and the light reflected by 

neighbouring yarns. In addition, three parameters influence the light 

reflected by a fabric surface: surface texture, inter-reflection between 

yarns and illuminant occlusion. Finally, the reflection model is verified 

by estimating the influence of texture on colour measured by 

spectrophotometers. Based on the reflection model, the texture of a yarn 

dyed fabric dominantly influences the magnitude of reflectance rather 

than its direction. In the CIEXYZ space, yarn dyed fabrics with different 
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texture structures define a line which implies that their chromaticity 

coordinates are identical. An approach is proposed to reduce the 

influence of texture on colour. Experimental results show that the 

influence of texture on colour for yarn dyed fabric samples in four colour 

centres (green, gray, red and blue) can be reduced by 79%, 55%, 71% 

and 57% respectively comparing to the real measured colour difference.  
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CChhaapptteerr  44    DDoommiinnaanntt  CCoolloouurr  RReeggiioonn  

SSeeggmmeennttaattiioonn  

In this chapter, a novel unsupervised approach to detect dominant colour 

regions standing out conspicuously in yarn dyed fabric images is 

presented. A probabilistic model is proposed to associate the colour of a 

dominant colour region with colours of its yarns. Based on this model, 

colour histograms of a dominant colour region are first estimated from 

those of yarns. A hierarchical segmentation structure is then devised to 

detect dominant colour regions. Experimental results show that the 

proposed approach achieves satisfactory performance for dominant 

colour region segmentation in yarn dyed fabric images, with high 

computational efficiency. 

4.1. Background 

Traditionally, a spectrophotometer is used to measure solid colours of 

fabrics. However, for a multi-coloured object, such as a yarn dyed fabric, 

prior to measuring the colour of yarns by a spectrophotometer, it is 
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necessary to separate them.  This is time and energy consuming, and 

prone to error owing to inconsistency in preparing yarn samples. With 

the development of digital imaging technology, image analysis 

techniques are adopted to extract colour information from fabrics. To 

measure the colour of a yarn dyed fabric by image analysis techniques, it 

is necessary initially to detect colour regions standing out conspicuously 

in the image. These regions are called dominant colour regions, and their 

colours are referred to dominant colours (Figure 4.1c). For a dominant 

colour region of a yarn dyed fabric, however, its colour cannot easily be 

measured owing to three-dimensional (3D) shapes of yarns, which 

results in a significant colour difference among pixels of a yarn (Figure 

4.1d). This non-uniformity leads to difficulty in segmenting dominant 

colour regions.  

As mentioned in Section 2.5, colour region segmentation in fabric 

images can be achieved by cluster-based approaches and automatic 

segmentation algorithms of still images. However, it is difficult to 

directly utilize cluster-based approaches to segment colour regions in 

yarn dyed fabric images since colours are more scattered and uneven in 

yarn dyed fabrics than textile prints. While automatic segmentation of 
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still images has been investigated for many years in the field of image 

processing, it is difficult to segment colour regions in yarn dyed fabric 

images by directly applying any of these segmentation methods. Sample-

induced effects of yarn dyed fabrics introduced in Chapter 1 cause 

difficulties to finding a global threshold for histogram-based and region-

based segmentation methods, as shown in Figure 4.1b. It is also difficult 

to employ edge-based segmentation methods because of intermittent and 

winding boundaries of yarns. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.1 Example of dominant colour regions in a yarn dyed fabric image: (a) the 

yarn dyed fabric image; (b) the lightness histogram of the image; (c) its dominant 

colour regions include six regions (shown as white, black, red, yellow, pink, and 

purple rectangles); (d) pixels in the dominant colour region shown as the white 

rectangle in (c). 
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4.2. Dominant Colour Region Segmentation 

For a yarn dyed fabric image, appearance colours of its yarns and 

dominant colour regions are denoted as )(xIM  and )(xIT . The deviation 

of )(xIM  from )(xIT  depends on several factors, such as fineness and 

strength of fibres, physical shape of fibers, yarn structure, and thread 

density. According to the central limit theorem (CLT) [131], almost any 

measured quantity that depends on several underlying factors has a 

Gaussian probability density function. When a sufficiently large number 

of data are considered (the number of pixels is 1040*1392), the 

probability that )(xIM  associates with )(xIT  can be hypothesised to 

follow the Gaussian distribution [132]: 
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where 3)(),( RxIxI MT  , and  is the covariance matrix of colours. 

According to the study of Kurugollu [133], it is not always feasible 

to obtain a reliable image segmentation from 3D histograms owing to 

data insufficiency. The adopted CIELAB colour space in this study, 

meanwhile, is a 3D colour space with three independent variables L*, a*, 
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and b*. Therefore, the probability of )(xIM  associating with )(xIT  in 

each colour channel is modeled independently.  

Given the dominant colours )3,2,1)(( ixI i

T  and the colours of yarns 

)3,2,1)(( ixI i

M  in a yarn dyed fabric image, the probability of )(xI i

M  

associating with )(xI i

T  can be modeled as: 

 ),,min( 321    (4.2) 

where i  is the probability that )(xI i

M  associates with )(xI i

T  in i-th colour 

channel: 
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 (4.3) 

where 
2

i  is the variance of the probability distribution in each colour 

channel.  

A threshold D  is set to determine whether two yarns with colours 

)( 1xIM  and )( 2xIM  belong to one dominant colour region [its colour is 

)( 0xIT ]. The probabilities that )( 1xIM  and )( 2xIM  associate with )( 0xIT  are 

denoted as 01  and 02 , respectively. If D),min( 0201  , these two yarns 

are determined to belong to the same dominant colour region, and vice 

versa.  
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It is of low efficiency to compare all the pairs of )( 1xI i

M  and )( 2xI i

M

in an image to determine whether they belong to one dominant colour 

region. Instead, an implicit solution based on histogram analysis is 

proposed to detect dominant colour regions. Firstly, colour histograms of 

yarns are employed to estimate i  in Eqn  (4.3). Secondly, colour 

histograms of dominant colours are reconstructed by the estimated i̂ . 

Finally, reconstructed colour histograms of dominant colours are 

explored to calculate the segmentation threshold D . 

4.2.1. Estimate Parameters in the Model 

The standard deviation of the histogram of yarns [ )(xI i

M ] is employed to 

estimate i  in Eqn  (4.3): 

 2

1

1

2 ))(
1

1
(ˆ  





n

i ii xx
n

   (4.4) 

where x  is the mean value of x . 

As i  is monotonically decreasing in the domain )()( xIxI i

M

i

T  , the 

histograms of yarns [ )(xI i

M ] are divided into several segments by its 

local valleys before applying Eqn  (4.4) to estimate i .  
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4.2.2. Reconstruct Colour Histograms of Regions 

The colour histograms of dominant colours [ )(xIT ] can be directly 

reconstructed from the colour histograms of yarns [ )(xI i

M ] by the 

equation: 

 



N

i

iik rhrf
0

)()(   (4.5) 

where )( krf  denotes the kr -th level of the reconstructed colour histogram 

of dominant colours [ )(ˆ xI i

T ], )( irh  is ir -th level of the colour histogram of 

yarns [ )(xI i

M ], i  is the probability of the colour of yarns [ i

i

M rxI )( ] 

associating with the colour of dominant colour regions [
k

i

T rxI )(ˆ ] in the 

image, which can be calculated from Eqn  (4.3) and Eqn  (4.4), and N  is 

the total number of segments of the colour histograms of yarns [ )(xI i

M ]. 

Figure 4.2 illustrates reconstruction of the colour histogram of 

dominant colours (Figure 4.2c) from the colour histogram of yarns 

(Figure 4.2b) in the lightness channel. Eqn  (4.4) was firstly employed to 

estimate i  from the lightness histogram of yarns (Figure 4.2b).  

Secondly, Eqn  (4.3) was used to calculate the probability of colours of 

yarns associating with colours of dominant colour regions. Finally, Eqn  

(4.5) was used to reconstruct the histograms of dominant colours (Figure 
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4.2c). Two key points can be derived from Figure 4.2b and Figure 4.2c. 

Firstly, the local maxima in the colour histograms of )(ˆ xI i

T
 and )(xI i

M  are 

almost identical. Specifically, the local maxima in Figure 4.2b locate at 

40, 58, 67 and 85. In Figure 4.2c, the local maxima locate at 40, 57, 66, 

and 83. Secondly, the reconstructed colour histograms of )(ˆ xI i

T  is more 

separable than those of )(xI i

M . In Figure 4.2b, it is very difficult to 

determine whether the local maximum at 58 represents a dominant 

colour, whereas it becomes convincing in Figure 2c. These two key 

points are extremely helpful in segmenting dominant colour regions in 

yarn dyed fabric images. 

By identifying local minima of the reconstructed colour histogram 

of dominant colours as the segmentation thresholds in i-th colour 

channel, dominant colour region segmentation could be achieved in each 

colour channel: 

 ,2,1,3,2,1),()(  kixLMinxT ki   (4.6) 

where )(xLMin  denotes the points of the local minima kx of the 

reconstructed colour histogram of )(ˆ xI i

T . 
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Figure 4.2d shows the segmentation result of Figure 4.2a in the 

lightness L* channel using the thresholds 1( )kT x  . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2 Example of dominant colour region segmentation in the lightness L* 

channel: (a) the yarn dyed image; (b) the colour histogram of )(1 xIM ; (c) the 

reconstructed colour histogram of )(ˆ1 xIT ; (d) the segmentation result of dominant 

colour regions in the lightness L* channel. 

4.2.3. Estimate Segmentation Thresholds 

It is non-trivial to obtain a threshold D  to determine whether two yarns 

belong to one dominant colour region. Instead, an implicit approach 

based on a hierarchical segmentation structure is proposed in this study 

to find the final segmentation of dominant colour regions. 
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R1(23~49) R2(49~60) R3(60~76) R4(76~88) L* Channel

The Image

R11(0~10)

R111(-35~-28)

R21(-19~-13) R31(-13~-10)

R211(-35~-28) R311(-21~-11)

R32(-19~-13)

R321(-28~-21)

R33(-10~0)

R331(-21~-11)

R41(-10~0)

R411(-11~0)

a* Channel

b* Channel

 

Figure 4.3 Example of the hierarchical segmentation structure to obtain the final 

segmentation result of dominant colour regions 

Firstly, a yarn dyed fabric image is segmented into several regions 

iR  by the thresholds )(1 kxT . Secondly, pixels in iR  are divided into one 

or more subregions ijR  by the thresholds )(2 kxT . Finally, ijR  are split into 

one or more subregions ijkR  by the thresholds )(3 kxT . Figure 4.3 shows an 

illustration of this procedure. For the yarn dyed image shown in Figure 

4.2a, its segmentation thresholds in L*, a* and b* channels are

1( ) 23,  49,  60,  76,  88kT x   ( 1,  2,   5)k  , 2( ) 19,  13,  10,  0kT x      ( 1,  2,k 

3,  4)  and 3( ) 35,  28,  21,  11,  0 ( 1,  2,   5)kT x k      . In the L* channel, 

the image is segmented into four regions )4,3,2,1( iRi by the thresholds 

)(1 kxT . In the a* and b* channels, 1R , 2R  and 4R  cannot be divided into 

subregions by )(2 kxT  and )(3 kxT . However, 3R can be split into 3 
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subregions )3,2,1(3 jR j  by the thresholds )(2 kxT . Thus, the final 

segmentation is 6 dominant colour regions, i.e., 111R , 211R , 
311R , 

321R ,
331R

and 411R . 

In fact, the hierarchical segmentation structure is an implicit 

estimation of the threshold D . Given two yarns with colours )( 1xI i

M , 

)( 2xI i

M , one dominant colour )(xI i

T  of a yarn dyed fabric image, and its 

segmentation thresholds )( ki xT  in three channels, segmentation in each 

colour channel can be formulated as: 
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where 0))()(())()(( 21  kiikii xTxIxTxI  indicates )( 1xI i

M  and )( 2xI i

M  

belong to )(xI i

T  in the view of i-th colour channel, and vice versa. 

)2,1(0 jj

i  and iD  are defined as: 
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where )()()( 1 kikii xTxTxT , )2,1(0 jj

i  denotes the probability that 

)( j

i

M xI  associates with the dominant colour )()( ki

i

T xTxI  , and iD  denotes 
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the probability that the yarn with colour )( ki xT  associates with the 

dominant colour region with colour )( 1ki xT . 

 Given a threshold D , which is set to determine whether two yarns 

with colours )( 1xI i

M  and )( 2xI i

M  belong to one dominant colour region  its 

colour is )(xI i

T ) in the proposed model (Eqn  (4.1)), ),,min(min( 02

1

01

1   

),,min( 02

2

01

2   D)),min( 02

3

01

3   indicates that these two yarns belong to a 

dominant colour region in the view of all three colour channels. An 

example is the subregion 111R  in Figure 4.3. If  Dii ),min( 0201   but 

Djj ),min( 0201  , however, these two yarns belong to a dominant colour 

region in the view of j-th colour channel but do not in the view of i-th 

colour channel. The segmentation results obtained by )( kj xT  can be 

partitioned more precisely into subregions by )( ki xT . As shown in Figure 

4.3, the colour region 3R  segmented by the threshold )(1 kxT  can be 

partitioned into three subregions by the threshold )(2 kxT . Thus, 

segmentation based on the hierarchical segmentation structure estimates 

the threshold D  as: 

 )min( iDD     (4.10) 
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4.2.4. Summary of the Segmentation Algorithm 

With a yarn dyed fabric image captured by a multispectral imaging 

system, the follow steps will be carried out: 

(1) Convert the reflectance space of the image to the CIELAB colour 

space. 

(2) Create the histograms of the image for L*, a* and b* colour channels. 

(3) Divide the histograms of each colour channel into several segments 

by their local valleys. 

(4) Estimate i  of each segment of the histograms of each colour 

channel by Eqn  (4.4) 

(5) Reconstruct the histograms of each colour channel by Eqn  (4.5). 

