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Abstract

In computer vision and pattern recognition, there are setaonf image based
classification tasks, e.g., face recognition, action raiam, object recognition,
texture classification, handwritten digit recognitiorg.etlow to choose a suitable
classifier for the given classification task is not a triviablem, and it depends
on data type, data distribution, data size, and featuregotppAccording to “no
free lunch” theorem in machine learning, there is no onesdias that can always
achieve the state-of-the-art performance in all classifinatasks. Intuitively, a
robust, éicient, and scalable classifier with good understandapsdidslability and
generalization ability is always desired.

Representation based classification has been widely ugeattern classifica-
tion and achieves superior performance. It is based on gexgsion that a query
sample can be more accurately approximated by a linear ¢t of training
samples of its class than other classes. Many represantadiged classification
models have been developed, including spamkaborative representation, low-
rank representation, robust representation, kernel septation, generic represen-
tation, multi-modakross-modal representation, etc. Representation rdsitdua
these models are discriminative and a query sample can bsif@d to the class
with the minimal reconstruction residual. Meanwhile, eg@ntation cd@cients
can also be used as features to enhance classification. iloadd middle-level
feature extraction, in contrast to vector quantizatiorarse coding can be intro-
duced to obtain a soft representation for classification.

Although representation based classification models heavewed a great suc-

cess in diferent classification tasks, there are still many problemsneing. When



there are only a small number of training samples, the reptason tends to be
over-determined and therefore the query sample may not heapeesented. When
the number of the training samples is very large, the timepdexrity and memo-
ry consumption of representation based classifiers becenwgllenging issue.
Besides, the existing representation based classifiermastly designed to ac-
complish single image based classification tasks. Howéwerideo based face
recognition and multi-view object recognition, the taskd®es an image set clas-
sification problem. It is demanded to extend representdtased classifiers from
image based to image set based models. Finally, most exrgjimesentation based
classifiers are non-discriminative in the representati@megss. It is interesting to
investigate if the samples can be projected to a discrinv@&tature space to en-

hance the classification performance.

In this thesis, we aim to develop new representation basegification models
for small sample size problems, big sample size problemsg@set classification

problems, and discriminative representation problenspeetively.

In Chapter 2, to solve the small sample size problem in facegmition, a
patch based collaborative representation classifier (AGR@roposed. Both the
guery and gallery face images are divided into patches amttie query patch is
represented by the gallery patch dictionary. Classificatiatputs of all the patches
are combined by majority voting to get the final output. As RCIR sensitive to
patch size, a multi-scale PCRC is proposed to fuse the fitzgin outputs of

different path sizes by margin distribution optimization.

In Chapter 3, a local generic representation (LGR) basetbaphp is proposed

for face recognition with single sample per person. A genietra-class variation



dictionary is constructed from a generic dataset, and itn@lhcompensate for the
face variations lacked in the gallery set. A correntropyedlasietric is adopted to
measure the loss of each patch so that the importancefefefit patches in face

recognition can be more robustly evaluated.

In Chapter 4, a self-representation induced classifier (3R proposed for
representation with big sample size.flierent from the existing sample-level rep-
resentation, we proposed representation based classibensthe perspective of
feature-level representation. The time complexity of SRIGnly related with fea-
ture dimension and the number of classes. Hence, it is vetgide for classifica-

tion tasks with a large amount of training samples and a smatiber of classes.

In Chapter 5, an image set based collaborative represemtatdel is proposed
for image set based face recognition. Considering thendisteness of samples in
the query image set and the correlation between the galiemge sets, we model
both the query and gallery image set as hulls. Then the htlileofluery image set is
collaboratively represented on the gallery image setsuReged hull and kernel
convex hull are both considered to develop robust image astd collaborative

representation classifiers.

In Chapter 6, by considering representation based classa#gepoint-to-set dis-
tance based classifiers, we extended distance metric hgafmim point-to-point
distance to point-to-set and set-to-set distance. Thaae#sirning problem is mod-
eled as a sample pair classification task and canfio@estly solved by standard

support vector machine solvers.

To sum up, in this thesis we developed patch based collaberapresentation,

local generic representation, regularized self-repitasiem, image set based col-



laborative representation, and point-to/set-to-set distance metric learning meth-
ods to address the representation problems with small sesigd, big sample size,
and image sets for pattern recognition, respectively. Qiarsive experimental re-
sults demonstrated the state-of-the-art performancesgittbposed methods. In the
future work, we will investigate generic dictionary leargifor face recognition in
the wild, cross-modainulti-modal dictionary learning and metric learning metho

under the representation based pattern classificatiorefxamk.
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Chapter 1

Introduction

1.1 Classification tasks

In our daily life, human beings need to get the identity of peeson, search re-
lated text, audio, pictures or videos, distinguish salmamf bass, etc. Fortu-
nately, all these needs can be satisfied via classificatiortomputer vision and
pattern recognition, there are various classificationdagks shown in Fig. 1.1,
the classification tasks include fdicis/palmpringfingerprinfinger-knuckle recog-
nition, action recognition, texture classification, imagassification, handwritten
digit recognition, etc. For a general classification takkré are four crucial steps:
data collection, data preprocessing, feature extractidrckassification. Among all
the four steps, feature extraction and classification hascé&d much attention of

researchers in the past few years.
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Figure 1.1 Classification tasks in computer vision and pattern redagni

1.1.1 Feature extraction

The main purpose of feature extraction is to produce goocksemtations for data,
which can be used for detection, recognition, predictiornisualization. Success-
ful feature extraction algorithms should eliminate ircglet variabilities of the input
data, while preserving the useful information for the ulitetask. Feature extrac-
tion methods can be categorized into three types: subspangng, local features
and feature learning.

Subspace learningAs a popular dimensionality reduction and feature extoacti
technique, subspace learning has been successfully ugadons computer vision
and pattern recognition applications, for example, apgreas based face recogni-
tion (FR). Representative subspace learning methodsdeguncipal component
analysis (PCA), e.g., Eigenface [180], Fisher linear dmicrant analysis (FLDA)
[11], the manifold learning [176] [156] based locality peedang projection (LPP)
[75], local discriminant embedding (LDE) [25], graph embdex) [207], etc. Ac-

cording to if the class label information of the training sdes is exploited, the
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linear subspace learning methods can be categorized istopervised methods
(e.g., PCA and LPP) and supervised methods (e.g., FLDA fegjlarized LDA
(RLDA) [114] and LDE). Subspace learning methods are naoitéichby data types.

Local featuresIn computer vision and multimedia tasks, images are the oorst
mon data type. Intuitively, intensity features can be diyagsed for diferent tasks.
However, the poor performance of intensity features anditithscovered hidden
information in the image drive researchers to extract maeful features from
images. Local features are distinctive and invariant to yrkinds of geometric
and photometric transformations [108]. For a local featitreonsists of a feature
detector and a feature descriptor. Feature detectors oegekdct the key points
and regions of an image. The history of feature detector eatrdzked back to
the Moravec’s corner detector [130], and from then on a |lang®mber of corner
and region detectors [70][126][181][92] have been prodogdter key points and
regions are detected, local descriptors are used for fedescription. We can cat-
egorize existing descriptors into filter-based descripferg., steerable filters [49],
Gabor filters [121] and complex filters [159]), distributibased descriptors, (e.g.,
SIFT, LBP, shape context, and GLOH), textons [107] and a¢rie-based descrip-
tors [48]. Different descriptors may be optimal fofigrent tasks. Hence, it is quite

necessary to design a proper local feature fiedént tasks.

Feature learning The model of visual cortex suggests that the brain of human be
ings extracts features from edge, patch, surfaces, anddlwnects [84, 149, 164].
The observation and decision process is usually a hierartctgpresentations with
increasing level of abstraction and each level is a trasm&mture transform. Be-

sides image classification, there is a pipeline for textsifestion, i.e., from Char-
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acter, word, word group, clause, sentence to story [100]spkech recognition,
the similar process goes from sample, spectral band, squhe, phoneme to
word [76]. In machine learning and artificial intelligen¢e®w can we learn fea-
ture hierarchies? In neuroscience, the way how cortex seaenception needs to
be explored. Fortunately, deep Learning develops a hieyaot deep architec-
ture to address these problem. Deep learning constructsrarthy of trainable
transforms, from low-level features that shared amonggeates to more glob-
al and more invariant high-level features. There are thespdarchitectures, i.e.,
feed-forward (e.g., multi-layer neural nets [2], convalatl nets [100]), feed-back
(stacked sparse coding [221], deconvolutional nets [224¢) bi-directional (e.q.,
deep boltzmann machines [158], stacked auto-encoderks [B8Hitionally, there
are three types of training protocols, including fully sapsed, unsupervised lay-
erwise training plus supervised classifier on top, unsupedvlayerwise training
plus global supervised fine-tuning. To learn invariantdeat the overall architec-
ture is composed of normalization, filter bank, non-lingaaind pooling. There are
two types of normalization, subtractive (e.g., averageonah high pass filtering)
and divisive (e.g., local contrast normalization, varemormalization). The non-
linearity can be introduced by non-linear dimension expansr sparse non-linear
expansion. Finally, by pooling, semantically similar i@gs can be brought togeth-
er. As deep learning can extract invariant features andnsistent with the cortex
of human brains, it has been successfully used in pedeskeigcetion [163], image
segmentation [37], action recognition [88], scene parfEli@], speech recognition

[76], etc.
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1.1.2 Classifiers

After features are extracted from text, image, audio or @jdriitable classifiers
should be chosen for classification. According to the nunabéabels, there are
single-label and multi-label classification tasks. Besjdecording to the number
of modalities, there are single modal classifiers, multdaiclassifiers and cross
modal classifiers. According to the availability of the hiaig labels, the classi-
fications tasks can be also categorized into weak-supeéngseni-supervised and
supervised tasks. In this following part, the popular dfeess are categorized and
reviewed.

Distancgsimilarity based classifiersGiven two samples, we need to measure their
similarity/dissimialrity to judge whether they belong to the same dijggj. Given

a query sample, the distance from the query sample to thertgasamples is also
needed to get the identification. For both identification gedfication problem,
a proper distance metric should be designed or learned fertaic task. K near-
est neighbor classifier (KNN) is one of the most popular dfidient classifiers in
pattern recognition. KNN assigns the query sample to tresalath the largest fre-
guency in the k-nearest neighbors. There are two factotstfiieat the performance
of KNN, i.e., distance metric and K. The distance metricstmaiuclidian distance,
cosine distance, Manhattan Distance, Mahalanobis distatc. In recent years,
it has been increasingly popular to learn a desired distareteic from the given
training samples in many visual classification tasks, ssda@gactionfkinship ver-
ification [66], visual tracking [89], and image retrieval [Metric learning methods
can be categorized into unsupervised [33], semi-supeatyidand supervised ones

[1, 66, 89], according to the availability of the class labef training samples. As
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the naive linear search over all the training data vecta@gaite time-consuming,
two branch and bound search algorithms, i.e., kd-treesdb@]ball trees [52] are
introduced to accelerate the searching process. Theretoat the impact of curse
of dimensionality, hashing technique was proposed to m&&tch structure for per-

forming similarity search over high-dimensional data [61]

Rule based classifierdn some applications, such as medical analysis, stock pre-
diction and fault diagnosis, the understandability of sifksrs is quite important.
The users need to get definite rules for analysis or diagndsesmost popular rule
based classifiers are decision trees, e.g., classificatidmegression tress [152]
and C4.5 [146]. Attentions are also paid to extract rulemftdock box classifier-

S, such as support vector machines [137] and artificial heetaorks [177]. Rule
based classifiers are composed of two parts: rule extraeti@hrule pruning. More

detailed discussions about rule learning can be found ij [53

Linear/nonlinear discriminant classifiersGiven a query sample, it can be clas-
sified by a discriminant functiori(x) = wx + b. For non-linear cases, with ker-
nel mapping, the discriminant function becomiég) = wg(x) + b. This kind of
classifier assume the samples offelient classes can be separated by a series of
classification hyperplane. Support vector machines [1I88ar regression [161],
and logistic regression [77] can be categorized into thsl kif classifier. Ensem-
ble learning methods, e.g., boosting, also belong to lidesariminant classifiers.
Additionally, to deal with multi-task problems, multi-kegl learning extends non-

linear discriminant classification model to the multi-tasise [7].

Representation based classifieftmspired from the fact natural images can be gen-

erally coded by structural primitives and these primitiges qualitatively similar to
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Figure 1.2 An under-determined linear system.

simple cell receptive fields, Olshausen et al. proposedaiesent a natural image
using a small number of basis functions from an over-corepetle set [138, 139].
As shown in Fig. 1.2, given a signgland a set of bases, y can be represented as
a linear combination of bases, i.&x. Finding a good representation has been the
topic of many applications, e.g., signal reconstructid@j,[Enage restoration [116],
etc. Besides applications in low-level vision, represeatebased models have also
been used in high-level image classification tasks [201]. Higstly, the representa-
tion residuals can be used for classification [201, 226]. rEpeesentation residual
of each class has discrimination ability and hence can bd fmeclassification.
Secondly, the representation @idgients vector are used as the feature, and then
the traditional classifiers (e.g., SVM) are utilized for fhveal classification outputs
[212]. As there are noises, non-linear data structure aniti-modalities, robust
[214], kernel [55], cross-modal [194] and multi-modal repentations [219, 223]
are proposed for classification for each case, respectivi@ypursue a good rep-
resentation, the bases, also called dictionary, are gup@itant in representation

learning. In Section 1.2, we will review some representabiased models.
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1.2 Overview of representation based pattern classi-
fication

In this section, we review the representation learning nsderstly, the represen-
tation based classifiers are reviewed. Besides, dictidearming methods are also

reviewed.

1.2.1 Representation based classifiers

As there are dferent modalities of objects in nature, there are single noulalti-

modal and cross-modal representation based classificatiolels.

Single-modal representation

For single-modal representation, a series of models hage peoposed, from s-
parse representation, collaborative representationtiostorepresentation, kernel
representation and generic representation.

Sparse representationNowadays, the data are increasingly massive and high-
dimensional. How can we find the low-dimensional structumamf such high-
dimensional data? Because of rich local regularities, @lasygmmetries, repeti-
tive patterns, or redundant sampling, visual data usualibéts low-dimensional
structures. In section 1.1.2, the mechanism of representhtised classification
models has been introduced. To find a good representatiorgvea signal, ef-
ficient prior should be imposed. Based on the observatiomefrépresentation
and cognitive science, in many cases, the presentatidfiagests are sparse. S-

parse representation has been widely used image restofafi@], image resolu-
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tion [211], visual tracking [124], image classification Fletc. For example, a
qguery face can be sparsely reconstructed by only severkdefaces. In [201],

a sparse representation based classifier (SRC) is proposété recognition. It
uses the reconstruction residual of each class for claatstiic Actually, SRC can
be considered as an extension from nearest neighbor aassdarest feature line,
nearest subspace classifier. Thedence is that the representation is done on the
training samples of all classes. Intuitivelg;norm is used to measure the spar-
sity. However, it is non-convex and a NP hard optimizatioobpem. |;-norm is
the most strictly convex hull ofp-norm and it is convex,though it is not smooth
asl,-norm. Hencel;-norm is introduced and it is a convex optimization problem.
There are quite a lot di-norm optimization algorithms, i.e., primal-dual intario
point, homotopy, gradient projection, iterative threslod, proximal gradient and
augmented lagrangian Methods [209]. Usually, sparse ptaisen emphasizes the
sparsity of representation dheients. Sometimes, in case of corruptions and oc-
clusions in the face image, the representation residuddasrmaeasured blj-norm

to be robust to noise. The fidelity measure is up to the reptasen error distribu-
tion. If it satisfies the Gaussian distribution, tHemorm is adopted. Otherwise, if

it satisfies the Laplacian distribution, e.g., face imag#h pix corruption,l;-norm

should be used.

Collaborative representationIn representation based classifiers, suitable regular-
ization should be imposed on the representatiorfcents according to the prior
knowledge about the solution. If we know in advance that thaten is sparse,
i.e., only a few elements are relevant, thenorm can be well adopted, which leads

to a lasso problem. However, should all the representatiodets be regularized
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by sparsity norms? What does the succuss of SRC own to? I @26llaborative
representation based classifier (CRC) is proposed by tiegléitel;-norm in SRC
with |,-norm. Without solving a time-consuming-norm optimization problem,
CRC only needs to solve a ridge regression problem that héssadzform solu-
tion. Whereas, CRC achieves comparable recognition peéoce to SRC while
with much lower computation consumption. Besides, CRC a&rplthe success
of SRC from the perspective of collaborative represematidhich means that the
across subject face similarity can be used to help représees of other persons.
CRC can explains the superior performance of SRC in facegretton. Howev-
er, the concept of collaborative representation does rcessarily apply to all the
classification tasks. The debatelpfandl,-norm regularization induces more dis-
cussions and experimental validations. Overall, if sasiate well conditioned, the
dense representation can lead to comparable performantee bther case, when
samples are highly coherent, sparse representation isdrsmm@minative. Besides
[;-norm and,-norm regularization, there maybe exists the structutatimmship in
the data. Hence, other regularization, e.g., group lassope introduced to reg-
ularize the representation dteients. If we can discover the latent structure and

prior knowledge from the data itself, we can choose propgulegization.

Robust representationin face recognition, there are usually corruptions, occlu-
sions or disguises in face images. Then robust face recogratgorithms have
been proposed to deal with various noise. In the raw SRC, \linene are pixel
corruptions,l;-norm is used to measure the representation error. The kéyano
tion of robust representation is to alleviate the impachef¢orrupted pixels. The

solution is to find a proper measure for the representatisidual. What is the
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distribution of representation error, Gaussian or Lagla@iln real applications, the
distributions are diverse. In [214], motivated by maximurpasterior (MAP), a
robust sparse coding (RSC) algorithm is proposed by itexaiweighted strategy
to penalize the pixels with large representation errord.78}, Maximum corren-
tropy criterion (CESR) was proposed for robust face redommi By half-quadratic
optimization, CESR can be finally converted to an iterateweighted problem.
As there are also expression, pose, illumination and othpradictable variation-
s in the wild environment, more robust models should be dpesl to deal with

complex variations.

Kernel representation Kernel trick is often used to map the samples in the orig-
inal non-linear separable feature subspace to a high-dimeal feature space, in
which features of the type are easily grouped together amddmples becomes
linearly separable. Many linear classifiers and algoritheng., SVM, PCA and
LDA, are extended to kernel version, that is, kernel SVMnk¢PCA and kernel
LDA. For representation based classifiers, by kernel maptorthe reproducing
kernel Hilbert space (RKHS), kernel sparse represent@idns6Jand kernel col-
laborative representation [216, 219, 223, 232] are praposspectively. For kernel
representation based classifiers, representation résidnde used for classifica-
tion [55, 216, 219, 223, 232]. Besides, kernel represantatan also be combined
with spatial pyramid matching. Instead of vector quanioraf103], local sparse
coding [212] or soft-threshold [34], kernel representattan also be used for cod-
ing process [55]. From the solution stability of linear st in RKHS the linear
system tends to be over-determined. Hence, the reguianzsgems less important

for representation based classifiers [232].



CHAPTER 1. INTRODUCTION 12

Generic representationFor representation based classifiers, we can seek a good
representation with a over-complete dictionary. Howesemetimes, the training
samples are inghicient or the dictionary is not well trained. For example,acd
recognition, the variations in the query face image is not@ined in the training
samples. In SRC, to deal with the noise in the query face inragealentity matrix

is introduced to simulate the noise part [201]. To introdone variations of face
images, a generic dictionary that containgatient face variations is introduced and
an extended SRC (ESRC) is proposed [43] to solve small sasig#eoroblem in
face recognition. In ESRC, the variation dictionary is ai¢a by the diferences
between a variation subset and a reference subset. HerR€, &% not contain all
the possible face variations. In [210], a sparse variatiotiahary learning (SVDL)
method is proposed to learn a variation dictionary and uga iface recognition

with single sample per person.

Multi-modal representation

With the rapid development of sensor techniques and wigespuse of Internet,
the diversity of data sources, data types and represemsédads to an explosion
of multi-modal data. Multi-modal data widely exists and phed in biometrics,
computer vision, multimedia, fault diagonal, remote segsiata, medical analy-
sis, etc. Researches on human brain mechanism show thantwemmays can ef-
fectively store, transform and integrate the informatiamf different sense organs.
It becomes extremely important to investigate how to siteuthe data process-
ing mechanism of human beings to fuse multi-modal infororafior detection,

recognition and prediction. The present multi-modal dfacsgtion models can be
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categorized into three types: feature-level modelingjsile-level modeling and
deep learning. Feature-level modeling explores how to ¢oeyiproject or transfor-
m features from dferent modalities, including feature stacking, multi-picijons
learning [26] and multi-modal dictionary learning [129]e€sion-level modeling
aims to fuse multi-modal outputs or learn multi-modal ci#éess, e.g., ensemble
learning, multi-metric learning [140], multi-kernel ledng [7] and multi-modal
representation [219, 223]. Deep learning simulates theah@etworks of human
beings. It can separately or simultaneously conduct fedawel and decision-level
modeling [131]. For multi-modal classification, the renetation is jointly con-

ducted with group sparsity regularization [223] or otheosith regularization.

Cross-modal representation

As shown in Fig. 1.3, dierent from multi-modal classification tasks, cross modal
classification tasks need to match the object of one modaittythe object of the
other modality. There are quite a lot of cross modality dfeesdion tasks, e.g.,
photo-sketch face recognition [228], text to image reaid?202], image to video
face recognition [83], etc. To match objects offedient modalities, distance metric
learning, joint representation (regression) and deemiegrmethods have been
proposed in the past few years. For cross modal represamtaddels, the key
motivation is that representation is conducted on each htpdand a projection
matrix is learned to connect the representationffaments of diferent modalities

[71, 80, 194, 222].
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Figure 1.3 Cross-modal classification tasks.

1.2.2 Dictionary learning

For representation based models, one of the most impowdatdrs is the dictio-
nary, on which a query signal is reconstructed. How to a deaigood dictio-
nary can track back to the hand-crafted bases, e.g., déscosine transform [4],
wavelets [119], wedgelets [44], etc. Compared with theseigfly designed bases,
learned dictionary aims minimize the reconstruction eaod at the same time
preserve the hidden structure or information within theadathe existing dictio-
nary learning methods can be categorized into reconsteuetnd discriminative
methods. Reconstructive methods emphasize the recotstrability of the dic-
tionary, e.g., KSVD [3], method of optimal direction (MODJ§]. Discriminative
methods aim to introduce discrimination ability to reprgséion residual or coding

vectors. Instead of learning a dictionary for all the classtass-specific dictionar-
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ies are learned to introduce discrimination ability to tkeanstruction residuals
[57, 147, 215]. Intra-class Particularity and inter-classnmonality are usually
taken into account in the model of dictionary learning [59]. 9n [147], structured
incoherence is introduced to enhance the independence sfitiidictionaries relat-
ed with diferent classes. Another type is to learning discriminatodinng vectors
by dictionary learning. In [227], KSVD is extended to dissmative KSVD by
simultaneously learning a dictionary and a linear clagsifie [90, 91], by intro-
ducing a lable-consistent item, the discrimination apitit coding vectors is en-
hanced. In [118], coding vectors are embedded into a lagisgression function
and a task-driven dictionary learning method is proposed215], class-specific
dictionaries are learned while fish discrimination fideigymposed on coding vec-
tors. The key challenge of dictionary learning for clasatiion is to pursue the
balance between representation and discrimination yabBiesides, theféciency
of dictionary learning is quite important, especially fonse real-time applications,

e.g, image retrieval and visual tracking.

1.3 Problems

Although representation based classification models helieed great success
in different classification tasks, there are still many problentk vépresentation
based models. When there are only a small number of traisimgpkes in the dic-
tionary, the dictionary tends to be over-determined ancefoee the query sample
can not be well represented. With the development of semsutsligital devices,

the data are consistently increasing with a high speed. Wiemumber of the
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training samples is very large, how can we deal with the g®taurden and time
complexity of representation based classifiers? Besitesexisting representa-
tion based classifiers can only be applied to single imagedesassification tasks.
However, for video based face recognition and multi-vieyeobrecognition, the
task becomes an image set classification problem. It isastilbpen problem to
extend representation based classifiers from image basedd¢e set based model-
s. Finally, for representation based classifiers, the sgmtation process is usually
discriminative. Similar to discriminative classifiersgge.SVM), discriminative rep-
resentation can be learned to enhance classification. Holflbeving part, we will

discuss the three problem mentioned above in details.

1.3.1 Representation with small sample size

In classification tasks, sometimes the available trainanges are quite limited.
This is called small sample size problem in machine learningace recognition,
we have to deal with small sample size problems. Face retogr{FR) is a very
active topic in computer vision research because of its nadge of applications,
including access control, video surveillance, social oekyphoto managemen-
t, criminal investigation, etc [86]. Though FR has been mtddor many years,
it is still a challenging task due to the many types of largeefaariations, e.g.,
pose, expressions, illuminations, corruption, occlusind disguises. Furthermore,
in applications such as smart cards, law enforcement,weécmay have only one
template sample of each subject, resulting in the singlepkaper person (SSPP)
problem [175]. SSPP makes FR much moréidilt because we have little infor-

mation from the gallery set to predict the variations in theny face image [220].
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Since the intra-class variations cannot be well estimatede SSPP problem,
the traditional discriminative subspace learning basedieihods can fail to work.
In addition, since the number of samples per class is so sthallrobustness of
extracted features and the generalization ability of ledrclassifiers can be much
reduced. For representation based classification motielgjuery face image can
not be well reconstructed by the training images. Besidethe@number of sampler
per class is quite small, the linear system seems to be @terrdined. Hence, the

solution is unstable and leads to misclassification.

