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I 

 

Abstract 

Image classification, one of the most important techniques in remote sensing, is 

used widely to extract land cover information from remote sensing images. The 

inevitable mixed pixels in remote sensing images have brought a great challenge for 

traditional hard classification-based land cover mapping. To solve this mixed pixel 

problem, soft classification (e.g., spectral unmixing) has been developed to predict 

land cover proportions for land cover classes that have a spatial frequency higher 

than the interval between pixels. Soft classifiers exploit the spectral information of 

remote sensing images, but fail to predict the spatial location of classes within 

mixed pixels. To address this issue, sub-pixel mapping (SPM) has been developed, 

in which each mixed pixel is divided into multiple sub-pixels for which class labels 

are predicted. SPM, thus, transforms a soft classification into a finer resolution hard 

classification. 

SPM is also termed super-resolution mapping in remote sensing. It has been 

receiving increasing attention in recent years. In this thesis, the soft-then-hard SPM 

(STHSPM) algorithms are summarized for the first time. STHSPM is a type of 

SPM algorithm consisting of soft class value (between 0 and 1) estimation at fine 

spatial resolution and hard class allocation for sub-pixels. The STHSPM algorithms 

provide a good opportunity to achieve SPM solutions quickly. Furthermore, they 

provide important insight into SPM and open doors to more alternatives. 

This thesis focuses on the STHSPM algorithm and the main research includes 

developing new class allocation approaches for the STHSPM algorithms, using 

additional information in STHSPM to enhance SPM, developing new STHSPM 

algorithms and applying STHSPM in sub-pixel resolution change detection. 

Specifically, a new class allocation approach that allocates classes in units of class 

(UOC) is proposed and UOC is further extended with an adaptive scheme, called 

AUOC; The multiple shifted images are incorporated to the STHSPM algorithms to 

decrease the uncertainty in SPM; Two new STHSPM algorithms, radial basis 

function interpolation and naive indicator cokriging, are proposed; STHSPM is 

proposed for fast sub-pixel resolution change detection. The experimental results 

demonstrate the feasibilities of the proposed methods in this thesis. 
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1. Introduction 

1.1. Background 

Man has extended to space his view of the land by using remote sensing images, 

hence greatly improving the observation depth of the earth. Land cover 

classification is an important technique to extract land cover information from 

remote sensing images. It has been a key issue in remote sensing domain for many 

years. Conventional classification techniques allocate each pixel to a single land 

cover class. This type of technique is known as hard classification. It is not 

sufficient for hard classification to provide the detailed information concerning the 

spatial distribution of land cover classes, as mixed pixels exist widely in remote 

sensing images. Mixed pixel contains more than one class. Fisher (1997) and Foody 

(2006) illustrated some common origins of mixed pixel problems. Whatever the 

spatial resolution of the sensor, mixed pixels are unavoidable in remote sensing 

images and usually the aim of investigators is to extract information that is smaller 

than pixel size (Fisher, 1997). 

Soft classification has been developed to extract land cover information from 

remote sensing images in an attempt to solve mixed pixel problems. Commonly 

used instances include linear spectral mixture analysis (Heinz and Chang, 2001), 

fuzzy c-means classifiers (Bastin, 1997), artificial neural networks (Carpenter et al., 

1999), k-nearest neighbor classifiers (Schowengerdt, 1996), support vector 

machines (Brown et al., 2000; Wang and Jia, 2009) and non-linear unmixing 

(Halimi et al., 2011). The outputs of soft classification, however, are proportions 

(also termed fractions) of the classes within the mixed pixels. Soft classification 

fails to predict the spatial locations of the classes. 

Sub-pixel mapping (SPM, also termed super-resolution mapping and 

downscaling in the remote sensing literature) (Atkinson, 1997, 2009, 2013) is a new 

technique to address the mixed pixel problem. It divides each mixed pixel into 

multiple sub-pixels and then predicts their hard class values. The number of 

sub-pixels belonging to each class depends on the outputs of soft classification. 

SPM results in an increase in spatial resolution above the conventional hard 

classification of the input remote sensing images. In nature, SPM transforms the 

soft classification into a finer scaled hard classification. Using SPM, spatial 
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distribution of land cover can be displayed at finer spatial resolution and provides 

investigators more detailed and reliable information for decision. 

1.2. Overview of SPM algorithms 

After Atkinson mentioned that SPM can be considered as the post-processing of 

soft classification based on the spatial dependence theory (Atkinson, 1997), many 

SPM algorithms have been continuously developed. Verhoeye and De Wulf (2002) 

adopted Kriging to characterize spatial dependence and adopted linear optimization 

techniques (LOT) to maximize the dependence. Considering each sub-pixel as a 

neuron, Tatem et al. (2001a,b,c, 2002, 2003) set up an energy function for a 

Hopfield neural network (HNN). This function increases the spatial correlation 

between neighboring sub-pixels, taking account of class constraints. The energy 

function is minimized iteratively to generate SPM results. Mertens et al. (2003a) 

constructed a goal function evaluating the sum of the neighboring values of all 

sub-pixels and used a genetic algorithm to search for the most possible 

configuration. According to the defined attractiveness in Atkionson (2005), a pixel 

swapping algorithm (PSA) was introduced that exchanged two sub-pixel classes 

most in need of swapping within coarse pixel and SPM results were approached 

iteratively. Mertens et al. (2006) applied sub-pixel/pixel spatial attraction models 

(SPSAM) to calculate the spatial attractions between sub-pixels and their 

neighboring pixels. Ge et al. (2009, 2014) utilized the fractions in the neighboring 

coarse pixels to draw a linear boundary for each class inside each center coarse pixel. 

This geometric method is analogous to the contouring method presented in Foody et 

al. (2005) and Su et al. (2012). In addition, Wang et al. (2012a) studied the essence 

of the pixel swapping algorithm and introduced the particle swarm optimization to 

maximize the correlation between sub-pixels after the application of the 

sub-pixel/pixel spatial attraction models-based SPM process. In Wang et al. (2012b) 

and Ling et al. (2014), multi-scale spatial dependence was considered 

simultaneously for SPM. 

Using the prior spatial structure information from available high spatial 

resolution images, some learning-based SPM methods were developed, including 

the back-propagation neural network (BPNN), two-point histogram and indicator 

cokriging (ICK). This type of SPM algorithm is able to decrease the inherent 

uncertainty in SPM to some extent, especially when the spatial distribution of 

classes is complex or in the L-resolution case (Atkinson, 2009). Specifically, 
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Mertens et al. (2003b, 2004), Wang et al. (2006), Zhang et al. (2008), and Nigussie 

et al. (2011) presented a BPNN-based SPM approach which extract the relationship 

between fine class labels and coarse fractions from the training image (i.e., a high 

spatial resolution image). Atkinson (2004) introduced a two-point histogram-based 

method, which optimized the randomly initialized sub-pixel maps with maintained 

class fractions by swapping sub-pixel classes within pixels to gradually match the 

two-point histogram extracted from the training image. Boucher and Kyriakidis 

(2006, 2008), Boucher et al. (2008), and Boucher (2009) proposed an ICK-based 

SPM model. In this model, the prior spatial structure of each class can be utilized by 

extracting the indicator semivariogram from fine spatial resolution images. 

1.3. The soft-then-hard SPM algorithm 

As the post-processing of soft classification, there are two basic types of SPM 

algorithms (see Figure 1.1). 

 

Initialization at 

sub-pixel scale

Soft attribute 

estimation at 

sub-pixel scale

Optimization

Hard class 

allocation

Constraints from 

class fractions
SPM result

1)

2)

STHSPM 

algorithm

Class proportions 

and zoom factor

Output
Input

 

Figure 1.1. Two types of SPM algorithms as the post-processing of soft classification, where 

“constraints from class fractions” means the class fractions are used to determine the number of 

sub-pixels for each class. 

 

1) For the first type, the sub-pixels for each class are first allocated randomly (or 

by using some fast SPM algorithms (Shen et al., 2009; Wang et al., 2012 a,b)) 

under the condition of maintaining class fractions. Then, the initialized 

sub-pixel map is optimized by changing the spatial arrangement of sub-pixels 

inside coarse pixels to gradually approach a certain objective, such as 

maximizing the attraction between neighboring sub-pixels in PSA (Atkinson, 

2005; Makido and Shortridge, 2007; Wang et al., 2012a), the neighboring 

value (Mertens et al., 2003), the Moran’s I of the image (Makido et al., 2007), 

multi-scale spatial dependence (Wang et al., 2012b; Ling et al., 2014), ratio of 
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connectivity to directivity (Ai et al., 2014), or minimizing the perimeter of the 

area belonging to each class (Villa et al., 2011). In addition, the objective of 

optimization can be to match the two-point histogram (Atkinson, 2004, 2008; 

Muslim et al., 2007) or landscape structure (Lin et al., 2011) extracted from 

training image. The optimization can be realized by employing artificial 

intelligence algorithms to solve the relevant models, including particle swarm 

optimization in Wang et al. (2012a) and Li et al. (2015), simulating annealing 

in Makido et al. (2007), Atkinson (2008), Lin et al. (2011), and Villa et al. 

(2011), genetic algorithms in Mertens et al. (2003) and Wang et al. (2012b). 

During the optimization process, only the spatial locations of the sub-pixels 

can vary and the number of sub-pixels for each class within each coarse pixel 

is fixed. 

2) The second type of SPM algorithm, called soft-then-hard SPM (STHSPM) 

algorithm, consists of two steps. First, the soft attribute values (between 0 and 

1) of all classes for all sub-pixels are estimated and a set of soft classified 

images for all classes at fine spatial resolution are generated in this way. This 

step is also termed sub-pixel sharpening (Mertens et al., 2004). The second 

step is to allocate hard attribute values for sub-pixels according to the soft 

attribute values of each class and constraints from class fractions. Algorithms 

falling into this type include SPSAM (Mertens et al., 2006), BPNN (Mertens 

et al., 2003, 2004; Wang et al., 2006; Nigussie et al., 2011), HNN (Tatem et al., 

2001a,b,c, 2003; Muad and Foody, 2012a), Kriging (Verhoeye and De Wulf, 

2002) and ICK (Boucher and Kyriakidis, 2006, 2008; Boucher et al., 2008; 

Boucher, 2009; Jin et al., 2012). A general framework of STHSPM is shown 

in Figure 1.2, where a map in Tatem (2002) is used for illustration. The map 

covers an area in Bath, UK, and has 360 by 360 pixels with a pixel size of 0.6 

m by 0.6 m. 

 

Additionally, SPM can also be performed by the one-stage methods that do not 

need soft classification process and take as input the raw image in units of 

reflectance (Kasetkasem et al., 2005; Tolpekin and Stein, 2009; Li et al., 2012a,b, 

2014a; Ling et al., 2012a; Wang and Wang, 2013). These methods consider spectral 

and spatial information simultaneously to achieve SPM, which can also be 

considered as spatial-spectral methods. This type of SPM methods can be applied to 

multi-/hyperspectral remote sensing images directly. Figure 1.3 shows the 
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difference between spatial-spectral SPM and the two types of methods summarized 

in Figure 1.2. The estimation of the parameter controlling the contributions from 

spatial and spectral terms is always a case-by-case problem: the choice of the 

optimum parameter depends upon the spatial pattern of study area and spectral 

variation of the remote sensing image. The spatial-spectral SPM methods also 

require iterations to approach a satisfactory solution and much time is always 

needed in the optimization process. 
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Figure 1.2. Framework of STHSPM. 
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Figure 1.3. Spatial-spectral SPM and the two types of methods in Figure 1.2. 
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For most STHSPM algorithms, including BPNN, SPSAM, Kriging and ICK, 

SPM solutions can be achieved without iterations. Note the iterations in the training 

process in a BPNN are not considered, since the training process is always off-line. 

Hence, SPM can be realized quickly for the STHSPM algorithm. Moreover, as 

observed from Figure 1.2, the sub-pixel sharpening process can be potentially 

achieved by many existing super-resolution algorithms and, thus, the framework of 

STHSPM opens the door to new options for SPM. This study, therefore, was carried 

out focusing on the STHSPM algorithm.  

1.4. Class allocation for STHSPM algorithms 

How to allocate classes for STHSPM algorithms is a critical issue that directly 

affects the performance of STHSPM and needs in-depth study. When HNN-based 

SPM was initially proposed, a simple class allocation approach was applied: each 

sub-pixel is assigned to the class with the highest soft attribute value. This approach 

is easy to realize, since it does not take the constraints from class fractions into 

account and is carried out by only comparing the soft attribute values for sub-pixels. 

The approach was also applied for some other STHSPM algorithms, such as BPNN 

in Mertens et al. (2003, 2004) and Nigussie et al. (2011), ICK in Boucher and 

Kyriakidis (2008). However, the experiments in the related literature showed that 

this allocation approach does not guarantee coarse proportion reproduction and the 

SPM results are over smooth. It is insufficient to reproduce land cover objects 

smaller than a coarse pixel (Muad and Foody, 2012b). 

In Verhoeye and De Wulf (2002), linear optimization technique (LOT) was 

introduced to allocate classes. In that work, Kriging was applied to estimate the soft 

attribute value for each class at each location. A mathematical model was then 

constructed to maximize the sum of soft attribute values of all sub-pixels in SPM 

results while satisfying a set of equality constraints from class fractions. The model 

was solved using LOT. LOT can obtain the theoretically optimal solution in terms 

of maximizing the objective function in the mathematical model. However, LOT 

involves numbers of iterations to gradually approach the optimal solution. 

Especially, when the zoom scale or the number of classes is large, much time will be 

consumed. Computational burden is a key issue in LOT-based class allocation 

method (Verhoeye and De Wulf, 2002). 

A sequential assignment based class allocation method was also adopted for class 

allocation in Boucher and Kyriakidis (2006), Boucher et al. (2008), and Boucher 
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(2009). It assigns classes in units of sub-pixel (UOS). With UOS, the hard classified 

sub-pixel map is generated along a randomly predefined path that determines the 

order of visited sub-pixels. According to the path, each visited sub-pixel is assigned 

to the class with the highest soft attribute value, on condition that the sub-pixels of 

the dominant class have not been completely exhausted. In this way, the sub-pixel 

class labels within coarse pixels reproduce exactly the corresponding coarse 

fractions. This class allocation method involves no iteration and is fast. However, 

many speckle artifacts appear in the SPM results when using UOS-based class 

allocation method (Boucher, 2009). 

Another sequential assignment based class allocation method was applied in 

Mertens et al. (2004, 2006) and Jin et al. (2012), where sub-pixels with the highest 

soft attribute values are assigned first (HAVF). With HAVF-based method, among 

soft attribute values for all sub-pixels and all classes within each coarse pixel, the 

highest one is found out during each comparison and the corresponding sub-pixel of 

this value is allocated to the dominant class if the sub-pixels of this class have not 

been completely exhausted. The already exhausted classes and allocated sub-pixels 

do not involve in the subsequent comparisons. The main difference between HAVF 

and UOS is that the visiting order of sub-pixels in HAVF is not randomly 

determined, instead, each sub-pixel in the path is specified by comparison of all soft 

attribute values. Even though, the performance of HAVF based class allocation 

method is not satisfying. Therefore, it is necessary to develop a more effective and 

efficient class allocation approach for STHSPM algorithms. 

1.5. Using additional information in SPM 

In order to produce more detailed and accurate sub-pixel land cover maps, some 

SPM techniques have been developed for use of supplementary information. Foody 

(1998) sharpened fraction images with additional finer spatial resolution image of 

the same scene to provide a more informative representation of the classes within 

coarse pixels. Aplin and Atkinson (2001) introduced a per-field classification-based 

SPM method by using auxiliary land-line vector boundaries to refine the 

distribution of classes within each polygon. In Atkinson (2008), the two-point 

histogram-based SPM model was enhanced by adding proportion constraints 

obtained from intermediate spatial resolution panchromatic images to the objective 

function of this model. Nguyen et al. (2005) applied the elevation data from LIDAR 

data to add a height function to HNN. Ling et al. (2008) and Huang et al. (2014) 
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obtained the terrain of land cover from digital elevation models and modified the 

waterline mapping results according to such elevations. Aiming at SPM for urban 

buildings, Ling et al. (2012) employed an anisotropic model by incorporating the 

prior shape information and enhancing the spatial dependence in some directions. 

Based on HNN, Nguyen et al. (2006, 2011), Ling et al. (2010), and Muad and 

Foody (2010) presented some methods to provide additional proportion constraints 

for the energy function of HNN. In detail, Nguyen et al. (2006) obtained the fraction 

of each class at intermediate spatial resolution from panchromatic images. Similarly, 

Nguyen et al. (2011) fused panchromatic and multispectral images to obtain a 

multispectral image at the spatial resolution of the panchromatic image, and soft 

classification of the fused image was implemented to obtain the fractions at 

intermediate spatial resolution. Usually, observation satellites capture images of the 

same area at different times. Due to the slight orbit translations and the earth’s 

rotation, these images are shifted at the sub-pixel level (Lu and Inamura, 2003; Ling 

et al., 2010; Muad and Foody, 2012b; Xu et al., 2013; Zhong et al., 2014). Ling et al. 

(2010) and Muad and Foody (2010) added soft classification outputs of multiple 

shifted images (MSI) to HNN. 

1.6. SPM-based change detection 

Change detection (CD) in remote sensing is a process in which multitemporal 

datasets are used to analyze and quantify temporal changes in Earth surface 

properties (Lu et al., 2004a; Hussain et al., 2013). Since remote sensing data can 

cover the same scene periodically and the digital format is suitable for further 

computer processing, they are a major source of information for CD. As one of the 

most important objectives in remote sensing, CD is applied in ecosystem 

monitoring, damage assessment, disaster monitoring, urban expansion, planning 

and land management (Lu et al., 2004a). Further details of CD applications using 

remote sensing technologies and existing CD methods can be found in reviews in 

Singh (1989), Coppin e al (2004), Lu et al. (2004a), Hussain et al. ( 2013) and 

Bruzzone and Bovolo (2013). 

With increasing change on the Earth’s surface (especially due to land cover, in 

highly developed areas, and as a function of changes in climate), timely CD is 

becoming increasingly important. Sensors such as the Moderate Resolution 

Imaging Spectroradiometer (MODIS) can cover the same area on a daily basis and 

have been in operation for over 10 years. However, a problem is that MODIS 
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provides images with coarse spatial resolutions only, ranging from 250 to 1000 m. It 

is usually desirable to monitor changes at a fine spatial resolution to provide as 

much detailed information as possible. There is always a tradeoff between spatial 

resolution and temporal resolution. For example, although the Landsat sensors can 

provide remote sensing images at a finer spatial resolution (30 m) than MODIS, it 

can only revisit the same area every 16 days. Note that some satellites are able to 

capture fine spatial resolution images with relatively short revisit time (on a daily 

basis), such as WorldView and GeoEye, but the high budget and narrow swath 

hamper their application in timely CD to some extent, especially for large areas. 

Therefore, it is of great interest to apply CD at both fine spatial and temporal 

resolutions (such as at Landsat spatial resolution and MODIS temporal resolution) 

with computer technologies. Note that here we considered the Landsat spatial 

resolution (30 m) as “fine” relative to the MODIS spatial resolution (250 to 1000 m) 

and not in the absolute sense. 

1.6.1. Spatiotemporal fusion 

Spatiotemporal fusion techniques (Gao et al., 2006; Hilker et al., 2009; Zhu et al., 

2010; Huang and Song, 2012; Song and Huang, 2013) have been developed to 

blend fine spatial but coarse temporal resolution images with coarse spatial but fine 

temporal resolution images to generate an image with both fine spatial and temporal 

resolution. Gao et al. (2006) proposed a spatial and temporal adaptive reflectance 

fusion model (STARFM) to blend fine temporal resolution information from a 

MODIS image and fine spatial resolution information from a Landsat image. To 

enhance the performance of STARFM for heterogeneous landscapes, an enhanced 

STARFM was developed in Zhu et al. (2010). For mapping forest disturbance, 

STARFM was extended with a spatial and temporal adaptive algorithm for 

mapping reflectance change that uses multiple Landsat images and a temporally 

dense stack of spatially coincident MODIS images (Hilker et al., 2009). In Huang 

and Song (2012), sparse representation was applied to characterize the 

corresponding relationship between structures in the known fine spatial resolution 

Landsat images and the corresponding coarse spatial resolution MODIS images, 

and the unknown fine spatial resolution image was reconstructed through sparse 

coding. Song and Huang (2013) superresolved a coarse spatial resolution MODIS 

image with sparse representation first, which was then fused with a known Landsat 

image by high-pass modulation to obtain a Landsat image on the prediction date. 
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The outputs of spatiotemporal fusion are remote sensing images in units of 

reflectance which can act as an intermediate step towards CD: the resulting fused 

images can be further processed by existing CD techniques in Singh (1989), Coppin 

e al (2004), Lu et al. (2004a), Hussain et al. ( 2013) and Bruzzone and Bovolo (2013) 

to monitor changes at a fine spatial and temporal resolution. Nevertheless, these 

spatiotemporal fusion models are usually built under different assumptions or for 

particular applications (e.g., mapping forest disturbance in Hilker et al. (2009)). 

They are performed with the hypothesis that there is fixed correspondence between 

the known fine spatial resolution image and the corresponding coarse spatial 

resolution image in the same area and such correspondence is used to predict the 

unknown fine resolution image on other days. However, because of differences in 

the weather, atmosphere and some other factors (e.g., uncertain natural changes and 

human activities) during data acquisition, it is sometimes difficult to obtain a 

reliable relationship between the fine and coarse resolution images, and in other 

cases the relationship may not be constant over a long period (i.e., is temporally 

non-stationary). 

1.6.2. Spectral unmixing-based CD 

For the coarse spatial resolution image, each pixel covers a large area and 

generally contains more than one type of land cover class, that is, constitutes a 

mixed pixel. Mixed pixels are a common problem caused by limited spatial 

resolution. Mixed pixel analysis techniques, such as spectral unmixing, have been 

studied for decades to extract land cover information within mixed pixels. Spectral 

unmixing is a technique to estimate the proportions of land cover classes within 

each mixed pixel and it has already been applied to CD (Haertel et al., 2004; Lu et 

al., 2004b, 2011). With spectral unmixing, the proportions of each class in the 

coarse spatial but fine temporal resolution images can be estimated. The unmixing 

outputs derived from time-series images can inform users of by how much the 

proportion of each land cover class increases or decreases during a given period 

(Anderson et al., 2005). Employing spectral unmixing straightforwardly for CD, 

however, one can only obtain quantitative information about the changes at the 

pixel-level (i.e., coarse spatial resolution) and cannot determine detailed change 

information at a finer spatial resolution, that is, changes in the sub-pixel classes. 

