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Abstract

Nowadays, with the extensive installation of roadside sensors and the advance-

ment of mobile technology, historic traffic information is widely collected. It is

valuable in transportation analysis and planning, e.g., evaluating the reliability

of routes for representative source-destination pairs. Also, it can be utilized to

provide efficient and effective route-search services. In view of these applications,

this thesis proposes the traffic-tolerant path (TTP) problem in road networks.

The problem takes an integer k, a source-destination (SD) pair, and historic

traffic information as input, and returns k paths that minimize the aggregate

historic travel time. Unlike the shortest path problem, the TTP problem has a

combinatorial search space that renders the optimal solution expensive to com-

pute. First, we prove the NP-hardness of the TTP problem. Second, we propose

an exact algorithm with effective pruning rules to reduce the search time. Third,

we develop an anytime heuristic algorithm that makes ‘best-effort’ to find a

low-cost solution within a given time limit. Extensive experiments on real and

synthetic traffic data demonstrate the effectiveness of TTPs and the efficiency of

our proposed algorithms.
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Chapter 1

Introduction

1.1 Background and Motivations

Nowadays, historic traffic information is extensively collected by various

means. For example, PeMS [2] developed by California Department of Trans-

portation acquires traffic information (e.g., traffic flow and vehicle speed) through

roadside sensors and Google Maps [4] collect floating car data by crowdsourcing

techniques. It is valuable in transportation reliability analysis [28, 7], e.g., eval-

uating the reliability of routes for representative source-destination pairs, and

online route services [4]. In order to support these applications, we propose a

novel problem called the traffic-tolerant path (TTP) problem. This problem re-

quires a road network G(V,E,Wm) where Wm maps an edge e to a cost vector

w(e) in which each component represents the travel time of e at a time instant.

Given an integer k and a source-destination (SD) pair (vs, vt), the TTP problem

aims to find a set of k paths from vs to vt, denoted by P k
s,t, that minimizes the

1



2 1.1. BACKGROUND AND MOTIVATIONS

following error:

ξ(P k
s,t) =

1

m
·

 m∑
j=1

min
p∈Pk

s,t

{τj(p)− τj(spj)}

 (1.1)

where τj(p) is the travel time of path p at time instant j and spj denotes the

path with the shortest travel time from vs to vt at time instant j.

Observe that the minimization of ξ(P k
s,t) is equivalent to the minimization

of the following measure:

Ψ(P k
s,t) =

m∑
j=1

min
p∈Pk

s,t

τj(p) (1.2)

because spj is independent of P k
s,t and the summation function is distributive.

Conceptually, by minimizing ξ(P k
s,t), the TTP problem is to extract a set of

k paths such that at least one of them can best approximate the shortest travel

times for a given SD pair at any time. We illustrate this problem by the sample

road network shown in Figure 1.1(a). Each edge is labeled with 5 weights that

represent the travel times of edges at 5 time instants (e.g., 8:00am on July 1 –

5 and i.e., m = 5). Suppose that the SD pair (vs, vt) is (v1, v7). There are 6

possible paths from vs and vt, and their travel times at different time instants

are shown in Figure 1.1(b). For clarity, we indicate the intermediate nodes in

a path in the subscript, e.g., the path p5.4.3 passes through v5, v4, v3. Assume

that k = 2. The optimal path set is P k = {p4, p5.6} because it has the minimum

Ψ(P k) value of 56.
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Figure 1.1. A running example of the TTP problem

1.1.1 Applications

Application 1: transportation planning analysis

Transportation planners evaluate the reliability of transportation systems by

analyzing the reliability of routes for representative SD pairs, which are chosen

by their expertise. For example, representative SD pairs could be: city center

to airport, ports to the industrial area, etc. Their current practice [28, 7] is to
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select only one route per SD pair and calculate the travel time reliability of each

route. Our proposed TTPs can provide k paths instead of a single path per SD

pair to transport planners for reliability analysis. Since the k paths minimize

historic aggregate travel time Ψ(P k
s,t), they can be regarded as the alternatives

from which planners can obtain a more comprehensive insight of the reliability of

transportation systems. For example, Figure 1.2 shows four traffic-tolerant paths

of a SD pair in UK highway network and these paths can be used by transport

planners for reliability analysis.

Figure 1.2. Traffic-tolerant paths in UK highway network, k = 4

Application 2: online route services

With the wide deployment of mobile devices and the advancement of car naviga-

tion systems, online route services have access to real-time traffic information1

and provide query users with shortest path(s) according to up-to-date traffic. In

1Collected by roadside sensors [2], crowdsourcing [4], or purchased from traffic information
providers [6].
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fact, the majority of queries are recurrent queries issued by users, e.g., finding

the fastest route from home to office at 8:00am every day. Such regular patterns

appear in human trajectories, as revealed in current scientific studies [22, 33].

Although an online route service may apply shortest path indices [23, 31,

9, 18, 8, 38] to answer queries efficiently, such indices incur substantial mainte-

nance time2 with respect to frequent traffic updates (e.g., every 30 seconds [2]),

rendering itself hard to answer shortest path queries with the latest traffic.

A promising method [29] is to pre-compute candidate paths (a solution pool)

for users’ recurrent queries (in an offline phase) and then update their travel

times by live traffic information (during online operations). The candidate path

with the shortest travel time is used to answer queries. This method is called

candidate approach. It eliminates the index maintenance cost and bounds the

online computation cost by the number of candidate paths. It scales better than

existing methods based on shortest path indices.

In candidate approach, it is desirable to find a set of k candidate paths per

query (vs, vt) such that at least one of such paths is fast for (vs, vt) at any time.

This problem is challenging due to ever-changing traffic conditions. Although

traffic conditions change continuously, they exhibit some patterns which can be

exploited for candidate path computations. For example, Figure 1.3 shows the

travel times of a road segment on weekdays of two weeks. There are two obvious

spikes during 8:00am – 9am and 6:00pm – 7:00pm in these two weeks.

With traffic time patterns of road segments, by minimizing the travel time

error, i.e., Ψ(P k
s,t), we can obtain a set of traffic-tolerant paths (in Figure 1.2)

2The state-of-the-art shortest path index, AH [38], takes hundreds of seconds for index
pre-computation on a road network with a million nodes.
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Figure 1.3. Travel times of a road segment on A417 Road in UK [5]

and it is most likely that at least one of them equals to or is close to the fastest

path under real-time traffic. Although Malviya et al. [29] have proposed some

heuristics for finding these candidate paths, they do not necessarily minimize the

historic travel time error between those heuristic paths and the fastest path in

the road network.

1.1.2 Challenges and Contributions

Unlike the shortest path problem, the TTP problem has a combinatorial

search space that renders the optimal solution expensive to compute because it

aims to find k paths that minimize the aggregate travel time in history among all

possible paths of a SD pair. First, we propose an exact algorithm with effective

pruning rules to reduce the search time. Second, we develop an anytime heuristic

algorithm that makes ‘best-effort’ to find a low-cost solution within a given time
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limit. In summary, the contributions of this thesis are as follows.

• We propose a novel problem called the traffic-tolerant path (TTP) prob-

lem, which finds application in transportation planning and online route

services.

• We prove that the TTP problem is NP-hard.

• We present an exact algorithm with effective pruning rules for computing

the optimal solution.

• We devise two heuristic algorithms for the TTP problem. One of them

offers an anytime feature which can terminate and return a solution within

a given time budget.
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1.2 Traffic-tolerant Paths

In this section, we present preliminaries and formulate the TTP problem.

The following table (Table 1.1) summarizes the notations used in our formulation

and in the rest of the thesis.

Table 1.1. Summary of notations
Symbol Meaning

G(V,E,Wm) A directed and weighted network

vs(vt) Source (Destination)

(vi, vj) An edge in E

wj(e) travel time of e ∈ E at time instant j

E(p) The set of edges on path p

τj(p) travel time of p at time instant j

P k
s,t A k-combination

Ψ(P k
s,t) Aggregate value of P k

s,t

1.2.1 Problem Definition

Definition 1 (Road Network with Historic Traffic) A road network is

modeled as a directed and weighted graph G(V,E,Wm), where V is the set of road

junctions, E is the set of road segments, and Wm : E → Rm
+ is a mapping from

edges to m-dimensional cost vectors. Given an edge e ∈ E, we denote its weight

vector by w(e) and its travel time at the j-th time instant by wj(e).

In real world, wj(e) may correspond to the travel time of a road segment

within the j-th time frame, where the length of each time frame could be, e.g.,

30 seconds [2] or 15 minutes [5]. We regard this real-world time frame as time

instant and each of them is indexed by an integer j. In practice, Wm is usually

a subset of the entire historic traffic data and is determined by users according
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to their requirements.

Definition 2 (Loop-Free Path) A loop-free path p = 〈va1 , va2 , ..., van〉 is a

sequence of distinct nodes such that for 1 ≤ i < n, (vai , vai+1) ∈ E. The start

and end nodes on p are denoted by S(p) and T (p) respectively. They are also

called the source (vs) and destination (vt) of p.

