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ABSTRACT  

Abstract of thesis entitled: Study on renewable energy systems with different 

energy storage solutions for power supply in 

remote areas 

Submitted by:  Ma Tao 

For the degree of: Doctor of Philosophy 

At The Hong Kong Polytechnic University in November 2014 

 

At present, more than 1.3 billion inhabitants worldwide still lack access to grid 

electricity. Most of the people live in remote areas, such as islands, mountain areas 

and isolated villages, all some distance from the utility grid. Grid extension to such 

remote communities is both uneconomical and technically difficult owing to dispersed 

population or rugged terrain. As a result, their electrical demand is normally met by 

use of diesel power or there is no power supply at all. Fortunately, such areas, although 

remote, are usually rich in renewable energy (RE) resources, thus making it 

worthwhile to explore such local RE resources with the objective of producing much 

needed electricity. In recent years, the unpredictability of diesel costs, falling RE 

generation costs as well as technological improvements have encouraged a wider 

adoption of renewable energies in such areas.  

Stand-alone renewable energy power generation systems have been the target of 

substantial research over the past decades. However, the focus on comprehensive 
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renewable energy power supply solutions for remote areas, together with the 

identification of effective and low-cost technologies is limited. In addition, one 

significant technical challenge for those stand-alone RE systems, such as solar and 

wind energy, is the fluctuation of their output. This feature prevents the RE from being 

fully reliable for remote areas. In this context, the development of some effective 

energy storage solutions, to keep energy in excess for use in time of need, is an 

essential requirement. Currently battery must be a front-runner for use in remote RE 

systems. However, it has well known limitations, such as high cost, short lifespan, 

possibility of environmental damage and explosion, and difficulties for maintenance 

in isolated areas. Pumped hydro storage (PHS), usually used for conventional power 

plants, shows a great potential to replace batteries in standalone application, but to 

date few studies have reported the micro PHS for remote RE systems.  

The aim of this thesis is to study the options of power supply and energy storage for 

remote areas. One remote inhabited island 20 km off the coast of Hong Kong is taken 

to act as a test site for the proposed RE systems and storage technologies. 

To achieve the objectives of the study, a detailed study of different energy 

technologies for remote electrification was conducted, including system development, 

mathematical modeling, simulation, optimization, techno-economic evaluation, and 

sensitivity analysis. Different energy storage technologies, i.e. batteries, PHS, super-

capacitors and their hybrids, are investigated via theoretical analysis, numerical 

simulation and experimental validation. The operational performance of a real PV-

battery system on this example island was evaluated.  

Firstly, the RE potential and load demand of the selected island were assessed. 

Mathematical models for each RE technology were developed, and system evaluation 
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criteria discussed. In particular, a novel simulation model for PV devices, offering a 

good compromise between accuracy and simplicity, was developed in Matlab to fit 

the I-V curves and predict PV power output. The model was solved using an integrated 

analytical and numerical method, then validated through field measurements in a real 

grid-connected and a standalone PV system. 

A detailed study on the use of a traditional energy storage technology, battery, to 

support a remote area power generation system has been conducted. System 

configurations of possible combinations of solar energy, wind energy, diesel generator 

and battery bank were developed. Hourly simulations for a wide variety of 

configurations were performed to achieve an optimal one based on techno-economic 

analysis. Two representative systems, the 100% RE and hybrid RE-diesel, were 

selected for deeper analysis. Emphasis was also placed on examinations of the effects 

of the PV, wind turbine, diesel generator, and battery bank capacity on the system’s 

reliability and economic performance. The results demonstrated that the island could 

be powered by a 100% RE system, although it is possible that the energy cost provision 

will be quite high. The addition of a back-up diesel generator would make the hybrid 

system, i.e. solar-wind-diesel-battery, a more economically viable option. 

The problems which were observed concerning batteries limit a wider and future 

application of the battery-based RE systems. Thus as an alternative, a small PHS unit 

was proposed to support the remote area RE power supply systems at a few hundred 

kW scale. Of interest is the development in this study of a novel operating principle 

and design process for PHS-based RE systems. With the simulation program 

developed in this study, the system was simulated for a whole year. The genetic 

algorithm, along with the Pareto optimality concept, was then employed for system 

optimization, i.e. to identify the maximization of power supply reliability and 



V 

 

minimization of system cost. The optimized system configuration under zero loss of 

power supply probability (LPSP) was then investigated. In addition, the system 

performance of hybrid solar-wind, solar-alone and wind-alone systems with pumped 

storage under LPSPs from 0 to 5% were compared. Sensitivity analysis on several key 

parameters was also performed to examine their effects on system performance.  

This study proposed a new concept of energy storage to compensate the intermittent 

nature of renewable energy applications. Even though the overall efficiency of the 

micro-scaled pumped storage system is not high, a sustainable and environmentally 

friendly power supply solution is able to be provided, indicating that the pumped 

storage is one future ideal partner for remote area RE power supply systems.  

Further investigation of the battery-based and PHS-based RE system indicates that the 

use of more than one storage technology will give a better performance as regards 

complementing fluctuating RE outputs and dynamic power demands. Therefore, a new 

hybrid energy storage system (HESS), which combines battery for long-term energy 

management and supercapacitor for fast dynamic power regulation, was proposed. The 

mathematical models of the passive connected HESS were developed, and then 

implemented in Matlab/Simulink for numerical simulations. An electric inductance 

was further introduced to improve the performance of the HESS. In addition, an 

experimental test bench was developed to validate simulation results. It was 

demonstrated that the HESS can stabilize energy provision, not only for intermittent 

RE, but also for other fluctuating load applications. Finally, the benefit of another kind 

HESS, a combination of pumped storage and battery energy storage system, was 

analyzed and the system was experimentally studied, as an illustration of the operation 

states of such hybrid energy storage technology.  
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The operating data of a 19.8kWp solar PV-battery system on the island was collected 

and evaluated for the following aspects: the PV array, inverters, the battery bank and 

overall system. This evaluation enables a detailed understanding of the operating 

performance of the existing PV system from the technical point of view. It also 

provides useful reference data for further system extension.  

A comprehensive study of stand-alone RE power supply system using different energy 

storage solutions for remote areas with useful research outputs has been outlined above. 

The results provide researchers, engineers and policy makers with choices regarding 

the use of local RE resource, which could be aligned with the characteristics of 

individual remote area of interest. It is believed that the findings have provided a good 

reference for the selection of suitable RE and energy storage technologies, and the 

methodology presented can also be viewed as a starting point for planning and 

designing RE systems for remote communities around the world. 
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CHAPTER 1   INTRODUCTION 

Energy is an active force which stimulates both social activities and the provision of 

services to enable comfortable and efficient living. In terms of services, at present, the 

world is mainly powered by conventional fossil fuels, some of which are destined to 

be exhausted in several decades, based on the current rate of exploration and 

subsequent consumption. However, together with these fears, in recent years, the 

rising price of fossil fuels, the wide concerns about global warming and harmful 

emissions from carbon fuels have resulted in an emerging interest in the development 

of renewable energy (RE) applications. A particular recent stimulator, in this respect, 

has been the Fukushima nuclear accident, which added to the concerns outlined above, 

can be considered a turning point or motivator in the call for a transition from the risky 

nuclear and CO2 intensive fossil fuels to a power supply provided by sustainable and 

environmental-friendly renewable energy, such as solar photovoltaic (PV), wind and 

hydro. In this context, a global movement to explore the possibility of further 

developing RE is accelerating, to help meet increased energy needs and carbon 

reduction targets.  

1.1 The need for power supply in remote areas 

Over the last two decades, almost every inhabitant of the industrialized world has 

access to a degree of constant electricity. This is not the case, however, for the planet’s 

entire population. According to a recent report [1], approximately 1.3 billion people 

worldwide, that is close to one-fifth of the total global population do not have access 

to an electricity supply (Table 1.1). In China, the number of people without electricity 
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has been greatly reduced due to the rapid economic development, but currently, 3 

million people still lack access to electricity.  

Table 1.1 Number of people without access to electricity in 2011 and projection for 

2030 (million) [1] 

Region 

2011 2030 (projection) 

Population  
Share of 

population 
Population 

Developing Countries 1257 23% 969 

Africa 600 57% 645 

    Sub-Saharan Africa 599 68% 645 

Developing Asia 615 17% 324 

    China 3 0.2% 0 

    India 306 25% 147 

Latin America 24 5% 0 

Middle East 19 9% 0 

  1258 18% 969 (12%) 

 

A composite satellite photograph of the Earth from space is presented in Fig. 1.1, 

showing the areas of the world with and without electricity (the dark areas have no 

power). Significantly, only about 30% of households in Sub-Sahara Africa and 

northern India have electricity and outages are frequent. The International Energy 

Agency (IEA) report projected that close to 1 billion people, approximately 60% of 

which are located in Sub-Saharan Africa, will still be without grid electricity in 2030. 

Lack of electricity is the major barrier to global poverty alleviation, living standard 

improvement, economic development and urbanization in those developing countries.  



 

3 

 

 

Fig. 1.1 Composite nighttime photograph of the Earth from space [2] 

Inhabited areas without access to electricity are likely to be remote and sparsely 

populated areas such as deserts, islands and mountain areas remote from the utility 

grid. Grid extension to such communities is often impractical, technically difficult and 

uneconomical [3-8]:  

1) Owing to their physical separation in terms of distance from those societies 

with such technology in situ resulting in lack of electricity distribution system 

to each isolated area; 

2) The high cost of constructing long distribution lines and maintaining large-

scale electrification networks, owing to such as harsh and inhospitable terrain 

coupled with highly sparse population; 

3) Difficulties in maintenance and hence poor quality and unreliability, even if 

the power grids have been established;  

4) Upgrading and grid extension can often be beyond the financial capacity of 

such remote areas. 
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Hence remote communities beyond the reach of electricity and facing an inappropriate 

infrastructure are usually or have to be abandoned by attempts to be connected to the 

grid. In such a context, remote area power supply (RAPS) systems [9] offer a sensible 

and effective solution. Generally, RAPS systems are defined as electrical power-

supply systems for remote and isolated homes and farms, rural business enterprises 

and isolated villages and towns, where a stand-alone power system is more cost-

effective than grid extension. In the literature, different variants of RAPS system are 

described include ‘stand-alone power systems’, ‘off-grid power system’, ‘isolated 

power systems’, ‘remote power systems’, ‘autonomous power systems’, ‘household 

power systems’, ‘microgrids or minigrids’ [10]. The development of such systems are 

highly promoted by United Nations Foundation to improve universal access to modern 

energy service and therefore have been proceeding at an accelerated rate over the past 

ten years [11]. Such systems are powered by diesel fuel. 

1.2 Diesel generator power supply and its problems 

Currently, diesel generators (DG) normally meet the electrical demand in remote areas, 

such as those described above [12, 13]. DG-based RAPS systems are simple and have 

good reliability. However, currently further development has received a negative 

response because:  

(i) The cost of power supply is exaggerated and could reach the point of being 

financially unacceptable, due to significant rise in diesel price and extra costs 

of shipment [14, 15].  

(ii) The efficiency of diesel generators can be low when operated under partial 

load. Usually, the load in a RAPS system is subject to frequent fluctuations 
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and thus the corresponding power factor of DG is low. Using generators of 

different capacities to operate under different load conditions increases the 

loading level, but does not reduce high generation costs [10];  

(iii) Diesel usage damages the local ecological system, causing noise, water, soil 

and air pollution [16];  

(iv) Maintenance of DGs is expensive and time consuming in terms of travel to 

remote inhospitable locations. [17].  

The above is responsible for extensive public attention being drawn to finding 

alternatives for DG-based RAPS system.  

1.3 Using renewable energy for RAPS 

Fortunately, those areas as described above, although remote, are usually rich in RE 

resources, thus diesel replacement and the production of cheaper electricity is not 

beyond the realms of possibility [16]. The environmentally friendly and inexhaustible 

RE systems, such as photovoltaics (PV) power, wind power, micro hydro and their 

hybrids, is most likely to be most promising solution for RAPS [15, 18].  

In recent years, standalone RE systems, when compared with conventional resources, 

have become cost-competitive because of the rise in diesel cost and the rapid decline 

in RE cost. Additionally, RE systems, if in general use, could contribute to future 

energy sustainability and also offer a contribution to restraining environmental 

pollution. The above factors, the advances in RE technologies plus some inter-related 

initiatives to promote RE utilization both by the government and power supply 

companies have encouraged a dramatic expansion in the use of RE as an alternative to 

expensive grid extension or diesel-based electrification in remote areas. For example, 

Ref. [19-21] have demonstrated that a stand-alone RE system can provide a cost-
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effective alternative to DG, offering important opportunities for remote communities 

to avoid environment problems, improve power supply quality and living conditions. 

Further examples are given below in Chapter 5. 

1.4 Energy storage for the RE-based RAPS systems 

As indicated above, technological improvement and the rapid development of RE 

technologies make high initial cost no longer the key barrier to the use of RE systems. 

One significant technical challenge of RE power supply systems, however, is 

unpredictable output and weather-dependent characteristics. Their electricity 

production is likely to experience great fluctuations, making it difficult for them to 

self-adjust to suit the load demand. Hence, the intermittency characteristic prevents 

such systems from being fully reliable. In this regard, a feasible energy storage system 

is indispensable and must be employed as an integral part of the RE-based RAPS 

systems to compensate for the above problem. Unfortunately the energy storage device 

has proved to be one of the most expensive components of a standalone RE system 

[22]. Therefore, how to store the electricity harnessed from the RE sources at a 

reasonable cost becomes a crucial issue, but also a necessary  challenge if RE systems 

are to be successfully promoted in remote areas. 

Given the problem of intermittency, a reliable energy storage system (ESS) is critical 

in negating this problem and hence enabling RE production to be a viable concern. 

The user needs to be safely assured that energy can be supplied when needed. Ideally 

the ESS should act as an energy buffer and backup, storing the generated electricity 

when power generation exceeds demand and subsequently enabling dispatch when 

required. Thus the ESS will provide the means whereby the imbalance between 
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generation and load demand can be significantly mitigated and thereby dramatically 

improve system reliability.  

The growing academic interest in energy storage technologies is accompanied by an 

ongoing world-wide utilization of RE in remote areas. Currently various energy 

storage technologies have been used in stand-alone RE systems, such as batteries, 

flywheels, compressed air, fuel cells, supercapacitors, and pumped hydro storage. 

Among these technologies, rechargeable lead-acid batteries, particularly those with 

deep discharge rates and high cycling stability, are commonly employed because of 

their technical maturity and wide availability [23-26]. RE outputs, however, are not 

ideal for battery charging as the output fluctuates greatly depending on weather 

conditions. It is unlikely that batteries will recover from rapid power fluctuations 

without a dramatic reduction in their lifetime. In addition, batteries have well known 

limitations, such as high initial investment, relatively short lifespan, possibility of 

environmental damage and explosion due to lead and sulfuric acid content, and 

maintenance difficulties in isolated areas.  

Some potential alternatives to batteries for RAPS systems have been extensively 

studied by researchers in recent years, and from these studies PHS is considered to be 

the most promising candidate. PHS, is highly respected worldwide and has been 

utilized in association with conventional power plants and nuclear power plants for 

the past hundred years due to its low cost and maturity, and remains the most 

commonly used and commercially viable electricity storage technology. The PHS 

system, based on two vertically-separated water reservoirs, stores potential energy by 

using low-cost off-peak electricity to pump water from the lower reservoir to an upper 

reservoir. During the periods of peak load demand, stored water is released to flow 

downhill through a turbine to redeliver power.  
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1.5 Motivations and objectives of this thesis  

1.5.1 Motivations 

Aligned with the rapid growth of solar PV application, a better understanding of PV 

system operating performance has become an essential research area. Accurate 

prediction of PV system power output under real weather conditions is of importance 

for system designers and engineers to make a sound decision on the selection of PV 

modules and the prediction of PV module energy production. The development of a 

reliable and accurate PV power prediction model is indispensable for deep evaluation 

and any subsequent further developments. Over the past decades, a substantial amount 

of work has been conducted to specifically develop simulation models for PV devices. 

However, poor accuracy or high complexity of these models and software packages 

has not proved suitable for practical application. Therefore in-depth research is 

required to develop an efficient PV performance simulation model, with a good 

compromise between accuracy and simplicity.  

Effective energy storage technology is an ongoing problem which has not yet been 

solved sufficiently to produce an effective system. Many reports on the use of batteries 

are given in the literature and, in theory, appear to be front-runners in RAPS systems. 

As indicated in Section 1.4, barriers, such as high cost and short lifetime continue to 

limit applications. With these shortcomings in mind, PHS appears worthy of further 

scrutiny as regards its suitability and potential for battery replacement in standalone 

RE systems.  

Current PHS literature appears to have focused almost exclusively on the theory of 

PHS or the development of the technology itself for the large scale grid-connected 
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systems. A few studies have reported on the suitability of micro PHS for island wind 

power generation systems. Detailed practical studies have not yet been included. From 

the available literature, it appears that the technical issues arising from integrating PHS 

into hybrid RE systems for remote areas is in need of further investigation, as regards 

the following: the physical model, mathematical model, operation principle, 

simulation, optimization and techno-economic evaluation of the PHS-based 

standalone RE systems. These areas do not appear to be widely documented. Therefore, 

more in-depth research on feasibility studies, model development, system simulation, 

optimization, experiments and demonstrations is required and would be of 

complementary value for RE applications in remote areas. 

In addition, usually a single energy storage technology is difficult to response 

fluctuating RE output and dynamic power demand. In order to make ESS more reliable, 

a reasonable solution is to use the hybrid energy storage system (HESS), such as the 

combination of battery and supercapacitor, and the combination of PHS and battery, 

to leverage their complementary characteristics. Actually, the hybrid lithium battery 

and supercapacitor have been widely used for the electric vehicle. However, in 

literature, little has been done on the two hybrid energy storage systems for the 

standalone RE systems. 

1.5.2 Aims & Objectives 

The aim of this thesis is to study the stand-alone power supply options together with 

different energy storage technologies for remote areas. The solar PV, WT and backup 

DG are considered as the major power generators. Battery, pumped storage and 

supercapacitor and their hybrids are proposed as the energy storage subsystem. A 



 

 

10 

 

remote inhabited island off the coast of Hong Kong, Town Island, is taken as a test 

centre for installing and testing the proposed RE systems and storage technologies. 

The specific objectives of this thesis are summarized as follows: 

(i) To develop a novel simulation model for fitting the I-V curves and predicting the 

PV power output. Field measurements are carried out for real PV systems to 

validate the proposed model. To develop the mathematical models for other 

power generators (wind turbine and diesel generator) and models for energy 

storage technologies (battery and PHS). 

(ii) To simulate the dynamic performance of battery-based RAPS systems based on 

time-series, and to determine an optimal system configuration of various 

combinations of four technologies, i.e. PV, WT, DG, and battery, through 

simulation and techno-economic optimization.   

(iii) To propose an alternative, PHS, to support the standalone RE systems for remote 

areas. To develop a novel operating principle, design process, simulation and 

optimization program for the proposed system. To conduct a sensitivity analysis 

in relation to several key parameters. 

(iv) To propose a hybrid battery-supercapacitor energy storage system for RE-based 

RAPS systems. To develop mathematical models of the HESS for theoretical 

analysis and numerical simulation. To devise an experimental test bench to 

validate the simulation model. 

(v) To experientially investigate the hybrid PHS-battery energy storage for a PV 

system, and to conduct a long term testing campaign to evaluate the operation 

performance of a PV-battery system on the island. 
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1.6 Organization of this thesis 

The rest of this thesis is structured as follows: 

A comprehensive Literature Review on standalone RE power supply systems and 

energy storage technologies is presented in Chapter 2, to introduce the previous 

research methods/outputs and identify the research gap/limitations in this field.  

The mathematical models of power generators (PV, WT, DG) and energy storage 

technologies (battery, pumped hydro storage) in RAPS systems are developed in 

Chapter 3. The purpose of this chapter is to explore the maths and theory behind the 

modeling of RAPS systems. In particular, a novel simulation model for PV devices, 

offering a good compromise between accuracy and simplicity, is developed in Matlab 

to simulate the I-V curves and predict PV power output. The RE potential and load 

demand of the selected island are be then assessed in Chapter 4. 

In Chapter 5, a study of the traditional energy storage technology, battery, to support 

the microgrid RE power generation system, is carried out. System configurations of 

possible combinations of PV, WT, DG and battery banks are developed. Hourly 

simulations for a wide variety of configurations are performed to achieve the optimal 

example based on techno-economic analysis. Two representative systems, the 100% 

RE and hybrid RE-diesel, are selected for deeper analysis. The effects of the generator 

and storage capacities on the system’s reliability and cost are also examined. 

The barriers affecting battery storage limit a wider and future application of the 

battery-based RE systems. Therefore, an alternative, a small PHS unit, is proposed and 

described in Chapter 6. The aim is to support the remote area RE power supply systems 

at a few hundred kW scale. A novel operating principle and design process are 
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developed. The proposed system is to be simulated for a year and then optimized using 

a genetic algorithm based on techno-economic results. The dynamic behaviour of a 

case study based on the involved island is analyzed. A sensitivity analysis, in relation 

to several key parameters, is also performed. 

The investigation of the battery-based and PHS-based RE systems in the above two 

chapters indicate that the use of more than one storage technology will give a better 

performance as regards complementing fluctuating RE outputs and dynamic power 

demands. Therefore, a HESS is proposed in Chapter 7. The mathematical models of 

the HESS are developed for numerical simulations. An electric inductance is further 

introduced to improve the performance of the HESS. In addition, an experimental test 

bench is developed to validate simulation results. Another type of HESS, the 

combination of PHS and battery, is also analyzed and a physical representation of the 

system is studied experimentally.  

Chapter 8 presents the long term performance evaluation results of a 19.8kWp solar 

PV-battery system on the involved island, covering the following aspects:  PV array, 

inverter, the battery bank and overall system. 

The major conclusions and achievements are drawn in Chapter 9. Recommendations 

for the future research, based on the limitations described in this thesis, are also 

presented. 
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CHAPTER 2   LITERATURE REVIEW 

A comprehensive overview of the current-state-of-knowledge concerning the topics in 

this thesis and limitations in literature is presented in this chapter. The focus of Section 

2.1 is the current research on RE systems for RAPS. Section 2.2 gives an overview of 

PV system modeling and simulation, and Section 2.3 provides a review of sizing and 

optimization methods for the RE-based RAPS systems, while energy storage system, 

as a core part of the standalone RE systems, is discussed in Section 2.4. 

2.1 Standalone renewable energy systems for RAPS  

Further application of diesel-based RAPS systems has become hindered by high 

operating cost and negative environmental problems. Focus has thus turned to the 

utilization of RE as an alternative of diesel. RE has a reputation for being clean, 

inexhaustible, environmentally friendly and cost-effective [5, 20, 21]. For islands, 

remote regions and national borders where the national grid is not available or too 

costly to be implemented, the most practical and cost-effective energy future is 

standalone RE power supply systems. The reasons include, such as shortage of electric 

power supply [27], expensive grid connection or diesel fuel cost [28], preference for a 

clean system [29], desire for energy independence and avoidance of overhead lines or 

undersea cables in environmentally sensitive areas [29]. Not surprisingly, the remote 

areas around the world are at the forefront of the transition towards a more sustainable 

energy future. A RE-based RAPS system, therefore, can be viewed as a sustainable 

solution stimulated by the social, economic and environmental benefits described 

below.   
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i) Direct and indirect social benefits of electricity generation by renewable 

sources in rural areas include electrification, irrigation, food preservation, crop 

processing, cooling, and small-scale industries. As a result, the remote 

residents can achieve improved health and living standards, greater self-

reliance, more work opportunities and the basic means of technological 

advances [30]. Renewable energies also avoid the safety problems derived 

from such as atomic power [31, 32]. 

ii) The use of RE provides a wide variety of economic benefits. It enables RAPS 

could be cost-effective, in that money is saved by reduced diesel use or grid 

extensions. A transition to RE-based energy systems currently appears more 

likely, as the costs of solar and wind power system have dropped substantially 

over the past 30 years, while the diesel price is high and fluctuates greatly. 

Additionally, the use of RE can stimulate economic growth in impoverished 

areas and the corresponding better living conditions [33]. 

iii) From an environmental point of view, RE resources are based on unlimited, 

inexhaustible, environment friendly and sustainable sources, all of which 

contribute to less air and water pollution, thereby lowering greenhouse gas 

emissions, and maintaining natural resources for the long term  [34, 35]. 

An awareness of the above has caused the last decade to witness a dramatic expansion 

in the use of RE as replacements for fossil-based energy. As RE costs decrease 

worldwide, the transition from fossil fuels to a greater reliance on local and sustainable 

sources of energy is increasingly compelling [36]. 

RE-based RAPS systems usually incorporate a combination of photovoltaic (PV) 

systems, wind turbines (WT), diesel generators (DG), power conditioning units, and 

energy storage devices [37]. Sometime they are accompanied by hydro turbines [38]. 
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The system configurations to integrate different generation and storage systems can 

be divided into three categories: DC coupled configuration, AC coupled configuration, 

and hybrid DC-AC coupled configuration [39]. In areas where people live close 

together in a village, one large system can power the entire village via a mini-grid. 

Where homes are further apart, individual micro-scale systems are often employed.  

Substantial studies show that the RE resources have attracted energy sectors to 

generate power on a large scale [40]. A common drawback to wind and solar energy 

is their unpredictable nature as well as dependence on weather and climatic changes. 

It is evident that neither a single PV nor a single wind energy system is able to provide 

a continuous power supply because of seasonal and periodical fluctuations [41]. The 

independent use of any single technology usually leads to a considerably oversized 

generation system and energy storage subsystem for a reliable power supply, which in 

turn requires  higher operating and life cycle costs [14, 21, 42, 43].  

The problem of variability of RE output, fortunately, can be partially overcome by 1) 

installing individual large renewable power plants, or 2) adding energy storage 

facilities, or 3) developing hybrid energy systems in a proper combination [30]. A 

hybrid renewable energy system is composed of two or more renewable power 

generation technologies to achieve better performance and higher efficiency [44]. A 

substantial number of studies have indicated that a hybrid solar and wind system, 

which can leverage the strengths of each technology to provide a more reliable and 

less costly power supply in remote areas [29, 35, 36, 45, 46]. The hybrid solar–wind 

power generation systems can effectively improve the system energy usage factor, 

advance energy supply reliability, and reduce the energy storage requirements [14, 47], 

due to the complementary nature exhibited from solar and wind energy supply in daily 



 

16 

 

and seasonal patterns [48, 49]. Such is the interest and belief in hybrid solar and wind 

system that much research has been reported and commonly demonstrates that such 

hybrid system with energy storage is techno-economically viable for rural 

electrification in remote areas [50-55].  

Additionally, the combination of RE and DG is also used in some RAPS systems, for 

example hybrid PV-wind-diesel-battery systems [56-58], and wind-diesel system [45, 

59], and PV-diesel system [13, 34, 60] and PV-wind-hydro-diesel system [61]. The 

hybrid system takes its primary energy from RE generator and the balance from DG, 

and has an energy storage system as well to balance out-of-phase supply and demand. 

In such a system, the DG can only be run for a few hours per day, but, importantly, at 

its optimum efficiency, thus minimizing fuel consumption and exhaust emissions 

[9].  In this way, the system cost will be reduced greatly and power supply reliability 

will be improved. 

2.2 Modeling of PV system and parameter-determination methods 

Because of the rapid growth of and interest in the use of solar PV application in the 

world, understanding the PV operating performance is an essential topic of research. 

Accurate prediction of PV module power output under real weather conditions is of 

great importance for system designers in system configuration and product selection. 

It is also crucial for engineers to evaluate PV systems’ operation performance [62-64]. 

However, it has been found that the specifications of a PV module given by 

manufacturers does not or cannot accurately predict PV performance under general 

conditions. Therefore, an accurate and reliable solar PV power prediction model is of 

vital importance [65, 66]. Below a comprehensive Literature Review on simulation 

models for PV devices and determination methods is presented.  
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2.2.1 Equivalent circuit and mathematical models for PV devices 

The ability to model PV device output is key to the analysis of PV system performance. 

A PV cell is traditionally represented by an equivalent circuit composed of a current 

source, one or two anti-parallel diodes (D), with or without an internal series resistance 

(Rs) and a shunt/parallel resistance (Rp). The equivalent PV cell electrical circuits 

based on the ideal model, a one-diode model and a two-diode model are presented in 

Fig. 2.1. These PV cell electrical power models are widely described in the literature 

[67-70].  The literature also reveals that the circuit in Fig. 2.1c  is the more commonly 

used [71], as it can be represented by a  simple and accurate  simulation model.  
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Fig. 2.1 Equivalent PV cell electrical circuits: (a) ideal model; (b) one-diode only 

with Rs (4-p model); (c) one-diode with Rs and Rp (5-p model) and (d) two-diode 

models (7-p model) 

The outputs from these models are the current and voltage data points, which can be 

connected to produce the I-V curve (Fig. 2.2). One primary objective of PV device 

modeling revealed in the literature, is to fit the predicted I–V curves to the 
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experimental curves of the practical system, particularly at the three characteristic 

points: short circuit (0, Isc), MPP (Vm, Im), and open circuit (Voc, 0). Relevant 

research related to PV mathematical and simulation models is as follows. 

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

Voltage(V)

C
u
rr

e
n
t(

A
)

Short circuit point 
(0, Isc)

Maximum power point 
(Vm, Im)

Open circuit point 
(Voc, 0)

Vm

Im
(Voc, Isc)

 

Fig. 2.2  PV module I–V characteristic curve with three characteristic points  

 Ideal model 

As presented in Fig. 2.1a, the ideal PV cell model has the simplest form, since it takes 

no account of the effect of internal electrical series resistance and parallel resistance. 

Based on the Shockley theory, recombination in the space-charge zone, it can be 

neglected and the second diode term can therefore be omitted. [72]. It is acknowledged 

that the PV cell is neither a constant voltage source nor a constant current source. The 

externally measured current can be related to voltage and the relationship between 

them has been investigated [73, 74]. Based on the Shockley and Queisser (SQ) diode 

equation, the ideal mathematical model for an individual PV cell is expressed as [75, 

76]: 

 
/

0 ( 1)tV V

ph D phI I I I I e      (2.1) 



 

 

19 

 

where phI  is the photo current (A), assumed constant along the I-V curve and 

proportional to the irradiance, with only a weak temperature dependency; 0I is the 

diode saturation current (A); ..is the diode thermal voltage; n  is the diode ideality 

factor; k  is  Boltzmann’s constant (1.381 × 10−23 J/K); q  is the absolute value of the 

charge on an electron (−1.602 × 10−19 C) and T  is the cell temperature (K), assumed 

equal to the temperature of the P-N junction [77].  

Some studies have been carried out using simple models involving a linear 

independent current source parallel to a diode [78]. However, it is demonstrated in the 

literature  that the ideal cell model, in the absence of recognition of internal resistance 

effects, is not suitable for modeling the actual PV cell current and voltage relationship 

[73].  

 One-diode model taking account only of Rs (4-p model) 

Fig. 2.1b illustrates the equivalent PV cell electrical circuit for the series resistance 

case. This is the so-called four-parameter (4-p) model [79-86], in which the parallel 

resistance is considered as infinite, and thus its effect is not taken into account. Its 

mathematical model is presented as: 

 0 ( 1)

s

t

V IR

V

ph D phI I I I I e



      (2.2) 

In Ref. [87], the 4-p PV model was proposed, and incorporated into the transient 

simulation program TRNSYS. This model was used to estimate and optimize the 

performance of a pumping system PV installation [81, 88]. The model, based on four 

parameters, was used to simulate three types of PV panels, each differently constructed, 
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one with thin film, another with polycrystalline silicon, and the third with mono-

crystalline silicon materials [89].  

Recent research studies [63], however, show that the 4-p model, which ignores the 

effects of shunt resistance, is inadequate to fit experimental I-V and P-V data into the 

current-source operation. [90, 91] also demonstrated that the simplified 4-p model 

does not satisfactorily reflect the effect of high temperature on the current, and leads 

to a less accurate current prediction than the 5-p model.  

 One-diode model considering Rs and Rp (5-p model) 

To improve the accuracy of the simulation model, parallel resistance is thus introduced 

in the one-diode model. This is the well-known five-parameter (5-p) model, shown in 

Fig. 2.1c and represented by Eq. (2.3). 
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V IR
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        (2.3) 

It is widely acknowledged that both series resistance Rs and parallel resistance Rp can 

affect the I–V characteristics of a PV device. In general, the parallel resistance reduces 

the available electrical current, and the series resistance affects the output voltage.  

Recently, a new method to extract the five parameters  has been developed by Ma et 

al. [92] and Bai et al. [93]. The dynamic behaviour of a 3.2kWp photovoltaic system 

was evaluated in real conditions using the 5-p model [94], and the output of a partially 

shaded PV module was also modelled based on the 5-p model [95]. Five of the recent 

and most cited articles concerning the 5-p model [62, 66, 77, 96, 97] have been 

discussed [98], in relation  to the mathematical models themselves, the  parameter 

extraction procedures, and the major hypotheses and simplifications involved. The 
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literature shows that much research has been carried out in developing the 5-p model, 

and also provides some directions for improvement and/or simplification to obtain the 

five parameters ( LI , 0I , tV , sR , pR ). Results from those studies demonstrate 

acceptable levels of accuracy [40, 90, 99-105].  

 Two-diode model 

The commonly used one-diode model can achieve acceptable accuracy, but the reality 

is that the saturation current of the PV cell is the result of a linear superposition of 

charge diffusion and recombination in the space-charge layer [106]. This means that 

two Shockley terms, i.e. two diodes contribute to the saturation current. Therefore the 

two-diode model, also called the double-diode model, was proposed [106-113]. The 

schematic diagram of the equivalent electrical circuit is illustrated in Fig. 2.1d and the 

mathematical model is expressed as:  

 1 2
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where ID1 and ID2 are the currents passing through the corresponding diodes. As for 

the single-diode model with Rp and Rs (five-parameter model), the internal series and 

shunt resistances affect the output voltage and current, respectively. 

The two-diode model can achieve greater accuracy, particularly at low irradiance level 

and during partial shading conditions [114]. The inclusion of an additional diode, 

however, increases the number of computed parameters. Eq. (2.4) indicates that this 

model is quite complex, being a nonlinear and implicit equation with two exponential 

terms and up to seven unknown parameters. The computational time is, therefore, 
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relatively long [68, 70]. In addition, other new coefficients are introduced into the 

equations, further increasing the computing burden. 

Many attempts have been made to reduce the computational complexity of the two-

diode model, but they appear to be unsatisfactory [70]. Some researchers assumed the 

diode ideality factors to be n1=1 and n2=2 to simplify the model. The latter is an 

approximation of Schokley-Read-Hall recombination in the space charge layer in the 

photodiode [115]. This assumption is widely used, even though it does not always hold 

true [116]. [70] developed an improved two-diode model and simplified the current 

equation, resulting in a requirement for only four parameters. The reverse saturation 

currents 1DI , 2DI , however,  are then forced to be equal in magnitude. Such 

simplification may result in some inaccuracy although computation time is reduced.  

The two-diode model provides higher PV cell modeling accuracy, however it was not 

selected for this study for the following two reasons. One concerns the fact that the 

recombination incurred by the second diode dominates at low voltage and low 

irradiance [96, 117], conditions seldom selected for simulation studies. The other 

reason is that the parameter determination would be very complicated if another diode 

is added.    

 Other models 

In addition to the above models, the three-diode model [118] has been studied, but not 

to a great extent, because of the calculation complexity. Thermal models to simulate 

PV performance, such as one based on overall heat loss coefficient has also been 

investigated [119, 120]. These models are usually not suitable for wide use because of 

insufficient information supplied by the module manufacturer. Mathematical 

modeling of PV module output taking account of solar cell mismatching and the 
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interconnection ribbon was proposed in [121]. An empirical general PV device model 

was studied by [78], and a method called APTIV, which fits the I-V curve in two 

different zones  was used to extract the solar cell physical parameters  [122]. Accuracy, 

however, focuses only on the three characteristic points, rather than the complete 

characteristic curves.  