Note that with the availability of fine spatial resolution land-use database LGN5, 

Zurita-Milla et al. (2009) introduced an unmixing-based data fusion approach to 
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produce images with the temporal resolution of Medium Resolution Imaging 

Spectrometer (MERIS) and the spatial resolution of Landsat. Different from the 

standard spectral unmixing, however, the objective of such unmixing is to estimate 

endmembers (with the spectral resolution of MERIS) for each Landsat pixel which 

can be assumed to be pure. This unmixing-based fusion produces fine spatial 

resolution images in units of reflectance and it is essentially a type of 

spatiotemporal fusion technique. 

1.6.3. SPM-based CD 

SPM is a promising technique for CD and can provide fine spatial resolution 

thematic maps of land cover changes. It enables land cover changes between coarse 

spatial, but fine temporal resolution images to be monitored at a finer spatial 

resolution and, thus, enables CD to be performed at both fine spatial and temporal 

resolution. In recent years, several studies have been conducted on this topic. Foody 

and Doan (2007) studied forest cover changes in Brazil at 30 m Landsat spatial 

resolution, using two MERIS-like images (300 m). Specifically, the Hopfield neural 

network was employed for SPM of the two 300 m coarse spatial resolution images 

and the two resulting 30 m fine spatial resolution maps were compared for change 

analysis. 

With the aid of a former fine spatial resolution land cover map, Ling et al. (2011) 

and Xu et al. (2014) utilized a pixel swapping algorithm to predict the land cover 

change at the sub-pixel resolution between bitemporal images. However, both the 

HNN and PSA are optimization-based algorithms, which are iterative and 

time-consuming. Using bitemporal Landsat and MODIS images, Li et al. (2014b) 

proposed a new Markov random field model for sub-pixel resolution CD of forests 

in the Brazilian Amazon basin. In this model, a temporal energy function 

characterized by transition probabilities during the studied period was added to the 

original Markov random field for SPM (Kasetkasem et al., 2005; Tolpekin and 

Stein, 2009). This model is also iterative, and moreover, determination of the 

weights for the spatial and temporal energy functions is an open problem. Thus, 

there is a need for the development of fast SPM algorithms for sub-pixel resolution 

CD in practical applications (e.g., CD at Landsat spatial resolution and MODIS 

temporal resolution). 
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1.7. Objectives 

This thesis aims to study STHSPM for remote sensing images. The objectives are 

as follows. 

1) To develop new class allocation methods for STHSPM algorithms, as 

presented in Chapter 2. 

2) To use additional information (e.g., MSI) in STHSPM algorithms to enhance 

SPM accuracy, as presented in Chapter 3. 

3) To develop new STHSPM algorithms, as presented in Chapters 4 and 5. 

4) To develop fast STHSPM algorithms for fast sub-pixel resolution CD, as 

presented in Chapter 6. 
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2. Class allocation for STHSPM 

algorithms 

2.1. Allocating classes for STHSPM algorithms in 

units of class 

(This section is based on Wang et al. (2014b)) 

 

2.1.1. Introduction 

In Section 2.1, a novel sequential assignment based class allocation method is 

proposed for STHSPM algorithms, which allocates classes in units of class (UOC). 

Different from three existing class allocation schemes (i.e., linear optimization 

technique (LOT), sequential assignment in units of sub-pixel (UOS) and a method 

that assigns sub-pixels with highest soft attribute values first (HAVF)), UOC 

allocates classes for sub-pixels along a predefined path that determines the order of 

visited class. The visiting order of all classes can be obtained from Moran’s I 

(Makido et al., 2007), an index of intraclass spatial correlation. The proposed UOC 

approach holds several characteristics and advantages: 

1) Similar to UOS and HAVF, UOC is free of any iteration. UOC is a very fast 

method (especially in comparison with LOT). 

2) Similar to LOT, UOS and HAVF, UOC is implemented under the condition of 

reproducing exactly the coarse fraction data. 

3) The unique advantage of UOC over LOT, UOS and HAVF is that UOC is 

processed on each soft classified image at fine spatial resolution in turn. In 

STHSPM algorithms, intraclass spatial dependence is taken into consideration 

in the first step. As a result, within each coarse pixel, sub-pixels staying 

together tend to have close soft attribute values for the same class and each 

generated soft classified image at fine spatial resolution encapsulates 

intraclass spatial correlation. During class allocation in UOC, autocorrelation 

for each class can be maximized and hence the proposed method is able to 

produce more satisfactory SPM results. 
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2.1.2. The STHSPM algorithms 

The STHSPM algorithms contain two steps: 1) sub-pixel sharpening: computing 

soft attribute values for each class at fine pixels and 2) class allocation: allocating 

classes for these fine pixels according to the soft attribute values and class fractions. 

The outputs of the first and second step are a set of soft classified images and a set of 

hard classified images for all classes at fine spatial resolution, respectively. The first 

step can be accomplished by existing SPM methods including back-propagation 

neural network (BPNN), Hopfield neural network (HNN), sub-pixel/pixel spatial 

attraction model (SPSAM), Kriging and Indicator CoKriging (ICK). The first steps 

of these five STHSPM algorithms are briefly introduced in this section. 

Suppose S is the zoom scale factor (i.e., each coarse pixel is divided into 2S  

sub-pixels), tP  ( 1,2,...,t M , M is the number of pixels in the coarse image) is a 

coarse pixel, ip  ( 2=1,2,...,i MS ) is a sub-pixel and ( )k iZ p  denotes the soft attribute 

value for the k-th ( 1,2,...,k K , K is the number of classes) class at sub-pixel ip . 

The outputs of the first step of STHSPM algorithm are 

 2( ) =1,2,..., ; 1,2,...,k iZ p i MS k K . Define ( )k ix p  as the binary class indicator 

for the k-th class at sub-pixel ip : 

1, if sub-pixel  belongs to class 
( )

0, otherwise

i

k i

p k
x p


 


                      (2.1) 

2.1.2.1. BPNN-based SPM 

Mertens et al. (2003b, 2004), Wang et al. (2006), Zhang et al. (2008), and 

Nigussie et al. (2011) presented a BPNN-based SPM method. This method first 

extracts training samples from available high spatial resolution images, which are 

used as training images. The input of each training sample is a vector composed of 

coarse fractions for the k-th class at all coarse pixels within a local window while 

the output is a vector composed of ( )k ix p  for all sub-pixels within the center coarse 

pixel. The training samples are then used to fit a BPNN. During the training process, 

the connection weightings between neurons of different layers are obtained 

iteratively. The trained BPNN is used to predict the outputs of test samples 

subsequently, of which the inputs are extracted from the fraction images for SPM. 
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2.1.2.2. HNN-based SPM 

In HNN-based SPM, each sub-pixel is considered as a neuron and HNN is set up 

to minimize an energy function which comprises a goal and constraints (Tatem et 

al., 2001a,b,c, 2003; Atkinson, 2005; Nguyen et al., 2005, 2006, 2011; Muad and 

Foody, 2012a): 

1 2E G C                                                 (2.2) 

where 
1  and 2  are weightings, the term G is to increase the spatial correlation 

between neighboring sub-pixels, and C are the constraints from fraction data and 

sum-to-one condition (i.e., the sum of soft attribute values for all classes at each 

neuron is equal to 1). The HNN is an optimization tool in nature. In this model, the 

attribute value (between 0 and 1) per sub-pixel per class is pushed iteratively toward 

0 or 1 (Atkinson, 2009). The output of each neuron, ( )k iZ p , is an attribute value 

either close to 0 or 1, however, not completely equal to 0 or 1. 

2.1.2.3. SPSAM-based SPM 

Mertens et al. (2006) applied SPSAM to directly calculate the spatial correlation 

between sub-pixels and their neighboring pixels by attractions. Suppose sub-pixel 

ip ’s neighboring coarse pixels are 1 2, ,..., NP P P  (N is the number of neighboring 

coarse pixels). In SPSAM, each ip  is assumed to be attracted by its neighboring 

coarse pixels. The soft attribute value ( )k iZ p  can be calculated by the attraction 

from the k-th class to ip : 

1

( )1
( )

( , )

N
k n

k i

n n i

F P
Z p

N d P p

                                         (2.3) 

where ( , )n id P p  is the Euclidean distance between geometric centers of pixel nP  

and sub-pixel ip , and ( )k nF P  is the coarse fraction of the k-th class at the n-th 

neighboring pixel nP . 

2.1.2.4. Kriging-based SPM 

The Kriging-based SPM developed by Verhoeye and De Wulf (2002) was based 

on the assumption that the soft attribute value for each class at each location (i.e., 

sub-pixel) is a weighted linear combination of 0N  observed values: 

0

1

( ) ( )
N

k i n k n

n

Z p Z P


                                          (2.4) 
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where n  is a weight and ( )k nZ P  denotes a continuous variable for the k-th class at 

pixel 
nP . ( )k nZ P  can be depicted by fraction of the k-th class at 

kP  and 
n  are 

estimated by solving the kriging system (Goovaerts, 1997). The semivariance in the 

kriging system can be derived from the coarse images, which does not require any 

prior information. 

2.1.2.5. ICK-based SPM 

Let all fractions for the k-th class be arranged in a (M×1) vector kF  and k  be the 

mean of all elements in vector kF . Suppose there are H informed (i.e., the class 

labels are known) fine pixels available and the H indicators for the k-th class are 

arranged in a (H×1) vector kj . Then, the soft attribute value ( )k iZ p  can be 

estimated by: 

T T T T( ) ( ) ( ) [1 ( ( ) ) ( ( ) )]k i k i k k i k k k i k iZ p p p sum p sum p    η F λ j η λ   (2.5) 

where the (M×1) vector ( )k ipη  and (H×1) vector ( )k ipλ  are ICK weightings for 

the k-th class. The function sum() takes the sums of all the elements in vector . 

The weightings ( )k ipη  and ( )k ipλ  are calculated by solving the ICK system 

(Boucher and Kyriakidis, 2006, 2008; Boucher et al., 2008; Boucher, 2009; Jin et al., 

2012). The semivariance in the ICK system needs to be extracted from available 

fine spatial resolution images. 

The soft attribute value ( )k iZ p  estimated by STHSPM algorithms can be 

understood as the probability of the k-th class occurrence at sub-pixel ip . Usually, 

the preliminarily obtained soft attribute value, denoted as ' ( )k iZ p , may be less than 

0 or not satisfy the sum-to-one condition (especially for BPNN). Taking account of 

the physical meaning, two extra steps for adjustments are applied. The first is to 

revise the attribute values to 0 if they are less than 0 and the second is to normalize 

the soft attribute values by: 

'

'

1

( )
( )

( )

k i
k i K

k i

k

Z p
Z p

Z p





                                          (2.6) 

so that ( ) [0,1]k iZ p   and 
1

( ) 1
K

k i

k

Z p


 . 
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2.1.3. Three class allocation methods for STHSPM 

algorithms 

The ultimate goal of SPM is to generate hard classified maps at sub-pixel level. 

After  2( ) =1,2,..., ; 1,2,...,k iZ p i MS k K  are obtained by any STHSPM algorithm 

introduced in Section 2.1.2, they are used to allocate hard attribute values for 

sub-pixels along with the class fractions. This section describes three existing class 

allocation methods, LOT, UOS and HAVF. 

 To facilitate description in this section, all sub-pixels in the coarse image that 

has M pixels are divided into M groups, i.e.,  2=1,2,...,ip i MS  is re-denoted as 

 2=1,2,..., ; 1,2,...,t

ip i S t M , where t

ip  denote the sub-pixels within coarse pixel 

tP  and S is the zoom scale factor. The objective of class allocation is to acquire 

binary class indicators  2( ) =1,2,..., ; 1,2,..., ; 1,2,...,t

k ix p i S t M k K   and a 

sub-pixel map R (i.e., SPM result) having K gray values, can be produced by: 

2

1

( ) ( ), =1,2,..., ; 1,2,...,
K

t t

i k i

k

R p kx p i S t M


                        (2.7) 

As can be concluded from (2.1) and the principle that each sub-pixel belongs to 

only one class, ( ) 1,2,...,t

iR p K . 

2.1.3.1. LOT 

LOT was introduced in Verhoeye and De Wulf (2002) for Kriging-based SPM, 

which is to maximize an objective function while meeting a set of equality 

constraints. In the constructed mathematical model, for each coarse pixel tP  in the 

coarse image, tJ  is maximized: 

2

2

1 1

2

1

2

1

max ( ) ( )

. . ( ) 1, 1,2,...,

( ) ( ) , 1,2,...,

S K
t t

t k i k i

i k

K
t

k i

k

S
t

k i k t

i

J x p Z p

s t x p i S

x p F P S k K

 







 

  







                         (2.8) 

where ( )k tF P  is the coarse fraction of the k-th class at pixel tP  and 
1

( ) 1
K

k t

k

F P


 . 

( )t

k iZ p  were originally obtained by Kriging in Verhoeye and De Wulf (2002), but 
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we know now they can also be calculated by any STHSPM algorithm introduced in 

Section 2.1.2. The two types of equality constraints in (2.8) can be written as the 

two corresponding expressions: 

2K S
X1 1

                                                  (2.9) 

2

T 2

S
SX 1 F                                              (2.10) 

where X is a (S
2
×K) matrix: 

2 2 2

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

t t t

K

t t t

K

t t t

KS S S

x p x p x p

x p x p x p

x p x p x p

  

  


   

  

X

 
 
 
 
 
  

 

and  
T

1 2( ), ( ),..., ( )t t K tF P F P F PF . K1  and 2S
1  denote, respectively, a (K×1) and a 

(S
2
×1) vector of ones. 

Constraints in (2.9) means that each sub-pixel should be assigned to only one 

class while constraints in (2.10) means that the number of sub-pixels belonging to 

each class should be consistent with the coarse fraction data. In all, this 

mathematical model is to maximize the sum of soft attribute values of all sub-pixels 

in the resulting SPM map in the meanwhile fixing the number of sub-pixels for each 

class according to the coarse fractions. The linear problem in (2.8) can be solved by 

LOT and the classical simplex algorithm (Kolman and Beck, 1995) can be 

employed for this purpose. 

Using LOT, the optimal solution to (2.8) will be generated. The whole process, 

however, requires numbers of iterations and is time consuming. It can be observed 

that for each coarse pixel, there are KS
2
 variables and K+S

2
 equality constraints in 

(2.8), and correspondingly KS
2 

elements in matrix X. Therefore, the computing 

complexity is closely related to M, K and S. When K or S increases, the computing 

complexity will increase noticeably. Computational limitations prevent further 

research into finer spatial resolutions and more classes (Verhoeye and De Wulf, 

2002). 

2.1.3.2. UOS 

The sequential assignment based class allocation method, UOS, is also 

performed under the conditions of meeting the equality constraints in (2.8) or 

(2.9)-(2.10) and the basic principle of UOS is the same as the objective function in 

(2.8). The class allocation process of UOS, however, is different from LOT. UOS is 
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performed by direct comparison of K soft attribute values for each sub-pixel. 

UOS first determines the number of sub-pixels for each class according to the 

coarse fractions. To satisfy the constraints in (2.8), during the allocation process, 

each sub-pixel has to be assigned to only one class and the sub-pixels for each class 

have to be completely exhausted. A visiting path is then defined that determines the 

order of visited sub-pixels. Along this path, for a sub-pixel being visited, say ip , the 

K soft attribute values 1 2( ), ( ),..., ( )i i K iZ p Z p Z p  are compared and ranked in a 

descending order. If the sub-pixels for the class with the highest soft attribute value, 

say class 0k , have not been completely exhausted, then ip  is allocated to class 0k  

(i.e., 
0 0
( ) 1, ( ) 0k i k k ix p x p  ); if the sub-pixels for 

0k  have already been exhausted, 

ip  is allocated to the class whose sub-pixels have not been completely exhausted as 

well as having the highest soft attribute value, and for the remaining sub-pixels, the 

soft attribute values for class 0k  are not considered in the comparisons any more. 

UOS is a single-pass method and thus it involves no iteration (Boucher and 

Kyriakidis, 2006). The visiting order of sub-pixels in UOS method is determined 

randomly. The visiting path has direct influence on the SPM performance and 

different paths may result in different SPM results. There is much randomness when 

the path is determined randomly as there are S
2
! paths for each coarse pixel in all. 

The experimental results in the literature on UOS revealed that many speckle 

artifacts appear in the SPM results (Boucher, 2009). 

2.1.3.3. HAVF 

Similar to UOS, another sequential assignment based class allocation method, 

HAVF, is also realized by direct comparison of soft attribute values. HAVF has 

been applied to BPNN (Mertens et al., 2004), SPSAM (Mertens et al., 2006) and 

ICK (Jin et al., 2012). In each comparison, however, HAVF does not only compare 

K soft attribute values for a sub-pixel, but also KS
2
 values for all S

2
 sub-pixels and K 

classes within a particular coarse pixel. The highest soft attribute value is found out 

and the corresponding sub-pixel is also selected out meanwhile. The selected 

sub-pixel is allocated to its dominant class, on condition that the sub-pixels for this 

class have not been completely exhausted; otherwise, all S
2
 soft attribute values for 

this class are set to a value less than 0 to be excluded in the following comparisons. 

When the selected sub-pixel is successfully allocated to a class, the K soft attribute 

values for this sub-pixel are also set to a value less than 0. The process is terminated 
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when all S
2
 sub-pixels within each coarse pixel are allocated. 

HAVF is also non-iterative and reproduces exactly the coarse fraction data. 

Different from UOS, for each coarse pixel, each sub-pixel in the visiting path in 

HAVF method is found by comparison of all KS
2
 values. Therefore, for each coarse 

pixel, the visiting path is unique, rather than a random one (as in UOS). Note that 

for UOS and HAVF, a normalization procedure is suggested (Mertens et al., 2004, 

2006; Shen et al., 2009). Specifically, within each coarse pixel, each soft attribute 

value is divided by the sum of S
2
 attribute values from the same class. This 

adjustment is advantageous in cases where sub-pixels are surrounded by small 

fractions of a certain class and soft attribute values for this class are small (Mertens 

et al., 2004, 2006). This normalization procedure is performed previously to that in 

(2.6). 

2.1.4. UOC 

From LOT, UOS and HAVF, it can be concluded that three tasks should be 

completed during class allocation process for STHSPM algorithms. 

1) For each sub-pixel, it should be assigned to one and only one class. 

2) For each class, the number of sub-pixels belonging to it should be consistent 

with the coarse fraction data and they should be completely exhausted during 

class allocation process. 

3) Attempt to maximize the objective function in (2.8). 

Based on these three aspects, a new class allocation method, UOC, is proposed. 

In UOC, sub-pixels for each class are allocated in turn. Actually, UOS and HAVF 

start with 1) whereas the proposed UOC starts with 2). 

2.1.4.1. Implementation of UOC 

The implementation of UOC includes the following 6 steps. 

Step 1: Define a visiting order of K classes: 1 2, Kk k k,…, . This order can be 

defined randomly or by Moran’s I, see Section 2.1.4.2 for details. 

Step 2: For the being visited class, say rk , the number of sub-pixels belonging to 

it in coarse pixel tP  is determined as 
2( )

rk tF P S . 

Step 3: At the current coarse pixel tP , rank the S
2
 soft attribute values 

21 2( ), ( ),..., ( )
r r r

t t t

k k k S
Z p Z p Z p  that have been obtained by any STHSPM 

algorithm in Section 2.1.2 in a decreasing order and a new sequence is 
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generated: 
1 2 2

( ), ( ),..., ( )
r r r S

t t t

k D k D k DZ p Z p Z p . 

Step 4: According to aforementioned tasks 2) and 3) in Section 2.1.4, the first 

NCr (NCr= 2( )
rk tF P S ) sub-pixels in the new sequence, 

1 2
, ,...,

NCr

t t t

D D Dp p p , 

are allocated to class 
rk . 

Step 5: According to task 1), the already allocated sub-pixels should not be 

considered in the allocation for remaining classes. To guarantee that, all 

soft attribute values for the next visited class 
1rk 
 are adjusted by: 

1 1

1

( ) ( ) ( )
r r j

r
t t t

k i k i k i

j

Z p Z p c x p
 



                                 (2.11) 

where 1c   is a coefficient. After adjustment, at any already allocated 

sub-pixel ap : 

1

1

1

1

( ) 1
( ) ( ) [ ,1 ]

( ) [0,1]

j

r j

r

r

r
k a

j k a k a

j

k a

x p
Z p c x p c c

Z p









  

      
  


            (2.12) 

which indicates with (2.11), the soft attribute values for the next visited 

class 1rk   at already allocated sub-pixels are automatically suppressed to 

be less than 0 (1-c<0). On the other hand, at any unallocated sub-pixel uap : 

1 1

1

1

1

( ) 0
( ) ( ) ( ) [0,1]

( ) [0,1]

j

r j r

r

r

r
k ua

j k ua k ua k ua

j

k ua

x p
Z p c x p Z p

Z p
 








 

   
 


       (2.13) 

which indicates that the soft attribute values at unallocated sub-pixels do 

not make any change using adjustment in (2.11). From (2.12) and (2.13), it 

can be concluded after adjustment (2.14) holds: 

1 1
( ) ( )

r rk a k uaZ p Z p
 

                                         (2.14) 

As the number of sub-pixels for class 1rk   is less than the number of 

unallocated sub-pixels, adjustment in (2.11) ensures the already allocated 

sub-pixels will not be allocated to class 1rk   any more. Therefore, the 

adjustment in (2.11) is an adaptive and simple scheme that does not need to 

artificially find out the already allocated sub-pixels or specially exclude 

them during class allocation process. Using (2.11), only one simple 

command is needed to exclude the already allocated sub-pixels for class 

allocation, as shown in the last sentence in the pseudocode given below. 
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Note that c can take any value greater than 1 to ensure 1-c<0, and it does not 

have any influence on the following class allocation process as it does not 

change the soft attribute values at unallocated sub-pixels at all. 