For simplicity, we call a loop-free path as a path in this thesis. The travel time

of a path p at time instant j is defined as:

τj(p) =
n−1∑
i=1

wj((vai , vai+1)) =
∑

e∈E(p)

wj(e) (1.3)

where E(p) denotes the set of edges on a path p.

Definition 3 (k-combination and Aggregate Score) Given a positive

integer k, a k-combination P k
s,t = {p1, p2, ..., pk} is a set of k paths such that

all of them have the same start node as vs and the same end node as vt. The

aggregate score of P k
s,t is defined as

Ψ(P k
s,t) =

m∑
j=1

min
p∈Pk

s,t

τj(p) (1.4)

We illustrate the above concepts by using the road network in Figure 1.1.

Each edge is labeled with a cost vector that represents its travel times at 5

(historic) time instants. Table 1.2 displays all possible paths in the road network

and their travel times. For the path p1 = 〈v1, v2, v3, v7〉, its travel time at time

instant 3 is: τ3(p1) = (7 + 4 + 3) = 14. Assume that k = 3, and consider a

3-combination P 3
1,7 = {p4, p5, p6} for instance. Then, we have: minp∈P 3

1,7
τ1(p) =
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min{19, 17, 15} = 15 and its aggregate Ψ(P 3
1,7) is (15 + 16 + 12 + 21 + 8) = 72.

Definition 4 (K Traffic-tolerant Paths Query) Given a road network

G(V,E,Wm), vs, vt ∈ V , and a positive integer k, Traffic-tolerant Paths Query

TTP(vs, vt, k) returns a k-combination P k
s,t such that for any possible P ′ks,t,

Ψ(P k
s,t) ≤ Ψ(P ′ks,t).

Let us use the road network in Figure 1.1 for illustration. Table 1.3 lists

all possible 3-combinations and their corresponding aggregates with v1 as source

and v7 as destination. There are
(
6
3

)
= 20 3-combinations in total. The optimal

solution of TTP(v1, v7, 3) is Popt = {p2, p3, p4} since its aggregate score Ψ(Popt) =

(16 + 10 + 6 + 14 + 8) = 54 is the minimum among all combinations.

Table 1.2. All possible paths from v1 to v7, with historic travel times
Path τ1 τ2 τ3 τ4 τ5

p1〈v1, v2, v3, v7〉 19 20 14 15 16

p2〈v1, v4, v3, v7〉 18 20 17 14 12

p3〈v1, v4, v7〉 16 10 6 16 14

p4〈v1, v5, v6, v7〉 19 16 20 21 8

p5〈v1, v5, v4, v3, v7〉 17 30 23 21 9

p6〈v1, v5, v4, v7〉 15 20 12 23 11

Table 1.3. All possible 3-combinations P 3
1,7 and their aggregate scores

{p1, p2, p3}: 58 {p1, p4, p5}: 70 {p2, p4, p6}: 65
{p1, p2, p4}: 70 {p1, p4, p6}: 66 {p2, p5, p6}: 70
{p1, p2, p5}: 74 {p1, p5, p6}: 71 {p3, p4, p5}: 56
{p1, p2, p6}: 72 {p2, p3, p4}: 54 {p3, p4, p6}: 55
{p1, p3, p4}: 55 {p2, p3, p5}: 55 {p3, p5, p6}: 56
{p1, p3, p5}: 56 {p2, p3, p6}: 56 {p4, p5, p6}: 72
{p1, p3, p6}: 57 {p2, p4, p5}: 72
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1.3 Thesis Organization

After illustrating the background and formulation of the TTP problem, we

present the structure of this thesis. The rest of the work is organized as fol-

lows. We review the related work in Chapter 2. Then, we present the technical

contributions in the following order:

• We prove that the TTP problem is NP-hard by reduction from Set-Cover

problem. (Chapter 3)

• Next, we present a two-phase exact algorithm with effective pruning rules

for computing the optimal solution. The two phases are candidate gener-

ation and optimal solution enumeration respectively. Due to the hardness

of the TTP problem, we present two heuristic algorithms. One of them

bounds the number of candidates in Phase I while another offers an any-

time feature which can terminate and return a solution within a given time

budget. (Chapter 4)

• Finally, we evaluate our proposed algorithms through extensive experi-

ments. The evaluation is conducted on both real and synthetic data sets.

The results of the experiments show that our approaches outperform their

competitors. (Chapter 5)

After presenting our contributions, we conclude our work and envision our future

research directions in (Chapter 6).
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Chapter 2

Literature Review

In this chapter, we review the literature related to the TTP problem. Since

it makes use of historic traffic data and has multidisciplinary applications, its

related work includes i) road networks with historic traffic, ii) shortest path

index, iii) multi-criteria queries in road networks, and iv) reliable route recom-

mendation.

2.1 Road Networks with Historic Traffic

2.1.1 Time-dependent Networks

The first approach of incorporating historic traffic into road networks is

time-dependent network. Kanoulas et al. [25] and Demiryurek et al. [16] associ-

ated road segments with time-varying functions which are established based on

historic traffic data. Time-varying functions capture the traffic patterns of road

13



14 2.1. ROAD NETWORKS WITH HISTORIC TRAFFIC

segments and return travel times of edges given a start time t. A time-varying

function of a road segment is shown in Figure 2.1. The function indicates that

peak hours occur on this road segment at 8:00am and 5:00pm. They extended A*

algorithm to compute the time-dependent fastest path between source and des-

tination in a time-dependent network. Gonzalez et al. [21] exploited the driving

and road traffic patterns from historic data in order to consider some non-trivial

factors in route planning such as the experience of local expert drivers. Nev-

ertheless, when answering shortest paths queries, their works need to traverse

the road network and hence the query cost is not bounded. Also, their routing

algorithms only consider the time-varying functions built on historic traffic but

do not react with real-time traffic updates. Our TTP problem enjoys bounded

query cost by pre-computing the candidates of recurrent queries and responds to

live traffic information by re-ranking the candidates.

2.1.2 Probabilistic Networks

Probabilistic network proposed by Hua et al. [24] is another way to model

historic traffic information. It takes travel time samples of each edge from historic

traffic data and constructs probability mass functions (PMF) for each segment.

Figure 2.2 is a probabilistic network example. The edges in the network are

associated with a set of weights while every weight is accompanied with a prob-

ability, forming a PMF. Based on probabilistic networks, they further proposed

probabilistic path queries and leveraged basic conditional probability principle to

compute the paths that satisfy a weight (travel time) requirement l guaranteed

by a certain probability τ . The queries require users to specify either l or τ . In

transportation analysis, it is reasonable for planners to specify τ so as to find
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Figure 2.1. Time-varying function of a road segment on A417 Road in UK [5]

highly reliable paths. However, in online route services, both l and τ vary with

different SD pairs in practice and the selection of τ is not discussed in their work.

On the contrary, the TTP problem only requires a straightforward parameter of

k and can be applied to both applications.
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Edge Weight (Probability)
(1,2) 10(0.4) 20(0.3) 25(0.3)
(1,3) 15(0.5) 20(0.3) 25(0.2)
(2,3) 5(0.3) 20(0.3) 25(0.4)
(2,4) 5(0.6) 10(0.2) 15(0.2)
(3,4) 10(0.6) 15(0.1) 20(0.3)

(a) an undirected road network (b) probabilistic weights of edges

Figure 2.2. A probabilistic road network

2.2 Shortest Path Index

The classic solution to shortest path queries in road network is Dijkstra’s

algorithm [17]. It starts at a source and visits the nodes in the ascending order

of their distance from the source by maintaining a priority queue. It can be

further accelerated by bi-directional searches. However, it is not able to answer

queries efficiently in sizable road networks. To accelerate the shortest path com-

putation in real time, pre-computed indices have been widely studied. They can

be classified into three categories, namely goal directed approach, road hierar-

chical approach, and candidate approach. We give a brief review on these three

approaches in the following sections.

2.2.1 Goal Directed Approach

Conceptually, goal directed indices act as a tour guide and direct the shortest

path search towards the destination. ALT [20], Arc-Flags [26] and hub-based

labeling [8] are the representative algorithms in this category.
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In the pre-computation phase, ALT picks a set of landmark nodes and com-

putes the distances from them to every nodes in the network. With triangle

inequality, lower bound distances from the visited nodes to the destination can

be derived from the pre-computed distance information and used as admissible

estimates in A* search. Arc-Flags first partition the network into m subgraphs

and compute a bitmap index B for each edge. The bitmap of each edge indicates

if the edge lies on a shortest path to a node in subgraphs. Both of them have been

improved to support weight changes of edges [14, 13] for online route services.

However, their index maintenance costs are huge and their query performances

degrade with weight changes. Although hub-based labeling [8] offers promising

response time among all start-of-the-art techniques, it does not support weight

updates of edges and its re-computation cost is expensive also.

2.2.2 Road Hierarchical Approach

Road hierarchical approach exploits the implicit hierarchical structure of

road network and store this information in a pre-computed index. The state-of-

the-art techniques include Reach [23], highway hierarchy (HH) [31] [32], transit

node routing (TNR) [9], contraction hierarchy (CH) [18], and arterial hierarchy

(AH) [38].