2.2.2 Determination methods for solving model parameters 

Following the development of the simulation model, the determination of the unknown 

model parameters is challenging, as the simultaneous equations are usually non-linear 

and include exponential terms. Mathematical techniques, are therefore, usually 

employed to extract the unknown parameters. Many studies have been conducted 

attempting to solve the above equations using the analytical and numerical methods.  

 Available analytical solutions 

The traditional analytical approach introduces a series of simplifications and 

approximations, to obtain simpler solutions and avoid bringing obvious errors to the 

model [90, 96]. Analytical methods have been reported and discussed in many 

publications [81, 90, 97, 123-127]. A data-based approach has also been presented in 

an attempt to avoid modeling complexity [89]. It is worthy of note that errors in the 

unknown parameters, can be significant if the key points on the I-V curves are not 

correctly specified [68].  

 Available numerical solutions 

Numerical solutions, also known as algebraic solutions, employ powerful 

mathematical tools and iterative methods to solve the implicit non-linear equations 
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associated with PV simulation models. Numerical solutions are widely used in systems 

engineering because they offer a reasonable compromise between simplicity and 

accuracy [128].   

Various numerical techniques, such as  resistive-companion methods [129], non-linear 

least squares optimization [130]  the Newton-Raphson method [77], the bisection 

method [100],and the equation solver EES [62], have been proposed for the 

simultaneous solution of these non-linear equations. An iterative programming 

method was introduced by [84, 131] which estimated the parameters associated with 

PV simulation models. This method was also improved using interpolation 

techniques [132]. Most of those approaches, however, demand much computing effort. 

Another numerical iterative method, the Levenberg–Marquardt (LM) algorithm, was 

employed by [90, 96, 106, 109] to solve the implicit non-linear equations, proving to 

be a robust method possessing sufficiently rapid convergence characteristics. However 

this technique requires  good  initial estimation of  parameter values to attain 

convergence, particularly in the case of  the two-diode model [98]. In some cases 

heuristic solutions need to be sought [70].  A simulation model has also been 

implemented using  Microsoft Excel VBA macros [66].  

The performance simulation models of PV devices are also available in some existing 

software, such as PVWATTS, PVMOD, PVFORM, INSEL, PVWATTS, 

PHANTASM, TRNSYS, P-Spice, PV-DesignPro, SolarPro, PVcad, and PVsyst [65, 

92, 98, 114, 133, 134]. In addition,  the  PV model has been solved using the LSODI 

FORTRAN Livermore solver [135], the FORTRAN computer code was also 

programed in [136, 137] and added to the standard TRNSYS library with  sub-

programs, to solve the I–V equation numerically. A PV simulation model was written 

in the C language and run on a PC using a Borland C++ compiler [104]. An intricate 
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PSpice software-based simulation was presented by [138]. Furthermore, many studies 

solving  PV simulation models in the Matlab/Simulink environment have been 

reported [91, 94, 103, 112, 114, 139-142], as this tool provides a graphical interface 

for models constructed as block diagrams. Such models can easily be connected so as 

to simulate a particular specific system [143]. These software/tools, however, are 

either quite sophisticated and intended for advanced users[98], or too general with 

results that are not so accurate [92]. Usually new coefficients are introduced into the 

equations, thereby increasing the computational loading [114]. They are also relatively 

expensive and unnecessarily complex [144].  

Recently, various evolutionary algorithms have  been utilized for the parameter 

extraction of PV device simulation models, such as the genetic algorithm [145, 146], 

differential evolution [69, 147], and particle swarm optimization [148]. Some studies 

have been made on PV device I-V curves  using artificial intelligence [69, 70], such 

as fuzzy logic [149, 150]  and artificial neural networks (ANN) [80, 91, 101, 128, 151-

153]. Despite the more accurate results, artificial intelligence techniques require 

extensive computation, and ANN requires a large amount of data for network training 

purposes.  

2.3 System sizing and optimization techniques  

The performance of a hybrid RE system depends on proper sizing of the system. In 

recent years, many attempts have been made to size and optimize system configuration 

through different techniques. Based on the Scopus database, various sizing and 

optimization methodologies have been reported in the literature. Fig. 2.3 shows an 

exponential evolution in the number of research papers that use optimization 
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algorithms applied to RE systems, indicating that many researchers are continuously 

proposing and applying new methods in the field of RE. The aim of this section is to 

review the state-of-art of sizing and optimization approaches that are applied to the 

RE-based RAPS systems. Various approaches for unit sizing of hybrid RE systems 

are given in Fig. 2.4.  
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Fig. 2.3 Number of articles using optimization algorithms in the study of RE over the 

last 20 years  

 

Sizing/optimization 
approaches

Probabilistic 
approach

Analytical 
approaches

Iterative 
approach

Artificial intelligence  
approach

Multi-objective 
approach

Design space 
based approach 

Hybrid 
approach

GA

Other 
approaches

PSO ANN SA BBO NF

 

Fig. 2.4 Sizing and optimization methods 
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2.3.1 Probabilistic approach 

The probabilistic approach may be simplest method. Considered is the effect of RE 

resources and load demand during sizing, but not the dynamic changing performance. 

Thus it is not the most suitable for finding the best solution [37]. Many papers are 

available in the literature presenting optimized hybrid system sizing using 

probabilistic approaches. A probabilistic approach using a typical meteorological year 

is proposed by [55], to assess the performance of a hybrid solar-wind system. An 

updated probabilistic approach which considers the probability density function is 

suggested by [154, 155] to optimize the long-term performance of hybrid solar-wind 

power systems. In addition, a three-event probability density approximation was 

employed by [43], based on the two state process proposed by [156].  

2.3.2 Analytical approach 

In the analytical approaches, the components of the hybrid RE systems are represented 

by mathematical models, which describe hybrid system size in terms of the function 

of its feasibility [157]. Consequently, the performance of the hybrid system can be 

assessed for a set of possible configurations, the best is then selected based on one or 

some evaluation criteria. Such a method requires a lengthy period, usually one year, 

of weather data for the simulations. In recent years, many studies have employed this 

approach to design and optimize system configuration [158-161].  

2.3.3 Iterative approach 

A typical feature of the iterative method is that evaluation of system performance is 

completed by a recursive process which continues until the best configuration with 

design specifications is reached [157]. System reliability and cost, i.e. techno-
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economic index, is usually evaluated in the iterative approach based optimization. An 

iterative process is introduced by [162] to achieve an optimal hybrid RE system 

configuration based on techno-economic evaluation results. [45] reported an iterative 

method to size a hybrid wind-diesel system based on economic cost, the same method 

was also applied in a hybrid PV-wind based RAPS system [163]. A new iterative 

method based on adaptive feedback learning, for fast convergence, was also proposed 

by [164] to obtain the optimal combination for a PV-battery system.   

2.3.4 Artificial intelligence (AI) approach 

AI is a term meaning the ability of a machine or artifact to perform similar kinds of 

functions that characterize human thought. The bio-inspired AI method has been 

widely reported, including genetic algorithms, artificial neural networks, particle 

swarm optimization, biogeography based optimization, simulated annealing, or a 

hybrid of such techniques [165]. An overview of the AI techniques for sizing PV 

systems is presented by [166], indicating that the major benefit of this approach is that 

it can deal with the non-linear behavior of system components and stochastic 

variability of RE sources, while its disadvantage is that it requires considerable 

computing time. Various studies based on AI approaches available in literature are 

briefly reviewed below. 

The concept of genetic algorithm (GA), inspired by the evolutionist theory explaining 

the origin of the species, was proposed by [167] and then widely utilized in various 

applications. A good overview was presented by [168] to describe the GA developed 

specifically for problems with multiple objectives. Due to its presented advantages, 

substantial publications have been  reported using GA for system sizing, optimization, 

and operational control of hybrid RE systems, inducing PV-diesel system [5, 60, 169, 
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170], PV-wind-diesel system [171], PV-wind system [50, 53, 171-173], PV-battery-

full cell system [174] and PV-wind-diesel-battery system [175]. GA is also used to 

obtain the maximum power point based of PV devices based on I-V curves [176].  

A review of the optimization methods for hybrid renewable energy systems 

demonstrated that the most popular applied methods were GA and Particle swarm 

optimization (PSO) [177]. PSO is an optimization technique based on the movement 

and intelligence of swarms. The basic idea of the algorithm was to seek the optimal 

solution through collaboration and information sharing among individuals in groups. 

Similar to the GA approach, PSO is also used widely in hybrid RE system sizing. For 

example, PSO was applied to solve the PV-WT capacity coordination by  [178, 179], 

to optimize the PV-WT-DG system for fulfilling techno-socio-economic criterion 

[180], to optimize sizing of a hybrid wind-PV-fuel cell generation system [181, 182], 

to process economic dispatch problems by [183]. A study [184] also presented a fuzzy 

adaptive PSO algorithm to solve the optimal operation management of distribution 

networks including fuel cells power plants. 

Artificial neural networks (ANNs) are based on our present understanding of the brain 

and its associated nervous systems. They use processing elements connected by links 

of variable weights to form a black box representation of systems [166]. The 

optimization based on ANN has been employed for sizing PV system by [80, 185, 

186]. Both ANN and GA were used to maximize the economic benefits of a solar 

system [187].  

The Simulated annealing (SA), introduced by [188], is a general optimization 

technique for solving combinatorial optimization problems that. A novel discrete 
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chaotic harmony search-based SA algorithm for optimal sizing of PV-wind-battery 

was developed by [189, 190].  

Biogeography based optimization (BBO), a new optimization concept, is a population-

based evolutionary algorithm. Similar to GA and PSO, BBO is the study of the 

geographical natural distribution of biological organisms. The developed BBO 

algorithm has been applied for optimal sizing a standalone wind/PV system by [191].  

Neuro-fuzzy (NF) theory is used to simulate the aspect of human cognition that can 

be called approximate reasoning. It has many applications in the field of engineering. 

Daily management of the household PV power generation without using storage 

equipment was optimized by [192] by a NF algorithm. The NF logic for a wind–diesel 

system sizing optimization was also developed by [193].  

2.3.5 Multi-objective optimization approach  

Most popular computational optimization methods have focused only on solving 

single-objective problems [194]. However, in reality, many real engineering problems 

have two or even multiple objectives, such as cost, system performance, reliability, 

which are generally in conflict and should be simultaneous optimized. Generally there 

are two approaches for the multi-objective optimization, i.e. aggregate weight 

functions [195] and Pareto optimal set based method [196].  

With the aim of achieving optimal economic and environmental performance, 120 

Pareto optimal sets for hybrid PV-wind system were developed by [197]. A multi-

objective algorithm was also introduced to simultaneously minimize the cost of the 

system and total greenhouse gas emissions [198]. In addition, two algorithms for 

multi-objective optimization in wind-PV-DG based system was studied by [199]. A 

multi-objective optimization of load dispatch of power systems including RE and CO2 
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capture/storage technologies was conducted by [200]. More similar works using multi-

objective optimization approach can be found in studies by [201-203]. 

2.3.6 Design space based approach  

The design space based approach, which can generate the sizing curve for hybrid RE 

systems, has also been widely employed in the academic field. The set of feasible 

configurations that can meet the load requirements determines the feasible design 

space for the entire system [49]. The concept of design space was introduced for 

optimized sizing of solar thermal systems by [204]. For standalone power supply 

systems, the design space approach was used for diesel-battery systems [205], PV-

battery systems [206-208], wind-battery systems [209, 210] and hybrid PV-wind 

systems [211-214], hybrid systems [215].  

2.3.7 Hybrid approaches 

For improvement, hybrid optimization methods are combined with two or more 

methodologies, to increase convergence time in the optimization process. These 

methodologies are characterized by their flexibility and dynamism in the sizing 

process and are hence considered the most powerful sizing methodologies. They have 

been widely used in the literature dealing with hybrid system sizing problems, for 

example, an optimal solution was obtained through the combined artificial bee colony 

algorithm and the Pareto front [216]. A hybrid simulated annealing and tabu search 

method was introduced by [217], demonstrating that the obtained solution was better 

than that provided by an individual method, in terms of quality and convergence. 

Additionally, a combination of neural network and wavelet transform was proposed 

by [218] to size a standalone PV system. Both GA and PSO were also implemented 
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for solving a planning problem for thermal units integrated with wind and solar energy 

systems [219].  

2.3.8 Other optimization techniques 

Apart from the above optimization techniques, other approaches such as linear 

programming [30, 220, 221], simplex algorithm [174, 222], dynamic programming 

[223], response surface methodology [224, 225], matrix approach [226], quasi-

Newton algorithm [162], and “Energy hub” concept [227] have been utilized by 

researchers to design hybrid RE systems in a cost effective way. The contribution of 

these algorithms offers an enriching promise to that literature dedicated to sizing 

hybrid RE systems.  

2.3.9 Simulation and optimization software tools for hybrid RE systems 

In recent years computer-based simulation and optimization programs have received 

growing attention, and are becoming important tools for sizing hybrid RE systems. An 

overview of different simulation and optimization tools for hybrid RE systems has 

been presented by [228-231]. The reviews demonstrate that, for the purpose of hybrid 

systems optimization, HOMER is considered as the most famous and widely-used [29]. 

HOMER is a computer model originally developed by the U.S. National Renewable 

Energy Laboratory, to assist in the design of micropower generation systems across a 

wide range of applications [232]. HOMER has been extensively used by scholars in 

the field of RE supply case studies, simulation and optimization, for example, 

HOMER is employed to investigate the PV-diesel system in remote areas in Malaysia 

[13], Saudi Arabia [34, 233, 234], Cameroon [235], Brazil [236], and Jordan [237]. 

HOMER is also used to simulate a standalone PV system to power a health clinic in 

southern Iraq [238], a homestead in West Australia [239]. HOMER has been used 
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extensively in feasibility studies of stand-alone wind-diesel systems in Saudi Arabia 

[59, 240], Algeria [35] and Alaska [241], a hybrid solar-wind system in Bangladesh 

[242], a small Hydro/PV/Wind hybrid system in Ethiopia [12], and a hybrid 

microhydro-PV system in Africa [243]. 

Several more software tools are available for simulation and optimization of hybrid 

RE systems. Examples included HYBRID2 for long term performance and economic 

analysis [244, 245]; RETScreen for evaluating technical and financial viability of RE, 

energy efficiency and cogeneration projects [246, 247]; GRHYSO for grid-connected 

renewable hybrid systems optimization [160]; H2RES for balancing the integration of 

RE into energy-systems [248] and HOGA for design hybrid RE systems using genetic 

algorithm [60]. 

2.4 Energy storage for renewable energy supply systems 

RE sources are usually intermittent, unpredictable and time/weather dependent. 

Therefore, a continuous and reliable power supply is hardly possible without energy 

storage. By employing an energy storage system (ESS), the surplus energy can be 

stored when power generation exceeds demand and then be released to cover the 

periods when net load exists, providing a robust back-up to intermittent RE [249]. The 

ESS is thus a critical component and powerful partner to ensure sustainable supply of 

RE [250]. The European Commission finds that the ESS will play a key role in 

enabling the world to develop a low-carbon power supply system. 

The growing academic interest in energy storage technologies is accompanied by the 

world-widely ongoing utilization of RE in remote areas. Current energy storage is a 

well-established technology but it is still relatively unexplored [251]. At present, it is 
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one of the greatest technical and commercial barriers to the wide integration of 

renewable energy applications, especially for those standalone systems completely 

powered by intermittent solar or wind energy, because they are available or strong 

only at certain times of the day.  

2.4.1 The role of energy storage 

 

Fig. 2.5  Load profile of an electricity storage system. (a) EES in Peak Shaving; (b) 

EES in load levelling [252] 

Energy storage is a topic of great importance in the deployment of RE, since it appears 

to be the only solution to the problem of intermittency and lack of controllability of its 

production [253, 254]. The basic roles of the EES for standalone RE are summarized 

as follows:  

 ESS can ramp the fluctuating output from RE, and ensure that power produced 

by renewables can be released and dispatched reliably to better fit demand.  

 It acts as an energy buffer, allowing energy produced to be held when demand 

is low, ready for discharge when demand is high, i.e. the function of load 

leveling and peak shaving as shown in Fig. 2.5 [252]. In this way, the 
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imbalance between generation and load demand can be significantly mitigated 

and system reliability can be improved dramatically [10].  

 It can stabilize the power grid with a high penetration level of RE.  

To facilitate the RE becoming completely reliable as a primary enegry source, an 

economical ESS is therefore a crucial challenge that must be overcome.  

2.4.2 Classification of ESS 

Generally energy storage technologies are classified into four main categories: 

mechanical, electrochemical, electromagnetic, and thermal processes (Fig. 2.6). The 

energy storage systems in use for electrical energy usually include the first three 

classification types. Ref. [255] has given an overview of energy storage technologies 

used for electric power applications. For distributed renewable energy integration, a 

review of energy storage technologies was carried out by [256-258].  

Mechanical

Pumped hydro

Compressed Air

Flywheel

Electrochemical

Battery

Hydrogen

Electromagnetic

Super-capacitor

Super-conducting 

magnets

Thermal

Molten salt

Solar pond

Energy storage technologies

 

Fig. 2.6 Classification of energy storage systems 
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Table 2.1 Comparison of technical, economic and environmental characteristics of 

different ESSs [259] 

 

Various energy storage technologies are currently in use for distributed renewable 

energy integration, including battery, flywheel [260, 261], compressed air energy 

storage (CAES) [262], fuel cell [263, 264], Supercapacitor [265, 266], and pumped 

hydro storage. A good review of energy storage technologies was presented by [256-

258]. The technical, economic and environmental characteristics of different energy 

storage technologies are summarized in Table 2.1 [259]. It can be observed that capital 

cost per kWh of PHS is lower than other energy storage technologies. Flywheels and 

supercapacitors show the highest maximum efficiency, and fastest response times, 

while fuel cells have a lower efficiency due to large losses. The cycle lives of the EES 

systems based on the electrical technologies, such as supercapacitor, are very high. 

The cycle abilities of batteries and fuel cells are not as high as other technologies 

owing to chemical deterioration with the operating time [259]. However, according to 

ESS
Efficiency 

(%)

Capacity 

(MW)

Energy 

density 

(Wh/kg)

Capital 

($/kW)

Capital 

($/kWh)

Response 

time

Lifetime 

(years)
Maturity

Environmental 

impact

TES 30–60 0–300 80–250 200–300 3–50 – 5–40 Developed Small

PHS 75–85 100–5000 0.5–1.5 600–2000 5–100 Fast (ms) 40–60 Mature Negative

CAES 50–89 3–400 30–60 400–2000 2–100 Fast 20–60 Developed Negative

Flywheel 93–95 0.25 10–30 350 5000
Very 

fast(<ms)
~15 Demonstration Almost

Pb–acid battery 70–90 0–40 30–50 300 400 Fast 5–15 Mature Negative

Ni–Cd battery 60–65 0–40 50–75 500–1500 800–1500 Fast 10–20 Commercial Negative

Na–S battery 80–90 0.05–8 150–240 1000–3000 300–500 Fast 10–15 Commercial Negative

Li-ion battery 85–90 0.1 75–200 4000 2500 Fast 5–15 Demonstration Negative

Fuel cells 20–50 0–50 800–10,000 500–1500 10–20 Good (<1 s) 5–15 Developing Small

Flow battery 75–85 0.3–15 10–50 600–1500 150–1000 Very fast 5–15 Developing Negative

Capacitors 60–65 0.05 0.05–5 400 1000 Very fast ~5 Developed Small

Supercapacitors 90–95 0.3 2.5–15 300 2000 Very fast 20+ Developed Small

SMES 95–98 0.1–10 0.5–5 300 10,000 Very fast 20+ Demonstration Benign
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a study by [267], these technologies are limited in some way specifically for RE. For 

example, with only 66% efficiency and the use of natural gas firings during operations, 

the amount of energy lost and the taint of fossil fuels find a CAES system lacking. A 

flywheel system is clean, renewable, and efficient but it is only capable of storing 

energy over an interval of minutes, if not seconds, the same for supercapacitors.  

2.4.3 Battery energy storage 

Usually, standalone renewable energy systems employ rechargeable batteries to store 

excess electricity [23]. A good review of battery energy storage for standalone 

renewable energy systems has been presented by [268] and 8 types of battery 

technologies for PV systems have been evaluated by [269, 270]. The characteristics of 

different battery technologies are summarized in Table 2.1. Among those batteries, the 

nickel-cadmium batteries have been employed in relatively few systems due to the 

higher cost, lower cell voltage, lower energy efficiency and limited upper operating 

temperature [271, 272]. Nickel metal hydride (NiMH) batteries also suffer from severe 

self-discharge, making them inefficient for long-term energy storage in RAPS systems, 

even though NiMH is environmentally friendly in comparison to lead-acid batteries 

due to the lack of toxic substances such as cadmium, lead or mercury. The lithium-ion 

battery appears well-suited for the intermittency of RE systems [273], while it is still 

plausible in the not-so-distant future although such batteries are predominant in the 

small portable electronics market [25]. Sodium-sulfur (NaS) batteries, with the benefit 

in higher power and energy density, have already been employed in power systems for 

more than 20 projects worldwide [274]. NaS battery has potential for microgrid RE 

systems for power regulations. However the disadvantages of its usage are high cost 

and high self-discharge per day [275] .  
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The lead-acid battery is the oldest and most mature technology used for electrical 

energy storage and is currently a front-runner for use in distributed generation 

application, particularly those with deep discharge rate and high cycling stability. 

Deep-cycle lead-acid batteries are ideal for small-scale renewable energy applications; 

these batteries can be discharged repeatedly by as much as 80% of their capacity and 

hence are suited for the RE integration applications [25, 26]. However, the lead-acid 

batteries have well-known limitations [38, 255, 259, 273, 276-279]: 

 The initial investment is high, especially for large-scale and high capacity 

systems; 

 They have a relatively low lifespan due to the intense charging/discharging in 

an RE based power system (usually 1 - 8 years). Frequent replacement imposes 

an additional financial burden. 

 They are unattractive owing to the toxic remains/wastes such as lead, which 

can cause environmental problems during shipment, installation, and 

particularly in ultimate disposal. 

 They tend to be dangerous with sulfuric acid and in the  possibility of explosion; 

 They may have maintenance and replacement difficulties in isolated and 

remote areas.  

 They have poor performance at low and high ambient temperatures 

Such factors are barriers as regards to more wide and future application. As a result, 

in recent years, effort has been put into finding alternatives.  
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2.4.4 Pumped hydro storage  

Numerous energy storage technologies are currently known about, but to date none, 

in terms of ratings, can be compared to pumped hydro storage (PHS), which has the 

characteristics of being simple, mature and well-developed [280-282].  

Hydropower is not only a renewable and sustainable energy source, but its potential 

as a flexible energy storage solution also makes it desirable to improve power supply 

quality and to support the deployment of intermittent RE sources such as wind and 

solar power. As a result, a renewed interest in PHS is globally emerging, together with 

the growing utilization of RE sources. This following section presents an overview of 

PHS, enlarging on its technological advances and challenges for RE systems.   

 

Fig. 2.7 Pumped hydroelectric storage plant 

Pumped hydro energy storage, as a leading energy storage technology, has been 

utilized for the past hundred years and was first used in Italy and Switzerland in the 

1890s [103]. It remains the most commonly used and most commercially viable 

electricity storage technology in the world, with an efficiency range of 75–85% and 

competitive costs (1500-4300 $/kW, 250-430 $/kWh) [255, 283, 284]. Reversible 
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pump-turbines and adjustable speed machines are now widely used to improve 

efficiency [180]. Due to low cost and maturity, more than 300 plants (over 127GW) 

have been installed worldwide [259], accounting for 99% of the total storage capacity, 

according to a report [285]. The basic principles of PHS are given in Chapter 1.4. 

Now PHS is generally viewed as the most promising technology to increase RE 

penetration level and provide significant flexibility in switching operations in the 

power system, particularly in small autonomous island grids [286]. Currently PHS is 

increasingly deployed in the countries with the most RE, Western Europe, U.S. and 

Japan, due to its function in energy smoothing and RE integration [80, 287]. PHS is 

proven to be an ideal option and is being applied to confirm the variability of 

renewable power sources, such as wind and solar [288]. 

The basic concept of PHS-based RE systems is that RE surplus, during periods of low 

electrical demand or high RE output, can be stored by pumping water to the upper 

reservoir, otherwise the surplus is discarded. The stored energy is then allowed to flow 

back to the lower reservoir enabling discharge of electricity through a hydro generator. 

Another possible benefit is that the pumped storage system can be integrated with the 

conventional hydroelectric plants through natural steam-flow, making good use of a 

renewable solar, wind and hydro combination also allowing RE to remain renewable. 

Therefore PHS is the ideal partner for intermittent renewable integration, especially 

for the stand-alone application. 

 The use of PHS for increasing RE penetration in medium and large power 

systems 

As indicated in the study [289], the intermittent RE supply cannot be stored on a large 

scale economically viable except for the use of pumped hydropower storage. The large 
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scale RE system is becoming increasingly popular, but stability of an electricity 

network and the utilization safety of terminal users can be greatly affected, once the 

RE share exceeds 15% [290] or 20% [291, 292]. According to [293], when medium 

time (some days) storage of energy with PHS is introduced, the acceptable penetration 

of RE in autonomous grids can reach high levels, such as from 25% to 70% on Corvo 

island [294]. 

For power system sizes beyond a few MW, PHS is proven to be the most technically 

mature and cost-effective storage solution, particularly suited for facilitating large 

scale RES integration in medium and large power systems, due to its high power and 

energy capacity [295, 296]. 

 

Fig. 2.8 Typical arrangement of Wind–PSP system [297] 

In recent years, a considerable amount has been reported in the literature regarding the 

study of large-scale PHS facility integrated with the wind or solar power systems [298-

308]. In particular, the combined use of wind and PHS in an island system has been 

the subject of substantial publications [267, 293, 295, 309-314]. These studies 
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demonstrate that PHS is the most suitable storage technology for allowing high wind 

penetration levels in medium and large autonomous power systems.  A typical 

configuration of such hybridization is shown in Fig. 2.8. The majority of those studies 

are focused on several autonomous islands of different size such as Ikaria, Kasos, 

Crete and Rhodes in Greece [311, 313, 315-323]. In addition, other countries and 

regions have been studied, for example, Croatia [324], Portugal [325], Macedonia 

[326], and the El Hierro Island in Spain [327, 328].  

These systems, in general, aim to i) explore locally available and environmentally 

friendly RE (especially wind) and increase their penetration; ii) minimize the imported 

fossil fuels consumption; iii) mitigate the power production and load demand 

imbalance and control sags in voltage and alleviate the effects of rapid swings on the 

distribution grid; iv) minimize the total cost of power production [310, 329].  

The application of PHS to facilitate RE integration can constitute attractive 

investments, while, from a system perspective, according to the literature, the 

integration of a properly sized PHS may achieve significant economic benefits of the 

hybrid power system [329-335]. At regions where the variable tariff is applied, more 

significant economic benefits may be achieved by deciding on an optimal turbine and 

pumping schedule [336]. 

 PHS for small/micro RE-based RAPS systems 

PHS is also viewed as a promising technology for small autonomous RE systems in 

remote areas [292]. According to the study [337], the potential of the PHS in a 

decentralized electricity grid is even more important if power generation capacity of 

RE is below 300 kW. 
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The PHS was introduced in the studies [40, 338] to replace the environmentally 

harmful batteries for the standalone hybrid solar-wind system. It explores a novel 

solution for the challenging task of energy storage. PHS seems more economical than 

the battery for standalone applications [254], with payback periods as low as 2.5 to 5.5 

years [339]. 

A considerable number of studies are specifically, conducted for autonomous small 

island systems using wind turbines for power generation and PHS for energy storage 

[340-349].  

A patent named solar hydroelectric power plant system (Fig. 2.9) was published in 

2009 by [350], aiming at supplying power for remote consumers (house, settlement, 

town, island). For this topic, Glasnovic and Margeta carried out a series of studies on 

the standalone hybrid solar PV and PHS system, for example [252, 280, 304, 351-358]. 

Other researchers have also examined such hybrid system [359-364].  

 

Fig. 2.9 Configuration of the proposed hybrid power plant PV-PHS [353] 
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In addition, the hybrid small solar and wind systems with PHS have been investigated 

by [40, 365-372]. A standalone desalination unit powered by such a hybrid system 

with a pumped storage unit was also investigated in detail by [373].  

 Seawater pumped storage for RE system 

Seawater pumped storage has presented great potential for the PHS based RE systems 

on remote islands. Seawater pumped-storage power plants have several advantages 

such as lower civil construction cost and lower power distribution cost due to their 

proximity to nuclear or steam turbine power plants [374, 375]. A fundamental case 

study investigating seawater PHS for offshore wind parks was presented [376], and 

the seawater PHS for regulating the export of RE to the national grid was evaluated in 

[377]. These studies indicate that seawater PHS storage is technically and 

economically feasible allowing for high penetration of intermittent RE. 

 System modeling, design, simulation and optimization 

Two significant variables for the design of pumped systems are the volume of the 

upper reservoir and the height difference between the upper and lower reservoir [259]. 

Other design parameters include the lower reservoir, the design of the penstock and 

the choice of pumps and turbines [353]. Different software has been employed for 

system simulation, such as H2RES [378], the combination of HOMER and Simulink 

[348]. 

The studies [366, 367] have established some simple models for the main components 

of a hybrid wind-solar-pumped-storage power system. PHS models specifically for 

micro RE systems have been developed by [379, 380], as have wind park and pumped 

storage station models presented by [381].   
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The algorithm designed to size the PHS units for increasing wind penetration in the 

Lesbos island has been presented in [342, 382]. In these studies [297, 314, 330, 383-

386], the numerical methodology is presented for the optimum sizing of the 

components of a pumped-storage power plant for the recovery of wind-farms rejected 

energy. The optimal design of PV/wind/pumped-storage hybrid system was achieved 

using the GA based multi-objective optimization [370] and improved PSO method 

[369]. In addition, the optimal operating strategies/policies for the joint operation and 

schedule of PHS-based RE systems have been examined by [267, 282, 297, 311, 314, 

331, 341, 373]. 

 Practical engineering projects 

Available practical applications in which PHS is used as energy storage for standalone 

RESs are extremely rare. The use of PV, WT and PHS for powering an island in 

Boston was planned in 1985 for public education and recreational use [387]. A PHS 

system was demonstrated in an 18kWp PV plant in Greece to partially replace batteries 

[360, 388, 389]. The efficiency of the water pump (6.6kW) and turbine (5.0kW) at 

their best operating point is 72% and 64%, respectively, leading to quite a low overall 

ESS efficiency, whereas significant social impacts, such as both electricity and water 

supply, were achieved. In Houay Se  of Lao PDR, a pilot research project, composed 

of a micro hydropower station (80kW), a PV system (100kWp) and 8 water pumps 

(60kW), was developed by NEDO Japan [390]. This system has operated for several 

years, demonstrating its effectiveness and success in providing a sustainable power 

supply and improving living conditions for the local residents in an isolated 

countryside. In addition, wind-solar and pumped storage supply systems were built in 

Alishan to solve electricity problem for rural areas in the west region of China [379], 
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and a demonstration system with 5kW wind turbine and 720kWp solar panel was also 

established in Siziwangqi of Inner Mongolia, China [379]. A big water pump and a 

small water pump were designed for different working conditions. A demonstration 

of the hybrid electric/hydro energy system for standalone PV applications in remote 

areas has been implemented in the laboratory at Wayne State University [361]. This 

system functions as an educational tool to teach students the concepts of different types 

of energy storage and the integration of RE and ESS. An engineering example, the 

Eagle Mountain pumped storage project [391] with 1,300MW capacity, represents a 

sustainable RE dependable solution, providing reliable and clean electricity generation.  

 Limitations  

PHS is currently the most cost effective means of storing electrical energy. The 

literature demonstrates that an immense potential exists for RE integration. However, 

some key challenges have to be overcome, to create opportunities for further 

technological improvements and the promotion of renewables:  

 Environmental issues: must also be considered during the operation of PHS to 

prevent water spillage from the reservoirs. 

 Site availability: the presence of the appropriate geography for two large 

reservoirs and pipe arrangements are a critical decision making factors. 

 Water availability: an adequate water supply should be guaranteed. As regards 

a seawater pumped storage, some technical problems should be assessed such 

as the corrosive effects and possible leakage into the ground water. 

 Technical viability: the majority of current PHS literature mainly focuses on 

the development of the technology itself, while the joint operation of RE and 

PHS realized in real applications has not been widely reported. Some 
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unknowns and technical issues remain to be solved and thus challenges are 

provided for much future research in this field. In addition, limited attention 

has been paid to system sizing optimization and techno-economic evaluation 

of PHS based RE power generation systems of a scale at a few hundred kW in 

standalone application for remote areas.  
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CHAPTER 3   SYSTEM MODELING AND 

EVALUATION METHODS 

System modeling of individual components is an important step before system design, 

simulation and optimization. In this chapter, the mathematical models for PV 

generator, wind power generation, battery energy storage, pumped hydro energy 

storage, and diesel generator are developed and described. The information of the key 

components used in this thesis is also presented. Finally the evaluation criteria for the 

hybrid systems are discussed. 

3.1 Mathematical modeling of photovoltaic system 

With the robust growth of solar PV applications, accurate prediction of the power 

production of solar PV systems becomes an essential topic of research. The designers 

require a reliable tool to predict PV module energy production under real conditions 

and also to make a sound decision on selection of different PV modules. Engineers 

also need an accurate tool to simulate the power output from a PV plant under real 

operating conditions for evaluating the system’s energy performance. However, PV 

module specifications from the manufacturer cannot determine the power production 

in real conditions, since the specifications are only obtained at standard test conditions 

(STC): incident sunlight of 1000 W/m², a cell temperature of 25°C and an air mass of 

1.5. An accurate and reliable solar PV power prediction model for other general 

conditions, therefore, is urgently needed [65, 66].  
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The electrical behavior of a PV device is characterized by its current-voltage (I-V) 

curve. In this section, a novel theoretical model, offering a good compromise between 

accuracy and simplicity, is developed in Matlab for determining PV module 

parameters and then fitting the model to experimental I-V curves of a PV 

module/string/array. The developed model is then solved using a combined technique 

which integrated an algebraic simultaneous calculation of the parameters at standard 

test conditions (STC) with an analytical determination of the parameters under real 

operating conditions.  

To demonstrate the feasibility of the simulation model, the parameters from the 

simulation and I-V characteristic curves were compared with those from the DeSoto 

model and other simulation software at different conditions. A series of field 

measurements were also carried out for a PV system to validate the simulation results. 

The final objective is to apply this model to predict the operational performance of PV 

modules and systems in the field, such as power production.  

3.1.1 Physical configuration of PV cell, module, string, array and plant 

As illustrated in Fig. 3.1, the basic unit of a PV system is the PV cell. Dozens of PV 

cells are interconnected in series to form the cell series string. A group of one or more 

series strings is then encapsulated to produce a PV module. The modules are connected 

in series to increase the system voltage and form a module string. A PV array is then 

made up of a number of module strings connected in parallel, to increase the current 

of the array. The array links to a solar inverter which transforms the DC power 

produced by the PV array to the AC for load consumption and connection to a power 

grid. Generally, a PV plant is composed of a single or a number of PV arrays. 
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Fig. 3.1 Physical configuration of a photovoltaic cell (a), a cell series string (b), a 

module (c) and a PV array (d) 

3.1.2 Simulation model and determination method developed in this study 

 Simulation model development 

A solar cell is traditionally represented by an equivalent circuit composed of a current 

source, a diode (D), a shunt/parallel resistance (Rp) and a series resistance (Rs). As 

shown in Fig. 3.2, available electrical power from the solar cell is modeled using this 

well-known five-parameter model. 