1.3.2 Representation with big sample size

With the data rapidly increasing, there are large amountsaafing samples and
therefore the large-scale classification task is yieldethik case, for representation
based classifiers, the linear system tends to be over-ctenplewever, the massive
training samples lead to large computation burden and lmigé ¢omplexity. Then
how can we develop a representation based classifier witicdomputation burden
and time complexity for large-scale tasks?

As shown in Fig. 1.4 the existing representation basediflssall reply upon
sample-level representation, i.e., a query sample cambarly reconstructed by a
set of sample bases. In nature, self-similarity widely &sxise., a part of an object
is similar to other parts of itself, e.g., coastlines [126fhck market movements
[19] and images [17]. Taking images for example, patchesfirdnt locations in
an image perhaps are similar to each other, which is calladaal self-similarity.
In image processing, the so-called non-local self-sintyldras been successfully

used in high performance image restoration and denoisiflg As shown in Fig.
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1.5, one feature can be represented by its relevant featBesed on feature-level
representation, a series of interesting models can bea®el The relationship

between sample-level and feature-level relationship tsmiee further investigated.

1.3.3 Image set representation

Image set based classification has become increasinglyriamhon face recogni-
tion [5, 21, 29, 40, 78, 136, 145, 193, 199, 206] and objegmization [98, 190]
in recent years. Due to the rapid development of digital imggnd communica-
tion techniques, image sets can be easily collected frontiswvielv images using
multiple cameras [98], long term observations [199], peasalbums and news pic-

tures [162], etc. Since the gallery image sets contain matt@rnaclass variations



CHAPTER 1. INTRODUCTION 19

One Feature

:-. :.*l.:.lll

Feature Bases

Representation Coefficients

Figure 1.5 Feature-level representation.

of the subject [78], image set based face recognition (ISk8)shown superior
performance to single image based face recognition. Onaadpase of ISFR is
video based face recognition, which collects face imagefsat consecutive video
sequences [105, 171, 206]. As shown in Fig. 1.6, a query faage set is cropped
from the query video and similarly the training face images sge collected from
the gallery videos. Then the face recognition problem besomatching one image

set with a set of training image sets.

One may apply SRECRC to ISFR by representing each image of the query
set over all the gallery sets, and then using the average nmai representation
residual of the query set images for classification. Howestech a scheme does
not exploit the correlation and distinctiveness of samplages in the query set. If
the average representation residual is used for classificahe discrimination of
representation residuals byfidirent classes will be reduced; if the minimal repre-
sentation residual is used, the classification cdfestrom the outlierimages in the

guery set. In addition, there are redundancies in an imageree redundancies
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Figure 1.6 Image set based face recognition.

will lead to great storage burden and computational coniyleand deteriorate the

recognition performance.

1.3.4 Discriminative representation

Representation based classifiers aim to well reconstrustgygample by the given
training samples or a specially learned dictionary. Thenagentation based residu-
als or codficients are used for classification. However, the representarocess is
unsupervised and therefore lacks discrimination abillliscriminative dictionary
learning methods have been proposed to make the represardecriminative,
e.g., FDDL [215], D-KSVD [227], etc. Besides, discriminagiprojections can al-
so be learned to project the query sample and the dictiooaaydw-dimensional
discriminative feature space [132, 210]. Actually, repreation based classifiers,
e.g., nearest subspace classifier, can be considered dd@sgt distance based
classifiers. Hence, learning a discriminative point-tbestance can enhance the
performance of representation based classifiers. Simikdet-to-set distance can

also be learned in image set based classification tasks.
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Figure 1.7 The main contributions of the thesis.

1.4 Thesis contributions

As shown in Fig. 1.7, the main contributions of this thesesleted as follows:

In Chapter 2, to solve the over-determined representatiaisiggm in face recog-
nition, we proposed a patch based CRC (PCRC) method and quoersity the
multi-scale version of it, i.e., MCPCRC, by margin disttilomn optimization. The
guery image was partitioned into a set of overlapped pateheseach patch is
collaboratively represented over the corresponding setatéhes of all training
samples. The classification outputs of all patches were ¢berbined by voting.
However, the patch size will have a great impact on the firedsification result
of PCRC. Therefore, we proposed to use multiple patch sizdgten optimally
combine the multi-scale outputs by margin distributionimptation withl;-norm

regularization.

In Chapter 3, we proposed a local generic representatioRjld@sed approach
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for the challenging task of face recognition with single péarper person (SSPP).
LGR utilizes the advantages of both patch based local reptason and generic
learning. A generic intra-class variation dictionary wasstructed from a generic
dataset, and it can well compensate for the face variatamket in the SSPP gallery
set. A patch gallery dictionary was built by using the gallsamples, which can
more accurately represent thefdrent parts of face images. Considering that the
distribution of representation residual offérent patches is highly non-Gaussian, a
correntropy based metric was adopted to measure the losebfoatch so that the
importance of dierent patches in face recognition can be more robustly atedu
As a result, LGR can adaptively suppress the role of patclislavge variations.
The extensive experimental results on four benchmark fatabdses showed that
LGR always achieves higher face recognition rate than thestf-the-art SSPP

methods used in competition.

In Chapter 4, for large-scale representation, we invetstdjthe representation
based classification problem from a “feature oriented” pective. Diferent from
the existing representation based classifiers that remtressample as the linear
combination of other samples, we explored to representiarkehy its relevant fea-
tures in the data, which we call self-representation. A-ssifesentation induced
classifier (SRIC) was then proposed, which learns a setesgmtation matrix per
class and uses these matrices for classification. The qasrpls is then classified
to the class with the minimal reconstruction error. We ptbtreat SRIC is equiv-
alent to nearest subspace classifier (NSC) \giihorm regularization in terms of
classification decision. Furthermore, it can be shown tiRICIs essentially the

principle component analysis (PCA) with eigenvalue shagé We then proposed
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a discriminative SRIC (DSRIC) classifier, which not only maizes the feature
self-representation residual of this class but repredétiesthe features of other
classes. As the time complexity of SRIC and DSRIC is onlyteglavith the fea-
ture dimension, the proposed method can apply to the cleessifin tasks with large

number of training samples.

In Chapter 5, for image set based representation, we prd@osevel image set
based collaborative representation and classificatiddRIS) scheme for image set
based face recognition (ISFR). The query set was modeleatasvax or regular-
ized hull, and a collaborative representation based setsaéstance (CRSSD) was
defined by representing the hull of query set over all theegakets. The CRSSD
considers the correlation and distinction of sample imag#sn the query set and
the relationship between the gallery sets. With CRSSD,epeesentation residual
of the hull of query set by each gallery set can be computediaed for classifica-

tion.

In Chapter 6, we extended the point-to-point distance métgrning to point-
to-set distance metric learning (PSDML) and set-to-seiadise metric learning
(SSDML). Positive and negative sample pairs were geneffadea training sam-
ple sets by computing point-to-set distance (PSD) andossét distance (SSD).
Each sample pair was represented by its covariance matiia aovariance kernel
based discrimination function was proposed for samplegassification. Finally,
we showed that the proposed metric learning problem carffiogeatly solved by
SVM solvers. Experiments on various visual classificatiovbfems demonstrated
that the proposed PSDML and SSDML methods ciaatively improve the per-

formance of PSD and SSD based classification. Compared hatstate-of-the-art
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metric learning methods such as LMNN, ITML and MCML, the psepd method

can achieve better classification accuracy and is signtficster in training.



Chapter 2

Patch based Collaborative

Representation

In computer vision and pattern recognition tasks, the agtjoim of training samples

is sometimes quite flicult and therefore results in small sample size (SSS) elassi
fication problem, especially in face recognition. Colladiore representation repre-
sents a query sample on a specially designed or learnedmcyi and then use the
representation residual for classification. Unfortunatedpresentation based clas-
sifiers may fail for SSS problems in that the representatamlze inaccurate and
the linear system tends to be over-determined. In this ehape investigate the
SSS problems in face recognition from the perspective afpladsed collaborative

representation.

25
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2.1 Introduction

Face recognition (FR) has been an active research topicrpater vision and
pattern recognition for many years [229]. In spite of thenemdous achievements,
there are still many challenges caused by the large faceasgpee variations of
illumination, expression, pose, noise, occlusion, ete]l14articularly, the small
sample size problem is one of the most fundamental and clgatig issues in FR.
In many real-world applications such as smart cards, lawreafment, surveillance
and access control, the training samples of many subjeetsften very limited
[175]. Unfortunately, the performance of appearance b&ednethods, such as
the classical Eigenface [225], Fisherface [11], LPP [75] #re variants of them
[207], degrades much with the decrease of training samples.

As a generalization and extension of the nearest neighbargst line, nearest
plane and nearest subspace classifiers, the sparse re¢atiesdmased classification
(SRC) [201] scheme shows very interesting FR results. SR@sents a query face
as a sparse linear combination of the training samples flbotesses, and classi-
fies it to the class which has the least representation ralsiddowever, in [226]
it was indicated that the costly-norm sparse regularization on the representation
vector in SRC is not necessary, anehorm regularization can lead to similar FR
results but with much lower computational cost. The colfabige representation
based classification (CRC) was then proposed in [226] byesgmiting the query
sample with non-spardgregularization. However, both CRC and SR@suseri-
ous performance degradation when the training samplesizmry small and hence
the query sample cannot be well represented [200].

To solve the SSS problem, virtual samples and generic trgiset were used in
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[173]. Onthe other hand, the trained classifiers will becom&table and have poor
generalization ability when the available samples arefiitsent, and hence ensem-
ble learning has been widely applied to FR and has led tofgigni improvement
in recognition rate and robustness [174][109][102]. Thesthods can be rough-
ly divided into three categories. The first category of mdthis patch (or block)
based methods, which usually involve steps of local regemtitpon, local feature
extraction and classification combination [101][102]. Taeognition rate of patch
based methods is muclffacted by patch size, which is often set by experimental
experience [27] [174]. Considering that the global and liéeatures can provide
complementary information, the second category of metlcodsbines the global
and local features for classification [109][172]. Third, ey popular category of
methods uses multiple feature extractors to extrabedint types of facial features,
and then uses classifier fusion for classification. For exemp [198][66], local
features such as SIFT, LBP, Gabor response and gray vakiesm@bined for face

verification.

Human faces exhibit distinct structures and charactesisthen observed on d-
ifferent scales [109]. Combining the information offetient scales could not only
lead to much FR improvement but also provide us a simple #iedteve way for
scale-insensitive models. How to combine multi-scale nmfation is essentially
an ensemble learning task. AdaBoost [155] is one of the mastessful ensem-
ble learning techniques due to its excellent performancebaoad applications in
face and object detection, visual tracking, etc. The swscoéfdaBoost actually
attributes to margin distribution optimization [151][16859], and AdaBoost ap-

proximately minimizes the loss criterion with-regularization on the cdiécient
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vector [155]. In [166], Shawe-Taylor gave the bound of AdaBts generalization
error based on margin distribution, which shows that the lmismargin and the
norm of codficient vector could be minimized.

In this chapter, to improve the performance of CRC in SSSIpropwe propose
to conduct CRC on patches, and the so-called patch based PRRQ) classifies
the query sample by combining the recognition outputs ahalloverlapped patch-
es, each of which is collaboratively represented by theesponding patches of
training samples. Similar to those patch based methodsCHER patch size sen-
sitive method, while the optimal patch size varies withrtiag sample size and
databases. In order for a patch size robust scheme, we tbpog® a multi-scale
PCRC (MSPCRC) method by combining the information offiedent scales. M-
SPCRC considers PCRC on each scale as a base classifier mrstslegle weights
to fuse multi-scale decisions. Scale weights are learneuiibymizing the square
loss of margin, and sparsgnorm regularization is imposed on the weights to get
better margin distribution.

The rest of this chapter is organized as follows. Section srilees PCRC.
Section 3 presents the margin distribution optimizationnfulti-scale ensemble.

Section 4 conducts experiments and conclusions are madetins 5.

2.2 Patch based CRC

In [226], Zhang et al. proposed to use the regularized lepsire model for col-
laborative representation based classification (CRC)a# famages. Given a set of

training samples, denote by, € R™™ the dataset of the" class, and each col-
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umn of Xy is a sample of clask. Suppose that we haweclasses of subjects, and
let X = [Xy, X, ..., Xc]. Given a query samplg the collaborative representation of
itis

a=argmin{lly - Xall3 + 4 lall3) (2.1)

The solution of CRC isa = (XTX + 4 - 1)"1XTy. The classification of CRC is
performed by checking which class yields the minimal regedal reconstruction
error. The recognition output of the query samplis Indentityfy) = argmindry},
wherery = [ly — X - &dlp/lladl, anda = [&; &; ...; &.

When the linear system determined by dictionXrys under-determined, the
linear representation of the query sample oXectan be very accurate while reg-
ularization ona is necessary for a unique and stable solution [200]. Once the
available samples per subject are very limited, CRC maybdause the linear
representation of the query sampienay not be accurate. To alleviate this prob-
lem, patch based CRC (PCRC) can be introduced. As shown irRHigthe query
imagey is firstly divided into a set of overlapped block patclgs ys, ..., yg}. Then
each patcly; is represented over local dictionaly;, which is extracted fronX
at the corresponding location to patgh Since the linear system determined by
local dictionaryM; tends to be under-determined, the patch based representati
is more accurate than the whole image based representdtioally, plurality or
linear weighted combination can be applied to the many pb&sed recognition
outputs for a final classification.

For each local patch, the local features such as LBP and Gediorres can be
used in PCRC. Considering that the focus of this chaptenialidate the &ective-

ness of PCRC strategy instead of local features, for sintypknd clarity the raw



CHAPTER 2. PxrcH BASED COLLABORATIVE REPRESENTATION 30

2
/2}

agmin, v, [+ 2]
Patch Based
Collaborative Representation

ﬁ/

Figure 2.1 Diagram of patch based collaborative representation for &assification.

gray value features in each patch are used. For pafdts representation oveM ;

is obtained by

py = argmin, {[ly; = Myp,[; + 2lo 3 (2:2)

M; is a local dictionary. Denote by the sub-dictionary of th&" class,
and each column oM is a patch of clas& ThenM; = [Mj;, Mja, ..., Mjc].
The recognition outpug; of patchy; is Identity(y;)= argmindr}, wherery =

||Yj - Mk 'f)jk||2/||f>jk||2 andp;j = [pj1; Pj2; -1 Picl-

The classification outputs of all patches can then be condbid@jority voting
[101], linear weighted combination [174], kernel plurglji02] and probabilistic
model [109] can be employed for the combination. As showa@i] and [172], the
weighted combination leads to little improvement compadcetthe simple majority

voting. Hence, we use the majority voting for the final demisinaking.
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Figure 2.2 Impact of patch size on PCRC (1-5 represent the training Easipe per

subject).
2.3 Multi-scale ensemble

In the proposed PCRC, the patch size, or we call it the patale $c this chapter,
will have a great impact on the recognition performance argriot a trivial work
to pre-define an optimal scale for a database. Fig. 2.2 sh@sR accuracy under
different patch sizes and training sample sizes on the ExtenaledByand LFW
databases. One can have the following observations. fiesgptimal scale varies
with the number of training samples per subject. Secondlifterent databases, the
optimal scale also varies a lot. Thiglitulty can be solved by fusing the multi-scale
PCRC results adaptively, via which we can not only be freegnefdcale selection
problem but also exploit the complementary informatioroasrscales to improve
the FR accuracy and robustness. To this end, we propose ambleslearning
method to combine multi-scale information optimally.

The flowchart of the proposed method is given in Fig. 2.3. Ofedint scales
with various patch sizes, we can get the recognition outppBCRC. We then find
a set of optimal weighuv to fuse the outputs. In this chapter, we propose to learn

from the training samples by optimizing margin distribatio
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Figure 2.3 Flow chart of multi-scale learning for PCRC.

2.3.1 The objective function for ensemble optimization

The multi-scale ensemble of PCRC outputs can be considsradpecial classifi-
cation task. Suppose there are two scales and two classdsdas+1 and -1. For
a given sample, on each scale we can have a classificatioatpulpor -1, and thus
the classification output on the two scales of each sampléduagpossible situa-
tions, as shown as the four vertexes in Fig. 2.4(a). Given afgeaining samples,
we aim to find a classification liné = sgniwyz; + W»2,) that crosses the origin to
make all the given samples correctly classified, wie@ndz, represent the clas-
sification outputs on the two scales angandw, represent the weights. As to the
task in Fig. 2.4(a), if samples on vertexés, A4} belong to the first class-() and
samples on vertex¢8, As} belong to the second class (-1), there are several classi-
fication lines that can correctly classify all the samplamilar to feature selection

[60], the importance of one scale is proportional to the Weiglue assigned to it.
For binary classification problems, given a set of samfles {(x;,z)},i =
1,2,..n, 7z € {+1,-1} and s scales, the recognition results grdifferent scales

form a spaceH € R™S. Letw = [wy, W, ..., W] be the scale weight vector and
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Figure 2.4 lllustration of the multi-scale ensemble learning problem
st:l WJ = 1.

Definition Given a sample; € S, the recognition outputs ondifferent scales are
{hj},j = 1,2,...,s. The discriminant function i$ = sgn(zjilehij). The margin

of samplex; can be defined as [160]:
e(Xi) = z X7 wihy (2.3)

Obviously, ife(x;) > 0, then sample; € Sis correctly classified; iE(x;) < O,
then samplex; € S is misclassified; ifs(x;j) = 0, we cannot decide the label of
samplex;. It is similar to linear classifiers (e.g., LSVM). Since Défion 1 is only
suitable for binary classification, we define the followirgctsion matrix in order

for multi-class classification tasks.

Definition As to multi-class classification, given a samples S, the recognition
outputs ons different scales ar¢h;;}, j = 1,2,...,s. The decision matribxD =
{dij},i =12..,nj=12..,5is defined as:

+1, if Z = hij

di; = 9(z, h;j) = (2.4)
-1,if z # hij
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wherez is the label of sampl;.

Clearly,d; = +1 means thax; is correctly classified on thg" scale. Otherwise,

it is misclassified.

Definition Given a sample; € S, the classification outputs asdifferent scales
arefh;;}, j = 1,2, ..., s. The ensemble margin of € S can be defined as:
e(xi) = Xioq Widh (2.5)

Ensemble margin reflects the misclassification degree ssilar fusion. Sam-
ples with positive margin are correctly classified. As shawhig. 2.4(b),+1 and
-1 represent the elements in the decision mdrjand then the margin of samples
on vertexB, is 1 (i.e., correctly classified on all scales) , while the giaof sam-
ples on vertexB; is -1 (i.e., misclassified on all scales). The margin of s&spin
vertexsB; and B, is between -1 and-1. In this case, how should we choose the
scale weights to get better combination result? We shoulderttee ensemble mar-
gin as larger as possible by scale weight learning. Margiximization is usually
converted into a loss minimization problem [183][155][1.68

If the ensemble margin of a samplgis £(X;), then the ensemble loss of sample
X IS

= 1(e(%)) = 1(Z5-1 Wid) (2.6)

We adopt the square loss used in CRC [226], SRC [201], LS-S¥88] and

least square regression [148]. For a samplé&stte ensemble square loss is

(9 =YLl =251~ S(Xi)]z

(2.7)
= 3 [1 - 33, widi] = [le— Dwi3

whereeis a vector whose elements are 1 and leng#h is
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2.3.2 Constrainedl;-regularized optimization

To learn the optimal scale weights, we should minimize theearble loss in Eq.
(7). However, there may be many solutions that can mininfizddss for the given
task, as illustrated in Fig. 2.4. Clearly, we should regatathe objective function
in Eq. (7) in order for a unique and robust solution. In [158dharon et al. showed
that AdaBoost approximately minimizes its loss criteriathv,-regularization im-
posed on the cdicient vector. In [169], it was shown that AdaBoost optimizes
margin distribution rather than minimum margin. Shaweldagave the bound on
generalization error based on margin distribution fordinelassifiers { = wx + b)
and showed that both the square loss (WE(?Qt w; = 1 andx € {+1, -1}) and the
norm ofw should be minimized to improve the generalization abilitg6].

Inspired by the principle of AdaBoost, we propose the follgywonstrained-
regularized least square optimization to minimize the ene loss and solve the

weights:

W = arg min{|le — DW|? + 7 ||wl|;}
g 2 ! (2.8)

S.t.ZJile = 1,Wj > O,j =12..,s

wherer is the regularization parameter.
For the constrainEjS:l w; = 1, it equals teew = 1, wheree = [1;1;...;1]isa

column vector, and then
le— Dwi3 = le— Dw + 1 - ew]3 = ||[; 1] - [ D, e]wi}3 (2.9)
Leté=[e 1], D = [D, €, then we can get

W = arg min,{[[e— DW[; + 7liwlly) st.w; > 0, j=1,2,...s (2.10)
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Since the size of the decision matrix is very small (e.g., dlze of decision
matrix for the LFW database is 682 when the training sample size per subject
is 5 and 7 scales are selected)can be easily solved by some representdtive
minimization approaches [208]. In this chaptels is used for its accuracy and
stable solution [96]. The proposed ensemble learning gkgorfor multi-scale
PCRC (MSPCRC) is summarized in Table 2.1. After scale wdiggning, for a
query sample;, the recognition output ig = arg max{>; w;jlh;j = k}.

It should be noted that though the form of multi-scale endenrbEq. (10) is
similar to the step of coding in CRC (Eg. (1)) and SRC, theysital meanings
are diferent. The square loss in CRC and SRC is the reconstruction while
in multi-scale ensemble learning the square loss is thetiimof classification
margin. Thd;-norm regularization used in SRC is to sparsify the codirgffanent
to enhance classification accuracy, while khra@orm regularization used in multi-

scale ensemble learning is to suppress tteceof less-useful scales.

Table 2.1 The algorithm of multi-scale ensemble learning for PCRC.

1: Chooses patch sizeg = {61, 65, ..., O}
2: Get recognition outputgy;} by PCRC
3: Get the decision matrix
+1, if Zi = hij
dij = 9(z. hyj) =
-1,if z # hij
4: Learn scale weights

W = arg min, ||& - If)w||§ +7wl, stw;>0,j=12,..,s
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2.4 Experimental analysis

We use the Extended Yale B [59], Multi-PIE [64] and AR [123}alzases in con-
trolled environments together with the LFW database [82jnnontrolled environ-
ments to test the FR performance of the proposed method.

The baseline CRC, SRC and NN methods, and the state-ofrtipatah based
methods including BlockFLD [27], Volterrafaces [101] andtgh based nearest
neighbor (PNN) classifier [102] are used for comparison. bsaverage accuracy
improvement of kernel plurality [102] compared to vote isycabout 1%, we report
the result of PNN and Volterrafaces with majority voting. r Rlterrafaces, the
best recognition performance is reported withatient kernel sizes and patch sizes.
As linear kernel outperforms quadratic kernel on all ther fdatabases, we only
report the performance of liner kernel for Volterrafacesr BlockFLD [27], the
performance of CS2 (combine outputs offdient blocks), which is better than
CS1 (combine projected blocks as a feature), is reported.

In all the following experiments, the program is run for 2@és on each database
and the average results are reported. Seven scales areuseddSPCRC method
and the patch sizes arex4, 6x6, 8x8, 10x10, 1212, 14x14, 16<16. In single
scale based PCRC and PNN, the patches are overlapped analtthesjze is set
as 1x10 (overlap is 5 pixels). The parametemused in SRC, CRC, PCRC and
MSPCRC are set as 0.001, 0.005, 0.001 and 0.001, respgctralameter (EqQ.
(10)) is setas 0.1 for MSPCRC. For BlockFLD, we tried threffedéent sizes (44,
8x8, 10x10 for 32«32 image and 1010,15x15, 20x20 for 8080 image) and re-
port the result of the best siz8 (32x32 image) and 1010 (80x80 image) for all

the databases.
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For scale weight learning, we divide the training set intos&il (one image per
individual is selected) and subset?2 (the rest of the trgisigt). Then samples from
subsetl are classified by PCRC using subset2 as the tragtiog Seven scales so
that the weights can be learned. Obviously, as least two lesnper subject are
needed to learn the scale weights. Hence, we first test tlierpemce of PCRC
and MSPCRC with 2 to 5 training samples per subject. Then where is only

one sample per person, only the result of PCRC is reported.

2.4.1 Extended Yale B database

The Extended Yale B face database [59] contains 38 humaedshjnder 9 poses
and 64 illumination conditions. All frontal-face imagesniked with POO were used
in our experiment. The face images are resized 322 We randomly choose-®
samples from the first 32 images for training and choose 5 ksmnfiwm the other
32 images for test. The experimental results are shown il 8. It can be clearly
seen that MSPCRC achieves the highest recognition raté expariments with the
training sample size increasing from 2 to 5. Compared to POREPCRC leads to

much better results, validating th&extiveness of multi-scale ensemble learning.

2.4.2 Multi-PIE database

The Multi-PIE database [64] contains a total of more thanUB0images from 337
individuals, captured under 15 viewpoints and 19 illumiotconditions in four
recording sessions. A subset that contains images of 1§ddslirom session 3 is

selected, and there are 10 images with neutral expresstbhGimages with smile
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Table 2.2 Recognition accuracy (%) on the extended Yale B database.