(6) Calculate the dominant colour segmentation thresholds in the 

reconstructed histogram of each colour channel by Eqn  (4.6). 

(7) Obtain the dominant colour segmentation results in each colour 

channel by these thresholds. 

(8) Combine the segmentation results in each colour channel into final 

segmentation results by the hierarchical structure shown in Figure 4.3. 

4.3. Results and Discussion 

In order to evaluate the proposed approach, it was implemented on a PC 

with 2.80 GHz CPU and 8 GB RAM. Cotton yarn dyed fabric samples 

were used. The image captured by ICM was converted into data in 

CIELAB colour space. In order to reduce the influence of noises, images 
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in CIELAB colour space were preprocessed by a Gaussian filter with a 

radius of 7 pixels. 

4.3.1. Verification of the Probability Model 

The first experiment looked at the probabilistic distribution of colour in 

the dominant colour region of a yarn dyed fabric image. Figure 4.4b 

plots the lightness histogram of the dominant colour region shown as a 

yellow rectangle in Figure 4.4a. The shape of the histogram shown in 

Figure 4.4b agrees with the Gaussian distribution. 

 
(a) 

 
(b) 

Figure 4.4 Example of dominant colour regions and their lightness histogram: (a) 

dominant colour regions (The yellow rectangles show the selected dominant colour 

regions); (b) the corresponding lightness histogram. 

4.3.2. Experiments Using Macro and Telephoto Lenses 

A macro lens with a 25 mm focal length was used to evaluate the 

proposed method. Test samples were classified into two groups: a simple 
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group and a complex group. In the simple group, dominant colour 

regions had distinct colours and consisted of regular patterns, such as 

thick stripes and rectangles. On the other hand, dominant colour regions 

in the complex group were not easily identified. Images in this group had 

patterns with different sizes, and colours were quite analogous to one 

another. Figure 4.5 and Figure 4.6 show the dominant colour region 

segmentation results of images in the simple and complex groups 

respectively. The dominant colour regions in the simple and complex 

groups are both separated correctly compared with the actual fabric 

samples.  

     

     

     

     

(a) (b) (c) (d) (e) 

Figure 4.5  Experimental results in the simple group: (a) source images; (b-d) 

segmentation results in the L*, a* and b* channels; (e) final segmentation results of 

dominant colour regions. 
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(a) (b) (c) (d) (e) 
Figure 4.6 Experimental results in the complex group: (a) source images; (b-d) 

segmentation results in the L*, a* and b* channels; (e) final segmentation results of 

dominant colour regions. 

A telephoto lens with a 100 mm focal length was also used to 

evaluate the proposed method. As the imaging areas from a telephoto 

lens are smaller than those from a macro lens, only parts of the images in 

Figure 4.6 can be captured by the telephoto lens, shown in Figure 4.7. 

These images and the experimental results are shown in Figure 4.8. It is 

also demonstrated that the proposed method segments dominant colour 

regions of these yarn dyed fabric images successfully. Comparing the 

segmentation results in Figure 4.6 and Figure 4.8, the proposed method 

performs better with the macro lens than with the telephoto lens. When 

the telephoto lens is used, the spatial structure of yarns is much clearer. 
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Thus, it is more difficult to cluster the yarns of a yarn dyed fabric as one 

dominant colour region. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7 The areas of fabrics (shown in Figure 4.6) captured by the telephoto lens. 

     

     

     

     

(a) (b) (c) (d) (e) 

Figure 4.8 Experimental results using the telephoto lens: (a) source images; (b-d) 

segmentation results in the L*, a* and b* channels; (e) final segmentation results of 

dominant colour regions. 
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4.3.3. Computational Complexity Analysis 

Figure 4.9 shows the time complexity of the proposed algorithm using 

the macro and telephoto lenses. As shown in Fig. 9, the initial times for 

processing one image using lenses with 25 and 100 mm focal lengths are 

approximately 0.5 and 0.6 s respectively. For yarn dyed fabric images 

captured by the 25 and 100 mm focal length lenses, the processing time 

per dominant colour region is approximately 0.045 and 0.075 s 

respectively. 

 
(a) 

 
(b) 

Figure 4.9 The processing time per image using lenses with 25 and 100 mm focal 

lengths: (a) the processing time per image using the 25mm lens; (b) the processing 

time per image using the 100mm lens. 

4.3.4. Comparison Experiments  

The proposed method was also compared with the seeded region 

growing [92] and quadtree segmentation [94] methods. In the seeded 
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region growing method, seeds were chosen manually and randomly in 

each dominant colour region. In the quadtree segmentation method, the 

test image was first cropped to 512*512 pixels, as this method is 

appropriate primarily for square-sized images whose dimensions are a 

power of 2. Then, the image is split into regions by thresholds 0.13, 0.18, 

and 0.09 in the L*, a*, and b* channels. These thresholds were tuned 

manually to produce best segmentation in each colour channel. After that, 

the mean values were calculated. Finally, the segmentation results were 

obtained by applying the same thresholds in the splitting procedure. 

Figure 4.10 shows the segmentation results of dominant colour regions 

using these methods. 

As shown in Figure 4.10f-h, oversegmentation occurs in the 

seeded region growing method. This is considered as a result of colour 

changes at yarn intersections and interstices between weft and warp 

yarns. Because of the colour changes, the seeded region growing method 

rejects the inclusion of the corresponding pixels to a dominant colour 

region. The major problem of the seeded region growing method is how 

to select seeds. The final number of segmented regions must also be 

known a priori in this method. As shown in Figure 4.10j-l, over 
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segmentation and under segmentation occur when the quadtree method is 

applied. It is difficult to find a global threshold to split the image in the 

quadtree segmentation method.  

A quantitative comparison of the proposed method, the seeded 

region growing method, and  the quadtree segmentation method was also 

conducted. As shown in Figure 4.11a, dominant colour regions were 

manually labeled as ground truth. The overlap areas between the ground 

truth and segmentation regions by these three methods were viewed as 

successful segmentation. The degree of overlap was defined as: 
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 (4.11) 

where iA  denotes the number of pixels in the i-th rectangle of the 

overlap areas, and iW  and iH  represent the width and length of the i-th 

dominant colour region in the ground truth.  

Figure 4.11b shows the quantitative comparison results. It is 

concluded that the proposed method performs better in detecting 

dominant colour regions than the other two methods.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 4.10 Comparative experiments using the proposed method, region growing 

method, and quadtree decomposition method: (a), (e), and (i) source images; (b-d) 

segmentation results in the L*, a* and b* channels by the proposed method; (f-h) 

segmentation results in the L*, a* and b* channels by the region growing method; (j-

l) segmentation results in the L*, a* and b* channels by the quadtree decomposition 

method. 

 
(a) 

 
(b) 

Figure 4.11 The dominant colour regions chosen in the quantitative experiment and 

the comparison result: (a) the chosen four dominant colour regions are shown in 

yellow rectangles; (b) the quantitative result of the proposed method, region growing 

method and quadtree method. 
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4.4. Conclusion  

An unsupervised method of dominant colour region segmentation in yarn 

dyed fabric images is developed in this chapter. This method is based on 

a probabilistic model and includes three steps. Firstly, the colour 

histograms of a dominant colour region are estimated from those of 

yarns in a yarn dyed fabric image. Secondly, dominant colour region 

segmentation is performed in three colour channels independently. 

Finally, a hierarchical segmentation structure is devised to obtain 

dominant colour regions by combining segmentation results in three 

colour channels. Experiments show that the proposed approach achieves 

excellent dominant colour region segmentation performance for yarn 

dyed fabric images captured by both macro and telephoto lenses. The 

time for processing one dominant colour region of images captured by 

the macro and telephoto lenses is approximately 0.045s and 0.075s 

respectively, which demonstrates this approach is suitable for industrial 

applications. 
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CChhaapptteerr  55    SSoolliidd--ccoolloouurr  aanndd  MMuullttii--ccoolloouurr  

RReeggiioonn  DDeetteeccttiioonn    

The approach introduced in Chapter 4 achieves dominant colour region 

segmentation in yarn dyed fabric images. However, a dominant colour 

region can be either solid-colour (weft and warp yarns with the same 

colour) or multi-colour (weft and warp yarns with different colours). In 

this chapter, an efficient approach to detect solid-colour and multi-colour 

regions in real yarn dyed fabric images is presented. Based on the 

reflection model introduced in Chapter 3, solid-colour and multi-colour 

regions can be distinguished in the CIExyY space.  

5.1. Background 

A yarn dyed fabric is cross-woven by weft and warp yarns. When the 

colour of weft and warp yarns is identical, the region interlaced by these 

yarns is so-called solid-colour. In contrast, multi-colour regions are 

intertwined by weft and warp yarns with different colours. Traditionally, 

colour measurements of solid-colour regions are achieved by 
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spectrophotometers. However, a spectrophotometer cannot be directly 

used to measure colours of multi-colour regions because this type of 

instrument can only measure the average colour of a sample [151]. With 

the development of digital imaging technology, multispectral imaging 

(MSI) systems [48,50] are adopted to extract colour information of a 

fabric sample. A MSI system can provide not only the spectral 

information but also the spatial information of a sample. The spatial 

information can help understand important knowledge about a yarn dyed 

fabric, such as the location distributions of weft and warp yarns and their 

structures. When a MSI system is applied to measure the colour of a 

solid-colour yarn-dyed fabric, colours of weft wand warp yarns can be 

exacted without weft and warp yarn segmentation as they have same 

colours. In contrast, a MSI system is obliged to segment weft and warp 

yarns of a multi-colour region before calculating their colours. Thus, it is 

necessary to initially detect solid-colour and multi-colour regions in 

yarn-dyed fabric images before analyzing their colours. 

In this chapter, an efficient approach to segment solid-colour and 

multi-colour regions in real yarn-dyed fabric images is introduced. Based 

on the reflection model introduced in Chapter 3, solid-colour and multi-
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colour regions in yarn-dyed fabric images can be distinguished in the 

CIExyY space. The CIExyY histograms of a solid-colour region accord 

with one Gaussian distribution but those of a multi-colour region agree 

with a combination of two Gaussian distributions. 

5.2. Solid-colour and Multi-colour Region Detection 

5.2.1. Spectral Response of a MSI system 
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d: radius of lens  f: distance from lens to image plane 

 : angle of the sample with respect to view 

Figure 5.1 The basic optics within a MSI system 

Figure 5.1 shows the basic optics within a multispectral imaging system. 

Given lens radius d , distance from lens to image plane f , and angle of 
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the yarn dyed fabric with respect to the view  , the irradiance at pixel 

),( CC qp  of the  image plane, ),,( CC qpE   is given [134,135]: 

 




 42 cos)(
4

),,(),,(
f

d
qpLqpE YYCC      (5. 1) 

where ),,( YY qpL   denotes the radiance at the yarn dyed fabric surface 

),( YY qp , ),( YY qp  represents the position on the yarn dyed fabric 

corresponding to ),( CC qp ,   expresses the wavelength. 

Based on the reflection model proposed in Chapter 3, the light 

reflected by a yarn dyed fabric can be modeled as: 
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 (5. 2) 

where ( )E   denotes the illuminant spectrum,  ),( YYb qpm , ),( YY qpH  and 

),( YY qpA  express the influences of fabric surface, illuminant of the MSI 

system and inter-reflection between neighbouring yarns, )(1 R  and )(2 R  

represent the nominal reflectance of the measured yarn and its 

neighbouring yarn. In a solid-colour region, )(1 R  is equal to )(2 R . In 

contrast, )(1 R and )(2 R are different in a multi-colour region. 

Substituting Eqn (5.2) into Eqn (5.1), we have: 
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   (5. 3) 

When the NIST White Tiles is used to calibrate the MSI system, the 

irradiance at pixel ),( CC qp  is: 
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Combining Eqn (5.3) and Eqn (5.4), the spectral response of the 

MSI system to a yarn dyed fabric can be modeled as: 
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  (5. 5) 

5.2.2. Colour in the CIEXYZ and CIELAB Spaces 

Given the CIE colour matching functions )(x , )(y , )(z , the 

tristimulus of the pixel ),( CC qp  can be specified as [125]: 
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  (5. 6) 

where k  is a normalising factor given by 


 dyEk )()(/100 . 

The CIELAB colour of pixel ),( CC qp  can be specified as [125]: 

 














)]/),(()/),(([200),(*

)]/),(()/),(([500),(*

16)/),((116),(*

nCCnCCCC

nCCnCCCC

nCCCC

ZqpZfYqpYfqpb

YqpYfXqpXfqpa

YqpYfqpL

   (5.7)

  

where 

 















otherwise   
29

4
)

6

29
(

3

1

)
29

6
(                    

)(
2

33/1

t

tt

tf

 

  (5.8) 

],,[ nnn ZYX  denotes the tristimulus values for the reference white point. 

],,[ nnn ZYX  represents the influence of illuminant on colour, i.e., 

],,[ nnn ZYX  changes with illuminants or CIELAB colours calculated by 

different ],,[ nnn ZYX  values imply a sample is viewed under different 

illuminants. 
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Figure 5.2 Influences of coefficients ),( YYb qpm , ),( YY qpH , and ),( YY qpA  on 

measured colour. The yarn-dyed fabric is viewed in axonometric projection. 

As shown in Figure 5.2, it is trivial to understand that ),( YY qpH  

and ),( YY qpA  represent the influences of the MSI system and 

neighbouring yarns on measured colour. ),( YY qpH  expresses the 

percentage of beams shining on the surface position ),( YY qp  from the 

illuminant of the MSI system. ),( YY qpA  implies the intensity of light 

reflected by neighbouring yarns. However, it is much more difficult to 

understand the impact of ),( YYb qpm  on measured colour, especially 
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CIELAB colour. In the reflectance and CIEXYZ spaces, Eqn (5.5) and 

Eqn (5.6) express reflectance and tristimulus values are scaled by 

),( YYb qpm . In the CIELAB space, the influence of ),( YYb qpm  can be 

interpreted that pixel ),( YY qp  is viewed under the illuminant which 

tristimulus values is ]),(,),(,),([ YYbnYYbnYYbn qpmZqpmYqpmX  rather than 

],,[ nnn ZYX , as shown by Eqn (5.9).  

