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Abstract

Damage detection of civil infrastructures will b&sential in future decision making on
structural maintenance and hazard mitigation. Damiaduced changes in dynamic
characteristics and responses are commonly utiliaeldcate and quantify structural
damages. Common vibration-based damage detectitimodsecan be categorized into
two groups, namely, frequency- and time-domain wash This thesis focuses on
developing multi-scale structural damage detecttrategies in both frequency- and
time-domain with the use of wavelet finite elememidels (WFEM). Such multi-scale
strategies would optimize structural modeling in@dance with damage scenarios and
external load conditions. These strategies are g#igient in terms of the number of
degree-of-freedoms (DOFs) of structural models, memof sensors, and computation

effort.

Multi-scale dynamic formulations and correspondiifiigng schemes were derived for
beam and thin plate structures individually throtigg use of the cubic Hermite WFEM.
In particular, the multi-scale formulation of beastructures under moving load
excitation was derived. Such a formulation laysttteoretical foundation of multi-scale

damage detection in a progressive manner.

In frequency-domain, multi-scale damage detecticthids to progressively detect
sub-element damage in beam and plate structures preposed based on modal strain
energy and model updating technique in the contE@xtWFEM. The structural
modelling resolutions did not only spatially varytbalso changed dynamically
according to actual requirements. A coarse WFEM utdized to identify the likely
damaged regions first. Meanwhile, gradually lift&@FEMs with local refinement were
utilized to estimate the exact damage locationsawerity. Numerical and experimental

examples were conducted to demonstrate the highesfty of the proposed methods in



terms of the number of DOFs, number of sensorscantputation effort.

In time-domain, the closed-form solution of the dgmnc response of a simply
supported damaged beam under a moving force wawedeibased on modal
perturbation and modal superposition methods. Withsolution, the damage effect on
different components of the dynamic response wasstigated. A simple and efficient
damage localization approach that employs disevaieelet transform (DWT) was then
proposed. Numerical examples were utilized to eédthe accuracy of the response
computation algorithm and demonstrate the effengs of the damage localization
approach. Subsequently, an adaptive-scale anabtsedegy for beam structures
subjected to moving loads was developed with WFHEMthis strategy, the wavelet
element scales were dynamically changed to renwmpatible with the moving load
position. A two-phase damage detection method éanbstructures under moving load
was then proposed by combining the adaptive-scaldysis strategy, DWT-based
damage localization, and progressive WFEM updatirtgne-domain. The scale of the
wavelet elements were adaptively enhanced or relducg only according to the
moving load—beam contact position but also to thegmessively identified damage
locations. Such a method can effectively minimize tumber of modelling DOFs and
updating parameters during optimization. A labanatexperiment was conducted to

examine the feasibility and efficiency of the twibage damage detection method.
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Chapter 1 Introduction

1.1 Research Background and Motivation

Damage detection of civil infrastructures will b&sential in future decision making on
structural maintenance and hazard mitigation. Shigect has been gaining worldwide
popularity in the past 20 years. Damage-inducet@ésin the dynamic characteristics
and responses of structures have been extensiwiéiBed to localize and quantify
structural damages (Doebling et al. 1996; Salaw@i71$ohn et al. 2004; Carden and
Fanning 2004; Yan et al. 200/ /ang and Chan 2009; Fan and Qiao 2@rbwnjohn

et al. 2011)Vibration-based damage detection methods can genéea categorized
into two groups, namely, (1) frequency-domain mdthbased on natural frequencies,
mode shapes, and their derivatives and (2) timeaslomethods, such as moving load-

based methods.

From the perspective of structure modeling, thesthods can be classified into model-
free and model-based types. Given that no strucfuniée element model (FEM) is

required, the former is regarded as more appeaimd) efficient than the latter by

several scholars (Rucka and Wilde 2006; Fan and 2089; Beheshti-Aval et al. 2011).
However, some inherent limitations of model-freetmoes, such as the inability to

estimate damage severity and the need for a destsenk of sensors to accurately
locate damage, prevent the extensive applicati@sethmethods (Antonio and Erin
2014). Thus, model-based types, particularly FEMebamethods, have been eliciting
widespread attention. The quality of FEM affectd anly the accuracy but also the
efficiency of damage detection. A dilemma exist&EM-based methods. On one hand,
a delicate FEM with fine details is required toabthigh-resolution structural dynamic

properties and enable the identification of minorlaralized damages; on the other



hand, an excessively dense meshed FEM is ofteractipal, if not impossible, in the
damage detection of large-scale civil structuresabse a large number of degree-of-
freedoms (DOFs) does not only increase the compuatabst but also tends to make
solutions ill-conditioned and non-unique in inversmblems. Moreover, owing to
sensor noise and other testing constraints, omhflequencies and mode shapes can be
obtained through withn situ test data on damage detection. In this situaBoogarse
FEM may be preferred considering the complexity afiiciency involved in the
computation. Therefore, a multi-scale FEM with aotation compatible with damage
scenarios, that is, using a dense mesh in suspéatedge regions and a coarse mesh in
other regions, would be attractive. A practical ldmge arises from the fact that
probable damage locations and the required modeliegolutions are often
unpredictable; thus, a priori finite element meghirased on analytical simulations or
empirical estimates may be incorrect. An ideal dgendetection strategy should be
based on an adaptive-scale modeling techniqueettadiles us to examine a structure in
its entirety, detect suspected regions by usingwarésolution model, and identify the
accurate location and severity of the damage withlized refinement in the suspected
regions only. With such a model, an appropriatddaodf between modeling details and

entirety and between computation accuracy andieffoy can be achieved.

In popular moving load-based damage detection prodl(Majumder and Manohar
2002; Li and Zhao 2006; Bu et al. 2006; Lu and L2¥07a; 2007b; Lu and Liu 2011;
Li and Law 2012), the geometric discretization esypll in FEM is even more critical.
A uniform discretization, either fine or coarsele entire domain may be unadvisable
in consideration of both computation cost and acyrAn ideal option is to utilize
multi-scale mesh generation with a dense mesh giome near the load-structure
contact position and a coarse mesh in other rediRieker et al. 1996). Consequently,
the regions with fine mesh resolution should beticomlly and adaptively changed
according to the contact position when the load @soaver time. Sufficient modeling

accuracy and reduced number of DOFs can then hdtaimeously achieved.



However, the implementation of a multi-scale magied mesh generation in the context
of traditional FEM (TFEM) is difficult. Re-meshing local region requires
reconstructing stiffness and mass matrices andatiygethe entire computation process;
these procedures consequently lead to a large anebwoomputation. Re-meshing is
even more complicated for plate structures. Fidufiesshows a plate with a damaged
region, which is represented by the red area. Tate ps initially divided into nine
elements. If the center element (ABCD) is identifiégs a suspected damage region,
such element is subsequently divided into four eglements. During refinement, a
node (o) inside the element and four hanging nodes orekmental edgesN(to N,)
are introduced. These hanging nodes should meeiaspempatibility conditions and
may cause numerical computation difficulties (Becked Braack 2000; Biboulet et al.
2013). The recently developed wavelet FEM (WFEMattemploys wavelets and
scaling functions as element shape functions mayige a more convenient alternative
to solve these problems because the resolutionhef model can be changed
conveniently according to actual damage scenanddaad conditions (Ko et al. 1995;
Chen and Wu 1995; Sudarshan et al. 2003; Han 2085; Amaratunga and Sudarshan
2006; He et al. 2012; He and Ren 2012).
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Figure 1.1. Local refinement in traditional platereents

Another fundamental problem that has received figemt attention in moving load-
based damage detection methods is how local danadiges the moving load-induced

structural dynamic response. Yang and Lin (200&testthat the dynamic response of a



simply supported beam under moving load consistsvof components, namely, the
moving-frequency component corresponding to the ingpMoad and the natural-
frequency component of the beam structure. Invattig the local damage effect on
these two different components and separating thiem multi-scale signal processing
technique are essential in developing a simpleadinclent moving load-based damage

localization approach.

1.2 Literature Review

1.2.1 Vibration-Based Damage Detection Methods

Structural damage detection has elicited an inorgaamount of attention in the
engineering community because unanticipated straicttdamage may cause
catastrophic failure and substantial economic amthdn life loss. Extensive research
has focused on vibration-based damage detecti@mohsidering that damage induces a
change in structural dynamic characteristics opaases. As explained in Section 1.1,
most vibration-based damage detection methods eacategorized into two groups,

namely, frequency- and time-domain methods.

1.2.1.1 Frequency-Domain Damage Detection Methods

Frequency-domain damage detection methods have Wweksty studied in terms of
damage-induced changes in frequencies (Cawleyandma&d1979; Stubbs and
Osegueda 1990; Friswell et al. 1994; Koh et al.51$®alawu 1997), mode shapes (Fox
1992; Ratcliffe 1997; Shi et al. 2000a; Parloole2@03), mode shape curvature/strain
(Pandey et al. 1991; Wahab and De Roeck 1999;tSii 2000b), measured flexibility
matrix (Pandey et al. 1994; Peterson et al. 193n& 2006), modal strain energy
(MSE) (Stubbs et al. 1995; Shi and Law 1998; Shile2002; Au et al. 2003; Yan et al.
2010), frequency response functions (Ni et al. 2606ng et al. 2012), residual modal
force vectors (Kosmatka and Ricles 1999), and so@mprehensive reviews on

damage detection from structural dynamic charattesi and their derivatives have



been conducted by Salawu (1997), Doebling et &961 1998), Sohn et al. (2004),
Carden and Fanning (2004), and Fan and Qiao (2011).

Researchers have conducted comparative studiesh@neffectiveness of various
frequency-domain damage detection methods. For gbearRarrar and Jauregui (1998a,;
1998b) compared five damage detection methods nmsteof MSE, mode shape
curvature, flexibility and stiffness coefficientand curvature of the uniform load
surface by using experimental data on the Intexst@tBridge. The authors concluded
that frequencies and mode shapes are not good daimdiges. Ndambi et al. (2002)
examined different damage detection methods inderhirequencies, modal assurance
criterion (MAC), coordinate MAC (COMAC), flexibikt matrices, and MSE by
conducting laboratory tests on two cracked reirddrconcrete beams. The results
showed the following: (1) frequency variations cafiect the damage severity but not
the crack location; (2) MAC factors are less sésito crack damage than frequencies;
(3) COMAC factors can detect and locate damagekpeeriences difficulty quantifying
the severity and extent of the damage; (4) chamg#exibility matrices can detect but
not locate crack damage; and (5) MSE-based metiypsar to be more accurate than
others in damage localization; however difficultysas when the damage is spread out
over a certain length. Huth et al. (2005) appliedesal damage detection techniques on
a progressively damaged concrete bridge. Only nghanges were found in the natural
frequencies and mode shapes even though the brdgeseverely cracked. However,
changes in the flexibility matrix provided bettesults than using natural frequencies or
mode shapes alone. Zhou et al. (2007) compareg@édtfermance of three curvature-
based damage detection methods (i.e., mode shapatwe, strain energy, and
flexibility curvature) and that of two other mettso@.e., mode shape and flexibility)
through an experiment and FEM of a simply suppoligdge. The curvature-based
methods predicted the damage location at the me@smt point. The mode shape and
flexibility-based methods performed better than thevature methods with the FEM
data but performed similarly as the curvature maghweith the experimental data. The

authors also found that increasing the number chsmement points improved the



localization resolution of the three curvature-lshseethods; meanwhile, increasing the
number of modes considered did not improve perfacea Fan and Qiao (2011)

comprehensively reviewed four major categoriesashdge detection methods, namely,
natural frequency-based, mode shape-based, moge shavature-based, and mode
shape plus frequency-based methods, for beam wtesciThe authors explored the pros
and cons of these methods under different damageadgos (e.g., single and multiple

damages) and measurement conditions (e.g., notssesor spacing effects) through

numerical simulations.

M SE-Based Damage Detection

Given that MSE-based damage detection is adoptedhis thesis, a particular

introduction to MSE-based damage detection is ptedeherein.

Stubbs et al. (1995) proposed a damage index baseMISE change. The index
assumes that if damage is primarily located innglsi sub-region, the fractional strain
energy would remain relatively constant in the othsub-regions. For an
Euler-Bernoulli beam, MSE can be computed by iratigg the product of flexural
rigidity and modal shape curvature along the lergjtthe beam. Later on, Stubbs and
Kim (1996) defined damage index as the ratio ofrtheenalized MSE of the structure in
undamaged and damaged states. The authors agpbdaddex to the numerical model
of a continuous beam, and the results indicatetl ttte&a index can provide accurate
information about the damage location. The index fwather extended by Cornwell et
al. (1999) to plate structures, where the calooatinvolved double integration of
modal curvature along two coordinate axes. Lawl.gt1898) utilized MSE to localize
damage with incomplete and noisy measured moda. dBte complete analysis
procedure was evaluated through a case study dautttgean Space Agency Structure
and a laboratory experiment on a plane frame strecShi and Law (1998) discussed
the sensitivity of elemental MSE change in struatglamage localization and verified

its effectiveness through both numerical and expental examples in consideration of



the effects of measurement noise and incompletaesfabe measured modes. Shi et al.
(2000b; 2002) analytically derived the sensitivafyMSE with respect to local damage
and utilized this index not only to detect the stmwal damage location but also to
guantify the damage severity for beam structuresn@ge quantification was found to
be more sensitive to noise than damage localizafioret al. (2003) adopted a similar
approach but utilized a micro-genetic algorithmteasl of the traditional iterative
algorithm together with incomplete and noisy modiaia from the tests in the damage
guantification stage. Guan and Karbhari (2008) idated an improved damage index
that does not rely on numerical differentiation that the index can enhance the
performance of the modal strain method under spargk noisy measurement. By
taking advantage of the recent advancement in rgosaanning technology, Hu and
Wu (2009) established a scanning damage indexetelmt MSE by moving indices
acquired from a local area throughout the entingcsiire; the authors used the index to
localize and quantify damage in a plate. Yan et(2010) derived a closed-form
sensitivity of elemental MSE, in which only one egector with sufficient accuracy is
required and used for damage detection. A statistiactural damage detection
approach that employs ambient vibration measuresneas proposed by Yan and Ren
(2012). Fang and Qiao (2012) presented a plate glangentification method that
combines two factors derived from elemental MSHEt tis, damage location factor
matrix and damage severity correction factor. Timsthod consists of three steps:
sensitive mode selection, damage localization,damage quantification. Wang (2013)
presented an iterative MSE method to estimate dansagerity with lower modal
frequencies that can be easily acquired and are mediable than the commonly used
mode shapes of the damaged structure. Grande anchim (2014) adopted a data-
fusion technique to improve the performance of M#iSed damage localization and
guantification method in the presence of noise andtiple damages. Entezami and
Shariatmadar (2014) introduced a correlation of MBEdamage localization to
overcome limitations, such as spatially incomplet@edes and simplifications in
structural modeling, and utilized the Tikhonov riegization method to enhance the

robustness of damage quantification. Feasibility effectiveness were verified through
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numerical studies on a planar truss and portaldrdru et al. (2014) defined a series of
stiffness-correction factors to calculate the mesduMSE and then applied these
factors to locate damages in both numerical aneérexgntal jacket-type offshore wind
turbines. Guo and Li (2014) deduced an energy edpmeeequation that forms an
accurate expression of MSE before and after damBge.four roots of the equation
were utilized to formulate a damage index to idgnihulti-damage locations and

extents.

1.2.1.2 Time-Domain Damage Detection Methods

Although frequency-domain damage detection methade been extensively explored,
several limitations have also been identified. lexample, frequencies are often
insensitive to local damages but extremely sermsitte temperature and other
environmental changes. Frequency changes inducedalhage are generally quite
small (<5%); changes of 5% to 10% caused by tenynerand other environmental
conditions are common. Moreover, different caseslashage may result in a similar
frequency change (Salawu 1997). Damage detectidhate based on mode shapes
require measurements at sufficient locations ang thave limited applicability in
actual implementations. Hence, another type ofatiete methods called time-domain

damage detection methods has been receiving agasiog amount of interest.

Early studies directly utilized time histories afcaleration, velocity, and displacement
responses to detect structural damage (e.g., LiMand 1991; Ghanem and Shinozuka
1995). Cattarius and Inman (1997) compared dispiac¢ and velocity response time
histories induced by a simple harmonic input tcesd\the existence of damage in cases
when the measured frequency shifts of structures ramimal. This method is
independent of modal parameters and analytical feodehoi and Stubbs (2004)
expanded the measured response in the time-dorwaintlee structure and used the
mean strain energy for a specified time interval éach element to localize and
guantify damages. Xu and Chen (2004) conductekperenent on the applicability of

empirical mode decomposition (EMD) identifying dageacaused by sudden changes in



structural stiffness. The results showed that ithe instances when damage occurs can
be accurately detected by observing spikes exttadiectly from the measurement
data; the damage location can be determined bywpgh&al distribution of the spikes
along the structure. Chen and Xu (2007) proposedreesponding damage index to
estimate damage severity. Kang et al. (2005) ptedea time-domain algorithm to
estimate structural parameters by minimizing a fimncdefined by the time integral of
the least-squared error between the measured #ndatad responses. The validity of
this algorithm was demonstrated by conducting aergal study on a two-span truss
bridge and an experimental study on a three-stbearsbuilding model. Yang et al.
(2006a; 2007a) proposed a sequential nonlineatt-sefsmres approach to identify
structural parameters and unmeasured excitatidres pfoposed approach was verified
using the Phase | ASCE structural health monito¢BigM) benchmark building. Then,
an adaptive technique that can track the changsgsiem parameters was developed
based on the extended Kalman filter approach (¥arg. 2006b; Yang et al. 2007b).
Lu and Law (2007a; 2007b) calculated dynamic respaensitivity under sinusoidal,
impulsive, and random excitations with respect toperturbation of structural
parameters and provided a corresponding model ugdanethod to identify both
structural damage and input excitation force. Satioh studies and laboratory tests
were performed to verify the effectiveness and emmou of the method under
measurement noise and initial model errors. Acdagteesults could be obtained even
with different types of model errors if a large amb of measured data is available.
Meanwhile, Law et al. (2006) derived the sensiiwf the wavelet coefficient from
structural responses with respect to system pagam& detect structural damage. The
derived wavelet coefficients were found to be hygfénsitive to structural response but
are insensitive to different types of model errorshe initial model, including support
stiffness, mass density, flexural rigidity, dampiagio, and excitation force. To reduce
the effect of uncertainty in excitation at diffetalesting states, unit impulse-induced
response instead of dynamic response was considgredw and Li (2007). Link and
Weiland (2009) evaluated damage detection basedantel updating in consideration

of modal residuals (natural frequencies and modget) and dynamic response time
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history residuals via an experiment on a simplaucstire with high-resolution
measurements. Fu et al. (2013) identified damaggsaite structures through response
sensitivity-based model updating in the time domeirwhich only short time histories
of a few measurement points are required. Jiarad. €2014) developed multi-particle
swarm coevolution optimization in the time domam lbcalize and quantify the
damages in an experimental seven-story steel fraime.results revealed better noise
tolerance than traditional genetic algorithm-basedhods. Zhu et al. (2014) proposed a
transmissibility concept-based approach to identifyut force and structural damage
simultaneously. Numerical and experimental examplea cantilever beam indicated
that this approach can detect damage locationseateht accurately. Based on the
dynamic equations of undamaged and damaged stesct@hen and Maung (2014)
established a relationship between damage-indutadige in structural parameters and
dynamic response and developed a correspondinggganetection approach directly
from the measured dynamic response. The Tikhongmaezation method and L-curve

criterion were employed to enhance the stabilitthefdamage identification results.

Moving L oad-Based Damage Detection

Damage detection based on moving load-inducedtatalaesponse is often regarded
as a type of time-domain damage detection methbth damage detection method is
particularly interesting because moving loads dosecto the actual conditions of
vehicles passing on bridges; in addition, the metten excite structural vibrations with
large amplitudes and high signal-to-noise ratiaaKland Weiland 2009). Furthermore,
such a time-domain method requires relatively fewssrs when applied in large-scale
structures (Li and Zhao 2006). Majumder and Manql2802) proposed a damage
detection scheme for local or distributed loss tdfness in beam structures by using
vibration data generated by a single moving ogoilarhis scheme properly considers
the time-varying structural matrices, structurahlimearity, and spatial incompleteness
of measurement data. Bu et al. (2006) proposedraneder detection approach for a

multi-span continuous beam with different movindpieée models, namely, single-DOF,
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two-DOF, and four-DOF systems; the vehicle paramseteere assumed to be known
when the dynamic response was calculated. For tisiiga with unknown vehicle
parameters, Lu and Liu (2011) presented a techrigudentify both bridge damages
and vehicle parameters simultaneously from thectiral dynamic response time
history and investigated the effects of measuremeisie, vehicle model, and modeling
error. Li and Law (2012) established a damage tleteprocess for a sub-structure
under moving vehicular excitation by using dynaneisponse reconstruction technique,
which requires only the FEM of the intact concerrsetbstructure and the measured
dynamic acceleration responses of the concernestrsighure in the damaged state.
Kim and Kawatani (2008) developed a pseudo-statimlation from the equation of
motion of vehicle—bridge coupled vibration systeror fdamage detection in
consideration of the effect of road surface rougsnd&lumerical examples revealed that
vibration data obtained with vehicle speed, which different from those used in
updating the baseline model, have limited influsnoe damage detection accuracy.
Subsequently, Chang et al. (2014) investigateddhsibility of this formulation as well
as the effects of the dynamic parameters and rgnspeed of a vehicle via a moving
vehicle laboratory experiment. They found that dshgp high vehicle speed and a
vehicle with frequency close to that of the bridgereases the probability of damage
identification. Cavadas et al. (2013) evaluated pleeformance of two data-driven
methods, namely, moving principal component analgsid robust regression analysis,
in detecting the occurrence and location of danm@agea simple frame subjected to a
point-load. They recommended combining the two m&shin structural condition
assessment. Li and Au (2014) presented a multistageage localization strategy that
employs the dynamic response of a vehicle movingr @ bridge. Possible damage
locations were estimated through an MSE-based rdethad the exact locations were
identified through a genetic algorithm-based globjpiimization method. The bridge
frequencies extracted through EMD were utilizedteAfiard, the authors proposed a
method to simultaneously identify structural damagd road roughness profile (Li and
Au 2015). Kong et al. (2014) examined the feagipitif using the dynamic response

transmissibility of moving vehicles to detect brdglamages. Two approaches to
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measure the transmissibility of vehicle responsesewproposed, and the effects of
measurement numbers, road roughness, and vehietr spn the damage detection

results were investigated.

Most of the aforementioned damage detection methmelyson the model updating
technique, which often involves a time-consumingrative optimization process.
Several other methods exploit the idea that strattilemages cause local singularity in
response time history that may be visualized afpercial signal processing, such as
wavelet transform (WT) and Hilbert—Huang transfoimcluding EMD and Hilbert
transform). An advantage of such methods is thafriari information about the
response of the intact structure is not requiredu And Law (2006) performed
continuous WT on the operational displacement nespof a bridge subjected to a
constant moving load and detected the crack fromden changes in the spatial
variation of the transformed response. The damatgnewas estimated by a wavelet
coefficient-based indicator. Based on this studgster and Gonzaleza (2012) utilized
multiple scales instead of single scale waveleantprove damage localization results
and suggested the use of low vehicle speed andpheutensor locations. Apart from
the dynamic response of the bridge, the verticgpoase of a moving vehicle can also
be utilized for damage detection. Nguyen and Ti20ilQ) applied WT on dynamic
response measured directly from a sensor attaaheal yehicle with low moving
velocity to detect multi-cracks on beam structuréBang et al. (2012) extracted
structural mode shape squares from the acceleragigmonse induced by a passing
tapping vehicle to detect damage in beam and dmtetures. This method is time
efficient and easy to implement because it doegenuire many preinstalled sensors.
Zhang et al. (2013) extended this method to theasdan where the mode shape squares
in the damage state are available only by assumhiagthe intact structure is smooth
and homogenous. Khorram et al. (2012) comparechéntrmances of two wavelet-
based damage detection approaches. A sensor wakeithsit the mid-span of the beam
and on the moving load individually. The moving-senapproach was found to be

more effective than the fixed-sensor approach. M#reet al. (2012) applied a moving
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average filter and EMD together to the moving laadliced acceleration response of a
beam to localize damage. They claimed that usimgpwang average filter prior to EMD

improves sensitivity to damage. The influenceshef humber of measurement points
and the distance of these points to the damagetibisgcon the accuracy of the

predicted damage were also explored. Roveri andcaBara (2012) utilized

Hilbert—Huang transform to identify the presencd botation of damage along a bridge
structure subjected to a moving load. The damaggectien results were insensitive to
crack depth and ambient noise but were signifigaaitiected by damage location and
speed of the moving load. Li and Au (2011) ideatifidamage locations by applying
continuous WT on the response of a vehicle movimg damaged bridge with a smooth
road surface. The authors extended their techrimlcate damages on a bridge with a

rough road surface by installing a sinusoidal @ain a vehicle (Li and Au 2013).