Step 6: The whole process is terminated when all MS
2 

sub-pixels are allocated. 

 

Algorithm: Class allocation based on UOC 

Inputs:  

Soft attribute values  2( ) =1,..., ; 1,..., ; 1,...,t

k iZ p i S t M k K  ; 

Class fractions  ( ) 1,2,..., ; 1,2,...,k tF P t M k K   and zoom scale factor S. 

Define a visiting order of K classes: 1 2, Kk k k,…,  

for r = 1: K 

for t = 1: M 

Rank sequence 21 2( ), ( ),..., ( )
r r r

t t t

k k k S
Z p Z p Z p  in a decreasing order: 

1 2 2
( ), ( ),..., ( )

r r r S

t t t

k D k D k DZ p Z p Z p  

for i = 1: 2( )
rk tF P S  

( ) 1
r i

t

k Dx p   

end 

for i = 2( )
rk tF P S +1: 2S  

( ) 0
r i

t

k Dx p   

end 

end 

Image 
1rkZ


 is updated by 
1 1

1
r r j

r

k k k

j

Z Z c x
 



    

end 

Outputs: 

Binary class indicators  2( ) =1,..., ; 1,..., ; 1,...,t

k ix p i S t M k K  . 

 

Without the adjustment in (2.11), some sub-pixels would be allocated to more 

than one class and some sub-pixels would not be allocated to any class as a result. 

This conflicts with the aforementioned task 1). An example in Figure 2.1 is used to 

illustrate the necessity of the adjustment in (2.11). Suppose a coarse pixel covers 

three land cover classes, class 1, 2 and 3, and the fraction of three classes are 50%, 

25% and 25%. With a zoom scale S=2, there should be two, one and one sub-pixels 

assigned to class 1, 2 and 3, respectively. Let the visiting order of the three classes 

be 1-2-3. According to the soft attribute values of class 1, sub-pixels p4 and p3 are 

allocated to this class first. Without the adjustment, however, when class 2 is visited, 

p3 is again allocated to class 2 as 0.5 is the largest value among the four soft attribute 

values of class 2. Consequently, p2 will be allocated to class 3 and p1 will not be 
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allocated to any class. If adjustment in (2.11) is applied (c is set to 2), when class 2 

is visited after class 1, the four soft attribute values of class 2 are adjusted to 

2 1( ) 0.3Z p  , 
2 2( ) 0.2Z p  , 2 3( ) 1.5Z p    and 2 4( ) 1.9Z p   . 2 3( )Z p  and 

2 4( )Z p  are very small after adjustment and p4 and p3 will not be considered in the 

allocation for class 2. Instead, p1 will be allocated to class 2 and p2 will be allocated 

to class 3 as a result. 

 

0.3 0.4

0.1 0.7

0.3 0.5

0.2 0.1

p1

p2

p3

p4

class 1: 50%

class 2: 25%

class 3: 25%

Soft attribute values

Class 1 Class 2

Fractions 4 sub-pixels

0.4 0.1

0.7 0.2

Class 3

 

Figure 2.1. Illustration of the necessity of the adjustment in (2.11). 

 

2.1.4.2. Visiting order of classes specified by Moran’s I 

In UOC, there are K! visiting orders of classes in all and different orders may lead 

to different SPM results. This can also be illustrated by the example in Figure 2.1. 

Along two different visiting orders, such as 1-2-3 and 2-1-3, different SPM results 

are generated (see Figure 2.2). The visiting order in UOC, therefore, should be 

specified reasonably. 

 

2 1

3 1

1 2

3 1

 

(a)                    (b) 

Figure 2.2. Follow-up to Figure 2.1. Two different SPM results generated along two different visiting 

orders of classes in UOC. (a) Class order: 1-2-3. (b) Class order: 2-1-3 

 

Moran’s I is an index of spatial autocorrelation for the landscape (Makido et al., 

2007). In Makido et al. (2007), Moran’s I was used to determine the order of input 

classes for pixel swapping algorithm that was extended to multiple classes. Here, it 

is employed to determine a reasonable visiting order of classes in UOC. The index 

can be estimated from an available high spatial resolution land cover map. The map 
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needs to be representative of the study area for SPM. Moran’s I for the k-th class, 
kI , 

is calculated as: 

1 1

2

1 1 1

( ) ( )

( )

V V

ij k i k k j k

i j

k V V V

ij k i k

i j i

V W x p x x p x

I

W x p x

 

  

       


 
    

 



 

                      (2.15) 

where 

1, if  and  are neighbors

0, otherwise

i j

ij

p p
W


 


                            (2.16) 

and V is the number of pixels in the high spatial resolution map. kx  is the mean of 

all binary class indicator for the k-th class. In this study, 8-nearest neighbors are 

considered in (2.16). 

If the high spatial resolution map is available, it can be readily used for Moran’s I 

estimation. A critical issue, however, is that such high spatial resolution images are 

not obtainable in general. For this reason, a novel method to calculate Moran’s I 

without high spatial resolution map is proposed, which estimates the index by 

directly using the fraction image of each class. Although the fraction images are in 

coarse spatial resolution, they contain spatial distribution characteristics for land 

cover classes. With the novel method, kI  is calculated as: 

1 1

2

1 1 1

( ) ( )

( )

M M

ij k i k k j k

i j

k M M M

ij k i k

i j i

M W F P F F P F

I

W F P F

 

  

       


 
    

 



 

                     (2.17) 

where kF  is the mean of all fractions for the k-th class in fraction image kF . kI  

take values in the range [-1, 1], and -1 and 1 indicate the weakest and the strongest 

autocorrelation, respectively. After the indices of K classes are calculated, they are 

ranked in a decreasing order and the classes with higher indices are visited first. 

2.1.4.3. Comparison with UOS, HAVF and LOT 

Similar to UOS and HAVF, UOC is also a sequential assignment based class 

allocation method. All of them are single-pass methods that are free of iteration and 

thus are fast. Moreover, all three methods are performed under the condition of 

reproducing exactly the coarse fractions. The core difference between UOS and 

UOC is that comparisons of soft attribute values are implemented in different units, 
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see Figure 2.3. More precisely, UOS compares K soft attribute values of K classes at 

the being visited sub-pixel while UOC compared S
2
 soft attribute values for the 

being visited class within each coarse pixel. UOS and UOC allocate classes for 

sub-pixels along paths which determine the order of visited sub-pixels and classes. 

 

2 2 2

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )
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t t t

K

t t t
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Z p Z p Z p

Z p Z p Z p

Z p Z p Z p

  
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  

UOS

UOC

 

Figure 2.3. Difference between UOC and UOS: comparisons in different units. 

 

Compared with LOT, a significant advantage of UOC is its little computing 

complexity. For each coarse pixel, LOT solves a linear problem involving KS
2
 

variables and K+S
2
 equality constraints, as listed in (2.8). The optimal solution is 

obtained after numbers of iterations. When K or S, or even M is large, the whole 

process will be considerably CPU-demanding. As for UOC, for each coarse pixel, 

only K comparisons need to be carried out and the output of each comparison is a 

sequence, which is used to select out the sub-pixels for the corresponding class, as 

shown in Step 3 in Section 2.1.4.1. The comparisons in UOC require little time, far 

less than LOT does. 

Table 2.1 summarizes the soft attribute value comparison for three sequential 

assignment based class allocation methods: UOS, HAVF and UOC. As shown in 

the table, for each coarse pixel, UOS and UOC need S
2
 and K comparisons, and K 

and S
2 

elements are involved in each comparison for the two methods; HAVF 

sometimes need more than S
2
 comparisons, because the sub-pixels for the class, to 

which the highest soft attribute value corresponds, may have been exhausted and 

the selected sub-pixel will not be allocated to any class for that comparison. For 

HAVF, KS
2
 elements are compared each time. Obviously, HAVF requires more 

time than UOS to complete class allocation. Similar to UOC, the consuming time of 

UOS and HAVF is generally less than that of LOT, since the value comparison is 

easy and fast for computers to realize. 

UOC is processed on K soft classified images at fine spatial resolution 

one-by-one. Each soft classified image encapsulates spatial continuity for the 

corresponding class. That is, within each coarse pixel, sub-pixels with large soft 
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attribute values for the same class tend to stay together. Using UOC, sub-pixels 

staying together are more likely to be allocated to the same class than distant ones. 

In this way, autocorrelation for each class can be maximized by Step 4 in Section 

2.1.4.1, which is not the case in LOT, UOS and HAVF. According to spatial 

dependence principle that underpins SPM, the intraclass spatial correlation are 

expected to be maximized, which can just been done by UOC. For UOC, this is the 

unique advantage over LOT, UOS and HAVF when it is applied to STHSPM 

algorithms. 

 

Table 2.1 Statistics of soft attribute value comparison during class allocation process for UOS, 

HAVF and UOC (analyzed for a single coarse pixel) 

 Comparison times Elements involved in 

each comparison 

UOS S
2
 K 

HAVF [S
2
, K+S

2
) KS

2
 

UOC K S
2
 

 

After description of five STHSPM algorithms, existing LOT, UOS, HAVF and 

the proposed UOC, the systemic framework of STHSPM algorithms are shown in 

Figure 2.4. 
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Figure 2.4. Systemic framework of STHSPM algorithms, where the proposed class allocation 

method UOC is in bold. 
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2.1.5. Experiments and Analysis 

2.1.5.1. Experimental setup and accuracy assessment 

To demonstrate the effectiveness and advantages of the proposed UOC-based 

class allocation method for STHSPM algorithms, experiments on three remote 

sensing images were implemented. UOC was applied to all the five STHSPM 

algorithms introduced in Section 2.1.2: BPNN, HNN, SPSAM, Kriging and ICK. 

UOC was also compared to LOT, UOS and HAVF-based class allocation methods. 

All experiments were tested on an Intel Core 2 Processor (1.80-GHz Duo central 

processing unit, 2.00-GB random access memory) with MATLAB 7.1 version. For 

BPNN, a 3×3 local window was used to extract the inputs of both training and test 

samples, and the parameters involved in this method were set to the same values as 

in Wang et al. (2006). The parameters in HNN were the same as in Wang and Wang 

(2013). 

To objectively evaluate and solely concentrate on the performance of the 

proposed UOC, in the first and second experiments the studied coarse images were 

produced by degrading hard classified reference land cover maps using an S×S 

mean filter. The synthetic coarse images were considered as outputs of soft 

classification. SPM algorithms were processed on the coarse images to yield land 

cover maps having the same spatial resolution as the corresponding reference maps, 

by zooming in the coarse images with the scale factor S. The advantages of using 

such synthetic coarse images include: 1) errors from soft classification and some 

other processes (e.g., registration) are avoided (Xu et al., 2013) and the test is 

directed at the SPM algorithm itself (Atkinson, 2009); 2) the reference land cover 

maps are completely reliable for accuracy assessment. In the third experiment, a 

coarse image was produced by degrading a Landsat TM image. Soft classification 

was then implemented on the coarse image to generate fractions, with SPM 

subsequent to that. By such setup, inherent uncertainty in soft classification was 

taken into consideration (Atkinson, 2009) and the fractions were more similar to 

those in real applications in comparison with those in the first two experiments. 

SPM is essentially a hard classification technique carried out at sub-pixel level. 

The accuracy of hard classification algorithms is usually evaluated quantitatively by 

the overall accuracy in terms of the percentage of correctly classified pixels (PCC). 

Due to that, PCC was used for accuracy assessment on SPM results in all three 

experiments. To evaluate the statistical significance in accuracy for different 
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STHSPM algorithms and class allocation methods, McNemar’s test (Foody, 2004) 

was also applied. The significance of difference between two classification results 

is determined by: 

01 10
01

01 10

f f
z

f f





                                           (2.18) 

where 01f  are the number of pixels that are correctly classified in result 0 but 

incorrectly classified in result 1 and 
10f  vice versa. Using the 95% degree of 

confidence level, the difference between two classification results is considered to 

be statistically significant if 01z >1.96. 

2.1.5.2. Experiment 1 

In the first experiment, a land cover map of an area in Bath, UK was studied, as 

shown in Figure 2.5 (provided by Dr. A. J. Tatem). The land cover map was 

obtained by manual digitization of the aerial photograph in Tatem et al. (2001c). 

The map contains 360360 pixels and covers four classes: roads, trees, buildings 

and grass. The roads and buildings mainly appear as straight lines and right-angles, 

respectively. The spatial pattern of trees is more complex and irregular. The map 

was degraded with two scales, S=5 and 10, to generate two coarse images. The 

fraction images of four classes in the coarse image generated with S=10 are shown 

in Figure 2.6. From these fraction images, it can be seen clearly that the coarse 

proportion information is insufficient to represent the spatial distribution of land 

cover classes, which indicates the necessity of SPM in land cover information 

extraction. 

 

 Roads  Trees   Buildings  Grass 

Figure 2.5. Reference land cover map in the first experiment. 
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The five STHSPM algorithms, BPNN, HNN, SPSAM, Kriging and ICK, were 

then processed on the two coarse images generated with S=5 and 10 to reconstruct 

the land cover maps having the same spatial resolution as that of Figure 2.5. The 

reference map in Figure 2.5 was used to extract training samples for BPNN and 

indicator semivariogram for ICK. Table 2.2 lists the Moran’s I of the four classes in 

different spatial resolution images and the corresponding specified visiting orders 

of four classes. Here, S=1 means the indices were calculated using (2.15), based on 

the assumption that the required high spatial resolution map (i.e., Figure 2.5) is 

available. For two coarse images, the indices of classes were calculated using our 

proposed method in (2.17). As shown in the table, in this experiment, the orders 

specified by two approaches at three scales are the same. 

 

    

 

0                                 100% 

(a)                              (b)                               (c)                              (d) 

Figure 2.6. Fraction images produced by degrading the reference land cover map in the first 

experiment with S=10. (a) Roads. (b) Trees. (c) Buildings. (d) Grass. 

 

Table 2.2 Moran’s I of four classes at different scales in the first experiment 

 S=1 S=5 S=10 

Roads 0.9243 0.7227 0.5034 

Trees 0.9130 0.7123 0.4919 

Buildings 0.8961 0.6577 0.3590 

Grass 0.8731 0.5715 0.2850 

Specified 

order 

Roads-Trees 

-Buildings-Grass 

Roads-Trees 

-Buildings-Grass 

Roads-Trees 

-Buildings-Grass 

 

Figure 2.7 shows the SPM results for the coarse fraction images in Figure 2.6. 

The five STHSPM algorithms were combined with UOS, HAVF, LOT and UOC 

based class allocation methods. The results of UOC shown in Figure 2.7 were 

produced with specified order at S=10 (i.e., Roads-Trees-Buildings-Grass), as listed 

in Table 2.2. For UOS, results generated with a random visiting order of sub-pixels 

for five STHSPM algorithms are shown in the first column in Figure 2.7. As can be 
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seen from the maps, there are many speckle artifacts in SPM results while using 

UOS for class allocation. In comparison with UOS, much less speckle artifacts are 

generated by HAVF and LOT, and both of them can obviously obtain better results 

than UOS. Focusing on maps yielded by the proposed UOC, the boundaries of 

classes are clearer than those in UOS, HAVF and LOT results. There are fewer 

isolated pixels in UOC results, which is particularly well illustrated by the 

restoration of roads in five maps in the last column. Among four class allocation 

methods, UOC produces the most satisfactory fine spatial resolution maps. 

 

(a) 

    
(b) 

    
(c) 

    
(d) 

    
(e) 

    
Figure 2.7. SPM results of five STHSPM algorithms combined with UOS, HAVF, LOT and UOC 

based class allocation methods in the first experiment (S=10). (a) BPNN. (b) HNN. (c) SPSAM. (d) 

Kriging. (e) ICK. From left to right: UOS (a random realization), HAVF, LOT and UOC (visiting 

order specified by Moran’s I). 
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The SPM results were also assessed quantitatively by PCC. As can be observed 

in the fraction images in Figure 2.6, there are some pure coarse pixels containing 

only one land cover class. In SPM, all sub-pixels within the pure pixel are allocated 

to the same class to which the pure pixel belongs. This simple copy process only 

raises PCC without providing useful information about the SPM algorithms’ 

prediction abilities (Mertens et al., 2003; Wang et al., 2012a,b; Zhong and Zhang, 

2012, 2013). To eliminate the influence brought by the pure pixels, sub-pixels 

within them were excluded in the accuracy statistics in this experiment. Figure 2.8 

shows PCC of five STHSPM algorithms combined with HAVF, LOT and UOC at 

S=5 and 10, corresponding to 10 sub-figures in all. To clearly exhibit the differences 

between lines of LOT and HAVF, the PCC of UOS is not shown in Figure 2.8 but in 

Table 2.3 instead. Because in UOS different visiting paths of sub-pixels lead to 

different SPM results, 100 random paths were tested for UOS. In all 10 cases, the 

PCC of UOS is lower than that of HAVF, LOT and UOC. The PCC of UOC with all 

24 (4!=24) visiting orders are also displayed in Figure 2.8. The labels for 

corresponding visiting orders are illustrated in Table 2.4. As shown in Table 2.2, 

Moran’s I estimated from both high and low spatial resolution images specify the 

same visiting order of classes in UOC in this experiment. We therefore only 

consider UOC+MoranIL case, which means UOC with specified order by Moran’s I 

estimated from low spatial resolution fraction images. 

 

Table 2.3 PCC (%) of UOS method in experiment 1 (averages of 100 runs ± standard deviation) 

 S=5 S=10 

BPNN 87.77±0.09 81.36±0.06 

HNN 90.35±0.06 83.21±0.04 

SPSAM 81.64±0.12 79.61±0.09 

Kriging 83.00±0.14 80.33±0.07 

ICK 83.72±0.11 80.84±0.06 

 

Table 2.4 Labels of 24 visiting orders (C1-C4 denote roads, trees, buildings and grass, respectively) 

1 C4-C3-C2-C1 2 C4-C3-C1-C2 3 C4-C2-C3-C1 

4 C4-C2-C1-C3 5 C4-C1-C2-C3 6 C4-C1-C3-C2 

7 C3-C4-C2-C1 8 C3-C4-C1-C2 9 C3-C2-C4-C1 

10 C3-C2-C1-C4 11 C3-C1-C2-C4 12 C3-C1-C4-C2 

13 C2-C3-C4-C1 14 C2-C3-C1-C4 15 C2-C4-C3-C1 

16 C2-C4-C1-C3 17 C2-C1-C4-C3 18 C2-C1-C3-C4 

19 C1-C3-C2-C4 20 C1-C3-C4-C2 21 C1-C2-C3-C4 

22 C1-C2-C4-C3 23 C1-C4-C2-C3 24 C1-C4-C3-C2 
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UOC UOC+MoranIL LOT HAVF  

Figure 2.8. PCC of five STHSPM algorithms combined with HAVF, LOT and UOC at S=5 and 10 in 

the first experiment. UOC+MoranIL means UOC with Moran’s I estimated from low spatial 

resolution fraction images. 

 

Comparing PCC at different scale factors, we can see clearly as the scale factor 

increases, the accuracies of SPM decrease. The reason is that the SPM problem 

becomes more complicated with higher scale factors, as for each coarse pixel the 

spatial locations of more sub-pixels need to be estimated and uncertainty increases 

(Mertens et al., 2004). More precisely, at S=5 and 10, locations of 25 and 100 

sub-pixels need to be predicted within each coarse pixel. While observing the data 

for UOC in each sub-figure, it can be found that different visiting orders of classes 

result in different SPM accuracies, which is particularly obvious in SPSAM, 

Kriging and ICK results. Hence, the visiting order in UOC has direct influence on 

SPM accuracy. When Moran’s I is applied in UOC (i.e., UOC +MoranIL) in each 

STHSPM algorithm, the highest accuracy is achieved among all 24 orders, which 

indicates Moran’s I is able to select out the best visiting order in UOC and also 

validates the effectiveness of using Moran’s I gained from coarse fraction images in 

UOC. Furthermore, from the comparison of PCC of UOC+MoranIL, HAVF and 

LOT, we can conclude UOC+MoranIL is capable of producing higher accuracy than 

HAVF and LOT in all cases. 

Table 2.5 lists the McNemar’s test results for UOS, HAVF, LOT and 

UOC+MoranIL that were applied to five STHSPM algorithms. The statistically 

insignificant values at the 95% confidence level are underlined. As can be 

concluded from these values, UOC+MoranIL produces significantly higher 
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accuracy than other three class allocation methods in nearly all cases. This reveals 

the intraclass spatial correlation is more important than the objective function in 

(2.8) in this experiment. With reasonably specified visiting order of classes, UOC 

maximized the spatial autocorrelation of each class, which was not well taken into 

consideration in UOS, HAVF and LOT. 

 

Table 2.5 McNemar’s test for different class allocation methods in the first experiment (0: 

UOC+MoranIL; 1: UOS; 2: HAVF; 3: LOT) 

 
01z  

02z  
03z  

 

 

S=5 

BPNN [27.0416, 29.7322] 0.8752 8.4650 

HNN [31.3720, 33.4408] 0.6266 3.7311 

SPSAM [63.2862, 65.9140] 8.0641 7.2449 

Kriging [59.4212, 62.0354] 8.7551 7.2638 

ICK [59.8257, 62.3790] 7.8893 4.3911 

 

 

S=10 

BPNN [27.6674, 29.8159] 10.6104 11.0707 

HNN [24.1120, 26.2680] 3.4411 1.7018 

SPSAM [66.6251, 69.4362] 16.4369 16.4028 

Kriging [62.9627, 64.9855] 18.0859 17.2707 

ICK [63.2382, 65.4879] 21.0428 16.8453 

 

In addition, the running time of four class allocation methods in this experiment 

is given in Table 2.6. Note that for each method, the hard class labels of sub-pixels 

within pure coarse pixels were determined by the simple copy process. The 

consuming time of three soft attribute comparison-based methods, UOS, HAVF 

and UOC, has the same order of magnitudes, which is less than 10 seconds and 

much less than that of LOT. More precisely, LOT needs several minutes to 

complete the class allocation process at both scales. The running time of LOT 

increases from 135s to 380s when S increases from 5 to 10, as at S=5, the 

optimization problem in LOT contains 100 variables and 29 equality constraints at 

each coarse pixel whereas at S=10, the corresponding number of variables and 

equality constraints increase to 400 and 104, respectively. However, for UOS, 

HAVF and UOC, within 10 seconds were consumed because only comparisons of 

soft attribute values were carried out and no complex processes are involved. 

