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Abstract

In computer vision and pattern recognition, there are a variety of image based

classification tasks, e.g., face recognition, action recognition, object recognition,

texture classification, handwritten digit recognition, etc. How to choose a suitable

classifier for the given classification task is not a trivial problem, and it depends

on data type, data distribution, data size, and feature property. According to “no

free lunch” theorem in machine learning, there is no one classifier that can always

achieve the state-of-the-art performance in all classification tasks. Intuitively, a

robust, efficient, and scalable classifier with good understandability, scalability and

generalization ability is always desired.

Representation based classification has been widely used inpattern classifica-

tion and achieves superior performance. It is based on the assumption that a query

sample can be more accurately approximated by a linear combination of training

samples of its class than other classes. Many representation based classification

models have been developed, including sparse/collaborative representation, low-

rank representation, robust representation, kernel representation, generic represen-

tation, multi-modal/cross-modal representation, etc. Representation residuals in

these models are discriminative and a query sample can be classified to the class

with the minimal reconstruction residual. Meanwhile, representation coefficients

can also be used as features to enhance classification. In addition, in middle-level

feature extraction, in contrast to vector quantization, sparse coding can be intro-

duced to obtain a soft representation for classification.

Although representation based classification models have achieved a great suc-

cess in different classification tasks, there are still many problems remaining. When
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there are only a small number of training samples, the representation tends to be

over-determined and therefore the query sample may not be well represented. When

the number of the training samples is very large, the time complexity and memo-

ry consumption of representation based classifiers becomesa challenging issue.

Besides, the existing representation based classifiers aremostly designed to ac-

complish single image based classification tasks. However,for video based face

recognition and multi-view object recognition, the task becomes an image set clas-

sification problem. It is demanded to extend representationbased classifiers from

image based to image set based models. Finally, most existing representation based

classifiers are non-discriminative in the representation process. It is interesting to

investigate if the samples can be projected to a discriminative feature space to en-

hance the classification performance.

In this thesis, we aim to develop new representation based classification models

for small sample size problems, big sample size problems, image set classification

problems, and discriminative representation problems, respectively.

In Chapter 2, to solve the small sample size problem in face recognition, a

patch based collaborative representation classifier (PCRC) is proposed. Both the

query and gallery face images are divided into patches and then the query patch is

represented by the gallery patch dictionary. Classification outputs of all the patches

are combined by majority voting to get the final output. As PCRC is sensitive to

patch size, a multi-scale PCRC is proposed to fuse the classification outputs of

different path sizes by margin distribution optimization.

In Chapter 3, a local generic representation (LGR) based approach is proposed

for face recognition with single sample per person. A generic intra-class variation
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dictionary is constructed from a generic dataset, and it canwell compensate for the

face variations lacked in the gallery set. A correntropy based metric is adopted to

measure the loss of each patch so that the importance of different patches in face

recognition can be more robustly evaluated.

In Chapter 4, a self-representation induced classifier (SRIC) is proposed for

representation with big sample size. Different from the existing sample-level rep-

resentation, we proposed representation based classifiersfrom the perspective of

feature-level representation. The time complexity of SRICis only related with fea-

ture dimension and the number of classes. Hence, it is very suitable for classifica-

tion tasks with a large amount of training samples and a smallnumber of classes.

In Chapter 5, an image set based collaborative representation model is proposed

for image set based face recognition. Considering the distinctiveness of samples in

the query image set and the correlation between the gallery image sets, we model

both the query and gallery image set as hulls. Then the hull ofthe query image set is

collaboratively represented on the gallery image sets. Regularized hull and kernel

convex hull are both considered to develop robust image set based collaborative

representation classifiers.

In Chapter 6, by considering representation based classifiers as point-to-set dis-

tance based classifiers, we extended distance metric learning from point-to-point

distance to point-to-set and set-to-set distance. The metric learning problem is mod-

eled as a sample pair classification task and can be efficiently solved by standard

support vector machine solvers.

To sum up, in this thesis we developed patch based collaborative representation,

local generic representation, regularized self-representation, image set based col-
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laborative representation, and point-to-set/set-to-set distance metric learning meth-

ods to address the representation problems with small sample size, big sample size,

and image sets for pattern recognition, respectively. Our extensive experimental re-

sults demonstrated the state-of-the-art performance of the proposed methods. In the

future work, we will investigate generic dictionary learning for face recognition in

the wild, cross-modal/multi-modal dictionary learning and metric learning methods

under the representation based pattern classification framework.
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Chapter 1

Introduction

1.1 Classification tasks

In our daily life, human beings need to get the identity of oneperson, search re-

lated text, audio, pictures or videos, distinguish salmon from bass, etc. Fortu-

nately, all these needs can be satisfied via classification. In computer vision and

pattern recognition, there are various classification tasks. As shown in Fig. 1.1,

the classification tasks include face/iris/palmprint/fingerprint/finger-knuckle recog-

nition, action recognition, texture classification, imageclassification, handwritten

digit recognition, etc. For a general classification task, there are four crucial steps:

data collection, data preprocessing, feature extraction and classification. Among all

the four steps, feature extraction and classification has attracted much attention of

researchers in the past few years.

1
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Texture Classification

Face Verification
Handwritten Digit Recognition

Image ClassifiactionMicroarray Data Classification

Iris Recognition

Fingerprint Recognition

Palmprint Recognition Action Recognition

Figure 1.1 Classification tasks in computer vision and pattern recognition.

1.1.1 Feature extraction

The main purpose of feature extraction is to produce good representations for data,

which can be used for detection, recognition, prediction, or visualization. Success-

ful feature extraction algorithms should eliminate irrelevant variabilities of the input

data, while preserving the useful information for the ultimate task. Feature extrac-

tion methods can be categorized into three types: subspace learning, local features

and feature learning.

Subspace learningAs a popular dimensionality reduction and feature extraction

technique, subspace learning has been successfully used invarious computer vision

and pattern recognition applications, for example, appearance based face recogni-

tion (FR). Representative subspace learning methods include principal component

analysis (PCA), e.g., Eigenface [180], Fisher linear discriminant analysis (FLDA)

[11], the manifold learning [176] [156] based locality preserving projection (LPP)

[75], local discriminant embedding (LDE) [25], graph embedding [207], etc. Ac-

cording to if the class label information of the training samples is exploited, the
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linear subspace learning methods can be categorized into unsupervised methods

(e.g., PCA and LPP) and supervised methods (e.g., FLDA [11],regularized LDA

(RLDA) [114] and LDE). Subspace learning methods are not limited by data types.

Local featuresIn computer vision and multimedia tasks, images are the mostcom-

mon data type. Intuitively, intensity features can be directly used for different tasks.

However, the poor performance of intensity features and theundiscovered hidden

information in the image drive researchers to extract more useful features from

images. Local features are distinctive and invariant to many kinds of geometric

and photometric transformations [108]. For a local feature, it consists of a feature

detector and a feature descriptor. Feature detectors need to detect the key points

and regions of an image. The history of feature detector can be tracked back to

the Moravec’s corner detector [130], and from then on a largenumber of corner

and region detectors [70][126][181][92] have been proposed. After key points and

regions are detected, local descriptors are used for feature description. We can cat-

egorize existing descriptors into filter-based descriptors (e.g., steerable filters [49],

Gabor filters [121] and complex filters [159]), distribution-based descriptors, (e.g.,

SIFT, LBP, shape context, and GLOH), textons [107] and derivative-based descrip-

tors [48]. Different descriptors may be optimal for different tasks. Hence, it is quite

necessary to design a proper local feature for different tasks.

Feature learning The model of visual cortex suggests that the brain of human be-

ings extracts features from edge, patch, surfaces, and thento objects [84, 149, 164].

The observation and decision process is usually a hierarchyof representations with

increasing level of abstraction and each level is a trainable feature transform. Be-

sides image classification, there is a pipeline for text classification, i.e., from Char-
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acter, word, word group, clause, sentence to story [100]. Inspeech recognition,

the similar process goes from sample, spectral band, sound,phone, phoneme to

word [76]. In machine learning and artificial intelligence,how can we learn fea-

ture hierarchies? In neuroscience, the way how cortex learns perception needs to

be explored. Fortunately, deep Learning develops a hierarchy of deep architec-

ture to address these problem. Deep learning constructs a hierarchy of trainable

transforms, from low-level features that shared among categories to more glob-

al and more invariant high-level features. There are three deep architectures, i.e.,

feed-forward (e.g., multi-layer neural nets [2], convolutional nets [100]), feed-back

(stacked sparse coding [221], deconvolutional nets [224])and bi-directional (e.g.,

deep boltzmann machines [158], stacked auto-encoders [58]). Additionally, there

are three types of training protocols, including fully supervised, unsupervised lay-

erwise training plus supervised classifier on top, unsupervised layerwise training

plus global supervised fine-tuning. To learn invariant feature, the overall architec-

ture is composed of normalization, filter bank, non-linearity and pooling. There are

two types of normalization, subtractive (e.g., average removal, high pass filtering)

and divisive (e.g., local contrast normalization, variance normalization). The non-

linearity can be introduced by non-linear dimension expansion or sparse non-linear

expansion. Finally, by pooling, semantically similar regions can be brought togeth-

er. As deep learning can extract invariant features and is consistent with the cortex

of human brains, it has been successfully used in pedestriandetection [163], image

segmentation [37], action recognition [88], scene parsing[170], speech recognition

[76], etc.
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1.1.2 Classifiers

After features are extracted from text, image, audio or video, suitable classifiers

should be chosen for classification. According to the numberof labels, there are

single-label and multi-label classification tasks. Besides, according to the number

of modalities, there are single modal classifiers, multi-modal classifiers and cross

modal classifiers. According to the availability of the training labels, the classi-

fications tasks can be also categorized into weak-supervised, semi-supervised and

supervised tasks. In this following part, the popular classifiers are categorized and

reviewed.

Distance/similarity based classifiersGiven two samples, we need to measure their

similarity/dissimialrity to judge whether they belong to the same object [82]. Given

a query sample, the distance from the query sample to the training samples is also

needed to get the identification. For both identification andverification problem,

a proper distance metric should be designed or learned for a certain task. K near-

est neighbor classifier (KNN) is one of the most popular and efficient classifiers in

pattern recognition. KNN assigns the query sample to the class with the largest fre-

quency in the k-nearest neighbors. There are two factors that affect the performance

of KNN, i.e., distance metric and K. The distance metrics canbe Euclidian distance,

cosine distance, Manhattan Distance, Mahalanobis distance, etc. In recent years,

it has been increasingly popular to learn a desired distancemetric from the given

training samples in many visual classification tasks, such as face/action/kinship ver-

ification [66], visual tracking [89], and image retrieval [1]. Metric learning methods

can be categorized into unsupervised [33], semi-supervised [1] and supervised ones

[1, 66, 89], according to the availability of the class labels of training samples. As
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the naive linear search over all the training data vectors are quite time-consuming,

two branch and bound search algorithms, i.e., kd-trees [50]and ball trees [52] are

introduced to accelerate the searching process. Then to alleviate the impact of curse

of dimensionality, hashing technique was proposed to buildsearch structure for per-

forming similarity search over high-dimensional data [61].

Rule based classifiersIn some applications, such as medical analysis, stock pre-

diction and fault diagnosis, the understandability of classifiers is quite important.

The users need to get definite rules for analysis or diagnosis. The most popular rule

based classifiers are decision trees, e.g., classification and regression tress [152]

and C4.5 [146]. Attentions are also paid to extract rules from block box classifier-

s, such as support vector machines [137] and artificial neural networks [177]. Rule

based classifiers are composed of two parts: rule extraction, and rule pruning. More

detailed discussions about rule learning can be found in [53].

Linear /nonlinear discriminant classifiersGiven a query samplex, it can be clas-

sified by a discriminant functionf (x) = wx + b. For non-linear cases, with ker-

nel mapping, the discriminant function becomesf (x) = wφ(x) + b. This kind of

classifier assume the samples of different classes can be separated by a series of

classification hyperplane. Support vector machines [184],linear regression [161],

and logistic regression [77] can be categorized into this kind of classifier. Ensem-

ble learning methods, e.g., boosting, also belong to lineardiscriminant classifiers.

Additionally, to deal with multi-task problems, multi-kernel learning extends non-

linear discriminant classification model to the multi-taskcase [7].

Representation based classifiersInspired from the fact natural images can be gen-

erally coded by structural primitives and these primitivesare qualitatively similar to
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Figure 1.2 An under-determined linear system.

simple cell receptive fields, Olshausen et al. proposed to represent a natural image

using a small number of basis functions from an over-complete code set [138, 139].

As shown in Fig. 1.2, given a signaly and a set of basesA, y can be represented as

a linear combination of bases, i.e.,Ax. Finding a good representation has been the

topic of many applications, e.g., signal reconstruction [28], image restoration [116],

etc. Besides applications in low-level vision, representation based models have also

been used in high-level image classification tasks [201, 212]. Firstly, the representa-

tion residuals can be used for classification [201, 226]. Therepresentation residual

of each class has discrimination ability and hence can be used for classification.

Secondly, the representation coefficients vector are used as the feature, and then

the traditional classifiers (e.g., SVM) are utilized for thefinal classification outputs

[212]. As there are noises, non-linear data structure and multi-modalities, robust

[214], kernel [55], cross-modal [194] and multi-modal representations [219, 223]

are proposed for classification for each case, respectively. To pursue a good rep-

resentation, the bases, also called dictionary, are quite important in representation

learning. In Section 1.2, we will review some representation based models.
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1.2 Overview of representation based pattern classi-

fication

In this section, we review the representation learning models. Firstly, the represen-

tation based classifiers are reviewed. Besides, dictionarylearning methods are also

reviewed.

1.2.1 Representation based classifiers

As there are different modalities of objects in nature, there are single modal, multi-

modal and cross-modal representation based classificationmodels.

Single-modal representation

For single-modal representation, a series of models have been proposed, from s-

parse representation, collaborative representation to robust representation, kernel

representation and generic representation.

Sparse representationNowadays, the data are increasingly massive and high-

dimensional. How can we find the low-dimensional structure from such high-

dimensional data? Because of rich local regularities, global symmetries, repeti-

tive patterns, or redundant sampling, visual data usually exhibits low-dimensional

structures. In section 1.1.2, the mechanism of representation based classification

models has been introduced. To find a good representation of agiven signal, ef-

ficient prior should be imposed. Based on the observation of the representation

and cognitive science, in many cases, the presentation coefficients are sparse. S-

parse representation has been widely used image restoration [117], image resolu-
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tion [211], visual tracking [124], image classification [212], etc. For example, a

query face can be sparsely reconstructed by only several related faces. In [201],

a sparse representation based classifier (SRC) is proposed for face recognition. It

uses the reconstruction residual of each class for classification. Actually, SRC can

be considered as an extension from nearest neighbor classifier, nearest feature line,

nearest subspace classifier. The difference is that the representation is done on the

training samples of all classes. Intuitively,l0-norm is used to measure the spar-

sity. However, it is non-convex and a NP hard optimization problem. l1-norm is

the most strictly convex hull ofl0-norm and it is convex,though it is not smooth

asl2-norm. Hence,l1-norm is introduced and it is a convex optimization problem.

There are quite a lot ofl1-norm optimization algorithms, i.e., primal-dual interior-

point, homotopy, gradient projection, iterative thresholding, proximal gradient and

augmented lagrangian Methods [209]. Usually, sparse presentation emphasizes the

sparsity of representation coefficients. Sometimes, in case of corruptions and oc-

clusions in the face image, the representation residual is also measured byl1-norm

to be robust to noise. The fidelity measure is up to the representation error distribu-

tion. If it satisfies the Gaussian distribution, thenl2-norm is adopted. Otherwise, if

it satisfies the Laplacian distribution, e.g., face images with pix corruption,l1-norm

should be used.

Collaborative representation In representation based classifiers, suitable regular-

ization should be imposed on the representation coefficients according to the prior

knowledge about the solution. If we know in advance that the solution is sparse,

i.e., only a few elements are relevant, thenl1-norm can be well adopted, which leads

to a lasso problem. However, should all the representation models be regularized
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by sparsity norms? What does the succuss of SRC own to? In [226], a collaborative

representation based classifier (CRC) is proposed by replacing thel1-norm in SRC

with l2-norm. Without solving a time-consumingl1-norm optimization problem,

CRC only needs to solve a ridge regression problem that has a closed-form solu-

tion. Whereas, CRC achieves comparable recognition performance to SRC while

with much lower computation consumption. Besides, CRC explains the success

of SRC from the perspective of collaborative representation, which means that the

across subject face similarity can be used to help representfaces of other persons.

CRC can explains the superior performance of SRC in face recognition. Howev-

er, the concept of collaborative representation does not necessarily apply to all the

classification tasks. The debate ofl1 andl2-norm regularization induces more dis-

cussions and experimental validations. Overall, if samples are well conditioned, the

dense representation can lead to comparable performance. In the other case, when

samples are highly coherent, sparse representation is morediscriminative. Besides

l1-norm andl2-norm regularization, there maybe exists the structural relationship in

the data. Hence, other regularization, e.g., group lasso, can be introduced to reg-

ularize the representation coefficients. If we can discover the latent structure and

prior knowledge from the data itself, we can choose proper regularization.

Robust representationIn face recognition, there are usually corruptions, occlu-

sions or disguises in face images. Then robust face recognition algorithms have

been proposed to deal with various noise. In the raw SRC, whenthere are pixel

corruptions,l1-norm is used to measure the representation error. The key motiva-

tion of robust representation is to alleviate the impact of the corrupted pixels. The

solution is to find a proper measure for the representation residual. What is the
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distribution of representation error, Gaussian or Laplacian? In real applications, the

distributions are diverse. In [214], motivated by maximum aposterior (MAP), a

robust sparse coding (RSC) algorithm is proposed by iterative reweighted strategy

to penalize the pixels with large representation errors. In[73], Maximum corren-

tropy criterion (CESR) was proposed for robust face recognition. By half-quadratic

optimization, CESR can be finally converted to an iterative reweighted problem.

As there are also expression, pose, illumination and other unpredictable variation-

s in the wild environment, more robust models should be developed to deal with

complex variations.

Kernel representation Kernel trick is often used to map the samples in the orig-

inal non-linear separable feature subspace to a high-dimensional feature space, in

which features of the type are easily grouped together and the samples becomes

linearly separable. Many linear classifiers and algorithms, e.g., SVM, PCA and

LDA, are extended to kernel version, that is, kernel SVM, kernel PCA and kernel

LDA. For representation based classifiers, by kernel mapping to the reproducing

kernel Hilbert space (RKHS), kernel sparse representation[55, 56]and kernel col-

laborative representation [216, 219, 223, 232] are proposed respectively. For kernel

representation based classifiers, representation residual can be used for classifica-

tion [55, 216, 219, 223, 232]. Besides, kernel representation can also be combined

with spatial pyramid matching. Instead of vector quantization [103], local sparse

coding [212] or soft-threshold [34], kernel representation can also be used for cod-

ing process [55]. From the solution stability of linear system, in RKHS the linear

system tends to be over-determined. Hence, the regularization seems less important

for representation based classifiers [232].
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Generic representationFor representation based classifiers, we can seek a good

representation with a over-complete dictionary. However,sometimes, the training

samples are insufficient or the dictionary is not well trained. For example, in face

recognition, the variations in the query face image is not contained in the training

samples. In SRC, to deal with the noise in the query face image, an identity matrix

is introduced to simulate the noise part [201]. To introducemore variations of face

images, a generic dictionary that contains different face variations is introduced and

an extended SRC (ESRC) is proposed [43] to solve small samplesize problem in

face recognition. In ESRC, the variation dictionary is obtained by the differences

between a variation subset and a reference subset. Hence, ESRC can not contain all

the possible face variations. In [210], a sparse variation dictionary learning (SVDL)

method is proposed to learn a variation dictionary and use itfor face recognition

with single sample per person.

Multi-modal representation

With the rapid development of sensor techniques and widespread use of Internet,

the diversity of data sources, data types and representations leads to an explosion

of multi-modal data. Multi-modal data widely exists and is applied in biometrics,

computer vision, multimedia, fault diagonal, remote sensing data, medical analy-

sis, etc. Researches on human brain mechanism show that human beings can ef-

fectively store, transform and integrate the information from different sense organs.

It becomes extremely important to investigate how to simulate the data process-

ing mechanism of human beings to fuse multi-modal information for detection,

recognition and prediction. The present multi-modal classification models can be



Chapter 1. Introduction 13

categorized into three types: feature-level modeling, decision-level modeling and

deep learning. Feature-level modeling explores how to combine, project or transfor-

m features from different modalities, including feature stacking, multi-projections

learning [26] and multi-modal dictionary learning [129]. Decision-level modeling

aims to fuse multi-modal outputs or learn multi-modal classifiers, e.g., ensemble

learning, multi-metric learning [140], multi-kernel learning [7] and multi-modal

representation [219, 223]. Deep learning simulates the neural networks of human

beings. It can separately or simultaneously conduct feature-level and decision-level

modeling [131]. For multi-modal classification, the representation is jointly con-

ducted with group sparsity regularization [223] or other smooth regularization.

Cross-modal representation

As shown in Fig. 1.3, different from multi-modal classification tasks, cross modal

classification tasks need to match the object of one modalitywith the object of the

other modality. There are quite a lot of cross modality classification tasks, e.g.,

photo-sketch face recognition [228], text to image retrieval [202], image to video

face recognition [83], etc. To match objects of different modalities, distance metric

learning, joint representation (regression) and deep learning methods have been

proposed in the past few years. For cross modal representation models, the key

motivation is that representation is conducted on each modality and a projection

matrix is learned to connect the representation coefficients of different modalities

[71, 80, 194, 222].
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Figure 1.3 Cross-modal classification tasks.

1.2.2 Dictionary learning

For representation based models, one of the most important factors is the dictio-

nary, on which a query signal is reconstructed. How to a design a good dictio-

nary can track back to the hand-crafted bases, e.g., discrete cosine transform [4],

wavelets [119], wedgelets [44], etc. Compared with these specially designed bases,

learned dictionary aims minimize the reconstruction errorand at the same time

preserve the hidden structure or information within the data. The existing dictio-

nary learning methods can be categorized into reconstructive and discriminative

methods. Reconstructive methods emphasize the reconstruction ability of the dic-

tionary, e.g., KSVD [3], method of optimal direction (MOD) [46]. Discriminative

methods aim to introduce discrimination ability to representation residual or coding

vectors. Instead of learning a dictionary for all the classes, class-specific dictionar-
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ies are learned to introduce discrimination ability to the reconstruction residuals

[57, 147, 215]. Intra-class Particularity and inter-classcommonality are usually

taken into account in the model of dictionary learning [57, 99]. In [147], structured

incoherence is introduced to enhance the independence of the sub-dictionaries relat-

ed with different classes. Another type is to learning discriminative coding vectors

by dictionary learning. In [227], KSVD is extended to discriminative KSVD by

simultaneously learning a dictionary and a linear classifier. In [90, 91], by intro-

ducing a lable-consistent item, the discrimination ability of coding vectors is en-

hanced. In [118], coding vectors are embedded into a logistic regression function

and a task-driven dictionary learning method is proposed. In [215], class-specific

dictionaries are learned while fish discrimination fidelityis imposed on coding vec-

tors. The key challenge of dictionary learning for classification is to pursue the

balance between representation and discrimination ability. Besides, the efficiency

of dictionary learning is quite important, especially for some real-time applications,

e.g, image retrieval and visual tracking.

1.3 Problems

Although representation based classification models have achieved great success

in different classification tasks, there are still many problems with representation

based models. When there are only a small number of training samples in the dic-

tionary, the dictionary tends to be over-determined and therefore the query sample

can not be well represented. With the development of sensorsand digital devices,

the data are consistently increasing with a high speed. Whenthe number of the



Chapter 1. Introduction 16

training samples is very large, how can we deal with the storage burden and time

complexity of representation based classifiers? Besides, the existing representa-

tion based classifiers can only be applied to single image based classification tasks.

However, for video based face recognition and multi-view object recognition, the

task becomes an image set classification problem. It is stillan open problem to

extend representation based classifiers from image based toimage set based model-

s. Finally, for representation based classifiers, the representation process is usually

discriminative. Similar to discriminative classifiers (e.g., SVM), discriminative rep-

resentation can be learned to enhance classification. In thefollowing part, we will

discuss the three problem mentioned above in details.

1.3.1 Representation with small sample size

In classification tasks, sometimes the available training samples are quite limited.

This is called small sample size problem in machine learning. In face recognition,

we have to deal with small sample size problems. Face recognition (FR) is a very

active topic in computer vision research because of its widerange of applications,

including access control, video surveillance, social network, photo managemen-

t, criminal investigation, etc [86]. Though FR has been studied for many years,

it is still a challenging task due to the many types of large face variations, e.g.,

pose, expressions, illuminations, corruption, occlusionand disguises. Furthermore,

in applications such as smart cards, law enforcement, etc.,we may have only one

template sample of each subject, resulting in the single sample per person (SSPP)

problem [175]. SSPP makes FR much more difficult because we have little infor-

mation from the gallery set to predict the variations in the query face image [220].
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Since the intra-class variations cannot be well estimated in the SSPP problem,

the traditional discriminative subspace learning based FRmethods can fail to work.

In addition, since the number of samples per class is so small, the robustness of

extracted features and the generalization ability of learned classifiers can be much

reduced. For representation based classification models, the query face image can

not be well reconstructed by the training images. Besides, as the number of sampler

per class is quite small, the linear system seems to be over-determined. Hence, the

solution is unstable and leads to misclassification.

1.3.2 Representation with big sample size

With the data rapidly increasing, there are large amounts oftraining samples and

therefore the large-scale classification task is yielded. In this case, for representation

based classifiers, the linear system tends to be over-complete. However, the massive

training samples lead to large computation burden and high time complexity. Then

how can we develop a representation based classifier with lowcomputation burden

and time complexity for large-scale tasks?

As shown in Fig. 1.4 the existing representation based classifiers all reply upon

sample-level representation, i.e., a query sample can be linearly reconstructed by a

set of sample bases. In nature, self-similarity widely exists, i.e., a part of an object

is similar to other parts of itself, e.g., coastlines [120],stock market movements

[19] and images [17]. Taking images for example, patches at different locations in

an image perhaps are similar to each other, which is called non-local self-similarity.

In image processing, the so-called non-local self-similarity has been successfully

used in high performance image restoration and denoising [17]. As shown in Fig.
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Figure 1.4 Sample-level representation.