Method 2 3 4 5
CRCJ226] 61.316.6 74.¢155 81.417.6 87.813.7
SRC[201] 64.217.2 74.215.2 82.616.8 89.@12.5

NN 49.8+17.3 55.816.6 63.417.2 68.416.8
PNN[102] 60.8&14.4 65.615.1 73.815.8 79.414.6
BlockFLD[27] 79.5:8.4  83.8&7.8 88.354 90.%45.5
\olterra[101] 69.&12.9 79.512.3 84.29.6 86.49.6

PCRC 75.£12.6 82.812.4 88.48.4 92.x8.2
MSPCRC 83.0t9.2 88.410.1 92.56.8 95.6.6

expression per person. To make the FR problem more chatigngie randomly
choose 25 samples per subject from images with neutral expressiotrdming
and randomly choose 3 samples from images with smile express test. The
face images are resized tox322. The FR results are listed in Table 2.3. Similar
to the results on the Extended Yale B database, PCRC and MSR&# to much
improvement in FR rate compared with the other methods. MBP& always

better than PCRC since it combines the multi-scale ded@sion

2.4.3 AR database

The AR face database [123] contains over 4,000 color facgasaf 126 people,
including frontal views of faces with fferent facial expressions, lighting conditions

and occlusions. Asin [226], a subset with only illuminatand expression changes
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Table 2.3 Recognition accuracy (%) on the Multi-PIE database.

Method 2 3 4 5
CRCJ[226] 62.613.8 74.36.3 78.55.2 80.43.7
SRC[201] 61.914.0 73.289 78.¢6.5 80.8&4.2

NN 54.9:+14.5 64.4£12.1 71.999 745838
PNN[102] 54.4149 63.2140 72.310.7 76.48.8
BlockFLD[27] 66.146.9 71.%5.7 76.44.6 79.23.2
\olterra[101] 52.211.3 57.67.6 62.46.0 65.44.8

PCRC 68.810.9 76.6.2 79.44.8 81.33.7
MSPCRC 72.410.5 79.659 83.&¢4.0 84.62.6

40

that contains 50 male subjects and 50 female subjects wacifoom the AR

dataset in our experiments. For each subject, we randondgseh2-5 samples

from session 1 for training and choose 3 samples from se&siontest. The face

images are resized to 332.

The recognition accuracy on the AR database is shown in TallleThe pro-

posed methods show superior performance to all the othéraudst Diferent from

the results on the Extended Yale B and Multi-PIE databasafj-stale ensemble

learning in MSPCRC only leads to a little improvement ovelR&C That is be-

cause in this experiment the average weight value (ov&rdnt training sample

sizes) for scale 1¥10 is about 0.9, which indicates that>d1D is a very suitable

patch size for PCRC in the AR database.
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Table 2.4 Recognition accuracy (%) on the AR database.

Method 2 3 4 5
CRC[226] 69.912.6 80.610.4 83.89.6 89.16.2
SRC[201] 69.£14.8 79.6¢10.6 83.%8.9 88.25.7

NN 48.5+9.5 54.49.0 58.%9.1 63.27.0
PNN[102] 72.£14.2 82493 87.6¢8.0 92.26.0
BlockFLD[27] 71.5:11.5 78.69.8 84.28.7 87.6:4.2
\olterra[101] 65.412.0 74.911.1 79.810.5 85.26.8

PCRC 82.211.3 87.£9.4 89.%85 92.96.7
MSPCRC 82.3t11.5 87.810.5 90.29.1 93.67.6

2.4.4 LFW database

41

The LFW database [82] contains images of 5,74®edent individuals in uncon-

strained environment. LFW-a is a version of LFW after aligmiusing commer-

cial face alignment software [197]. We gathered the subjeciuding no less than

ten samples and then get a dataset with 158 subjects fromd.FWir each subject,

2~5 samples are randomly chosen for training and another 2lsarfgy test. The

images are firstly cropped to 12121 and then resized to 832. The FR rates

on the LFW dataset are listed in Table 2.5. One can see thaCR@D& MSPCRC

work much better than other methods, while the recognitenfiggmance is greatly

improved by MSPCRC.
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Table 2.5 Recognition accuracy (%) on the LFW database.
Method 2 3 4 5

CRC[226] 24.82.1 31.9%2.4 37.&2.6 42.63.2
SRC[201] 24.42.4 32.#3.2 38424 44.1%2.6
NN 9.3t1.7 11.418 13.¢x1.7 14.31.9
PNN[102] 23.1+2.4 28.13.1 33.23.1 37.42.7
BlockFLD[27] 18.0t2.1 22.32.1 26.22.6 28.425
\olterra[101] 26.@3.0 32.23.4 36.43.3 40.32.7
PCRC 32.81.9 37.x2.8 40.225 42.9%2.6
MSPCRC 35.061.6 41.12.8 46.3.0 49.¢:2.9

2.4.5 Single sample per person (SSPP)

As there is only one sample per person, the proposed ensémahniéng cannot be
conducted. We report the recognition accuracy of PCRC onsoake for all the
databases. The images are resized te322and 8&80, and the corresponding
patch size is set asx8 and 220, respectively, for PCRC. When the image size is
80x80, the neighbor patches are used to construct the locadliey. Since volter-
rafaces cannot deal with SSPP problem, its performanced reported. BlockFLD
(CS2) [27], AGL [173] and FLDAsingle [54], which are methods specially de-
signed for SSPP problem are compared. The results are iistBable 2.6. The
performance of PCRC is much better than SRC, CRC, NN, PNN,A=kDgle,
and BlockFLD. Compared with AGL (adaptive generic learfingethod, which

uses an additional generic set to learn the projection rmatre proposed PCRC
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shows better performance on the MPIE, AR and LFW databagbsutiusing any

additional information apart from the training set.

Table 2.6 Recognition accuracy (%) for SSPP.

32x32 YaleB  Multi-PIE AR LFW
CRC[226] 39.820.5 47.219.0 42.9146 15.522.0
SRC[201] 38.220.5 48.218.6 44.9148 14.%1.9
NN 35.4:19.8 42.917.0 35.412.0 7.¢1.6
PNN[102] 45.1:18.3 40.%17.7 54.419.5 15.82.0
BlockFLD[27]  63.115.0 56.99.7 52.1:19.8 11.81.4
FLDA single[54] 39.221.4 43.5%14.8 37.2104 6.%15
AGL[173] 75.9:12.2 58.9:14.8 52.%15.9 14.21.4
PCRC 66.516.3 59.1+13.3 65.420.9 21.1k2.2
80x80 YaleB  Multi-PIE AR LFW
CRC[226] 42.620.2 49.218.2 46.817.2 14.62.4
SRC[201] 39.319.6 48.316.7 42.¢13.3 12.61.8
NN 37.2620.2 44.%317.3 36.812.3 7.¢15
PNN[102] 57.918.6 49.117.3 61.619.3 16.6:2.3
BlockFLD[27]  65.%13.3 51.95.6 41.917.8 4.91.3
FLDA single[54] 41.220.9 39.210.5 32.912.0 8.%1.8
AGL[173] 79.1+12.7 58.5:24.8 5172167 12.62.1
PCRC 76.217.4 69.5:10.4 69.522.6 25.01.8
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2.5 Conclusions and discussions

In order for a more #ective face recognition when the number of training sam-
ples per class is small, in this chapter we proposed a patebdb@RC (PCRC)
method and consequently the multi-scale version of it, MGPCRC, by margin
distribution optimization. The query image was partitidmeto a set of overlapped
patches and each patch is collaboratively representediozeorresponding set of
patches of all training samples. The classification outptitdl patches were then
combined by voting. However, the patch size will have a gmagiact on the final
classification result of PCRC. Therefore, we proposed tonuskiple patch sizes
and then optimally combine the multi-scale outputs by nradjstribution opti-
mization withl;-norm regularization. Our experimental results on cotgtbbnd
uncontrolled face databases showed that MSPCRC outperfootronly much the
CRC and SRC benchmarks, but also state-of-the-art pat@dbasthods such as
BLDA and Volterrafaces, especially when the training saaize is very small.
For PCRC and MSPCRC, the projection matrices and scalehtgeign be fi-
line learned. Hence, in the testing stage, PCRC is very fesidbs its superior
performance. As there is only one sample per class in facgnton with SSPP,
the scale-weights can not be learned. Therefore, it isastilinsolved problem to
learn a general scale-weights for PCRC using generic tgquset. Finally, although
patch based representation tends to be more flexible faifitagion, the face vari-
ations in the gallery set still can not well represent thergdi@gce image. Hence, it

is desirable to introduce more inter-class face variatiortgelp representation.



Chapter 3

Local Generic Representation for

Single Sample per Person

In Chapter 2, patch based collaborative representatiomoigoged to solve SSS
problem. However, the variations in the gallery face imagtdscannot well rep-
resent the variation in the query sample. Considering tindagity of face images
across subijects, a generic training set can be used to ceatpdor the shortage of
samples in FR. Besides, the importance dfedtent parts of faces varies. Hence, in
this chapter, we take the advantage of the generic variditionary and consid-

er the distinctiveness of fierent face parts to develop local generic representation

based classifiers.

45
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3.1 Introduction

Face recognition (FR) is a very active topic in computerorngiesearch because of
its wide range of applications, including access contrmlew surveillance, social
network, photo management, criminal investigation, e€.[8hough FR has been
studied for many years, it is still a challenging task duehrhany types of large
face variations, e.g., pose, expressions, illuminaticmsuption, occlusion and dis-
guises. Furthermore, in applications such as smart cadshforcement, etc., we
may have only one template sample of each subject, restuttitige single sample
per person (SSPP) problem [175]. SSPP makes FR much nfhcaildlbecause we
have little information from the gallery set to predict treations in the query face
image [213].

Since the intra-class variations cannot be well estimatede SSPP problem,
the traditional discriminative subspace learning basedieihods can fail to work.
In addition, since the number of samples per class is so sthallrobustness of
extracted features and the generalization ability of ledrclassifiers can be much
reduced. To alleviate thesefitulties of FR with SSPP, researchers have proposed
to generate virtual samples of each subject, extract m@@idiinative features,
and learn the facial variations from external data, etc. ggalty speaking, the ex-
isting FR methods for SSPP can be categorized into thregogrourtual sample
generation, generic learning and pabtbck based methods.

Virtual sample generation aims to estimate the intra-cfasse variations by
simulating extra samples for each subject. Virtual sampéas be generated by
perturbation-based approaches [122], geometric tramsdiod photometric changes

[165], SVD decomposition [54] and 3D methods [185], etc. Wihe virtual sam-
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ples, intra-class scatter can be calculated to make Fistearldiscriminant analy-
sis feasible in the scenario of SSPP [122][165][54]. Althbwirtual samples are
helpful to FR with SSPP, they are highly correlated with thigioal face images
and cannot be considered as independent samples for featwaetion. Therefore,
there may exist much redundancy in the learned discrinviedéature subspace

[122][113].

Considering the similarity of face images across subjectgneric training set
can be used to compensate for the shortage of samples in Féhedrand, the face
variation information in the generic training set can beduselearn a projection
matrix to extract discriminative features [97][189][9B28]. In [97] and [128], dis-
criminative pose-invariant and expression-invarianfgotion matrices are learned
by using a collected generic training set for pose-invda expression-invariant
FR tasks, respectively. On the other hand, the abundaatatdss variations in the
generic training set are very useful to more accuratelyesgit a query face with
unknown variations [43][213][81]. The sparse represémtiabased classification
(SRC) [201] represents a query face as a sparse linear catidirof training sam-
ples from all classes. SRC shows interesting FR resultseheryits performance
will deteriorate significantly when the number of trainiregples of each class is
very small because in such cases the variation space of ebgtiscannot be well
spanned. The extended SRC (ESRC) [43] constructs an ilatsa-cariation dictio-
nary to represent the changes between the gallery and quages. In the case of
SSPP, Yang et al. [213] learned a sparse variation dictydmataking the relation-
ship between the gallery set and the external generic sedatiount. The so-called

sparse variation dictionary learning (SVDL) scheme shaatesof-the-art perfor-
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mance in FR with SSPP. However, SVDL ignores the distinotgs of diferent

parts of human faces.

Patchiblock based methods [27][113][102][231] [101] partiticach face image
into several patch@slocks, and then perform feature extraction and classificat
on them. First, patches can be viewed as independent safopfeature extraction
[27][113]. In [27], the patches of each subject are congidars the samples of this
class and then the within-class scatter matrix can be cagdpin [113], the patches
of each subject are considered to form a manifold and a grofematrix is learned
by maximizing the manifold margin. Second, a weak classd@r be obtained
from each patch, and then the classifiers on all patches caarbbined to output
the final decision (i.e., a strong classifier) [102][231].[102], the nearest neigh-
bor classifier (NNC) is used for classification on each paadid, a kernel plurality
method is proposed to combine the decisions on all patchg23L], the collabo-
rative representation based classifier (CRC) [226] is apgl each patch, and the
majority voting is used for decision combination. Althoutje patch based meth-
ods in [102] and [231] significantly improve the FR perforroarcompared with
the original NNC and CRC classifiers, respectively, they dosolve the problem

of lacking facial variations in the gallery set.

In this chapter, we propose a local generic representatiGiR}] based scheme
for FR with SSPP, whose framework is illustrated in Fig. 3The training sam-
ples in the gallery set are used to build a gallery dictiondryintroduce the face
intra-class variation information that is lacked in thelgal set, a generic training
set, which contains a reference subset and several varsiiosets, is collected. A

generic variation dictionary is then constructed as tlfieince between the refer-
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Figure 3.1 Framework of local generic representation based clasifica

ence subset and the variation subsets. Considering fileeetit importance of dif-
ferent facial parts in FR, we adopt a local representatignaazxh, i.e., each patch of
the query sample is represented by the patch gallery dantyosind patch variation
dictionary at the corresponding location. LGR aims to miagrthe total represen-
tation residual of all patches. Since the residuals areGanssian distributed, we
use correntropy to measure the loss in minimization. Thedwddratic optimiza-
tion technique is used to solve the optimization problemahy, the classification
is performed based on the overall representation residufileoquery sample by
each class. The experimental results on benchmark facbadas, including Ex-
tended Yale B [59], CMU Multi-PIE [64], AR [123] and LFW [82%how that LGR

outperforms many state-of-the art methods for FR with SSPP.

The rest of the chapter is organized as follows. Sectiomtr@duces the model
of local generic representation. Section 4.3 discussemtiael optimization and
classification scheme. Section 4.4 conducts experimedts@nclusions are made

in Section 4.5.
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3.2 Local generic representation

3.2.1 Generic representation

In FR with SSPP, we have a gallery S¢t= [X,, ..., X, ... X,] € R¥K, where
X, € RY is the only single gallery sample of clalssk = 1,2, ..., K. Given a query
sampleze RY, representation based classifiers such as SRC [201] repieseger

the gallery seKX as:

z=Xa +e (3.1)

If the gallery set has many training samples for each suhbpeast of the facial
variations in the query sample can be synthesized by thepteutamples from the
same class, and consequently correct classification caratde wia comparing the
representation residual of each class. For FR with SSP&tunhtely, there is only
one training sample per subject, and the variations (dgmination, pose, expres-
sion, etc.) inz cannot be well represented by the single same-class sample i
Thus, the representation residualzafan be big, and can be wrongly represented
by samples from other classes, leading to misclassificatian Fig. 3.2(a) shows
an example. The query image has some illumination chang@aad with the s-
ingle gallery sample of its class. We use the SRC model taegbl representation
in Eq. (3.1), i.e., mip||z— Xe|f5 + Al|a|l;. One can see from Fig. 3.2(a) that the
synthesized imag&a does not overcome the problem of illumination change, and
the illumination change is put forward into the represeatatesiduale. Such a
representation will cause trouble in the classificatiogesta

Considering that the intra-class facial variations causedlumination, pose,

and expression changes and disguise can be shared acrgmsssudn external
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z=Xa+’e z:Xa+rD+e
THEE TN

(a) sparse representation (b) generic }epresentation

Figure 3.2 Sparse representation versus generic representation.

generic training set which consists of enough face imagds various types of
variations can be adopted to construct an intra-classti@midictionary [43][213].
Suppose that we have collected a generic trainingsset[G', G'], whereG" and
G' are the reference subset and variation subset, respgciiled reference subset
G' € R™"is composed of neutral face images or the mean faces of ebjgtsurhe
variation subse®’ involvesM possible facial variationz' = [G], ..., G}, ..., G}}],
where G}, is the subset of then" variation,m = 1,2, .., M. In [213], a sparse
variation dictionary is learned froi®. In our work, we simply construct an intra-
class variation dictionary, denoted Iy, by using the dierence betwee" and

G":
D=[G-G,..,G,-G,..,G), - Gle R"M (3.2)

We then propose to represent the query samoieer the gallery seX and the

generic variation dictionar simultaneously:

z=Xa+ DB +e (3.3)

wherea andg are the representation vectorsaodver X and D, respectively, and
e is the representation residual. We call the representatidtg. (3.3) generic
representation, which uses a generic intra-class vamiatictionary D to account

for the variations in the query sample. Fig. 3.2(b) showggeric representation
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of the query sample in Fig. 3.2(a). We use the following madedolve Eq. (3.3):
MiNgg 12— Xar — D,B||§ + A(lelly + 1181l,)- One can clearly see that the illumination
change in the query sample is well encoded by the generiati@ridictionaryD,
and the residuat has much lower energyid|5=0.0049) than the residual in Fig.
3.2(a) (/&5=0.0502).

3.2.2 Patch based local generic representation

Different parts (e.g., eye, mouth, nose, cheek) of human fabéstekistinct struc-
tures, and they havef@ierent importance in identifying the identity of a face. Taki
this fact into account, we propose to localize the reprediemt model in Eq. (3.3)

and present a patch based local generic representatiomeche

We patrtition the query sampleinto S (overlapped) patches and denote these
patches a§z;, 2, ..., Zs}. Correspondingly, the gallery dictiona¥/and the generic
variation dictionaryD can be partitioned a{?(l, ) ST XS} and{Dl, D,, ... DS},
respectively. For each local patehi = 1,2, ..,S, its associated local gallery dic-
tionary and local variation dictionary ad§ and D;, respectively. To increase the
representation power of local gallery dictionaries anddvedddress the local de-
formation (e.g., misalignment) of a patch, we extract thigmgorhood patches at
locationi from each gallery sample, and add thenXio Such a sample expansion
of local gallery dictionaries can improve much the stap#ihd robustness of local
representation [231]. In our implementation, the 8 closggimboring patches to the

underlying patch at locationare extracted. WitlX; and D;, we can represent each
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—
-

Query sample Histogram of Heer
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Figure 3.3 The histogram ofe|l»,i = 1,2, ..., S, for two query samples.

local patchz as:

z=Xa +DpBi+e,i=12..S (3.4)

wherea; andg; are the representation vectors fover X; and D;, respectively,
ande is the representation residual.

Clearly, in order to find meaningful solutions of vectarsandg;, appropriate
loss function should be defined on the representation reke&land appropriate
regularization can be imposed af andB;. Denote byl(||lgll,) the loss function
defined on theé,-norm of g and denote byR(«;, 8;) some regularizer imposed on
the representation cfiients. We consider the following optimization problem to

SO|Ve{a’i,ﬂi}:

Min, 51 231 1(lell) + AR, Bi)
st. z = Xja + Diﬁi + €, i = 1,2,..,S

(3.5)

The problem now turns to how to define the loss functi@e|,) and regu-
larizer R(a;, Bi). Lete = ||lgll,. Due to the special structure of human face, the
different patches will have very ftierent representation residuas We solve
(@i, Bi) = Ming, 11z — Xai + DiBil2 + A(laill? + [1Bill2) and then calculate, =
|z - Xé& + DiBi”z. Fig. 3.3 illustrates the distribution fag for two query face
images. One can see that the distributiodé highly non-Gaussian. The wide-

ly usedl,-norm loss function relies highly on the Gaussianity assionpof the
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data [112] and hence it is not suitable to measure such naissgm distributed
residual. In [110], the concept of correntropy is proposedhkeasure the loss of
non-Gaussian data. A correntropy induced metric (CIM) éwidualg is defined

as [110]:

CIM(e) = (k-(0) — k(&))" (3.6)

wherek,(-) is a kernel function. The Gaussian kernel functg(x) = exp(x?/20?)
is widely used with good performance [110] [112]. The robess of CIM to non-
Gaussian residyaloise has been verified in signal processing [134], featlecs
tion [72], and FR [74]. Hence, we adopt correntropy to motlel tepresentation
residual of diferent patches.

For the regularizeR(«w;, B;), we define it as thé-norm of @; andg;. It has
been shown that thig-norm regularization on representation fia@ents can lead
to similar classification performance kpnorm regularization but with much less
computational cost [226]. Finally, the proposed local genepresentation (LGR)
model becomes:

MiN, g 22, (1 Ko (llallp) + A (llaill3 + 1Bi113)
st.z = Xijo;+ DB +¢e,i=1,2,...,.S

(3.7)

3.3 Optimization and classification

3.3.1 Half-quadratic optimization

The minimization problem in Eq. (3.7) can be solved by hal&dratic optimization
[134]. If a functiong(X) satisfies the following conditions [134]: (x)— ¢(X) is

convex onR; (b) x — ¢(+/X) is concave orR,; (¢) ¢(X) = ¢(—X),x € R; (d)
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X — ¢(x) isC onR; (€) ¢"(0") > 0; (f) lim,_.p(X)/ XI5 = 0, there exists a dual

functiony such that

$(¥) = infyen {2W¢ + o(w)] (3.8)

wherew is determined by the minimizer functiai(:) with respect tap (-). ¢ (-)

admits an explicit form under certain restrictive assunmi[134]:

5(t)=¢"(0%), ift=0
=90 3.9)
¢ (/1 ift+0
Obviously,¢,(X) = 1 - k,(X) = 1 — exp(x?/20?) satisfies all the conditions from
(a) to (f). Then the problem in Eq. (3.7) can be equivalentljten as the following

augmented minimization problem:
Minaw X2 (3w 12 — Xiei — DBl + @(w)) + AN AIl3 (3.10)

whereA = [ay, &, ..., as] with g = [a;j; Bi], andw = [wy, Wy, ..., Ws].
According to the half-quadratic analysis [134], Eq. (3.t8h be easily mini-
mized by updatingA andw alternatively, and there is no need to have an explicit

form of the dual functiorp(w;). Whenw is fixed, A can be solved by
A = argmin ¥7, (Wi l|z — Xiei — DII3) + AN Al (3.11)

Clearly, the above minimization is a least square regragsioblem, and we have

the closed-form solution of eadh;, B;}:
[&; 8] = wiwi[Xi, DIT[Xi, Di] + 41)*[%, D] 2 (3.12)
WhenA is fixed, the weightsv can be updated as

1
expi 11z — Xia; — DiBill5 /20%) (3.13)

W= =
0—2
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The weightw; corresponds to th#" patch, and it is used to control the portion of
llell, in the whole energy of Eq. (3.10). If the representationdesi of a patch is
big (e.g., caused by sunglasses, scarf@nather large variations), the correspond-
ing weightw; will become small, and consequently thieet of this patch in the

overall representation will be suppressed.

3.3.2 LGR based classification

After the optimal solutions ofA andw are resolved by the half-quadratic opti-
mization in Section 3.3.1, an LGR based classification seheam be proposed to
determine the class label of query faxd et X; = [Xll s XKLL XiK], whereXX is
sub-gallery dictionary associated with cl&sg\ccordingly, the representation vec-
tor a; can be written ag; = [ail; kL aiK], whereaX is the codicients vector
associated with clads By using the class-specific sub-gallery dictionaiand

the generic variation dictionar®;, we can calculate the representation residual of
each patclz by each clask. Then the sum of the weighted residual (ay over all
patches can be calculated. Our classification principle heck which class can

lead to the minimal residual over all patches. Specificétlg,classification rule of

query facezis as follows:

labekz) = argmin " wi ||z - X<, DILaIE/ gl (3.14)

Note that in Eq. (3.14), we also use thenorm of [af;3] to adjust the residual
of patchi by classk. 1/ ||[a1.k;,8i]||§ can be considered as a “class weight”. If class
has a IargeH[a}‘;ﬂi]H;, it means that the query patch is more similar to the gallery

patch of clask, and thus a smaller weight should be assigned to weakenghe re
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Table 3.1 The algorithm of local generic representation (LGR) badasgstfication.

Input: The query samplg gallery setX, reference subs&’,
variation subseG' and regularization parameter

Output: The class label of

1: Initializew =[1, 1, ..., 1];
2: CaculateD = [G] - G',G) -G, ..,G;, - G].
3: Partitionz, X and D into patches.

4: While convergence

5: UpdateA by Eq. (3.11);
6: Updatew by Eq. (3.13);
7: End

8: Output the class label of sampédy Eq.(3.14).

sentation residual by this class. The query sampeclassified to the class which
has the minimal weighted representation residual overatihes. The algorithm

of LGR based classification is summarized in Table 3.1.

3.3.3 Convergence and complexity

According to half-quadratic optimization [134], the olfjge function in Eq. (3.10)
is non-increasing under the update rules in Eq.(3.11) and¥Ey3). Therefore, our
algorithm is guaranteed to converge based on the theonffefjtadratic optimiza-
tion [134]. In Fig.3.4, the convergence curve of LGR on the ddRabase [123] is
shown (please refer to section 3.4.4 for the details of ewpart setting). We can

see that the LGR algorithm converges after 5 iterations.
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Figure 3.4 The convergence curve of LGR on the AR database.

The main computational cost of LGR is spent on solving thetleguare re-
gression problem in Eqg. (3.11), whose time complexit@(s(ng + nﬁdp)), where
S is the number of patchesy is the total number of patches i D;] andd, is
the feature dimension of patches. Denotelbthe total number of iteration in our

algorithm, the time complexity of LGR (T S(n3 + n3d,)).