1.2.1.3 Multi-Scale FEM in SHM

As explained in Section 1.1, a multi-scale FEM ttet reduce the number of DOFs is
appealing in the field of SHM in consideration ohtputation accuracy and efficiency.
Chan et al. (2007proposed a multi-scale model for Tsing Ma Bridgelpag-span
suspension bridge in Hong Kong. This model sucaodgshtegrates detailed geometric
models of the most vulnerable joints into a globmadel; thus, hot-spot stress can be
directly analyzed to assess fatigue damage. Li. €2@09) investigated the strategy of
developing concurrent multi-scale FEM of civil iastructures at different scales
wherein a large-scale model is adopted for the ajlobsponses of structures with a
linear behavior and a small-scale model is usechémlinear damage analysis of the
local welding. The final model was applied to tlable-stayed Runyang Bridge (Chan
et al. 2009). Ding et al. (2010) developed a madde FEM that combines a global-
scale model for modal analysis of the entire bridge local-scale models for local
stress analysis of the concerned components fongdpan cable-stayed bridge. The
model analysis results agreed well with the measdy@mamic properties from ambient

vibration tests and measured stress distributidna eteel box girder from moving
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vehicle tests. Wang et al. (2013) provided a maljective optimization technique to
update the concurrent multi-scale model of longasmeidges, with emphasis on
forming an objective function, applying constrainonditions, and selecting an
optimization algorithm. Field tests on a cable-sthyridge were conducted to verify
the technique on both global and local levels. ghal. (2014) established a multi-scale
FEM for a cable-stayed bridge. Shell elements veelgpted to simulate the twin-box
deck of the bridge, and beam or truss elements weeed for the other components.
Each segment of the girder was condensed into arslgment by using the sub-
structuring method. This model can achieve baldrete/een the modeling of detailed
geometry and computation time. Furthermore, Xiaa.ef2014) updated the multi-scale
model by minimizing an objective function that imw@s both dynamic response (modal
frequencies) and static response (displacemenstaess influence lines). The response

surface method was adopted in the updating prdoesmshance computation efficiency.

The sub-structuring method has also been utilipedetiuce the number of DOFs in
FEM. Perera and Ruiz (2008) proposed a sub-stmighethod, in which a complete
structure is divided into several sub-structurestialti-scale damage identification and
analysis only focuses on one sub-structure withhallsnumber of DOFs. Bakhary et al.
(2010) employed a multi-stage artificial neuralwatk model and progressive sub-
structure zooming to establish a damage detecppnoach. The effectiveness of the
approach was demonstrated by numerical studies two-@&pan continuous concrete
slab and a three-story portal frame. Kong et &12) proposed a sub-structure method
for a long-span bridge composed of steel and ctm@egments. The entire structure
with many sub-structures was modeled in detail, atidthe sub-structures were

condensed into super-elements except for the higipgrtant steel-concrete joints.

1.2.2 Application of Wavelet in Structural Engineeing

1.2.2.1 Multi-Resolution Wavelet Analysis

WT is a mathematical technique developed to coravduinction or signal into another
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form that makes certain features of the originaicfion or signal clearer for further
study or identification. Multi-resolution analysis one of the most important

characteristics of wavelets (Sweldens 1996; 199&lldv11988; Chui 2009). A multi-
resolution analysisR of L is a sequence of closed sub-spages{v, 0 L*| j0Z},

such that (Chui 2009)

1) v, 0V,

2) U,,V, isdenseinl®

3) foreach jOJ, v, has a Riesz basis given by scaling functigus, | k DK( j)} ,
where | is the level of resolutiond is an integer index set associated with
resolution levels,K(j) is some index set associated with the scalingtiome of
level j, andV; denotes the approximation spaces of leyelFor eachV,, a
complement ofV; exists inV,,,, namely, W, . Let spacesW, be spanned by
wavelets, ¢, ,(x) for everymOM(j),M(j)=K(j+D\K(j), whereM (j) is
the difference set oK(j+1) and K(j). Furthermore, lett DK (j+1) be the

index at level j +1.

According to multi-resolution analysis theory, famienergy functionsf (x) JL*(R) can
be approximated with different levels of precisionthe corresponding spacé, ,

where the approximation spadg is spanned by the scaling functiors, .

@, (%) =2 (x=1)] (1.1)
For example, functionf (x) can be approximated ik, as
F() = £ = Y ay @, (1.2)
|

where ¢, is the scaling function at scale 0 a@yg, represents the corresponding
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wavelet coefficients.

3, = ( (%), 8, (X)) (1.3)

Approximation accuracy can be improved by addingngein wavelet spacay, .

Therefore, the approximation in spavg is
F0)= 1700 = 220 @ + 2 Lot o (14)
| m
where ¢, is the wavelet function at scale O amg, is the corresponding wavelet

coefficients in spacan, .

By = ( (), @om(X)) (1.5)
By further increasing the approximation order, thavelet representation of the

function approaches the exact function when oo .
PO =109 =2 8, + 2.2 b, T()=F""(x) (1.6)
| j m

1.2.2.2 Multi-Scale Wavelet-Based Signal Processing

Discrete WT (DWT) is a commonly utilized mathematitool in signal processing.
Emphasized as the main merit of wavelet, the nsghile (or multi-resolution) feature
enables the analysis of signals at different scalése time-frequency domain (Mallat
1988; 1989; 1998; Koc 1994; Strintzis 1996; Chaisti2009). The signal is passed
through a series of high-pass filters to analygh iifequencies and is passed through a

series of low-pass filters to analyze low frequenciAs illustrated in Figure 1.2, DWT
decomposes a signal into approximation paft and detail partD, , where
i=1 2,--- ,j denotes the decomposition level. Filtering at daghl is associated with

the decimation of data size by a factor of 2. Thperaximations correspond to the
low-frequency part, whereas the details corresgonbde high-frequency part (Christian

2009).
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Figure 1.2. Wavelet decomposition of a signal

This salient feature of DWT has various applicagiam the field of signal processing
related to system monitoring. He et al. (1996) dgoosed signals into independent
frequency bands via DWT, which contains much indeeat dynamic information
because of the orthogonality of wavelet functidies,condition monitoring and fault
diagnosis of machineries. Lee and Tarng (1999)i@p@WT to monitor tool failure in
milling operations. Experimental results showed tioal failure in milling operations
can be clearly detected even under varying cuttioigditions. Gaouda et al. (1999)
employed DWT to monitor power quality problems geted by the dynamic
performance of industrial plants. Results indicatteat DWT can detect and localize
transient events and classify power quality distades. Later on, Gaouda et al. (2000)
decomposed signals into different resolution leweés DWT to detect, classify, and

guantify short duration variations in an electridadtribution system.

1.2.2.3 Multi-Scale Wavelet-Based Finite Element Mieling

WFEM that employs wavelet functions or scale fumtsi as elemental interpolating
functions is an emerging numerical method developedecent years. WFEM has
attracted an increasing amount of attention infible of numerical computation and
structural analysis (Li and Chen 2014). The adwgagaof WFEM include its multi-

resolution and localization properties. WFEM pr@s&dvarious basis functions for
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structural problems with a high local gradient,lsas material nonlinear, local damage,
and cracking problems. Various wavelets have béiéned in WFEM. These wavelets
include Daubechies wavelet (Ko et al. 1995; Cheara).2006; Diaz et al. 2009), spline
wavelet (Chen and Wu 1995; Cheng et al. 2010)pmiagnetric wavelet (He et al. 2012;
He and Ren 2012; 2013a; 2013b), and Hermite way¥lahg and Liang 2011; Wang
et al. 2011; He et al. 2013). The types of elemérdkide truss element (Wang et al.
2011), Timoshenko beam element (Wang et al. 201BngNand Wu 2013),
Euler—Bernoulli beam element (Han et al. 2005; He Ren 2012), plate element (Han

et al. 2006), and solid element (Han et al. 2006).

Ko et al. (1995) constructed wavelet elementsriegalar region via the orthogonal and
compact Daubechies wavelet function and studiedid®2D Neumann problems. The
resultant elements can be viewed as generalizatbnihe connection coefficients

employed in the wavelet expansion of periodic défeial operators. Chen and Wu
(1995; 1996) solved the truss and membrane vibirgbimblems by using elements
constructed by a spline wavelet and derived thingjf algorithm that exploits the

"two-scale relation” of wavelets. Patton and Ma(k896) utilized 1D finite element

based on Daubechies wavelet to solve vibrationvaade propagation problems and
proved that the element can reduce the number ¢isdDd the amount of computation
time. Canuto et al. (1999; 2000) provided a glgbatntinuous bi-orthogonal wavelet
basis in the general domain by introducing appeterimatching conditions across
inter-element boundaries and established the aartgin principle for 1D, 2D, and 3D

WFEM. Luo and Zhang (2000) proposed a wavelet efeérgenstruction method by

using wavelet functions with compact support, withus on large gradient problems.
With this method, the additional DOF of a new ipt#ating pattern was eliminated via
static condensation. Castro and Freitas (2001)abztithe hybrid-mixed finite element
formation by adopting independent wavelet baseapproximate displacement and
stress in the domain and on the boundary. Han. é2@06) developed various typical
elements, such as beam, triangular plane, rectanglate, tetrahedral solid, and

hexahedral solid elements, with high precision dast convergence by selecting
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appropriate spline wavelet scaling functions asstiepe functions.

Given that wavelet coefficients have no definiteygibal meaning, dealing with
boundary conditions and the connection betweercadfeelements is generally difficult
in structural analysis. Zhou et al. (1998; 1999spnted a modified Daubechies
wavelet approximation for beam and plate analysigyhich boundary rotational DOFs
were explicitly introduced as independent wavetsdfficients. This approximation can
deal with both homogeneous and non-homogeneousdhogrtonditions. Ho et al.
(2001) proposed a weak formulation of FEM, inclgfdia technique to deal with
discontinuous derivatives and an approach to eefessential boundary conditions
using wavelet functions. The authors solved theengwide problem. By introducing a
transformation matrix that transforms the elemesfledtion field represented by the
coefficients of wavelet expansions from waveletcgpto physical space, Ma et al.
(2003) and Cheng et al. (2004) constructed the lsaveeam element based on
Daubechies wavelet and B-spline wavelet, respdygtiXeang et al. (2007a), Cheng et
al. (2010), and Zhang et al. (2010) constructedwzelet plate finite elements using
Daubechies and B-spline wavelets and performed dapteve analysis on the
corresponding structures. Han et al. (2005) dedwuxedultivariable wavelet finite
element formulation and solved the bending problefthick plates by selecting linear
combinations of scaling functions that satisfy ¢ien boundary conditions according
to the Hellinger-Reissner generalized variationaingiple with two kinds of
independent variables. Given that displacements gargkral forces are independent
field functions, the method has higher precisiod hetter convergence characteristics
than other displacement-based approaches. He €04R) employed trigonometric
wavelet function with both good approximation cluaeaistics of the trigonometric
function and multi-resolution and localization cheteristics of the wavelet to analyze
beam structures. Boundary conditions can be predessnveniently as in TFEM owing
to the interpolation feature of the trigonometriawslet. Compared with polynomial
interpolation functions that are utilized in TFENhese elements have a natural

advantage to perform vibration and buckling analyscause the trigonometric wavelet
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itself has the "wave" property (He and Ren 2012aHé Ren 2013a; 2013b; 2013c). He
et al. (2012employed trigonometric WFEM to calculate the striessnsity factors of

plane stress problems with cracks based on thdadepent extrapolation technique
and provided wavelet hierarchical and multi-resolutapproaches to improve the

calculation accuracy.

Second-generation wavelets (SGWSs) are also adaptbe field of WFEM. Compared
with traditional wavelets that rely on Fourier tséorm, SGWs are established through a
lifting scheme that consists split, predict, and update steps (Sweldens 1998719
SGWs enable users to define a wavelet accordisgéoific requirements by lifting the
initial wavelet (Sweldens 1996; 1997). Amaratunga #&is collaborators performed
systematic work on multi-resolution WFEM based daV$s (Sudarshan et al. 2003;
Amaratunga and Sudarshan 2006). Based on theiarstseHe et al. (2007a; 2007hb)
and Wang et al. (2011) discussed multi-resolutioalysis for Lagrange and Hermite
finite element space and constructed adaptive \wwawedéments via the lifting scheme
according to the operators of actual structurablenms. SGWs possess an advantage
that can be customized to make the finite elemgonaion scale-decoupled for static
analysis. In other words, a low-scale result camlfitained in a low-scale space, and a
high-scale result with improved accuracy can beaioked by resolving it in the

corresponding detail spaces independently (Li aneinC014).

WFEM has recently been applied in the field of cinial damage detection. Li et al.
(2005) proposed a methodology to detect the logatiod size of a crack in beam
structures and exploited WFEM in the modal analgsisingularity problems. First, the

relationship function between the first three naltdirequencies and crack location and
size was formulated through surface-fitting techiegs) and 3D plots. Second, crack
location and size were identified through the isgetion points of the three contour
lines with the input of the measured frequenciethefdamaged structure. Xiang et al.
(2007b) utilized a similar procedure with B-splimavelet based Rayleigh—Euler and

Rayleigh—Timoshenko elements to estimate cracktitotand size in a rotor system.
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Experimental results revealed the high performaofahis technique in prognosis and
guantitative diagnosis. Afterward, Dong et al. (@Dthtroduced EMD and Laplace
wavelet to acquire modal parameters with high greniand help improve the accuracy
of WFEM-based crack identification in a rotor systére et al. (2010) presented a crack
localization and size identification method based tbe stress intensity factor and
second-generation WFEM for a pipe structure. Nucaérand experimental results
validated the algorithm and revealed its advantayes TFEM. For inverse problems,
back propagation neural networks were adopted laygiet al. (2009) to enhance the
robustness and stability of the WFEM-based craektification method. The genetic
algorithm was employed by Wang et al. (20tatjeduce the computational cost. Xiang
and Liang (2011) extended the detection method fsorgle crack to multiple cracks
with the root-mean-square of the differences betwt® measured and numerical
frequencies as a search criterion in the inversdlpm analysis. Considering that
modal parameters obtained from testing are norntalhtaminated by noise, obtaining
robust damage identification results with the almoestioned crack identification
methods is difficult because these methods usealdtequencies only. Hence, Xiang
et al. (2011; 2013a) and Xiang and Liang (2012)ettsped a two-step crack detection
approach that combines natural frequency and mioalees First, WT was applied to the
modal shape to determine the crack location. Sedbedelationship database between
natural frequencies and crack depths construcedFEM was employed to estimate
crack depth following the same procedure menti@abexe. Numerical and experimental
examples of beam, plate, and shell structures wiitigle and double cracks were
provided to examine the effectiveness of the tvep-sapproach. The authors also
recommended the use of interval wavelets to avwdbundary distortion phenomenon
in crack localization. By using operational deflentishape instead of mode shape,
Xiang et al. (2013b) further extended the methodnt@peration structures under

harmonic force excitation.
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1.2.3 Remarks

1.2.3.1 Challenges in FEM during Damage Detection

A multi-scale FEM whose resolution is compatibléhndlamage scenarios and external
load conditions would be promising and attractieeduse it would ensure both the
accuracy and efficiency of damage detection. SuckEM can reduce the number of
DOFs in the structural model and the number of ipatars to be optimized during

model updating.

To reduce the number of updating parameters dutargage detection through FEM
updating, Teughels et al. (2002) proposed a paraimation method called damage
function, which assumes that the correction factofsupdating parameters vary
continuously throughout FEM. The authors succelsfapplied this method to a
reinforced concrete beam and to the Z24 Bridgewrizeérland modeled with 1D beam
elements (Teughels and Roeck 2004). Fang et a08j26xtended the 1D damage
function to 2D structures to enhance the modeliagability. Perera and Ruiz (2008)
developed a multi-stage damage detection schemarfpg-scale structures. In the first
stage, damage occurrence was detected with appateciocations. In the second stage,
probable damaged areas were selected, and the lexatibns and severities of the
damaged members were estimated. Different objestidentification algorithms, and
spatial configurations of sensors were adopted ifferdnt stages. Although the
aforementioned parameterization method reducestingber of updating parameters,

the number of DOFs may still be large in a delidzEM.

To reduce the number of DOFs, several researclases éxplored the use of multi-scale
FEM (Chan et al. 2007; Li et al. 2009; Chan et28l09; Ding et al. 2010; Wang et al.
2013; Zhu et al. 2014, Xiao et al. 2014) and subestire models (Perera and Ruiz 2008;
Bakhary et al. 2010; Kong et al. 2012) in SH¥bwever, these models often depend on
empirical judgment of critical zones and remain hargged during the entire process,

which may not fully satisfy the requirement of pregsive damage detection. To
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improve damage detection efficiency and accuramyeal multi-step damage detection
processes, such as "location—quantification” (Shale 2000b; 2002), "identify the

general area of structural damage—locate a spetd#finaged structural component”
(Kim and Bartkowicz 1997), "identify damage occuge—classify damage type—locate

and quantify damage" (Kim et al. 2010), have beesented.

The requirement to reconstruct stiffness and maagrices and repeat the entire
computation process makes realizing a multi-scateleh in the context of TFEM
challenging. WFEM, whose resolution can be modifeeshveniently, is particularly
suitable for multi-scale structural analysis andndge detection. Several researchers
have utilized WFEM to detect damage by establishinglatabase of the natural
frequency—crack parameter relationship (Li et 802 Xiang et al. 2007b; 2009; 2011;
2013a; 2013b; Dong et al. 2009; Ye et al. 2010n¥iand Liang 2011; 2012; Wang et
al. 2014). However, these forward problem-basedagdgndetection methods only use
WFEM to perform modal analysis and demonstratehigh computation efficiency of
the method. The most important multi-resolution éochlization features of WFEM,
which are useful for adaptive-scale structural ysia)] damage localization, and
guantification, have not been studied. In addititre applications of WFEM in civil
engineering are largely limited by the fact tha grevious studies only used frequency
changes that are not sufficiently sensitive tocitnal local damages and because of the

difficulty in establishing a comprehensive damagtabase for complicated structures.

1.2.3.2 Challenges in Moving Load-Based Damage Deti®n

In moving load-based damage detection, a feastlgien to reduce the number of
updating parameters is to locate damages firsttla@nl select updating parameters in
the damaged regions only. Previous studies apppedial signal processing tools to the
moving load-induced response to determine the dan@mtions (e.g., Zhu and Law
2006; Nguyen and Tran 2010; Hester and Gonzaleta; 2eredith et al. 2012; Roveri
and Carcaterra 2012; Khorram et al. 2013; Zhanglef012; 2013). However, a

fundamental problem that has failed to elicit adaguattention is how local damages
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affect the moving load-induced structural dynanesponse. The answer to this issue is
essential in developing a damage localization #@lyor Gonzalez and Hester (2013)
divided the moving load-induced acceleration respomto static, dynamic, and
damage components and developed a damage detatganithm that can make the
damage component more consistent than the otherctwgponents. However, the
authors did not provide a theoretical basis acogigi Yang et al. (2004a) deduced the
closed-form solution of the moving load-induced aync response of an undamaged
simply supported beam. Yang and Lin (2005) stated the dynamic response of a
beam consists of two components, namely, the melveguency component that
corresponds to the moving load and the naturallgaqy component that corresponds
to the natural frequencies of the beam. Invesngathe closed-form solution of the
dynamic response of a damaged simply supported Isedjected to moving load and
examining the effects of local stiffness loss oasth two components would provide

deep insights into damage detection methods basewbwing load-induced response.

1.3 Research Objectives

This work aims to develop multi-scale structuramdge detection strategies in both
frequency- and time-domain by utilizing the novelFBM. Such strategies would

achieve optimal matching among structural modelesplution, damage scenarios, and
external load conditions. In addition, such stregegre very efficient with regard to the
number of DOFs in structural FEM, number of sensamsl computation cost. The main

research objectives are summarized as follows.

(1) To develop multi-scale WFEM-based damage detectiethods in the frequency-
domain for beam and thin plate structures. Sub-ete¢rdamage can be detected in a
progressive manner. The suspected damage regiamtiedly identified with a
low-scale structural model, and the more accurateatdje location and severity can

be estimated with a multi-scale model with locdinement. The model resolution
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always remains compatible with actual damage sanauring the progressive

detection process.

(2) To develop a two-phase (i.e., localization and tjtieation) damage detection
approach for beam structures under moving load high efficiency and accuracy.
In this approach, damages are located by separ#ttegdynamic response via
multi-scale DWT and quantified via multi-scale WFEMdating in a progressive

manner. This approach includes the following twdpa

« To investigate local damage effects on moving- amatural-frequency
components of the moving load-induced dynamic respoof a simply
supported beam and develop a corresponding simpde edficient damage

localization algorithm.

« To present a multi-scale WFEM updating strategyhwipdating parameters
limited to the localized damage regions alone torege the damage severity in
a progressive manner. The elemental scales of WEEBhge dynamically
according to not only the time-varying moving lostddctural contact position

but also to the progressively identified damagenauaes.

1.4 Thesis Outline

This thesis comprises seven chapters.

Chapter 1 introduces the research background antivation, literature review,
research objectives, and thesis organization. if&é&iure review focuses on two main
parts: (1) vibration-based damage detection methedsh particular emphasis on
MSE-based and moving load-based damage detectitimodse and (2) application of
multi-scale wavelet in structural engineering, uathg signal processing and structural

modeling.
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Chapter 2 derives multi-scale dynamic formulatiansl corresponding lifting schemes
for beam and thin plate structures, including dipalar case of multi-scale formulation
of beam structures subjected to moving load exoitah the context of cubic Hermite
WFEM. These formulations are the theoretical basgsogressive multi-scale damage

detection. The advantages of using WFEM over TFEdMatso discussed.

Chapter 3 presents a multi-scale damage detectiethan to detect sub-element
damage in beam and plate structures progressiasigdon WFEM and MSE. A coarse
WFEM s utilized to identify the likely damaged req, and gradually lifted WFEMs

with local refinement are utilized to estimate twzurate location and severity of the
damage. During damage detection, a limited numbesemsors are added in the
corresponding critical regions. Numerical examplath different damage scenarios
indicate that the proposed strategy is very effici@ terms of the number of DOFs,

number of sensors, and computation effort.

Chapter 4 presents a multi-scale damage detectiethan to detect sub-element
damage in beam and plate structures progressieskydoon WFEM updating technique
with an objective function that combines structdrajuencies and MAC. The scales of
the wavelet elements in the regions of concerradeptively enhanced and reduced to
remain compatible with the gradually identified daye regions. The test modal
information remains the same, that is, no sengolacement or addition is required.
Numerical and experimental examples reveal thatpitogposed method can identify
structural damage with satisfactory accuracy addaed number of DOFs in the model
and updating parameters during optimization. Fn#fle advantages and disadvantages

of the two methods presented in Chapters 3 and danpared.

Chapter 5 firstly derives the closed-form solutadrthe dynamic response of a simply
supported damaged beam under moving force. Therdamage effect on the different
components of the dynamic response is investigatedia simple and efficient damage
localization approach using DWT is presented. Nucaerexamples with single and

multiple damages are utilized to validate the affic of the response computation
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algorithm and demonstrate the effectiveness ofctireesponding damage localization

approach.

Chapter 6 presents the development of an adaptale-analysis strategy for beam
structures under moving load using WFEM, in whicé scales of wavelet elements are
dynamically changed according to moving load—beamtaxct positions. A highly
efficient and accurate two-phase damage detecpproach that integrates DWT-based
damage localization in Chapter 5, progressive dantgection in Chapter 4, and the
adaptive-scale analysis strategy is then propdsest, multi-scale DWT is adopted to
decompose the change in the dynamic displacemspbmee induced by moving load
and localize damages. Second, WFEM updating, wpithating parameters limited to
the identified damage regions alone, is employeddtmate the accurate damage
location and severity in a progressive manner. dleenental scales of WFEM change
dynamically not only according to the moving loagusture contact positions but also
to the damage scenarios. A laboratory experimentasducted to examine the
feasibility and effectiveness of the proposed twage method. The results indicate that
the proposed method achieves optimal matching anstmugtural modeling, damage
scenarios, and load conditions, as well as betwisenage detection accuracy and

efficiency.