Reach, HH, CH, and AH are based on similar concepts - some nodes are more

superior than the others and hence the node ordering can be defined. Shortcut

edges, which bypass inferior nodes, are built among those important (high-order)

nodes in order to reduce the search space during shortest path search.

Although CH and AH can pre-compute their indices in hundreds of seconds
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in [34, 38], they are not still applicable when live traffic updates may arrive

frequently such as 30 seconds in [2]. Geisberger et al. [19] devised an update

mechanism for CH for real traffic condition. However, the mechanism only sup-

ports weight increases and the update time is highly dependent on the order of

the two end nodes of the updated edge. If the end nodes have higher orders, more

shortcut edges are affected and their weight need to be updated accordingly. The

other two techniques, Reach and TNR, have been evaluated to have much higher

pre-computation cost than CH through extensive experiments in [10, 34].

2.2.3 Candidate Approach

As revealed in current scientific studies [22, 33], regular patterns appear

in human trajectories, implying the recurrence of route queries which allows

candidate approach for online route services. Candidate approach pre-computes

candidate paths (a solution pool) for users’ recurrent queries (in an offline phase)

and then update their travel times by live traffic information (during online

operations). For example, three paths from v1 to v8 (p1, p2 and p3) shown in

Figure 2.3 are pre-computed offline in advance. They are re-ranked based on

the live traffic updates online. The live travel times of p1, p2 and p3 are 14, 13,

and 12 respectively. The path (p3) with the shortest travel time is returned as a

result.

Chen et al. [11] in transportation community first proposed a candidate

approach for route recommendation. Their approach takes drivers’ preferences

such as maximum path duration and minimum path reliability into considera-

tions. Link reliability is estimated by analysis of historical data and microscopic
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Figure 2.3. An undirected road network for candidate approach

traffic simulation. They proposed a heuristic method with a weight increment

procedure in order to compute a set of candidate paths which are partially dis-

joint and with acceptable reliability.

Malviya et al. [29] proposed some heuristics to generate candidate paths for

online route services with bounded cost. Two representative heuristic methods

are K-variance (K-VAR) and Y-moderate (Y-MOD). The idea of K-VAR is to

build a Gaussian distribution N ∼ (µ, σ2) based on the historic traffic data for

each edge. Then, for each edge, it samples the travel time from the distribution

N of the edge and computes a shortest path from vs to vt. It repeats the travel

time sampling and the shortest path search after a fixed number of iterations

in order to find k candidate paths. Y-MOD is a variant of Yen’s algorithm [36]

which computes k loop-free shortest paths. Its idea is to guarantee that the

resulting k candidate paths have a limited fraction f of overlapping edges.

The heuristics in [11, 29] do not necessarily minimize the travel time error
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between those candidate paths and the fastest paths in the historic data. In

contrast, our TTP problem aims to minimize the historic travel time error in order

to produce a set of candidate paths with resistance to the real-time traffic. Their

work cannot be used for transportation reliability analysis as the heuristics may

return some convoluted paths, which are not considered by transport planners.
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2.3 Queries in Multi-criteria Road Networks

Multi-criteria road network is a road network whose edges are associated

with multiple attributes. The attributes present different criteria/costs of a road

segment such as driving time, walking time and physical length. A multi-criteria

road network example is shown in Figure 2.4. The different criteria of a road

segment in this network are driving time, gasoline consumption, and toll fee.

The TTP problem is also related to queries in multi-criteria road networks since

it associates each edge in a road network with a multidimensional cost vector.

The criteria in the TTP problem are the travel times of edges at different time

instants.

1 
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6 3 
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8 

9 

10 

(3min, 0.3L, $1) 

(3min, 0.7L, $1) 

(2min, 0.3L, $1) 

(5min, 1L, $5) (3min, 0.5L, $0) 

(4min, 0.4L, $2) (2min, 0.2L, $0) 

(2min, 0.2L, $0) 

(3min, 0.4L, $0) 

(6min, 0.5L, $1) (3min, 0.3L, $0) 

Figure 2.4. A multi-criteria undirected road network example

Queries in multi-criteria road networks have also been studied in data en-

gineering discipline [30, 27] for transportation decision making. Mouratidis et

al. [30] proposed skyline and top-k queries on a set of point of interests (POIs)

in multi-cost road networks. Given a query location q, their skyline query com-
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putes a skyline of POIs such that their cost vectors with respect to q are not

dominated by one another. The top-k query takes a query location q and an

increasingly monotonic aggregate function f as inputs and then returns k POIs

with the highest value of f .

Meanwhile, Kriegel et al. [27] proposed route skyline queries in multi-cost

road networks for multi-preference route planning. Given a SD pair (vs, vt), they

aim to compute a set of skyline paths from vs to vt such that the paths can offer

an optimal solution of any arbitrary preference functions.

Although the works above both focus on multi-cost road networks, they are

different from the work in this thesis. First of all, our problem computes k paths

of a given SD pair instead of a set of skyline or top-k POIs with respect to a query

location [30]. Second, although the work in [27] and our work both regard paths

as multidimensional points and exploit dominance property, our TTP problem

is distinct from their skyline path computation since it aims to minimize the

aggregate travel time error Ψ.
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2.4 Reliable Route Recommendation

Transportation community has also studied multi-criteria road networks for

reliable route recommendation [35, 37]. In view of traffic uncertainties, Yu et

al. [37] adopted a scenario approach and first proposed absolute robust shortest

path (ARSP) problem. They considered that travel times of road segments (and

hence paths) vary with scenarios. A scenario is an instance of traffic conditions.

Therefore, scenarios can be a set of representative times such as rainy day and

sunny day, or can be a set of time instants like 9:00am - 9:15am of weekdays.

ARSP problem aims to find a path that can minimize the maximum travel time

in all scenarios. Let us consider the road network in Figure 2.2(a) again and

Table 2.1 shows the travel times of four paths from v1 to v4 in four scenarios. p2

is the optimal ARSP since its maximum travel time is the minimum among all

four paths in all scenarios.

Xing et al. [35] re-visited ARSP problem and proposed percentile robust

shortest path (PRSP) problem. PRSP is to compute a path that has the min-

imum α-percentile travel time. For instance, assume α = 75, p1 and p2 are

both α-optimal because their 75-percentile travel times, which are both 11, are

minimum according to Table 2.1. They formulated ARSP and PRSP problems

as mathematical optimization problems and solved them by Lagrangian relax-

ation approach. The above works compute only one reliable path whereas our

TTP problem returns k paths which are more resistant to ever-changing traffic

conditions.



24 2.4. RELIABLE ROUTE RECOMMENDATION

Edge
Scenarios

75-percentile
s1 s2 s3 s4

p1〈v1, v2, v4〉 9 13 11 10 11

p2〈v1, v3, v4〉 9 10 11 12 11

p3〈v1, v2, v3, v4〉 18 18 21 21 21

p4〈v1, v3, v2, v4〉 10 11 13 13 13

Table 2.1. An example of ARSP and PRSP based on Figure 2.2(a)
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Problem Hardness

In this chapter, we prove the TTP problem is NP-hard by reduction from

the Set-Cover problem, paving the way of devising heuristics in Section 4.2.

Theorem 1 The TTP problem is NP-hard.

Proof. Before presenting a reduction scheme, we first express an instance of the

TTP problem, 〈G, vs, vt, k〉, in another form which facilitates our proof. Recall

that every path on G has a m-dimensional cost vector and the TTP problem aims

to find an optimal combination of k paths among all possible paths from vs to vt.

Let us assume there are n possible paths between vs and vt. Instead of expressing

the problem from the perspective of graph, we can model it as a matrix like in

Table 1.2. Each row represents the m-dimensional cost vector a path from vs to

vt. Based on matrix-like representation, we can re-formulate an instance of the

TTP problem as 〈k,m, n, {(i, j, τj(pi))}〉, where the set {(i, j, τj(pi))} records the

travel time of each path pi at each time instant j, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

25
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Next, we present a reduction scheme that converts any given instance of

the Set-Cover problem [12]. Let 〈k,CS = {Si}, U〉 be an instance of Set-Cover,

where k is an integer, U is a domain set of items, CS is a collection of subsets

Si ⊆ U . This problem asks whether there exists a size-k collection CS′ ⊆ CS

such that they cover all items in U , i.e., |
⋃

Si∈CS′ Si| = |U |.

The reduction scheme is as follows:

• We set m = |U | and n = |CS|. The value of k is the same in both problems.

• Without loss of generality, we rename the items in U as 1, 2, · · · ,m (in the

Set-Cover instance).

• for each subset Si ∈ CS and each item j ∈ U , we set τj(pi) = 0 if j ∈ Si,

or set τj(pi) = 1 otherwise.

There exists a graph instance of the TTP problem to which any given in-

stance of the Set-Cover problem corresponds. The graph instance, in which the

paths connecting vs and vt (p1, p2, ..., pn) are disjoint, is shown in Figure 3.1.

