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Abstract

Cheap GPS-enabled mobile devices have made online location based ser-

vices (LBSs) increasingly common. Examples of LBS are: route planner, nav-

igation assistance, restaurant recommendation, meeting point recommendation,

and nearby friend notification. In location based services, caching can be used to

reduce computational load or communication latency for queries. In this thesis,

we consider three problems on caching paths and regions for mobile services.

Our first problem is to investigate caching techniques for shortest paths.

However, existing caching techniques do not exploit the optimal substructure

property of shortest paths. We propose a novel caching problem for shortest

paths, and develop algorithms and data structures for this problem.

Our second problem is to explore trade-offs between the lengths and the

query coverage of concise shortest paths, in online driving direction services.

Driving instructions are equivalent to so-called concise shortest paths, which

occupy much less space than the corresponding shortest paths. The caching of

concise shortest paths has two opposite effects on the cache hit ratio. The cache

can accommodate a larger number of concise paths, but each individual concise

path contains fewer nodes and so may answer fewer shortest path queries. We

formulate the concept of a generic shortest path enabling trade-off between a

paths size and the number of queries it can answer. We present algorithms for

computing and caching generic concise shortest paths.

iii



iv

Our third problem is to compute safe regions for the sum-optimal meeting

point notification problem. It has applications like social networking services

or online games, in which multiple moving users in a group may wish to be

continuously notified about the best meeting point from their locations. To

reduce the communication frequency, an application server can compute safe

regions, which capture the validity of query results with respect to users locations.

Unfortunately, the safe regions in our problem exhibit characteristics such as

irregular shapes and inter-dependencies, which render existing methods for single

safe region inapplicable. We present algorithms for computing safe regions for

sum-optimal meeting point.

In summary, we make the following contributions: (i) algorithms and data

structures for caching of shortest paths; (ii) algorithms for computing generic

concise shortest paths; (iii) algorithms for computing the safe regions for the

sum-optimal point notification problem.



Acknowledgements

First and foremost I would like to thank my supervisor Dr. Man Lung

Yiu, for providing me with the amazing opportunity to do my Ph.D. under his

supervision. His valuable advice, guidance and support during the past few years

has made me a better researcher and given me the practical skills necessary to

succeed in my future career.

I am thankful to the talented researchers I have met and discussed with

during my studies, especially the members of my research group, they have no

doubt helped me grow as a researcher. A special thanks goes to Prof. Christian

S. Jensen for his help and support throughout my studies; his comments and

critique of my papers have been invaluable.

I want to thank the friends I have made at HKPU during my studies. A

special thanks goes to Jianguo Wang for his friendship. He was hard to get to

know, but one of the kindest people I’ve met. I would also like to thank Hill Yu,

Jiwei Li, and Tony Tan for their sincere friendship and great company.

A special thanks goes out to my family, My Mom, Dad, and my Sister, with-

out whom I would not be where I am today. Their support and encouragement

during both the good and the bad times have ensured that I always kept trying

v



vi

and succeeding.



Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures xiii

1 Introduction 1

2 Literature Review 9

2.1 Web Search Caching . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Semantic Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Shortest Path Computation . . . . . . . . . . . . . . . . . . . . . 14

vii



viii CONTENTS

3 Caching of Shortest Paths 17

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Web Search Caching . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Semantic Caching . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Shortest Path Computation . . . . . . . . . . . . . . . . . 22

3.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Definitions and Properties . . . . . . . . . . . . . . . . . . 23

3.2.2 Problem and Objectives . . . . . . . . . . . . . . . . . . . 25

3.2.3 Existing Solutions for Caching Results . . . . . . . . . . . 29

3.3 Benefit-Driven Caching . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Benefit Model . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Extracting χs,t from Query Log . . . . . . . . . . . . . . 35

3.3.3 Benchmarking Es,t of Shortest Path APIs . . . . . . . . . 39

3.3.4 Cache Construction Algorithm . . . . . . . . . . . . . . . 41

3.4 Cache Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Efficient Lookup via Inverted Lists . . . . . . . . . . . . . 47

3.4.2 Compact Cache via a Subgraph Model . . . . . . . . . . . 49

3.4.3 Compact Inverted Lists . . . . . . . . . . . . . . . . . . . 50

3.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS ix

3.5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Caching in the Proxy Scenario . . . . . . . . . . . . . . . 53

3.5.3 Caching in the Server Scenario . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Concise Caching of Driving Instructions 63

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Compact representations of shortest paths . . . . . . . . . 67

4.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Concise Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Definition and Examples . . . . . . . . . . . . . . . . . . . 71

4.3.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Generic Concise Shortest Paths . . . . . . . . . . . . . . . 75

4.4 Static Caching Setting . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Benefit Model . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Benefit-Based Generic Concise Path . . . . . . . . . . . . 80

4.4.3 Efficient Implementation . . . . . . . . . . . . . . . . . . . 84

4.5 Dynamic Caching Setting . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.1 Methods Considered . . . . . . . . . . . . . . . . . . . . . 89



x CONTENTS

4.6.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . 90

4.6.3 Real Trajectory Induced Workload . . . . . . . . . . . . . 92

4.6.4 Synthetic Workload . . . . . . . . . . . . . . . . . . . . . 95

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Safe Regions for Meeting Point 101

5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Circular Safe Region Approach . . . . . . . . . . . . . . . . . . . 106

5.4 Tile-based Safe Region Approach . . . . . . . . . . . . . . . . . . 109

5.4.1 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Group tile verification . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Index pruning . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.4 Buffering optimization for index access . . . . . . . . . . . 115

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 Scalability experiments . . . . . . . . . . . . . . . . . . . 120

5.5.3 Summary of experimental results . . . . . . . . . . . . . . 121

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



CONTENTS xi

6 Conclusion 127

Bibliography 129



xii CONTENTS



List of Figures

1.1 Scenario for web search . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An example road network . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Finding sum-optimal meeting point . . . . . . . . . . . . . . . . . 5

2.1 An example road network . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Scenario for web search . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 An example road network . . . . . . . . . . . . . . . . . . . . . . 19

3.3 A road network, with a query from v1 to v10 . . . . . . . . . . . . 22

3.4 Components in a static caching system . . . . . . . . . . . . . . . 26

3.5 Cost vs. distance of a shortest path API . . . . . . . . . . . . . . 28

3.6 Example of χs,t and Es,t values for the graph . . . . . . . . . . . 34

3.7 Counting region-pair frequency in table χ̂ . . . . . . . . . . . . . 37

3.8 Example of estimating expense χs,t . . . . . . . . . . . . . . . . . 40

xiii



xiv LIST OF FIGURES

3.9 Path array, with inverted lists . . . . . . . . . . . . . . . . . . . . 48

3.10 Subgraph representation, with inverted lists . . . . . . . . . . . . 49

3.11 Compressed inverted lists . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Hit ratio vs. levels . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Hit ratio vs. cache size . . . . . . . . . . . . . . . . . . . . . . . . 55

3.14 Hit ratio vs. processed queries (5 MBytes cache) . . . . . . . . . 55

3.15 Performance savings vs. levels, using Dijkstra . . . . . . . . . . . 58

3.16 Performance savings vs. levels, using A∗ . . . . . . . . . . . . . . 59

3.17 Performance savings vs. cache size, using Dijkstra . . . . . . . . . 60

3.18 Performance savings vs. cache size, using A∗ . . . . . . . . . . . 61

4.1 A road network, with a query from v1 to v10 . . . . . . . . . . . . 64

4.2 Shortest path (crosses) and concise shortest path (circles), in

New York . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Client server architecture . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Possible driving instructions; the shortest path is indicated by

bold arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Concise shortest path . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Hit ratio vs. path size ratio . . . . . . . . . . . . . . . . . . . . . 93

4.7 Hit ratio vs. window size . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES xv

4.8 Hit ratio vs. cache capacity . . . . . . . . . . . . . . . . . . . . . 95

4.9 Hit ratio vs. cluster radius . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Hit ratio vs. cache capacity . . . . . . . . . . . . . . . . . . . . . 97

4.11 Hit ratio vs. cluster radius . . . . . . . . . . . . . . . . . . . . . . 98

4.12 Hit ratio vs. number of clusters . . . . . . . . . . . . . . . . . . . 99

5.1 Example for the sum-optimal meeting point . . . . . . . . . . . . 102

5.2 Illustration of rmax calculation . . . . . . . . . . . . . . . . . . . 108

5.3 Example for Tile-MSR (Algorithm 5.2 & 5.3) . . . . . . . . . . . 112

5.4 Hyperbola curves for ‖p′, l‖ − ‖po, l‖ = r . . . . . . . . . . . . . . 113

5.5 Example for using the distance threshold . . . . . . . . . . . . . 117

5.6 Vary group size m ( for Sum-MPN ) . . . . . . . . . . . . . . . . 123

5.7 Vary POI number n ( for Sum-MPN ), as a fraction of data size N 124

5.8 Vary buffering parameter β ( for Sum-MPN ) . . . . . . . . . . . 125



xvi LIST OF FIGURES



Chapter 1

Introduction

Online location based services (LBSs) provide mobile users with services

based on their own or friends’ GPS locations [1, 2]. LBSs can be divided into

three categories based on the type of service they provide:

• Services which do not require the user’s current location. E.g., answering

a shortest path query from location S to T , or providing the option to

downloading a section of a map for offline usage.

• Service depending on the user’s current location. E.g., driving instructions

while navigating towards a target location, or nearby restaurant recom-

mendation.

• Services depending on the current location of a group of users. E.g., Of-

fering to notify a user about friends nearby, or assisting users in finding a

suitable location to meet.

1
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All major location based service providers use the client-server architec-

ture [3–6]. An online location based service works by first receiving a query with

GPS coordinates from a user, and second, returning an answer based on the

service requested.

A popular application of the client-server architecture is web search, where

a search engine is queried for a set of relevant web sites. A cache stores the

results of frequent queries so similar queries can be answered quickly, bypassing

the need to re-calculate the results. This improves both the query latency and

lowers the computation time [7–10]. Figure 1.1 shows the cache can be located

at 3 places, either a server, a proxy, or at the user. The cache is placed at the

server primarily to save computation time, or at a proxy in a local network to

reduce query latency and response time.

compute 

result

Users

Cache

Cache

Proxy

Search engine 

/ server

Cache

Figure 1.1. Scenario for web search

The cache can be placed at the mobile user to reduce the communication

with the server. There are two categories of services that benefit from a cache at
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the user. (i) LBS that continuously monitor users’ locations are query intensive,

for these services users benefit from locally caching when they need to resend their

current location. (ii) Services that return a result set limited by a geographical

region. The users can save communication by sending a smaller query in case a

partial result has already been retrieved from a previous query.

A cache placed at the users devices is almost always a semantic cache, mean-

ing the cache is aware of the semantics of the cache items, enabling the cache

to return partial answers (so a smaller query would be sent to the server), or

allowing cache items to answer multiple types of queries.

In this thesis, we investigate novel caching problems and introduce a new

type of caching not previously investigated. Specifically, we study the follow-

ing interesting caching problems: (i) caching of shortest paths, (ii) calculation

and caching of generalized concise paths, and (iii) computing of safe regions for

notification of meeting points.

Shortest path caching is an important tool for online location based services,

to support the growing number of mobile users who are always online. Shortest

path caching is challenging as it differs from traditional caching, such as web

caching, in a number of important aspects. (i) The sizes of shortest paths differ,

the cache can store few long shortest paths, or many shorter ones. (ii) A long

shortest path takes longer to compute than a shorter one, so the computational

savings of a longer cache item becomes important. (iii) A shortest path exhibit

the optimal subpath property (Lemma 3.1), meaning all paths on a shortest path

is also a shortest path. This lends more value to longer shortest paths in the

cache, as they can answer more queries.
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Consider the example road network in Figure 1.2. The shortest path from

v1 to v6 contains 5 vertices, while the one from v2 to v4 contains only 3 vertices.

However, (v1, v6) can answer 10 queries, while (v2, v4) can only answer 3. Even

though (v2, v4) takes up less space, (v1, v6) can answer more queries per vertex

if added to the cache.

v
1

v
3

v
7

v
4

v
8

v
5

v
6

v
2

6

1

9

3

2

5

2v
7

2

Figure 1.2. An example road network

A generalized concise path is a shortest path where some vertices in the

path has been removed. Caching generalized concise paths are important for

online location based service providers to optimize the utilization of the shortest

path cache. The idea works by first identifying the smallest set of vertices which

still allow for the original path to be traversed, then use query logs to identify

historically important queries and add the vertices needed to answer these queries

back into the path. The point is to omit the vertices which have historically not

been useful, from the paths in the cache.

Consider the example road network in Figure 1.2. If we originally had a

shortest path (v1, v8) and we had seen the query (v3, v5) at least once, but never

the query (v4, v7), then it is a waste of space to store the full path in the cache,

as we don’t expect v4 or v7 to contribute. We suggest not storing the full path,

but 〈v1, v3, v5, v8〉 in the cache, which takes up less space.
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The Sum-Optimal Meeting point notification problem helps a group of users

to dynamically find the optimal meeting point for the whole group among a set

of predefined options to minimize the total sum of distances traveled by all the

group members. Safe regions for sum-optimal meeting points notification reduces

the need for members of a group to constantly send a location based service their

location. As an example of Sum-Optimal Meeting point notification, consider the

group of users {U1, U2, U3} in Figure 1.3. At time T1 the group wants to meet

at a restaurant R1 or R2. The LBS recommends restaurant R1 at time T1 as it

has the shortest total travel distance for the group members. At time T2 user

U2 and U3 have traveled much further than U1, so when the LBS recalculates

the sum-optimal meeting point, the recommended restaurant becomes R2, as it

is now the meeting point with the shortest total travel distance for the group.

U
1,  

 T
1

U
2,  

 T
2

U
3,  

 T
2

U
3,  

 T
1

U
2  

 T
1

U
1,  

 T
2

R
1

R
2

Figure 1.3. Finding sum-optimal meeting point
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The main contribution of this thesis can be summarized as follows:

• We develop algorithms and data structures for caching of shortest paths.

• We develop algorithms for computing generic concise shortest paths.

• We present algorithms for computing the safe regions for the sum-optimal

point notification problem.

The rest of this thesis is organized as follows. Chapter 2 gives an overview

of the existing work related to caching and shortest path computation.

Chapter 3 (based on [11]) studies caching of shortest paths. The problem

is studied for both server and proxy caching. A model to capture the benefit

of caching a shortest path is introduced. We propose a greedy algorithm to

select beneficial paths for the cache, based on historical query information. We

introduce effective structures to speed up cache look up and increase the cache

space utilization. Finally, we do extensive performance evaluations to evaluate

the cache performance.

Chapter 4 (based on [12]) studies how to increase the cache hit ratio by

caching partial shortest paths, which still hold enough information to navigate

the original shortest paths. We present the concept of a concise path. We

introduce the idea of a generic concise path which addresses the trade-off between

the path length and the number of queries a path can answer. We develop caching

schemes to support generic shortest paths, and perform extensive experimental

evaluations on both real and synthetic datasets
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Chapter 5 (based on [13]1) studies how to compute safe regions for the sum-

optimal meeting point, where the sum of all users travel distance is minimized,

for a group of users. The focus is on minimizing the communication frequency

of the user. Efficient algorithms and optimizations are developed to efficiently

calculate independent safe regions based on the concept of a sum-optimal meeting

point.

Chapter 6 concludes the thesis.

1We contribute to Sections 5.4, 6, and 7.3 from [13]
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Chapter 2

Literature Review

Caching continues to be one of the most important topics in computer sci-

ence. Caching materializes the results of the most popular queries submitted to

a server and transparently stores the data to answer future queries faster. A

query resulting in a cache hit will negate the computing cost associated with cal-

culating the result. Table 2.1 indicates the relevance between the main chapters

(3, 4, 5) and the topics in this literature review.

Chapter Chapter 3 Chapter 4 Chapter 5

Web Search Caching X X
Shortest Path Computation X X
Semantic Caching X X X

Table 2.1. Related work shared by chapter 3, 4, or 5

9



10 2.1. WEB SEARCH CACHING

2.1 Web Search Caching

A web search cache stores titles and text snippets of each result associated

with a search query in a search engine, such as Google, Bing, or Baidu.

A web search query asks for the top-K relevant documents (i.e., web pages)

that best match a text query, e.g., “Paris Eiffel Tower.” The typical value of K

is the number of results (e.g., 10) to be displayed on a result page [10]; a request

for the next result page is interpreted as an unrelated query.

The cache can be placed at the search engine to save computation time, or

at a proxy in a sub-network to improve latency or response time (see Figure 1.1).

Web search caching is used to improve the performance of a search engine.

When a query can be answered by the cache, the cost of computing the query

result can be saved. Markatos et al. [14] present pioneering work, evaluating

two caching approaches (dynamic caching and static caching) on real query logs.

Dynamic caching [14–16] aims to cache the results of the most recently accessed

queries. For example, in the Least-Recently-Used (LRU) method, when a query

causes a cache miss, the least recently used result in the cache is replaced by

the current query result. This approach keeps the cache up-to-date and adapts

quickly to the distribution of the incoming queries; however, it incurs the over-

head of updating the cache frequently.

On the other hand, static caching [7–10,14,17] aims to cache the results of the

most popular queries. This approach exploits a query log that contains queries

issued in the past in order to determine the most frequent queries. The above

studies have shown that the frequency of queries follows Zipfian distribution, i.e.,
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a small number of queries have very high frequency, and they remain popular for

a period of time. Although the cache content is not the most up-to-date, it is

able to answer the majority of frequent queries. A static cache can be updated

periodically (e.g., daily) based on the latest query log. Static caching has the

advantage that it incurs very low overhead at query time.

Early work on web search caching adopt the cache hit ratio as the perfor-

mance metric. This metric reflects the number of queries that do not require

computation cost. Recent work [9,10] on web search caching uses the server pro-

cessing time as the performance metric. The motivation is that different queries

have different query processing times, e.g., a query involving terms with large

posting lists incurs a high processing cost. Thus, the actual processing time of

each query in the query log is taken into account, and both frequency and cost

information are exploited in the proposed static caching methods.

None of the above works consider the caching of shortest paths. In this work,

we adopt both static and dynamic caching approaches as the best performance

depends on which of our methods are used. Earlier techniques [9,10] are specific

to web search queries and are inapplicable to our problem. In our caching prob-

lem, different shortest path queries also have different processing times. Thus,

we also propose a cost-oriented model for quantifying the benefit of placing a

path in the cache.
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2.2 Semantic Caching

Semantic caching is a caching model which associates cached results with

valid ranges. Semantic caching lets a cache answer more than one query per

cache item. It also allows for a cache item to partially answering a query.

In a client-server system, a cache may be employed at the client-side in order

to reduce the communication cost and improve query response time. A cache

located at a client can only serve queries from the client itself, not from other

clients. Such a cache is only beneficial for a query-intensive user. All techniques

in this category adopt the dynamic caching approach.

Semantic caching [18] is a client-side caching model that associates cached

results with valid ranges. Upon receiving a query Q, the relevant results in the

cache are reported. A subquery Q′ is constructed from Q such that Q′ covers

the query region that cannot be answered by the cache. The subquery Q′ is

then forwarded to the server in order to obtain the missing results of Q. Dar et

al. [18] focus on semantic caching of relational datasets. As an example, assume

that the dataset stores the age of each employee and that the cache contains the

result of the query “find employees with age below 30.” Now assume that the

client issues a query Q “find employees with age between 20 and 40.” First, the

employees with age between 20 and 30 can be obtained from the cache. Then, a

subquery Q′ “find employees with age between 30 and 40” is submitted to the

server for retrieving the remaining results.