 

Table 2.6 Running time (seconds) of each class allocation method in the first experiment 

 LOT UOS HAVF UOC 

S=5 135 2 3 2 

S=10 380 4 7 2 
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2.1.5.3. Experiment 2 

A land cover map of an area in Nanjing, China was used for test in the second 

experiment (see Figure 2.9). This map was derived from a 30m spatial resolution 

image at http://www.ceode.cas.cn/txzs/dxyy/, using a maximum likelihood 

classifier (MLC) along with a modal filter removing the noises in MLC results. The 

study area contains 360360 pixels and was assigned to four classes, namely, C1, 

C2, C3 and C4. Comparing Figure 2.9 with Figure 2.5, one can find the distribution 

of the classes in this experiment is more random and more complex than that in the 

first experiment. The reference land cover map was degraded with S=8 and 12, 

producing two different coarse spatial resolution images. Figure 2.10 displays the 

fraction images of four land cover classes for S=8. Table 2.7 lists the Moran’s I of 

the four classes in different spatial resolution images and the corresponding 

specified visiting orders of four classes. Comparing the values at S=1 in Table 2.7 to 

those at S=1 in Table 2.2, we can find that the indices of the four classes in this 

experiment are generally lower than those in the first experiment, as the spatial 

continuity of classes in Figure 2.9 is weaker than that in Figure 2.5. In addition, 

specified orders using Moran’s I estimated from high spatial resolution map and 

low spatial resolution fraction images are different in this experiment. 

The 20 SPM results for coarse fraction images in Figure 2.10 are shown in Figure 

2.11, which were produced by combining five STHSPM algorithms with UOS, 

HAVF, LOT and UOC. For UOC, the visiting order of classes used was determined 

by Moran’s I at S=8. Again, many speckle artifacts appear in UOS results. HAVF 

obtains sub-pixel maps with much fewer speckle artifacts than UOS. However, the 

performance of HAVF is still poorer than that of LOT and UOC. For example, the 

boundaries of C4 in five HAVF results are rougher than those in LOT and UOC 

results. SPM results obtained with LOT and UOC look nearly the same and both of 

them produce more satisfactory SPM results than UOS and HAVF. 

In this experiment, sub-pixels within pure pixels were also excluded in 

quantitative assessment. PCC of five STHSPM algorithms combined with four 

class allocation methods at S=8 and 12 is shown in Figure 2.12. In each sub-figure, 

PCC of UOS is the average of 100 runs. As for UOC, all 24 visiting orders of 

classes in UOC were tested and labels for visiting orders are similar to those in 

Table 2.3. UOC+MoranIH and UOC+MoranIL mean that the visiting orders of 

classes in UOC were specified by Moran’s I estimated from high spatial resolution 
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map and low spatial resolution fraction images, respectively. 

 

 

 C1;  C2;  C3;  C4 

Figure 2.9. Reference land cover map in the second experiment. 

 

Table 2.7 Moran’s I of four classes at different scales in the second experiment 

 S=1 S=8 S=12 

C1 0.7355 0.5505 0.5406 

C2 0.8229 0.6558 0.6628 

C3 0.8410 0.6224 0.5914 

C4 0.9622 0.8470 0.8038 

Specified 

order 

C4-C3 

-C2-C1 

C4-C2 

-C3-C1 

C4-C2 

-C3-C1 

 

    

 
0                                 100% 

(a)                              (b)                               (c)                              (d) 

Figure 2.10. Fraction images of the four classes produced by degrading the reference land cover map 

in the second experiment with S=8. (a) C1. (b) C2. (c) C3. (d) C4. 

 

As can be seen from the data in all 10 sub-figures, the performances of HAVF 

and LOT in five STHSPM algorithms are obviously superior to UOS. Compared to 

HAVF, LOT obtains higher accuracy. From the comparison between UOC and 

LOT, it is found when Moran’s I is used in UOC, including both UOC+MoranIH 

and UOC+MoranIL, UOC is capable of producing slightly higher accuracy than 
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LOT in nearly all cases. In addition, accuracies of UOC+MoranIL are generally 

slightly lower than those of UOC+MoranIH. For BPNN at S=12, the accuracies of 

both UOC+MoranIH and UOC+MoranIL are lower than that of LOT. This is 

because the output of the first step (i.e., sub-pixel sharpening result) in BPNN is not 

as accurate as those in other four STHSPM algorithms, due to the inherent error in 

BPNN model itself. In this case, the spatial continuity of each class encapsulated in 

sub-pixel sharpening result of BPNN is not strong and the thus performances of 

UOC+MoranIH and UOC+MoranIL are a little poorer than LOT. 

 

(a) 

    
(b) 

    
(c) 

    
(d) 

    
(e) 

    
Figure 2.11. SPM results of five STHSPM algorithms combined with UOS, HAVF, LOT and UOC 

based class allocation methods in the second experiment (S=8). (a) BPNN. (b) HNN. (c) SPSAM. (d) 

Kriging. (e) ICK. From left to right: UOS (a random realization), HAVF, LOT and UOC (visiting 

order specified by Moran’s I that was estimated from fraction images at S=8). 
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UOC UOC+MoranIH UOC+MoranIL LOT HAVF UOS  

Figure 2.12. PCC of five STHSPM algorithms combined with UOS, HAVF, LOT and UOC at S=8 

and 12 in the second experiment. PCC of UOS is the average of 100 runs; UOC+MoranIH and 

UOC+MoranIL mean UOC with Moran’s I estimated from high spatial resolution map and low 

spatial resolution fraction images, respectively. 

 

Table 2.8 McNemar’s test for different class allocation methods in the second experiment (0: 

UOC+MoranIL; 1: UOS; 2: HAVF; 3: LOT) 

 01z  
02z  

03z  

 

 

S=8 

BPNN [13.1000, 15.9465] 4.0308 0.8109 

HNN [14.7358, 17.4458] 3.4283 1.2672 

SPSAM [35.3203, 37.7278] 9.7576 0.0781 

Kriging [34.1852, 37.0153] 16.4837 2.1078 

ICK [35.2192, 37.9695] 21.1905 1.9010 

 

 

S=12 

BPNN [5.7561, 8.8621] 2.7497 -4.0589 

HNN [10.7939, 13.6949] 3.5008 0.5605 

SPSAM [25.3217, 27.4000] 5.2029 1.9778 

Kriging [26.0298, 28.6448] 12.8207 0.7635 

ICK [27.8429, 30.7404] 16.9686 1.2814 

 

The McNemar’s test results for UOS, HAVF, LOT and UOC+MoranIL in five 

STHSPM algorithms are displayed in Table 2.8. Likewise, 100 random paths for 

UOS were tested and the statistically insignificant values at the 95% confidence 

level are underlined. In this experiment, UOC+MoranIL obtains significantly 

higher accuracy than UOS and HAVF for all five STHSPM algorithms. However, 

PCC of UOC+MoranIL is insignificantly higher than that of LOT in most cases. 

This is because the intraclass spatial correlation in the study area in this experiment 
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is not very strong, as can be seen from the Moran’s I at S=1 in Table 2.7, and thus in 

terms of SPM accuracy, the advantage of UOC+MoranIL over LOT is not obvious. 

However, UOC has significant advantage over LOT in terms of computing 

complexity. As shown in Table 2.9, at S=8 and 12, LOT needs 360s and 700s to 

complete class allocation for each STHSPM algorithm. For the proposed UOC, it 

only consumes 2s, much less than LOT does. Additionally, UOS and HAVF also 

need little time for class allocation process. 

 

Table 2.9 Running time (seconds) of each class allocation method in the second experiment 

 LOT UOS HAVF UOC 

S=8 360 4 7 2 

S=12 700 5 10 2 

 

2.1.5.4. Experiment 3 

In the third experiment, a 30m spatial resolution multispectral Landsat TM image 

(180×120 pixels) located in Xuzhou City, China, was used for test. The Landsat TM 

image was acquired in September, 2000 and mainly covers four classes: building, 

woodland, water and farmland. Bands 1-5 and 7 were used in this experiment. The 

image and its reference land cover map are shown in Figure 2.13. The reference 

land cover map in Figure 2.13(b) was obtained with the aid of a 1:2000 land use 

map that was produced around the same date as the Landsat TM image. To consider 

the inherent uncertainty in soft classification and simulate SPM in real cases, coarse 

image for SPM was generated by degrading the Landsat TM image with S=6 and 

Figure 2.13(b) can then be used for supervised accuracy assessment. 

 

  

(a)                    (b) 

Figure 2.13. The Landsat TM image in experiment 3. (a) Color image (bands 3, 2 and 1 as RGB). (b) 

Reference land cover map (  Building;  Woodland;  Water;  Farmland;  

Unclassified). 

 

Table 2.10 Moran’s I of four classes at different scales in third second experiment 
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 S=1 S=6 

Building 0.8318 0.5094 

Woodland 0.9224 0.7353 

Water 0.9369 0.8951 

Farmland 0.8431 0.6153 

Specified order Water-Woodland 

-Farmland-Building 

Water-Woodland 

-Farmland-Building 

 

First, soft classification was implemented on the coarse image to generate 

fractions. Linear spectral mixture analysis (LSMA) (Heinz and Chang, 2001) is 

widely used, appreciating its simple physical meaning and its convenience in 

application (Wang and Wang, 2013). Here, LSMA was used for soft classification. 

The fraction images of four land cover classes are displayed in Figure 2.14. SPM 

was then carried out to obtain land cover map that has the same spatial resolution as 

that of Figure 2.14. The Moran’s I of the four classes obtained with high spatial 

resolution map in Figure 2.13(b) and fraction images in Figure 2.14 are listed in 

Table 2.10. As shown in the table, in this experiment, the specified order by two 

approaches are the same. Since the effectiveness of using Moran’s I in UOC has 

been demonstrated in the first and second experiments, in this experiment only the 

visiting order of class specified by Moran’s I was used for test of UOC method. 

 

    

 

0                                 100% 

(a)                     (b)                   (c)                     (d) 

Figure 2.14. Fraction images of the 4 classes in the degraded Landsat TM image. (a) Building. (b) 

Woodland. (c) Water. (d) Farmland. 

 

The SPM results of five STHSPM algorithms combined with UOS, HAVF, LOT 

and UOC are shown in Figure 2.15. Due to the errors from soft classification, some 

pixels are unavoidably misclassified in the results. For instance, in all 20 maps, 

some pixels are misclassified as water class within the area of woodland class, 

which conflicts with the distribution of woodland in the reference map in Figure 
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2.13(b). Errors from soft classification adversely affect the overall performance of 

SPM. Similar to the corresponding results in the first and second experiments, 

speckle artifacts were produced when UOS was applied for class allocation. From 

visual inspection, the results of HAVF, LOT and UOC are close to each other, and 

all of them are evidently superior to UOS results. 

 

(a) 

    
(b) 

    
(c) 

    
(d) 

    
(e) 

    
Figure 2.15. SPM results of five STHSPM algorithms combined with UOS, HAVF, LOT and UOC 

based class allocation methods in the third experiment (S=6). (a) BPNN. (b) HNN. (c) SPSAM. (d) 

Kriging. (e) ICK. From left to right: UOS (a random realization), HAVF, LOT and UOC (visiting 

order specified by Moran’s I). 

 

Table 2.11 lists the PCC of five STHSPM algorithms combined with UOS, 
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HAVF, LOT and UOC. In this experiment, PCC was calculated taking account of 

all 180×120 pixels (except the unclassified ones in Figure 2.13) in each SPM result. 

The pure pixels in fraction images were not excluded in the accuracy statistics as 

whether a pixel is pure or not is determined by the soft classifier LSMA. We also 

consider the performance of soft classifier when multispectral coarse image is 

studied for SPM. This is different from the first and second experiments, where 

synthetic fraction images were studied and no soft classifier was applied in fact. 

UOS was also tested using 100 random paths. As can be concluded from the data in 

Table 2.11, the accuracies of HAVF, LOT and UOC for each STHSPM algorithm 

are higher than those of UOS. 

 

Table 2.11 PCC (%) of four class allocation methods for five STHSPM algorithms (The data for 

UOS are averages of 100 runs ± standard deviation and the visiting order of class specified by 

Moran’s I was used for UOC) 

 UOS HAVF LOT UOC 

BPNN 70.54±0.09 71.11 71.23 71.08 

HNN 71.01±0.06 71.25 71.43 71.38 

SPSAM 70.08±0.07 71.09 71.27 71.24 

Kriging 70.22±0.08 71.16 71.28 71.34 

ICK 70.26±0.09 71.22 71.39 71.49 

 

Table 2.12 McNemar’s test for different class allocation methods in the third experiment (0: UOC; 1: 

UOS; 2: HAVF; 3: LOT) 

 
01z  

02z  
03z  

BPNN  [1.1173, 3.3433] -0.2739 -0.9261 

HNN  [1.2835, 3.2513] 0.9365 -0.7581 

SPSAM  [4.0758, 6.1144] 1.4888 -0.2466 

Kriging  [3.9939, 5.5421] 1.6537 0.7278 

ICK  [4.3572, 6.3084] 2.4283 1.0721 

 

In Table 2.12, the McNemar’s test results for four class allocation methods in five 

STHSPM algorithms are displayed. In 100 random realizations of UOS, PCC 

values of SPSAM, Kriging and ICK are all significantly lower than those of UOC; 

for BPNN and HNN, 78% and 63% of the PCC values are significantly lower than 

those of UOC. Focusing on values in the last two columns in Table 2.12, it can be 

concluded that the advantage of UOC over HAVF is obvious than that over LOT. 

Especially, in comparison with HAVF, when UOC is applied to ICK, UOC 
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achieves significantly higher accuracy. For all five STHSPM algorithms, however, 

the differences between UOC and LOT in accuracy are statistically insignificant. 

The main reason is that errors from soft classification were propagated to SPM 

results (Ge, 2013) and suppressed the performances of UOC. In this experiment, 

UOC is considered to produce comparable SPM accuracy to LOT. 

The running time of LOT, UOS, HAVF and UOC in this experiment is 40s, 2s, 3s 

and 1s, respectively. Again, UOC spends much less time than LOT. Through this 

experiment, the effectiveness and advantages of the proposed UOC is further 

demonstrated. 

2.1.5.5. Inter-comparison of five STHSPM algorithms 

It is worth doing inter-comparison of SPM algorithms, as expected in Atkinson 

(2009). Here, the five STHSPM algorithms are compared visually and 

quantitatively. As the effectiveness and advantages of the proposed UOC has been 

demonstrated by three experiments, we compare the results of five STHSPM 

algorithms when UOC is applied in class allocation, with visiting order of classes 

specified by Moran’s I that was estimated from coarse fraction images. 

For visual comparison, we focus on the results in the second experiment (i.e., the 

last column in Figure 2.11). It can be seen that ICK is able to generate the best 

results among five STHSPM algorithms. Specifically, there are evident jagged 

boundaries in BPNN result. As for HNN, the distribution of classes looks more 

reasonable than that in BPNN result. However, the boundary of C4 is relatively 

rough when compared to ICK. Observing SPSAM result, we can find some 

cone-shaped objects in the map, especially for those belonging to C2. Kriging 

provides more satisfactory result than BPNN, HNN and SPSAM, but there are some 

linear artifacts. Compared to Kriging result, in the map yield by ICK there are less 

linear artifacts and the continuity of each class is stronger. 

The quantitative comparison of five STHSPM algorithms is studied for the first 

and second experiment. The McNemar’s test results for five STHSPM algorithms 

in the two experiments are shown in Table 2.13 and Table 2.14, and the PCC of 

each STHSPM algorithm is also given in the two tables. Similar to the conclusion 

drawn from visual comparison, the accuracy of ICK is found to be the highest 

among five STHSPM algorithms at each scale. ICK generates significantly higher 

accuracies than other four STHSPM algorithms in all cases. The reason is attributed 

to the fact that indicator geostatistics-based ICK method extracts prior spatial 
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structure information of each class from additional fine spatial resolution images. 

Therefore, ICK is advantageous while dealing with complex spatial patterns. 

However, for another learning based-SPM method, BPNN, it does not obtain 

satisfactory accuracies, which indicates BPNN still needs an additional training 

data set (Zhong and Zhang, 2012). As for three STHSPM algorithms that need no 

prior spatial structure information, HNN gives the highest accuracy at small scale 

S=5 in experiment 1 while Kriging is advantageous at large scales. In HNN, the 

spatial dependence is expressed at the sub-pixel scale level and the spatial relation 

between sub-pixel and its nearest 8 neighboring sub-pixels is considered. On the 

one hand, this character enables HNN produce more continuous and better SPM 

results at small scale than do SPSAM and Kriging that consider dependence 

between sub-pixel and its neighboring coarse pixel. On the other hand, due to this 

character of HNN, spatial locations of sub-pixels for each class vary after each 

mapping and iterations are needed to acquire SPM results. It is easy to fall into local 

optimum, especially for complex SPM problems at large zoom scales. This is 

similar to the case in pixel swapping algorithm (Atkinson, 2005; Makido and 

Shortridge, 2007; Makido et al., 2007), which also considers dependence at the 

sub-pixel scale level. Consequently, Kriging could be a promising SPM approach 

for the large scale situation when prior spatial structure information is unavailable. 

 

Table 2.13 McNemar’s test for STHSPM algorithms in experiment 1 

 BPNN 

vs 

HNN 

vs 

SPSAM 

vs 

Kriging 

vs 

ICK 

vs 

 

 

 

S=5 

BPNN (91.58%)  21.1843 18.0989 19.0711 23.7284 

HNN (94.19%)   -4.8908 -3.7968 4.8900 

SPSAM (93.79%)    1.2009 8.2348 

Kriging (93.89%)     7.8360 

ICK (94.51%)      

 

 

 

S=10 

BPNN (84.60%)  6.3056 34.6841 35.0997 38.5479 

HNN (85.43%)   31.3589 35.4653 42.1081 

SPSAM (88.90%)    0.1069 4.9997 

Kriging (88.90%)     5.8163 

ICK (89.33%)      
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Table 2.14 McNemar’s test for STHSPM algorithms in experiment 2 

 BPNN 

vs 

HNN 

vs 

SPSAM 

vs 

Kriging 

vs 

ICK 

vs 

 

 

 

S=8 

BPNN (69.58%)  21.6263 29.0998 31.2864 34.9863 

HNN (73.00%)   8.9742 13.0703 19.1045 

SPSAM (74.14%)    3.6298 7.9308 

Kriging (74.50%)     5.9101 

ICK (75.05%)      

 

 

 

S=12 

BPNN (65.10%)  13.6655 19.9154 25.1336 28.8840 

HNN (67.31%)   7.6262 15.3039 21.1230 

SPSAM (68.30%)    8.5525 12.5661 

Kriging (69.10%)     7.0524 

ICK (69.72%)      

2.1.5.6. Analysis of scale factor S 

In this section, scale factor S is analyzed for UOS, HAVF, LOT and UOC. The 

bar charts of PCC with various scales are shown in Figure 2.16 for the land cover 

maps in the first and second experiments. The four class allocation methods were 

applied to the STHSPM algorithm ICK. In the bar charts, PCC of UOS is the 

average of 100 random runs. The visiting order for UOC is determined by Moran’s 

I, which was calculated from fraction images. Five scales, 5, 8, 10, 12 and 15, were 

discussed for each land cover map. 

Due to the complex land cover pattern in the map of Nanjing, SPM accuracy of 

each method in Figure 2.16(b) is much lower than that in Figure 2.16(a). Precisely, 

for the same scale, the PCC of each method in Figure 2.16(b) is at least 12% lower 

than that in Figure 2.16(a). As the scale increases, the PCC of all class allocation 

methods in the two sub-figures takes on the tendency of descension. Furthermore, 

compared to the other three class allocation methods, the proposed UOC achieve 

higher SPM accuracy for nearly all scales. The McNemar’s test results in Table 2.15 

indicate that UOC generates significantly different results in comparison with UOS 

and HAVF for both land cove maps. The difference between UOC and LOT is 

significant for the land cover map of Bath, but becomes insignificant for S=5, 8 and 

12 for the land cover map of Nanjing. We can find that the spatial dependence of the 

land cover in the map of Bath is stronger than that in the map of Nanjing. Hence the 

difference between UOC and LOT illustrates UOC is more advantageous when the 
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spatial autocorrelation in the study area is stronger. 

 

(a) 

 

(b) 

 

Figure 2.16. PCC of ICK combined with different class allocation methods for various scale factor S. 

(a) Land cover map of Bath, UK in experiment 1. (b) Land cover map of Nanjing, China in 

experiment 2. 

 

Table 2.15 McNemar’s test for results in Figure 2.16 (0: UOC; 1: UOS; 2: HAVF; 3: LOT) 

 01z  
02z  

03z  

 

 

Bath 

S=5 [59.8257, 62.3790] 7.8893 4.3911 

S=8 [63.8370, 66.5983] 13.4000 12.4416 

S=10 [63.2382, 65.4879] 21.0428 16.8453 

S=12 [59.9077, 62.2882] 21.8308 22.1929 

S=15 [44.0706, 47.3966] -10.5289 -8.0895 

 

 

Nanjing 

S=5 [45.0977, 47.8272] 18.4676 1.7748 

S=8 [35.2192, 37.9695] 21.1905 1.9010 

S=10 [31.5941, 34.5169] 18.7045 2.0944 

S=12 [27.8429, 30.7404] 16.9686 1.2814 

S=15 [26.5480, 28.9816] 17.5462 2.6954 

 

2.2. Allocating classes for STHSPM algorithms with 

adaptive visiting order of classes 

(This section is based on Wang et al. (2014c)) 
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2.2.1. Introduction 

In the UOC-based class allocation method, different visiting orders of classes 

lead to different SPM results and the order needs to be specified reasonably. As 

presented in Section 2.1.4.2, the visiting order of classes can be determined by 

comparing the intra-class spatial correlation quantified by the Moran index, and the 

classes with stronger autocorrelation need to be visited first. In Section 2.1.4.2, the 

Moran index of each class was calculated using the entire proportion image 

generated by soft classification, which does not need any prior class information. In 

that way, however, the visiting order of classes is fixed for each coarse spatial 

resolution pixel. It is known that the spatial structure of land cover varies from area 

to area and the spatial autocorrelation of a class is usually not the same in all areas of 

an image. For example, in a local area of the studied image, the spatial continuity of 

a certain class may be the greatest among all classes and that class should be visited 

first for the coarse pixels, but in another area the Moran index of that same class 

may be the lowest and the class should be visited last. Therefore, using the Moran 

index calculated from the entire proportion image, the globally specified visiting 

order may not be the most suitable for all coarse pixels. 