Note that the size of the constructed TTP instance 〈k,m, n, {(i, j, τj(pi))}〉 is

polynomial to the size of the given Set-Cover instance 〈k,CS = {Si}, U〉. Also,

the construction process takes polynomial time.

Now, we show that a solution CS′ of Set-Cover instance corresponds

to a solution P of the corresponding TTP instance with aggregate score∑m
j=1 minp∈P τj(p) equal to 0.

We first convert a given CS′ = {Sx1 , Sx2 , · · · , Sxk
} to a corresponding

P = {px1 , px2 , · · · , pxk
} and then derive its aggregate score. By checking the
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occurrences of items in Sxi in the item-wise manner, we derive:

|
⋃

Sxi∈CS′

Sxi | =
m∑
j=1

B(
k∨

i=1

(j ∈ Sxi))

where the function B(·) maps true to 1 and maps false to 0. Since CS′ is a

solution of Set-Cover, each item j ∈ U must appear in some Sxi . According

to our reduction scheme, the corresponding τj(pxi) in our constructed instance

must be 0. Thus, we obtain:
∑m

j=1 mink
i=1 τj(pxi) = 0.

We then convert a given P = {px1 , px2 , · · · , pxk
} to a corresponding CS′ =

{Sx1 , Sx2 , · · · , Sxk
}. Since P is a solution, for each time instant j, there exists

some path pxi such that τj(pxi) = 0. According to our reduction scheme, for

each item j, there is a corresponding Sxi (in Set-Cover solution) that contains j.

Therefore, CS′ covers all items in U , and it is a solution of Set-Cover.

Since the Set-Cover problem is NP-hard [12], this proof implies that the

TTP problem is also NP-hard.

It is tempting to adapt existing heuristics for the Set-Cover problem to solve

our TTP problem. Observe that, in the above reduction scheme, any given Set-

Cover instance can be converted to a corresponding TTP instance with binary

τj(pi) (i.e., either 0 or 1). However, in a general TTP instance, the values of

τj(pi) can be real numbers. Such a TTP instance does not have a corresponding

Set-Cover instance. Thus, existing heuristics for the Set-Cover problem are not

applicable to our TTP problem.
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Figure 3.1. A graph instance corresponding to any given instance of the Set-Cover
problem
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Algorithms

This chapter presents our technical contributions which are an exact algo-

rithm and two heuristics for the TTP problem. They are explained with the aid

of detailed examples. Finally, we are going to discuss two practical aspects of

TTPs, namely selection of historic traffic data and updating TTPs in online route

services.

4.1 Exact Method

In this section, we present an exact method for the TTP problem. Our exact

method (Algorithm 1) consists of two phases: (Phase I) generating a set C of

candidate paths and (Phase II) finding the optimal combination of k paths

from the set C.

A simple implementation is to enumerate all possible paths from vs to vt and

then examine all size-k combinations of the paths. As an example, we assume

29
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k = 3 and consider the SD pair (v1, v7) in the road network in Figure 1.1.

Since there are |C| = 6 possible paths (from v1 to v7) in the road network, we

would enumerate
(|C|
k

)
=
(
6
3

)
= 20 size-3 combinations in total. However, this

implementation does not scale well with a large road network.

In the light of this, we optimize the algorithms for both phases to reduce the

search space
(|C|
k

)
. For Phase I, we develop pruning rules to eliminate unpromising

paths that cannot contribute to the optimal solution (i.e., reducing the value |C|).

For Phase II, we adopt the branch-and-bound paradigm and design pruning rules

to discard partial combinations that cannot lead to the optimal solution.

Algorithm 1 Exact ( Node vs, Node vt, Integer k )

1: C ← GenerateCandidates ( vs, vt, k ) . Phase I
2: P k

opt ← FindOptimal ( k, C ) . Phase II

3: return P k
opt

4.1.1 Phase I: Generating Candidates

We face two challenges in generating candidate paths. First, the number of

all possible paths from source to destination is incredibly large in a sizable road

network. Exploring all of them is impractical. Second, many paths lead to long

travel times, so those paths should not be included in the optimal solution.

To overcome the challenges, we prune unpromising paths by leveraging the

dominance property. Since every edge in the road network has a cost vector w(e)

with size m, all possible paths p connecting a SD pair has a m-dimensional cost

vector −→p also. As p represents a vector, we can define and exploit dominance of

paths.
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Definition 5 (Vector and Path dominance) Let −→v and −→u be two m-

dimensional vectors. −→v is said to dominate −→u if and only if ∀1 ≤ j ≤ m,−→v .j ≤
−→u .j. We denote this as −→v � −→u .

Let p and p′ be two paths from vs to vt. p
′ is said to dominate p if and only

if
−→
p′ � −→p .

Lemma 1 (Dominance property) Given two vectors −→v and −→u , if −→v � −→u ,

then
∑m

j=1
−→v .j ≤

∑m
j=1
−→u .j.

The concept of path dominance is visualized in Figure 4.1. A dimension

is the travel time of a path at a particular time instant and a point represents

a path from vs and vt. Every point corresponds to a dominance region. For

example, p3 with −→p3 = 〈3, 4〉 dominates the points in the blue area , and p4 with

−→p4 = 〈4, 2〉 dominates the paths in the red area.

Recall that the TTP problem is to minimize the aggregate value derived by

the paths in a k-combination. Thus, we aim to retain those paths with short

travel times over m time instants. By the concept of path dominance, if a path

p′ dominates another path p, this implies p′ has smaller travel times than p at all

time instants, so p should be pruned in Phase I. This dominance concept leads

to the following pruning rule.

Table 4.1. Cost vector representations of paths and combinations
Type Cost Vector −→v = 〈−→v .1,−→v .2, · · · ,−→v .m〉
Path p −→p = 〈· · · , τj(p), · · · 〉

Combination P
−→
P = 〈· · · ,minp∈P τj(p), · · · 〉

Prefix path p̂ LB(p̂) = 〈· · · , LBj(p̂), · · · 〉

Pruning Rule 1 (Path Dominance Pruning) Given a path p, if there is a
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Figure 4.1. Concept of path dominance (τ1 and τ2 are historic travel times of paths)

path p′ such that
−→
p′ � −→p , then p can be pruned.

Proof. For the sake of discussion, we let p1 = p and p′1 = p′. Consider a k-

combination that contains p1, say P = {p1, p2, ..., pk}. Suppose there is a path

p′1 such that
−→
p′ � −→p1 and another k-combination is formed P ′ = {p′1, p2, ..., pk}.

Consider the j-th dimension of the cost vectors and
−→
P and

−→
P ′. Observe that

−→
P .j = min{τj(p1), τj(p2), · · · , τj(pm)} and

−→
P ′.j =

min{τj(p′1), τj(p2), · · · , τj(pm)}. Since p′1 � p1, we have
−→
P ′.j ≤ −→

P .j. By

Lemma 1, we derive
∑m

j=1

−→
P ′.j ≤

∑m
j=1

−→
P .j. Thus, Ψ(P ′) ≤ Ψ(P ) and the

lemma is proven.

This pruning rule is applicable only when all possible paths between vs and
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vt are known. However, enumerating all possible paths is expensive even in a

medium-sized road network. Consequently, we aim to avoid exploring the entire

search space during enumeration.

Observe that many paths share a common prefix among all possible paths

from vs to vt. During path enumeration, we can safely disqualify a prefix path

(before it reaches vt) by computing the minimum possible travel time of the paths

originating from a common prefix at each time instant j, denoted by LBj(p̂). It

is a sum of two terms: (i) the exact travel time of a prefix at time instant j,

i.e., τj(p̂) and, (ii) the minimum travel time from the end node of the prefix to

vt. A prefix path p̂ and LBj(p̂) are defined as follows.

Definition 6 (Prefix Path) Given a path p = 〈va1 , va2 , ..., van〉, p̂ =

〈vâ1 , vâ2 , ..., vâm〉 is a prefix path of p if and only if m ≤ n and for 1 ≤ i ≤

m, vai = vâi.

Definition 7 (Travel Time and Cost Vector of Prefix Path) Given

a prefix path p̂, for 1 ≤ j ≤ m, LBj(p̂) is calculated as

LBj(p̂) = τj(p̂) + τj(sp
last
j )

where τj(p̂) =
∑

e∈E(p̂)wj(e) denotes the exact travel time of a prefix at time

instant j and splastj denotes the shortest path from the last node of p̂ to vt at time

instant j.

The lower-bound cost vector of p̂, denoted by LB(p̂), is defined as LB(p̂) =

〈LB1(p̂), LB2(p̂), ..., LBm(p̂)〉.

For example, let us consider p̂ = 〈v1, v5〉 and LB2(p̂) in our sample network. We
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have τ2(p̂) = 8 and τ2(sp
last
2 ) = 8, where splast2 = 〈v5, v6, v7〉. Hence, LB2(p̂) =

(8 + 8) = 16. By computing LBj(p̂) for 1 ≤ j ≤ m, we obtain a cost vector

LB(p̂) that lower bounds the cost vector of any path sharing the common prefix

p̂. Similarly, we can apply the dominance concept and the pruning rule for LB(p̂).