According to the Oren–Nayar reflectance model [113], the 

geometric variable can be specified as )cos(),( YYb qpm , where   is the 

incident angle at ),( YY qp . In the peak areas of a yarn dyed fabric surface, 

the incident angle approximates to zero and thus the geometric term 

approaches one. In contrast, the geometric term comes up to zero in 

valley areas because of large incident angle. In the transition areas 

between parks and valleys, the geometric term changes from zero to one. 

Therefore, pixel colours change with surface positions for both solid-

colour and multi-colour regions in terms of tristimulus values and 

CIELAB colours. It should be noted that subtraction operation to 

calculate CIELAB colours from tristimulus values in Eqn (5.7) would 

reduce but cannot eliminate the influence of geometric term. As a 

consequence, ),( YYb qpm  has a great impact on CIEXYZ and CIELAB 
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colours for both solid-colour and multi-colour yarn-dyed fabric regions. 

The geometric term hampers determining thresholds of CIEXYZ or 

CIELAB colour histograms to distinguish solid-colour and multi-colour 

regions. 

5.2.3. Chromaticity  Coordinates 

The chromaticity coordinates of a yarn-dyed fabric is directly calculated 

from tristimulus values [125]: 
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 (5. 10) 

Eq.(5.10) expresses chromaticity coordinates of a yarn dyed fabric 

are not affected by the geometric term ),( YYb qpm  but the occlusion 

coefficient ),( YY qpH  and the ambient coefficient ),( YY qpA .  
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5.2.4. Solid-colour and Multi-colour Region Segmentation 

Instead of the CIEXYZ and CIELAB colours, the CIExyY colour is used 

to distinguish solid-colour and multi-colour regions in yarn dyed fabric 

images. By dividing the numerators and denominators by the occlusion 

coefficient ),( YY qpH  in Eqn (5.10), the CIExyY colour of the yarn-dyed 

fabric can be expressed as:  
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 (5. 11) 

In the peak areas of a yarn dyed fabric surface, the contribution of 

system illuminant is dominant ( ),(),( YYYY qpAqpH  ) as the occlusion 

coefficient approximates 1 but the ambient coefficient is close to 0. As a 

consequence, the ratio of ),( YY qpA  to ),( YY qpH  approaches to 0. In the 

transition areas between peak and valley areas, both the system and 

ambient illuminants contribute to chromaticity coordinates. The 
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contribution of the system illuminant becomes less with positions more 

approaching valley areas. In the valley areas of a surface, the 

contribution of ambient illuminant is dominant. 

While the surface of a yarn dyed fabric can be divided into peak, 

valley and transition areas, the possibility of pixels locating in the peak 

areas is much larger than valley and transition areas because the real 

yarn cross-sectional shape of yarn dyed fabrics approximates race-track 

[121], lens [122] or shoulder squareness [123] rather than ideal circle, as 

shown in Figure 3.4. In addition, the surface shape of a yarn dyed fabric 

would be influenced by many factors such as fiber strength, yarn count, 

yarn twist factor, cover factor, and thread density. According to the 

central limit theorem (CLT) [131], almost any measured quantity which 

depends on several underlying factors has a Gaussian probability density 

distribution. Thus, the chromaticity and luminance histograms have a 

Gaussian distribution for both weft and warp yarns. 

For a solid-colour region, the colour of weft and warp yarns is 

identical, i.e., 1 2( ) ( )R R   in Eqn (5.11). As a consequence, the 
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chromaticity and luminance histograms accord with one Gaussian 

distribution respectively.  

For a multi-colour region, three situations are included according 

to the CIExyY colours of weft and warp yarns: different chromaticity 

coordinates, similar chromaticity coordinates but distinctly different 

luminance, and same chromaticity coordinates and similar luminance. 

Firstly, when weft and warp yarns have different chromaticity 

coordinates, the chromaticity histograms of the region agree with a 

combination of two Gaussian distributions. Secondly, when weft and 

warp yarns have similar chromaticity coordinates but distinctly different 

luminance values, both of chromaticity and luminance histograms can be 

used to determine if the region is multi-colour. The chromaticity 

histograms may accord with a combination of two Gaussian distributions 

because influences of the above mentioned factors (fiber strength, yarn 

count, yarn twist factor, cover factor, and thread density) on weft and 

warp yarns may be different. In addition, the luminance histogram 

accords with a combination of two Gaussian distributions since the 

luminance values of weft and warp yarns are different. For solid-colour 

regions, however, luminance histograms accord with one Gaussian 
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distribution. Finally, weft and warp yarns with similar chromaticity and 

similar luminance are ignored because this is quite uncommon in real 

industrial applications. 

5.3. Results and Discussion 

Simulation and real experiments were conducted to evaluate the 

proposed approach to distinguish solid-colour and multi-colour yarn 

dyed fabric regions. Tristimulus values of a region were transformed 

from its reflectance by Eqn (5.6). The CIExyY and CIELAB colours 

were transformed from the CIEXYZ colour by Eqn (5.11) and Eqn (5.7). 

The CIEXYZ, CIELAB, and CIExyY histograms were normalized to 

eliminate the influence of region size. Colour histograms were 

distributed among 256 bins to fully show their shapes. 

5.3.1. Simulation Experiment 

The first experiment checked the influences of the occlusion and ambient 

coefficients on the chromaticity histograms of a solid-colour yarn dyed 

fabric region. Given the reflectance of yarns and the illuminant of the 

MSI system, the chromaticity coordinates of a solid-colour region yarn 
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dyed fabric is determined by the ratio ),(/),( YYYY qpHqpA  , as shown by 

Eqn (5.11). We can find the relationship between ),(/),( YYYY qpHqpA  and 

luminance ),( CC qpY  from Eqn (5.11) as:  
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(5. 12) 

Eqn (5.12) expresses that ),(/),( YYYY qpHqpA  is linearly decreased 

with less ),( CC qpY . As mentioned in Section 5.2.2, ),( YY qpH  and ),( YY qpA  

represent the influences of the system and ambient illuminants on 

measured chromaticity coordinates. ),( YY qpH  is large in peak areas but in 

reverse in valley areas. In the transition areas between peak and valley 

areas, ),( YY qpH  becomes larger with pixels more approaching peaks. 

However, ),( YY qpA  changes reversely with ),( YY qpH . Thus, we can use the 

following equation to estimate the contributions of occlusion coefficient 

),( YY qpH  and the ambient coefficient ),( YY qpA  to chromaticity 

coordinates: 
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where YP  denotes the percentile of the luminance histogram, a  and b  

express the thresholds of ),(/),( CCCC qpHqpA  and luminance. When 

bPY  , the contribution of system illuminant to chromaticity values is 

dominant and ambient illuminant is assumed to be negligible. When 

bPY  , the contribution of the system illuminant becomes less with more 

close to valleys linearly. At the valley of the surface, the contribution of 

ambient illuminant is a  times than system illuminant. 

Given the luminance of a solid-colour region and the reflectance of 

weft and warp yarns, Figure 5.3 shows the simulation results of the 

influences of ),( YY qpH and ),( YY qpA  on the chromaticity histograms. 

Figure 5.3a and b show the luminance image of the solid-colour region 

and the reflectance of yarns. The parameters a  and b  are set to the range 

of [10, 50] with an interval of 10 and the range of [0.7, 1.0] with an 

interval of 0.1. Figure 5.3c plots the ratio /A H  with respect to YP . Figure 

5.3d shows the simulated chromaticity histograms. It can be observed 

that chromaticity histograms are more leptokurtosis [136] with larger b . 

This implies that the threshold b  would influence shapes of chromaticity 
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histograms. However, the thresholds a  have less impact on the 

chromaticity histograms than b . While shapes of chromaticity 

histograms depend on the thresholds a  and b , all the chromaticity 

histograms accord with one Gaussian distribution except for those 

simulated by 7.0b . It can be concluded that the thresholds of b  should 

not less than 0.7. Figure 5.3e shows the real chromaticity histograms of 

the solid-colour region.  
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Figure 5.3 The simulation of chromaticity histograms of a solid-colour yarn dyed 

fabric region: (a) the luminance image; (b) the reflectance of weft and warp yarns; (c) 

the ratio /A H  with respect to YP ; (d) the simulation results; (e) the real chromaticity 

histograms. In (d), the top and bottom rows show the x and y histograms, 

respectively. 

5.3.2. Yarns with Different Chromaticity Coordinates 

A real yarn dyed fabric sample cross-woven by red and blue yarns was 

used to analyze CIEXYZ, CIELAB, and CIExyY histograms of solid-

colour and multi-colour regions. The linear density of the fabric was 30 

Ne for the weft and warp yarns. Thread count of the fabric was 80*60 

TPI (thread per inch) in warp and weft directions. The material of yarns 

was cotton. As shown in Figure 5.4a, the solid-colour region was 
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intertwined by red yarns, whereas the multi-colour region was interlaced 

by red yarns (weft direction) and blue yarns (warp direction). Coefficient 

of determination (R
2
) [ 137 ] was used to test the hypothesis that a 

histogram accords with one Gaussian distribution or a combination of 

two Gaussian distributions. Parameters of Gaussian distributions were 

estimated by the maximum likelihood method [138]. In general, larger 

R
2
 between 0 and 1 indicates a better Gaussian fitting. However, a 

hypothesis is not correct if R
2
 is smaller than 0 or larger than 1. For 

example, one Gaussian distribution fitting is conducted to a histogram 

which actually accords with a combination of two Gaussian distributions. 

As shown in Figure 5.4b, tristimulus histograms of the solid-colour 

region highly fit one Gaussian distribution, i.e., R
2
 is 0.94, 0.96 and 0.99 

in the X, Y, and Z channels. However, the multi-colour region has 

unstable R
2 

when one Gaussian distribution fitting is applied to its 

tristimulus histograms, i.e., 0.29, 0.87 and 0.09 in the X, Y, and Z 

channels. This can be considered as a result that the geometric term has 

different impacts on the weft and warp yarns. The X, Y, or Z histogram 

of a multi-colour region would fit one Gaussian distribution when the 

corresponding tristimulus value of weft and warp yarns is similar.  



Chap.5. Solid-colour and multi-colour region detection 

116 

 

For colour specified in the CIELAB space, the lightness 

histograms have large R
2
 for both the solid-colour and multi-colour 

regions (0.92 and 0.90) when one Gaussian distribution fitting is carried 

out. This indicates that the lightness histograms highly accord with one 

Gaussian distribution for both the solid-colour and multi-colour regions. 

However, the a* and b* histograms have different R
2 

for the solid-colour 

(0.93 and 0.98) and the multi-colour regions (-0.70 and 1.14). This 

implies that the a* and b* histograms highly agree with one Gaussian 

distribution for the solid-colour region but do not for the multi-colour 

region. As shown in Figure 5.4b, it is apparent that the a* and b* 

histograms of the multi-colour region fit a combination of two Gaussian 

distributions better than one Gaussian distribution. Coefficient of 

determination is 0.28 and 0.58 when a combination of two Gaussian 

distributions is used to fit the a* and b* histograms. The small and 

mediate R
2
 values imply that the a* and b* histograms of multi-colour 

regions do not highly agree with a combination of two Gaussian 

distributions. This can be considered as a result of the influence of the 

geometric term on a* and b* colours. We can conclude that it is difficult 

to determine thresholds to distinguish solid-colour regions from multi-

colour regions in term of tristimulus and CIELAB histograms. As 
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expressed in Eqn (5.6) and Eqn (5.7), this stems from tristimulus values 

and CIELAB colours are affected by the geometric term for both solid-

colour and multi-colour regions. 

As shown in Figure 5.4b, chromaticity histograms have large R
2
 

(0.96 and 0.99) for the solid-colour region but do not for the multi-colour 

region (0.43 and 0.57) when one Gaussian distribution fitting is 

conducted. Chromaticity histograms of the multi-colour region are 

composed by two Gaussian distributions, which correspond to the 

chromaticity histograms of the weft and warp yarns. R
2
 is 0.79 and 0.92 

when the chromaticity histograms are regressed by a combination of two 

Gaussian functions. The large R
2
 implies that chromaticity histograms of 

the multi-colour region accord with a combination of two Gaussian 

functions. As a conclusion, chromaticity histograms of a solid-colour 

yarn dyed fabric region highly accord with one Gaussian distribution and 

those of a multi-colour region greatly agree with a combination of two 

Gaussian distributions. 

  
(a) 
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Figure 5.4 The tristimulus, CIELAB and chromaticity histograms of solid-colour and 

multi-colour regions: (a) the solid-colour region (top) and multi-colour region 

(bottom); (b) the tristimulus, CIELAB, and chromaticity histograms of the solid-

colour and multi-colour regions. The blue bars show the histograms. The red and 

dark turquoise curves depict the regressed lines by one Gaussian distribution and a 

combination of two Gaussian distributions fittings. 
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5.3.3. Yarns with Similar Chromaticity Coordinates 

A real yarn dyed fabric cross-woven by white and black yarns was used 

to analyze CIExyY histograms of solid-colour and multi-colour regions 

with similar chromaticity coordinates but distinct luminance values. The 

linear density of the fabric was 40 Ne for weft and warp yarns. Thread 

count of the fabric was 100*100 TPI in warp and weft directions. The 

material of yarns was cotton. As shown in Figure 5.5a, the solid-colour 

yarn dyed fabric region was cross-woven by the white yarns, whereas the 

multi-colour region was interlaced by white yarns (weft direction) and 

black yarns (warp direction). As shown in Figure 5.5b, the coefficient of 

determination is 0.62 and -0.52 for luminance histograms of solid-colour 

and multi-colour regions when one Gaussian distribution fitting is 

conducted. The luminance histogram of the multi-colour region has a R
2
 

of 0.25 when a combination of two Gaussian distribution fitting is 

carried out. For the chromaticity histograms, R
2
 of one Gaussian 

distribution fitting is [0.82, 0.82] and [0.69 0.59] for solid-colour and 

multi-colour regions. When a combination of two Gaussian distribution 

fitting is carried out to the y histogram of the multi-colour region, R
2
 is 

0.93. As a consequence, the solid-colour and multi-colour regions can be 
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distinguished in terms of chromaticity histograms. R
2
 is 0.82 and 0.59 

when one Gaussian distribution fitting is conducted to the y histograms 

of the solid-colour and multi-colour regions. However, R
2
 is 0.93 when a 

combination of two Gaussian distribution fitting is carried out to the y 

histogram of the multi-colour region. In addition, the luminance 

histograms can convince of the solid-colour and multi-colour region 

detection, i.e., R
2
 is -0.52 and 0.25 when one Gaussian distribution and 

two Gaussian distribution fittings are carried out to the luminance 

histogram of the multi-colour region.  
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Figure 5.5 The luminance and chromaticity histograms of solid-colour and multi-

colour regions with similar chromaticity coordinates but distinct luminance values: (a) 

the yarn-dyed fabric with solid-colour multi-colour regions; (b) the chromaticity and 

luminance histograms of the solid-colour and multi-colour regions. The red and dark 

turquoise curves depict the regressed lines by one Gaussian distribution and a 

combination of two Gaussian distributions fittings. 