Section 2.2 aims to extend UOC with an adaptive scheme. In the proposed class 

allocation method, called the adaptive UOC (AUOC), the spatial correlation is 

quantified using the local structure information and AUOC is implemented on a 

per-coarse pixel basis. 

2.2.2. Methods 

Let S be the zoom factor, tP  ( 1,2,...,t M , M is the number of pixels in the 

coarse spatial resolution image) be a coarse pixel and ip  ( 2=1,2,...,i MS ) be a 

sub-pixel. Suppose ( )k tF P  is the proportion of the kth ( 1,2,...,k K , K is the 

number of classes) class in coarse pixel tP  and ( )k iF p  is the soft class value for the 

kth class at sub-pixel ip . 

2.2.2.1. Soft class value estimation for the STHSPM algorithm 

The first step of the STHSPM algorithm is to estimate the soft class value for 

each sub-pixel which indicates the probability of a sub-pixel belonging to each class. 

The algorithms that can be used for this step have been introduced in detail in 

Section 2.1.4.2. Image interpolation algorithms can also estimate soft class values 
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(Ling et al., 2013) and can be developed into STHSPM algorithms. In Section 2.2, 

we focus on five fast STHSPM algorithms, including bilinear interpolation, bicubic 

interpolation, SPSAM, kriging and ICK, which are employed to predict 

 2( ) =1,2,..., ; 1,2,...,k iF p i MS k K . 

2.2.2.2. UOC-based class allocation for the STHSPM algorithm 

The second step of the STHSPM algorithm is class allocation. Based on the UOC 

method, within a coarse pixel, sub-pixels for the visited class (e.g., class k) are 

determined by comparison of soft class values ( )k iF p  of all S
2
 sub-pixels. The 

sub-pixels with larger soft values of class k are more likely to be allocated to class k. 

The number of sub-pixels for class k within a coarse pixel tP , denoted as ( )k tE P , is 

determined as 

2( ) ( )k t k tE P F P S                                           (2.19) 

Once a sub-pixel is allocated to a class, it will not be considered in the class 

allocation process for the remaining classes. Generally, the classes with greater 

spatial autocorrelation are desired to be visited before those with weaker 

autocorrelation. The Moran index is used to quantify the spatial autocorrelation 

such that a larger index corresponds to greater autocorrelation. The index of class k, 

denoted as kI , is calculated using the entire proportion image. 

1 1

2

1 1 1

( ) ( )

( )

M M

ij k i k k j k

i j

k M M M

ij k i k

i j i

M W F P F F P F

I

W F P F

 

  

       


 
    

 



 

                     (2.20) 

where kF  is the mean of all M proportions for the kth class in proportion image kF  

and 

1, if  and  are neighbors

0, otherwise

i j

ij

P P
W


 


                            (2.21) 

After all K indices are calculated, they are ranked in a decreasing order and the 

classes with the larger indices are visited first. 

2.2.2.3. AUOC-based class allocation for the STHSPM algorithm 

It can be seen from UOC that using the entire class proportion image, the Moran 

index of each class is computed only once. In this way, a single visiting order is 

defined for all classes and is applied to determine the class allocation process for 
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every coarse pixel. In the entire coarse image, however, the spatial structure of land 

cover is always complex and the spatial autocorrelation of a class in the entire study 

area cannot be characterized adequately by a fixed Moran index in general. The 

autocorrelation of a class may be the greatest in some local areas but may also be the 

weakest in other local areas. Consequently, the single visiting order is unlikely to be 

universally satisfactory for all coarse pixels. To overcome this shortcoming of the 

UOC-based class allocation method, the autocorrelation needs to be quantified in a 

spatially adaptive way and AUOC is proposed for this purpose. 

In AUOC, the Moran index is calculated on a per-coarse pixel basis and the 

visiting order of classes within each coarse pixel is determined according to the 

spatial autocorrelation in the local area, which is centred at the coarse pixel. More 

precisely, a local window with a size of N by N pixels is selected for each coarse 

pixel. Using the Moran index, the spatial autocorrelation of class k in the local area 

for a coarse pixel (e.g., tP ) is quantified as 

2 2

2 2 2

2

1 1

2

1 1 1

( ) ( )

( )

N N
t t t t

ij k i k k j k

i jt

k
N N N

t t

ij k i k

i j i

N W F P F F P F

I

W F P F

 
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    
   


 

    
 



 

                   (2.22) 

where t

iP  and t

jP  denote any coarse pixel in the local window centered at tP , and 

t

kF  is the mean of all proportions for the kth class in the local window. The visiting 

order of K classes within tP  is specified by comparing all K indices (i.e., 

1 2, ,...,t t t

KI I I ). As done in UOC, the classes with larger indices are given priority in 

AUOC-based class allocation. 

As the local proportion image varies from window to window, the calculated 

Moran indices for all coarse pixels are different. Hence, in the AUOC method, the 

specified visiting order of classes is a function of the location of the coarse pixel. 

This is different from UOC that specifies the visiting order based on a per-global 

image basis. The advantages of the proposed AUOC are as follows. 

1) Similar to UOC, AUOC also takes the intra-class spatial dependence into 

account during class allocation process. 

2) As can be seen from (2.22), AUOC does not need any prior class information 

to determine the visiting order of classes. This is also the same as UOC. 

3) AUOC behaves adaptively and selects the most suitable visiting order of 

classes within a coarse pixel according to the surrounding pixels. 
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2.2.2.4. Implementation of AUOC 

The implementation of AUOC consists of the following steps. 

Step 1: Select a coarse pixel 
tP  from the coarse spatial resolution image. 

Step 2: Find the local window with a size of N by N pixels that is centered at tP . 

Step 3: Calculate the Moran indices of K classes, i.e., 
1 2, ,...,t t t

KI I I , according to 

(2.22). 

Step 4: Determining the visiting order of classes by comparison of the K indices: 

1 2, ,...,t t t

KI I I . 

Step 5: According to the specified visiting order, sub-pixels for each class are 

determined class-by-class. The class allocation process is implemented with soft 

class values that have been predicted by the STHSPM algorithm, under the 

constraints presented in (2.19). Readers may refer to Section 2.1 for details. 

Step 6: The whole process is terminated when all sub-pixels within all coarse 

pixels are allocated to a class. Figure 2.17 is the flowchart of the AUOC-based class 

allocation method. 

 

Calculate Moran indices

 

Compare K indices and 

specify a visiting order

Select a local window for 

coarse pixel Pt

Yes

No,

t=t+1

Class allocation

Set t=1

1 2, ,...,t t t

KI I I

for r=1:K

      Determine the subpixles 

      for class kr within Pt

end

1 2, Kk k k,...,

Soft class values estimated 

by STHSPM algorithm

Constraints in (2.19)

t=M ?

SPM result
 

Figure 2.17. Flowchart of the proposed AUOC-based class allocation method. 

 

2.2.3. Experiments 

Experiments were conducted using three remote sensing images to test the 

AUOC method. To avoid the uncertainty in soft classification and concentrate only 

on the performance of SPM, synthetic proportion images were used. Specifically, 



 

50 

 

the original images were classified with a hard classifier to yield land cover maps. 

Each land cover map was decomposed into K binary land cover maps and then 

proportion images were simulated by degrading the binary land cover maps with an 

S by S mean filter. SPM was performed to reproduce the fine spatial resolution land 

cover map with zoom factor S and the original fine resolution map was used for 

accuracy assessment of SPM. Since SPM is essentially a hard classification 

technique (but at the sub-pixel scale), the accuracy of SPM was evaluated 

quantitatively by the overall accuracy in terms of the percentage of correctly 

classified pixels (PCC). Note that the non-mixed pixels were not included in the 

accuracy statistics, because they will only increase the PCC without providing any 

useful information on the performance of SPM (Mertens et al., 2003; Wang et al., 

2012a,b; Zhong and Zhang, 2012, 2013). Five STHSPM algorithms were 

implemented: bilinear interpolation, bicubic interpolation, SPSAM, kriging and 

ICK. The proposed AUOC was applied to the five STHSPM algorithms and also 

compared to UOC for validation. 

2.2.3.1. Data 

The first image is provided by Hyperspectral Digital Imagery Collection 

Experiment (HYDICE) airborne hyperspectral data. The data cover an area in 

Washington, DC Mall (191 bands with a spatial resolution of 3 m). The selected 

study area is covered by 240 by 296 pixels and the corresponding hyperspectral data 

were classified with an algorithm based on tensor discriminative locality alignment 

(Zhang et al., 2013). The obtained land cover map contains seven classes: shadow, 

water, road, tree, grass, roof and trail. The second and third images are two 0.61 m 

QuickBird images containing 480 by 480 pixels and three multispectral bands, 

which were acquired in August 2005. One covers the suburb of Xuzhou City, China 

while the other covers the urban center area of that city. The two images were 

classified with an algorithm that first integrated spatial features of pixel shape 

feature set, grey level co-occurrence matrix and Gabor transform with spectral 

information and then used a support vector machine for classification. Each 

generated land cover map contains seven classes: shadow, water, road, tree, grass, 

roof and bare soil. Figure 2.18 shows the three images as well as the classified 

maps. 
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 Shadow  Water  Road  Tree  Grass  Roof  Trail 

   

Shadow Water Road Tree Grass Roof Bare soil 

   

Shadow Water Road Tree Grass Roof Bare soil 

Figure 2.18. Three remote sensing images used for testing the proposed AUOC method. Left: Color 

images; Right: Classified land cover maps used as reference for SPM. Line 1: Washington, DC map; 

Line 2: Xuzhou suburb map; Line 3: Xuzhou urban center map. 

2.2.3.2. Analysis of local window size 

The Washington, DC and Xuzhou urban center land cover maps in Figure 2.18 

were degraded using three zoom factors, S= 3, 5 and 8, to simulate the coarse 

proportion images. Using the corresponding three zoom factors, the five STHSPM 

algorithms (bilinear, bicubic, SPSAM, kriging and ICK) were then implemented to 

reproduce the fine spatial resolution maps, using the AUOC-based class allocation 
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method. Here, three local window sizes, 3 by 3, 5 by 5 and 7 by 7 (i.e., N=3, 5 and 7), 

were tested for AUOC. For two maps, the PCC values of the five STHSPM 

algorithms with different window sizes and zoom factors are shown in Figure 2.19. 

From the bar charts, it can be seen that in most cases, the largest PCC was obtained 

for each STHSPM algorithm when N=3. Guided by the results in Figure 2.19, N was 

set to 3 for the AUOC in the following tests. 

 

      

      

      

Figure 2.19. PCC (%) of the new AUOC method with three local window sizes: N=3, 5 and 7. Left: 

Washington, DC map; Right: Xuzhou urban center map. Line 1: S=3; Line 2: S=5; Line 3: S=8. 

2.2.3.4. Results and analysis 

Each reference land cover map in Figure 2.18 was degraded with six zoom 

factors, S= 3, 4, 5, 6, 8 and 12, to produce six groups of proportion images. The five 

STHSPM algorithms were then applied, coupled with the UOC and AUOC-based 

class allocation methods. 

Figure 2.20 shows the SPM results of two STHSPM algorithms, bicubic and 

SPSAM, using UOC and AUOC for the Washington, DC map with S=4. As seen 
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from the resulting maps, using the AUOC method the boundaries of classes are 

smoother and the spatial continuity is greater than for UOC. Focusing on the two 

marked subareas in the results, we can see clearly that in the UOC results some 

pixels for the roof class, which appear as noise or block artifacts, are incorrectly 

allocated to places that should be the road class. Using the AUOC method, however, 

this phenomenon is alleviated greatly and the spatial distribution of the classes is 

highly similar to that in the reference map. The visual comparison demonstrates that 

AUOC is capable of obtaining more accurate SPM results than UOC. 

 

 

Figure 2.20. SPM results of the Washington, DC map (S=4). Left: UOC; Right: AUOC. Line 1: 

Bicubic results; Line 2: SPSAM results. 

 

For each land cover map in Figure 2.18, the PCC of ten methods (five STHSPM 

algorithms with two class allocation methods) for each zoom factor S is shown in 

Figure 2.21. From the figure, three observations can be made. 

First, consistent with visual inspection, comparison between UOC and AUOC 

reveals that using the adaptive visiting order of classes, all five STHSPM 

algorithms produce greater SPM accuracy, particularly for a small zoom factor. 

Second, the increase in accuracy from UOC to AUOC is not very obvious for a 

large zoom factor. More precisely, in the experiments for the three studied images, 
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when S is larger than 6, the difference between AUOC and UOC in terms of PCC is 

small. This is because both of them are performed based on spatial dependence: 

They compare the spatial autocorrelation of each class and determine sub-pixels for 

class with greater spatial autocorrelation first. When the reference land cover map is 

degraded with large factor S, a number of coarse pixels may be larger than some 

land cover objects, which is referred to as the L-resolution case in Atkinson (2009). 

In the L-resolution case, however, spatial dependence-based methods usually 

cannot reproduce objects accurately at a fine spatial resolution. Therefore, the 

proposed AUOC can enhance UOC when the zoom factor is small, but for large 

zoom factor the increase in accuracy may not be so obvious. 

Third, the accuracy gain decreases from bilinear to ICK in each row in the figure. 

The accuracy of STHSPM algorithm is not only related to class allocation, but also 

the soft class value estimation. When the soft class values estimated by the 

STHSPM algorithms (such as kriging and ICK) are more reliable, the produced 

SPM result is more accurate, no matter whether UOC or AUOC is used for class 

allocation. In this case, applying AUOC to such STHSPM algorithms, the room for 

an increase in accuracy is small. 
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Figure 2.21. PCC of five STHSPM algorithms with UOC and AUOC. Line 1: Washington, DC map; 

Line 2: Xuzhou suburb map; Line 3: Xuzhou urban center map. 

 

Table 2.16 gives the computing time of UOC and AUOC for the Xuzhou suburb 
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map. We can see AUOC took more time than UOC. This is because in AUOC, the 

Moran indices of classes are calculated M times. In UOC, however, the Moran 

indices are calculated only once. Therefore, AUOC usually requires more 

computing time than UOC. This is the cost of enhancing SPM accuracy for AUOC. 

Note that only for small zoom factors, the accuracy improvement merits the extra 

computational load. 

 

Table 2.16 Computing time (s) of UOC and AUOC for the Xuzhou suburb map 

 S=3 

(160×160) 

S=4 

(120×120) 

S=5 

(96×96) 

S=6 

(80×80) 

UOC 8.4 7.1 6.4 5.7 

AUOC 33 19 12 9.1 

 

2.3. Summary 

This chapter proposes two new class allocation methods for STHSPM algorithms: 

UOC and AUOC. Section 2.1 presents UOC for STHSPM algorithms. With 

UOC-based class allocation method, sub-pixels for each class are allocated in turn. 

The visiting order of classes can be specified by Moran’s I, which can be estimated 

from either available high spatial resolution land cover map or coarse fraction 

images. UOC has the unique advantage of taking account of the intraclass spatial 

correlation in the second step of STHSPM algorithms. In the experiments on three 

remote sensing images, the proposed UOC was applied to five STHSPM algorithms, 

BPNN, HNN, SPSAM, Kriging and ICK, and compared with the existing class 

allocation methods, UOS, HAVF and LOT. The conclusions in Section 2.1 are 

summarized as follows. 

1) The visiting order of classes in UOC can be reasonably determined by 

comparing Moran’s I of each class. When spatial structure information of 

classes at fine spatial resolution is available, they can be readily utilized for 

calculating Moran’s I of classes. However, when such prior information is 

unavailable, our proposed method that uses fraction images to calculate 

Moran’s I can also be selected out a reasonable order. 

2) UOC was successfully applied to five STHSPM algorithms. For all five 

STHSPM algorithms, with Moran’s I that was estimated from fraction images, 

UOC is capable of obtaining more accurate SPM results than UOS and HAVF 

and achieving at least comparable SPM accuracy in comparison with LOT. 
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When the intraclass spatial correlation in the study area is stronger, the 

advantage of UOC in terms of SPM accuracy, especially over LOT, is more 

obvious. This is because UOC considers the intraclass spatial dependence in 

the second step of STHSPM algorithms. 

3) Similar to UOS and HAVF, the computing complexity of UOC is much less 

than that of LOT. Therefore, UOC shows its great potential in real-time 

applications. 

4) The inter-comparison of five STHSPM algorithms reveals that ICK is able to 

obtain the highest SPM accuracy among five algorithms, based on the 

proposed UOC with Moran’s I estimated from fraction images. However, this 

advantage of ICK is based on the existence of prior spatial structure 

information of land cover that is representative of the study area. 

In Section 2.2, AUOC is proposed for STHSPM algorithms. Different from the 

UOC method that determines the visiting order of classes based on the global 

proportion image, the AUOC method uses the local proportion image (i.e., local 

window) instead. According to the spatial autocorrelation quantified by the Moran 

index in the local window, AUOC specifies an adaptive visiting order for each 

coarse resolution pixel and ensures sub-pixels for the classes with greater indices 

are determined first. AUOC inherits the advantages of UOC: it accounts for the 

intra-class spatial dependence in class allocation and does not require prior class 

information to calculate the Moran index. In experiments, both UOC and AUOC 

were applied to five STHSPM algorithms (bilinear, bicubic, SPSAM, kriging and 

ICK) and tested on three remote sensing images with multiple zoom factors. Results 

show that for all five STHSPM algorithms, the proposed AUOC method leads to an 

increase in accuracy over the existing UOC method for SPM with small zoom 

factors (e.g., S<6 in this study). When the zoom factor increases, the advantage of 

AUOC over UOC in terms of PCC becomes less obvious. Hence, AUOC is 

recommended as a suitable class allocation method for SPM problems involving a 

relatively small zoom factor. 
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3. STHSPM algorithms with multiple 

shifted images 

3.1. ICK-based SPM with MSI 

(This section is based on Wang et al. (2014d)) 

 

3.1.1. Introduction 

The back-propagation neural network-based SPM first extracts training samples 

from available high spatial resolution images, which are used as training images. 

The performance of back-propagation neural network, however, relies on the 

training sample numbers and highly accurate SPM results are more likely to be 

generated with sufficient training data. Actually, acquiring sufficient training data is 

a challenge in practical application. Furthermore, in the fitting of the model, many 

parameters need to be determined, such as the number of iterations, the number of 

hidden layers and nodes for each hidden layer, the learning rate and the momentum 

rate. Atkinson (2004) introduced a two-point histogram-based method, which 

optimized the randomly initialized sub-pixel maps with maintained class fractions 

by swapping sub-pixel classes within pixels to gradually match the two-point 

histogram extracted from the training image. This algorithm involves a number of 

iterations and much time is consumed in the optimization. Boucher and Kyriakidis 

(2006, 2008), Boucher et al. (2008), and Boucher (2009) proposed an Indicator 

CoKriging (ICK)-based SPM model. In this model, the prior spatial structure of 

each class can be utilized by extracting the indicator semivariogram from fine 

spatial resolution images. This model contains two steps: 1) computing conditional 

probabilities of class occurrence at fine pixels and 2) allocating classes for these 

fine pixels. Different from the learning-based back-propagation neural network that 

requires as much prior spatial structure information as possible to train the network, 

ICK-based SPM also works well when limited prior information is available. This 

is well illustrated by Jin et al. (2012), which extracted indicator semivariogram 

from a representative local area (2% of the entire study area) for ICK-based SPM. 

By using the limited target resolution reference data, ICK-based SPM produced 
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SPM results of comparable accuracy, with those using a globally derived spatial 

structure. 

ICK is a typical STHSPM algorithm and has several characteristics and 

advantages: 

 The additional information of informed fine spatial resolution pixels (i.e., the 

class labels of these pixels are known from prior information) can be coded 

easily into the model by ICK. These fine pixels can be selected randomly and 

are not necessarily to locate together, as long as these class labels and their 

locations are available. 

 It is free of any iteration process as the conditional probabilities are obtained 

by solving a system of equations via ICK and the class allocation is a 

single-pass method. This is quite different from the SPM methods in Tatem 

et al. (2001 a,b,c, 2003), Mertens et al. (2003), Atkinson (2005), Kasetkasem 

et al. (2005), Tolpekin and Stein (2009), and Wang et al. (2012 a,b) and the 

learning-based two-point histogram Atkinson (2004), in which the 

algorithms evolve gradually to convergence to a stable solution. Hence, by 

using ICK-based SPM, time spent on iterations can be saved and the 

uncertainty introduced by random initialization and stochastic processes 

during the iterations can also be avoided. 

 Few parameters are involved in this model. For ICK-based SPM, often a 

neighbourhood window is considered for each coarse pixel for computational 

efficiency reasons (Boucher and Kyriakidis, 2006). Many available SPM 

models have their own parameters, such as the control parameter in the 

Markov random field model (Tolpekin and Stein, 2009), the non-linear 

parameter in the distance dependent weightings in the pixel swapping 

algorithm (Makido, 2006; Makido and Shortridge, 2007) and the 

pseudotemperature (Collins and Jong, 2004) and the weightings in the energy 

function of Hopfield neural network (HNN). Certainly, much extra work 

would be done to estimate the optimum parameters and the change of them 

may lead to the uncertainty in SPM results. But these would not be the cases 

if the ICK-based SPM method is used. 

The SPM problem is under-determined, in which it has multiple plausible 

solutions and many fine spatial resolution land cover maps can lead to an equally 

good reproduction of the input coarse imagery (Boucher and Kyriakidis, 2006). 

Although the ICK-based SPM is able to make use of the spatial structure 
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information from fine spatial resolution images and informed fine pixels, it may 

still not be sufficient to deal with the uncertainty in SPM, especially when the zoom 

scale is large. The accuracy of SPM will certainly be limited by the large uncertainty 

involved. The additional information from other data can be useful in addressing 

the under-determined problem. 