Semantic caching has also been studied for spatial data [19–21]. Zheng et

al. [19] define the semantic region of a spatial object as its Voronoi cell, which
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can be used to answer nearest neighbor queries for a moving client user. Hu et

al. [20] study semantic caching of tree nodes in an R-tree and examine how to

process spatial queries on the cached tree nodes. Lee et al. [21] build generic

semantic regions for spatial objects so that they support generic spatial queries.

Semantic regions are semantically equal to safe regions, in that they are

both polygons with the purpose of minimizing the number or range of spatial

queries. The safe region concept has been widely used in moving query processing

to reduce the communication cost between clients and servers. When a user

registers a continuous query, the server will return POIs along with a safe region.

The query result remains the same if the user stays inside the current safe region.

Upon leaving the safe region, the user requests from the server a updated result

together with a new safe region. The shape of the safe region depends on the

query type, e.g., an order-k Voronoi cell for a kNN query [22], or an arc-based

region for a range query [23]. Figure 2.1 illustrates the use of safe regions. The

user wants to travel from v1 to v8 and be notified which road to take at each

intersection. At v1 the service returns safe region R1 so the user know that

no location update needs to be sent until outside the boundary of R1. When

arriving at v3 the user is outside R1. After submitting the current location, the

LBS returns the direction to take and R2. Finally, at v5 the user sends the final

location update and is returned the correct direction plus R3. Using safe regions

the user only had to send 3 updates to get this, in stead of sending the current

location continuously.
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Figure 2.1. An example road network

2.3 Shortest Path Computation

Shortest path computation takes a shortest path query from a source node

S to a target node T , on a weighted edge graph. It finds the path with the

minimal sum on all the edges from S to T .

Existing shortest path indexes can be categorized into three types, which

represent different trade-offs between their precomputation effort and query per-

formance.

A basic structure is the adjacency list, in which each node vi is assigned

a list that stores the adjacent nodes of vi. It does not store any pre-computed

information. Uninformed search (e.g., Dijkstra’s algorithm, bidirectional search)

can be used to compute the shortest path; however, it incurs high query cost.

Partially-precomputed indexes, e.g., landmarks [24], HiTi [25], and TEDI [26],

attempt to materialize some distances/paths in order to accelerate the processing

of shortest path queries. They employ certain parameters to control the trade-

offs among query performance, precomputation overhead, and storage space.
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Fully-precomputed indexes, e.g., the distance index [27] or the shortest path

quadtree [28], require precomputation of the shortest paths between any two

nodes in the graph. Although they support efficient querying, they incur huge

precomputation time (O(|V |3)) and storage space (O(|V |2)), where |V | is the

number of nodes in the graph.



16 2.3. SHORTEST PATH COMPUTATION



Chapter 3

Caching of Shortest Paths

The world’s population issues vast quantities of web search queries. A typical

scenario for web search is illustrated in Figure 3.1. A user submits a query, e.g.,

“Paris Eiffel Tower,” to the search engine, which then computes relevant results

and returns them to the user. A cache stores the results of frequent queries so

that queries can be answered frequently by using only the cache, thus reducing

the amount of computation needed and improving query latency [7–10].

Specifically, the cache can be placed at the search engine to save its com-

putation time, e.g., when the query (result) can be found in the cache. Or, to

improve latency or response time, the cache can be placed at a proxy that resides

in the same sub-network as the user. A query result that is available at the proxy

can be reported immediately, without contacting the search engine.

The scenario in Figure 3.1 is applicable to online shortest path search, also

called directions querying. Due to the increasingly mobile use of the web and

advances in geo-positioning technologies, this has become a popular type of web

17
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query. This type of query enables users to, e.g., obtain directions to a museum,

a gas station, or a specific shop or restaurant.

compute 

result

Users

Cache

Cache

Proxy

Search engine 

/ server

Cache

Figure 3.1. Scenario for web search

When compared to offline commercial navigation software, online shortest

path search (e.g., Google Maps, MapQuest) provide several benefits to mobile

users: (i) They are available free of charge. (ii) They do not require any installa-

tion and storage space on mobile devices. (iii) They do not require the purchase

and installation of up-to-date map data on mobile devices.

Figure 3.2 shows a road network in which a node vi is a road junction and

an edge (vi, vj) models a road segment with its distance shown as a number. The

shortest path from v1 to v7 is the path 〈v1, v3, v4, v5, v7〉 and its path distance

is 3 + 6 + 9 + 5 = 23. Again, caching can be utilized at a proxy to reduce the

response time, and it can also be used at the server to reduce the server-side

computation.

We study the caching of path search results in the scenario shown in Fig-
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Figure 3.2. An example road network

ure 3.1. While shortest path search shares this scenario with web search, there

are also crucial differences between general web search and shortest path search,

rendering existing caching techniques for web results ineffective in our context.

• Exact matching vs. subpath matching: The result of a web query

(e.g., “Paris Eiffel Tower”) seldom matches with that of another query

(e.g., “Paris Louvre Palace”). In contrast, a shortest path result contains

subpaths that can be used for answering other queries. For example, the

shortest path from v1 to v7 (〈v1, v3, v4, v5, v7〉) contains the shortest path

from v3 to v5, the shortest path from v4 to v7, etc. We need to capture this

feature when formulating the benefit of a path.

• Cache structure: Web search caching may employ a hash table to check

efficiently whether a query can be found in the cache. However, such a hash

table cannot support the subpath matching found in our setting. A new

structure is required to organize the cache content in an effective way for

supporting subpath matching. Furthermore, this problem is complicated by

the overlapping of paths. For example, the shortest path 〈v1, v3, v4, v5, v7〉

and the shortest path 〈v2, v3, v4, v5, v6〉 have a significant overlap, although

one does not contain the other. We will exploit the overlapping of paths
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to design a compact cache structure.

• Query processing cost: At the server side, when a cache miss occurs, an

algorithm is invoked to compute the query result. Some results are more

expensive to obtain than others. To optimize the server performance, we

need a cost model for estimating the cost of evaluating a query. However,

to our knowledge, there is no work on estimating the cost of a shortest path

query with respect to an unknown shortest path algorithm.

In order to tackle the above challenges, we make the following contributions:

• We formulate a systematic model for quantifying the benefit of caching a

specific shortest path.

• We design techniques for extracting statistics from query logs and bench-

marking the cost of a shortest path call.

• We propose an algorithm for selecting paths to be placed in the cache.

• We develop a compact and efficient cache structure for storing shortest

paths.

• We study the above contributions empirically using real data.

The rest of the chapter is organized as follows. In Section 3.1 we outline the

related work specific to this chapter. Section 3.2 defines our problem formally,

and Section 3.3 formulates a model for capturing the benefit of a cached shortest

path, examines the query frequency and the cost of a shortest path call, and

presents an algorithm for selecting appropriate paths to be placed in the cache.

Section 3.4 presents a compact and efficient cache structure for storing shortest



CHAPTER 3. CACHING OF SHORTEST PATHS 21

paths. Our proposed methods are then evaluated on real data in Section 3.5.

Section 3.6 concludes the chapter.

3.1 Related Work

The related work relevant to this chapter is described in Chapter 2, see

Table 2.1. This Section will present the differences between this chapter and the

related work presented in Chapter 2.

3.1.1 Web Search Caching

The related work on Web search caching is presented in Section 2.1. Web

search caching is a common type of caching using the client server architecture,

however, none of the work done in this area considers the caching of shortest

path. In our caching problem, different shortest path queries also have different

processing times, Thus we also propose a cost-oriented model for quantifying the

benefit of placing a path in the cache. The cost model for web search caching is

not applicable to our caching problem.

3.1.2 Semantic Caching

Prior work on semantic caching, using spatial data, have proposed using

semantic regions or R-Trees to answer queries (see Section 2.2). However, no

semantic caching techniques have been proposed for graphs or shortest paths. For

client side semantic caching the client is locally storing previous results received

from the server. Each result is associated with a valid range which can be used to
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answer full or partial queries. We have studied the semantic caching of shortest

paths. By the optimal subpath property [29], a shortest path SP can answer

any shortest path query Qs,t whose source s and target t both fall into SP . For

example, in Figure 3.3, the shortest path SP1,10 = 〈v1, v3, v4, v5, v7, v9, v10〉 can

answer the shortest path query Q4,10 as the path SP1,10 contains both v4 and

v10.
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Figure 3.3. A road network, with a query from v1 to v10

3.1.3 Shortest Path Computation

Previous work on storing precomputed results for shortest path are all done

on indexing structures (see Section 2.3).

As a possible approach to our caching problem, one could assume that a spe-

cific shortest path index is being used at the server. A portion of the index may

be cached so that it can be used to answer certain queries rapidly. Unfortunately,

this approach is tightly coupled to the assumed index, and it is inapplicable to

servers that employ other indexes (or new index developed in the future).

In this chapter we view the shortest path method as a black-box and de-
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couple it from the cache. The main advantage is that our approach is applicable

to any shortest path method (including online APIs such as Google Directions),

without knowing its implementation.

3.2 Problem Setting

Following a coverage of background definitions and properties, we present

our problem and objectives. Table 3.1 summarizes the notation used in this

chapter.

Notation Meaning
G(V,E) a graph with node set V and edge set E

vi a node in V
(vi, vj) an edge in E
W (vi, vj) the edge weight of W (vi, vj)
Qs,t shortest path query from node vs to node vt
Ps,t the shortest path result of Qs,t

|Ps,t| the size of Ps,t (in number of nodes)
Es,t the expense of executing query Qs,t

χs,t The frequency of a Shortest Path (SP)
Ψ the cache

U(Ps,t) the set of all subpaths in Ps,t

U(Ψ) the set of all subpaths of paths in Ψ
γ(Ψ) the total benefit of the content in the cache
QL query log

Table 3.1. Summary of notation

3.2.1 Definitions and Properties

We first define the notions of graph and shortest path.

Definition 3.1 Graph model.

Let G(V,E) be a graph with a set V of nodes and a set E of edges. Each node
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vi ∈ V models a road junction. Each edge (vi, vj) ∈ E models a road segment,

and its weight (length) is denoted as W (vi, vj).

Definition 3.2 Shortest path: query and result.

A shortest path query, denoted by Qs,t, consists of a source node vs and a target

node vt.

The result of Qs,t, denoted by Ps,t, is the path from vs to vt (on graph G) with

the minimum sum of edge weights (lengths) along the path. We can represent

Ps,t as a list of nodes: 〈vx0 , vx1 , vx2 · · · , vxm〉, where vx0 = vs, vxm = vt, and the

path distance is:
∑m−1

i=0 W (vxi , vxi+1).

We consider only undirected graphs in our examples. Our techniques can

be easily applied to directed graphs. In the example graph of Figure 3.2, the

shortest path from v1 to v7 is the path P1,7 = 〈v1, v3, v4, v5, v7〉 with its length

3 + 6 + 9 + 5 = 23. We may also associate a point location with each vertex.

Shortest paths exhibit the optimal subpath property (see Lemma 3.1): ev-

ery subpath of a shortest path is also a shortest path. For example, in Fig-

ure 3.2, the shortest path P1,7 = 〈v1, v3, v4, v5, v7〉 contains these shortest paths:

P1,3, P1,4, P1,5, P1,7, P3,4, P3,5, P3,7, P4,5, P4,7, P5,7.

Lemma 3.1 Optimal subpath property (from [29]).

The shortest path Pa,b contains the shortest path Ps,t if vs ∈ Pa,b and vt ∈ Pa,b.

Specifically, let Pa,b = 〈vx0 , vx1 , vx2 · · · , vxm〉. We have Ps,t = 〈vxi , vxi+1 , · · · , vxj 〉

if vs = vxi and vt = vxj for some i, j that 0 ≤ i ≤ j ≤ m.
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As we will discuss shortly, this property can be exploited for the caching of

shortest paths.

3.2.2 Problem and Objectives

We adopt the architecture of Figure 3.1 when addressing the caching prob-

lem. If a proxy server is used it will be run by the same owner as the server.

Users with mobile devices issue shortest path queries to an online server. The

cache, as defined below, can be placed at either a proxy or the server. It helps

optimize the computation and communication costs at the server/proxy, as well

as reduce the response time of shortest path queries.

Definition 3.3 Cache and budget.

Given a cache budget B, a cache Ψ is allowed to store a collection of shortest

path results such that |Ψ| ≤ B, where the cache size |Ψ| =
∑

Ps,t∈Ψ

|Ps,t| is the total

number of nodes of all shortest paths in Ψ.

As discussed in Section 3.1, recent literature on web search caching [7–10] advo-

cates the use of a static caching that has very low runtime overhead and only

sacrifices the hit ratio slightly. Thus, we adopt the static caching paradigm and

exploit a query log to build the cache.

Definition 3.4 Query log.

A query log QL is a collection of timestamped queries that have been issued by

users in the past.

Figure 3.4 identifies essential components in a static caching system: (i) a

shortest path API, (ii) a cache, (iii) an online module for cache lookup, and (iv)



26 3.2. PROBLEM SETTING

offline/periodically invoked modules for collecting a query log, benchmarking the

API cost, and populating the cache.

Query Q
s,t Shortest path API

(black-box)

Collect query log

statistics

Lookup cache

(query time) Cache

Build cache
Benchmark 

API cost

hit

miss

User Server / Proxy Periodic cache refresh

E
s,t

χ
s,t

Result path P
s,t

hit

Online query evaluation

Figure 3.4. Components in a static caching system

The shortest path component (in gray) is external to the system, so we are

not allowed to modify its implementation. For the server scenario, the shortest

path API is linked to a typical shortest path algorithm (e.g., Dijkstra, A* search).

For the proxy scenario, the shortest path API triggers a query message to the

server. In either case, calling the shortest path API incurs expensive compu-

tation/communication, as defined shortly. Different queries may have different

costs. In general, a long-range query incurs higher cost than a short-range query.

Definition 3.5 Expense of executing query.

We denote by Es,t the expense (i.e., response time) of the shortest path API to

process query Qs,t.

We employ a cache to reduce the overall cost of invoking the shortest path

API. Having received a query (at runtime), the server/proxy checks whether the
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cache contains the query result. If this is a hit, the result from the cache is

reported to the user immediately. This saves the cost of calling the shortest path

API. Otherwise, the result must be obtained by calling the shortest path API.

We observe that maximizing the cache hit ratio does not necessarily mean

that the overall cost is reduced significantly. In the server scenario, the cost of

calling the shortest path API (e.g., shortest path algorithm) is not fixed and

depends heavily on the distance of the shortest path.

We conducted a case study and found a strong correlation between shortest

path computation cost and distance. In the first test, Dijkstra’s algorithm is

used as the API. We generated 500 random shortest path queries on the Aalborg

network (see Section 3.5). Figure 3.5a shows the shortest path distance (x-axis)

and the number of nodes visited (y-axis) for each query. In the second test, the

Google Directions API is used as the API. We tested several queries and plotted

their shortest travel times and costs (i.e., response times) in Figure 3.5b. In

summary, caching a short-range path may only provide a negligible improvement,

even if the path is queried frequently. Therefore, we will study the benchmarking

of the cost of calling the API.

Adopting the static caching paradigm, the server/proxy collects a query log

and re-builds the cache periodically (e.g., daily). By extracting the distribution

of a query log, we are able to estimate the probability of a specific shortest path

being queried in the future. Combining such information with benchmarking, we

can place promising paths in the cache in order to optimize the overall system

performance. We will also investigate the structure of the cache; it should be

compact in order to accommodate as many paths as possible, and it should



28 3.2. PROBLEM SETTING

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  20000  40000  60000  80000  100000

C
o

s
t 
(n

o
d

e
s
 v

is
it
e

d
)

Shortest path distance

Source Target Travel Response
time (s) time (ms)

Capitol Building The Smithsonian 372 101.24

The Smithsonian Washington, DC 419 110.94

White house War Memorials 41831 168.44

White house Capitol Building 75805 278.44

White house Statue of Liberty 88947 362.8

Capitol Building Mount Rushmore 99456 364.68

White house Golden Gate Bridge 108353 342.8

(a) Dijkstra on map of Aalborg (b) Google Directions API

Figure 3.5. Cost vs. distance of a shortest path API

support efficient result retrieval.

Our main objective or problem is to reduce the overall cost incurred by

calling the shortest path API. We define this problem below. In Section 3.3, we

formulate a cache benefit notion γ(Ψ), extract statistics to compute γ(Ψ), and

present an algorithm for the cache benefit maximization problem.

Problem: Static cache benefit maximization problem.

Given a cache budget B and a query log QL, build a cache Ψ with the maximum

cache benefit γ(Ψ) subject to the budget constraint B, where Ψ contains result

paths Ps,t whose queries Qs,t belong to QL.

Our secondary objectives are to: (i) develop a compact cache structure to

maximize the accommodation of shortest paths, and (ii) provide efficient means

of retrieving results from the cache. We focus on these issues in Section 3.4.
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3.2.3 Existing Solutions for Caching Results

We revisit existing solutions for caching web search results [14] and explain

why they are inadequate for shortest path caching.

Dynamic Caching—LRU: A typical dynamic caching method for web search

is the Least-Recently-Used (LRU) method [14]. When a new query is submitted,

its result is inserted into the cache. When the cache does not have space for a

result, the least-recently-used result in the cache is evicted to make space.

We proceed to illustrate the running steps of LRU on the map in Figure 3.2.

Let the cache budget B be 10 (i.e., it can hold 10 nodes). Table 3.2 shows the

query and the cache content at each time Ti. Each cached path is associated with

the last time it was used. At times T1 and T2, both queries produce cache misses

and their results (P3,6 and P1,6) are inserted into the cache (as they fit). At time

T3, query Q2,7 causes a cache miss as it cannot be answered by any cached path.

Before inserting its result P2,7 into the cache, the least recently used path P3,6

is evicted from the cache. At time T4, query Q1,4 contributes a cache hit; it can

be answered by the cached path P1,6 because the source and target nodes v1, v4

fall on P1,6 (see Lemma 3.1). The running steps at subsequent times are shown

in Table 3.2. In total, the LRU cache has 2 hits.

LRU cannot determine the benefit of a path effectively. For example, paths

P1,6 and P2,7 (obtained at times T2 and T3) can answer many queries at sub-

sequent times, e.g., Q1,4, Q2,5, Q3,6, Q3,6. If they were kept in the cache, there

would be 4 cache hits. However, LRU evicts them before they can be used to

answer other queries.
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Time Qs,t Ps,t Paths in LRU cache event

T1 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T1 miss
T2 Q1,6 〈v1, v3, v4, v5, v6〉 P1,6 : T2, P3,6 : T1 miss
T3 Q2,7 〈v2, v3, v4, v5, v7〉 P2,7 : T3, P1,6 : T2 miss
T4 Q1,4 〈v1, v3, v4〉 P1,6 : T4, P2,7 : T3 hit
T5 Q4,8 〈v4, v5, v7, v8〉 P4,8 : T5, P1,6 : T4 miss
T6 Q2,5 〈v2, v3, v4, v5〉 P2,5 : T6, P4,8 : T5 miss
T7 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T7, P2,5 : T6 miss
T8 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T8, P2,5 : T6 hit

Table 3.2. Example of LRU on a sequence of queries

As another limitation, LRU is not designed to support subpath matching

efficiently. Upon receiving a query Qs,t, every path in the cache needs to be

scanned in order to check whether the path contains vs and vt. This incurs

significant runtime overhead, possibly outweighing the advantages of the cache.