3.4 Experimental analysis

We test the performance of LGR on four benchmark face dagabagcluding three
face databases in controlled environment, i.e., Extenddd B [59], large-scale
CMU Multi-PIE [64], and AR [123], and one face database inamteolled en-

vironment, i.e., Labeled Faces in the Wild (LFW) databasy.[&Extended Yale
B database contains illumination variations; AR databasgaens illumination and
expression variations and disguises; Multi-PIE databas&ains pose, illumination
and expression variations; LFW reflects the variations at-veorld applications.

We compare the proposed LGR method with the following elewethods:
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e Baseline methods: nearest neighbor classifier (NNC) [3@ppert vector
machines (SVM) [36], sparse representation based class{fRC) [201]

and collaborative representation based classifiers (CRZE)]|

e Generic learning methods: adaptive generic learning (AGE}], extended

SRC (ESRC) [43] and sparse variation dictionary learning@) [213];

e Patchiblock based methods: Block linear discriminative analyBi®ckL-
DA) [27], patch based NN (PNN) [102], patch based CRC (PCRA3]],

and discriminative multi-manifold analysis (DMMA) [113].

Note that the generic learning method SVDL learns a sparsatiean dictio-
nary from the generic training set. The proposed LGR alsortg to the generic
learning methods; however, we use the raw faé@dince images as the dictionary
rather than learning a dictionary with some objective fiorctAmong the compet-
ing methods, we implement NN and DMMA, the code of SVM is fro’4];, and

the codes of all the other methods are obtained from theraiigiuthors.

3.4.1 Parameter setting

In all the experiments, the face images are resized B88Q(using the Matlab
function “resize.m”). For patgblock based methods including BlockLDA, PNN,
PCRC, DMMA, and the proposed LGR, the patch size is fixed a2@Gnd the
overlap between neighboring patches is 10 pixels. Thahis,query sample is
partitioned intaS=49 patches.

Apart from the setting of patch size and patch number, thexealy two pa-

rameters to set in the proposed LGR. The first is the regaléoiz parameten in
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Eq. (6). We fix it ast= 0.001 in all our experiments. Another is the scale parameter
o of the kernel functiork,(x). Based on our experimental experience, if the repre-
sentation residual is big, a large valuesotould be set to make the representation
more robust. Therefore, we adaptively seas the average representation residual
after solving the ca@cientsa; andg; in the first iteration of our algorithm; that is,
o= 2 2211z - Xiai - DBill5

For the competing algorithms, we tune their parametersi®ibest results. In

particular, for SVDL we follow the parameter setting in [21Bhe three parameters
A1, A5, Az are set as 0.001, 0.01, 0.0001, respectively, and the nuohbl@tionary
atoms is set as 400 in the initialization. For SRC, CRC and®GRe optimal reg-
ularization parametet is chosen fron{0.0005 0.001, 0.005 0.01}. As BlockLDA
and AGL are sensitive to the feature dimension, the besttrekdifferent feature

dimensions is reported.

3.4.2 Extended Yale B database

The Extended Yale B face database [59] contains 38 humaedsband 2,414
face images with 64 illumination conditions. The frontatéa with light source
directions at 0 degree azimuth{A00) and at O degree elevation{@80) are used
as the gallery set, and the face images under other illummabnditions are used
as the query set. We use the face images of the first 30 subgeotsn the gallery
and query sets, and use the face images of the other 8 susigeitts generic set.
Table 3.2 lists the recognition rates byffdrent methods. By combining the
decisions of dterent patches, the PCRC method achieves much higher réicogni

rate than the baseline methods. The generic learning basgbdSVDL achieves



CHAPTER 3. LocAL GENERIC REPRESENTATION FOR SINGLE SAMPLE PER PERSON 61

Query faces under different light conditions

Gallery face

Figure 3.5 Face images of Extended YaleB database.

the second highest recognition rate by learning a dictiptieat consists of dierent
illumination variations. By exploiting the advantages ofliopatch based local rep-
resentation and generic variation information, the prepdsGR method achieves

the highest recognition accuracy.
Table 3.2 Recognition rate (%) on Extended Yale B database.

Method NNC[38] SVM[36] SRC[201] CRC[226]BlockLDA[27]AGI173]

Accuracy 46.5 41.4 49.2 51.2 49.2 59.5

Method DMMA[113]PNN[102] PCRC[231]ESRC[43] SVDL[213] L&

Accuracy 61.7 67.5 77.8 67.9 85.0 86.6

3.4.3 CMU Multi-PIE database

The Multi-PIE database [64] contains a total of more than, &0 images from
337 individuals, captured under 15 viewpoints and 19 illation conditions in
four recording sessions. The face images of the first 10@stghjn session 1 are
used for the gallery set and the other 149 subjects are ugghasc set. Following
the experiment setting in [213], in the generic training ga&t frontal images with
illumination 7 and neutral expression are used as the mfersubset and the face

images with diferent variations in Session 1 are used as the variationtsubse
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[llumination variations

In this experiment, we test the performance of LGR und&erint illuminations.
The frontal face images with neutral expression from sesgjsession 3 and ses-
sion 4 are used as the query set, respectively. The recogmites on Multi-PIE
with illumination variations are listed in Table 3.3. LGRas¥s superior perfor-
mance to all the other competing methods. Compared with S\Wlich achieves
the second highest accuracy, the recognition rate is ingorty 2.7%, 3.0% and
4.0% on session 2, session 3 and session 4, respectivelyp&edwith PCRC,
the recognition rate is improved by about 15%. The perforrearf SRC and CRC
is very poor because with only one gallery face image pemgpethe query image

cannot be well represented.

——

Gallery face  Session2  Session3  Session4

Figure 3.6 Images of Multi-PIE database with Illumination variatiomsdifferent ses-

sions.

Expression and illumination variations

We then test the robustness of the proposed LGR method tanfecges with both

expression and illumination variations. The query setudek the frontal face im-
ages with smile expression in session 1 (Smile-S1), smieession in session 3
(Smile-S3) and surprise expression (Surprise-S2). TaldlepBesents the recog-

nition results in this experiment. Clearly, LGR outperfarall the other methods.
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Table 3.3 Recognition accuracy (%) on Multi-PIE with illuminationnations.

Method Session2  Session3  Session 4
NNC[38] 44.3 40 43.8
SVM[36] 43.6 40.5 40.1
SRC[201] 51.9 46.5 50.6
CRC[226] 52.8 47.4 50.5

BlockLDA[27] 68.2 60.4 65.1
AGL[173] 84.5 79.6 78.5
DMMA[113] 64.1 56.6 60.1
PNN[102] 65.1 55.6 60.8
PCRC[231] 83.7 72.7 77.7
ESRC[43] 92.6 84.6 87.6
SVDL[213] 94.2 87.5 90.4
LGR 96.9 90.5 94.4

SVDL still works the second best, but it lags behind LGR by4,8.6% and 21.7%
for Smile-S1, Smile-S3 and Surprise-S2, respectively.

Pose, expression and illumination variations

In this experiment, there are pose, expression and illuteimavariations in the
guery set simultaneously. We select the face images with P&$€ in Session 2
(P1), pose 04l in Session 3 (P2), and pose_04nd smile expression in Session 3
(P3) as the query set. Some face images from the gallery aargl get are illustrated

in Fig. 3.7.
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Table 3.4 Recognition accuracy (%) on Multi-PIE with expression dhanination vari-

ations.

Method Smile-S1 Smile-S3 Surprise-S2
NNC[38] 46.8 29.1 18.3
SVM[36] 46.8 29.1 18.3
SRCJ[201] 50.1 28.1 21.1
CRC[226] 50 29.7 22.4

BlockLDA[27] 49.5 30 26.2
AGL[173] 85.2 39.5 31.5
DMMA[113] 58.5 334 23
PNN[102] 53.1 31.1 314
PCRC[231] 74.9 44.1 44.9
ESRCI[43] 82 50.8 49.9
SVDL[213] 88.9 59.6 52.8
LGR 90.7 65.2 74.5

Table 3.5 lists the recognition rate of all methods. LGR eebs the highest
accuracy on all the three query sets. Because of the largatisas caused by
pose, expression and illumination variations, the FR ratebis experiment are
relatively lower than the experimental results in Table&hd Table 3.4. The patch
based methods such as PCRC do not work well because theyraigveeto pose
variation. The generic learning methods, including AGLRES SVDL and the
proposed LGR, outperform the other methods since they cploiexhe variation

information from the external generic training set. LGR sistently exhibits better
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Gallery face

Figure 3.7 Images of Multi-PIE database with pose, expression andhilation varia-

tions.

results than SVDL, which still works the second best.

3.4.4 AR face database

The AR face database [123] contains about 4,000 color faagesof 126 people,
which consists of the frontal faces withfidirent facial expressions, illuminations
and disguises. There are two sessions and each session fexelithages per
subject. Following the SSPP experiment setting in [43], l@sstiwith face images
of 50 males and 50 females is selected. The first 80 subjemts $essions 1 are
used for the gallery and query set while the other 20 sub@etssed as the generic
training set. We also use the face images from session 2 agiéng set to test the
FR performance. There arefidirent variations, including illumination, expression,
and disguise (scarf and sunglass) in this experiment.

The experimental results on session 1 and session 2 are shovable 3.6
and Table 3.7, respectively. LGR exhibits significantlytbeperformance than all
the other methods on both sessions. In particular, on segsidsR outperforms
SVDL by 16.4%, 10.8%, 32.5% and 34.7% undeffetient variations. Note that
in this experiment the performance of patch based methadsasiPCRC is very
competitive. This is because the disguises (i.e., scarfsamglass) can be well

dealt with by patciblock based methods. Therefore, PCRC can achieve higher
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Table 3.5 Recognition accuracy (%) on Multi-PIE with pose, expressiad illumination

variations.
Method P1 P2 P3
NNCI[38] 25.7 8.8 11.9
SVM[36] 25.7 8.8 11.9
SRC[201] 23.9 6.1 10.1

CRC[226] 249 54 9.0
BlockLDA[27] 295 132 15.8
AGL[173] 66.4 255 24.0
DMMA[113] 282 55 12.1
PNN[102] 353 118 135
PCRC[231] 373 80 102
ESRC[43] 63.8 319 27.0
SVDL[213] 760 379 335
LGR 79.1 395 36.3

recognition rate than the global representation based S¥ibligh it does not learn
any variation information from a generic dataset. The psgpidLGR utilizes both
local presentation and generic information, leading ty yeomising performance

for the task of FR with SSPP.

3.4.5 LFW database

The LFW database [82] contains images of 5,74®edent individuals in uncon-

strained environment. LFW-a is a version of LFW after aligmiusing commer-
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Table 3.6 Recognition accuracy (%) on AR face database (sessionl).

Method illumination expression disguise illuminatifisguise
NNC[38] 70 79.2 39.4 23.5
SVM[36] 55.8 90.4 43.1 29.4
SRC[201] 80.8 85.4 55.6 25.3
CRC[226] 80.5 80.4 58.1 23.8
BlockLDA[27] 75.3 81.4 65.4 53.5
AGL[173] 93.3 77.9 70.0 53.8
DMMA[113] 92.1 81.4 46.9 30.9
PNN[102] 84.6 86.7 90.0 72.5
PCRCI[231] 95.0 86.7 95.6 81.3
ESRC[43] 99.6 85.0 83.1 68.6
SVDL[213] 98.3 86.3 86.3 79.4
LGR 100 97.9 98.8 96.3

cial face alignment software [197]. Following the expenrhsetting in [231] and
[213], a subset of 158 subjects with more than 10 images psppas collected.
Each face image is cropped to 2220 and then resized to 880. Fig. 3.8 shows
some face images in the LFW-a dataset. One can see thatgtitfexxe alignmen-
t has been conducted, the variations in this database livestyl large compared
with the face databases in the controlled environment. Faages of the first 50
subjects are selected to form the gallery and query setde wie face images of
the remaining subjects are used to build the generic trgis@t. Since there are no

frontal neutral face images in this database, the mean fagsch person is used to
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Table 3.7 Recognition accuracy (%) on AR face database (session2).

Method illumination expression disguise illuminatifisguise
NNC[38] 41.7 58.8 26.3 12.8
SVM[36] 40.0 58.8 26.9 14.4
SRC[201] 55.8 68.8 294 12.8
CRC[226] 55.8 69.6 35.0 13.5
BlockLDA[27] 54.7 61.2 31.9 21.0
AGL[173] 70.8 55.8 40.6 30.7
DMMA[113] 77.9 61.7 28.1 21.9
PNN[102] 77.5 73.8 71.9 52.8
PCRC[231] 88.8 71.7 81.8 63.1
ESRC[43] 87.9 70.4 59.4 45.0
SVDL[213] 87.1 74.2 61.3 54.1
LGR 97.5 85.0 93.8 88.8

form the reference subset in the generic set.

The face recognition rates offtBrent methods are listed in Table 3.8. Because
of the challenging face variations in uncontrolled enviremt, no method achieves
very high accuracy in this experiment. Nonetheless, LARmirks the best among
all competing methods. The patch based method PCRC worles bedn the global
representation based CRC, which is similar to what we oleskirvthe experiments
of previous sections. SVDL again achieves the second higbkesgnition rate,
demonstrating that the face variation information learfredh other subjects is

indeed helpful to improve the robustness of FR with SSPP, atbemin controlled
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Figure 3.8 Images of LFW database.

or uncontrolled environment.

Table 3.8 Recognition accuracy (%) on LFW database.

Method NNC[38] SVM[36] SRC[201] CRC[226]BlockLDA[27]AGI173]

Accuracy 12.2 11.6 20.4 19.8 16.4 19.2

Method DMMA[113]PNN[102] PCRC[231]ESRC[43] SVDL[213] L&

Accuracy 17.8 17.6 24.2 27.3 28.6 30.4

3.5 Conclusions and discussions

We proposed a local generic representation (LGR) basedagpipfor the challeng-
ing task of face recognition with single sample per pers@R®). LGR utilizes the
advantages of both patch based local representation aedgggarning. A generic
intra-class variation dictionary was constructed from aaye dataset, and it can
well compensate for the face variations lacked in the SSHErgaet. A patch

gallery dictionary was built by using the gallery samplekijck can more accurate-
ly represent the dierent parts of face images. Considering that the distobutf

representation residual offterent patches is highly non-Gaussian, a correntropy
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based metric was adopted to measure the loss of each patcat sbd importance
of different patches in face recognition can be more robustly atedu As a re-
sult, LGR can adaptively suppress the role of patches witel&ariations. The
extensive experimental results on four benchmark facebdats showed that LGR
always achieves higher face recognition rate than the-efatge-art SSPP methods
used in competition.

In this chapter, as generic training set introduces moresaesubject face vari-
ations, the recognition performance of LGR is much bettantRCRC. However,
as LGR has to solve a half-quadratic optimization problenafquery face image,
PCRC is much faster than LGR. Hence, in real-world applicetj to solve face
recognition with single sample per person, we can choose®P&#l LGR accord-

ing to different demands.



Chapter 4

Reqgularized Self-Representation for

Classification

In Chapter 2 and Chapter 3, we aim to solve small sample s@@gm in classi-
fication tasks. Whereas, with the development of sensorsimiicl devices, the
size of available data is rapidly increasing. In some cabese are a large amount
of samples in the training dataset. For representationdozassifiers, the solution
will become less stable if the sample size is big, and the coatipn complexity
and storage burden are quite high. Besides, the existinggeptation based mod-
els all belong to sample-level representation, i.e., aygeample is represented as
a linear combination of training samples. Similarly, a quirature can also be
represented by its related features. In this chapter, we@uhevelop &ective and
efficient representation based classifier for big sample sassification task from

the viewpoint of feature-level representation.

71
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4.1 Introduction

Nearest neighbor classifier (NNC) has been widely used irhmadearning and
pattern recognition tasks such as face recognition [1&0jdtvritten digit recogni-
tion [106], and image classification [15], etc. NNC meastinegdistancésimilarity
between the query sample and each of the training samplependently, and as-
signs the label of the nearest sample to the query samplee tfdining samples are
distributed densely enough, the classification error of Ndlibunded by twice the
classification error of Bayesian classifier [38]. NNC doesmeed the prior knowl-
edge of sample distribution and it is parameter-free. HaneMNC ignores the
relationship between training samples [186], and oftels fair high-dimensional
pattern recognition tasks because of the curse of dimeal#ip{iL50]. Besides, all
training samples should be stored in NNC and it becomes tomsuming in large
scale problems [42].

To reduce the computation burden of NNC and dilute the cufrskneension-
ality, nearest subspace classifier (NSC) is proposed. NS&sumes the distance
from the query sample to the subspace of each class and th&sifies the query
sample to its nearest subspace. The subspaces are oftetoudestribe the ap-
pearance of objects undefidirent lighting [9], viewpoint [182][178], articulation
[16][179], and identity [13]. Each class can be modeled aseml subspace [31],
affine hull (AH) [186] or convex hull (CH) [186], hyperdisk [22f wariable smooth
manifold [111]. When one class is considered as a linearpades NSC actually
represents a query sample by a linear combination of the leanmpthat class. In
such a case, a set of projection matrices can be calculdfi@tepand thus NSC

avoids the one-to-one searching process in NNC, reducnggliathe time cost.



CHAPTER 4. ReGULARIZED SELF-REPRESENTATION FOR CLASSIFICATION 73

Some approximate nearest subspace algorithms have als@immsed to further
accelerate the searching process [8]. Whereas, NSC ongyd=ys the information
of one class when calculating the distance from the querypkatua this class, and

it ignores the information of other classes.

As a significant extension to NSC, the sparse representhtised classifier
(SRC) [201] exploits the information from all classes oftirag samples when rep-
resenting the given query sample, and it has shown promisasgification perfor-
mance [201]. Specifically, SRC represents the query sams@diaear combination
of all training samples witly-norm sparsity constraint imposed on the representa-
tion codficients, and then it classifies the query sample to the cldbglé minimal
representation error [201]. In spite of the promising dfasstion accuracy, SRC
has to solve ah-norm minimization problem for each query sample, whichagyv
costly. It has been shown in [226] that the collaborativeespntation mechanism
(i.e., using samples from all classes to collaborativepresent the query image)
plays a more important role in the success of SRC. By ukhHmgprm to regular-
ize the representation ciieients, the so-called collaborative representation based
classification (CRC) demonstrates similar classificatates to SRC [201]. CR-

C has a closed-form solution to representing the query sgnapld therefore has

much lower computational cost than SRC.

Inspired by SRC and CRC, in [30] a collaborative represenatptimized clas-
sifier (CROC) is proposed to pursue a balance between NSC Bd @ [214],
feature weights are introduced to the representation ntodetnalize pixels with
large error so that the model is robust to outliers. A kerpalrse representation

model is proposed by mapping features to a high dimensi@pabducing kernel
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Hilbert space [55]. In addition, dictionary learning metisdhave been proposed to

learn discriminative dictionaries for representationdsbalassifiers [90][215][115].

Most of the current representation based classifiers, dmfuNSC, SRC and
CRC, are sample oriented, and they represent a query sasple@nbination of
training samples. The time and memory complexity of suchaanfsle oriented”
representation strategy, however, will increase rapidth the number of training
samples. For instance, in the training stage the time cotitigle of NSC and CRC
areO(Kn?) andO((Kn)3), respectively, wher& is the number of classes ands
the number of samples per class. Clearly, the complexityp®mential w.r.t. the
training sample number. In the testing stage, the memoryptaxities of NSC and
CRC are botiO(dKn), whered is the feature dimension. It is linear to the num-
ber of training sample and can be very costly for large scateem classification

problems, where there are many classes and a lot of samplelaps.

Different from those previous representation based classiiiretbis chapter
we investigate the representation based classificatidnigmofrom a “feature ori-
ented” perspective. Instead of representing a sample dsda combination of
other samples, we propose to learn how each feature (i@ ,edament) of a sam-
ple can be represented by the features of itself. Such aegmiésentation property
of features generally holds for most high dimensional data, has been applied
in machine learning and computer vision fields [127]. Fomepke, in [127] this
property is used to select the representative featuresdbyrieclustering. Motivat-
ed by the self-representation property of sample featwegropose a novel self-
representation induced classifier (SRIC), which learndfaggresentation matrix

for each class by its training data. To classify a query sampé project it onto
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the learned self-representation matrix and compute itafeaself-representation
residual. The query sample is then classified to the classhwtdas minimal feature
self-representation residual. Interestingly, it can bevpd that SRIC is equivalent
to NSC withl,-norm regularization in terms of the final classificationidem. Fur-

thermore, it can be shown that SRIC is essentially the pria@omponent analysis

(PCA) with eigenvalue shrinkage.

SRIC learns the self-representation matrix individuadlydach class. In light of
the principle of SRIC, we then present a discriminative SROISRIC) approach.
Using all training data, for each class a discriminativé-sgpresentation matrix
is trained to minimize the feature self-representationdred of this class while
representing little the features of other classes. Thesifieation of a query still
depends on which class has the minimal feature self-repiesen residual. D-
SRIC is intuitive and easy to understand. Our experimergallts on UCI datasets,
handwritten digit recognition, gender classification aackf recognition show that
DSRIC has comparable or superior recognition rate to sthtbe-art representa-
tion based classifiers such as SRC and CRC; however, ourtiearcomplexity
analysis and experimental results will show that DSRIC igimmore éicient and

needs much less storage space than other representatezhdb@ssifiers.

The rest of this chapter is organized as follows. Sectionpde®ents SRIC
and analyzes its relationship with NSC and PCA. Section #3gnts the DSRIC
method and analyzes its time and memory complexities in toathing and testing
stages. Section 4.4 conducts experiments dlier@int pattern classification tasks,

and Section 4.5 concludes.
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4.2 Self-representation for classification

4.2.1 Nearest subspace classifier

Suppose that we have a set of training samples fkolassesX = [Xy, ..., X,

<.y Xk], where Xy = [Xu, .., Xiks ..., Xni] € R, is the sample subset of classnd

xi is thei!" sample of itd is the feature dimension amds the number of training
samplesin each class. Given a query samapllee nearest subspace classifier (NSC)

represents it by the samples of cl&sss:

Z= Xeay + & (4.1)

wherea is the representation vector agdis the representation residual vector.
To get an optimal representation nfNSC minimizes the representation resid-

ual by solving the following least square problem:

& = arg miny, ||z - Xcaull5 (4.2)

The problem in Eq. (4.2) has a closed-from solu@éer= (X Xi)*X{ zif (X{ Xi)™
is non-singular. In practice, dgtnorm regularization can be imposedato make

(X{ Xi)~* more stable, resulting in dg-norm regularized least regression problem:

& = argmin, [|z— Xcall2 + 1 |ladl2 (4.3)

The analytical solution to Eq. (4.3) & = (X{ Xk + A1) X[z, wherel is
an identity matrix. Then the representation residual carcdraputed asy =
2
“z— Xi(Xg X + /ll)_lxiT z“z. NSC classifiez to the class with the minimal rep-

resentation residual. Let

Wi = Xi(X] X + A1)71XT (4.4)
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The classification rule of NSC can be written as
label(z) = arg min |z — Wi 2|3 (4.5)

Clearly, NSC learns a set of symmetric matrigése R to reconstruct the query

sample for classification.

4.2.2 Self-representation induced classifier

Representation based classifiers such as NSC, SRC and GR&hrile similarity
between samples. They assume that a query sample can beprebented by a
linear combination of the training samples. Here we condide representation
based classification problem from a veryfeient viewpoint. Considering the fact
that the features of a sample are correlated (especiallisaal data), we propose
to represent each feature of a sample as the linear comdmnattiall the features
of this sample. Finally, the sample is represented by its&ttually, such a self-
representation strategy has been used successfully ireipragessing and feature
selection [127]. For example, in image denoising a pixel.(ia feature) is repre-
sented as the weighted average of its neighboring pixe[&2[A], feature similarity
is defined and then representative features are selectexhtwyé clustering.

Based on the above analysis, we present a self-represenbatsed classifica-
tion scheme. We can write the training subset of ckaasXy = [fkl; vy fijy s fkd]
wheref,; is the j™ feature vector oK,. We represent,; as a linear combination of

all the feature vectors:

fjk = bjl X fk1+, ey +bjd X fkd + & (46)
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wherebji, ..., bjg are the representation deients andey is the representation
residual vector. Leb; = [bj1, ..., bjg]. Then Eq. (4.6) can be rewritten &g = bjXx.
For all the feature vectors iKy, they can be represented My with Eq. (4.6). Let
Bk = [by; by; ...; bg] and Ex = [ey; &; ...; &4]. The representation of all features can

be written as:

Xk = kak + Ek (47)

We call the feature based representation model in Eq. (él#yepresentation be-
cause it utilizesXy to represent itself. To minimize the self-representatesidual

while avoiding the trivial solution, we have the followingtimization problem:

ming, [(Ex) + R(Bx) 4.8)
St. Xk = BeXi + Ex

wherel(Ey) is the loss function anB(By) is the regularization item. If we choose

square loss anB-norm regularization, the problem in Eq. (4.8) becomes:
By = arg ming, [ Xk - BiXllz + 4 IBil2 (4.9)
Apparently, the problem in Eq. (4.9) has a closed-form sotut
B = XiX] (XXT + 1) (4.10)

wherel € R™is an identity matrix. Given a query samgdts self-representation
can then be computed &z and the self-representation residuatis z— Bz

For each class, we can learn its self-representation masrxbove, and then
we have a set oK self-representation matriceBy, ..., By, ..., Bk (we omit the su-

perscript “ © 7 for the convenience of expression). The qusaynplez can be
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Figure4.1 Top row: self-representation matricBg, k = 0, 1, ..., 9 learned from the USPS

database [85]. Bottom row: a query sample (from class 0) enceconstructed images

BkZ, k= 0, 1,..., 9.

represented by each of the matrices and the classificatiohemmade by checking

which class has the minimal self-representation residual:

label(z) = arg mirx||z - BZ3 (4.11)

We call the above classifier self-representation inducaskdier (SRIC).