Chapter 7 provides a summary of the main conclgsitanived in this study and several

recommendations for future research work relatetieégresent one.
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Chapter 2 Multi-Scale WFEM

2.1 Introduction

Multi-scale WFEM that employs wavelet functions swale functions as elemental
interpolating functions is the foundation of theltnsicale structural damage detection
methods presented in this thesis. Various wavdiate been employed in WFEMS;
these wavelets include Daubechies wavelet (Ko.et%5; Cheng et al. 2006; Diaz et
al. 2009), spline wavelet (Chen and Wu 1995; HamaleR006; Cheng et al. 2010),
trigonometric wavelet (He et al. 2012; He and R4 2013a; 2013b; 2013c), and
Hermite wavelet (Xiang and Liang 2011; Wang eR8ll1). Element type includes truss
element (Wang et al. 2011), Timoshenko beam elerfWang et al. 2011; Wang and
Wu 2013), Euler—Bernoulli beam element (Han e2805; He and Ren 2012; 2013a),
plate element (Han et al. 2006), and solid elerfidah et al. 2006). The characteristics
of multi-resolution and localization make WFEM anmsful tool to analyze fields with
gradient changes or singularities, such as mateaalinearity, local damage, and
cracks. This chapter presents the principles @fcsiely an appropriate wavelet element
for multi-scale damage detection and the derivatioh multi-scale dynamic
formulations and corresponding lifting schemes l@am and plate structures. In
particular, a multi-scale formulation under moviogd excitation is presented for beam
structures. The theoretical basis of multi-scalmage detection methods is established

subsequently.

2.2 Cubic Hermite Multi-Scale Wavelet

The selection is made among WFEMs based on Dawdxewravelet, B-spline wavelet

on the interval, trigonometric wavelet, and cubieridite wavelet, which have been
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studied comprehensively and systematically. For mhdti-scale damage detection
method, wavelet elements with high computationdiciehcy, superior localization
feature, and favorable compatibility with TFEM apeeferred. Table 2.1 shows a

comparison of different wavelet elements in terithese aspects.

Table 2.1. Comparison of different wavelet elements

Computational Localization Compatibility with

Wavelet Type Efficiency Feature Traditional FEM
Daubechies Wavelet poor general poor
B-spline Wavelet
on the Interval good general poor
Trigonometric Wavelet  general general good
Hermite Wavelet good good good

(1) Daubechies wavelet. The disadvantage of this wavelet is that it hasemplicit
expression. This disadvantage makes traditionalemaal integrals (e.g., Gaussian
integrals) unable to provide desirable calculatpacision (Li and Chen 2014).
Furthermore, the transformation matrix utilizeddeal with boundary conditions
and adjacent element connections leads to complerulation, time-consuming
computation, and difficulties in realizing multisde analysis (He and Ren 2013c).
Moreover, connecting the Daubechies wavelet totthditional finite element is

difficult.

(2) B-spline wavelet on the interval. The explicit expression of B-spline wavelet oa th
interval facilitates the calculation of the corresding elemental matrices. However,
faces the same problems in the aspects of tranatmmmatrix and connection with

the traditional finite element.
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(3) Trigonometric Hermite wavelet. Given the Hermite interpolatory properties,
boundary conditions and the connection between cadja elements can be
processed conveniently without the need for a toamsation matrix. Trigonometric
Hermite wavelet performs well in structural viboatianalysis because of its "wave"
properties; trigonometric wavelet composite beaemeint (He and Ren 2013c) can
connect to the traditional finite element direcidpd conveniently. However, its
disadvantages should not be ignored. These distay@s include increasingly
complicated and time-consuming integral operatiomslved in elemental matrices
calculation than the polynomial integral in thediteonal finite element (He and Ren
2012) and relatively poor local properties for stamal damage localization (the
support lengths of scaling and wavelet functionsliierent scales are the same,

which is unsuitable for damage localization).

(4) Cubic Hermite wavelet. Although the computational efficiency in terms thie
number of system DOFs of the FEM to achieve theesamalysis accuracy is not as
high as that of the B-spline wavelet on the interalad trigonometric wavelet
elements, the computation of elemental matricewvelsy convenient and time
efficient. The local property that enables progresslamage localization and the
favourable compatible feature with the traditiofialte element make this wavelet

appropriate for multi-scale damage detection.

Given the abovementioned favorable characteristins, second-generation cubic

Hermite multi-wavelet (Averbuch et al. 2007; Wartgaé 2011) was adopted in this

study. When defined within the interv@1, 1], the scaling functions of cubic Hermite

multi-wavelet consist of two cubic Hermite splireesfollows:

Bo=[ALN) BN (2.1)

where
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(x+1)?(-2x+1) xOF1,0
B o(X) =1 (x=1)*(2x+ 1) x [0,1] (2.2a)
0 othenwi

(x+1°x  xOF1,0]
Fo(¥) =1 (x-1)’x  xO[0,1] (2.2b)
0 otherwis

The refinement relation of scaling functions atitagloy vertices in two adjacent scales

is

®,
o v =@, (2.3)
J+

where C,, is the refinement coefficient matrix for leve]+1 and

®, ={g, kKOK())} and ¥, ={y,,: mUOM(]))} are the scaling and wavelet functions at

the selected vertices, respectively. Given thatntter scaling functions have a

continuous first derivative at the nodes, the sgafunctions have two DOFs at each

node, that is, @, =[¢() #.(I]" =[¢12/(x-K) ¢A2(x-K)]" .

The refinement coefficients(;,;) can be computed by solving the simultaneous

equations shown in Equation (2.3) at random vestidde refinement relation of the

cubic Hermite scaling functions is

1 3 1 _3
2 2h 2 2
wj,kz = ¢]+1,k2 + h 1 ¢J+1Iﬂl + h 1 <0j+lmZ (24)
'8 4 8 4

whereh is the length of an element. It corresponds tddhewing refinement matrix.

Lo % 2?1 _; _231
C .= (2.5)
j+1
oL h 1 on o2
8 4 8 4



Figure 2.1 shows the refinement of the cubic He¥msitaling functions and wavelets

defined in Equation (2.4) between two adjacentescalhe scaling function at scalg
@, » has compact support ifk, k,] . The scaling function at scal¢+1, @,y , is

supported in[m, m,], which is only a half interval of that at scale

Scaling
functions
Scaling
functions
>Wave|ets

0.15

0.1

0.05

0

-0.05

\ -0.1

-0.15

Figure 2.1. The refinement relation for cubic Heescaling functions

The wavelets corresponding to the cubic Hermitdirsgdunctions are not unique.
Several cubic Hermite wavelet functions have besivdd previously (Sudarshan et al.
2003; Amaratunga and Sudarshan 2006; Averbuch. &08I7; Wang et al. 2011). For
example, Sudarshan et al. (2003) constructed ctt@mmite wavelets with four

vanishing moments by using the lifting scheme psapoby Sweldens (1996). Another
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simple form of cubic Hermite wavelets was conse&dcand used by Averbuch et al.

(2007) and Wang et al. (2011).

Yim, = Biapm, (2.6)
These multi-wavelets are adopted in this study bezaf their simplicity and relatively
short support length. The wavelets are compactpasued on the interval between two

adjacent k-nodes, that igk,, k;] . The Hermite wavelet function also has two DOFs at

each node.

The 2D cubic Hermite wavelets of scalare constructed through the tensor products of
1D wavelets (Wang and Wu 2013; Quraishi and San@648). The scaling function

consists of four functions as follows:

B (x,y) = @ () xDL(y) (2.72)

B3(x,y) = L () x Di(y) (2.7b)
B(x,y) = 0} () xDL(y) (2.7¢)
B(x,y) = B2 () x Di(y) (2.7d)

These functions stand for displacement, y-directidference, x-direction difference,

and diagonal difference of the displacement fi@ganning of the scaling functions

® ={®, ®, @’ ®} at scalej forms spaceF’. These functions also have a

multi-resolution property, F°OF'OMMDF!, FI*=FIOG', where G' is spanned

by the corresponding 2D wavelet functioﬁq of scalg.

Y =0

j j*1

(2.8)

The 2D wavelet at scaje= 1 is shown in Figure 2.2.
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Figure 2.2. 2D tensor products of cubic Hermitections

2.3 Dynamic Formulation of Multi-Scale WFEM for Beam

Structures

Wang et al. (2011) presented a static equationaaodrresponding lifting scheme for
beam elements based on the cubic Hermite multesgalelet. However, the dynamic
parameters and response of structures are oft@mevést in vibration-based damage
detection. Therefore, the dynamic equation for beamnctures and the corresponding
lifting scheme are formulated in the context of #ierementioned multi-scale WFEM.
In particular, the multi-scale formulations of theam-moving force and the beam-

moving vehicle model are presented.
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For the Euler—Bernoulli beam, the unknown fiedd can be approximated with the

scaling and wavelet functions of cubic Hermite mudvelets @, =[®,, ¥, 'V, ¥;_,]
N
W= zao,k%k +zzbm,j‘//m,j =0a+¥Yp +¥h [IHY,_b,_ =@, (2.9)
k i=0 m
where ®, represents the scaling functions at scale'), represents the wavelet

functions at scalg¢, and q, =[a b, b, b, ,]" is the undetermined vector of wavelet

coefficients, which can be regarded as generalix@fs.

The application of WFEM to the dynamic problem gglthe governing equation of

motion.
Md;+Ca;+K g, =P, (2.10)

where M

» C;, K;, and P, are the mass matrix, damping matrix, stiffnessrimat

I

and external load vector at scgleespectively.

o0, DY, - O]
T T
M, =l [ ®0[®,dE=pl [ Yoo ¥o¥ialas @)
0 0 sym RN
L lPT_l\P]_l_
(@)@, (@), o @]
< =B l@yeu=E ¥ o o Wilae g
| 0 | 0 S . :
ym . :
i (¥ ) ¥

Considering the orthogonality of the cubic Hermmeiltivavelet, the non-diagonal
sub-matrices ofK; become zero.
(@) @,

K, :%j:(m';f@]d&%ﬂ ¥, WO.. d¢ (2.13)

(¥ia) Wi |
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Rayleigh damping can be assumed @s=aM, +aK ;, where a, and a, are two

constants in this Rayleigh damping modé#&, is flexural rigidity, 0 is the mass per
unit length, and®, and ¥, are the second derivatives of the functiols and ¥,

with respect to the local coordinatg, respectively. The vectors;, ¢,, and ¢, are

the displacement, velocity, and acceleration veatacalg in the wavelet subspaces,
respectively; that is, they are expressed in aerure with the wavelet element.
Measurements in dynamic tests are always expressgeheral DOFs, but they can be
easily converted to those in wavelet DOFs throdmghHermite interpolation properties

of the adopted multi-wavelets.

Modal characteristics, such as frequencies and mbdpes, can be obtained from the

following free vibration formulations of scalg.
(K; =AM g, =0 (2.14)

where) is the eigenvalues and; is the mode shapes that are expressed with regard t

wavelet DOFs.

For the moving load problem discussed in Chapteasid 6, the beam-moving force
model and the beam-moving vehicle model based oEM&re derived in this section.
Although only a single moving force/vehicle is preted, the method can be further

extended to consider cases with multiple forcestkeh via linear superposition.

(1) Beam-moving force model

When the mass of a moving vehicle is considerabiglier than that of a beam, the
moving vehicle can be approximated by a movingdditang and Lin 2005). A simply
supported beam model subjected to a moving coratedtforce is shown in Figure 2.3.

When the beam is modeled by cubic Hermite wavesstnb elements and a single

moving force ) is considered, the external loa® in Equation (2.10) becomes a

time-varying load vector as follows:
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(@] (E(1) |

¥, (1)

P,(t) = [F (2.15)

WL () |
where ¢&(t) is the local coordinate of the time-varying pasiti and

W, (&(1) =[DI(&Y)), Wo(&(1)--- ¥ _(&(t)]" is the value of the shape functions at the
contact position. Consequently, the external loagttar can be expressed as

P=F[0 0---®, ¥,--¥_, - 0], in which the entries are zero except for thoseFBO

corresponding to the element on which the movingdas acting upon. The number of

DOFs for a single wavelet element depends on tbeepit scalg The numerical values

of the wavelet functions';) and the external load vectoP,( change along with the

moving force position.

Moving force Moving vehicle
mv
F
kv Cv

I
X
Ly
Figure 2.3. Simply-supported beam subjected to @imgdorce/vehicle

(2) Beam—moving vehicle model

To simulate the dynamics of a vehicle moving omap$y supported beam, the vehicle
can be modeled by a single DOF system that congpéasmass connected to the beam

through a dashpot and a spring, as shown in Figu#eThe single DOF vehicle model

proposed by Lu and Liu (2011) involves three patanse massm,, damping c,, and

stiffness k, of the vehicle. Unlike the moving force model, theving vehicle model
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considers the dynamics of the moving vehicle amditieraction between the vehicle

and the beam.

The equations of motion consist of two parts. Tlagt gorresponding to the beam
structure is the same as the beam-—moving force Indde other part for the moving

vehicle can be expressed as (Lu and Liu 2011)
m,z+c, (2= y(x(t)) +Kk (2= y(x(1)) = r(x(t))) =0 (2.16)
where Z, z, and z are the vertical acceleration, velocity, and dispment response

of the vehicle, respectivelyy(x(t)) denotes the vertical displacement at the contact
point x(t) of the beam, andr(x(t)) denotes the road surface roughness at the
location of the tire. Vehicle-beam interaction #rt=(t) can be expressed as

IF(t) =mg+c,(z- Y(x(V) +k,(z- y(x®) -r(x®) =mg-mz  (2.17)

where g is the acceleration of gravity.

The vehicle is assumed to maintain contact withldeam, and no separation occurs
during the moving process. By combining Equatichd@) and (2.17), the equations of

motion for the vehicle—-beam system can be expreased

L L)
0 m |l2) |-¥ic, m|(z] |-¥ik Kk |lz] [kr(x() '

M ¥ C. 0 K. 0 .
Define M, =| i C.. =| ! , Ky =l , Ry = Ul and
710 m, 1 =¥, S H'S oz

_|¥mg . :
i = . Equation (2.18) can be rewritten as
kr(x(1))
M R, +C R, ;+K R, =P, (2.19)
Notably, M_;, C,,, K ;, and P,; are time-varying and non-symmetric. The

dynamic responses of the beam and vehicle caneuwed through the time-domain
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integration method.

As indicated in Chapter 1, the element scales oEWFhange dynamically not only
according to the time-varying contact point betw#s® moving vehicle and structure
but also to the progressively identified damagenarios; the convenient changes in
scale are crucial in multi-scale damage detectiorihe lifting or lowering procedure
between scales, the sub matrices/vectors of threrduscale can be retained, and only a
few rows and columns need to be added or deleteel.pfocedure is analogous to the
mesh refinement or roughening process in TFEM $&uwtssociated with much simpler
operations because re-meshing the structures andsteucting the matrices/vectors are
not required. This merit of WFEM increases thecadficy of the computation in the
refinement or roughening process and makes tha-sualle modeling technique more
effective in multi-scale analyses and damage detectvhere the desirable modeling
scales are priori unknown or need to be dynamically changed accgrtbndifferent
external load conditions and damage scenariosnéheresults after refinement can be
quickly obtained via iteration, with the initial s equal to the results at the previous

scale.

The plane beam-type wavelet finite element for gastructural analysis considers axial
and flexural deformation. This element is conseddby the superposition of an axial
rod element and an Euler—Bernoulli beam elemenguféi 2.4). The traditional
two-node rod element (Zienkiewicz and Taylor 19&i)adopted. Refining the rod
element is usually unnecessary because axial dafanmis relatively uniform in frame

structures.
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Plane beam element

x|

Figure 2.4. Plane beam-type wavelet finite element

2.4 Dynamic Formulation of Multi-Scale WFEM for Plate

Structures

A rectangular elastic thin plate with dimensiofs x | is shown in Figure 2.5.

According to classical Kirchoff-Love plate theompe generalized function of the

potential energy of this rectangular elastic tHatgis (Zienkiewicz and Taylor 1961)
M. =2([ « Drdxdy-=[[_ptiwid 2.20
=5 JJ " Drcby = [[ ptawirdy (2.20)

where Q is the solving domain,A is the vibration eigenvaluew is the
displacement field functionx is the generalized strain matribD is the flexural

rigidity, and D is the plate elasticity matrix, which are defirsed

1 u 0
D=Dluy1l1 O (2.21)
0 0 (-u)l2
Et®
D=—— 2.22
12(1- 17) (2:22)

40



2 2
Ow_ow_ 0fw (2.23)
0x ay oxoy

=1

where i denotes the Poisson's ratio.

Ny

0 >

Figure 2.5. Rectangular elastic thin plate

By using the 2D multi-waveletsb, as the shape function and translating the

corresponding coordinate into a standard solvingalo, the unknown displacement

field function \7/(5,/7) can be expressed as
_ _ -1 o
W(f!’]) :(I)Oa0+zq’nbn :q)jqj (224)
n=0

where é and ;7 denote the local coordinate®, represents the scaling functions at

scale 0, ¥, =[®, ¥, P, --- ¥,_|] represents the wavelet functions at s¢aland g,

is the undetermined vector of the wavelet coeffitsdi.e., coordinates corresponding to
wavelet DOFs). The mode shapes obtained in thetor test, which are expressed in
the physical coordinate, can be conveniently caedeinto wavelet DOFs by exploiting

the interpolation properties of the adopted mulivelets.

According to the principle minimum of potential egg let a1, =0, where J is the

variational operator and1, can be obtained by substituting Equation (2.24p in
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Equation (2.20). The wavelet formulations for thedal analysis of elastic thin plates

can be obtained as follows:

(Ki=-AM jpg . =0 (2.25)
where K; and M; are the element stiffness and mass matrices atjscal
M; =1 ] pre°or,* (2.26)

K = DIM22 020+ 41 20T 2% T 20T, 2% 20— r), T, 4 (2.27)

(@) @, (@)Y, - @,
. 1 1 . B 1 1 i \I’" . tT 'j_
r* =3[ (@) ®dé=5] Yoo T M lag ap)
I° N sym .. :
I \gEpA ooy
O 0, DY, - DY,
Ty Ty
riez=1 oo ds= 2" Yoo Mol g (2.29)
| o I | 0 S . :
N X ym . :
I YY) |
)20 =(rioyT (2.30)
(@) @, @)Y, - @Y ]
r= Ll e)res= L] Yolto %o Morlae @an
| [, sym .. :
I (DA I
(I)g(I)O q)I)lPo (I)TOle—l
_ yly e Py
rio°=| [ o®de=1,] oo 0TIt ldg (2.32)
sym .o
L T}——lq’j—l_

where @, and @] represent the first and second derivatives witipeet to the local

coordinate &, respectively. The integrald)'?(f,g=0, 1, 2) are similar toI}"*

(f,g9=0,1 2 withonly I, and d¢ replaced byl, and d7, respectively.
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Similar to the beam structures, in the lifting owkring procedure between scales, the
sub-matrices in Equations (2.28) to (2.32) at tlneent scale can be retained, and only
a few rows and columns need to be added or delsti@dbly, the support region of the
2D wavelet at scal¢ + 1 is only a quarter of scale This favorable localization
characteristic helps develop the progressive damdefection approach. In the
multi-scale model, the original region can be refinto four equal sub-regions by
adding a new scale, but such a refinement prooesissathe hanging node problems

mentioned in Chapter 1.

The scaling functions of the cubic Hermite multiwgkets at scale O (Figure 2.1) are the
same as the polynomial shape function adopted @ tthditional finite element
(Zienkiewicz and Taylorl961; Bogner et al. 1965hefefore, the presented cubic
Hermite WFEM can seamlessly connect to the tradktidinite element or even refine
elements in TFEM. Considering the fact that mossterg structural models are built
using TFEM, this feature of cubic Hermite WFEM ipraminent advantage that makes

the proposed multi-scale damage detection methad auxeptable.

2.5 Summary

This chapter establishes the theoretical basisniatti-scale dynamic analysis and
damage detection methods. The principles of selg@ppropriate wavelet element and
the basic concept of cubic Hermite multi-wavelet mtroduced briefly, and multi-scale
dynamic formulations together with the correspogdiifting schemes for beam and
plate structures are derived. In particular, a radale formulation of beam structures

subjected to moving load excitation is presented.
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Chapter 3 Progressive Damage Detection Based on
Modal Strain Energy

3.1 Introduction

Based on the WFEM concept in Chapter 2, this chgptesents a multi-scale damage
detection method in which structural modeling rasohs are not only spatially varying
but also dynamically changing according to actuséds. MSE is utilized to detect
sub-element damage in beam and thin plate striciar@ progressive manner. The
suspected region is first identified with a lowdec&V/FEM model. Then, the more
accurate damage location and severity are estim@tbdnulti-scale WFEM with local
refinement. Although this strategy can be impleradntia TFEM, the multi-scale and
localization properties of WFEM can considerablgilftate the adaptive change in
modeling resolutions. For plate structures in patér, problems associated with
hanging nodes can be avoidedumerical studies are conducted to verify the
effectiveness and advantages of the proposed WF&hM- MSE-based multi-scale
damage detection stratedghhis strategy can operate efficiently in terms @R in

WFEM and sensors in the vibration test.

3.2 Progressive Damage Detection

Damage detection methods based on MSE have beemsesly explored in the
context of TFEM (e.g., Shi and Law 1998; Cornwelake 1999; Shi et al. 2000a; 2000b;
2002; Guan and Karbhari 2008; Yan et al. 2010).irAilar method is adopted for
WFEM in this chapter. Given that the strategy dégct in this chapter aims to identify
damages smaller than an element, the strategy gmpiSE in a sub-element. In

addition, in WFEM, the MSE of a given sub-elemeamirmot be calculated as the direct
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combination of mode shape vector and element sgffrmatrix unlike in TFEM. Thus,
the sub-element partial differential equations tpatern the free vibration of a beam
and thin plate are utilized in the formulation betdamage quantification matrix via

modal perturbation.

In damage detection studies, a common assumptithraisio mass change occurs after
damage. Damage causes perturbations, which areatlypsmall, in the™ eigenvalue
and in thei™ mode shapef the beam or thin plate compared with an undaihaye

(Shi et al. 2000b; Fox and Kapoor 1968)
A=A+ (3.1)
#'=0,+00, =4, + T p.J. (3.2)
where A and A’ are thei™ eigenvalue before and after damage, respectivgly.
and ¢° are thd™ mode shape before and after damage, respectifedychange in the

i"™ mode shapeAg, is expressed as a linear combination of mode shagher than the

present one. In WFEM, eigenvalué and eigenvectorg. can be obtained directly

from Equations (2.14) and (2.25) for beams anceplatespectively.
3.2.1 Beam Structure

3.2.1.1 Damage Localization

The MSE of the™ sub-elementL, associated with th&" mode of a Bernoulli—Euler

beam MSEB, , ) before and after damage are expressed as (Cdretved] 1999)

_1 0’9\
MSEB,, _EL El () EQW) dx (3.33)

d _E d 02¢id 2
MSEB! = ZL El¢(x) 0 57 o (3.3b)
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where superscripd denotes damage andtl(x) is the flexural rigidity of the
sub-element. Given that flexural rigidity after dage El°(x) is unpredictable, the

original flexural rigidity El(x) can be utilized instead as an approximation in Equoa

(3.3b). In accordance with Shi and Law (1998), anmadized change ratio dfISEB is

regarded as the damage location indicator.

MSEB® - MSEB
NMECRJ - | I,r 1,r I/m i

MSEB, MSEB

I,r 1,r

MSEB® - MSEB
ax(l | 1,r |) (34)

If more than one vibration modes are consideregl, ddimage location indicator in the

r' sub-element is defined as the averageM$ECE! for all the concerned modes.

NMSECR :%Zm: NMSECR,, (3.5)

3.2.1.2 Damage Quantification

The occurrence of damage in a beam can be repeeskeynta change in flexural rigidity
as follows:

ElY(x) = El (X) + AEI (X) = El (X) +Zar ElI(x) (-1<a <0) (3.6)

r

where a, is the flexural rigidity reduction factor of th® sub-element ().

The damage-induced change MSEB,, can then be expressed in two ways.