Static Caching—HQF: A typical static caching method for web search is the

Highest-Query-Frequency (HQF) method [14]. In an offline phase, the most

frequent queries are selected from the query log QL, and then their results are

inserted into the cache. The cache content remains unchanged during runtime.

Like in web caching, the frequency of a query Qs,t is the number of queries

in QL that are identical to Qs,t. Let us consider an example query log: QL =

{Q3,6, Q1,6, Q2,7, Q1,4, Q4,8, Q2,5, Q3,6, Q3,6}. SinceQ3,6 has the highest frequency

(3), HQF picks the corresponding result path P3,6. It fails to pick P1,6 because

its query Q1,6 has a low frequency (1). However, path P1,6 is more promising

than P3,6 because P1,6 can be used to answer more queries than can P3,6. This

creates a problem in HQF because the query frequency definition does not cap-

ture characteristics specific to our problem—shortest paths may overlap, and the
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result of one query may be used to answer multiple other queries.

Shared limitations of LRU and HQF: Furthermore, neither LRU nor HQF

consider the variations in the expense of obtaining shortest paths. Consider the

cache in the server scenario as an example. Intuitively, it is more expensive to

process a long-range query than a short-range query. Caching an expensive-to-

obtain path could lead to greater savings in the future. An informed choice of

which paths to cache should take such expenses into account.

Also, the existing approaches have not studied the utilization of the cache

space for shortest paths. For example, in Table 3.2, the paths in the cache overlap

and cause wasted space on storing duplicate nodes among the overlapping paths.

It is important to design a compact cache structure that exploits path sharing

to avoid storing duplicated nodes.

3.3 Benefit-Driven Caching

We propose a benefit-driven approach to determining which shortest paths

should be placed in the cache. Section 3.3.1 formulates a model for capturing the

benefit of a cache on potential queries. This model requires knowledge of (i) the

frequency χs,t of a query, and (ii) the expense Es,t of processing a query. Thus,

we investigate how to extract query frequencies from a query log in Section 3.3.2

and benchmark the expense of processing a query in Section 3.3.3. Finally, in

Section 3.3.4, we present an algorithm for selecting promising paths to be placed

in the cache.
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3.3.1 Benefit Model

We first study the benefit of a cached shortest path and then examine the

benefit of a cache.

First, we consider a cache Ψ that contains one shortest path Pa,b only. Recall

from Figure 3.4 that when a query Qs,t can be answered by a cached path Pa,b,

this produces a cache hit and avoids the cost of invoking the shortest path API.

In order to model the benefit of Pa,b, we must address two questions:

1. Which queries Qs,t can be answered by the path Pa,b?

2. For query Qs,t, what are the cost savings?

The first question is answered by Lemma 3.1. The path Pa,b contains the

path Ps,t if both nodes vs and vt appear in Pa,b. Thus, we define the answerable

query set of the path Pa,b as:

U(Pa,b) = {Ps,t | s ∈ Pa,b ∧ t ∈ Pa,b ∧ s 6= t} (3.1)

This set contains the queries that can be answered by Pa,b. Taking Figure 3.2

as the example graph, the answerable query set of path P1,6 is: U(P1,6) =

{P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6, P4,5, P4,6, P5,6}. Table 3.3 shows the answer-

able query sets of other paths.

Regarding the second question, the expected cost savings for query Qs,t

depends on (i) its query frequency χs,t and (ii) the expense Es,t for the shortest

path API to process it. Since the path Pa,b can answer query Qs,t, we save cost
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Pa,b U(Pa,b)
P1,4 P1,3, P1,4, P3,4

P1,6 P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

P2,5 P2,3, P2,4, P2,5, P3,4, P3,5, P4,5

P2,7 P2,3, P2,4, P2,5, P2,7, P3,4, P3,5, P3,7, P4,5, P4,7, P5,7

P3,6 P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

P4,8 P4,5, P4,7, P4,8, P5,7, P5,8, P7,8

U(Ψ), when Ψ = {P1,6, P3,6}
P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

Table 3.3. Example of U(Ps,t) and U(Ψ)

Es,t a total of χs,t times, i.e., χs,t · Es,t in total.1

Combining the answers to both questions, we define the benefit of path Pa,b

as:

γ(Pa,b) =
∑

Ps,t∈U(Pa,b)

χs,t · Es,t (3.2)

The path benefit γ(Pa,b) answers the question: “If path Pa,b is in the cache, how

much cost can we save in total?”

Let us assume that we are given the values of χs,t and Es,t for all pairs (vs, vt),

as shown in Figure 3.6. We study how to derive them in subsequent Sections.

To compute γ(P1,6) of path P1,6, we first find its answerable query set U(P1,6)

(see Table 3.3). Since U(P1,6) contains the path P1,4, it contributes a benefit of

χ1,4 ·E1,4 = 1 · 2 (by lookup in Figure 3.6). Summing up the benefits of all paths

in U(P1,6), we thus obtain: γ(P1,6) = 0+1·2+0+1·4+0+0+3·3+0+0+0 = 15.

Similarly, we can compute the benefit of path P3,6: γ(P3,6) = 0+0+3·3+0+0+0 =

9.

We proceed to extend our equations to the general case—a cache containing

1We ignore the overhead of cache lookup as it is negligible compared to the expense Es,t of
processing a query Qs,t. Efficient cache structures are studied in Section 3.4.
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χs,t v1 v2 v3 v4 v5 v6 v7 v8

v1 / 0 0 1 0 1 0 0
v2 0 / 0 0 1 0 1 0
v3 0 0 / 0 0 3 0 0
v4 1 0 0 / 0 0 0 1
v5 0 1 0 0 / 0 0 0
v6 1 0 3 0 0 / 0 0
v7 0 1 0 0 0 0 / 0
v8 0 0 0 1 0 0 0 /

Es,t v1 v2 v3 v4 v5 v6 v7 v8

v1 / 2 1 2 3 4 4 5
v2 2 / 1 2 3 4 4 5
v3 1 1 / 1 2 3 3 4
v4 2 2 1 / 1 2 2 3
v5 3 3 2 1 / 1 1 2
v6 4 4 3 2 1 / 2 3
v7 4 4 3 2 1 2 / 1
v8 5 5 4 3 2 3 1 /

(a) χs,t values (b) Es,t values

Figure 3.6. Example of χs,t and Es,t values for the graph

multiple shortest paths. Observe that a query can be answered by the cache Ψ if

it can be answered by any path Pa,b in Ψ. Thus, we define the answerable query

set of Ψ as the union of all U(Pa,b), and we define the benefit of Ψ accordingly.

U(Ψ) =
⋃

Pa,b∈Ψ

U(Pa,b) (3.3)

γ(Ψ) =
∑

Ps,t∈U(Ψ)

χs,t · Es,t (3.4)

The cache benefit γ(Ψ) answers the question: “Using cache Ψ, how much cost

can we save in total?”

Suppose that the cache Ψ contains two paths P1,6 and P3,6. The answerable

query set U(Ψ) of Ψ is shown in Table 3.3. By Equation 3.4, we compute the

cache benefit as: γ(Ψ) = 1 · 2 + 1 · 4 + 3 · 3 = 15.

Note that γ(Ψ) is not a distributive function. For example, γ(P1,6) +

γ(P3,6) = 15 + 9 = 24 6= γ(Ψ). Since the path P3,6 appears in both answerable

query sets U(P1,6) and U(P3,6), the benefit contributed by P3,6 is double-counted

in the sum γ(P1,6) + γ(P3,6). On the other hand, the value of γ(Ψ) is correct

because the path P3,6 appears exactly once in the answerable query set U(Ψ) of
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the cache.

Benefit per size unit: The benefit model does not take the size |Pa,b| of a

path Pa,b into account. Assume that we are given two paths Pa,b and Pa′,b′ that

have the same benefit (i.e., γ(Pa,b) = γ(Pa′,b′)) and where Pa′,b′ is smaller than

Pa,b. Intuitively, we then prefer path Pa′,b′ over path Pa,b because Pa′,b′ occupies

less space, leaving space for the caching of other paths. Thus, we define the

benefit-per-size of a path Pa,b as:

γ(Pa,b) =
γ(Pa,b)

|Pa,b|
(3.5)

We will utilize this notion in Section 3.3.4.

Recall from Section 3.2.2 that our main problem is to build a cache Ψ such

that its benefit γ(Ψ) is maximized. This requires values for χs,t and Es,t. We

discuss how to obtain these values in subsequent Sections.

3.3.2 Extracting χs,t from Query Log

The frequency χs,t of query Qs,t plays an important role in the benefit model.

According to a scientific study [30], the mobility patterns of human users follow

a skewed distribution. For instance, queries between hot regions (e.g., shopping

malls, residential buildings) generally have high χs,t, whereas queries between

sparse regions (e.g., rural areas, country parks) are likely to have low χs,t.

In this Section, we propose automatic techniques for deriving the values

of χs,t. In our caching system (see Figure 3.4), the server/proxy periodically

collects the query log QL and extracts values of χs,t. The literature on static



36 3.3. BENEFIT-DRIVEN CACHING

web caching [7] suggests that the query frequency is stable within a month and

that a month can be used as the periodic time interval. We first study a simple

method to extract χs,t and then propose a more effective method for extracting

χs,t.

Node-pair frequency counting: With this method, we first create a node-pair

frequency table χ with |V |× |V | entries, like the one in Figure 3.6a. The entry in

the s-th row and the t-th column represents the value of χs,t. The storage space

of the table is O(|V |2), regardless of the query log size.

At the beginning, all entries in the table are initialized to zero. Next, we

examine each query Qs,t in the query log QL and increment the entry χs,t (and

χt,s).

Consider the query log QL in Table 3.4 as an example. For the first query

Q3,6 in QL, we increment the entries χ3,6 and χ6,3. Continuing this process with

the other queries in QL, we obtain the table χ shown in Figure 3.6a. The χs,t

values in the table χ can then be used readily in the benefit model in Section 3.3.1.

Timestamp T1 T2 T3 T4 T5 T6 T7 T8

Query Q3,6 Q1,6 Q2,7 Q1,4 Q4,8 Q2,5 Q3,6 Q3,6

Table 3.4. Query log QL

Region-pair frequency counting: The node-pair frequency table χ requires

O(|V |2) space, which cannot fit into main memory even for a road network of

moderate size (e.g., |V | = 100, 000). To tackle this issue, we propose to (i)

partition the graph into L regions (where L is system parameter), and (ii) employ

a compact table for storing only the query frequencies between pairs of regions.

For the first step, we can apply any existing graph partitioning technique
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(e.g., kD-tree partitioning, spectral partitioning). The kD-tree partitioning is

applicable to the majority of road networks whose nodes are associated with co-

ordinates. For other graphs, we may apply spectral partitioning, which does not

require node coordinates. In Figure 3.7a, we apply a kD-tree on the coordinates

of nodes in order to partition the graph into L = 4 regions: R1, R2, R3, R4. The

nodes in these regions are shown in Figure 3.7b.

v
1

v
3

v
7

v
4

v
8

v
5

v
6

v
2

6

1

9
3

2

5

2

R
1

R
2

R
3

R
4 v

7
2

(a) a graph partitioned into 4 regions

R1 : {v1, v2}
R2 : {v3, v4}
R3 : {v5, v6}
R4 : {v7, v8}

χRi,Rj
R1 R2 R3 R4

R1 0 1 2 1
R2 1 0 3 1
R3 2 3 0 0
R4 1 1 0 0

(b) node sets of regions (c) region-pair frequency table χ̂

Figure 3.7. Counting region-pair frequency in table χ̂

For the second step, we create a region-pair frequency table χ̂ with L × L

entries, like the one in Figure 3.7c. The entry in the Ri-th row and the Rj-th

column represents the value of χ̂Ri,Rj . The storage space of this table is only

O(L2) and can be controlled by the parameter L. Initially, all entries in the table

are set to zero. For each query Qs,t in the query log QL, we first find the region

(say, Ri) that contains node vs and the region (say, Rj) that contains node vt.

Then we increment the entry χ̂Ri,Rj and χ̂Rj ,Ri . As an example, we read the

query log QL in Table 3.4 and examine the first query Q3,6. We find that nodes
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v3 and v6 fall in the regions R2 and R3, respectively. Thus, we increment the

entries χ̂R2,R3 and χ̂R3,R2 . Continuing this process with the other queries in QL,

we obtain the table χ̂ as shown in Figure 3.7c.

The final step is to describe how to derive the value of χs,t from the region-

pair frequency table χ̂ so that the table is useful for the benefit model. Note

that the frequency of χ̂Ri,Rj is contributed by any pair of nodes (vs, vt) such

that region Ri contains vs and region Rj contains vt. Thus, we obtain: χ̂Ri,Rj =∑
vs∈Ri

∑
vt∈Rj

χs,t. If we make the uniformity assumption within a region, we

have: χ̂Ri,Rj = |Ri| · |Rj | · χs,t, where |Ri| and |Rj | denotes the number of nodes

in the region Ri and Rj , respectively. In other words, we compute the value of

χs,t from the χ̂ as follows:

χs,t =
χ̂Ri,Rj

|Ri| · |Rj |
(3.6)

The value of χs,t is only computed when it is needed. No additional storage space

is required to store χs,t in advance.

A benefit of the region-pair method is that it can capture generic patterns for

regions rather than specific patterns for nodes. An example pattern could be that

many users drive from a residential region to a shopping region. Since drivers live

in different apartment buildings, their starting points could be different, resulting

in many dispersed entries in the node-pair frequency table χ. In contrast, they

contribute to the same entry in the region-pair frequency table χ̂.
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3.3.3 Benchmarking Es,t of Shortest Path APIs

In our caching system (see Figure 3.4), the shortest path API is invoked

when there is a cache miss. The expense Es,t of a query is the round-trip com-

munication time + the shortest path computation cost. Here, we study how to

capture the expense Es,t of computing query Qs,t.

Recall that the cache can be placed at a proxy or a server. For the proxy

scenario, the shortest path API triggers the issue of a query message to the

server. The cost is dominated by the communication round-trip time, which is

the same for all queries. Thus, for simplicity, we define the expense Es,t of query

Qs,t in this scenario as:

Es,t(proxy) = 1 (3.7)

Our subsequent discussion focuses on the server scenario. The communica-

tion round-trip time is not affected by cache misses, and is thus a cost that must

always be paid. Let ALG be the shortest path algorithm invoked by the shortest

path API. We denote the running time of ALG for query Qs,t as the expense

Es,t(ALG).

We develop a generic technique for estimating Es,t(ALG); it is applicable to

any algorithm ALG and to an arbitrary graph topology. To our best knowledge,

this work is the first to explore this issue. There exists work on shortest path

distance estimation [31], but no work exists on estimating the running time of an

arbitrary algorithm ALG. Even for existing shortest path indexes [24–28], only

worst-case query times have been analyzed. They cannot be used to estimate

the running time for a specific query Qs,t.
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A brute-force approach is to precompute Es,t(ALG) by running ALG for

every pair of source node vs and target node vt. These values can be stored

in a table, like the one in Figure 3.6b. However, this approach is prohibitively

expensive as it requires running ALG |V |2 times.

Our estimation technique incurs only a small precomputation overhead. In-

tuitively, the expense Es,t is strongly correlated with the distance of the shortest

path Ps,t. Short-range queries are expected to incur small Es,t, whereas long-

range queries should produce high Es,t. Our idea is to classify queries based on

distances and then estimate the expense of a query according to its category.

Estimation structures: To enable estimation, we build two data structures:

(i) a distance estimator and (ii) an expense histogram.

The distance estimator aims at estimating the shortest path distance of a

query Qs,t. We simply adopt the landmark-based estimator [31] as the distance

estimator. It requires selecting a set U of nodes as landmarks and precomputing

the distances from each landmark node to every node in the graph. This incurs

O(|U ||V |) storage space and O(|U ||E| log |E|) construction time. Potamias et

al. [31] suggest that |U | = 20 is sufficient for accurate distance estimation. Fig-

ure 3.8a shows an example with two landmark nodes, i.e., U = {v3, v5}, together

with their distances d(uj , vi) to other nodes.

d(uj , vi) v1 v2 v3 v4 v5 v6 v7 v8

u1 : v3 3 1 0 6 15 17 20 22
u2 : v5 18 16 15 9 0 2 5 7

d 0-5 5-10 10-15 15-20 20-25
E(d) 1.2 2.5 3.8 5.3 6.8

(a) distance estimator (b) expense histogram

Figure 3.8. Example of estimating expense χs,t

We use an expense histogram for recording the average expense of queries
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with respect to their distances, as illustrated in Figure 3.8b. In general, the

histogram consists of H categories of distances. Then, we execute the algorithm

ALG on a sample of S random queries to obtain their expenses, and we update the

corresponding buckets in the histogram. This histogram requires O(H) storage

space and S ·O(ALG) construction time.

Estimation process: With the above structures, the value of Es,t can be esti-

mated in two steps. First, we apply the distance estimator of Potamias et al. [31]

and estimate the shortest path distance of Ps,t as: mini=1..|U | d(uj , vs)+d(uj , vt).

This step takes O(|U |) time. Second, we perform a lookup in the expense his-

togram and return the expense in the corresponding bucket as the estimated

expense Es,t.

Consider the estimation of E1,4 as an example. Using the distance estimator

in Figure 3.8a, we estimate the shortest path distance of P1,4 as: min{3 + 6, 18 +

9} = 9. We then do a lookup in the expense histogram in Figure 3.8b and thus

estimate E1,4 to be 2.5.

3.3.4 Cache Construction Algorithm

As in other static caching methods [7–10], we exploit the query log QL to

identify promising results to be placed in the cache Ψ. Each query Qa,b ∈ QL

has a corresponding path result Pa,b. This Section presents a cache construction

algorithm for placing such paths into cache Ψ so that the total cache benefit

γ(Ψ) is maximized, with the cache size |Ψ| being bounded by a budget B.

In web search caching, Ozcan et al. [10] propose a greedy algorithm to pop-
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ulate a cache. We also adopt the greedy approach to solve our problem. Never-

theless, the application of a greedy approach to our problem presents challenges.

Challenges of a greedy approach: It is tempting to populate the cache with

paths by using a greedy approach that (i) computes the benefit-per-size γ(Pa,b)

for each path Pa,b and then (ii) iteratively places items that have the highest

γ(Pa,b) in the cache. Unfortunately, this approach does not necessarily produce

a cache with high benefit.

As an example, consider the graph in Figure 3.7a and the query log QL

in Table 3.4. The result paths of the queries of QL are: P1,6, P2,7, P1,4, P4,8,

P2,5, P3,6. To make the benefit calculation readable, we assume that Es,t = 1 for

each pair, and we use the values of χs,t in Figure 3.6a. In this greedy approach,

we first compute the benefit-per-size of each path above. For example, P1,6

can answer five queries Q3,6, Q1,6, Q1,4, Q3,6, Q3,6 in QL, and its size |P1,6| is 5,

so its benefit-per-size is: γ(P1,6) = 5/5. Since P3,6 has a size of 4 and it can

answer three queries Q3,6, Q3,6, Q3,6 in QL, its benefit-per-size is: γ(P3,6) = 3/4.

Repeating this process for the other paths, we obtain: γ(P1,4) = 1/3, γ(P1,6) =

5/5, γ(P2,5) = 1/4, γ(P2,7) = 2/5, γ(P3,6) = 3/4, γ(P4,8) = 1/4. Given the cache

budget B = 10, the greedy approach first picks P1,6 and then picks P3,6. Thus,

we obtain the cache Ψ = {P1,6, P3,6} with the size 9 (i.e., total number of nodes

in the cache). No more paths can be inserted into the cache as it is full.