We use an example to illustrate how SRIC works. As shown in Bid, 10
self-representation matricé,i = 0,1,...,9, are learned from handwritten digit
dataset USPS [85]. Certainly, matr, tends to represent better the features of
sample from clask. Fig. 4.1 also shows a query sampléfrom class 0) and the
reconstructed sampld z by all B,. We can see that is well represented b,
and it has the minimal self-representation residual orsdasesulting in a correct

classification.

4.2.3 Equivalence between SRIC and NSC

The NSC represents a sample from the perspective of sampitarsiy, while
the proposed SRIC represents a sample from the perspettieatare similari-

ty. Though the representation strategies afiedBnt, interestingly, it can be proved
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that they lead to the same classification result. We haveolteing theorem.

Theorem 1 SRIC is equivalent tgdnorm regularized nearest subspace classifier,

i.e., Bi=W, k= 12 ..K.

Proof 1 Applying singular value decomposition ¥q, X = U ALV, , whereUy €

R A, € RN andV, € R™". ThenB, andW, becomes:
Wy = X|(ngk + ﬂ')_lxg
= UAV] (VIATUTUALV]T + A1)V ATUT (4.12)
= UkAk(AIAk + Al )_1AIU|I

Bi = XX[ (XX +a1)
= UkA V] VAT UT (U ARV VAT UT + +a1)7 (4.13)
= UkAkAI(AkAI + +/1|)_1U-|£

Ifd < n, we letAy = [Hy 0], whereH, € R%9. Then we have

Ab = A(Ag A + A TAL = Hi(HTHi + A1) 7TH] (4.14)

Aw = AA] (ARA] ++21)7H = HHE (HH + 1) (4.15)

BecauseHy is a diagonal matrix, we havA, = A,. AsW = UkAWUE and
Bk = UApU], we can geBy = W,.

H Hi(HIHi + A1) 'HT 0
Ifd >n, A = ‘ , WhereHy € R™". Ay = KTk k

0 0 0
HHI(HH +a1)™ 0 _
andA, = . In this case, we can have the same conclu-
0 0

sion, i.e.,Ap = Ay, and By = W,.
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Figure 4.2 (a) The first 15 principle components B and Xy, k = 0,1, ..., 9; (b) eigen-

values ofXy; (b) eigenvalues oB.

Ifd =n, letAx = Hy, A, andA,, are the same as thogg, andA,, when d< n.

Hence,B, = W, also holds on when & n. |

From the above proof, we can have the following remark.

Remark 1 SRIC is equivalent to principle component analysis withrétage.

From the Proof, we can see thXj, and B, have the same set of eigenvectors,
i.e., U. Denote then" eigenvalue ofX, as oy, then theh™ eigenvalueA,y of
0'2 . .
By will be . Therefore, for SIRC the eigenvalues Bf will be shrunk to the
h

range [0 1). The smaller the eigenvalue, the less the stgekatio. Fig. 4.2(a)

illustrates the first 15 principle components&f and X (please refer to Fig. 4.1
for By). Fig. 4.2(b) and Fig. 4.2(C) plot the eigenvalues@fand By, respectively.
One can see that for the principle componenKpfvith the largest eigenvalue, the

corresponding eigenvalue 8§ is shrunk to nearly 1.
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4.3 Discriminative self-representation induced clas-
sifier
4.3.1 Discriminative self-representation

The learning of self-representation matBy in SRIC is rather generative but not
discriminative since it only depends on the training datalagsk. In light of the
principle of self-representation in SRIC, we can then psap@ discriminative self-
representation induced classifier (DSRIC), which explbi¢straining data from all
classes to learBy.

SRIC aims to learn 8y such that the self-representation residal — Bkallﬁ
could be minimized. However, SRIC does not take the samplether classes into
account. In order to make the classification more discrithisgawe also expect
that By cannot well represent the features of other classes. Onecorasider to
maximize]|X; — BiX;|[%, j # kwhile minimizingl| Xy — BiX«l2. However, this will
make the whole objective function non-convex. Another measier but still very
reasonable choice is to learnBa such that the self-representationXf, | # k,
over it will approach to zero, i.e|LBka||i is very small. In other wordsBy is
discriminative to represent the features of classit not other classes. With these

considerations, we propose the following DSRIC model tordx:

~ . 2
By = arg mirg, || X — BiXul2 + A1 3k || BiXi [ + A2 1Bl (4.16)

wherel; and, are the regularization parameters.
In Eq. (4.16), the first ternpXy — Bkall,% aims to minimize the self-representation

residual; the second terf); ||Bka||i enforces thak;, j # k will not be well rep-
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resented byBy; the last term regularizeB, to make the solution more stable. It is

apparent that we still have a closed form solutiomBgf
By = X X! (XiXJ + Ay Z#k X XT + 1) (4.17)

As shown in Fig. 4.3, we use a subset of AR database to showi fiilegethce
between SRIC and DSRIC. Fig. 4.3(a) shows the query sampteblongs to
subject 10. In Fig. 4.3(b), the query fazés well reconstructed b, learned by
SRIC. However, from Fig. 4.3(d), we can see tha misclassified to subject 15.
The reconstructed faces using DSRIC are shown in Fig. 4.8(©m Fig. 4.3(e),
we can see that is correctly classified to subject 10. Though the reconstroc

ability of SRIC is superior to DSRIC, DSRIC has better disgriation ability than
SRIC.
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Figure 4.3 (a)query facez; (b) reconstructed faces by SRIC; (c)reconstructed fages b
DSRIC,; (d) representation residual of each class (SRIC)efeesentation residual of each

class (DSRIC).
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Table 4.1 The algorithm of discriminative self-representation ioeld classifier (DSRIC).

Input: A query sample and the training seX = [ Xy, X,, ..., Xk].
Output:label(z)

1: CalculateB,, B, ..., B by Eq. (4.17);
2: Calculater, = ||z— ByZ|3;

3: Getlabel(z) = arg mind{ry}.

4.3.2 Classification and algorithms

After we get a set of matriceB,, B, ..., Bk, a query sample is classified to the

class with the minimal reconstruction error.
label(2) = arg min||z— B3 (4.18)

The algorithm of DSRIC is shown in Table 4.1.

4.3.3 Complexity analysis

In this section, we discuss the time and space complexitfRbESDSRIC.

Training complexity

SRIC and DSRIC need to leakh self-representation matrices in the training stage
by EqQ. (4.10) and Eq. (4.17), respectively. The time compldr solve Eq. (4.10)
and Eqg. (4.17) i©(d®). Hence the training time complexity of SRIC and DSRIC is
O(Kd®). During the training stage, all the methods should corttaéntraining set.
Hence, the training memory of SRIC and DSRIXid? + Kdn.
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Testing complexity

In the testing stage, the time complexity of SRIC and DSRIO(Kd?). As D-
SRIC only needs to store a setafx d matrices, the storage space of DSRIC is
Kd?. When the number of samples is much larger than the numbeatdire di-
mensions, the advantage of DSRIC in time complexity ancag®consumption is
quite significant.

We will compare SRIC and DSRIC with NNC [38], SVM [24], NSC [3NAH
[186], NCH [186], SRC [201], CRC [226] and CROC [30] in the eximents. The
time and space complexity in the training and testing stafjed the methods are

listed in Table 4.2.

Table 4.2 Time complexity and memory consumption offdrent classifiers.
method NNC [38] SVM SRC [201] NSC [31] SRIC

Time(train) / O(Kdn) / O(Kn?3) O(Kd?)
Time(test) O(Kdn) O(Kd)  O(dn?) o(Kdr)  O(Kd?)
Memory(train) / Kd + Kdn / 2Kdn+n? Kd? + Kdn

Memory(test)  Kdn Kd Kdn 2Kdn K

method  NCH [186] NAH [186] CRC[226] CROC[30] DSRIC

Time(train) / / O((Kn)®) O((Kn)® + Kn® O(Kd3)
Time(test) O((Kn)®) O((Kn)®)  O(Kdn) O(Kdn) O(Kd?)
Memory(train) / / 2Kdn+ (Kn)? 3Kdn+ (Kn)? Kd? + Kdn

Memory(test)  Kdn Kdn 2Kdn 3Kdn K
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4.4 Experimental analysis

In this section, we test the performance of DSRt@ eight UCI datasets [6], two
handwritten digit recognition databases [85][104], twoefaecognition database
[59][82] and one gender classification dataset [123]. Wepamathe proposed clas-
sifier with eight popular and state-of-the-art classifigrsluding the nearest neigh-
bor classifier (NNC) [38], support vector machines (SVM)][2#earest subspace
classifier (NSC) [31], nearest convex hull classifier (NCH§], nearestféine hull
classifier (NAH) [186], sparse representation based ¢las§sRC) [201], collabo-
rative representation based classifier (CRC) [226] ancboHative representation
optimization classifier (CROC) [30]. Among them, NNC and S\Aw baseline
benchmarks, and the remaining are all representation ludesesifiers.

The performance of fierent classifiers is evaluated from three aspects: classifi-
cation accuracy, the running time and memory consumptiohnarnesting stage. In
order to easily show the speedup and memory saving of DSRe€Catkier methods,
in all the following experiments we take the running time ameimory consumption
of DSRIC as a unit (i.e., 1), and report the results of othethoas based on it. All
algorithms are run in an Intel(R) Core(TM) i7-2600K (3.4QHPL.

4.4.1 Parameter setting

There are two parameters in DSRIG: and A,. In all the experiments); is fixed
as 0.001 and; is chosen on the training dataset by five-fold cross-vabaatFor

the compared representation based methods, the parameisi and NAH are

1Since SRIC is equivalent to NSC, the results of SRIC will retéported.
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set as 1 and 100, respectively, as suggested in the origapal pthe regularization
parameter in NSC, SRC and CRC is tuned fi@0005 0.001, 0.005 0.01} and the
best results are reported; following the experiment sgiti{30], the parameter of

CROC is chosen by five-fold cross-validation on the trairéat

4.4.2 UCI datasets

We first use eight datasets (derm, german, heart, hepatitts, rice, thyroid, wdbc,
wpbc, yeast) from the UCI machine learning repository [6¢taluate the perfor-
mance of DSRIC. The number of classes (c), number of fea(firesxd nhumber
of samples (s) of the eight datasets are illustrated in tite dolumn of Table 4.3.
The average classification accuracy, testing time andhtestemory over the eights

datasets are listed at the bottom of Table 4.3.

From Table 4.3, we can see that the accuracy of DSRIC is al86tigher than
NSC, SRC and CRC, and 3% higher than CROC. Besides, DSRICadh faster
than the other representation based classifiers. CompateN®C, SRC, CRC and
CROC, the running time speedup by DSRIC is 64, 547, 106 andr&3pectively.
Because NAH and NCH have to solve a QP problem for each quenplsathe
time consumption is very high compared with other classfigr terms of memory
requirement, in this experiment DSRIC also has clear adggmntit costs less than
1/10 memory of other classifiers except for SVM, which is not presentation

based classifier.



CHAPTER 4. ReGULARIZED SELF-REPRESENTATION FOR CLASSIFICATION 88

Table 4.3 Classification accuracy, testing time and testing memoryGhdatasets.

Database NNC SVM SRC NSC NCH NAH CRC CROCDSRIC/f/x

derm  96.1 96.5 97.1 974 965 969 97.1 97.7 97.34866
german 68.8 73.6 741 70.6 70.6 71.3 729 729 73202000
heart 76.7 83.3 83 781 76.3 765 84.1 83.3 83.713270
hepatitis 82.5 86.2 86.8 86.8 82.1 81.7 84.7 86.7 8749255
iono 86.4 87.6 91 944 89.2 803 92.7 83.3 94.734851
rice 80 78.2 82,9 84.7 80.7 80.5 83.8 829 86.6514
thyroid 95.3 89.8 90.2 95.8 96.3 958 091.1 87.4 958525
wdbc 954 97.7 935 92.3 94 93.9 94.7 95.3 95.630569
wpbc  70.7 77.4 79.4 76.8 754 747 76.3 79.4 80.833298
yeast 48.8 56.4 549 56.9 49.3 50.1 54.6 54.3 57.77/1884

Accuracy 80.1 82.7 83.3 83.4 81.0 80.2 83.2 82854
Time 2.8x10* 1.4 547 64 4.910°6.6x10° 106 130 1
Memory 10.48 0.08 10.4820.97 10.48 10.48 20.97 31.4%

4.4.3 Handwritten digit recognition

USPS

The USPS dataset contains 7,291 training and 2,007 testiagds [85]. Each
class has about 650 training samples, and each handwrigiésample is a 1816
image. The experimental results are listed in listed inddd. Since each class has

enough training samples and the feature dimension is natihithis experiment,
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the simple NNC achieves the best accuracy. The recognititsn of DSRIC is
only 0.3% lower than NNC. However, DSRIC is significantlyteashan NNC with
10,000 times speedup. In addition, the memory consumpficéiN& is 2.8 times
larger than DSRIC.

Table 4.4 Recognition rate, testing time and testing memory on USR&da
Method NNC SVM SRC NSC NCH NAH CRC CROCDSRIC

Accuracy 94.6 929 94.0 943 919 923 90.6 90.1 94.3
Time 1x10* 22.9 1x10*165.6 5.%x10% 7.7x10* 150.8 977.1 1
Memory 2.848 0.004 2.848 5.696 2.848 2.848 5.696 8.544

MNIST

The MNIST [104] dataset includes a training set of 60,000@amand a test set
of 10,000 samples. The size of each image igZBand there are 10 classes of
digit images. Compared to USPS, there are more training lesmppable 4.5 lists
the recognition rate, testing time and testing memory Ifgcent methods. Similar
to the results in USPS, the recognition rate of DSRIC equaN$C, and 1.4%
lower than NNC. However, DSRIC avoids the one-to-one séagghrocess in the
training set and is 18,000 faster than NNC, which is very irtgod in real-time
applications. Compared with SRC, DSRIC is 51 times fastdrsaves 7.65 times
the memory. Please note that the performances of NCH, NAK, &Rl CROC are
not reported because these methods need to process a:6600000 square matrix

and out-of-memory in our PC.
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Table 4.5 Recognition rate, testing time and testing memory on MNI&i&set.
Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 97.1 946 945 957 / / / / 95.7
Time 1.810* 51 6.3%10* 649.3 / / / / 1
Memory 7.653 0.001 7.653 15.306 7.653 7.653 15.306 22.999

4.4.4 Face recognition
Extended Yale B database

The Extended Yale B database contains about 2,414 fromlifaages of 38 indi-
viduals [59]. The face images were cropped and resized @ 2sixels. Follow-
ing the experiment setting in [201][214], Subsets 1 and 7 (Aiages, normal-to-
moderate lighting conditions) are used for training, andseu 3 (453 images, more
extreme lighting conditions) is used for testing. The ekpental results are shown
in Table 4.6. From Table 4.6, we can see that DSRIC achiewsisdbt recognition

rate. Compared with SRC, the FRieiency is greatly improved.

Table 4.6 Recognition rate, testing time and testing memory on Exdniale B

database.
Method NN SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 47.0 925 976 784 67.7 80.1 97.2 97.97.8
Time 68.8 0.7989 40.1 1.2 2301 901 15 35 1
Memory 0.0374 0.002 0.0374 0.0749 0.0374 0.0374 0.0742G6.111
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LFW database

The LFW database [82] contains images of 5,749 subjectsdansirained environ-
ment. LFW-a is a version of LFW after alignment using comnaiface alignment
software. We gathered the subjects which have no less thaaresamples and then
formed a dataset with 136 subjects from LFW-a. Each face @mafirstly cropped

to 102x120 and then resized to 832 images. Some face images of LFW database
are shown in Fig. 4.4. We select 9 face images per subjectdiminig and use the
remaining face images for testing. Hence, there are 1,224itig samples and the

feature dimension is 1024.

Figure 4.4 Face images of LFW database.

The experimental results are shown in Table 4.7. Though S¥Mthe fastest
speed and least memory requirement, it has the worse agciitae representation
based classifiers all lead to much better accuracy than S\&RID has the highest
recognition accuracy. Since there are 158 subject and #teréedimension is 1024,

DSRIC does not show advantages in memory in this experiment.

4.45 Gender classification

In this section, a non-occluded subset (14 images per slilgethe AR dataset
[123] is used. It includes face images of 50 male and 50 fes#bgects. The im-

ages from the first 25 males and 25 females are used for tgaamd the remaining
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Table 4.7 Recognition rate, testing time and testing memory on LFVélokte.
Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 20.1 16.3 604 37.8 345 37.7 588 60.060.8
Time 147 032 25 0.55 80.2 1079 0.77 128 1
Memory 0.009 0.001 0.009 0.018 0.009 0.009 0.018 0.026 1

for testing. Following the experiment setting in [226], edace image is cropped
to 60x43 and PCA is used to reduce the feature dimension to 50. Hssifita-

tion accuracy, testing time and testing memory are giverablel4.8. One can see
that DSRIC achieves the highest accuracy, and it costs nessirlinning time and

memory than others (except for SVM in memory consumption).

Table 4.8 Classification accuracy, testing time and testing memorgroender classi-

fication dataset.
Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 90.3 914 931 934 914 91.4 093.1 92.94.7
Time 1.4x10% 23.8 8.410° 44.4 2.510° 3.6x10° 41.1 92 1
Memory 7 0.2 7 14 7 7 14 21 1

4.5 Conclusions and discussions

In this chapter we investigated the representation basedi@ication problem from
a “feature oriented” perspective. flBrent from the existing representation based

classifiers that represent a sample as the linear combmnatiother samples, we
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explored to represent a feature by its relevant featuresdrdata, which we call
self-representation. A self-representation inducedsdias (SRIC) was then pro-
posed, which learns a self-representation matrix per @adsuses these matrices
for classification. The query sample is then classified toctaes with the min-
imal reconstruction error. We proved that SRIC is equivatemearest subspace
classifier (NSC) with,-norm regularization in terms of classification decisioar-F
thermore, it can be shown that SRIC is essentially the pria@omponent analysis
(PCA) with eigenvalue shrinkage. We then proposed a diseétive SRIC (D-
SRIC) classifier, which not only minimizes the feature selfresentation residual
of this class but represents little the features of othessda. The time and space
complexity of DSRIC (except for the training memory) is inaat to the number
of training samples, which makes it very suitable for larggls datasets with many
training samples, e.g., USPS and MNIST. Experimental tesul diferent pattern
recognition tasks showed that DSRIC achieves comparaldeparior recognition
rate to state-of-the-art representation based classifibike it has higher ficiency
and lower memory consumption.

As the time complexity of the proposed DSRIC is only relatethwhe number
of features and classes, DSRIC can well apply to classificatith large amounts
of samples. However, in computer vision tasks, the imageifes are usually high-
dimensional. In this case, we can reduce the feature dimefisstly and then use

DSRIC for classification.



Chapter 5

Image Set based Collaborative

Representation

Apart from image based classification, in practice thereadse many image set
based classification problems, e.g., video based face mé&mog multi-view object

recognition. Intuitively, representation based classf(ee., SR@CRC) can be di-

rectly extended to image set based classification tasksgrggenting each image
of the set separately. However, they ignore the distinnggs of samples in the
guery image set. The existing set to set distances ignoreotinelation among the
training image sets. Additionally, the redundancy in thag® set should be taken
into account. In this chapter, we develop image set basddboohtive represen-
tation models, which simultaneously consider the disitnectess of samples in the
guery image set, the correlation among the training imatgeas® the redundancy

in the image set.

94
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5.1 Introduction

Image set based classification has been increasingly eetplayface recognition
[5, 21, 29, 40, 78, 136, 145, 193, 199, 206] and object cateafion [98, 190] in
recent years. Due to the rapid development of digital img@imd communication
techniques, now image sets can be easily collected fromi-mel images using
multiple cameras [98], long term observations [199], peas@lbums and news
pictures [162], etc. Meanwhile, image set based face rattogrflSFR) has shown
superior performance to single image based face recogrsitinze the many sample
images in the gallery set can convey more within-class traria of the subject
[78]. One special case of ISFR is video based face recognitrbich collects face
image sets from consecutive video sequences [105, 171, 306jlar to the work
in[21, 78], in this chapter we focus on the general case dRI@#hout considering
the temporal relationship of samples in each set.

The key issues in image set based classification include tiowotlel a set and
consequently how to compute the distgsauilarity between query and gallery
sets. Researchers have proposed parametric and non-pacaap@roaches for
image set modeling. Parametric modeling methods model setchs a parametric
distribution, and use Kullback-Leibler divergence to meaghe similarity between
the distributions [5, 199]. The disadvantage of parameticmodeling lies in the
difficulty of parameter estimation, and it may fail when the eated parametric
model does not fit well the real gallery and query sets [78198].

Many non-parametric set modeling methods have also be@oged, including
subspace [98, 206], manifold [47, 69, 190, 191, 198}ne hull [21, 78], convex
hull [21], and covariance matrix based ones [20, 87, 191]e Tethod in [98]



CHAPTER 5. IMAGE SET BASED COLLABORATIVE REPRESENTATION 96

employs canonical correlation to measure the similarityveen two sets. A pro-
jection matrix is learned by maximizing the canonical ctatiens of within-class
sets while minimizing the canonical correlations of betmetass sets. The meth-
ods in [192] use manifold to model an image set and define afoldsio-manifold
distance (MMD) for set matching. MMD models each image se&t ast of local
subspaces and the distance between two image sets is definadeaghted aver-
age of pairwise subspace to subspace distance. As MMD is -@isoriminative
measure, Manifold Discriminant Analysis (MDA) is propodedearn an embed-
ding space by maximizing manifold margin [190]. The perfarne of subspace
and manifold based methods may degrade much when the setshaallassample
size but big data variations [78, 191]. Iffiae hull and convex hull based meth-
ods [21, 78], the between-set distance is defined as thendestaetween the two
closest points of the two sets. When convex hull is used, éhéosset distance is
equivalent to the nearest point problem in SVM [18]. In [7@]mnethod called s-
parse approximated nearest points (SANP) is proposed teurethe dissimilarity
between two image sets. To reduce the model complexity ofiSAaNeduced mod-
el, which is called regularized nearest points (RNP), ippsed by modeling each
image set as a regularized hull [220]. However, the closesitp based methods
[21, 78, 204, 220] rely highly on the location of each indivédl sample in the set,
and the model fitting can be heavily deteriorated by out|i#@4]. A collaborative

regularized nearest points (CRNP) method is proposed 8] f@0extend RNP.

To improve the classification performance, the kernel tdak be introduced
to map the image sets to high-dimensional subspaces, ergelknutual subspace

method [51] and kernel discriminant transformation [32][191], an image set is
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represented by a covariance matrix and a Riemannian kemetién is defined to
measure the similarity between two image sets by a mappomg fihe Riemannian
manifold to a Euclidean space. With the kernel function leetwtwo image sets,
traditional discriminant learning methods, e.g., linescdminative analysis [10],
partial least squares [154], kernel machines, can be uséuége set classification
[20, 87]. The disadvantages of covariance matrix basedadstimclude the com-
putational complexity of eigen-decomposition of symnegbasitive-definite (SPD)

matrices and the curse of dimensionality with limited numifdraining sets.

No matter how the set is modeled, in almost all the previouksvf21, 47, 69,
78,98, 190, 191, 193, 206, 220], the query set is compareattoa the gallery sets
separately, and then classified to the class closest todh &ulassification scheme
does not consider the correlation between gallery seestti& nearest neighbor or
nearest subspace classifier in single image based faceniBong In recent years,
the sparse representation based classification (SRC) [ hown interesting
results in image based face recognition. SRC representery tace as a sparse
linear combination of samples from all classes, and classifito the class which
has the minimal representation residual to it. Though SR@haetsizes much on the
role of I;-norm sparsity of representation ¢bheients, it has been shown in [226]
that the collaborative representation mechanism (i.egusamples from all class-
es to collaboratively represent the query image) is moreoiapt to the success
of SRC. The so-called collaborative representation basegification (CRC) with
[,-regularization leads to similar results to SRC but with mlasver computational
cost [226]. In [217], feature weights are introduced to thgresentation model to

penalize pixels with large error so that the model is robogititliers. Moreover,
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a kernel sparse representation model is proposed for faogméion by mapping
features to a high dimensional Reproducing Kernel Hilb@dc® (RKHS), which
further improves the recognition accuracy [56]. Similadyobust kernel represen-
tation model is proposed with iteratively reweighted aitjons [216].

One may apply SRECRC to ISFR by representing each image of the query
set over all the gallery sets, and then using the average ranmai representation
residual of the query set images for classification. Howestech a scheme does
not exploit the correlation and distinctiveness of samplages in the query set. If
the average representation residual is used for classificahe discrimination of
representation residuals byffdirent classes will be reduced; if the minimal repre-
sentation residual is used, the classification cdfestrom the outlier images in the
guery set. In addition, there are redundancies in an imagerde redundancies
will lead to great storage burden and computational coniyleand deteriorate the

recognition performance.

Collaborative Representation
based Set to Sets Distance

min, , |Va ~[ X X, 1o, ?ﬁ X, Identity(¥) =argmin, {r;}
s.t.Za, 1 T ZHY"—Xkkai
% X

Query Set ¥ Gallery Sets Classification

Hull Ya

Figure 5.1 Image set based collaborative representation and clagsmhqISCRC).