AMSEB , = MSEB', ~-MSEB,,
_1 ¢ L ONp o 1 9
_2L El (x) +AEl (x) ]]%+ e Jax 2LH (x)D%)zdx (3.7)
=], BI(x) {ZX—"Q ){36A7¢i )¢|x+%LAE| (x) D{Z—)ﬁi §alx
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AMSEB , = MSEB! - MSEB,
-~J E €rXaE «)B(%’f jox-2 & (X)E@% ™
1 2 4d 1 250 . y
:EL El & )% 3dX+ELZa,EI & )% Jaix EL El & )% Jelx

(3.8)
In Equation (3.7), the flexural rigidities and modkapes in the damaged state are

represented byEl (x)+AEl (x) and ¢, +Ag,, respectively; in Equation (3.8), they are

represented byEl (x) + Y a,El(x) and ¢, respectively.

According to the dynamics of the beam (Clough armhzien 1993), the partial

differential equation that defines the eigensohsics
62 0
[El(x) ¢'] —AmX) ¢ =0 (3.9

When the beam is subject to damage, the aboveiequaith a small perturbation

becomes

%{[ EI( +AEI( 3] GWGXM (A+D X 4+09 O (3.10)

Substituting Equations (3.1), (3.2), and (3.6) ikmuation (3.10) and neglecting small

terms lead to

—[El<x>2|o.sa S+AEl<x>a¢'] ~AMN Y b, - BAMNS =0 (3.11)

By pre-multiplying ¢, and computing the integral along the interval [Q] on both

sides of Equation (3.11), wherk, is the total length of the beam, and considerirgg t
orthogonal condition

jL¢sm(x)¢idx=o (s#i) (3.12)

the coefficient p, for a beam can be computed as
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0°¢, 0°4,.

o B (3.13)

Ps = j [AEI () —22

Supposing K sub-elements are damaged, the following damagetiequ can be

obtained from Equations (3.7), (3.8), and (3.13).

X X2 Xx a, AEBIJ

/\:/21 ):(22 "'):(zk a:z — Al?Bl,z (3.14)
Xa Xz 7 X | O AEB,,
where
_ 0°¢p, 0%,
Xm’n_zpis[_[ EI(X)_S_ldX]
s:ql Lm 2¢(ZX 0X ) y (3.15)
+§LEI @)("(}T')de—zj%a (x)(%)zdx
m =2 Pal] B9 ¢ M'd] (3.16)
1 92 ¢| )
AEB _Eij El (x) [{—=2m)?dx - j El ( ) dx (3.17)

where (< m<k,1<n<k). After the damages are localized using the mettextribed
in Section 3.2.1.1, the severities of the damagesbe qualified by solving the above
described damage matrix equation [Equation (3.1Ahe two-stage process, that is,

localization and quantification, can effectivelyduee the matrix size and minimize the

computation cost. Notably, unlike in damage loalan, [El (x) +AEI (x)] rather than

[EI(x)] is used as the flexural rigidity after damagethe damage matrix equation.

Therefore, the iteration computation adopted ine&tal. (2002b) is not required, which

helps enhance detection efficiency.

3.2.2 Plate Structure

Damage localization and quantification for thintplatructures are similar to those for
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beam structures. The meanings of the symbols a&adme as those in Section 3.2.1,

unless otherwise specified.
3.2.2.1 Damage Localization

According to Cornwell et al. (1999), the MSE ofubslement A associated with the

" mode shape of a plate is

R =—H DO Y)I( ¢'> (S0 "" vl ‘”')(" "") +20-vE L ¢ L ¥ by

(3.18a)

MSE JJD G+ (2 "") oY ¢') +2(1- v)("‘” Y Fixdy

(3.18b)

whereA, represents thé"rsub-element with damageMSER, and MSER| represent
the MSE before and after damage of the sub-elemespectively; and(x, y) denotes
the sub-element flexural rigidity. The intagi(x,y) is employed as an approximation
in Equation (3.18b) when flexural rigidity after rdage D‘(x,y) is unknown.

NMSECR in Equation (3.4) andNMSECR in Equation (3.5) can still be utilized to

localize damage in plate structures withSEP instead of MSEB .

3.2.2.2 Damage Quantification

Assuming that the plate damage is representedchypmge in flexural rigidity,
D*(x,y) =D(x,y)+AD(x,y)=D(x,y)+ > BD(x,y) (-1<5<0) (3.19)

where B. is the damage index of sub-elemént

According to Clough and Penzien (1993), the paditierential equation that defines

the eigensolutions of an undamaged plate is

49



2810 080

- Lot gyt AT V) =0 (3.20)

When the plate is subjected to damage, Equatio?0)3with a small perturbation

becomes

(A +AA) (¢, +Ag) =0

(3.21)
Substituting Equation (3.20) into Equation (3.2da§l meglecting the small terms lead to

[D+AD][64(¢i +44) 5 N +Ag) 0 (9 A¢)1
ox* ox°oy? oy’

64A¢i +2 64A¢ 4A¢']+AD[6 2 +2 a4¢ a ¢'1 —AmAg, —AAmg, =0

D
[ ox* axzay ox*  oxoy? 6 «

(3.22)
By pre-multiplying ¢_.(s#i), computing the integral along the solving domainboth

sides of Equation (3.22), and considering orthoyoaaditions, the coefficientp, for

a plate is computed as

4 4
p. = 220+ L.y (3.23)
y

A=A ax°ay?

Damage-induced changes MSER, can be expressed in two ways as follows:
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AMSER, = MSER - MSEP,
1 0%, N, . Dp 0Dp . . P 0Dp PP, DS LY
ZLICHAD MG+ g+ €0 oy w B0+ e 20 )+2<H>%y+—3c1xdy

X2 oxay
1 b5 2Py o @000y 4 2oyl
Ak B 3+ £ v EaE v 20-n)E 2 Yy (3.24)
p°p, 0°Ag, 0’6 9°NP, P9 0P 0B NP 09 9 Ay
:J;ID "ox? D¢6x2 * ay’? DQayz v X2 D¢6y2 * dy ° E¢6x2 o2ty )OXTy oxoy Py

1 B2, 902, 0P 07 _ 0
+§[JAD [%) +(6y2) +2U e [%72+2(1 v)(axay)z]jxdy

AMSER, = MSEPS - MSER,
:%Lj 0+¥4D AR P;ff jo 3 L0 )(% » 2V )%Nxdy
_%QD [%% % §+ 9% )% ¥y 2(&v )g%)z]dxdy
3o G B 1B 2o {0
+%gzﬁro [?;fzid j+ ?;5; j+ zf% )% ¥ 2(tv g%)zldxdy
_%LID [%%% {Z/lger 9% >?;7¢g ¥ 2@V %Wdy
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In Equation (3.24), the flexural rigidity and mode pésa in the damage state are
represented byD+AD and ¢ +A¢ , respectively in Equation (3.25), they are

represented byD+» B D and ¢°, respectively

Supposing thatk sub-elements existing in a plate are identifiegp@ssible damaged
regions by NCRMSE as described in Section 3.2.2.1, the following dgen
guantification equation is obtained from Equati@®23), (3.24), and (3.25).

Vian Vio - Vi ﬁl AEPi’l
y.21 yz.z y.zk ﬁ.Z - AFP“Z (3.26)

Va Vo - Vi ﬁk AER,k
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where

0%¢, 9° 0°9, 07 0% 07 6 - 0 09 0
z P, .[J- ¢;I ¢25 + % ¢25 v ( ¢ ¢ 2¢|2 %; ) +2 (1_ ) @ %ﬁs h
o ox~ 0x° oy° dy x> ay*? ay 0x 0x0y 0xdy

*E“DO[%% ﬁ;ﬂ m@;)@;y 2(].—V>?3(]ixdy (3.27)

—HDK )+ ¢)+2waﬁ)@¢) 2atn?¢ F iy

a¢i 62¢s a2¢iaz¢s a¢a¢ 62¢62¢S _ a% a%s
IZ;‘ID'S-[-[[OXZ ox* * dy® oy’ eV (ax dy’ oy’ ox? 22y 6 X0y OX ay] & (3.28)

¢ ¢ ¢

ﬂDma¢)+@¢

_EL[DO [%)2"' %)2‘* W%)%H 2(kv )%ﬁﬂxdy

(3.29)

where l<xms<k, 1<n<k). Once the damages are localized using the dameagézation indicator [Equations (3.4) and (3.8}jey can be

qualified by solving the damage quantification égra[Equation (3.26)].
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3.2.3 Damage Detection Procedure

A progressive damage detection strategy is adojptedis section. A low-resolution

structure model is utilized to acquire the potdrdbaation and severity of damage, and
a multi-resolution model with refinement in the pested regions is used to obtain a
more accurate estimation of the damage. Althougé ddaptive-scale strategy can
theoretically be realized in the context of TFEMlwan effort to re-mesh the models
and reconstruct the matrices, the novel WFEM prewidonsiderable convenience and
freedom to dynamically change the modeling scalom@ing to the requirements of

each step. A flowchart of the progressive damagectien process is shown in Figure

3.1. The process consists of the following maipste

Step 1: Arrange the sensors in the tested beantats ptructure, measure the mode

shapes, and calculate the MSE in each region.

Step 2: Analyze the modal properties of the undaddgeam or plate using multi-scale

WFEM and then compute the MSE in the corresponcBggns.

Step 3: Locate the suspected region by compariagattalytical and measured MSE,
and then quantify the damage severity. However,aggquantification is not
optional in this step. To reduce the computatiost,cdamage quantification can

be performed in Step 6 after the damage is propechlized.

Step 4: Refine WFEM by adding high-scale wavelem&in the suspected damage
regions. Add more sensors in the correspondingonsgof the tested beam or

plate.

Step 5: Repeat Steps 1-4 until accurate estimatibtize location and severity of the
damage are achieved. If the new sub-regions witlalegize obtained after
refinement are all located as damage regions, ithrative process can be

stopped.

Step 6: Quantify the damage severity using the dentmantification Equation (3.14)

or (3.26) for beam or plate structures, respedtivel
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Figure 3.1. Flowchart of the adaptive-scale dantsgection scheme

This progressive damage detection strategy isiefficin terms of computation and
testing, given the following: (1) the structural ded is refined only in the key regions,

(2) the refinement process is convenient becauskeo$alient features of WFEM, and

(3) only a limited number of sensors need to besddd the critical regions.

3.3 Numerical Study

Numerical examples of a simply supported beam, @adpan continuous beam, and a
thin plate simply supported on four corners areviged to demonstrate the

effectiveness of the progressive damage detectrategy in consideration of different
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damage scenarios. In the numerical simulationsptbdal properties in damaged state
obtained from very densely meshed TFEMs are redam® "measured” results.
Considering that only the lower mode shapes caméasured in actual field testing,
only the first mode shape is used in the exampliésowt noise (Sections 3.3.1 and

3.3.2); the first four mode shapes are used irea@nples with noise (Section 3.3.3).

3.3.1 Beam Structure

Table 3.1 provides a summary of the three damagescaf the beams investigated in
this section. The first two cases involve a simplpported beam, and the third one

involves a two-span continuous beam. The matendlsection properties of the beams

are as follows: elastic modulug =2 Gpa, density p =2500 Kg/mi, cross-sectional

area A=0.005ni, and moment of inertid =1.667x 10 n. Different locations and
severity of the damage are assumed in the threescagere location refers to the
damage interval and severity refers to the losdlefural rigidity in the damage

interval.

Case B-1 involves a simply supported beam structulgected to a single damage in
the interval of [5.25, 5.5] with 20% severity. Frgu3.2 shows the model refinement

process, and Figure 3.3 shows the damage deteeBaits in each stage.

Table 3.1. Damage scenarios considered in the ncahsmmulations of the beam

Damage

Structure Damage Scenarios _ _

Location(m) Severity (%)
Simply-supported beam  Case B-ISingle damage  [5.25, 5.5] 20

Case B-2 Double damage [1,1.5] 20

[6.25,6.5] 20

Two-span continuous beanCase B-3 Double damage [3.25,3.5] 20

[12.5,12.75] 20
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Figure 3.2. Model refinement process for Case B-1
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Figure 3.3. Adaptive-scale damage identificaticsutes for Case B-1

In the adaptive-scale damage detection processy-adale WFEM is used to simulate

the original beam structure. In stage 1, the bemammadeled by eight cubic Hermite
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wavelet elements at scale 0, that is, the shapetiturs of each element are
approximated in wavelet space VO. In this stage,damage size is actually smaller
than that of each element. The corresponding nurab&OFs at scale 0 is 18. The
MSEB associated with the first mode shape is coetplivr eight beam elements, as
shown in Figure 3.2. By comparing the differencetwleen the simulated and
"measured" results, the location and severity ohage are estimated using the method
described in Sections 3.2.1.1 and 3.2.1.2, as shovwigure 3.3a. Although accurate
damage severity cannot be obtained because ofothesdale model, the suspected
damage region, that is, interval [5, 6], can becessfully identified at scale VO.
Subsequently, in Stage 2, the WFEM is refined eerval [5, 6] by lifting the wavelet
scale; that is, the shape function of the wavetetrépresented by the wavelet
approximation in space V1. Meanwhile, one more meament point atx=5.5 is
added in the modal test. Thus, the resolution ef iieasured mode shapes is also
refined in this region. As shown in Figure 3.3k& ttamage can be localized in a smaller
sub-element region in Stage 2. Repeating the meime and detection process allows
for a more accurate estimation of damage locatimh severity through iteration. The
results in Stages 3 and 4 show almost the same ggaseverity, implying that the
estimation converges and no further refinementeisessary. The quantification results
of the damage severity in each stage are also showkigure 3.3. The relatively
inaccurate estimation of damage severity in thedoale model is expected because of
the inaccurate assumption of damage location. Heweguantification accuracy is
effectively improved with the progressive refinerheh the model, and the accuracy
finally converges toward the real value in Stagesn@ 4. The damage quantification
results in Figures 3.3a, 3.3b, and 3.3c are farstthtion only. According to the
procedure described in Section 3.2.3, damage s$gvwedy be quantified only when the

damage location is best identified, that is, inldst stage (Figure 3.3d) in this case.

Considering that the damage location is always estiptable, TFEM should be
uniformly meshed without the adaptive-scale techaicA total of 32 beam elements

with 66 DOFs are required to accurately captureddm@age in Case 1, where a single
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damage region consists of 1/32 of the entire beHowever, with the proposed
adaptive-scale strategy, only 24 DOFs in Stageeduéitized in WFEM. Furthermore,
specifying the required model scale in advanceas required, and the damage is

localized and quantified progressively.

Case B-2 involves a beam subjected to double dasnaigle 20% severity. The damage
locations and severities are described in Table &l the corresponding refinement
process and damage detection results are preseamt&igure 3.4 and Table 3.2,
respectively. Following a similar process, the tamas and severities of the damage can
be identified with progressively improved accuraGwen that the left-hand damage
consists of 1/16 of the entire beam, a good esiimas obtained in Stage 2 and verified
in Stage 3. Thus, no further refinement is condliatethis region in the last stage. In
comparison, the right-hand damage is 1/32 of tlerbkength, and the relevant region
is gradually refined until Stage 4. These findinigsnonstrate that the model scale can
be adaptively adjusted according to the actual d@seenarios. Such adaptability of
the proposed strategy can help achieve accuratégesth reduced number of DOFs,

sensors, and computation cost in applications.

Figure 3.5 shows the dimension and damage locatbastwo-span continuous beam.
The severity of two damages is also 20%, with anthe interval of [3.25, 3.5] and the
other in the interval of [12.5, 12.75]. The corresgding damage identification results
are summarized in Table 3.2. Again, both the loratiand severities of the damages

can be identified with progressively improved aeoyr
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Figure 3.4. Model refinement process for Case B-2
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Table 3.2. Adaptive-scale location and quantifmatf damage using WFEM

Case B-1 Case B-2 Case B-3
Stage Location(m) Severity (%)  Location(m) Severity (%) Location(m) Severity (%)
[5, 6] 6.4 [1, 2] 7.8 [3, 4] 5.4
. [6, 7] 5.2 [12, 13] 5.4
5, 5.5] 11.5 [1, 1.5] 21.7 [3, 3.5] 9.0
? [6, 6.5] 9.5 [12.5, 13] 9.0
[5.25, 5.5] 21.7 [1, 1.25] 20.4 [3.25, 3.5] 21.2
3 [1.25, 1.5] 20.5 [12.5, 12.75] 21.2
[6.25, 6.5] 20.5
[5.25, 5.375] 21.0 [1, 1.25] 204 [3.25, 3.375] 20.6
[5.375, 5.5] 20.9 [1.25, 1.5] 20.4 [3.375, 3.5] 20.1
) [6.25, 6.375] 20.3 [12.5, 12.625] 20.1

[6.375, 6.5] 20.2 [12.625,12.75]  20.6
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Figure 3.5. Model refinement process for Case B-3
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3.3.2 Plate Structure

Figure 3.6 shows a thin plate with dimensions600 mm x 700 mm x 3 mm. The
material of the plate has the following propertiedastic moduluse =68.9 Gpe,
density p=2700 Kg/nt, and Poisson's ratigz=0.27. Table 3.3 shows the two damage

cases considered in this section: single- and @sdémage cases.

Case P-1 involves a single damage (Damage 1) inettangle [0.2, 0.25] x [0.375, 0.4]
with 20% damage severity. Figures 3.7 and 3.8 shbe/ adaptive-scale model

refinement process and corresponding damage latializresults, respectively.

y(m)
0.7I ®

N N

Damage 11
0.5

0.4
[

Damage |

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 x(m)

Figure 3.6. Thin plate in numerical study
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Table 3.3. Damage scenarios considered in the ncahsimulations of the plate

Damage

Damage scenarios
Region Severity (%)

Case P-1 Damage 1[0.25, 0.3]x [0.375, 0.4] 20

Damage | [0.25, 0.3]x [0.375, 0.4] 20

Case P-2
Damage Il [0.35, 0.4]x [0.55, 0.6] 10
y(m)
Stage 1 Stage 2
N .
0.6
0.5 B C
Stage 3
A D
A D -
0.4 - :
O-3 B C
B C
Stage 4
0.2 A D
L F3
)
1
0.1 :
B C
0 0.1 0.2 0.3 0.4 0.5 0.6
x(m)

Figure 3.7. Model refinement process for Case P-1

In Stage 1, the plate is first modeled by 8 wavelet plate elements at scale 0, that is,
the displacement field function of each elemenapproximated in wavelet space FO.
The corresponding number of DOFs at this stage@s Eigure 3.8 shows the damage
location indicators associated with the first mathape for each region. Figure 3.8a

indicates that the region [0.2, 0.83][0.3, 0.4] (ABCD) is an identified suspected
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damage region. Table 3.4 describes the damageityeestimated by using the damage
guantification equation [Equation (3.26)]. Subsedlye WFEM is refined in region
ABCD by adding scale 0 wavelets in Stage 2. In sitégye, the wavelet approximation
space is lifted to F1. One more measurement poimttarval (0.25, 0.35) is added to
increase the resolution of the measured mode simapagion ABCD in the vibration
test. Only the MSE in the suspected region ABCbalsulated. Figure 3.8b shows the
damage location identified in a smaller region2§).0.3]% [0.35, 0.4]) with improved
estimation accuracy. Further refinement and idieatiion processes are performed for
accurate detection results. In Stage 3, the waegletoximation space in the suspected
region is lifted to F2. Consequently, the suspecdaahage regions are further reduced
to [0.25, 0.275] x [0.375, 0.4] and [0.275, 0.3J>375, 0.4], which are identical to the
actual damage regions in Figure 3.8c. The refineépeactess is continued in Stage 4 by
lifting the wavelet approximation space to F3 ire thuspected regions. Two more
measurement points at (0.2625, 0.3875) and (0.283875) are added in the modal
test. The suspected damage regions are not reductbdr as Stages 3 and 4 provide
the same results (Figures 3.8c and 3.8d). Tablesl3ofvs the corresponding damage
guantification results. The accuracy of damage rgveguantification is effectively
improved with the progressive refinement of WFEMisTcase requires at least 228
plate elements with 2,896 DOFs to capture the den@zation and severity accurately
if TFEM with uniform meshing is used. However, ord8$6 DOFs are used in Stage 4

through multi-scale WFEM.

Table 3.3 and Figure 3.6 show the double damagé&zase P-2: the first region [0.2,
0.25] x [0.375, 0.4] with 20% severity (Damage mdahe second region [0.35, 04]

[0.55, 0.6] with 10% severity (Damage Il). Followithe same process employed in
Case P-1, damage is progressively identified withroved accuracy. Figures 3.9 and
3.10 and Table 3.4 present the WFEM refinement gg®cdamage localization, and
guantification results, respectively. Given thainizge Il consists of 1/168 (1/12x1/16)
of the entire plate, a good estimation of damagatlon and severity are obtained in

Stage 2 and confirmed in Stage 3. Therefore, theelga approximation space is
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recovered to F1 in the Damage Il region in StagBylcontrast, Damage | consists of

1/336 (1/12 x 1/32) of the plate. The relevantoags gradually refined until Stage 4.
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Figure 3.8. Adaptive-scale damage identificaticsutes for Case P-1
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Table 3.4. Damage severity quantification results

Case Stage 1 Stage 2 Stage 3 Stage 4

[0.2500, 0.2625] x [0.3750, 0.3875], 18.4%
[0.2500, 0.2625] x [0.3875, 0.4000], 18.7%
[0.2625, 0.2750] x [0.3750, 0.3875], 20.0%
[0.2625, 0.2750] x [0.3875, 0.4000], 18.8%
[0.2750, 0.2850] x [0.3750, 0.3875], 18.8%
[0.2750, 0.2850] x [0.3875, 0.4000], 19.8%
[0.2850, 0.3000] x [0.3750, 0.3875], 18.2%
[0.2850, 0.3000] x [0.3875, 0.4000], 18.4%

[0.25, 0.275] x [0.375, 0.4], 19.1%

Case P-1 [0.2,0.3]x[0.3,0.4], 2.8% [0.25, 0.3] x [0.3R4], 10.4%

[0.275, 0.30] x [0.375, 0.4], 18.9%

[0.35, 0.375] x [0.55, 0.575], 9.8%
[0.35, 0.375] x [0.575, 0.6], 10.0%

[0.3, 0.4] x [0.5, 0.6], 2.8% [0.35, 0.4] x [0.556], 9.9% /
[0.375, 0.4] x [0.55, 0.575], 9.8%

[0.375, 0.4] x [0.575, 0.6], 9.9%

Case P-2
[0.2500, 0.2625] x [0.3750, 0.3875], 19.5%

[0.2500, 0.2625] x [0.3875, 0.4000], 18.4%
[0.2625, 0.2750] x [0.3750, 0.3875], 19.8%
[0.2625, 0.2750] x [0.3875, 0.4000], 18.2%

[0.25, 0.275] x [0.375, 0.4], 19.1%

[0.2,0.3] x [0.3, 0.4], 2.5% [0.25, 0.3] x [0.354], 10.9%
[0.2750, 0.2850] x [0.3750, 0.3875], 18.2%

[0.2750, 0.2850] x [0.3875, 0.4000], 19.6%
[0.2850, 0.3000] x [0.3750, 0.3875], 17.6%
[0.2850, 0.3000] x [0.3875, 0.4000], 19.5%

[0.275, 0.3] x [0.375, 0.4], 18.9%

71



(a) Stage 1
(b) Stage 2

o
HO3SN dO3SN

72



(c) Stage 3

dO3SIAN

dO3SN

To)
N
o

x(m)

(d) Stage 4

Figure 3.10. Adaptive-scale damage identificatiesuits for Case P-2
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3.3.3 Noise Effects

In the actual modal test, the collected data aggiiably contaminated by measurement
noise. Therefore, the sensitivity of the proposathdge detection strategy to the error

or uncertainty in the measured modal propertiex&nined.

The mode shape with measurement error is exprégs@dan et al. 2010)
b =0,A+1¢,) (3.30)
where ¢, and ¢, are the "measured” and accurate mode shape contpanfethei™

mode at the™ DOF, respectively;nis the measurement error level considered in the

"measured" mode shapes; agg is the zero-mean Gaussian random variabldse

random measurement error is simulated through tlo@t® Carlo method, and each
level of measurement error consists of 1,000 M&delo simulations. The statistical
characteristics of the damage detection results) as the coefficient of variance (COV)

of the estimated damage location and severityexaenined.

Q

CoV =22 (3.31)

o |

where a and o, represent the mean and standard deviation of tmeage index

(location or severity), respectivellyive different levels of measurement error in mode

shapes are considered: 1%, 2%, 3%, 4%, and 5%.