Ling et al. (2010) and Muad and Foody (2010) added soft classification outputs 

of multiple shifted images (MSI) to HNN. As observation satellites have 

multi-observation capability, they can capture images of the same area once every 

several days. For instance, the revisit interval of QuickBird is 1-6 days and MODIS 

covers the earth on a daily basis (Atkinson, 2013). These images are similar to each 

other but they are not completely identical. Because of the slight orbit translations 

and the earth’s rotation, these images are usually shifted at the sub-pixel level (Lu 

and Inamura, 2003; Ling et al., 2010; Muad and Foody, 2012b, Xu et al., 2013). 

Ling et al. (2010) and Muad and Foody (2010). MSI have been widely used for 

super-resolution image reconstruction in the field of digital image processing, 

medical imaging, etc (Park et al., 2003). Super-resolution reconstruction is different 

from SPM studied in this chapter: continua are predicted in the former while 

categories are predicted in the latter. Further details on the differences between the 

two types of super-resolution algorithms can be found in Lu and Inamura (2003) 

and Ling et al. (2010). MSI can be obtained from time series images in remote 

sensing. Evidently, the accuracy of SPM based on a single date image can be 

enhanced by borrowing information from images before and after it in time 

(Atkinson, 2013). 

The shifted observed images in the SPM model, are also coarse spatial resolution 

images that are usually acquired by the same type of senor. Therefore, the MSI are 

easily acquired and the geometric correction and reflectance retrievals between 

different spatial resolution images can be avoided. For this reason and the 

advantages of ICK-based SPM, Section 3.1 presents a new SPM method that uses 

the additional information from MSI to produce more accurate SPM results using 

ICK. For MSI, the corresponding multiple conditional probability maps are 

obtained with ICK and then the ICK-derived probabilities are integrated for each 

sub-pixel. The integrated probabilities are finally used to determine the sub-pixel 

class labels. Similar to ICK-based SPM, the proposed algorithm is performed based 

on the existence of prior spatial structure information of land cover that is 

representative of the study area. It inherits all the advantages of the ICK-based SPM: 
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it is able to incorporate the information from the informed fine pixels, no 

parameters except the neighborhood window size are involved and it is free of 

iteration. 

3.1.2. Methods 

3.1.2.1. ICK-based SPM 

The ICK-based SPM model consists of two steps: computing conditional 

probabilities and allocating classes, which are briefly described below (Boucher and 

Kyriakidis, 2006). 

Let Y be the observed coarse spatial resolution image with N pixels and X be the 

sub-pixel map at the target spatial resolution with M pixels. Here, M/N= 2S  where S 

is the zoom scale factor (i.e., each coarse pixel is divided into 2S  sub-pixels). 

Suppose c(v) denotes the class label of a sub-pixel v and c(v)=k, k=1,2,…,K, where 

K is the total number of classes in the area studied. Define the binary class indicator 

for the k-th class ( )ki v  as: 

1, if ( )
( )

0, otherwise
k

c v k
i v


 


                                         (3.1) 

In the ICK model, the spatial pattern of the k-th class at the fine spatial resolution 

is characterized by the corresponding k-th class indicator semivariogram, ( )k h , 

which is defined as: 

( )
2

1

1
( ) [ ( ) ( )]

2 ( )

N

k k p k p

p

i v i v
N




  
h

h h
h

                           (3.2) 

where N(h) is the number of paired pixels at a specific lag h from the centre pixel 

pv . The indicator semivariogram for each land cover class is usually obtained from 

the prior spatial structure. 

Let ( )ka V  be the k-th class fraction in a coarse pixel V. The fine-to-coarse spatial 

resolution semivariogram between the k-th class indicator ( )k mi v  at the fine pixel 

mv  and the k-th class fraction ( )k na V  at the coarse pixel nV  is calculated as: 

2

,

,
2

1

1
( , ) ( )

S

k m n k mm
m

v V
S

 


  h                                     (3.3) 

where ,mm
h  denotes the separation vector between the centroid of mv  and the 

centroid of any fine pixel ,m
v within nV . Similarly, the coarse-to-coarse spatial 
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resolution semivariogram between any two coarse pixels 
nV  and ,n

V  can be 

calculated as: 

2 2

, ,

,
4

1 1

1
( , ) ( )

S S

k n kn mm
m m

V V
S

 
 

  h                                  (3.4) 

where ,mm
h  denotes the separation vector between the centroid of any fine pixel mv  

within nV  and the centroid of any fine pixel ,m
v  within ,n

V . 

The semivariogram models in (3.2)-(3.4) are used to estimate the conditional 

probabilities of class occurrence at fine pixels, and ICK is utilized for this purpose. 

Let all fractions for the k-th class be arranged in a (N×1) vector 

T=[ ( ), =1,2,..., ]k k na V n Na . Define the k-th global class fraction k  as the mean of 

all elements in vector ka . Suppose there are G informed fine pixels gv  available 

and the G indicators for the k-th class are arranged in a (G×1) vector 

T=[ ( ), =1,2,..., ]k k gi v g Gj . The ICK-derived probability ( )k mp v , which denotes the 

probability of the k-th class occurrence at fine pixel mv  (m=1,2,…,M), can be 

computed as: 

T T T T( ) ( ) ( ) [1 ( ( ) ) ( ( ) )]k m k m k k m k k k m k mp v v v sum v sum v    η a λ j η λ   (3.5) 

where ( )k mvη  and ( )k mvλ  denotes the ICK weights for the k-th class, which are 

(N×1) and (G×1) vectors of weights for the N coarse pixels and G informed fine 

pixels, respectively. The function sum() takes the sums of all the elements in 

vector . The weights ( )k mvη  and ( )k mvλ  are calculated by solving the ICK system 

of equations: 

( ) ( )

( ) ( )

VV Vv vV

k k k m k m

vV vv vv
k mk k k m

v v

v v

    
    

       

Γ Γ η γ

λΓ Γ γ
                                (3.6) 

where VV

kΓ  is a (N×N) matrix of coarse-to-coarse spatial resolution semivariogram 

values between all pairs of coarse pixels [see (3.4)], vV

kΓ  is a (G×N) matrix of 

fine-to-coarse spatial resolution semivariogram values between all pairs of 

informed fine and coarse pixels [see (3.3)], vv

kΓ  is a (G×G) matrix of indicator 

semivariogram values between all pairs of informed fine pixels, and T[ ]Vv vV

k kΓ Γ . 

The term ( )vV

k mvγ denotes a (N×1) vector of fine-to-coarse semivariogram values 

between the uninformed fine pixel mv  and all N coarse pixels, and ( )vv

k mvγ denotes a 

(G×1) vector of semivariogram values between mv  and all G informed fine pixels. 
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After the ICK-derived probabilities are predicted, the sub-pixels for each class can 

be decided in units of class (UOC), as introduced in Chapter 2. 

3.1.2.2. Using MSI as additional information for ICK-based SPM 

The essence of class allocation in the ICK-based SPM is the comparison of 

ICK-derived probabilities in order to find the highest one during each comparison. 

Sub-pixel class labels are then predicted according to rank and number of 

sub-pixels for each class is constrained by the coarse fractions in the process. This 

process would be smooth if the highest probability is consistently unique during the 

comparisons. Sometimes, however, there is more than one highest probability value 

to consider. In this case, it is difficult to determine which to select. 

A simple example is provided in Figure 3.1, see Example I. Suppose the fraction 

of a class, denoted as a gray class, is 50%, and the scale factor S=2. The 

ICK-derived conditional probabilities of the gray class in a coarse pixel are shown 

in Figure 3.1(a). Amongst the four fine pixels, two should be allocated to the gray 

class. As 0.9 is the highest probability among the four sub-pixels, the sub-pixel at (1, 

1) is first assigned to the gray class. The second sub-pixel of gray class should be 

selected among the remaining three sub-pixels by comparing of the three 

corresponding probabilities. However, the two next highest probabilities of 0.7 are 

at (1, 2) and (2, 2), respectively. It is impossible to determine which one should be 

selected as the gray class when there is only one observed coarse image. 

 

0.8 0.7

0.3 0.6

0.1 0.6

0.2 0.5

0.45 0.65

0.25 0.55

+

(a) (b) (c) (d)

0.9 0.7

0.6 0.7

0.8 0.8

0.8 0.6

0.85 0.75

0.7 0.65

+Example I

Example II

 

Figure 3.1. ICK-derived conditional probabilities of the gray class in a coarse pixel with 2×2 fine 

pixels. (a) A conditional probability map. (b) Another conditional probability map obtained from 

additional information. (c) Integration of the two maps in (a) and (b). (d) Using (c) for class 

allocation given the condition that the fraction of gray class is 50%. 
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If there is some supplemental information, however, such as another ICK-derived 

conditional probability map containing this coarse pixel, the second gray class 

sub-pixel may be selected out. For example, Figure 3.1(b) shows the conditional 

probabilities of the gray class for the same four sub-pixels. As can be seen in Figure 

3.1(b), the probability of the sub-pixel at (1, 2) is greater than that at (2, 2), and 

hence the sub-pixel at (1, 2) should be the one assigned to the gray class. A 

convenient and reasonable way to integrate multiple probability maps of each class, 

is to average these probabilities at each sub-pixel and a single probability map of 

each class is generated in this way. Figure 3.1(c) shows the integrated probabilities 

of the gray class for the four fine pixels that can be used for the subsequent class 

allocation shown in Figure 3.1(d). 

Errors are also unavoidable during the process of ICK-based probability 

estimation and the ICK-derived probabilities from single observed coarse image 

may therefore not be absolutely dependable. Integration of the multiple 

probabilities acquired from the additional information could be an effective way to 

alleviate errors and the derived integrated probability map for each class would be 

more accurate. Example II in Figure 3.1 illustrates this problem. Again, the fraction 

of gray class and S are supposed to be 50% and 2. The reference gray class 

distribution is the same as that displayed in (d) in this example. The probability at 

sub-pixel (1, 1) from probability map (a), i.e., 0.8, is generated with some inherent 

error from the ICK model itself. Using only (a), because of the error at sub-pixel (1, 

1), the sub-pixel will be assigned to the gray class. If, however, there exists another 

probability map (b) obtained from additional information where the probability at 

sub-pixel (1, 1) is 0.1, with much less error than (a). Then by integration in (c), the 

error from (a) will be alleviated to a large degree and the expected sub-pixel map 

will be generated, as in (d). 

In this section, MSI are used to obtain multiple probability maps. Suppose there 

are R shifted images, and the sub-pixel shift between the r-th (r=1,2,…,R) and the 

first observed coarse image is ( rx , ry ), which means the rightward and the 

downward shift are rx  and ry  sub-pixels, respectively. If ( ma , mb ) is the coordinate 

of sub-pixel mv  in the first image, then the coordinate of its corresponding sub-pixel 

r

mv  in the r-th image is ( m ra x , m rb y ). 

Figure 3.2 provides an example to illustrate the relationship between the shifted 

images. In Figure 3.2(a), there are two coarse images A (solid line) and B (dashed 
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line) and the sub-pixel shift is (1, 1). Each coarse pixel in the two images is divided 

into 2×2 sub-pixels, as shown in Figure 3.2(b) and (c). The black sub-pixel in A is at 

(3, 3), falling within the coarse pixel at (2, 2) while in B it is at (2, 2), falling within 

the coarse pixel at (1, 1). The probability of the k-th class occurrence at the black 

sub-pixel in A is related to fractions T=[ ( ), =1,2,..., ]A A

k k n Aa V n Na  while in B it is 

related to fractions T=[ ( ), =1,2,..., ]B B

k k n Ba V n Na , where AN  and BN  are the number 

of coarse pixels in A and B, respectively. Therefore, with two images A and B, the 

probability of the k-th class for black sub-pixel relies on A

ka  and B

ka  simultaneously. 

Due to the sub-pixel shift, ( )A

k na V  and ( )B

k na V  for the coarse pixels at the same 

grid n in two images are usually different from each other. The differences actually 

reflect the great significance of MSI. 

 

A

B

A B

 

(a)                                                       (b)                                                (c) 

Figure 3.2. (a) Two coarse images A and B with sub-pixel shift (1, 1). (b) and (c) The black sub-pixel 

is at (3, 3) in A and (2, 2) in B. 

 

When MSI are used, the probability of the k-th class occurrence at mv ’s 

corresponding sub-pixel r

mv  in the r-th (r=1,2,…,R) image, denoted as ( )r

k mp v , can 

be calculated as: 

T T T T( ) ( ) ( ) [1 ( ( ) ) ( ( ) )]r r r r r r

k m k m k k m k k k m k mp v v v sum v sum v    η a λ j η λ   (3.7) 

where T=[ ( ), =1,2,..., ]r r

k k n ra V n Na  is a ( rN ×1) vector and rN  is the number of 

coarse pixels in the r-th image. Similarly, the ICK weights ( )r

k mvη  and ( )r

k mvλ  are 

computed by expression (3.6). The R ICK-derived probabilities of the k-th class are 

then integrated by: 

1

1
( ) ( )

R
o r

k m k m

r

p v p v
R 

                                          (3.8) 

An extra step is to normalize the K integrated probabilities by: 
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1

( )
( )

( )

o

k m
k m K

o

k m

k

p v
p v

p v





                                          (3.9) 

so that 
1

( ) 1
K

k m

k

p v


 . Figure 3.3 displays the flowchart of the proposed ICK-based 

SPM with MSI. 
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Figure 3.3. Flowchart of the proposed algorithm. 

 

Note that when the R ICK-derived probabilities are integrated by expression (3.8), 

the sub-pixel shifts ( rx , ry ) (r=1,2,…,R) should be estimated in advance to locate 

mv ’s corresponding sub-pixel r

mv  in the r-th image. Usually, the MSI are obtained 

by a sensor taking images over the same area at different times. Though these 

images are from the same site, they are not completely identical, due to the slight 

relative translations between the satellite and earth. In section 3.1, these images 

were assumed to be translated horizontally and vertically at sub-pixel level, 

ignoring rotation and deformation. Phase correlation is a widely used technique for 

image registration and is capable of measuring the relative shift between two 

images at sub-pixel level (Manuel et al., 2008). This technique was applied for MSI 

sub-pixel shift estimation. 

3.1.3. Experiments 

In this section, three experiments on different types of remote sensing images 

were carried out to demonstrate the effectiveness and advantages of the proposed 



 

66 

 

SPM method. Four SPM methods were compared: HNN-based SPM (HNNB), 

HNN-based SPM with MSI (HNNB_MSI), ICK-based SPM (ICKB) and 

ICK-based SPM with MSI (ICKB_MSI). All experiments were tested on an Intel 

Core i7 Processor at 3.40-GHz with MATLAB 7.1 version. For ICKB and 

ICKB_MSI, a set of 5×5 coarse pixel neighbors were chosen for each coarse pixel, 

as did in Boucher and Kyriakidis (2006). The parameters in HNNB and 

HNNB_MSI were the same as those in Wang and Wang (2013): all the weighting 

constants in the network energy function were set to 1, the steepness of the tanh 

function was set to 10, the time step was set to 0.001 and the number of iterations 

was set to 1000. 

3.1.3.1. Experimental setup 

In the first two experiments synthetic coarse images were studied, in order to 

avoid the errors due to soft classification and coregistration, and solely concentrate 

on the performance of the proposed SPM method. The coarse images were created 

by degrading the reference land cover maps via an S×S mean filter and considered 

as outputs of soft classification (i.e., fractions). The task of SPM methods is to 

generate land cover maps having the same spatial resolution as the reference maps, 

by zooming in the degraded images with scale factor S. This has also been a popular 

approach in many existing SPM literature. In addition, the MSI were generated by 

shifting the fine spatial resolution land cover maps and the sub-pixels shifts were 

therefore known, which can avoid the errors caused by sub-pixel shift estimation. In 

each experiment, four shifted images were used and the sub-pixel shifts at the scale 

factor S were assumed to be (0, 0), (floor(S/2), 0), (0, floor(S/2)) and (floor(S/2), 

floor(S/2)), where floor() is a function that takes the integer nearest to  but not 

larger than it. Note that in the two experiments on synthetic coarse images, the 

number of sub-pixels for each class is strictly maintained (for all four SPM methods) 

according to the coarse fraction data. This is because there is no error in the 

synthetic coarse fraction data. The used class allocation method is UOC. 

In the last experiment, real image data were used for tests: a Landsat ETM+ 

image and a time series of MODIS images of the same site. Four MODIS images 

obtained on different dates were used as MSI. Soft classification was implemented 

on the MODIS images and SPM was conducted subsequent to that. The task of 

SPM in this experiment was to predict the distribution of land cover classes at the 

spatial resolution of the Landsat ETM+ image for the coarse spatial resolution 
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MODIS images. The hard classified map of the Landsat ETM+ image was used as a 

reference map for accuracy assessment. 

SPM is essentially a hard classification technique, which is carried out at 

sub-pixel level. The accuracy of hard classification algorithms is usually evaluated 

quantitatively by the overall accuracy in terms of the percentage of correctly 

classified pixels (PCC). Therefore, this index was used for accuracy assessment on 

SPM in the experiments. To evaluate the statistical significance in accuracy for 

different SPM algorithms, McNemar’s test (Foody, 2004) was also used. Using the 

95% degree of confidence level, the difference between two classification results is 

considered to be statistically significant if z >1.96. 

3.1.3.2. Experiment 1: synthetic coarse image of a land cover map 

in Bath, UK 

In the first experiment, a land cover map of an area in Bath, UK was studied. It is 

shown in Figure 3.4 (provided by Dr. A. J. Tatem). Contained are 360360 pixels 

with a pixel size of 0.6m0.6m, covering the following four classes: roads (with 

global fraction 8.77%), trees (with global fraction 17.07%), buildings (with global 

fraction 13.43%) and grass (with global fraction 60.73%). The roads and buildings 

have regular spatial distribution with linear features, which mainly appear as 

straight lines and right-angles, respectively. As for the trees, the spatial pattern is 

more complex and irregular. The fine spatial resolution map was degraded by a 

mean filter with scale 10, to produce the fraction maps of four classes shown in 

Figure 3.5(a), where white indicates a fraction of 100% and black indicates 0%. 

That is, each coarse pixel has a size of 6m6m and each fraction map contains 

3636 pixels. These fraction maps were then used as input of SPM. 

Using the fractions in the first column in Figure 3.5 and the indicator 

semivariogram extracted from the fine spatial resolution land cover map in Figure 

3.4, the ICK-derived conditional probability map with 360360 pixels of each class 

was generated, as shown in the second column in Figure 3.5. The third column in 

Figure 3.5 presents the ICK-derived probability maps produced by the proposed 

ICKB_MSI model. From visual comparison, we can conclude that the probability 

maps generated by ICKB_MSI provide more detailed information and the 

boundaries of land cover objects are clearer. This phenomenon indicates that 

ICKB_MSI can produce more accurate probabilities than ICKB. After computing 
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the probabilities, class allocation was then implemented to generate hard classified 

sub-pixel maps by comparing these probabilities. 

 

 

 Roads  Trees   Buildings  Grass 

Figure 3.4. Reference land cover map in experiment 1. 

 

(a) 

   
(b) 

   
(c) 

   
(d) 

   
Figure 3.5. From left to right: Fraction maps, ICK-derived probability maps from ICKB and 

ICK-derived probability maps from ICKB_MSI. (a) Roads. (b) Trees. (c) Buildings. (d) Grass. 
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(a)                                                                   (b) 

  

(c)                                                                   (d) 

Figure 3.6. SPM results in experiment 1 produced by (a) HNNB, (b) ICKB, (c) HNNB_MSI and (d) 

ICKB_MSI. 

 

Figure 3.6(b) and (d) show the SPM results of the ICKB and ICKB_MSI. To fully 

demonstrate the advantages of the proposed method, SPM results of the HNNB and 

HNNB_MSI are also exhibited in Figure 3.6(a) and (c). From the visual comparison 

of the four sub-pixel maps, we can see clearly that with MSI, both HNN and ICK 

models are capable of producing more satisfying SPM results than does the single 

observed coarse image. Specifically, many linear artifacts are yielded by 

conventional HNNB and ICKB. The result yielded by ICKB, also, looks smoother 

and more continuous than that by HNNB and there are fewer linear artifacts in the 

ICKB result. This is because prior spatial structure information is incorporated into 

ICKB to alleviate the uncertainty in SPM and thus the result will be much closer to 

the reference land cover map, as mentioned above in the introduction. In the 

HNNB_MSI result, some speckle artifacts appear and the boundary between each 
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class is relatively rough. Inheriting the advantage of using prior spatial structure 

information in ICKB, in the ICKB_MSI result, most of the land objects are 

recovered effectively and the improvement is considerably pronounced when MSI 

are used. Among the four SPM methods, ICKB_MSI produces the most satisfying 

sub-pixel map. 

 

Table 3.1 PCC (%) of the four SPM methods in experiment 1 

 HNNB ICKB HNNB_MSI ICKB_MSI 

Including pure pixels 89.69 92.45 92.11 95.54 

Excluding pure pixels 85.43 89.33 88.84 93.70 

 

Table 3.2 McNemar’s test for SPM methods in experiment 1 

 ICKB 

vs 

HNNB_MSI 

vs 

ICKB_MSI 

vs 

HNNB 42.1081 25.3082 71.0868 

ICKB  -3.9533 48.7943 

HNNB_MSI   46.3061 

ICKB_MSI    

 

Table 3.1 displays the PCC of each SPM method. In a coarse image, there are 

always some pure pixels containing only one land cover class. SPM assigns all 

sub-pixels within the pure pixel to the same class to which the pure pixel belongs. 

This simple copy process raises accuracy without providing any useful information 

about the SPM algorithms’ performances (Mertens et al., 2003; Wang et al., 

2012a,b; Zhong and Zhang, 2012, 2013). To eliminate the influence brought by the 

pure pixels, we also evaluated the accuracy when pure pixels are excluded in the 

statistics. Values in bold indicate the highest accuracy. Similar to the visual 

comparison, more accurate SPM results can be obtained with MSI. The ICK model 

outperforms HNN model, no matter whether MSI are applied in HNN in this 

experiment. Using MSI, the ICK model is able to generate the most accurate SPM 

result among the four methods. More precisely, the accuracy for each class of 

ICKB_MSI is the highest and the PCC of it is 5.85%, 3.09% and 3.43% greater than 

those of HNNB, ICKB and HNNB_MSI when considering all pixels for accuracy 

statistics. Excluding pure pixels, the differences in accuracy between the four 
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methods are more distinct: the PCC of ICKB_MSI is 8.27%, 4.37% and 4.86% 

greater than that of HNNB, ICKB and HNNB_MSI, respectively. The advantages of 

the proposed ICKB_MSI can also be confirmed by the McNemar’s test results in 

Table 3.2. One can see from Table 3.2 that using MSI, both HNNB_MSI and 

ICKB_MSI have significantly higher PCC than does the single observed coarse 

image. Moreover, ICKB_MSI achieves significantly higher accuracy than other 

three SPM methods. 