In this chapter, we propose a novel image set based collorapresentation
and classification (ISCRC) approach for ISFR, as illustrate=ig. 5.1. The query

set, denoted by (each column ofY is an image in the set) is modeled as a hull
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Figure 5.2 lllustration of image set margin.

Ya with the sum of cofficients ina being 1. LetX,,k = 1,2,...,K, be a gallery
set. We then propose a collaborative representation basddes,Y) to sets (i.e.,

X = [Xq, ..., Xk ..., Xk]) distance (CRSSD for short); that is, we represent the hull
Yaover the gallery setX asXb, whereb is a codficient vector. Consequently, we
can classify the query s&t by checking which gallery set has the minimal repre-
sentation residual to the hifla. To get a stable solution to CRSSD, regularizations
can be imposed oa andb. In the proposed ISCRC, the gallery sedscan be
compressed to a smaller size to remove the redundancy sthéhane complex-

ity of ISCRC can be much reduced without sacrificing the redoan rate. Our
experiments on three benchmark ISFR databases show thatihesed ISCRC is

superior to state-of-the-art methods in terms of both reitag rate and ficiency.

To better illustrate the motivation of ISCRC, we use an exartpexplain the
superiority of ISCRC over set to set distance based classiiégeg., CHISD [21],
SANP [78], RNP [220]) from a large margin perspective. Lamgargin princi-
ple has been widely used in classifier design (e.g., SVM [18[Q [39]), ensem-
ble learning (e.g., AdaBoost [155]) and metric learning (eMDA [190], LMNN

[14]). In classification, large margin can lead to betteregahzation ability [167].
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In [195], SRC is interpreted as a margin classifier and a masgierived for SRC.
Actually, in image set based classification, MDA [190], DGB]J and CDL [191]
all try to learn a discriminative set to set distance in adargargin manner, i.e., pull
the similar image sets together while push the dissimil@gensets away. Similar
to sample margin in nearest neighbor classifier, image sefimean be defined.
Given a query seY but multiple gallery set¥X, k = 1, 2, ..., K, as illustrated in Fig.

5.2, the image set margin is defined as:

margin{ = d(Y, >(nearmisg - d(Y, Xnearhit) (5'1)

where Xnearhit IS the nearest gallery set 8fwith the same class labeK,earmissiS
the nearest gallery set ¥fwith a different class labet(Y, Xnearmis9 IS the distance
betweenY and Xnearmiss andd(Y, Xnearhit) iS the distance betweehand X,earnit. If
marginy is positive,Y can be correctly classified; otherwidéwould be misclassi-
fied. Hence, a large margin is desired in image set classificat

Fig. 5.3 shows the margin comparison between the proposeBCSand hul-
| based set to set distances (i.e., CHISD [21] and RNP [22@fgre the Hon-
dgUSCD' database [105] is used. Fig. 5.3(a) is the comparison bet/&@RC
and convex hull based image set distance, i.e., CHISD. Thgénsets marked by
pentagram are misclassified by CHISD with negative margiendorrectly clas-
sified by ISCRC with positive margin. Besides, the marginhef dther image sets
are all enlarged, which represents better generalizahityan classification. Fig.
5.3(b) illustrates the comparison between ISCRC and regathhull based image
set distance, i.e., RNP. Although RNP classifies all the BEns&ts correctly with

positive margin, ISCRC results in much larger margin tharPRBbth comparisons

httpy/vision.ucsd.edtieekgHondaUCSDVideoDatabaétondaUCSD.html
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Figure 5.3 Margin comparison between ISCRC and CHISD (a) and RNP (b).

show that the proposed ISCRC can lead to larger image seimw@gpared with
set to set distance, indicating that ISCRC would get beteecnlization perfor-

mance.

The rest of this chapter is organized as follows. Sectiord&@usses in detail
the proposed CRSSD and ISCRC methods. Section 5.3 presentsdularized
hull based ISCRC, followed by the convex hull based ISCRCdatiSn 5.4. Sec-
tion 5.5 conducts experiments and Section 5.6 gives ourlgsions. The main

abbreviations used in the development of our method are suined in Table 5.1.
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Table 5.1 The main abbreviations used in this chapter.

ISFR image set based face recognition
SRC sparse representation based classification
CRC collaborative representation based classification
collaborative representation based
CRSSD
set to sets distance
image set based collaborative
ISCRC
representation and classification
RH-ISCRC regularized hull based ISCRC
KCH-ISCRC kernelized convex hull based ISCRC

5.2 Collaborative representation based set to sets dis-

tance

We first introduce the hull based set to set distance in 5ahd,then propose the
collaborative representation based set to sets distarR&E$0) in 5.2.2. With
CRSSD, the image set based collaborative representatibrelassification (IS-
CRC) scheme can be naturally proposed. In 5.2.3 and 5.24;ahvex hull and

regularized hull based CRSSD are respectively presented.

5.2.1 Hull based set to set distance

In image set based classification, compared to the parammetdeling of image
set, non-parametric modeling does not impose assumptiotiseadata distribution

and inherits many favorable properties [78, 98, 191]. Ongpt# non-parametric
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set modeling approach is the hull based modeling [21, 78ichvimodels a set as
the linear combination of its samples. Given a sampleYset {y, ..., Vi, .., Yn.}»
y, € RY, the hull of setY is defined as:H(Y) = {3 ay;}. Usually,Y a = 1is

required and the cdigcientsa; are required to be bounded:

HYY)={XaylYXa=10<a <1} (5.2)

If =1, H(Y)is a convex hull [153]. Ifr < 1, H(Y) is a reduced convex hull [18].
For the convenience of expression, in the following develept we call both the
cases convex hull.

By modeling a set as a convex hull, the distance between sdy,, ..., Vi, ..., Yn,}

and se” = {z, ..., zj, ..., z,,} can be defined as follows:

. 2

m'na,bHZ ayi— 2 ijj”2
st.Ya=10<a<r7 (5.3)

Ybj=10<bj<7

When the two sets have no intersection, the set to set destarkeg. (5.3) becomes
the distance between the nearest points in the two convéx (@HISD [21]), as
illustrated in Fig. 5.4. It is not diicult to see that such a distance is equivalent
to the distance computed by SVM [18]. If the discriminativadtion of SVM is

f = wx + Db, thenw = } ay; — > bz and the margin is 2w||. If we consider
each image set as one class, then maximizing margin betweenvb classes is
equivalent to finding the set to set distance [23]. In imagéased face recognition,
there is usually no intersection between image setsftdrént persons. If there are
intersections between two image sets, thean be set as below 1 and the resulting

problem can be related with soft-margin SVM an®&VM [12, 21]. Unfortunately,
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such a distance relies highly on the location of each indi@idample and can be
sensitive to outliers [191]. More detailed discussionsloconvexaffine hull based

classifiers can be found in [12, 18, 21, 142].

)
o
O

()

Figure 5.4 Convex hull based set to set distance.

5.2.2 Collaborative representation based set to sets distee and

classification

In image set based face recognition (ISFR), we have a query sat multiple
gallery setsX, k = 1,2, ..., K. One fact in face recognition is that the face images
from different people still have much similarity. If we compute thet@ince between
Y and eachXy by using methods such as hull based set to set distance {oefer
6.2.1), the correlation betweenfi@irent gallery sets will not be utilized. As we
discussed in the Introduction section, inspired by the SRI1] and CRC [226]
methods in image based face recognition, here we proposeed ISR method,
namely image set based collaborative representation asdifitation (ISCRC).

The key component of ISCRC is the collaborative represiemdtased set to
sets distance (CRSSD) defined as follows. Ket [Xq, ..., Xy, ..., Xk] be the con-
catenation of all gallery sets. We model eactYya@dndX as a hull, i.e.YaandXDb,

wherea andb are codicient vectors, and then we define the CRSSD between set
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Y and setsX as:

minapllYa— Xb|? st. Y a =1 (5.4)

whereg; is thei" codficeint ina and we let} & = 1 to avoid the trivial solution
a=b=0.InEqg. (5.4), the hul¥aof the query seY is collaboratively represented
over the gallery sets; however, the ffogents ina will make the samples iiY be
treated diferently in the representation and the subsequent clas&ifigarocess.
By minimizing the distance betweeéfa and Xb, the outliers (e.g., one frame with
large corruption®cclusions) in both the query image &tnd the gallery image
setsX will be assigned with very small representation féeéents. Therefore, the
impact of outliers can be much alleviated. Our experimemsiilts in Section 6.4
showed that ISCRC is robust to face variations iffiestfent conditions.

Suppose that the cfigient vectorsa and b are obtained by solving Eq. (5.4),
then we can writeb asb = [by;...; by ...; bk], where by is is the sub-vector of
codficients associated with gallery s§t. Similar to the classification in SRC and
CRC, we use the representation residual of Mallby each seKy to determine the

class label ofY. The classifier in the proposed ISCRC is:
Identity(Y) = argmin {r} (5.5)

wherery = |[Ya- Xk6k||§.

Clearly, the solutions ta andb in Eqg. (5.4) determine the CRSSD and hence
the result of ISCRC. In order to get stable solutions, we @ampose reasonable
regularizations ora andb. In the following sections 6.2.3 ariz, we discuss the

convex hull based CRSSD and regularized hull based CRSSpectvely.
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5.2.3 Convex hull based CRSSD

One important instantiation of CRSSD is the convex hull da8@&®SSD. In this
case, both the hullga andXb are required to be convex hulls, and then the distance

in Eqg. (5.4) becomes

Mina [IYa - Xb||?
st.Ya=1)Db =1,

O<a<ti=1..,n,

(5.6)

O<bj<tj=1..,m

wherea; andb; are thei™ and j'" codficients ina andb, respectivelyn, andn, are

the number of samples in sétand setsX, respectively, ana < 1.

Y X=[X,.X,...X]

Figure 5.5 Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is shawfig. 5.5. Dif-
ferent from the CHISD method in [21], which models each gglket as a convex
hull, here we model all the gallery sets as one big convex Buthilar to the closest
points searching in SVM, convex hull based CRSSD aims to fiacttosest points
in the query seY and the whole gallery sef in a large margin manner. With con-

vex hull based CRSSD, the corresponding ISCRC method caretved as a large
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margin based classifier in some sense. Nonetheless, tisdickson rules in SVM

and ISCRC are very fferent.

5.2.4 l,-norm regularized hull based CRSSD

The convex hull modeling of a set can bgéegted much by outlier samples in the
set [191]. To make CRSSD more stable, th@orm regularized hull can be used
to modelY and X. For the query seY, we should keep the constraipta; = 1 to

avoid the trivial solution, and thig-norm regularized hull o¥ is defined as

H(Y) = (2 ayilllall, <d} st. Ya =1 (5.7)
For the gallery seX, its regularized hull is defined as:
H(X) = (X bixi lIbl, < 6) (5.8)

Finally, the regularized hull based CRSSD betw¥eand X is defined as:

Minap [IYa - XDb||3 59)

stall, < o1, lIbll, < 5> Y& =1

5.3 Regularized hull based ISCRC

In Section 6.4.2, we introduced CRSSD, and presented tworitaupt instantiations
of it, i.e., convex hull based CRSSD and regularized huleda8RSSD. With either
one of them, the ISCRC (refer to Eg. (5.5)) can be implemetateerform ISFR. In

this section, we discuss the minimization of regularizelll hased CRSSD model,
and the corresponding classification scheme is calledaegad hull based ISCRC,
denoted by RH-ISCRC. The minimization of convex hull bas&iSSD and the

corresponding classification scheme will be discussed ati@&e??.
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5.3.1 Main model

We can re-write the regularized hull based CRSSD model in(B®) as its La-

grangian formulation:

Ming, [[Ya — Xbi + Allall, + Allbll,

st.a=1

(5.10)

wherel; andA, are positive constants to balance the representatiorusdsidd the
regularizer.

In ISFR, each gallery seX, often has tens to hundreds of sample images so
that the whole seK can be very big, making the computational cost to solve Eq.
(5.10) very high. Considering the fact that the images irmesat X, have high
redundancy, we can compreXg into a much more compact set, denoted Dy
via dictionary learning methods [141], such as KSVD [157] ametaface learning
[218]. LetD = [Dy,...,, Dy, ..., Dk]. We can then replac¥ by D in Eq. (5.10) to
compute the regularized hull based CRSSD:

@p = argming | M2 PR
Allall, + 2118l (5.11)

st.>a=1

wheref = [B1;...; Bk ..., Bx] and By is the sub-vector of cdicients associated
with Dy. Based on our experimental results, compres3ipgto Dy significantly
improve the speed with almost the same ISFR rate.

Eitherl,;-norm orl,-norm can be used to regulariaandg, whilel;-regularization
will lead to sparser solutions but with more computatioradtc Like inl,-SVM

[230] and SRC [201], sparsity can enhance the classificasitanif the features are
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not informative enough. Note that if the query &thas only one sample, then
a = 1 and the proposed model in Eq. (5.11) will be reduced to th€ &Rr
I;-regularization) or CRC (fol,-regularization) scheme. Next, we present the opti-
mization ofl,-norm and-norm regularized hull based ISCRC in Section 5.3.2 and

Section 5.3.3, respectively.

5.3.2 I,-norm regularized hull based ISCRC

Whenl,-norm is used to regulariz¢andg, the problem in Eq. (5.11) has a closed-

form solution. The Lagrangian function of Eq. (5.11) beceme

L(a. B, 13) = |[Ya— DBI2 + A, ||al2 + | |Bl12

+A3(ea—1)
a 11 0 a

= |[Y - D] +|a" BT (5.12)
B 0 2l || B

2

a
+43([e O] -1)
B

whereeis a row vector whose elements are 1.

a 11 0
Letz= ,A=[Y -D],B= andd = [e 0]". Then Eq. (5.12)

B 0 Al

becomes:
L(z A3) =27 ATAz+ 2Z'Bz+ 15(d"z— 1) (5.13)

There are
i:de—1:0 (5.14)
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% = ATAzZ+Bz+1;d=0 (5.15)

According to Eq. (5.14) and Eq. (5.15), we get the closed featution to Eq.
(5.12):

a»

7= = 70/d" 2 (5.16)

o))

wherez, = (ATA + B)1d.

After a andB are got, the distance between query ¥eind a gallery sek
is calculated asy = ||Ya- DkBkH; and then the class label ¥fis determined by
Eq. (5.5). For RH-ISCRGQ;, the main time consumption is to solve the inverse of
matrix (AT A + B). Hence, the time complexity of RH-ISCRIGis O((na + nﬂ)s),
wheren, is the number of sample imagesYrandn is the number of atoms iD.

The CRNP method [203] also collaboratively represents therygset over the
gallery sets. The dierences between the proposed RH-ISAR&Ad CRNP lie in
the optimization procedure and the classification rule. IBBRC1, has a closed-
form solution while CRNP adopts the same optimization metas RNP [220],
which iteratively converges to the global optimal solutioBesides, CRNP uses
the same classification rule as RNP, which utilizes both #@w®mstruction error
and rank of image set matrix. RH-ISCREenly uses the reconstruction error for

classification.

5.3.3 I;-norm regularized hull based ISCRC

Whenl;-norm regularization is used, we use the alternating mirston method,

which is very dficient to solve multiple variable optimization problems]68or
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Eq. (5.11), we have the following augmented Lagrangiantfanc

L(a, B, 1) = l[Ya- DBI5 + Alall; + |8l

+<dea—1>+Lllea-1|3

(5.17)

where A is the Lagrange multiplier-, -) is the inner product, angt > 0 is the
penalty parameter.
Thenaandgp are optimized alternatively with the other one fixed. Moreap

ically, the iterations of minimizing go as follows:

a+ = argminL(a, 9, 19)
= argminf(a) + % |lea- 1+ /1(‘)/7/||§ (5.18)

= argmin, |[Ya - x||; + Alall;

wheref(a) = [Ya- DBO|[; + ulall,. ¥ = [Y; (v/2)%], x = [DBY; (y/2)4%(1 -
A9/y)].

The problem in Eg. (5.18) can be easily solved by some reptatbee |-
minimization approaches such as LARS [45].

After a1 is updateds™? can be obtained by solving anotHeregularized

optimization problem:

BHY = arg minL(a™Y, B, 1)

) (5.19)
= arg miry || Ya®¥ - Dg|, + 2.I|Bll;

Oncea™b andp™Y are got is updated as follows:
AGY =20 1 y (e - 1) (5.20)

The algorithm of RH-ISCRGQ; for ISFR is summarized in Table 5.2 and it con-

verges. The problem in Eq. (5.17) is convex, and the subenoblin Eq. (5.18)
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and Eqg. (5.19) are convex and can be solved using the LARSithgo It had
been shown in [133], for the general convex problem, theradteng minimiza-
tion approach would converge to the correct solution. Ongecof the objective
function value of RH-ISCRQ; versus the iteration number is shown in Fig. 5.6.
HondaUSCD database [105] is also used. The query'sand each gallery sefy

has 200 frames. Note that one image set is acquired from oee wlip and there

is no intersection between the query set and each galler\Wsetompress each set
X into a dictionaryDy with 20 atoms by using the metaface learning method [218].
Since there are 20 gallery sets, the Bet [Dy, ..., Dy, ..., Dyg] has 20x 20=400
atoms. From the figure we can see that RH-ISARCenverges after about five

iterations.

0.04—

0.03

0.02

0.011

objective function value

2 4 6 8 0 12 14 16 18 20
iteration number

Figure 5.6 Convergence of RH-ISCRG-

Since the complexity of sparse codingdg?n?), wheremis the feature dimen-
sion,nis the atom number and> 1.2 [96], we can get that the time complexity of
RH-ISCRC}Y; is O(Im?(n,® + ns®)), wheren, is the number of samples M, n, is

the number of atoms i andl is the iteration number.
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Table 5.2 Algorithm of RH-ISCRC for ISFR.

Input: query setY; gallery setsX = [ Xy, ..., Xk, ..., Xk], 41 and .
Output: the label of query sef.
Initialize 8@, 1@ and 0« t.
CompressXi to Dy, k=1, 2, ..., K using metaface learning [218].
While t < maxnumdo
Step 1: Updata by Eq. (5.18);
Step 2: Updatg@ by Eqg. (5.19);
Step 3: Updata by Eq. (5.20);
Step4dit —t+ 1.
End while
Computery = [Ya- D5 k=1.2,..K.

Identity(Y)=arg mind{ry}.

5.3.4 Examples and discussions

Let's use an example to better illustrate the classificgirocess of RH-ISCRC. We
use the Hond&SCD database [105]. The experiment setting is the samegas Fi
5.6. By Eq. (5.11), the computed dheients ina andg are plotted in Fig. 5.7 (by
I;-regularization) and Fig. 5.8 (Hy-regularization), respectively. The highlighted
codficients in the figures are associated withXg}f which has the same class label
asY. Clearly, these cdi&cients are much more significant than the ficents
associated with the other classes. Meanwhile, from Fig.aBd/Fig. 5.8 we can

see that;-regularized hull based CRSSD leads to spassandg, implying that
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only few samples are dominantly involved in representadiod classification.

query set gallery sets

coefficients
o
P

Figure 5.7 The codficient vectorsa (of Y) and/} (of D) by l;-regularized hull based

CRSSD.
query set gallery sets
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ﬂ
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Figure 5.8 The codficient vectorsa (of Y) and,B (of D) by l>-regularized hull based
CRSSD.

In Fig. 5.9, we show the reconstructed facesYdy with |;-regularized hull
based CRSSD. The distances betw&@&nand eacth[i’k, l.e., ry, are also given.
We see that; is 0.03, which is the minimal one among all the gallery setsam
ing that ISCRC will make the correct recognition. Here thatienships between
ISCRC and manifold based methods can be revealed. MMD assiinaitean image
set can be modeled as a set of local subspaces so that thesetatjstance is de-
fined as the weighted average distance between any two laasthbaces [193]. The
distance between two local subspaces is related to theeclesémplar and prin-
ciple angel. Correspondingly, ISCRC seeks for a local sabsfy a) in the query

image set and a local subspa@)@(} in all the gallery sets, as shown in Fig. 5.7 .
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Figure 5.9 Reconstructed faceéa, DB, DiBx (we normalized eacldBy for better vi-

sualization). The number over eaBgy is the residuaty = ||Ya - Dkﬁkﬂg

In classification, the distance between the query set antkthplate set of th&"

class is the distance between the local subspéapand the local subspad@Sy.

5.4 Kernelized convex hull based ISCRC

We then focus on how to compute the convex hull based CRSSD.ir{36) and
use it for ISCRC. Since there can be many sample images iergakts X can be
a fat matrix (note that usually we use a low dimensional fieatgctor to represent
each face image). Even we compressito a more compact sé, the system can
still be under-determined. In Section 3 we imposedIthgorm regularization on
a andb to make the solution stable. When the convex hull is used elievy the
constraint may not be strong enough to get a stable solufi&o.0(5.6). In addi-
tion, if the underlying relationship between the query set gallery sets is highly
nonlinear, it is dificult to approximate the hull of query set as a linear comimnat

of gallery sets.

One simple solution to solving both the above two problentlseskernel trick;
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that is, we can map the data into a higher dimensional spaeeavhe subjects can
be approximately linearly separable. The mapped gallety afetrix in the high-

dimensional space will be generally over-determined. kchsaicase, the convex
hull constraint will be strong enough for a stable solutidine kernelized convex

hull based CRSSD model is:

mingg |[#(Y)a - [¢(Dx), (D), .... (D) B’
st.Ya=13YpB=1

O<a<ti=1..,n;,

(5.21)

0<Bj<tj=1..n.

The above minimization can be easily solved by the standaadirgtic opti-
mization (QP [35]) method. The solution exhibits global anéadratic conver-
gence, as proved in [35]. Berent kernel functions can be used, e.g., linear kernel
and Gaussian kernel. We call the corresponding method lkezdeconvex hull
based ISCRC, denoted by KCH-ISCRC. The classification silee same as RH-
ISCRC withry = [|¢(Y)a - ¢(Di)Bi||2. As convex hull based CRSSD is to solve a
convex QP problem, the time complexity of KCH-ISCRQIKn; + ny)®), which is
similar to SVM. The algorithm of KCH-ISCRC is given in Table85 To reduce the
computational cost, the kernel matk&D, D) can be computed and stored. When
a query set comes, we only need to calculdgy, Y) andk(Y, D).

Like in Fig. 5.7 and Fig. 5.8, in Fig. 5.10 we show the fiméent vectorsa and
B solved by Eq. (5.21). The Gaussian kernel is used and theimemtal setting
is the same as that in Figs. 5.7 and 5.8 (the onfiiedénce is that each compressed
gallery setD, has 50 atoms). We can see that thefiioents associated with gallery

set Dyp are larger than the other gallery sets, resulting in a smegdjgresentation
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Table 5.3 Algorithm of KCH-ISCRC for ISFR.

Input: query setY; gallery setsX = [Xq, ..., X, ..., Xk], 7.
Output: the label of query set.

CompressXi to Dy, k=1, 2, ..., K by metaface learning [220];
Solve the QP problem in EqQ. (5.21);

Computery = ||p(Y)a- ¢(DB| 2 k= 1,2, ..K;

Identity(Y)=arg min{ry}.

residual and hence the correct recognition.

query set gallery sets
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Figure 5.10 The codficient vectorsa (of Y) and,B (of D) by kernelized convex hull based

CRSSD.

5.5 Experimental analysis

We used the HonddCSD [105], CMU Mobo [65], and Youtube Celebrities [95]
datasets to test the performance of the proposed method:ohpgarison methods

fall into four categories:

C1. Subspace and manifold based methods: Mutual Subspait®d@SM)
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[206], Discriminant Canonical Correlations (D&98], Manifold-Manifold
Distance (MMD¥) [193], and Manifold Discriminant Analysis (MD# [190].

C2. Affingconvex hull based methods: fifhe Hull based Image Set Distance
(AHISD®) [21], Convex Hull based Image Set Distance (CHf5[R21], S-
parse Approximated Nearest Points (SANF8], and Regularized Nearest
Points (RNP) [220].

C3. Representation based methods: Sparse Representemh®@lassifier (SRC)
[201], Collaborative Representation based Classifier (JR25]. We tested
to use the average and minimal representation residuales/caet for clas-
sification and found that average residual works betterciel@mthis chapter,

the average residual is used in SRRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [55], KCRC (Kernel GREL6],
AHISD [21], and CHISD [21]. For KSRC and KCRC, the averagddes

al is used for classification.

For the proposed methods, RH-ISCRC is compared with thasdemel meth-
ods and KCH-ISCRC is compared with those kernel methods.

httpy/www.iis.ee.ic.ac.uktkkim/code.htm
Shttpy/www.jdl.ac.criusefrpwangresearch.htm
4httpy/www.jdl.ac.criusefrpwangresearch.htm
Shttpy/www?2.ogu.edu.fimlcv/softwareimageset.html
Shttpy/www2.ogu.edu.frmlcv/softwareimageset.html
"httpsj/sites.google.coysitg'yiqunhycresearcisanp
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5.5.1 Parameter setting

For competing methods, the important parameters were aalhrtuned according
to the recommendations in the original literature for faamparison. For DCC
[98], if there is only one set per class, then the trainingsdivided into two sets
since at least two sets per class are needed in DCC. For MMDumber of local
models is set following the work in [193]. For MDA, there atede parameters,
i.e., the number of local models, the number of betweensdhid local models
and the subspace dimension. The three parameters are cedfapcording to the
work in [190]. For SANP, we adopted the same parameters ds [F8 SRC,
CRC, KSRC and KCRCJ that balances the residual and regularization is tuned
from [0.01, 0.001, 0.0001]. For AHISD and CHISDC is set as 100. For all kernel
methods, Gaussian kern&(X, y) = exp( [|x — y|l5 /26?)) is used, and is set as 5.
The experiments of 50 frames, 100 frames and 200 frames pareseonducted
on the three databases. If the number of samples in the stsdHan the given

number, then all the samples in the set are used.