1.5, one feature can be represented by its relevant features. Based on feature-level

representation, a series of interesting models can be developed. The relationship

between sample-level and feature-level relationship can also be further investigated.

1.3.3 Image set representation

Image set based classification has become increasingly important in face recogni-

tion [5, 21, 29, 40, 78, 136, 145, 193, 199, 206] and object categorization [98, 190]

in recent years. Due to the rapid development of digital imaging and communica-

tion techniques, image sets can be easily collected from multi-view images using

multiple cameras [98], long term observations [199], personal albums and news pic-

tures [162], etc. Since the gallery image sets contain more within-class variations
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Figure 1.5 Feature-level representation.

of the subject [78], image set based face recognition (ISFR)has shown superior

performance to single image based face recognition. One special case of ISFR is

video based face recognition, which collects face image sets from consecutive video

sequences [105, 171, 206]. As shown in Fig. 1.6, a query face image set is cropped

from the query video and similarly the training face image sets are collected from

the gallery videos. Then the face recognition problem becomes matching one image

set with a set of training image sets.

One may apply SRC/CRC to ISFR by representing each image of the query

set over all the gallery sets, and then using the average or minimal representation

residual of the query set images for classification. However, such a scheme does

not exploit the correlation and distinctiveness of sample images in the query set. If

the average representation residual is used for classification, the discrimination of

representation residuals by different classes will be reduced; if the minimal repre-

sentation residual is used, the classification can suffer from the outlier images in the

query set. In addition, there are redundancies in an image set. The redundancies
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Face sets are cropped from all the gallery video clips. a query video clip

Figure 1.6 Image set based face recognition.

will lead to great storage burden and computational complexity, and deteriorate the

recognition performance.

1.3.4 Discriminative representation

Representation based classifiers aim to well reconstruct a query sample by the given

training samples or a specially learned dictionary. Then representation based residu-

als or coefficients are used for classification. However, the representation process is

unsupervised and therefore lacks discrimination ability.Discriminative dictionary

learning methods have been proposed to make the representation discriminative,

e.g., FDDL [215], D-KSVD [227], etc. Besides, discriminative projections can al-

so be learned to project the query sample and the dictionary to a low-dimensional

discriminative feature space [132, 210]. Actually, representation based classifiers,

e.g., nearest subspace classifier, can be considered as point to set distance based

classifiers. Hence, learning a discriminative point-to-set distance can enhance the

performance of representation based classifiers. Similarly, a set-to-set distance can

also be learned in image set based classification tasks.
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Figure 1.7 The main contributions of the thesis.

1.4 Thesis contributions

As shown in Fig. 1.7, the main contributions of this thesis are listed as follows:

In Chapter 2, to solve the over-determined representation problem in face recog-

nition, we proposed a patch based CRC (PCRC) method and consequently the

multi-scale version of it, i.e., MCPCRC, by margin distribution optimization. The

query image was partitioned into a set of overlapped patchesand each patch is

collaboratively represented over the corresponding set ofpatches of all training

samples. The classification outputs of all patches were thencombined by voting.

However, the patch size will have a great impact on the final classification result

of PCRC. Therefore, we proposed to use multiple patch sizes and then optimally

combine the multi-scale outputs by margin distribution optimization with l1-norm

regularization.

In Chapter 3, we proposed a local generic representation (LGR) based approach
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for the challenging task of face recognition with single sample per person (SSPP).

LGR utilizes the advantages of both patch based local representation and generic

learning. A generic intra-class variation dictionary was constructed from a generic

dataset, and it can well compensate for the face variations lacked in the SSPP gallery

set. A patch gallery dictionary was built by using the gallery samples, which can

more accurately represent the different parts of face images. Considering that the

distribution of representation residual of different patches is highly non-Gaussian, a

correntropy based metric was adopted to measure the loss of each patch so that the

importance of different patches in face recognition can be more robustly evaluated.

As a result, LGR can adaptively suppress the role of patches with large variations.

The extensive experimental results on four benchmark face databases showed that

LGR always achieves higher face recognition rate than the state-of-the-art SSPP

methods used in competition.

In Chapter 4, for large-scale representation, we investigated the representation

based classification problem from a “feature oriented” perspective. Different from

the existing representation based classifiers that represent a sample as the linear

combination of other samples, we explored to represent a feature by its relevant fea-

tures in the data, which we call self-representation. A self-representation induced

classifier (SRIC) was then proposed, which learns a self-representation matrix per

class and uses these matrices for classification. The query sample is then classified

to the class with the minimal reconstruction error. We proved that SRIC is equiv-

alent to nearest subspace classifier (NSC) withl2-norm regularization in terms of

classification decision. Furthermore, it can be shown that SRIC is essentially the

principle component analysis (PCA) with eigenvalue shrinkage. We then proposed
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a discriminative SRIC (DSRIC) classifier, which not only minimizes the feature

self-representation residual of this class but representslittle the features of other

classes. As the time complexity of SRIC and DSRIC is only related with the fea-

ture dimension, the proposed method can apply to the classification tasks with large

number of training samples.

In Chapter 5, for image set based representation, we proposed a novel image set

based collaborative representation and classification (ISCRC) scheme for image set

based face recognition (ISFR). The query set was modeled as aconvex or regular-

ized hull, and a collaborative representation based set to sets distance (CRSSD) was

defined by representing the hull of query set over all the gallery sets. The CRSSD

considers the correlation and distinction of sample imageswithin the query set and

the relationship between the gallery sets. With CRSSD, the representation residual

of the hull of query set by each gallery set can be computed andused for classifica-

tion.

In Chapter 6, we extended the point-to-point distance metric learning to point-

to-set distance metric learning (PSDML) and set-to-set distance metric learning

(SSDML). Positive and negative sample pairs were generatedfrom training sam-

ple sets by computing point-to-set distance (PSD) and set-to-set distance (SSD).

Each sample pair was represented by its covariance matrix and a covariance kernel

based discrimination function was proposed for sample pairclassification. Finally,

we showed that the proposed metric learning problem can be efficiently solved by

SVM solvers. Experiments on various visual classification problems demonstrated

that the proposed PSDML and SSDML methods can effectively improve the per-

formance of PSD and SSD based classification. Compared with the state-of-the-art
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metric learning methods such as LMNN, ITML and MCML, the proposed method

can achieve better classification accuracy and is significantly faster in training.



Chapter 2

Patch based Collaborative

Representation

In computer vision and pattern recognition tasks, the acquisition of training samples

is sometimes quite difficult and therefore results in small sample size (SSS) classi-

fication problem, especially in face recognition. Collaborative representation repre-

sents a query sample on a specially designed or learned dictionary and then use the

representation residual for classification. Unfortunately, representation based clas-

sifiers may fail for SSS problems in that the representation can be inaccurate and

the linear system tends to be over-determined. In this chapter, we investigate the

SSS problems in face recognition from the perspective of patch based collaborative

representation.

25
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2.1 Introduction

Face recognition (FR) has been an active research topic in computer vision and

pattern recognition for many years [229]. In spite of the tremendous achievements,

there are still many challenges caused by the large face appearance variations of

illumination, expression, pose, noise, occlusion, etc [144]. Particularly, the small

sample size problem is one of the most fundamental and challenging issues in FR.

In many real-world applications such as smart cards, law enforcement, surveillance

and access control, the training samples of many subjects are often very limited

[175]. Unfortunately, the performance of appearance basedFR methods, such as

the classical Eigenface [225], Fisherface [11], LPP [75] and the variants of them

[207], degrades much with the decrease of training samples.

As a generalization and extension of the nearest neighbor, nearest line, nearest

plane and nearest subspace classifiers, the sparse representation based classification

(SRC) [201] scheme shows very interesting FR results. SRC represents a query face

as a sparse linear combination of the training samples from all classes, and classi-

fies it to the class which has the least representation residual. However, in [226]

it was indicated that the costlyl1-norm sparse regularization on the representation

vector in SRC is not necessary, andl2-norm regularization can lead to similar FR

results but with much lower computational cost. The collaborative representation

based classification (CRC) was then proposed in [226] by representing the query

sample with non-sparsel2-regularization. However, both CRC and SRC suffer seri-

ous performance degradation when the training sample size is very small and hence

the query sample cannot be well represented [200].

To solve the SSS problem, virtual samples and generic training set were used in
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[173]. On the other hand, the trained classifiers will becomeunstable and have poor

generalization ability when the available samples are insufficient, and hence ensem-

ble learning has been widely applied to FR and has led to significant improvement

in recognition rate and robustness [174][109][102]. Thesemethods can be rough-

ly divided into three categories. The first category of methods is patch (or block)

based methods, which usually involve steps of local region partition, local feature

extraction and classification combination [101][102]. Therecognition rate of patch

based methods is much affected by patch size, which is often set by experimental

experience [27] [174]. Considering that the global and local features can provide

complementary information, the second category of methodscombines the global

and local features for classification [109][172]. Third, a very popular category of

methods uses multiple feature extractors to extract different types of facial features,

and then uses classifier fusion for classification. For example, in [198][66], local

features such as SIFT, LBP, Gabor response and gray values are combined for face

verification.

Human faces exhibit distinct structures and characteristics when observed on d-

ifferent scales [109]. Combining the information on different scales could not only

lead to much FR improvement but also provide us a simple and effective way for

scale-insensitive models. How to combine multi-scale information is essentially

an ensemble learning task. AdaBoost [155] is one of the most successful ensem-

ble learning techniques due to its excellent performance and broad applications in

face and object detection, visual tracking, etc. The success of AdaBoost actually

attributes to margin distribution optimization [151][168][169], and AdaBoost ap-

proximately minimizes the loss criterion withl1-regularization on the coefficient
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vector [155]. In [166], Shawe-Taylor gave the bound of AdaBoost’s generalization

error based on margin distribution, which shows that the loss of margin and the

norm of coefficient vector could be minimized.

In this chapter, to improve the performance of CRC in SSS problem, we propose

to conduct CRC on patches, and the so-called patch based CRC (PCRC) classifies

the query sample by combining the recognition outputs of allthe overlapped patch-

es, each of which is collaboratively represented by the corresponding patches of

training samples. Similar to those patch based methods, PCRC is a patch size sen-

sitive method, while the optimal patch size varies with training sample size and

databases. In order for a patch size robust scheme, we then propose a multi-scale

PCRC (MSPCRC) method by combining the information on different scales. M-

SPCRC considers PCRC on each scale as a base classifier and learns scale weights

to fuse multi-scale decisions. Scale weights are learned byminimizing the square

loss of margin, and sparsel1-norm regularization is imposed on the weights to get

better margin distribution.

The rest of this chapter is organized as follows. Section 2 describes PCRC.

Section 3 presents the margin distribution optimization for multi-scale ensemble.

Section 4 conducts experiments and conclusions are made in Section 5.

2.2 Patch based CRC

In [226], Zhang et al. proposed to use the regularized least square model for col-

laborative representation based classification (CRC) of face images. Given a set of

training samples, denote byXk ∈ ℜm×nk the dataset of thekth class, and each col-
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umn of Xk is a sample of classk. Suppose that we havec classes of subjects, and

let X = [X1, X2, ..., Xc]. Given a query sampley, the collaborative representation of

it is

â = arg mina{‖y − Xa‖22 + λ ‖a‖22} (2.1)

The solution of CRC iŝa = (XT X + λ · I)−1XT y. The classification of CRC is

performed by checking which class yields the minimal regularized reconstruction

error. The recognition output of the query sampley is Indentity(y) = argmink{rk},

whererk = ‖y − Xk · âk‖2/‖âk‖2 and â = [ â1; â2; ...; âc].

When the linear system determined by dictionaryX is under-determined, the

linear representation of the query sample overX can be very accurate while reg-

ularization ona is necessary for a unique and stable solution [200]. Once the

available samples per subject are very limited, CRC may failbecause the linear

representation of the query sampley may not be accurate. To alleviate this prob-

lem, patch based CRC (PCRC) can be introduced. As shown in Fig. 2.1, the query

imagey is firstly divided into a set of overlapped block patches{y1, y2, ..., yq}. Then

each patchy j is represented over local dictionaryM j, which is extracted fromX

at the corresponding location to patchy j. Since the linear system determined by

local dictionaryM j tends to be under-determined, the patch based representation

is more accurate than the whole image based representation.Finally, plurality or

linear weighted combination can be applied to the many patchbased recognition

outputs for a final classification.

For each local patch, the local features such as LBP and Gaborfeatures can be

used in PCRC. Considering that the focus of this chapter is tovalidate the effective-

ness of PCRC strategy instead of local features, for simplicity and clarity the raw
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Figure 2.1 Diagram of patch based collaborative representation for face classification.

gray value features in each patch are used. For patchy j, its representation overM j

is obtained by

ρ̂ j = arg minρ j
{
∥

∥

∥y j − M jρ j

∥

∥

∥

2

2
+ λ
∥

∥

∥ρ j

∥

∥

∥

2

2
} (2.2)

M j is a local dictionary. Denote byM jk the sub-dictionary of thekth class,

and each column ofM jk is a patch of classk. Then M j = [ M j1,M j2, ...,M jc].

The recognition outputzj of patch y j is Identity(y j)= argmink{r jk}, wherer jk =

∥

∥

∥y j − M jk · ρ̂ jk

∥

∥

∥

2
/
∥

∥

∥ρ̂ jk

∥

∥

∥

2
andρ̂ j = [ρ̂ j1; ρ̂ j2; ...; ρ̂ jc].

The classification outputs of all patches can then be combined. Majority voting

[101], linear weighted combination [174], kernel plurality [102] and probabilistic

model [109] can be employed for the combination. As shown in [101] and [172], the

weighted combination leads to little improvement comparedto the simple majority

voting. Hence, we use the majority voting for the final decision making.
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Figure 2.2 Impact of patch size on PCRC (1-5 represent the training sample size per

subject).

2.3 Multi-scale ensemble

In the proposed PCRC, the patch size, or we call it the patch scale in this chapter,

will have a great impact on the recognition performance and it is not a trivial work

to pre-define an optimal scale for a database. Fig. 2.2 shows the FR accuracy under

different patch sizes and training sample sizes on the Extended Yale B and LFW

databases. One can have the following observations. First,the optimal scale varies

with the number of training samples per subject. Second, fordifferent databases, the

optimal scale also varies a lot. This difficulty can be solved by fusing the multi-scale

PCRC results adaptively, via which we can not only be free of the scale selection

problem but also exploit the complementary information across scales to improve

the FR accuracy and robustness. To this end, we propose an ensemble learning

method to combine multi-scale information optimally.

The flowchart of the proposed method is given in Fig. 2.3. On different scales

with various patch sizes, we can get the recognition outputsby PCRC. We then find

a set of optimal weightw to fuse the outputs. In this chapter, we propose to learnw

from the training samples by optimizing margin distribution.
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Figure 2.3 Flow chart of multi-scale learning for PCRC.

2.3.1 The objective function for ensemble optimization

The multi-scale ensemble of PCRC outputs can be considered as a special classifi-

cation task. Suppose there are two scales and two classes labeled as+1 and -1. For

a given sample, on each scale we can have a classification output,+1 or -1, and thus

the classification output on the two scales of each sample hasfour possible situa-

tions, as shown as the four vertexes in Fig. 2.4(a). Given a set of training samples,

we aim to find a classification linef = sgn(w1z1 + w2z2) that crosses the origin to

make all the given samples correctly classified, wherez1 andz2 represent the clas-

sification outputs on the two scales andw1 andw2 represent the weights. As to the

task in Fig. 2.4(a), if samples on vertexes{A2,A4} belong to the first class (+1) and

samples on vertexes{A1,A3} belong to the second class (-1), there are several classi-

fication lines that can correctly classify all the samples. Similar to feature selection

[60], the importance of one scale is proportional to the weight value assigned to it.

For binary classification problems, given a set of samplesS = {(xi, zi)}, i =

1, 2, ...n, zi ∈ {+1,−1} and s scales, the recognition results ons different scales

form a spaceH ∈ ℜn×s. Let w = [w1,w2, ...,ws] be the scale weight vector and
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Figure 2.4 Illustration of the multi-scale ensemble learning problem.

∑s
j=1 wj = 1.

Definition Given a samplexi ∈ S, the recognition outputs ons different scales are

{hi j }, j = 1, 2, ..., s. The discriminant function isf = sgn(
∑s

j=1 wjhi j ). The margin

of samplexi can be defined as [160]:

ε(xi) = zi
∑s

j=1 wjhi j (2.3)

Obviously, ifε(xi) > 0, then samplexi ∈ S is correctly classified; ifε(xi) < 0,

then samplexi ∈ S is misclassified; ifε(xi) = 0, we cannot decide the label of

samplexi. It is similar to linear classifiers (e.g., LSVM). Since Definition 1 is only

suitable for binary classification, we define the following decision matrix in order

for multi-class classification tasks.

Definition As to multi-class classification, given a samplexi ∈ S, the recognition

outputs ons different scales are{hi j }, j = 1, 2, ..., s. The decision matrixD =
{

di j

}

, i = 1, 2, ..., n, j = 1, 2, ..., s, is defined as:

di j = g(zi, hi j ) =























+1, if zi = hi j

−1, if zi , hi j

(2.4)
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wherezi is the label of samplexi.

Clearly,di j = +1 means thatxi is correctly classified on thej th scale. Otherwise,

it is misclassified.

Definition Given a samplexi ∈ S, the classification outputs ons different scales

are{hi j }, j = 1, 2, ..., s. The ensemble margin ofxi ∈ S can be defined as:

ε(xi) =
∑s

j=1 wjdi j (2.5)

Ensemble margin reflects the misclassification degree in classifier fusion. Sam-

ples with positive margin are correctly classified. As shownin Fig. 2.4(b),+1 and

-1 represent the elements in the decision matrixD, and then the margin of samples

on vertexB2 is 1 (i.e., correctly classified on all scales) , while the margin of sam-

ples on vertexB3 is -1 (i.e., misclassified on all scales). The margin of samples on

vertexsB1 andB4 is between -1 and+1. In this case, how should we choose the

scale weights to get better combination result? We should make the ensemble mar-

gin as larger as possible by scale weight learning. Margin maximization is usually

converted into a loss minimization problem [183][155][168].

If the ensemble margin of a samplexi is ε(xi), then the ensemble loss of sample

xi is

lxi = l(ε(xi)) = l(
∑s

j=1 wjdi j ) (2.6)

We adopt the square loss used in CRC [226], SRC [201], LS-SVM [183] and

least square regression [148]. For a sample setS, the ensemble square loss is

l(S) =
∑n

i=1 lxi =
∑n

i=1 [1 − ε(xi)]
2

=
∑n

i=1 [1 −∑s
j=1 wjdi j ]

2
= ‖e − Dw‖22

(2.7)

wheree is a vector whose elements are 1 and length iss.
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2.3.2 Constrainedl1-regularized optimization

To learn the optimal scale weights, we should minimize the ensemble loss in Eq.

(7). However, there may be many solutions that can minimize the loss for the given

task, as illustrated in Fig. 2.4. Clearly, we should regularize the objective function

in Eq. (7) in order for a unique and robust solution. In [155],Saharon et al. showed

that AdaBoost approximately minimizes its loss criterion with l1-regularization im-

posed on the coefficient vector. In [169], it was shown that AdaBoost optimizes

margin distribution rather than minimum margin. Shawe-Taylor gave the bound on

generalization error based on margin distribution for linear classifiers (f = wx + b)

and showed that both the square loss (when
∑s

j=1 wj = 1 andx ∈ {+1,−1}) and the

norm ofw should be minimized to improve the generalization ability [166].

Inspired by the principle of AdaBoost, we propose the following constrainedl1-

regularized least square optimization to minimize the ensemble loss and solve the

weights:

ŵ = arg minw{‖e − Dw‖22 + τ ‖w‖1}

s.t.
∑s

j=1 wj = 1,wj > 0, j = 1, 2, ..., s
(2.8)

whereτ is the regularization parameter.

For the constraint
∑s

j=1 wj = 1, it equals toew = 1, wheree = [1; 1; ...; 1] is a

column vector, and then

‖e − Dw‖22 = ‖e − Dw + 1− ew‖22 = ‖[e; 1] − [ D, e]w‖22 (2.9)

Let ê = [e; 1], D̂ = [ D, e], then we can get

ŵ = arg minw{
∥

∥

∥ê − D̂w
∥

∥

∥

2

2
+ τ‖w‖1} s.t. wj > 0, j = 1, 2, ..., s (2.10)
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Since the size of the decision matrix is very small (e.g., thesize of decision

matrix for the LFW database is 632×7 when the training sample size per subject

is 5 and 7 scales are selected),w can be easily solved by some representativel1-

minimization approaches [208]. In this chapterl1 ls is used for its accuracy and

stable solution [96]. The proposed ensemble learning algorithm for multi-scale

PCRC (MSPCRC) is summarized in Table 2.1. After scale weightlearning, for a

query samplexi, the recognition output iszi = arg maxk{
∑

wj |hi j = k}.

It should be noted that though the form of multi-scale ensemble in Eq. (10) is

similar to the step of coding in CRC (Eq. (1)) and SRC, their physical meanings

are different. The square loss in CRC and SRC is the reconstruction error while

in multi-scale ensemble learning the square loss is the function of classification

margin. Thel1-norm regularization used in SRC is to sparsify the coding coefficient

to enhance classification accuracy, while thel1-norm regularization used in multi-

scale ensemble learning is to suppress the effect of less-useful scales.

Table 2.1 The algorithm of multi-scale ensemble learning for PCRC.

1: Chooses patch sizesδ = {δ1, δ2, ..., δs}

2: Get recognition outputs{hi j } by PCRC

3: Get the decision matrix

di j = g(zi, hi j ) =























+1, i f zi = hi j

−1, i f zi , hi j

4: Learn scale weights

ŵ = arg minw

∥

∥

∥ê − D̂w
∥

∥

∥

2

2
+ τ ‖w‖1 s.t. wj > 0, j = 1, 2, ..., s
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2.4 Experimental analysis

We use the Extended Yale B [59], Multi-PIE [64] and AR [123] databases in con-

trolled environments together with the LFW database [82] inuncontrolled environ-

ments to test the FR performance of the proposed method.

The baseline CRC, SRC and NN methods, and the state-of-the-art patch based

methods including BlockFLD [27], Volterrafaces [101] and patch based nearest

neighbor (PNN) classifier [102] are used for comparison. As the average accuracy

improvement of kernel plurality [102] compared to vote is only about 1%, we report

the result of PNN and Volterrafaces with majority voting. For Volterrafaces, the

best recognition performance is reported with different kernel sizes and patch sizes.

As linear kernel outperforms quadratic kernel on all the four databases, we only

report the performance of liner kernel for Volterrafaces. For BlockFLD [27], the

performance of CS2 (combine outputs of different blocks), which is better than

CS1 (combine projected blocks as a feature), is reported.

In all the following experiments, the program is run for 20 times on each database

and the average results are reported. Seven scales are used in our MSPCRC method

and the patch sizes are 4×4, 6×6, 8×8, 10×10, 12×12, 14×14, 16×16. In single

scale based PCRC and PNN, the patches are overlapped and the patch size is set

as 10×10 (overlap is 5 pixels). The parameterλ used in SRC, CRC, PCRC and

MSPCRC are set as 0.001, 0.005, 0.001 and 0.001, respectively. Parameterτ (Eq.

(10)) is set as 0.1 for MSPCRC. For BlockFLD, we tried three different sizes (4×4,

8×8, 10×10 for 32×32 image and 10×10,15×15, 20×20 for 80×80 image) and re-

port the result of the best size 8×8 (32×32 image) and 10×10 (80×80 image) for all

the databases.
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For scale weight learning, we divide the training set into subset1 (one image per

individual is selected) and subset2 (the rest of the training set). Then samples from

subset1 are classified by PCRC using subset2 as the training set on seven scales so

that the weights can be learned. Obviously, as least two samples per subject are

needed to learn the scale weights. Hence, we first test the performance of PCRC

and MSPCRC with 2 to 5 training samples per subject. Then whenthere is only

one sample per person, only the result of PCRC is reported.

2.4.1 Extended Yale B database

The Extended Yale B face database [59] contains 38 human subjects under 9 poses

and 64 illumination conditions. All frontal-face images marked with P00 were used

in our experiment. The face images are resized to 32×32. We randomly choose 2∼5

samples from the first 32 images for training and choose 5 samples from the other

32 images for test. The experimental results are shown in Table 6.9. It can be clearly

seen that MSPCRC achieves the highest recognition rate on all experiments with the

training sample size increasing from 2 to 5. Compared to PCRC, MSPCRC leads to

much better results, validating the effectiveness of multi-scale ensemble learning.

2.4.2 Multi-PIE database

The Multi-PIE database [64] contains a total of more than 750,000 images from 337

individuals, captured under 15 viewpoints and 19 illumination conditions in four

recording sessions. A subset that contains images of 164 subjects from session 3 is

selected, and there are 10 images with neutral expression and 10 images with smile
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Table 2.2 Recognition accuracy (%) on the extended Yale B database.

Method 2 3 4 5

CRC[226] 61.3±16.6 74.0±15.5 81.4±17.6 87.8±13.7

SRC[201] 64.2±17.2 74.2±15.2 82.6±16.8 89.0±12.5

NN 49.8±17.3 55.8±16.6 63.7±17.2 68.4±16.8

PNN[102] 60.8±14.4 65.6±15.1 73.8±15.8 79.7±14.6

BlockFLD[27] 79.5±8.4 83.8±7.8 88.3±5.4 90.7±5.5

Volterra[101] 69.8±12.9 79.5±12.3 84.0±9.6 86.4±9.6

PCRC 75.7±12.6 82.8±12.4 88.7±8.4 92.0±8.2

MSPCRC 83.0±9.2 88.4±10.1 92.5±6.8 95.0±6.6

expression per person. To make the FR problem more challenging, we randomly

choose 2∼5 samples per subject from images with neutral expression for training

and randomly choose 3 samples from images with smile expression for test. The

face images are resized to 32×32. The FR results are listed in Table 2.3. Similar

to the results on the Extended Yale B database, PCRC and MSPCRC lead to much

improvement in FR rate compared with the other methods. MSPCRC is always

better than PCRC since it combines the multi-scale decisions.

2.4.3 AR database

The AR face database [123] contains over 4,000 color face images of 126 people,

including frontal views of faces with different facial expressions, lighting conditions

and occlusions. As in [226], a subset with only illuminationand expression changes
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Table 2.3 Recognition accuracy (%) on the Multi-PIE database.