DI pI

I

V

phI

pR

sR 


 

Fig. 3.2 Equivalent circuit for a solar cell (five-parameter model) 
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The PV generator is neither a constant voltage source nor a current source. It is 

modeled and described by the relationship between current and voltage. Based on the 

Shockley diode equation, the mathematical model (I-V characteristic) for an 

individual PV cell is as follows [97, 100, 106, 392]: 

 
0 ( 1)

s

t

V IR

V s
ph D p ph

p

V IR
I I I I I I e

R




        (3.1) 

where phI  is the photo current (A); 0I is the diode saturation current (A); sR is the 

series resistance ( ); pR is the shunt/parallel resistance ( ); t

nKT
V

q
 is the diode 

thermal voltage; n is the diode ideality factor; q is the charge of the electron (1.602E-

19 Coulomb); K is the Bolzmann's constant (1.381 E-23 J/K) and T is the temperature 

of the solar cell (K). Eq. (3.1) presents a solar cell as a nonlinear power source. 

Determination of an analytical solution of an implicit equation is a difficult and 

challenging work. Therefore, its numerical solution is employed in the present study.  

This equivalent circuit is not only used for an individual solar cell, but also for a PV 

module with many cells, or for an array/string including dozens of modules. Therefore, 

the mathematical model for a PV module’s power output could be deduced: 
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where
sN represents the number of series connected cells in each module. Based on the 

PV module mathematical model, the output current 
AI and output voltage 

AV of a PV 

array with 
AN  cells in series and pN  strings in parallel can be found. 
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This equation can be expanded to any number of solar cells in series (
AN ), and thus is 

not restricted to one module. Therefore, for the array with 
MN  modules connected in 

series and 
sN  cells in series for each module, the 

AN , in the above equation, becomes

M sN N .  

From above analysis, the PV cell/module/array mathematical models are very similar. 

These models could be directly developed in Matlab/Simulink and other 

electromagnetic transient simulation programs, and enabling the I-V curve or P-V 

curve can be obtained.  

Table 3.1 The key specifications of the Shell Solar SQ175-PC PV module 

Characteristics Value 

Open - Circuit Voltage (Voc) 44.6V 

Optimum Operating Voltage (Vmp) 35.4V 

Short - Circuit Current (Isc) 5.43A 

Optimum Operating Current (Imp) 4.95A 

Maximum Power at STC (Pmax) 175Wp 

number of cell connected in series 72 

Temperature coefficient of Isc (alpha) 0.8mA/℃ 

Temperature coefficient of Voc (beta) -145mV/℃ 

Temperature coefficient of Pmpp 

(gamma) 

-0.43%/℃ 

 

The PV module from Shell Solar is used as a sample in the present study. The key 

parameters for the three characteristic points: short circuit (0, Isc), maximum power 

point (MPP) (Vm, Im), and open circuit (Voc, 0) and other operating temperature 



 

53 

 

coefficients are summarized in Table 3.1. These parameters can be easily found in the 

specification datasheet from the manufacturer. 

 Parameters determination and calculation procedure 

In Eq.(3.3), a total of five unknown parameters are determined: phI , 
0I , 

tV , 
sR  and 

pR . The objective of this research is to solve the five parameters through the product’s 

datasheet provided by its manufacturer. To find the five parameters, at least five 

equations are needed. Equations which are generally based on the three characteristic 

points under STC are used for parameter determination.  
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Fig. 3.3 The relationship between I-V curve, Rs and Rp 

(1) For an open circuit under the STC, i.e. 0I  and ocV V , 

 
00 ( 1)

oc

s t

V

pN V oc
p ph p

s p

N V
N I N I e

N R
     (3.4) 

(2) For a short-circuit under the STC, i.e. 0V  and scI I , 



 

54 

 

 
0 ( 1)

sc s

p t

I R

N V sc s
sc p ph p

p

I R
I N I N I e

R
     (3.5) 

(3) The maximum power point under STC, i.e. mI I  and mV V ,  
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(4) The derivative of the power with respect to voltage is equal to zero at the maximum 

power point shown in Fig. 3.3, that is, 
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i.e. 
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Eq. (3.3) is a transcendent equation, which needs numerical methods to express the 

current and voltage. Therefore, it is rewritten as:  

 ( , )I f I V  (3.9) 

By differentiating Eq. (3.9), the following equation can be obtained:  

 
( , ) ( , )

( , )
f I V f I V

dI df I V dI dV
I V

 
  

 
 (3.10) 

Therefore:  
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Substituting Eq. (3.11) into Eq.(3.8), we can deduce the fourth determination equation:  
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 (3.12) 

(5) At this moment four equations are available. In the five-parameter model of a solar 

cell, the resistances pR  and sR  affect the slope of the I–V characteristic, before 

and after the curve “knee”, respectively. Therefore, the fifth equation could be 

established from the derivative of the current with voltage at the short circuit point 

as shown in Fig. 3.3. This can be mainly determined by the parallel resistance pR

[66, 97, 100, 117], expressed as below:  
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Eq. (3.11) and Eq. (3.13) lead to:  
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(6) Similarly, the reciprocal of the slopes of the I–V characteristic at the open circuit 

point is equal to the serial resistance at the STC [66, 97] (Fig. 3.3). This 

relationship can also be employed as the fifth equation:   
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(7) Tian et al.[102] proposed yet another solution to develop the fifth equation based 

on the temperature coefficient of the open circuit voltage provided by the 

manufacturer. The ocV at other operating temperatures can be expressed as

0[1 ( )]oc VocV T T  . Therefore,  
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 (3.16) 

where Voc  is the temperature coefficient for ocV  and 0T  is the solar cell temperature 

under STC. By using Eq.(3.16), the temperature coefficient for ocV can be guaranteed. 

The first four equations (Eq.(3.4), (3.5), (3.6) and (3.12)) are commonly used in the 

literature. To determine the most suitable fifth equation, the results from several 

methods with different equations (Eq.(3.14), (3.15), (3.16) and their combinations) are 

compared. It was found that the method combining Eq. (3.14) and Eq. (3.16) is the 

best, as the result can simultaneously fit the module’s I-V characteristic at the short 

circuit point and voltage thermal performance. In addition, the above determination 

equations are transcendent and nonlinear, making it almost impossible to separate all 
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unknowns and solve them analytically. A numerical method is therefore employed. 

The simultaneous equations were constructed in Matlab using the nonlinear equation 

solver ‘fsolve’, embedded with ‘Levenberg-Marquardt (LM) algorithm [393]’ and 

‘Gauss-Newton’algorithm. This solver can solve the six simultaneous equations with 

five unknown parameters, with a rapid convergence. The values of the five parameters 

for a cell/module/array and its ideality factor are shown as in Table 3.2. 

Table 3.2 Calculated parameters of PV cell/module 

  Iph Io Rs Rp Vt  n (deduced from Vt) 

Cell 5.449 1.20E-09 0.010 2.725 0.028 1.086 

Module 5.449 1.20E-09 0.7 196.2 0.028 1.086 

 

 Parameter analysis under general condition 

Once the parameters under STC are determined by the simultaneous equations, the I-

V characteristics of the PV cell/module/string/array at the STC can be easily obtained. 

It is then necessary to generalize the model to other operating conditions with different 

solar irradiance and operating temperature. This section describes the temperature and 

irradiance dependence of the parameters.  

The photo current phI  can be described by: 

 0

0

( , ) [1 ( )]
scph ph I

G
I G T I T T

G
    (3.17) 

where G and 0G are the solar radiation intensities under real conditions/outdoor and 

STC, respectively;
scI is the relative temperature coefficient of the short-circuit 
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current (%/K), which represents the rate of change of the short-circuit current with 

respect to temperature (%). 

It is well known that the diode saturation current is primarily proportional to 

temperature raised to the third power [393], and the relationship is expressed as [62, 

90, 102, 394, 395] : 
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0 0( ) exp( )
gE

I T I T
nkT


  (3.18) 

where Eg is the band gap energy in eV, defined by Kim, Jeon [396] as:  
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 (3.19) 

The effect of the changing ideality factor does not have significant on the curve shape, 

and usually a higher ideality factor can slightly soften the knee of the curve. The 

present study considers the ideality factor as a constant value, following the method 

proposed in [102]. It means that the ideality factor would not change with respect to 

the operating condition. Therefore, the temperature dependence equation of the 

thermal voltage tV  is obtained from 

 ( )t t

o

T
V T V

T
  (3.20) 

The parallel/shunt resistance Rp represents the leakage current, which is lost mainly in 

the p–n interface of the diode and along the edges [90]. The study [96] and PVsyst 

software [397] reported that the sensibility of the model to the value of the shunt 

resistance is minor, in view of which a fixed Rp does not greatly affect the I-V 

characteristic. In this study, Rp is taken as inversely proportional to the solar irradiance, 
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which has been widely used in Ref. [62, 65, 66], while this assumption is opposite to 

that proposed in [102]. 
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Ref. [62, 90, 96, 137] concluded that it was convenient to assume that the Rs is 

independent of incident irradiation and temperature, which could simplify the 

calculation process and guarantee a sufficient degree of precision. Therefore, a 

constant was assumed for Rs in this study. 

PV module performance depends greatly on the solar cell operating temperature, and 

the temperature is influenced by many factors, such as solar irradiance, wind speed, 

ambient temperature [151]. The relationship between the module back-surface 

temperature and cell temperature is simplified as [151, 398]:  

 
0

c m

G
T T T

G
    (3.22) 

where Tc is the inside cell operating temperature in °C, Tm is the collected back-surface 

operating temperature of module in °C, and T is a constant temperature difference 

between the cell and the module back surface (3 °C). 

The effects of temperature and solar irradiance under general operating conditions 

have been discussed above. With the PV cell temperature in Eq. (3.22) and parameters 

obtained at STC in Table 3.2, these parameters in Eq.(3.17), (3.18), (3.20) and (3.21) 

can be substituted into Eq.(3.1), (3.2)and (3.3) to obtain the I-V characteristic curves 

of the PV cell/module/array under any general operating conditions.  
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 Simulation results from the proposed model and comparison with PVsyst, 

INSEL and DeSoto model 

The performance of the proposed PV model under general operating conditions has 

been simulated, and compared with the results from the DeSoto model, PVsyst 

software and insel software. DeSoto model presented by DeSoto et al. is a 5-parameter 

PV model [62], which was developed by the Wisconsin Solar Energy Laboratory 

(SEL). This model is widely used to accurately predict the performance of cSi modules. 

PVsyst [397] is an analysis software for the PV system developed by the University 

of Geneva in Switzerland. It also employs the one-diode equivalent circuit model to 

calculate the performance of cSi modules. The basic parameters of the studied PV 

module can be found in the software database. The insel software [399] from 

Doppelintegral GmbH in Germany is a PV system analysis program, and the 

characteristics of the studied module can be output directly from the software using 

the two-diode model.  

Table 3.3 Summary of parameter results 

Methods Iph Io Rs Rp Vt  n 
α_Isc 

(mA) 

β_Voc 

(mV) 

γ_Pmpp 

(%) 

Proposed model 

(present study)  
5.449 1.20E-09 0.70 196.20 0.028 1.086 0.797 -145.3 -0.431 

DeSoto model 5.457 4.67E-11 0.81 163.3 0.024 0.948 0.796 -145.2 -0.430 

PVsyst software  5.43 2.00E-09 0.65 180 0.029 1.110 0.800 -144.7 -0.430 

insel software 5.43 - 0.71 171.06 - - 1.412 -144.95 - 

 

The results from the four tools are summarized in Table 3.3. The insel software uses 

the two-diode model for the studied PV module (SQ175-PC), and thus it has two 

values for ‘Io’ and ‘n’, but they could not be extracted directly from the software.  
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As can be seen from Fig. 3.3, the value of Rs mainly affects the slope of the I-V curve 

at Voc. Table 3.3 indicates that the calculated Rs values from the simulation model in 

Matlab, Desoto model, PVsyst and insel software are similar. The small difference 

would not significantly influence the curves. The graphics for the I-V and P-V curves 

in the following section will vividly show the discrepancy. Table 3.3 also reveals that 

all the methods can have similar Rp values. With the exception of the temperature 

coefficient of the Isc from the insel software, all the methods can meet the thermal 

performance (
scI ,

ocV ,
mppP ) well. These properties will determine the Isc and Voc 

values under different operating temperatures. However, the ideality factor from the 

DeSoto model is less than 1. With a reasonable range (usually from 1 to 2), the ideality 

factor value determines the knee of the I-V curve near the maximum power point.  
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Fig. 3.4 I-V curves and P-V curves under different solar radiation levels (cell 

temperature=25ºC) 

It is well acknowledged that two factors strongly affect the PV module performance: 

the cell temperature and the solar irradiance. Therefore, after obtaining the parameters 

in Table 3.3, the I-V characteristic curve under various irradiances and temperatures 

has been studied. Fig. 3.4 presents the I-V curves and P-V curves for solar radiation 

ranging from 200W/m2 to 1000W/m2 with the cell temperature at 25ºC.  It can be seen 
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that the proposed model in the present study can agree well with Desoto model for the 

whole solar radiation range. However, discrepancy can be found from PVsyst model 

and INSEL model at the low solar radiation level, but it is not significant. 

The I-V curves and P-V curves under different PV cell temperatures with irradiance 

1000W/m2 are illustrated in Fig. 3.5. This figure presents good agreement between the 

results from this proposed model and that from the DeSoto model and PVsyst software, 

especially at the three characteristic points. A relatively small deviation exists for the 

INSEL model due to the larger temperature coefficient of Isc. The graphic results show 

that the simulation curves from the proposed model exactly match that from the 

DeSoto model and PVsyst software, particularly around the maximum power point. It 

demonstrates that the simulation model is reliable and feasible, and therefore it could 

be used to characterize the operating performance for general purpose in the future. 
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Fig. 3.5 I-V curves and P-V curves under different PV cell temperature levels 

(irradiance=1000W/m2) 
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3.1.3 Model validation through field measurements 

 Experimental system  

In this study, a series of outdoor measurements on a grid-connected PV system was 

carried out to validate the simulation results from the proposed model under different 

solar irradiance and temperature conditions.  

PV array

Data logger

Sensor unit 

of MP170

MP170 main unit

Pyranometer

T-type thermocouples

Subarray 

combiner box

Laptop

 

Fig. 3.6 Field measurement instruments and test rig of the 22kWp PV system 

A portable I-V checker MP170 from EKO was employed to measure the I-V curves 

of the PV module/string/array. To prevent the MP170 main unit from heat generating 

internally, the test interval is set at 1 minute. An overview of the test system is shown 

in Fig. 3.6. The output of the PV module/string/array was directly measured from the 

junction box attached on the back side of the module or from the subarray combiner 

box. To guarantee a high degree of accuracy, an external high-precision pyranometer 

from EKO (model: MS802; resolution: 5μV), instead of the integrated small one, was 

used to measure solar radiation intensity. This method is also suggested by the 
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manufacturer for high quality measurement. The ambient and module back 

temperatures were recorded by several T-type thermocouples. All these environmental 

data was simultaneously transferred to a data logger and the sensor unit of MP170.  

This PV system (22kWp) located on a rooftop on the university campus, facing south 

with a tilt from the horizontal of 22.5°. It consists of 7 sub-arrays. Every array consists 

of 2 parallel strings with 9 PV modules linked in series. Therefore, the rated power of 

each array is 3150Wp.The system’s schematic diagram and tested items are illustrated 

in Fig. 3.7. Four adjacent PV modules (M1, M2, M3 and M4) were studied to better 

enable the comparison of the performance of a single module. In addition, one PV 

string (S1) and three PV sub arrays (A1, A2, A3) are tested.  
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Fig. 3.7 PV system configuration and test items including PV modules (M1, M2, 

M3, M4), strings (S1, S2, S3) and arrays (A1, A2, A3) 

 Determination of the derating factor and modified module specification 

Firstly, the model using the specifications issued by the manufacturer were used to 

simulate the I-V curve of the PV module at 12:46 on 22nd Dec 2012 with solar radiation 

of 820W/m2and ambient temperature of 23.3 ºC. It was observed that an obvious 

discrepancy existed between the measured and simulated curve (Fig. 3.8), indicating 

that the model may not be able to accurately predict the performance of the PV system 
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under real conditions. A similar conclusion can also be found in the literature [102, 

400]. This phenomenon may result from many factors, collectively referred to as an 

as derating factor [401]. Dust is the most significant contributory factor because this 

PV system was sited in a heavy traffic area, and one which is also related to seasonal 

change. An additional consideration is the weathering of the PV modules because this 

system has been in operation for more than 8 years. Additionally other derating factors 

should be taken into account, such as the degradation of manufacturer's nameplate 

rating when exposed to sunlight in a real operation, the losses in DC wiring, voltage 

drop due to block diodes and shading by nearby structures. The I-V characteristics 

also vary slightly, from module-to-module.  
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Fig. 3.8 The measured and calculated I-V curves of PV module M1 

To find a specific derating factor for this PV system, a detailed analysis was performed 

based on the 59 reference I-V curves of the module M1 with irradiance ranging from 

200 to 900 W/m2 and temperature from 22° to 50 °C. Since the experimental 

measurements have been achieved at different temperatures and solar irradiances, it is 
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necessary to translate both curves to STC conditions [402]. By complying with the 

IEC 60891 Standard, each current-voltage pair on the measured I-V curve was 

converted to a corresponding pair under STC. Therefore, the updated module’s 

electrical specifications were obtained from a subsequent translation. The distribution 

of the converted specifications is presented in Fig. 3.9. It can be seen that the average 

Isc at STC is 5.16A, smaller than the manufacturer’s nameplate data of 5.43A, and 

thus, derating ratio of 5% was taken into account for Isc. The determination procedure 

for Voc, Im and Vm derating factors is similar to that for Isc. The derating factors and 

corrected values for the characteristic points are summarized in Table 3.4. 

 

Fig. 3.9 Distribution of the converted Isc, Im, Voc and Vm values to STC on 21stDec 

2012 

Based on the corrected specifications in Table 3.4, the parameters for the new 

simulation model in this study were recalculated (Table 3.5) and taken as a 

representative for all the modules in the system. A sample with derating factor and 

modified specification is presented in Fig. 3.8, which reveals that the predicted curve 

Isc Im

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

C
u

rr
e

n
t 
(A

)

Voc Vm

32

34

36

38

40

42

44

46

V
o

lt
a

g
e

 (
V

)



 

67 

 

from the model, with modified values, is much more accurate than that with the 

manufacturer issued data. 

Table 3.4 Comparisons between specifications under STC and corrected values with 

derating factor 

 Manufacturer value at STC Derating 

factor 

Corrected value at STC 

Isc 5.43 5% 5.16 

Voc 44.6 2% 43.7 

Im 4.95 5% 4.7 

Vm 35.4 5% 33.6 

Pmpp 175 10% 158 

 

Table 3.5 Calculated parameter values with corrected values for PV cell/module 

model 

  Iph Io Rs Rp Vt  n (deduced from Vt) 

Cell  5.182 1.43E -09 0.0136 3.14 0.0276 1.075 

Module 5.182 1.43E -09 0.98 226.3 0.0276 1.075 

 

 PV model validation  

To validate the new simulation model, comparisons between the field measurements 

and the calculated results were carried out for three cases: (1) one single PV module; 

(2) PV string with 9 modules connected in series; (3) PV array configured with 9 

modules in series and 2 strings in parallel. All these measured items are shown in Fig. 

3.7.  
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3.1.3.3.1 Case I: one single module  
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Fig. 3.10 Comparison between measured and calculated I-V curves, P-V curves and 

MPPs of PV module #M1 

The PV module M1, taken as an example, was employed to validate the modeling 

results for a single PV module. Fig. 3.10 presents the I-V curves and P-V curves for 

four different operating conditions with solar radiation from 235W/m2 to 870W/m2. It 

can be seen that the measured curve (red dashed line) and predicted curve from the 

modified model (black solid line) are consistent. Slight difference was observed only 

in #1 curve.  

The environmental conditions, the three collected and simulated characteristic points, 

deviations, as well as the time and date of each experiment, are summarized in Table 

3.6. Fig. 3.10 and Table 3.6 highlight that the characteristic points from the simulation 

model are very close to the collected data. 
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Table 3.6 The characteristic points (Isc, Voc and Pmmp) comparisons between PV 

module #M1’s measured data and calculated data 

Test 

No. 

Time & 

date 

Solar 

radiation 

(W/m2)  

Module 

temp. 

(ºC) 

Amb. 

temp 

(ºC) 

Isc (A) Voc (V) Pmpp (W) 

Meas. Cal. Devi. Meas. Cal. Devi. Meas. Cal. Devi. 

#1 
10:26, 23 

Dec 2012 
870 39 20 4.49 4.49 0.0% 41.22 41.39 0.4% 130.72 131.75 0.8% 

#2 
10:08, 22 

Dec 2012 
645 47 24 3.34 3.34 0.1% 39.42 39.58 0.4% 93.83 93.76 -0.1% 

#3 
15:17, 22 

Dec 2012 
446 32 23 2.31 2.31 -0.2% 40.66 40.75 0.2% 69.78 69.64 -0.2% 

#4 
16:16, 22 

Dec 2012 
235 27 20 1.21 1.22 0.9% 40.34 40.33 0.0% 36.85 37.36 1.4% 

 

As stated above, the modified model is only based on the preliminary measurements 

of the model M1. To validate the model for other modules, the I-V curves of other 

modules M1, M2, M3 and M4 were measured and compared with the calculated curve 

at the solar radiation of 840W/m2 (Fig. 3.11). It was found that the predicted curve and 

all the measured curves have a high degree of consistency at the short circuit point. 

Slight difference can be detected in the curve of M2, especially at the open circuit and 

maximum power points. This phenomenon may result from a different Voc derating 

factor and specific Voc temperature coefficient for M2, since these parameters can 

vary slightly from module to module. 
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Fig. 3.11 I-V curves and MPP comparison of the four PV modules  

3.1.3.3.2 Case II: PV string (S1)  
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Fig. 3.12 Comparison between measured and calculated I-V curves, P-V curves and 

MPPs of PV string #S1 

The above second case focuses on the PV string model validation. As revealed in Fig. 

3.12, the proposed model, as expected, demonstrates a good agreement with the 

measured data both in current and power curves. The difference between the simulated 
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Pmpp (1118.6W) and collected Pmpp (1116.8W) is smaller than 0.5%.The practically 

null errors for the characteristic points demonstrate that the proposed model is indeed 

superior. 

3.1.3.3.3 Case III: PV array (A1, A2, A3)  

Finally, three PV subarrays A1, A2 and A3 were studied for array model validation. 

Once again, the A1 and A2 simulation results presented in Fig. 3.13 match well with 

the measured data. The difference existing in A3 possibly results from slight shading 

from PV string S1 at that time or other defects (such as hotspots) in A3. It is of note 

that the discrepancy between the maximum power point of three arrays and simulation 

data is particularly small.   
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Fig. 3.13 Comparison between measured and calculated I-V curves, P-V curves and 

MPPs of PV array #A1, # A2, #A3 

From the figures above (Fig. 3.10–Fig. 3.13), all the measured curves and the predicted 

curves from the module/string/array model with derating factor are fundamentally 

similar under different operating conditions. In addition, some defects or mismatch in 
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the existing systems can be detected by using the developed model. The perfect 

agreement between the calculated and measured results, both in the I-V curves and 

characteristic points, well demonstrates the reliability and accuracy of the model.  

3.1.4 Solar PV system modeling and performance evaluation 

The proposed model and determination method was further implemented in a case 

study on a standalone PV system (19.8kW) located on a remote island (22.3°N, 

114.2°E) in Hong Kong [16, 254, 403]. There are two subarrays. PV array #1 consists 

of three parallel strings (#A, #B and #C) with 17 PV modules connected in series, and 

all modules are connected to one PV inverter. The subarray #2 is similarly configured 

as 16×3 and connected to the other inverter. This PV plant, therefore, in total, contains 

99 polycrystalline modules. The key specification of the module (model: STP200-

18/Ub-1) provided by the manufacturer is presented in Table 3.7.  

Table 3.7 The key specifications of the Suntech STP200-18/Ub-1 PV panel 

Characteristics Value 

Open - Circuit Voltage (Voc)  33.4V  

Voltage at maximum power point (Vmp)  26.2V  

Short - Circuit Current (Isc)  8.12A  

Current at maximum power point (Imp)  7.63A  

Maximum Power at STC (Pmax)  200Wp 

Number of cells connected in series 54 

Temperature coefficient of Voc -(0.34±0.01)%/℃ 

Temperature coefficient of Isc -(0.055±0.01)%/℃ 
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In this PV system, the long-term environmental data and the operating performance 

data such as instantaneous power output have been continuously recorded by a data 

collection system at intervals of five minutes since the commissioning of the system. 

 Simulation results and validation with field collected data 

The simulation results from the Matlab model were compared with those from the 

DeSoto model, PVsyst software and insel software under a wide range of cell 

temperatures and solar radiation levels. Fig. 3.14 presents the I-V and P-V curves for 

solar radiation ranging from 200W/m2 to 1000W/m2 when the cell temperature is 25ºC.  

Only a slight difference between the DeSoto model results and those of the other 

models can be found in the knee of the curves. This may be the result of the ideality 

factor being less than one. Other curves have good agreement. Fig. 3.15 illustrates the 

studied module’s I-V curves and P-V curves under different cell temperatures 

(irradiance=1000W/m2). Similarly, the curves from this proposed simulation model 

agree well with those from the PVsyst software and the insel software, and only a 

small difference was observed between it and the DeSoto mode results.  

 

Fig. 3.14 PV module’s I-V curves and P-V curves under different solar radiation 

intensity (Tc=25ºC) 
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Fig. 3.15 PV module’s I-V curves and P-V curves under different PV cell 

temperature (irradiance=1000W/m2) 

The graphic results illustrate that the simulation model results of this study agree well 

with those from other software models, thus validating the simulation model enabling 

it to be used further for PV performance prediction in Section 3.1.4.4.  

The accuracy of this model and determination method was further verified by 

comparing calculated I-V curves from the simulation model with field collected I-V 

curves for the six PV strings, measured on 29th December 2010. The data was collected 

by the portable I-V checker MP170 from EKO, which can measure specifically the 

onsite I-V curves of a PV module/string/array.   

Using the PV string A (PV array #1) results as an example, Fig. 3.16 shows that the 

simulated curves coincide well with the experimental results. The relative errors of the 

Pmpp are smaller than ±1%. Fig. 3.17 illustrates the simulation and onsite 

measurement results for the PV string F (PV array #2). The field collected curve shows 

that this PV string did not function well because an obvious inflection point can be 

seen around the maximum power point (MPP). Similar features were observed in other 

measurements relating to the PV string F. The inflection points on the PV string F 

measured curves indicate that the string may have defects or else is shaded.  
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Fig. 3.16 Measurement and simulation results of PV module string A  

 

Fig. 3.17 Measurement and simulation results of PV module string F  

 PV array power output prediction 

The I-V and P-V curves for any general set of weather conditions can be predicted 

accurately, and the maximum power output estimated using the developed model. 

Real-time power generated by the two PV arrays was recorded by the existing PV 

system. To compare the predicted power with the measured power of the PV arrays, 

three typical cases, i.e. sunny days, semi-cloudy days and cloudy days, were 

investigated. The cases had different amounts of average daily solar irradiation from 

6:00 to 18:00. For each case, the simulation model was verified by selecting one 
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sample day with at least 120 datasets. Detailed information for the three examples is 

given in Table 3.8. 

Table 3.8 The weather conditions of the three cases 

Data type  Date 

Irradiance 

(W/m2) 

Ambient 

temperature (oC) 

Module 

temperature (oC) 

Max. Ave. Max. Ave. Max. Ave. 

Case 1: sunny day 12th Oct 2010 963 599 31.9 29.6 55.8 46.7 

Case 2: semi-cloudy day 12th Feb 2012 930 224 21.2 14.3 37.4 27.0 

Case 3: cloudy day 16th May 2011 509 148 27.7 24.6 40.6 33.7 

 

3.1.4.2.1 Sunny day  
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Fig. 3.18 Predicted and measured power-output profile of PV array #1 on 12th Oct 

2010 (sunny day) 

In the case of the sunny day, 12th October, 2010, the daily average solar irradiation 

was about 599 W/m2, peaking at 963 W/m2 at 12:00 (Table 3.8). The predicted and 

measured power outputs of the PV array #1 on that day are illustrated in Fig. 3.18. The 
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predicted power-output curve followed the measured values trend reasonably well. 

Relationships with solar radiation are also presented. In the morning, the simulated 

and measured power output increases gradually coinciding with the irradiance 

intensity. However, an obvious gap between the irradiance and power profiles can be 

seen around the solar noon. Such a difference is mainly caused by the high PV cell 

temperature. In the afternoon, the cell temperature decreases with solar radiation, and 

thereafter the effect of temperature on power reduction is not so obvious, thus the 

predicted power and measured power outputs are both close to the irradiance profile. 

3.1.4.2.2 Semi-cloudy day 
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Fig. 3.19 Predicted and measured power-output profiles of PV array #1 on 12th Feb 

2012 (semi-cloudy day) 

The second case concerned a semi-cloudy day. On that sample day, the solar radiation 

fluctuated greatly from 0 to 930 W/m2, averaging at 224 W/m2 (Fig. 3.19). Similarly, 

the modeled power-output curve is seen to match well with the measured data. Some 

differences are found at some peak points, which may be caused by the solar radiation 

sensor measurement error because of the rapid variation. The effect of the cell 
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temperature on PV array performance is not significant since the average module 

temperature was only 27 ºC, very close to the standard test condition. 

3.1.4.2.3 Cloudy day 

The measured data on 16th May, 2011, was selected to validate the simulation result 

for an extremely cloudy day (Fig. 3.20). It is also found that the predicted and 

measured data show consistent agreement throughout the day, demonstrating high 

accuracy for this simulation model, even under low irradiance levels. On that day, the 

simulation model slightly overestimated the actual current values, which may 

represent PV panel deterioration because of aging, soiling and other factors.  
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Fig. 3.20 Predicted and measured power-output profiles of PV array #1 on 16th May 

2011 (cloudy day)  

3.1.4.2.4 Performance indicators of the simulation model 

To quantify the performance/accuracy of the proposed model, the coefficient of 

determination R2 was employed in this study to measure how well a simulation model 

follows variations in onsite collected data. This indicator has been used in publications 
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[90, 151, 404] as a statistical tool to evaluate the simulation performance of power or 

current predictions. The coefficient of determination is expressed as: 
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where iy is the field measured/observed data, if is the associated modeled/predicted 

data, and y  is the arithmetic mean of the field data, i.e. 
1

1 n

i

i

y y
n 

  .  

As presented in Table 3.9, the R2 values of the arrays #1 and #2 for three weather 

conditions are quite high, ranging from 0.992 to 0.998. These calculated R2 values are 

much higher than those seen in the literature [404]. A strong correlation, therefore, 

exists between the predicted and measured data, demonstrating the superior 

performance of the simulation model for general weather conditions. 

Table 3.9 performance statistic of the proposed model 

Data type 

R2 RMSD (%) MBE (%) 

Array #1 Array #2 Array #1 Array #2 Array #1 Array #2 

Case 1: sunny day 0.992 0.997 0.07 0.04 -0.02 -0.002 

Case 2: semi-cloudy day 0.998 0.998 0.10 0.10 0.03 0.04 

Case 3: cloudy day 0.997 0.993 0.26 0.29 0.03 0.06 

 

The simulation performance was also evaluated by calculating the root mean square 

error (RMSE) which measures nonsystematic error, and the mean bias error (MBE) 

which measures systematic error. These two indicators are widely employed in the 



 

80 

 

literature [125, 151, 405]. They are nondimensional (error/power) and expressed as a 

percentage (%) value. The parameters are defined as:  
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where the field measured data iy  is considered to be the ‘real value’, and the model 

predicted data if   to be the ‘calculated values’.  

Table 3.9 shows that both the RMSE and the MBE values for PV arrays #1 and #2 are 

very low, indicating very good agreement between predicted and measured power 

outputs. These performance indicators demonstrate that the proposed model is not only 

suitable for I-V characteristics modeling but also for any general purpose power 

prediction.  

 Energy production prediction 

Table 3.10 Measured and predicted energy production on the three example days 

Data type 

PV array #1 PV array #2 

Measured 

energy 

(kWh/day) 

Predicted 

energy 

(kWh/day) 

Error 

(%) 

Measured 

energy 

(kWh/day) 

Predicted 

energy 

(kWh/day) 

Error 

(%) 

Case 1: Sunny day 61.22 59.91 -2.14 56.45 56.38 -0.11 

Case 2: semi-cloudy day 36.46 36.19 -0.76 33.58 34.06 1.43 

Case 3: cloudy day 15.36 15.87 3.32 14.26 14.94 4.76 
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The measured and predicted energy production from PV arrays #1 and #2 is illustrated 

in Table 3.10. The differences between them are within 5% for three weather 

conditions, indicating the proposed model can estimate PV system energy production 

accurately. 

 Performance evaluation of the PV system using this model 

The operating performance of a PV system was simple to evaluate, with the aid of the 

validated simulation model. The potential power output was predicted using the model 

and compared with that from the measured data, and some possible reasons for the 

obvious differences were then examined.  
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Fig. 3.21 Predicted and measured power-output of PV array #1 on 30th May 2011 

with SOC and charging voltage profile  

For this standalone PV plant located on a remote island, the excess power from the PV 

arrays after servicing the load should be delivered to the batteries. However, the 

battery charging rate is usually limited by two major factors, the state-of-charge (SOC) 

and the floating charging voltage (or the terminal voltage) [406]. When either the 
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charging voltage or the SOC are greater than their upper limits, the battery bank and 

the control centre take self-protection actions, and the PV arrays will be partially or 

totally shut off or disconnected from the load and the battery bank, to protect the PV 

arrays, battery bank and the electrical appliances on the load side.    

The measured and predicted power-output profiles of the PV array #1 on 30th May 

2011, used as an example to explore the reasons for PV array power reduction, are 

presented in Fig. 3.21. At the beginning of that day, the measured and calculated power 

outputs have a close relationship with the solar radiation fluctuation, while the 

measured power dropped suddenly at almost 14:00 in the afternoon. Thereafter an 

obvious difference between the measured and calculated power outputs can be 

observed until about 16:30. The irradiance profile and predicted power curve, however, 

indicate that the PV array has the potential to generate more power. This figure reveals 

that the PV arrays were partially shut off and disconnected from the load and battery 

bank. The possible reasons for this can be gauged by using the curves of the battery 

bank SOC and the charging voltage. The reduction in PV array power generation 

between 14:00 and 15:30 was possibly due to the high battery bank charging voltage 

being greater than the upper limit of 56.4V (2.35V for each battery cell). The 

continuous decrease in PV power from 15:30 to 16:30 results from the fully charged 

battery bank, with the SOC reaching 100%. 

This is just one example to show how power reduction of the PV generator can be due 

to a fully charged battery storage system. In fact, many days, mostly during the 

afternoons of sunny days, have the potential to generate much more power, but the PV 

array output is partially or even totally cut off from the inverter. Theoretically,  

sufficient storage capacity can help to achieve  higher PV power output ratios in the 

standalone system [403]. In addition, the training of local residents in the  better 
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utilization of the energy supplied by the PV array and battery bank, based on the  

weather and the energy stored in the battery bank (i.e. SOC), could  contribute to 

improving the mismatch between power production and consumption.  

3.2 Mathematical modeling of wind energy system 

3.2.1 Power output characteristics of a wind turbine 

Due to differences in the power curve characteristics, different types of wind turbines 

(WTs) may output different power, even though they have the same rated power and 

are installed on the same site. Therefore, the model used to describe the performance 

of WTs should be different. After a comprehensive Literature Review, it was found 

that the following equation was commonly used to describe the power output of a WT, 

if its power curve was not available (Eq.(3.26)): 
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 (3.26) 

where
RP is the rated electrical power; 

cv  is the cut-in wind speed (the wind speed at 

which the turbine starts to generate usable power); 
Rv  is the rated wind speed; 

Fv  is 

the cut-off wind speed (the speed at which the turbine hits the limit of its alternator 

and can no longer generate more power if further increases in wind speed); k  is the 

Weibull shape parameter. 