Pruning Rule 2 (Prefix Path Pruning) Given a set of paths D and a prefix

path p̂, if there is a p′ ∈ D such that
−→
p′ � LB(p̂), then every path p with the

prefix p̂ can be pruned.

Algorithm 2 DepthFirstSearch implements GenerateCandidates

Algorithm DepthFirstSearch ( Node vs, Node vt, Integer k )
1: Initialize p̂← 〈vs〉
2: Initialize C ← ∅
3: Compute the shortest path distances from v ∈ V to vt for each time instant
j by backward Dijkstra’s algorithm

4: D ← compute a set of paths by heuristics . Section 4.1.1.1
5: RecurDFS ( vs, vt, p̂, D, C ) . candidates stored in C
6: add D into C . for correctness
7: return C

Algorithm RecurDFS ( Node vs, Node vt, Path p̂, Path set D, Path set C )
1: ulast ← T (p̂)
2: if ulast 6= vt then
3: if ∀p ∈ D, LB(p̂) is not dominated by −→p then . pruning rule
4: for each node v adjacent to ulast do
5: if v /∈ p̂ then
6: append v to p̂
7: RecurDFS ( vs, vt, p̂, D, C )
8: remove v from p̂

9: else
10: C ← C ∪ {p̂}

We present the implementation of Phase I in Algorithm 2. First, we com-

pute τj(sp
last
j ) using backward Dijkstra’s algorithm from vt and apply a heuristic

to find a set of pruning paths D (Line 3 and 4). All of them will be used to
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support our pruning rules. We will discuss how to select the set D shortly (Sec-

tion 4.1.1.1). Next, we initialize an empty prefix path and an empty candidate

set C. Then, we apply a DFS-like procedure to find all qualified candidates.

The procedure recursively constructs different prefixes stemming from vs and

compares them against D. If a prefix is dominated by a path in D, the algo-

rithm discards and stops expanding the prefix. Otherwise, the recursion keeps

expanding the prefix by visiting the neighbors of its end node until reaching vt.

Each completely expanded path (from vs to vt) becomes a candidate for the next

phase.

Theorem 2 Only non-dominated paths can contribute to the optimal solution of

the TTP problem.

Proof. Based on Pruning Rule 1, all dominated paths are disqualified to form

an optimal combination since they can be replaced by the paths which dominate

them. Hence, only non-dominated paths may belong to the optimal solution.

Theorem 3 The size of C is O(|V |!)

Proof. Let us consider a completely connected graph G(V,E). Given any two

nodes in G, there are
∑|V |−2

i=0 P
|V |−2
i = (|V |−2)!(

∑|V |−2
i=0

1
i!) paths between them,

where Pn
k denotes permutation. If the number of dimensions of cost vectors

is large enough such that all paths connecting any two nodes in G are non-

dominated among one another, the size of C is factorial in |V |.
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4.1.1.1 Selection of the Pruning Path Set D

In the previous section, we mentioned that every path p corresponds to

distinct dominance regions. The selection of D is critical for pruning efficiency.

Including too many paths in D may actually cripple performance because pruning

becomes too slow (we need to check every element against a prefix path one by

one). We have empirically found that D yields the best performance in most

cases when it includes the k + 1 paths described below. Note that this does not

affect correctness, but only determines the trade-off between the effectiveness of

pruning and its processing overhead.

We first introduce a new notation of edges, ws(e). It represents the weight

of an edge dedicated to shortest path search and is used to find D. ws(e) is

introduced in order not to mix with wj(e). Initially, for every edge, we add up

the travel time of the edge of all m time instants, i.e.,

ws(e) =
1

m

m∑
j=1

wj(e) (4.1)

Then, we compute the shortest path between vs and vt using ws(e) and insert it

into D. The intuition is that a path is not bad at all time instants.

Next, in the road network, we set the weight of each edge e to ws(e) =

minm
j=1wj(e). We then execute the following steps for k iterations. In each

iteration, we perform a shortest path search from vs to vt, obtain a shortest path

spi, and insert it into D. Then, we update ws(e) = maxm
j=1wj(e) for each edge

e on spi. We hope that this would force the shortest path search in subsequent

iterations to find other paths that are significantly different from spi.
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4.1.2 Phase II: Finding Optimal Combination

In this section, we present the implementation for Phase II, i.e., enumerating

k-combinations of paths from the candidate set C, in order to find the optimal

k-combination. Since we have obtained the cost vectors of candidate paths in

Phase I, the road network is no longer required in this phase.

The number of k-combinations of paths is
(|C|
k

)
, so it is expensive to generate

them, especially when |C| is large. Thus, we develop pruning rules to prevent

exploring unnecessary k-combinations. The key idea of the pruning rules is to

early stop extending any partial combination P̂ (which contain fewer than k

candidates) by computing its lower bound aggregate value.

Table 1.3 lists out all 3-combinations and their aggregate travel time er-

rors. Observe that some of the combinations share common paths. For

example, {p1, p2, p3}, {p1, p2, p4}, {p1, p2, p5}, and {p1, p2, p6} have {p1, p2}

as common paths. Suppose that Pbest = {p1, p2, p3} is the best combina-

tion found so far and Ψ(Pbest) is 58. Let us consider a partial combination

P̂ = {p1, p2, p∗}, where {p1, p2} are fixed paths P̂f and p∗ is a variable path

selected from P̂v = {p4, p5, p6}. We can derive the lower bound aggregate

value of P̂ , denoted by Ψlb(P̂ ), using Definition 8. Ψlb(P̂ ) is calculated as∑m
j=1 min{minp∈{p1,p2} τj(p),minp∗∈{p4,p5,p6} τj(p∗)} = 15 + 16 + 12 + 14 + 8 = 65

according to Table 1.3. Since Ψlb(P̂ ) > Ψ(Pbest), we can safely discard three

combinations derived from P̂ , namely {p1, p2, p4}, {p1, p2, p5}, and {p1, p2, p6},

by Pruning Rule 3.

Definition 8 (Lower Bound Aggregate Value of Partial k-combination)

Given a partial k-combination P̂ with its fixed path set P̂f and variable path set
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P̂v, Ψlb(P̂ ) is defined as

m∑
j=1

min{min
p∈P̂f

τj(p), min
p∗∈P̂v

τj(p∗)} (4.2)

With the above lower bound cost equation, we have the following pruning

rule.

Pruning Rule 3 (Partial k-combination Pruning) Let Pbest be a known

k-combination. Given a partial combination P̂ , if Ψlb(P̂ ) > Ψ(Pbest), then the

derived combinations of P̂ can be pruned.

4.1.2.1 Efficient computation of Ψlb(P̂ ) by T C matrix

It is expensive to compute Ψlb(P̂ ) by Definition 8 directly because the term

minp∗∈P̂v
τj(p∗) takes O(|P̂v|) computation time. We propose a structure called

T C matrix to support retrieving term minp∗∈P̂v
τj(p∗) in constant time.

The T C matrix is a n×m matrix, where m is the number of time instants and

n is the size of C. Its entries are used to store the lower bound travel times of some

variable path sets, i.e., minp∗∈P̂v
τj(p∗) in Equation 4.2. Let C = {c1, c2, ..., cn}

and the entry T C[i, j] is defined as the lower bound travel time of ci, ..., cn at the

j-th time instant:

T C[i, j] =
n

min
x=i

τj(cx) (4.3)

Table 4.2 illustrates the T C matrix for the paths in Table 1.2. Intuitively,

the i-th row of T C, denoted by T C[i, ·], is the lower bound cost vector of the

candidates ci, ..., cn and supports our partial k-combination pruning. By con-



CHAPTER 4. ALGORITHMS 39

structing the T C matrix incrementally in descending order of i, we can achieve

O(n ·m) construction time.

Next, by using T C matrix in Table 4.2, we illustrate how to compute the

lower bound cost of a partial combination P̂ . Suppose k = 3 and consider P̂ with

P̂f = {p4, p5} and P̂v = {p6, p2, p1} = {c4, c5, c6}. To calculate Ψlb(P̂ ), we first

fetch the cost vectors of p4, p5 from Table 1.2, which are 〈19, 16, 20, 21, 8〉 and

〈17, 30, 23, 21, 9〉. Next, we fetch the lower bound cost vector 〈15, 20, 12, 14, 11〉

of P̂v, i.e., T C[4, ·], from Table 4.2. Note that we need to compute this lower

bound cost vector from scratch if we do not maintain T C matrix. Then, we

combine these three cost vectors by taking the minimum value in each dimension

to obtain 〈15, 16, 12, 14, 8〉, and calculate the lower bound cost as: Ψlb(P̂ ) =

(15 + 16 + 12 + 14 + 8) = 65. If Pbest = {p2, p3, p4} with Ψ(Pbest) = 54, we do

not examine all 3-combinations derived from P̂ (i.e., {p4, p5, p6}, {p4, p5, p2} and

{p4, p5, p1}) since Ψ(Pbest) < Ψlb(P̂ ).