Method 2 3 4 5

CRC[226] 62.6±13.8 74.3±6.3 78.5±5.2 80.4±3.7

SRC[201] 61.9±14.0 73.2±8.9 78.6±6.5 80.8±4.2

NN 54.9±14.5 64.7±12.1 71.9±9.9 74.5±8.8

PNN[102] 54.4±14.9 63.2±14.0 72.3±10.7 76.7±8.8

BlockFLD[27] 66.1±6.9 71.1±5.7 76.4±4.6 79.2±3.2

Volterra[101] 52.2±11.3 57.6±7.6 62.4±6.0 65.4±4.8

PCRC 68.8±10.9 76.0±6.2 79.4±4.8 81.3±3.7

MSPCRC 72.4±10.5 79.6±5.9 83.6±4.0 84.6±2.6

that contains 50 male subjects and 50 female subjects was chosen from the AR

dataset in our experiments. For each subject, we randomly choose 2∼5 samples

from session 1 for training and choose 3 samples from session2 for test. The face

images are resized to 32×32.

The recognition accuracy on the AR database is shown in Table2.4. The pro-

posed methods show superior performance to all the other methods. Different from

the results on the Extended Yale B and Multi-PIE databases, multi-scale ensemble

learning in MSPCRC only leads to a little improvement over PCRC. That is be-

cause in this experiment the average weight value (over different training sample

sizes) for scale 10×10 is about 0.9, which indicates that 10×10 is a very suitable

patch size for PCRC in the AR database.



Chapter 2. Patch based Collaborative Representation 41

Table 2.4 Recognition accuracy (%) on the AR database.

Method 2 3 4 5

CRC[226] 69.9±12.6 80.6±10.4 83.8±9.6 89.1±6.2

SRC[201] 69.7±14.8 79.0±10.6 83.5±8.9 88.2±5.7

NN 48.5±9.5 54.7±9.0 58.5±9.1 63.2±7.0

PNN[102] 72.7±14.2 82.4±9.3 87.6±8.0 92.2±6.0

BlockFLD[27] 71.5±11.5 78.6±9.8 84.2±8.7 87.6±4.2

Volterra[101] 65.4±12.0 74.9±11.1 79.8±10.5 85.2±6.8

PCRC 82.2±11.3 87.7±9.4 89.9±8.5 92.9±6.7

MSPCRC 82.3±11.5 87.8±10.5 90.2±9.1 93.6±7.6

2.4.4 LFW database

The LFW database [82] contains images of 5,749 different individuals in uncon-

strained environment. LFW-a is a version of LFW after alignment using commer-

cial face alignment software [197]. We gathered the subjects including no less than

ten samples and then get a dataset with 158 subjects from LFW-a. For each subject,

2∼5 samples are randomly chosen for training and another 2 samples for test. The

images are firstly cropped to 121×121 and then resized to 32×32. The FR rates

on the LFW dataset are listed in Table 2.5. One can see that PCRC and MSPCRC

work much better than other methods, while the recognition performance is greatly

improved by MSPCRC.
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Table 2.5 Recognition accuracy (%) on the LFW database.

Method 2 3 4 5

CRC[226] 24.7±2.1 31.9±2.4 37.8±2.6 42.0±3.2

SRC[201] 24.4±2.4 32.7±3.2 38.7±2.4 44.1±2.6

NN 9.3±1.7 11.4±1.8 13.0±1.7 14.3±1.9

PNN[102] 23.1±2.4 28.1±3.1 33.2±3.1 37.4±2.7

BlockFLD[27] 18.0±2.1 22.3±2.1 26.2±2.6 28.4±2.5

Volterra[101] 26.0±3.0 32.0±3.4 36.4±3.3 40.3±2.7

PCRC 32.0±1.9 37.0±2.8 40.2±2.5 42.9±2.6

MSPCRC 35.0±1.6 41.1±2.8 46.0±3.0 49.0±2.9

2.4.5 Single sample per person (SSPP)

As there is only one sample per person, the proposed ensemblelearning cannot be

conducted. We report the recognition accuracy of PCRC on onescale for all the

databases. The images are resized to 32×32 and 80×80, and the corresponding

patch size is set as 8×8 and 20×20, respectively, for PCRC. When the image size is

80×80, the neighbor patches are used to construct the local dictionary. Since volter-

rafaces cannot deal with SSPP problem, its performance is not reported. BlockFLD

(CS2) [27], AGL [173] and FLDAsingle [54], which are methods specially de-

signed for SSPP problem are compared. The results are listedin Table 2.6. The

performance of PCRC is much better than SRC, CRC, NN, PNN, FLDA single,

and BlockFLD. Compared with AGL (adaptive generic learning) method, which

uses an additional generic set to learn the projection matrix, the proposed PCRC
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shows better performance on the MPIE, AR and LFW databases without using any

additional information apart from the training set.

Table 2.6 Recognition accuracy (%) for SSPP.

32×32 Yale B Multi-PIE AR LFW

CRC[226] 39.8±20.5 47.2±19.0 42.9±14.6 15.5±22.0

SRC[201] 38.7±20.5 48.2±18.6 44.9±14.8 14.7±1.9

NN 35.4±19.8 42.9±17.0 35.4±12.0 7.0±1.6

PNN[102] 45.1±18.3 40.1±17.7 54.4±19.5 15.8±2.0

BlockFLD[27] 63.1±15.0 56.9±9.7 52.1±19.8 11.8±1.4

FLDA single[54] 39.9±21.4 43.5±14.8 37.2±10.4 6.7±1.5

AGL[173] 75.9±12.2 58.9±14.8 52.1±15.9 14.3±1.4

PCRC 66.5±16.3 59.1±13.3 65.4±20.9 21.1±2.2

80×80 Yale B Multi-PIE AR LFW

CRC[226] 42.0±20.2 49.2±18.2 46.8±17.2 14.6±2.4

SRC[201] 39.3±19.6 48.3±16.7 42.0±13.3 12.6±1.8

NN 37.2±20.2 44.5±17.3 36.8±12.3 7.0±1.5

PNN[102] 57.9±18.6 49.1±17.3 61.0±19.3 16.0±2.3

BlockFLD[27] 65.7±13.3 51.9±5.6 41.9±17.8 4.9±1.3

FLDA single[54] 41.2±20.9 39.3±10.5 32.9±12.0 8.7±1.8

AGL[173] 79.1±12.7 58.5±24.8 51.7±16.7 12.6±2.1

PCRC 76.7±17.4 69.5±10.4 69.5±22.6 25.0±1.8
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2.5 Conclusions and discussions

In order for a more effective face recognition when the number of training sam-

ples per class is small, in this chapter we proposed a patch based CRC (PCRC)

method and consequently the multi-scale version of it, i.e., MSPCRC, by margin

distribution optimization. The query image was partitioned into a set of overlapped

patches and each patch is collaboratively represented overthe corresponding set of

patches of all training samples. The classification outputsof all patches were then

combined by voting. However, the patch size will have a greatimpact on the final

classification result of PCRC. Therefore, we proposed to usemultiple patch sizes

and then optimally combine the multi-scale outputs by margin distribution opti-

mization with l1-norm regularization. Our experimental results on controlled and

uncontrolled face databases showed that MSPCRC outperforms not only much the

CRC and SRC benchmarks, but also state-of-the-art patch based methods such as

BLDA and Volterrafaces, especially when the training samples size is very small.

For PCRC and MSPCRC, the projection matrices and scale-weights can be off-

line learned. Hence, in the testing stage, PCRC is very fast besides its superior

performance. As there is only one sample per class in face recognition with SSPP,

the scale-weights can not be learned. Therefore, it is stillan unsolved problem to

learn a general scale-weights for PCRC using generic training set. Finally, although

patch based representation tends to be more flexible for classification, the face vari-

ations in the gallery set still can not well represent the query face image. Hence, it

is desirable to introduce more inter-class face variationsto help representation.



Chapter 3

Local Generic Representation for

Single Sample per Person

In Chapter 2, patch based collaborative representation is proposed to solve SSS

problem. However, the variations in the gallery face imagesstill cannot well rep-

resent the variation in the query sample. Considering the similarity of face images

across subjects, a generic training set can be used to compensate for the shortage of

samples in FR. Besides, the importance of different parts of faces varies. Hence, in

this chapter, we take the advantage of the generic variationdictionary and consid-

er the distinctiveness of different face parts to develop local generic representation

based classifiers.

45
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3.1 Introduction

Face recognition (FR) is a very active topic in computer vision research because of

its wide range of applications, including access control, video surveillance, social

network, photo management, criminal investigation, etc [86]. Though FR has been

studied for many years, it is still a challenging task due to the many types of large

face variations, e.g., pose, expressions, illuminations,corruption, occlusion and dis-

guises. Furthermore, in applications such as smart cards, law enforcement, etc., we

may have only one template sample of each subject, resultingin the single sample

per person (SSPP) problem [175]. SSPP makes FR much more difficult because we

have little information from the gallery set to predict the variations in the query face

image [213].

Since the intra-class variations cannot be well estimated in the SSPP problem,

the traditional discriminative subspace learning based FRmethods can fail to work.

In addition, since the number of samples per class is so small, the robustness of

extracted features and the generalization ability of learned classifiers can be much

reduced. To alleviate these difficulties of FR with SSPP, researchers have proposed

to generate virtual samples of each subject, extract more discriminative features,

and learn the facial variations from external data, etc. Generally speaking, the ex-

isting FR methods for SSPP can be categorized into three groups: virtual sample

generation, generic learning and patch/block based methods.

Virtual sample generation aims to estimate the intra-classface variations by

simulating extra samples for each subject. Virtual samplescan be generated by

perturbation-based approaches [122], geometric transform and photometric changes

[165], SVD decomposition [54] and 3D methods [185], etc. With the virtual sam-
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ples, intra-class scatter can be calculated to make Fisher linear discriminant analy-

sis feasible in the scenario of SSPP [122][165][54]. Although virtual samples are

helpful to FR with SSPP, they are highly correlated with the original face images

and cannot be considered as independent samples for featureextraction. Therefore,

there may exist much redundancy in the learned discriminative feature subspace

[122][113].

Considering the similarity of face images across subjects,a generic training set

can be used to compensate for the shortage of samples in FR. Onone hand, the face

variation information in the generic training set can be used to learn a projection

matrix to extract discriminative features [97][189][93][128]. In [97] and [128], dis-

criminative pose-invariant and expression-invariant projection matrices are learned

by using a collected generic training set for pose-invariant and expression-invariant

FR tasks, respectively. On the other hand, the abundant intra-class variations in the

generic training set are very useful to more accurately represent a query face with

unknown variations [43][213][81]. The sparse representation based classification

(SRC) [201] represents a query face as a sparse linear combination of training sam-

ples from all classes. SRC shows interesting FR results; however, its performance

will deteriorate significantly when the number of training samples of each class is

very small because in such cases the variation space of each subject cannot be well

spanned. The extended SRC (ESRC) [43] constructs an intra-class variation dictio-

nary to represent the changes between the gallery and query images. In the case of

SSPP, Yang et al. [213] learned a sparse variation dictionary by taking the relation-

ship between the gallery set and the external generic set into account. The so-called

sparse variation dictionary learning (SVDL) scheme shows state-of-the-art perfor-
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mance in FR with SSPP. However, SVDL ignores the distinctiveness of different

parts of human faces.

Patch/block based methods [27][113][102][231] [101] partition each face image

into several patches/blocks, and then perform feature extraction and classification

on them. First, patches can be viewed as independent samplesfor feature extraction

[27][113]. In [27], the patches of each subject are considered as the samples of this

class and then the within-class scatter matrix can be computed. In [113], the patches

of each subject are considered to form a manifold and a projection matrix is learned

by maximizing the manifold margin. Second, a weak classifiercan be obtained

from each patch, and then the classifiers on all patches can becombined to output

the final decision (i.e., a strong classifier) [102][231]. In[102], the nearest neigh-

bor classifier (NNC) is used for classification on each patch,and a kernel plurality

method is proposed to combine the decisions on all patches. In [231], the collabo-

rative representation based classifier (CRC) [226] is applied to each patch, and the

majority voting is used for decision combination. Althoughthe patch based meth-

ods in [102] and [231] significantly improve the FR performance compared with

the original NNC and CRC classifiers, respectively, they do not solve the problem

of lacking facial variations in the gallery set.

In this chapter, we propose a local generic representation (LGR) based scheme

for FR with SSPP, whose framework is illustrated in Fig. 3.1.The training sam-

ples in the gallery set are used to build a gallery dictionary. To introduce the face

intra-class variation information that is lacked in the gallery set, a generic training

set, which contains a reference subset and several variation subsets, is collected. A

generic variation dictionary is then constructed as the difference between the refer-
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Figure 3.1 Framework of local generic representation based classification.

ence subset and the variation subsets. Considering the different importance of dif-

ferent facial parts in FR, we adopt a local representation approach, i.e., each patch of

the query sample is represented by the patch gallery dictionary and patch variation

dictionary at the corresponding location. LGR aims to minimize the total represen-

tation residual of all patches. Since the residuals are non-Gaussian distributed, we

use correntropy to measure the loss in minimization. The half-quadratic optimiza-

tion technique is used to solve the optimization problem. Finally, the classification

is performed based on the overall representation residual of the query sample by

each class. The experimental results on benchmark face databases, including Ex-

tended Yale B [59], CMU Multi-PIE [64], AR [123] and LFW [82],show that LGR

outperforms many state-of-the art methods for FR with SSPP.

The rest of the chapter is organized as follows. Section 4.2 introduces the model

of local generic representation. Section 4.3 discusses themodel optimization and

classification scheme. Section 4.4 conducts experiments and conclusions are made

in Section 4.5.
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3.2 Local generic representation

3.2.1 Generic representation

In FR with SSPP, we have a gallery setX = [x1, ..., xk, ..., xK] ∈ Rd×K, where

xk ∈ Rd is the only single gallery sample of classk, k = 1, 2, ...,K. Given a query

samplez∈ Rd, representation based classifiers such as SRC [201] represent it over

the gallery setX as:

z = Xα + e (3.1)

If the gallery set has many training samples for each subject, most of the facial

variations in the query sample can be synthesized by the multiple samples from the

same class, and consequently correct classification can be made via comparing the

representation residual of each class. For FR with SSPP, unfortunately, there is only

one training sample per subject, and the variations (e.g., illumination, pose, expres-

sion, etc.) inz cannot be well represented by the single same-class sample in X.

Thus, the representation residual ofz can be big, andz can be wrongly represented

by samples from other classes, leading to misclassificationof z. Fig. 3.2(a) shows

an example. The query image has some illumination change compared with the s-

ingle gallery sample of its class. We use the SRC model to solve the representation

in Eq. (3.1), i.e., minα ‖z − Xα‖22 + λ‖α‖1. One can see from Fig. 3.2(a) that the

synthesized imageXα does not overcome the problem of illumination change, and

the illumination change is put forward into the representation residuale. Such a

representation will cause trouble in the classification stage.

Considering that the intra-class facial variations causedby illumination, pose,

and expression changes and disguise can be shared across subjects, an external
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Figure 3.2 Sparse representation versus generic representation.

generic training set which consists of enough face images with various types of

variations can be adopted to construct an intra-class variation dictionary [43][213].

Suppose that we have collected a generic training setG = [Gr ,Gv], whereGr and

Gv are the reference subset and variation subset, respectively. The reference subset

Gr ∈ Rd×n is composed of neutral face images or the mean faces of each subject. The

variation subsetGv involvesM possible facial variations:Gv = [Gv
1, ...,G

v
m, ...,G

v
M],

whereGv
m is the subset of themth variation, m = 1, 2, ...,M. In [213], a sparse

variation dictionary is learned fromG. In our work, we simply construct an intra-

class variation dictionary, denoted byD, by using the difference betweenGr and

Gv:

D = [Gv
1 − Gr , ...,Gv

m− Gr , ...,Gv
M − Gr ]∈ Rd×nM (3.2)

We then propose to represent the query samplez over the gallery setX and the

generic variation dictionaryD simultaneously:

z = Xα + Dβ + e (3.3)

whereα andβ are the representation vectors ofz over X and D, respectively, and

e is the representation residual. We call the representationin Eq. (3.3) generic

representation, which uses a generic intra-class variation dictionary D to account

for the variations in the query sample. Fig. 3.2(b) shows thegeneric representation
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of the query sample in Fig. 3.2(a). We use the following modelto solve Eq. (3.3):

min{α,β} ‖z − Xα − Dβ‖22 + λ(‖α‖1 + ‖β‖1). One can clearly see that the illumination

change in the query sample is well encoded by the generic variation dictionaryD,

and the residuale has much lower energy (‖e‖22=0.0049) than the residual in Fig.

3.2(a) (‖e‖22=0.0502).

3.2.2 Patch based local generic representation

Different parts (e.g., eye, mouth, nose, cheek) of human faces exhibit distinct struc-

tures, and they have different importance in identifying the identity of a face. Taking

this fact into account, we propose to localize the representation model in Eq. (3.3)

and present a patch based local generic representation scheme.

We partition the query samplez into S (overlapped) patches and denote these

patches as{z1, z2, ..., zS}. Correspondingly, the gallery dictionaryX and the generic

variation dictionaryD can be partitioned as
{

X1, X2, ..., XS

}

and
{

D1, D2, ..., DS

}

,

respectively. For each local patchzi , i = 1, 2, ..,S, its associated local gallery dic-

tionary and local variation dictionary areXi and Di, respectively. To increase the

representation power of local gallery dictionaries and better address the local de-

formation (e.g., misalignment) of a patch, we extract the neighborhood patches at

locationi from each gallery sample, and add them toXi. Such a sample expansion

of local gallery dictionaries can improve much the stability and robustness of local

representation [231]. In our implementation, the 8 closet neighboring patches to the

underlying patch at locationi are extracted. WithXi andDi, we can represent each
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Figure 3.3 The histogram of‖ei‖2, i = 1, 2, ...,S, for two query samples.

local patchzi as:

zi = Xiαi + Diβi + ei , i = 1, 2, ...,S (3.4)

whereαi andβi are the representation vectors ofzi over Xi and Di, respectively,

andei is the representation residual.

Clearly, in order to find meaningful solutions of vectorsαi andβi, appropriate

loss function should be defined on the representation residual ei and appropriate

regularization can be imposed onαi andβi. Denote byl(‖ei‖2) the loss function

defined on thel2-norm of ei and denote byR(αi, βi) some regularizer imposed on

the representation coefficients. We consider the following optimization problem to

solve{αi, βi}:

min{αi ,βi}
∑S

i=1 l(‖ei‖2) + λR(αi, βi)

s.t. zi = Xi ai + Diβi + ei , i = 1, 2, ...,S
(3.5)

The problem now turns to how to define the loss functionl(‖ei‖2) and regu-

larizer R(αi, βi). Let ei = ‖ei‖2. Due to the special structure of human face, the

different patches will have very different representation residualsei. We solve

{α̂i, β̂i} = min{αi ,βi } ‖zi − Xαi + Diβi‖22 + λ(‖αi‖22 + ‖βi‖22) and then calculateei =

∥

∥

∥zi − Xα̂i + Diβ̂i

∥

∥

∥

2
. Fig. 3.3 illustrates the distribution forei for two query face

images. One can see that the distribution ofei is highly non-Gaussian. The wide-

ly used l2-norm loss function relies highly on the Gaussianity assumption of the
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data [112] and hence it is not suitable to measure such non-Gaussian distributed

residual. In [110], the concept of correntropy is proposed to measure the loss of

non-Gaussian data. A correntropy induced metric (CIM) for residualei is defined

as [110]:

CIM(ei) = (kσ(0)− kσ(ei))
1/2 (3.6)

wherekσ(·) is a kernel function. The Gaussian kernel functionkσ(x) = exp(−x2/2σ2)

is widely used with good performance [110] [112]. The robustness of CIM to non-

Gaussian residual/noise has been verified in signal processing [134], feature selec-

tion [72], and FR [74]. Hence, we adopt correntropy to model the representation

residual of different patches.

For the regularizerR(αi , βi), we define it as thel2-norm of αi andβi. It has

been shown that thel2-norm regularization on representation coefficients can lead

to similar classification performance tol1-norm regularization but with much less

computational cost [226]. Finally, the proposed local generic representation (LGR)

model becomes:

min{αi ,βi }
∑S

i=1 (1− kσ(‖ei‖2)) + λ
(

‖αi‖22 + ‖βi‖22
)

s.t.zi = Xiαi + Diβi + ei , i = 1, 2, ...,S
(3.7)

3.3 Optimization and classification

3.3.1 Half-quadratic optimization

The minimization problem in Eq. (3.7) can be solved by half-quadratic optimization

[134]. If a functionφ(x) satisfies the following conditions [134]: (a)x → φ(x) is

convex onR; (b) x → φ(√x) is concave onR+; (c) φ(x) = φ(−x), x ∈ R; (d)
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x→ φ(x) is C1 onR; (e) φ
′′
(0+) > 0; (f) limx→∞φ(x)/ ‖x‖22 = 0, there exists a dual

functionϕ such that

φ(x) = infw∈R
{

1
2wx2 + ϕ(w)

}

(3.8)

wherew is determined by the minimizer functionδ (·) with respect toφ (·). δ (·)

admits an explicit form under certain restrictive assumptions [134]:

w =























δ (t) = φ
′′
(0+), if t = 0

φ
′′
(t)/t, if t , 0

(3.9)

Obviously,φσ(x) = 1− kσ(x) = 1− exp(−x2/2σ2) satisfies all the conditions from

(a) to (f). Then the problem in Eq. (3.7) can be equivalently written as the following

augmented minimization problem:

minA,w
∑S

i=1

(

1
2wi ‖zi − Xiαi − Diβi‖22 + ϕ(wi)

)

+ λ ‖A‖22 (3.10)

whereA = [a1, a2, ..., aS] with ai = [αi; βi], andw = [w1,w2, ...,wS].

According to the half-quadratic analysis [134], Eq. (3.10)can be easily mini-

mized by updatingA andw alternatively, and there is no need to have an explicit

form of the dual functionϕ(wi). Whenw is fixed, A can be solved by

Â = arg minA
∑S

i=1

(

wi ‖zi − Xiαi − Diβi‖22
)

+ λ ‖A‖2F (3.11)

Clearly, the above minimization is a least square regression problem, and we have

the closed-form solution of each{αi, βi}:

[α̂i; β̂i] = wi(wi[Xi , Di]
T [Xi , Di] + λI)−1[Xi , Di]

T zi (3.12)

WhenA is fixed, the weightsw can be updated as

ŵi =
1
σ2

exp(− ‖zi − Xiαi − Diβi‖22 /2σ2) (3.13)
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The weightwi corresponds to thei th patch, and it is used to control the portion of

‖ei‖2 in the whole energy of Eq. (3.10). If the representation residual of a patch is

big (e.g., caused by sunglasses, scarf and/or other large variations), the correspond-

ing weightwi will become small, and consequently the effect of this patch in the

overall representation will be suppressed.

3.3.2 LGR based classification

After the optimal solutions ofA and w are resolved by the half-quadratic opti-

mization in Section 3.3.1, an LGR based classification scheme can be proposed to

determine the class label of query facez. Let Xi =
[

X1
i , ..., X

k
i , ..., X

K
i

]

, whereXk
i is

sub-gallery dictionary associated with classk. Accordingly, the representation vec-

tor αi can be written asαi =
[

α1
i ; ...;α

k
i ; ...;α

K
i

]

, whereαk
i is the coefficients vector

associated with classk. By using the class-specific sub-gallery dictionaryXk
i and

the generic variation dictionaryDi, we can calculate the representation residual of

each patchzi by each classk. Then the sum of the weighted residual (bywi) over all

patches can be calculated. Our classification principle is to check which class can

lead to the minimal residual over all patches. Specifically,the classification rule of

query facez is as follows:

label(z) = arg min
k

∑S

i=1
wi

∥

∥

∥zi − [Xk
i , Di][ ak

i ;βi]
∥

∥

∥

2

2
/
∥

∥

∥[ak
i ;βi]
∥

∥

∥

2

2
(3.14)

Note that in Eq. (3.14), we also use thel2-norm of [ak
i ;βi] to adjust the residual

of patchi by classk. 1/
∥

∥

∥[ak
i ;βi]
∥

∥

∥

2

2
can be considered as a “class weight”. If classk

has a larger
∥

∥

∥[ak
i ;βi]
∥

∥

∥

2

2
, it means that the query patch is more similar to the gallery

patch of classk, and thus a smaller weight should be assigned to weaken the repre-
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Table 3.1 The algorithm of local generic representation (LGR) based classification.

Input: The query samplez, gallery setX, reference subsetGr ,

variation subsetGv and regularization parameterλ.

Output: The class label ofz

1: Initializew = [1, 1, ..., 1];

2: CaculateD = [Gv
1 − Gr ,Gv

2 − Gr , ...,Gv
m− Gr ].

3: Partitionz, X andD into patches.

4: While convergence

5: UpdateA by Eq. (3.11);

6: Updatew by Eq. (3.13);

7: End

8: Output the class label of samplez by Eq.(3.14).

sentation residual by this class. The query samplez is classified to the class which

has the minimal weighted representation residual over all patches. The algorithm

of LGR based classification is summarized in Table 3.1.

3.3.3 Convergence and complexity

According to half-quadratic optimization [134], the objective function in Eq. (3.10)

is non-increasing under the update rules in Eq.(3.11) and Eq. (3.13). Therefore, our

algorithm is guaranteed to converge based on the theory of half-quadratic optimiza-

tion [134]. In Fig.3.4, the convergence curve of LGR on the ARdatabase [123] is

shown (please refer to section 3.4.4 for the details of experiment setting). We can

see that the LGR algorithm converges after 5 iterations.
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Figure 3.4 The convergence curve of LGR on the AR database.

The main computational cost of LGR is spent on solving the least square re-

gression problem in Eq. (3.11), whose time complexity isO(S(n3
d + n2

ddp)), where

S is the number of patches,nd is the total number of patches in [Xi , Di] anddp is

the feature dimension of patches. Denote byT the total number of iteration in our

algorithm, the time complexity of LGR isO(TS(n3
d + n2

ddp)).

3.4 Experimental analysis

We test the performance of LGR on four benchmark face databases, including three

face databases in controlled environment, i.e., Extended Yale B [59], large-scale

CMU Multi-PIE [64], and AR [123], and one face database in uncontrolled en-

vironment, i.e., Labeled Faces in the Wild (LFW) database [82]. Extended Yale

B database contains illumination variations; AR database contains illumination and

expression variations and disguises; Multi-PIE database contains pose, illumination

and expression variations; LFW reflects the variations in real-world applications.