Figure 3.11 shows the damage localization and dfication results in the last stage
(Stage 4) of Case B-3 with different levels of meament error. Th&IMSECRS and
the estimated damage severities are the ensemilagers of 1,000 samples. The
average results can well reflect the locations sewekrities of the double damages, but
the presence of measurement error affects the geyBiSECR of undamaged regions,
which increases with the measurement error levelgdneral, no significant changes
can be observed among three measurement erros,laugblying that the effect of

random measurement error can be minimized by awvegdge results from a sufficient
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number of measurements. However, apparent change®V can be observed with the

increase in the measurement error level.
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Figure 3.11. Damage detection results under difiteneise levels in
Stage 4 of Case B-3

Figures 3.12 and 3.13 show the COVs of the estiendtanage indices (location and
severity) at different scales in Case B-1 and &8e Figures 3.14 and 3.15 show the
COVs of the estimated damage indices (locationsaverity) at different scales in Case
P-1. A high COV in the results implies a high leeéluncertainty in a single sample or
more samples are required to obtain accurate esbimdn general, the uncertainty in
the detection results increases with the measureereor level. The same error level
results have high COV at a high wavelet scale,caitig that a high-scale WFEM is
sensitive to measurement noise. Measurement nffesgsathe detection results of plate

structures more than that of beam structures.
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Figure 3.13. COV of the estimated damage severdgx in Case B-3
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Figure 3.15. COV of the estimated damage severdgx in Case P-1

3.4 Summary

A progressive damage detection strategy is proptiselbdleam and thin plate structures
through the use of wavelet finite beam and plagenehts, respectively. By using MSE
as a damage indicator, structural damage is laxhlend quantified progressively. A

coarse WFEM is used to identify the likely damagedion, and gradually lifted
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WFEMSs with local refinement are used to estimateabcurate location and severity of
the damage. The superior multi-resolution and Inratibn properties of WFEM allow
for a flexible and convenient change in modelingles in the damage detection process.
WFEM is gradually refined from low to high resoluti in critical regions. Therefore,
the WFEM-based progressive damage detection syraelgieves a desirable tradeoff
between modeling details and entirety. Moreoveralibws for the arrangement of
sensors in the most likely damaged regions, whimdsdcot only reduce the number of
required sensors but also enhances the damagetideteapability. The two-step
detection process (i.e., localization and quargtfan) also improves the efficiency and

accuracy of damage detection.

Numerical examples of a simply supported beam, @dpan continuous beam, and a
thin plate simply supported on four corners arelyaeal under different damage
scenarios. The results demonstrate that the prdpssategy can progressively and
accurately locate and quantify sub-element damages.proposed strategy is efficient
in terms of DOFs, sensors, and computation effedalise the wavelet scale can be
adaptively enhanced and reduced according to acteds. The effect of measurement
noise on the detection results is also assesseMarde Carlo simulations. Detection
accuracy at a relatively higher scale is more $®psto noise. Measurement noise

affects the detection results of plate structuresenthan that of beam structures.
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Chapter 4 Progressive Damage Detection Based on
Model Updating

4.1 Introduction

FEM updating is a commonly employed structural dgendetection tool. It aims to
achieve a high level of agreement between numemsallts and test data by modifying
structural mass, stiffness, and damping parameétemsimerical models. Following the
same strategy as in Chapter 3, a progressive dadagetion method based on WFEM
updating for beam and plate structures is propaséds chapter. Sub-element damage
can be gradually identified through the multi-scaledel updating process according to
the measured modal properties. The scale of theeletrelements in the regions of
concern is adaptively enhanced or reduced to rercampatible with the gradually
identified damage regions during the process; és¢ modal information remains the
same, i.e., no sensors replacement or new sensone@ded. The proposed method can
effectively minimize the number of DOFs in WFEMwsl| as the number of unknown
variables to be updated. Thus, computation effyecan be considerably enhanced.
Numerical and experimental examples are providedaliolate the proposed multi-scale

WFEM updating-based damage detection method.

4.2 Progressive Updating of WFEM

FEM updating aims to minimize the error betweertaterquantities obtained from the
measurement data and model simulation. Selectingatupy parameters and
formulating an objective function are two criticamponents during the FEM updating

procedure.
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4.2.1 WFEM Updating

Damage detection studies often assume that no ait@sation occurs before and after

damage, which is acceptable in most situations. &gmndexesBD, for beam and

PD, for plate are represented by the relative vamatibflexural rigidity as follows:

BD, =1- E:d (4.1a)
DS
PD, =1-—¢ (4.1b)

where El and D are the flexural rigidity of the beam and platespectively.
Subscriptsu and d denote the undamaged and damaged states, respedBixen
that damage is assumed to be the reduction inriéxigidity in a sub-element region,
that is, the damage size is only part of an elemnathter than an entire element, the
primary multi-scale and localization characterstaf WFEM can be fully maximized.
The identification of the damage index for each-sldment region allows one to

estimate not only the damage location but alsal#meage severity.

The optimization problem involves minimizing theffdience between experimental
and numerical modal properties by updating sub-efgmflexural rigidity. The
measured natural frequency and MAC, which are contynradopted in model updating,

are also utilized in this chapter in the objecfiwection.

min J(p) = Za HA“ 02, j - {Ag A H + Z,B [sart(MAC, (p)) - sart(MAC,) |’

A2 Al
(4.2)
Ani = (Zﬂfni )2 (43a)
A, =(2mf, ) (4.3b)
MAC. = [%Ti(p)(lﬂ (4.4a)

" d@a®][(@) 4]
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(4.4b)

where the vectorp OR" represents the set of updating parameters; supsré; u,

and d denote the initial, undamaged, and damaged stagsctively;f

i

andf are the
numerical and experimental natural frequency of tHemode, respectivelyy, and

@, are the numerical and measured mode shape of thmode; anda and g are

the weighting factors of thé ™ mode (usually assigned according to their impaean
and measurement accuracy in experiment). In thewolg numerical and experimental

study, they are all set to 1.

For the numerical study, considering that theahstate (denoted by 0) of the WFEM is
assumed to be the same as the undamaged statee@diéryou), the objective function

can be simplified as

min J(p)=iai {W} +irfi’i[sqrt(lleci)—l]2 (4.5)
__ (da)

MAC =——mm/ 4.6

TG da) (*6)

4.2.2 Damage Detection Procedure

By using the salient multi-scale characteristics WWFEM, a progressive damage
detection strategy is developed for beam and @atectures. Figure 4.1 presents the
flowchart of this damage detection scheme. Theilddtgrocedure is described as

follows.

Step 1: Install sensors on the concerned struetndemeasure its dynamic parameters
(i.e., frequencies and mode shapes), and then ladcthe MACs. Only the

magnitudes of the mode shapes at DOFs coincidetht segnsor locations are
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adopted.

Step 2: Select and initialize updating parametapslate a relatively low-scale WFEM,

and estimate the occurrence and rough locatioheo$tructural damage (if any).

Step 3. Refine the WFEM in the suspected regiororategly by adding high-scale
wavelet terms. Select the updating parametersdrstispected region only, and
update the lift WFEM by iteration, with the initiafalues being the damage
severities obtained in the last step. Consequethigydamage can be localized in

a smaller region, and the damage severity can astifigd more accurately.

Step 4: Check the convergence of the results, edifsthe difference is smaller than a

prescribed threshold. Otherwise, repeat Step 3.

Y Y

Initial WFEM Modal testing

Y
» Select updating parameters

-l
Bl

A

Model updating

Refine suspected region
locally by adding
high-scale wavelets
[

Any damage?

Convergence
compared with
adjacent scale?

Figure 4.1. Diagram of the multi-scale WFEM updgtstheme
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During the damage detection process, the updatangnpeters are adaptively selected
according to the gradually identified damage saesaand limited to the suspected
regions only. Thus, the computation cost in thenoation process can be reduced
considerably. Furthermore, only WFEM is adaptivelyanged, and no additional
requirements, such as installing more sensors enstispected damage regions, are

required in the modal test.

4.2.3 Effect of Sub-Element Damage

The impact of sub-element damage on the beam etestiéfness matrix is illustrated

by the following example. Figure 4.2 shows a watvbleam element with a localized
damage within the interval of [0.25, 0.5]. The damaeverity is 80%. The change
percentage of each element in the stiffness ofddwmaged wavelet finite element

compared with the undamaged one is
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L e Pl :
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| 0 |
- 0.8 |
| 0.8 | }[0.25,0.5]
L Wo— . — . — .=
(4.7)

in which VO denotes the part constructed basecerstaling function at scale 0; WO,
W1, and W2 denote the parts constructed basedeowdlelet functions at scale 0, 1,
and 2, respectively. The support regions corresipgnith each scale are also shown in
the equation. At scale 0, although the non-zermetfdgs in the sub-matrix WO indicate
the likely change in this element, its change paiage is much less than 0.8. With the
increase in scale, the values in W2 not only indidae location of the sub-element

damage [0.25 0.5], but also accurately representiiimage severity index equal to 0.8.
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This is due to the different support regions of thavelets at different scales. The
support length is equal to 2 for scaling functianscale 0 and equal to 1, 0.5, and 0.25
for wavelet functions at scale 0, 1, and 2, respelst The elements in sub-matrix W2
corresponding to the wavelets with the supportaregin the interval [0, 0.25] are equal
to 0, whereas the matrix elements whose supporbniegre in the interval [0.25, 0.5]

are 0.8, equal to the damage severity.

[ N |
0 0.25 0.5 1

Figure 4.2. Local damage in a wavelet beam element

In the progressive damage detection process, tmagka index that reflects sub-region
flexural rigidity can be selected as the paramttdye updated, where the length of the
sub-region corresponds to the support length otthieent scale. In the aforementioned
example, the damage index of interval [0, 1] i®sid as the updating parameter for
scale 0, the damage indices of intervals [0, 006l [8.5, 1] are selected for scale 1, and
the damage indices of intervals [0, 0.25] and [0@5] are selected for scale 2. As
shown in Equation (4.7), the stiffness matrix oé thresented beam WFEM is fully

scale-decoupled, which greatly reduces the computaost. The progressive method
performs efficiently because in each refinemergestanly higher scales of wavelets are
added in the suspected region to achieve moresgreesults. The effect of sub-region

damage on the plate element is similar.

4.3 Numerical Study

Numerical examples of a simply supported beam atidnaplate simply supported on
four corners are employed again to demonstrateetfextiveness of the proposed

progressive damage detection method.

Densely-meshed TFEMs are used to simulate the deonstguctures and extract modal

properties. The noise effect is considered in thenerical simulations using the same
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method described in Section 3.3. In this sectioecti®n 4.3), 0.5% artificial random
noise is introduced in the frequencies and modeeshaOnly the first four frequencies
and mode shapes are utilized because only the loweles can be measured in real
modal tests. Considering the difficulty in measgrirotational DOFs, only vertical
DOFs in mode shapes are used. The modal informased in different stages is the

same, and no new sensors are added during the WetiMment process.

4.3.1 Beam Structure

Figure 4.3 shows a simply supported beam with gtkenf L =8 m, elastic modulus of

2.0x16" N/nf, density of 7.6x1G Kg/ni, cross-sectional area of=0.08x 0.08 m,

and moment of inertia ofl =3.4133« 10° M. As shown in Table 4.1, two damage

scenarios with different damage locations and segare considered. In both cases, the
assumption is that only vertical DOFs of mode sbapee measured at points

(x=1, 2,---7m).
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Stage 1 | [ [ [ Al EER [ [ |
2 vo et
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o4 425 __ 45
Stage 3
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:4.25 4.375 4.5
Stage 4 .

V3

Figure 4.3. Model refinement process in Case B1



Table 4.1. Damage scenarios considered in the ncahsimulations of the beam

Damage scenario Damage location Damage severity (%)
Case B1 Single damage [4.25, 4.5] 20
Case B2 Multiple damage [2.75, 3] 20
[4.5, 5] 10

Figure 4.3 illustrates the process of progressarmabe detection in Case B1. The beam
was modelled by eight equal-length wavelet eleméntStage 1, the damage indices of
the eight elements are updated via the optimizatimecess with the objective function
defined in Equation (4.5). The updating resultsrapresented by Stage 1 in Figure 4.4,
which implies that the interval [4, 5] is a possitdamage region. In Stage 2, the
suspected element is refined by adding wavelessae 0 (Figure 4.3). Meanwhile, the
damage indices of intervals [4.0, 4.5] and [4.5, &g selected as the updating
parameters. Thus, the number of parameters to lbategh and the corresponding
computation effort are significantly reduced. Tleanége severities estimated in Stage 1
are regarded as initial values, and optimal estonaif the parameters can be obtained
by iteration with the same objective function aattin Stage 1. The corresponding
updating results are shown in Figure 4.4. Appayettite interval [4, 4.5] is likely to be
a damaged region. Hence, the location of the dansagstimated with a high spatial
resolution. By refining the suspected region furtree more accurate estimation of
damage location and severity can be achieved. Stagad 4 provide almost the same
damage detection results (Figure 4.4), implying tha estimation converges and no

further refinement are necessary.
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Figure 4.4. Progressive damage identification tesnlCase B1

For model updating-based damage detection, a langeber of DOFs and updating
parameters would increase the computation amouhteaan make the solutions non-
unique and ill-conditioned. Given that the WFEM lscaan be adaptively adjusted
according to actual needs, structural damage caaelpdified with satisfactory accuracy
at the cost of minimized number of DOFs in the naaled updating parameters in
optimization. In Case B1, the damage region length/32 of the total length of the
beam. Using traditional finite elements, 32 beaem&nts and 66 DOFs in FEM and 32
updating parameters are generally needed to aetycpture the damage location and
severity. With WFEM, only 24 DOFs (Stage 4), 8 uptta variables (Stage 1), and 2

updating variables (Stages 2, 3, and 4) are used.

Figure 4.5 shows the model refinement and paramgteéating process in Case B2, in
which the beam structure is subjected to doubleadg® with different locations and
severities (Table 4.1). Different from Case B1,adsd alarm of damage locations
occurred in the first stage because of the reltil@v resolution of the WFEM and

low number of updating parameters. As shown in FEgli6, in Stage 1 of Case B2,

intervals [0, 1], [2, 3], and [4, 5] are identified probable damage regions, but the first
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one is actually a false alarm. However, after iafinthe model in the three concerned
intervals in Stage 2, the updating results sugtfest intervals [2, 3] and [4, 5] are

probable damage regions and interval [0, 1] is mberefore, in Stage 3, the suspected
intervals [2, 3] and [4, 5] are further refined &yding wavelets of scale 1. Interval [0, 1]

is reverted to the state in Stage 1.
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Figure 4.5. Model refinement process in Case B2
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Figure 4.6. Progressive damage identification tesnlCase B2
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The right-hand damage region consists of 1/16 @fkdthtire beam, whereas the left-hand
damage region consists of 1/32. The resolutionthefstructural model of these two
regions are enhanced or reduced according to acéeals during the damage detection
process. This adaptability of structural model ssaWwill efficiently minimize the

computation cost.

4.3.2 Plate Structure

Figure 4.7 shows a numerical example of a thinepsanply supported on four corners

under different damage scenarios (as summarizd@hite 4.2). The physical material
properties are dimensions o®0mm x 500mm x 3 mm,elastic modulusE = 68.9 Gpg,
Poisson's ratiog=0.27, and density p = 2700 Kg/ni. Only vertical DOFs in the mode

shapes at the 44 sensor locations (Figure 4.7)usesl during the entire damage

detection process.
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Figure 4.7. Thin plate in the numerical study
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Table 4.2. Damage scenarios considered in the ncahsimulations of the plate

Damage

Damage Scenarios
Region (m) Severity (%)

Case P1 Damage 1[0.45, 0.5k[0.275, 0.3] 30

Damage | [0.45, 0.5k[0.275, 0.3] 30
Case P2
Damage Il [0.25, 0.3k[0.15, 0.2] 20

Case P1 involves a single damage in the regiorb[M4b] x [0.275, 0.3] with 30%

severity. Figures 4.8 and 4.9 show the identifaratprocess and the corresponding
results, respectively. The entire damage deteqgbiatess of Case P1 consists four
stages. In Stage 1, the plate is divided into 3%)Wwavelet plate elements at scale 0O,
that is, the displacement is approximated in wavefgace FO. The corresponding
number of DOFs at this stage is 176. The damagedadof the 35 elements are
obtained by minimizing the objective function adiked in Equation (4.5); the results
are plotted in Figure 4.9a. The region [0.4, 0x§0.2, 0.3] (denoted as ABCD) is a
potential damage region, although the damage ggvisrinot estimated accurately
because of the low-scale model. In Stage 2, wavealétscale O are added to the
potential damage region (ABCD) of WFEM to expane éipproximation space from FO
to F1. Four damage indices associated with the éoual sub-regions divided from

region ABCD (Figure 4.8) are regarded as updatiagameters. The significantly

reduced number of updating parameters greatly nmeisn the corresponding

computation amount. With the estimated damage gm#&m Stage 1 as initial values,
the optimization process is implemented again tguase more precise results. The
results shown in Figure 4.9b indicate that theaedD.45, 0.5]x [0.25, 0.3] is more

likely to be a damaged region than the other thikech means the damage is localized
in a small region. Similar refinements are appliedthe progressively identified

potential damage regions, and optimization processe implemented accordingly.
Hence, gradually accurate estimations of the dart@gion and severity are obtained

(Figures 4.9c and 4.9d). Stages 3 and 4 presermasaltne same damage identification
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results that are close to the real value. For exantipe damage region of [0.45, 0%]
[0.4275, 0.3]is identified in both Stages 3 and 4, with the ager damage severity
equal to 29.6% and 30.1%, respectively.
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Figure 4.8. Model refinement process in Case P1
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The numbers of DOFs in Stages 1 to 4 are 176, 188, and 192, respectively; the
corresponding numbers of updating parameters are4354, and 8, respectively.
However, if TFEM is adopted, uniformly meshed 280 (at least 14x 20) plate
elements are required to accurately identify thealge because it consists of 1/280
(1/14%1/20) of the entire plate and cannot be knawadvance. The numbers of DOFs
and updating parameters are 2,420 (at least 1241660 (at least 280), respectively.
Thus, the optimization process would be impractiaat time consuming, if not
impossible. With the proposed approach, damagectiate becomes very efficient
because only WFEM is refined in probable damagensgand no sensors are replaced

Or N0 new sensors are needed.

Figure 4.10 shows the model refinement and updatingess in Case P2, in which the
plate is subjected to double damages, that is, Qarhan [0.45, 0.5] x [0.275, 0.3] with

30% severity and Damage Il in [0.35, 0:4]0.55, 0.6] with 20% severity, as listed in
Table 4.2. Given that the extent of the two damagesot the same, this case will
highlight the flexibility characteristic of WFEM idamage detection more clearly. The
WFEM refinement process and damage detection seatdt presented in Figures 4.10
and 4.11, respectively. Detection accuracy is &ffely improved with the progressive

refinement of WFEM.
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Figure 4.10. Model refinement process in Case P2
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Figure 4.11. Progressive damage identificationltesn Case P2
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4.4 Experimental Verification

Two experimental studies, namely, a single-baylsetstpry steel portal frame and an
aluminum plate fixed-supported on two adjacent sidee conducted to examine the
effectiveness of the proposed progressive damatgetde method in actual testing

environment.

4.4.1 Frame Structure

4.4.1.1 Experimental Description

Figure 4.12 shows the single-bay single-story speetal frame investigated in this
section. The experiment was initially reported bgoHand Xia (2002). The Young's
modulus and density of the steel material are 20x4/m? and 7.67x1bKg/m?,
respectively. The cross sections are 40.5 x 6.0 mmd 50.5 x 6.0 mfnfor the beam
and columns, respectively. The vibrations of thdamaged and damaged frames are
measured with accelerometers in a series of hammeact tests, and their modal
properties are obtained through frequency respfursgion analyses. Four saw cuts are
created to represent multiple damages in the fravitb,their locations shown in Figure
4.12. Sequential cases representing different damsayerities are tested in the
laboratory. The case corresponding to saw cut déptd0% of the section width [Case
F4 in Hao and Xia (2002)] is employed in this sactito validate the progressive
damage detection strategy. Table 4.3 presentsrtel? in-plane vibration frequencies
of the frame in undamaged and damaged states.eFgLB shows the first 12 in-plane
mode shapes of the steel frame for the undamageésl #tithough the mode shapes are
measured at 29 equally spaced points in the testyg,the DOFs at 14 points (i.e.,
x=0.2, 0.4,--- 0.28r) are considered in each mode shape in the WFEMebas

progressive damage detection method presentedsichbpter.
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Figure 4.12. Configuration of the frame specimeadtnd Xia 2002)

Table 4.3. Modal frequencies of the tested frarmzy (Hao and Xia 2002)

Mode Undamaged Damaged Mode Undamaged Damaged

1 4.49 4.31 7 87.79 85.91

2 17.41 16.90 8 132.99 129.95
3 27.99 26.68 9 155.42 152.57
4 30.89 29.76 10 165.67 162.92
5 61.84 60.80 11 228.70 225.30
6 74.41 71.14 12 255.30 248.51
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4.4.1.2 Damage Detection Process and Results

Figure 4.14 illustrates the damage detection pocBElse frame was initially modelled
by 15 equal-length plane beam-type wavelet finikkenents described in Chapter 2. The
numbers in the figure stands for the nodal cootdsrameasured from the left column
base toward the right column base (Figure 4.125thge 1, the damage indices of the
15 elements were optimized with the objective fiorctdefined in Equation (4.2).
Owing to the relatively low resolution of the WFEMd signal noise, misjudgment of
damage locations occurs in the first stage. As showFigure 4.14a, five intervals,
namely, [0, 0.2], [0.2, 0.4], [1.0, 1.2], [1.4, ].@nd [2.4, 2.6], are possible damage

regions, where the last one is actually a falsemaltn Stage 2, the suspected regions
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are further refined by adding wavelets of scaleFigyre 4.14b). Meanwhile, the
damage indices corresponding to intervals [0, Qa.], 0.2], [0.2, 0.3], [0.3, 0.4], [1.0,
1.1], [1.1, 1.2], [1.4, 1.5], [1.5, 1.6], [2.4, 2.%nd [2.5, 2.6] are selected as updating
parameters. Optimization of the updating parametansbe obtained via iteration, with
the initial values equal to the damage severit@snated in Stage 1. The optimization
results suggest that only the first four intervale probable damage regions. The false
alarm in interval [2.4, 2.6] is successfully remdyso the probable damage regions are
reduced to smaller intervals where the saw cut$oaated As indicated in Figure 4.15,
by further refinement of the suspected region, fbgults of Stage 3 indicate that
damages cannot be reduced to smaller intervals @mynwhich matches the fact that

the damages are located in the middle of seleatedvials of Stage 2.
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In the WFEM-based damage detection of the stediapérame, only 44 DOFs are

involved in Stage 3, and 14 accelerometers are dsgdg the entire damage detection
process. Experimental results were also used irddmeage detection based on TFEM
and genetic algorithm in the study of Hao and Xd802). To accurately capture the
damage locations in their study, measurements d&@@Bs were used, and the FEM
included 30 equal-length beam elements and 87 DU#es.damage localization results

obtained in this section are more accurate thasetlob Hao and Xia (2002).

In sum, the proposed WFEM-based progressive danusgection strategy with
comparatively small numbers of DOFs, sensors, apdating parameters can

considerably enhance the efficiency of damage tletec

4.4.2 Plate Structure

4.4.2.1 Experimental Description

Figure 4.16 shows an aluminum plate with the dirmrssof 405x 455x 3 mnt. Two
adjacent sides (right and lower edges) of the @atefixed and supported on a testing

table (NEWPORTs ST-UT2) through two panels. Theemal properties of the plate

are elastic moduluse =68.9 Gpe, density p=2700 Kg/ni , and Poisson's ratio

u=0.27 . Figure 4.17 shows the damaged zone with the diroensof

32.7 mmx 18.4 mm. Thickness reduction of 2 mm is introdubgdmilling the plate.
Given that the original thickness of the plate i@, damage severity can be regarded as
approximately 66.7%. An electro-mechanical excitB&Ks 4809, Figure 4.18) is
utilized to apply point-force excitation, and aseeng Doppler laser vibrometer system
(Polytec§ PSV-400) is employed to capture the out-of-plaispldcements at each

measurement point on the front surface of the plate
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Figure 4.17. Damage zone on the plate
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Figure 4.18. Vibration exciter

Based on the frequencies (Table 4.4) calculatesh frieM of the plate in undamaged
state, the excitationrdquencybands in the test are determined and listed in Tabde 4.
Using narrow-band random excitation helps obtaghtdccuracy results. Single-input-
single-output (excited at single point and measwaedingle point) is adopted in the
vibration tests, and the test is repeated threegifar each mode. Then, the average of
the identified frequency values are regarded agxiperimental frequencies of the plate

in both undamaged and damaged states. The regallistad in Table 4.4.