The problem with the greedy approach is that it ignores the existing cache

content when it chooses a path Pa,b. If many queries that are answerable by

path Pa,b can already be answered by some existing path in the cache, it is not

worthwhile to include Pa,b into the cache.
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In the above example, the greedy approach picks the path P3,6 after the path

P1,6 has been inserted into the cache. Although path P3,6 can answer the three

queries Q3,6, Q3,6, Q3,6 in QL, all those queries can already be answered by the

path P1,6 in the cache. So while path P3,6 has no benefit, the greedy approach

still picks it.

A revised greedy approach: To tackle the above issues, we study a notion

that expresses the benefit of a path Pa,b in terms of the queries that can only be

answered by Pa,b and not any existing paths in the cache Ψ.

Definition 3.6 Incremental benefit-per-size of path Pa,b.

Given a shortest path Pa,b, its incremental benefit-per-size ∆γ(Pa,b,Ψ) with re-

spect to the cache Ψ, is defined as the additional benefit of placing Pa,b into Ψ,

per the size of Pa,b:

∆γ(Pa,b,Ψ) =
γ(Ψ ∪ {Pa,b})− γ(Ψ)

|Pa,b|
(3.8)

=
∑

Ps,t∈U(Pa,b)−U(Ψ)

χs,t · Es,t
|Pa,b|

We propose a revised greedy algorithm that proceeds in rounds. The cache

Ψ is initially empty. In each round, the algorithm computes the incremental

benefit ∆γ(Pa,b,Ψ) of each path Pa,b with respect to the cache Ψ (with its current

content). Then the algorithm picks the path with the highest ∆γ value and

inserts it into Ψ. These rounds are repeated until the cache Ψ becomes full (i.e.,

reaching its budget B).

We continue with the above running example and show the steps of this re-
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vised greedy algorithm in Table 3.5. In the first round, the cache Ψ is empty, so

the incremental benefit ∆γ(Pa,b,Ψ) of each path Pa,b equals its benefit γ(Pa,b).

From the previous example, we obtain: ∆γ(P1,4) = 1/3, ∆γ(P1,6) = 5/5,

∆γ(P2,5) = 1/4, ∆γ(P2,7) = 2/5, ∆γ(P3,6) = 3/4, ∆γ(P4,8) = 1/4. After choos-

ing the path P1,6 with the highest ∆γ value, the cache becomes: Ψ = {P1,6}.

In the second round, we consider the cache when computing the ∆γ value of

a path. For the path P3,6, all queries that can be answered by it can also

be answered by the path P1,6 in the cache. Thus, the ∆γ value of P3,6 is:

∆γ(P3,6) = 0. Continuing this with other queries, we obtain: ∆γ(P1,4) = 0,

∆γ(P1,6) = 0, ∆γ(P2,5) = 1/4, ∆γ(P2,7) = 2/5, ∆γ(P3,6) = 0, ∆γ(P4,8) = 1/4.

The path P2,7 with the highest ∆γ value is chosen and then the cache becomes:

Ψ = {P1,6, P2,7}. The total benefit of the cache γ(Ψ) is 7. Now the cache is full.

Round Path Cache Ψ
P1,4 P1,6 P2,5 P2,7 P3,6 P4,8 before round after round

1 1/3 |5/5| 1/4 2/5 3/4 1/4 empty P1,6

2 0 0 1/4 |2/5| 0 1/4 P1,6 P1,6, P2,7

Table 3.5. Incremental benefits of paths in our greedy algorithm (boxed values
indicate the selected paths)

Cache construction algorithm and its time complexity: Algorithm 3.1

shows the pseudo-code of our revised greedy algorithm. It takes as input the

graph G(V,E), the cache budget B, and the query log QL. The cache budget

B denotes the capacity of the cache in terms of the number of nodes. The

statistics of query frequency χ and query expense E are required for computing

the incremental benefit of a path.

The initialization phase corresponds to Lines 1–5. The cache Ψ is initially
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empty. A max-heap H is employed to organize result paths in descending order

of their ∆γ values. For each query Qa,b in the query log QL, we retrieve its result

path Pa,b, compute its ∆γ value as ∆γ(Pa,b,Ψ), and then insert Pa,b into H.

Algorithm 3.1 Revised-Greedy(Graph G(V,E), Cache budget B, Query log
QL, Frequency χ, Expense E)

1: Ψ← new cache;
2: H ← new max-heap; . storing result paths
3: for each Qa,b ∈ QL do
4: Pa,b.∆γ ← ∆γ(Pa,b,Ψ); . compute using χ and E
5: insert Pa,b into H;

6: while |Ψ| ≤ B and |H| > 0 do
7: Pa′,b′ ← H.pop(); . potential best path
8: Pa′,b′ .∆γ ← ∆γ(Pa′,b′ ,Ψ); . update ∆γ value
9: if Pa′,b′ .∆γ ≥ top ∆γ of H then . actual best path

10: if B − |Ψ| ≥ |Pa′,b′ | then . enough space
11: insert Pa′,b′ into Ψ;

12: else . not the best path
13: insert Pa′,b′ into H;

14: return Ψ;

The algorithm incorporates an optimization to reduce the number of incre-

mental benefit computations in each round (i.e., the loop of Lines 6–13). First,

the path Pa′,b′ with the highest ∆γ value is selected from H (Line 7) and its

current ∆γ value is computed (Line 8). According to Lemma 3.2, the ∆γ value

of a path Pa,b in H, which was computed in some previous round, serves as an

upper bound of its ∆γ value in the current round. If ∆γ(Pa′,b′ ,Ψ) is above the

top key of H (Line 9) then we can safely conclude that Pa′,b′ is superior to all

paths in H, without having to compute their exact ∆γ values. We then insert

the path Pa′,b′ into the cache Ψ if it has sufficient remaining space B − |Ψ|. In

case ∆γ(Pa′,b′ ,Ψ) is smaller than the top key of H, we insert Pa′,b′ back into H.

Eventually, H becomes empty, the loop terminates, and the cache Ψ is returned.
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Lemma 3.2 ∆γ is a decreasing function of round i.

Let Ψi be the cache just before the i-th round of the algorithm. It holds that:

∆γ(Pa,b,Ψi) ≥ ∆γ(Pa,b,Ψi+1).

Proof. All paths in Ψi must also be in Ψi+1, so we have: Ψi ⊆ Ψi+1. By

Equation 3.3, we derive: U(Ψi) ⊆ U(Ψi+1) and then obtain: U(Pa,b) − U(Ψi) ⊇

U(Pa,b)−U(Ψi+1). By Definition 3.6, we have ∆γ(Pa,b,Ψ) =
∑

Ps,t∈U(Pa,b)−U(Ψ) χs,t·

Es,t/|Pa,b|. Combining the above facts, we get: ∆γ(Pa,b,Ψi) ≥ ∆γ(Pa,b,Ψi+1).

We proceed to illustrate the power of the above optimization. Consider the

second round shown in Table 3.5. Without the optimization, we must recompute

the ∆γ values of the 5 paths P1,4, P2,5, P2,7, P3,6, P4,8 before determining the path

with the highest ∆γ value. Using the optimization, we just need to pop the paths

P3,6, P2,7 from the heap H and recompute their ∆γ values. The other paths (e.g,,

P1,4, P2,5, P4,8) have upper bound ∆γ values (1/3, 1/4, 1/4, from the first round)

that are smaller than the current ∆γ value of P2,7 (2/5). Thus, we need not

recompute their current ∆γ values.

We then analyze the time complexity of Algorithm 3.1, without using the

optimization. Let |QL| be the number of result paths for queries in QL. Let

|P | be the average size of the above result paths. The number of paths in the

cache is B/|P |, so the algorithm completes in B/|P | rounds. In each round, we

need to process |QL| result paths and recompute their ∆γ values. Computing

the ∆γ value of a path Pa,b requires the examination of each subpath of Pa,b

(see Definition 3.6). This takes O(|P |2) time as there are O(|P |2) subpaths in
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a path. Multiplying the above terms, the time complexity of our algorithm is:

O(|QL|·B·|P |). This running time is affordable for a static caching scheme. Also,

our experimental results show that the running time of the optimized algorithm

is notably better in typical cases.

3.4 Cache Structure

Section 3.4.1 presents a structure that supports efficient cache lookup at

query time. Sections 3.4.2 and 3.4.3 present compact cache structures that enable

a cache to accommodate as many shortest paths as possible, thus improving the

benefit of the cache.

3.4.1 Efficient Lookup via Inverted Lists

Upon receiving a query Qs,t, the proxy/server performs a cache lookup for

any path Pa,b that can answer the query (see Figure 3.4). We propose a structure

that enables efficient cache lookup.

The proposed structure involves an array of paths (see Figure 3.9a) and

inverted lists of nodes (see Figure 3.9b). The array stores the content of each

path. In this example, the array contains three paths: Ψ1,Ψ2,Ψ3. The inverted

lists for nodes are used to support efficient lookup. The inverted list of a node

vi stores a list of path IDs Ψj whose paths contain vi. For example, since paths

Ψ1 and Ψ2 contain the node v1, the inverted list of v1 stores Ψ1 and Ψ2.

Given a query Qs,t, we just need to examine the inverted lists of vs and vt.

If these two lists have a non-empty intersection (say, Ψj) then we are guaranteed
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Ψ1 v1, v3, v4

Ψ2 v1, v3, v2

Ψ3 v2, v3, v4, v5

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3

(a) path array (b) inverted lists

Figure 3.9. Path array, with inverted lists

that the path Ψj can answer query Qs,t. For example, for the query Q2,4, we first

retrieve the inverted lists of v2 and v4. The intersection of these two lists is Ψ3

that can then be used to answer the query. Consider the query Q1,5 as another

example. Since the inverted lists of v1 and v5 have an empty intersection, we get

a cache miss.

Cache size analysis: So far, we have only measured the cache size in terms of

the paths or nodes in the cache and have not considered the sizes of the auxiliary

structures (e.g., inverted lists). Here, we measure the cache size accurately and

in an absolute terms, considering both (i) the sizes of paths/nodes in the path

array and (ii) the sizes of inverted lists.

Let |Ψ| be the number of nodes in the path array, and let m be the number

of paths in the path array. Observe that an attribute with the domain size x can

be stored as a binary string of Ix = dlog2 xe bits.

In the path array, each node can be represented by I|V | bits. Thus, the

path array occupies |Ψ| · I|V | bits. In each inverted list, each path ID can be

represented by Im bits. Note that the total number of path IDs in inverted lists

equals |Ψ|. Thus, the inverted lists occupy |Ψ| · Im bits. In summary, the total

size of the structure is: |Ψ| · (I|V | + Im) bits.
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3.4.2 Compact Cache via a Subgraph Model

We propose a cache structure that consists of a subgraph GΨ (see Fig-

ure 3.10a) and inverted lists (see Figure 3.10b). The same inverted lists as in

Figure 3.9b are used in Figure 3.10b. The main difference is that the path array

in Figure 3.9a is now replaced by a subgraph structure GΨ that stores the ad-

jacency lists of nodes that appear in the cache. The advantage of the subgraph

structure is that each node (and its adjacency list) is stored at most once in GΨ.

v1 v3

v2 v3

v3 v1, v2, v4

v4 v3, v5

v5 v4

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3
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1
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(a) subgraph GΨ (b) inverted lists (c) visualization

Figure 3.10. Subgraph representation, with inverted lists

To check whether a query Qs,t can be answered by the cache, we just examine

the inverted lists of vs and vt and follow the same procedure as in Section 3.4.1.

There is a hit when the intersection of these two lists contains a path ID (say,

Ψj). To find the result path Ps,t, we start from source vs and visit a neighbor

node v′ whenever the inverted list of v′ contains Ψj .

Figure 3.10c visualizes the structures in Figures 3.10a,b. Note that the

subgraph GΨ only contains the adjacency lists of nodes that appear in the cache.

Take query Q2,4 as an example. First, we check the inverted lists of v2 and v4

in Figure 3.10b. Their intersection contains a path ID (Ψ3). We then start from
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the source v2 and visit its neighbor v3 whose inverted list contains Ψ3. Next, we

examine the unvisited neighbors of v3, i.e., v1 and v4. We ignore v1 as its inverted

list does not contain Ψ3. Finally, we visit v4 and reach the target. During the

traversal, we obtain the shortest path: 〈v2, v3, v4〉.

Cache size analysis: We proceed to analyze the size of the above cache struc-

ture. As in Section 3.4.1, let |Ψ| be the number of nodes in the cache and let

m be the number of paths in the cache. Let VΨ ⊂ V be the number of distinct

nodes in the cache and let e be the average number of neighbors per node.

The inverted lists take |Ψ| · Im bits, as covered in the last Section. The

subgraph occupies |VΨ| · e · I|V | bits. Thus, the total size of the structure is:

|VΨ| · e · I|V | + |Ψ| · Im bits.

Note that |VΨ| is upper bounded by |V | and that it is independent of the

number of paths m in the cache. Thus, the subgraph representation is more

compact than the structure in Section 3.4.1. The saved space can be used for

accommodating additional paths into the cache, in turn improving the benefit of

the cache.

3.4.3 Compact Inverted Lists

We present two compression techniques for reducing the space consumption

of inverted lists. These are orthogonal and can be combined to achieve better

compression. Again, the saved space can be used to accommodate more paths

in the cache.

Interval path ID compression: This technique represents a sequence of con-
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secutive path IDs Ψi,Ψi+1,Ψi+2, ·,Ψj as an interval of path IDs Ψi,j . In other

words, j − i + 1 path IDs can be compressed into 2 path IDs. The technique

can achieve significant compression when there are long consecutive sequences of

path IDs in inverted lists.

Figure 3.11a shows the original inverted lists, and Figure 3.11b shows the

compressed inverted lists obtained by this compression. For example, the in-

verted list of v3 (Ψ1,Ψ2,Ψ3) is compressed into the interval Ψ1,3.

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3

v1 Ψ1−2

v2 Ψ2−3

v3 Ψ1−3

v4 Ψ1,Ψ3

v5 Ψ3

content parent
v1 Ψ1,Ψ2 NIL
v2 · · · · · ·
v3 Ψ3 v1

v4 · · · · · ·
v5 · · · · · ·

(a) original (b) interval compressed (c) prefix compressed

Figure 3.11. Compressed inverted lists

Prefix path ID compression: This technique first identifies inverted lists

that share the same prefix and then expresses an inverted list by using the other

inverted list as a prefix.

Consider the original inverted lists in Figure 3.11a. The inverted list of v1 is

a prefix of the inverted list of v3. Figure 3.11c shows the compressed inverted lists

produced by this compression. In the compressed inverted list of v3, it suffices

to store path IDs (e.g., Ψ3) that do not appear in its prefix. The remaining path

IDs of v3 can be retrieved from the parent (v1) of its inverted list.
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3.5 Experimental Study

We proceed to evaluate the performance of our caching methods and the

competitors on real datasets. The competitors, Least-Recently-Used (LRU) and

Highest-Query-Frequency (HQF), are the dynamic and static caching methods

introduced in Section 3.2.3. Our methods Shortest-Path-Cache (SPC) and its

optimized variant (SPC∗) share the same techniques in Section 3.3. Regarding

the cache structures, LRU, SPC, and HQF use a path array cache (Section 3.4.1),

whereas SPC∗ uses a compressed graph cache (Sections 3.4.2 and 3.4.3). All

methods answer queries by using the optimal subpath property (Lemma 3.1).

We implemented all methods in C++ and conducted experiments on an Intel i7

3.4GHz PC running Debian.

Section 3.5.1 covers the experimental setting. Then Section 3.5.2 and Sec-

tion 3.5.3 presents findings for caches in the proxy scenario and the server sce-

nario, respectively.

3.5.1 Experimental Setting

Datasets: Due to the privacy policies of online shortest path services (e.g., the

Google Directions API), their query logs are unavailable in the public. Thus,

we attempt to simulate query logs from trajectory data. For each trajectory, we

extract its start and end locations as the source vs and target vt of a shortest path

query, respectively. In the experiments, we used two real datasets (Aalborg and

Beijing) as shown in Table 3.6. Each dataset consists of (i) a query log derived

from a collection of trajectories, and (ii) a road network for the corresponding



CHAPTER 3. CACHING OF SHORTEST PATHS 53

city.

Following the experimental methodology of static web caching [10], we divide

a query log into two equal sets: (i) a historical query log QL, for extracting

query statistics, and (ii) a query workload WL, for measuring the performance

of caching methods. Prior to running a workloadWL, the cache of LRU is empty

whereas the caches of HQF, SPC, and SPC∗ are built by using QL.

Dataset Trajectories Road network

Aalborg Infati GPS data [32] From downloads.cloudmade.com
4,401 trajectories 129k nodes, 137k edges

Beijing Geo-Life GPS data [33] From downloads.cloudmade.com
12,928 trajectories 76k nodes, 85k edges

Table 3.6. Description of real data sets

Default parameters: Since the Aalborg and Beijing query logs are not large,

we use scaled down cache sizes in the experiments. Thus, the default cache size

is 625 kBytes and the maximum cache size is 5 MBytes. The default number of

levels in the kD-tree (for query statistics extraction) is 14.

If we had access to huge query logs from online shortest path services, we

would have used a large cache size, e.g., 1 GBytes.

3.5.2 Caching in the Proxy Scenario

In the proxy scenario, the shortest path API issues a query to the server,

rather than computing the result by itself (see Section 3.3.3). Since its response

time is dominated by the round-trip time with server, the cache hit ratio is used

as the performance measure in this scenario.

Effect of the kD-tree level: Figure 3.12 plots the hit ratio of our methods
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(SPC and SPC∗) with respect to the number of levels in the kD-tree. The more

levels the kD-tree contains, the more accurate its query statistics become, and

this improves the hit ratio of our methods. Note that SPC∗ performs better than

SPC on both datasets. Since SPC∗ has a more compact cache structure than

SPC, it accommodates more shortest paths and thus achieving a higher hit ratio.
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Figure 3.12. Hit ratio vs. levels

Effect of the cache size: Figure 3.13 shows the hit ratio of the methods

as a function of the cache size. SPC has a lower hit ratio than SPC∗ for the

reasons explained above. Observe that SPC∗ achieves double the hit ratio of

HQF and LRU for small cache sizes (below 100 kBytes). This is because SPC∗

exploits historical query statistics to choose paths with high benefit values for

inclusion into the cache. Our benefit model (Section 3.3.1) considers the number

of historical queries answerable by (a subset of) a path Pa,b, not just the number

of historical queries identical to Pa,b (in HQF). At a large cache size (beyond 1000

kBytes), all static caching methods (SPC, SPC∗, HQF) have similar hit ratios

as the caches can accommodate all shortest paths from the historical query log.

Figure 3.14 shows the hit ratio of the methods versus the number of pro-
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cessed queries in the workload, at the largest cache size (5 MBytes). The hit

ratio in this figure is measured with respect to the number of processed queries

so far. Static caching is able to obtain a high hit ratio in the beginning. The

hit ratio of dynamic caching (LRU) increases gradually and then converges to its

final hit ratio.
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Figure 3.13. Hit ratio vs. cache size
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Figure 3.14. Hit ratio vs. processed queries (5 MBytes cache)

Cache construction time: Our methods incur low overhead on selecting cache

items in the offline phase. SPC and SPC∗ require at most 3 minutes on both of

the Aalborg and Beijing datasets in this phase. Since the cache structure of SPC
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is simpler than that of SPC∗, its cache construction time is 50% of SPC∗.

3.5.3 Caching in the Server Scenario

In the server scenario, the shortest path API invokes a shortest path al-

gorithm (e.g., Dijkstra, A∗) to compute a query result. The performance of a

caching method C on a query workload is measured as (i) the total number of

visited nodes, nodes(C), and (ii) the total query time (including cache lookup

overhead), time(C).