Table 4.2. T C matrix for paths in Table 1.2, ordered by τmin(p)
Content of C Path τ1 τ2 τ3 τ4 τ5

c1 p3 15 10 6 14 8

c2 p4 15 16 12 14 8

c3 p5 15 20 12 14 9

c4 p6 15 20 12 14 11

c5 p2 18 20 14 14 12

c6 p1 19 20 14 15 16

4.1.2.2 Enumeration Algorithm

We adopt branch-and-bound paradigm together with partial k-combination

pruning to enumerate the optimal solutions efficiently. Algorithm 3 shows
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the pseudocode for enumerating path combinations and finding the optimal k-

combination Popt with the aid of T C matrix. First, we compute the T C matrix

of C. Next, we execute RecurBranch recursively to insert the i-th candidate ci

into P̂ . If P̂ contains fewer than k paths, then we compare its lower bound cost

(Ψlb(P̂ )) with that of the best combination found so far (stored in Popt). If P̂ has

a smaller cost, then we call RecurBranch to further expand it. When P̂ contains

k paths, we can compute its exact cost and check whether it is better than the

current Popt.

The effectiveness of partial combination pruning depends on how early we

can obtain a complete k-combination with a high pruning power, i.e., close to the

optimal solution. In order to achieve early discovery, we insert the candidates to

P̂ in ascending order of τmin(p) = minm
j=1 τj(p) as shown in Table 4.2 and Algo-

rithm 3. This order intuitively allows early discovery of a good k-combination.

Theorem 4 The time and space complexities of Algorithm 3 are O(m ·
(|C|
k

)
) and

O(|C| ·m) respectively.

Proof. At the worst case, if the pruning rules do not work, Algorithm 3 enu-

merates all
(|C|

k

)
combinations to compute the optimal solution and takes O(m)

time to compute Ψ. Therefore, it takes O(m ·
(|C|
k

)
) time. We need to maintain

the cost vectors of the candidates (e.g., Table 1.2) and their corresponding T C

matrix. Both of them require O(|C| ·m) space and hence Algorithm 3 requires

O(|C| ·m) space also.
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Algorithm 3 BranchEnumerate implements FindOptimal

Algorithm BranchEnumerate ( Integer k, Paths C )
1: Initialize Popt ← ∅ . optimal solution in Popt

2: Cs ← sort C in ascending order of τmin

3: compute the matrix T C by using Cs
4: for i← 1 to |Cs| − k + 1 do
5: P̂ ← {csi}
6: RecurBranch ( k, P̂ , Cs, T C, Popt )

7: return Popt

Algorithm RecurBranch ( Integer k, Path set P̂ , Path set Cs, Matrix T C,
k-combination Popt )

1: if |P̂ | < k then
2: z ← largest index of candidates in P̂
3: for i← z + 1 to |Cs| − (k − |P̂ |) + 1 do
4: P̂ ← P̂ ∪ {csi}
5: if Ψlb(P̂ ) < Ψ(Popt) then . by using T C
6: RecurBranch ( k, P̂ , Cs, T C, Popt )

7: P̂ ← P̂ \ {csi}
8: else
9: P ← P̂ . becomes a k-combination

10: if Ψ(P ) < Ψ(Popt) then
11: Popt ← P

4.2 Heuristic Methods

We have shown the hardness of our problem and the number of candidates

can be exponential in |V |. It is tempting to devise heuristics which can bound the

number of candidates |C|. In this section, we present two heuristic methods to

meet this requirement and find a low-cost solution efficiently. First, we propose a

method (TP) that reduces the cost of candidate generation by a heuristic (Phase

I). Second, we develop a method (ATP) that makes ‘best-effort’ to find a low-cost

solution within a given time limit.
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4.2.1 Top-Picker Algorithm

Observe that, in our exact algorithm, the candidate set C is large even if we

apply pruning rules in Phase I. Thus, this would lead to a huge number of path

combinations in Phase II. In order to reduce the total computation cost, Top-

Picker Algorithm (TP) generates a bounded number of candidates by a heuristic

(Phase I) and reuses the combination enumeration of the exact method (Phase

II).

The idea of TP is to limit the size of the candidate set C, say, to at most

m. It computes the shortest path spj (from vs to vt) at each time instant, and

then inserts these paths into the candidate set C. Note that TP always returns

the optimal solution when k ≥ m.

Let us use Table 1.2 as an example with k = 3. First, we find the

shortest paths at each time instant. They are p6, p3, p3, p2, and p4 respec-

tively. Then, we insert them into the candidate set C = {p2, p3, p4, p6}. In

Phase II, we apply Algorithm 3 to enumerate all 3-combinations of C, such as

{p2, p3, p4}, {p2, p3, p6}, {p2, p4, p6}, {p3, p4, p6}, etc. Finally, we compute their

costs and return Popt = {p2, p3, p4}.

Theorem 5 The time complexity of Top-Picker Algorithm is O(m · (D +
(
m
k

)
))

where D is the time complexity of the shortest path algorithm. Its space complexity

is O(max{|V |+ |E|,m2}).

Proof. In Phase I, TP executes shortest path search m times to find the candi-

date set C, resulting in time complexity O(m·D), where D is the time complexity

of the shortest path algorithm. Since the size of C is at most m, Phase II may
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examine at most
(
m
k

)
path combinations and take O(m) to derive Ψ. As a result,

the time complexity of Top-Picker Algorithm is O(m · (D +
(
m
k

)
)).

We need to maintain the road network for shortest path search in Phase I,

which requires O(|V |+ |E|) space. In Phase II, we can solely maintain the cost

vectors of all candidates and T C matrix, which requires O(m2) space. Therefore,

its space complexity is O(max{|V |+ |E|,m2}).

Algorithm 4 GeneratePaths-TP ( Node vs, Node vt )

1: Initialize C ← ∅
2: for j ← 1 to m do
3: spj ← the shortest path from vs to vt at instant j
4: if spj is not in C then
5: C ← C ∪ {spj}
6: return C

4.2.2 Anytime Top-Picker Algorithm

In some applications, the query user (e.g., transportation planner) is fine

with approximate solution and specifies a time limit Tlimit for finding the solution.

To support this requirement, we propose the Anytime Top-Picker Algorithm

(ATP), which attempts to find a good approximate solution for the TTP problem

within time limit.

In order to allocate the time fairly on (i) finding candidates and (ii) enumer-

ating path combinations, we interleave both phases I and II in this algorithm.

For this purpose, we implement an incremental function for Phase I, called Get-

NextSP(), as shown in Algorithm 5. It iteratively returns distinct shortest paths

across the given m time instants until exhausting all of them. Algorithm 6 shows
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the pseudocode of ATP. Initially, ATP fetches k distinct shortest paths over m

instants and stores them into a candidate set C. These k paths are used to initial-

ize the best combination found so far Popt. If there is time left, then it retrieves

another shortest path sp. Subsequently, a new k-combination P is formed by

combining sp with each (k−1)-combinations of C, and replaces the current opti-

mal solution if it has a better score. Upon reaching the time limit or exhausting

all of the shortest paths, the algorithm returns the best combination found so

far Popt as the result.

Algorithm 5 GetNextSP( Node vs, Node vt, Hash Table H )

1: for each unscanned instant j do
2: sp← the shortest path from vs to vt at instant j
3: if sp is not in H then
4: Insert sp to H
5: return sp

6: return ∅

Algorithm 6 AnytimeTP ( Node vs, Node vt, Integer k, Time Tlimit )

1: C ← ∅, Popt ← ∅
2: Initialize a hash table H
3: for i← 1 to k do
4: sp← GetNextSP ( vs, vt, H )
5: C ← C ∪ {sp}
6: Popt ← C
7: while sp← GetNextSP ( vs, vt, H ) do
8: for each (k − 1)-combination P k−1 of C do
9: if Tlimit is used up then

10: return Popt

11: Pcur ← P k−1 ∪ {sp}
12: if Ψ(Pcur) < Ψ(Popt) then
13: Popt ← Pcur

14: C ← C ∪ {sp}
15: return Popt
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We illustrate how ATP works on the example in Table 1.2. Assume k = 3

again. Table 4.3 shows the detailed execution steps of ATP. First, we fetch k = 3

paths (i.e., p6, p3, p2) and insert them into the candidate set C. Next, we initialize

Popt = C = {p6, p3, p2}, whose score is Ψ(Popt) = 55. If there is time left, then we

fetch the next distinct shortest path (p4). Then, we enumerate all 2-combinations

of C, such as {p6, p3}, {p3, p2} and {p6, p2}, and combine each of them with p4

to form a new 3-combination. If a new combination has a smaller score, then

it becomes the current optimal result. Finally, the algorithm reports {p2, p3, p4}

with Ψ = 54 as the answer.