However, for the wind turbine Proven 11(also known as KW6) used in this study, the 

power output is calculated based on its specific power output curve, or so called 
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performance characteristic curve, provided by the WT manufactory (Fig. 3.22). Based 

on the power curve, the power output from the wind turbine can be modeled as: 

 

13.8 9.152 2( ) ( )
4.6 3.5( ) 5.5 2.2

v v

P v e e

 

     (3.27) 

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

P
o
w

e
r 

O
u
tp

u
t 
(k

W
)

Wind Speed (m/s)  

Fig. 3.22 Wind turbine power output characteristic curve of Proven 11 

The details for the selected wind turbine are presented in Table 3.11. 

In addition to the above, several loss factors were also considered when calculating 

the specified turbine output. The losses mainly include the downtime losses (6%), 

array losses (2%), soiling losses factor (4%) and other losses (4%). Therefore, the 

overall loss factor can be calculated by the combination of these loss factors using the 

following equation:   

 1 (1 )(1 )(1 )(1 )WT downtime array soiling otherf f f f f       (3.28) 

3.2.2 The probability for WT operation 

For wind turbine of Proven 11, the cut-in wind speed is 3.5 m/s and it has no cut-off 

speed (cut-off speed is infinite), so the probability WTp (v≥3.5) can be calculated by 

Eq.(3.29): 
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c
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Table 3.11 Details of wind turbine 

Wind Turbine   

Manufactory Proven / Kingspan Renewables Ltd. 

Model Proven 11 (KW6) 

Rated power 5.2 kW (1 min average at 11m/s) 

Peak power 6.1 kW 

Reference Annual Energy  8,949 kWh (5m/s, 10m hub) 

Output voltage available  48V DC /300V DC 

Cut in speed 3.5 m/s 

Cut out speed N/A (Continuous operation) 

Survival wind speed Designed to Class 1 (70m/s) 

Hub/Tower heights 9m / 11.6m / 15m / 20m 

Capital cost per unit $ 20,000 

Replacement cost per unit $ 20,000 

O&M cost per unit $ 500/year 

Lifetime 20 years 

 

3.3 Mathematical modeling of battery energy storage 

The conventional battery energy storage technology, particularly the deep cycle lead-

acid battery is widely used in off-grid RE systems. The battery from Hoppecke is 

employed in this thesis for the study of battery based RE systems (Chapter 5). The 

details are shown in Table 3.12.   
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Table 3.12 Details of the selected battery 

Manufactory Hoppecke 

Nominal capacity  3000 Ah 

Nominal voltage  2 V 

Roundtrip efficiency 86% 

Maximum depth of discharge 70% 

Lifetime throughput 10,196 kWh 

Capital cost per unit $ 1,644 

O&M cost per unit $ 10/year 

 

The sizing approach to initially determine the required number of batteries is shown 

below: 
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where dayn  is the number of autonomous days powered solely by the battery storage 

bank; loadE  is the daily energy consumption; c day loadE n E   is the summary of energy 

demand for the continuous number of autonomous days; 
B  is the overall battery and 

inverter efficiency; BV is the battery rated voltage; DOD is the allowable depth of 
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discharge; sin gleC is the storage capacity of a single battery; batteryn  is the total number 

of batteries; and stringn  is the string number. 

The kinetic battery model [407, 408] was used to find the maximum allowable 

charging and discharging rates. This model treats the battery as a “two tank” system. 

One tank, part of the battery’s energy storage capacity, provides immediately available 

energy while the second is chemically bound which can only be charged or discharged 

at a limited rate. In addition, an optional control parameter called the set-point state of 

charge (SOC) was applied in this study. When a set-point SOC is applied, the RE will 

continue charging the battery bank until it reaches the specified SOC. Otherwise, the 

battery bank will start discharging as soon as it can supply the load. The set-point SOC 

helps avoiding situations where the battery experiences shallow charge-discharge 

cycles close to its minimum SOC. In real systems, such situations are harmful to 

battery life. Based on the cycles-to-failure curve in Fig. 3.23, the lifetime throughput, 

the amount of ey that can cycle through the battery before failure, can be calculated 

using the following equation: 

 max

1000

Bq V
Q f d    (3.33) 

where Q is the lifetime throughput of a single battery (kWh), f is the number of 

cycles to failure, d the depth of discharge (%), maxq is the maximum capacity of the 

battery (Ah) and 
BV is the nominal voltage of the battery (V).  

To evaluate the life of battery banks, two independent limitations, the battery cycle 

life cycleY  and the battery float life floatY , were investigated and the minimum value 

chosen as the real battery bank lifetime[54]. 
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Fig. 3.23 Lifetime cycles-to-failure and throughput of the battery 

Battery cycle life cycleY  is the length of time that the battery will last under normal 

cycles before it requires replacement. It primarily depends on the depth of discharge 

of individual cycles. During the battery lifetime, a great number of individual cycles 

may occur, including charging and discharging processes, and every discharging 

process will result in some wear down effect to the battery. In addition, the depth of 

discharge also affects the performance and lifetime of battery. Therefore the lifetime 

throughput, which considers both cycles-to-failure and depth-of-discharge, was 

employed in the present research to study the battery lifetime, expressed as: 

 
,

battery

cycle

bank annual

n Q
Y

Q


  (3.34) 

where batteryn  is the number of batteries in the battery bank, Q  the lifetime throughput 

of a single battery, and ,bank annualQ  the annual throughput (the total amount of energy 

that cycles through the battery bank in one year). 

The battery float life floatY  is the maximum length of time that the battery will last 

before it needs replacement, regardless of throughput and how much or how little it is 

used. This limitation is typically associated with the damage caused by corrosion in 
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the battery, which is strongly affected by temperature. Higher ambient temperatures 

are more conducive to corrosion, so a battery installed in warm surroundings has a 

shorter float life than one installed in air-conditioned surroundings. The float life of 

the battery in this study is 20 years. 

Considering these two lifetime limitations, the battery will die either from use or from 

old age. Battery bank lifetime is calculated according to the following equation: 

 ,min( )battery cycle floatY Y Y  (3.35) 

3.4 Mathematical modeling of pumped storage system 

Remote islands are surrounded by sea and usually without sufficient fresh water. 

Therefore the seawater PHS technology can be applied in the islands, and the sea is 

considered as the low reservoir, resulting in a reduced construction cost of PHS system. 

In this thesis, the available static head for the Town Island can be conservatively 

assumed as 80m and the sea is taken as the lower reservoir. Therefore, only the volume 

of the upper reservoir and the size of pumps and turbines should be determined. The 

pumped storage subsystem consists of a separated pump/motor unit and a 

turbine/generator unit, and they are modeled based on the law of mechanical energy 

(kinetic energy and potential energy). The water pumping coefficient (m3/kWh) and 

turbine generating coefficient (kWh/m3) are two key parameters of the pumped storage 

system. The modeling of the PHS system is presented as follows:  

3.4.1 Pump/motor unit  

In this study, the pumping station consists of a number of variable speed pumps in 

parallel operation. The pumps operate only when the available solar power exceeds 
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15% of the rated power [373]. The power source is directly supplied by the hybrid 

renewable energy generator. The flow rate of water sucked from the low reservoir can 

be expressed as Eq.(3.36). The water pumping flow rate can be considered as similar 

to the charging rate of the battery bank. 

 
( )

( )
( )

p RE p

p

f

P t
q t

g h h









 (3.36) 

where ( )RE pP t  is the charging power from the hybrid generator to the pump (W); h

is the elevating head (m); ( )f ph k q t   is the head loss in the pipes (m); g is the 

acceleration due to gravity (9.8 m/s2);  is the density of water (1000 kg/m3); p is the 

overall pumping efficiency (i.e. the product of pump and electric motor efficiency); 

and 
( )

P
p

f

C
g h h







 is the water pumping coefficient of the pump/motor unit 

(m3/kWh); 

If it is a solar pump, the overall water pumping coefficient pC can be determined as: 

 P

array

Q
C

P
  (3.37) 

where Q  is the rated volumetric flow rate of solar pump; arrayP is the required PV 

module capacity for each pump.  

If the pumping efficiency is 70%, for example, the corresponding water pumping 

coefficient is roughly calculated as 4.286m3/kWh for the elevating head of 80m 

(excluding the head loss in the pipe). 

The head loss can be determined by the Darcy-Weisbach expression: 
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2

2
f

L v
h f

D g
  (3.38) 

where f  is friction factor, which can be taken as 0.02 for a rough estimate; L is the 

length of the pipe; D is the penstock diameter, and 
2

4 ( )pq t
v

D
 is the water flow 

velocity in the pipe.  

Therefore heat losses can be written in the terms of water flow rate: 

 
2

2 5
( )

2 ( / 4)
f p

fL
h q t

g D
  (3.39) 

3.4.2 Turbine/generator unit  

In the case of energy deficits, water is drawn from the upper reservoir in order to 

operate the hydro turbines. The output power from the turbine/generator unit is: 

 ( ) ( ) ( )t t f tP t g h h q t     (3.40) 

where 
t is the overall efficiency of the turbine/generator unit (i.e. the product of 

turbine and electric generator efficiency); fh is the head loss in the pipes in the 

generating model, which has the similar expression with Eq. (3.39); ( )tq t  is the water 

volumetric flow rate input into the turbine (m3/s); ( )t t fC g h h   is the overall 

generating coefficient (kWh/m3).  

For instance, the efficiency of the micro turbine/generator unit is assumed as 75%, and 

the corresponding turbine generating coefficient is 0.123kWh/m3. Therefore the 

overall efficiency of the energy storage system is 52.5% (excluding the head loss in 

the pipe). The pump and turbine are of variable speed, which allows the exploitation 
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of small amounts of excess energy produced by the PV arrays and wind turbines, and 

also allows covering small net load by a small quantity of water, to improve the overall 

energy system efficiency.  

3.4.3 Upper reservoir (UR) 

The water quantity stored in the UR should be adequate to meet the island’s power 

demand in case of no renewable power supply for several consecutive days. The 

gravitational potential energy stored in the UR can be derived from the following 

equations: 

 c day load t URE n E V g h         (3.41) 

where
cE is the energy  storage capacity of a water reservoir (Joules); dayn is the number 

of days of autonomy; 
loadE is the daily load consumption (kWh/day); V is the volume 

or storage capacity of the water reservoir (m3).  

During the operation of the PHS system, the potential energy associated with the head 

is transformed into kinetic energy. One part of this energy is associated with the 

velocity of a mass km . The other part is the pressure, with the enthalpy given by the 

pressure P over the density of water multiplied by the remaining mass km m . 

 
21

( )
2

potential k k kinetic

P
E mgh m u m m E enthalpy


        (3.42) 

Therefore the required volume of UR can be calculated as: 

 c c
UR

t t

E E
V

g h c 
 

  
 (3.43) 



 

93 

 

Based on Eq. (3.41)and Eq.(3.43), the theoretical volume of UR is worked out to be 

109,204m3for expected 5 days of autonomy (250kWh/day). 

The total quantity of water stored in the UR at any time t  is determined by: 

 
1 1

( ) ( 1)(1 ) ( ) ( )
t t

UR UR P T
t t

Q t Q t q t dt q t dt
 

       (3.44) 

where   is the evaporation and leakage loss, similar to the self-discharge of a battery 

bank. For simplification, these losses in the above equations were neglected in this 

study.  

The water level in the UR can be considered as the state of charge (SOC) of the storage 

tank. Therefore, the SOC of the storage system is expressed as: 

 
max

( )
( ) UR

UR

Q t
SOC t

Q
  (3.45) 

In addition, the water quantity of upper reservoir is also subject to the following 

constraints: 

 
min maxUR UR UR URQ Q Q V    (3.46) 

where 
minURQ and 

maxURQ are the bottom and top limits of the UR(m3), and 
URV  is the 

volume of the UR. The minimum storage of the UR 
minURQ is usually set at zero.   

3.5 Energy balance model for generation and consumption 

The energy balance model of the hybrid renewable energy power generation system 

at time t  is expressed as: 

 [ ( ) ( ) ] ( ) ( ) ( )PV PV WT WT inv RE l RE p RE dP t f P t p P t P t P t           (3.47) 
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where 
inv is the inverter efficiency, which is the ratio of the inverter’s AC output 

power and DC input power;  
PVf is the PV derating factor, accounting for the factors 

as aging, soiling, wiring losses, shading, and so on;  
WTf is the derating factor of a WT, 

as shown in Eq. (3.28); ( )RE lP t
is the renewable energy output directly delivered to 

the load; ( )RE pP t  is the power transferred to the pumps for charging UR; and 

( )RE dP t
 is the excess/wasted energy delivered to a dump load, which exists in the 

system with wind turbines, usually in the form of resistive loads such as air heaters. 

The load demand is mainly covered by two sources, so the energy balance mode of 

load consumption is: 

 ( ) ( ) ( )l RE l tP t P t P t   (3.48) 

where ( )tP t is the power produced by turbine/generator unit. When the net load, the 

difference between the actual load and the renewable energy output, is negative or 

zero, no supplementary energy is required and thus ( )tP t is zero; when the net load is 

positive, the energy storage system will be launched and ( )tP t  will be positive.  

3.6 Other components  

3.6.1 Diesel generator (DG) 

The DG is only considered as a backup in the battery based RE systems. The diesel is 

to meet the load when RE supply is not available or is insufficient. This can reduce 

the size of the battery bank and the PV and WT installations. The details of the DG 

selected for this study is shown in Table 3.13. 
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Table 3.13 Specification of diesel generator set 

Diesel generator    

Manufactory Huali Electromechanical Co., Ltd.  

Model HL30C   

Rated Output 30kW / 37.5kVA 

Standby Output 33kW / 41kVA 

Engine Model DCEC  4BT3.9-G2  

Alternator Model STAMFORD  PI144J   (30KW)   220V 

Type OPEN   

Fuel curve intercept coefficient 0.04667 L/hour/kW rated 

Fuel curve slope 0.26267 L/hour/kW output 

Capital cost per unit (with ATS ) USD 7,911  

Replacement cost per unit (with ATS ) USD 7,911  

O&M cost per unit USD 0.033 /hour/kW 

Fuel price (pump price) USD 1.80  

Minimum load ratio 30% 

Lifetime 15,000 hours 

 

The DG usually runs under part-load conditions to cover the power difference between 

RE output and load demand. Thus diesel consumption and efficiency under partial 

load are important to system performance [34]. The fuel curve is shown in Fig. 3.24, 

based on the DG’s specification provided by manufacturer. The intercept coefficient 

of the fuel curve is calculated as 0.04667 l/h/kW rated capacity (=1.4 l/h). The slope 

of the fuel curve is 0.26267 l/h/kW output. The partial load efficiency of the DG can 

be worked out, based on its fuel curve (Fig. 3.24). DG has low efficiency at low loads, 

dropping rapidly when operating at less than 10 kW. Hence, fuel economy 

considerations indicate that the generator should be stopped under lower loads. 

Therefore, a minimum load ratio is required for the generator under LF dispatch 
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strategy. In this hybrid RE-diesel system, the minimum operating threshold was set at 

30% of rated capacity [20].  

 

Fig. 3.24 Generator fuel curve and efficiency curve  

The DG’s fixed and marginal energy cost can be calculated, based on its fuel curve. 

There are key parameters in cost-based logic to determine which dispatch strategy 

should be used. The fixed cost of energy is the cost per hour of simply running the 

generator, without producing any electricity. It is calculated: 

 & 0

replace

fixed O M fuel

C
C C F Y P

R
      (3.49) 

where 
&O MC is the O&M cost, replaceC the replacement cost, R  is the generator lifetime 

in hours, 0F  is the fuel curve intercept coefficient, Y is the capacity of the generator, 

and fuelP is the price of fuel.  

The marginal cost of energy is the additional cost per kWh of producing electricity 

from the generator. It depends on the following equation: 
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 arg 1m inal fuelC F P   (3.50) 

where 
1F  is the fuel curve slope. 

3.6.2 Converters 

The converter/inverter is a device that converts electric power from DC to AC 

(inversion) and/or from AC to DC (rectification). Rectification processes only occur 

in hybrid renewables with diesel since the diesel generator output is AC, the excess 

power may be used to charge the battery bank.  

The SMA Sunny Island 5048 is employed in this study. It can perform the above 

directional processes. The SI5048 details are given in Table 3.14. The initial cost of 

the inverter was assumed to be $4,480, which is the same as the replacement cost. 

There were no estimated operating and maintenance costs. 

Table 3.14 Details of converter SI5048 

Converter   

Manufactory SMA 

Model Sunny Island 5048 

Rated power 5 kW 

Efficiency (for both inverter and rectifier) 90% (Max.=95%) 

Nominal AC voltage (adjustable)  230 V (202 V – 253 V) 

Capital cost per unit USD 4,480  

Replacement cost per unit USD 4,480  

O&M cost per unit USD 0  

Lifetime 15 years 
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3.7 System performance evaluation methods 

Well recognized indicators are usually employed to evaluate the performance of RE 

systems in technical, economic and environmental terms [157]. The assessment 

criteria adopted in this study are briefly described as follows.  

3.7.1 Technical reliability evaluation  

One objective of system evaluation and optimization is power supply reliability. In 

this study, the system reliability is evaluated based on the loss of power supply 

probability (LPSP) index, which is defined as the total power supply failure hours 

divided by the number of sample hours over the reporting period. The LPSP is given 

by the equation below, followed by the load models in Eq.(3.48).  

 

8760

1
[( ( ) ( )) ( )]

8760

RE l t lt
hours P t P t P t

LPSP


 



 (3.51) 

This index is widely used in the literature [55, 231] to evaluate whether a system is 

able to cater for the load demand and give the time percentage when power is 

insufficient. The LPSP index not only can help to size the renewable energy generator 

(PV and wind turbine) and UR capacity, but also it can be used to assess the reliability 

of a specific system. 

Expected energy not supplied (EENS), also known as the loss quality of load power 

supply [155], is the expected energy not supplied to the load under the condition 

related to when load exceeds generation. On the basis of Eq.(3.51), the EENS in kWh 

is calculated as[409]: 
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
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where L is the average annual demand (kW), D is the duration (h) in which load is not 

meet out. 

The energy index of reliability (EIR) [155] on an hourly basis is then given by: 
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 


 (3.53) 

Another indicator, the level of autonomy (LA) [410, 411] is given as one minus the 

ratio of the number of hours during which power supply failure occurs to the total 

number of sample hours.  

 1LA LPSP   (3.54) 

In addition, the ratios of RE supplied directly to the load, to the dump load and to the 

pumped storage system are discussed in relations to the utilization performance of PV 

power generated (e.g. energy utilization rate). The final water level of UR is worked 

out as an indicator of the stored energy, and the differences between the maximum and 

minimum level of upper reservoir over the whole year studied. Finally, the system 

overall efficiency is examined.  

3.7.2 Economic cost evaluation  

Economic evaluation plays an essential role both in the simulation process and 

operating the system so as to minimize total cost, and in its optimization process, 

wherein it searches for the system configuration with the lowest cost.  

Life cycle cost (LCC) is the total cost of ownership of machinery and equipment. LCC 

analysis is the most straightforward measure of economic analysis. In the optimization 

process, a great variety of system configurations involving different amounts of 

renewable or nonrenewable energy sources could fulfill the same performance 
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requirements but differ with respect to LCC, therefore they are compared and the most 

cost-effective one chosen based on the LCC analysis results. In this study, the total net 

present cost (NPC) was employed to represent the LCC of a system. The total NPC 

condenses all the costs (positive) and revenues (negative) that occur within the project 

lifetime into one lump sum in current dollar value. The future cash flows are 

discounted back to the present value using the discount rate. Please note that all 

monetary unit appearing in this thesis is the US dollar ($) except indicated otherwise. 

The NPC includes the costs of initial investment (equipment procurement, 

transportation, and installation)occurring in year zero, the replacement cost occurring 

each time the component needs replacing at the end of its lifetime, the O&M cost 

occurring each year of a project lifetime, and miscellaneous costs such as revenues. 

The revenues include salvage value (also called residual values or disposal costs) of a 

system and/or a component that occurs at the end of the study period. It can be 

calculated by linearly depreciating its initial or replacement costs, as shown below: 

 rem
rep

comp

N
S C

N
  (3.55) 

where S  is the salvage value, repC the initial or replacement cost of the component ($),

remN is the remaining life of the component (years), and compN the lifetime of the 

component (years).  

The annual real interest rate, which is also called the real interest rate, or simply 

interest rate, is the discount rate used to convert one-time costs and annualized costs. 

It is related to the nominal interest rate by the Eq.(3.56) given below[57]. 
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where i  is the interest rate, 'i nominal interest rate, and f is the annual inflation rate.  

A nominal interest rate is 6.56% and the inflation rate is 4.5% based on the statistics 

in China, giving an annual real interest rate of 1.97% was employed in this thesis. It 

can be noted that all price information is assumed as escalating at the same rate over 

the study period. Inflation, therefore can be factored out in the economic analysis by 

using the real (inflation-adjusted) interest rate. In this way, all costs become real costs, 

meaning that they are defined in terms of constant dollars. 

The NPC can be calculated according to the Eq.(3.56) and (3.57): 

 
( , )

TAC
NPC

CRF i n
  (3.57) 

where TAC is the total annualized cost ($/year), which is sum of annualized cost of 

individual system components, ( , )CRF i n is the capital recovery factor, given by the 

equation, i is the annual real interest rate (the discount rate), and n  is the project 

lifetime (years). 
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 (3.58) 

In addition to NPC, the levelized cost of energy (COE) is also considered as a principal 

economic figure of merit for a RE system. It is the average cost per kilowatt-hour of 

useful electrical energy produced by the system, which is expressed by Eq.(3.59): 

 
Load

TAC
COE

E
  (3.59) 

where TAC  is the total annualized cost ($/year), 
LoadE is the total amount of electrical 

load that the system serves per year (kWh).  
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In Section 6.4.1, the single-objective optimization results are ranked and based on 

COE index, as it is a convenient metric to evaluate the cost effectiveness of different 

system configurations. 

3.7.3 Payback time  

The payback time (PBT) is the number of years it takes for the cumulative annualized 

RES savings, when compared to the diesel system, to become positive [412]. That 

means during that year when payback time is achieved, the sum of the RE system costs 

is equal to those of a diesel-only configuration [413]. Annual savings are expressed by 

subtracting the annualized costs of the RESs from the diesel-only system, and thus the 

overall saving can be simply expressed as:  

 
0

( ) 0
PBT

RE Diesel

j

NCF NCF


   (3.60) 

where j  is the year number, PBT is the calculated payback time (years); NCF

represents the nominal cash flow, where outflows is recorded as negative (such as the 

initial cost, fuel expenditure, equipment replacements, or O&M) and inflows are 

positive such as equipment salvage values.  

It is evident that the shorter the PBT, the better the investment. This is a criterion 

which values availability more than profitability.  

3.7.4 Environmental effect evaluation 

Also examined are the pollutant emissions and the subsequent environmental effect. 

This study assumed no cost penalty associated with pollutants (as these data cannot be 

collected as virtually no penalties are imposed in Hong Kong). The pollutant emission 
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factors in diesel power generation are summarized in Table 3.15 [408]. Therefore, the 

environmental benefit of the RESs is considered as avoiding such pollutants emissions. 

Table 3.15 Emission factor from diesel power generation 

Pollutant  Emissions factor (g/L diesel) 

Carbon dioxide (CO2) 2,633 

Carbon monoxide (CO) 6.5 

Unburned hydrocarbons (CHx) 0.72 

Particulate matter (PM) 0.49 

Sulfur dioxide (SO2) 5.28 

Nitrogen oxides (NOx) 58 

 

3.8 Summary 

In this chapter, the individual components are modeled, as a foundation to simulate 

the dynamic behaviour of the RE-based RAPS systems and evaluate the performance 

of their combined operation in the subsequent chapters. In particular, a novel PV 

simulation model was developed to fit the I-V curves and predict power output. The 

model was solved using an integrated analytical and numerical method, then validated 

through field measurements in a real grid-connected and a standalone PV system. It 

was envisaged that such proposed work would be relevant to the needs of PV power 

system designers and engineers who require simple, fast and accurate models for PV 

systems. In addition, the system evaluation methods in terms of technical, economic 

and environmental issues are proposed. These criteria will be employed for comparing 

the performance of different system types and configurations. 
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CHAPTER 4   ASSESSMENT OF RENEWABLE 

ENERGY POTENTIAL AND LOAD DEMAND 

An assessment of renewable energy potential and load demand of Town Island is given 

in this chapter. It is well acknowledged that RE output varies greatly both with time 

of the day and specific locations. Wind output depends on patterns of atmospheric 

circulation and geographic influences, while solar energy depends mainly on latitude 

and climate. In addition, these intermittent RE resources may experience enormous 

daily and seasonal variability. The availability of RE is greatly influenced by the 

specific configurations and economics involved in its activation. The evaluation of RE 

potential for a specific location is thus of great importance. In this study, a detailed 

analysis of the characteristics of solar irradiance and wind conditions has been 

conducted, and the complementary characteristics between solar and wind power 

analyzed. The biomass is not considered as a limited resource on this island. An 

additional consideration is that the measured load information is not available, a full-

years’ worth load data, therefore, has been synthesized in this study by selecting 

historical typical daily load profiles and adding some degree of randomness to them. 

4.1 Background of Town Island 

There are three inhabited islands, namely Po Toi Island, Tung Ping Chau and Town 

Island, off Hong Kong and beyond the reach of the utility grid. Currently they are 

powered by diesel generators with fuel supplied by barge. To reduce dependence on 

diesel and improve power supply quality, the government is planning to explore 

locally available renewable energy for power generation on these islands. 
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Town Island, the example island involved in this study, is located in the southeastern 

part of the Sai Kung District of Hong Kong. The latitude and longitude of this island 

is 22°36′N and 114°40′E, respectively. The island is as much as 22km off the coast of 

Hong Kong. An organization, Operation Dawn, has run the Drug Addiction Treatment 

& Rehabilitation Centre on this Island since 1976. At present, the island has around 

50-70 residents of different nationalities on the island and Operation Dawn is 

contemplating extending accommodation provision to include about 100 residents. As 

is the case of many similar remote islands, access to the utility grid is not available for 

Town Island. Three diesel power generators, therefore, are in use for which diesel fuel 

is transported by sea. However, before the RE scheme, the diesel power supply was 

available for only a limited number of hours every day owing to  extremely high cost 

of the whole exercise, including expensive transportation costs, inventory carrying 

cost and the high price of diesel fuel in Hong Kong.  

Realizing the difficult living conditions and constraints on the island and also those 

for further development because of lack of an electricity supply, a local utilities 

company, China Light & Power, was on the verge of deciding to install submarine 

cables and overhead lines to provide a constant electricity supply for this island. This 

proposal was finally abandoned because of various disadvantages such as high cost 

and ecological destruction. After an initial investigation, a far sighted decision was 

taken to use available RE for a local remote power supply. Reasons given were RE is 

environmentally friendly, more cost-effective than grid extension, and mature enough 

to provide utilitarian quality power supply.  

Town Island has therefore been taken as an example site to test the proposed RE and 

storage technologies potentially useful in remote areas. This RE power supply scheme 

is divided into two phases, i.e. Stages 1 and 2. During Stage 1, completed in 2010, a 
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stand-alone 19.8kWp PV system was installed on the island. This system was used 

mainly to test PV system’s feasibility, understand its operating characteristics, and 

prepare for the system implementation in next stage. A hybrid solar wind power supply 

system has been initiated in Stage 2, and the power generation and storage capacity 

may increase to tenfold that of Stage 1. Some issues are anticipated such as the 

capacity allocation of solar and wind energy, the selection of energy storage 

technology, system optimization of power generation and storage.  

4.2 Solar energy potential 

The solar PV system is proposed as the major power generator. The solar radiation 

data from 2008 to 2011 was collected from an adjacent meteorological station at Kau 

Sai Chau, about a 5 km distance from the island. As shown in Fig. 4.1, measurements 

of diffuse solar radiation were made by a pyranometer shaded from the sun, while 

direct solar radiation was measured by another pyranometer mounted on a sun tracker 

which ensures that the pyrheliometer points directly at the sun all the times.  

  

Fig. 4.1 Kau Sai Chau solar radiation station 

Fig. 4.2 shows that the annual occurrence frequency of the daily total global solar 

radiation in comparison with a specified level. In the winter months, more than 60% 

of days receive less than 4.0kWh/m2/day, while less than 10% exceed 6.0kWh/m2/day. 
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However, in summer, from May to September, about 40% of the days are above 

5.0kWh/m2/day, and a small number of days exceed 8.0kWh/m2/day. The yearly 

frequency distribution is quite symmetrical with respect to July, in which the 

occurrence frequencies of high solar radiation are significant, with 5% higher than 

8.0kWh/m2/day.  
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Fig. 4.2 Frequency distribution of daily average irradiation less than specified 

amounts (kWh/m2/day) 
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The distributions of monthly averaged and yearly averaged solar radiation at given 

hourly intervals are demonstrated in Fig. 4.3. It seems that the hourly value peaks at 

1:00pm and has a symmetrical distribution from 6:00am to 8:00pm. The solar resource 

profile indicates that for a solar energy system the PV output could cover the load 

during most of the daytime and that there may be considerable surplus at noon. 
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Fig. 4.4  The monthly solar radiation and the clearness index in 2009 

To provide a reference for PV system modeling and design at its optimum angle, the 

solar radiation incident at the tilted angle of 22.5° was studied for year 2009. The 

results are presented in Fig. 4.4. The monthly average data is in the range of 3.17 to 

5.84kWh/m2/day, and yearly mean is 4.34kWh/m2/day. Fig. 4.4 also illustrates that 

higher irradiation can be expected between April and September, with less between 

November and March. Such season distribution is consistent with the typical 

subtropical climate in Southern Asia. The low value and exceptionally large 

fluctuations in the months of March and November are mainly due to unstable climate 

conditions during transition from cold to warm weather and vice versa [338]. The 
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clearness index, the ratio of the solar radiation striking Earth’s surface to that striking 

the top of the atmosphere, is similar to the trend of solar radiation, as presented in Fig. 

4.4.  

4.3 Wind energy potential 

Wind power is one of the most potential renewable energy resources for Hong Kong, 

as the small territory is characterized by a long coastline and numerous islands. The 

surrounding strong winds on the islands provide good opportunities for wind power 

applications.  

In Stage 1 of the RE scheme, a small meteorological tower equipped with an 

anemometer was installed on this island. However, the collected data could not reflect 

the actual wind conditions on the island due to some problems with the measurement 

system. Therefore, the 10-year wind data from the Waglan Island weather station was 

selected to represent the wind condition on the involved island. Finally the wind data 

was synchronized with the solar radiation data in 2009 over hourly time steps.  

4.3.1 Assessment procedure 

 Weibull distribution function 

The Weibull distribution function, based on the occurrence frequency distribution, is 

employed in this thesis for wind power evaluation. Published research [414, 415] has 

proven that the Weibull distribution. In particular, it can give a good fit to a wide 

collection of recorded wind data and provide a useful model to estimate the potential 

of wind energy. 

Wind speed distribution is fitted using the two-parameter Weibull Distribution, and its 

probability distribution function (PDF) can be described as [416]: 
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 1( ) ( ) exp[ ( ) ]       ( 0, 0, 0)k kk v v
f v k v c

c c c

       (4.1) 

The cumulative distribution function is given by: 

 
0

( ) ( )
v

F v f v dv   (4.2) 

where v  is wind speed (m/s); c  (m/s) and k  are the respective scale parameter and 

shape factor of the Weibull distribution. The scale parameter is related to the average 

wind speed, indicating the degree of strength of the wind. The dimensionless shape 

factor reflects the breadth of the distribution, with lower value corresponding to 

broader distributions. 

Once the mean value and variance of the wind speed are known, the following 

acceptable approximation [417] can be used to calculate the Weibull parameters. 
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where the average wind speed is: 
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The variance 2  of wind speed recordings is: 
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The gamma function of x can be calculated as:  
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 Wind-speed variation with height 

Wind speed changes with height, which requires an equation predicting wind speed at 

one height based on the measured speed at another height. For a wind turbine, it is also 

necessary to know the wind speed at its hub center. The most common method is the 

power law: 

 
0

0

( )
z

v v
z

  (4.8) 

where v  is the wind speed estimated at  a desired height (wind turbine hub height); 0v  

is wind speed measured at the reference height 0z ;   is the ground surface friction 

coefficient. A power law exponent of 0.143 (one-seventh) is applied in this thesis. 

 The average power in the wind 

The theoretical mean value of wind speed is given by: 

 
0

( )v v f v dv


   (4.9) 

The average power in the wind passing through an area A  perpendicular can be 

expressed as: 

 
3

3

0

1 1
( ) ( )

2 2
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    (4.10) 

If the wind PDF ( )f v  can meet the Weibull distribution in Eq. (4.1), the average 

power becomes: 
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So the wind power density used to compare different regions is given by: 
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Based on Eqs. (4.10), (4.11) and (4.12), the available wind energy can be calculated 

for any defined period of time. The energy output is commonly calculated in watts per 

square metre (W/m2).  

4.3.2 Analysis of the collected data 

The wind speed profile in 2010 is presented in Fig. 4.5 as an example to display wind 

condition on this island. The wind data was collected at anemometer height of 82m. 

 

Fig. 4.5 Wind speed collected in 2010 

The diurnal wind speed profiles in 12 months are presented in Fig. 4.6. From October 

to March, the wind speed is strengthened at nighttime, reaching a peak in the early 

morning and declining to the lowest after the sunset, while the tendency is contrary 

during the summer months from April to August. The wind speed magnitude in 
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summer, 5.6m/s, is much lower than in winter (6.7m/s). The diurnal wind speed profile 

can reflect the condition of wind resources at different hours in a day and can provide 

a guide for customers to best use wind energy depending on the diurnal wind power 

distribution.  

 

 

 

 

Fig. 4.6  Diurnal wind speed profile in different months (10 years mean) 
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The prevailing wind directions can provide important information to determine the 

WT orientation to maximize the power output. The statistical result of wind direction 

by frequency rose during the 10-year period is presented in Fig. 4.7. Overall, the wind 

rose pattern indicates that the prevailing wind direction on the island is mainly in the 

eastern and north-eastern directions.  

 

Fig. 4.7 Wind direction frequency rose during 10 years 

4.3.3 Analysis of wind power potential  
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Fig. 4.8 Wind speed Weibull distribution (10 years data)  

The frequency distribution of 10-year wind speed data is presented in Fig. 4.8. This 

distribution fits by Weibull distribution. The overall scale parameter and shape factor 
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is 7.05m/s and 2.02, indicating that the island possesses satisfactory wind resources 

and has a relatively broad wind distribution.  

Two typical monthly wind speed frequency distributions are given in Fig. 4.9. The 

fitted curves show that the scale parameter in August is much lower than that in 

December, indicating that low and moderate winds are common in August. A low 

shape parameter in August indicates that the wind distribution in that month tends to 

be fairly narrow and concentrated on a central point. In contrast, the wind distribution 

in December is broad and peaks at a strong wind speed value.  
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Fig. 4.9 Wind speed Weibull distribution in August and December 

The 10 years averages of monthly mean wind speeds and theoretical wind power 

densities (W/m2) are given in Fig. 4.10. The results demonstrate that the potential wind 

power in the summer months from May to September is much lower than those in 

other months. The variation of monthly wind power density and average wind speed 

has a similar trend. However, sometimes they can show an opposite tendency as the 

wind power is determined not only by the mean speed but also by the Weibull shape 

parameter (see Eq.(4.12)). For example, the mean wind speed in August is only 

5.16m/s, lower than that in July (5.64m/s), while the estimated power density in 
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August is higher than that in July. This phenomenon results mainly from the wide 

distribution and great fluctuation of wind speeds in July.   

Over the 10 years, the yearly average power density is calculated at 283 W/m2 under 

the anemometer height of 27m. Therefore, the potential annual wind power can be 

theoretically estimated as 2,480kWh/m2. 
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Fig. 4.10 Monthly (and yearly) average wind power density and average wind speed 

4.3.4 Analysis of wind power at different hub heights 

To investigate the wind power generated from a specific wind turbine, the wind turbine 

Proven 11 with four hub heights, i.e. 9m, 11.6m, 15m and 20m is studied. The wind 

speeds at the four heights were calculated based on the wind data at the anemometer 

height (27m).   