As a reference for comparison, we consider a no-caching method NC that

simply executes every query in the workload. Table 3.7 shows the total query

time and the total number of visited nodes of NC (on the entire query workload),

for each combination of dataset (Aalborg, Beijing) and shortest path algorithm

(Dijkstra, A∗).

Dataset Shortest path Query time (s) Visited nodes
algorithm time(NC ) node(NC )

Aalborg Dijkstra 18.5 18,580,659
Beijing Dijkstra 43.5 41,615,917
Aalborg A∗ 4.5 2,929,128
Beijing A∗ 9.8 6,544,620

Table 3.7. Total query time and visited nodes on the entire workload, for the no-
caching method

For a caching method C, we define its visited nodes savings ratio as 100%·(1−

(nodes(C)/nodes(NC ))), and we define its query time savings ratio as 100%·(1−

(time(C)/time(NC ))). We measure these ratios in the subsequent experiments.

Effect of the kD-tree level: We investigate the effect of the number of levels
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in the kD-tree on the savings ratios of our methods (SPC and SPC∗).

Figure 3.15 plots the savings ratios when Dijkstra is used as the shortest

path algorithm. Like the trends in Figure 3.12, both methods obtain higher

node savings ratios when the kD-tree used contains many levels and captures

more accurate statistics (see Figure 3.15a,b).

However, there is a significant difference in the query time savings ratios

(see Figure 3.15c,d). This is because the path array cache (used in SPC) incurs

a high cache lookup overhead—all paths in the cache need to be examined when

a query cannot be answered by the cache. On the other hand, the inverted lists

(used in SPC∗) support efficient cache lookup. SPC∗ achieves up to 30% savings

of query time whereas SPC saves only up to 15-20% of query time.

Figure 3.16 shows the savings ratios of our methods when A∗ is used instead

of Dijkstra. The node savings ratios of SPC and SPC∗ in Figure 3.16a,b exhibit

similar trends as seen in Figure 3.15a,b. Note that the query time savings ratio

of SPC is negative (see Figure 3.16c,d), meaning that it is slower than the no-

caching method. Recall that the no-caching method requires only little running

time when using A∗ for shortest path search (see Table 3.7). Thus, the high

cache lookup overhead of SPC outweighs the benefit of caching. On the other

hand, SPC∗ supports efficient lookup, achieving savings of up to 26% and 32%

of the query time on the Aalborg and Beijing datasets.

In summary, SPC∗ consistently performs better than SPC, especially for the

query time savings ratio.
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Figure 3.15. Performance savings vs. levels, using Dijkstra

Effect of the cache size: We proceed to study the impact of the cache size on

the performance savings ratios of all caching methods (SPC, SPC∗, HQF, LRU).

Figure 3.17 plots savings ratios when Dijkstra is used. At low cache sizes,

SPC∗ outperforms the other methods in terms of the visited nodes savings ratio

(see Figure 3.17a,b). At large cache sizes (beyond 1000 kBytes), all static caching

methods (HQF, SPC and SPC∗) have the same visited nodes savings ratio (28%).

In Figure 3.17c,d, the query time savings ratios of all methods increase when the

cache size increases. However, at large cache sizes, the query time savings ratios



CHAPTER 3. CACHING OF SHORTEST PATHS 59

 14

 16

 18

 20

 22

 24

 26

 6  8  10  12  14  16

V
is

it
e

d
 N

o
d

e
s
 S

a
v
in

g
 R

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

 14

 16

 18

 20

 22

 24

 26

 28

 30

 6  8  10  12  14  16V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(a) visited nodes savings, Aalborg (b) visited nodes savings, Beijing

-20
-15
-10
-5
 0
 5

 10
 15
 20
 25
 30

 6  8  10  12  14  16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

-40

-30

-20

-10

 0

 10

 20

 30

 40

 6  8  10  12  14  16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(c) query time savings, Aalborg (d) query time savings, Beijing

Figure 3.16. Performance savings vs. levels, using A∗

of HQF, LRU, and SPC drop slightly. Since they use the path array cache

structure, their cache lookup overhead increases with the number of paths in

the cache, reducing the overall utility of the cache. SPC∗ performs significantly

better than the others, and its query time savings ratio remains comparable to

its visited nodes savings ratio in Figure 3.17a,b.

Figure 3.18 plots the savings ratio of the caching methods when using A∗.

The trends of the methods are similar to those in Figure 3.17. The only difference

is that the query time savings ratio of HQF, LRU, and SPC are even more

negative in Figure 3.18c,d. Since A∗ is much more efficient than Dijkstra, the high

cache lookup overheads of HQF, LRU, and SPC become more apparent. They
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Figure 3.17. Performance savings vs. cache size, using Dijkstra

exhibit up to an additional 50-60% longer query time on the Beijing data set.

SPC∗ remains the best method, and its query time savings ratio is comparable

to its visited nodes savings ratio.

3.6 Conclusion

We study the caching of shortest paths in proxy and server scenarios. We

formulate a model for capturing the benefit of caching a path in terms of its

frequency and the cost of processing it. We develop techniques to extract query

frequency statistics and to estimate the cost of an arbitrary shortest path algo-

rithm. A greedy algorithm is proposed to select the most beneficial paths from
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Figure 3.18. Performance savings vs. cache size, using A∗

a historical query log for inclusion into the cache. Also, we provide cache struc-

tures that improve cache lookup performance and cache space utilization. Our

experimental results on real data show that our best method, SPC∗, achieves

high hit ratio in the proxy scenario, as well as small lookup overhead and low

query time in the server scenario.
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Chapter 4

Concise Caching of Driving

Instructions

Navigation services offer step-by-step navigation, which provide a driver with

driving instructions1 based on the driver’s current GPS location [2]. We illustrate

such driving instructions in Figure 4.1. Suppose that the driver starts at node v1

and the target is node v10. First, a detailed model uses point-by-point instruc-

tions, which essentially form the shortest path: SP1,10 = 〈v1, v3, v4, v5, v7, v9, v10〉.

In contrast, a concise model uses turn-by-turn instructions that are necessary for

navigation such as “continue” (⇑) or “turn # degrees” (�#), e.g., 〈v1,⇑v5, �90⇑v10〉.

These instructions combine a sequence of checkpoints (i.e. v1, v5, v10) and turn

instructions (i.e. ⇑, �90). After leaving v1, the user should continue (⇑) until

reaching a checkpoint (v5). Finally, the user should make a right turn (�90) and

then continue (⇑) until reaching the target (v10).

1These instructions can be spoken or given visually.
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Shortest path (point-by-point): 〈v1, v3, v4, v5, v7, v9, v10〉
Driving instructions (turn-by-turn): 〈v1,⇑v5, �90⇑v10〉

Concise shortest path: 〈v1, v5, v7, v10〉
Generic concise shortest path: 〈v1,v4, v5, v7, v10〉

Figure 4.1. A road network, with a query from v1 to v10

Mobile users are increasingly using online driving direction services (rather

than offline navigation software) as they are free of charge and do not require

purchase and installation of up-to-date map data on mobile devices. Examples

of driving direction APIs include Google Directions [4] and MapQuest Direc-

tions [3]. They can provide users with both shortest paths and turn-by-turn

driving instructions.

The above services receive intensive workloads from mobile users on a daily

basis. They can deploy web cache servers in order to reduce the network traf-

fic [34, 35]. In our application context, we propose to cache driving instruc-

tions at web cache servers. For the sake of cache management, we represent

concise driving instructions (with checkpoints and turn instructions) according

to a unified format called concise shortest path. By replacing turn instruc-

tions by nodes, we obtain the following concise shortest path for our example:

CP1,10 = 〈v1, v5, v7, v10〉. The default driving instruction is to go straight until

reaching the next node in the concise shortest path (e.g., from v1 to v5). Upon

reaching such a node (v5), the driver checks whether the next such node (v7) is
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adjacent; if yes, the user makes a turn there.

We elaborate on the construction of and navigation using such paths in

Section 4.3. Figure 4.2 shows examples of a shortest path SP (crosses) and the

corresponding concise shortest path CP (dots).

Figure 4.2. Shortest path (crosses) and concise shortest path (circles), in New
York

The use of concise shortest paths in caching has two opposite effects on the

cache hit ratio. Clearly, the cache can accommodate a larger number of concise

paths than corresponding complete paths, suggesting a higher cache hit ratio.

However, a concise path contains fewer nodes than its corresponding complete

path and can answer fewer shortest path queries than the complete path. Con-

sider the concise shortest path 〈v1, v5, v7, v10〉 in Figure 4.1. By the optimal
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subpath property [29], this path can answer any query whose end node lies on

the path. Thus, this path can answer Q5,10 (the query from v5 to v10) but not

Q4,10 (the query from v4 to v10).

Intuitively, if a query (say, Q4,10) is frequent, then it is desirable to include

its query nodes into a concise path. We use the term generic concise shortest

path for a shortest path that extends a concise shortest path to include such

frequent nodes. An example is the path 〈v1,v4, v5, v7, v10〉 as shown in Figure 4.1.

Although such a path is slightly less compact than CP , it can answer one more

frequent query (e.g., Q4,10) than CP . In general, there are 2|SP |−|CP | possible

instances of generic shortest paths having the same start and end nodes. Which

of them should be cached? Our key challenge is to select generic shortest paths

such that the overall cache hit ratio is maximized.

Our contributions are:

• We propose the notion of a generic concise shortest path that enables a

trade-off between the path size and the number of queries answerable by

the path.

• We present a statistics-driven model for selecting generic concise paths in

a static caching setting.

• We develop an adaptive technique for determining generic concise paths in

a dynamic caching setting.

The rest of the chapter is organized as follows. Section 4.1 outlines the

related work specific to this chapter. Section 4.2 describes the problem setting.

Next, we introduce concise shortest paths in Section 4.3, and we present caching
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techniques for them in Sections 4.4 and 4.5. Then, we evaluate the performance

of our proposed techniques in Section 4.6. Finally, Section 4.7 offers conclusions

and rounds off the chapter.

4.1 Related Work

The related work relevant to this chapter is described in Chapter 2, (see

Table 2.1), and in Section 4.1.1.

The related work of this chapter and Chapter 3 overlap. Refer to Section

3.1 for the differences between this chapter and the related work presented in

Chapter 2.

4.1.1 Compact representations of shortest paths

Existing work on Compact representations of shortest paths cover methods

to represent a shortest path using fewer vertices than the original shortest path.

The K-skip shortest path [36] is a path that contains at least one out of

every K consecutive nodes in the corresponding shortest path. In Figure 3.2, the

3-skip shortest path of SP1,10 is: SKIP1,10 = 〈v1, v5, v10〉. Unfortunately, unlike

concise shortest paths, K-skip shortest paths are lossy and may provide ambigu-

ous driving instructions to the user. In practice, during driving, only a small

portion of the road network is within the driver’s eyesight. For example, when

the user reaches v3, the above 3-skip path SKIP1,10 does not contain sufficient

information to decide whether to go to v2 or to v4.
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Batz et al. [37] develop a more effective compression method for shortest

paths by using a shortest path index. However, this method requires installing

a shortest path index at the client side in order to decode the compressed path

correctly. Otherwise, the client cannot obtain unambiguous driving instructions.

Recently, Gotsman et al. [38] propose to map-match a trajectory to a path

on a road network (e.g., 〈vx1 , vx2 , · · · , vxn〉), then decompose it into a sequence

of shortest paths: SPa1,a2 , SPa2,a3 , · · · , SPam−1,am , and finally keep only the in-

termediate source and target nodes in the sequence (〈va1 , va2 , · · · , vam〉).

However, if the user does not have the entire road network, then the se-

quence cannot be decoded into the original path, and the approach is therefor

not suitable for mobile users.

4.2 Problem Setting

We first provide definitions for our problem, and then we introduce our

objectives. Table 4.1 provides an overview of the notations used throughout the

chapter.

Symbol Meaning
G(V,E,W ) a graph

vi a node in the node set V
(vi, vj) an edge in the edge set E
Qs,t a shortest path query from node vs to node vt
SPs,t a shortest path result of Qs,t

|SPs,t| the size of SPs,t (in number of nodes)
CP a concise shortest path
GCP a generic concise shortest path

Ψ the cache

Table 4.1. Table of symbols
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Definition 4.1 (Graph) Let G(V,E,W ) be a directed spatial graph with a set

V of nodes and a set E ⊆ V × V of edges. Each node vi ∈ V models a road

junction and has lat-long coordinates. Each edge (vi, vj) ∈ E models a road

segment, and W :E → R assigns a positive weight to each edge.

Definition 4.2 (Query and Result) A shortest path query, denoted by Qs,t,

consists of a source and a target node, vs and vt. The result of Qs,t, denoted by

SPs,t, is a sequence of nodes from vs to vt such that it has the smallest sum of

edge weights (among all paths from vs to vt in G).

By the optimal subpath property [29], any subpath of a shortest path SP

is also a shortest path. Thus, a query Qs,t can be answered by SP if vs, vt ∈ SP

and vs appears before vt in SP . We denote this event by: Qs,t ⊂ SP . We

proceed to define the concept of cache hit.

Definition 4.3 (Cache hit) Let a cache Ψ be a set of shortest paths. A query

Qs,t obtains a hit from Ψ if there exists some SP ∈ Ψ such that vs, vt ∈ SP and

vs appears before vt in SP . We denote this event by: Qs,t ⊂ Ψ.

Definition 4.4 (Cache size) Let |P | denote the size (number of nodes) of a

path. The total size of the cache is defined as: ||Ψ|| =
∑

P∈Ψ |P |.

We illustrate the above definitions with the example in Figure 4.1. Sup-

pose that a cache contains two shortest paths: Ψ = {SP1,10, SP2,6}, where

SP1,10 = 〈v1, v3, v4, v5, v7, v9, v10〉 and SP2,6 = 〈v2, v5, v6〉. The cache size is:

||Ψ|| = |SP1,10| + |SP2,6| = 7 + 3 = 10. Consider the queries Q3,7 and Q1,2.
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Query Q3,7 obtains a cache hit because the cached path SP1,10 contains both

query nodes v3 and v7. On the other hand, the query Q1,2 does not obtain a

cache hit.

We adopt the standard client-server architecture shown in Figure 4.3 as the

setting. A cache server is placed in-between the mobile clients and an online

shortest path service (e.g., Google Directions [4]). Upon receiving a shortest

path query Qs,t, the cache server checks whether there is a cache hit. If yes

then it returns the result. Otherwise, it forwards Qs,t to the online shortest path

service and eventually returns the result path Ps,t computed by the service.

In this chapter, the dominant cost is the network traffic between the cache

server and the shortest path service. Thus, our objective is to maximize the

hit ratio of the cache server (subject to a given cache capacity) [14, 34, 39].

While the shortest path service may deploy a shortest path index [40–43] for its

own performance reasons, the introduction of such an index does not improve

the cache hit ratio and is orthogonal to our work.

Cache server

Online shortest 

path service
Users

Figure 4.3. Client server architecture

Unlike our previous work [11], this chapter utilizes concise shortest paths to

improve the hit ratio of caching. We elaborate on concise shortest paths and
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their operations in Section 4.3, and we present caching methods for them in

Sections 4.4 and 4.5.

As a remark, two issues are orthogonal to this chapter. First, we reuse

existing data structures for the caching of shortest paths [11] to reduce the CPU

overhead for maintaining cache structures. Second, we assume that the edge

weights W (vi, vj) maintained at the online shortest path service are independent

of time. This is the case for edge weights that model travel distances (e.g., in

MapQuest). If this is not the case, we may associate each cache item (shortest

path) with a expiry time [44].

4.3 Concise Shortest Paths

For navigation purposes, it suffices for mobile users to know driving instruc-

tions (e.g., going straight, making turns) instead of complete shortest paths. As

discussed in the introduction, the notion of a concise shortest path is equivalent

to driving instructions.

We first provide definitions for concise shortest paths. Then, we propose a

server-side algorithm for converting a shortest path into a concise shortest path.

Also, we present a client-side algorithm that enables a user to navigate using a

concise shortest path. Finally, we introduce generic concise shortest paths.

4.3.1 Definition and Examples

We consider three possible driving instructions for mobile users, as illus-

trated in Figure 4.4. Suppose that the user is reaching a current node vc from
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a previous node vp. In each case in the figure, the shortest path is indicated by

bold arrows.

• Case I: The driving instruction is ‘continue’ to the next node vn as this

is the only option.

• Case II: There is more than one option (e.g., travel to vn1 or to vn2). These

options can be distinguished by their deviation angles from the previous

travel direction (see Definition 4.5). In this figure, the deviation angles

of (vc, vn1) and (vc, vn2) are δp,c,n1 and δp,c,n2, respectively. If the correct

choice is the one with the smallest deviation angle, like in this figure, the

driving instruction is ‘go straight, by the smallest angle’.

• Case III: The correct choice is not the option with the smallest devia-

tion angle. In this case, we must provide an explicit driving instruction:

‘turn clockwise/anticlockwise by Xo’, where Xo is the deviation an-

gle δp,c,n (see Definition 4.5).

The above driving instructions are not explicitly stored in a concise shortest

path. In Section 4.3.2, we provide a client-side algorithm to reconstruct driving

instructions from a concise shortest path, during navigation.

Definition 4.5 (Deviation angle) Given two adjacent edges (vp, vc) and (vc, vn),

the deviation angle between them is:

δp,c,n = |180o − ]vpvcvn| (4.1)
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vp

vc

vn1

vn2

δp,c,n2

δp,c,n1

(case I) continue (case III) make a turn(case II) go straight, 
by smallest deviation

vp

vc

vn

vp

vc

vn1

vn2

δp,c,n2

δp,c,n1

previous travel 
direction

previous travel 
direction

Figure 4.4. Possible driving instructions; the shortest path is indicated by bold
arrows

Based on the above driving instructions, we define a concise shortest path

as follows.

Definition 4.6 (Concise shortest path) .

Let a shortest path SPs,t = 〈vρ(1), vρ(2), · · · , vρ(l)〉 be given, where vρ(i) is the

i-th node in SPs,t, s = ρ(1), and t = ρ(l). A concise shortest path CPs,t is

a subsequence of SPs,t such that: (i) CPs,t contains vs and vt, and (ii) CPs,t

contains vρ(i), vρ(i+1) if nodes vρ(i−1), vρ(i) and, vρ(i+1) satisfy case III.

We illustrate a concise shortest path in Figure 4.5. Let the source and target

nodes be v1 and v11, respectively. The shortest path SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉

is shown with bold edges. According to Definition 4.6, the concise shortest path

is: CP1,11 = 〈v1, v4, v5, v11〉. First, it must contain both the source and target

nodes (v1 and v11). Since 〈v2,v4, v5〉 matches case III, v4 and the next node (v5)
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are in CP1,11. The remaining nodes either match case I (e.g., v7, v8) or case II

(e.g., v2, v9), so they are not in CP1,11. Observe that a concise path describes

the driving instructions for SPs,t unambiguously. Directions are given exactly

when it is necessary to change the travel direction.
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Shortest path: SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉
Concise shortest path: CP1,11 = 〈v1, v4, v5, v11〉

Generic concise shortest path: GCP1,11 = 〈v1,v2, v4, v5, v11〉
Figure 4.5. Concise shortest path

Concise shortest paths have the advantage that they consume less space

while still offering sufficient information for driving.
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4.3.2 Operations

Server-Side: Concise Path Extraction We study caching methods for con-

cise shortest paths in Sections 4.4 and 4.5. Given a shortest path SP , the cache

server can execute Algorithm 4.1 to extract a concise shortest path from SP .