Table 4.3. Execution steps of ATP on Table 1.2
Procedure Checked P 3

1,7 Ψ(P 3
1,7) Current Popt

Initialize {p6, p3, p2} 55 {p6, p3, p2}
GetNextSP : p4 {p4} ∪ {p6, p3} 55 {p6, p3, p2}

{p4} ∪ {p6, p2} 65 {p6, p3, p2}
{p4} ∪ {p3, p2} 54 {p2, p3, p4}

4.3 Discussion: TTPs in Practice

In the previous sections, we presented an exact algorithm (Section 4.1) and

two heuristics (Section 4.2) to solve the TTP problem. However, in order to

apply traffic-tolerant paths in practice, we need to further consider two issues,

namely how to select a suitable set of historic traffic data (Section 4.3.1) and how

to update TTP in online route services (Section 4.3.2).
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4.3.1 Selection Policy on Historic Traffic Data

Up to the previous section, we implicitly assume that we are given a set of

traffic data to compute TTPs. In practice, the set of traffic data may be extracted

from a large traffic data repository. For example, users (e.g., transportation

planners and analysts) are interested in only a small portion of the data (e.g.,

the most recent) since the volume of entire traffic data is huge.

Therefore, in this section, we discuss some guidelines for selecting a subset of

traffic data and candidates computation. We call the set of guidelines a selection

policy which is suited to the application scenarios we discussed in Section 1.1.1.

It contains two parameters, namely the number of days (D) and the number

of time instants per day (L). The following discussion on selection policy is in

the context of online route services. But the selection policy for transportation

analysis can be defined similarly.

Intuitively, D determines how many historic traffic records are used for pre-

computation. Including all traffic recorded several years ago from the time of

recurrent route queries may not be useful since the traffic patterns may change

over time. In contrast, only considering the traffic data collected few weeks or

months ago from the time of the queries may be more meaningful as they reflect

the recent traffic of the road network.

Besides, the collection period of historic traffic data is equally important. If

the journey starts in the morning, it is not reasonable to include the traffic data

recorded at midnight since the traffic conditions during these two periods are

expected to be different. Additionally, we expect that there is a periodicity in

traffic and the traffic at the same ‘hours’ on different dates has similar patterns.
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For example, the traffic between 8:00am and 9:00am on weekdays in a month is

expected to be similar since the majority of citizens go for work in these peak

hours and the traffic in this period may be useful to a route which starts, say,

at 8:00am. We consider this daily time window for path pre-computation as

another selection parameter (L) - the number of time instants per day.

To sum up, the selection policy determines a subset of historic traffic data for

pre-computation. It is decided by the system administrators or transportation

analysts who have knowledge on the road network and traffic of their cities. We

are going to evaluate the effect of the two parameters on the accuracy of TTPs

in our experiments (Chapter 5). However, the art of designing and customizing

an appropriate selection policy is orthogonal to our approach.

4.3.2 Updating TTPs in Online Route Services

In the context of online route services, TTPs act as candidate paths of

candidate approach (cf. Section 2.2.3). We recommend to update TTPs offline

periodically (e.g., weekly) in order to reflect the recent traffic patterns of road

networks. The update frequency of can be determined by systems administrators.

For the online phase, we propose the following adaptation to cope with sit-

uations like sudden changes in traffic conditions (e.g., traffic accidents, protests,

and congestions). First, we check whether there are any segments on TTPs suf-

fering serious congestions. Then, we replace those congested segments with other

segments offering shorter travel times.

For instance, we have a traffic-tolerant path p = 〈vs, ..., vu, ..., vw, ..., vt〉 and

find that the segment sold = 〈vu, ..., vw〉 is undergoing a traffic jam. We search
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the fastest path between vu and vw (sp) based on the current traffic and replace

sold with sp. Since vu and vw are close to each other, the cost of fastest path

search is small. This adaption not only preserves the quality of traffic-tolerant

paths but also maintains reasonable query time.



Chapter 5

Experiments

In this chapter, we conduct various experiments to evaluate our proposed al-

gorithms by using real and synthetic data sets. We first present the experimental

setup and then discuss the experimental results.

5.1 Road Network and Traffic Data

Table 5.1 lists the information of road networks used in our experiments.

They are United Kingdom (UK) and Colorado (COL), which are available at

[3] and [1] respectively.

For UK, we downloaded real and historic traffic data from [5] from January

to March of 2013. Each traffic record is linked to each road segment in UK

based on the unique identifiers of roads. The traffic data were recorded every 15

minutes and hence there are 96 traffic records per day for each road segment.

49
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Since the historic traffic data of COL are not available, we synthetically

generate traffic data in the following way. We generate the travel times for m

time instants. At each time instant j, we pick a random number from {−1, 1}

as signj to determine if the travel times of all edges increase or decrease. Then,

for each edge, we select a random number from [0..X] and wj(e) is calculated as

l(e)
s × (1 + signj ·X%), where l(e) is the road segment length and s is the vehicle

speed. We set s as 60km/h in our experiments. The values of X are shown in

Table 5.2.

5.2 Experimental setup

In the introduction, we suggest two applications of our TTP problem, namely

transportation planning and online route services. The former requires fast com-

putation time, whereas the latter focuses on the travel time error of the pre-

computed paths against real-time traffic. Thus, in our experiments, we measure

the computation time and travel time error.

Training and testing sets of traffic data: In order to evaluate the travel

time error of the methods, we divide the traffic data into training and testing

sets. We take the training set for computing TTP solutions, and take the testing

set for testing the travel time error of such solutions. The data on testing sets

were collected after those in the training sets. For UK, training and testing sets

of traffic data are governed by the equation m = D×L, where D is the number

of training (testing) days and L is the number of training (testing) time instants

per day. L specifies the granularity of time periods, (e.g., in UK, a time period

08:00-09:00 implies L = 4 since the traffic data of UK are recorded every 15
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minutes).

In our experiments, we vary D and L of training sets. As for testing sets,

we fix D of the testing set as traffic data collected during 16 - 31 March, 2013

(i.e., D = 16) but directly use L of the training sets. For instance, we take the

traffic data between 08:00-08:30 (L = 2) and 15 days before the testing period

(i.e., 1 - 15 March, 2013) for training. Then, we use the traffic data collected

between 08:00-08:30 during 16 - 31 March, 2013 for testing.

For COL, we simply generate two sets of synthetic traffic data according to

Section 5.1. One set is for training while another set is for testing. The number

of time instants (m) for training and testing is shown in Table 5.2.

Travel time error measures: For each method, we use the training data

to compute its resulting path combination P . Then, we measure the travel

time error of P by using the testing data. Specifically, we apply Equation 1.1,

substitute P into P k
s,t, and calculate τj(p) and τj(spj) based on time instants j

in the testing data.

Query: For generation of source-destination pairs, we pick 100 pairs uni-

formly at random from the road network. The average time errors of these pairs

are reported in the figures in the subsequent sections. For the value of k, we test

k from 1 to 10 and choose k = 5 by default, which is the same as [29].

Methods: Our proposed methods are: the exact method (which is shown

as TTP in figures) and two heuristic methods (TP and ATP). Our competitors are

two representative heuristic methods proposed in [29]: K-variance (K-VAR) and

Y-moderate (Y-MOD). The additional parameters used by them are configured

according to [29]. Their details have been discussed in Chapter 2.
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We implemented all methods in C++ and evaluate them in subsequent ex-

periments. All the experiments were run on a PC with 3.4 GHz Intel R© CoreTM

i7 CPU and 8 GB RAM in Linux environment.

Table 5.1. Road network size
Network #Nodes #Edges Traffic

United Kingdom (UK) 2,321 4,996 Real [5]

Colorado (COL) 435,666 1,042,400 Synthetic

Table 5.2. Experiment parameters
Parameters Values Default

k 1,2,...,10 5

No. of days (D) 15,30,45,60 15

No. of time instants per day (L) 1,2,3,4 1

m for synthetic traffic 15,30,45,60 30

X% for synthetic traffic 5,10,15,20 10

5.3 Real Traffic Data

In this section, we present the travel time error and the efficiency of our

proposed methods in various perspectives including (i) different hours of a day,

(ii) different days of a month, (iii) increasing the number of paths (k), and

(iv) increasing the number of time instants (m). In this section, TTP in the

figures refers to the results generated by the exact algorithm.

Different hours of a day. First, we evaluate how the average time error

varies with different time of a day since this reveals some traffic patterns of

UK. Figure 5.1(a) shows the average time errors of TTP and two competitors at

different hours of a day. TTP achieves a smaller time error throughout the day

and outperforms the others especially in rush hours (i.e., 08:00 and 17:00) by at

least 3 times. Although there is a spike between 13:00 and 14:00 for TTP, its time
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error is still smaller than that of others. The figure also reveals that the traffic of

UK fluctuates in three periods, namely 08:00-09:00, 13:00-14:00, and 17:00-18:00.

The default time period in the subsequent experiments is 08:00-09:00.
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Figure 5.1. k = 5, March 2013, UK

Different days of a month: Figure 5.1(b) shows the average time errors

of three algorithms across different testing days of March, between 08:00 and

09:00. It can be seen that TTP consistently has smaller errors than the others.

Although all of them suffer from a sudden rise in time error on 18 March, 2013,

TTP can still obtain a lower average time error of about 2 minutes while K-

VAR and Y-MOD have average time errors of about 3 minutes and 4 minutes

respectively.