The mean wind speed, Weibull parameters, and power density at the four hub heights 

are shown in Table 4.1. It is observed that wind distributions at the four heights have 

the same pattern (shape parameter), while the magnitude and power density increases 

with the hub height. 
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The turbine operating performance was also simulated (Table 4.2) based on the wind 

turbine power curve. When the hub heights increase, the zero output time decreases 

and the operating hours increase proportionally, resulting in an increase in wind power 

output and capacity factors. The availability of wind turbine output at 20m is very high 

at 88.5%.  

When the hub height changes from 9m to 20m, the mean daily energy output increases 

by 27.3%, due to the fact that wind energy is proportional to the cube of wind velocity 

and the operating time at high hub height has also increased.  

Table 4.1 Wind distribution results for different hub heights 

Hub 

height 

Mean 

speed 

Shape 

parameter 

Scale 

parameter 

Power 

density 

(m) (m/s) k c (m/s) (W/m2) 

9 5.24 2.02 6.03 176.6 

11.6 5.44 2.02 6.25 196.9 

15 5.64 2.02 6.48 219.9 

20 5.88 2.02 6.75 248.8 

 

Table 4.2 Turbine operating performance results at different hub heights 

Hub 

height 

Time at zero 

output 

Time at 

rated output 

Net capacity 

factor 

Mean daily 

energy output 

(m) (%) (%) (%) (kWh/day) 

9 12.77 4.07 21.7 27.1 

11.6 12.06 5.09 23.6 29.4 

15 12.12 6.25 25.5 31.8 

20 11.53 7.98 27.7 34.5 
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4.3.5 Predicted performance of the turbine at the hub height of 15m 

The hub height at 15m was selected, as an example, to study the operating performance. 

The predicated results are presented in Table 4.3. The daily average energy output 

varies from 21kWh/day in August to 41.3kWh/day in November, resulting in a yearly 

mean of 31.8kWh/day. The predicted annual capacity factor is 25.5%, with monthly 

values ranging from 16.9% to 33.1%. These values are consistent with typical wind 

turbine capacity factors of 20-40% throughout the world. 

Table 4.3 Monthly wind turbine operating performance (for hub height at 15m) 

Month 

Hub Height 

Wind Speed 

Time At 

Zero Output 

Time At 

Rated Output 

Mean Net 

Energy Output 

Capacity 

Factor 

(m/s) (%) (%) (kWh) (%) 

Jan 6.11 6.35 5.77 1,141 29.5 

Feb 5.79 11.02 7.8 960 27.5 

Mar 5.62 12.74 7.36 1,010 26.1 

Apr 5.3 15.43 6.24 876 23.4 

May 4.85 16.7 2.8 720 18.6 

Jun 5.34 13.75 4.33 861 23 

Jul 5.18 13.57 3.72 774 20 

Aug 4.75 20.41 4.83 652 16.9 

Sep 5.45 16.57 6.47 850 22.7 

Oct 6.35 7.35 8.8 1,251 32.3 

Nov 6.47 6.18 8.49 1,238 33.1 

Dec 6.49 5.44 8.51 1,269 32.8 

Overall 5.64 12.12 6.25 11,605 25.5 
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4.4 Solar and wind energy complementary characteristic  

The hourly meteorological data on this island was synchronized throughout 2009. Fig. 

4.11a presents the average solar and wind energy resources monthly. The inherent 

complementary nature is displayed. The summer provides a relative good solar energy 

resource but poor wind conditions, while a crosscurrent is present in the winter. 

Usually, the wind speed is higher during seasons of low insolation and low for high 

insolation. Fig. 4.11b demonstrates an example of hourly and daily complementary 

characteristics illustrating that the wind often blows when the sun does not shine and 

vice versa. The figures show that solar and wind energy, together, give greater value 

than they do individually, therefore, a better utilization factor for the available RE can 

be achieved and less energy storage capacity is needed.  
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Fig. 4.11 The solar and wind energy resource on the island (a) monthly energy 

density in 2009 (b) Daily solar radiation and wind speed distribution on 1st-2nd 

January 2009 

To express the complementary characteristics numerically, a correlation coefficient 

between solar and wind energy was calculated using Matlab. This coefficient is used 

to see if employing the hybrid system is beneficial. If the correlation coefficient is 

close to 1, a positive relationship between the data columns is suggested and if the 
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correlation coefficient is close to -1, the implication is that one column of data has a 

negative relationship to another, also called as anticorrelation. In this case, the 

correlation coefficient of monthly distribution and daily distribution was calculated at 

-0.12 and -0.60, respectively, indicating that the two sources of energy approach 

opposite paths, i.e. when one is approaching its maximum quantity, the other is 

approaching its minimum. This will improve the reliability of the hybrid solar and 

wind system. For example, when there is insufficient wind energy supply, a 

considerable amount of solar energy available.  

4.5 Island load demand profile 

A key element of any power generation system is the load itself, which has a 

pronounced effect on system configuration [34]. The power generated by the PV plant 

in Stage 1 was recorded by the data collection system. However, the load data cannot 

reflect the real electricity consumption on this island since part of the power was 

supplied by the backup diesel generator. In addition, the power demand will increase 

due to the growing number of residents.  

As measured hourly load information is not available, a full-years’ data load, therefore, 

were synthesized by specifying typical daily load profiles and then adding some 

degree of randomness for different days. The typical daily power demand was 

artificially estimated with reference to [418, 419]. The average daily power demands 

for major electric appliances are given in Table 4.4.  All these loads are assumed as 

AC load.  

The hourly load profile over a day was created based on the assumed electrical 

appliances and the subsequent estimated power demand. A sample of the 24-hour load 
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profile is displayed in Fig. 4.12. The sample demonstrates that peak loads occur in the 

afternoon and early evening. 

Table 4.4  Average daily power demands of major components in Town Island  

Load 

components  
Power (kW) 

Operating 

hours (h/day) 

Power demand 

(kWh/day) 

Light bulbs 8 5 40 

A/C Load 25 5 125 

Cooker 5 5  25 

Radio 0.2 5  1 

TV set 5 4  20 

Refrigerator 1 24  24 

Other appliances 5 3 15 

Total     250 
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Fig. 4.12 A sample daily load profile for this island 

As would be expected, the daily load profile for this island depends on the season. To 

specify the monthly load data throughout the year, load coefficients were applied for 
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each month, based on the Hong Kong typical climate and load profile reported by other 

studies [420]. The load coefficients for the autumn months from October to November 

were set at 1, meaning that the energy consumption in this season is equal to the 

average load. The spring months between March and April require slightly less 

electricity than those of autumn with a coefficient of 0.9, followed by the winter 

months from December to February (175kWh/day), with 0.7 of the average energy 

consumption. The highest power consumption occurs in summer due to the cooling 

load, when the coefficients range from 1.1 to 1.4, peaking at August. It can be noted 

that energy demand for the summer is about twice that in the winter. The monthly load 

coefficient and the daily and monthly electricity demand are summarized in Table 4.5. 

Table 4.5 Monthly load coefficient and total electricity demand 

Season Month 
Number 

of days 

Monthly load 

coefficient 

Average daily 

load (kWh/day) 

Monthly 

load (kWh) 

Winter 

Jan 31 0.7 175 5,425 

Feb 28 0.7 175 4,900 

Spring 

Mar 31 0.9 225 6,975 

Apr 30 0.9 225 6,750 

Summer 

May 31 1.1 275 8,525 

Jun 30 1.2 300 9,000 

Jul 31 1.3 325 10,075 

Aug 31 1.4 350 10,850 

Sep 30 1.1 275 8,250 

Autumn 

Oct 31 1 250 7,750 

Nov 30 1 250 7,500 

Winter Dec 31 0.7 175 5,425 
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The shape and magnitude of the load profiles, in fact, vary day by day and hour by 

hour. To avoid daily precise repeats of load profiles for each month, a daily and hourly 

perturbation factor was added. The daily factor prompts the load profile magnitude to 

vary randomly from day to day, while the hourly factor affects the shape of the load 

data distribution without affecting its size.  

The correction of the basic 24 hour data is based on the multiplication factor :  

 1 d h      (4.13) 

where d  is the daily perturbation factor and h  is the hourly perturbation factor.  
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Fig. 4.13 Yearly load profile on this island 

User-defined perturbation factors in the range 2% to 20% have been reported in the 

literature [12, 13, 57]. In this study, a daily and hourly perturbation factor of 5% was 

employed, given that the residents on this island have regular lifestyles and a relatively 

stable energy demand. A plot of the hourly average power demand during a year is 
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shown in Fig. 4.13. A realistic-looking load profile is generated with the coupling of 

daily and hourly perturbation in Eq.(4.13).  

In summary, the scaled total energy demand of the island is 91,250kWh/year, and the 

daily demand averages 250kWh/day with a maximum power demand of 27.3kW. 
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CHAPTER 5   DEVELOPMENT OF BATTERY-BASED 

RENEWABLE ENERGY SYSTEMS   

The intermittent characteristic of a solar, wind or their hybrid prevents the standalone 

RE system from being fully reliable without suitable energy storage capability. In this 

chapter, a study of the traditional energy storage technology, battery, to support the 

microgrid RE power generation system at a few hundred kW scale, is carried out. 

Hourly simulations of possible combinations of the four technologies (solar, wind, 

diesel and battery) with a wide variety of configurations have been performed to 

achieve an optimal system configuration based on techno-economic analysis results. 

The performances of the potential eight options have been evaluated. A sensitivity 

analysis on the effects of load variation on system configuration and cost has also been 

conducted. Finally two typical options, the 100% RE system and RE system with 

backup diesel, were selected for elaborate analysis. Emphasis was also placed on 

examining the effects of the PV, wind turbine, diesel generator, and battery bank 

capacity on the system’s reliability and economic performance.  

5.1 System configuration of battery-based power generation systems 

In this section, two typical system types, the 100% RE system and RE system with 

backup diesel, are discussed with respect to the system configuration, control and 

dispatch strategy.  
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5.1.1 100% renewable energy system 

The system architecture for the hybrid solar–wind system with battery storage is 

shown in Fig. 5.1. The system mainly consists of a PV array, WT, battery bank, 

inverter, controller, dump load and other accessory devices such as cables. The DC 

power output from the PV array and WT is converted into AC by the inverter to supply 

the load, while available excess energy is fed into the battery bank. When no more 

energy is needed and the battery bank fully charged, the surplus energy is dumped. 

The battery bank releases power to the load when the RE output is unavailable or is 

insufficient to supply the load. The main power distribution component is the inverter, 

to which the AC and DC buses are connected.  

AC bus (220V)DC bus (48V)

PV array

Battery

Inverter

Load

Wind turbine

Dump load

 

Fig. 5.1 Eenergy flow diagram of the hybrid solar–wind system with battery storage  

The system can be easily controlled because there is only one dispatchable power 

source, i.e. the battery bank. Whenever the net load, the difference between the actual 

load and the renewable power output, is negative, meaning that the RE output is 

sufficient to serve the load, the excess energy is used to charge the battery bank and 

any further surplus is dumped. Whenever the net load is positive, the only 

supplementary power source battery bank releases energy to satisfy the load. The 

operation strategy of this kind system is shown in Fig. 5.2.  
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Fig. 5.2 Operating strategy of this hybrid solar -wind system employing a battery 

bank  

5.1.2 Renewable energy system with backup diesel  

Recently the International Energy Agency has released a report on RE development 

in remote areas [36], suggesting that it is possible to provide renewable electricity at 

the 100% level. However, that is most readily achieved when intermittent RE 

generators are combined with dispatchable generation such as diesel. A system 

combining only RE and a storage device can be achieved. Technical barriers, however, 

will arise when the system capacity is excessively large due to the fluctuating nature 

of RE. Therefore, a diesel generator is introduced in the hybrid renewable energy 

system. To guarantee high renewable energy penetration, a minimum renewable 

energy supply fraction in this study was set at 90%.   

 System configuration and description 

The schematic diagram of a hybrid solar-wind-diesel-battery system is similar to that 

in Fig. 5.1, except that one diesel generator has been added. Solar and wind energy 
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typically provide bulk energy, whereas the diesel generator, in the form of a backup, 

provides the reliability that end-users demand. When all RE output cannot meet the 

load demand, the dispatchable components (battery and diesel generator) are launched, 

and the rules are subject to cost-based dispatch logic (disused in Section 5.1.2.3). This 

inverter is bidirectional. It not only converts the DC output from RE or batteries to AC 

load but may also convert the diesel surplus energy to charge the battery. Whether to 

use the surplus capacity from the diesel generator to charge batteries is subject to the 

selected dispatch strategies, explained in Section 5.1.2.4. 

 The role of the diesel generator for standalone RE systems  

One advantage of including a DG is the significant decrease in both storage and RE 

generator capacities, hence reducing system cost, whilst an optimal combination of 

PV, WT and batteries can limit fuel consumption of the generator. Studies [20, 56] 

have demonstrated that it is more cost-effective to employ a diesel generator than to 

increase the size of the battery bank or RE generator. The diesel generator covers the 

peak load and supplies load demand when continuously poor weather limits RE 

availability. The diesel generator provision can ramp up down, to accommodate the 

intermittent RE output. In addition, reliability can be supported through specialized 

diesel controls [36], such as an automatic starter and minimum load ratio, both of 

which can maximize the benefit from RE and improve the diesel performance in such 

hybrid systems. In the study presented in this thesis, the role of the backup generator 

in the hybrid system regarding its purpose to reduce system cost and enhance the 

power supply reliability is investigated, and the threshold load size at which it is the 

most cost-effective examined.   
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 System control of dispatchable components 

The control strategy is of vital importance for hybrid systems with more than one 

dispatchable component. Fig. 5.3 demonstrates the operating strategy for a system 

with two dispatchable power sources, i.e. diesel generator and battery bank. Whenever 

the net load is negative, the excess power will charge the battery bank and any further 

surplus dumped. Whenever the net load is positive, the system will have three options: 

1. launch the DG, 2. discharge the battery, 3. combine 1 and 2, to serve the load deficit. 

If the three alternatives are capable of supplying the net load, the alternative selected 

is based on a cost-based fundamental principle that the solution fulfills the load 

demand and operating reserve with cheapest cost being chosen.  

Dump load

Net Load > 0 ?

Battery discharge
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Diesel generator

Battery charging

Battery 
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Fig. 5.3 Control strategy of dispatchable system components 

 Dispatch Strategy 

Dispatch strategy contains rules relating to how to choose system charges a battery 

bank [170]. This rule is irrelevant in the case of a 100% RE system as the only medium 

to charge the battery bank is the surplus RE. However, for systems comprising a 
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battery bank and diesel generator, an additional aspect of system operation has to be 

considered and that is, whether and how the generator should charge the battery bank. 

The solution relates to the reliability of RE resources in subsequent hours.  

Two simple dispatch strategies were studied to govern the operation of the generator 

and the battery bank: load-following (LF) and cycle-charging (CC). Under the LF 

strategy, a generator produces only enough power to meet the load demand, and never 

to charge the battery bank. Under the CC strategy, whenever a generator is needed, it 

operates at its maximum rated capacity, or as close as possible to reach the maximum 

efficiency, and charges the battery bank with the surplus power [421]. However, when 

the diesel is under LF, a minimum load ratio, such as 30%, should be set to ensure 

acceptable diesel generator efficiency, thus the excess power, after serving the net load, 

is charged into the battery bank to avoid energy waste. In this study, both strategies 

have been simulated and compared for the solar-wind-battery-diesel system, to find 

the more cost-effective one. 

5.2 System modeling and constraints 

5.2.1 System modeling and components information 

The design and analysis of standalone microgrid RE systems can be challenging, due 

to the many design options and the uncertainty regarding key parameters. Based on a 

literature review, of the energy-modeling software available, HOMER’s capabilities 

appear to provide the best option for modeling and investigating such scenarios [20]. 

Therefore, HOMER software is employed in this chapter for system simulation and 

optimization.  
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The main components of the system under study include the power generator, energy 

storage device, and inverter. The technical data and cost information of WT, diesel 

generator, battery, and inverter have been presented in Chapter 4. The PV module 

specification is presented in Section 4.1. The cost of PV modules fluctuates greatly 

depending on the market but has declined gradually in recent years. The initial capital 

cost was assumed as $2.0/Wp, including installation costs. The replacement cost is 

considered to be the same as the initial cost although, in this specific study, 

replacement cost is not relevant since the PV lifespan is assumed to be equal to the 

study period of 25 years. The operating and maintenance cost was assumed to be zero 

since it is negligibly small [13].  

5.2.2 Constraints 

The constraints include some technical parameters that control system operation and 

performance. A feasible system configuration must satisfy the specified constraints 

examined as follows:  

 Operating reserve  

Operating reserve (also called spinning reserve) is the surplus power generation 

capacity required above the load. This safety margin, provided by the battery or diesel 

generator, can compensate for a sudden increase in the load or a sudden decrease in 

RE supply, so as to avoid outages. Operating reserve is defined as percentages of 

hourly load and renewable resources. In this study, 10% was specified for load reserve, 

25% for PV power reserve and 50% for wind power reserve, as suggested by previous 

research [12, 13, 57, 408, 412, 422, 423]. The hourly operating reserve required for 

the system can be calculated as below: 

  % % %L L PV PV WT WTOperating reserve P P P       (5.1) 
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where %L , %PV , %WT  is the percent of hourly load reserve, PV power output and 

wind power output reserve, respectively. LP , PVP , WTP  is the power required by the 

load and the power generated by PV and WT, respectively.  

 Renewable fraction (RF) 

The RF is only applied in the case of a hybrid RE system with backup diesel.  The RE 

refers to the proportion of the system's total energy production generated by renewable 

power sources, such as WT and PV arrays, divided by the total energy production. The 

equation for renewable fraction is given below: 

 RE

total

E
RF

E
  (5.2) 

where REE is the RE electricity production and totalE is the total electricity production 

(kWh/yr). 

The RF greatly influences the system configuration, economic performance and 

environmental benefits. The literature review given in Chapter 2 indicates that the 

effects of the RF are not widely reported. In this study, the minimum RF for the hybrid 

RE-diesel system is set at 90%. A sensitivity study was then conducted to examine the 

effects of RF values at 60%, 70% and 80%.   

5.3 Overall results of the battery-based power generation options  

5.3.1 Overall results of the eight options 

The categorized optimization results, based on the least net present cost (NPC) for 

eight different power generation options, are summarized and shown in Table 5.1. The 

results contain only those with a RF higher than 90% (does not apply to the diesel-
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only and diesel-battery system), meaning that systems with renewable outputs lower 

than 90% of load were discarded, even though lower NPC values could be achieved. 

It is seen in Table 5.1 that each row represents an optimal system configuration, with 

the lowest NPC in that specified option. The first and second columns give the option 

serial numbers and system types. The next four columns show the required capacities 

of the PV array, WT, diesel and battery, followed by the dispatch optimal strategy for 

each system type. Some economic results, namely, the initial cost (IC), yearly 

operating cost, the total NPC and the levelized cost of energy (COE), are highlighted 

in the following five columns. The RF, annual diesel consumption and operating hours 

of the diesel generator are provided in the last three columns for the hybrid RE with a 

diesel generator.  

Overall, the hybrid solar-wind-diesel-battery system (Option 1) with 95% RF was the 

most cost-effective, ranking the first in the table. This system consists of an 80 kWp 

PV array, 2 WTs and 48 batteries. The total NPC and COE was $456,002 and 

$0.391/kWh, respectively, much less than those for a 100% RE system (Option 3 and 

Option 4). The total diesel operating time was 637 hours and the fuel consumption 

was 2,414L during the simulated year. It is believed that implementation of this hybrid 

system with 95% RF on the island would be a good choice as the RE contribution is 

quite significant whilst GHG emission is not high.   

The hybrid solar-diesel-battery system with 100 kW PV and 72 batteries was 

considered as the second choice for the island (Option 2). The NPC was $538,887, 

about 18% higher than that of Option 1. The diesel consumption was also higher than 

that of Option 1, resulting in a RF at 91%. The results show that in such an option, a 

decrease in RF could lead to a reduced NPC. As there was no wind contribution, the 

capacities of the PV and battery bank were relatively higher than those of Option 1, 
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indicating that the complementary nature of solar and wind resource is beneficial for 

standalone RE systems.  

To achieve a target of 100% RE, two approaches are feasible: solar-wind-battery 

system (Option 3) and solar-battery system (Option 4). The COEs of these two systems 

were $0.595 and $0.734, respectively. Compared with Option 1, these two system 

types both had a remarkably high PV array and battery bank capacity, hence a total 

NPC increase. They could be perfect choices of a total RE power generation system 

on the island since the RE is sustainable and environmentally-benign.  

The wind-battery system could not ensure zero capacity shortage and 90% RF, 

although this target could be achieved by adding a diesel generator to form a wind-

diesel-battery system (Option 5). This system was composed of 12 WTs, one diesel 

generator, 96 batteries and 5 converters. The dispatch strategy was also subjected to 

the LF. An IC of Option 5 ($270,691) was the least among the first five options, but 

the operating cost was much higher than that of the other four options. Compared with 

Option 1, 5% decrease in RF could lead to almost double the diesel consumption.  

Further down on the list are the diesel-battery (Option 6) and diesel-only (Option 7) 

systems without any RE contribution. The COE of the diesel-battery system was 

$0.832, which had zero wasted energy because of the inclusion of batteries. For the 

diesel-only system, the IC was low, while the O&M cost was unreasonably high, 

occupying more than 80% of the total NPC due to high fuel consumption. The 

comparison between Option 6 and option 7 demonstrate that the deployment of a 

battery bank is more cost effective than increasing diesel consumption.  
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The last option was the solar-wind-diesel system without storage. Although this would 

achieve the same high RF of 90% as the Option 5 system, the diesel consumption was 

double. Because there is no storage device, up to 72.4% of the total energy production 

was dumped. In this sense, an energy storage subsystem is extremely important for 

RESs, particularly for those with high RE penetration.  

All possible combination of the four technologies (solar, wind, diesel and battery) with 

a wide variety of system configurations were simulated but only the 8 options were 

compared and studied in detail. Solar-diesel, wind-diesel or wind-battery were not 

considered because they proved not feasible during simulation or they could not satisfy 

the necessary technical constraints such as operating reserve and renewable fraction. 

5.3.2 Sensitivity analysis of the load demand 
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Fig. 5.4 Cost of energy of five power supply options versus load consumption 

As stated in Chapter 3, the daily load consumption was assumed as 250kWh. To ensure 

an acceptable power supply margin for the island, a sensitivity analysis was performed 

to investigate the effects of load variation on system performance. Fig. 5.4 illustrates 
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the COEs of the five system options with load demands varying from 150 to 400 kWh. 

Overall, as load increases, the PV capacity, WT number, battery number, and 

converter size all gradually increase, while a downward COE trend is evident. Option 

1 always had the lowest COE of the whole load range, indicating this option to be the 

most cost-effective. The solar-diesel-battery system, with 18% average increase in 

COE came second to Option 1. The 100% RE system (Option 3) ranked as third, with 

a COE of about 1.5 times that of Option 1. The solar-battery system type (Option 4) 

seems to be technically feasible, but the high capital cost made it not economically 

viable. Compared with Option 4, the hybrid solar-wind-battery system of Option 3 

required less storage capacity and had lower COE values. Such benefits of the hybrid 

system became more significant as load demand increase. The diesel-battery system 

(Option 6) had high COEs under low load levels, but a decrease proportional with that 

load, to the extent that it was lower than that of Option 4 in which the load was 

400kWh/day, indicating that a diesel power generation system may be comparable 

with a PV system when the load exceeds some threshold.  

5.3.3 Sensitivity analysis of renewable energy resources 

 

Fig. 5.5  Optimal system type against with solar radiation and wind speed 
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The impact of the available RE potential of the selection of a 100% RE system was 

also examined. The optimal system type graph under various solar radiation intensities 

and wind speeds is presented in Fig. 5.5. If the average wind speed is lower than 3.5m/s, 

the solar-battery systems provide the lowest COE, because the WT cannot start or else 

outputs little energy at such low wind speeds. For an average wind speed of between 

3.5 and 4m/s, solar-wind-battery systems are cost effective for low solar radiation 

values and solar-battery systems for high solar radiation values. When the average 

wind speed is larger than 4m/s, it is more cost-effective to adopt a hybrid solar-wind-

battery system. 

5.3.4 Payback time  
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Fig. 5.6 Cumulative cash flow savings for the Option1 and Option 3 compared to 

diesel-only system 

The payback time of Option 1 and Option 3 were studied. The summary of annual 

nominal cash flow savings of the two systems are given in Fig. 5.6. The cash flow of 

year 0 was negative as the initial costs of the two options greatly exceeded that of the 

diesel-only system (Option 7). From the year 1 onwards, the annualized savings were 

positive figures because the operating cost was less than that of a diesel-only system. 
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Between years 4 and 5, the cumulative cash savings of option 1 intersect the zero line 

and become positive. This implies the payback time of this option is 4.2 years, a 

similar result can be found in the studies [422, 424]. The payback time of Option 3 is 

a little longer at 7.3 years as it is a 100% RE system. When the replacement of the 

system component was due, an obvious increase in nominal cash flow would occur 

and thus the net saving might be negative in such a year. A significant decrease in 

cumulative cash flow of Option 3, for example, can be seen in the year 20, due to the 

replacement of the battery bank. Similarly, the obvious increase in cumulative cash 

flow at the end of the project (year 25) results from the positive salvage value of system 

components. 

5.4 Simulation performance of a 100% RE system 

Simulation results show that the optimal configuration of the 100% RE system, i.e. 

solar-wind-battery system, comprises PV array (145 kW), WT (2 units, 10.4 kW), 

battery bank (144 units, 6 stings, totally 706 kWh) and converter (6 units, 30 kW). The 

performance of this optimal system is discussed in the following sections with detailed 

analysis. A sensitivity analysis on the key parameters is then conducted to identify 

their impact on the results.  

5.4.1 Simulation performance of system components 

A summary of operating performance and some economic results of PV, WT and 

battery bank is presented in Table 5.2. It can be seen that the PV array and WT capacity 

factors are relatively low due to large amounts of wasted energy. The levelized costs 

for the PV and WT were $0.128 and $0.2 per kWh, respectively. The energy cost for 

the battery bank was zero because the only charging source is the surplus power from 

PV and WT. However, battery wear cost of $0.174/kWh was significantly high, 
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accounting for approximately 30% of the COE. The battery cost was even higher than 

that of the PV module. This could explain why, in some cases, the end-users might cut 

down or discard the energy storage devices and introduce more RE generators. Such 

an approach, however, is likely to result in a substantial waste of energy. 

Table 5.2 Components operating performances of solar-wind-battery during the 

simulated year 

Parameters Data Units Parameters Data Units 

1. PV     3. Battery     

Rated capacity 145 kW Batteries number 144   

Mean output 20 kW Strings in parallel 6   

Capacity factor 14 % Usable nominal capacity 605 kWh 

Total production 177,882 kWh/yr Autonomy 58.1 hr 

Hours of operation 4,392 hr/yr Lifetime throughput 1,468,224 kWh 

Levelized cost 0.128 $/kWh Energy in 37,829 kWh/yr 

2. Wind     Energy out 32,561 kWh/yr 

Total rated capacity 10.4 kW Battery wear cost 0.174 $/kWh 

Mean output 3.4 kW Expected life 20 year 

Capacity factor 32.5 %       

Hours of operation 7,688 hr/yr       

Total production 29,584 kWh/yr       

Levelized cost 0.2 $/kWh       

 

The monthly mean electricity production from PV array and WTs is presented in Fig. 

5.7. It is noted that solar production predominated, providing almost 84% of the total 

production during the simulation year. The PV output was extremely high in the 

summer months from July to October. This is a favorable characteristic since 

electricity demand is strong in the summer due to the high cooling load demand. In 
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contrast, wind energy contribution was found to be significant in January, April and 

September but less in other months.  

The simulation results for the battery bank SOC are presented in Fig. 5.8. SOC values 

between 90% and 100% existed for approximately 74% of the time, and more than 90% 

of the time witnessed the SOC values higher than 80%, indicating that the battery bank 

was only used in “shallow” fashion for most of the time. In only two months high 

depth of discharge occurred: the lowest SOC values appeared in March and August at 

35% and 30%. This can be explained by relatively poor RE availability in March and 

a high cooling load in August. Thus there must be sufficient battery bank capacity to 

supplement the energy supply during those two months, to ensure a continuous power 

supply.   
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Fig. 5.7 Daily mean powered generated by PV and wind in different months 

 

Fig. 5.8 rainbow profile of battery bank SOC during the simulated year 
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5.4.2 Total cost break-down 

The cash flow break-down by components and cost type is shown in Fig. 5.9. The IC 

and NPC of the above system were $608,932 and $693,114, respectively. The 

corresponding COE was $0.595/kWh, approximately three time of the current 

electrical tariff in Hong Kong [314, 425]. However, it is still considered as a cost-

effective solution in comparison with the diesel generator or grid extension by 

submarine cables and overhead lines.  
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Fig. 5.9 Cash flow break-down by components and cost type 

The breakdown of the total NPC shows that about half is shared by the battery bank, 

indicating that the cost of energy storage in a stand-alone hybrid RE system is 

dominant. The cost of the PV array, IC only, accounted for 36% of the total NPC, 

followed by the WT, which takes up approximately 10%. The least cost item is the 

converter, at 5% of the total NPC.  

5.4.3 Hourly simulation results 

An example of the hourly simulation results during four consecutive days is illustrated 

in Fig. 5.10. The red line of the hollow circles and the blue line of the hollow diamonds 
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display the respective PV and WT outputs. Usually the wind energy resource was 

excessive late at night and during the early morning hours. Surplus solar energy was 

typically available during the middle of the day. The black line illustrates the load 

profile for this island. After serving the load, the excess electricity was used to charge 

the battery bank. The top violet line illustrates the battery SOC and indicates the 

amount of energy stored in the battery bank. If the excess electricity was more than 

enough to fully charge the battery bank, the surplus was then fed into the dump load, 

represented by the green line of hollow triangles.  
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Fig. 5.10 Hourly sample simulation results for four consecutive days (1st to 4th 

March) 

During 1st and 2nd March, the solar and wind resources were good and able to cater for 

the demand. Thus excessive power was produced in the afternoon. It was noticed that 

for some hours the surplus energy was not fully transferred to the battery bank even 

though its SOC had not reached a 100% level. This is because it is limited by the 

maximum allowable charging rate and current of the selected battery. The SOC is also 

dependent on the recent charging and discharging history of the batteries, which is the 

basic principle of the kinetic battery model [407]. The battery bank was periodically 

charged or discharged during the first two days, while the SOC values dropped during 
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the third and fourth day due to poor solar radiation. It was found that the lowest value 

of 82% occurred on the fourth day, but was still much higher than the allowable 

minimum SOC.  

5.4.4 The effects of PV, wind turbine, battery capacity on simulation results 

The effect of variation in PV capacity and battery number on the total NPC is shown 

in Fig. 5.11. The WT and converter were fixed at 2 units and 30kW, respectively. The 

results indicate that an increase in PV capacity can reduce the battery bank size, while 

only the optimal system configuration chosen in the study has the lowest NPC.   
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Fig. 5.11  The effect of PV capacity and battery string number on total NPC 

Fig. 5.12 demonstrates how PV capacity, number of battery strings, total NPC, and 

excess electricity produced vary with the number of WTs. It can be seen that if no 

WTs are installed, the PV-only system (Option 4) has an extremely high PV capacity 

(240kW) with 6 strings of batteries.  The system would be very expensive, with a COE 

at $0.734. In addition the dumped energy is also high. The system with two WTs is 

considered to be the optimal system type (Option 3) because it has the lowest cost and 

lowest dumped electricity. The PV size was reduced to a reasonable value for this 
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option. As the WT number increases, the battery bank can be reduced but the system 

cost and dumped electricity each grow gradually. 
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Fig. 5.12 PV, battery, NPV and excess power versus WT number  

5.5 Simulation performance of a RE system with backup DG  

 

Fig. 5.13 System diagram of the hybrid solar-wind-diesel-battery system developed 

in HOMER  

Renewable and non-renewable energy sources have remarkably different economic 

characteristics. The high initial capital cost possibly is still the biggest barrier to RE, 

while the diesel generator tends to have high operating cost. Therefore, a trade-off 
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between RE and diesel should be carefully considered with respect to the technical 

feasibility, economical cost, and environmental impact. In this section, the hybrid 

solar-wind-diesel-battery system (Option 1) was selected to study the hybrid RE with 

diesel system in detail.  

The system diagram of the hybrid solar-wind-diesel system with the battery developed 

in HOMER is shown in Fig. 5.13. The system comprised 80 kW PV panels, 2 WTs, 1 

diesel (30kW), 2 battery strings (288 kWh) and 5 converters (25kW). The total NPC 

and COE for this system are $456,002 and $0.391/kWh, respectively. 

5.5.1 Simulation performance of system components 

The simulation results for the main components are presented in Table 5.3, including 

the rated capacity, power production, hours of operation, capacity factor, levelized 

cost and other parameters.  

The monthly mean electricity production from the PV array, WTs and the diesel 

generator are presented in Fig. 5.14. Compared with Option 3 in Section 5.4, the PV 

output was still the dominating component, accounting for about 73% of total 

production during the simulation year, followed by the wind output (22%). The 

electricity provided by the diesel was only 5%, thereby resulting in a RF at 95%. 

For Option 1, only 48 batteries with 19.4 hours of autonomy were required because 

the diesel could be used to cover the peak load in the period of continuously poor 

weather. The storage capacity is only one third of the 100% RE system in Option 3. 

Therefore, the cost of energy storage is significantly reduced. However, the lifetime 

of the batteries in this option, 14.6 years, was shorter than that of option 3 (20 years), 

as they were cycled more frequently in the hybrid system. 
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Table 5.3 Components of operating performance for the solar-wind-diesel-battery 

system (option 1)  

Parameters Data Units Parameters Data Units 

1. PV     Fuel consumption 2,500 L/yr 

Rated capacity 80 kW Specific fuel consumption 0.408 L/kWh 

Mean output  11.2 kW Mean electrical efficiency 24.9 % 

Capacity factor 14 % Electrical production 6,120 kWh/yr 

Total production 98,142 kWh/yr Operational life 23.5 yr 

Hours of operation 4,392 hr/yr Fixed generation cost 4 $/hr 

Levelized cost 0.128 $/kWh Marginal generation cost 0.473 $/kWh 

2. Wind     4. Battery     

Total rated capacity 10.4 kW Batteries number 48   

Mean output 3.4 kW Strings in parallel 2   

Capacity factor 32.5 % Usable nominal capacity 288 kWh 

Hours of operation 7,688 hr/yr Autonomy 19.4 hr 

Total production 29,584 kWh/yr Lifetime throughput 489,408 kWh 

Levelized cost 0.2 $/kWh Energy in 35,897 kWh/yr 

3. Diesel generator     Energy out 30,988 kWh/yr 

Total rated capacity 30 kW Battery wear cost 0.174 $/kWh 

Hours of operation 637 hr/yr Expected life 14.6 year 

 



 

148 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

2

4

6

8

10

12

14

16

18

P
o

w
e

r 
(k

W
)

Month

 PV

 Wind

 Diesel

 

Fig. 5.14  Hourly mean power generated by PV, wind and diesel by month 

The battery bank’s SOC distribution is presented in Fig. 5.15. The SOC distributions 

in Option 1 and Option 3 were distinctly different. In Option 1, the SOC values at the 

two extremes were very high. SOCs from 95% to 100% were achieved for 16% of the 

time period, followed by the SOC values from 30% to 35%. The battery bank hourly 

SOC profile illustrates that some hours in March, June and August reached the 

maximum depth of discharge. The main reason for this phenomenon seems to be the 

relatively poor availability of RE resources in March and June, and high cooling loads 

from June to August. It can also be inferred that the diesel generator operates 

frequently during those three months in order to meet the energy shortage, proved in 

Fig. 5.14.  