First, we specify the initial travel direction (in Lines 3–6). We add the two

first nodes of SP to CP if the first node has multiple branches, i.e., deg(vρ(1)) > 1.

Otherwise, there is only one option so it suffices to add the first node of SP to

CP .

For each subsequent node vρ(i) on SP , we compute the deviation angle to

each adjacent node and then take the smallest deviation angle as δ∗. If the next

node vρ(i+1) on SP does not have the smallest deviation angle, we specify the

travel direction by adding the current and the next nodes (vρ(i), vρ(i+1)) of SP

to SP . Finally, we add the last node of SP to CP .

Client-Side: Concise Path Navigation Upon receiving a concise shortest

path CP from the cache server, the client can apply Algorithm 4.2 to navigate

along CP . Note that this algorithm also works correctly for extended versions

of CP , which we discuss below.

4.3.3 Generic Concise Shortest Paths

Although a concise shortest path occupies less space than a corresponding

(complete) shortest path, it covers fewer nodes and thus it may answer a smaller

number of queries. For example, suppose that the query Q2,11 is a frequently-
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Algorithm 4.1 Server:ExtractConcise( Shortest path SP )

1: let vρ(i) be the i-th node in SP
2: CP ← 〈〉 . the concise path
3: if deg(vρ(1)) > 1 then
4: append vρ(1), vρ(2) to CP
5: else
6: append vρ(1) to CP

7: for i from 2 to |SP | − 1 do
8: if deg(vρ(i)) > 2 then
9: δ∗ ← δρ(i−1),ρ(i),ρ(i+1) . deviation angle

10: for each node vj adjacent to vρ(i) do
11: if vj 6= vρ(i−1) and vj 6= vρ(i+1) then
12: δ∗ ← min{δ∗, δρ(i−1),ρ(i),j}
13: if δ∗ < δρ(i−1),ρ(i),ρ(i+1) then . include nodes
14: append vρ(i) to CP if it is not in CP
15: append vρ(i+1) to CP

16: append vρ(|SP |) to CP if it is not in CP . last node
17: Return CP

used query in Figure 4.5. Observe that the shortest path SP1,11 can answer

Q2,11, while the concise path CP1,11 cannot do so as it does not contain v2.

To address this issue, we consider generic versions of concise shortest paths

that include additional nodes:

Definition 4.7 (Generic concise shortest path) A sequence GCPs,t is said

to be a generic concise shortest path (from node vs to node vt) if it is a subse-

quence of SPs,t and a supersequence of CPs,t.

As an example, consider the map in Figure 4.5. Table 4.2 illustrates all

generic concise shortest paths from source v1 to target v11. Note that the number

of generic concise shortest paths is 2|SPs,t|−|CPs,t| = 28−4 = 16. In the next

section, we discuss how to select a generic concise shortest path in order to
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Algorithm 4.2 Client:NavigateConcise( Concise path CP )

1: let (vprev, vcur) be the edge being traversed by the client
2: while vcur 6= vt do . target not reached
3: if vcur is not in CP then . go straight
4: δ∗ ← 180o . the smallest deviation angle
5: for each node vj adjacent to vcur do
6: if vj 6= vprev then
7: if δ∗ > δprev,cur,j then
8: δ∗ ← δprev,cur,j
9: vnext ← vj . keep the best option

10: display “continue to vnext”
11: else . follow CP
12: let vnext be the next node of vcur in CP
13: display “turn to vnext”

14: wait until the client reaches vnext
15: (vprev, vcur)← (vcur, vnext)

maximize the cache hit ratio.

CP1,11 〈v1, v4, v5, v11〉
〈v1, v2, v4, v5, v11〉 〈v1, v4, v5, v7, v11〉

other 〈v1, v4, v5, v8, v11〉 〈v1, v4, v5, v9, v11〉
generic 〈v1, v2, v4, v5, v7, v11〉 〈v1, v2, v4, v5, v8, v11〉
concise 〈v1, v2, v4, v5, v9, v11〉 〈v1, v4, v5, v7, v8, v11〉
paths 〈v1, v4, v5, v7, v9, v11〉 〈v1, v4, v5, v8, v9, v11〉

〈v1, v2, v4, v5, v7, v8, v11〉 〈v1, v2, v4, v5, v7, v9, v11〉
〈v1, v2, v4, v5, v8, v9, v11〉 〈v1, v4, v5, v7, v8, v9, v11〉

SP1,11 〈v1, v2, v4, v5, v7, v8, v9, v11〉
Table 4.2. Generic concise shortest paths (from v1 to v11)

4.4 Static Caching Setting

Static caching focuses on caching the most popular data items [7, 8, 14]. It

utilizes a query log that records past queries in order to determine the access fre-

quencies of data items. Static caching incurs low overhead at runtime; however,
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it may not adapt well to a varying query distribution.

We present a caching method for generic concise shortest paths that applies

an existing static caching policy for shortest paths [11]. The frequencies of queries

in the query log are used to define a ‘benefit’ score that captures the ‘importance’

of a path in answering queries. Our main challenge is to find generic concise paths

that have high ‘benefit’ scores.

In Section 4.4.1, we give a benefit score model for generic concise paths.

Then, in Section 4.4.2, we present a method for computing a generic concise

path with a high benefit score. Finally, we propose an efficient implementation

in Section 4.4.3.

4.4.1 Benefit Model

We adopt the benefit model presented in previous work [11] to quantify the

importance of a path in answering queries. First, we provide definitions of query

log and query frequency.

Definition 4.8 (Query log and frequency)

A query log QL is a collection of shortest path queries that have been issued by

users in the past.

The query frequency χs,t of a query Qs,t is defined as the number of occurrences

of Qs,t in the query log QL.

χs,t = |{Qs,t ∈ QL}| (4.2)
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Table 4.3 illustrates the values of χs,t derived from an example query log for

the map in Figure 4.5. For simplicity, since we assume χs,t = χt,s.

χs,t v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 / 0 10 50 0 0 0 16 0 0 0
v2 / 0 0 0 0 35 0 0 0 12
v3 / 0 20 0 0 0 0 0 0
v4 / 2 0 0 0 0 0 20
v5 / 0 5 0 0 18 0
v6 / 0 0 0 0 0
v7 / 0 0 0 0
v8 / 0 0 30
v9 / 0 0
v10 / 0
v11 /

Table 4.3. Example of χs,t values for the graph, with χs,t = χt,s

Given a generic concise shortest path P , we define its benefit Υ(P ) as:

Υ(P ) =
∑

vi,vj∈P, Qi,j⊂P
χi,j (4.3)

The benefit is the number of queries (in QL) that can be answered by P . As a

remark, a simple (nested-loop) implementation for computing Υ(P ) would take

O(|P |2) time.

Then, we define the benefit of a cache Ψ as follows:

Υ(Ψ) =
∑

vi,vj∈V, Qi,j⊂Ψ

χi,j (4.4)

As an example, consider the cache content in Table 4.4 and the map in

Figure 4.5. The path CP1,11 has benefit: Υ(CP1,11) = χ1,4 + χ1,5 + χ1,11 +

χ4,5 + χ4,11 + χ5,11 = 50 + 0 + 0 + 2 + 20 + 0 = 72. The benefit of the cache

Ψ is: Υ(Ψ) = χ1,4 + χ4,5 + χ4,11 + χ3,5 = 50 + 2 + 20 + 20 = 92. Observe that
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Equation 4.4 avoids duplicate counting. For example, the term χ4,5 appears only

once in the equation of Υ(Ψ), despite that the query Q4,5 can be answered by

paths CP1,11, CP3,8, and CP4,9.

concise path CP
CP1,11 〈v1, v4, v5, v11〉
CP3,8 〈v3, v4, v5, v8〉
CP4,9 〈v4, v5, v9〉

Table 4.4. A cache Ψ of concise shortest paths

With the above benefit model, we formulate our static caching problem as

follows:

Problem 4.1 (Static caching problem) Select a set of generic concise short-

est paths Ψ = {Ps,t} such that: (i) the benefit Υ(Ψ) is maximized, and (ii) the

cache size ||Ψ|| is bounded by a given cache capacity value.

In previous work [11], we require each Ps,t to be a shortest path. Here, we

consider a much larger search space and allow each Ps,t to be a generic concise

shortest path.

4.4.2 Benefit-Based Generic Concise Path

This section presents a solution for computing a generic concise path. Specif-

ically, given a shortest path SPs,t, we want to construct a generic concise path

GCPs,t such that it has a high benefit and a small size.

Given the paths present in the cache Ψ, we define the marginal benefit of a
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path P with respect to Ψ as:

Υm(P \Ψ) = Υ(Ψ ∪ {P})−Υ(Ψ) (4.5)

=
∑

vi,vj∈P, Qi,j∈P, Qi,j 6⊂Ψ

χi,j

This notion captures the total frequencies of queries (inQL) that can be answered

by P but not by paths in Ψ. Intuitively, it is desirable to cache a path P if the

benefit Υm(P \Ψ) is high and the size |P | is small. Thus, we define the normalized

benefit of a path P as: Υm(P \Ψ) = Υm(P\Ψ)
|P | .

A brute-force approach is to enumerate all possible generic concise short-

est paths (like in Table 4.2) and then find the one with the highest Υm value.

However, as discussed in Section 4.3.3, the number of possible generic concise

shortest paths is exponential in the path size.

In the following, we present a greedy heuristic solution to solve this problem

in polynomial time. Algorithm 4.3 is the pseudo-code of this solution. It takes

a shortest path SPs,t and its corresponding concise path CPs,t as input. We

denote BP as the path with the highest Υm value found so far. It is initialized

to CPs,t. The set S contains the possible nodes that can be added to BP . In

each iteration, we compute the benefit of the path BP ∪ {vc} for each vc (Lines

5–9), and find the node (say vbest) with the highest benefit. If the normalized

benefit of BP ∪{vbest} is higher than that of BP , we add vbest to BP and repeat

the loop. Otherwise, the algorithm terminates.

We illustrate the working of Algorithm 4.3 in Table 4.5. Here, we are given a

shortest path SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉 and its corresponding concise
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Algorithm 4.3 Static-Greedy ( Shortest path SP , Concise shortest path CP ,
Cache Ψ )

1: BP ← CP . the best path found so far
2: S ← the set of nodes in SP − CP
3: γcur ← Υm(BP \Ψ)
4: while S 6= ∅ do
5: γbest ← 0 . the best score in this iteration
6: for each vc ∈ S do
7: γc ← Υm((BP ∪ {vc}) \Ψ)
8: if γc > γbest then
9: γbest ← γc; vbest ← vc

10: if γcur
|BP | <

γbest
|BP |+1 then

11: remove vbest from S
12: insert vbest into BP (by the order in SP )
13: γcur ← γbest
14: else
15: Return BP

shortest path CP1,11 = 〈v1, v4, v5, v11〉. Note that Table 4.5a shows only the

rows and columns whose nodes fall into path SP1,11. Table 4.5b, shows the

running steps of the algorithm. First, we initialize BP to CP1,11 and the set

S to {v2, v7, v8, v9}. Those χs,t entries that contribute to the benefit of BP are

shaded light-gray (see Table 4.5a). In iteration 1, we add the best node v8 to

BP because its normalized benefit is higher than that of BP . Those χs,t entries

that contribute to the additional benefit of BP are shaded medium-gray. In

iteration 2, even for the best node v2, the normalized benefit of BP ∪ {v2} is

smaller than that of BP . Thus, the algorithm terminates and returns the path

〈v1, v4, v5, v8, v11〉.

As a remark, the above algorithm may not always return the optimal result

(i.e., the generic concise path with the highest normalized benefit). Suppose

that we add the nodes v2, v7, v8 to CP1,11 to form a generic concise path: P ∗ =
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χs,t v1 v2 v4 v5 v7 v8 v9 v11

v1 / 0 50 0 0 16 0 0
v2 / 0 0 35 0 0 12
v4 / 2 0 0 0 20
v5 / 5 0 0 0
v7 / 0 0 0
v8 / 0 30
v9 / 0
v11 /

(a) relevant entries of χs,t

Iteration Steps Path
Initialization CP = 〈v1, v4, v5, v11〉 〈v1, v4, v5, v11〉

S = {v2, v7, v8, v9} Υm=72/4=18
(1) v2: (72+12)/5

v7: (72+5)/5
v8: (72+16+30)/5
v9: (72+0)/5

Highest: 23.6 ¿ 18 Add v8

〈v1, v4, v5, v8, v11〉
Υm=118/5=23.6

(2) v2: (118+12)/6
v7: (118+5)/6
v9: (118+0)/6

Highest: 21.67 ¡ 23.6 STOP
〈v1, v4, v5, v8, v11〉

(b) running steps

Table 4.5. Finding the best generic concise shortest path, for SP1,11 =
〈v1, v2, v4, v5, v7, v8, v9, v11〉 and CP1,11 = 〈v1, v4, v5, v11〉

〈v1, v2, v4, v5, v7, v8, v11〉. According to Table 4.5a, the normalized benefit of P ∗

is: (118 + 35 + 12 + 5)/7 = 24.28, which is higher than the algorithm’s result

(23.6).

Time complexity analysis Let n be the number of nodes in SP . Note that

both the sizes of S and BP are upper-bounded by n.

In the while-loop (Lines 4–15), we remove a node vbest from S in each
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iteration, so it has at most n iterations. The for loop (Lines 6–9) has at

most n iterations because S contains at most n nodes. In Line 7, each call

to Υm((BP ∪ {vc}) \ Ψ) takes O(n2) time as the path size is at most n. By

combining the above, the total running time of the while-loop is O(n4).

Before the while-loop, Lines 1–2 take O(n) time and Line 3 takes O(n2)

time. Thus, the time complexity of the algorithm is O(n4).

The computational cost is high, even though the typical path size n is in

the order of hundreds on real road networks.

4.4.3 Efficient Implementation

We proceed to present a more efficient implementation of Algorithm 4.3.

The idea is to identify shared expressions in the calculation and compute such

expressions only once, regardless of the path size n (n = |SP |).

Recall that it takes O(n2) time to compute Υm(P \ Ψ), where P is a sub-

sequence of SP . Consider the scenario that we need the updated γ value after

adding a node vc into P . Fortunately, we can apply Equation 4.6 to derive

Υm((P ∪{vc}) \Ψ) from Υm(P \Ψ) incrementally. This derivation requires only

O(n) time to compute
∑

vj∈P, Qc,j 6⊂Ψ χc,j because we have one node for vc and

at most n nodes in P .

We propose an efficient implementation in Algorithm 4.4. For each node

vc in S, we maintain its benefit Υm((P ∪ {vc}) \ Ψ) in an attribute vc.γ.

We first compute Υm(BP \ Ψ) at Line 3, then derive vc.γ for each node vc ∈ S

incrementally.
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The while-loop (Lines 6–21) repeats until S becomes empty or the benefit

of BP cannot be improved further. In each iteration, we simply find the node

(vbest) with the highest γ. If the normalized benefit Υm of BP ∪{vbest} is better

than that of BP , we insert vbest into BP . Also, we need to update the value vc.γ

for each remaining node vc ∈ S (Lines 13–17). By using the idea in Equation 4.6,

we can derive a shared expression for updates (Line 13). We can compute it once

before using it to update each vc.γ.

Υm((P ∪ {vc}) \Ψ) (4.6)

=
∑

vi,vj∈P∪{vc}, Qi,j 6⊂Ψ

χi,j

=
∑

vi∈P∪{vc}

∑
vj∈P∪{vc}, Qi,j 6⊂Ψ

χi,j

=

 ∑
vi∈P

∑
vj∈P, Qi,j 6⊂Ψ

+
∑

vi∈P, Qi,c 6⊂Ψ

+
∑

vj∈P, Qc,j 6⊂Ψ

 χi,j

= Υm(P \Ψ) + 2 ·
∑

vj∈P, Qc,j 6⊂Ψ

χc,j

Time complexity analysis We proceed as in the time complexity analysis in

Section 4.4.2. Let n be the number of nodes in SP . Again, both the sizes of S

and BP are upper-bounded by n.

The while-loop (Lines 6–21) has at most n iterations. Within the while-loop,

the first for loop (Lines 8–10) takes O(n) time, the summation (Line 13) takes

O(n) time, and the second for loop (Lines 14–17) takes O(n) time. Thus, the
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Algorithm 4.4 Static-FastGreedy ( Shortest path SP , Concise shortest path
CP , Cache Ψ )

1: BP ← CP . the result
2: S ← the set of nodes in SP − CP
3: γcur ← Υm(BP \Ψ)
4: for each vc ∈ S do
5: vc.γ ← γcur + 2 ·

∑
j∈BP, Qc,j 6⊂Ψ χc,j

6: while S 6= ∅ do
7: γbest ← 0
8: for each vc ∈ S do . find the best vc
9: if vc.γ > γbest then

10: γbest ← vc.γ; vbest ← vc

11: if γcur
|BP | <

γbest
|BP |+1 then . compare Υm

12: remove vbest from S
13: ∆γ ← 2 ·

∑
j∈BP, Qbest,j 6⊂Ψ χbest,j . shared part

14: for each vc ∈ S do . update vc.γ
15: vc.γ ← vc.γ + ∆γ
16: if Qbest,c 6⊂ Ψ then
17: vc.γ ← vc.γ + 2 · χbest,c
18: insert vbest into BP (by the order in SP )
19: γcur ← γbest
20: else
21: Return BP

time complexity of the while-loop is O(n2).

Before the while-loop, Lines 1–2 take O(n) time, and Lines 3–4 take O(n2)

time. Thus, the time complexity of the algorithm is O(n2).

4.5 Dynamic Caching Setting

We have examined the static caching approach in Section 4.4. In this section,

we adopt the dynamic caching [14–16] approach, which intends to cache the most

recently accessed data items. When a cache miss occurs and the cache is full,
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these policies decide which data item to evict from the cache. For instance,

the Least-Recently-Used (LRU) policy evicts the least recently used item in the

cache. These policies allow the cache to adapt dynamically to the query workload.

However, they incur runtime overhead in maintaining the cache.

In this section, we present a dynamic caching method for generic concise

shortest paths. It adopts the LRU policy. When we obtain a shortest path

SP (after a cache miss), our main problem is how to compute a short generic

shortest path that will be able to answer many queries (in the future). To tackle

this problem, we employ two lightweight data structures for maintaining query

statistics: (i) a sliding window W that keeps the most recent Wsize queries, and

(ii) an array µ that records the frequencies of the query nodes in W.

Algorithm 4.5 shows the pseudo code for our dynamic caching method. It

is invoked when there is a cache miss for a query Qs,t. First, we calculate the

shortest path SP for Qs,t, and then compute a concise shortest path GCP for

it. Then, for each node vi in SP , we add it into the DGCP if vi is in CP or its

frequency in µ is non-zero. Next, we remove the oldest query from the sliding

window W and insert the newest query into W. Then, we update the frequency

array µ accordingly. Finally, we apply the LRU policy to update the cache Ψ

with the generic concise shortest path.

We proceed to illustrate the running steps of the algorithm. Table 4.6a shows

a list of queries and their shortest paths. Table 4.6b depicts the running steps.

∆L shows which query will be added and removed from W at each timestamp.