We compare the proposed LGR method with the following elevenmethods:
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• Baseline methods: nearest neighbor classifier (NNC) [38], support vector

machines (SVM) [36], sparse representation based classifiers (SRC) [201]

and collaborative representation based classifiers (CRC) [226];

• Generic learning methods: adaptive generic learning (AGL)[173], extended

SRC (ESRC) [43] and sparse variation dictionary learning (SVDL) [213];

• Patch/block based methods: Block linear discriminative analysis(BlockL-

DA) [27], patch based NN (PNN) [102], patch based CRC (PCRC) [231],

and discriminative multi-manifold analysis (DMMA) [113].

Note that the generic learning method SVDL learns a sparse variation dictio-

nary from the generic training set. The proposed LGR also belongs to the generic

learning methods; however, we use the raw face difference images as the dictionary

rather than learning a dictionary with some objective function. Among the compet-

ing methods, we implement NN and DMMA; the code of SVM is from [24]; and

the codes of all the other methods are obtained from the original authors.

3.4.1 Parameter setting

In all the experiments, the face images are resized to 80×80 (using the Matlab

function “resize.m”). For patch/block based methods including BlockLDA, PNN,

PCRC, DMMA, and the proposed LGR, the patch size is fixed as 20×20 and the

overlap between neighboring patches is 10 pixels. That is, the query sample is

partitioned intoS=49 patches.

Apart from the setting of patch size and patch number, there are only two pa-

rameters to set in the proposed LGR. The first is the regularization parameterλ in
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Eq. (6). We fix it asλ= 0.001 in all our experiments. Another is the scale parameter

σ of the kernel functionkσ(x). Based on our experimental experience, if the repre-

sentation residual is big, a large value ofσ could be set to make the representation

more robust. Therefore, we adaptively setσ as the average representation residual

after solving the coefficientsαi andβi in the first iteration of our algorithm; that is,

σ =

√

1
2S

∑S
i=1 ‖zi − Xiαi − Diβi‖22.

For the competing algorithms, we tune their parameters for the best results. In

particular, for SVDL we follow the parameter setting in [213]. The three parameters

λ1, λ2, λ3 are set as 0.001, 0.01, 0.0001, respectively, and the numberof dictionary

atoms is set as 400 in the initialization. For SRC, CRC and PCRC, the optimal reg-

ularization parameterλ is chosen from{0.0005, 0.001, 0.005, 0.01}. As BlockLDA

and AGL are sensitive to the feature dimension, the best result of different feature

dimensions is reported.

3.4.2 Extended Yale B database

The Extended Yale B face database [59] contains 38 human subjects and 2,414

face images with 64 illumination conditions. The frontal faces with light source

directions at 0 degree azimuth (A+000) and at 0 degree elevation (E+00) are used

as the gallery set, and the face images under other illumination conditions are used

as the query set. We use the face images of the first 30 subjectsto form the gallery

and query sets, and use the face images of the other 8 subjectsas the generic set.

Table 3.2 lists the recognition rates by different methods. By combining the

decisions of different patches, the PCRC method achieves much higher recognition

rate than the baseline methods. The generic learning based method SVDL achieves



Chapter 3. Local Generic Representation for Single Sample per Person 61

Figure 3.5 Face images of Extended YaleB database.

the second highest recognition rate by learning a dictionary that consists of different

illumination variations. By exploiting the advantages of both patch based local rep-

resentation and generic variation information, the proposed LGR method achieves

the highest recognition accuracy.

Table 3.2 Recognition rate (%) on Extended Yale B database.

Method NNC[38] SVM[36] SRC[201] CRC[226]BlockLDA[27]AGL[173]

Accuracy 46.5 41.4 49.2 51.2 49.2 59.5

Method DMMA[113]PNN[102]PCRC[231]ESRC[43] SVDL[213] LGR

Accuracy 61.7 67.5 77.8 67.9 85.0 86.6

3.4.3 CMU Multi-PIE database

The Multi-PIE database [64] contains a total of more than 750,000 images from

337 individuals, captured under 15 viewpoints and 19 illumination conditions in

four recording sessions. The face images of the first 100 subjects in session 1 are

used for the gallery set and the other 149 subjects are used asgeneric set. Following

the experiment setting in [213], in the generic training set, the frontal images with

illumination 7 and neutral expression are used as the reference subset and the face

images with different variations in Session 1 are used as the variation subset.
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Illumination variations

In this experiment, we test the performance of LGR under different illuminations.

The frontal face images with neutral expression from session 2, session 3 and ses-

sion 4 are used as the query set, respectively. The recognition rates on Multi-PIE

with illumination variations are listed in Table 3.3. LGR shows superior perfor-

mance to all the other competing methods. Compared with SVDL, which achieves

the second highest accuracy, the recognition rate is improved by 2.7%, 3.0% and

4.0% on session 2, session 3 and session 4, respectively. Compared with PCRC,

the recognition rate is improved by about 15%. The performance of SRC and CRC

is very poor because with only one gallery face image per person, the query image

cannot be well represented.

Figure 3.6 Images of Multi-PIE database with Illumination variationsin different ses-

sions.

Expression and illumination variations

We then test the robustness of the proposed LGR method to faceimages with both

expression and illumination variations. The query set includes the frontal face im-

ages with smile expression in session 1 (Smile-S1), smile expression in session 3

(Smile-S3) and surprise expression (Surprise-S2). Table 3.4 presents the recog-

nition results in this experiment. Clearly, LGR outperforms all the other methods.
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Table 3.3 Recognition accuracy (%) on Multi-PIE with illumination variations.

Method Session 2 Session 3 Session 4

NNC[38] 44.3 40 43.8

SVM[36] 43.6 40.5 40.1

SRC[201] 51.9 46.5 50.6

CRC[226] 52.8 47.4 50.5

BlockLDA[27] 68.2 60.4 65.1

AGL[173] 84.5 79.6 78.5

DMMA[113] 64.1 56.6 60.1

PNN[102] 65.1 55.6 60.8

PCRC[231] 83.7 72.7 77.7

ESRC[43] 92.6 84.6 87.6

SVDL[213] 94.2 87.5 90.4

LGR 96.9 90.5 94.4

SVDL still works the second best, but it lags behind LGR by 1.8%, 5.6% and 21.7%

for Smile-S1, Smile-S3 and Surprise-S2, respectively.

Pose, expression and illumination variations

In this experiment, there are pose, expression and illumination variations in the

query set simultaneously. We select the face images with pose 050 in Session 2

(P1), pose 041 in Session 3 (P2), and pose 041 and smile expression in Session 3

(P3) as the query set. Some face images from the gallery and query set are illustrated

in Fig. 3.7.
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Table 3.4 Recognition accuracy (%) on Multi-PIE with expression and illumination vari-

ations.

Method Smile-S1 Smile-S3 Surprise-S2

NNC[38] 46.8 29.1 18.3

SVM[36] 46.8 29.1 18.3

SRC[201] 50.1 28.1 21.1

CRC[226] 50 29.7 22.4

BlockLDA[27] 49.5 30 26.2

AGL[173] 85.2 39.5 31.5

DMMA[113] 58.5 33.4 23

PNN[102] 53.1 31.1 31.4

PCRC[231] 74.9 44.1 44.9

ESRC[43] 82 50.8 49.9

SVDL[213] 88.9 59.6 52.8

LGR 90.7 65.2 74.5

Table 3.5 lists the recognition rate of all methods. LGR achieves the highest

accuracy on all the three query sets. Because of the large variations caused by

pose, expression and illumination variations, the FR ratesin this experiment are

relatively lower than the experimental results in Table 3.3and Table 3.4. The patch

based methods such as PCRC do not work well because they are sensitive to pose

variation. The generic learning methods, including AGL, ESRC, SVDL and the

proposed LGR, outperform the other methods since they can exploit the variation

information from the external generic training set. LGR consistently exhibits better
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Figure 3.7 Images of Multi-PIE database with pose, expression and illumination varia-

tions.

results than SVDL, which still works the second best.

3.4.4 AR face database

The AR face database [123] contains about 4,000 color face images of 126 people,

which consists of the frontal faces with different facial expressions, illuminations

and disguises. There are two sessions and each session has 13face images per

subject. Following the SSPP experiment setting in [43], a subset with face images

of 50 males and 50 females is selected. The first 80 subjects from sessions 1 are

used for the gallery and query set while the other 20 subjectsare used as the generic

training set. We also use the face images from session 2 as thequery set to test the

FR performance. There are different variations, including illumination, expression,

and disguise (scarf and sunglass) in this experiment.

The experimental results on session 1 and session 2 are shownin Table 3.6

and Table 3.7, respectively. LGR exhibits significantly better performance than all

the other methods on both sessions. In particular, on session 2 LGR outperforms

SVDL by 16.4%, 10.8%, 32.5% and 34.7% under different variations. Note that

in this experiment the performance of patch based methods such as PCRC is very

competitive. This is because the disguises (i.e., scarf andsunglass) can be well

dealt with by patch/block based methods. Therefore, PCRC can achieve higher
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Table 3.5 Recognition accuracy (%) on Multi-PIE with pose, expression and illumination

variations.

Method P1 P2 P3

NNC[38] 25.7 8.8 11.9

SVM[36] 25.7 8.8 11.9

SRC[201] 23.9 6.1 10.1

CRC[226] 24.9 5.4 9.0

BlockLDA[27] 29.5 13.2 15.8

AGL[173] 66.4 25.5 24.0

DMMA[113] 28.2 5.5 12.1

PNN[102] 35.3 11.8 13.5

PCRC[231] 37.3 8.0 10.2

ESRC[43] 63.8 31.9 27.0

SVDL[213] 76.0 37.9 33.5

LGR 79.1 39.5 36.3

recognition rate than the global representation based SVDLthough it does not learn

any variation information from a generic dataset. The proposed LGR utilizes both

local presentation and generic information, leading to very promising performance

for the task of FR with SSPP.

3.4.5 LFW database

The LFW database [82] contains images of 5,749 different individuals in uncon-

strained environment. LFW-a is a version of LFW after alignment using commer-



Chapter 3. Local Generic Representation for Single Sample per Person 67

Table 3.6 Recognition accuracy (%) on AR face database (session1).

Method illumination expression disguise illumination+disguise

NNC[38] 70 79.2 39.4 23.5

SVM[36] 55.8 90.4 43.1 29.4

SRC[201] 80.8 85.4 55.6 25.3

CRC[226] 80.5 80.4 58.1 23.8

BlockLDA[27] 75.3 81.4 65.4 53.5

AGL[173] 93.3 77.9 70.0 53.8

DMMA[113] 92.1 81.4 46.9 30.9

PNN[102] 84.6 86.7 90.0 72.5

PCRC[231] 95.0 86.7 95.6 81.3

ESRC[43] 99.6 85.0 83.1 68.6

SVDL[213] 98.3 86.3 86.3 79.4

LGR 100 97.9 98.8 96.3

cial face alignment software [197]. Following the experiment setting in [231] and

[213], a subset of 158 subjects with more than 10 images per person is collected.

Each face image is cropped to 120×120 and then resized to 80×80. Fig. 3.8 shows

some face images in the LFW-a dataset. One can see that although face alignmen-

t has been conducted, the variations in this database is still very large compared

with the face databases in the controlled environment. Faceimages of the first 50

subjects are selected to form the gallery and query sets, while the face images of

the remaining subjects are used to build the generic training set. Since there are no

frontal neutral face images in this database, the mean face of each person is used to
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Table 3.7 Recognition accuracy (%) on AR face database (session2).

Method illumination expression disguise illumination+disguise

NNC[38] 41.7 58.8 26.3 12.8

SVM[36] 40.0 58.8 26.9 14.4

SRC[201] 55.8 68.8 29.4 12.8

CRC[226] 55.8 69.6 35.0 13.5

BlockLDA[27] 54.7 61.2 31.9 21.0

AGL[173] 70.8 55.8 40.6 30.7

DMMA[113] 77.9 61.7 28.1 21.9

PNN[102] 77.5 73.8 71.9 52.8

PCRC[231] 88.8 71.7 81.8 63.1

ESRC[43] 87.9 70.4 59.4 45.0

SVDL[213] 87.1 74.2 61.3 54.1

LGR 97.5 85.0 93.8 88.8

form the reference subset in the generic set.

The face recognition rates of different methods are listed in Table 3.8. Because

of the challenging face variations in uncontrolled environment, no method achieves

very high accuracy in this experiment. Nonetheless, LGR still works the best among

all competing methods. The patch based method PCRC works better than the global

representation based CRC, which is similar to what we observed in the experiments

of previous sections. SVDL again achieves the second highest recognition rate,

demonstrating that the face variation information learnedfrom other subjects is

indeed helpful to improve the robustness of FR with SSPP, no matter in controlled
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Figure 3.8 Images of LFW database.

or uncontrolled environment.

Table 3.8 Recognition accuracy (%) on LFW database.

Method NNC[38] SVM[36] SRC[201] CRC[226]BlockLDA[27]AGL[173]

Accuracy 12.2 11.6 20.4 19.8 16.4 19.2

Method DMMA[113]PNN[102]PCRC[231]ESRC[43] SVDL[213] LGR

Accuracy 17.8 17.6 24.2 27.3 28.6 30.4

3.5 Conclusions and discussions

We proposed a local generic representation (LGR) based approach for the challeng-

ing task of face recognition with single sample per person (SSPP). LGR utilizes the

advantages of both patch based local representation and generic learning. A generic

intra-class variation dictionary was constructed from a generic dataset, and it can

well compensate for the face variations lacked in the SSPP gallery set. A patch

gallery dictionary was built by using the gallery samples, which can more accurate-

ly represent the different parts of face images. Considering that the distribution of

representation residual of different patches is highly non-Gaussian, a correntropy
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based metric was adopted to measure the loss of each patch so that the importance

of different patches in face recognition can be more robustly evaluated. As a re-

sult, LGR can adaptively suppress the role of patches with large variations. The

extensive experimental results on four benchmark face databases showed that LGR

always achieves higher face recognition rate than the state-of-the-art SSPP methods

used in competition.

In this chapter, as generic training set introduces more across-subject face vari-

ations, the recognition performance of LGR is much better than PCRC. However,

as LGR has to solve a half-quadratic optimization problem for a query face image,

PCRC is much faster than LGR. Hence, in real-world applications, to solve face

recognition with single sample per person, we can choose PCRC and LGR accord-

ing to different demands.



Chapter 4

Regularized Self-Representation for

Classification

In Chapter 2 and Chapter 3, we aim to solve small sample size problem in classi-

fication tasks. Whereas, with the development of sensors anddigital devices, the

size of available data is rapidly increasing. In some cases,there are a large amount

of samples in the training dataset. For representation based classifiers, the solution

will become less stable if the sample size is big, and the computation complexity

and storage burden are quite high. Besides, the existing representation based mod-

els all belong to sample-level representation, i.e., a query sample is represented as

a linear combination of training samples. Similarly, a query feature can also be

represented by its related features. In this chapter, we aimto develop effective and

efficient representation based classifier for big sample size classification task from

the viewpoint of feature-level representation.

71
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4.1 Introduction

Nearest neighbor classifier (NNC) has been widely used in machine learning and

pattern recognition tasks such as face recognition [180], handwritten digit recogni-

tion [106], and image classification [15], etc. NNC measuresthe distance/similarity

between the query sample and each of the training samples independently, and as-

signs the label of the nearest sample to the query sample. If the training samples are

distributed densely enough, the classification error of NNCis bounded by twice the

classification error of Bayesian classifier [38]. NNC does not need the prior knowl-

edge of sample distribution and it is parameter-free. However, NNC ignores the

relationship between training samples [186], and often fails for high-dimensional

pattern recognition tasks because of the curse of dimensionality [150]. Besides, all

training samples should be stored in NNC and it becomes time-consuming in large

scale problems [42].

To reduce the computation burden of NNC and dilute the curse of dimension-

ality, nearest subspace classifier (NSC) is proposed. NSC measures the distance

from the query sample to the subspace of each class and then classifies the query

sample to its nearest subspace. The subspaces are often usedto describe the ap-

pearance of objects under different lighting [9], viewpoint [182][178], articulation

[16][179], and identity [13]. Each class can be modeled as a linear subspace [31],

affine hull (AH) [186] or convex hull (CH) [186], hyperdisk [22] or variable smooth

manifold [111]. When one class is considered as a linear subspace, NSC actually

represents a query sample by a linear combination of the samples in that class. In

such a case, a set of projection matrices can be calculated offline, and thus NSC

avoids the one-to-one searching process in NNC, reducing largely the time cost.
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Some approximate nearest subspace algorithms have also been proposed to further

accelerate the searching process [8]. Whereas, NSC only considers the information

of one class when calculating the distance from the query sample to this class, and

it ignores the information of other classes.

As a significant extension to NSC, the sparse representationbased classifier

(SRC) [201] exploits the information from all classes of training samples when rep-

resenting the given query sample, and it has shown promisingclassification perfor-

mance [201]. Specifically, SRC represents the query sample as a linear combination

of all training samples withl1-norm sparsity constraint imposed on the representa-

tion coefficients, and then it classifies the query sample to the class with the minimal

representation error [201]. In spite of the promising classification accuracy, SRC

has to solve anl1-norm minimization problem for each query sample, which is very

costly. It has been shown in [226] that the collaborative representation mechanism

(i.e., using samples from all classes to collaboratively represent the query image)

plays a more important role in the success of SRC. By usingl2-norm to regular-

ize the representation coefficients, the so-called collaborative representation based

classification (CRC) demonstrates similar classification rates to SRC [201]. CR-

C has a closed-form solution to representing the query sample, and therefore has

much lower computational cost than SRC.

Inspired by SRC and CRC, in [30] a collaborative representation optimized clas-

sifier (CROC) is proposed to pursue a balance between NSC and CRC. In [214],

feature weights are introduced to the representation modelto penalize pixels with

large error so that the model is robust to outliers. A kernel sparse representation

model is proposed by mapping features to a high dimensional reproducing kernel
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Hilbert space [55]. In addition, dictionary learning methods have been proposed to

learn discriminative dictionaries for representation based classifiers [90][215][115].

Most of the current representation based classifiers, including NSC, SRC and

CRC, are sample oriented, and they represent a query sample as a combination of

training samples. The time and memory complexity of such a “sample oriented”

representation strategy, however, will increase rapidly with the number of training

samples. For instance, in the training stage the time complexities of NSC and CRC

areO(Kn3) andO((Kn)3), respectively, whereK is the number of classes andn is

the number of samples per class. Clearly, the complexity is exponential w.r.t. the

training sample number. In the testing stage, the memory complexities of NSC and

CRC are bothO(dKn), whered is the feature dimension. It is linear to the num-

ber of training sample and can be very costly for large scale pattern classification

problems, where there are many classes and a lot of samples per class.

Different from those previous representation based classifiers, in this chapter

we investigate the representation based classification problem from a “feature ori-

ented” perspective. Instead of representing a sample as thelinear combination of

other samples, we propose to learn how each feature (i.e., each element) of a sam-

ple can be represented by the features of itself. Such a self-representation property

of features generally holds for most high dimensional data,and has been applied

in machine learning and computer vision fields [127]. For example, in [127] this

property is used to select the representative features by feature clustering. Motivat-

ed by the self-representation property of sample features,we propose a novel self-

representation induced classifier (SRIC), which learns a self-representation matrix

for each class by its training data. To classify a query sample, we project it onto
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the learned self-representation matrix and compute its feature self-representation

residual. The query sample is then classified to the class which has minimal feature

self-representation residual. Interestingly, it can be proved that SRIC is equivalent

to NSC withl2-norm regularization in terms of the final classification decision. Fur-

thermore, it can be shown that SRIC is essentially the principle component analysis

(PCA) with eigenvalue shrinkage.

SRIC learns the self-representation matrix individually for each class. In light of

the principle of SRIC, we then present a discriminative SRIC(DSRIC) approach.

Using all training data, for each class a discriminative self-representation matrix

is trained to minimize the feature self-representation residual of this class while

representing little the features of other classes. The classification of a query still

depends on which class has the minimal feature self-representation residual. D-

SRIC is intuitive and easy to understand. Our experimental results on UCI datasets,

handwritten digit recognition, gender classification and face recognition show that

DSRIC has comparable or superior recognition rate to state-of-the-art representa-

tion based classifiers such as SRC and CRC; however, our theoretical complexity

analysis and experimental results will show that DSRIC is much more efficient and

needs much less storage space than other representation based classifiers.

The rest of this chapter is organized as follows. Section 4.2presents SRIC

and analyzes its relationship with NSC and PCA. Section 4.3 presents the DSRIC

method and analyzes its time and memory complexities in bothtraining and testing

stages. Section 4.4 conducts experiments on different pattern classification tasks,

and Section 4.5 concludes.
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4.2 Self-representation for classification

4.2.1 Nearest subspace classifier

Suppose that we have a set of training samples fromK classesX = [X1, ..., Xk,

..., XK], whereXk = [x1k, ..., xik, ..., xnk] ∈ Rd×n, is the sample subset of classk and

xik is thei th sample of it,d is the feature dimension andn is the number of training

samples in each class. Given a query samplez, the nearest subspace classifier (NSC)

represents it by the samples of classk as:

z = Xkak + ek (4.1)

whereak is the representation vector andek is the representation residual vector.

To get an optimal representation ofz, NSC minimizes the representation resid-

ual by solving the following least square problem:

âk = arg minak ‖z − Xkak‖22 (4.2)

The problem in Eq. (4.2) has a closed-from solutionâk = (XT
k Xk)−1XT

k z if ( XT
k Xk)−1

is non-singular. In practice, anl2-norm regularization can be imposed onak to make

(XT
k Xk)−1 more stable, resulting in anl2-norm regularized least regression problem:

âk = arg minak ‖z − Xkak‖22 + λ ‖ak‖22 (4.3)

The analytical solution to Eq. (4.3) iŝak = (XT
k Xk + λI)−1XT

k z, where I is

an identity matrix. Then the representation residual can becomputed asrk =
∥

∥

∥

∥

z − Xk(XT
k Xk + λI)−1XT

i z
∥

∥

∥

∥

2

2
. NSC classifiesz to the class with the minimal rep-

resentation residual. Let

Wk = Xk(XT
k Xk + λI)−1XT

k
(4.4)
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The classification rule of NSC can be written as

label(z) = arg mink ‖z −Wkz‖22 (4.5)

Clearly, NSC learns a set of symmetric matricesWk ∈ ℜd×d to reconstruct the query

sample for classification.

4.2.2 Self-representation induced classifier

Representation based classifiers such as NSC, SRC and CRC rely on the similarity

between samples. They assume that a query sample can be well represented by a

linear combination of the training samples. Here we consider the representation

based classification problem from a very different viewpoint. Considering the fact

that the features of a sample are correlated (especially forvisual data), we propose

to represent each feature of a sample as the linear combination of all the features

of this sample. Finally, the sample is represented by itself. Actually, such a self-

representation strategy has been used successfully in image processing and feature

selection [127]. For example, in image denoising a pixel (i.e., a feature) is repre-

sented as the weighted average of its neighboring pixels. In[127], feature similarity

is defined and then representative features are selected by feature clustering.

Based on the above analysis, we present a self-representation based classifica-

tion scheme. We can write the training subset of classk asXk =
[

fk1; ...; fk j; ...; fkd

]

where fk j is the j th feature vector ofXk. We representfk j as a linear combination of

all the feature vectors:

f k
j = b j1 × fk1+, ...,+b jd × fkd + ek j (4.6)
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whereb j1, ..., b jd are the representation coefficients ande jk is the representation

residual vector. Letb j = [b j1, ..., b jd]. Then Eq. (4.6) can be rewritten asfk j = b j Xk.

For all the feature vectors inXk, they can be represented byXk with Eq. (4.6). Let

Bk = [b1; b2; ...; bd] and Ek = [e1; e2; ...; ed]. The representation of all features can

be written as:

Xk = BkXk + Ek (4.7)

We call the feature based representation model in Eq. (4.7) self-representation be-

cause it utilizesXk to represent itself. To minimize the self-representation residual

while avoiding the trivial solution, we have the following optimization problem:

minBk l(Ek) + R(Bk)

s.t.Xk = BkXk + Ek

(4.8)

wherel(Ek) is the loss function andR(Bk) is the regularization item. If we choose

square loss andF-norm regularization, the problem in Eq. (4.8) becomes:

B̂k = arg minBk ‖Xk − BkXk‖2F + λ ‖Bk‖2F (4.9)

Apparently, the problem in Eq. (4.9) has a closed-form solution:

B̂k = XkXT
k

(

XkXT
k + λI

)−1
(4.10)

whereI ∈ ℜd×d is an identity matrix. Given a query samplez, its self-representation

can then be computed aŝBkz and the self-representation residual ise = z − B̂kz.

For each class, we can learn its self-representation matrixas above, and then

we have a set ofK self-representation matrices,B1, ..., Bk, ..., BK (we omit the su-

perscript “ ˆ ” for the convenience of expression). The querysamplez can be
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Figure 4.1 Top row: self-representation matricesBk, k = 0, 1, ..., 9 learned from the USPS

database [85]. Bottom row: a query sample (from class 0) and its reconstructed images

Bkz, k = 0, 1, ..., 9.

represented by each of the matrices and the classification can be made by checking

which class has the minimal self-representation residual:

label(z) = arg mink ‖z − Bkz‖22 (4.11)

We call the above classifier self-representation induced classifier (SRIC).

We use an example to illustrate how SRIC works. As shown in Fig. 4.1, 10

self-representation matricesBk, i = 0, 1, ..., 9, are learned from handwritten digit

dataset USPS [85]. Certainly, matrixBk tends to represent better the features of

sample from classk. Fig. 4.1 also shows a query samplez (from class 0) and the

reconstructed samplesBkz by all Bk. We can see thatz is well represented byB0

and it has the minimal self-representation residual on class 0, resulting in a correct

classification.

4.2.3 Equivalence between SRIC and NSC

The NSC represents a sample from the perspective of sample similarity, while

the proposed SRIC represents a sample from the perspective of feature similari-

ty. Though the representation strategies are different, interestingly, it can be proved
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that they lead to the same classification result. We have the following theorem.

Theorem 1 SRIC is equivalent to l2-norm regularized nearest subspace classifier,

i.e., Bk=Wk, k = 1, 2, ...,K.