For the proposed RH-ISCRC, we sit= 0.001,1, = 0.001,2 = 2.5/n, (N,
is the number of samples in the query set)= 1/2. The number of atoms in
the compressed sé&y is set as 20 on HonddCSD and 10 on CMU MoBo and
YouTube. For KCH-ISCRC7 = 1 and the number of atoms in eaEl is set as
50 for all datasets. The sensitivity of the proposed methogsmrameters will be

discussed in Section 5.5.6.
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5.5.2 HondguUCSD

The HondAJCSD dataset consists of 59 video sequences involving Z6relint
subjects [105]. The Viola-Jones face detector [187] is useditect the faces in
each frame and resize the detected faces ¥«2Q0mages. Some examples of Hon-
dgUCSD dataset are shown in Figure 5.11. Histogram equadizagi utilized to
reduce the illumination variations. Our experiment settgithe same as [105][78]:
20 sequences are set aside for training and the remainingq@@sces for testing.

The intensity is used as the feature.

Figure 5.11 Some examples of HondaCSD dataset.
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Table 5.4 Recognition rates on HondaCSD (%).
Non-kernel 50 100 200 Year

MSM[206]  74.36 79.49 89.74 1998
DCC [98] 76.92 84.62 94.87 2007
MMD[193]  69.23 87.18 94.87 2008
MDA[190]  82.05 94.87 97.44 2009
SRC[201]  84.62 9231 9231 2009
AHISD [21]  82.05 84.62 89.74 2010
CHISD[21] 82.05 84.62 9231 2010
SANP[78]  84.62 9231 9487 2011
CRC[226]  84.62 94.87 94.87 2011
RNP[220]  87.18 94.87 100.0 2011
RH-ISCRCH  89.74 97.44  100.0
RH-ISCRC, 89.74 97.44  100.0

Kernel 50 100 200 Year

AHISD[21]  84.62 84.62 8205 2010
CHISD[21] 84.62 87.18 89.74 2010
KSRC[55]  87.18 97.44 97.44 2009
KCRC[216] 82.05 94.87 94.87 2012
KCH-ISCRC  89.74 94.87 100.0

The experimental results are listed in Table 5.4. We canlsgddr those non-
kernel methods, the proposed RH-ISCRC outperforms muc¢heabther methods.

Note that in [21], kernel CHISD achieves 100% recognitioousiacy when all the
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frames in one video clip are used. In this chapter, followtlmgexperiment setting
of SANP [78], we reported the accuracy usingfelient number of frames per set.
When 200 frames per set are used, both RH-ISCRC and KCH-IS{ERiéve 100%
accuracy, which shows the superiority to CHISD and AHISD:. the kernel based
method, the proposed KCH-ISCRC performs the best excefitéorase when 100
frames per set are used. We can also see that on this datelsE8(RC4; and RH-
ISCRC1, achieve the same recognition rate, which implies that adhtaset the
I,-norm regularization is strong enough to yield a good sofutd the regularized

hull based CRSSD in Eq. (5.11).

5.5.3 CMU MoBo

The CMU Mobd (Motion of Body) dataset [65] was originally established ffioi-
man pose identification and it contains 96 sequences fronulZj¢&s. Four video
sequences are collected per subject, each of which condspo a walking pat-
tern. Again, the Viola-Jones face detector [187] is usedeted the faces and the
detected face images are resized tox40. The LBP feature is used, which is the
same as the work in [21] and [78].

One video sequence per subject is selected for trainingpwiling rest are used for
testing. Ten-fold cross validation experiments are cotetliand the average recog-
nition results are shown in Table 5.5. We can clearly seethiggbroposed methods
outperform the other methods undeffdient frames per set. On this dataset and
the HonddJCSD dataset, the proposed non-kernel RH-ISCRC and thelKeased
KCH-ISCRC have similar ISFR rates.

8httpy/www.ri.cmu.edypublicationview.html|?puhid=3904
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Table 5.5 Recognition rates on CMU MoBo(%).
Non-kernel 50 100 200  Year

MSM [206] 84.3+ 2.6 86.6:2.2 89.%2.4 1998
DCC[98] 82.12.7 85.52.8 91.62.5 2007
MMD [193] 86.2+2.9 94.6:1.9 96.40.7 2008
MDA [190] 86.2+2.9 93.2-2.8 95.&2.3 2009
SRC[201] 91.0t2.1 91.&2.7 96.%2.5 2009
AHISD [21] 91.6+2.8 94.1%2.0 91.22.6 2010
CHISD [21] 91.2+3.1 93.&2.5 96.&:1.3 2010
SANP [78] 91.9+2.7 94.22.1 97.%1.3 2011
CRC [226] 89.6+1.8 92.4:3.7 96.4:2.8 2011
RNP [220] 91.9+2.5 94.Z41.2 97.41.5 2013
RH-ISCRCY; 93.5t2.8 96.%1.9 98.%1.7
RH-ISCRCY, 93.5t2.8 96.4:1.9 98.4:1.7

Kernel 50 100 200 Year

AHISD [21] 88.9+1.7 92.42.8 93.%4.2 2010
CHISD [21] 91.52.0 93.44.0 97.4:1.9 2010
KSRC [55] 91.6+2.8 94.12.0 96.8&2.0 2010
KCRC [216] 91.2+3.1 93.42.9 96.6:2.6 2012
KCH-ISCRC 94.2+2.1 96.4:2.3 98.4:1.9
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5.5.4 YouTube Celebrities

The YouTube Celebritiésis a large scale video dataset collected for face track-
ing and recognition, consisting of 1,910 video sequenceé7otelebrities from
YouTube [95]. As the videos were captured in unconstrainedrenments, the
recognition task becomes much more challenging due to tigeraariations in
pose, illumination and expressions. The face in each franaéso detected by the
Viola-Jones face detector and resized to a«3D gray-scale image. The intensity
value is used as feature. The experiment setting is the sa{i8,a90, 191]. Three
video sequences per subject are selected for training arfdrdiesting. Five-fold

cross validation experiments are conducted.

The experimental results are shown in Table 6.12. It can &e &t among the
non-kernel methods, the proposed RH-ISCR@chieves the highest recognition
rate, while among the kernel based methods, the proposedI®KCRC performs
the best. Since this Youtube Celebrities dataset was edtadlunder uncontrolled
environment, there are significant variations among theyjaied gallery sets, and
therefore the;-regularization is very helpful to improve the stabilitydadiscrimi-
nation of the solution to Eq. (5.11). As a consequence, RERIGH; leads to much
better results than RH-ISCRIGon this dataset. On the other hand, the kernel based
KCH-ISCRC leads to better results than RH-ISCRC in this @rpent. Besides,
the number of frames per set aldtegt the performance of ISCRC. When number

of frames is small, the improvement by ISCRC is more significa

%httpy/seqam.rutgers.egitgindex.php?optioacomcontent&view=article&id

=64&Itemid=80
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Table 5.6 Recognition rates on YouTube (V1 %).
Non-kernel 50 100 200  Year

MSM [206] 54.8:8.7 57.4:7.7 56.%:6.9 1998
DCC[98] 57.6:8.0 62.%6.8 65.%7.0 2007
MMD [193] 57.8:6.6 62.8:6.2 64.%6.3 2008
SRC[201] 61.56.9 64.46.8 66.0:6.7 2009
MDA [190] 58.5:6.2 63.3:6.1 65.46.6 2009
AHISD [21] 57.5:7.9 59.%7.2 57.@:5.5 2010
CHISD [21] 58.0:8.2 62.8:8.1 64.87.1 2010
SANP [78] 57.87.2 63.18.0 65.67.9 2011
CRC[226] 56.57.4 59.5%6.6 61.46.4 2011
RNP [220] 59.9:7.3 63.2:8.1 64.47.8 2013
RH-ISCRC}, 62.3:t6.2 65.6:6.7 66.7:6.4
RH-ISCRC}, 57.47.2 60.%6.5 61.4:6.4

Kernel 50 100 200 Year

AHISD [21] 57.27.5 59.&7.4 61.&7.3 2010
CHISD [21] 57.98.3 62.6:8.1 64.27.2 2010
KSRC [55] 61.47.0 65.%6.9 67.8&6.4 2010
KCRC [216] 57.%7.9 60.66.8 62.Z7.7 2012
KCH-ISCRC 64.5t7.6 67.4:8.0 69.47.4
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5.5.5 Time comparison

Then let's compare thefléciency of competing methods. The Matlab codes of
all competing methods are obtained from the original asthand we run them

on an Intel(R) Core(TM) i7-2600K (3.4GHz) PC. The averagening time per

set on CMU MoBo (200 frames per set) is listed in Table 6.11.céfesee that the
proposed RH-ISCRG; is the fastest among all competing methods except for RNP,
while RH-ISCRC},; also has a fast speed. Among all the kernel based methods,
the proposed KCH-ISCRC is much faster than others. Ovehedlproposed RH-
ISCRC and KCH-ISCRC methods have not only high ISFR accuoatylso high

efficiency than the competing methods.

5.5.6 Parameter sensitivity analysis

To verify if the proposed methods are sensitive to pararagtarthis section we
present the recognition accuracies wittfglient parameter values. For RH-ISCRC,
there are two parameters, and 1, in Eq. (5.17), which need to be set. For KCH-
ISCRC, there is only one parametein Eq. (5.5). We show the recognition accu-
racies versus the parameters on the CMU MoBo dataset in Hig, big. 5.13 and
Fig. 5.14, respectively, for RH-ISCRIg; RH-ISCRC}, and KCH-ISCRC. The d-
ifferent colors correspond tofférent accuracies, as shown in the color Rarand

A, are selected fronj0.00050.001,0.01,0.05}. In Fig. 5.12 and Fig. 5.13, the
top sub-figure is for 50 frames per set, the middle is for 1@dnks per set and
the bottom corresponds to 200 frames per set. From Fig. WéZan see that

the accuracy of RH-ISCRG-is very stable whenl; varies from 0.0005 to 0.05
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Table 5.7 Average running time per set on CMU MoBs)(

Non-kernel Time Kernel Time

MSM[206]  0.338  AHISD[21] 18.546
DCC [98] 0.349  CHISD[21] 18.166
MMD[193]  3.216  KSRC[55]  35.508
SRC [201] 5301 KCRC[216]  6.543
MDA [190] 2.035  KCH-ISCRC  2.03
AHISD [21]  31.365
CHISD[21]  18.029
SANP[78]  11.124
CRC [226] 0.684
RNP[220]  0.113
RH-ISCRCH;  0.788
RH-ISCRCH,  0.280
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and A, varies from 0.0005 to 0.01. Wheb is increased to 0.05, the recognition
performance would degrade. Fig. 5.13 shows that RH-ISGREinsensitive to
the values oft; and1,. For example, in the experiments of 100 and 200 frames
per set, the accuracy variation is within 0.5% foftelient1; and1,. Considering
the performance of both RH-ISCRIgand RH-ISCRO-, 1; andA, can both be set

as 0.001. With this parameter setting, the accuracy is vatg 81 diferent exper-
iments. For KCH-ISCRC, its recognition accuracies witfiatient values of are
shown in Fig. 5.14r is set aq1, 2,5,10,50,100;. One can see that KCH-ISCRC

is insensitive tar. Hence, we simply satas 1.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
A
1

Figure 5.12 Recognition accuracy of RH-ISCRIg-on CMU MoBo with diferent A,
and,. Different colors representftirent accuracy. Top: 50 frames per set; middle: 100

frames per set; bottom: 200 frames per set.

The dictionary learning technique is used in our method tom@ss each im-



CHAPTER 5. IMAGE SET BASED COLLABORATIVE REPRESENTATION 129

age set to reduce the time complexity when representing g gueage set. The
number of atoms in the dictionary needs to be defined befotmdary learning. If
the number of atoms is too small, the representation powieddictionary will be
reduced; if the number of atoms is large, the system tends tmber-determined
and thus the solution may be less stable. We tested our tilgoky varying the
number of atoms (for each sub-dictionddy) from 5 to 50. The recognition accu-
racies versus the number of atoms on the CMU MoBo dataseharensin Figs.
5.12-5.14. From Fig. 5.12 and Fig. 5.13, we can see that tognétion accuracies
of both RH-ISCRCH and RH-ISCRQ-, vary little if the number of atoms is set
within [10, 20]. From Fig. 5.14, we can see that for KCH-ISCR@ variation
of recognition accuracies is within 0.5% undefteient number of atoms. This is
because the feature dimension is relatively high in theespace and thus the
solution is @Fected little by the dictionary size. Based on the above oasien, in
all our experiments we set the number of atoms as 10 or 20 fetSTHRC4; and

RH-ISCRCl,, and 50 for KCH-ISCRC.
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Figure 5.13 Recognition accuracy of RH-ISCRIG-on CMU MoBo with diferent A,
and,. Different colors representftirent accuracy. Top: 50 frames per set; middle: 100

frames per set; bottom: 200 frames per set.
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Figure 5.14 Recognition accuracy of KCH-ISCRC on CMU MoBo witHldirentr.
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5.6 Conclusions and future work

We proposed a novel image set based collaborative repeggenand classification
(ISCRC) scheme for image set based face recognition (ISHR.query set was
modeled as a convex or regularized hull, and a collaboratipeesentation based
set to sets distance (CRSSD) was defined by representingliredf uery set over
all the gallery sets. The CRSSD considers the correlatidrdastinction of sample
images within the query set and the relationship betweergétlery sets. With
CRSSD, the representation residual of the hull of query getdrh gallery set
can be computed and used for classification. Experimentsethtee benchmark
ISFR databases showed that the proposed ISCRC is supestatéeof-the-art ISFR
methods in terms of both recognition rates aficteency.

In this chapter, we proposed ISCRC to deal with video baseel facognition
tasks. Hulls are used to represent both the gallery facedrsats and query face
image set. However, for other image set classification tasgs, multi-view object
recognition, hull based representation may not be suit&dace, to extend the ap-
plication of ISCRC, the representation of image sets shbelthodeled according

to different tasks.



Chapter 6

From Point to Set: Extend the

Learning of Distance Metrics

From Chapter 2 to Chapter 5, we have proposed patch basedadtive represen-
tation, local generic representation, regularized sgfresentation, and image set
based collaborative representation models to solve saralpke size problems, big
sample size problems, and image set classification probldine representation
process of all these representation based classifiersupengsed and does not u-
tilize the training label information. Actually, repregation based classifiers, e.g.,
nearest subspace classifier, can be considered as a kiniehtoifiqoeet distance based
classifiers. In this chapter, we propose to learn a discatiia point to sgtet to

set distance, which can enhance the performance of repagiserbased classifiers.

132
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6.1 Introduction

How to select a proper distance metric is a key problem irepattlassification,
while the optimal distance metric for a specific pattern sifesation task depend-
s on the underlying data structure and distributions. Iremegears, it has been
increasingly popular to learn a desired distance metrimfitoe given training sam-
ples in many visual classification tasks, such as/&t®nkinship verification [66],
visual tracking [89], and image retrieval [1]. Metric learg methods can be cate-
gorized into unsupervised [33], semi-supervised [1] anuestised ones [66, 89],
according to the availability of the class labels of traghngamples.

In general, metric learning aims to learn a valid distancé&ricieneasured by
which the samples from the positive sample pair (i.e., sampiith the same class
label or similar samples) could be as close as possiblegwid samples from the
negative sample pair (i.e., samples with thadient class labels or dissimilar sam-
ples) could be as far as possible. Posjtiegative sample pairs can be generated
from theK nearest neighbors as in Large Margin Nearest Neighbor (LIVNIS6],
Neighborhood Components Analysis (NCA) [63], or from theegi sample pairs
in verification as in Logistic Discriminative Metric Leang (LDML) [66], or from
side information with some prior knowledge as in Informatibheoretic Metric
Learning (ITML) [41]. In some cases, only positive pairs ased in metric learn-
ing [125]. In [188], metric learning is formulated as a kdraassification model
and the relations with LMNN and ITML are discussed. Metriarleng algorithms
have also been developed for multi-task learning [140].tiplel instance learning
[67] and nonlinear metrics [94].

Currently, almost all the metric learning methods focus loa learning of a
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point-to-point distance (PPD) metric in couple with the msaneighbor classifier
(NNC). In many computer vision tasks (e.g., face recogn)tilowever, we need
to measure the distance between an image (i.e., a point)raimdage set (i.e., a
point set). In video based recognition tasks [193] or muikia object recognition
[98], we even need to measure the distance between two iretgyeTherefore, it is
highly desired to desigrnfkactive point-to-set distance (PSD) and set-to-set distanc
(SSD) metric learning methods. Unfortunately, many PPDricktarning methods

cannot be readily applied to PSD and SSD based classification

A set is often modeled as a hull, a convex hull (CH), or &ma hull (AH),

and PSD can then be defined as the distance from a point touthi<orrespond-
ingly, the nearest subspace classifier (NSC), nearest xdnuéeclassifier (NCH)
[186], and nearest conveffime classifier (NAH) [186] are proposed for PSD based
classification. In [22], a set is modeled as a bounding hypkiithe set formed by
intersecting their fine hull and their smallest bounding hypersphere), and a near
est hyperdisk classifier (NHD) is proposed for classificati@iven a query sample,
those PSD based classifiers (NSC, NCH, NAH and NHD) compsitéistance to
each class, i.e., the PSD between the query samples and tifaesaplates of this

class, and classify it to the class with the minimal pointé distance.

The calculation of SSD also depends on the means to model drs¢21],
by modeling each set as a @&H, the CHAH based image set distance (CHIS-
D/AHISD) is defined. In [78], sparsity is imposed on the AH moded a sparse
approximation nearest points (SANP) method is proposedfage set classifica-
tion. In [220], a regularizedfine hull (RAH) is proposed to model a set, and the

SSD is defined between two RAHSs. In [206], each set is repteddyy a linear
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subspace and the angles between two subspaces are ublinedsure the similar-
ity of two sets. The method in [98] employs canonical cotiefato measure the
similarity between two sets. In [193], an image set is madiaea manifold and a
manifold-to-manifold distance (MMD) is proposed. Aftel@aating the distance
from the query set to each template set, those SSD basedfielasslassify the
guery set to the class with the minimal set-to-set distameéntroduce discrimina-
tive information to SSD, projection matrix is learned in gamargin manner, e.g.,
discriminative canonical correlation (DCC) [98] and maitfdiscriminant analy-
sis (MDA) [190]. In [204], a set based discriminative rardkimodel is proposed by

iterating between SSD finding and discriminative featur@csprojection.

Figure 6.1 PSD (left) and SSD (right) Metric learning.

Despite that metric learning has been successfully usedPih IPased classi-
fication, few attentions have been paid to PSD and SSD basaedifatation. As
shown in the upper part of Fig. 6.1(a), the query imgdeepresented as a red dot)
has the same class label as templateXsdtepresented as a red hull) but it will be
misclassified since it has a closer PSD toXgtlf a proper metric learning method
can be developed, it is possible that with the new distandaanthe PSD between

y andX; is smaller than that betwegrandX,, and consequentlycan be correctly
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classified, as shown in the bottom part of Fig. 6.1(a). Sinalgicipation goes to
the metric learning of SSD based classification, as illtstian Fig. 6.1(b), where
the query setr can be correctly classified with some proper SSD based distan
metric.

With the above considerations, in this chapter we proposertavel metric
learning models, PSD metric learning (PSDML) and SSD mé&taing (SSDM-
L), to enhance the performance of PSD and SSD based classific®ne image
(or image set) and one similarly labeled image set consarydsitive pair, while
one image (or image set) and onéeliently labeled set construct a negative pair.
Then the PSDML and SSDML problems are formulated as a sanaplelpssifica-
tion problem. Each sample pair is characterized by the cvee matrix of its two
samples, and a covariance kernel is introduced. A discstivia function is then
proposed for sample pair classification, and finally the P&Rkd SSDML can be
solved by using an SVM model. The proposed PSDML and SSDMlhaukt can
effectively improve the performance of PSD and SSD based fitzdgin, and are
much more #icient than state-of-the-art metric learning methods.

The main abbreviations used in this chapter are summarizdukei following

Table 6.1.

6.2 Setbased distances

Before distance metric learning, we need to first define hawliktance is mea-
sured. In this section, we describe how an image set is mobdaled how the

corresponding point-to-set and set-to-set distancesedieed.
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Table 6.1 The main abbreviations used in this chapter.

PPD point to point distance
PSD point to set distance
SSD set to set distance

PSDML point to set distance metric learning

SSDML  setto set distance metric learning

6.2.1 Image set model

An image set is usually represented by a hull, i.e., a sulesppanned by all the
available samples in the set. The hull of a set of samples [d;..., d...,dy] is
defined a#H(D) = {Da}, wherea = [ay, ..., &, ..., &,). Usually, >, a = 1 is required

anda is required to be bounded:

H(D)={YdalYa=1-11<a <1y (6.1)

If 71 = —inf andr, = inf, H(D) is an dfine hull [186]. Ifr; < 0 andr, > 0, H(D)
is a reducedféine hull [21]. Ifr; = 0 andt, = 1, H(D) is a convex hull [186]. If

7, = 0 andr, < 1, H(D) is a reduced convex hull [21].

To rule out the meaningless points which are too far from #mee mean, the

regularized #&ine hull (RAH) [220] is defined as follows to model an image set:

H(D) = {X dal X a = 1ljall, < o] (6.2)
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6.2.2 Point-to-set distance (PSD)

Given a sample& and a set of samplds3, a point to set distana#(x, D) betweenx

and D can be defined as follows:

d(x, D) = ||x — Dall, (6.3)

wherea = arg min, ||x — H(D)|l5. WhenH(D) is a hull, the solution of mig||x — H(D)||3
can be easily obtained by least square regressiéﬁ)é@)_l DTx if D"D is non-
singular, or by ridge regressioélﬁ)T D + Al )_1 DTx if D' D is (nearly) singular.

To make the PSD more accurate for classification, a projectiatrix P can
be introduced to project the samples into a desired spaacdinesponding PSD

distance, denoted i, (x, D), is then defined as:

dw (X, D) = |[P(x — Da)||?
=(x- Dél)T pPT P(x — D) (6.4)
= (x— D&)TM(x — Da)

wherea = arg min, ||P(x — Da)|3, and
M=PTP, (6.5)

Whena s obtained, we can form a sample pair Da). Clearly, the PSQly (x, D)
defined in Eq. (6.4) can be viewed as a Mahalanobis distaridbptweenx and
D4, and the matrixM is always semi-positive definite.

In PSD based classification, the distance between the qaerpley and the
template set of each clas§, X, ..., X. (c is the number of classes) needs to be

computed first. Suppose that the nearest subspace cla@dffi€) is used. Given
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M, for classi, we haveg; = W,y, where
W, = (XTMX; + A1) XTM. (6.6)
and then the PSD betwegrand setX; is:
du (Y, Xi) = (y = Xi&)T M(y = X &). (6.7)

The class with the minimal PSD is assigned/td.abely) = arg min{dy (y, Xi)}.
Compared with the nearest convex faftine hull classifier (NCNAH), which

needs to solve quadratic programming problems for the query sangpNSC only

needs to compute a set of linear projectiongofith W;,i = 1,2, ..., c. Hence, NSC

is much more icient than NCH and NAH.

6.2.3 Set-to-set distance (SSD)

Given two image set®; and D,, the set-to-set distance (SSD) between them can

be defined as follows:
d(Dy, D) = || D12~ Db (6.8)
wherea andb can be solved by:
(& b) = arg miny [IH(D1) ~ H(D2)I3 (6.9)

When convefaffingregularized constraints are imposed on theffocient vectors
a andb, respectively, the corresponding distances are convéohséd image set
distance (CHISD) [21],fine hull based image set distance (AHISD) [21] and reg-

ularized nearest points (RNP) [220], respectively. In [R&thas been shown that
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I,-norm regularized fine hull is much faster and can achieve comparable perfor-

mance to convegffing'sparse constraints. Given a linear projection ma@;ithe

RNP model is:
Ming [IP(D1a — D2b)II3 + s l[all; + A2 [1bIl3 (6.10)
st.Ya=1Yb=1
By solving Eq. (6.10), the SSD in Eq. (6.8) becomes:
" ~ 112
dv (D1, D) = ||P(D1a - Dzb)[; (6.11)

= (D14 - D,b)"M(D;a- D,b)

In SSD based classification, given a query imagérs¢hhe SSD between it and

each template sef;,i = 1,2, ..., ¢, is computed as
dw (Y, X)) = (Ya- X;b)"M(Ya- X;b). (6.12)

Y can then be classified lyabelY) = I(X;), wherei = arg min{du (Y, X;)}.

6.3 Distance metric learning

With the definitions in Section 6.2, we can then design theiimétarning algo-

rithms for PSD and SSD based classification.

6.3.1 Point-to-set distance metric learning (PSDML)

According to Eq. (6.7), the matrid plays a critical role in the final distance
dm(y, X;). Itis expected that a godd can be learned from the training sample sets

{X1, Xz, ..., X¢}, so that the PSD between a query sampénd the sek,, can be
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reduced, while the PSD betwegrand the other setX;, j # I(y), can be enlarged,
wherel(y) is the label ofy.
To achieve this goal, with the given training data s€ts = 1, 2, .., ¢, we pro-

pose the following metric learning model:

My 2 et 70 IMIE + V(S £ + 23 £D)
st dw(xi, X)) +b =1 &, j # 1(x);
MAA| ] ij 1 (6.13)
du (Xi, Xix)) + b < =1+ &

M >0,Vi, j, &} 20,6 =0

wherel|-||- denotes the Frobenius norim,, anda; are codicients vector foiX;;
andX;|, b is the bias and is a positive constant” andgi'}' are slack variables for
positive and negative pairsly (X, X)) is the PSD distance from; to the set it
belongs to (i.e., the PSD of positive pairs), whKpg) is the class label o%;, and
du(Xi, X;), j # [(xi), is the PSD fromx; to other classes (i.e., the PSD of negative
pairs).