 

Fig. 5.15 Coarse rainbow profile of battery bank state of charge during the simulated 

year 
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5.5.2 Total cost break-down 
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Fig. 5.16 Cash flow break-down by components and cost type 

The total NPC of the optimal system configuration in Option 1 was $456,002, much 

less than that of the 100% RE system in Option 3 ($693,114). The corresponding 

levelized COE was only $0.391. As shown in Fig. 5.16, the PV system costs account 

for the major share at 35% of the total NPC, followed by the battery and WT cost. The 

diesel generation cost takes up 16.2% of the total NPC due to high fuel cost, while 

diesel only contributed 5% of the energy supply.   

5.5.3 Energy flow or energy balance analysis  

Fig. 5.17 summarizes the energy flow for Option 1. 5% of the total energy production 

was contributed by the diesel generator, and the rest was by the PV array (73%) and 

the WTs (22%).  However, 21% of total production was surplus to demand and had to 

be dumped. If more batteries were to be employed, the surplus energy would drop but 

the total NPC would increase. Battery and converter losses took up 14% of the total 

energy used.  
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Fig. 5.17 Summary of the energy flow during the simulated year 

5.5.4 Hourly simulation results 
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Fig. 5.18 Hourly sample simulation results on 6th March 

The hourly simulation result on 6th March of the year is illustrated in Fig. 5.18. At 

4:00am, for example, the PV output was zero and wind output only 0.086 kW. To cater 

for the load of 3.488kW, the diesel generator operated at its minimum load ratio of 30% 

(9kW). The AC output from the diesel generator was sufficient to meet the load, thus 

the surplus power (5.552 kW) was delivered into the battery bank through the rectifier. 

The DC wind output was also in excess and directly charged into the battery bank. 

Therefore, the total input power to the battery bank (5.083kW) was the sum of the 
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rectifier output (4.997kW) and entire WT output (0.086kW). During the next hour, 

beginning at 5:00am, the energy stored in the battery bank and wind output was able 

to meet the load of 4.24 kW. To do this, the power input into the inverter should be 

equal to 4.711kW DC, contributed by the wind turbine (0.286 kW) and battery 

discharge (4.425kW). In summary, with the aid of the diesel generator, no energy 

shortfall and wastage occurred on that day.  

5.5.5 Renewable fraction 

Based on the overall results, in the following case, the cost of a 100% RE system is 

less than that of a diesel power generation system as a result of the high diesel price. 

Therefore, the greater the RE contribution, the less expensive the energy supply. 

However, the inclusion of diesel to serve periods of peak load and poor RE resources 

availability, can avoid the need to provide excessively large RE generation and storage 

capacity, thus a hybrid RE with diesel system is a more economically viable option, 

even with high fuel costs. In this study, sensitivity to minimum RF was explored by 

testing of the inclusion of RF values of between 50% and 100%. The simulations show 

that the RF at 95% is the most cost-effective. Intermittent running of the diesel 

generator not only greatly cuts down the capacity of the PV and WT installations but 

also significantly reduces overall system costs and wasted energy. 

5.5.6 Dispatch strategy 

The cost-based dispatch logic, based on the fixed and marginal cost of energy, explains 

how to choose the cheapest dispatch source between the battery bank and diesel. Fig. 

5.19 presents the cost of the battery bank and diesel generator with two fuel prices. 

The fuel price of $1.8/L is the price in Hong Kong. The price at $0.1/L [34] in Saudi 

Arabia was adopted for comparison.  
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Fig. 5.19 Cost comparisons of battery and diesel generator for different fuel prices 

As presented in Fig. 5.19, the diesel’s marginal cost of energy (line slope) 

($0.473/kWh) is much higher than the battery cost ($0.174/kWh) in Hong Kong, and 

thus the difference between them grows with power increase, indicating that the LF 

strategy should be employed as the cost of diesel for charging the battery is much 

higher than the cost of enlarging the battery bank. Although the LF strategy was 

adopted in for the hybrid system, the excess electricity from diesel was charged into 

the battery bank only when the diesel was under the minimum load ratio of 30% to 

avoid wasting energy. No excess electricity was generated by the diesel under high 

load ratios as the total energy produced was used to serve the load. For the system in 

Option 1: over the simulation period, 573kWh of electricity, about 9.4% of the total 

6,120 kWh of diesel generated power, was in excess and stored in the battery bank.  

For a fuel price of $0.1/L, the diesel’s fixed cost was $1.67/h (the intercept of cost 

line). The marginal cost was $0.026/kWh, much lower than that of the battery. 

Therefore, the cost lines of the battery bank and diesel crossed at the power of 11.3 

kW, which means that if the net load was less than 11.3kW, the batteries would be 

cheaper for supplying the load; otherwise, the diesel would be chosen to supply the 
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net load, even if the battery bank was capable of serving the load. However, the 

dispatch strategy not only depends on the cost of energy but also on the minimum RF. 

If the minimum RF was set at 90%, the LF strategy would be the only suitable method. 

If there was no RF limitation, the CC strategy would be better when net load is greater 

than 11.3kW. 

5.5.7 The effect of diesel price 
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Fig. 5.20 COE of two systems types against with diesel price 

The COE comparison between Option 1 and Option 7 (diesel-only) was made for 

different diesel prices from $0.3/L to $2.1/L (Fig. 5.20). The COE for Option 1 

intersects that for Option 7 at the lower diesel prices of between $0.3/L to $0.6/L, 

indicating that Option 7 might be economically feasible for those areas with a low 

diesel price, providing the environmental impacts are not taken into account. The 

COEs for the two options increase in proportion to the increase of diesel price, but the 

growth trend for Option 7 is much greater than that for Option 3. When the diesel price 

reaches $2.1/L, the COE of Option 7 can be 2.6 times that of Option 3. It is obvious 

that further increase in diesel price can enhance the cost effectiveness of the hybrid 
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RE with diesel when compared with that of a diesel only system. In addition, the RF 

of Option 1 grows, i.e. tending to use more RE, as diesel price increases.   

5.5.8 The effect of PV, number of WT and battery capacities on the result of 

Option 3   

As a final remark, an attempt was made to study the effects of changing the key 

variables on the simulation results of Option 1. Fig. 5.21a illustrates that, for the 

majority of systems, the optimal battery string number is two. Excluding two 

infeasible configurations, the COE values are in the range of $0.39-$0.50/kWh (Fig. 

5.21b) and diesel consumption from 768 to 4,872 L/year (Fig. 5.21c). The majority of 

diesel consumption is less than 2000L. 
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Fig. 5.21 The optimal system configuration versus PV size and WT number in 

Option 1: (a) optimal string of batteries; (b) COE values and (c) diesel consumption 

Similarly, the optimal number of WTs against variation of PV and battery bank sizes 

is presented in Fig. 5.22a. In most cases, the optimal WT number is 2, a number which 

is also proved by Fig. 5.22b. With the optimal WT number, the effects of battery bank 

and PV capacity on COE are displayed in Fig. 5.22b, indicating that the results are 

more sensitive to battery bank size than PV size. Diesel consumption with this optimal 

WT number fluctuates greatly with variations in PV array size and battery capacity 

(Fig. 5.22c).   
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Fig. 5.22 The optimal system configuration versus PV size and battery strings in 

Option 1: (a) optimal WT number; (b) COE values; (c) diesel consumption 

 

Fig. 5.23 The optimal system configuration versus WT number and battery strings in 

Option 1: (a) optimal PV size; (b) COE values; (c) diesel consumption 

Finally, the optimal PV array capacity in relation to variations in the number of WTs 

and battery bank size was studied, and the results are presented in Fig. 5.23. For the 

system with one WT and one battery string, the optimal PV size is 105kW, and the 

corresponding diesel consumption is extremely high, 6148L/year (91% RF), and the 

COE is $0.467/kWh. With increase in WT, the PV sizes decrease gradually, whereas 

the COE and diesel consumption remain largely unchanged.  

In summary, sensitivity analysis of PV capacity, the number of WT and battery 

systems show that the system configuration under study (i.e. 80 kW PV, 2 WTs and 2 

battery strings) is the optimal one.  
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5.6 Summary of this chapter 

In this study, eight battery storage based power generation options were investigated 

for the Town Island from the techno-economic point of view. Two options are fully 

examined and analysed. Based on the simulation results, the following conclusions are 

drawn:  

 The simulation results of Option 3 (solar-wind-battery) show that the island could 

be powered by a 100% RE system. The combination of solar energy, wind energy 

and battery storage can supply a continuous power to this island. The optimal 

configuration is capable of saving a large amount of diesel and greatly reducing 

GHG. This fully renewable power generation with battery storage could be an ideal 

solution from the point of view of environmental conservation and the energy 

provision. However, the cost of energy may be much higher than the electricity 

tariff. With expected continuing rapid development in the renewable energy 

industry and upgrades in storage technology, the system’s cost should be reduced 

and hence off-grid RESs sited in remote places could be more promisingly evident. 

 The introduction of a diesel generator into the RE system can make the hybrid 

system (Option 1: solar-wind-diesel-battery) more economically viable, 

particularly for those areas experiencing low diesel cost. The solution, a 

compromise between RE and diesel generation, has great potential to replace the 

existing diesel generators on the island, as this solution provides a reasonable COE 

value and high RE fraction (95%). The COE and payback time for this option 

would be much lower than those of a fully renewable energy system described in 

Option 3. The generator is scheduled only to assist the RE generator to cater for 

peak loads, thus little diesel is consumed, and a higher RE penetration level is still 
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able to be guaranteed. However, such systems will emit GHG due to the 5% energy 

diesel contributed, making this system type not so favourable.  

 The diesel-only and diesel-battery systems not only provide the highest COE but 

emit massive GHG amounts every year. This could cause environmental problems 

from a long-term perspective. Therefore, the option of diesel should be abandoned. 

The addition of a battery bank is recommended if the diesel system has to be 

applied.   

In summary, the study demonstrates that the existing diesel generation system on this 

island could be fully replaced by a 100% renewable energy power generation system, 

and the addition of a back-up diesel generator makes the hybrid energy system a more 

economically viable option. It can be expected that in the near future the transition 

from diesel to high renewable energy penetration will be increasingly popular in 

remote areas for power generation. 

It is believed that the outcome of this study could serve as a starting point for the 

design of a renewable energy system on the island. The methodology of this study can 

also be viewed as a benchmark for planning and sizing hybrid renewable systems 

suitable for other similar remote areas. 
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CHAPTER 6   DEVELOPMENT OF PUMPED 

STORAGE BASED-RENEWABLE ENERGY 

SYSTEMS 

The battery-based renewable energy system is widely used for remote areas. However, 

some barriers concerning batteries, for example high costs and negative environmental 

impacts, limit wider usage and future applications. The pumped hydro storage is 

introduced in this chapter, as an alternative to support standalone microgrid RE 

systems. This technology provides a new energy storage solution to serve intermittent 

solar and wind energy systems in remote areas where there is no access to the utility 

grid.  

A novel operating principle for the pumped storage-based RE system has been 

developed, and the initial design process is presented below. The performance of the 

system was simulated hour-by-hour throughout a complete year. The genetic 

algorithm, along with the Pareto optimality concept, was used for system techno-

economic optimization, to maximize power supply reliability and minimize system 

cost. A case study based on Town Island research project was made, using the method 

developed and the proposed system. The optimized system configuration under zero 

loss of power supply probability (LPSP) was examined. In addition, the system 

performances of hybrid solar-wind, solar-only and wind-only systems with pumped 

storage for LPSP values from 0 to 5% were investigated and compared. Sensitivity 

analysis in relation to several key parameters, such as load demand and renewable 

energy cost, was also performed to examine their effects on system performance.  
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6.1 System configuration and operation principle 

6.1.1 Pumped storage-based renewable energy systems 

As illustrated in Fig. 6.1, the hybrid solar and wind system with pumped storage is 

equipped with a PV array, wind turbine (WT), pumped hydro storage, an end-user and 

a control station.  

 

Fig. 6.1 System schematic of a hybrid solar-wind system with pumped storage 

system 

The locally available solar energy matches well with the load demand, so it is 

reasonable to use solar panels to convert sunlight to generate power in the daytime. 

The WTs usually produce more power at night and on rainy days. Therefore, this 

complementary characteristic of solar and wind energy can reduce not only the 

installed capacity of the renewable generator but also the amount of energy storage 

needed. An inverter transforms the output DC to 220V AC supply load via the power 

distribution network. Any surplus power is used to pump water to a high elevation 

reservoir. A pump-turbine set, converting renewable electrical energy into mechanical 

energy and vice versa. In this system, there are two separate penstocks, one only used 
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for pumping water and the other only for generating electricity. The two processes, 

therefore, charging and discharging, can occur simultaneously [257]. This double-

penstock system is popularly used because it makes easier the stabilization of power 

voltage and frequency.  

 

Fig. 6.2 System schematic of a pumped storage-based PV power generation system 

Similarly, a stand-alone solar PV system with pumped storage is presented in Fig. 6.2 

as appropriate for areas lacking sufficient wind energy. The pumped storage as shown 

is a simpler and single-penstock system, but it is unable to charge and discharge power 

at the same time.  

The systems of Fig. 6.1 and Fig. 6.2 are isolated from the utility grid, and hence called 

standalone systems, designed for remote areas where utility extension is either overly 

expensive or impossible. The whole microgrid system in a standalone mode is 

managed by a control centre, an essential element for load management and energy 

distribution.  

The pumped storage-based RE system can be fully integrated with natural conditions 

because it can make use of local streams and collect rain water in the UR. In this way, 

Motor/Generator 

Pumping

Pipe/Penstock

Upper reservoir

Control 
centre

End-use

PV array

Pump/Turbine

Inverter

Lower reservoir

Motor/Generator 
Pipe/Penstock

Upper reservoir

Control 
centre

End-use

PV array

Pump/Turbine

Inverter

Lower reservoir

Generating

(a)  In the day time (b)  In the night time



 

161 

 

some of the evaporation and leakage in the UR can be offset. Therefore, the 

discharging of water through a turbine mode relies on a combination of the water 

previously pumped to UR and collected rain water/natural inflow, while the charging 

mode relies only on the sea water [292].  

6.1.2 Operation principle  

The pumped storage subsystem plays an important role in shifting energy surpluses, 

mitigating the intermittency of RE sources, and also in balancing fluctuations in supply 

and demand. The operating principle of the system is given briefly as follows. During 

the charging/pumping mode, the pumped storage system is based on two vertically-

separated water reservoirs. The pump elevates water from the lower reservoir (sea or 

river or an artificial pool) to the UR using excess RE output after meeting the load. 

During the discharging/generating mode, the stored water flows down to the lower 

reservoir, enabling the production of electricity as a result of passing through a 

turbine/generator unit. This occurs during periods of high electrical demand whenever 

there is insufficient renewable energy production.  

In such a manner, a sustainable and continuous power supply can be guaranteed 

throughout the 24 hours of a day, and the potential environmental problems due to the 

use of batteries can be avoided, although the cyclic processes will suffer from some 

conversion losses. Pumped storage, therefore, is ideal for integrating intermittent RE 

supplies, and is an environmentally favourable alternative to batteries, especially for 

stand-alone applications.  
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6.2 System modeling, simulation and optimization  

6.2.1 Mathematical modeling 

The mathematical modeling and specification information relating to major system 

components is given above in Chapter 4 of this thesis.  

6.2.2 Initial design  

Before undertaking system simulation and optimization, initial values of the key 

components must be determined. The calculation flowchart is shown in Fig. 6.3. Three 

major parameters, NPV, NWT, and VUR, were initially determined based on this flowchart. 

The methods are explained as follows.  

Solar radiation

Modelling of PV 

array output

Modelling of wind 

turbine output
Load demand

initial value of NPV initial value of NWT 

initial value of VUR

Wind speed

Modelling of pumped 

storage system
 

Fig. 6.3 Flowchart to determine initial values of components (NPV, NWT, VUR) 

One objective of system optimization is to minimize the magnitude of the difference 

between the generated power 
genP  and the load demand demP , in order to reduce 

required energy storage capacity.  

 
gen dem PV PV WT WT demP P P N P N P P       (6.1) 



 

163 

 

where PVP  and WTP  are the power generated by a single PV panel and a specified wind 

turbine, respectively; PVN  and WTN  represent the number of PV panels and wind 

turbines employed.  

Therefore, the total generated and required energy over a period T  can be written in 

terms of the generated solar/wind power 
genE and the load demand demE as follows: 

 
1

( )
T

gen PV PV WT WT

t

E N P N P t


    (6.2) 

 
1

T

dem dem

t

E P t


   (6.3) 

where T  is the total time period, and t  is the time interval between the successive 

samples taken, which in this case  is one hour. 

 The initial value of PV panels and wind turbine number 

In the proposed system, solar panels and the wind turbines are seen as an integrated 

power generator supplying the load. The average power obtained from the power 

generator should be larger than the average load power required, i.e. 

 
gen demP P  (6.4) 

Therefore the combination of the required number of solar panels and wind turbines 

can be calculated. As wind turbine numbers change from 0 to 10, the corresponding 

PV panel numbers are determined.  
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 The initial upper reservoir volume  

It was observed in the literature [259] that the most significant variables in the design 

of pumped hydro systems are the volume of the upper reservoir and the height 

difference between the upper and lower reservoirs. In the current study, the height 

difference was fixed at 60 m based on the geography of the island concerned. The sea 

provided the lower reservoir. Only the volume of the upper reservoir, therefore, had 

to be initially determined.  

In order for a generated electricity load to balance over a given period of time, the 

curve of E  over that time must average at least zero. Note that positive values of E  

indicate the availability of surplus power, and negative E  indicates a shortage of 

generated power. An equation relating energy to E  can be obtained by integrating 

P : 

 
gen demE Pdt E E      (6.5) 

The energy curve of Eq. (6.5)  can be used to find the initial volume of the UR URV . 

On an average day, the pump and turbine are required to cycle between the positive 

and negative peaks of the energy curve. Therefore, the UR in the pumped storage 

system should have a capacity at least equal to the difference between the positive and 

negative peaks of the energy curve. 

 ( ) ( )PHSE Max pdt Min pdt      (6.6) 

Hence, the required volume of the upper reservoir can initially be calculated: 

 PHS
UR

t

E
V

gh 
  (6.7) 
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where t is the efficiency of turbine (%),   is the density of water (kg/m3); URV  is the 

volume of the upper water reservoir (m3); g is the gravitational acceleration 

(9.81 m/s2); h is the total head (m). 

6.2.3 Simulation and optimization   

The simulation study was performed using a one hour time-step and for one whole 

year’s duration. The hourly interval is sufficiently small to model the intermittency of 

the RE resources and fluctuating electrical load with fair accuracy, yet not too small 

to require an excessive increase in the computation complexity. Thus, the design 

simulation process will be practical. 

 Rationale for system optimization 

Standalone autonomous RE systems are usually unreliable power sources due to the 

intermittent nature of weather conditions. A combination of RE generation and energy 

storage, however, can provide reliable and sustainable energy autonomy for remote 

areas. However, the combination should be optimized to ensure that the load can be 

met at all times, as well as to balance between generator and storage capacities [426].  

If a large pumped storage system is used and the RE generation system is 

underdesigned, the upper water reservoir may be left in a discharged state for long 

periods of time resulting in unmet loads. This situation would be dangerous, especially 

for the primary load, which has to be met at the time of need. In contrast, if the RE 

generation system is oversized, the overcharging of UR may occur and waste of energy 

will result. Therefore, system optimization should specifically aim to size the system 

components as sufficient to simultaneously meet load requirement and minimize 

system costs. 
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 Optimization methodology and algorithm 

The principle objective of system optimization is to determine the optimal 

combination of the number of PV modules NPV, the number of wind turbines NWT, and 

the volume of the upper reservoir VUR, after meeting the technical and economic 

constraints. That is the co-called techno-economic optimization. The optimization 

technique simulates all possible configurations satisfying the technical system 

reliability constraints and determines that with the lowest system lifecycle cost, in 

other words the “optimal”. 

Many studies have been conducted regarding the sizing and optimization of RE 

systems because of the recent wide utilization [229, 427-429]. Among the 

optimization methods, the genetic algorithm (GA) approach has been extensively 

studied. The basic GA principle is based on the Darwinian Theory of natural selection 

(survival of the fittest) [430, 431], i.e. the strongest is likely to be the victor in a 

competing environment [432]. This approach performs a stochastic global search 

(optimization)  simulating the metaphor of real biological evolution [433]. Basically, 

the GA operates on a population of individuals represented by chromosomes, which 

are evaluated, selected, merged, mated, and mutated along the generations to find the 

best solution according to the predefined fitness function [171]. The flow chart of GA 

optimization is illustrated at the bottom of Fig. 6.4. 

For the single-objective optimization, the LPSP was predefined as 0%, and therefore 

the only fitness function is the COE of the system. If two objectives are employed for 

technical-economic analysis, i.e. both COE and LPSP, the general approach is the 

determination of a Pareto optimal solution set or a representative subset [434]. A 

Pareto optimal solution set is often preferred to a single solution because of its 
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practicality for real-life problems, as the final solution of the decision-maker is always 

a trade-off. The ultimate goal of a double-objective optimization algorithm is the 

identification of solutions in the Pareto optimal set.  
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Fig. 6.4 Flowchart of the system optimization process using GA 

The system simulation and optimization flowchart is illustrated in Fig. 6.4. The inputs 

data to this algorithm are: the hourly weather data throughout the year including solar 

radiation, wind speed and ambient temperature, the desired LPSP value for one year 
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and specifications and cost information for different systems components. The 

mathematical models make clear that the relationship between decision variables is 

not linear and only techno-economic analysis with GA optimization, therefore, can 

identify the optimal system combination of NPV, NWT and VUR. Firstly, two fitness 

functions, LPSP and COE, are evaluated. If the LPSP requirement is met and the 

lowest COE applies, the optimal system configuration is then obtained. If the system 

configuration is not able to meet the targeted LPSP or has a higher COE, the 

combination is discarded, and then goes to the GA optimization process, i.e. selection, 

crossover and mutation operation. A new system combination is then generated and 

the cycle, simulation, evaluation and optimization is repeated until the desired LPSP 

values are met simultaneously with the lowest COE values.   

6.3 Technical feasibility study 

Technical feasibility of the pumped storage-based RE system is examined in this 

section. Together with the wind capacity ranging from 0 to 20.8 kW in steps of 5.2 

kW (the rated power of one WT) and PV size from 100 to 170 kWp in steps of 10 

kWp, 40 cases in total were simulated. During simulation, a zero energy deficit was 

set for all cases, and the initial quantity of water in the UR was assumed to be at 

maximum capacity. Using the simulation program developed by the author, the 

required minimum UR capacity can be derived for each PV and wind turbine 

combination. For example, in theory, if the number of wind turbines is two and PV 

size is 120kWp, the required minimum UR size was calculated at 6100 m3.  

The overall results are presented in Fig. 6.5. For the first scenario, there were no wind 

turbines i.e. a PV-alone system with pumped storage. The lowest UR capacity (6,100 

m3) can be achieved when the PV size is 170 kW. The UR capacity increases gradually 
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as the PV size decreases. For a PV of 120kW, for example, the UR soars up to12,700 

m3. If PV size is further decreased, the UR becomes unreasonable at over 31,300 m3.  
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Fig. 6.5 Overall simulation results 

For the second scenario, a single wind turbine was assumed. Due to the 

complementary characteristics in the timing of solar and wind energy outputs, the 

required UR size can obviously be reduced. For the same PV size, the UR size can be 

reduced by about 30% compared to the PV-alone system. Similar trends can be found 

for the wind turbine numbers 2 to 4. More wind turbines reduces both PV and UR 

capacities.  

6.3.1 Sizing curve 

The minimum UR capacity required to achieve 0% LPSP were connected to generate 

the sizing curve. As shown in Fig. 6.6, similar characteristics can be found between 

the sizing curves of different system configurations. Fig. 6.6 demonstrates that for a 

fixed number of turbines, UR decreases as PV is increased and that this decrease trend 

becomes much less evident at the larger PV values. Indeed the curves indicate a 
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minimum level of storage is needed however big the PV array and the number of WTs, 

if energy autonomy is to be provided whereby power supply can be sustained for 

several days in circumstances of no wind and no sun. 
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Fig. 6.6 sizing curve for pumped storage-based renewable energy system 

Similarly, for the same PV size, increase in the number of WTs also reduces the UR 

size. The phenomenon is particularly obvious at the smaller PV sizes. Compared with 

the PV-alone system, significant reductions in UR size can be observed for the hybrid 

systems. 

The curves in Fig. 6.6 also demonstrate that the space over the each sizing curve is the 

feasible design space for each scenario, while the space below is the infeasible region. 

Within the design space, any combination of WT numbers, PV and UR capacities is 

technically feasible. The actual decision is to a large extent dependent on the economic 

effectiveness of the combination. Therefore, optimized sizing, which must take 

economic and reliability into account, should be developed. Such a study is described 

in the following Section 6.5. 
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6.3.2 Wind turbine alone system  

The wind turbine alone system with UR at 2,5000 m3 was also studied. As illustrated 

in Fig. 6.7, when the wind turbine number increases from 10 to 70, the LPSP value 

decreases from 18.7% to 0%. A significant improvement in the reliability of power 

supply can be observed when the number of turbines changes from 10 to 20. Further 

increase in WT numbers continues to increase power supply reliability but less 

effectively. It seems that without PV panels a large number of WTs are required to 

achieve a zero LPSP power supply system. 
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Fig. 6.7 LPSP and excess energy percentage of the wind-alone system 

Since the WT output pattern cannot conform to the daily and seasonal load 

consumption profile, the excess power grows with the increase WT number. Up to 

87.5% (2,423kWh per day in average) of the electricity production was wasted in the 

case of 70 wind turbines due to the limited energy storage capacity. The amount of 

energy spilled is much greater than the energy required. Indeed, the energy storage 

system is even more important for wind turbine alone systems, as the production of 

WT fluctuates rather more than PV production.  
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Based on the results of the PV-alone and wind-alone systems, it is clear that PV arrays 

and wind turbines working together can provide greater value than either technology 

forms acting alone. Better utilization of the available energy and thus less energy 

storage capacity is needed. 

6.4 Techno-economic optimization of PV-PHS  

6.4.1 Single-objective and two-objective optimization 

In this section, a hybrid solar PV and pumped storage system is studied as an example 

to enable a comparison of the performance of the one-objective and two-objective 

optimization approaches. 

 Single-objective optimization  
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Fig. 6.8 Progress chart (variations of COE during GA optimization process) 

During the single-objective optimization, LPSP was set to zero, meaning that no 

energy shortfall was allowed. The single objective to be optimized was the COE. The 

COE variation during the GA optimization process (200 generations) is shown in Fig. 

6.8, demonstrating that a near optimal solution can be obtained very quickly during 
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the generation evolutions of GA optimization. The lowest COE was $0.289/kWh, and 

was considered to be the optimal case. 

The system configuration under single-objective optimization is presented in Fig. 6.9. 

During the simulation, the number of PV modules changed from 400 to 900 in steps 

of 1, and UR volume changed from 0 to 160,000 m3 in steps of 1 m3. The lowest COEs 

for the different system combinations are presented in the curve of black dots. Each 

point on the curve represents a system configuration which can satisfy the technical 

target. For the single-objective optimization, the only benchmark for evaluating 

system performance is the economic index COE, thus the point with the lowest COE 

is the optimal configuration. Based on Fig. 6.9, the main components in the optimal 

system configuration consist of PV arrays (595 modules, 119 kWp), pumped storage 

subsystem (UR: 13,205 m3, pump: 90kW, turbine: 28kW) and inverter (30kW), and 

the corresponding NPC and COE figures are $413,850 and $0.289/kWh, respectively. 
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Fig. 6.9 COE vs. system configuration when LPSP is fixed at 0% under single-

objective optimization 
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The relationship between the COE and system configuration parameters NPV and VUR 

was also investigated. As indicated in Fig. 6.9, the red points in the XY surface, i.e. 

the projection of the black curve, are used to generate the sizing curve for the proposed 

system if economics are not taken into account. In addition, the green points in the XZ 

surface depict the relationship between COE and the number of PV panels. It can be 

seen that as the number of PV modules grows, the COE decreases rapidly until the PV 

number is 595, after which the COE begins to increase gradually. A similar trend is 

found in the relationship between COE and the UR volume (the blue points in YZ 

surface). In summary, the lowest COE is indeed achieved at the optimal system 

configuration.  

 Double-objective optimization 
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Fig. 6.10 Pareto front in the double-objective optimization 

The double-objective optimization approach was based on the LPSP and COE criteria, 

and the Pareto optimality concept was used for the system techno-economic 

optimization using the GA technique. Fig. 6.10 illustrates the Pareto optimal solution 
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set obtained, meaning that there is no single optimal solution, but a set of infinite 

solutions. All of the optimum design points in the Pareto front are non-dominated and 

could be chosen with equal validity as optimum system configurations. Obviously, 

choosing a better value for any one objective function in the Pareto front would result 

in a poorer value for the other objective. The final solution of the decision-maker, 

therefore, is subject to a trade-off between technical and economic targets. Greater 

power supply reliability will result in a higher cost, and vice versa.  

In this technical-economic optimization, the optimal system configuration under zero 

LPSP is the same as that for single-objective optimization. COE declines dramatically 

as LPSP increases. COE was reduced by 3.8% and 5.5% respectively for LPSPs at 1% 

and 2%. The cost could be further decreased by about 9.3% (COE:  $0.262/kWh) if an 

LPSP of 5% were to be allowed.  

Table 6.1 Optimal system configurations under different LPSP values 

Targeted 

LPSP 
NPV 

VUR 

(m3) 

NPC 

($) 

COE 

($) 

Excess power 

(kWh) 

Resulting 

LPSP 

0% 595 13,205 413,850 0.289 18,263 (12.2%) 0.00% 

1% 594 9,960 397,734 0.278 19,183 (12.9%) 0.99% 

2% 592 8,535 389,843 0.273 19,913 (13.4%) 1.99% 

3% 575 8,430 384,195 0.269 16,670 (11.5%) 2.99% 

4% 564 8,040 378,847 0.265 14,980 (10.6%) 4.00% 

5% 564 7,200 374,352 0.262 16,127 (11.4%) 5.00% 

 

Optimal system configurations under different LPSP values were also investigated. 

The results were derived from double-objective optimization and are summarized in 
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Table 6.1, which demonstrates that the number of PV modules decrease slightly with 

an increase in targeted LPSP, and the volume of UR reduces greatly. A LPSP of 1% 

could bring a dramatic decrease in the volume of UR, which could be further reduced 

to 7,200 m3 if a LPSP of 5% was allowed. The effect of LPSP values on excess power 

is not obvious because the number of PV modules and the UR volume decreased in 

unison. With the aid of double-objective optimization, it can be concluded that if not 

meeting some small proportion of the load can be accepted, significant reductions in 

capital cost, PV module numbers and UR size can be achieved.  

6.4.2 The optimal configuration assuming zero LPSP  

The performance of the optimal system case is examined as follows. 

 Economic cost analysis 

The total NPC for the optimal system configuration was $413,850, and the 

corresponding COE was $0.289/kWh, i.e. HK$2.243/kWh. Currently, the general 

service tariff in Hong Kong is HK$0.973-1.206/kWh depending on the amount of 

electricity consumed and the power supply company fuel costs  [435]. However, the 

tariff, including basic tariff and fuel clause charge, increases at for about 5% annually 

due to wider use of cleaner but more expensive fuel, and as existing electricity 

generation facilities are to be retired [436]. Therefore, the cost of this RE system will 

be probably lower than the retail electricity price 15 years later. In addition, if the 

electricity were to be supplied by a diesel generator with fuel transported by sea, the 

cost would be much higher than the RE solution. Compared to extending the grid by 

submarine cables and overhead lines, the economic and environmental benefit of the 

proposed system would be significant. 
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The breakdown of the system’s NPC by components and cost type is illustrated in Fig. 

6.11. Of interest is that the cost of a pumped storage system, including pumps, turbines, 

and UR, accounts for about 47% of the total system NPC, followed by the cost of PV 

modules which assume  initial capital costs only. The least costly item is the inverter, 

at nearly 10% of the total NPC. Compared with battery-based RE power generation 

systems in Chapter 5 [16], the cost share of the energy storage subsystem is similar, 

indicating the importance of energy storage in standalone RE systems. However, the 

pumped storage cost is much less than battery storage costs, demonstrating the benefit 

of pumped storage solutions.  
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Fig. 6.11 Break-down of NPC by components  

 Energy balance analysis 

The optimal case simulation results reveal that the year-round energy output from the 

PV plant was 157,404kWh with the peak output at 105kW. The daily average PV 

generator output was 410 kWh after the deduction of the inverter conversion losses, 

and can be further divided into three components (Fig. 6.12): About 31.4% was used 

to supply the end-users directly, and 56.4% was taken up by the pump/motor unit, 
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meaning that on average 990 m3 of water was pumped every day from the lower 

reservoir to the upper one for storage. About 12.2% (50kWh/d) of the total PV 

production, however, was lost in the “dump load”, usually in the afternoons when the 

available sunlight produced more power than needed while the UR was already full. 
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Fig. 6.12 Breakdown of PV output after the PV inverter  

The average hourly load shared by the PV output and turbine/generator unit is shown 

in Fig. 6.13. As expected, the PV could satisfy the majority of the load in the daytime 

between 7:00am and 6:00pm. From 7:00pm until the next morning 5:00am, the load 

was met, totally, by the turbine output due to non-availability of solar radiation. As a 

result, the PV supplied directly to the load ratio was 51.4% and the corresponding 

turbine to load ratio was 48.6%.  
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Fig. 6.13 Hourly load shared by PV direct output and turbine  

 Energy storage system performance  

Fig. 6.14 illustrates the UR’s SOC distribution frequency from 0% to 100%. About 

81% of the SOC values are above 50%. Additionally, a fully charged status was 

available for 430 hours and dissipation of excess energy was likely to occur at that 

time. As a whole, the total amount of dumped energy in this case was 50kWh/d due to 

insufficient UR capacity.   

 

Fig. 6.14 Frequency distribution of UR’s SOC 

Based on Eq.(3.41), the UR stored water could supply energy for this island for about 

6.5 days without RE backup. Such a design allows power to be supplied for several 

consecutive days of poor or even no PV output. During the year, the electricity input 

to the pumping system was 84,367kWh and output from the turbine generator was 

44,347 kWh, giving an overall efficiency of the storage subsystem of 52.6%. 

 Sample hourly simulation result analysis 

A plot of the hourly simulation results for 1st July is given as an example in Fig. 6.15. 

It can be seen that no energy was dumped on that day as the water level in the UR did 
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not reach its maximum, and also, there was no energy deficit, since the UR never 

became empty. As illustrated, the PV array began to generate electricity and served 

the load from 7:00. The excess power after meeting the load was used to pump water, 

and thus water level in the UR increased gradually. At 19:00, PV output could only 

serve part of the load and so the turbine cut in to restore the balance. The turbine then 

operated continuously to supply the total load demand until 7:00am the next morning 

and then went to another cycle. During the discharging period during the night, the 

volume of water stored in the UR reduced steadily. The result demonstrates that the 

pumped storage system effectively compensates for the unpredictable nature of solar 

energy by absorbing excess energy when the production exceeds load levels and then 

releasing it when the opposite is the case, hence ensuring a reliable and continuous 

power supply. 
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Fig. 6.15 Hourly simulation results on a sample day 
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6.5 Techno-economic optimization of PV-wind-PHS systems  

The optimization of a standalone hybrid solar-wind-pumped storage system is 

described. The techno-economic optimization results of the hybrid system are 

discussed, and compared with the solar-pumped storage and the wind-pumped storage 

systems. 

6.5.1 Performance analysis of the optimized, overdesigned and underdesigned 

systems 

The techno-economic optimization demonstrated that the optimal system 

configuration consists of 553 PV panels (110.6kWp), 9220 m3 upper reservoir and 1 

wind turbine (5.2 kW), with a resultant COE of US$0.286 (HK$2.219). The use of 

only one wind turbine is due to the relatively high cost of the selected turbine, which 

should survive typhoons. 

3096 3120 3144 3168 3192

0

20

40

60

80

100

 oversized system

 optimized system

 undersized system

Time (hour)

S
O

C
 (

%
)

0

20

40

60

80

100

 

Fig. 6.16 SOC of the energy storage system under different system configurations 

To examine the effectiveness of optimization, two other system configurations, i.e. 

oversized and undersized, were studied and compared with the optimized system. Fig. 