Proof 1 Applying singular value decomposition toXk, Xk = UkΛkVT
k , whereUk ∈

ℜd×d, Λk ∈ ℜd×n andVk ∈ ℜn×n. ThenBk andWk becomes:

Wk = Xi(XT
k Xk + λI)−1XT

k

= UkΛkVT
k (VkΛ

T
k UT

k UkΛkVT
k + λI)−1VkΛ

T
k UT

k

= UkΛk(ΛT
kΛk + λI)−1ΛT

k UT
k

(4.12)

Bk = XkXT
k

(

XkXT
k + λI

)−1

= UkΛkVT
k VkΛ

T
k UT

k (UkΛkVT
k VkΛ

T
k UT

k + +λI)−1

= UkΛkΛ
T
k (ΛkΛ

T
k + +λI)−1UT

k

(4.13)

If d < n, we letΛk = [Hk 0], whereHk ∈ ℜd×d. Then we have

Λb = Λk(Λ
T
kΛk + λI)−1ΛT

k = Hk(HT
i Hk + λI)−1HT

k (4.14)

Λw = ΛkΛ
T
k (ΛkΛ

T
k + +λI)−1 = HkHT

k (HkHT
k + λI)−1 (4.15)

BecauseHk is a diagonal matrix, we haveΛb = Λw. As Wk = UkΛwUT
k and

Bk = UkΛbUT
k , we can getBk =Wk.

If d > n, Λk =























Hk

0























, whereHk ∈ ℜn×n. Λb =























Hk(HT
k Hk + λI)−1HT

k 0

0 0























andΛw =























HkHT
k (HkHT

k + λI)−1 0

0 0























. In this case, we can have the same conclu-

sion, i.e.,Λb = Λw and Bk =Wk.
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Figure 4.2 (a) The first 15 principle components ofBk andXk, k = 0, 1, ..., 9; (b) eigen-

values ofXk; (b) eigenvalues ofBk.

If d = n, letΛk = Hk, Λb andΛw are the same as thoseΛb andΛw when d< n.

Hence,Bk =Wk also holds on when d= n.

From the above proof, we can have the following remark.

Remark 1 SRIC is equivalent to principle component analysis with shrinkage.

From the Proof, we can see that,Xk andBk have the same set of eigenvectors,

i.e., Uk. Denote thehth eigenvalue ofXk asσh, then thehth eigenvalueΛbh of

Bk will be
σ2

h

λ+σ2
h
. Therefore, for SIRC the eigenvalues ofBk will be shrunk to the

range [0 1). The smaller the eigenvalue, the less the shrinkage ratio. Fig. 4.2(a)

illustrates the first 15 principle components ofBk andXk (please refer to Fig. 4.1

for Bk). Fig. 4.2(b) and Fig. 4.2(C) plot the eigenvalues ofXk andBk, respectively.

One can see that for the principle component ofXk with the largest eigenvalue, the

corresponding eigenvalue ofBk is shrunk to nearly 1.
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4.3 Discriminative self-representation induced clas-

sifier

4.3.1 Discriminative self-representation

The learning of self-representation matrixBk in SRIC is rather generative but not

discriminative since it only depends on the training data ofclassk. In light of the

principle of self-representation in SRIC, we can then propose a discriminative self-

representation induced classifier (DSRIC), which exploitsthe training data from all

classes to learnBk.

SRIC aims to learn aBk such that the self-representation residual‖Xk − BkXk‖2F
could be minimized. However, SRIC does not take the samples of other classes into

account. In order to make the classification more discriminative, we also expect

that Bk cannot well represent the features of other classes. One mayconsider to

maximize
∥

∥

∥X j − BkX j

∥

∥

∥

2

F
, j , k while minimizing‖Xk − BkXk‖2F. However, this will

make the whole objective function non-convex. Another mucheasier but still very

reasonable choice is to learn aBk such that the self-representation ofX j, j , k,

over it will approach to zero, i.e.,
∥

∥

∥BkX j

∥

∥

∥

2

F
is very small. In other words,Bk is

discriminative to represent the features of classk but not other classes. With these

considerations, we propose the following DSRIC model to learn Bk:

B̂k = arg minBk ‖Xk − BkXk‖2F + λ1
∑

j,k

∥

∥

∥BkX j

∥

∥

∥

2

F
+ λ2 ‖Bk‖2F (4.16)

whereλ1 andλ2 are the regularization parameters.

In Eq. (4.16), the first term‖Xk − BkXk‖2F aims to minimize the self-representation

residual; the second term
∑

j,k

∥

∥

∥BkX j

∥

∥

∥

2

F
enforces thatX j , j , k will not be well rep-
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resented byBk; the last term regularizesBk to make the solution more stable. It is

apparent that we still have a closed form solution ofBk:

B̂k = XkXT
k (XkXT

k + λ1

∑

j,k
X j X

T
j + λ2I)−1 (4.17)

As shown in Fig. 4.3, we use a subset of AR database to show the difference

between SRIC and DSRIC. Fig. 4.3(a) shows the query sample that belongs to

subject 10. In Fig. 4.3(b), the query facez is well reconstructed byB10 learned by

SRIC. However, from Fig. 4.3(d), we can see thatz is misclassified to subject 15.

The reconstructed faces using DSRIC are shown in Fig. 4.3(c). From Fig. 4.3(e),

we can see thatz is correctly classified to subject 10. Though the reconstruction

ability of SRIC is superior to DSRIC, DSRIC has better discrimination ability than

SRIC.

10B z1B z 2B z 3B z 4B z 5B z 6B z 7B z 8B z 9B z

(b) reconstructed faces by SRIC 

(c) reconstructed faces by DSRIC 

(d) representation residual of SRIC (e) representation residual of DSRIC
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Figure 4.3 (a)query facez; (b) reconstructed faces by SRIC; (c)reconstructed faces by

DSRIC; (d) representation residual of each class (SRIC); (e) representation residual of each

class (DSRIC).
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Table 4.1 The algorithm of discriminative self-representation induced classifier (DSRIC).

Input: A query samplez and the training setX = [X1, X2, ..., XK].

Output: label(z)

1: CalculateB1, B2, ..., BK by Eq. (4.17);

2: Calculaterk = ‖z − Bkz‖22;

3: Getlabel(z) = arg mink{rk}.

4.3.2 Classification and algorithms

After we get a set of matricesB1, B2, ..., BK, a query samplez is classified to the

class with the minimal reconstruction error.

label(z) = arg mink ‖z − Bkz‖22 (4.18)

The algorithm of DSRIC is shown in Table 4.1.

4.3.3 Complexity analysis

In this section, we discuss the time and space complexity of SRIC, DSRIC.

Training complexity

SRIC and DSRIC need to learnK self-representation matrices in the training stage

by Eq. (4.10) and Eq. (4.17), respectively. The time complexity to solve Eq. (4.10)

and Eq. (4.17) isO(d3). Hence the training time complexity of SRIC and DSRIC is

O(Kd3). During the training stage, all the methods should containthe training set.

Hence, the training memory of SRIC and DSRIC isKd2 + Kdn.



Chapter 4. Regularized Self-Representation for Classification 85

Testing complexity

In the testing stage, the time complexity of SRIC and DSRIC isO(Kd2). As D-

SRIC only needs to store a set ofd × d matrices, the storage space of DSRIC is

Kd2. When the number of samples is much larger than the number of feature di-

mensions, the advantage of DSRIC in time complexity and storage consumption is

quite significant.

We will compare SRIC and DSRIC with NNC [38], SVM [24], NSC [31], NAH

[186], NCH [186], SRC [201], CRC [226] and CROC [30] in the experiments. The

time and space complexity in the training and testing stagesof all the methods are

listed in Table 4.2.

Table 4.2 Time complexity and memory consumption of different classifiers.

method NNC [38] SVM SRC [201] NSC [31] SRIC

Time(train) / O(Kdn) / O(Kn3) O(Kd3)

Time(test) O(Kdn) O(Kd) O(d2nε) O(Kdn) O(Kd2)

Memory(train) / Kd + Kdn / 2Kdn+ n2 Kd2 + Kdn

Memory(test) Kdn Kd Kdn 2Kdn Kd2

method NCH [186] NAH [186] CRC [226] CROC [30] DSRIC

Time(train) / / O((Kn)3) O((Kn)3 + Kn3) O(Kd3)

Time(test) O((Kn)3) O((Kn)3) O(Kdn) O(Kdn) O(Kd2)

Memory(train) / / 2Kdn+ (Kn)2 3Kdn+ (Kn)2 Kd2 + Kdn

Memory(test) Kdn Kdn 2Kdn 3Kdn Kd2
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4.4 Experimental analysis

In this section, we test the performance of DSRIC1 on eight UCI datasets [6], two

handwritten digit recognition databases [85][104], two face recognition database

[59][82] and one gender classification dataset [123]. We compare the proposed clas-

sifier with eight popular and state-of-the-art classifiers,including the nearest neigh-

bor classifier (NNC) [38], support vector machines (SVM) [24], nearest subspace

classifier (NSC) [31], nearest convex hull classifier (NCH) [186], nearest affine hull

classifier (NAH) [186], sparse representation based classifier (SRC) [201], collabo-

rative representation based classifier (CRC) [226] and collaborative representation

optimization classifier (CROC) [30]. Among them, NNC and SVMare baseline

benchmarks, and the remaining are all representation basedclassifiers.

The performance of different classifiers is evaluated from three aspects: classifi-

cation accuracy, the running time and memory consumption inthe testing stage. In

order to easily show the speedup and memory saving of DSRIC over other methods,

in all the following experiments we take the running time andmemory consumption

of DSRIC as a unit (i.e., 1), and report the results of other methods based on it. All

algorithms are run in an Intel(R) Core(TM) i7-2600K (3.4GHz) PC.

4.4.1 Parameter setting

There are two parameters in DSRIC:λ1 andλ2. In all the experiments,λ2 is fixed

as 0.001 andλ1 is chosen on the training dataset by five-fold cross-validation. For

the compared representation based methods, the parametersin NCH and NAH are

1Since SRIC is equivalent to NSC, the results of SRIC will not be reported.
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set as 1 and 100, respectively, as suggested in the original paper; the regularization

parameter in NSC, SRC and CRC is tuned from{0.0005, 0.001, 0.005, 0.01} and the

best results are reported; following the experiment setting in [30], the parameter of

CROC is chosen by five-fold cross-validation on the trainingset.

4.4.2 UCI datasets

We first use eight datasets (derm, german, heart, hepatitis,iono, rice, thyroid, wdbc,

wpbc, yeast) from the UCI machine learning repository [6] toevaluate the perfor-

mance of DSRIC. The number of classes (c), number of features(f) and number

of samples (s) of the eight datasets are illustrated in the right column of Table 4.3.

The average classification accuracy, testing time and testing memory over the eights

datasets are listed at the bottom of Table 4.3.

From Table 4.3, we can see that the accuracy of DSRIC is about 2% higher than

NSC, SRC and CRC, and 3% higher than CROC. Besides, DSRIC is much faster

than the other representation based classifiers. Compared with NSC, SRC, CRC and

CROC, the running time speedup by DSRIC is 64, 547, 106 and 130, respectively.

Because NAH and NCH have to solve a QP problem for each query sample, the

time consumption is very high compared with other classifiers. In terms of memory

requirement, in this experiment DSRIC also has clear advantage. It costs less than

1/10 memory of other classifiers except for SVM, which is not a representation

based classifier.
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Table 4.3 Classification accuracy, testing time and testing memory onUCI datasets.

Database NNC SVM SRC NSC NCH NAH CRC CROCDSRIC c/f/s

derm 96.1 96.5 97.1 97.4 96.5 96.9 97.1 97.7 97.6 6/34/366

german 68.8 73.6 74.1 70.6 70.6 71.3 72.9 72.9 73.4 2/20/1000

heart 76.7 83.3 83 78.1 76.3 76.5 84.1 83.3 83.7 2/13/270

hepatitis 82.5 86.2 86.8 86.8 82.1 81.7 84.7 86.7 87.5 2/19/155

iono 86.4 87.6 91 94.4 89.2 80.3 92.7 83.3 94.7 2/34/351

rice 80 78.2 82.9 84.7 80.7 80.5 83.8 82.9 86.6 2/5/104

thyroid 95.3 89.8 90.2 95.8 96.3 95.8 91.1 87.4 95.8 3/5/215

wdbc 95.4 97.7 93.5 92.3 94 93.9 94.7 95.3 95.6 2/30/569

wpbc 70.7 77.4 79.4 76.8 75.4 74.7 76.3 79.4 80.9 2/33/198

yeast 48.8 56.4 54.9 56.9 49.3 50.1 54.6 54.3 57.7 10/7/1484

Accuracy 80.1 82.7 83.3 83.4 81.0 80.2 83.2 82.385.4

Time 2.8×104 1.4 547 64 4.9×105 6.6×105 106 130 1

Memory 10.48 0.08 10.4820.97 10.48 10.48 20.97 31.451

4.4.3 Handwritten digit recognition

USPS

The USPS dataset contains 7,291 training and 2,007 testing images [85]. Each

class has about 650 training samples, and each handwritten digit sample is a 16×16

image. The experimental results are listed in listed in Table 4.4. Since each class has

enough training samples and the feature dimension is not high in this experiment,
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the simple NNC achieves the best accuracy. The recognition rate of DSRIC is

only 0.3% lower than NNC. However, DSRIC is significantly faster than NNC with

10,000 times speedup. In addition, the memory consumption of NNC is 2.8 times

larger than DSRIC.

Table 4.4 Recognition rate, testing time and testing memory on USPS dataset.

Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 94.6 92.9 94.0 94.3 91.9 92.3 90.6 90.1 94.3

Time 1×104 22.9 1×104 165.6 5.1×104 7.7×104 150.8 977.1 1

Memory 2.848 0.004 2.848 5.696 2.848 2.848 5.696 8.5441

MNIST

The MNIST [104] dataset includes a training set of 60,000 samples and a test set

of 10,000 samples. The size of each image is 28×28 and there are 10 classes of

digit images. Compared to USPS, there are more training samples. Table 4.5 lists

the recognition rate, testing time and testing memory by different methods. Similar

to the results in USPS, the recognition rate of DSRIC equals to NSC, and 1.4%

lower than NNC. However, DSRIC avoids the one-to-one searching process in the

training set and is 18,000 faster than NNC, which is very important in real-time

applications. Compared with SRC, DSRIC is 51 times faster and saves 7.65 times

the memory. Please note that the performances of NCH, NAH, CRC and CROC are

not reported because these methods need to process a 60,000×60,000 square matrix

and out-of-memory in our PC.
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Table 4.5 Recognition rate, testing time and testing memory on MNIST dataset.

Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 97.1 94.6 94.5 95.7 / / / / 95.7

Time 1.8×104 51 6.3×104 649.3 / / / / 1

Memory 7.653 0.001 7.653 15.306 7.653 7.653 15.306 22.9591

4.4.4 Face recognition

Extended Yale B database

The Extended Yale B database contains about 2,414 frontal face images of 38 indi-

viduals [59]. The face images were cropped and resized to 24×21 pixels. Follow-

ing the experiment setting in [201][214], Subsets 1 and 2 (717 images, normal-to-

moderate lighting conditions) are used for training, and Subset 3 (453 images, more

extreme lighting conditions) is used for testing. The experimental results are shown

in Table 4.6. From Table 4.6, we can see that DSRIC achieves the best recognition

rate. Compared with SRC, the FR efficiency is greatly improved.

Table 4.6 Recognition rate, testing time and testing memory on Extended Yale B

database.

Method NN SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 47.0 92.5 97.6 78.4 67.7 80.1 97.2 97.197.8

Time 68.8 0.7989 40.1 1.2 230.1 90.1 1.5 3.5 1

Memory 0.0374 0.002 0.0374 0.0749 0.0374 0.0374 0.0749 0.1123 1
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LFW database

The LFW database [82] contains images of 5,749 subjects in unconstrained environ-

ment. LFW-a is a version of LFW after alignment using commercial face alignment

software. We gathered the subjects which have no less than eleven samples and then

formed a dataset with 136 subjects from LFW-a. Each face image is firstly cropped

to 102×120 and then resized to 32×32 images. Some face images of LFW database

are shown in Fig. 4.4. We select 9 face images per subject for training and use the

remaining face images for testing. Hence, there are 1,224 training samples and the

feature dimension is 1024.

Figure 4.4 Face images of LFW database.

The experimental results are shown in Table 4.7. Though SVM has the fastest

speed and least memory requirement, it has the worse accuracy. The representation

based classifiers all lead to much better accuracy than SVM. DSRIC has the highest

recognition accuracy. Since there are 158 subject and the feature dimension is 1024,

DSRIC does not show advantages in memory in this experiment.

4.4.5 Gender classification

In this section, a non-occluded subset (14 images per subject) of the AR dataset

[123] is used. It includes face images of 50 male and 50 femalesubjects. The im-

ages from the first 25 males and 25 females are used for training and the remaining
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Table 4.7 Recognition rate, testing time and testing memory on LFW database.

Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 20.1 16.3 60.4 37.8 34.5 37.7 58.8 60.060.8

Time 14.7 0.32 25 0.55 80.2 107.9 0.77 1.28 1

Memory 0.009 0.001 0.009 0.018 0.009 0.009 0.018 0.026 1

for testing. Following the experiment setting in [226], each face image is cropped

to 60×43 and PCA is used to reduce the feature dimension to 50. The classifica-

tion accuracy, testing time and testing memory are given in Table 4.8. One can see

that DSRIC achieves the highest accuracy, and it costs much less running time and

memory than others (except for SVM in memory consumption).

Table 4.8 Classification accuracy, testing time and testing memory onon Gender classi-

fication dataset.

Method NNC SVM SRC NSC NCH NAH CRC CROC DSRIC

Accuracy 90.3 91.4 93.1 93.4 91.4 91.4 93.1 92.994.7

Time 1.4×104 23.8 8.4×103 44.4 2.5×105 3.6×105 41.1 92 1

Memory 7 0.2 7 14 7 7 14 21 1

4.5 Conclusions and discussions

In this chapter we investigated the representation based classification problem from

a “feature oriented” perspective. Different from the existing representation based

classifiers that represent a sample as the linear combination of other samples, we
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explored to represent a feature by its relevant features in the data, which we call

self-representation. A self-representation induced classifier (SRIC) was then pro-

posed, which learns a self-representation matrix per classand uses these matrices

for classification. The query sample is then classified to theclass with the min-

imal reconstruction error. We proved that SRIC is equivalent to nearest subspace

classifier (NSC) withl2-norm regularization in terms of classification decision. Fur-

thermore, it can be shown that SRIC is essentially the principle component analysis

(PCA) with eigenvalue shrinkage. We then proposed a discriminative SRIC (D-

SRIC) classifier, which not only minimizes the feature self-representation residual

of this class but represents little the features of other classes. The time and space

complexity of DSRIC (except for the training memory) is invariant to the number

of training samples, which makes it very suitable for large scale datasets with many

training samples, e.g., USPS and MNIST. Experimental results on different pattern

recognition tasks showed that DSRIC achieves comparable orsuperior recognition

rate to state-of-the-art representation based classifiers, while it has higher efficiency

and lower memory consumption.

As the time complexity of the proposed DSRIC is only related with the number

of features and classes, DSRIC can well apply to classification with large amounts

of samples. However, in computer vision tasks, the image features are usually high-

dimensional. In this case, we can reduce the feature dimension firstly and then use

DSRIC for classification.



Chapter 5

Image Set based Collaborative

Representation

Apart from image based classification, in practice there arealso many image set

based classification problems, e.g., video based face recognition, multi-view object

recognition. Intuitively, representation based classifiers (i.e., SRC/CRC) can be di-

rectly extended to image set based classification tasks by representing each image

of the set separately. However, they ignore the distinctiveness of samples in the

query image set. The existing set to set distances ignore thecorrelation among the

training image sets. Additionally, the redundancy in the image set should be taken

into account. In this chapter, we develop image set based collaborative represen-

tation models, which simultaneously consider the distinctiveness of samples in the

query image set, the correlation among the training image sets and the redundancy

in the image set.

94
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5.1 Introduction

Image set based classification has been increasingly employed in face recognition

[5, 21, 29, 40, 78, 136, 145, 193, 199, 206] and object categorization [98, 190] in

recent years. Due to the rapid development of digital imaging and communication

techniques, now image sets can be easily collected from multi-view images using

multiple cameras [98], long term observations [199], personal albums and news

pictures [162], etc. Meanwhile, image set based face recognition (ISFR) has shown

superior performance to single image based face recognition since the many sample

images in the gallery set can convey more within-class variations of the subject

[78]. One special case of ISFR is video based face recognition, which collects face

image sets from consecutive video sequences [105, 171, 206]. Similar to the work

in [21, 78], in this chapter we focus on the general case of ISFR without considering

the temporal relationship of samples in each set.

The key issues in image set based classification include how to model a set and

consequently how to compute the distance/similarity between query and gallery

sets. Researchers have proposed parametric and non-parametric approaches for

image set modeling. Parametric modeling methods model eachset as a parametric

distribution, and use Kullback-Leibler divergence to measure the similarity between

the distributions [5, 199]. The disadvantage of parametricset modeling lies in the

difficulty of parameter estimation, and it may fail when the estimated parametric

model does not fit well the real gallery and query sets [78, 98,193].

Many non-parametric set modeling methods have also been proposed, including

subspace [98, 206], manifold [47, 69, 190, 191, 193], affine hull [21, 78], convex

hull [21], and covariance matrix based ones [20, 87, 191]. The method in [98]
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employs canonical correlation to measure the similarity between two sets. A pro-

jection matrix is learned by maximizing the canonical correlations of within-class

sets while minimizing the canonical correlations of between-class sets. The meth-

ods in [192] use manifold to model an image set and define a manifold-to-manifold

distance (MMD) for set matching. MMD models each image set asa set of local

subspaces and the distance between two image sets is defined as a weighted aver-

age of pairwise subspace to subspace distance. As MMD is a non-discriminative

measure, Manifold Discriminant Analysis (MDA) is proposedto learn an embed-

ding space by maximizing manifold margin [190]. The performance of subspace

and manifold based methods may degrade much when the set has asmall sample

size but big data variations [78, 191]. In affine hull and convex hull based meth-

ods [21, 78], the between-set distance is defined as the distance between the two

closest points of the two sets. When convex hull is used, the set to set distance is

equivalent to the nearest point problem in SVM [18]. In [79],a method called s-

parse approximated nearest points (SANP) is proposed to measure the dissimilarity

between two image sets. To reduce the model complexity of SANP, a reduced mod-

el, which is called regularized nearest points (RNP), is proposed by modeling each

image set as a regularized hull [220]. However, the closest points based methods

[21, 78, 204, 220] rely highly on the location of each individual sample in the set,

and the model fitting can be heavily deteriorated by outliers[191]. A collaborative

regularized nearest points (CRNP) method is proposed in [203] to extend RNP.

To improve the classification performance, the kernel trickcan be introduced

to map the image sets to high-dimensional subspaces, e.g., kernel mutual subspace

method [51] and kernel discriminant transformation [32]. In [191], an image set is
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represented by a covariance matrix and a Riemannian kernel function is defined to

measure the similarity between two image sets by a mapping from the Riemannian

manifold to a Euclidean space. With the kernel function between two image sets,

traditional discriminant learning methods, e.g., linear discriminative analysis [10],

partial least squares [154], kernel machines, can be used for image set classification

[20, 87]. The disadvantages of covariance matrix based methods include the com-

putational complexity of eigen-decomposition of symmetric positive-definite (SPD)

matrices and the curse of dimensionality with limited number of training sets.

No matter how the set is modeled, in almost all the previous works [21, 47, 69,

78, 98, 190, 191, 193, 206, 220], the query set is compared to each of the gallery sets

separately, and then classified to the class closest to it. Such a classification scheme

does not consider the correlation between gallery sets, like the nearest neighbor or

nearest subspace classifier in single image based face recognition. In recent years,

the sparse representation based classification (SRC) [201]has shown interesting

results in image based face recognition. SRC represents a query face as a sparse

linear combination of samples from all classes, and classifies it to the class which

has the minimal representation residual to it. Though SRC emphasizes much on the

role of l1-norm sparsity of representation coefficients, it has been shown in [226]

that the collaborative representation mechanism (i.e., using samples from all class-

es to collaboratively represent the query image) is more important to the success

of SRC. The so-called collaborative representation based classification (CRC) with

l2-regularization leads to similar results to SRC but with much lower computational

cost [226]. In [217], feature weights are introduced to the representation model to

penalize pixels with large error so that the model is robust to outliers. Moreover,



Chapter 5. Image Set based Collaborative Representation 98

a kernel sparse representation model is proposed for face recognition by mapping

features to a high dimensional Reproducing Kernel Hilbert Space (RKHS), which

further improves the recognition accuracy [56]. Similarly, a robust kernel represen-

tation model is proposed with iteratively reweighted algorithms [216].

One may apply SRC/CRC to ISFR by representing each image of the query

set over all the gallery sets, and then using the average or minimal representation

residual of the query set images for classification. However, such a scheme does

not exploit the correlation and distinctiveness of sample images in the query set. If

the average representation residual is used for classification, the discrimination of

representation residuals by different classes will be reduced; if the minimal repre-

sentation residual is used, the classification can suffer from the outlier images in the

query set. In addition, there are redundancies in an image set. The redundancies

will lead to great storage burden and computational complexity, and deteriorate the

recognition performance.
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Figure 5.1 Image set based collaborative representation and classification (ISCRC).

In this chapter, we propose a novel image set based collaborative representation

and classification (ISCRC) approach for ISFR, as illustrated in Fig. 5.1. The query

set, denoted byY (each column ofY is an image in the set) is modeled as a hull
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Ya with the sum of coefficients ina being 1. LetXk, k = 1, 2, ...,K, be a gallery

set. We then propose a collaborative representation based set (i.e.,Y) to sets (i.e.,

X = [X1, ..., Xk, ..., XK]) distance (CRSSD for short); that is, we represent the hull

Ya over the gallery setsX asXb, whereb is a coefficient vector. Consequently, we

can classify the query setY by checking which gallery set has the minimal repre-

sentation residual to the hullYa. To get a stable solution to CRSSD, regularizations

can be imposed ona and b. In the proposed ISCRC, the gallery setsXk can be

compressed to a smaller size to remove the redundancy so thatthe time complex-

ity of ISCRC can be much reduced without sacrificing the recognition rate. Our

experiments on three benchmark ISFR databases show that theproposed ISCRC is

superior to state-of-the-art methods in terms of both recognition rate and efficiency.