Eq. (6.13) is a joint optimization problem ™ and{ayy,, a;}. Like the strategy
adopted in many multi-variable optimization problems, wiaimize Eq. (6.13) by
optimizing M and{gx), a;} alternatively. WherM is fixed, {ay,, a;} are solved
for all the training samples. Note that here the“leave-oug-strategy is used to
computeay,. That is,)G(xi) is the training sample set of claKs;) but excluding
samplex;. Then the positive pairs are formed as, @(Xi)é\,(xi)) and the negative
pairs are formed asx{, X;j:x)a;,jz(x)). We label the negative pair as1” and the
positive pair is set as “-1".

Let us denote by, = (z1, z,) a generated sample pair. The covariance matrix

of the two samples iz, is C; = (z1 — Z2)(z1 — Z»)". Suppose that we generatesl
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training sample pairs, and thus we hav@covariance matrice§;,i = 1,2,...,ns
We labelC; as “+1” or “-1” based on the label of;, and define the following kernel

function to measure the similarity betwe€nandC;:
k(Ci,Cj) = tr(CiC;) =< G;,C; > (6.14)

wheretr(-) is the trace operator of a matrix ard, - > means the inner product of
matrices.

Suppose that we have a query sample pair, denoted by(z, z,). The co-
variance matrix ofz is denoted byC. We introduce the following discriminative

function to judge whethez is positive or negative:

f(C) = X Bilik(Ci,C) + b
= YBli<C.,C>+b (6.15)
=< ZiﬁiliCi,C> +b

wherel; is the label of pairz, andg; is a weight. Let
M = 3 BiliC. (6.16)

Then we have (C) =< M, C > +b.
The metric learning problem in Eqg. (6.13) can then be coedeitto the fol-

lowing problem:

: 2
MiNy be IMIIE +v 2 i

(6.17)
st.i(«M,CGi>+b)>1-§,§=>0
The Lagrange dual problem of the metric learning problemgn(8.17) is:
maxs — 3 ¥ BiBjlilik(Ci, C)) + v X Bi (6.18)

st.0O<Bi < 2iBili=0
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Obviously, the minimization in Eg. (6.18) can be easily sol\by the support
vector machine (SVM) solvers such as LIBSVM . OnceB = [B1, ..., Bis --» Bndl
is obtained by solving Eq. (6.18M can be obtained by Eq. (6.16). WiM, the
distance between two samplrsandz, can be computed as:

du (21, 2) = (2 - )" M(z - 2) (6.19)

=tr(MC) =< M, C >
If we further requiredy (z1, ) to be a Mahalanobis distance metrd, should be
semi-positive definite. Similar to Xing et al.'s MMC [205] @rGloberson et al.’s
MCML [62], we can compute the singular value decompositiSN'D) of M =
UAV , whereA is the diagonal matrix of eigenvalues, and then set the ivegat
eigenvalues im\ to O, resulting in a new diagonal matri, . Finally, we letM, =
UA.V be the learned matrix.

OnceM is computed{ayy,, 8;} are then updated, and tiv is further updated,
and so on. The proposed point-to-set distance metric legiiSDML) algorithm
is summarized in Table 6.2. The PSDML can be coupled with P&i2t classifiers
such as NSC [31], NCH [186] and NAH [186] for classification this chapter, we

use NSC since it is much mordieient than NCH and NAH.

6.3.2 Set-to-set distance metric learning (SSDML)

With the SSD defined in Eq. (6.8), we can also learn a madtrikom the training
sample set$Xq, ..., Xi, ..., Xy} so that the SSD between sets with the same label
can be reduced, while the SSD between sets witlerdint labels can be enlarged.

The proposed set-to-set distance metric learning (SSDMidehis formulated as
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Table 6.2 Algorithm of point to set distance metric learning (PSDML).
Input: X = [Xq, Xa, ..., X¢], labell, 2 andy

OutputM

Initialize M = |
While iteration numbeg num

ComputeW,, i = 1,...,chby Eq. (6.6);

Solve Eq. (6.18) by SVM solver;

1
2
3
4 Construct positive and negative sample pairs;
5
6 UpdateM by Eq. (6.16);

7

End

follows:

MiNy 4 o a0 ¢80 IMIE + Y (SikéR + 2 €))
st. du(Xi, X)) +b > 1—gi'},|(xi) #1(X)); (6.20)
dw (Xi, Xi) + b < =1+ £8.1(Xi) = 1(Xk);
M >0,Vi, k&l =0,& >0
wherea;, a;, a are the cofficients vector for image sel§, X, X; |(X;) means the
label of setX;, and&?, i'}' are the slack variables for positive pairs and negative
pairs.

The principles and main procedures of SSDML are similar ®oRISDML in
Section 6.3.1. We solve Eq. (6.20) by optimiziMyand{a;, a;, & alternatively.
WhenM is fixed, {a;, a;, a} are updated to construct positive and negative sample
pairs. When the sample pairs are given, the updating of mdrican also be

converted into the problem in Eq. (6.17). The algorithm oD8&&. is summarized

in Table 6.3. Note that the work in [204] relies on CHISD [2bPa&SANP [78]. As
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RNP [220] is much faster tharffang/convexsparse hull based SSD computation,
we choose it to learn the Mahalanobis distance metric basédrmrm regularized

affine hull.

Table 6.3 Algorithm of set to set distance metric learning (SSDML).

Input: Training image setX = [ Xy, Xa, ..., Xq],
labell, A4, A, andvy

OutputM

Initialize M = |
While iteration numbeg num

Compute SSD for each image 36tby Eq. (6.10);

Solve Eg. (6.18) by SVM solver;

1
2
3
4 Construct positive and negative sample pairs;
5
6 UpdateM by Eqg. (6.16);

7

End

6.3.3 Discussions

There are close relationships between the proposed P$BSDML and SVM.
The geometric interpretation @fSVM is to find the closest points in two (reduced)
convex hulls [18]. Given two classe§ andX,, the SVM is to solve the following
problem [? ]:

min||X1aq — Xaoll3

(6.21)
stYag=L1Yaj=1L0<ay,a<pu
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It can be easily found that the associated discriminatioction of SVM isf(y)

W'y + b, wherew = (Xia1 — Xo@)/2, p = (Xia1 + Xo@)/2, b = —w'p

(azT Xg Xoan — a]_T XI Xlal)/4.

Then we have the following observation:

f(y)=w'y+b
_ (Xgar—-Xpap)' a" XJ Xpap—a1 " X] X121
= 2 y+ Z
(6.22)

lly-Xzazll5-lly-X1 24115
4

_ d(y.Xo)-d(y.X)
4

Hence, similar to PSD based classification, the discrinvedtinction of SVM
actually uses the distance between the test sagpnpled each class. If(y) > O,
theny belongs to the first class. If(y) < O, theny belongs to the second class.
The diference, however, lies in that PSD based classifiers (e.dC, NE€H and
NAH) solve a; and a, for each test sample while SVM learas and a, from the
training set by classification loss minimization and margeximization. The con-
ventional PSD based classifiers ignore the training ladehimation in computing
a; anda,. With metric learning, PSDML can further utilize the claabél to learn
a discriminative metric for the point-to-set distance, #mas may result in better
classification performance.

For set based classification, SVM can not be directly usetuay, given two
sets, SVM considers each set as one class and the distameeehetivo classes
is used as the SSD, which corresponds to CHISD [21]. Henagti]litgnores the
discriminative information in calculating SSD, and is edg&aly different from the
proposed SSD metric learning method. Actually, SSDML tteemake SSD com-

putation discriminant, which is similar to the works in [2Z84]
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Additionally, we formulate both PSDML and SSDML as a sam# plassifi-
cation problem, which can be solved by standard SVM solvEngs makes metric

learning very €icient.

6.4 Experimental result and analysis

We verify the performance of PSDML and SSDML on various vislassification
tasks. In Section 6.4.1, we test PSDML on gender classificatligit recognition,
object categorization and face recognition, while in S#t6.4.2, we test SSDML

on video-to-video based face recognition.

6.4.1 PSDML experiments

Parameter setting and competing methods

There are two parameters in PSDML, i.a.jn Eq. (6.6) andv in Eq. (6.17).
For SSDML, there are three parameters, g.and A, in Eq. (6.10) and’ in Eq.
(6.17). For both PSDML and SSDML,in Eq. (6.17) is set to the default value 1
in LIBSVM. For PSDML, 4 is chosen by cross-validation on the training set. For
SSDML, 4; andA; are fixed as 0.001 and 0.1, respectively.

We compare PSDML with four state-of-the-art metric leagninethods (LMN-
N [196], ITML [41], NCA [63] and MCML [62]), three PSD basedadsifiers (NSC
[31], NCH [186] and NAH [186]), the classical nearest neighblassifier (NNC)
and SVM. The Matlab source codes of LMNN, ITML, NCA, and MCMte&ob-

tained from the original authors, and we used the SVM tooltsormn [? ]. We
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implemented NNC, NCH, NAH and NSC. The parameters of the &img meth-

ods are tuned for their best results.

Gender classification

A non-occluded subset (14 images per subject) of the AR difas] is used,
which consists of 50 male and 50 female subjects. We use thgasitrom the first

25 males and 25 females for training, and the remaining imégetesting. The
images were cropped to 883. PCA was used to reduce the dimension of each
image to 30 and 50, respectively. The experimental regstedlin Table 6.4 show
that PSDML gets the highest accuracy and improves the pedioce of PSD based
classifiers (NSC, NCH and NAH).

Table 6.4 Accuracy (%) on gender classification.
dim. NN NSC NCH NAH SVM

30 90.6 921 911 91.7 921
50 90.3 93.3 914 843 91.0

dim. LMNN ITML NCA MCML PSDML

30 913 90.8 91.4 90.7 93.7
50 91.0 90.7 91.4 92.1 954

Digit recognition

Three handwritten digit datasets, Semeion [6], USPS [88]MNIST [104], are
used here.

Semeion: The Semeion dataset [6] has 1,593 handwritten digits frooarad
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80 persons. Each sample is a<li6 binarized image. The recognition rate on the
raw features is shown in Table 6.5. On this dataset, the pedioce of NSC is
much better than NNC. PSDML gets a recognition accuracy &%®5which is the

highest among all the methods used in comparison.

Table 6.5 Accuracy (%) on Semeion.
dim. NN NSC NCH NAH SVM

256 914 942 941 925 934

dim. LMNN ITML NCA MCML PSDML

256 939 93,5 939 90.0 95.9

USPS: The USPS dataset includes 7,291 training and 2,007 tastiages [85].
Each sample is a 2.6 image. The experimental results on three dimensions (100
150, 256) are shown in Table 6.6. We see that the results of BNCNSC are
similar. PSDML achieves the highest accuracy dfetdéent dimensions and its per-

formance is comparable to other state-of-the-art metamieg methods.

MNIST: The MNIST [104] dataset contains a training set of 60,000as
and a test set of 10,000 samples. There are 10 classes ofdjraagkthe size of
each image is 288. We randomly select 200 samples per class for trainingreand
image dimension is reduced to 100 by PCA. Ten random expatgaee conducted
and the average recognition rate is shown in Table 6.7. AGRBDML performs

the best among all methods.
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Table 6.6 Accuracy (%) on the USPS.
dim. NN NSC NCH NAH SVM

100 949 0943 88.2 91.8 923
150 948 945 89.3 919 927
256 94.6 94.3 89.7 918 927

dim. LMNN ITML NCA MCML PSDML

100 95.2 95.0 951 95.2 954
150 95.2 951 95.0 95.1 95.3
256 95.0 94.9 94.8 949 95.2

Table 6.7 Accuracy (%) on MNIST.
dim. NN NSC NCH NAH SVM

100 93.3 95.2 96.0 94.0 95.7

dim. LMNN ITML NCA MCML PSDML

100 95.0 93.4 935 90.1 96.3
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Object categorization

The 17 category OXFORD flower dataset [135] is used. It costdi7 species
of flowers with 80 images for each class. Tyredistance matrices of seven fea-
tures (i.e., HSV, HOG, SIFTint, SIFTbdy, color, shape anduee vocabularies)
are directly used as the input and the experiments are ctedlbased on the three
predefined training, validation, and test splits. We testgarformance of PSDML
on each feature and the results are shown in Table 6.8. Frenesults we see that

PSDML achieves the highest accuracy on all the seven feature

Face recognition

We then test the performance of PSDML on face recognition.inAd.96], the
Extended Yale B database [59] is used here. In addition, BiREH database [143]
is also used since the images have huge pose variationsagnaki good test-bed
for metric learning methods.

Extended YaleB: The Extended YaleB database contains 2,414 frontal face im
ages of 38 persons [59]. There are about 64 images for eagrctsubhe original
images were cropped to 19268 pixels. This database has varying illuminations
and expressions. A randomly generated matrix from a zemamermal distribu-
tion is is used to project the face image onto a 504-dimeasieector. We ran-
domly choose 15 samples per subject for training and thamegjes are used for
test. PCA is used to reduce the dimension to 50, 100 and 1&8gctvely. On this
database, the performance of NSC is much better than NNCp@aud with NSC,
PSDML improves the recognition rate by about 4% and it workElmbetter than

other metric learning methods.
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Table 6.8 Accuracy (%) on the 17 category OXFORD flowerers.
Features NN NSC NAH NAH SVM

Color 52.3:2.255.4:2.7 55.2:2.8 56.32.8 56.%:2.6
Shape 53.#3.566.5%2.1 66.%42.063.4:1.3 60.:2.9
Texture 31.93.6 52.4:2.1 52.4:1.545.5%1.847.8&3.4
HSV 52.0t2.6 59.2:2.3 59.4:2.3 57.2:3.5 57.&:2.9
HOG 36.91.751.6:2.551.82.947.6:2.647.31.9
SIFTint 58.%2.1 66.5%1.366.51.4 64.51.059.%1.0
SIFTbdy 51.40.957.6-2.357.42.257.6:2.8 47.52.8

Features LMNN ITML NCA MCML ISDML

Color 53.12.553.52.652.8:2.8 54.1+2.758.8+4.0
Shape 50.21.055.2:1.454.52.055.51.567.8:2.0
Texture 35.53.0 36.22.5 33.82.6 34.5:2.055.0+1.3
HSV 54.8t2.7 53.5%3.0 54.(:2.9 52.%3.161.6+3.2
HOG 38.3t1.137.5%2.538.22.5 38.42.855.0+5.9
SIFTint 60.0:3.4 61.21.959.81.560.4:1.369.1+1.8
SIFTbdy 53.34.1 54.2:2.5 53.32.9 53.3:2.160.6:4.0
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Table 6.9 Accuracy (%) on the Extended YaleB database.
dim. NN NSC NCH NAH SVM

50 76.3 86.1 70.9 86.1 78.1
100 80.2 88.2 755 87.6 824
150 78.3 889 771 889 823

dim. LMNN ITML NCA MCML ISDML

50 774 783 78.9 79.0 90.0
100 81.1 81.0 824 82.9 92.2
150 81.8 83.1 83.5 82.1 93.0

FERET: The FERET face database is a large and popular databasealer e
uating state-of-the-art face recognition algorithms [[L48/e use a subset of the
database that includes 1,400 images from 200 individualsh(@as 7 images). It
consists the images whose names are marked with two chastiitgs:“ba”, “bj”,
“bk”, “bd”,“be”,"bf”, “bg”. This subset involves variatios in facial expression, il-
lumination, and pose. The facial portion of each image wasraatically cropped
based on the location of eyes and mouth, and the cropped imageesized to
60 x 50 pixels and further pre-processed by histogram equadizat

We randomly select four images per subject as the trainirgrgkthe remaining
images are used as the test set. The recognition rates ave gihdable 6.10. In
this dataset, the performance of NSC is worse than NNC. Elihecause there are
great pose variations in this subset, and thus using hullddeainthe image set is
not suitable. By metric learning, however, the classifaratiate can be improved

greatly. The result of PSDML is much better than LMNN, ITMLCKX and MCML,
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which validates theféectiveness of our algorithm.

Table 6.10 Accuracy (%) on the FERET.
dim. NN NSC NCH NAH SVM

50 405 389 376 389 458
100 48.0 424 415 424 59.5
150 48.8 43.7 42.6 43.7 64.6

dim. LMNN ITML NCA MCML PSDML

50 60.0 615 595 60.5 64.0
100 62.7 63.8 61.6 63.3 67.8
150 63.5 64.8 62.0 64.5 67.8

Time comparison

To show the #iciency of PSDML, we compare the training time offdrent met-
ric learning methods. All algorithms are run in an Intel(R)r&TM) i7- 2600K
(3.4GHz) PC. The average training time on the MNIST dataséttied in Table
6.11. We see that PSDML is much faster than other metric iegrmethods. In

particular, it is nearly 500 times faster than MCML.

Table 6.11 Training time (s) on the MNIST.
Methods LMNN ITML NCA MCML PSDML

runtime 75.9 141.0 3885.111825.124.7
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6.4.2 SSDML experiments

We then test SSDML for set-to-set based classification taske benchmark Y-
ouTube Celebrities dataset is used. In this experiment,ongare SSDML with
those SSD based classification methods (CHISD [21], AHIST), [SANP [78],
RNP [220], MMD [193] and MDA [190]) and set-to-set similaribased method-
s (MSM [206] and DCC [98]). The source codes of these methoglgram the

original authors and we tune the parameters for their besttse

The Youtube Celebrities [98] is a large scale video dataseface tracking
and recognition, consisting of 1,910 video sequences ofel@bdties collected
from YouTube. As the videos were captured in unconstraimeir@nments, the
recognition task becomes much more challenging due to hagations in pose,
illumination and expressions. The face in each frame isotiedby the Viola-Jones

face detector and resized to 3D grayscale image.

The intensity value is used as feature. Three video seqagraresubject are
selected for training and six for testing. Five-fold crosdidation is used. The
experiments for 50, 100, 200 frames per set are conductesl reBult is shown in
Table 6.12. We can see that SSDML outperforms all the othénadle on diferent

frames per set.
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Table 6.12 Recognition rates on YouTube (%).
Methods 50 100 200

MSM [206] 54.8:8.7 57.4c7.7 56.%:6.9
DCC[98] 57.6:8.0 62.%6.8 65.%7.0
MMD [193] 57.8:6.6 62.86.2 64.%:6.3
MDA [190] 58.5:6.2 63.3:6.1 65.46.6
AHISD [21] 57.5:7.9 59.%7.2 57.8:5.5
CHISD [21] 58.0:8.2 62.8:8.1 64.87.1
SANP[78] 57.87.2 63.1:8.0 65.6:7.9
RNP [220] 59.97.3 63.3:8.1 64.4:7.8
SSDML 61.9:7.3 65.8:8.1 67.0:7.1

6.4.3 Comparison between PSDML and DSRIC

As both DSRIC and PSDML can apply to the same classificatiskstave conduct
experiments on handwritten digit recognition to compare récognition perfor-
mance andficiency of PSDML and DSRIC. Table 6.13 and Table 6.14 show the
recognition accuracy and testing time, respectively. Ftbhenresults, we can see
that the accuracy of PSDML is a little higher than DSRIC wHIISRIC is twice
faster than PSDML.

6.4.4 Combination of PSDML and DSRIC

PSDML aims to improve the discrimination ability of repratsion based classi-

fiers by learning a distance metii¢ for all classes, i.e.X— Dxa)" M (X — Dy&y).
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Table 6.13 Recognition accuracy (%) on handwritten digit recognition
Method USPS MNIST

PSDML 95.4 96.3
DSRIC 94.3 95.2

Table 6.14 Testing time comparison (s) on handwritten digit recogniti
Method USPS MNIST

PSDML  0.0002 0.0066
DSRIC  0.0001 0.0038

DSRIC learns a discrimination matrix per class for clasatfan by introducing
a discrimination representation item, i.ex,{ Bx)"(x — Byx). Actually we can
combine the advantage of PSDML and DSRIC, i.e5 BxX)" M(x — B¢x). First-

ly, instead of using NSC to generate posithegative pairs, we can use DSRIC
to get pairs for distance metric learning. Then a distancaion® is learned.
We conduct experiments onftérent classification tasks, including gender classi-
fication, face recognition and handwritten digit recogmittasks. The experiment
results are shown in Table 6.15. From the experiment reselican see that the
combination method can always achieve the highest accaracyferent classifi-
cation tasks. Besides, the time complexity of the combomatnethod is the same
as PSDML. Hence, the combination of PSDML and DSRIC can leaddre robust

classification in terms of both accuracy arfficency.
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Table 6.15 Recognition rates on fierent classification tasks
Database NSC DSRIC PSDML DSRI€SDML

gender 93.4 94.7 95.3 95.3
LFW 37.8 60.8 38.2 61.3
USPS 94.3 94.3 95.4 95.4
MNIST 95.2 95.2 96.3 96.3

6.5 Conclusions and discussions

We extended the point-to-point distance metric learningpdmt-to-set distance
metric learning (PSDML) and set-to-set distance metricnieg (SSDML). Pos-
itive and negative sample pairs were generated from trgisample sets by com-
puting point-to-set distance (PSD) and set-to-set digt488D). Each sample pair
was represented by its covariance matrix and a covariamoeldeased discrimina-
tion function was proposed for sample pair classificationaly, we showed that
the proposed metric learning problem can iently solved by SVM solvers. Ex-
periments on various visual classification problems dennatesl that the proposed
PSDML and SSDML methods caffectively improve the performance of PSD and
SSD based classification. Compared with the state-of4theetric learning meth-
ods such as LMNN, ITML and MCML, the proposed method can aghleetter

classification accuracy and is significantly faster in tiragn

In Chapter 4,we proposed discriminative self-represemtanduced classifier
(DSRIC) and learn a discriminative square matrix per claslassification. In

this chapter, we consider representation residual as & fooset distance and learn
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a discriminative distance metric to enhance represemthased classification. The
objective of both methods are to introduce more discrinnimainformation to the

representation process. Actually, as shown in sectior 8. can combine the
advantage of DSRIC and PSDML to further improve the perforoeaof represen-

tation based classifiers.



Chapter 7

Conclusions

7.1 Conclusions

Although lots of representation based classification motdalve been developed
and can apply to classification tasks such as face recogpitiage classification,
visual tracking, action recognition, etc. In small sampie problem, image set
classification tasks and large-scale classification takksexisting representation
based classifiers may fail or can not apply. This thesis ainagltiress representa-
tion with small sample size, representation with big sanspte, image set repre-

sentation, and representation with metric learning probkle

e We proposed two models for face recognition with single dampr person,
i.e., multi-scale patch based collaborative represemtdtiSPCRC) and lo-
cal generic representation (LGR). MSPCRC utilizes patstell representa-
tion and fuses decisions offtkrent patch sizes by margin distribution opti-

mization. To introduce more across-subject face variatiGR represents
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the query face patch on both the gallery patch dictionarygereric varia-
tion patch dictionary. Our extensive experiments validdtet the proposed
methods outperform many state-of-the-art patch basedéaognition algo-
rithms. Compared to patch based collaborative represent&iGR achieves

higher accuracy but lessteiency.

¢ A novel feature-level self-representation concept wappsed. We devel-
oped self-representation induced classifier (SRIC) andgarohat SRIC is
equivalent tol,-norm regularized nearest subspace classifier and préncipl
component analysis with shrinkage. To improve the diseration ability
of self-representation, a discriminative SRIC (DSRIC) éveloped and its
time complexity is only related with feature dimension andnier of class-
es. Hence, DSRIC can apply to classification tasks with a&largount of

samples.

¢ A novel collaborative representation set to sets distaG&SSD) and collab-
orative representation based image set classificatiorRE@amework was
proposed. Regularizedfae hull and kernelized convex hull based ISCRC
models were developed. ISCRC outperforms the state-efuthenage set

based face recognition method in terms of both accuracy fiiwieacy.

¢ We extended point-to-point distance metric learning topto-set (PSDML)
and set-to-set (SSDML) distance metric learning. Both P&Rkd SSDML
are solved by standard support vector machine solvers aneftine can apply
to large scale classification tasks. To the best of our knidgdethis is the first

work for point-to-set and set-to-set distance metric legn
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7.2 Future work

This thesis has shown that there are many possibilities ple®d in the extension
of the developed representation based classifiers. In theefwork, we will focus

on the following directions:

¢ Different from the existing sample-level representation, isttiesis we pro-
posed feature-level self-representation and develoeddtresponding clas-
sifiers. We will combine sample-level and feature-levetespntation togeth-

er and develop two-dimensional representation basedfttasi®n models.

¢ Dictionary learning can get a compact and discriminatiygesentation by
learning a set of bases. For face recognition with singlepdamer person,
we will learn a local generic variation dictionary. For ingaget based face

recognition, we will consider to learn an image set dictigna

e There are multi-modal and cross-modal tasks in computesrvend pattern
recognition. We will extend the point-to-set and set-tbfsetric learning
algorithms to cross-modal and multi-modal tasks. Addaibn there are
a large number of unlabeled samples in real-world appbaati which can
help learn a distance metric with better generalizatiotitgbHence, semi-

supervised metric learning will be taken into account as.wel

e Deep learning has attracted much attention and achievet goecess in
computer vision tasks. We will combine deep learning andépeesentation

based classification models together to improve the retogrperformance.
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