Varying k: As shown in Figure 5.2(a), the average time errors of all algo-

rithms diminish with increasing k and start to converge when k > 5 . This is

because including more paths implies it is more probable to have a path, out of

k paths, with a smaller travel time error at a particular time instant. Obviously,
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Figure 5.2. Varying k, 08:00-08:15 in March 2013, UK

the average time error of TTP decreases more rapidly than the others, indicating

a higher marginal decrease in travel time error. We also measure the compu-

tation time of TTP as shown in Figure 5.2(b). It increases with k because the

number of k-combinations enumerated also increases. Although TTP can finish

within a second in UK network, it cannot scale well in medium-sized networks

(cf. Figure 5.6).

Varying D: In this experiment, we set the number of time instants per

day to one (L = 1) but increase the number of training days (D) from 15 to

60 days in order to examine its effect on TTP. The time error and computation

time of TTP are shown in Figure 5.3. In general, the time error of TTP drops

with increasing D, implying that more training days of a time instant is more

preferable, but the trade-off is the drastic increase in computation cost. The

reason is that dominance loses selectivity with increasing number of dimensions.
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Figure 5.3. Varying m, fix k = 5, UK

Varying L: Conversely, we fix the number of training day to 15 days but

vary the number of time instants per day (L) from 1 to 4. The same measure-

ments are made and also presented in Figure 5.3. The time error of TTP rises

when including more time instants. This may be because more time instants in-

troduce higher traffic variability. Same as before, the computation cost of TTP

increases proportionally to the number of dimensions. To sum up, one time in-

stant per day (e.g., 08:00 - 08:15) with 15 to 30 training days may be a feasible

choice for TTP in UK road network.

5.4 Synthetic Traffic Data

Since the exact solution is not scalable in large road networks, we proposed

two heuristics - TP and ATP algorithms. In this section, we evaluate mainly the

error and efficiency of our proposed heuristics by varying the following parameters
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- (i) the percentage change of traffic time (X%), (ii) the number of paths (k),

and (iii) the number of time instants (m).
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Figure 5.4. Varying allowed time of ATP, fix X% = 10 and m = 30, COL

Varying allowed time of ATP: Before showing the results of varying the

mentioned parameters, we first show that the average time error of ATP drops

initially and converges as allowed running time increases. This finding justifies

the reason of proposing ATP. We only show the case of k = 8, 9, 10 because the

computation times of TP in these cases are more than 30 seconds according to

Figure 5.4. In the following discussions, we set the default time limit of ATP to

5 seconds and this is denoted by ATP-5 in figures.

Varying X: In this experiment, we increase the traffic fluctuation and mea-

sure the changes of average time errors. The results are shown in Figure 5.5. It

can be seen that the average time errors of all methods rise with increasing

the percentage change of travel times. Nevertheless, the errors of TP and ATP

are still smaller than the others, implying that they are more resistant to the
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Figure 5.5. Varying X%, fix k = 5 and m = 30, COL

traffic fluctuation. We also show their computation times, which are intuitively

insensitive to the traffic changes, for reference.

Varying k: Figure 5.6 shows the average time errors and computation

times of all methods, and reveals their important properties. The computation

cost of K-VAR becomes steady after k is larger than 1 because it is controlled

by the number of iterations, which is fixed throughout the experiment and con-

figured according to [29]. Its time error remains unchanged with k because it

can retrieve only one path throughout the iterations after our investigation. The

computation time of Y-MOD increases linearly with k since it is a variant of

Yen’s K shortest path algorithm [36] whose complexity is linearly dependent on

k. However, its time error drops slightly with increasing k. This may be be-

cause of the inherent property of Yen’s algorithm, which generates a set of K

paths with a large portion of overlapping. As for TP, its computation time rises

rapidly when k is larger than 5. The running times for k = 9 and 10 are 75 and
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Figure 5.6. Varying k, fix X% = 10 and m = 30, COL

148 seconds respectively. The rise in computation cost is due to the exponential

number of enumerated combinations. The exponential growth in computation

time of TP also implies that the computation time of the exact algorithm (TTP)

has the similar and even more rapid growth. This further justifies the our pro-

posed heuristics. Despite this, the error of TP diminishes with k continuously

and outperforms the others. ATP exhibits a similar diminishing trend to TP but

it offers constant computation cost. To summarise, ATP achieves better trade-off

between error and computation cost.

Varying m: Figure 5.7 shows the average time errors and computation

times of the methods versus the number of time instants. As m increases, the

average time errors and computation times of Y-MOD and K-VAR are insensi-

tive to m since they simply aggregate (i.e., average) the travel times of all time

instants to a single travel time for candidates generation. When m increases,

the average time error of TP drops slightly while its computation cost increases
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Figure 5.7. Varying m, fix X% = 10 and k = 5, COL

exponentially due to enumeration of combinations. As for ATP, its average time

error decreases initially but increases afterwards. This is because it cannot fur-

ther explore more paths at other time instants due to a given time limit, i.e., 5

seconds.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude the work in this thesis and discuss the future

direction of the work.

6.1 Conclusion

This thesis proposes and studies a novel problem called the traffic-tolerant

path (TTP) problem in road networks, which takes a SD pair and historic traf-

fic information as input and returns k paths P k
s,t that minimize the aggregate

historic travel time Ψ(P k
s,t). Its applications include transportation reliability

analysis and efficient route-search services. By reducing a well-known NP-hard

problem, Set-Cover problem, to the TTP problem, we prove the NP-hardness of

this problem.

Then, we propose a two-phase exact enumeration algorithm. In Phase I,

given a SD pair (vs, vt), we regard all possible paths from vs to vt as a high di-
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mensional vector and leverage dominance property to prune unpromising paths,

resulting in a set of candidate paths C. In Phase II, in order to reduce search

space, we adopt a branch-and-bound algorithm to enumerate the optimal k-

combination P k
s,t. In the view of the NP-hardness, we also devise two heuristics

(TP and ATP) which offers “low-cost” solutions efficiently. Finally, the experi-

ments conducted on real and synthetic data show that our proposed algorithms

achieve much higher accuracy than existing approaches and their efficiency is

comparable to that of competitors.

6.2 Future Work

The TTP problem is a combinatorial optimization problem and there are

some intriguing future directions on this problem. First, it is interesting to

devise an algorithm with provable guarantees for this problem in our future

work. Although we propose TP heuristics due to its hardness, it gives the optimal

solution only when k ≥ m and it does not provide any approximation guarantees

in the worst case.

Second, it is tempting to extend the TTP problem to time-dependent spatial

networks since Demiryurek et al. [15] showed that time-dependent shortest paths

offer shorter travel times (about 36%) than static shortest paths which considers

constant travel times of edges, demonstrating the applicability of time-dependent

paths.

In time-dependent spatial networks, the travel time of an edge e is modeled

as a function of arrival time to the edge. By extending the TTP problem to
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time-dependent spatial networks, we associate each edge with m time-varying

functions instead of a m-dimensional travel time vector. Those time-varying

functions can represent the daily variation of travel times like Figure 1.3 but also

can denote traffic patterns in different scenarios such as weekday, holiday, traffic

under blizzards, and so on.

As a result, the time-dependent TTP problem can be formulated as follows.

Definition 9 (Time-dependent Road Network with Historic Traffic)

A road network is modeled as a directed and weighted graph G(V,E, Tm), where

V is the set of road junctions, E is the set of road segments, and Tm is a

mapping from edges to m time-varying functions T1, T2, ..., Tm.

Given an edge e ∈ E and time t, we denote the travel time of e starting at

time t with respect to j-th time-varying function by Tj(e, t).

Given a path p = 〈va1 , va2 , ..., van〉 and start time ts, the time-dependent

travel time of p for j-th time-varying function, denoted by Tj(p, ts), is defined as

Tj(p, ts) =

n−1∑
i=1

Tj((vai , vai+1), ti) (6.1)

where t1 = ts, ti+1 = ti + Tj((vai , vai+1), ti) for i = 1, ..., n− 2.

Definition 10 (Time-dependent K Traffic-tolerant Paths Query)

Given a road network G(V,E, Tm), vs, vt ∈ V , a positive integer k and a start

time ts, Time-dependent Traffic-tolerant Paths Query TDTTP(vs, vt, k, ts) re-

turns a k-combination P k
s,t such that for any possible P ′ks,t, Ψ(P k

s,t, ts) ≤ Ψ(P ′ks,t, ts),
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where Ψ of any P k
s,t is defined as

Ψ(P k
s,t, ts) =

m∑
j=1

min
p∈Pk

s,t

Tj(p, ts) (6.2)

Our existing exact algorithm and TP heuristics can be extended to solve

the TDTTP problem defined above. The key modification of our exact algorithm

(Phase I) is to expand the time-dependent paths from vs to vt. Conceptually, we

can still make use of the idea of dominance property to prune unpromising paths.

Nevertheless, we cannot directly apply prefix path pruning in time-dependent

networks since the computation of lower bound travel time of a prefix path, i.e.,

LBj(p̂), is non-trivial and requires further investigation. For TP heuristics, we

can directly apply the state-of-the-art time-dependent shortest path algorithm,

e.g., [16], to find the candidates. Finally, it is intriguing to investigate if time-

dependent TTPs offers better performance in our future work.
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