Table 4.4. Frequency of the plate in the experimesttidy (Hz)

FEM Value Experimental Value
Mode
Undamaged Excitation frequency = Undamaged Damaged
3 109.885 [105, 115] 111.514 111.106
4 189.639 [185, 195] 189.870 189.544
5 227.818 [225, 235] 233.161 232.263
6 281.531 [275, 285] 282.359 281.232
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In the following mode shape test, single-input-malitput (excited at single point and
measured at multi points) is adopted instead oflsimput-single-output. Harmonic
frequency excitation with a fixed frequency (ell1.514 Hz for the third mode shape
in the undamaged state) is used to excite the,@ate then the out-of-plane vibration
displacements at the 49 x 49 discrete points a@sured with the scanning Doppler
laser vibrometer system (Figure 4.19). The disptean® mode shape corresponding to
this frequency is subsequently obtained. The mddpes of the damaged plate are
plotted in Figure 4.20. The first and second naftequencies and mode shapes are not
obtained because the electro-mechanical excitauspended and unable to reliably

excite low-frequency vibration modes.

&

srefee

Figure 4.19. Vibration test on the plate with 49xd8asurement points
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Figure 4.20. Experimental mode shapes of the dadhplgee

4.4.2.2 Damage Detection Process and Results

The frequencies and MACs corresponding to fAéo36" modes are used in the damage
detection process. Although 49 x 49 spaced pomtsequired in the experiment, only
data at 5x5 points are used in damage detectmsidering the fact that too dense
measurements in vibration tests require many serasut increase the demand for signal
acquisition, transmission, and processing, whicly mat be practical in the vibration
tests of civil structures. In WFEM, the plate igially divided into 6 x 6 wavelet plate
elements, as shown in Figure 4.21. The originaletisions of the elements are not
uniform to make the nodes of the elements congistéh the 25 measurement points.
For simplicity, the dimensions of the plate aremalized to [0, 6] x [0, 6] so that all the

36 elements are square with unit dimensions, assio Figure 4.21.
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Figure 4.21. Thin plate in the experimental study

Too many updating parameters often cause difficutgamage detection, particularly
with the presence of test noise or other enviroralefiactors. To further reduce the
number of updating parameters in the initial stagay 12 flexural rigidities (i.e., D1,

D2 ...... D12) as shown in Figure 4.22a are selectedupmlate in Stage 1. In other
words, every three elements are assumed to havef@m parameter. The updating
results are shown in Figure 4.23a. The elemenése@lto D2, D8, and D9 are identified
as possible damage regions. In Stage 2, the flexigrdities of nine elements (Figure

4.22b) are selected as updating parameters, andptitaization process is performed
again. The results show that the regions [3, 4,X5] (denoted as ABCD) and [4,

5] x [2, 3] (denoted as EFGH) are possible damag®ns. Further refinements in these

two regions are made in the following proceduragufes 4.22c and 4.23 show the
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damage detection process and the correspondindgtsiesespectively. Although
misjudgment occurs in the beginning stage of threatge detection process, accuracy is
improved gradually with the refinement of WFEM. Stage 4, the damages are located
in three regions, namely, [3.5, 3.75] x [4, 4.28]5, 3.75] x [4.25, 4.5], and [3.75, 4] x
[4.25, 4.5], but the third region is a misjudgmehhe damage severities are fairly
satisfactory albeit different from the real valu®6g) although the third region is a
misjudgment. However, further refinement in Stagerdssens the damage detection
results in terms of damage severity. A possiblsgras that high-scale WFEM is more

sensitive to the error or uncertainty in the tegti@sults, as mentioned in Section 3.3.3.
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Figure 4.22. Model refinement process of the expenit
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4.5 Summary

By utilizing the unique multi-scale and localizatiproperties of WFEM, a progressive
damage detection approach with the capability teaesub-element damage gradually
by optimizing an objective function that combinesguencies and MACs is proposed
for beam and plate structures. The scale of theelgawlements in the regions of
concern can be adaptively enhanced or reducedmainecompatible with gradually

identified damage scenarios. The test modal inftionaemains the same, that is, no

sensors are replaced or added.

Numerical and experimental examples are investibatéh different damage scenarios
to demonstrate the effectiveness of the proposatadeThe results demonstrated that
compared with TFEM, the proposed method can idendifuctural damage with
satisfactory accuracy and high efficiency at thet@l minimized number of DOFs in
the model and updating parameters in optimiza#dthough sometimes misjudgments
occur during the detection process, further refirtime WFEM in the subsequent stages

would lead to high accuracy and successfully renbeeanitial false alarms.

Chapters 3 and 4 present progressive damage detdastised on MSE and model
updating, respectively. Although the former is tieféicient as it is based on analytic
derivation, more sensors need to be installederstispected damage regions during the
damage detection process. In particular, the needhie measurement of rotational
DOFs in mode shapes makes the implementation ofMB&-based method very
difficult, if not impossible, in real applicationsloreover, the method is highly sensitive
to noise because only mode shapes are adopted.wWi#anmodel updating-based
damage detection employs an optimization solutf@mnce, misjudgments may occur,
and conducting iterative optimization becomes timensuming. In addition,
determining the weighting factors is another chraiag task. Nevertheless, sensors
need not be added during the detection processefine, model updating is the more

practical method of the two.
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Chapter 5 Moving Load-Induced Response of a
Damaged Simply Supported Beam and
Its Application in Damage Localization

5.1 Introduction

Damage detection that employs moving load-inducespanse time histories have
received a growing amount of interest (e.g., Zhd &aw 2006; Lu and Liu 2011;

Chang et al. 2014). Many moving load-based damaggection methods rely on FEM.
The number of DOFs of the model and updating par@msen optimization affect not

only the accuracy but also the efficiency of damdggction. As pointed out in Section
1.2.3, locating damages first by using signal psscgy tools (e.g., Zhu and Law 2006;
Meredith et al. 2012; Khorram et al. 2013) and tkelecting updating parameters in

damaged regions alone can reduce the number ofinggerameters effectively.

A fundamental problem that has failed to elicit quste attention is how local damage
affects the moving load-induced response. The answthis question is essential for
the development of damage localization algorithivemag et al. (2004a) deduced the
closed-form solution of the moving load-induced aync response of an undamaged
simply supported beam. Yang and Lin (2005) stated the dynamic response of a
damaged simply supported beam consists of two caerms, namely, the driving-
frequency component of the moving load and therakftequency component of the
beam. The purpose of this chapter is to investiteeeffects of local damage on these
two components and develop an efficient damagditateon method that employs the
moving load-induced response. Based on modal fation and modal superposition

methods, the closed-form solution of the dynamispomse of a damaged simply
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supported beam under moving force is developed.cldsed-form solution allows for
the individual examination of damage-induced change the two components. A
simple and efficient damage localization approdcat ttmploys discrete DWT and
single-sensor measurement data is proposed. Numhegiamples are utilized to
validate the efficacy of the proposed response caatipn algorithm and demonstrate

the effectiveness of the corresponding damageikatain method.

5.2 Moving Load-Induced Response of a Simply Supptad

Beam

5.2.1 Undamaged Beam

Yang et al. (2004a) investigated vehicle-bridgeerattion dynamics with a bridge
simulated by a simply supported beam; they derisleded-form solutions for bridge
and vehicle responses when a vehicle is travellomy the undamaged bridge.
Furthermore, Yang and Lin (2005) stated that theadyic response of the bridge
consists of the moving-frequency component of theving vehicle and the natural
-frequency component of the bridge. The closed-feohution for the dynamic response
of the bridge is briefly introduced in this subsect along with some necessary
adjustments. Readers may refer to Yang et al. @08dd Yang and Lin (2005) for the

detailed dynamic response of the moving vehicle.
Moving load F
u
l moving velocity v
x ¢ mmm--= >

7

3

Figure 5.1. Simply supported beam subjected to ngpload
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By assuming that the mass of the vehicle is conslidg less than that of the bridge, the
moving vehicle can be approximated by a single mgpvoadF with constant speed
(Yang et al. 2004a; Yang and Lin 2005). Figure $hbws a bridge represented by a
simply supported Bernoulli-Euler beam subjectedntoving load F. The major
parameters of the beam are as follows: beam lsp#oung's modulug, mass density,
cross-section ared, and moment of inertia For simplicity, the damping property and
pavement irregularity of the bridge are ignoredifsmequation of the motion governing
the vertical vibration of the beam subjected toavimg load is

6 u(x, t)
o ox

0 u(x t)

{EI( X) } Fo(x - W) (5.1)

wherex is the location in the longitudinal directionjs time, u(xt) is the vertical
displacement of the beamy is the moving velocity of the force, and is the Dirac
delta function. For the linearly elastic respondeacsimply supported beam, beam

displacementu(x,t) can be expressed as the superposition of modeslaafollows:
. mx
u(x,t) = Zqi v, (x) = Zqi (t)smT (5.2)

where ¢ (X) =sin{zzx /L) is thei™ mode shape of the simply supported beam with a

constant cross section amgl(t) is the corresponding modal coordinate. By assuming

zero initial conditions, Yang et al. (2004a) dedwe closed-form solution for the beam

displacement response as

u(x,t) =u,(x,t)+u,(x,t)

izzx (5.3)

vt |m< singt )SI

sin

pALzaf(l SR pALzaf(l )

where inzv/ L is the moving frequency of the vehicle correspogdio thei™ mode

shape of the beam and) is thei™ natural frequency of the beam.

i [8

oA (5.4)
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where S, is the ratio of moving frequency to natural freqoye and is regarded as a

dimensionless velocity of the moving load.
§=— (5.5)

As shown in Equation (5.3), the beam displacemespionse is expressed as the sum of
two components,u,,(x,t) and u,(x,t), which are governed by the moving frequencies

of the load and the natural frequencies of the heaspectively.

If the damping of the beam is considered, Equatto8) can be revised as (Yang and
Lin 2005)
u(x,t) =u,(x,t)+u,(xt)

1
! pALZaf[(l—SZ)%(zziS)ﬂ[

Seéet !2: -@-§)
\/1‘42

(1-s )sm@ Z.S cos?} siliqL@

0,0t =25

AL Zaf[(l—sz)2+ (20:S)]

sin(at)+ 2, cosfyt % sir%l_ﬂ

(5.6)

where ¢, and @ are the damping ratio and damped frequency of ithenode,

respectively, and component, (x,t) corresponds to a zero initial condition only.

5.2.2 Damaged Beam

The dynamic response of a damaged beam was prgvigtuslied by modeling cracks

at one section with rotational springs (e.g., Zhd daw, 2006; Roveri and Carcaterran
2012; Khorram et al. 2013). However, in this studgmage is modeled as the loss of
flexural rigidity in a local region with certainrgth; this procedure is more commonly
adopted in health monitoring of civil structure$ieTcorresponding dynamic response of

a damaged beam is derived by extending the metitomtiuced in Section 5.2.1.

Assuming that damage leads to a local change irlekaral rigidity of the beam but

not to a change in mass, damage can be repredgnted
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El Y(x) = El (X) + AEI (X) (5.7)
where El(x) and El°(x) are the flexural rigidities before and after damag

respectively, andAEl (x) is the stiffness loss resulting from the damagde feduction

in flexural rigidity causes changes, typically shp@rturbations, in the eigenvalues and

mode shapes (Fox and Kapoor 1968; Shi et al. 2088)b)

A= (af) =4+ 00 (5.8)

60 =4,() +08,() =40+ > b 4% (5.9)

j=1,j#i

where superscripl denotes the damage state antl, «f , and ¢°(x) are thei"

eigenvalue, frequency, and mode shape, respectfellye damaged beam. The change

in thei™ mode shapeAg, (x) is represented by a linear combination of othed@soin

which the firstn modes are considered. With, =1, Equation (5.9) can be rewritten as

¢’ (x)=>.b 4,(x (5.10)
j=1
The eigen solutions of a healthy beam are definethé following partial differential

equation (Clough and Penzien 1993).

9°

2 {Ei( 0 L) ‘”(X)} APAB(X) =0 (5.11)

With damage-induced perturbations, the above eguatn be rewritten as

0* {[a (9 + 281 (] L2 (X(?,X*fmx)]}—ui 1) pA[B(¥) +14,(%] =0 (5.12)

Substituting Equations (5.8), (5.9), and (5.11p iBguation (5.12) results in

02 2A¢

—[EI . Ny,
0x

2
'+AEI6¢'+AEI T - ApALG, — A pAS - DA pANG, =0 (5.13)
X

With the assumption that the perturbation termsvarg small, high-order small terms
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°Ag (X) . .
[e.g., AEI (x)a—x'2 and AApAAg.(x) ] were normally neglected in previous

damage detection studies (e.g., Shi et al. 200G Bnd Roeck 2002a; 2002b).
However, these high-order terms are retained inakogu (5.13) because a noticeable
error in the dynamic response induced by neglediege terms is observed in this

study.

By pre-multiplying ¢ (x) to both sides of Equation (5.13), computing theegnal in

the interval [0,L], and applying the orthogonal condition of modeps&sa the following

equations are obtained.

Zh [ 2EI(x )62‘15)(()()a 200 s =mim, (s=i) (5.14a)

Zh IAEl( )a¢x( X) Y, (X)dx A+ -A)Q M, (s#i) (5.14b)

where

M, =pA[ 4 (x)¢, (x)dx (5.15)

a{1’(><)

Let o _j AEI (X )a ¢X(X) dx. Equation (5.14) can then be expressed as the

following nonlinear equation.

al,lh,l +0’1’Q ,2+D]]E'anqn_(/]i+A/]i_/])M b ,1:O
(I
illh +a 1;1 + I+ o nh (/]""M'_/]i—)Mi—lﬂi,— =0
a b, +a o+ Ha nhn AMb, =0 (5.16)
i+1,1h,1 +12h + I+ o +1nh (/]i+Mi_/]i+1)Mi+pi,+1:0
[
a,b,+a, p #0Ea, b, - (4 +A4 -1)h M, =0

Given that b, =1 is already known, a total of unknown coefficients (including,

and AA, ) need to be solved iteratively. Consequently, élgenvaluesA’ and mode

shapesg’(x) of the damaged beam can be obtained.
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Similar to the undamaged beam, the displacemepbnse of the damaged beam can be

expressed as a modal superposition.
U () = 2 d' O (0 = 2 (t){th (x)} =2 (t){Zh,j sian”X} (5.17)

By substituting Equation (5.17) into Equation (5.multiplying both sides of the
equation by ¢° (x) , and computing the integral in the intervi@l,L] on both sides, the

following equation can be obtained.
G° (1) + (af )’q’ () = Zb Sln— (5.18)

The loading term on the right side of the equationtains more than one periodic load.
Similarly, the displacement response can be expdeas the sum of two components as

follows:

u(x,t) =u’ (xt)+u (x,t)= Z[pAL(af) Z ?1 ) JM}[EZQ SIn%J

h,S) . j77x
ZLAL(@)Z -(s') WHJZQ" ng*t_]

(5.19)

where §) is the ratio of th¢" moving frequency to thd" natural frequency.

(5.20)

g _ Jnv
S
The closed-form solution in Equation (5.19) enahlsgo distinguish the moving- and

natural-frequency components in the dynamic respaisthe damaged beam. These

components cannot be accurately separated in shéis®f the FEM analysis.

5.2.3 Algorithm Verification

To verify the aforementioned algorithm for calcuigt the dynamic response of a

damaged beam under moving force, a numerical exawoifph simply supported beam
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with A=2.0nf, L=25m, 1=012nf, E=2.75x16° N/ni, and p =2400 Kg/mi is

studied. The beam parameters are the same as utilimed by Yang and Lin (2005).
The first frequency in the undamaged state is 2428 The beam suffers a single
damage in the interval of [7.5, 8.75] with 25% s#yeFour different moving velocities
corresponding toS, = 0.025, 0.050, 0.075, and 0.100 are consideggdis the

dimensionless moving velocity corresponding to thedamental frequency of the

undamaged beam. The sampling rate is 200 Hz.

The dynamic responses of the beam with and witkdantage are simulated with the
densely meshed TFEM and regarded as accurate meéeresponses. In FEM, the

dynamic response of the beam is governed by th@firig equation of motion.
MU (t) +Cu (t) +Ku (t) =f (1) (5.21)
where u(t), u(t), and u(t) are the displacement, velocity, and acceleratiectors,

respectively;M, C ,and K are the global mass, damping, and stiffness nesto€ the

beam, respectively; anéi(t) is the vector of applied loads calculated by aimgjythe

moving load to the corresponding nodes of the Uwithgr element (Rowley 2007). No
noise and damping are involved to ensure consigtesith the proposed algorithm in

Section 5.2.

Figure 5.2a shows the displacement versus theidocatf the moving load at the
mid-span of the damaged beam calculated by theitdgopresented in Section 5.2.2.
The location of the load can be easily determimechfmoving velocityv and timet.

Unless otherwise stated, the displacements presémtdis chapter are normalized to

static deflection due to the load applied at thal-span of the simply supported
undamaged beam, that is, = FL*/(48El ). Figure 5.2b shows the errors between the

displacements of the damaged beam calculated Wwehptesented algorithm and the
densely meshed TFEM. The errors are smaller thanpdak displacements by four

orders of magnitude. Thus, the presented algoritbam provide the moving
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load-induced dynamic response of a damaged bedmswificient accuracy.
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(b) Computation error in the displacement response

Figure 5.2. Displacement response of the damagaah la¢ mid-span
calculated with the presented algorithm
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5.2.4 Discussion on the Undamaged Beam

Equations (5.3) and (5.19) offer deep insights mtuwving load-induced response-based
damage detection. Usually the moving frequency gelicle is much lower than the
natural frequency of a beam. Consequently, the ngpfrequency components are
dominant in the displacement response of the beahereas in the acceleration
response, the natural-frequency components arendomiand the contribution of the
moving-frequency components is minimal and usudifficult to measure (Yang and

Lin 2005; Kim and Kawatani 2008).

Paultre et al. (1992) summarized the fundamengajuencies of 898 highway bridges
and concluded that the majority lies in the ranfj@ iz to 5 Hz and that fundamental

frequencyf; can be approximately estimated by the followingtrenship.
f =822 (5.22)

whereLnax is the maximum span of highway bridges. SubstituiEquations (5.22) and

(5.4) into Equation (5.5) yields

Vv

Si :W (5.23)

Figure 5.3 shows the estimation&ffor three different driving speeds, namely; 10,

20, and 30 m/s. The correspondigs typically small and ranges from 0 to 0.15. Thus
the moving and natural frequencies are typicallyl sgparated, enabling the separation
of the two components in Equation (5.3) by the aigmocessing technique described in

Section 5.3.1.
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Figure 5.3. Variation in dimensionless moving vép&,; with the
maximum span of highway bridgegax

Figure 5.4 shows the beam displacement responsecanttibutions of different
vibration modes af, = 0.1. The moving-frequency responsg(x,t) can be regarded
as the forced vibration of the beam under moviraglJovhereas the natural-frequency
responseu,(x,t) can be regarded as the free vibration responsteofoeam. The

former is mainly contributed by the first mode aswpplemented by the second and

third modes; the latter is dominated by the firstd®, and the contributions of the other
modes are undetectable. In each mode, the resmamsponentu,(x,t) retains the

mode shape information of the beam, and very hpgtial resolution can be achieved
with a single displacement sensor if the sampliegidency is sufficiently high. Such

high spatial resolution information benefits thecwacy of damage localization.
However, the componentl (Xx,t) vibrates at the moving frequency of the vehicld an

completely loses the beam frequency informationcBngtrast, the response component

u,(x,t) predominately vibrates at the first frequency ¢fe tbeam; thus, the
fundamental frequency can be easily identified fropgx,t) . However, the time history

of u,(x,t) at a specific location does not represent the nsbadg@e information. Many
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displacement sensors need to be installed alondg¢laen if the fundamental mode

shape is desirable during damage detection.
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Figure 5.5 shows the variation in the, and u, components with increasirfg (i.e.,
dimensionless velocity of the moving load), whete, and u, are the peak
dimensionless displacements measured at the mid-épaL/2). When S, = O,

u,(X,,t) represents the static displacement influencertivasured at the location xf

The static influence line for damage localizatismdvocated by Chen et al. (2014). The

moving-frequency component is generally insensitovéhe increasing moving velocity.
Particularly when § <0.1, the response component, (x,t) can be regarded as a
guasi-static response that is a good approximatidghe static influence line. However,

the amplitude of the natural-frequency componenéxgemely sensitive to moving

velocity and increases linearly with dimensionlegs/ing velocitys,.
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Figure 5.5. Effect of moving velocity on the disgaent amplitude
of the undamaged beam= L/2)
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5.2.5 Discussion on the Damaged Beam

The dynamic responses of the beam with and witdaatage can be divided into two
components, namely, the moving-frequency comporedated to the moving force and
the natural-frequency component related to the be@he closed-form solutions

presented in Sections 5.2.1 and 5.2.2 allow forabeurate separation of these two
components in the displacement and acceleratiorponsgs. This subsection
investigates the local damage effect on the twéemiht components by using the
example in Section 5.2.3. This effect is very halph establishing a simple and

effective damage localization method.

Figure 5.6 shows the damage-induced changes idispéacement time histories under
moving force, including the changes in the totapanse and in the moving- and
natural-frequency components. As shown in Figu@&b5the peak in the change of
moving-frequency component response can apparéamdigate the damage location
when the moving-force velocity is relatively smalhme oscillation occurs when the
moving velocity increases and subsequently excitesadditional dynamic effect.
Therefore, the change in the moving-frequency campbis a good damage indicator
that enables the visualization of the damage lonagispecially at a low moving velocity.
The damage also alters the natural-frequency coergoshown in Figure 5.6¢. The
change in Figure 5.6c¢ is mainly due to the pha#ferdnce caused by damage-induced
frequency reduction. The gradually amplified amyali in Figure 5.6¢ is due to the zero
damping considered in the simulation. As mentiortled,natural-frequency component
is essentially free vibration under moving load.isTltomponent is significantly
sensitive to moving velocity, damping ratio, andiah conditions. For example, Figure
5.7 shows the damage-induced changes in the despkm@ components at different
damping ratios. The change in the natural-frequeocyponent is extremely sensitive to
the damping ratio, and its amplitude becomes cenaildy small as the damping ratio of
the beam increases. By contrast, the moving-fre;qjuecomponent is relatively

insensitive to the damping ratio, and its peak #abughly indicates the damage location
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with different damping ratios.
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Figure 5.7. Damage-induced change in normalizeplattement response
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All three components shown in Figures 5.6 can hbbzed for damage detection.
However, the damping ratio and initial conditionancbe neither maintained nor
accurately measured in reality. Therefore, damagection based on the change in the
natural-frequency component in the time-domain bexodifficult, if not impossible, in
engineering practice. Among the three componemwslin Figure 5.6, the change in the
time history of the moving-frequency componentdasammended for damage detection

in this study based on the above discussions.

Several studies on moving load-based damage dmteatiethods focused on the
acceleration response (Meredith et al. 2012; Gerzadbnd Hester 2013). Figure 5.8
shows the acceleration responses of a damaged eden moving loadg, = 0.025),
including the total response and moving- and n&foeguency components. In the
moving-frequency component, a spike can be obseatetie damage location. This
characteristic offers the theoretical feasibiliby detect damage through proper signal
processing without the need for model or baselirasurements of an undamaged beam.

However, the amplitude of the spike shown in Figbi&b is extremely smaller (about
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5x10° m/$) than that of the total acceleration responseydbd0? m/$). The spike is

very likely to be submerged by low-level noise dgrmeasurement.
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Figure 5.8. Acceleration response at mid-span dterage % = 0.025)

5.3 Wavelet-Based Damage Localization

5.3.1 Localization Procedure

Given that the change in the moving-frequency camept is a good indicator of
damage location, how to properly extract the mov¥meguency component from the
total displacement response is the key concern.iddofrequency is typically much
lower than natural frequency. Hence, the two fregyecomponents can be separated
by signal processing techniques. DWT is a populathematical tool in signal
processing. Emphasized as the main merit of waviiet multi-scale feature enables
the analysis of signals at different scales intihee-frequency domain (Mallat 1988;

Chui 2009; Brousseau 2009). As illustrated in ®ecti.2.2.2, DWT decomposes a

signal into approximation pary and detail partD, wherei=1, 2,---,j denotes

the decomposition level (Figure 1.2). The approtioms correspond to the
low-frequency part, whereas the details correspdodthe high-frequency part

(Brousseau 2009). By decomposing a signal into exip level through DWT and
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extracting the approximate band, the low-frequec@myponents can be well separated
from the original signal by removing the high-freqey components. The proposed

damage localization process consists of the folgvateps.