To better illustrate the motivation of ISCRC, we use an example to explain the

superiority of ISCRC over set to set distance based classifiers (e.g., CHISD [21],

SANP [78], RNP [220]) from a large margin perspective. Largemargin princi-

ple has been widely used in classifier design (e.g., SVM [18],LVQ [39]), ensem-

ble learning (e.g., AdaBoost [155]) and metric learning (e.g., MDA [190], LMNN

[14]). In classification, large margin can lead to better generalization ability [167].
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In [195], SRC is interpreted as a margin classifier and a margin is derived for SRC.

Actually, in image set based classification, MDA [190], DCC [98] and CDL [191]

all try to learn a discriminative set to set distance in a large margin manner, i.e., pull

the similar image sets together while push the dissimilar image sets away. Similar

to sample margin in nearest neighbor classifier, image set margin can be defined.

Given a query setY but multiple gallery setsXk, k = 1, 2, ...,K, as illustrated in Fig.

5.2, the image set margin is defined as:

marginY = d(Y, Xnearmiss) − d(Y, Xnearhit) (5.1)

whereXnearhit is the nearest gallery set ofY with the same class label,Xnearmiss is

the nearest gallery set ofY with a different class label,d(Y, Xnearmiss) is the distance

betweenY andXnearmiss, andd(Y, Xnearhit) is the distance betweenY andXnearhit. If

marginY is positive,Y can be correctly classified; otherwise,Y would be misclassi-

fied. Hence, a large margin is desired in image set classification.

Fig. 5.3 shows the margin comparison between the proposed ISCRC and hul-

l based set to set distances (i.e., CHISD [21] and RNP [220]),where the Hon-

da/USCD1 database [105] is used. Fig. 5.3(a) is the comparison between ISCRC

and convex hull based image set distance, i.e., CHISD. The image sets marked by

pentagram are misclassified by CHISD with negative margin while correctly clas-

sified by ISCRC with positive margin. Besides, the margin of the other image sets

are all enlarged, which represents better generalization ability in classification. Fig.

5.3(b) illustrates the comparison between ISCRC and regularized hull based image

set distance, i.e., RNP. Although RNP classifies all the image sets correctly with

positive margin, ISCRC results in much larger margin than RNP. Both comparisons

1http://vision.ucsd.edu/ leekc/HondaUCSDVideoDatabase/HondaUCSD.html
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Figure 5.3 Margin comparison between ISCRC and CHISD (a) and RNP (b).

show that the proposed ISCRC can lead to larger image set margin compared with

set to set distance, indicating that ISCRC would get better generalization perfor-

mance.

The rest of this chapter is organized as follows. Section 5.2discusses in detail

the proposed CRSSD and ISCRC methods. Section 5.3 presents the regularized

hull based ISCRC, followed by the convex hull based ISCRC in Section 5.4. Sec-

tion 5.5 conducts experiments and Section 5.6 gives our conclusions. The main

abbreviations used in the development of our method are summarized in Table 5.1.
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Table 5.1 The main abbreviations used in this chapter.

ISFR image set based face recognition

SRC sparse representation based classification

CRC collaborative representation based classification

CRSSD
collaborative representation based

set to sets distance

ISCRC
image set based collaborative

representation and classification

RH-ISCRC regularized hull based ISCRC

KCH-ISCRC kernelized convex hull based ISCRC

5.2 Collaborative representation based set to sets dis-

tance

We first introduce the hull based set to set distance in 5.2.1,and then propose the

collaborative representation based set to sets distance (CRSSD) in 5.2.2. With

CRSSD, the image set based collaborative representation and classification (IS-

CRC) scheme can be naturally proposed. In 5.2.3 and 5.2.4, the convex hull and

regularized hull based CRSSD are respectively presented.

5.2.1 Hull based set to set distance

In image set based classification, compared to the parametric modeling of image

set, non-parametric modeling does not impose assumptions on the data distribution

and inherits many favorable properties [78, 98, 191]. One simple non-parametric
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set modeling approach is the hull based modeling [21, 78], which models a set as

the linear combination of its samples. Given a sample setY = {y1, ..., yi, ..., yna},

yi ∈ ℜd, the hull of setY is defined as:H(Y) = {∑ai yi}. Usually,
∑

ai = 1 is

required and the coefficientsai are required to be bounded:

H(Y) = {∑ai yi |
∑

ai = 1, 0 ≤ ai ≤ τ} (5.2)

If τ = 1, H(Y) is a convex hull [153]. Ifτ < 1, H(Y) is a reduced convex hull [18].

For the convenience of expression, in the following development we call both the

cases convex hull.

By modeling a set as a convex hull, the distance between setY = {y1, ..., yi, ..., yna}

and setZ = {z1, ..., z j, ..., znz} can be defined as follows:

mina,b

∥

∥

∥

∑

ai yi −
∑

b j z j

∥

∥

∥

2

2

s.t.
∑

ai = 1, 0 ≤ ai ≤ τ
∑

b j = 1, 0 ≤ b j ≤ τ

(5.3)

When the two sets have no intersection, the set to set distance in Eq. (5.3) becomes

the distance between the nearest points in the two convex hulls (CHISD [21]), as

illustrated in Fig. 5.4. It is not difficult to see that such a distance is equivalent

to the distance computed by SVM [18]. If the discriminative function of SVM is

f = wx + b, thenw =
∑

ai yi −
∑

b j z j and the margin is 2/‖w‖. If we consider

each image set as one class, then maximizing margin between the two classes is

equivalent to finding the set to set distance [23]. In image set based face recognition,

there is usually no intersection between image sets of different persons. If there are

intersections between two image sets, thenτ can be set as below 1 and the resulting

problem can be related with soft-margin SVM andυ-SVM [12, 21]. Unfortunately,
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such a distance relies highly on the location of each individual sample and can be

sensitive to outliers [191]. More detailed discussions about convex/affine hull based

classifiers can be found in [12, 18, 21, 142].

Y Z

Figure 5.4 Convex hull based set to set distance.

5.2.2 Collaborative representation based set to sets distance and

classification

In image set based face recognition (ISFR), we have a query set Y but multiple

gallery setsXk, k = 1, 2, ...,K. One fact in face recognition is that the face images

from different people still have much similarity. If we compute the distance between

Y and eachXk by using methods such as hull based set to set distance (referto

6.2.1), the correlation between different gallery sets will not be utilized. As we

discussed in the Introduction section, inspired by the SRC [201] and CRC [226]

methods in image based face recognition, here we propose a novel ISFR method,

namely image set based collaborative representation and classification (ISCRC).

The key component of ISCRC is the collaborative representation based set to

sets distance (CRSSD) defined as follows. LetX = [X1, ..., Xk, ..., XK] be the con-

catenation of all gallery sets. We model each ofY andX as a hull, i.e.,Ya andXb,

wherea andb are coefficient vectors, and then we define the CRSSD between set
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Y and setsX as:

mina,b ‖Ya − Xb‖2 s.t.
∑

ai = 1 (5.4)

whereai is the i th coefficeint in a and we let
∑

ai = 1 to avoid the trivial solution

a = b = 0. In Eq. (5.4), the hullYa of the query setY is collaboratively represented

over the gallery sets; however, the coefficients ina will make the samples inY be

treated differently in the representation and the subsequent classification process.

By minimizing the distance betweenYa andXb, the outliers (e.g., one frame with

large corruptions/occlusions) in both the query image setY and the gallery image

setsX will be assigned with very small representation coefficients. Therefore, the

impact of outliers can be much alleviated. Our experimentalresults in Section 6.4

showed that ISCRC is robust to face variations in different conditions.

Suppose that the coefficient vectorŝa and b̂ are obtained by solving Eq. (5.4),

then we can writêb as b̂ = [ b̂1; ...; b̂k; ...; b̂K], where b̂k is is the sub-vector of

coefficients associated with gallery setXk. Similar to the classification in SRC and

CRC, we use the representation residual of hullYâ by each setXk to determine the

class label ofY. The classifier in the proposed ISCRC is:

Identity(Y) = argmink {rk} (5.5)

whererk =
∥

∥

∥Yâ − Xkb̂k

∥

∥

∥

2

2
.

Clearly, the solutions toa andb in Eq. (5.4) determine the CRSSD and hence

the result of ISCRC. In order to get stable solutions, we could impose reasonable

regularizations ona andb. In the following sections 6.2.3 and??, we discuss the

convex hull based CRSSD and regularized hull based CRSSD, respectively.
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5.2.3 Convex hull based CRSSD

One important instantiation of CRSSD is the convex hull based CRSSD. In this

case, both the hullsYa andXb are required to be convex hulls, and then the distance

in Eq. (5.4) becomes

mina,b ‖Ya − Xb‖2

s.t.
∑

ai = 1,
∑

b j = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,

0 ≤ b j ≤ τ, j = 1, ..., nb

(5.6)

whereai andb j are thei th and j th coefficients ina andb, respectively,na andnb are

the number of samples in setY and setsX, respectively, andτ ≤ 1.

Y 1 2[ , ,..., ]K=X X X X

Figure 5.5 Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is shownin Fig. 5.5. Dif-

ferent from the CHISD method in [21], which models each gallery set as a convex

hull, here we model all the gallery sets as one big convex hull. Similar to the closest

points searching in SVM, convex hull based CRSSD aims to find the closest points

in the query setY and the whole gallery setX in a large margin manner. With con-

vex hull based CRSSD, the corresponding ISCRC method can be viewed as a large
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margin based classifier in some sense. Nonetheless, the classification rules in SVM

and ISCRC are very different.

5.2.4 lp-norm regularized hull based CRSSD

The convex hull modeling of a set can be affected much by outlier samples in the

set [191]. To make CRSSD more stable, thelp-norm regularized hull can be used

to modelY andX. For the query setY, we should keep the constraint
∑

ai = 1 to

avoid the trivial solution, and thelp-norm regularized hull ofY is defined as

H(Y) = {∑ai yi | ‖a‖lp
< δ} s.t.

∑

ai = 1 (5.7)

For the gallery setX, its regularized hull is defined as:

H(X) = {∑bi xi | ‖b‖lp
< δ} (5.8)

Finally, the regularized hull based CRSSD betweenY andX is defined as:

mina,b ‖Ya − Xb‖22
s.t.‖a‖lp

< δ1, ‖b‖lp
< δ2,

∑

ai = 1
(5.9)

5.3 Regularized hull based ISCRC

In Section 6.4.2, we introduced CRSSD, and presented two important instantiations

of it, i.e., convex hull based CRSSD and regularized hull based CRSSD. With either

one of them, the ISCRC (refer to Eq. (5.5)) can be implementedto perform ISFR. In

this section, we discuss the minimization of regularized hull based CRSSD model,

and the corresponding classification scheme is called regularized hull based ISCRC,

denoted by RH-ISCRC. The minimization of convex hull based CRSSD and the

corresponding classification scheme will be discussed in Section ??.
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5.3.1 Main model

We can re-write the regularized hull based CRSSD model in Eq.(5.9) as its La-

grangian formulation:

mina,b ‖Ya − Xb‖22 + λ1‖a‖lp
+ λ2‖b‖lp

s.t.
∑

ai = 1
(5.10)

whereλ1 andλ2 are positive constants to balance the representation residual and the

regularizer.

In ISFR, each gallery setXk often has tens to hundreds of sample images so

that the whole setX can be very big, making the computational cost to solve Eq.

(5.10) very high. Considering the fact that the images in each set Xk have high

redundancy, we can compressXk into a much more compact set, denoted byDk,

via dictionary learning methods [141], such as KSVD [157] and metaface learning

[218]. Let D = [ D1, ..., Dk, ..., DK]. We can then replaceX by D in Eq. (5.10) to

compute the regularized hull based CRSSD:

(â, β̂) = arg mina,β























‖Ya − Dβ‖22+

λ1‖a‖lp
+ λ2‖β‖lp























s.t.
∑

ai = 1

(5.11)

whereβ = [β1; ...; βk; ...; βK] and βk is the sub-vector of coefficients associated

with Dk. Based on our experimental results, compressingXk into Dk significantly

improve the speed with almost the same ISFR rate.

Eitherl1-norm orl2-norm can be used to regularizea andβ, while l1-regularization

will lead to sparser solutions but with more computational cost. Like in l1-SVM

[230] and SRC [201], sparsity can enhance the classificationrate if the features are
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not informative enough. Note that if the query setY has only one sample, then

a = 1 and the proposed model in Eq. (5.11) will be reduced to the SRC (for

l1-regularization) or CRC (forl2-regularization) scheme. Next, we present the opti-

mization ofl2-norm andl1-norm regularized hull based ISCRC in Section 5.3.2 and

Section 5.3.3, respectively.

5.3.2 l2-norm regularized hull based ISCRC

Whenl2-norm is used to regularizea andβ, the problem in Eq. (5.11) has a closed-

form solution. The Lagrangian function of Eq. (5.11) becomes

L(a, β, λ3) = ‖Ya − Dβ‖22 + λ1 ‖a‖22 + λ2 ‖β‖22
+λ3(ea − 1)

=

∥

∥
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∥

∥

∥
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(5.12)

wheree is a row vector whose elements are 1.

Let z =






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, A = [Y − D], B =






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andd = [e 0]T. Then Eq. (5.12)

becomes:

L(z, λ3) = zT AT Az + zT Bz + λ3(dT z − 1) (5.13)

There are

∂L
∂λ3
= dT z − 1 = 0 (5.14)
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∂L
∂z
= AT Az + Bz + λ3d = 0 (5.15)

According to Eq. (5.14) and Eq. (5.15), we get the closed formsolution to Eq.

(5.12):

ẑ =























â

β̂























= z0/d
T z0 (5.16)

wherez0 = (AT A + B)−1d.

After â and β̂ are got, the distance between query setY and a gallery setXk

is calculated asrk =
∥

∥

∥Yâ − Dkβ̂k

∥

∥

∥

2

2
, and then the class label ofY is determined by

Eq. (5.5). For RH-ISCRC-l2, the main time consumption is to solve the inverse of

matrix (AT A + B). Hence, the time complexity of RH-ISCRC-l2 is O(
(

na + nβ
)3

),

wherena is the number of sample images inY andnβ is the number of atoms inD.

The CRNP method [203] also collaboratively represents the query set over the

gallery sets. The differences between the proposed RH-ISCRC-l2 and CRNP lie in

the optimization procedure and the classification rule. RH-ISCRC-l2 has a closed-

form solution while CRNP adopts the same optimization method as RNP [220],

which iteratively converges to the global optimal solution. Besides, CRNP uses

the same classification rule as RNP, which utilizes both the reconstruction error

and rank of image set matrix. RH-ISCRC-l2 only uses the reconstruction error for

classification.

5.3.3 l1-norm regularized hull based ISCRC

Whenl1-norm regularization is used, we use the alternating minimization method,

which is very efficient to solve multiple variable optimization problems [68]. For
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Eq. (5.11), we have the following augmented Lagrangian function:

L(a, β, λ) = ‖Ya − Dβ‖22 + λ1‖a‖1 + λ2‖β‖1
+ < λ, ea − 1 > +γ2 ‖ea − 1‖22

(5.17)

whereλ is the Lagrange multiplier,〈·, ·〉 is the inner product, andγ > 0 is the

penalty parameter.

Thena andβ are optimized alternatively with the other one fixed. More specif-

ically, the iterations of minimizinga go as follows:

a(t+1) = arg minaL(a, β(t), λ(t))

= arg mina f (a) + γ2
∥

∥

∥ea − 1+ λ(t)/γ
∥

∥

∥

2

2

= arg mina

∥

∥

∥Ỹa − x
∥

∥

∥

2

2
+ λ1‖a‖1

(5.18)

where f (a) =
∥

∥

∥Ya − Dβ(t)
∥

∥

∥

2

2
+ λ1‖a‖lp

, Ỹ =
[

Y; (γ/2)1/2e
]

, x = [ Dβ(t); (γ/2)1/2(1−

λ(t)/γ)].

The problem in Eq. (5.18) can be easily solved by some representative l1-

minimization approaches such as LARS [45].

After a(t+1) is updated,β(t+1) can be obtained by solving anotherl1-regularized

optimization problem:

β(t+1) = arg minβL(a(t+1), β, λt)

= arg minβ
∥

∥

∥Ya(t+1) − Dβ
∥

∥

∥

2

2
+ λ2‖β‖1

(5.19)

Oncea(t+1) andβ(t+1) are got,λ is updated as follows:

λ(t+1) = λ(t) + γ
(

ea(t+1) − 1
)

(5.20)

The algorithm of RH-ISCRC-l1 for ISFR is summarized in Table 5.2 and it con-

verges. The problem in Eq. (5.17) is convex, and the subproblems in Eq. (5.18)
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and Eq. (5.19) are convex and can be solved using the LARS algorithm. It had

been shown in [133], for the general convex problem, the alternating minimiza-

tion approach would converge to the correct solution. One curve of the objective

function value of RH-ISCRC-l1 versus the iteration number is shown in Fig. 5.6.

Honda/USCD database [105] is also used. The query setY and each gallery setXk

has 200 frames. Note that one image set is acquired from one video clip and there

is no intersection between the query set and each gallery set. We compress each set

Xk into a dictionaryDk with 20 atoms by using the metaface learning method [218].

Since there are 20 gallery sets, the setD = [ D1, ..., Dk, ..., D20] has 20× 20=400

atoms. From the figure we can see that RH-ISCRC-l1 converges after about five

iterations.
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Figure 5.6 Convergence of RH-ISCRC-l1.

Since the complexity of sparse coding isO(m2nε), wherem is the feature dimen-

sion,n is the atom number andε ≥ 1.2 [96], we can get that the time complexity of

RH-ISCRC-l1 is O(lm2(na
ε + nβε)), wherena is the number of samples inY, nβ is

the number of atoms inD andl is the iteration number.
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Table 5.2 Algorithm of RH-ISCRC for ISFR.

Input : query setY; gallery setsX = [X1, ..., Xk, ..., XK], λ1 andλ2.

Output : the label of query setY.

Initialize β(0), λ(0) and 0← t.

CompressXk to Dk, k = 1, 2, ...,K using metaface learning [218].

While t < maxnumdo

Step 1: Updatea by Eq. (5.18);

Step 2: Updateβ by Eq. (5.19);

Step 3: Updateλ by Eq. (5.20);

Step 4:t ← t + 1.

End while

Computerk =
∥

∥

∥Yâ − Dkβ̂k

∥

∥

∥

2

2
, k = 1, 2, ...K.

Identity(Y)=arg mink{rk}.

5.3.4 Examples and discussions

Let’s use an example to better illustrate the classificationprocess of RH-ISCRC. We

use the Honda/USCD database [105]. The experiment setting is the same as Fig.

5.6. By Eq. (5.11), the computed coefficients ina andβ are plotted in Fig. 5.7 (by

l1-regularization) and Fig. 5.8 (byl2-regularization), respectively. The highlighted

coefficients in the figures are associated with setX10, which has the same class label

as Y. Clearly, these coefficients are much more significant than the coefficients

associated with the other classes. Meanwhile, from Fig. 5.7and Fig. 5.8 we can

see thatl1-regularized hull based CRSSD leads to sparsera andβ, implying that
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only few samples are dominantly involved in representationand classification.
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Figure 5.7 The coefficient vectorsâ (of Y) and β̂ (of D) by l1-regularized hull based

CRSSD.
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Figure 5.8 The coefficient vectorsâ (of Y) and β̂ (of D) by l2-regularized hull based

CRSSD.

In Fig. 5.9, we show the reconstructed faces byYâ with l1-regularized hull

based CRSSD. The distances betweenYâ and eachDkβ̂k, i.e., rk, are also given.

We see thatr10 is 0.03, which is the minimal one among all the gallery sets, mean-

ing that ISCRC will make the correct recognition. Here the relationships between

ISCRC and manifold based methods can be revealed. MMD assumes that an image

set can be modeled as a set of local subspaces so that the imageset distance is de-

fined as the weighted average distance between any two local subspaces [193]. The

distance between two local subspaces is related to the cluster exemplar and prin-

ciple angel. Correspondingly, ISCRC seeks for a local subspace (Yâ) in the query

image set and a local subspace (Dβ̂) in all the gallery sets, as shown in Fig. 5.7 .
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Figure 5.9 Reconstructed facesYâ, Dβ̂, Dkβ̂k (we normalized eachDkβ̂k for better vi-

sualization). The number over eachDkβ̂k is the residualrk =
∥

∥

∥Yâ − Dkβ̂k

∥

∥

∥

2

2.

In classification, the distance between the query set and thetemplate set of thekth

class is the distance between the local subspace (Yâ) and the local subspaceDkβ̂k.

5.4 Kernelized convex hull based ISCRC

We then focus on how to compute the convex hull based CRSSD in Eq. (5.6) and

use it for ISCRC. Since there can be many sample images in gallery sets,X can be

a fat matrix (note that usually we use a low dimensional feature vector to represent

each face image). Even we compressX into a more compact setD, the system can

still be under-determined. In Section 3 we imposed thelp-norm regularization on

a and b to make the solution stable. When the convex hull is used, however, the

constraint may not be strong enough to get a stable solution of Eq. (5.6). In addi-

tion, if the underlying relationship between the query set and gallery sets is highly

nonlinear, it is difficult to approximate the hull of query set as a linear combination

of gallery sets.

One simple solution to solving both the above two problems isthe kernel trick;
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that is, we can map the data into a higher dimensional space where the subjects can

be approximately linearly separable. The mapped gallery data matrix in the high-

dimensional space will be generally over-determined. In such a case, the convex

hull constraint will be strong enough for a stable solution.The kernelized convex

hull based CRSSD model is:

mina,β

∥

∥

∥φ(Y)a − [φ(D1), φ(D2), ..., φ(DK)
]

β
∥

∥

∥

2

s.t.
∑

ai = 1,
∑

β j = 1,

0 ≤ ai ≤ τ, i = 1, ..., na,

0 ≤ β j ≤ τ, j = 1, ..., nβ.

(5.21)

The above minimization can be easily solved by the standard quadratic opti-

mization (QP [35]) method. The solution exhibits global andquadratic conver-

gence, as proved in [35]. Different kernel functions can be used, e.g., linear kernel

and Gaussian kernel. We call the corresponding method kernelized convex hull

based ISCRC, denoted by KCH-ISCRC. The classification rule is the same as RH-

ISCRC withrk =
∥

∥

∥φ(Y)â − φ(Dk)β̂k

∥

∥

∥

2
2. As convex hull based CRSSD is to solve a

convex QP problem, the time complexity of KCH-ISCRC isO((nβ + na)3), which is

similar to SVM. The algorithm of KCH-ISCRC is given in Table 5.3. To reduce the

computational cost, the kernel matrixk(D, D) can be computed and stored. When

a query setY comes, we only need to calculatek(Y,Y) andk(Y, D).

Like in Fig. 5.7 and Fig. 5.8, in Fig. 5.10 we show the coefficient vectorŝa and

β̂ solved by Eq. (5.21). The Gaussian kernel is used and the experimental setting

is the same as that in Figs. 5.7 and 5.8 (the only difference is that each compressed

gallery setDk has 50 atoms). We can see that the coefficients associated with gallery

set D10 are larger than the other gallery sets, resulting in a smaller representation
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Table 5.3 Algorithm of KCH-ISCRC for ISFR.

Input : query setY; gallery setsX = [X1, ..., Xk, ..., XK], τ.

Output : the label of query setY.

CompressXk to Dk, k = 1, 2, ...,K by metaface learning [220];

Solve the QP problem in Eq. (5.21);

Computerk =
∥

∥

∥φ(Y)â − φ(Dk)β̂k

∥

∥

∥

2
2, k = 1, 2, ...K;

Identity(Y)=arg mink{rk}.

residual and hence the correct recognition.

0 100 200
−0.2

0

0.2

0.4

0.6
query set

co
ef

fic
ie

nt
s

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1
gallery sets

Figure 5.10 The coefficient vectorŝa (of Y) andβ̂ (of D) by kernelized convex hull based

CRSSD.

5.5 Experimental analysis

We used the Honda/UCSD [105], CMU Mobo [65], and Youtube Celebrities [95]

datasets to test the performance of the proposed method. Thecomparison methods

fall into four categories:

C1. Subspace and manifold based methods: Mutual Subspace Method (MSM)
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[206], Discriminant Canonical Correlations (DCC2) [98], Manifold-Manifold

Distance (MMD3) [193], and Manifold Discriminant Analysis (MDA4) [190].

C2. Affine/convex hull based methods: Affine Hull based Image Set Distance

(AHISD5) [21], Convex Hull based Image Set Distance (CHISD6) [21], S-

parse Approximated Nearest Points (SANP7) [78], and Regularized Nearest

Points (RNP) [220].

C3. Representation based methods: Sparse Representation based Classifier (SRC)

[201], Collaborative Representation based Classifier (CRC) [226]. We tested

to use the average and minimal representation residual of query set for clas-

sification and found that average residual works better. Hence in this chapter,

the average residual is used in SRC/CRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [55], KCRC (Kernel CRC) [216],

AHISD [21], and CHISD [21]. For KSRC and KCRC, the average residu-

al is used for classification.

For the proposed methods, RH-ISCRC is compared with those non-kernel meth-

ods and KCH-ISCRC is compared with those kernel methods.

2http://www.iis.ee.ic.ac.uk/ tkkim/code.htm
3http://www.jdl.ac.cn/user/rpwang/research.htm
4http://www.jdl.ac.cn/user/rpwang/research.htm
5http://www2.ogu.edu.tr/mlcv/softwareimageset.html
6http://www2.ogu.edu.tr/mlcv/softwareimageset.html
7https://sites.google.com/site/yiqunhu/cresearch/sanp
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5.5.1 Parameter setting

For competing methods, the important parameters were empirically tuned according

to the recommendations in the original literature for fair comparison. For DCC

[98], if there is only one set per class, then the training setis divided into two sets

since at least two sets per class are needed in DCC. For MMD, the number of local

models is set following the work in [193]. For MDA, there are three parameters,

i.e., the number of local models, the number of between-class NN local models

and the subspace dimension. The three parameters are configured according to the

work in [190]. For SANP, we adopted the same parameters as [78]. For SRC,

CRC, KSRC and KCRC,λ that balances the residual and regularization is tuned

from [0.01, 0.001, 0.0001]. For AHISD and CHISD,C is set as 100. For all kernel

methods, Gaussian kernel (k(x, y) = exp(− ‖x− y‖22 /2δ2)) is used, andδ is set as 5.

The experiments of 50 frames, 100 frames and 200 frames per set are conducted

on the three databases. If the number of samples in the set is less than the given

number, then all the samples in the set are used.