6.16 shows the SOC distribution of the energy storage system for the three systems. 
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System configurations and the resultant performance indices, including COE, LPSP 

and excess energy percentage, are summarized in Table 6.2. It can be seen that the 

oversized system has a high reliability but the COE is significantly higher than the 

optimized system. UR, for most of the time was fully charged and therefore about 43% 

of excess energy had to be dumped. The undersized system cost was much lower but 

reliability was badly affected. The LPSP was 17%, meaning no power supply for about 

4 hours per day. In addition 8% of the electricity produced was dumped as the energy 

storage capacity was limited. It is obvious, therefore, that only the optimized system 

under study balances both technical and economic targets to produce the optimal/best 

solution. 

Table 6.2 System configuration and resultant performance index 

  
PV 

(kW) 

UR 

(m3) 

WT 

(kW) 

COE 

($) 
LPSP (%) 

Excess energy 

(%) 

Oversized system 140 14000 10.4 0.369 0 42.9% 

Optimized system  110.6 9220 5.2 0.286 0 19.7% 

Undersized system 80 4000 5.2 0.233 16.9% 8.0% 

 

6.5.2 The optimal configuration assuming zero LPSP  

 Monthly average energy production from PV arrays and WTs 

The daily average WT and PV power generation for each month of the year are 

presented in Fig. 6.17. It can be noted that solar power production dominates the power 

supply, contributing almost 91% of the total production during the simulated year. In 

addition, the PV output was extremely high in the summer months. This is a favourable 
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characteristic since electricity demand was also high in summer because of a high 

cooling load. Therefore, in this hybrid system, the PV contribution to the load was 

significantly higher than that of the wind turbines. Similar findings were seen in 

previous studies [42, 437]. The wind energy contribution was found to be significant 

from Jan to March and from Sep to Dec.  
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Fig. 6.17 Daily mean renewable energy power production and load demand 

 Energy flow and water flow  

Fig. 6.18 summarizes the daily average electricity flow and water flow for the optimal 

case. The red lines and blue lines represent the electrical energy flow and water flow, 

respectively. PV contributed 91% of the RE output and WTs contributed 9%. Among 

the total useful electricity (419.7kWh/day), about 36.6% was directly consumed by 

the end-users, and 43.7% was transferred to the pump/motor unit for lifting water to 

UR for storage. Almost 19.7% (82.8kWh/day) of the total output, however, was in 

excess of requirements and had to be dumped. 
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Fig. 6.18 Summary of daily average electricity flow and water flow 

 State of charge of the UR 

The results shown in Fig. 6.19 illustrate the hourly SOC of the UR during the simulated 

year. It can be seen that SOC figures are relatively high. For the yearly distribution, 

values between 90% and 100% apply for 48% of the time, indicating the UR was fully 

or nearly fully charged for quite a considerable time. Therefore a large part of the 

generated energy was wasted because of limited storage capacity. The daily pattern is 

that the storage system was usually charged in the afternoons and discharged late at 

nights and in the early mornings.  

 

Fig. 6.19 Rainbow profile of UR’s state of charge during the simulated year 
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High depth of discharge occurs in May and July, because of the high cooling load 

during these months. The minimum amount of water stored in the UR (0.921m3) was 

at 7:00am on 26th May. Therefore, to ensure sustainable and continuous power, 

sufficient RE and UR capacities should be available during those two months.  

 Energy surplus and deficit of the optimized system 

The performance of the optimal system configuration under zero LPSP was examined. 

Fig. 6.20 presents the power surplus and deficit duration over the simulated year. As 

seen in Fig. 6.20, the sum of areas B and C under the power surplus curve gives the 

total energy absorbed by the pumped storage charging system. Similarly, the sum of 

areas A and B under the power deficit curve gives the total energy provided by the 

pumped storage discharging system. By integrating the areas over time, the charged 

and discharged energy in the year was 66,902 and 35,174 kWh, respectively. 

Therefore, the overall efficiency was 52.6%. This value is in harmony with the 

mathematical model presented in Section 3.3 and the result in Section 6.4.2.3. 
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Fig. 6.20 Annual duration curves of power surplus and deficit 
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In addition, the required sizes of the pump and turbine can be determined based on the 

maximum surplus power (79.2kW) and the maximum power deficit (27.1 kW). For 

example, a single variable speed pump or a combination of several pumps rated above 

79.2kW value should be used for the system. Usually a combination of several pumps 

or turbines can improve the efficiency and utilization ratios of each. 

 Energy distribution analysis for the optimized system 
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Fig. 6.21 Energy distributions for a typical day 

The energy flow for a typical day for the optimal system configuration is presented in 

Fig. 6.21. It is obvious that during daytime, PV panels produced power, while wind 

speed was very low, meaning that there was little or even no wind power production. 

In Fig. 6.21, above the zero line represents the load demand, which was totally covered 

by the PV panels during the sunshine hours, and ensured by the wind power and energy 

storage system at other times. In summary, 52% of the energy demand was covered 

by PV panels, 2% by wind turbine and 46% by the energy storage system. In such a 

way, the combined system contributes a continuous power supply. In addition, below 
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the zero line in Fig. 6.21 represents the charging power, totally provided by the PV 

surplus power (38% of PV production). No power was stored in the evening because 

of low wind speed and the absence of solar radiation.  

 Sensitivity analysis  

Finally, a sensitivity analysis was performed in relation to several key input parameters: 

PV panel cost, wind turbine cost, UR construction cost, load consumption, solar 

energy resource and wind energy resource. The effects of a ±25% deviation in the 

parameter values on the COE results were examined and the results are displayed in 

Fig. 6.22. 
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Fig. 6.22 Sensitivity analysis results on several key parameters  

The load demand was a key parameter in determining system capacity and cost. It can 

be seen that a 25% increase in load had a higher impact (+25%) on COE than the 

impact (-20%) of a 25% decrease. For the costs of the key components, COE was quite 

sensitive to PV cost. In particular a 25% increase in PV panel cost produces a 10% 

higher COE value. The changes in COE for the 25% deviation of wind turbine cost, 
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however, were small because the single wind turbine was always needed in the optimal 

system configurations, and, it is worthy of note that the cost  of the wind turbine was 

only 6.8% of that of the whole system. The 25% variation in UR construction cost 

resulted in a 4% increase or decrease in COE. In addition, a deviation of 25% in wind 

speed affected the COE by 1% inversely, and the effect of solar energy variation was 

more significant as regards system cost. A 13% increase in COE resulted from a 25% 

decrease in solar radiation. Overall, the results in Fig. 6.22 demonstrate that the 

significant contributors to the system economic cost include load demand, RE resource 

availabilities, and the cost of key components.   

6.5.3 Comparison with solar-pumped storage and solar-wind-PHS 
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Fig. 6.23 System COE under various LPSP 

After the techno-economic optimization, the lowest COE values for the hybrid solar-

wind-pumped storage system and the solar-pumped storage system for different power 

supply reliabilities were obtained. Fig. 6.23 depicts the COE values as a function of 

LPSP from 0% to 5%. For a critical load, the LPSP should be set at 0, while for a 
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noncritical load, the LPSP maybe set in the range of 0%-5%, to balance costs against 

reliability. It is obvious that the hybrid solar and wind system can achieve lower costs 

than the solar alone system. The COE difference becomes significant as the LPSP 

increases.  

The cost of the wind turbine is quite high because they have to have sufficient stability 

to survive typhoons. Only one wind turbine was used in the hybrid system and hence 

the wind power contribution to total energy production was not very high. However, 

the benefit of adding just that one wind turbine was significant, in that it made such a 

hybrid system more economically and technically viable. Therefore, to design an 

optimal power supply system, a combination of wind and solar energy sources should 

be considered.  

Table 6.3 Optimal system configurations of different system types 

LPSP=0% 
PV 

(kW) 

WT 

(kW) 

UR 

(m3) 

COE 

($) 

Excess 

energy (%) 

Solar-wind-pumped storage 110.6 5.2 9,220 0.286 19.7% 

Solar-pumped storage 119 0 13,205 0.289 12.2% 

Wind-pumped storage 0 286 29,552 1.376 85.6% 

LPSP=5%      

Solar-wind-pumped storage 102.2 5.2 3,840 0.256 17.6% 

Solar-pumped storage 112.8 0 7,200 0.262 11.4% 

Wind-pumped storage 0 20 28,800 0.621 61.4% 
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Wind powered pumped storage was also studied. However, as displayed in Table 6.3, 

a wind turbine only system would be extremely expensive. The number of wind 

turbines and required energy storage capacity were also high due to the different 

distributions during the 24 hours of wind power generation and load demand.   

The study has demonstrated that the feasibility of hybrid solar-wind energy system 

heavily depends on solar radiation and wind energy availability at the site, and the cost 

of the PV panels and wind turbines. It should be acknowledged that if the wind speed 

is extremely low or the wind turbine cost is remarkably high, the solar-pumped system 

may be better than a solar-wind-pumped storage system, but usually, integrating PV 

and wind energy produced in a complementary manner at different periods in the day 

can reduce energy storage capacity and lead to high energy supply reliability. 

Fig. 6.23 and Table 6.3 show that a lower COE can be achieved if a very small energy 

deficit is acceptable. Notably, about a 45% reduction in UR size can be achieved as 

LPSP changes from 0% to 5%. This indicates that allowing some peak power demand 

not to be met when extremely bad weather exists can achieve cost-effective solutions. 

In addition, if a secondary energy storage system were employed, the pumped storage 

capacity could be greatly reduced and power supply reliability can be simultaneously 

improved. The author believes that introducing a small battery bank or supercapacitor 

bank is of vital importance in a pumped storage-based renewable power supply system. 

The battery/supercapacitor would only be used to cover the peak load in May and July 

and greatly reduces the UR size in such a hybrid energy storage system. To better 

balance the energy flow between supply and demand, a small battery bank has been 

incorporated in the pumped storage system [305, 360, 389], and this will be considered 

for future study in relation to the optimization procedure developed by the author. 
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6.6 Summary of this chapter 

In this chapter, investigations into pumped storage-based renewable energy systems 

at the scale of a few hundred kW scale for the island concerned were described. The 

effectiveness of the proposed models and optimization algorithm has been presented. 

The relationship between system configurations and their corresponding COE values 

shows that the unavailable periods of RE necessitate a minimum UR capacity to supply 

the load, no matter how big the RE generator capacity. The effects of changing 

targeted LPSP indicate that if it can be accepted that a small proportion of load demand 

will not be met, significant reductions in capital cost, NPV and VUR can be achieved. In 

addition, it has been demonstrated that the complementary characteristic between solar 

and wind energy output can provide greater value than either a PV alone or a wind 

alone system. Therefore, in designing an optimal power supply system, a combination 

of wind and solar energy sources should be considered.  

System simulation and optimization results indicate that pumped storage technology 

can effectively compensate for the intermittent nature of RE, although the overall 

energy efficiency of such a micro system is not high. However, a reliable, sustainable 

and environmentally friendly power supply solution can be provided by the hybrid 

system, demonstrating that pumped storage is an ideal partner for a standalone 100% 

RE power supply system in remote areas.  

The pico PHS system can achieve an overall efficiency of 52.6%, which is considered 

low if compared to massive PHS system. However, its suitability in respect of 

technical, economic and environmental terms, make this kind of storage a feasible 

alternative to battery. 
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The COEs of the optimal solar-wind-pumped storage system and solar-pumped 

storage system under zero LPSP are $0.286 and $0.289/kWh, respectively. From the 

perspective of long-term sustainability and environmental factors, it can be expected 

that the RE-based power supply system for remote areas will become more 

competitive and cost-effective than diesel-based power generation systems. Therefore, 

implementation of this novel technology in remote regions has promising prospects. 
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CHAPTER 7   DEVELOPMENT OF HYBRID ENERGY 

STORAGE TECHNOLOGIES  

An investigation of battery-based and pumped hydro storage-based RE systems has 

been presented in Chapters 5 and 6, and it is shown that a combination of more than 

one storage technology is able to better complement the fluctuating RE output and 

dynamic power demand. Hence, a hybrid energy storage system (HESS), which 

combines battery for long-term energy management and supercapacitor (SC) for fast 

dynamic power regulation, is proposed and examined in this chapter. The operation of 

a passive connected HESS was studied via both theoretical analysis and numerical 

simulation using Matlab/Simulink. An electric inductor was further introduced to 

improve the performance of the HESS. An experimental test bench was developed to 

validate the simulation results. It was demonstrated that the HESS can stabilize energy 

provision, not only for the intermittent renewable energy, but also for fluctuating load 

applications. Another type of HESS, combining pumped hydro storage and battery 

energy storage, was analyzed and to find any advantages of this type, a physical 

representation of the system was experimentally studied.  

7.1 Introduction  

Energy generated by renewable sources has many advantages over conventional 

supplies, but a negative aspect is that the supply that it is stochastic in nature and 

consequently difficult to control. To regularize an intermittent RE output, an 

appropriate energy storage component with high specific power and at the same high 

specific energy over periods minutes or hours is required [438, 439]. The PHS system 



 

194 

 

proposed in Chapter 6 offers a good solution, but subject to site limitation in respect 

of available water elevations. In addition, compressed air energy storage is normally 

used for long-term energy storage, and a flywheel is usually incorporated to cope with 

the short-term peak power demand.  

The battery energy storage studied in Chapter 5 could be a good solution for remote 

RE projects because of its technical maturity and wide availability. However, on one 

hand, batteries are only efficient at supplying low and steady loads, and on other hand, 

RE outputs are not ideal for battery charging as the output fluctuates greatly depending 

on weather conditions [440, 441]. It is difficult for batteries to recover from rapid 

power fluctuations without a dramatic reduction in their lifetime. In addition, the 

charge/discharge rate of battery is limited because of its low power density [442]. This 

imposes severe stress on the batteries under conditions of quick supply/load 

fluctuations, resulting in extended periods of low state of charge and also in more 

charge/discharge cycles. The lifespan of the battery is, thereby, significantly reduced 

[443, 444]. Furthermore, high startup currents are required by some typical appliances. 

Water pumps, for example, its starting current can be 6-10 times greater than the rated 

current [426]. Even though these large current spikes only exist for a short duration, 

the battery must be sized large enough to supply the current spike, leading to the 

necessity for an excessively high battery storage capacity.  

A promising energy buffer device, the supercapacitor (also known as an ultracapacitor 

or electronic double layer capacitor) has become increasingly interesting in the above 

regard because of its higher power density, longer cycle life and higher charging-

discharging efficiency compared with that of the traditional battery. Its only 

disadvantage is a low energy density [445].  Since the supercapacitor and the battery 

are complementary in technical characteristics, it is reasonable to combine them to 
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create a hybrid energy storage system (HESS) where the battery absorbs/supplies long 

term continuous energy and the supercapacitor responds speedily to the dynamic and 

instantaneous power demands.   

 

Fig. 7.1 Ragone Plot of energy storage technologies 

The Ragone plot, i.e. specific power versus specific energy ranges of various energy 

storage technologies, is displayed in Fig. 7.1. The plot shows the lead-acid batteries 

have high energy density of the order of 10–100 Wh/kg, while the power density is 

low at around 100W/kg, resulting in long charging/discharging times of 0.3–3 hours in 

microgrid RE systems. Thus batteries cannot respond immediately under severe load 

fluctuations. In contrast, supercapacitors possess high power densities in the range of 

1000 to 5000 W/kg and long life of around 500000 cycles at 100% depth-of-discharge. 

The charge/discharge efficiency is very high (95%), at a fast rate over a time in the 

range of 0.3 to 30s. Hence, supercapacitors are usually used for the quick power 

fluctuations [443, 446, 447]. The proposed HESS, therefore, is a good combination of 

the high energy density of the battery with the high power density of the supercapacitor. 
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The combination in fact, can yield benefits greater than if the two components were to 

act separately [448].  

In the literature, hybrid battery-supercapacitor energy storage was first explored as an 

alternative to the traditional battery system when subjected to pulsed loads in digital 

communication applications [449], and is now popularly applied in electric vehicles 

since they have frequent motor startups and braking events. The addition of the 

supercapacitor has the potential to reduce the size and improve battery life [450-452]. 

The HESS is also being considered for standalone renewable energy applications [448, 

450, 453-455], as such battery–supercapacitor combinations result in better reliability 

and a longer battery life. 

This study aims at exploring the advantages of both batteries and supercapacitors, to 

make the hybridization of two technologies able to cope with long duration power 

charging/discharging and short duration peak power surges, and further extending the 

lifetime of the energy storage devices.  

7.2 System description of the passive hybrid 
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Wind turbine
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Fig. 7.2 Standalone RE system with passive hybrid energy storage system 
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There are three basic configurations of a hybrid battery-supercapacitor, i.e. passive, 

semi-active and fully active connection [456]. Among these, the passive hybrid is the 

simplest and cheapest arrangement. It achieves a better system performance than a 

single energy storage technology, although the power flow in and out of the HESS is 

not controlled. 

A schematic diagram of a micro-grid RE system with HESS is presented in Fig. 7.2. 

The major components are the RE generator, HESS, inverter, controller, and load. The 

supercapacitor is directly connected in parallel with the battery bank, which is the so-

called passive connection. In the standalone RE system with HESS configuration, the 

batteries provide the primary energy buffer for long duration, and super-capacitors 

only serve for “peak power smoothing” and “emergency reserve”. It is expected that 

this system can not only meet stable RE output and load requirements, but can also 

meet sudden peak power output and peak load demands. 

7.3 Mathematical models 

7.3.1 Numerical analysis of the HESS 
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Fig. 7.3 Equivalent circuit of a supercapacitor in parallel connection with a battery 
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In this study, the mathematical models of the battery and supercapacitor are simplified 

to make the analysis tractable. The battery is represented by an ideal voltage source 

bV  and an internal resistance bR , and the supercapacitor is represented as a single 

lumped constant capacitance C  together with an internal lumped resistance cR , [457]. 

The equivalent circuit of the direct connection is displayed in Fig. 7.3(a), and its 

equivalent circuit in the Laplace domain and its Thevenin equivalent are presented in 

Fig. 7.3(b) and Fig. 7.3(c), respectively.  

Based on the analysis presented in [457, 458], the equivalent circuit is transformed 

into the frequency domain using the Laplace transform. 
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where s  is the complex frequency, 0cV  is the initial voltage of the supercapacitor, and  
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Therefore, the inverse Laplace transform of the Thevenin voltage source in Eq. (7.1)  

leads to: 
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When the mathematical model of the Thevenin equivalent circuit is obtained, it is 

possible to connect a power charging source or load to this HESS. As displayed in Fig. 

7.3(a), a positive value (downward flow) of 0i  is defined as load consumption and a 

negative value is defined as a power charging source.  

To investigate the behaviour of HESS when there is a charging source/load, suddenly 

fluctuating from one level to another, a pulsed source is assumed in this chapter. The 

analytical approach is presented as follows.  

The pulsed charging/load current with pulse duty ratio D  and period T  and for N  

pulses can be expressed as: 
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where ( )t  is the unit step function and 0I  is the amplitude of the charging/load 

current. By operating the Laplace transform on Eq.(7.6), the current in the frequency 

domain is: 
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For the given form of charging current, the internal voltage drop ( )iV s  in Fig. 7.3(c) 

is: 

 0( ) ( )i ThV s Z I s  (7.8) 

Through an inverse Laplace transform, the corresponding expression in the time 

domain is:  
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From the circuit in Fig. 7.3c, the output/power source voltage can be expressed as: 

 0 ( ) ( ) ( )Th iV s V s V s   (7.10) 

By combining Eq. (7.5) and (7.9), the above Eq. (7.10) in the time domain can be 

expressed as: 
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 (7.11) 

Finally, the currents in the battery and supercapacitor can be derived based on the 

resolved output/power source voltage in Eq. (7.11): 
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7.3.2 Currents under steady state conditions 

If the battery voltage reaches to supercapacitor voltage, a steady state exists, i.e. 

0c bV V . The battery voltage can then be found using Eqs. (7.11) and (7.12): 
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Similarly, the supercapacitor current under steady state conditions is:  
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7.3.3 Performance of HESS in peak power enhancement  

Based on Eq. (7.14), the peak current of battery appears at the end of the pulsed 

charging current, i.e ( )t k D T  . With time increasing, n tends towards infinity, and 

the expression for peak battery current is: 
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where c  is the current sharing factor of the supercapacitor at the peak charging 

current:  
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  is the power enhancement factor: 
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 (7.18) 

It can be seen that if there is no supercapacitor, 0c  , 1  , and then 
0bpeakI I , 

meaning that there is no enhancement, the battery would absorb all charging current 

by itself alone.  
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If the rated current for the battery is ratedI , the charging source current will be:  

 0 ratedI I   (7.19) 

The instantaneous peak power at the rated current is then:  

 
0peak b rated b ratedP I V I V P      (7.20) 

where ratedP  is the rated battery power .  

Eq. (7.20) indicates that the peak power absorbed by the HESS is enhanced. A factor 

  is introduced to measure the extent of power enhancement.   is larger than 1 when 

a supercapacitor is introduced, and therefore the factor represents the extra power 

provided by the HESS when compared to a battery system alone. 

7.4 Numerical simulation  

7.4.1 Numerical simulation using Matlab/Simulink 
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Fig. 7.4 Simulation model formatted in Matlab/Simulink 

For pumped storage-based and battery-based RE systems, simulations are usually 

carried out using a one hour time-step, which is sufficiently small to model the 

intermittency of the RE supply and the fluctuating electrical load with fair accuracy. 

However, for the HESS proposed in this chapter, although the charge/discharge 

duration of the batteries is rated in hours, supercapacitor has very small time constant 

and thus it can only cope with very short-time high power charge/discharge pulses, 

usually over only seconds, due to their very low internal resistances. Therefore, a 

microsecond interval simulation instead of hour is conducted for the HESS using the 

Matlab/Simulink software.   

A particular case of the passive hybrid energy storage system with 0.1bR   , 

0.04cR    and 12C F was studied to verify the above analytical results. The 

simulation model implemented in Matlab/Simulink is illustrated in Fig. 7.4. The 

period and duty ratio of the pulsed charging source or load are 10s and 50%, 

respectively.  Other parameters are also shown in this figure. 

 

Fig. 7.5 Currents of battery and SC in reaction to a pulsed charging source or load  
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The battery curves and supercapacitor currents in reaction to a pulsed charging source 

are plotted in Fig. 7.5. It is observed that when the charging power is turned on 

suddenly, the supercapacitor, with high power density, jumps rapidly to a high value 

and charging takes place with a current descending exponentially. When there is no 

charging power, the supercapacitor current flow changes quickly to the opposite 

polarity, releasing the stored energy to the battery during the off-state period.  

The reaction of the battery is different. During the charging power on-state period, the 

battery’s current starts at a low value and then gradually increases. During the off-state 

period, it falls off to a value equal to the supercapacitor current, but in the opposite 

direction, keeping on absorbing energy from the supercapacitor. As a result, the battery 

is under charge for the whole cycle, while the influence on the battery from the variable 

charging source is greatly reduced.  

Based on the above simulation results, it is obvious that the battery current, which 

otherwise should be equal to the charging current, has been reduced significantly due 

to the existence of the supercapacitor. The supercapacitor can absorb some of the 

charging current, thereby relieving stress on the battery and improving the 

performance of the hybrid system in absorbing fluctuating/peak charging power. 

Similar trends are also found for the HESS under pulsed loads. 

Based on the analysis in Section 7.3.3, the power enhancement factor   of the hybrid 

system is calculated as 2.5, meaning that 2.5 times as much power can be absorbed 

and supplied by the hybrid system compared to a battery-alone system. 
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7.4.2 Performance enhancement through an inductor 

The passive connection of the hybrid system can be improved with an upgraded 

connection, which is realized by connecting an inductor in series with the battery 

branch (Fig. 7.6). Due to the filtering effect of the inductor, the battery output current 

can be stabilized.  
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Fig. 7.6 Semi-active connection of the hybrid system 

A simulation model of the improved connected hybrid energy storage system was also 

developed in Matlab/Simulink under the pulsed charging source, and the simulation 

results are plotted in Fig. 7.7. The parameters are the same as the case in Fig. 7.5 

except for the added inductor. The results demonstrate that the power enhancement 

effect of the semi-active hybrid system is the same as that of the passive connected 

system. However, the battery performance is obviously improved. The battery current 

ranges from 0.3A-0.8A, are much smaller than those in the passive hybrid system in 

Fig. 7.5. The battery current waveform is also smoother. Most of the fluctuating 

current is shared by the supercapacitor, thereby relieving the battery stress. In such a 

way, the lifetime of the battery in the hybrid system can be prolonged.  



 

206 

 

 

Fig. 7.7 Currents profile of semi-active connected hybrid energy storage system  

7.4.3 Comparison between hybrid energy storage and battery alone system  

 

Fig. 7.8 Voltage profiles of the HESS and battery-alone system  

The voltage profiles of the HESS and battery-alone system as a function of time are 

presented in Fig. 7.8. The simulations are based on a pulsed load at a period of 1s and 

duty ratio of 0.1. For the hybrid system, the variation of supercapacitor voltage follows 

the uniform battery voltage trend during the whole simulation period, because they are 

connected in parallel in the circuit. However, for the battery alone system, the voltage 
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variation is much more significant. Based on the data points sketched in Fig. 7.8, the 

average gap between the voltage peaks and valleys in the battery alone system is 0.85V, 

which the hybrid system reduces to 0.3V, indicating a marked reduction of 65% in 

voltage variation can be achieved. The results demonstrate a significant benefit of the 

hybridization in reducing the fast and large battery terminal voltage transients.    

7.5 Experimental validation 

7.5.1 Experiment tests of the passive connected system 
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Fig. 7.9 Experimental layout of the hybrid battery-supercapacitor storage system 

An experimental test bench was designed, and the experimental results were analyzed, 

to validate the simulation results using software Matlab/Simulink. Fig. 7.9 shows the 

circuit diagram and experimental test rig. In this test system an adjustable power 

supply (0~3A 0~30V) was used as the charging source to simulate the power generated 

from a renewable energy system. An 83F supercapacitor module and a 12V/17Ah lead 

acid battery were used in this test system as a HESS. A voltage meter (0~20V) is 

connected in parallel at both ends of the lead-acid battery to measure the system 

voltage. Two current meters (0~10A) were used to measure the total current and the 

supercapacitor branch current. This enabled the lead-acid battery branch current to be 
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extrapolated through the two measured currents. Four 22Ω resistors, connected in 

parallel, were adopted as the load. A switch controlled the test system operation and 

test. 

To investigate the performance of the HESS in response to the fluctuating renewable 

energy generator, a pulsed charging source was applied. The charging current was set 

as within 1A-2A, lasting for about 30s on-state, and the power supply then cut off for 

30s observation before repeating the cycle. Usually a test lasted for about 3-5 minutes. 

The currents and voltages of the battery and supercapacitor were recorded every 

second by the data logger.      

7.5.2 Experimental results and data analysis 

 

Fig. 7.10 System experimental currents for the hybrid energy storage system 

The measured currents of the hybrid energy storage system under different power 

sources are presented in Fig. 7.10. Compared with the numerical simulation results in 

Matlab/Simulink (Fig. 7.5), it is observed that the simulated current profile coincides 

well with the experimental results. The SC absorbed peak power during the power 

supply on-state and released the stored energy to the battery during the off-state, while 

the battery was being charged during the whole cycle due to its high energy density. 
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Therefore, the experimental data can be used to validate the analytical and simulated 

results.  

7.5.3 Experiment tests of the improved passive HESS  

The passive HESS with the added inductor was also experimentally tested, to examine 

the benefits of the existence of an inductor. The circuit diagram of the experimental 

system is presented in Fig. 7.11. The inductance of the newly added inductor was 1mL.  
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Fig. 7.11 Circuit diagram of the experimental semi-active connected system 

 

Fig. 7.12 Experimental currents for the passive HESS with inductor  
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The measured current profile is given in Fig. 7.12. Compared to the passive connected 

system in Fig. 7.10a, the current share taken by the supercapacitor is markedly higher 

than in the HESS case. The majority of the charging current, particularly the peak 

current, was absorbed by the supercapacitor, and a quite stable battery current can be 

therefore guaranteed, which benefitting battery performance and lifetime. The 

measured results agree well with the simulation in Section 7.4.2 as well. 

7.6 Experimental study on the hybrid PHS-battery energy storage 

system  

The study findings in Chapter 6 suggest that if a secondary energy storage system were 

employed, the capacities of PHS facilities could be greatly reduced and power supply 

reliability could be simultaneously improved. In this section, the benefits of a small 

battery bank added to a PHS-based RE system are analyzed, and such a HESS is 

examined experimentally.  

7.6.1 The benefit of a battery bank for the pumped energy storage system 

Introducing a small battery bank is important in a PHS-based RE system, for the 

following reasons:  

1) Balancing demand and supply in discharging mode of the pumped storage system 

Consumption load is unsteady since residents turn their electrical appliances on and 

off as they see fit. In the traditional hydro turbine powered village, the surplus energy 

when demand is lower than production is transferred into a dump load. This is a simple 

but wasteful approach. Therefore, a small battery bank, which is employed to match 

demand at all times, can maintain output voltage and frequency at levels that do not 

damage appliances. A bidirectional inverter can be utilized to deliver any excess power 
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to a battery bank and to convert the DC output from batteries to serve the AC load. 

The detailed operating conditions of a small battery bank in a pumped storage based 

RE system can be divided into several cases:  

 When the load demand falls to levels suitable for the battery bank is able to 

supply that load, the controller should turn off the turbine completely and 

switch to battery bank supply as a bridge until the maximum depth of discharge 

is reached or the load rises. At that point the turbine comes back on again and 

the process cycle is repeated. This approach avoids frequent stops and starts of 

the turbine/generator unit.  

 When the load demand is low while it is still larger than the existing energy 

stored in the battery bank, and the turbine/generator should start up. To ensure 

reasonable “partial load” efficiency, usually the turbine should keep operating 

at its minimum load ratio of 50%. If the required power is 30%, for instance, 

the turbine still operates at its 50% capacity, with the 20% surplus power used 

to charge the battery bank. In this way, the inefficient and life-shortening 

“partial load” operation for the turbine can be avoided. 

 When the electric load suddenly increases and an extreme peak load occurs, 

the controller combines outputs from both turbine and batteries to meet the 

load. This action can cater for a brief period of peak demand thereby avoiding 

the need to provide a turbine and upper reservoir big enough to meet that peak 

demand on its own. 

2) Balancing RE output and water pumping in charging the model of the pumped 

storage system 
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The presence of a small battery bank can also be used to interpose between the 

stochastic RE output and motors/pumps, to provide a stable voltage and current for 

driving these machines. This approach is popular with traditional PV water pumping 

systems. The roles of the batteries in the HESS are as follows:  

 When system surplus RE output is slightly insufficient to start up the pumps, 

the batteries release some power to fill the gap and assist in starting up the 

pumps;  

 When system surplus RE output is far below the launching power needed by 

the pumps,  the available energy is directly fed into battery bank through the 

inverter, avoiding frequent starting and stopping of the motors/pumps unit and 

ensuring the pumps efficiencies; 

 When system surplus RE output is greater than the rated power of pumps, the 

excess can be stored in the batteries, which can cut the peak RE output and 

absorb the energy to avoid excessive pump/motor sizing; 

 When the UR reaches its maximum capacity, the battery bank might also 

absorb the RE production if not already fully charged, and the wasted energy 

can thus be reduced and a high energy utilization rate ensured.  

 The batteries act to better distribute the times spent water pumping and battery 

charging /discharging. The pumps are therefore operated more steadily and 

lifting efficiency is further improved. 

These multiple effects of the small battery bank play a vital role in the scheduling of 

energy dispatch, managing the remote microgrid PHS-based RE systems, reducing 

dumped energy and ensuring high efficiency for the pump and turbine. An effective 



 

213 

 

controller is also necessary to manage the energy distribution between RE output, the 

pump/motor unit, the turbine/generator unit, the batteries and the load. Settings and 

operating principles need to be developed such as turbine minimum load ratio, pump 

and turbine rated capacity and battery bank capacity. The drawback is that the overall 

efficiency of a pumped storage scheme when combined with a battery bank will 

slightly decrease, as batteries and inverters need extra energy conversion processes 

and losses will be introduced. Investment is thus increased and the environmental 

benefits of the purely pumped storage scheme are somewhat diminished. 

7.6.2 Experimental test system 

Mathematical modeling and simulation of the hybrid pumped hydro and battery 

energy storage system will be conducted in future work. However, the operating 

performance of such hybrid energy storage system has been examined experimentally.  
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Fig. 7.13 Schematic of a micro PV system with hybrid PHS and battery energy 

storage 

A demonstration of a micro PV system with the hybrid energy storage was developed 

in the laboratory, at the Center for Electric Vehicle and Smart Grid in Wayne State 
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University. The experimental tests were conducted by for three days by Dr. Junhui 

Zhao in that university.   

The system diagram of a micro PV system with hybrid pumped hydro and battery 

energy storage is shown in Fig. 7.13 [361]. This is a demo system for experimental 

tests and educational purposes. This demo contains a 230W solar panel, a 146.4Wh 

battery, a 25.2W pump, a 12W DC generator, two 0.6m3 tanks, a 5W light bulb as 

load and a central controller. They are all connected through a 12V DC bus. The 

laboratory implementation of the real hybrid energy storage system is presented in Fig. 

7.14. In this system, the solar panel is the sole energy generation source to meet load 

demands and charge the hybrid energy storage system. A battery bank is the primary 

energy storage system, so the excess power will charge the battery bank first and the 

extra, if any, will be used for pumping the water to the upper tank, taken as the 

secondary storage system. 

 

Fig. 7.14 Laboratory implementation of the hybrid energy storage system for PV 

[361] 
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7.6.3 Experimental results and analysis 

The two tables below (Table 7.1 and Table 7.2) present the original data collected on 

2 July 2014. The solar radiation, PV output, water level in lower tank, battery voltage 

and generator/pump current data were recorded. The electrical load was cut off during 

the tests to focus on investigating the operational performance of the hybrid energy 

storage system only. 

Based on the collected original data, it is obvious that the system operation can be 

divided into three cases. The first case is when the battery is charged by the PV output 

plus power from the turbine. The second case is when the PV and battery outputs 

together drive the pump in storing energy in the upper tank. The third case is when the 

PV charges both energy storage systems simultaneously.  

Table 7.1 Experimental data collected under charging status 

Time 

(min) 

Solar radiation 

(W/m2) 

PV power 

(W) 

Water level in 

lower tank (cm) 

Battery 

voltage (V) 

Generator 

current (mA) 

0 750 7.875 8.5 14.4 75.2 

1 690 7.56 11.2 14.1 70 

2 680 6.93 21 14.1 61.2 

3 740 7.36 28.8 14.1 55 

4 810 6.4 36.5 14.1 47.9 

5 750 5.985 43.5 14.2 41.3 

6 759 6.93 52 14.2 38 
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Table 7.2 Experimental data collected under discharging status 

Time 

(min) 

Solar radiation 

(W/m2) 

PV power 

(W) 

Water level in 

lower tank (cm) 

Battery 

voltage (V) 

Pump 

current (A) 

0 850 11.7 52 13.3 1.33 

5 747 9.35 45.5 12.4 1.27 

10 782 10.92 40.5 12.5 1.26 

15 956 15.13 36.5 12.6 1.28 

20 921 15.67 32.5 12.6 1.28 

25 951 17.67 26 12.7 1.3 

30 950 20.16 21.5 12.8 1.33 

35 946 21.09 15 12.9 1.33 

40 935 22.96 12 13.2 1.35 

45 863 22.12 8.5 13.4 1.1 

 

The collected original data was processed and is presented in Table 7.3. The energy 

balance for the three cases was examined. In case 1, the efficiency of the 

turbine/generator unit, i.e. PHS discharging model was calculated at 9.4%, based on 

the reduced gravitational potential energy in the upper tank and the energy produced 

by the generator. In cases 2 and 3, the PHS system is being charged so the efficiency 

of the pump/motor unit was calculated at 6.8%, based on the stored energy in the upper 

tank and the input energy to the water pump. Therefore the overall efficiency of the 

pumped storage system could be extremely low, owing to the conversion losses of the 

micro pump-turbine set and the losses induced in the pipe line. The system 

performance could be potentially enhanced through optimizing system operation and 

introducing superior system components. It is noted that this experimental system 
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functions as an educational tool to demonstrate different technology concepts of 

energy storage and integration of RE and energy storage systems, therefore, operation 

demonstration is the focus of this system rather than its efficiency. 