Step 1: Obtain the moving load-induced dynamic@asps of undamaged and damaged
beams at the same locatigs) where the dynamic response of the undamaged
beam can be obtained from the baseline testingeotihdamaged beam or from
a reliable FEM, and calculate the difference intibtal response by subtracting
the dynamic responses of the undamaged and dambganhs, that is,
Au=u(x,t)=u (xyt).

Step 2: Decompose the difference in total dynaragponsed\u through DWT to a
specific level so that the part corresponding rfoving-frequency component,
which is of relatively low frequency, can be we#lparated from the natural-
frequency component and measurement noise, whichf iselatively high
frequency. The low- and high-frequency components eepresented by
approximation par#y and detail parD;, respectively. Decomposition should
consider the frequency band corresponding to eathl land the difference

between the vehicle's moving frequency and stratfundamental frequency.

Step 3: Extract approximation barg and conduct inverse DWT to approximate the

change in the moving-frequency components betwden undamaged and
damaged beams, that ig&u,, =u,, (X, t) = u(Xet) .
Step 4: Determine the location of the damage, ¥ based on the peaks of the change

in the moving-frequency componemu,, .

5.3.2 Numerical Study

The abovementioned simply supported beam is emg@layethe numerical study to
demonstrate the effectiveness of the proposed danhagplization method. Three

damage scenarios with different damage locatioasisted in Table 5.1.
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Table 5.1. Damage scenarios of the simply suppdréedn

Damage scenario Damage location Damage severity (%)
Case 1 Single damage [7.5, 8.75] 25
Case 2 Double damage [8.75, 10], [16.25, 17.5] 25
Case 3 Triple damage [6.25, 7.5], [13.75,15], [17.5,18.75] 25

Again, the accurately dynamic responses of the maged and damaged beams are
computed through densely meshed TFEM. Althouglcaosidered in Sections 5.2.1 and
5.2.2, vibration damping universally exists in refalictures and plays an important role
in dynamic responses. Rayleigh damping is considarehe numerical simulation, in
which the damping matrix is constructed as a coatibn of mass and stiffness

matrices as follows:
[C] =a[M] +a[K] (5.24)
where a, and a, are two coefficients to be determined accordingttie target

damping ratio. Given that only the first two viboat modes are significant in moving

load-induced response (Yang et al. 2004b), a dagngitio of ¢ =0.02 is assigned to

these two modes. Considering that measured datanaxétably contaminated by
measurement noise in dynamic tests, the noisetesfeonsidered by adding zero-mean

Gaussian noise to the accurate dynamic resporfedl@ss (Zhu and Law 2006):

u= ucal + EpNnoise x J(ucal) (525)

where u is the noisy displacement respongg, is the noise level,N is a vector

noise
of independent random variables following a staddasrmal distribution,u, is the

vector of the displacement response, am@i_,) is the standard deviation of the

response. A single displacement transducer is asgtionbe installed at the mid-span to

measure the vertical flexural displacement.
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Figure 5.9 shows a representative damage-inducadgehin the total displacement

response at the mid-span with and without nois€ase 1 § =0.025). The noise level

is equal to 5% of the total displacement respoW&#iout noise, the change in the total
displacement can roughly indicate the damage locafas shown by the bold line).
However, the presence of noise makes directly likng the damage location by
subtracting the total responses before and afeed#mage difficult. The oscillation in
the total response also results in multiple peaksch also hinder accurate damage

localization.
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Figure 5.9. Damage-induced total displacement changnid-span in Case 1
with and without noise§; = 0.025)

DWT of the signal shown in Figure 5.9 should befgrened subsequently for signal
separation and denoising purposes. A type of widegd Daubechies wavelet, wavelet
"db30" is employed in this study. The fundamente#qliency of the beam is
approximately 2.08 Hz, and the moving frequenctyscally lower than 0.5 Hz in the
numerical study. Hence, the change in the totadlat®ment is decomposed to scale 7,
and the corresponding lowest frequency band isL[B625] Hz, which can properly
remove the natural-frequency component, undesirabise, and oscillations in the

dynamic response.
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5.3.3 Discussion

Figures 5.10 and 5.11 show the damage localizagsults in Case 1 at four different
moving velocities, namelys = 0.025, 0.050, 0.075, and 0.1. Five percent nieisel is
considered in Figure 5.10, whereas various noigeldeare considered in Figure 5.11.
When the travelling velocity is relatively low, theeak of the filtered curve can
satisfactorily locate the damage with only a slightft (Figure 5.10). However, high
moving velocity causes large oscillations in bottoving- and natural-frequency
components (Figure 5.6). Thus, when dimensionledscity S, increases to 0.1, the
localization results become unacceptable, and @meadtle shift in the peaks from the
actual damage location can be observed (Figure).5Hijh moving load velocity
reduces the accuracy of damage localization basanaving load-induced responses.
This conclusion is consistent with the findingsprevious studies (e.g., Nguyen and

Tran 2010; Gonzéleza and Hester 2013).
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Figure 5.10. DWT results of displacement changé &8 noise in Case 1

139



No noise
oN 2.5% noise
mrmrm— 5% noise
c
ie)
I
£ -0.01}
X
S
o
o
<
()
@ -002 N
3 PNt
=
-0.03} Damagé-u_.w"
: . 5 15 20 25

Location(m)
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Similar damage localization results in Cases 2 lgtpopdamages) and 3 (triple damages)
are shown in Figures 5.12 and 5.13, respectivgiypréximately five percent noise and
three different moving velocitiesS{= 0.025, 0.050, and 0.075) are considered in the
simulations, and the effect of multiple damage fimees on the proposed method is
examined. In Case 2 (i.e., Figure 5.12), the twoalges can be located fairly well when
S = 0.025 and 0.050, but localization becomes diffieschen S;= 0.075. This finding
implies that the case with more than one damageoie sensitive to the influence of
increasing moving velocity. In Case 3 (i.e., Figi&3), the satisfactory localization
results of the triple damages are difficult to a&elel by direct visual inspection. In
summary, the proposed damage localization methndwvcak effectively in cases with

relatively low moving velocity and few damages.
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Figure 5.12. DWT results of displacement changé &8 noise in Case 2
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Figure 5.13. DWT results of displacement changé &8 noise in Case 3

As mentioned previously, maintaining the consisyesnad equality of moving velocities
of vehicles is difficult in the two moving load tesTherefore, the effect of unstable and
unequal moving velocities is also investigated. Tdil®wing velocity time histories are

assumed.
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V,=2.605< 1.0&«( & 0.08 sifi72)+ 0d sfnb)) (5.264)

V, =2.605%( 1+ 0.k sif 2t)+ 0.08 sin7h)) (5.26b)

where V, and V, are the moving velocities of the load in the testshe undamaged

and damaged beams, respectively. Figure 5.14 shaamparison of the time histories
of moving velocities before and after damage occilise mean velocity in the
undamaged state is 4% higher than that in the dadhatate. The mean velocity of
2.605 m/s corresponds & = 0.025. The harmonic terms in Equation (5.26) $iteu

the fluctuations in moving velocity. The damagedrnecorresponding to Case 1 with 5%
noise in the displacement response is analyzednagader the assumed varying

velocity.
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H
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Figure 5.14. Velocity time history of the force bef and after damage

With the same time interval and different movindpegties, the location intervals in the
undamaged and damaged states are unequal. Thest slibtraction of displacement
responses before and after damage is prohibitegnGhe knowledge of location series
in the two states, the displacement responsesaitdamaged and damaged beams can

be easily interpolated to obtain a consistent looanterval. Subsequently, the damage
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localization process described in Section 5.3.1mmplemented. As shown in Figure
5.15, the single damage in Case 1 can still be essfally located. This finding

indicates that the presented damage localizatidhaudds still effective despite slightly
unstable and unequal moving velocities. Notablg,éhd effect that occurs in the DWT

result makes damage detection close to the engichiatienging.
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Figure 5.15. DWT results of the displacement chang#er varying velocity

A constant moving load, which essentially ignofes dynamics of moving vehicles, is
considered in the above theoretical derivation mmaherical examples. Although Yang
and Lin (2005) assumed that vehicle mass is corsitieless than bridge mass and thus,
a moving vehicle may be approximated by a movingdp the potential effect of
vehicular dynamics on bridge response is still exach by adopting a vehicle model, as
shown in Figure 5.16. Lu and Liu (2011) proposed tise of this three-parameter

mass—spring—damper model to simulate a moving iehihe same parameters from
Lu and Liu (2011) are adopted in this studyy =4.0x1G Kg,c, =1.0x10 Ns/m,
k, =6.0x10 N/m. Road surface roughness should also be considarade actual

vibration test. The random road surface roughnéssb®am can be assumed as a kind

of zero-mean, real-valued, stationary Gaussiangza®as follows (Yang et al. 2012; Li
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and Au 2015):

r(x) = iZJS}n(wm)chos(Zmnx+0m ) (5.27)

where
w,=+(M-1/2)Aw m=1 2,---N (5.28b)
Aw= (), —@)l N (5.28b)

in which w, and « are the upper and lower cut-off spatial frequesaiespectively.

Moving vehicle

my

kv Cv

Figure 5.16. Moving vehicle model

The power spectral density functio§, («w,) can be expressed in terms of the spatial

frequency «, of road surface roughness as follows (Yang et2@ll2; Li and Au

2015):

Si@) =94 (@<w,<w) (5.29)
The values of#, @, «,, and N can be determined according to ISO specification
(1S08608:1995). In this study, the values &f «, «,, and N are set to1x10®° nt

(m/cycle), 0.05 cycle/m, 2 cycle/m, and 1,024, respectively (Li and Au 2015).

To examine the effectiveness and robustness ofptbeosed damage localization
method, Case 1 in Section 5.3.2 is re-analyzed ansideration of the vehicular

dynamic model and road roughness. Figure 5.17a shtwe damage-induced
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displacement changes at mid-span vtk 0.025 in Case 1. The bridge responses are
calculated individually with the moving-force andowing-vehicle models (with and
without road roughness). Given the influence ofieellar dynamics and road roughness,
apparent differences are observed among the refsoits different models. However,
the response changes extracted using DWT are nekatyical (Figure 5.17b). This
result clearly indicates that the moving-frequecoynponent of the bridge response is
insensitive to the introduction of vehicular dynamand road roughness, although the
total response is significantly affected. It candxplained by the fact that the typical
moving frequency of a vehicle is considerably lowain the natural frequency. This
result does not only justify the use of the moviagze model in the previous section
but also demonstrates the advantage of using thengvrequency component in
damage detection. A slight discrepancy can be wbdeaat the right end in Figure 5.17b.
This discrepancy is mainly caused by the end effecDWT.
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Figure 5.17. Comparison of the results calculasdgudifferent models (Case 1)

5.4 Summary

This chapter investigates the effects of locafregs reduction on the dynamic response
of a simply supported beam subjected to moving.lédadimple and effective damage
localization method is developed accordingly thtou@WNT. A computation algorithm
based on modal perturbation and superposition ndeih@roposed and verified. The
proposed algorithm enables the accurate separatiothe dynamic response of a
damaged beam under moving load into two component®ving- and
natural-frequency components. In the time-domdir, damage-induced change in the
moving-frequency component has a relatively lowq@rency and is relatively
insensitive to the variations in moving velocitynaping ratios, and initial conditions.
By contrast, the change in the natural-frequencspnpanent has a relatively high
frequency, and the time history of this componentéry sensitive to variations in
damping ratios, initial conditions, and vehiculamdmics. Therefore, a change in the
moving-frequency component is regarded as a pragisidicator of damage location,

particularly when the moving velocity of the loagl low and the number of damage

146



locations is limited. As a frequency separating dedoising tool, multi-scale DWT is
conducted to extract the moving-frequency comporfesrh the total displacement
response induced by a moving load. Subsequengylitely damage location can be

efficiently identified via measurement with a sieglisplacement sensor.

Numerical examples at different moving load veliesit noise levels, and numbers of
damage locations are presented to verify the effiGand robustness of the proposed
damage localization method. Single and double dasagn generally be located with
satisfactory accuracy. However, detecting seveamhabe locations is difficult. High

moving velocity of the load reduces the accuracgarhage localization, especially in
cases of multiple damages. The investigation cotediia this chapter indicates that the
proposed damage localization method is insensttiveehicular dynamics and road

surface roughness.
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Chapter 6 Two-Phase Damage Detection of Beam
Structures Subjected to a Moving Vehicle

6.1 Introduction

FEM updating under moving load is a popular damdgtection method for beam
structures (e.g., Majumder and Manohar 2002; Lulaand 2007a; 2007b; Lu and Liu
2011; Li and Law 2012). The numbers of model DORd apdating parameters in
model updating affect the computation cost and @yuof damage detection. The
damage localization method that employs DWT intasdhiin Chapter 5 can help
reduce the number of updating parameters by ligithre updating parameters in the
identified damage regions only. Furthermore, a Radale FEM whose resolution is
compatible with load conditions and damage scersar@m help reduce the total number

of DOFs.

(1) In terms of compatibility with loading conditie, an ideal option is to use
multi-scale mesh generation with a dense mesh giome near the load—beam
contact positions and a coarse mesh in other regsonthat sufficient modeling
accuracy can be achieved with a reduced numberQF(Rieker et al. 1996).
Consequently, the regions with a fine mesh resmushould be adaptively changed

according to the contact point when the load ma@xes time.

(2) In terms of compatibility with damageenarios, the previous chapters presented a
promising scheme in which coarse and fine meshesitdized for undamaged and
damaged regions, respectively. Consequently, thehnmesolution should be
progressively changed. A coarse FEM is used totiigetme likely damage region
first; subsequently, local refinement in the likelgmaged regions is conducted to

estimate the accurate damage location and severity.

148



In both schemes, the mesh resolution should betigdfp changed during damage
detection. The implementation of a dynamically @fethmeshing scheme in the context
of TFEM is difficult. WFEM provides a more conventealternative to solve this

problem, given that it enables convenient changehé spatial resolution of wavelet

elements according to actual needs.

This chapter presents a WFEM-based adaptive-scaddysas strategy for beam
structures subjected to moving load. In the stryatdte scales of wavelet elements can
be conveniently changed according to the time-vayyioad—beam contact position.
Subsequently, a two-phase damage detection methatl,is, localization and then
guantification, is developed by combining adapteede analysis strategy, DWT-based
damage localization (presented in Chapter 5), armmgrpssive damage detection
(presented in Chapter 4). The damage-induced displant changes are decomposed
by DWT to locate damages and then employed to gydhe damages in a progressive
manner via multi-scale WFEM updating technique hwipdating parameters limited to
suspected damage regions only. The elemental stRW&EM change dynamically not
only according to the moving vehicle—beam contaditons but also to the identified
damage regions. As a result, the number of DOFsupthting parameters and the
corresponding computation effort are significamdguced. A laboratory experiment is
conducted to verify the feasibility and efficienoy the proposed two-phase damage

detection method for beam structures under a mdoiag

6.2 WFEM-Based Modeling Strategy

6.2.1 Adaptive-Scale Analysis Strategy

This sectionpresents an adaptive-scale analysis strategy fambstructures subjected
to a moving load (Figure 6.1). The beam is divided N segments, each of which may
contain one or more wavelet elements. The maineglyas to utilize an adaptive-scale

WFEM, in which the element scales change accordmmghe load—beam contact
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positions. For instance, high-scale elements aillezat in the moving load—beam
contact region and low-scale elements in the otbgions. As the load—beam contact
position moves over time, the element scales it @agion are dynamically lifted and
lowered during the process, thereby reducing thebar of DOFs and the computation

cost.

F

g I == 3 | B | - < I 7(]|/)7
[ Segl ‘ ‘ " Seg j-1 ¢ Seg j N Seg j+1 A , SegN 7]
I\Low scale,P Low scale High scale Low scale I\Low scale,I

Figure 6.1. Adaptive-scale analysis strategy

6.2.2 Numerical Study

A simply-supported beam under a moving force (Fegu8.2) is simulated to
demonstrate the efficacy of the adaptive-scale ngpload analysis strategy. The

physical parameters of the beam are as followsscsectionA=1 mx 0.6 m, Young's

modulus E =33 Gpe, mass densityp=2.5x16 Kg/ni, and lengthL=16 m. The

velocity of the moving force isLl0 m/s. The beam is subjected to double damages in the

intervals of [3, 3.5] and [9, 9.5] with 20% and 25%®verity, respectively.

Initially, the beam is divided into eight equal segnts, with each segment containing
two wavelet beam elements (Figure 6.2). The saaflébe wavelet elements are equal
to 1 and O in the contact region and other regioespectively. The total number of
DOFs in the multi-scale WFEM is 38. For comparise,FEM with 16 beam elements
(34 DOFs) is also used to model this problem. Ilditeah, very densely meshed TFEMs
of the undamaged and damaged beams are employsidntdate accurate dynamic

responses induced by moving force, which are usedraference.
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Figure 6.2. Adaptive wavelet element scale stratkging the moving process

The accurate displacement time histories at lonatit: L, %2 L, and % L of the
undamaged beam are shown in Figure 6.3. The camdgpy displacement errors
calculated with WFEM and TFEM are shown in Figuré. @he WFEM results have a
very minimal error, and the computation error of BWF is generally smaller than that
of TFEM by two orders of magnitude. This comparisbearly indicates that WFEM
with similar number of elements can achieve betauracy. In other words, WFEM
can considerably reduce the total DOFs and enheamogutation efficiency. Figure 6.5
shows the accurate displacement change inducedgebyamage at the locations of % L,
% L, and % L. The computation error from TFEM ismgarable to the displacement
change induced by the damage in this example. dléervation implies that TFEM

with such spatial resolution would compromise thendge detection results if used.
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6.2.3 Discussion

The example in Section 6.2.2 demonstrates theagffiof the proposed WFEM-based
adaptive-scale analysis strategy for a beam undaving load excitation. In the
implementation of this strategy, two parametersukhde determined: the length and
scale of localized wavelet element refinement. Gdhg a large refinement length (RL)
improves accuracy and requires less frequent cisanfjghe model in the moving
process. However, it also corresponds to a largeben of DOFs in FEM. RL, that is,
the length of the segment in contact with the mgJirad, is equal to 1/8 of the total
beam length in the numerical example. To examieeefifiect of different RLs, Figure
6.6 shows the computation errors in the displacémesmponse at the mid-span location
when RL = 1/4, 1/8, and 1/16 are used individuallyVFEM. Although increasing RL
can generally improve the accuracy of the dynamalyeis, such an improvement is
insignificant in moving load problems. Similarlyfting the wavelet elements to a scale
higher than 1 results in very limited accuracy ioyement and is regarded as
unnecessary in this study. It verifies that theentr selection of RL and scale in WFEM

can provide sufficient computation accuracy.
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Figure 6.6. Effects of RL
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6.3 Two-Phase Damage Detection Method

To achieve an optimal tradeoff between damage tieteaccuracy and efficiency, a
two-phase (localization and then quantificationindge detection method is developed
in this section for beam structures under a mowigicle by combining the
adaptive-scale moving-loading analysis strategy, TEM@sed damage localization
(Chapter 5), and progressive damage detection (€hag). The corresponding

flowchart is shown in Figure 6.7.

Moving Vehicle
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™ or experiment
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Figure 6.7 Diagram of multi-scale damage detection
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The structural dynamic response in the undamagee st obtained through simulations
or field tests. Damages are located by separati@glynamic response change via DWT
and quantified by progressive WFEM updating. DWpasates different dynamic
response components effectively and reduces thseneffect. Multi-scale WFEM
minimizes the number of DOFs in the model. Giveat tthe updating parameters are
only limited to the suspected damage regions Vhi¢hinitial damage localization in the
first phase, the computation cost in the model tipdgrocess is considerably reduced.
The details of damage localization and quantifwatare presented in Sections 6.3.1

and 6.3.2, respectively.

6.3.1 Damage Localization

Chapter 5 examines the effects of local stiffness lon the two different components in
the beam response induced by moving load. A simpteintuitive damage localization
method is developed by decomposing the originaladyin response into a specific
level through DWT. Although only the case of a $moving force is studied, the
analysis can also be applied to cases of multi-aeleicles provided that the axle

distance is relatively small compared with the pedength.

6.3.2 Damage Quantification

To achieve an optimal tradeoff between damage tleteaccuracy and efficiency, the
wavelet element scales change adaptively not ardgrding to the moving load—beam
contact positions but also to the suspected darmegearios identified. Therefore, (1)
high- and low-scale wavelet beam elements are usetthe vehicle-beam contact
regions and in other regions, respectively, ando(®)e the suspected damage regions
are identified, local refinement is subsequentlpdiacted to estimate more accurate

results.

The model updating technique combined with WFEMbéggm damage detection under

moving load in a progressive manner. Although danags represented by stiffness
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loss without mass change in the previous chapdarsage in the following experiment
is introduced by drilling holes on a beam and soamted with both stiffness and mass
loss in a local segment. As shown in Section ®i4, mass loss cannot be ignored. The
damage index is represented by the relative resludm local flexural rigidity as
follows:

El'-El°
d =———7"= 6.1
where EI' and EI! are the segmental flexural rigidity before andemaftlamage,

respectively. This index is also utilized to appnoate the mass loss in the same region;
thus, it does not introduce new updating parametess result, the damage leads to the

modification of structural stiffness and mass neaisiduring updating.

The objective function of the damage detection @il is defined as

(=Y {[qz' (t)IIIQE"“(t)] _Lag"(y I;dqﬁ(t)] } 6.2)

n u

where superscript§ and e denote the FEM simulation and experimental results
respectively; superscripts andd denote the dynamic response of the undamaged and
damage states, respectively; denotes the number of data poimsresponse time
history that depends on moving velocitygdenotes the displacement transducer number;
and g denotes the moving-frequency component extractech fthe total dynamic
displacement response induced by a moving veHhitlde displacement response from
each sensor, the data points close to both endsxaheded in the objective function to
avoid the end effect of DWT. By including four s=iof displacement responses in the
objective function, damage detection can toleragtight modeling error between the
initial FEM and the physical structure in the undag®d state. The detailed damage

guantification procedure is described as follows.

Step 1: Select updating parameters related to ubpested damage regions identified

through the damage localization results using DWPhase 1.

Step 2: Detect the severity of the suspected dasnhgeusing a low-scale WFEM
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model and the adaptive moving-load analysis styateg minimizing the

objective function.

Step 3: Lift the wavelet element scale in the idi&tt damage regions but maintain the
scale of other regions as in the last step. Seledtupdate damage indexes in
the reduced damage regions only. Consequentlydaéineage can be detected

more accurately.

Step 4: Check the convergence of the results, topdifsthe difference is smaller than a

prescribed threshold. Otherwise, repeat Step 3.

6.4 Experimental Verification

6.4.1 Experiment Description

An experiment on a beam with a moving vehicle (Fég®.8) is conducted to
investigate the effectiveness and efficiency ofih@posed two-phase damage detection
method. The beam is made of a steel plate witroumifthickness. The beam is divided
into three individual spans: a leading span fatiahacceleration of the vehicle, a main
span, and a trailing span for vehicle decelerafidre main span is well separated from
the two side spans and can be regarded as an miksgesimply supported beam. The
plane view, cross section, and dimensions of teel dieam are shown in Figure 6.8.
The beam has a cross section of 150 mm x 15.8 midth(w thickness), modulus of
elasticity of 2.05 N/rh x 10"'N/m? and density of 7,780 kgAnThe vehicle has two
axles (four wheels), and the distance betweenwiioevehicle axles is 16.1 ciffrigure
6.9). The total weight of the vehicle is 10.53.K&n electric motor (Figure 6.10) is
employed to pull the vehicle to move along the eefibe of the beam. With a variable

resistor, the velocity of the vehicle is controllgd the voltage input to the motor.