In addition, Figure 3.7 presents the PCC of the four SPM methods with S=5, 10, 

15 and 20 when excluding pure pixels for accuracy statistics. It can be concluded 

from the bar chart that as the scale increases, the accuracy of all four methods 

decreases. The reason for this phenomenon is that the SPM process becomes more 

complicated with higher scale factors, as for every coarse pixel the locations of 

more sub-pixels need to be estimated and uncertainty increases. Because of the use 

of MSI, the accuracy of both HNNB and ICKB increases greatly, except for scale 5 

as at this scale, SPM is relatively simple and HNNB is able to produce highly 

accurate result. In fact, as the scale increases, the advantage of the proposed 

ICKB_MSI method becomes more obvious, generating the most accurate SPM 

results at all four scales. At scale 20, especially, the PCC of ICKB_MSI still reaches 

about 85% while the PCC of other three methods is much less than 80%. This 

reveals that ICKB_MSI could be a promising approach for the large scale situation. 

 

40%

50%

60%

70%

80%

90%

100%

S=5 S=10 S=15 S=20

HNNB ICKB HNNB_MSI ICKB_MSI

 

Figure 3.7. PCC (excluding pure pixels) of the four SPM methods at four scales: 5, 10, 15 and 20. 

3.1.3.3. Experiment 2: synthetic coarse image of a land cover map 

in Washington, DC 

The second experiment is to test the proposed method for area with large number 

of classes and complex land cover patterns. A part of Hyperspectral Digital Imagery 

Collection Experiment airborne hyperspectral data from the Washington, DC Mall 



 

72 

 

(191 bands with 3m spatial resolution) was used for test (Landgrebe, 2003). The 

study area has a size of 240296 pixels with seven classes: shadow, water, road, tree, 

grass, roof and trail. The reference land cover map of the studied site is shown in 

Figure 3.8, which was obtained with the tensor discriminative locality 

alignment-based classification of the hyperspectral data in Zhang et al. (2013). The 

synthetic coarse image was generated by degrading the reference land cover map 

with S=8, as shown in the first column in Figure 3.9. The second and third columns 

of Figure 3.9 show the ICK-derived conditional probability maps of seven classes 

with ICKB and ICKB_MSI, respectively. The indicator semivariogram used in ICK 

model was extracted from Figure 3.8. It can be observed that the seven probability 

maps derived by ICKB_MSI provide visually clearer information of land cover. 

 

 

 Shadow  Water  Road  Tree  Grass  Roof  Trail 

Figure 3.8. Reference land cover map in experiment 2. 

 

Figure 3.10(a)-(d) show the SPM results of HNNB, ICKB, HNNB_MSI and 

ICKB_MSI. As can be concluded from visual comparison of the four maps, the 

proposed ICKB_MSI generated the best result. For example, the continuity of the 

trail class in the centre of Figure 3.10(d) is the strongest and is the closest to that in 

the reference map in Figure 3.8; The reconstruction of the boundaries of water and 

road class in Figure 3.10(d) is more satisfying in comparison with Figure 3.10(a)-(c). 

Table 3.3 gives the PCC of the four SPM methods. Similar to the conclusion of 

visual comparison, ICKB_MSI achieves the highest accuracy among the four 

methods. The McNemar’s test results in Table 3.4 indicate that the PCC of 

ICKB_MSI is significantly higher than that of HNNB, ICKB, HNNB_MSI. 
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(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 

   

(f) 

   

(g) 

   

Figure 3.9. From left to right: Fraction maps, ICK-derived probability maps from ICKB and 

ICK-derived probability maps from ICKB_MSI. (a) Shadow. (b) Water. (c) Road. (d) Tree. (e) Grass. 

(f) Roof. (g) Trail. 
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(a)                                                                (b) 

  

(c)                                                                (d) 

Figure 3.10. SPM results in experiment 2 produced by (a) HNNB, (b) ICKB, (c) HNNB_MSI and (d) 

ICKB_MSI. 

 

Table 3.3 PCC (%) of the four SPM methods in experiment 2 

 HNNB ICKB HNNB_MSI ICKB_MSI 

Including pure pixels 64.98 66.64 70.92 72.54 

Excluding pure pixels 61.85 63.66 68.32 70.08 

 

Table 3.4 McNemar’s test for different SPM methods in experiment 2 

 ICKB 

vs 

HNNB_MSI 

vs 

ICKB_MSI 

vs 

HNNB 10.7968 33.3190 44.0003 

ICKB  24.2095 40.1149 

HNNB_MSI   10.7551 

ICKB_MSI    

 

3.1.3.4. Experiment 3: real data 

To further validate the advantages of the proposed SPM method, tests on real 

data were implemented in the third experiment. Two sets of image data were used, 
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including a time series of MODIS images and a Landsat ETM+ image. They cover 

an area located in Quebec province, Canada, mainly made up of lakes and land. 

Four MODIS 250m spatial resolution images on four close days in 2002 were 

acquired: 21 June, 30 June, 5 July and 6 August. The Landsat ETM+ image with a 

spatial resolution of 30m obtained on 10 July 2002 was used to provide ground truth 

data. Only the images acquired in the near infrared band of the two sets of data were 

used because the land cover classes were highly separable in this band. The MODIS 

image obtained on 5 July was used as a reference image for sub-pixel shift 

estimation of MSI. Further details on the description of site and data can be found in 

Muad (2011). The sub-pixel shifts of the images measured by a phased correlation 

technique are (5, 6), (4, 7) and (1, 5) sub-pixels (i.e., (156m, 188m), (125m, 219m) 

and (31m, 156m)) for images acquired on 21 June, 30 June and 6 August. 

 

 

B

A

 

(a)                                                                (b) 

Figure 3.11. The Landsat ETM+ image. (a) Near infrared band image. (b) Hard classified map, where 

white and black pixels denote land and water, respectively. 

 

The original Landsat ETM+ image has a size of 865927 pixels. Using nearest 

neighbour interpolation, it was interpolated to 872936 pixels, 88 times of the size 

of MODIS images (109117 pixels). The pixels in the Landsat ETM+ image were 

supposed to be pure materials, and an unsupervised k-means classifier (Duda et al., 

2001) was employed to generate the hard classified ground truth map from this 

image. Without ground survey, it is difficult to conduct a rigorous evaluation of the 

accuracy of reference data. Through visual interpretation, however, the generated 

reference map looks highly similar to the Landsat ETM+ image (see Figure 3.11(a) 

and (b)). A sub-site was selected for test, labelled as sub-site A in Figure 3.11(b). It 

has a size of 320320 pixels. The classified map at sub-site B was used as prior 

spatial structure information and the indicator semivariogram was extracted from it 
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for ICKB and ICKB_MSI. This process was based on the assumption that the 

distribution of classes at sub-site B was available and the spatial pattern of this area 

was similar to sub-site A. 

The MODIS images were soft classified by an unsupervised fuzzy c-means 

algorithm (c=2). The weighting parameter that determines the degree of fuzziness 

was set to 2. After that, four SPM methods were carried out on the fraction images, 

with a zoom factor S=8. When the estimated fractions were used to strictly maintain 

the sub-pixels of each class during the class allocation process, a large number of 

isolated pixels were produced in the SPM results. In this way, the generated 

sub-pixel maps appeared to be dominated by a speckled pattern, which greatly 

suppressed the performances of the SPM methods. This phenomenon was caused 

by the errors in the soft classification. For example, suppose in the coarse image 

there is a pure pixel covering the class, water. By SPM, all 8×8 sub-pixels within 

this pixel should be allocated to water. However, if the estimated fraction of water 

for this pixel is 12.5%, by class allocation, 8 sub-pixels should be allocated to water. 

In this case, these 8 sub-pixels are produced by errors from soft classification and 

are quite likely to appear as noise in the SPM result. For sub-site A, the PCC values 

(considering all pixels) of four SPM methods are between 80% and 81% when 

coarse fractions were strictly maintained. To alleviate the influence of such errors 

from soft classification, in this experiment the fractions were used in probability 

estimation but not in the pivotal class allocation process. Instead, a simple class 

allocation method was applied whereby each sub-pixel was allocated to the class 

with the highest probability. The SPM results for the two sub-sites are shown in 

Figure 3.12. 

As can be seen from the results in Figure 3.12, there are some jagged boundaries 

in the HNNB and ICKB results, appearing as right-angle shape, as shown in Figure 

3.12(a) and (b). This phenomenon conflicts with the class distribution in the ground 

reference maps (Figure 3.11(b)). With MSI, the performances of both HNNB and 

ICKB were enhanced. The boundaries in Figure 3.12(c) and (d) looks smoother and 

more places were correctly classified, such as those places with small lakes. While 

focusing on Figure 3.12(c), it is found that in HNNB_MSI result, some block 

objects classified as land lie within some large lakes. In the ground truth maps, 

however, these large lakes are of hole-shape, as shown in Figure 3.11(b). Therefore, 

places covered by these block objects in Figure 3.12(c) were misclassified. This is 
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not the case, however, in ICKB_MSI result. Among the four methods, the proposed 

method generated the SPM result that is the closest to the reference maps. 

 

  

(a)                                                                   (b) 

  

(c)                                                                   (d) 

Figure 3.12. SPM results of the real MODIS data produced by (a) HNNB, (b) ICKB, (c) HNNB_MSI 

and (d) ICKB_MSI. White and black pixels denote land and water, respectively. 

 

Table 3.5 lists the PCC of the four SPM approaches. Note that PCC in this 

experiment was calculated taking account of all pixels in SPM results. The pure 

pixels in coarse images were not excluded as whether a pixel is pure or not is 

determined by the soft classifier (fuzzy c-means algorithm in this experiment). We 

are also concerned about the performance of soft classifier when real coarse images 

are studied for SPM. This is different from the previous two experiments, where 

synthetic coarse images were studied and no soft classifier was applied and hence 

no error exists in soft classification in fact. The PCC of the proposed method is 

84.15%, about 2%, 1.2% and 1% greater than that of HNNB, ICKB and 
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HNNB_MSI. In all, the proposed method produced the highest SPM accuracy. The 

McNemar’s test results are shown in Table 3.6. It can be observed that ICKB 

obtains significantly higher accuracy than HNNB because ICKB makes use of prior 

spatial structure information. Similar to the conclusions drawn from the previous 

two experiments on synthetic coarse images, HNNB_MSI obtains significantly 

higher accuracy than HNNB while ICKB_MSI obtains significantly higher 

accuracy than ICKB; The accuracy of proposed ICKB_MSI is significantly higher 

than other three SPM methods. 

 

Table 3.5 PCC (%) of the four SPM methods in experiment 3 

HNNB ICKB HNNB_MSI ICKB_MSI 

82.18 82.98 83.20 84.15 

 

Table 3.6 McNemar’s test for different SPM methods in experiment 3 

 ICKB 

vs 

HNNB_MSI 

vs 

ICKB_MSI 

vs 

HNNB 14.0072 10.3767 17.0608 

ICKB  2.2357 10.6082 

HNNB_MSI   9.5271 

ICKB_MSI    

 

3.1.4. Discussion 

From the results in three experiments, we can obtain a general rank of the four 

SPM methods in terms of SPM accuracy: HNNB, ICKB, HNNB_MSI and 

ICKB_MSI. From HNNB to ICKB_MSI, the overall performances become better in 

this study. The reason for the advantages of ICK-based SPM methods (i.e., ICKB 

and ICKB_MSI) over HNN-based methods (i.e., HNNB and HNNB_MSI) is that 

the former utilize prior spatial structure information while the latter are based on 

spatial dependence and thus fail to deal with complex spatial patterns, as mentioned 

in the introduction. With the aid of MSI, however, HNN is able to produce better 

SPM results than does ICKB. This reveals the great potentiality of MSI in SPM. 

The computational efficiency is also an important factor to evaluate the four SPM 

methods. In each experiment, HNNB and HNNB_MSI took several hours for 1000 

iterations. However, both ICKB and ICKB_MSI took less than 2 minutes. The 
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considerably low computational burden in ICKB and ICKB_MSI is mainly due to 

the fact no iterations are involved in them. Therefore, the proposed method will be 

promising for a real-time system. 

The proposed algorithm is different from the HNN-based SPM with MSI, except 

that the proposed algorithm is learning-based while the HNN model is based on 

spatial dependence assumption. For HNN-based SPM with MSI, each fine pixel 

also falls within multiple coarse pixels in MSI, and the fractions of classes within 

the corresponding multiple coarse pixels are added into the constraint term of the 

HNN’s energy function, to provide multiple fraction constraints. Essentially, the 

HNN used for SPM is an optimization tool. In this model, the attribute value of each 

class for each sub-pixel (between zero and one) is changed after each iteration and 

the energy function is minimized iteratively to approach a solution. With multiple 

fraction constraints from MSI, therefore, a large number of iterations (usually over 

1000) for the conventional HNN model are still required to generate attribute values. 

However, this is not the case in the proposed algorithm based on the ICK model. In 

the ICK-based SPM, for each sub-pixel mv , fractions (those from all coarse pixels 

in the observe image, not only the one, mv  falls within) are used in linear 

combination, see (3.5), and their weights are calculated by solving the equations in 

(3.6). No iterations are involved in the whole process. With MSI, for each sub-pixel 

mv , all fractions in the shifted images are used and a set of ICK-derived 

probabilities are also calculated in the same way and without iterations. Besides, 

from expression (3.6) we can also see that no parameters are involved and the 

information from informed fine pixels can also be readily coded into the new model. 

Consequently, the proposed algorithm inherits all the advantages of the ICK-based 

SPM. 

As can be found from Table 3.1 and Table 3.3, the PCC of the proposed 

algorithm decreases from around 94% in Table 3.1 to 70% in Table 3.3. This is 

because the number of classes increases from four in experiment 1 to seven in 

experiment 2. Furthermore, the complexity of land cover pattern is also different in 

the two experiments. In Figure 3.4, the roads and buildings have regular spatial 

distribution with linear features, which can be well recreated by the proposed SPM 

method. In Figure 3.8, however, there are many linear and elongated features, which 

are more difficult to be restored in comparison with the features in Figure 3.4. We 

can conclude that the performance of the proposed SPM algorithm is influenced by 
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the number of classes and spatial complexity of land cover pattern in the study area. 

Focusing on Figure 3.7, it is concluded that the performance of the proposed 

SPM algorithm deteriorates when the zoom scale factor increases. Compared with 

the other three SPM methods, the proposed method is relatively less sensitive to the 

scale factor, suggesting the new SPM method is potential for the large scale cases. 

As a pre-processing step, the soft classification has a direct influence on the SPM 

and errors from the former can be propagated to the latter (Villa et al., 2011). In real 

word cases, the uncertainty in soft classification needs further study. The selection 

of MSI is also a critical issue. In different periods, the land cover from the same area 

may be different due to the human activities (e.g., buildings construction) and 

natural changes (e.g., changes of rainfall and vegetation in different seasons) and so 

on. Additionally, illumination and angular effects sometimes plays an important 

role in MSI. It makes a huge difference to an image whether it is acquired in the 

morning or afternoon or if the viewing angle is from the right, left, or nadir. The 

uncertainty in MSI data certainly has an impact on the proposed method that uses 

MSI as additional information. It necessitates the consideration of acquired time, 

illumination and angular while selecting MSI for the proposed SPM method. 

 

3.2. Image Interpolation -based SPM with multiple 

shifted images 

(This section is based on Wang and Shi (2014)) 

 

3.2.1. Introduction 

As can be seen from Section 3.1, the advantageous STHSPM algorithm (i.e., 

ICK-based SPM) requires prior spatial structure information, which limits the 

applications in real world. Actually, the critical step one of STHSPM can also be 

realized by some image super-resolution algorithms and in Section 3.2 the classical 

bilinear and bicubic interpolation algorithms are used for this purpose. The 

advantages of bilinear and bicubic interpolation are that both of them are 

non-parametric, non-iterative and fast algorithms. Moreover, they do not need prior 

spatial structure information on classes. In this section, MSI are used in SPM with 

image interpolation-based STHSPM algorithms. Unlike the methods in Ling et al. 

(2010), Wang and Wang (2013), Xu et al. (2013), Zhong et al. (2014) and Section 
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3.1, which are iteration-based or need prior information, the methods studied in 

Section 3.2 inherit the advantages of bilinear and bicubic interpolation. 

3.2.2. Methods 

Suppose the soft classification results of a coarse spatial resolution image are K 

(K is the number of land cover classes) fraction images , ,...,
1 2 K

F F F , and each 

coarse pixel is divided into S×S sub-pixels. Let jP  (j=1,2,…,M, M is the number of 

pixels in the coarse image) be a coarse pixel, ip  ( 2=1,2,...,i MS ) be a sub-pixel,  and 

( )k jF P  is the fraction of the k-th class for pixel jP . 

3.2.2.1. Bilinear and bicubic interpolation-based STHSPM 

Let ( )k iZ p  be the soft attribute value for the k-th class at sub-pixel ip . Taking 

the fraction images , ,...,
1 2 K

F F F  as inputs, both bilinear and bicubic interpolation 

can produce super-resolution images 1 2, ,..., KZ Z Z  quickly, each of which are 

composed of 2MS  soft attribute values. 

In the SPM problem, the fractions and zoom factor S are used to determine the 

number of sub-pixels belonging to each class. More specifically, within each coarse 

pixel jP , the number of sub-pixels for the k-th class, ( )k jNC P , is 

2( ) round( ( ) )k j k jNC P F P S                                   (3.10) 

where round() is a function that takes the integer nearest to . 
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Figure 3.13. Flowchart of the bilinear and bicubic interpolation-based STHSPM. 
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Along with the constraints in (3.10), 1 2, ,..., KZ Z Z  are used to allocate hard class 

labels to sub-pixels. The UOC-based class allocation method is employed, with 

which sub-pixels for each class are allocated in turn. For each class, sub-pixels with 

larger soft attribute values are allocated before those with smaller ones. Using this 

method, the autocorrelation for each class can be maximized. The visiting order of 

all classes can be decided by comparing Moran’s I (Makido et al., 2007) of K 

classes and the classes with higher indices are visited first. Figure 3.13 is the 

flowchart describing the bilinear and bicubic interpolation-based SPM methods. 

3.2.2.2. Using MSI in bilinear and bicubic interpolation-based 

STHSPM 

MSI can be acquired by a satellite taking images over the same area at different 

times. The images usually have the same spatial resolution. Due to the slight 

relative translations between the satellite and Earth, these images will not be 

completely identical and will usually be shifted from each other. In this section, the 

MSI are assumed to be translated horizontally and vertically at the sub-pixel level. 

Suppose the number of MSI is R, and the sub-pixel shift between the r-th 

(r=1,2,…,R) and the first coarse image is ( rx , ry ), which indicates that the 

rightward and the downward shifts are rx  and ry  sub-pixels. If the coordinate of a 

sub-pixel, say ip , in the first image is ( ma , mb ), the coordinate of its corresponding 

sub-pixel r

ip  in the r-th coarse image should be ( m ra x , m rb y ). An example is 

given in Figure 3.14 to illustrate the sub-pixel shifts. There are two 3×3 coarse 

images A (black) and B (red). Suppose each coarse pixel in the two images is 

divided into 2×2 sub-pixels (S=2). The sub-pixel shift from A to B is (1, 1). If a 

sub-pixel, labelled in blue in the figure, is at (3, 3) in A, then it should be at (2, 2) in 

B. 

In the proposed bilinear and bicubic interpolation-based SPM with MSI, the soft 

attribute value for the k-th class at sub-pixel ip  is determined by integration of R 

attribute values: 

1

1
( ) ( )

R
r

k i k i

r

Z p Z p
R 

                                        (3.11) 

where ( )r

k iZ p  indicates the soft attribute value for the k-th class at ip ’s 

corresponding sub-pixel r

ip  in the r-th coarse image. ( )r

k iZ p  is estimated by 
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bilinear or bicubic interpolation, taking the k-th class fraction image for the r-th 

coarse image as input. 

A

B
 

Figure 3.14. Two coarse images A and B with sub-pixel shift (1, 1) 

 

3.2.2.3. Implementation of the proposed methods 

The implementation of the bilinear and bicubic interpolation-based SPM with 

MSI includes five steps. 

Step 1: Estimation of sub-pixel shifts ( rx , ry ) (r=1,2,…,R). Many existing 

algorithms can be applied to estimate the sub-pixel shift, such as phase correlation 

and cross-correlation matching. 

Step 2: Soft classification of MSI. All R coarse images are soft classified. The 

results for each coarse image are K class fraction images. Correspondingly, there are 

R fraction images for each class. 

Step 3: Image interpolation of fraction images. With bilinear or bicubic 

interpolation, all RK coarse images are super-resolved to the desired fine spatial 

resolution. The outputs are RK super-resolution images. 

Step 4: Integration of interpolated images. For each class, its R interpolated 

super-resolution images are integrated, see (3.11). In this way, K fine spatial 

resolution images will be generated. 

Step 5: Class allocation for each sub-pixel. Under the constraints in (3.10), K fine 

spatial resolution images generated in Step (4) are used for allocation of hard class 

labels, and sub-pixels for each class are allocated in turn. Details of the class 

allocation method can be found in Chapter 2. 