Table 7.3 Energy balance of the hybrid energy storage system under three cases 

  PV power (W) Generator power (W) Battery power (W) 

Case 1:  

PV + pumped 

storage = battery 

7.88 1.08 8.96 

7.56 0.99 8.55 

6.93 0.86 7.79 

7.36 0.78 8.14 

6.40 0.68 7.08 

5.99 0.59 6.57 

6.93 0.54 7.47 

 PV power (W) Pump power (W) Battery power (W) 

Case 2:  

PV + battery = 

pumped storage 

11.70 17.69 -5.99 

9.35 15.75 -6.40 

10.92 15.75 -4.83 

15.13 16.13 -1.00 

15.67 16.13 -0.46 

Case 3:  

PV= battery + 

pumped storage 

17.67 16.51 1.16 

20.16 17.02 3.14 

21.09 17.16 3.93 

22.96 17.82 5.14 

22.12 14.74 7.38 
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For other practical engineering projects studying  micro pumped storage for RE 

systems [389], where the efficiency of the water pump (6.6kW) and the turbine (5.0kW) 

was 72% and 64%, respectively, at the  best operating points. In the literature [361], 

the rated efficiencies of the micro water pump (10kW) and turbine (7.5kW) were 68% 

and 39%. In a real engineering project in Laos [459], the pump efficiency was 50%, 

and the efficiency of the turbine  65%. Usually, a roundtrip efficiency of a micro 

pumped storage system in practice is about 50%.  

7.7 Summary of this chapter 

The main purpose of this study is to assess the possibility and benefit to combine 

supercapacitors and traditional batteries for achieving a complementary performance 

between two devices. The numerical analysis, simulation and experimental results 

demonstrate that the passive hybrid leads to improved energy storage performance. 

The battery in the HESS performs as the primary energy source for longer periods and 

the supercapacitor as the auxiliary power source for “peak power smoothing” and 

“emergency reserve”. The combination makes energy storage possessing both high 

power and energy density, and extending battery life as well.  

In addition, the benefits of the hybrid pumped storage and battery energy storage 

system was analyzed and a demo of the system experimentally studied, as an 

illustration of the various types of operational state of such hybrid energy storage 

technology. 
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CHAPTER 8   PERFORMANCE EVALUATION OF A 

REMOTE RENEWABLE ENERGY SYSTEM   

As introduced in Chapter 1, a 19.8 kWp PV system was installed on Town Island to 

supply power to the local residents during Stage 1 of the RES scheme which began in 

2008. The PV system in Stage 1 is mainly used to test its feasibility, understand its 

operating characteristics, and prepare for the system implementation in next stage. As 

a part of the collaborative project, this section gives a detailed investigation on the 

Stage 1 system operation after more than one year’s joint effort. Currently, this part of 

the work has already been published [15].  

To find the actual power generation of the first-stage PV system and better understand 

its operating characteristics, and to facilitate the system design of the Stage 2 hybrid 

solar-wind power project, a data acquisition system was installed on the existing PV 

system and several site visits were made to understand both the local environment and 

geography of the island. During these trips, the data acquisition devices were 

examined and calibrated to ensure accurate data measurement.  

After several months of testing and commissioning, the system environmental and 

operating data over a complete year in 2011 were collected at 5-minute intervals. A 

check for any anomalies in the recorded data was carried out before processing and 

detailed analysis. The data was evaluated in respect of the performance of the PV array, 

inverters, battery bank and the entire PV system performance which was analyzed in 

terms of daily energy balance, normalized parameters and system overall energy 

performance (efficiency/ratio).   
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8.1 System description  

Fig. 8.1 shows the installed PV system located on this island. The 19.8 kWp PV array 

consists of 99 solar panels from Suntech (Model: STP200-18/Ud). As shown in Fig. 

8.2, this system has two subarrays, one with three parallel strings of 17 modules 

connected in series and linked to one PV inverter and another one with configuration 

of 16×3 linked to the other inverter. All the PV panels are positioned in a fixed 

direction facing south at an inclined angle of 22.5°. 

 

Fig. 8.1 The installed PV system on a remote island in Hong Kong (19.8kWp) 

Unlike typical standalone systems, this system uses an AC busbar to couple all system 

components. This architecture has greater flexibility in accommodating additional 

generating capacities and/or load in the future. In such condition, this stand-alone PV 

system employs two different types of inverter: five bidirectional inverters SI5048 and 

two PV inverters SMC10000TL. The five bi-directional inverters connected to the 

load side, PV inverters and battery bank have two functional modes, i.e. charging 

mode and discharging mode (inverter mode). During the charging mode (net load is 

positive), the inverter converts AC to DC and then charges the battery bank using the 

surplus energy provided on the AC side. During the discharging mode, the inverter 
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provides 220 VAC output using the energy stored in the batteries, allowing stable 

operation of the connected loads when solar energy is not available and yet electricity 

demand still exists. The five parallel-operation battery inverters are operated in a 

master-slave-standby configuration [460, 461]. The two Sunny Mini Center (SMC) 

PV inverters directly transform the DC PV output to supply 220VAC to the load while 

any surplus energy is used to charge the battery bank via the SI5048 inverters. The 

battery tank comprises 96 deep cycle cells made by Sonnenschein Exide. 24 cells are 

connected in series to provide a 48 volts nominal storage voltage. 
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Fig. 8.2 Schematic diagram of the standalone PV system 

The long-term environmental data such as solar irradiation and wind speed and the 

operation performance data such as power output, battery bank SOC and electricity 

consumption were continuously recorded by the Sunny SensorBox at intervals of 5 

minutes, as shown by the dashed lines in Fig. 8.2.  
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8.2 System performance evaluation methods 

The system performance was evaluated based on the PV array, SMC/SI inverters, 

battery bank and the entire PV plant. The overall system performance was analyzed in 

terms of normalized parameters and energy performance indices (efficiencies/ratio). 

The normalized performance parameters are usually employed as indicators to 

compare different PV system performances. These indicators in units of 

kWh/kWp/day (simplified as ‘h/d’) are obtained by relating the energies actually used 

to the nominal power of the PV array. Those parameters were evaluated following the 

guidelines of IEC Standard 61724 [462]. 

The array yield AY  represents the number of hours per day that the array would need 

to operate at its nominal power 0P  to contribute the same quantity of energy to the 

system as that actually measured in practice. 

The final yield FY  is the usable portion (i.e. used by the load) of the energy derived 

from the entire PV system. The yield is delivered to the load per kilowatt peak of 

installed PV array.  

The reference yield RY  is the theoretically possible energy output of the PV plant, 

which is defined as the anticipated output from the same system with nominal 

efficiency determined under Standard Tests Conditions (STC) of PV modules.  

Energy losses indicate the amount of time during which the array would be required 

to operate at its nominal power 0P  to produce power compensating for the losses. The 

losses mainly include system losses SL and array capture losses CL . 
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The following formulae were used to calculate the above normalized parameters [341, 

463]: 

Array yield: 
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Final yield:  
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Capture losses: 

  ( / / )C R A pL Y Y kWh d kW   (8.5) 

System losses:  

  ( / / )S A F pL Y Y kWh d kW   (8.6) 

where AE  is the daily array energy output (kWh/d); 0P  is the PV array peak power 

(kWp); useE  is daily energy delivered to the load (kWh/d); iG  is the irradiance 
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incident on the tilted PV array (W/m2); PVE  is the actual energy amount contributed 

to the load by the PV plant; LoadE  is the energy consumed by the load; BUE  is the 

energy consumption provided by the back-up system. In this system, the back-up 

generator output was not an input to this data acquisition system, so that 0BUE   and 

Load PVE E ; A  is the total PV array area and STC  is the PV module nominal 

efficiency at STC according to the manufacturer’s specifications. 

According to the above definitions, the relationships between these normalized 

parameters are briefly shown in Fig. 8.3. One completed year is usually used for 

analyzing the energy performance of a PV system [327]. In this study, the data 

collected in 2011 is employed.  

Reference yield

Capture losses

Array yield

System losses

Final yield fY

sL
RY

AY

CL
 

Fig. 8.3 Relationship between these normalized parameters 

8.3 Performance evaluation results and analysis 

8.3.1 PV array performance analysis 

The PV array DC power output from 1st to 10th May 2011, as an example, is presented 

in Fig. 8.4, which clearly illustrates that the PV DC output power, represented by the 

scatter points, is linearly dependent on the solar radiation level. To show their 

inherently close relationship, the tendency of instantaneous PV DC power per kW 

peak versus solar radiation on 10th May is shown in Fig. 8.5. 
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Fig. 8.4 The PV array DC output power versus solar irradiance (1st to 10th May 2011) 

6:00 8:00 10:00 12:00 14:00 16:00 18:00

0

200

400

600

800

1000

1200
 Solar radiation

 PV output power 

Time

S
o

la
r 

ra
d

ia
ti
o

n
 (

W
/m

2
)

0.0

0.2

0.4

0.6

0.8

1.0

P
V

 o
u

tp
u

t (k
W

/k
W

p
)

 

Fig. 8.5 The output power per peak watt versus solar irradiance on 10th May 2011 

The daily energy production from this PV plant over the whole period is presented in 

Fig. 8.6. The gross electricity generation in the year was 22,322 kWh with a daily 

average value of 61.2 kWh. It is clear that the daily electricity production varies greatly 

from 5.5 to 115.5 kWh with the highest daily mean output in Aug (98.4kWh/day) and 

the lowest in Jan (24kWh/day). The production in the summer months was 

considerable higher owing to good solar irradiation resources and load side utilization 

ratio. However, production in winter and spring months (Nov-Apr) was very limited, 

particularly in Jan and Feb.  
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Fig. 8.6 Electricity generation profile in 2011 

Fig. 8.7 gives the statistical daily average AC power output ratio of the PV modules 

during the studied period. This ratio mainly includes the PV module conversion 

efficiency, energy losses in SMC inverter for transforming DC to AC power and the 

energy losses during the PV modules switched off.  For the on-site situation, the AC 

power output ratio, rather than the PV module efficiency, was usually employed as an 

indicator to evaluate PV array energy conservation performance under the non-

standard condition. It was also found that the monthly mean PV module AC power 

output ratio ranged from 6.0% to 12.3%. The deviation between on-site AC power 

output ratio and PV module efficiency under STC may result from the non-standard 

test condition. Generally, the PV module would have lower conversion efficiency than 

the nominal value when the solar radiation drops to fairly low levels, say, 100 - 300 

W/m2. The onsite recorded data show that for a great deal of time solar radiation was 

less than the level for rated efficiency. Another phenomenon observed is that for most 

of the time the working temperature was higher than 25 °C, and PV module voltage 

decreases significantly with the increase in cell temperature. In addition, sometimes 
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the PV array was switched off and disconnected during the best sunshine hours when 

the output was much higher than the load demand and the battery bank was already 

fully charged. In such conditions, the PV array has the potential to generate more 

electricity. Under the circumstances, we cannot take for granted that the PV array 

performed poorly. Other factors such as energy losses in SMC inverters for converting 

DC power to AC, the accumulation of dirt on the PV modules surface and shading 

may also affect the PV generator’s power output and efficiency.  

 

Fig. 8.7  Daily average AC power output ratio of PV module during 2011 

Fig. 8.8 shows the onsite daily mean temperatures over the reporting period. The 

variations in module, battery and ambient temperature show a similar trend. The 

average ambient temperatures in the summer months from May to September were 

between 25ºC and 30ºC, and the PV module temperatures were greater than 35ºC. The 

yearly average temperature of batteries and modules were about 4.7ºC and 9.4ºC 

higher than ambient. The peak difference between battery and ambient temperatures 

can reach 12ºC, while the peak difference between module and ambient temperature 

can be greater than 30 ºC. 
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Fig. 8.8 Daily average temperatures of ambient, battery and PV module 

8.3.2 SMC inverter performance analysis 
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Fig. 8.9  SMC inverter efficiency from 1st to 10th May 2011 

In this study, one of the two inverters with similar characteristics was chosen as an 

example. Only 10 consecutive days were chosen to analyze the inverter’s performance. 

Fig. 8.9 shows that the SMC operates well with high efficiency from 95% to 100% if 

the solar radiation is greater than 100 W/m2. The mean efficiency over the whole solar 
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radiation range is 97.1%, very close to the value of 97.5 % provided by the 

manufacturer. Furthermore, the scatter points in this figure indicate that when the 

efficiencies reach the peak value at a solar radiation of about 200W/ m2, they are 

followed by a slight descending tendency, which coincides with the experimental test 

results provided by the SMA Company. 

8.3.3 SI inverter performance analysis 
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Fig. 8.10  Sunny Island bi-directional inverter efficiency from 1st to 10th May 2011  

The master SI bidirectional inverter operating data for 10 days is presented in Fig. 8.10 

which demonstrates that the two functional modes behave differently. In the charging 

mode, the average efficiency was 87.2%. In the discharging mode, the average 

efficiency was 89.4%. The difference shows that discharging is more effective than 

charging, which might result from the different input powers of each mode. The input 

power to the inverter during charging model is the output from the SMC, which comes 

from the PV generator and largely dependent on the fluctuating solar irradiation. 

However, the input power for discharging is the battery output where the voltage is 

quite constant and stable. For the SI to operate with an acceptable efficiency above 
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80%, the input powers of the SI during charging and discharging modes are about 

1.3kW and 1.5kW respectively, as shown by the dashed line in Fig. 8.10. 

8.3.4 Battery bank performance analysis 

The ten-day data (1st-10th May 2011) in Fig. 8.11 illustrate battery status in detail 

including the battery SOC and battery charging and discharging power. During this 

period, the SOC ranged from 40% to 100%. The lowest SOC occurred during the early 

morning of each day after several continuous hours of discharging, and the peak SOC 

appeared in the afternoon lagging a couple of hours behind the peak solar radiation. 

The increase in SOC indicates that the battery bank stores surplus energy from the PV 

array after supplying power to the load. It also demonstrates that the depth of discharge 

(DOD) of the battery bank was not too high, which helps to prolong battery life and 

guarantee high energy efficiency.  
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Fig. 8.11 The status of battery bank from 1st to 10th May 2011 

The maximum battery bank charging and discharging power were found to be 16.2kW 

and 13.4kW, respectively. The charging rate was lower than 10kW for most of time 
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except for the peak value at noontime under bright sunlight. Also for most of time, the 

discharging power was less than 10kW, and the stable value was around 4 kW, which 

closely relates to the load demand. Another finding is of an obviously common sharp 

increase in discharging power at around 6:00am and 6:00pm. One possible reason for 

this phenomenon is that the load includes some appliances requiring a lot of power 

during these periods such as lighting. Taking solar radiation into consideration, it is 

obvious that the SOC and battery charging and discharging power bear a very close 

relationship to it.  

 

Fig. 8.12 Monthly battery SOC profile during 2011 

The monthly SOC distribution is statistically presented in Fig. 8.12 which 

demonstrates that the SOC seasonal changes were very marked. The smallest SOC 

values occurred in the summer from May to Sep when the monthly averages were 

lower than 70%. Probably the main underlying reason is that refrigeration and air-

conditioning cooling loads during summer are high even though solar resources are 

good during this period. The monthly average values from Jan to April and from Oct 
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to Dec were relatively high. The allowable minimum SOC value is 20% and the 

maximum allowable DOD is 80%. If this upper DOD limit is exceeded, the batteries 

will suffer from over-discharge, and prolonged over-discharge may result in 

permanent damage to the battery. 

The hourly average battery bank SOC over the whole year is depicted in Fig. 8.13, 

demonstrating that the daily smallest and highest SOC values occurred at about 

7:00am (60.6%) and 5:00pm (88%), respectively. At 7:00am, solar radiation is 

increasing and the battery bank is being recharged, and thus a significant increase in 

SOC can be observed. The SOC growth rate is greater, before the peak solar radiation 

at about 1:00pm. This growth trend ends at about 5:00pm when load consumption is 

balanced by energy supply. Thereafter, the SOC declines continuously until 7:00am 

next morning. 
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Fig. 8.13 Battery SOC hourly variation (time interval: 5 minutes) 

Fig. 8.14 presents the SOC distribution probability (or occurrence frequency) ranging 

from 10% to 100%. The results indicate that the battery bank in this project is well 
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controlled. About 88 percent of its SOC values were above 50% and 45 percent above 

80%.  

 

Fig. 8.14 Frequency distribution of battery bank’s state of charge (SOC) during 2011 

In general, the variations of solar output do not match well the fluctuations of demand. 

Therefore, a certain degree of oversizing of the storage system is required to guarantee 

power supply reliability. The total storage capacity of the current battery bank, 

184.32kWh, is much higher than the mean daily load demand (49.5kWh) in order to 

allow power supply for the several consecutive days of poor solar radiation. That is 

the reason why the battery bank is always fully charged, and consequently the PV 

array sometimes needs to be disconnected and thus cannot work at its maximum 

efficiency. In a word, all these statistics demonstrate the need for rational system 

design and operation. As a consequence, a long cycle life for the batteries can be 

ensured. 

The battery bank’s SOC was 89.1% at the beginning of year and 77.6% by the end. 

Thus the net energy stored in the battery bank was 21.1kWh. Throughout the year, in 

total 16,308 kWh solar energy was input to the battery bank but only 12,090 kWh of 

energy was discharged. Therefore, about 4,239kWh energy was dissipated during the 
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charging, discharging and storing periods. As a result, the battery bank roundtrip 

efficiency is approximately 74.3% on an annual basis.  

8.3.5 Entire system performance analysis 

The variation of daily energy production, consumption, and battery bank input or 

output energy in May, as an example, is displayed in Fig. 8.15 to show the daily energy 

balance. Daily energy production is in the range of 10 to 115kWh and the daily energy 

consumption is between 16 and 88 kWh. The differences between them are offset by 

charging or discharging the battery bank. The total energy input to the battery bank 

(1,613kWh) is much greater than the output (1,182kWh), where the differences may 

result from battery self-discharging and the cyclic processes of charging and 

discharging. Obviously, this quantity of energy loss is dependent on the battery’s 

energy efficiency. 
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Fig. 8.15  Daily electricity generation and load consumption in May 2011 

The daily average solar radiation, PV AC power production, load side energy 

consumption, and whole system energy performance are summarized in Table 8.1. 

The table illustrates that the annual total solar energy resource incident on the tilted 
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PV array is 1,586 kWh/m2 (=4.34 kWh/m2/day). The monthly solar radiation 

distribution peaks in August and reaches its minimum value in March. It can also be 

seen that solar radiation in winter is significantly lower than in summer.  

Table 8.1 Summary of the entire system energy performance 

Month 
Solar 

radiation 

PV AC power 

production 

PV AC power 

output ratio 

Load 

consumption 

System overall energy 

utilization ratio 

Unit kWh kWh % kWh % 

Jan 17,731 744 4.2 519 2.9 

Feb 15,157 886 5.8 684 4.5 

Mar 14,318 1,236 8.6 967 6.8 

Apr 20,522 1,697 8.3 1,419 6.9 

May 18,261 2,138 11.7 1,678 9.2 

Jun 19,746 2,189 11.1 1,810 9.2 

Jul 22,701 2,480 10.9 1,994 8.8 

Aug 26,363 3,051 11.6 2,601 9.9 

Sep 20,423 2,263 11.1 1,762 8.6 

Oct 18,702 1,813 9.7 1,482 7.9 

Nov 16,391 1,764 10.8 1,457 8.9 

Dec 20,510 2,061 10.1 1,697 8.3 

Ave. 19,235 1,860 9.5 1,506 7.7 

 

The average electricity production is 61.2kWh/day and the energy consumption is 

49.5kWh/day. The difference between the PV AC power production and load side 

energy consumption results from energy stored in the battery bank, energy losses in 

the BOS including SI inverters, battery bank, and conduction losses in distribution 
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cables. The PV AC power output ratio by month ranges from 4.2% to 11.7%, 

averaging at 9.5%, and system overall energy utilization by month is within 2.9% and 

9.9%, averaging at 7.7%. It is obvious that the load side consumption coincides with 

the time distribution of production. When energy consumption reaches its peak, with 

a high cooling load, the PV array generates the most power due to the highest solar 

radiation levels.  

It is significant that the AC power production and load side energy consumption in Jan 

and Feb were extremely low, though the solar energy resource is not too bad. The key 

reason is that residents on the island did not know, at first, how to interpret the battery 

bank’s SOC and therefore tended to restrict their consumption. This could also explain 

the low demands in Jan and Feb and the high battery bank SOC value. Therefore, the 

PV array was sometimes shut down by the control system due to the fully charged 

battery bank, to protect the battery bank and PV panels. The power output was then 

affected and lower energy consumption is observed. According to the discussion with 

project engineers responsible for the operation of this PV plant, local residents were 

able to tailor their demands according to the SOC level after their education, leading 

to a somewhat human driven intelligent system. From then on, in the following months,  

high energy utilization was recorded.  

The difference between PV AC power production and electricity consumption is 

expressed as a load side energy utilization ratio. It is obvious that Jan and Feb have 

the lowest energy utilization during the year, while the SOC during these two months 

was very high (Fig. 8.12), which further suggests that the residents did not know how 

to use the system depending on the energy stored in the battery bank, i.e. SOC.   
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To improve the PV power output ratio and load side energy utilization ratio, one 

solution was to train local residents for better utilization of energy from the PV array 

and battery bank based on local weather and energy stored in the battery bank (i.e. 

SOC). On the other hand, if sufficient storage capacity and/or a backup generator can 

be guaranteed, a greater PV power output ratio and utilization ratio in the standalone 

system should be achievable. However, in reality a project has to be optimized 

between technical and economic performance. An appropriate compromise between 

system total cost, energy efficiency, supply reliability and future expansion would 

provide a cost effective RES option with satisfactory supply quality matching the 

nearby power grid (a normal expectation of the customers).  

A summary of the normalized performance parameters is presented in Fig. 8.16, which 

reveals that the monthly final yield fluctuated greatly with a minimum value of 0.84 

h/d in Jan and a peak of 4.24 h/d in Aug. The results indicates that the total hours of 

power production at less than the rated capacity during the whole year was 910 hours, 

meaning that only an equivalent energy of 2.49 kWh/kWp/day was consumed by the 

load.  
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Fig. 8.16 Monthly Normalized parameters 
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Fig. 8.16 also shows that the system losses ranged from 0.36 to 0.84 h/d, averaging 

0.59h/d. The system losses mainly result from the inverter conversion process (DC-

AC or AC-DC) and battery storage cycles. Another contribution to system losses is 

the capacity mismatch between load and PV generator. When the energy demand 

during sunshine hours is lower than the PV output and the battery bank is already fully 

charged, the excess energy is wasted and the PV array only partially operates or is 

fully cut off.  

The mean daily capture loss was about 1.86 h/d, indicating that about half of the array 

yield was lost. The capture loss in January was 2.72h/d, much higher than the final 

yield of 0.84h/d, representing an extremely low PR of 18.3%. The array capture loss 

is a big problem for this system and was split between thermal losses and other 

miscellaneous losses. The power output of a PV is a decreasing function of cell 

temperature. The power temperature-coefficient for a crystalline silicon solar cell is 

about -0.65%/K [464]. Therefore, when the cell temperature is higher than the STC of 

25 °C, the PV performance is affected resulting in thermal capture losses. Other 

miscellaneous capture losses include low irradiance, string diodes, partial shading, 

contamination, and reduction of array power caused by inverter failures or by fully 

charged accumulators, spectral losses and losses caused by glass reflections.   

The theoretical reference yield, the sum of the above three parameters (see Fig. 8.3), 

varied from 3.17 to 6.86 h/d and averaged 4.94h/d. The findings in Fig. 8.16 also 

display the array yield. The sum of final yield and system losses (see Fig. 8.3), was 

3.08h/d. These parameters demonstrate that the anticipated output of the PV array was 

4.94 kWh/kWp/day, but actually the array AC output was 3.08 kWh/kWp/day, of 

which only 2.49 kWh/kWp/day was ultimately used to supply the load.   
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8.4 Summary of this chapter 

In this chapter, an overall evaluation of the stand-alone solar PV system operational 

performance for the whole of 2011 was conducted covering the following aspects: the 

PV array, inverters, the battery bank and overall system performance. The following 

conclusions can be drawn: 

 The average electricity production from the PV system was 61.2kWh/day and 

the electrical energy consumption was 49.5kWh/day. The available solar 

radiation incident on the PV array was 4.34kWh/m2/day so that the average 

AC power output ratio of PV array and entire system energy utilization ratio 

were 9.5% and 7.7%. These values are satisfactory. 

 The SMC and SI operated well, with high efficiencies close to the 

manufacturer’s specifications.  

 The roundtrip efficiency of the battery bank during the year was 74.3%, with  

SOC values above 50% for 88% of the year.  

 The average yield, system losses and capture losses during the year were 

2.49h/d, 0.59h/d and 1.86h/d, respectively. The resultant array yield was 

3.08h/d. 

 Training local residents for better utilization of the renewable energy output 

can help PV array to produce more power in some situations and eventually 

improve the utilization ratio.  

 The low load side energy utilization ratio and mismatch between the power 

production and consumption demonstrate that an optimal design selection of 

PV array and battery bank capacities is quite necessary, which should consider 

technical issues (e.g. supply quality/reliability, energy efficiency), economic 
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issues (e.g. cost of energy) and social issues (future expansion). In that sense, 

academic and industrial considerations should be merged together for a 

practical renewable energy supply project. A detailed energy performance 

simulation model needs to be developed for this purpose.  

In summary, the long term system monitoring enabled a detailed understanding of the 

system operating performance from the technical point of view. It also provided useful 

reference information for future PV system design and operation. This study is also a 

useful case study of real practical relevance to future applications of renewable energy 

supply on remote islands.   
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CHAPTER 9   SUMMARY AND SUGGESTIONS FOR 

FUTURE STUDY 

The research findings, main conclusions and recommendations for future work are 

summarized in this chapter. 

9.1 Summary of research findings/contribution 

To achieve the goal of remote area power supply (RAPS), a comprehensive study of 

stand-alone renewable energy (RE) systems using different energy storage solutions 

has been presented in this thesis. Meaningful research outputs, potentially useful in 

remote areas, have been achieved. Town Island, a remote inhabited island off the coast 

of Hong Kong, has been chosen as the site on which to test the proposed RE and 

storage technologies. The major findings achieved by this research are summarized as 

follows. 

9.1.1 System modeling and evaluation  

Mathematical models of the key components have been developed and are given in 

Chapter 3, which is a foundation on which to simulate the dynamic behaviour of 

battery-based and pumped hydro storage (PHS)-based RE systems. In particular, a 

novel PV device simulation model has been developed and solved using an integrated 

analytical and numerical method. The effectiveness of the proposed model has been 

firstly demonstrated by comparing the predicted results with those from other models, 

and then validated through field measurements from two PV systems under different 

conditions. It is shown that the proposed model is simple and quick for calculation, 
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with a sufficient degree of precision and rapid enabling convergence. This model has 

been further employed to predict a standalone PV system energy output on a remote 

island. It is demonstrated that the model is of superior value, offering a good 

compromise between simplicity and accuracy. The predictions agree well with the PV 

plant field collected data, indicating that this model can be helpful in accurately 

determining the I-V curves and predicting power output of any PV devices.  

To evaluate the system simulation and operation performance, some criteria have been 

proposed in terms of technical, economic and environmental issues. These criteria 

enable comparison of the performance of different system types and configurations 

9.1.2 Development of the battery-based RE systems  

To determine an optimal system configuration of various combinations of four 

technologies, i.e. PV, WT, DG, and battery, and investigate the system dynamic 

performance, a total of 8 battery-based power generation options have been studied 

(Chapter 5), regarding simulation, techno-economic optimization and sensitivity 

analysis. Two options were fully examined and analyzed. Based on the simulation 

results, the following conclusions are drawn:  

 It is found that this island could be powered by a 100% RE system, i.e. Option 3 

solar-wind-battery system. This fully renewable power generation could be an 

ideal solution from the point of view of environmental conservation and energy 

provision, although, the cost of energy (COE) may be a little high ($0.595/kWh). 

With the rapid development of the RE industry, however, the cost is expected to 

be reduced and hence this option could be increasingly viable. 
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 The introduction of a diesel generator (DG) could increase the economic viability 

of the hybrid system (Option 1: solar-wind-diesel-battery), particularly in those 

areas experiencing low diesel cost. It is found that this solution is a compromise 

between renewable and nonrenewable generation, therefore its COE ($0.391/kWh) 

and payback time would be much lower than those of a fully RE system described 

in Option 3. The DG was scheduled only to assist the RE generator to cater for 

peak loads, thus a higher RE penetration level (95%) is still able to be guaranteed. 

However, such systems need the contribution of a small fraction of diesel energy 

with negative environmental impact, thus making this system type not so 

favourable.  

9.1.3 Development of the PHS-based RE systems  

To find an alternative to battery power, which has some environmental problems and 

high initial cost, the PHS has been proposed in Chapter 6. A novel operating principle 

and design process for the PHS-based RE systems has been developed in this thesis. 

The effectiveness of the proposed models and optimization algorithm has also been 

examined. It is found that unavailable periods of RE necessitate a minimum UR 

capacity to supply the load, no matter how large the RE generator capacity. The results 

of changing the targeted loss of power supply probability (LPSP), suggest that 

significant reductions in COE, NPV and VUR can be achieved, if it is acceptable for a 

small proportion of load demand not to be met.  

The COEs of the optimal solar-wind-pumped storage system under zero LPSP is 

$0.286/kWh, much lower than that of the battery-based RE systems. It has also been 

demonstrated that the complementary characteristics of solar and wind energy output 

can provide greater value than either a PV or a wind system used individually. 
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Therefore, when designing an optimal RE power supply system, wind and solar energy 

sources, in combination, should be considered. 

A new concept of energy storage to compensate for the intermittent nature of RE has 

been proposed in this study. Even though the overall efficiency of the micro-scaled 

PHS is not high, a sustainable and environmentally friendly power supply solution is 

able to be provided, indicating that the PHS is one future ideal partner for RE power 

supply systems, and that implementation of this novel technology in remote areas has 

promising prospects.  

9.1.4 Development of hybrid energy storage system  

A hybrid energy storage system (HESS), which combines batteries for long-term 

energy management with supercapacitors for fast dynamic power regulation, has been 

proposed in this study. The main purpose was to examine the possibility and benefit 

of the HESS in the achievement of a two device complementary performance. 

Mathematical models of the hybrid energy storage system (HESS) have also been 

developed and validated experimentally. It is found that the HESS enables improved 

performance in energy provision, not only for intermittent RE, but also for fluctuating 

load applications. The battery in the HESS is the primary energy source for longer 

periods and the supercapacitor is the auxiliary power source for “peak power 

smoothing” and “emergency reserve”. It also found that the performance of HESS can 

be further improved by the addition of an electric inductor. Such a combination 

contributes to the achievement of energy storage which has both high power and 

density, and also extends battery life.  
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In addition, the operation of another kind of HESS, namely a combination of PHS and 

battery, has been examined experimentally, as an illustration of practical operation of 

such hybrid energy storage technology. 

9.1.5 Performance evaluation of a RE system  

To evaluate the operation performance of an existing PV-battery system on the test 

island, a yearlong testing campaign has been conducted. Satisfactory values were 

achieved in that the average daily electricity production from the PV system was 

61.2kWh and AC power output ratio of PV array was 9.5%. The average yield, system 

losses and capture losses during the year were 2.49h/d, 0.59h/d and 1.86h/d, 

respectively, thus the resultant array yield was 3.08h/d. The roundtrip efficiency of the 

battery bank during the year was 74.3%. The low load side energy utilization ratio 

demonstrated an optimal design of PV array and energy storage capacity was quite 

necessary. Considered should be technical issues (e.g. supply quality and energy 

efficiency), economic issues (e.g. cost of energy) and social issues (future expansion). 

Thus it is evident that, academic and industrial considerations should be merged for a 

practical RE supply project.  

This research enables a detailed understanding of the operation performance the PV-

battery system from a technical view point. This case study is also of practical 

relevance in that it can provide guidance for future renewable energy supply 

applications on remote areas. 

In conclusion, this study enables a good utilization of RE sources for RAPS. The 

choices form a bank of RE resource possibilities from which interested parties can 

make suitable selections to enable satisfactory matching of resources with the needs 

and conditions of individual remote areas of interest. Hence the research presented in 
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this thesis contributes to the current related literature by providing good reference 

material, not only for the possibility of the selection of a good “match” but also a basis 

for further development of RE and energy storage technologies. The methodology 

presented can also be viewed as a starting point for planning and designing RE systems 

for remote communities around the world. 

9.2 Recommendations for future research 

Although this research work does provide a comprehensive study of RE applications 

for RAPS using the newly proposed PHS and HESS, limitations of time and 

experimental facilities have led to a degree of insufficiency. It is both necessary and 

worthwhile to conduct further research on RE systems for remote regions, particularly 

as regards the PHS technology and the HESS. 

RE power generation for remote areas is sustainable and environmental friendly, 

however several challenges need to be addressed, such as high initial cost and low 

overall energy utilization ratio. Although achievement has been made in the study 

presented in this thesis, optimum use of the RE sources to ensure reliable power supply 

and satisfactory economics still require further study and validation.  

Storing the electricity harnessed from the RE sources at a reasonable cost is another 

critical issue and important challenge, to promote RE for RAPS, which is essential if 

such areas are to keep pace with worldwide developments. This study has 

demonstrated that the proposed PHS is a promising means for standalone RE systems 

in remote areas to meet the above. However, as is well known, such technology is still 

at the infancy stage and further research is necessary, such as is expressed below: 
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 One deficiency of this study is lack of sufficient experimental tests, although the 

battery-based RE system on the island has been evaluated, a whole year testing 

campaign for a standalone PHS-based RE system is recommended, to achieve 

sound knowledge of the long term performance of the proposed system. A 

comparison of the results with those achieved by simulation would be of value. 

 This thesis has demonstrated that the passive hybrid battery-supercapacitor can 

achieve a better performance than the battery-alone system. However, the power 

flow in and out of the supercapacitor is not controllable. Therefore, it would be 

meaningful to add a power converter to control the HESS. Thus, the active or semi-

active connected HESS needs to be studied in the future.  

 While PHS for remote RE systems achieves satisfactory performance, pairing with 

battery storage may be a more practical option. The operating performance of a 

micro-scale hybrid PHS and battery energy storage has been examined 

experimentally for only several days due to time limitations. Therefore, a 

comprehensive mathematical modeling and numerical simulation of this type of 

HESS is recommended for future work, followed by long term experimental tests 

of different operation conditions. Another issue affecting the HESS is the high cost. 

Therefore, optimum sizing of the components in HESS based on a techno-

economic analysis is also necessary in future work. 

 The management and control strategies of the microgrid RE systems with PHS are 

also the subject of future work because such systems face real challenges of 

robustness when used in remote areas. System control has not been the focus in 

this thesis, the concern has been primarily with technical-economic feasibility 

study and optimization. In the above context, some state-of-the-art techniques, 
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such as microgrid management system, variable frequency converters, modern 

efficient reversible pump-turbines, as well as HESS, can be explored in future to 

optimize system control and simplify the system operation.  

 Currently the distributed RE system is very popular, while various technical issues 

occur in the integration of RE sources into a grid, such as power quality and 

reliability. Therefore, the PHS system can be further applied for gird energy 

storage with high RE penetration, thus extending the study in this thesis which 

focuses only on the remote off-grid RE systems.  

 Lack of water resources and suitable site present challenges the successful use of 

PHS in some remote areas. Underground reservoirs and seawater offer potential 

solutions, and thus deserve future research. In addition, the combination of PHS 

with other auxiliary systems, for example water supply, irrigation and desalination, 

is suggested for future study, to enable an enlargement of the contribution of this 

study in the form of social impacts. 
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