As shown in Figure 6.8b, three eddy current digaent sensors (Figure 6.11) are
installed in three sections of the beam: 0.825amfthe left end, on the mid-span, and
0.825 m from the right end. These three sectioasareinafter referredto as % L, %2 L,

and % L for simplicity. As pointed out in previostudies (e.g., Nguyen and Tran 2010;
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Hester and Gonzaleza 2012), the velocity of a npwehicle affects the damage
detection results. Given that velocity cannot bantaéned perfectly constant in the
experiment, 35 aluminum strips are placed in anyabeside the beam to obtain more
accurate location and velocity information. Whee W#ehicle moves along the beam, the
photoelectric sensor installed on the vehicle cateat the moment of passing each strip.
The average velocity can be estimated based omtéeral length and the consumed
time in each interval. Subsequently, in the follogvdamage quantification process, the

same velocity record is used in the WFEM-based aynanalysis.

In this chapter, two damage cases are introducedgh saw cuts at different locations,
as shown in Table 6.1 and Figure 6.12. The dimessiof the damages are
approximately 5 mm x 8 mm (length x width) for Dagad and approximately 10 mm
x 4 mm (length x width) for Damage II. Given thhettotal width of the beam section
is 150 mm, the damage severities correspondingatodyes | and Il are approximately
53% and 27%, respectively. Case 1 involves Damagdyl and Case 2 involves both

Damages | and Il

Table 6.1. Damage scenarios of the simply suppdréedn

Scenario Location Severity (%)Combination
Case 1l Single damage [1.925, 1.975] 53% Damage |
[1.925, 1.975] 53% Damage |
Case 2 Double damage
[1.025, 1.125] 27% Damage |
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(a) Experimental arrangement
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(b) Configuration of the beam

Figure 6.8. Experimental arrangement and configumadf the beam
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(b)
Figure 6.9. Moving vehicle

Figure 6.10. Electric motor
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Figure 6.12. Beam damages

The moving load experiments on the beam without adgemand with single or double
damage are conducted under four moving velocitiagely, 0.6, 1.15, 1.65, and 2.1 m/s.
These moving velocities are referred to in thispthaas Velocity-1, -2, -3 and -4. The
velocity information is summarized in Table 6.2, et S is the dimensionless moving
velocity defined inEquation (5.5). To ensure the accuracy of the viglaoformation
obtained by the moving photoelectric sensor orvtecle, experimental data are recorded
with a high sampling frequency of 2,000 Hz. Howevke displacement time histories are
resampled to 200 Hz because high sampling frequisnagnecessary for the displacement
response. Figure 6.13 shows a typical record ofadya displacement responses at
Velocity-1. Figure 6.14 shows the correspondingeities estimated in the 34 intervals and
the average velocity across the entire beam. Cadpaith the average velocity, the
deviations in the interval velocities are less thab5%, which implies that the moving

velocity is relatively smooth and steady.

In Chapter 5, the vehicle was represented by movilogce and moving
mass—spring—dashpot single-DOF systems individu@the former is much simpler than
the latter because only the load vector in thedirlement formulation needs to be changed
during each time step in the time-integration pdure; the system mass and stiffness
matrices can remain the same. However, only thghweif the vehicle is considered, and

the dynamics of the vehicle is actually ignoredthe moving force representation. The
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single-DOF model that consists of mass, spring, dashpot can better represent the
dynamics of the vehicle provided that its paransetan be accurately determined. Section
5.3.3 examined the effects of different moving eéhimodels. The results indicated that
the moving-frequency component extracted using D¥Vifisensitive to vehicle dynamics,
and the corresponding damage-induced changes arby rike same except for the end
parts. For better computation efficiency, a simpleoving force model, in which two

moving forces are used to represent two axleglaptad in the following study.

Table 6.2. Velocity parameters

ltem Velocity (m/s) S
Velocity-1 0.60 0.0258
Velocity-2 1.15 0.0494
Velocity-3 1.65 0.0709
Velocity-4 2.10 0.0902

Displacement(mm)

1

Figure 6.13. Typical displacement time historylt# indamaged beam
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Figure 6.14. Typical velocity information of the wieg vehicle

6.4.2 Damage Detection

6.4.2.1 Single Damage

As shown in Table 6.1, Case 1 involves a singleatgarin the interval of [1.925, 1.975]
with 53% severity (Damage 1). First, the dynamispitacement response is decomposed
through the method described in Section 6.3.1. fEsalts are shown in Figure 6.15. The
“location” in the figure refers to the coordinatéthe mid-point of the two axles of the
vehicle model. In the first phase, the damage E@pmated to be located around 2.0 m
from the left end in Velocity-1, -2, and -3 casEke results of Velocity-43, = 0.09) are not
shown here because they can hardly indicate theaganocation. This observation is
consistent with the observation in Section 5.3& tttamage localization becomes more
difficult when S is larger than 0.075. All the three displacemegnissrs installed at
different locations provide similar results regaglithe possible damage location. Thus,
one displacement sensor is theoretically sufficiemtdetermine the damage location.
However, in practical applications, more than osessr can provide some redundancy and

avoid misjudgment through cross validation when afethe sensors does not work

properly.
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In the second phase, multi-scale WFEM updatingnipleyed to quantify the damage
severity. Figure 6.16 shows the initial finite ekmh mesh, including 20 elements. The
elemental length is 0.05 m for elements 1, 2, 1@ 20; 0.075 m for elements 3 and 18;
and 0.1 m for the others. Different elemental lasgare utilized to make the nodes
consistent with the locations of supports and ssnsthe scale of the wavelet elements
employed in wheel-beam contact elements and inother elements are 1 and O,
respectively. The wavelet element scales changdincmusly when the wheel-beam
contact positions move over time. The scales okthments at the two ends (element 1, 2,
3, 18, 19, and 20) remain unchanged during theeepiiocess because their elemental
lengths are relatively short. The total number &ff3 is 46 (when the two axles are located
in different elements) or 44 (when the two axles lacated in the same element). Figure
6.17 shows the strategy of the adaptive waveletete scale during damage quantification.
With the suspected damage interval [1.625, 2.28&ijtified in Phase 1, the damage indices
of elements 11, 12, and 13, instead of all the efés) are selected as updating parameters
in the first stage of Phase 2. The three damageesdare updated by minimizing the
objective function defined in Equation (6.2), ahé updating results are shown in Figure
6.18. The estimated velocity using the informatfoom the photoelectric sensor on the
vehicle is utilized in the WFEM simulations. Thesfi and last 50 data points in the
DWT-decomposed displacement time history are exdud the objective function. The
optimization value of [1.825, 2.025] is much lar¢jesn that of intervals [1.625, 1.825] and
[2.025, 2.225]. Therefore, interval [1.825, 2.0&bidentified as a probable damage interval.
In Stage 2, the wavelet element scale in this waleis lifted from O to 1, but the other
regions and adaptive-scale changing strategy rethairsame as in Stage 1, as shown in
Figure 6.17. The damage indices of elements 11 Ihdire not considered updating
parameters because they are relatively small infitls¢ quantification stage. In the
following stages, the flexural rigidities are seééztwith a similar strategy. With the scale
lifting in element 12, two updating parameters esponding to intervals [1.825, 1.925]
and [1.925, 2.025] are selected; subsequently ldtier is detected as the more likely
damage interval. Repeating the refinement and upglarocess allows for more accurate
estimations of the damage. Stages 3 and 4 showsalim® same results, implying that the

estimation converges and no further refinementersessary. The quantification results of
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the damage severity in each stage are shown ime=gy8.
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Figure 6.15. Damage localization results for Case 1
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Figure 6.17. Adaptive wavelet element scale styatleging the quantification process in Case 1

170



Stage 1

Stage 2

Stage 3

Stage 4

0.7,

Damage Severity
o o ° o o
N) ) B [6)] [e)]

o©
[

0.045

0.12¢

0.040

0.309

0.038

0.479

0.049

0.498

0.496

0 1.625 1.825 2.025 2.225

1.825 1.925 2.025 1.925 1.975 2.025

Location(m)

1.925 1.950 1.975

0.7

Stage 1

(&) Velocity-1

Stage 2

Stage 3

Stage 4

0.6

Damage Severity
o o o
) S U1

o
()

o©
[

0.124

0.041

0.040

0.305

0012

0.463

0.04¢

051¢

0.427

0 1.625 1.825 2.025 2.225

1.825 1.925 2.025 1.925 1.975 2.025

Location(m)

(b) Velocity-2

171

1.925 1.950 1.975




Stage 1 Stage 2 Stage 3 Stage 4

o©
3

°
o

0.48¢

o
a

0.45€

0.429

©
~

0.301

Damage Severity
o
W

o
N

0.14¢

o©
s

0.03¢

0 0.002; | 0.000 0.002; |
1.625 1.825 2.025 2.225 1.825 1.925 2.025 1.925 1.975 2.025 1.925 1.950 1.975
Location(m)

(c) Velocity-3
Figure 6.18. Damage quantification results for Chse

The relatively inaccurate estimation of damage sgvan a low-scale model is expected
given the inaccurate assumption of the damage Biaeiever, the quantification accuracy
is effectively improved with the progressive refiment of the model, and quantification
finally converges toward the actual value in Stagemnd 4. The procedure and adaptive
wavelet finite element strategy employed in Velp@tand Velocity-3 are similar to those
adopted in Velocity-1; the corresponding damageatioa and quantification results are
shown in Figure 6.17 and Figure 6.18, respectiv&lthough the results for Velocity-3 are
not as favorable as those for Velocity-1 and Véie2i the damage localization results for
Velocity-3 are still acceptable. As shown in Figul7, the DWT-decomposed
displacement responses exhibit slight shifts framdctual damage location. Consequently,
the damage quantification results in Stage 4 fdody-2 and Velocity-3 slightly deviate

from the actual damage severity (53%).

Considering that actual damage locations are alwenywedictable, TFEM updating, if

employed in this case, should be uniformly meshdétiout the adaptive-scale analysis
strategy. Consequently, 62 (th& # 17" elements should be divided into 4 elements
individually) beam elements with 126 DOFs are reggiito accurately capture the damage
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in Case 1, where the single damage region consisgbout 1/4 of one wavelet element.
Moreover, without the preliminary damage localiaatin the first phase, a large element
number may lead to too many updating parameterschwmake optimization time

consuming and challenging, if not impossible. Hogrewith the proposed adaptive-scale
strategy, only 52 DOFs in Stage 4 are used in WR&BCchieve the same accuracy level of
damage detection. Furthermore, specifying the requmodel scale in advance is not

required because the model scale is adaptivelya@fin a progressive manner.
6.4.2.2 Double Damages

As shown in Table 6.1, Case 2 involves a beam stdgjeto double damages: one in the
interval of [1.925, 1.975] with 53% severity (Dameal) and the other in the interval of
[1.025, 1.125] with 27% severity (Damage 1l). Th&VID-decomposed changes in the
dynamic displacement response are shown in Figd& &he damages are initially located
around 1.0 and 2.0 m from the left support in Vitlet and -2, respectively. The results for
Velocity-3 and -4 are not shown here because thmada locations can be hardly
visualized, which is also consistent with the obiggon in Section 5.3.3 that double
damages cannot be localized wigr» 0.05. The following damage quantification praces
is similar to that in Case 1. The strategy of adaptvavelet element scale during the
damage quantification process is shown in Figug®.6ln Stage 1 of the quantification
phase, the damage indexes of elements 7 to 9 atal113 (corresponding to the suspected
damage regions [0.825, 1.425] and [1.625, 2.22fd) selected as updating parameters.
Following the same process, the locations and gmgof the damage can be identified
with progressively improved accuracy, as shownigufe 6.21. Given that the left-hand
damage consists of 1/2 of an element, a good estimi obtained in Stage 2. No further
improvement can be achieved in Stage 3, so noduntsfinement is conducted in this
region in Stage 4. By contrast, the right-hand dgeria 1/4 of an element’s length, and the
relevant region is gradually refined until Stagd e wavelet scale of the left-hand damage
remains the same as in Stage 3, and the corresgpm@mage severities in the two
sub-intervals identified in Stage 3 are used withfuuther updating in Stage 4. The
quantification results of the right damage are apionately 0.55 and 0.6 in Velocity-1 and

-2, respectively, both of which are slightly highlean the real value. Compared with Case
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1, the quantification results slightly worsened.

Case 2 demonstrates that the model scale can pgwadyaadjusted according to the actual
damage scenarios. This adaptability of the propaosethod can help achieve accurate

results with minimal DOFs, updating parameters, @mputation cost.
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Figure 6.19. Damage localization results for Case 2
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6.4.3 Discussion

The damage localization and quantification resaftéhe experiment generally agree
well with the actual damage scenarios. This gooaemgent can be attributed to the
four main factors: (1) Two-phase damage detectioategyyy. Given the initial damage
localization in the first phase, only a small humioé updating parameters in the
suspected regions are selected in the second phhgd improves both optimization
efficiency and accuracy. If the damage indexes Ibthe elements are selected as
updating parameters, the damage detection perfaenamwuld degrade. (2) Accurate
velocity information. With the on-vehicle moving qtbelectric sensor, the average
velocities in the intervals can be calculated amgleyed in the WFEM simulation. (3)
Use of the moving-frequency component. The compbrikat is sensitive to the
uncertainties in damping, noise, vehicle model, @eldcity is removed from the total
dynamic displacement response via DWT decomposi{nRelatively large damage
extent. In the experiment, the severities are 27d 53% for Damages | and II,
respectively, and the damage length is 0.1 and @03or Damages | and II,

respectively.

The FEMs of both the beam and vehicle affect thmi@cy of dynamic analysis of the
moving vehicle-induced response and the correspgndamage detection. Given the
lack of vehicle parameters in common situationsgnidying the vehicle-beam
interaction force has been regarded as an altematiprevious studies. However, the
error in the identified interaction force may catesiably limit the accuracy of damage
detection. Road roughness is another factor thatatabe either ignored or accurately
modelled as far as the total dynamic response anb&ructures subjected to a moving
load is concerned. Fortunately, the low-frequenasnponent separated from the total
displacement through DWT decomposition is insevisitto the aforementioned
uncertain factors, which considerably improves #gplicability of the proposed
damage detection method for moving load excitednbestructures. In actual
implementations of the proposed methodology, a sl@licle moving velocity is
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always favorable because the damage detectionrpefwe of the proposed method
degrades with increase in moving velocity, paraclyl in the presence of multiple

damage locations.

6.5 Summary

To balance the modeling fidelity and computationoant in the dynamic analysis of
beam structures under moving load, a WFEM-basedtadascale moving-load
analysis strategy is proposed in this chapter.him s$trategy, the scales of wavelet
elements change dynamically according to the molaag—structure contact point. The
simulated simply supported beam reveals that ttaegty can effectively minimize the
number of DOFs in dynamic analysis and enhance atatipn efficiency and accuracy

compared with TFEM with a fixed uniform mesh.

A two-phase damage detection approach that corfistgalization and quantification
phases is subsequently proposed. The approach wmesmkDWT-based damage
localization, progressive damage detection, angtadgascale moving-load analysis. In
the first phase, DWT is employed to decompose thange in the moving-load
frequency component from the change in the totakdyic displacement response and
localize the possible damage regions. In the septvade, WFEM is updated with the
updating parameters limited to the suspected damegjens only to estimate damage
severity in a progressive manner. The elementdéesad WFEM change dynamically
not only according to the moving load-beam conpaxints but also to the progressively
identified damage results. This two-phase methad aehieve efficient consistency
among FEM resolution, damage scenarios, and loadittons as well as an optimal

tradeoff between the accuracy and efficiency of agendetection.

A laboratory experiment is conducted at differerdving velocities to investigate the
feasibility and efficiency of the proposed two-phatamage detection method. Both
single and double damages can be localized andtifjednwith satisfactory accuracy

when the moving vehicle velocity is low. A high niog vehicle velocity degrades the
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accuracy of the damage localization method, esjpeaiacases with multiple damages.
Compared with traditional moving load-based damagiection methods in literature,
the approach proposed in this chapter is more ipeddbecause of its insensitivity to
damping, vehicle model, and road roughness. Thpgsex approach exhibits a great

potential for future damage detection in actuahba#ructures.
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Chapter 7 Conclusions and Recommendations

7.1 Conclusions

Damage localization and quantification of civil na$tructures using damage-induced
changes in dynamic characteristics or responses lbeen receiving worldwide interest
in the past two decades. This dissertation focusethe development of a multi-scale
structural damage detection strategy for beam dat# |structures through the use of
WFEM. This novel strategy achieves desirable comiscyy among structural modeling,
damage scenarios, and external load conditionsdamdonstrates high efficiency in
both frequency- and time-domain damage detecticamges with respect to the
number of DOFs in structural models and numbereofsers in vibration tests. The

main contributions and conclusions of this thestsssummarized as follows.

(1) The basic concept of multi-scale wavelet finitened@t was introduced, with
emphasis on cubic Hermite wavelet elements with kigmputational performance,
superior localization character, and favorable catibgity with TFEM. Multi-scale
dynamic formulations and corresponding lifting stles were derived for wavelet
beam and plate structures by using cubic Hermitdti+wavelets. In particular,
multi-scale dynamic equations of beam structuresdetenl by WFEM were
formulated under moving load excitation. These dyigaformulations formed the
theoretical basis of the multi-scale dynamic analgsd damage detection methods

based on WFEM. The advantages of WFEM over TFEMeVikewise discussed.

(2) Progressive damage detection methods based onsoalé WFEM was proposed
in the frequency-domain to detect sub-element damagbeam and thin plate
structures. WFEM, which was used together with M@Eodel updating technique

in this study, allows one to adaptively changertizaleling scale according to actual
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needs. For instance, a coarse WFEM was used tdifidéhe possible damage
region first, and then gradually refined WFEMs witital refinement (i.e., scale
lifting) were used to estimate a more accurate dgmacation and severity. This
progressive strategy ensures that structural magetsin compatible with actual
identified damage scenarios during the detectioncgss. Thus, WFEM is
computationally efficient because of the reducenhiper of DOFs in the model and
operationally convenient because of the reducedbenrof sensors in the vibration

test.

(3) When used with MSE, the WFEM-based damage deteatiethod requires more
sensors to be installed in the damaged regionfiénstibsequent stages once the
most likely damage regions are identified in thidahstage. Given that only mode
shapes are considered, the method is sensitive&sumement noise. However, this

method is time efficient because it is based omyéinalerivation.

Numerical examples of simply supported and contisubeams and a simply
supported thin plate were provided and analyzeceuddferent damage scenarios.
The results demonstrated that the multi-scale egjyatcan progressively and
accurately locate and quantify structural damaghks.impact of measurement noise
on damage detection was assessed via Monte Carldations. Detection accuracy
with a high-scale model is sensitive to noise. Teection accuracy of plate

structures is more sensitive to measurement nb&sethat of beam structures.

(4) When used with model updating technique, the WFEdvhalge detection method
considers an objective function that combines feemies and MAC. The
experimental modal information remains the saménduhe detection process, and
no sensor movement or addition is required. Howetbis method is time

consuming because the optimization process invateestions.

Numerical examples (including that of a simply soged beam and plate) and

experimental examples (including that of a singlg-bingle-story frame and a thin
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plate fixed-supported on two adjacent sides) umldféerent damage scenarios were
investigated to examine the effectiveness of thepgsed method. The results
demonstrated that the WFEM updating method cartifgestructural damage with
satisfactory accuracy and with reduced numbers@F®in the model and updating
parameters in the optimization compared with TFEMhough misjudgments may
occur in the initial stages with low-scale moddisther WFEM refinement in the
subsequent stages would lead to high accuracy acwkssfully remove the initial

false alarms.

(5) The effects of local damage on the dynamic respohsesimply supported beam
subjected to moving load were investigated. A corafon algorithm to obtain the
dynamic response of a simply supported damaged heasndeveloped through
modal perturbation and superposition methods. Tigorithm allows for the
accurate separation of the dynamic response ofreaged beam under moving load
into two components, namely, moving- and naturedffrency components. In the
time-domain, the damage-induced change in the fooomponent had a relatively
low frequency and was relatively insensitive to traiations in damping ratios,
initial conditions, vehicular dynamics, and roadface roughness. By contrast, the
change in the natural-frequency component hadaively high frequency and the
time history of this component was very sensitivéhte abovementioned variations.
Therefore, the change in the moving-frequency campbis a preferred indicator

of damage location.

(6) Through DWT decomposition, a simple and effectieendge localization method
was developed for beam structures subjected to mgoload. As a frequency
separating and denoising tool, multi-scale DWT wasducted to extract the
moving-frequency component from the total displaeetmresponse induced by
moving load. Subsequently, the likely damage lacatan be efficiently identified

through measurement by a single displacement sensor
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Numerical examples with different moving load veles, noise levels, and
numbers of damage locations were analyzed to verdyefficacy and robustness of
the proposed damage localization method. In gensnadlle and double damages
were located with satisfactory accuracy. Howevestecting multiple damage
locations was difficult. The high moving velocityf @ehicle also reduced the
accuracy of the damage localization method, esldrathe cases with multiple

damages.

(7) An adaptive-scale analysis strategy that employsEM/Fin which the scales of
wavelet elements change dynamically according ® iioving load—structure
contact position, was proposed to achieve balamted®n modeling fidelity and
computation amount during the dynamic analysise#nb structures under moving
load. The simulated simply supported beam revedtlet this strategy can
effectively minimize the number of DOFs in the mbdad enhance computation

efficiency and accuracy compared with TFEM withxad uniform mesh.

(8) A two-phase damage detection approach based oni-snale WFEM was
developed in the time domain for beam structurdgested to moving load. This
approach consists of two separate phases, nameaiypage localization and
guantification. It combines DWT-based damage laedion, adaptive-scale
moving-load analysis strategy, and progressive WRipdating in the time-domain.
First, DWT is applied to separate the moving-loegtjfiency component from the
total dynamic displacement response change antelpcdential structural damages.
Second, with updating parameters limited to thentified damage regions only,
WFEM updating is conducted in a progressive maitme@stimate damage severity.
The elemental scales of WFEM dynamically changed amdy according to the
moving load—beam contact positions but also tgptiogressively identified damage
regions. This two-phase approach can achieve gowsistency among FEM scales,
damage scenarios, and load conditions as well aspéimal tradeoff between

damage detection accuracy and efficiency. The megoapproach is generally
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insensitive to damping, vehicle model, and rougbnékerefore, it has a great

potential for damage detection in actual bridges.

(9) A laboratory experiment with different velocitie§ @ moving vehicle and various
damage scenarios was conducted to investigatestsgbility and efficiency of the
proposed two-phase approach. Both single and daldrleages were located and
guantified with satisfactory accuracy when the mgvivehicle velocity was low.
High moving velocity of the vehicle reduced the wecy of damage localization,

especially in the cases of double damages.

7.2 Recommendations for future work

Based on the progress and outcome of this thegiardmg the development of a
WFEM-based multi-scale structural damage detecditoategy in both frequency- and
time-domains, several issues that warrant futuneegtigations are highlighted as

follows.

(1) MSE was adopted to showcase the proposed WFEM-basstitscale damage
detection strategy in Chapter 3. However, severattal limitations associated
with MSE-based damage detection methods have lbsriified by researchers.
These limitations include mass normalization of suwead mode shapes and
ill-positioning of the sensitivity matrix. Thesemlitations should be overcome
before the proposed MSE-based damage detection otheib practically

implemented.

(2) The model updating technigue was widely adoptedthe frequency- and
time-domain in this thesis. The success of thibnape depends on the accuracy of
FEM, definition of the optimization problem, andlesgion of the optimization
algorithm. Although this thesis focused on struatumodeling, the latest advances
in the model updating technigue may be furtheromiiced to improve the

performance of the WFEM-based damage detectionodeth
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(3) Progressive damage detection methods for beam dai [structures were
developed in this study. These two types of elemame insufficient to model
large-scale complex civil structures accuratelyrtii@r investigations should be
conducted to extend the current methods to othgestyof elements and complex

structures with a combination of various elemepesy

(4) The damage effect on the moving load-induced dyoahsiplacement response of a
simply supported beam was studied, and a correspgpndamage localization
method was provided. This localization method ned®e further extended to
other types of structures, such as continuous beeamiplate structures. Moreover,
accurately measuring absolute displacement is nubffecult than measuring
acceleration. Therefore, the proposed damage katmlh method should benefit
from the development and application of advancespldcement measurement

devices.

(5) Another promising strategy that warrants furtherestigation is installing sensors
on a moving vehicle instead of on structures so the vehicle serves as an exciter
and a sensory system. This strategy is more pettabinvenient, and economical
than the current approach that requires the pemanstallation of sensors on

structures.
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