5.3.4. Fabrics with Large Fabric Density 

In general, a yarn dyed fabric with large fabric density would hamper the 

effectiveness of solid-colour and multi-colour region detection since 

weft and warp yarns are tightly woven together. The fabric density of a 

yarn  dyed fabric can be measured by thread count or threads per inch 

(TPI) [139]. As shown in Figure 5.6, 16 yarn dyed fabrics with large TPI 

were used to evaluate the proposed approach to solid-colour and multi-

colour yarn dyed fabric detection. These fabrics were cross-woven by 
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four coloured yarns: blue, green, red and white. The linear density of 

these fabrics was 50 Ne for weft and warp yarns. The fabric density was 

160*100 TPI in warp and weft directions. The material of yarns was 

cotton. A yarn dyed fabric was labeled as BG when it was cross-woven 

by blue yarns (weft direction) and green yarns (warp direction). The 

similar nomenclature was applied to the other fabrics, as shown in Figure 

5.6. Figure 5.7 shows the coefficient of determination (R
2
) of Gaussian 

fittings (one Gaussian function fitting and two Gaussian function fitting) 

to the chromaticity histograms of these 16 fabrics. For the solid-colour 

regions (BB, GG, RR and WW samples in Figure 5.6), R
2
 of one 

Gaussian distribution fitting is large, i.e., the red points in Figure 5.7a 

which approach the point (1,1). In contrast, the chromaticity histograms 

of multi-colour regions have small R
2
 for one Gaussian distribution 

fitting. For the 12 multi-colour regions, two Gaussian fitting has larger 

R
2
 than one Gaussian fitting, as shown in Figure 5.7b. This implies that 

the chromaticity histograms of multi-colour fabrics accord with a 

combination of two Gaussian distributions better than one Gaussian 

distribution.  Figure 5.7 demonstrates that the proposed approach can 

distinguish solid-colour and multi-colour regions for the yarn dyed 

fabrics with large fabric density.  
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Figure 5.6 16 yarn dyed fabrics with 50 Ne yarn count and 160*100 TPI. A fabric is 

labeled as BG when it is cross-woven by blue yarns (weft) and green yarns (warp). 

 
(a) 

 
(b) 

Figure 5.7 Coefficient of determination (R
2
) of Gaussian fitting to chromaticity 

coordinates of the yarn-dyed fabrics shown in Figure 5.6: (a) R
2
 of one Gaussian 

function fitting to the chromaticity histograms of solid-colour and multi-colour 

regions; (b) R
2
 of one Gaussian function and two Gaussian function fittings to the 

chromaticity histograms of multi-colour regions. 
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5.4. Conclusion 

This chapter introduces an efficient method segmenting solid-colour and 

multi-colour regions in real yarn dyed fabric images. The spectral 

response of a multispectral  imaging system to yarn dyed fabrics is first 

derived from the reflection model proposed in Chapter 3. It is then 

concluded that solid-colour and multi-colour regions cannot be 

distinguished in terms of reflectance, tristimulus or CIELAB colours, but 

CIExyY colours owing to a geometric term. The geometric term brings 

about difficulty in determining thresholds of tristimulus and lightness 

histograms to segment solid-colour and multi-colour regions. However, 

chromaticity coordinates are impervious to the geometric term. In 

addition, chromaticity histograms of a solid-colour region accord with 

one Gaussian function but those of a multi-colour region agree with a 

combination of two Gaussian distributions. The simulation results show 

that chromaticity histograms of a solid-colour region accord with one 

Gaussian distribution. The experiment on a real yarn dyed fabric sample 

demonstrates that solid-colour and multi-colour region segmentation can 

be achieved in terms of CIExyY histograms but not in terms of CIEXYZ 

and CIELAB histograms. The proposed approach was also evaluated by 
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16 yarn dyed fabric samples with large fabric density. Experimental 

results show that the proposed approach can successfully distinguish 

solid-colour regions from multi-colour regions in yarn dyed fabrics with 

large fabric density. 
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CChhaapptteerr  66    WWeefftt  aanndd  WWaarrpp  YYaarrnn  

SSeeggmmeennttaattiioonn  

An efficient approach detecting solid-colour and multi-colour regions in 

yarn dyed fabric images is introduced in Chapter 5. A multi-colour 

region is interlaced by weft and warp yarns with different colours. In 

order to analyze the colours of a multi-colour yarn dyed fabric, its weft 

and warp yarns need to be separated before measuring their colours. This 

chapter introduces an effective method to segment weft and warp yarns 

of a multi-colour yarn dyed fabric.  

6.1. Background 

A yarn dyed fabric is composed of solid-colour regions and multi-colour 

regions. A solid-colour region is cross-woven by same coloured weft and 

warp yarns whereas a multi-colour region is interlaced by yarns with 

different colours. The colour of a solid-colour yarn dyed fabric can be 

measured by spectrophotometers, the most widely used instruments in 

textile and garment. However, a spectrophotometer cannot directly 
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measure the colour of a multi-colour yarn dyed fabric. However, a 

multispectral imaging (MSI) system [48,50] has the potential to measure 

the color of a multi-colour region. Compared with spectrophotometers, 

MSI systems can provide not only the spectral information but also the 

spatial information of a yarn dyed fabric. The spectral information can 

be used in predicting illuminant metamerism [12] and obtain illuminant-

independent colour. The spatial information can help understand 

important knowledge about a yarn dyed fabric, such as the location 

distributions of weft and warp yarns and their structures. When a MSI 

system is applied to measure the colour of a multi-colour region, one 

needs to segment its weft and warp yarns before analyzing their colours. 

Based on the physical model introduced in Chapter 5, a modified 

K-means clustering approach is utilized to separate weft and warp yarns 

in a multi-colour yarn dyed fabric image. The number of clusters is fixed 

to two. The metric to measure the distance between a pixel and the mean 

of a cluster is not the traditional Euclidean distance but the CIELAB 

colour difference. The initial means of clusters are determined by the 

expected values of the two fitted Gaussian distributions to the CIExyY 

colour histograms rather than the traditional random methods. 
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6.2. Weft and Warp Yarn Segmentation  

6.2.1. Response of a MSI System 

According to the reflection model introduced in Chapter 3 and Chapter 5, 

the measured reflectance ),,( CCb qpR   at pixel ),( CC qp  can be modeled 

as:  

 )()(),(),(

)(),(),(),,(

21

1





RRqpAqpm

RqpHqpmqpR

YYYYb

YYYYbCCb




 (6. 1) 

where ),( YY qp  is the position on the yarn dyed fabric which corresponds 

to ),( CC qp , )(1 R  and )(2 R  represent the nominal reflectance of the 

measured yarn and its neighbouring yarn,  ),( YYb qpm , ),( YY qpH  and 

),( YY qpA  express the influence of the fabric surface, system illuminant 

and inter-reflection between yarns.   

 When the CIExyY space is used to specify the colour of a multi-

colour yarn dyed fabric, ),( YYb qpm  only affects luminance rather than 

chromaticity coordinates: 
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 (6.2) 

where )(x , )(y  and )(z  denote the CIE colour matching functions, k  

is a normalising factor given by 


 dyEk )()(/100 . 

6.2.2. Interstice Detection 

As shown in Figure 6.1a, interstices exist between weft and warp yarns 

in multi-colour region images, especially for fabrics with large yarn 

count and low areal density. Interstices influence the segmentation 

accuracy of weft and warp yarns since they cause false segmentation, i.e., 

background pixels are detected as pixels on weft or warp yarns. Eqn (6.1) 

expresses that pixels on interstices would have zero reflectance when a 

yarn dyed fabric is placed on a black platform. However, the measured 

reflectance values of some interstice pixels are larger than zero owing to 

noises on the platform. Instead of detecting pixels with zero reflectance, 
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interstice detection is achieved by the image difference method, i.e., 

CIELAB colour difference between a yarn dyed fabric image and the 

background image. A pixel ),( CC qp  is labeled as interstice if the 

CIELAB colour difference between the yarn dyed fabric image ),F( CC qp  

and the background image ),B( CC qp  is smaller than a threshold T , and 

vice versa: 

 








T)),B(),,E(F(      0

T)),B(),,E(F(       1
),(

CCCC

CCCC

CC
qpqp

qpqp
qpI   (6. 3) 

where ),( CC qpI , ),F( CC qp  and ),B( CC qp  denote interstice detection results, 

the yarn dyed fabric image, and the background image, ),E(   expresses 

the CIELAB colour difference. 

Figure 6.1b shows the interstice detection results of Figure 6.1a 

with 5T  , where the white pixels represent detected interstices. 

 

6.2.3. Modified K-means Clustering 

It can be concluded from Eqn (6.2) that the CIExyY histograms of a 

multi-colour region accord with a combination of two Gaussian 

distributions. Consequently, pixels on weft and warp yarns consist of 
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two dominant clumps in the CIExyY space. One cluster is formed by 

colours of the weft yarns and the other by those of the warp yarns. A 

modified K-means clustering method is proposed to segment weft and 

warp yarns in a multi-colour yarn-dyed fabric image. 

 
(a) 

 
(b) 

Figure 6.1 Example of interstice detection in a multi-colour region. The yarn dyed 

fabric is cross-woven by weft and warp yarns with 30*30 Ne yarn count and 60*80 

density: (a) the multi-colour region image; (b) interstice detection results. The white 

pixels imply the detected interstices. 

Given pixels of an image ),...,,( 21 nxxx , K-means clustering method 

partitions the pixels into k  sets 1 2{ , ,..., }( )kS s s s k n   so that the within-

cluster distance (WCD) is minimized [140]: 

 
1

arg min ( )
j i

k

j i
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i x s

D x 
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where i  denotes the mean of pixels in the set is , )( ijxD   represents 

the distance between 
jx  and i . 

With an initial set of means, K-means clustering algorithm 

proceeds by alternating between an assignment step and an update step 

[140]. The assignment step assigns each pixel to the cluster whose mean 

yields the least WCD. The update step computes the means of the new 

clusters. The K-means clustering algorithm converges when the 

assignments of pixels no longer change. Given an initial set of k  means 

),...,,( )1()1(

2

)1(

1 kmmm , the K-means clustering algorithm can be summarized 

as:  

 Assignment step: 
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 Update step: 
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 (6. 6) 

The performance of K-means clustering depends on three factors: 

the initialization method, the metric to calculate the distance between a 

pixel and the mean of a cluster, and the number of clusters. The initial 
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means are commonly determined by the Forgy and Random Partition 

methods [141]. The Forgy method randomly chooses k  pixels from an 

image as the initial means. The Random Partition method randomly 

assigns a cluster to each pixel and then calculates the centroid of each 

cluster as its initial mean. The distance between a pixel and the mean of 

a cluster can be measured by different metrics. The common used 

metrics include Euclidean distance (2-norm distance), Manhattan 

distance (1-norm), maximum norm distance, and inner product space 

[142,143]. The number of clusters k  is another important parameter to 

influence the performance of K-means clustering because an 

inappropriate choice of k  can yield poor results. Several algorithms have 

been proposed to determine the number of clusters in a data set, such as 

the information theoretic approach [144], the silhouette method [145], 

and the kernel matrix method [146]. 

While there are no standard criteria to determine the initial means, 

the metric to calculate distance, and the number of clusters, a modified 

K-mean clustering algorithm is proposed to segment weft and warp 

yarns in multi-colour yarn dyed fabric images. Firstly, the number of 

clusters is fixed to two, i.e., 2k . As shown in Figure 6.1b, pixels locate 
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on either the green warp yarns or the red weft yarns after interstice 

detection. Thus, pixels should be clustered into two groups: weft yarns or 

warp yarns. Secondly, the distance between a pixel and the mean of a 

cluster is measured by the CIELAB colour difference rather than the 

Euclidean distance. The CIELAB space is more perceptually uniform 

than the CIExyY space. In addition, it is very effective to compute the 

CIELAB colour difference. Finally, the initial means can be determined 

by a much more effective method rather than the random methods. As 

concluded from Chapter 5, the CIExyY histogram of a multi-colour yarn 

dyed fabric accords with a combination of two Gaussian distributions. 

The expected values of these two Gaussian distributions are good initial 

estimates to colours of the weft and warp yarns. 

Figure 6.2 illustrates the weft and warp yarn segmentation in the 

multi-colour yarn dyed fabric region shown in Figure 6.1b. Figure 6.2a 

shows the CIExyY histogram of the multi-colour region. The red and 

green points in Figure 6.2a represent the initial means which are 

determined by the expected values of the two fitted Gaussian functions 

by the method introduced in Chapter 5. Figure 6.2b depicts the clustering 
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results in the CIExyY space. Figure 6.2c and Figure 6.2d show the 

segmentation results of the weft and warp yarns. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.2 Weft and warp yarn segmentation of the multi-colour region shown in 

Figure 6.1b: (a) the CIExyY histogram and the initial means; (b) the K-means 

clustering results in the CIExyY space; (c) the segmentation results of weft yarns; (d) 

the segmentation results of warp yarns. The red and green points in (a) denote the 

assigned initial means. 