Array µ shows the frequency of query nodes in the sliding window. In this

example, the extra node(s) are added to the CP path (shown in bold) in order to
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Algorithm 4.5 Dynamic-GCP ( Query Qs,t, Cache Ψ )

Global structures:
W: a sliding window for the most recent Wsize queries
µ: the frequencies of query nodes in W

1: SP ← calculate the shortest path from Qs,t
2: CP ← calculate the concise shortest path of SP
3: for each vi ∈ SP do . calculate dynamic GCP path
4: if vi ∈ CP or µi > 0 then
5: add vi to DGCP

6: if W is full then . remove old query
7: dequeue Qs′,t′ from W
8: µs′ ← µs′ − 1; µt′ ← µt′ − 1

9: enqueue Qs,t into W . insert new query
10: µs ← µs + 1; µt ← µt + 1
11: apply LRU policy to update Ψ by DGCP . update cache

obtain the DGCP path. At time t = 1, we receive the query (8,9) and calculate

its DGCP path. Since calculation of DGCP paths happen before updating µ,

the content of µ does not change from the initial state. Then, we remove (1,6)

and add (8,9) to W. At time t = 2, the query from t = 1 affects the content of

µ. Window W is updated as before. Similarly, the running steps at t = 3 and

t = 4 are shown in the table.

4.6 Experimental Study

Section 4.6.1 covers the methods considered in the experiments. Section 4.6.2

covers the experimental settings. Section 4.6.3 covers experiments on real trajec-

tory induced workload, while Section 4.6.4 covers the experiments on synthetic

workloads.



CHAPTER 4. CONCISE CACHING OF DRIVING INSTRUCTIONS 89

Query Shortest Path
Q8,9 〈v8, v5, v7, v9〉
Q1,4 〈v1, v3, v4〉
Q1,10 〈v1, v3, v4, v5, v7, v9, v10〉
Q2,10 〈v2, v5, v7, v9, v10〉

(a) shortest paths of queries

Time t Query ∆L µ DGCP Path

0 N.A. N.A. 1,3,5,6,7,10: 1 N.A.
1 (8,9) −(1, 6) 1,3,5,6,7,10: 1 〈v8, v5,v7, v9〉

+(8, 9)
2 (1,4) −(3, 5) 3,5,7,8,9,10: 1 〈v1,v3, v4〉

+(1, 4)
3 (1,10) −(7, 10) 1,4,7,8,9,10: 1 〈v1, v5, v7,v9, v10〉

+(1, 10)
4 (2,10) −(8, 9) 1: 2; 4,8,9,10: 1 〈v2, v5, v7,v9, v10〉

+(2, 10)
(b) running steps

Table 4.6. Running steps of dynamic caching, Lsize = 3, for the road network in
Figure 4.1

4.6.1 Methods Considered

We evaluate the hit ratios of our caching methods and competitors on a

machine running Debian. Table 4.7 lists all the methods used in our experi-

ments. In the static caching setting, all methods use an existing caching policy

for shortest paths [11]. In the dynamic caching setting, all methods use LRU for

cache replacement.

Our proposed methods are: (i) CP, caching concise paths as defined in

Section 4.3, (ii) GCP, the static caching method for generic concise paths in

Section 4.4, and (iii) DGCP, the dynamic caching method for generic concise

paths in Section 4.5.

As discussed in related work, K-Skip [36] is a lossy shortest path compression
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method, so we do not compare with it. We compare our methods with two

competitors: (i) full shortest path (SP), and (ii) concise path skip (CP-Skip).

CP-Skip is a variant of K-Skip that includes all nodes of CP and every k-th node

of SP. Since CP-Skip contains CP, it is a lossless shortest path method.

As discussed in related work, K-Skip [22] is a lossy shortest path compression

method, so we do not compare with it. We compare our methods with two

competitors: (i) full shortest path (SP), and (ii) concise path skip (CP-Skip).

CP-Skip is a variant of K-Skip that: includes all nodes from a CP path, and

includes every k-th node of SP into the path. Since CP-Skip contains a CP path,

it is guaranteed to always generate a lossless path.

Method Static caching policy Dynamic caching policy

CP [11] LRU
GCP [11] N.A.

DGCP N.A. LRU
SP [11] LRU

CP-Skip [11] LRU

Table 4.7. Methods used in experiments

4.6.2 Experimental Setting

Datasets and Workloads

Table 4.8 shows information on the road networks used in the experiments.

Although a real query log for online direction services [45] exists, service providers

do not make their query logs publicly available. Thus, we generate query logs

from real trajectory data on the corresponding maps.

We use real trajectories from the Aalborg [32] and Beijing [33] road networks.

From each trajectory, we extract the start and end locations as the source and
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target nodes of a shortest path query in a query log. Since the trajectory datasets

for Aalborg and Beijing are small (4.3k and 13k trajectories, respectively), we

enlarge the trajectory dataset (to 300,000 trajectories) by sampling trajectories

in the log and deviating their coordinates within a given radius (default value:

0.5 km).

For each of the two larger road networks (Colorado and New York), we

generate a query log as follows. In the real world, drivers start from a dense

region (e.g., a residential region) and travel towards another dense region (e.g.,

an industrial region). To simulate such behavior, we randomly choose a set of

cluster centers with a given radius to form a set of clusters. Next, we randomly

pick a pair of nodes from any 2 clusters to form a shortest path. By default, we

use 10 clusters, and the radius is 8 km.

Following an existing experimental methodology [11], we divide the query

log into two equal parts: (i) a query log QL, for extracting query statistics and

training the cache, and (ii) a query workload WL used for measuring the hit

ratios of the methods.

Road network Map size (km2) Road network

Aalborg 60x60 download.cloudmade.com
129k nodes, 137k edges

Beijing 60x60 download.cloudmade.com
76k nodes, 85k edges

Colorado 1000x1000 www.dis.uniroma1.it/challenge9
435k nodes, 1,057k edges

New York 6000x4000 www.dis.uniroma1.it/challenge9
264k nodes, 733k edges

Table 4.8. Characteristics of datasets
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Parameters and Default Values

Table 4.9 lists the parameters and their default values. The first two entries

show the default radius for the different road networks. Since different road

networks have different sizes, we use 0.5 km as the default radius for the Aalborg

and Beijing road networks, and we use 8 km as the default radius for the Colorado

and New York road networks. The number of clusters denotes the number of

clusters used for generating the synthetic workload (for Colorado and New York).

The cache capacity (ratio) expresses the cache space as a percentage of the space

needed for storing the entire road network. Thus, the absolute cache space for

the different road networks are different. The last two are parameters for specific

to CP-Skip and DGCP. Path size ratio is used by CP-Skip to define the ratio of

the CP-Skip path length to the full shortest path length. Window size is used

by DGCP to define the size of the sliding window.

Parameter Default value

Radius (for Aalborg, Beijing) 0.5 km
Radius (for Colorado, New York) 8 km
Number of clusters (for Colorado, New York) 10
Cache capacity (ratio) 50%
Path size ratio (for CP-Skip) 50%
Window size (for DGCP) 1000 queries

Table 4.9. Default parameters

4.6.3 Real Trajectory Induced Workload

We proceed to report on experiments using real trajectory induced workloads

(on the Aalborg and Beijing road networks).

First, we examine the average lengths (i.e., number of nodes) of paths in the
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cache for the different methods, see Table 4.10. Observe that full shortest paths

(SP) are much longer than concise shortest paths (CP). Generic concise shortest

paths (GCP/DGCP) are only slightly longer than concise shortest paths (CP).

This means that SP paths contain many intermediate nodes that do not intersect

query nodes in the workload. Note that the average path lengths of the methods

(e.g., SP and CP) are similar in the static and dynamic settings.

Road Static Dynamic
Network SP CP GCP SP CP DGCP

Aalborg 338.5 38.7 48.1 315.6 37.3 41.3
Beijing 166.1 26.4 35.6 129.8 23.1 26.1

Colorado 874.8 98.3 115.7 887.3 96.9 106.1
New York 501.9 71.3 73.3 514.7 70.4 72.0

Table 4.10. Average path length (in nodes)

Next, we study the effect of the path size ratio on the performance of CP-

Skip, see Figure 4.6. The other methods (SP, CP, GCP) are included for reference

only; they do not take the path size ratio as a parameter. Clearly, GCP outper-

forms CP-Skip in all cases. The results for dynamic caching are similar, so we

omit them.
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Figure 4.6. Hit ratio vs. path size ratio
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Next, we investigate the effect of the window size parameter on the hit ratio

of the DGCP method (in the dynamic caching setting). Figure 4.7 plots the hit

ratio of DGCP with respect to the window size. The hit ratio increases until the

window size reaches 10,000. Observe that we can achieve a high hit ratio when

the window size is sufficiently large.
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Figure 4.7. Hit ratio vs. window size

Figure 4.8 shows the hit ratios of the methods as a function of the cache

capacity, Again, GCP outperforms the other methods significantly, in both the

static and dynamic settings. Since CP-Skip and SP have similar hit ratios, we

exclude CP-Skip from subsequent experiments.

Figure 4.9 shows the hit ratios of the methods for various cluster radius

values. Observe that a smaller radius leads to a higher hit ratio. This happens

because smaller clusters result in fewer possible unique queries.
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Figure 4.8. Hit ratio vs. cache capacity

4.6.4 Synthetic Workload

We proceed to report on experiments using synthetic workload (on the Col-

orado and New York road networks).

We plot the average path length of the methods, as shown in Table 4.10. In

general, the results are similar to those for the real trajectory induced workloads.

Figure 4.10 shows the hit ratios of the methods with respect to the cache

capacity. In the static (dynamic) caching setting, GCP/DGCP can achieve a

hit ratio of 84.28% (99.75%) and 39.70% (94.13%) for Colorado and New York,
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Figure 4.9. Hit ratio vs. cluster radius

respectively. Observe that, in the dynamic caching setting, we can achieve a very

high cache hit ratio with a small cache capacity. In the remaining experiments,

we do not include the results for CP-Skip as CP-Skip and SP have similar hit

ratios.

Figure 4.11 shows the impact of the cluster radius on the hit ratios of the

methods. Observe that a smaller radius leads to a higher hit ratio. This is

expected as a smaller radius implies that there are fewer unique query pairs in

the workload.

In the static caching setting, GCP always outperforms its competitors, and
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Figure 4.10. Hit ratio vs. cache capacity

CP is the second best, followed by CP-Skip and SP in the last tier. In the

dynamic caching setting, DGCP clearly outperforms its competitors.

Figure 4.12 shows the impact of the number of clusters on the cache hit

ratio. GCP/DGCP consistently outperforms the competitors, with a lead to the

next-best competitor by at least 20%.
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Figure 4.11. Hit ratio vs. cluster radius

4.7 Conclusions

In this chapter, we exploit concise shortest paths to boost the cache hit ratio

of shortest path queries in cache servers. A concise shortest path occupies much

less space than a complete shortest path, while providing sufficient navigation

information to mobile users. First, we propose the notion of a generic concise

shortest path that enables a trade-off between the path size and the number of

queries that can be answered by the path. Then we develop static and dynamic

caching techniques for generic concise shortest paths.
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Figure 4.12. Hit ratio vs. number of clusters

Experimental results show that the hit ratios of our best methods (GCP and

DGCP) are 10%–40% higher than that of competitors. Our methods are more

robust with respect to the cache capacity.

As for the future work, we will study the maintenance of cache content with

respect to dynamic traffic updates.
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Chapter 5

Safe Regions for Meeting Point

In this chapter, we study a problem related to the sum-optimal meeting

point, which aims to minimize the sum of distances traveled by users.

This is useful if e.g., a group of friends wants to share the fuel cost, and meet

up at the restaurant which would cost the group the least for all group members

to arrive at. Figure 5.1 gives a simple example with 2 moving users, u1, u2, and

2 restaurants, p1, p2. The answer to the sum-optimal meeting point problem is

p1 as it has the minimal sum of travel distances from u1 and u2 (11 units vs.

16.3 units to reach p2).

Real applications relevant to this problem are EchoEcho1 which lets users

easily share their location, and Tourality2 which lets users compete in various

challenges using locations in their vicinity. However, current services such as

EchoEcho and Tourality do not support solving the sum-optimal meeting point

1www.echoecho.me
2www.tourality.com
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Figure 5.1. Example for the sum-optimal meeting point

problem. They can at most provide the user with the locations of friends. This

could allow the user solve the snapshot version of the sum-optimal meeting point

problem manually.

We will examine the continuous version of the problem, continuously mon-

itoring which location minimizes the sum of distances of all users in a group.

currently no commercial service enable users to use this type of service. We call

the continuous version of this problem Sum-optimal Meeting Point Notification

( Sum-MPN ). The challenge in solving the Sum-MPN problem is that simply

executing existing snapshot solutions to the problem will incur a prohibitively

high computational load on the service provider, as well as incurring very high

communication costs for the users.

We are using safe regions to reduce the communication frequency for the
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user, as well as the computational load for the service provider. The two are inter-

dependent as fewer updates naturally decreases the load on the service provider.

We propose two types of safe regions, circular (Section 5.3) and tiled (Section

5.4). It is challenging to calculate safe regions for the Sum-MPN problem as the

safe regions are interdependent for a given group of users. .

To summarize; in order to address the above mentioned challenges we make

the following contributions:

• Proposed circular and tiled safe regions for the Sum-Optimal Meeting Point

Notification problem

• Design efficient algorithms and various optimizations to compute these safe

regions.

The rest of the chapter is organized as follows. First, we introduce the

problem and definitions in Section 5.1. Second, we review related work specific

to this chapter in Section 5.2. Next, we present our solutions in Section 5.3

and Section 5.4, together with their optimizations. Our methods are evaluated

using real and synthetic data in Section 5.5. Finally, we conclude the chapter in

Section 5.6.

5.1 Problem Definition

We first provide the definitions for the sum distance and the sum-optimal

meeting point.

Definition 5.1 (Sum distance) The sum distance from a point p to a group
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of users U is:

‖p, U‖sum =
∑
ui∈U

‖p, ui‖

Definition 5.2 (Sum-optimal meeting point) Given a group of users U and

a dataset of points P , the sum-optimal meeting point po is the point in P with

the smallest ‖po, U‖sum. It is also called SUM-GNN [46].

The sum-optimal meeting point is suitable when a group of users wishes to

minimize the sum of their travel distances (and thus their total fuel cost). As for

the incentive, the users in a group may agree on sharing the total fuel cost evenly

when they reach the meeting point. Specifically, for those having fuel cost less

than the average, they would contribute the cost difference (from the average)

to other users in the group.

We illustrate an example of the sum-optimal meeting point in Figure 5.1.

Assume that the user group is U = {u1, u2} and the dataset is P = {p1, p2}. The

sum-optimal meeting point is p1 with the value ‖p1, U‖sum = 1.5 + 9.5 = 11.

An example of safe regions for the sum-optimal meeting point is illustrated

by circles in Figure 5.1.

Observe that Papadias et al. [46] have studied the snapshot version of our

problem, i.e., computing the sum-optimal meeting point (called SUM-GNN in

their work). In contrast, we focus on computing safe regions for such a meeting

point.

The Sum-Optimal Meeting Point Notification ( Sum-MPN ) problem is then:

Given a set of moving users U and a set of points of interest P , Sum-MPN
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continuously reports the sum-optimal meeting point p0 ∈ P to all users in U ,

such that the sum of all distances to p0 from users in U is minimized.

5.2 Related Work

We present the related work specific to this chapter here. We have covered

safe regions in Section 2.2.

Continuous monitoring aims to execute repeated spatial queries on the po-

sitions of moving objects. Prior work on continuous monitoring can be arranged

into two categories: (i) continuous queries, e.g., kNN queries [47–51], moving win-

dow (rectangle range) queries [22, 52]; (ii) detecting proximity between moving

objects [53]. Safe region is commonly used in works on continuous queries.

In this work, the shape of the safe regions are determined by two elements:

(i) the location of points of interest, and (ii) the locations of other users in

the group. Previous work is restricted to only one of these two, and is thus

inapplicable to this problem.

Previous work on safe regions focus on regions like polygons (Voronoi cell)

or arc-based regions. Such regions are relatively easy to compute. This work is

described in Section 2.2.

Defining safe regions for our Sum-MPN problem is challenging because: (i)

the safe regions for Sum-MPN have irregular shapes (see section 5.4) and are

thus hard to compute; (ii) the safe regions of users are interdependent and

the users change their locations dynamically and unpredictably, rendering pre-

computation techniques (e.g., Voronoi cells [19]) inapplicable.
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The snapshot version of our problem is similar to two existing types of

queries: group nearest neighbor (GNN) query [46] and group enclosing query [54].

GNN queries takes several query points and try to find their closest neighbor.

Group enclosing queries takes a set of points P and a set of query points Q. It

finds the point in P with the minimum distance to all points in Q.

The work closest to ours, [55], focuses on GNN monitoring on road networks.

It differs from our work in two aspects. First, we do not consider the underlying

road network. Secondly, [55] aims to minimize computations at the server side;

conversely we focus on minimizing the communication cost. Thus, their methods

cannot be applied to solve Sum-MPN.

5.3 Circular Safe Region Approach

In this section, we approximate the exact safe regions of users by circles due

to simplicity. We first study the condition for verifying a set of safe regions.

Then, we design an algorithm for computing circular safe regions.

Although exact safe regions have irregular shapes, they can be conservatively

approximated as circles. We can approximate the irregular shape by finding the

largest circle which can fit inside. We now assign each user ui a circular safe

region Ri = �(ui, r), where ui is the current user location and r is the radius.

Note that the same radius r is used across different Ri.

To reduce the communication cost between the server and the users, the

value r should be as large as possible. The following theorem decides the maxi-

mum radius r such that the safe regions remain valid.



CHAPTER 5. SAFE REGIONS FOR MEETING POINT 107

Definition 5.3 (Distances) Let ‖p, l‖ be the Euclidean distance between points

p and l. The minimum distance and the maximum distance from a point p to a

set/region S are:

‖p, S‖min = min
l∈S
‖p, l‖ (5.1)

‖p, S‖max = max
l∈S
‖p, l‖ (5.2)

Theorem 5.1 (Sum-optimal maximal circles) The maximum radius of cir-

cles for safe regions is:

rmax =
minp∈P−{po}(‖p, U‖sum)− ‖po, U‖sum

2m
(5.3)

Proof. Let Ri = �(ui, r), a circle with radius r and center as the current user

location ui. We have: ‖p,Ri‖max = ‖p, ui‖+ r and ‖p,Ri‖min = ‖p, ui‖ − r.

By applying the definition of safe regions for Sum-optimal meeting point,

we derive the following inequality for any point p ∈ P − {po}:

∑
ui∈U

(‖po, Ri‖max) ≤
∑
uj∈U

(‖p,Rj‖min)

∑
ui∈U

(‖po, ui‖+ r) ≤
∑
uj∈U

(‖p, uj‖ − r)

By rearranging the terms, we obtain:

2m · r ≤
∑
uj∈U

(‖p, uj‖)−
∑
ui∈U

(‖po, ui‖)
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which is equivalent to

r ≤ ‖p, U‖sum − ‖p
o, U‖sum

2m
(5.4)

Note that Equation (5.4) holds for any point p ∈ P − {po}. By taking the min-

imum value of all ‖p, U‖sum, we obtain: rmax =
minp∈P−{po}(‖p,U‖sum)−‖po,U‖sum

2m .

PO

P

 r
max

 ||p,u||

 ||p 0,u||

 ||p0,u||

 ||p,u||

 r
max

 r
max

Figure 5.2. Illustration of rmax calculation

Figure 5.2 illustrates how the maximum radius rmax for a safe region is

found for a single. By finding the sum-optimal meeting point and the second

best meeting point we take the difference of their distances to the user (center

of circle) divided by two.