For the proposed RH-ISCRC, we setλ1 = 0.001,λ2 = 0.001,λ = 2.5/na (na

is the number of samples in the query set),γ = λ/2. The number of atoms in

the compressed setDk is set as 20 on Honda/UCSD and 10 on CMU MoBo and

YouTube. For KCH-ISCRC,τ = 1 and the number of atoms in eachDk is set as

50 for all datasets. The sensitivity of the proposed methodsto parameters will be

discussed in Section 5.5.6.
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5.5.2 Honda/UCSD

The Honda/UCSD dataset consists of 59 video sequences involving 20 different

subjects [105]. The Viola-Jones face detector [187] is usedto detect the faces in

each frame and resize the detected faces to 20×20 images. Some examples of Hon-

da/UCSD dataset are shown in Figure 5.11. Histogram equalization is utilized to

reduce the illumination variations. Our experiment setting is the same as [105][78]:

20 sequences are set aside for training and the remaining 39 sequences for testing.

The intensity is used as the feature.

Figure 5.11 Some examples of Honda/UCSD dataset.
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Table 5.4 Recognition rates on Honda/UCSD (%).

Non-kernel 50 100 200 Year

MSM [206] 74.36 79.49 89.74 1998

DCC [98] 76.92 84.62 94.87 2007

MMD [193] 69.23 87.18 94.87 2008

MDA [190] 82.05 94.87 97.44 2009

SRC [201] 84.62 92.31 92.31 2009

AHISD [21] 82.05 84.62 89.74 2010

CHISD [21] 82.05 84.62 92.31 2010

SANP [78] 84.62 92.31 94.87 2011

CRC [226] 84.62 94.87 94.87 2011

RNP [220] 87.18 94.87 100.0 2011

RH-ISCRC-l1 89.74 97.44 100.0

RH-ISCRC-l2 89.74 97.44 100.0

Kernel 50 100 200 Year

AHISD [21] 84.62 84.62 82.05 2010

CHISD [21] 84.62 87.18 89.74 2010

KSRC [55] 87.18 97.44 97.44 2009

KCRC [216] 82.05 94.87 94.87 2012

KCH-ISCRC 89.74 94.87 100.0

The experimental results are listed in Table 5.4. We can see that for those non-

kernel methods, the proposed RH-ISCRC outperforms much allthe other methods.

Note that in [21], kernel CHISD achieves 100% recognition accuracy when all the
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frames in one video clip are used. In this chapter, followingthe experiment setting

of SANP [78], we reported the accuracy using different number of frames per set.

When 200 frames per set are used, both RH-ISCRC and KCH-ISCRCachieve 100%

accuracy, which shows the superiority to CHISD and AHISD. For the kernel based

method, the proposed KCH-ISCRC performs the best except forthe case when 100

frames per set are used. We can also see that on this dataset, RH-ISCRC-l1 and RH-

ISCRC-l2 achieve the same recognition rate, which implies that on this dataset the

l2-norm regularization is strong enough to yield a good solution to the regularized

hull based CRSSD in Eq. (5.11).

5.5.3 CMU MoBo

The CMU Mobo8 (Motion of Body) dataset [65] was originally established for hu-

man pose identification and it contains 96 sequences from 24 subjects. Four video

sequences are collected per subject, each of which corresponds to a walking pat-

tern. Again, the Viola-Jones face detector [187] is used to detect the faces and the

detected face images are resized to 40× 40. The LBP feature is used, which is the

same as the work in [21] and [78].

One video sequence per subject is selected for training while the rest are used for

testing. Ten-fold cross validation experiments are conducted and the average recog-

nition results are shown in Table 5.5. We can clearly see thatthe proposed methods

outperform the other methods under different frames per set. On this dataset and

the Honda/UCSD dataset, the proposed non-kernel RH-ISCRC and the kernel based

KCH-ISCRC have similar ISFR rates.

8http://www.ri.cmu.edu/publicationview.html?pubid=3904
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Table 5.5 Recognition rates on CMU MoBo(%).

Non-kernel 50 100 200 Year

MSM [206] 84.3± 2.6 86.6±2.2 89.9±2.4 1998

DCC [98] 82.1± 2.7 85.5±2.8 91.6±2.5 2007

MMD [193] 86.2±2.9 94.6±1.9 96.4±0.7 2008

MDA [190] 86.2±2.9 93.2±2.8 95.8±2.3 2009

SRC [201] 91.0±2.1 91.8±2.7 96.5±2.5 2009

AHISD [21] 91.6±2.8 94.1±2.0 91.9±2.6 2010

CHISD [21] 91.2±3.1 93.8±2.5 96.0±1.3 2010

SANP [78] 91.9±2.7 94.2±2.1 97.3±1.3 2011

CRC [226] 89.6±1.8 92.4±3.7 96.4±2.8 2011

RNP [220] 91.9±2.5 94.7±1.2 97.4±1.5 2013

RH-ISCRC-l1 93.5±2.8 96.5±1.9 98.7±1.7

RH-ISCRC-l2 93.5±2.8 96.4±1.9 98.4±1.7

Kernel 50 100 200 Year

AHISD [21] 88.9±1.7 92.4±2.8 93.5±4.2 2010

CHISD [21] 91.5±2.0 93.4±4.0 97.4±1.9 2010

KSRC [55] 91.6±2.8 94.1±2.0 96.8±2.0 2010

KCRC [216] 91.2±3.1 93.4±2.9 96.6±2.6 2012

KCH-ISCRC 94.2±2.1 96.4±2.3 98.4±1.9
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5.5.4 YouTube Celebrities

The YouTube Celebrities9 is a large scale video dataset collected for face track-

ing and recognition, consisting of 1,910 video sequences of47 celebrities from

YouTube [95]. As the videos were captured in unconstrained environments, the

recognition task becomes much more challenging due to the larger variations in

pose, illumination and expressions. The face in each frame is also detected by the

Viola-Jones face detector and resized to a 30× 30 gray-scale image. The intensity

value is used as feature. The experiment setting is the same as [78, 190, 191]. Three

video sequences per subject are selected for training and six for testing. Five-fold

cross validation experiments are conducted.

The experimental results are shown in Table 6.12. It can be seen that among the

non-kernel methods, the proposed RH-ISCRC-l1 achieves the highest recognition

rate, while among the kernel based methods, the proposed KCH-ISCRC performs

the best. Since this Youtube Celebrities dataset was established under uncontrolled

environment, there are significant variations among the query and gallery sets, and

therefore thel1-regularization is very helpful to improve the stability and discrimi-

nation of the solution to Eq. (5.11). As a consequence, RH-ISCRC-l1 leads to much

better results than RH-ISCRC-l2 on this dataset. On the other hand, the kernel based

KCH-ISCRC leads to better results than RH-ISCRC in this experiment. Besides,

the number of frames per set also affect the performance of ISCRC. When number

of frames is small, the improvement by ISCRC is more significant.

9http://seqam.rutgers.edu/site/index.php?option=comcontent&view=article&id

=64&Itemid=80
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Table 5.6 Recognition rates on YouTube (V1 %).

Non-kernel 50 100 200 Year

MSM [206] 54.8±8.7 57.4±7.7 56.7±6.9 1998

DCC [98] 57.6±8.0 62.7±6.8 65.7±7.0 2007

MMD [193] 57.8±6.6 62.8±6.2 64.7±6.3 2008

SRC [201] 61.5±6.9 64.4±6.8 66.0±6.7 2009

MDA [190] 58.5±6.2 63.3±6.1 65.4±6.6 2009

AHISD [21] 57.5±7.9 59.7±7.2 57.0±5.5 2010

CHISD [21] 58.0±8.2 62.8±8.1 64.8±7.1 2010

SANP [78] 57.8±7.2 63.1±8.0 65.6±7.9 2011

CRC [226] 56.5±7.4 59.5±6.6 61.4±6.4 2011

RNP [220] 59.9±7.3 63.3±8.1 64.4±7.8 2013

RH-ISCRC-l1 62.3±6.2 65.6±6.7 66.7±6.4

RH-ISCRC-l2 57.4±7.2 60.7±6.5 61.4±6.4

Kernel 50 100 200 Year

AHISD [21] 57.2±7.5 59.6±7.4 61.8±7.3 2010

CHISD [21] 57.9±8.3 62.6±8.1 64.9±7.2 2010

KSRC [55] 61.4±7.0 65.9±6.9 67.8±6.4 2010

KCRC [216] 57.5±7.9 60.6±6.8 62.7±7.7 2012

KCH-ISCRC 64.5±7.6 67.4±8.0 69.7±7.4
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5.5.5 Time comparison

Then let’s compare the efficiency of competing methods. The Matlab codes of

all competing methods are obtained from the original authors, and we run them

on an Intel(R) Core(TM) i7-2600K (3.4GHz) PC. The average running time per

set on CMU MoBo (200 frames per set) is listed in Table 6.11. Wecan see that the

proposed RH-ISCRC-l2 is the fastest among all competing methods except for RNP,

while RH-ISCRC-l1 also has a fast speed. Among all the kernel based methods,

the proposed KCH-ISCRC is much faster than others. Overall,the proposed RH-

ISCRC and KCH-ISCRC methods have not only high ISFR accuracybut also high

efficiency than the competing methods.

5.5.6 Parameter sensitivity analysis

To verify if the proposed methods are sensitive to parameters, in this section we

present the recognition accuracies with different parameter values. For RH-ISCRC,

there are two parameters,λ1 andλ2 in Eq. (5.17), which need to be set. For KCH-

ISCRC, there is only one parameterτ in Eq. (5.5). We show the recognition accu-

racies versus the parameters on the CMU MoBo dataset in Fig. 5.12, Fig. 5.13 and

Fig. 5.14, respectively, for RH-ISCRC-l1, RH-ISCRC-l2 and KCH-ISCRC. The d-

ifferent colors correspond to different accuracies, as shown in the color bar.λ1 and

λ2 are selected from{0.0005, 0.001, 0.01, 0.05}. In Fig. 5.12 and Fig. 5.13, the

top sub-figure is for 50 frames per set, the middle is for 100 frames per set and

the bottom corresponds to 200 frames per set. From Fig. 5.12,we can see that

the accuracy of RH-ISCRC-l1 is very stable whenλ1 varies from 0.0005 to 0.05
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Table 5.7 Average running time per set on CMU MoBo (s).

Non-kernel Time Kernel Time

MSM [206] 0.338 AHISD [21] 18.546

DCC [98] 0.349 CHISD [21] 18.166

MMD [193] 3.216 KSRC [55] 35.508

SRC [201] 5.301 KCRC [216] 6.543

MDA [190] 2.035 KCH-ISCRC 2.03

AHISD [21] 31.365

CHISD [21] 18.029

SANP [78] 11.124

CRC [226] 0.684

RNP [220] 0.113

RH-ISCRC-l1 0.788

RH-ISCRC-l2 0.280
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andλ2 varies from 0.0005 to 0.01. Whenλ2 is increased to 0.05, the recognition

performance would degrade. Fig. 5.13 shows that RH-ISCRC-l2 is insensitive to

the values ofλ1 andλ2. For example, in the experiments of 100 and 200 frames

per set, the accuracy variation is within 0.5% for differentλ1 andλ2. Considering

the performance of both RH-ISCRC-l1 and RH-ISCRC-l2, λ1 andλ2 can both be set

as 0.001. With this parameter setting, the accuracy is very stale in different exper-

iments. For KCH-ISCRC, its recognition accuracies with different values ofτ are

shown in Fig. 5.14.τ is set as{1, 2, 5, 10, 50, 100}. One can see that KCH-ISCRC

is insensitive toτ. Hence, we simply setτ as 1.
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Figure 5.12 Recognition accuracy of RH-ISCRC-l1 on CMU MoBo with differentλ1

andλ2. Different colors represent different accuracy. Top: 50 frames per set; middle: 100

frames per set; bottom: 200 frames per set.

The dictionary learning technique is used in our method to compress each im-
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age set to reduce the time complexity when representing a query image set. The

number of atoms in the dictionary needs to be defined before dictionary learning. If

the number of atoms is too small, the representation power ofthe dictionary will be

reduced; if the number of atoms is large, the system tends to be under-determined

and thus the solution may be less stable. We tested our algorithm by varying the

number of atoms (for each sub-dictionaryDk) from 5 to 50. The recognition accu-

racies versus the number of atoms on the CMU MoBo dataset are shown in Figs.

5.12-5.14. From Fig. 5.12 and Fig. 5.13, we can see that the recognition accuracies

of both RH-ISCRC-l1 and RH-ISCRC-l2 vary little if the number of atoms is set

within [10, 20]. From Fig. 5.14, we can see that for KCH-ISCRCthe variation

of recognition accuracies is within 0.5% under different number of atoms. This is

because the feature dimension is relatively high in the kernel space and thus the

solution is affected little by the dictionary size. Based on the above observation, in

all our experiments we set the number of atoms as 10 or 20 for RH-ISCRC-l1 and

RH-ISCRC-l2, and 50 for KCH-ISCRC.
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Figure 5.13 Recognition accuracy of RH-ISCRC-l2 on CMU MoBo with differentλ1

andλ2. Different colors represent different accuracy. Top: 50 frames per set; middle: 100

frames per set; bottom: 200 frames per set.
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5.6 Conclusions and future work

We proposed a novel image set based collaborative representation and classification

(ISCRC) scheme for image set based face recognition (ISFR).The query set was

modeled as a convex or regularized hull, and a collaborativerepresentation based

set to sets distance (CRSSD) was defined by representing the hull of query set over

all the gallery sets. The CRSSD considers the correlation and distinction of sample

images within the query set and the relationship between thegallery sets. With

CRSSD, the representation residual of the hull of query set by each gallery set

can be computed and used for classification. Experiments on the three benchmark

ISFR databases showed that the proposed ISCRC is superior tostate-of-the-art ISFR

methods in terms of both recognition rates and efficiency.

In this chapter, we proposed ISCRC to deal with video based face recognition

tasks. Hulls are used to represent both the gallery face image sets and query face

image set. However, for other image set classification tasks, e.g., multi-view object

recognition, hull based representation may not be suitable. Hence, to extend the ap-

plication of ISCRC, the representation of image sets shouldbe modeled according

to different tasks.



Chapter 6

From Point to Set: Extend the

Learning of Distance Metrics

From Chapter 2 to Chapter 5, we have proposed patch based collaborative represen-

tation, local generic representation, regularized self-representation, and image set

based collaborative representation models to solve small sample size problems, big

sample size problems, and image set classification problems. The representation

process of all these representation based classifiers is unsupervised and does not u-

tilize the training label information. Actually, representation based classifiers, e.g.,

nearest subspace classifier, can be considered as a kind of point to set distance based

classifiers. In this chapter, we propose to learn a discriminative point to set/set to

set distance, which can enhance the performance of representation based classifiers.

132
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6.1 Introduction

How to select a proper distance metric is a key problem in pattern classification,

while the optimal distance metric for a specific pattern classification task depend-

s on the underlying data structure and distributions. In recent years, it has been

increasingly popular to learn a desired distance metric from the given training sam-

ples in many visual classification tasks, such as face/action/kinship verification [66],

visual tracking [89], and image retrieval [1]. Metric learning methods can be cate-

gorized into unsupervised [33], semi-supervised [1] and supervised ones [66, 89],

according to the availability of the class labels of training samples.

In general, metric learning aims to learn a valid distance metric, measured by

which the samples from the positive sample pair (i.e., samples with the same class

label or similar samples) could be as close as possible, while the samples from the

negative sample pair (i.e., samples with the different class labels or dissimilar sam-

ples) could be as far as possible. Positive/negative sample pairs can be generated

from theK nearest neighbors as in Large Margin Nearest Neighbor (LMNN) [196],

Neighborhood Components Analysis (NCA) [63], or from the given sample pairs

in verification as in Logistic Discriminative Metric Learning (LDML) [66], or from

side information with some prior knowledge as in Information Theoretic Metric

Learning (ITML) [41]. In some cases, only positive pairs areused in metric learn-

ing [125]. In [188], metric learning is formulated as a kernel classification model

and the relations with LMNN and ITML are discussed. Metric learning algorithms

have also been developed for multi-task learning [140], multiple instance learning

[67] and nonlinear metrics [94].

Currently, almost all the metric learning methods focus on the learning of a
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point-to-point distance (PPD) metric in couple with the nearest neighbor classifier

(NNC). In many computer vision tasks (e.g., face recognition), however, we need

to measure the distance between an image (i.e., a point) and an image set (i.e., a

point set). In video based recognition tasks [193] or multi-view object recognition

[98], we even need to measure the distance between two image sets. Therefore, it is

highly desired to design effective point-to-set distance (PSD) and set-to-set distance

(SSD) metric learning methods. Unfortunately, many PPD metric learning methods

cannot be readily applied to PSD and SSD based classification.

A set is often modeled as a hull, a convex hull (CH), or an affine hull (AH),

and PSD can then be defined as the distance from a point to this hull. Correspond-

ingly, the nearest subspace classifier (NSC), nearest convex hull classifier (NCH)

[186], and nearest convex affine classifier (NAH) [186] are proposed for PSD based

classification. In [22], a set is modeled as a bounding hyperdisk (the set formed by

intersecting their affine hull and their smallest bounding hypersphere), and a near-

est hyperdisk classifier (NHD) is proposed for classification. Given a query sample,

those PSD based classifiers (NSC, NCH, NAH and NHD) compute its distance to

each class, i.e., the PSD between the query samples and the set of templates of this

class, and classify it to the class with the minimal point-to-set distance.

The calculation of SSD also depends on the means to model a set. In [21],

by modeling each set as a CH/AH, the CH/AH based image set distance (CHIS-

D/AHISD) is defined. In [78], sparsity is imposed on the AH modeland a sparse

approximation nearest points (SANP) method is proposed forimage set classifica-

tion. In [220], a regularized affine hull (RAH) is proposed to model a set, and the

SSD is defined between two RAHs. In [206], each set is represented by a linear
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subspace and the angles between two subspaces are utilized to measure the similar-

ity of two sets. The method in [98] employs canonical correlation to measure the

similarity between two sets. In [193], an image set is modeled as a manifold and a

manifold-to-manifold distance (MMD) is proposed. After calculating the distance

from the query set to each template set, those SSD based classifiers classify the

query set to the class with the minimal set-to-set distance.To introduce discrimina-

tive information to SSD, projection matrix is learned in a large margin manner, e.g.,

discriminative canonical correlation (DCC) [98] and manifold discriminant analy-

sis (MDA) [190]. In [204], a set based discriminative ranking model is proposed by

iterating between SSD finding and discriminative feature space projection.
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Figure 6.1 PSD (left) and SSD (right) Metric learning.

Despite that metric learning has been successfully used in PPD based classi-

fication, few attentions have been paid to PSD and SSD based classification. As

shown in the upper part of Fig. 6.1(a), the query imagey (represented as a red dot)

has the same class label as template setX1 (represented as a red hull) but it will be

misclassified since it has a closer PSD to setX2. If a proper metric learning method

can be developed, it is possible that with the new distance metric, the PSD between

y andX1 is smaller than that betweeny andX2, and consequentlyy can be correctly
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classified, as shown in the bottom part of Fig. 6.1(a). Similar anticipation goes to

the metric learning of SSD based classification, as illustrated in Fig. 6.1(b), where

the query setY can be correctly classified with some proper SSD based distance

metric.

With the above considerations, in this chapter we propose two novel metric

learning models, PSD metric learning (PSDML) and SSD metriclearning (SSDM-

L), to enhance the performance of PSD and SSD based classification. One image

(or image set) and one similarly labeled image set constructa positive pair, while

one image (or image set) and one differently labeled set construct a negative pair.

Then the PSDML and SSDML problems are formulated as a sample pair classifica-

tion problem. Each sample pair is characterized by the covariance matrix of its two

samples, and a covariance kernel is introduced. A discriminative function is then

proposed for sample pair classification, and finally the PSDML and SSDML can be

solved by using an SVM model. The proposed PSDML and SSDML methods can

effectively improve the performance of PSD and SSD based classification, and are

much more efficient than state-of-the-art metric learning methods.

The main abbreviations used in this chapter are summarized in the following

Table 6.1.

6.2 Set based distances

Before distance metric learning, we need to first define how the distance is mea-

sured. In this section, we describe how an image set is modeled, and how the

corresponding point-to-set and set-to-set distances are defined.
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Table 6.1 The main abbreviations used in this chapter.

PPD point to point distance

PSD point to set distance

SSD set to set distance

PSDML point to set distance metric learning

SSDML set to set distance metric learning

6.2.1 Image set model

An image set is usually represented by a hull, i.e., a subspace spanned by all the

available samples in the set. The hull of a set of samplesD = [d1..., di..., dn] is

defined asH(D) = {Da}, wherea = [a1, ..., ai, ..., an]. Usually,
∑

ai = 1 is required

andai is required to be bounded:

H(D) = {∑ diai |
∑

ai = 1,−τ1 ≤ ai ≤ τ2} (6.1)

If τ1 = −in f andτ2 = in f , H(D) is an affine hull [186]. Ifτ1 < 0 andτ2 > 0, H(D)

is a reduced affine hull [21]. If τ1 = 0 andτ2 = 1, H(D) is a convex hull [186]. If

τ1 = 0 andτ2 < 1, H(D) is a reduced convex hull [21].

To rule out the meaningless points which are too far from the sample mean, the

regularized affine hull (RAH) [220] is defined as follows to model an image set:

H(D) =
{

∑

diai |
∑

ai = 1, ‖a‖lp
≤ σ
}

(6.2)
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6.2.2 Point-to-set distance (PSD)

Given a samplex and a set of samplesD, a point to set distanced(x, D) betweenx

andD can be defined as follows:

d(x, D) = ‖x − Dâ‖2 (6.3)

whereâ = arg mina ‖x − H(D)‖22. WhenH(D) is a hull, the solution of mina ‖x − H(D)‖22
can be easily obtained by least square regression as

(

DT D
)−1

DT x if DT D is non-

singular, or by ridge regression
(

DT D + λI
)−1

DT x if DT D is (nearly) singular.

To make the PSD more accurate for classification, a projection matrix P can

be introduced to project the samples into a desired space. The corresponding PSD

distance, denoted bydM(x, D), is then defined as:

dM(x, D) = ‖P(x − Dâ)‖22
= (x − Dâ)T PT P(x − Dâ)

= (x − Dâ)T M(x − Dâ)

(6.4)

whereâ = arg mina ‖P(x − Da)‖22, and

M = PT P, (6.5)

Whenâ is obtained, we can form a sample pair (x, Dâ). Clearly, the PSDdM(x, D)

defined in Eq. (6.4) can be viewed as a Mahalanobis distance [41] betweenx and

Dâ, and the matrixM is always semi-positive definite.

In PSD based classification, the distance between the query sampley and the

template set of each classX1, X2, ..., Xc (c is the number of classes) needs to be

computed first. Suppose that the nearest subspace classifier(NSC) is used. Given
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M, for classi, we haveâi =Wi y, where

Wi =
(

XT
i MXi + λI

)−1
XT

i M. (6.6)

and then the PSD betweeny and setXi is:

dM(y, Xi) = (y − Xi âi)T M(y − Xi âi). (6.7)

The class with the minimal PSD is assigned toy: Label(y) = arg mini{dM(y, Xi)}.

Compared with the nearest convex hull/affine hull classifier (NCH/NAH), which

needs to solvec quadratic programming problems for the query sampley, NSC only

needs to compute a set of linear projections ofy with Wi, i = 1, 2, ..., c. Hence, NSC

is much more efficient than NCH and NAH.

6.2.3 Set-to-set distance (SSD)

Given two image setsD1 and D2, the set-to-set distance (SSD) between them can

be defined as follows:

d(D1, D2) =
∥

∥

∥D1â − D2b̂
∥

∥

∥

2

2
(6.8)

whereâ and b̂ can be solved by:

(â, b̂) = arg mina,b ‖H(D1) − H(D2)‖22 (6.9)

When convex/affine/regularized constraints are imposed on the coefficient vectors

a andb, respectively, the corresponding distances are convex hull based image set

distance (CHISD) [21], affine hull based image set distance (AHISD) [21] and reg-

ularized nearest points (RNP) [220], respectively. In [220], it has been shown that
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l2-norm regularized affine hull is much faster and can achieve comparable perfor-

mance to convex/affine/sparse constraints. Given a linear projection matrixP, the

RNP model is:

mina,b ‖P(D1a − D2b)‖22 + λ1 ‖a‖22 + λ2 ‖b‖22
s.t.
∑

ai = 1,
∑

bi = 1
(6.10)

By solving Eq. (6.10), the SSD in Eq. (6.8) becomes:

dM(D1, D2) =
∥

∥

∥P(D1â − D2b̂)
∥

∥

∥

2

2

= (D1â − D2b̂)T M(D1â − D2b̂)
(6.11)

In SSD based classification, given a query image setY, the SSD between it and

each template setXi , i = 1, 2, ..., c, is computed as

dM(Y, Xi) = (Yâ − Xi b̂i)T M(Yâ − Xi b̂i). (6.12)

Y can then be classified byLabel(Y) = l(Xî), whereî = arg mini{dM(Y, Xi)}.

6.3 Distance metric learning

With the definitions in Section 6.2, we can then design the metric learning algo-

rithms for PSD and SSD based classification.

6.3.1 Point-to-set distance metric learning (PSDML)

According to Eq. (6.7), the matrixM plays a critical role in the final distance

dM(y, Xi). It is expected that a goodM can be learned from the training sample sets

{X1, X2, ..., Xc}, so that the PSD between a query sampley and the setXl(y) can be



Chapter 6. From Point to Set: Extend the Learning of DistanceMetrics 141

reduced, while the PSD betweeny and the other setsX j , j , l(y), can be enlarged,

wherel(y) is the label ofy.

To achieve this goal, with the given training data setsXi , i = 1, 2, .., c, we pro-

pose the following metric learning model:

minM,al(xi ),a j ,ξ
N
i j ,ξ

P
i ,b
‖M‖2F + ν(

∑

i, j ξ
N
i j +
∑

i ξ
P
i )

s.t. dM(xi , X j) + b ≥ 1− ξNi j , j , l(xi);

dM(xi , Xl(xi )) + b ≤ −1+ ξPi ;

M < 0,∀i, j, ξNi j ≥ 0, ξPi ≥ 0

(6.13)

where‖·‖F denotes the Frobenius norm,al(xi ) anda j are coefficients vector forXl(xi )

andX j, b is the bias andν is a positive constant.ξP
i andξN

i j are slack variables for

positive and negative pairs.dM(xi, Xl(xi )) is the PSD distance fromxi to the set it

belongs to (i.e., the PSD of positive pairs), wherel(xi) is the class label ofxi, and

dM(xi , X j), j , l(xi), is the PSD fromxi to other classes (i.e., the PSD of negative

pairs).