6.3. Results and Discussion 

Multi-colour yarn dyed fabric samples with different areal density 

(threads per inch, abbreviated as TPI) and linear density (Ne) were 
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utilized to assess the performance of the proposed method. As shown in 

Figure 6.3, a 5.5*7.5 cm fabric can be captured by ICM and the image is 

composed of 1040*1392 pixels. In order to clearly illustrate the 

experimental results, only the central part with 200*200 pixels (the red 

rectangle in Figure 6.3) was selected to show in the following 

experiments. 

 

Figure 6.3 The specification of multi-colour yarn dyed fabrics used in the experiment. 

The red rectangle represents the area selected to show the results. 

6.3.1. Experiments on Fabrics with Different Linear and 

Areal Densities 

Figure 6.4 and Figure 6.5 show the weft and warp yarn segmentation 

results of yarn dyed fabrics with different linear density (40*40 Ne and 
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50*50 Ne) and areal density (80*100 and 100*160 TPI in the weft and 

warp directions). Figure 6.4b and Figure 6.5b show the interstice 

detection results, where the white pixels represent the detection results. It 

can be observed that all the white pixels in Figure 6.4b locate at the 

black background compared with Figure 6.4a. This implies that the 

interstice detection results accord with the perceptual detection results. 

The same interstice detection results can be found in Figure 6.5b. 

 Figure 6.4c-d and Figure 6.5c-d show the weft and warp yarn 

segmentation results of Figure 6.4b and Figure 6.5b. It can be observed 

that the warp yarns shown in Figure 6.5d are much denser than weft 

yarns in Figure 6.5c. This can be considered as a result of the different 

areal density in the warp direction (160) and the weft direction (100). 

The same areal density difference in the weft and warp directions can be 

found in Figure 6.4c-d. It can be concluded from Figure 6.1, Figure 6.2, 

Figure 6.4, and Figure 6.5 that weft and warp yarn segmentation in 

multi-colour regions can be achieved for yarn dyed fabrics with different 

linear density and areal density. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.4 Weft and warp yarn segmentation of a multi-colour yarn dyed fabric with 

40*40 Ne yarn count and 80*100 TPI: (a) the image of the fabric; (b) the interstice 

detection results, where the white pixels represent the interstices; (c) the 

segmentation results of weft yarns. (d) the segmentation results of warp yarns. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.5 Weft and warp yarn segmentation of a multi-colour yarn dyed fabric with 

50*50 Ne yarn count and 100*160 TPI: (a) the captured image of the fabric; (b) the 

interstice detection results, where the white pixels represent the interstices; (c) the 

segmentation results of weft yarns. (d) the segmentation results of warp yarns. 

6.3.2. Comparative Experiments 

The proposed approach was also compared with original K-means 

clustering algorithms applied in the CIEXYZ and CIELAB spaces. The 

number of clusters and metric to calculate WCD were set to two and the 
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CIELAB colour difference. However, the initial means were determined 

by the Forgy method [141] in the CIEXYZ and CIELAB spaces. Figure 

6.6 and Figure 6.7 show the weft and warp yarn segmentation results of 

the fabric shown in Figure 6.5b. As seen in Figure 6.6, false 

segmentation exists in the results of the original K-means clustering 

applied in the CIEXYZ space. Only the edges between the weft and warp 

yarns are detected as weft yarns. As mentioned in Chapter 5, the poor 

segmentation can be considered as a result of the influence of the 

geometric term. The geometric term causes the distinct discrimination 

between weft and warp yarns in the CIExyY space is not valid in the 

CIEXYZ space. As seen in Figure 6.7, the segmentation results of K-

means clustering in the CIELAB space is better than those in the 

CIEXYZ space. However, holes and spines exist in the segmentation 

results. In contrast, the segmentation results by the proposed method 

(Figure 6.5c-d) show better integrity.  

In addition to the segmentation accuracy, the iteration time of 

these three methods were also compared. As given in Table 6.1, K-

means clustering in the CIEXYZ and CIELAB spaces need sixteen and 

twelve iterations to converge, while the proposed method just needs one 
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iteration. These results clearly indicate that the proposed method can 

dramatically reduce the iteration time. 

 
(a) 

 
(b) 

Figure 6.6 Weft and warp yarn segmentation results by K-means clustering in the 

CIEXYZ space: (a) the segmentation results of weft yarns; (b) the segmentation 

results of warp yarns. 

 
(a) 

 
(b) 

Figure 6.7 Weft yarn and warp yarn segmentation results by K-means clustering in 

the CIELAB space: (a) the segmentation results of weft yarns; (b) the segmentation 

results of warp yarns. 
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Table 6.1 Iteration time of the three methods 

Method Iteration Times 

CIEXYZ+ Forgy method 16 

CIELAB+ Forgy method 12 

The Proposed method 1 

 

6.4. Conclusion 

This chapter introduces an effective method to segment weft and warp 

yarns in a multi-colour yarn dyed fabric image. Interstices between weft 

and warp yarns are first detected by the image difference method. A 

modified K-means clustering approach is then proposed to separate weft 

and warp yarns. The number of clusters is fixed to two. The metric to 

measure the distance between a pixel and the mean of a cluster is not the 

traditional Euclidean distance but the CIELAB colour difference. The 

initial means are determined by the expected values of the fitted 

Gaussian distributions to the CIExyY colour histogram rather than the 

traditional random methods. Experimental results indicate that the 

proposed method can segment weft and warp yarns of yarn dyed fabrics, 

with both high segmentation accuracy and fast processing speed. 
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CChhaapptteerr  77    CCoolloouurr  MMeeaassuurreemmeenntt  ooff  SSiinnggllee  

YYaarrnnss  

Colour measurement of yarn dyed fabrics can be achieved by the 

algorithms introduced in Chapter 4, Chapter 5, and Chapter 6. However, 

the colour of a yarn dyed fabric is dramatically influenced by woven 

structure and linear density. In contrast, a single yarn has a much simpler 

structure than a yarn dyed fabric. A novel multispectral imaging 

approach to accurate colour measurements of single yarns is developed 

in this chapter. 

7.1. Background  

Generally, the colour of a yarn dyed fabric is dramatically influenced by 

woven structure and linear density [147,148,149,150]. According to the 

reflection model introduced in Chapter 3, the light reflected by a yarn 

dyed fabric is determined by three factors [151]: the surface texture of a 

fabric, inter-reflection between yarns, and occlusion of system illuminant. 

The influence of surface texture on instrumental colour is formulated by 
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a geometric term. This term would cause the measured luminance 

changing with surface position because it is determined by the angle 

between the incident light and the normal of the surface. Inter-reflection 

between neighbouring yarns would yield a second illumination. Inter-

reflection would cause colour shift when a weft or warp yarn is cross-

woven by different coloured yarns. Occlusion of system illuminant is 

modeled by an occlusion parameter which represents the fraction of light 

from the system illumination reaching the fabric surface. All of these 

three factors can be influenced by the woven structure and thread density 

of a yarn dyed fabric. In contrast, a single yarn has a much simpler 

structure than a yarn dyed fabric. Inter-reflection does not exist in a 

single yarn. 

Traditionally, colours of yarn dyed fabric samples are measured by 

spectrophotometers which are the most widely used instruments in 

textile and garment industries. A spectrophotometer can provide accurate 

and precise spectral information of a sample. The spectral information is 

independent of the characteristics of acquisition systems and illuminants. 

As a consequence, reflectance measured by a spectrophotometer can be 

transformed to any colour spaces and can be interpreted for any 
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illuminants. However, spectrophotometers cannot be directly used to 

measure colours of single yarns. As described in Chapter 3, this problem 

is caused by the inherent characteristic of a spectrophotometer: only the 

average colour of a sample can be measured [151]. In other words, a 

spectrophotometer cannot measure the colour of a sample with size 

smaller than the aperture. Therefore, a spectrophotometer cannot be used 

to conduct colour measurement of a single yarn. With the development 

of digital imaging technology, multispectral imaging (MSI) systems 

[48,50] are being adopted to measure the colour of a sample. A MSI 

system can provide not only the spectral information but also the spatial 

information of a sample. The spatial information alleviates the limitation 

on the size of a sample because a camera with high resolution is used in 

MSI systems. Multispectral images with millions of pixels can be 

captured by a MSI system. With advanced image processing 

technologies, thus, a MSI system has the potential to directly measure 

the colour of a single yarn. 

In this chapter, a novel multispectral imaging approach that 

accurately measures colours of single yarns is introduced. Firstly, a 

single yarn is fixed on a black flat platform to obtain its multispectral 
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images. Secondly, the single yarn is segmented from background in 

multispectral images by image difference method. Finally, the 

reflectance of the single yarn is specified by the methods developed. 

7.2. Colour Measurement of Single Yarns 

7.2.1. Capture of Multispectral Images 

In order to achieve accurate colour measure, single yarns should be 

completely straightened when they are captured by a multispectral 

imaging system. As shown in Figure 7.1, a device is designed to stretch 

single yarns on a black platform by screws. The multispectral images of 

single yarns are captured by the MSI system ICM. 

 
Figure 7.1 Single yarns are fixed at a black platform by screws: the yellow ellipses 

represent the two screws fixing the red yarn. 
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7.2.2. Segment Single Yarns 

As shown in Figure 7.2a, one can select a single yarn to measure its 

colour. When a single yarn is fixed on a black platform, pixels on 

background should have zero reflectance. However, the measured 

reflectance values of some background pixels are larger than zero owing 

to noises, as shown in Figure 7.2b. Instead of detecting pixels with zero 

reflectance, single yarn segmentation is achieved in terms of image 

difference method, i.e., CIELAB colour difference between the yarn 

image and the background image. A pixel ),( CC qp  is labeled as locating 

at the single yarn if the CIELAB colour difference between the single 

yarn image ),F( CC qp  and the background image ),B( CC qp  is larger than a 

threshold T , and vice versa:  

 








T)),B(),,E(F(      1

T)),B(),,E(F(       0
),(

CCCC

CCCC

CC
qpqp

qpqp
qpI     (7. 1) 

where ),( CC qpI  denotes the yarn segmentation results, ),E(   expresses 

the CIELAB colour difference. 1),( CC qpI  represents the pixel ),( CC qp  

locates at the single yarn, and vice versa. 
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 Figure 7.2c shows the segmentation results of Figure 7.2b by the 

image difference method, where the segmentation threshold T  is 

computed as the mean colour difference of all the pixels between the 

single yarn image and the background image.  

7.2.3. Specify the Reflectance of Single Yarns 

According to the reflection model introduced in Chapter 5, the measured 

reflectance ),,( CCb qpR   at pixel ),( CC qp  of a yarn dyed fabric image can 

be modeled as: 

 )()(),(),(

)(),(),(),,(

21

1





RRqpAqpm

RqpHqpmqpR

YYYYb

YYYYbCCb




   (7. 2) 

where ),( YY qp  is the position on the yarn dyed fabric which corresponds 

to ),( CC qp , )(1 R  and )(2 R  represent the nominal reflectance of the 

measured yarn and its neighbouring yarn,  ),( YYb qpm , ),( YY qpH  and 

),( YY qpA  express the influence of the fabric surface, the illuminant of the 

MSI system, and inter-reflection between neighbouring yarns on the 

measured reflectance. 
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(a) 

 
(b) 

 
(c) 

Figure 7.2 Example of single yarn segmentation: (a) a single yarn is selected to 

measure its colour (the yellow rectangle represents the selected segment of the single 

yarn); (b) the raw image of the selected single yarn; (c) the segmentation results, 

where the white pixels represent the single yarn;  

For a single yarn fixed on a black platform, the reflection model 

can be simplified as: 

 
1

1 1

( , , ) ( , ) ( , ) ( )

( ( , ) ( , ) ( ) ) ( )

b C C b Y Y Y Y

b Y Y Y Y

R p q m p q H p q R

m p q H p q R R

 

 




    (7. 3) 
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where 1( , ) ( , ) ( )b Y Y Y Ym p q H p q R  is termed as the magnitude of the 

measured reflectance, 1( )R   denotes the normalized nominal reflectance 

which defines the direction of the measured reflectance in the reflectance 

space. 

Eqn (7.3) expresses that the spectral response of a multispectral 

imaging system to a single yarn defines a set of lines with identical 

direction but different magnitudes in the reflectance space. The direction 

of these lines is determined by the normalized nominal reflectance of the 

single yarn )(1 R . Their magnitudes depend on the geometric term 

),( YYb qpm , the occlusion coefficient ),( YY qpH , and the magnitude of the 

nominal reflectance 1( )R  .  

Colour specification of a single yarn is to estimate its reflectance 

from the measured reflectance of all the pixels on the single yarn. We 

can formulate this problem as:  

 

2

,

arg min( ( , ) ( ( ) ( , , )) )
C C

C C b C C

p q

W p q R R p q     (7. 4) 
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where ( )R   denotes the specified reflectance of the single yarn, 

( , )C CW p q  expresses the weight of pixel ( , )C Cp q  to calculate ( )R  . When 

( , )C CW p q  is known, )(R  can be found by the least square method [129]. 

Method 1: Average of all pixels (AA) 

A plausible assumption is that all the pixels have the same contribution 

to the specified reflectance, i.e., 
,( , ) 1/

C CC C p qW p q N , where 
CC qpN ,

 

denotes the total number of pixels on the single yarn. The specified 

reflectance of the single yarn is solved:   

    

CC

CC

qp

qp

CCb

N

qpR

R
,

,

),,(
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
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

    (7. 5) 

Eqn (7.5) expresses that the reflectance of a single yarn measured 

by a multispectral imaging system can be specified as the average 

reflectance of all the pixels on the single yarn. This is similar to the 

measurement result by a spectrophotometer as described in Chapter 3, 

i.e., the reflectance measured by a spectrophotometer is an average 

estimate to the nominal reflectance of a sample [151].  