Algorithm 5.1 is the pseudo-code for computing circular safe regions for

users. Assume that the dataset set P is indexed by an R-tree. First, the algorithm
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finds the best two meeting points by calling an existing algorithm [56] on the R-

tree of P . Note that the second best meeting point is the point p that contributes

to minp∈P−{po}(‖p, U‖sum). Then, it computes the maximum radius rmax by

Equation (5.3) and returns the corresponding circular safe regions to the users.

Algorithm 5.1 Circle-MSR ( Set of users U , Dataset P )

1: po, p← FindSumGNN(U , P , 2) . apply algo. in [56]
2: compute the radius rmax . apply Equation 5.3
3: for each user ui ∈ U do
4: return the safe region �(ui, rmax) to ui

5.4 Tile-based Safe Region Approach

In this section, we model each safe region Ri as an irregular shape and

approximate it by using a set of tiles. We model the safe regions as irregular

shapes because the safe region of each user is determined by the relative location

of the user to both a set of locations as well as the moving locations of a group

of friends. We introduce Algorithm 5.2 to compute a safe region group for the

sum-optimal meeting point. Also, we adopt the divide-and-conquer method in

Algorithm 5.3 and 5.4, to check whether a tile s should be inserted into the safe

region Ri of user ui.

5.4.1 Main Algorithm

We are now ready to present an algorithm for computing tile-based safe

regions (Algorithm 5.2). Each safe region Ri is modeled as a set of tiles, so it can

be used to approximate an irregular shape. The main idea of the algorithm is to
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browse the tiles around each user ui in a systematic way, apply verification on

them, and then add valid tiles into a safe region Ri. The algorithm terminates

when no more tiles can be added in those safe regions.

Recall that Algorithm 5.1 computes the safe region of each user ui as a circle

�(ui, rmax). The maximal tile (square) in each circle must also be a valid safe

region. Thus, we set the tile size δ =
√

2 · rmax and add a tile �(ui, δ) into its

corresponding safe region Ri (Lines 1–4).

The parameter α specifies the (maximum) number of tiles to be assigned to

each safe region Ri. It can also be used to bound the number of iterations in

Lines 5–11. In each iteration, the algorithm examines the safe regions of users

in a round-robin manner.

We call a function Next-Tile to get the next tile s, in the clockwise direction,

for user ui. Then, it tests the new tile s with other users’ safe regions by calling

Sum-Divide-Verify (Line 9). The loop terminates either when (i) the test returns

true, or (ii) s is empty, i.e., Next-Tile has exhausted all tiles for ui. At the end,

the algorithm returns a safe region Ri to each user ui.

Figure 5.3 gives an example of how Algorithm 5.2 and 5.3 function. The

circle around Ui represent rmax, and the tile inside is the initial safe region of Ui

(Algorithm 5.2, line 4). Line 6-10 in Algorithm 5.2 finds all the tiles for user Ui

by calling Next-Tile() and Sum-Divide-Verify() for each tile 1-8 around Ui. The

tiles are added in a counter-clockwise manner from tile 1, up to tile 8 around Ui.

The number of the tiles around Ui in Figure 5.3 illustrates the order in which

they were added to Ui’s safe region. Sum-Divide-Verify(), Algorithm 5.3, checks

each tile added, to ensure it can be added around Ui, if it can’t then the tile will
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Algorithm 5.2 Tile-MSR ( Set of users U , Dataset P , Tile limit α, Split level
L )

1: compute po and rmax . apply Algorithm 5.1
2: δ ←

√
2 · rmax . initial tile size

3: for each user ui in U do
4: Ri ← { �(ui, δ) } . initial safe region

5: for τ ← 1 to α do . control running time
6: for each user ui ∈ U do . round robin
7: repeat
8: s←Next-Tile ( ui, δ ) . by tile ordering
9: flag ← Sum-Divide-Verify ( R, ui, s, po, P, L) . call Algorithm 5.3

10: until flag = true or s = ∅
11: for each user ui ∈ U do
12: return the safe region Ri to ui

Algorithm 5.3 Sum-Divide-Verify ( Safe region group R, User ui, Tile s,
Optimal point po, Dataset P , Level L )

1: if ∀ p ∈ P − {po}, Sum-GT-Verify ( R, ui, s, p, po ) is true then
2: Ri ← Ri ∪ {s}
3: return true
4: flag ← false
5: if L > 0 then . control the recursion level
6: divide s into four sub-tiles
7: for each sub-tile s′ of s do
8: if Sum-Divide-Verify ( R, ui, s′, po, P, L− 1 ) then
9: flag ← true

10: return flag

be divided into 4 sub tiles and Sum-Divide-Verify() will be called recursively on

each sub tile (lines 6-9). Tiles 6-8 show how divided tiles will be added around

Ui. They are subdivided because P2 is closer to the left side of a full tile than

P1 would be, so to still grow the area of the safe region tiles 6-9 all need to be

subdivided.
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Figure 5.3. Example for Tile-MSR (Algorithm 5.2 & 5.3)

5.4.2 Group tile verification

Let 〈Ri|mi=1〉 be a valid safe region group obtained so far. Given a new tile s

for user ux, we want to verify efficiently whether the above safe region group is

valid after inserting s into Rx (Algorithm 5.3, line 1). Let L = 〈l1, · · · , lm〉 be a

group location instance, where lx ∈ s and li ∈ Ri for all i 6= x.

Specifically, we want to verify that, for every instance of users’ locations L

(as stated above), whether ‖po, L‖sum ≤ ‖p′, L‖sum holds for every non-result

point p′ ∈ P − {po}. We define the comparison function F (p′, po, L) as:

F (p′, po, L) = ‖p′, L‖sum − ‖po, L‖sum

=
∑
li∈L

(‖p′, li‖ − ‖po, li‖) (5.5)

The verification returns false if F (p′, po, L) < 0 for some non-result point p′ ∈

P − {po} and some group location instance L.

For a given point p′ ∈ P − {po}, we minimize the value of F (p′, po, L) in
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order to check whether it can become negative. Observe that, in Equation 5.5,

we can minimize the term ‖p′, li‖ − ‖po, li‖ for each user ui independently.

It turns out that the loci of ‖p′, l‖−‖po, l‖ = r can be described by hyperbola

curves, as shown in Figure 5.4. In this example, po = (1, 0) and p′ = (−1, 0).

Given a square tile s, our task is to find the minimum value of ‖p′, l‖ − ‖po, l‖

among all location l of s. First, we divide the space by the axis p′po into the upper

half-plane and the lower half-plane. Observe that, within the same half-plane,

the same hyperbola curve can be either a decreasing curve or an increasing curve,

but not both. As such, the minimum value along a straight line must occur at

either of its end vertices. To find the minimum value of a tile s, it suffices to

compute the value ‖p′, v‖−‖po, v‖ at: (i) each corner v of s (e.g., A,B,C,D), and

(ii) any intersection v between s and the axis p′po (e.g., E, F).
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Figure 5.4. Hyperbola curves for ‖p′, l‖ − ‖po, l‖ = r

This verification function is summarized as Algorithm 5.4. Observe that
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there are redundant computations during different calls of the algorithm (Lines

6–8). We can apply memorization techniques to avoid such redundant computa-

tions. The idea is to employ m hash tables: H1, H2, · · · , Hm. For each user ui,

the minimum Fi value for point p′ can be maintained at the hash entry Hi(p
′).

Then, we make two changes to the algorithm:

• replace Lines 6–8 by the statement: Fi ← Hi(p
′)

• at Line 12, we also execute Hx(p′) ← min{Fx, Hx(p′)} because the tile s

will be inserted into the safe region of user ux

Algorithm 5.4 Sum-GT-Verify(Safe region group R, User ux, Tile s, Point
p, Optimal point po)

1: Fx ←∞
2: for each vertex or intersection v of tile s do
3: Fx ← min{Fx, ‖p′, v‖ − ‖po, v‖}
4: for each user ui except ux do
5: Fi ←∞
6: for each tile si of safe region Ri do
7: for each vertex or intersection v of tile si do
8: Fi ← min{Fi, ‖p′, v‖ − ‖po, v‖}
9: if

∑
i=1..m Fi < 0 then

10: return false
11: else
12: return true

5.4.3 Index pruning

Since it is expensive to invoke the above verification function for every point

p ∈ P −{po}, we derive the following theorem to detect unpromising points that

cannot become candidates.

Theorem 5.2 Given a safe region group R, a point p cannot yield better result



CHAPTER 5. SAFE REGIONS FOR MEETING POINT 115

than po if,

‖p, U‖sum > ‖po, U‖sum + 2 ·
∑
ui∈U

r†i (5.6)

where r†i is the maximum distance between user ui’s current location and its safe

region boundary.

The above pruning technique can also be extended to the MBRs in the R-

tree. For instance, a MBR can be pruned if the value
∑

ui∈U dmin(MBR,ui) is

larger than the right-side of Equation (5.6).

5.4.4 Buffering optimization for index access

Observe that the computation of tile-based safe regions (Algorithm 5.2)

invokes the Sum-Divide-Verify function multiple times, causing frequent accesses

to the R-tree (of dataset P ). In this section, we present an optimization method

so that Algorithm 5.2 accesses the R-tree exactly once, regardless of the number

of calls to Sum-Divide-Verify.

5.4.4.1 Buffering points for verification

Our idea is to retrieve a subset of points from the R-tree and only use them

in subsequent calls to the Sum-Divide-Verify function. Given a parameter β, we

define a distance threshold λβ as follows. We will elaborate how to reduce the

sensitivity of β later.

Definition 5.4 (Distance threshold) The distance threshold λβ is defined



116 5.4. TILE-BASED SAFE REGION APPROACH

as follows:

λβ =
‖pβ+1, U‖sum − ‖po, U‖sum

2m
(5.7)

where point pj denotes the j-th SUM-GNN of U .

Theorem 5.3 states that the best β SUM-GNNs (of U) are sufficient for

verifying a group location instance L, provided that each li ∈ L is within distance

λβ from ui.

Theorem 5.3 (Sum-optimal buffering condition)

Let P ∗1..j = {p1(= po), p2, · · · , pj} be the set of the best j SUM-GNNs.

Given an instance of users’ locations L = 〈l1, · · · , lm〉, if ‖li, ui‖ ≤ λβ holds

for every 1 ≤ i ≤ m, then the SUM-GNN of L cannot be any point in P − P ∗1..β.

Proof. Let p′ be an arbitrary point in P − P ∗1..β. Note that ‖pβ+1, U‖sum ≤

‖p′, U‖sum. We derive the following:

∑
ui∈U

(‖po, ui‖) + 2mλβ ≤
∑
ui∈U

(‖p′, ui‖) (5.8)

From the given condition ‖li, ui‖ ≤ λβ, we can obtain:
∑

ui∈U (‖po, ui‖) ≥∑
ui∈U (‖po, li‖)−2mλβ and maxui∈U (‖p′, ui‖) ≤ maxui∈U (‖p′, li‖)+2mλβ. Com-

bining these two inequalities with Equation 5.8, we get:

∑
ui∈U

(‖po, li‖) ≤
∑
ui∈U

(‖p′, li‖)

Thus, the SUM-GNN of L cannot be p′.
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Figure 5.5 illustrates how the above Distance threshold techniques, presented

above in Definition 5.4, works. Here we have β = 2, a set of users {u1, u2, u3},

and a set of locations {p0, p1, p2, p3, p4}. The locations are numbered by their

SUM-GNNs rank, i.e. by their total distance to the set of users, p0 having the

smallest distance. The gray circles around each user have a radius of λβ. Since

β = 2, p2 is the pβ+1’th SUM-GNN. Since β = 2 and both p0 and p1 are within

λβ distance of all users (gray circles), Theorem 5.3 states that the SUM-GNNs

of 〈p0, p1〉 are sufficient to verify them as a group location.

po

p2

p1

p3

p4

u
3

u
2
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Figure 5.5. Example for using the distance threshold

We are now ready to present our buffering method. Specifically, before

computing safe regions, we first retrieve the best β+1 SUM-GNN of U . When we

verify a tile s for user i (Sum-Divide-Verify, Algorithm 5.3), we only process s if

‖s, ui‖max ≤ λβ. This guarantees that the condition ‖li, ui‖ ≤ λβ in Theorem 5.3

is always satisfied. Then, we use the point set P ∗1..β (instead of the entire P ) in

the verification function. We need not access the R-tree again since we have
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retrieved P ∗1..β+1 (which contains P ∗1..β).

5.4.4.2 Reducing the sensitivity of parameter β

Observe that the parameter β exhibits a tradeoff between the verification

cost and the extent of safe regions. A small β limits the extent of safe regions

significantly (due to the distance threshold λβ).

To avoid overly small safe regions, we recommend to use a sufficiently large

β.3 However, the verification cost is directly proportional to β.

In the following, we provide an efficient implementation (Algorithm 5.5)

whose verification cost is less sensitive to β. Now, we consider all β possible

distance thresholds: λ1, λ2, · · · , λβ. To reduce the verification cost, we pick the

smallest distance threshold λz such that it satisfies the condition of Theorem 5.3

for the current safe region group R and the new tile s.

This can be implemented efficiently in O(log β) time by binary search (Line

2). If such a distance threshold λz cannot be found, then the verification returns

false as the new tile s violates the condition of Theorem 5.3.

Algorithm 5.5 Buffer-Sum-Divide-Verify (Safe region group R, User ui,
Tile s, Optimal point po, Set P ∗1..β+1, Level L)

1: dist← max{‖ui, s‖max,
∑

Rj∈R ‖uj , Rj‖max}
2: find the minimum slot z such that dist ≤ λz . binary search
3: if no such z exists then
4: return false
5: if ∀ p ∈ P ∗1..z − {po}, Sum-GT-Verify ( R, ui, s, p, po ) is true then
6: Ri ← Ri ∪ {s}
7: return true
8: apply Lines 4–10 of Algorithm 5.3

3We set β = 100 based on our experimental results
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5.5 Experiments

5.5.1 Settings

In this section, we experimentally evaluate the performance of our proposed

techniques. All methods were implemented in C++ and the experiments were

performed on an Intel Core 2 Duo 2.66GHz PC with 8 GBytes memory, running

on Ubuntu 10.04.

Dataset and Query Workload. We obtain a real dataset from Pocket-

GPSWorld4, which consists of N = 21, 287 POIs. We simulate the movement

of query users by using both synthetic and real trajectories: (i) GeoLife, a real

trajectory set of taxi drivers released by Microsoft5; (ii) Oldenburg, a synthetic

trajectory set generated from Brinkhoff’s generator [57]. Each trajectory set

consists of 60 trajectories that have above 10,000 timestamps. We partition each

trajectory set into 10 user groups and then report the average performance on

these user groups.

Measures. We evaluate our performance in three aspects: (i) update fre-

quency, which reflects the frequency for users to issue update messages to the

server, and (ii) average running time, which is the computation time for safe

regions per update. (iii) communication cost (packet count), measures the num-

ber TCP packets for messages sent between the server and the clients. A packet

contains at most (576 − 40)/8 = 67 (double-precision) values since the typical

Maximum Transmission Unit (MTU) over a network is 576 bytes and a packet

4www.pocketgpsworld.com
5www.microsoft.com



120 5.5. EXPERIMENTS

has a 40-byte header6. To represent a shape, we use 3 values per a circle, 3 values

per a square, and 4 values per a rectangle.

Configurations. We study our proposed solutions with different variations.

Circle denotes the Circle-MSR method in Section 5.3. Tile denotes the Tile-MSR

method in Section 5.4 using undirected ordering on tiles and lossless compression

in [58]. Tile-D is a variant of Tile using directed ordering on tiles [58]. Both

Tile and Tile-D apply the GT-Verify function and the index pruning technique.

Table 5.1 presents the default values and ranges of parameters in our experiments.

Table 5.1. Parameter values in experiments
Parameter Default Range

Data size n N 0.25N, 0.5N, 0.75N, 1.0N
User group size m 3 2, 3, 4, 5, 6

User speed V (speed limit) 0.25V, 0.5V, 0.75V, 1.0V

Tile limit α 30 /
Split level L 2 /

Our proposed methods require two extra parameters: (i) the tile limit α,

and (ii) the split limit L. As the default setting in [58], we set α = 30 and

L = 2 as they achieve a good trade-off between the running time and the update

frequency.

5.5.2 Scalability experiments

This section studies the scalability of our methods for the Sum-MPN prob-

lem.

Effect of user group size m. We vary the group size m in experiments

on both datasets in Figure 5.6. The trend is similar to that in corresponding

6http://tools.ietf.org/html/rfc879
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experiments in the previous subsection.

Tile-based safe region methods are effective in optimizing the update fre-

quency and the communication cost.

Effect of data size n. Next, we vary the data size (i.e., the number of

POIs) in Figure 5.7. When n is large, the data density in the space is high so

all the methods have high update frequency. Nevertheless, the update frequency

and the communication cost of tile-based methods increase at a slower rate than

the circle-based method.

Effect of buffering parameter β. Figure 5.8 shows the performance

of Tile-D and Tile-D-β. Again, the trend is similar to that in corresponding

experiments in the previous subsection. Tile-D-β achieves a much smaller CPU

time, while its update frequency stays close to Tile-D for a wide range of β values.

Thus, it is safe to tune the parameter β to any value between 10 and 100.

5.5.3 Summary of experimental results

Circle has the lowest running time, but it incurs higher update frequency

and communication cost (packet count) than our tile-based methods.

Tile-D achieves the best update frequency and communication cost. Fur-

thermore, our buffering optimization offers a substantial saving in the running

time while only slightly increases the update frequency.
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5.6 Conclusion

In this chapter, we focus on minimizing the communication cost for mon-

itoring the sum-optimal meeting point for a group of users. We propose safe

region group for this problem, in order to reduce the communication frequency

of users. We design efficient algorithms and various optimizations to compute

these safe regions.
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Chapter 6

Conclusion

In this thesis, we have realized the following results.

• We develop algorithms and data structures for caching of shortest paths.

• We develop algorithms for computing generic concise shortest paths.

• We present algorithms for computing the safe regions for the sum-optimal

point notification problem.

First we investigate caching of shortest paths. We study the problem for

both proxy and server caching. We introduce a model to capture the benefit of

caching a shortest path. We propose a greedy algorithm to select beneficial paths

for the cache, based on historical query information. We introduce effective struc-

tures to speed up cache look up and increase the cache space utilization. Finally

we do extensive performance evaluations to evaluate the cache performance.
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Second, we study how to increase the cache hit ratio by caching partial short-

est paths, which still hold enough information to navigate the original shortest

paths. We present the concept of a concise path, the shortest possible lossless

representation of a shortest path. We introduce the idea of a generic concise

path which addresses the trade-off between the path length and the number

of queries a path can answer. We develop caching schemes to support generic

shortest paths, and perform extensive experimental evaluations on both real and

synthetic datasets

Third, we investigate how to finding the optimal meeting point for a group

of users. The focus is on minimizing the communication frequency of the user.

Efficient algorithms and optimizations are developed to efficiently calculate in-

dependent safe regions based on the concept of a sum-optimal meeting point,

where the sum of all users travel distance is minimized.

We proceed to outline several future research directions as follows. Our static

caching problem in Chapter 3 is analogous to materialized view selection in data

warehousing [59]. In future, we aim to utilize their ideas to build a shortest path

cache with quality guarantees. We plan to extend our cache utilization techniques

from Chapter 4 to handle dynamic traffic updates. We will implement procedures

to keep the freshness of the cache and check the validity of shortest paths.

We plan to extend our techniques from Chapter 5 to the road network space.

For Circle, we may replace a circular region by a range search region over road

segments. For Tile, we may replace recursive tiles by recursive partitions of the

road network. Also, we will develop a cost model for estimating the update

frequency, the communication cost, and the running time of our methods.
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