Eq. (6.13) is a joint optimization problem ofM and{al(xi ), a j}. Like the strategy

adopted in many multi-variable optimization problems, we minimize Eq. (6.13) by

optimizing M and{al(xi ), a j} alternatively. WhenM is fixed, {al(xi ), a j} are solved

for all the training samples. Note that here the“leave-one-out” strategy is used to

computeal(xi ). That is,X̄l(xi) is the training sample set of classl(xi) but excluding

samplexi. Then the positive pairs are formed as (xi, X̄l(xi) âl(xi )) and the negative

pairs are formed as (xi , X j, j,l(xi ) â j, j,l(xi )). We label the negative pair as “+1” and the

positive pair is set as “-1”.

Let us denote byzi = (zi1, zi2) a generated sample pair. The covariance matrix

of the two samples inzi is Ci = (zi1 − zi2)(zi1 − zi2)T . Suppose that we generatedns
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training sample pairs, and thus we havenscovariance matricesCi , i = 1, 2, ..., ns.

We labelCi as “+1” or “-1” based on the label ofzi, and define the following kernel

function to measure the similarity betweenCi andC j:

k(Ci ,C j) = tr(CiC j) =< Ci ,C j > (6.14)

wheretr(·) is the trace operator of a matrix and< ·, · > means the inner product of

matrices.

Suppose that we have a query sample pair, denoted byz = (z1, z2). The co-

variance matrix ofz is denoted byC. We introduce the following discriminative

function to judge whetherz is positive or negative:

f (C) =
∑

i βi l ik(Ci ,C) + b

=
∑

i βi l i < Ci ,C > + b

=<
∑

i βi l iCi ,C > +b

(6.15)

wherel i is the label of pairzi, andβi is a weight. Let

M =
∑

i βi l iCi . (6.16)

Then we havef (C) =< M,C > +b.

The metric learning problem in Eq. (6.13) can then be converted into the fol-

lowing problem:

minM,b,ξ ‖M‖2F + ν
∑

i ξi

s.t. l i(< M,Ci > +b) ≥ 1− ξi, ξi ≥ 0
(6.17)

The Lagrange dual problem of the metric learning problem in Eq. (6.17) is:

maxβ − 1
2

∑

i, j βiβ j l i l jk(Ci ,C j) + ν
∑

i βi

s.t. 0 ≤ βi ≤ µ,
∑

i βi l i = 0
(6.18)
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Obviously, the minimization in Eq. (6.18) can be easily solved by the support

vector machine (SVM) solvers such as LIBSVM [? ]. Onceβ = [β1, ..., βi, ..., βns]

is obtained by solving Eq. (6.18),M can be obtained by Eq. (6.16). WithM, the

distance between two samplesz1 andz2 can be computed as:

dM(z1, z2) = (z1 − z2)T M(z1 − z2)

= tr(MC) =< M,C >
(6.19)

If we further requiredM(z1, z2) to be a Mahalanobis distance metric,M should be

semi-positive definite. Similar to Xing et al.’s MMC [205] and Globerson et al.’s

MCML [62], we can compute the singular value decomposition (SVD) of M =

UΛV , whereΛ is the diagonal matrix of eigenvalues, and then set the negative

eigenvalues inΛ to 0, resulting in a new diagonal matrixΛ+. Finally, we letM+ =

UΛ+V be the learned matrix.

OnceM is computed,{al(xi ), a j} are then updated, and theM is further updated,

and so on. The proposed point-to-set distance metric learning (PSDML) algorithm

is summarized in Table 6.2. The PSDML can be coupled with PSD based classifiers

such as NSC [31], NCH [186] and NAH [186] for classification. In this chapter, we

use NSC since it is much more efficient than NCH and NAH.

6.3.2 Set-to-set distance metric learning (SSDML)

With the SSD defined in Eq. (6.8), we can also learn a matrixM from the training

sample sets{X1, ..., Xi, ..., Xn} so that the SSD between sets with the same label

can be reduced, while the SSD between sets with different labels can be enlarged.

The proposed set-to-set distance metric learning (SSDML) model is formulated as
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Table 6.2 Algorithm of point to set distance metric learning (PSDML).

Input: X = [X1, X2, ..., Xc], label l, λ andν

Output:M

1 Initialize M = I

2 While iteration number< num

3 ComputeWi, i = 1, ..., c by Eq. (6.6);

4 Construct positive and negative sample pairs;

5 Solve Eq. (6.18) by SVM solver;

6 UpdateM by Eq. (6.16);

7 End

follows:

minM,ai ,a j ,ak,ξ
P
ik,ξ

P
ik,b
‖M‖2F + ν(

∑

i,k ξ
P
ik +
∑

i, j ξ
N
i j )

s.t. dM(Xi , X j) + b ≥ 1− ξNi j , l(Xi) , l(X j);

dM(Xi , Xk) + b ≤ −1+ ξPik, l(Xi) = l(Xk);

M < 0,∀i, j, k, ξNi j ≥ 0, ξPik ≥ 0

(6.20)

whereai , a j, ak are the coefficients vector for image setsXi , X j, Xk; l(Xi) means the

label of setXi , andξP
ik, ξ

N
i j are the slack variables for positive pairs and negative

pairs.

The principles and main procedures of SSDML are similar to the PSDML in

Section 6.3.1. We solve Eq. (6.20) by optimizingM and{ai, a j, ak} alternatively.

WhenM is fixed,{ai, a j, ak} are updated to construct positive and negative sample

pairs. When the sample pairs are given, the updating of matrix M can also be

converted into the problem in Eq. (6.17). The algorithm of SSDML is summarized

in Table 6.3. Note that the work in [204] relies on CHISD [21] and SANP [78]. As
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RNP [220] is much faster than affine/convex/sparse hull based SSD computation,

we choose it to learn the Mahalanobis distance metric based on l2-norm regularized

affine hull.

Table 6.3 Algorithm of set to set distance metric learning (SSDML).

Input: Training image setsX = [X1, X2, ..., Xn],

label l, λ1, λ2 andν

Output:M

1 Initialize M = I

2 While iteration number< num

3 Compute SSD for each image setXi by Eq. (6.10);

4 Construct positive and negative sample pairs;

5 Solve Eq. (6.18) by SVM solver;

6 UpdateM by Eq. (6.16);

7 End

6.3.3 Discussions

There are close relationships between the proposed PSDML/SSDML and SVM.

The geometric interpretation ofν-SVM is to find the closest points in two (reduced)

convex hulls [18]. Given two classesX1 andX2, the SVM is to solve the following

problem [? ]:

min‖X1a1 − X2a2‖22
s.t.
∑

a1i = 1,
∑

a2 j = 1, 0 ≤ a1i , a2 j ≤ µ
(6.21)
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It can be easily found that the associated discrimination function of SVM is f (y) =

wT y + b, wherew = (X1a1 − X2a2)/2, p = (X1a1 + X2a2)/2, b = −wT p =

(a2
T XT

2 X2a2 − a1
T XT

1 X1a1)/4.

Then we have the following observation:

f (y) = wT y + b

=
(X1a1−X2a2)T

2 y +
a2

T XT
2 X2a2−a1

T XT
1 X1a1

4

=
‖y−X2a2‖22−‖y−X1a1‖22

4

=
d(y,X2)−d(y,X1)

4

(6.22)

Hence, similar to PSD based classification, the discriminative function of SVM

actually uses the distance between the test sampley and each class. Iff (y) ≥ 0,

then y belongs to the first class. Iff (y) < 0, theny belongs to the second class.

The difference, however, lies in that PSD based classifiers (e.g., NSC, NCH and

NAH) solve a1 anda2 for each test sample while SVM learnsa1 anda2 from the

training set by classification loss minimization and marginmaximization. The con-

ventional PSD based classifiers ignore the training label information in computing

a1 anda2. With metric learning, PSDML can further utilize the class label to learn

a discriminative metric for the point-to-set distance, andthus may result in better

classification performance.

For set based classification, SVM can not be directly used. Actually, given two

sets, SVM considers each set as one class and the distance between two classes

is used as the SSD, which corresponds to CHISD [21]. Hence, itstill ignores the

discriminative information in calculating SSD, and is essentially different from the

proposed SSD metric learning method. Actually, SSDML triesto make SSD com-

putation discriminant, which is similar to the works in [98,204]
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Additionally, we formulate both PSDML and SSDML as a sample pair classifi-

cation problem, which can be solved by standard SVM solvers.This makes metric

learning very efficient.

6.4 Experimental result and analysis

We verify the performance of PSDML and SSDML on various visual classification

tasks. In Section 6.4.1, we test PSDML on gender classification, digit recognition,

object categorization and face recognition, while in Section 6.4.2, we test SSDML

on video-to-video based face recognition.

6.4.1 PSDML experiments

Parameter setting and competing methods

There are two parameters in PSDML, i.e.,λ in Eq. (6.6) andν in Eq. (6.17).

For SSDML, there are three parameters, i.e.,λ1 andλ2 in Eq. (6.10) andν in Eq.

(6.17). For both PSDML and SSDML,ν in Eq. (6.17) is set to the default value 1

in LIBSVM. For PSDML,λ is chosen by cross-validation on the training set. For

SSDML,λ1 andλ2 are fixed as 0.001 and 0.1, respectively.

We compare PSDML with four state-of-the-art metric learning methods (LMN-

N [196], ITML [41], NCA [63] and MCML [62]), three PSD based classifiers (NSC

[31], NCH [186] and NAH [186]), the classical nearest neighbor classifier (NNC)

and SVM. The Matlab source codes of LMNN, ITML, NCA, and MCML are ob-

tained from the original authors, and we used the SVM toolboxfrom [? ]. We
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implemented NNC, NCH, NAH and NSC. The parameters of the competing meth-

ods are tuned for their best results.

Gender classification

A non-occluded subset (14 images per subject) of the AR dataset [? ] is used,

which consists of 50 male and 50 female subjects. We use the images from the first

25 males and 25 females for training, and the remaining images for testing. The

images were cropped to 60×43. PCA was used to reduce the dimension of each

image to 30 and 50, respectively. The experimental results listed in Table 6.4 show

that PSDML gets the highest accuracy and improves the performance of PSD based

classifiers (NSC, NCH and NAH).

Table 6.4 Accuracy (%) on gender classification.

dim. NN NSC NCH NAH SVM

30 90.6 92.1 91.1 91.7 92.1

50 90.3 93.3 91.4 84.3 91.0

dim. LMNN ITML NCA MCML PSDML

30 91.3 90.8 91.4 90.7 93.7

50 91.0 90.7 91.4 92.1 95.4

Digit recognition

Three handwritten digit datasets, Semeion [6], USPS [85] and MNIST [104], are

used here.

Semeion: The Semeion dataset [6] has 1,593 handwritten digits from around
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80 persons. Each sample is a 16×16 binarized image. The recognition rate on the

raw features is shown in Table 6.5. On this dataset, the performance of NSC is

much better than NNC. PSDML gets a recognition accuracy of 95.9%, which is the

highest among all the methods used in comparison.

Table 6.5 Accuracy (%) on Semeion.

dim. NN NSC NCH NAH SVM

256 91.4 94.2 94.1 92.5 93.4

dim. LMNN ITML NCA MCML PSDML

256 93.9 93.5 93.9 90.0 95.9

USPS: The USPS dataset includes 7,291 training and 2,007 testingimages [85].

Each sample is a 16×16 image. The experimental results on three dimensions (100,

150, 256) are shown in Table 6.6. We see that the results of NNCand NSC are

similar. PSDML achieves the highest accuracy on different dimensions and its per-

formance is comparable to other state-of-the-art metric learning methods.

MNIST: The MNIST [104] dataset contains a training set of 60,000 samples

and a test set of 10,000 samples. There are 10 classes of images, and the size of

each image is 28×28. We randomly select 200 samples per class for training andthe

image dimension is reduced to 100 by PCA. Ten random experiments are conducted

and the average recognition rate is shown in Table 6.7. Again, PSDML performs

the best among all methods.
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Table 6.6 Accuracy (%) on the USPS.

dim. NN NSC NCH NAH SVM

100 94.9 94.3 88.2 91.8 92.3

150 94.8 94.5 89.3 91.9 92.7

256 94.6 94.3 89.7 91.8 92.7

dim. LMNN ITML NCA MCML PSDML

100 95.2 95.0 95.1 95.2 95.4

150 95.2 95.1 95.0 95.1 95.3

256 95.0 94.9 94.8 94.9 95.2

Table 6.7 Accuracy (%) on MNIST.

dim. NN NSC NCH NAH SVM

100 93.3 95.2 96.0 94.0 95.7

dim. LMNN ITML NCA MCML PSDML

100 95.0 93.4 93.5 90.1 96.3



Chapter 6. From Point to Set: Extend the Learning of DistanceMetrics 151

Object categorization

The 17 category OXFORD flower dataset [135] is used. It contains 17 species

of flowers with 80 images for each class. Theχ2 distance matrices of seven fea-

tures (i.e., HSV, HOG, SIFTint, SIFTbdy, color, shape and texture vocabularies)

are directly used as the input and the experiments are conducted based on the three

predefined training, validation, and test splits. We test the performance of PSDML

on each feature and the results are shown in Table 6.8. From the results we see that

PSDML achieves the highest accuracy on all the seven features.

Face recognition

We then test the performance of PSDML on face recognition. Asin [196], the

Extended Yale B database [59] is used here. In addition, the FERET database [143]

is also used since the images have huge pose variations, making it a good test-bed

for metric learning methods.

Extended YaleB: The Extended YaleB database contains 2,414 frontal face im-

ages of 38 persons [59]. There are about 64 images for each subject. The original

images were cropped to 192×168 pixels. This database has varying illuminations

and expressions. A randomly generated matrix from a zero-mean normal distribu-

tion is is used to project the face image onto a 504-dimensional vector. We ran-

domly choose 15 samples per subject for training and the restimages are used for

test. PCA is used to reduce the dimension to 50, 100 and 150, respectively. On this

database, the performance of NSC is much better than NNC. Compared with NSC,

PSDML improves the recognition rate by about 4% and it works much better than

other metric learning methods.



Chapter 6. From Point to Set: Extend the Learning of DistanceMetrics 152

Table 6.8 Accuracy (%) on the 17 category OXFORD flowerers.

Features NN NSC NAH NAH SVM

Color 52.3±2.2 55.4±2.7 55.2±2.8 56.3±2.8 56.9±2.6

Shape 53.7±3.5 66.5±2.1 66.7±2.0 63.4±1.3 60.0±2.9

Texture 31.9±3.6 52.4±2.1 52.4±1.5 45.5±1.8 47.8±3.4

HSV 52.0±2.6 59.2±2.3 59.4±2.3 57.2±3.5 57.0±2.9

HOG 36.9±1.7 51.6±2.5 51.8±2.9 47.6±2.6 47.3±1.9

SIFTint 58.7±2.1 66.5±1.3 66.5±1.4 64.5±1.0 59.7±1.0

SIFTbdy 51.7±0.9 57.6±2.3 57.7±2.2 57.6±2.8 47.5±2.8

Features LMNN ITML NCA MCML ISDML

Color 53.1±2.5 53.5±2.6 52.8±2.8 54.1±2.758.8±4.0

Shape 50.1±1.0 55.0±1.4 54.5±2.0 55.5±1.567.8±2.0

Texture 35.5±3.0 36.2±2.5 33.8±2.6 34.5±2.055.0±1.3

HSV 54.8±2.7 53.5±3.0 54.0±2.9 52.9±3.161.6±3.2

HOG 38.3±1.1 37.5±2.5 38.2±2.5 38.7±2.855.0±5.9

SIFTint 60.0±3.4 61.2±1.9 59.8±1.5 60.4±1.369.1±1.8

SIFTbdy 53.3±4.1 54.2±2.5 53.3±2.9 53.3±2.160.6±4.0
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Table 6.9 Accuracy (%) on the Extended YaleB database.

dim. NN NSC NCH NAH SVM

50 76.3 86.1 70.9 86.1 78.1

100 80.2 88.2 75.5 87.6 82.4

150 78.3 88.9 77.1 88.9 82.3

dim. LMNN ITML NCA MCML ISDML

50 77.4 78.3 78.9 79.0 90.0

100 81.1 81.0 82.4 82.9 92.2

150 81.8 83.1 83.5 82.1 93.0

FERET: The FERET face database is a large and popular database for eval-

uating state-of-the-art face recognition algorithms [143]. We use a subset of the

database that includes 1,400 images from 200 individuals (each has 7 images). It

consists the images whose names are marked with two character strings:“ba”, “bj”,

“bk”, “bd”,“be”,“bf”, “bg”. This subset involves variations in facial expression, il-

lumination, and pose. The facial portion of each image was automatically cropped

based on the location of eyes and mouth, and the cropped imagewas resized to

60× 50 pixels and further pre-processed by histogram equalization.

We randomly select four images per subject as the training set and the remaining

images are used as the test set. The recognition rates are shown in Table 6.10. In

this dataset, the performance of NSC is worse than NNC. This is because there are

great pose variations in this subset, and thus using hull to model the image set is

not suitable. By metric learning, however, the classification rate can be improved

greatly. The result of PSDML is much better than LMNN, ITML, NCA and MCML,
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which validates the effectiveness of our algorithm.

Table 6.10 Accuracy (%) on the FERET.

dim. NN NSC NCH NAH SVM

50 40.5 38.9 37.6 38.9 45.8

100 48.0 42.4 41.5 42.4 59.5

150 48.8 43.7 42.6 43.7 64.6

dim. LMNN ITML NCA MCML PSDML

50 60.0 61.5 59.5 60.5 64.0

100 62.7 63.8 61.6 63.3 67.8

150 63.5 64.8 62.0 64.5 67.8

Time comparison

To show the efficiency of PSDML, we compare the training time of different met-

ric learning methods. All algorithms are run in an Intel(R) Core(TM) i7- 2600K

(3.4GHz) PC. The average training time on the MNIST dataset is listed in Table

6.11. We see that PSDML is much faster than other metric learning methods. In

particular, it is nearly 500 times faster than MCML.

Table 6.11 Training time (s) on the MNIST.

Methods LMNN ITML NCA MCML PSDML

run time 75.9 141.0 3885.1 11825.124.7
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6.4.2 SSDML experiments

We then test SSDML for set-to-set based classification tasks. The benchmark Y-

ouTube Celebrities dataset is used. In this experiment, we compare SSDML with

those SSD based classification methods (CHISD [21], AHISD [21], SANP [78],

RNP [220], MMD [193] and MDA [190]) and set-to-set similarity based method-

s (MSM [206] and DCC [98]). The source codes of these methods are from the

original authors and we tune the parameters for their best results.

The Youtube Celebrities [98] is a large scale video dataset for face tracking

and recognition, consisting of 1,910 video sequences of 47 celebrities collected

from YouTube. As the videos were captured in unconstrained environments, the

recognition task becomes much more challenging due to largevariations in pose,

illumination and expressions. The face in each frame is detected by the Viola-Jones

face detector and resized to a 30×30 grayscale image.

The intensity value is used as feature. Three video sequences per subject are

selected for training and six for testing. Five-fold cross validation is used. The

experiments for 50, 100, 200 frames per set are conducted. The result is shown in

Table 6.12. We can see that SSDML outperforms all the other methods on different

frames per set.
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Table 6.12 Recognition rates on YouTube (%).

Methods 50 100 200

MSM [206] 54.8±8.7 57.4±7.7 56.7±6.9

DCC [98] 57.6±8.0 62.7±6.8 65.7±7.0

MMD [193] 57.8±6.6 62.8±6.2 64.7±6.3

MDA [190] 58.5±6.2 63.3±6.1 65.4±6.6

AHISD [21] 57.5±7.9 59.7±7.2 57.0±5.5

CHISD [21] 58.0±8.2 62.8±8.1 64.8±7.1

SANP [78] 57.8±7.2 63.1±8.0 65.6±7.9

RNP [220] 59.9±7.3 63.3±8.1 64.4±7.8

SSDML 61.9±7.3 65.0±8.1 67.0±7.1

6.4.3 Comparison between PSDML and DSRIC

As both DSRIC and PSDML can apply to the same classification tasks, we conduct

experiments on handwritten digit recognition to compare the recognition perfor-

mance and efficiency of PSDML and DSRIC. Table 6.13 and Table 6.14 show the

recognition accuracy and testing time, respectively. Fromthe results, we can see

that the accuracy of PSDML is a little higher than DSRIC whileDSRIC is twice

faster than PSDML.

6.4.4 Combination of PSDML and DSRIC

PSDML aims to improve the discrimination ability of representation based classi-

fiers by learning a distance metricM for all classes, i.e., (x − Dkâk)T M(x − Dkâk).
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Table 6.13 Recognition accuracy (%) on handwritten digit recognition

Method USPS MNIST

PSDML 95.4 96.3

DSRIC 94.3 95.2

Table 6.14 Testing time comparison (s) on handwritten digit recognition

Method USPS MNIST

PSDML 0.0002 0.0066

DSRIC 0.0001 0.0038

DSRIC learns a discrimination matrix per class for classification by introducing

a discrimination representation item, i.e., (x − Bkx)T(x − Bkx). Actually we can

combine the advantage of PSDML and DSRIC, i.e., (x − Bkx)T M(x − Bkx). First-

ly, instead of using NSC to generate positive/negative pairs, we can use DSRIC

to get pairs for distance metric learning. Then a distance metric M is learned.

We conduct experiments on different classification tasks, including gender classi-

fication, face recognition and handwritten digit recognition tasks. The experiment

results are shown in Table 6.15. From the experiment result,we can see that the

combination method can always achieve the highest accuracyon different classifi-

cation tasks. Besides, the time complexity of the combination method is the same

as PSDML. Hence, the combination of PSDML and DSRIC can lead to more robust

classification in terms of both accuracy and efficiency.
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Table 6.15 Recognition rates on different classification tasks

Database NSC DSRIC PSDML DSRIC+PSDML

gender 93.4 94.7 95.3 95.3

LFW 37.8 60.8 38.2 61.3

USPS 94.3 94.3 95.4 95.4

MNIST 95.2 95.2 96.3 96.3

6.5 Conclusions and discussions

We extended the point-to-point distance metric learning topoint-to-set distance

metric learning (PSDML) and set-to-set distance metric learning (SSDML). Pos-

itive and negative sample pairs were generated from training sample sets by com-

puting point-to-set distance (PSD) and set-to-set distance (SSD). Each sample pair

was represented by its covariance matrix and a covariance kernel based discrimina-

tion function was proposed for sample pair classification. Finally, we showed that

the proposed metric learning problem can be efficiently solved by SVM solvers. Ex-

periments on various visual classification problems demonstrated that the proposed

PSDML and SSDML methods can effectively improve the performance of PSD and

SSD based classification. Compared with the state-of-the-art metric learning meth-

ods such as LMNN, ITML and MCML, the proposed method can achieve better

classification accuracy and is significantly faster in training.

In Chapter 4,we proposed discriminative self-representation induced classifier

(DSRIC) and learn a discriminative square matrix per class for classification. In

this chapter, we consider representation residual as a point to set distance and learn
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a discriminative distance metric to enhance representation based classification. The

objective of both methods are to introduce more discrimination information to the

representation process. Actually, as shown in section 6.4.4 we can combine the

advantage of DSRIC and PSDML to further improve the performance of represen-

tation based classifiers.



Chapter 7

Conclusions

7.1 Conclusions

Although lots of representation based classification models have been developed

and can apply to classification tasks such as face recognition, image classification,

visual tracking, action recognition, etc. In small sample size problem, image set

classification tasks and large-scale classification tasks,the existing representation

based classifiers may fail or can not apply. This thesis aims to address representa-

tion with small sample size, representation with big samplesize, image set repre-

sentation, and representation with metric learning problems.

• We proposed two models for face recognition with single sample per person,

i.e., multi-scale patch based collaborative representation (MSPCRC) and lo-

cal generic representation (LGR). MSPCRC utilizes patch-level representa-

tion and fuses decisions of different patch sizes by margin distribution opti-

mization. To introduce more across-subject face variations, LGR represents

160
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the query face patch on both the gallery patch dictionary andgeneric varia-

tion patch dictionary. Our extensive experiments validated that the proposed

methods outperform many state-of-the-art patch based facerecognition algo-

rithms. Compared to patch based collaborative representation, LGR achieves

higher accuracy but less efficiency.

• A novel feature-level self-representation concept was proposed. We devel-

oped self-representation induced classifier (SRIC) and proved that SRIC is

equivalent tol2-norm regularized nearest subspace classifier and principle

component analysis with shrinkage. To improve the discrimination ability

of self-representation, a discriminative SRIC (DSRIC) is developed and its

time complexity is only related with feature dimension and number of class-

es. Hence, DSRIC can apply to classification tasks with a large amount of

samples.

• A novel collaborative representation set to sets distance (CRSSD) and collab-

orative representation based image set classification (ISCRC) framework was

proposed. Regularized affine hull and kernelized convex hull based ISCRC

models were developed. ISCRC outperforms the state-of-the-art image set

based face recognition method in terms of both accuracy and efficiency.

• We extended point-to-point distance metric learning to point-to-set (PSDML)

and set-to-set (SSDML) distance metric learning. Both PSDML and SSDML

are solved by standard support vector machine solvers and therefore can apply

to large scale classification tasks. To the best of our knowledge, this is the first

work for point-to-set and set-to-set distance metric learning.
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7.2 Future work

This thesis has shown that there are many possibilities be explored in the extension

of the developed representation based classifiers. In the future work, we will focus

on the following directions:

• Different from the existing sample-level representation, in this thesis we pro-

posed feature-level self-representation and developed the corresponding clas-

sifiers. We will combine sample-level and feature-level representation togeth-

er and develop two-dimensional representation based classification models.

• Dictionary learning can get a compact and discriminative representation by

learning a set of bases. For face recognition with single sample per person,

we will learn a local generic variation dictionary. For image set based face

recognition, we will consider to learn an image set dictionary.

• There are multi-modal and cross-modal tasks in computer vision and pattern

recognition. We will extend the point-to-set and set-to-set metric learning

algorithms to cross-modal and multi-modal tasks. Additionally, there are

a large number of unlabeled samples in real-world applications, which can

help learn a distance metric with better generalization ability. Hence, semi-

supervised metric learning will be taken into account as well.

• Deep learning has attracted much attention and achieved great success in

computer vision tasks. We will combine deep learning and therepresentation

based classification models together to improve the recognition performance.
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