Method 2: Average of pixels in the central area (AC) 
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According to the Oren–Nayar reflectance model [113], the geometric 

term in Eqn (7.3) is defined as )cos(),( YYb qpm , where   is the incident 

angle at the surface position ),( YY qp . In the edge area of a single yarn, 

the geometric term approaches zero due to large incident angle. As a 

consequence, the radiance of pixels in the edge area is low. These pixels 

have much smaller signal-to-noise ratio (SNR) [ 152 ] than pixels in 

central area. Thus, it is plausible to ignore pixels in the edge when 

specifying the colour of a single yarn because a signal with small SNR is 

sensitive to noises: 

 

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
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otherwise             0

area central  thein pixels     
1

),( , CC qpCC
NqpW   (7. 6) 

where   and 


CC qpN ,  denote the central area and the number of pixels in 

the central area. The reflectance of a single yarn, )(R , is specified as: 
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Method 3: Maxima of all pixels (MA) 
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As mentioned in Chapter 5, the occlusion coefficient ),( YY qpH  

represents the fraction of light from the system illumination reaching the 

surface position ),( YY qp . In the peak area of a single yarn, both of the 

occlusion coefficient and the geometric term approximate one. As a 

consequence, the radiance of pixels in the peak area is maximum and the 

measured reflectance is equal to the nominal reflectance of the single 

yarn. Thus, a reasonable estimate of the specified reflectance is the 

measured reflectance of pixel with maximum reflectance:  

 





otherwise    0

ereflectanc maximum  withpixel    1
),( CC qpW   (7. 8) 

 
( ) max( ( , , ))b C CR R p q    (7. 9) 

Method 4: Lightness weighting (LW) 

While the AC method can reduce the influence of noises on colour 

specification, the dilemma is how to define the central area of a single 

yarn. When the MA method is employed to specify the colour of a single 

yarn, the problem is that only the pixel with the maximum reflectance is 

considered. The colour information of other pixels is ignored. In order to 
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combine both of the advantages of these two methods, a lightness 

weighting method is proposed: 

 ),(),( *

CCCC qpLqpW    (7. 10) 

 




CC

CC

qp

CC

qp

CCbCC

qpL

qpRqpL

R

,

,

),(*

),,(),(*

)(



  (7. 11) 

where *( , )C CL p q  denotes the lightness of pixel ( , )C Cp q .  

 
Figure 7.3 The reflectance curves of all the pixels on the single yarn showed in 

Figure 7.2d and the reflectance specified by the AA, AC, MA, and LW methods. 
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Figure 7.3 illustrates the reflectance of the single yarn showed in 

Figure 7.2d specified by the four proposed methods. 

7.3. Results and Discussion 

7.3.1. Comparison of Colour Specification Methods for 

Single Yarns 

Colour distribution of pixels on a single yarn 

The first experiment checked the colour distribution of pixels on the 

single yarn shown in Figure 7.2b. As shown in Figure 7.4a, the lightness 

of pixels in the edge area of the single yarn is small whereas the 

lightness of pixels in the central area is large. This can be considered as a 

result that the geometric term and occlusion coefficient of pixels in the 

edge area are small.  

Figure 7.4b shows pixels on the single yarn are divided into three 

groups: pixels in edge area (red), pixels in central area (blue), and pixels 

in edge-central transition area (green). Figure 7.4c-d show the 

normalized reflectance of pixels in the three groups. The normalized 

reflectance of pixels in the edge area has a large range, [0, 0.4206]. 
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However, the normalized reflectance of pixels in the central area has a 

small range, [0.0140, 0.3566]. The range of normalized reflectance of 

pixels in the edge-central transition area is [0.0167, 0.3677]. We can 

conclude that pixels in the edge area have a larger range of normalized 

reflectance than pixels in the central and edge-central transition areas. 

This can be considered as a result that pixels in the edge area are much 

more sensitive to noises owing to their low lightness.  

In order to compare the normalized reflectance of pixels in the 

three areas, Eqn (3.18) was employed to calculate the angle between the 

normalized reflectance and their mean normalized reflectance. Figure 

7.4f-h show the angles of pixels in the edge, edge-central transition, and 

central areas. The mean angles are 20.4791°, 8.6320°, and 3.2506° for 

pixels in the edge, edge-central transition, and central areas, respectively. 

Pixels in the central area have the smallest angles which coincides the 

results as shown in Figure 7.4c-d.  

Figure 7.4i shows the chromaticity diagram of pixels in the three 

areas, where the size of a dot represents the luminance of the 

corresponding pixel. It can be observed that pixels in the edge area have 

lowest luminance but pixels in the central area have the highest 
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luminance. In addition, chromaticity coordinates of pixels in the central 

area are much less scattered than pixels in the edge and edge-central  

transition areas. 

Comparison of different colour specification methods 

Figure 7.5 shows the comparison results of the four methods to specify 

the colour of the single yarn shown in Figure 7.2b. As shown in Figure 

7.5a, the normalized reflectance specified by the four methods is 

approximately identical. The angle between the four normalized 

reflectance and their mean normalized reflectance was computed by Eqn 

(3.18). As shown in Figure 7.5b, the mean angles are 1.5336°, 1.6045°, 

1.6625°, and 1.2336° for the normalized reflectance specified by the AA, 

AC, MA, and LW methods. The reflectance specified by the MA and 

LW methods has the largest and smallest angles. This can be considered 

as a result that the MA method just considers the pixel with the 

maximum reflectance whereas the LW method takes all the pixels on the 

single yarn into account. The magnitudes of the reflectance specified by 

the four methods were also analyzed by Eqn (3.18). As shown in Figure 

7.5c, the magnitudes of the reflectance specified by the AA, AC, MA, 

and LW methods are 1.1372, 1.7790, 2.1211, and 1.3231, respectively. It 
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can be concluded that the reflectance specified by the AA and MA 

methods yield the smallest and largest magnitudes.  
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(b) 
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(g)  

 
(h) 

 
(i) 

Figure 7.4 The colour distribution of pixels on the single yarn shown in Figure 7.2b: 

(a) the lightness of the single yarn; (b) pixels on the single yarn are labeled to 3 

groups: pixels in edge area (red), pixels in central area (blue), and pixels in edge-

central transition area (green); (c)-(e) the normalized reflectance of pixels in the edge, 

edge-central transition, and central areas; (f)-(h) the angles of pixels in the edge, 

edge-central transition, and central areas; (i) the chromaticity diagram of pixels in the 

edge, edge-central transition, and central areas. In (c)-(d), ranges is fixed to [0 1] to 

compare the variation of normalized reflectance of pixels in different areas. In (f)-(h), 

ranges are fixed to [0° 40°] to compare the angles of pixels in different areas. In (i), 

the size of a dot represents the luminance of the corresponding pixel. 
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(a) 

 
(b) 

 
(c) 

Figure 7.5 Comparison of the four proposed methods to specify the reflectance of the 

single yarn shown in Figure 7.2b: (a) the normalized reflectance curves specified by 

the proposed methods; (b) the angel difference between the four normalized 

reflectance and their mean normalized reflectance; (c) the magnitudes of the 

reflectance specified by the proposed methods.  

While the AA method is used by spectrophotometers to specify the 

reflectance of a sample, this method considers the contributions of all the 

pixels on the sample are identical. Although the AC method can reduce 
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the influence of noises on colour specification as shown in Figure 7.4e 

and Figure 7.4h, the dilemma is how to define the central area of a single 

yarn. The drawback of the MA method is this method just considers the 

pixel with the maximum reflectance and ignores the information of other 

pixels. In contrast, the LW method combines both of the advantages of 

the AC and MA methods. Thus, it can be concluded that the best method 

to specify the colour of a single yarn is the LW method among the four 

methods. 

7.3.2. Repeatability and Reproducibility  

The first experiment checked the repeatability and reproducibility of 

ICM in colour measurement of single yarns. Repeatability is the ability 

of a colour measurement instrument repeats its measures of colour of a 

sample under the same conditions, such as the same operator and the 

same measurement procedures [153]. Repeatability is quantified as the 

mean colour difference between each measurement and the mean of all 

measurements ( MeanCDM ) [12]: 

 
N

E

MCDM

N

i

i




 1    (7. 12) 



Chap.7. Colour measurement of single yarns 

164 

 

where iE  denotes the colour difference between the i-th measurement 

and the mean of all measurements, N  is the number of measurements.  

The maximum and minimum colour difference between each 

measurement and the mean of measurements ( MaxCDM and MinCDM ) 

are defined as: 
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  (7. 13) 

Reproducibility is similar to repeatability except that some aspects 

of the measurement conditions have changed. For example, the same 

measurement procedures are used but the operator or the laboratory is 

changed [153]. The spatial reproducibility is one of most important 

concepts when a multispectral imaging system is used to measure the 

colour of a sample. The spatial reproducibility is a measure of how close 

the measurements of a sample are when the same measurement 

procedures are used but the sample is placed at different positions. 

Spatial reproducibility is also qualified as MeanCDM , MaxCDM and 

MinCDM . 
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(a) 

 
(b) 

Figure 7.6 Single yarn samples used to conduct repeatability and reproducibility 

experiments: (a) the colour centres of these single yarns; (b) the arrangement of these 

single yarns. In (b), the single yarns from left to right are labeled Red 1, Red 2, 

Green 1, and Green 2.  

As shown in Figure 7.6a, sixteen single yarns in eight colour 

centres were used to assess the repeatability and spatial reproducibility 

of the proposed approach in measuring single yarn colour. The material 

of these single yarns was cotton. The yarn count of these single yarns 

was 20 Ne. As shown in Figure 7.6b, two single yarn segments from the 
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same cone were placed adjacently to assess the spatial reproducibility of 

ICM. The left and right single yarn segments in a colour centre C were 

labeled as C1 and C2. For example, the two red single yarns in Figure 

7.6b were named Red 1 (left) and Red 2 (right).  These single yarns were 

measured by the MSI system ICM in every thirty minutes for a period of 

eight hundred and ten minutes. The LW Method was employed to 

specify the reflectance of a single yarn. The colour difference between 

each measurement and the mean of all measurements was calculated by 

the CMC(2:1) formula.  

Table 7. 1 Repeatability and spatial reproducibility of ICM in measuring the sixteen 

single yarns shown in Figure 7.6.  

 Repeatability Spatial Reproducibility 

Single Yarns MeanCDM MaxCDM MinCDM MeanCDM MaxCDM MinCDM 

Green 1 0.1150  0.3889  0.0232  0.2756  0.3111  0.2514  
Green 2 0.1276  0.3889  0.0232  0.2756  0.3111  0.2514  
Purple 1 0.0906  0.3010  0.0225  0.3163  0.5006  0.1570  
Purple 2 0.0906  0.3010  0.0225  0.3163  0.5005  0.1570  
Brown 1 0.1090  0.2032  0.0191  0.2724  0.5642  0.0868  
Brown 2 0.1090  0.2032  0.0191  0.2721  0.5634  0.0868  
Red 1 0.1591  0.4338  0.0267  0.2817  0.3924  0.1710  
Red 2 0.1591  0.4338  0.0267  0.2818  0.3924  0.1712  
Light Grey 1 0.1376  0.3684  0.0260  0.3170  0.4310  0.2200  
Light Grey 2 0.1376  0.3684  0.0260  0.3164  0.4302  0.2193  
Dark Grey 1 0.1166  0.3461  0.0293  0.3396  0.3842  0.2552  
Dark Grey 2 0.1166  0.3461  0.0293  0.3385  0.3829  0.2541  
Blue 1 0.1137  0.3826  0.0064  0.2801  0.4203  0.1478  
Blue 2 0.1137  0.3826  0.0064  0.2801  0.4203  0.1478  
Orange 1 0.0999  0.2586  0.0278  0.1798  0.2320  0.1260  
Orange 2 0.0999  0.2586  0.0278  0.1798  0.2320  0.1260  
average 0.1185  0.3353  0.0226  0.2827  0.4043  0.1768  
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The repeatability and spatial reproducibility of ICM in measuring 

the colours of single yarns are shown in Table 7. 1. For the sixteen single 

yarns, the average MeanCDM of repeatability is 0.1185 CMC(2:1) units. 

The average MaxCDM and MinCDM of repeatability are 0.3353 and 

0.0026 CMC(2:1) units. ICM has the best repeatability performance in 

measuring the purple single yarns (Purple 1 and Purple 2), i.e., 0.0906 

and 0.0906 CMC(2:1) units. The repeatability of ICM in measuring the 

red single yarns (Red 1 and Red 2) is worst, 0.1591 and 0.1591 CMC(2:1) 

units, which are relatively larger than the measurement results of purple 

single yarns. This implies that the repeatability of ICM in measuring 

colours of purple single yarns is better than red single yarns. The spatial 

reproducibility of ICM in measuring colours of these sixteen single yarns 

is 0.2827 CMC(2:1) units within the range of 0.1768 and 0.4043 

CMC(2:1) units. ICM has the best spatial reproducibility performance in 

measuring the orange single yarns (Orange 1 and Orange 2), i.e., 0.1798 

and 0.1798 CMC(2:1) units. Table 7. 1 shows that the multispectral 

imaging system ICM has good repeatability and spatial reproducibility in 

measuring single yarn colour. 
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7.3.3. Colour Matching 

The second experiment compared the colour matching abilities of single 

yarns measured by ICM and solid-colour yarn dyed fabrics measure by 

spectrophotometers. Colour matching is a vital process in ensuring 

continuity of colour from a master standard to a subsequent batch [154]. 

Colour matching between standard and batch fabrics can be conducted 

by two methods: instrumental evaluation and visual assessment. The 

instrumental method employs a colour measurement instrument to 

measure the colours of the standard and the batch samples. Colour 

matching is achieved by comparing the colour difference between the 

standard and batch samples with a tolerance beforehand determined by 

users. If the colour difference is smaller than the tolerance, the colour 

matching result is 'pass', i.e., the colour of the batch sample matches that 

of the standard sample, and vice versa. The instrumental method is more 

accurate than the visual method as the latter is a subjective process. 

Inconsistent colour matching results may exist among different 

inspectors. Spectrophotometers are the most widely used instruments to 

conduct colour matching of fabrics. However, a spectrophotometer can 

only carry out colour matching of solid-colour fabrics and yarn cards. 
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Based on the proposed method, colour matching between standard and  

batch single yarns can be achieved. 

Twenty-four solid-colour yarn dyed fabrics and corresponding 

single yarns were used to conduct the colour matching comparison 

experiment between single yarns and solid-colour fabrics. A desktop 

spectrophotometer Datacolor 650 (D650) was used to provide the dye 

formulas to reproduce these twenty-four solid-colour standard yarn dyed 

fabrics. Based on these formulas, twenty-four solid-colour batch yarn 

dyed fabrics were dyed. The corresponding single yarns of these dyed 

yarn dyed fabrics were used as batch single yarns. The colours of these 

twenty-four pairs of standard and batch single yarns were measured by 

the multispectral imaging system ICM. The colours of the twenty-four 

pairs of standard and batch yarn dyed fabrics were measured by the 

D650 system. The specular component excluded (SCE) and UV 

excluded modes were applied to eliminate the influence of specular light 

and UV on samples. The colour difference between standard and batch 

samples (solid-colour yarn dyed fabrics and corresponding single yarns, 

respectively) was calculated by the CMC(2:1) formula under standard 

illuminant D65. The tolerance to determine colour matching results 
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('pass' or 'fail') in this experiment was set to 1.0 CMC(2:1) units. The 

reflectance values of the standard yarn dyed fabrics and corresponding 

single yarns are shown in Figure 7.7.  

The colour matching results are shown in Figure 7.8. The 

horizontal and vertical axes denote the colour matching results 

conducted by single yarns (measured by ICM) and solid-colour yarn 

dyed fabrics (measured by D650). The black line represents same colour 

matching results are achieved by single yarns and corresponding solid-

colour yarn dyed fabrics. When a dot more approaches to the black line, 

the colour matching result by single yarns is closer to that by yarn dyed 

fabrics. Dots above the black line imply that the colour difference 

between yarn dyed fabrics is larger than the colour difference between 

corresponding single yarns, and vice versa. As shown in Figure 7.8, five 

blue dots are above the black line but approaching it, implying the colour 

difference of these five pairs of yarn dyed fabrics is slightly larger than 

that of the corresponding five pairs of single yarns. Sixteen blue dots are 

below the black line, indicating that the colour difference of these 

sixteen pairs of yarn dyed fabrics is smaller than that of the 

corresponding pairs of single yarns. In addition, the colour difference of 
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these sixteen pairs of single yarns is smaller than 1.0 CMC(2:1) units. 

For the twenty-one pairs of yarn dyed fabrics and single yarns shown as 

blue dots in Figure 7.8, the same colour matching results are achieved 

when the tolerance is set as 1.0 CMC(2:1) units, i.e., twenty pairs of yarn 

dyed fabrics and corresponding single yarns obtain the 'pass' result, and 

one pair of fabric and corresponding single yarn samples have the result 

of 'fail'.  

However, three pairs of yarn dyed fabrics and single yarns yield 

different colour matching results, as shown as the three red dots in 

Figure 7.8. The colour difference of the three pairs of single yarns 

measured by MSI is 0.34, 0.35, 0.70 CMC(2:1) units, which is smaller 

than the colour matching tolerance of 1.0 CMC(2:1) unit. In contrast, the 

colour difference of the three corresponding pairs of yarn dyed fabrics 

measured by D650 is 1.27, 1.90, and 1.38 CMC(2:1) units, which is 

larger than the tolerance of 1.0 CMC(2:1) unit. As a consequence, the 

colour matching results from single yarns are 'pass' but 'fail' from 

corresponding solid-colour yarn dyed fabrics. This can be considered as 

a result of the influence of woven structure on colour. The fabric 

structure of a yarn dyed fabric, such as areal density and yarn direction, 
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can affect the spectrophotometric colour of the fabric. Therefore, it is 

possible that the colour difference of two fabrics is larger 1.0 CMC(2:1) 

units but that of the corresponding single yarns is smaller than 1.0 

CMC(2:1) units. We can conclude from Figure 7.8 that single yarns 

measured by multispectral imaging systems can achieve the similar 

colour matching results as yarn dyed fabrics measured by 

spectrophotometers when the influences of areal density and yarn 

direction are negligible. 

 
(a) 

 
(b) 

Figure 7.7 The reflectance of the twenty-four standard yarn dyed fabrics and 

corresponding single yarns: (a) the reflectance of the twenty-four standard yarn dyed 

fabrics; (b) the reflectance of the corresponding standard single yarns. 
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Figure 7.8 The colour matching comparison results between single yarns measured 

by ICM and solid-colour yarn dyed fabrics measured by a Datacolor 650 

spectrophotometer (D650): the black line denotes the same colour match results are 

achieved by ICM and D650. 

7.4. Conclusion 

This chapter introduces a novel multispectral imaging method that 

accurately measures colours of single yarns. Firstly, a single yarn is fixed 

on a black flat platform to obtain its multispectral images. Secondly, the 

single yarn is segmented from background by the image difference 

method. Finally, the reflectance of the single yarn is specified by four 

methods. In the experiments, the colour distribution of pixels on a single 

yarn was first analyzed. It is concluded that pixels in the central area 

have much less scattered chromaticity coordinates than those in the edge 

area. Then, the four colour specification methods were compared. It is 
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concluded that the best method to specify the colour of a single yarn is 

the Lightness Weighting method. The repeatability and spatial 

reproducibility to measure single yarn colour were assessed by sixteen 

single yarns in every thirty minutes for a period of eight hundred and ten 

minutes. Experimental results show that the repeatability and spatial 

reproducibility are 0.1185 and 0.2827 CMC(2:1) units. The colour 

matching experiment based on the MSI system ICM and a 

spectrophotometer Datacolor 650 was conducted using forty-eight solid-

colour yarn dyed fabrics and their corresponding single yarns. 

Experimental results show single yarns measured by ICM can achieve 

the similar colour matching results as solid-colour yarn dyed fabrics 

measured by the spectrophotometer Datacolor 650. 
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CChhaapptteerr  88    CCoolloouurr  MMaappppiinngg  bbeettwweeeenn  SSiinnggllee  

YYaarrnnss  aanndd  YYaarrnn  CCaarrddss  

A multispectral imaging method that accurately measures colours of 

single yarns is introduced in Chapter 7. While the proposed method can 

achieve single yarn colour measurement and colour matching, colour 

reproduction is not available because the existing method to predict the 

dye recipe of a yarn dyed fabric is based on the colorant formulation 

system inside a spectrophotometer. However, spectrophotometers can 

only predict the recipe of a solid-colour region, such as a yarn card. In 

order to achieve colour reproduction of yarn dyed fabrics based on 

colour measurement of single yarns and colorant formulation system 

inside a spectrophotometer, the colour of a single yarn measured by a 

multispectral imaging system must be mapped to the colour of the 

corresponding yarn card measured by a spectrophotometer. This chapter 

proposes a novel method to map colours between a single yarn and its 

corresponding yarn card. 
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8.1. Background  

While the colorant formulation system inside a spectrophotometer can 

yield satisfied dye recipe prediction for colour reproduction of yarn dyed 

fabrics, this method has three limitations. Firstly, only solid-colour yarn 

dyed fabrics with relatively large area, larger than the aperture size of a 

spectrophotometer, can be reproduced. In order to estimate the recipes 

for multi-colour yarn dyed fabrics, weft and warp yarns must be 

manually separated, and then winded on yarn cards. Secondly, the recipe 

for a solid-colour yarn dyed fabric changes with fabric areal density 

because this parameter has a great impact on spectrophotometric colour. 

Finally, yarns may not be sufficient to prepare a yarn card when just a 

small standard yarn dyed fabric sample is provided. While 

spectrophotometers have these drawbacks in colour reproduction of yarn 

dyed fabrics, it is not trivial to establish a new colorant formulation 

system based on multispectral imaging systems. Instead, it is more 

practicable to map the colour of a single yarn measured by a 

multispectral imaging system to that of the corresponding yarn card 

measured by a spectrophotometer, and then utilize the colorant 
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formulation system inside the spectrophotometer to achieve colour 

reproduction. 

8.2. Colour Mapping between Single Yarns and 

Yarn Cards 

8.2.1. Colours of Yarn Cards  

As introduced in Chapter 3, the light reaching the position ),( YY qp  on a 

yarn dyed fabric surface is composed of two components: light from the 

system illuminant and light reflected by neighbouring yarns. The light 

from the system illuminant is affected by fabric surface texture and 

occlusion of system illuminant. The light reflected by neighbouring 

yarns is influenced by fabric surface texture and inter-reflection between 

neighbouring yarns. A geometric term, ),( YYb qpm , is used to formulate 

the influence of fabric surface texture, which is determined by the 

incident angle at the position ),( YY qp . ),( YYb qpm would influence the 

measured reflectance magnitude of a fabric. Occlusion of system 

illuminant is modeled as a block parameter, ),( YY qpH , which represents 

the fraction of the light from the system illumination reaching the surface. 
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0),( YY qpH  implies that the system illuminant is completely blocked, 

and vice versa. Inter-reflection between neighbouring yarns would cause 

a second illumination and is represented by a term ),( YY qpA . According 

to Eqn (3.7), the radiance at the position ),( YY qp  of a yarn dyed fabric, 

),,( YYyarn qpL   , can be modeled as: 

  
)()()(),(),(
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 (8. 1) 

where ( )E  , 1( )R   and 2 ( )R   represent the spectrum of the system 

illuminant, the nominal reflectance of the measured yarn and 

neighbouring yarn. 
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Figure 8.1 The reflection schematic in a yarn card. 

Analogous to the reflection model of yarn dyed fabrics, surface 

roughness, system illuminant occlusion and inter-reflection between 

neighbouring yarns would influence the radiance of a yarn card, as 
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showing in Figure 8.1. In addition, the light reflected by the substrate of 

the yarn card (the purple line in Figure 8.1) would also contribute the 

flux at the detector of a spectrophotometer. Consequently, the light reach 

the detector of a spectrophotometer, ),,( YYYC qpL  , can be modeled as:  
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 (8. 2) 

where ),,( YYsub qpL   represents the light reflected by the substrate, 

),( YYsub qpW  and )(subR  denote the fraction of the light reflected by the 

substrate and the nominal reflectance of the substrate. 

Combining Eqn (3.8), Eqn (3.11), and Eqn (8.2), the reflectance of 

a yarn card measured by a spectrophotometer, ( )YCR  , can be modeled as:   
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 (8. 3) 

where rA  denotes the aperture area of the spectrophotometer. 
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8.2.2. Colours of Single Yarns 

As introduced in Chapter 7, the reflectance ),,( CCb qpR   of pixel ),( CC qp  

at a single yarn measured by a multispectral imaging system can be 

modeled as: 

 1( , , ) ( , ) ( , ) ( )b C C b Y Y Y YR p q m p q H p q R    (8. 4) 

where ( , )b Y Ym p q  and ( , )Y YH p q  denote the influences of the yarn surface 

texture and the system illuminant on the measured reflectance, 1( )R   

represents the nominal reflectance of the single yarn. 

Four methods are investigated to specify the reflectance of a single 

yarn as showing by Eqn (7.5), Eqn (7.7), Eqn (7.9), and Eqn (7.11). 

These four methods can be summarized as:  

 

)()( 1  RWR SYSY   (8. 5) 

where )(SYR and SYW  denote the specified reflectance of a single yarn 

and the weight to calculate it. 
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where ),( YY qp  is the position on the single yarn corresponding to ),( CC qp . 

8.2.3. Colour Relationship between Yarn Cards and Single 

Yarns 

Combining Eqn (8.3) and Eqn (8.5), we can model the relationship 

between the colours of a yarn card and its corresponding single yarn as:  
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(8. 7) 

Eqn (8.7) expresses that the reflectance of a yarn card measured by 

a spectrophotometer is a linear combination of three parts: the 

reflectance of the substrate, the reflectance of the corresponding single 

yarn measured by a multispectral imaging system, and the reflectance 
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square of the single yarn. The square component represents the inter-

reflection between yarns of the yarn card. The coefficients of these three 

components are determined by the weight to specify the reflectance of 

the single yarn SYW , the aperture area of the spectrophotometer rA , the 

fraction of the light reflected by the substrate subW , the geometric term 

),( YYb qpm , the occlusion parameter of system illumination ),( YY qpH , and 

the inter-reflection parameter between neighbouring yarns ),( YY qpA . 

8.2.4. Coefficient Estimation 

According to Eqn (8.7), the relationship between the colour of a single 

yarn measured by a multispectral imaging system and the colour of the 

corresponding yarn card measured by a spectrophotometer can be 

simplified as:  
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where 
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(8. 9) 

The optimal coefficients 
0 1 2* [ , , , ]TC c c c c  can be defined as: 
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where 2[ ( ), ( ), ( ) ]
sub SY SY

j j j T

jX R R R    and ( )
YC

j

jY R  , N  expresses the 

number of single yarns and corresponding yarn card pairs, 1 2( , )CMC R R  

represents the CMC(2:1) colour difference between two reflectance 

curves )(1 R  and )(2 R . 

As expressed in Eqn (8.10), it is difficult to analytically derive the 

gradient and second-order derivative information of the objective 

function since the calculation of CMC(2:1) colour difference from 

reflectance is complicated. Therefore, the least square method [129] 

cannot be employed to find the optimal solution of Eqn (8.10). Instead, 
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the simplex method [ 155 , 156 ] is applied to solve the optimization 

problem. The simplex method is a popular algorithm for the optimization 

problem of linear programming [156,157,158]. Basically, the simplex 

method is composed by two phases [159]. In phaseⅠ, an initial basic 

feasible solution is found and the problem is converted into a so-called 

canonical form. In phaseⅡ, one basic feasible solution is moved to the 

next until no more improvement can be made. These two phases are 

carried out iteratively until the optimal solution is found. 

8.3. Results and Discussion 

100 pairs of yarn cards and corresponding single yarns were used to 

evaluate the proposed method. These samples were collected from a 

local textile company. The yarn count of these samples was 80 Ne. The 

colours of the yarn card samples were measured by a Datacolor 650 

spectrophotometer and conducted under the 1964 CIE standard observer. 

The specular component excluded (SCE) and UV excluded modes were 

applied to eliminate the influence of specular light and UV on samples. 

The colours of the single yarn samples were measured by the MSI 

system ICM. The method introduced in Chapter 7 was used to specify 
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the colours of the single yarns, where the lightness weighting method 

was adopted. 

Figure 8.2a and Figure 8.2b show the reflectance curves of the 

yarn cards and the corresponding single yarns. It can be observed that a 

yarn card has a higher reflectance than the corresponding single yarn. 

This accords with the colour relationship between a single yarn and its 

corresponding yarn card as shown in Eqn (8.7). The reflectance of a yarn 

card measured by a spectrophotometer is a linear combination of the 

reflectance of the substrate, the reflectance of the corresponding single 

yarn measured by a MIS system, and the reflectance square of the single 

yarn. Figure 8.2c shows the reflectance of the substrate measured by the 

Datacolor 650 spectrophotometer.  

In order to analyze the reflectance relationship of a yarn card and 

its corresponding single yarn, their angle was calculated by Eqn  (3.18). 

As shown in Figure 8.2d, the angles between normalized reflectance of 

single yarns and their corresponding yarn cards are in the range of [0.68°, 

8.13°] except for one outlier with the angle of 14.18°. The large angles 

shown in Figure 8.2d demonstrates that the normalized reflectance of 

single yarns and yarn cards are different. Figure 8.2e shows the 
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reflectance magnitudes of single yarns and yarn cards. We can see that 

the reflectance magnitudes of yarn cards is larger. This observation 

agrees with the results showing in Figure 8.2a and Figure 8.2b. As 

shown in Figure 8.2f, the 100 pairs of single yarn and yarn card samples 

were divided into training and testing datasets equally.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 8.2 The reflectance curves of single yarns, yarn cards, and the substrate: (a) 

the reflectance curves of yarn cards; (b) the reflectance curves of single yarns; (c) the 

reflectance of the substrate; (d) angel difference between reflectance of single yarns 

and yarn cards; (e) reflectance magnitudes of yarn cards and single yarns; (f) the 

distribution of training dataset (red) and testing dataset (blue) in the a*-b* plane. 

The training and testing results are shown in Figure 8.3. As shown 

in Figure 8.3a, the real colour difference between single yarns and 

corresponding yarn cards in the training database is in the range of [0.90, 

7.38] with the average of 2.97 CMC(2:1) units. After colour mapping, 

their colour difference reduces to the range of [0.40, 4.13] with the 

average of 1.20 CMC(2:1) units. As shown in Figure 8.3b,  the real 

colour difference between single yarns and corresponding yarn cards in 

the testing database is in the range of [1.02, 8.77] with the average of 

3.09 CMC(2:1) units. After colour mapping, their colour difference 

reduces to the range of [0.18, 5.09] with the average of 1.37 CMC(2:1) 

units.  
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The optimal coefficients for colour mapping between single yarns 

and yarn cards are * [0.005,0.994,0.469,0.003]TC  , i.e., the relationship 

between the colours of a single yarn measured by ICM and its 

corresponding yarn card measured by a Datacolor 650 

spectrophotometer can be modeled as:  

 
2( ) 0.005 ( ) 0.994 ( ) 0.469 ( ) 0.003YC sub SY SYR R R R         (8. 11) 

Eqn (8.11) expresses that the dominant component of the colour 

relationship between a single yarn and its corresponding yarn card is the 

reflectance of the single yarn, i.e., the coefficient is 0.994. The second 

dominant component is the reflectance square of the single yarn which 

represents the inter-reflection between yarns of the yarn card. The 

influence of inter-reflection is about half of the reflectance of the single 

yarn, i.e., the coefficient is 0.469 compared with 0.994. However, the 

influences of reflectance of substrate and dark current difference 

between systems are insignificant, i.e., the coefficients are 0.005 and 

0.003. This can be considered as a result that samples are good prepared 

and systems are good calibrated. 
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(b) 

Figure 8.3 The colour difference between yarn cards and corresponding single yarns 

before and after colour mapping: (a) colour difference between samples in the 

training group; (b) colour difference between samples in the testing group. 
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8.4. Conclusion 

This chapter introduces a novel colour mapping method between a single 

yarn measured by a multispectral imaging system and its corresponding 

yarn card measured by a spectrophotometer. Firstly, the relationship 

between the reflectance of a single yarn and its corresponding yarn card 

is modeled. The reflectance of a yarn card measured by a 

spectrophotometer is a linear combination of the reflectance of the 

substrate, the reflectance of the corresponding single yarn measured by a 

MIS system, and the reflectance square of the single yarn. Secondly, 

colour mapping between single yarns and yarn cards is transformed into 

an optimal problem. Finally, the simplex method is employed to find the 

optimal coefficients in the relationship model. 100 pairs of yarn cards 

and single yarns were used to evaluate the proposed method. 

Experimental results show that the colour difference between single 

yarns and yarn cards reduces from 2.97 to 1.20 CMC(2:1) units for 50 

pairs of training samples and from 3.09 to 1.37  CMC(2:1) units for 50 

pairs of testing samples.  
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CChhaapptteerr  99    CCoonncclluussiioonn  aanndd  SSuuggggeessttiioonnss  ffoorr  

FFuuttuurree  RReesseeaarrcchh    

This chapter concludes the thesis. A brief summary of the major ideas 

and proposed algorithms in the thesis is given firstly. The future work is 

then presented in the last section of this chapter. 

9.1. Conclusion 

 Reflection model of yarn dyed fabrics 

In Section 3.2, a reflection model is proposed to estimate interaction 

between light and a yarn dyed fabric. The model expresses that the 

light reflected by a yarn dyed fabric is composed by two parts: the 

occluded light from the system illuminant and the light reflected by 

neighbouring yarns. Texture, illuminant occlusion and inter-

reflection between neighbouring yarns are taken into account in the 

model. The texture of a yarn dyed fabric has a major impact on the 

intensity of the reflected light and can be formulated by a geometric 

term. The occlusion of system illuminant would also affect the 

intensity of reflected light and is represented by a block parameter. 

The inter-reflection between neighbouring yarns would cause a 



Chap.9. Conclusion and suggestions for future research 

192 

 

second illumination on a sample and thus colour shift exists in the 

measured colour. 

 Reducing the influence of texture on colour 

In Section 3.3, the proposed reflection model of yarn dyed fabrics is 

utilized to estimate how the surface texture of a yarn dyed fabric 

influence its colour measured by a spectrophotometer. Based on 

proposed reflection model, the spectral response of a 

spectrophotometer to a yarn dyed fabric is estimated.  In the 

reflectance space, fabrics with different textured surfaces define a set 

of lines with identical direction. The normalized reflectance curves 

of these fabrics are constant. In the CIEXYZ space, fabrics with 

different textured surfaces define a line and their chromaticity 

coordinates are identical. However, the linearity in the reflectance 

and CIEXYZ spaces is lost in the CIELAB space owing to the non-

linear colour transformation from the CIEXYZ space to CIELAB 

space. A method is proposed to discount the influence of texture on 

colour. Experiments show that the influence of texture on colour for 

samples in four colour centres (green, gray, red and blue) can be 

reduced by 79%, 55%, 71% and 57% comparing to the real measured 

colour difference. 

 Dominant colour region segmentation in yarn dyed fabric images 

In Section 4.2, a novel unsupervised approach to detect dominant 

colour regions standing out conspicuously in yarn dyed fabric images 
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is proposed. A probabilistic model is first proposed to associate 

colours of dominant colour regions with colours of their yarns. Based 

on this model, the colour histograms of a dominant colour region are 

then reconstructed from those of yarns. Finally, a hierarchical 

segmentation structure is devised to detect dominant colour regions 

in a yarn dyed fabric image. Experimental results show that the 

proposed approach achieves satisfactory performance for dominant 

colour region segmentation in yarn dyed fabric images, with high 

computational efficiency. 

 Solid-colour and multi-colour region detection in yarn dyed 

fabric images 

In Section 5.2, an efficient approach that detects solid-colour and 

multi-colour regions in a real yarn dyed fabric image is presented. A 

reflection model is first proposed to describe the spectral response of 

a MSI system to a yarn dyed fabric. The model explains solid-colour 

and multi-colour regions cannot be distinguished in terms of 

reflectance, tristimulus values or CIELAB colours owing to the 

influence of a geometric term. However, chromaticity coordinates 

are impervious to this term. In addition, chromaticity histograms of a 

solid-colour region accord with one Gaussian function but those of a 

multi-colour region agree with a combination of two Gaussian 

distributions. Simulation results show that chromaticity histograms 

of a solid-colour region accord with one Gaussian distribution. 

Experiments on real yarn dyed fabric samples demonstrate that solid-

colour and multi-colour region segmentation can be achieved in 
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terms of CIExyY histograms rather than CIEXYZ and CIELAB 

histograms.  

 Weft and warp yarn segmentation in multi-colour yarn dyed 

fabrics 

In Section 6.2, we propose an effective method to segment weft and 

warp yarns in multi-colour yarn dyed fabrics. Interstices between 

weft and warp yarns are first detected by the image difference 

method. A modified K-means clustering approach is then utilized to 

separate weft and warp yarns. Experimental results indicate that the 

proposed method can segment weft and warp yarns of yarn dyed 

fabrics with different areal and linear densities, with both high 

segmentation accuracy and fast running speed. 

 Colour measurement of single yarns 

In Section 7.2, a novel multispectral imaging method that accurately 

measures colours of single yarns is introduced. A single yarn is first 

fixed on a black flat platform to keep it stretched during capturing 

multispectral images. The single yarn is then segmented from 

background by image difference method. Finally, four methods are 

investigated to specify the reflectance of the single yarn. 

Experimental results show that the repeatability and spatial 

reproducibility of colour measurement of single yarns are 0.1185 and 

0.2827 CMC(2:1) units. Experiment on forty-eight solid-colour yarn 

dyed fabrics and their corresponding single yarns shows that single 
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yarns measured by a MSI system can achieve the same colour 

matching results as solid-colour yarn dyed fabrics measured by a 

spectrophotometer. 

 Colour mapping between single yarns and yarn cards 

In Section 8.2, a novel method is proposed to map colour from a 

single yarn measured by a multispectral imaging system to its 

corresponding yarn card measured by a spectrophotometer. The 

relationship between the reflectance of a single yarn and its 

corresponding yarn card is first modeled. The relationship model 

shows the reflectance of a yarn card measured by a 

spectrophotometer is a linear combination of three parts: the 

reflectance of substrate, the reflectance of the corresponding single 

yarn measured by a MSI system, and the reflectance square of the 

single yarn. The simplex method is then employed to find the 

optimal coefficients in the relationship model. Experiments on 100 

pairs of yarn cards and corresponding single yarns show that the 

colour difference between single yarns and yarn cards reduces from 

2.97 to 1.20 CMC(2:1) units for 50 pairs of training samples and 

from 3.09 to 1.37  CMC(2:1) units for 50 pairs of testing samples.  

9.2. Areas of Further Research 

 Reflection model of yarn dyed fabrics  
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For the proposed reflection model of yarn dyed fabric in Section 

3.2, one assumption is that a yarn dyed fabric is placed on a 

platform with black colour, i.e., the background colour is black. 

However, this assumption may not be true for some applications, 

such as yarn dyed fabrics placed on a white paper. Thus, one of 

the future work should be the reflection model of yarn dyed 

fabrics taking background colour into account. 

 Colour region segmentation in yarn dyed fabric image 

While the segmentation method introduced in Chapter 4 can detect 

dominant colour regions in a yarn dyed fabric image, the proposed 

method cannot segment small colour regions. The proposed 

histogram-based segmentation method would yield 

undersegmentation for this type of images. Another problem of 

yarn dyed fabric image segmentation is how to accurately define 

the boundary of a region. Irregular three-dimensional shapes of 

yarns would cause the boundary of a colour region ambiguous. 

Segmentation of small colour regions and accurate boundary 

detection will be part of the future work. 

 Colour specification of single yarns 

While four colour specification methods are proposed in Section 

7.2.3 and the lightness weighting method is chosen as the best one, 

results of this method are influenced by the yarn count of a single 



Chap.9. Conclusion and suggestions for future research 

197 

 

yarn. In the future, we will study the method to specify the colour 

of a single yarn invariant to its yarn count. 

 Colour matching of yarn dyed fabrics 

While Section 7.3.3 introduces the colour matching experiment of 

single yarns, colour matching of yarn dyed fabrics is not involved, 

especially colour matching of multi-colour yarn dyed fabrics. 

However, this kind of experiment needs a great number of 

standard and batch samples. In order to produce meaningful and 

comparable results, the ground truth of 'pass' and 'fail' of these 

samples should be beforehand determined by colour experts with 

rich colour matching experiences. In the future, colour matching 

of multi-colour yarn dyed fabric samples will be carried out with 

the widely use of ICM in textile and garment industries. 

 Coefficients in reflection model 

While a reflection model introduced in Section 3.2 expresses that 

the colour of a yarn dyed fabric is influenced by the surface 

texture, occlusion of system illumination, and inter-reflection 

between yarns, the question how these factors influence the 

instrumental colour of a yarn dyed fabric needs to be in-depth 

explored.  
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