In Section 3.2, the method for utilizing MSI for enhancement of SPM is different 

from that in Ling et al. (2010), Wang and Wang (2013), Xu et al. (2013), and Zhong 

et al. (2014), where additional information from MSI is used at coarse spatial 

resolution. Specifically, R (the number of MSI) constraints at original coarse pixel 

scale, such as those in terms of class fraction (Ling et al., 2010; Xu et al., 2013; 

Zhong et al., 2014) or spectral reflectance of the coarse pixel (Wang and Wang, 
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2013), are incorporated into the relevant SPM models. In the SPM process, each 

sub-pixel corresponds to R coarse pixels in MSI and has to satisfy R constraints 

when its class attribute is predicted. As the class attribute of each sub-pixel varies 

after each prediction, iterations are required to approach optimal SPM results. The 

whole process is always time consuming. In the proposed methods, however, 

information from MSI is exploited at sub-pixel scale, by up-sampling all fraction 

images of MSI to the desired fine spatial resolution in advance (see Step 3). The 

interpolated images for MSI are then straightforwardly integrated, which is a 

non-iterative and very fast scheme. 

Super-resolution for each image of MSI is accomplished by bilinear or bicubic 

interpolation. The two interpolation algorithms are well-known for their simplicity 

and high computational efficiency. They are non-parametric, non-iterative and can 

process coarse spatial resolution images without prior spatial structure information. 

Based on bilinear and bicubic interpolation, therefore, the new SPM methods 

inherit all their advantages and MSI data are utilized efficiently. 

3.2.3. Experiments 

Experiments on two remote sensing images were carried out to validate the 

proposed SPM methods. Five SPM methods were tested and compared: PSA, 

bilinear, bicubic, bilinear with MSI and bicubic with MSI. All experiments were 

tested on an Intel Core 2 Processor (1.80-GHz Duo central processing unit, 2.00-GB 

random access memory) with MATLAB 7.1 version. 

For supervised assessment of SPM methods, fine spatial resolution images were 

degraded via a mean filter to simulate coarse images. The task of SPM was to 

restore the fine spatial resolution map. Since many algorithms can be used for image 

registration of MSI, the estimation of sub-pixel shifts is beyond the scope of Section 

3.2. To solely concentrate on the performance of the proposed SPM methods, in 

each experiment, the fine spatial resolution image was first shifted and then 

degraded to generate the MSI. In experiment 1 and experiment 2, four shifted 

images were considered and the sub-pixel shifts were assumed to be (0, 0), (0.5, 0), 

(0, 0.5) and (0.5, 0.5) coarse pixel. The number of MSI is further discussed in 

Section 3.2.3.2. 

The accuracy of SPM was evaluated quantitatively by the overall accuracy in 

terms of the percentage of correctly classified pixels (PCC). McNemar’s test was 

also applied to determine whether the difference between the SPM results is 
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statistically significant. Using the 95% degree of confidence level, the difference is 

considered to be statistically significant if the calculated z-value is greater than 1.96. 

3.2.3.1. Experiment 1 

In the first experiment, an aerial image covering an area in Bath, UK was used for 

test. Figure 3.15(a) shows the image while Figure 3.15(b) shows the reference land 

cover map, which was provided by Dr. A. J. Tatem. The image has 360 by 360 

pixels with a pixel size of 0.6m by 0.6m, and covers four classes: road, tree, 

building and grass. The reference map in Figure 3.15(b) was degraded with a 10 by 

10 mean filter to generate fraction images for classes, each of which have 36 by 36 

coarse pixels. 

The SPM results of bilinear, bicubic, bilinear with MSI and bicubic with MSI are 

shown in Figure 3.15(c)-Figure 3.15(f). As can be seen in Figure 3.15(c) and Figure 

3.15(d), with respect to the restoration of the road class, there are obvious 

disconnected shapes; as for trees and buildings, many burrs occur on their 

boundaries, which seem rough. With the aid of MSI, the performance of both 

bilinear and bicubic interpolation-based SPM methods are noticeably improved. In 

Figure 3.15(e) and Figure 3.15(f), the spatial continuity of each class is greater, the 

boundaries of the classes are smoother and the results are closer to the reference 

map in Figure 3.15(b). 

Table 3.7 gives the accuracy of each class and the overall accuracy in terms of 

PCC for five SPM methods. In this experiment, the non-mixed pixels were not 

considered in the accuracy statistics. As shown in Table 3.7, PSA produces a greater 

PCC than both bilinear and bicubic methods in experiment 1. Comparing the 

accuracy of the four interpolation-based methods, using MSI, the SPM accuracy of 

bilinear and bicubic methods is evidently enhanced and also higher than for PSA. 

For the proposed two methods with MSI, the SPM accuracy of road, tree, building 

and grass increases by around 2.5%, 1.5%, 3% and 2%, respectively when 

compared to the bilinear and bicubic methods. For the two classes, road and 

building, they are regularly distributed and mainly appear within objects which have 

straight lines and right-angles in the study area. Hence increases in the accuracy 

with which they are predicted are more obvious than for the other two classes. The 

PCC of the bilinear method increases from 90.44% to 92.96% when MSI are used, 

and for the bicubic method, the PCC increases from 90.87% to 93.27% when MSI 

are used. The McNemar’s test indicates that the PCC of both bilinear with MSI and 
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bicubic with MSI are significantly higher than for the PSA, bilinear and bicubic 

methods. In addition, bicubic with MSI achieves significantly higher accuracy than 

the other four SPM methods. 

 

  

(a)                                                                (b) 

  

(c)                                                                (d) 

  

(e)                                                                (f) 

 Roads   Trees   Buildings   Grass 

Figure 3.15. SPM results for the aerial image. (a) The aerial image. (b) The reference land cover map. 

(c) Bilinear result. (d) Bicubic result. (e) Bilinear with MSI result.  (f) Bicubic with MSI result. 

 



 

87 

 

Table 3.7 Accuracy (%) of SPM methods for the aerial image (S=10) 

 PSA Bilinear Bicubic Bilinear 

with MSI 

Bicubic 

with MSI 

Road 93.94 94.17 94.44 96.88 96.98 

Tree 92.71 92.60 92.90 94.05 94.31 

Building 87.79 86.45 87.12 89.86 90.34 

Grass 91.46 90.96 91.35 93.28 93.58 

PCC 91.01 90.44 90.87 92.96 93.27 

3.2.3.2. Experiment 2 

In this experiment, a hyperspectral image was studied. The image was acquired 

by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor during a 

flight campaign over Pavia, northern Italy. It has a spatial resolution of 1.3 m with 

102 bands. The tested region has 384 by 384 pixels and mainly covers six classes: 

shadow, water, road, tree, grass and roof. The false color image is shown in Figure 

3.16(a). Figure 3.16(b) gives the reference land cover map of the 1.3 m 

hyperspectral image, which was obtained with the tensor discriminative locality 

alignment-based classifier in Zhang et al. (2013). A 10m spatial resolution image 

was created by degrading the original 1.3 m hyperspectral image band by band via 

an 8 by 8 mean filter. The fine spatial resolution land cover map in Figure 3.16(b) 

was used for both visual and quantitative assessment, which has an overall accuracy 

of 96.42% for 5343 test samples and provides a reliable reference data set. 

Soft classification was implemented on the 10m coarse image first to obtain the 

fraction images. Fully constrained least squares linear spectral mixture analysis 

(Wang et al., 2013) was employed for soft classification, considering its simple 

physical meaning and convenience in application. The predicted fraction is 

compared to the reference fraction by means of the correlation coefficient (CC), as 

exhibited in Table 3.8. The reference fraction data were acquired by degrading 

Figure 3.16(b) with an 8 by 8 pixel mean filter. We can observe that the water, tree 

and roof classes have higher CC than the other three classes, suggesting that the soft 

classification of water, tree and roof is more accurate. 

 

Table 3.8 CC of soft classification results for the degraded 10m ROSIS image 

Shadow Water Road Tree Grass Roof 

0.7668 0.9617 0.8518 0.9426 0.8797 0.8854 
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(a)                                                                (b) 

  

(c)                                                                (d) 

  

(e)                                                                (f) 

Shadow   Water   Road   Tree   Grass   Roof 

Figure 3.16. SPM results for the ROSIS image. (a) The three-band color image of the ROSIS 

hyperspectral dataset (bands 102, 56, and 31 as RGB). (b) The reference land cover map. (c) Bilinear 

result. (d) Bicubic result. (e) Bilinear with MSI result.  (f) Bicubic with MSI result. 

 

The bilinear, bicubic, bilinear with MSI and bicubic with MSI methods were 

applied to the predicted fraction images, with S=8, generating the 1.3m land cover 

maps shown in Figure 3.16(c)-Figure 3.16(f). It can be observed that many linear 
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artefacts exist in the bilinear and bicubic results. Using MSI, the phenomenon is 

alleviated and the SPM results are more in agreement with the reference map in 

Figure 3.16(b). The SPM accuracy of the four methods as well as PSA is listed in 

Table 3.9. Due to the low soft classification accuracy of shadow, road and grass, as 

seen in Table 3.8, the SPM accuracy of these three classes is relatively lower in 

comparison with the other three classes. When compared to the SPM accuracy in 

the first experiment, the accuracy of all five methods is much lower in this 

experiment. This is attributed to the errors from soft classification as well as the 

more complex spatial pattern in the study area. Inter-comparison of the values in 

Table 3.9 reveals that with MSI, both bilinear and bicubic methods achieve higher 

SPM accuracy for all six classes than the PSA, bilinear and bicubic methods. The 

McNemar’s test suggests that bilinear with MSI and bicubic with MSI methods 

have significantly higher PCC than the PSA, bilinear and bicubic methods. 

 

Table 3.9 Accuracy (%) of SPM methods for the ROSIS image (S=8) 

 PSA Bilinear Bicubic Bilinear 

with MSI 

Bicubic 

with MSI 

Shadow 34.68 34.33 34.82 37.37 37.99 

Water 96.22 96.28 96.32 96.45 96.52 

Road 48.51 48.57 48.86 50.99 51.39 

Tree 76.07 75.67 76.07 77.61 77.90 

Grass 54.48 53.27 53.51 56.06 56.33 

Roof 76.20 76.43 76.74 78.89 79.21 

PCC 70.09 69.91 70.17 71.75 72.04 

 

In experiment 1, the bilinear and bicubic methods took around 2 seconds while 

the proposed methods took less than 5 seconds. In experiment 2, the bilinear and 

bicubic methods took less than 4 seconds whereas the proposed methods took less 

than 8 seconds. For PSA running with 20 iterations, however, it took 90 and 138 

seconds in experiment 1 and experiment 2. 

3.2.3.3. Analysis of the number of MSI 

The proposed SPM methods were tested with different numbers of MSI. We 

discussed four numbers: 2, 4, 6 and 9. The corresponding sub-pixel shifts are shown 

in Table 3.10. Note that when four images were discussed here, the sub-pixel shifts 

are different from those in the previous two experiments. The impact of the number 
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of MSI can be seen in Figure 3.17. For both aerial and ROSIS images, when the 

number of MSI increases from 1 to 9, the PCC of both the bilinear and bicubic 

methods increases. Moreover, the bicubic method consistently obtains a higher 

PCC than the bilinear method. 

 

Table 3.10 Sub-pixel shifts for discussion on the number of MSI 

Number of images Sub-pixel shifts 

2 (0,0) (3,0) 

4 (0,0) (3,0) (0,3) (3,3) 

6 (0,0) (3,0) (6,0) (0,3) (3,3) (6,3) 

9 (0,0) (3,0) (6,0) (0,3) (3,3) (6,3) (0,6) (3,6) (6,6) 

 

1 2 3 4 5 6 7 8 9
0.9

0.91

0.92

0.93

0.94

Number of images

P
C

C

Aerial image

 

 

1 2 3 4 5 6 7 8 9
0.69

0.7

0.71

0.72

0.73

Number of images

P
C

C

ROSIS image

 

 

Bilinear

Bicubic

Bilinear

Bicubic

 

Figure 3.17. Influence of the number of sub-pixel shifted images for bilinear and bicubic 

interpolation-based SPM. 

 

3.3. Summary 

SPM is always an under-determined problem. In this chapter, MSI are used as 

additional data in STHSPM to enhance the accuracy of SPM. The MSI are sub-pixel 

shifted from each other, situation replicated by sensors taking images over the same 

area at different times. 

In Section 3.1, an STHSPM algorithm based on ICK with MSI is proposed. The 

algorithm utilizes MSI to provide additional constraints for the ICK-based 

STHSPM model to increase the accuracy. In detail, with extracted prior structure 

information, the MSI are used to obtain multiple ICK-derived conditional 

probability maps for each class. Then according to the sub-pixels shifts of MSI, the 

multiple probabilities are integrated. The integrated probabilities are then used for 

class allocation to yield sub-pixel maps meeting a target spatial resolution. This new 

method inherits all the advantages of the ICK-based STHSPM model, which is 
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capable of making use of prior spatial structure information and incorporating the 

information from the informed fine pixels. In addition, no parameters (except the 

neighborhood window size) and iterations are involved in the new model. 

Experiments based on three synthetic coarse images and a set of real MODIS 

images demonstrated the effectiveness and advantages of the proposed algorithm. 

From both visual and quantitative assessments, the conclusion can be drawn that the 

proposed ICK with MSI can produce more satisfying and accurate sub-pixel maps 

than conventional ICK as well as HNN-based SPM, whether or not MSI are applied 

in HNN. 

The ICK method in Section 3.1 requires prior spatial structure information, 

which may be unavailable in practice. In Section 3.2, MSI are used in STHSPM that 

is achieved by fast and simple bilinear and bicubic interpolation. In contrast to the 

ICK method in Section 3.1, they do not need prior spatial structure information. 

Moreover, they are free of iteration and very fast. Two remote sensing images were 

tested in the experiments for validation of the proposed SPM methods. Both visual 

and quantitative assessment showed that the new methods can noticeably increase 

the accuracy of conventional bilinear and bicubic interpolation-based SPM. The 

SPM results of the new methods are visually more continuous and smoother than 

those obtained without MSI. The PCC of the new methods is significantly higher 

than that of conventional methods. Furthermore, the proposed SPM methods took 

only several seconds for the two studied images. The considerably low 

computational burden fully indicates the proposed methods are fast methods to 

utilize MSI in SPM. Therefore, the proposed methods show their great potential in 

real-time applications, particular in cases where prior spatial structure information 

is unavailable. 
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4. Radial basis function 

interpolation-based STHSPM 

(This chapter is based on Wang et al. (2014a)) 

4.1. Introduction 

The outputs of sub-pixel sharpening in the STHSPM algorithm are continuous 

values between 0 and 1, which indicate the probabilities of class occurrence at each 

sub-pixel. Actually, the task of sub-pixel sharpening can be viewed as downscaling 

the coarse spatial resolution proportion images to the target spatial resolution. This 

task can also be accomplished by super-resolution reconstruction when the 

proportion images are taken as input. It would be worth employing super-resolution 

reconstruction algorithms for the purpose of sub-pixel sharpening. 

In this chapter, for the first time, a SPM algorithm based on radial basis function 

(RBF) interpolation is proposed. Interpolation-based super-resolution algorithms 

have been used widely for image downscaling. They can process a single coarse 

spatial resolution image by exploiting the spatial information encapsulated in the 

input image. As a powerful tool for modeling a non-linear function from given 

input-output data, RBFs have attracted considerable attention in many areas, such 

as neural networks (González et al., 2003), solution of differential equations 

(Pollandt, 1997), scattered data interpolation (Torres and Barba, 2009), and 

structure optimization (Wang et al., 2007). A detailed overview of RBFs and their 

applications can be found in Buhmann (2003). RBFs are known widely as a 

versatile tool for image interpolation (Magoules et al., 2007; Lee and Yoon, 2010). 

In RBF-based image interpolation, a system of equations is solved to obtain the 

RBF coefficients that characterize the input-output mapping (Fuji et al., 2012). The 

matrices described by the basis function are always uniquely solvable for most 

stencils in two-dimensional space (Lee and Yoon, 2010). RBF interpolation has 

been shown to be a highly accurate super-resolution reconstruction algorithm 

(Magoules et al., 2007; Lee and Yoon, 2010), both theoretically and practically, and 

has gained a wide range of successful applications, including medical image 

processing (Carr et al., 1997) and computer graphics (Carr et al., 2001). These 

properties and advantages of RBFs allow their application in SPM. In the proposed 
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RBF interpolation-based SPM, the coarse proportion images are used as input and 

soft class values at sub-pixels are estimated by RBF interpolation. Conditional upon 

the original class proportions constraint that fixes the number of sub-pixels 

allocated to each class per pixel, the estimated soft class values are then hardened to 

generate a hard classified land cover map at the sub-pixel scale. 

The proposed RBF interpolation-based SPM belongs to the aforementioned 

STHSPM algorithm. Similar to SPSAM-, back-propagation neural network-, 

Kriging- and Indicator CoKriging-based SPM, the proposed algorithm is a 

non-iterative method, and the uncertainty introduced by random initialization and 

stochastic processes involved in the iterations of the first type of SPM can also be 

avoided. On the other hand, compared to back-propagation neural network- and 

Indicator CoKriging-based SPM, the proposed SPM algorithm has the advantage of 

not relying on any prior model of land cover spatial structure. The RBF 

interpolation-based SPM is performed by exploiting fully the spatial information in 

the input proportion images. 

4.2. The SPM problem 

The SPM approach in this chapter represents a post-processing step following 

soft classification. In SPM, each mixed pixel is divided into multiple sub-pixels and 

then their class labels are predicted. The coarse proportion data and the zoom factor 

are used to calculate the number of sub-pixels for each class. The details are given 

below. 

4.2.1. Calculation of the number of sub-pixels for each 

class 

Suppose S is the zoom factor (i.e., each coarse pixel is divided into S×S 

sub-pixels), jP  ( 1,2,...,j M , M is the number of pixels in the coarse image) is a 

coarse pixel and ( )k jF P  is the coarse proportion of the k-th ( 1,2,...,k K , K is the 

number of classes) class for pixel jP . Considering the physical meaning, the coarse 

proportions estimated by soft classification (e.g., spectral unmixing (Bioucas-Dias 

et al., 2012)) usually meet the abundance sum-to-one constraint and the abundance 

non-negativity constraint, i.e., 

1

( ) 1, 1,2,...,

( ) 0, 1,2,..., ; 1,2,...,

K

k j

k

k j

F P j M

F P k K j M



 

  


                           (4.1) 
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For a particular pixel, say jP , the number of sub-pixels for the k-th class, ( )k jE P , 

is calculated by 

2( ) round( ( ) )k j k jE P F P S                                      (4.2) 

where round() is a function that takes the integer nearest to . The sum of the 

numbers of sub-pixels for all K classes are 2S . 

4.2.2. Prediction of class labels for sub-pixels 

Let ip  ( 2=1,2,...,i MS ) be a sub-pixel and ( )k iB p  be the binary class indicator for 

the k-th class at sub-pixel ip  

1, if sub-pixel  belongs to class 
( )

0, otherwise

i

k i

p k
B p


 


                      (4.3) 

In the SPM result, each sub-pixel should be assigned to only one class and the 

number of sub-pixels for each class should be consistent with the coarse proportion 

data, which are described as 

2

2

,

1

,

1

( ) 1, 1,2,..., ; 1,2,...,

( ) ( ), 1,2,..., ; 1,2,...,

K

k j i

k

S

k j i k j

i

B p i S j M

B p E P k K j M





  

  





                   (4.4) 

where sub-pixel ,j ip  falls within coarse pixel jP . 

The critical task of SPM is to obtain the binary class indicators for all classes at 

each sub-pixel. In this chapter they are predicted according to the soft class values at 

each sub-pixel estimated by RBF interpolation. The principle is introduced in the 

following Section 4.3. 

4.3. RBF interpolation-based SPM 

4.3.1. Estimation of soft class values at the sub-pixel scale 

using RBF interpolation 

The RBF interpolation discussed in this chapter involves area-to-point prediction 

(Atkinson, 2013), which refers to the super-resolution of continua (proportion 

images in this chapter) though interpolation and is different from the common 

interpolation task of predicting between sparsely distributed points (Buhmann, 

2003). In area-to-point prediction, the input variable (at a coarse resolution) is the 

same as the output variable (at a fine resolution) and both are generally continuous 

variables (Atkinson, 2013). 
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Let ( )k iF p  be the soft class value for the k-th class at sub-pixel 
ip . The task of 

RBF interpolation is to predict  2( ) =1,2,..., ; 1,2,...,k iF p i MS k K  at the target 

fine spatial resolution. The variables in Section 4.3 that have been mentioned in 

Section 4.2 have the same meaning as in Section 4.2. 

In RBF interpolation, the soft class value ( )k iF p  is predicted by 

1

( ) ( ) ( , )
N

k i k n n i

n

F p P P p 


                                      (4.5) 

where N is the number of observed coarse pixels that are usually in a local window, 

( )k nP  is the coefficient of the k-th class for coarse pixel nP , and ( , )n iP p  is a 

basis function that describes the spatial relation between sub-pixel 
ip  and coarse 

pixel nP . The estimated soft class value is a weighted linear combination of N 

values calculated by the basis function. Correspondingly, two terms are needed for 

RBF interpolation: basis function values and their coefficients. 

 

1) Basis function values. Suppose ( , )n id P p  is the Euclidean distance between 

the geometric centers of pixel nP  and sub-pixel ip . A commonly used basis 

function in RBF interpolation is the Gaussian function (Lee and Yoon, 2010) 

2 2( , ) /
( , ) n id P p a

n iP p e 
                                          (4.6) 

in which a is a parameter. The larger the distance, the smaller the basis function 

value (i.e., the weaker the spatial relation). An example is provided in Figure 4.1 to 

illustrate the calculation of ( , )n id P p . Suppose there are N observed coarse pixels in 

a 0 0  N N  ( 0N =3 in Figure 4.1) local window and each coarse pixel is divided 

into S by S sub-pixels (S=4 in Figure 4.1); coarse pixel nP  is in the nR -th row and 

nC -th 0( , 1,2,..., )n nR C N  column in the local window; sub-pixel ip  is in the ir -th 

row and ic -th ( , 1,2,..., )i ir c S  column in the coarse pixel that it falls within. The 

coordinates of nP  and ip , denoted as ( , )n nX Y  and ( , )i ix y , are calculated as 

0

0

( 0.5)

( 0.5)

0.5( 1) 0.5

0.5( 1) 0.5

n n

n n

i i

i i

X R S

Y C S

x N S r

y N S c

 

 

   

   

                                            (4.7) 
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nP

ip

( , )n nX Y

( , )i ix y

X

Y

.

.

2 2( , ) (2 4.5) (2 5.5) 4.3n id P p     

 

Figure 4.1. Illustration of distance calculation between pixel 
nP  and sub-pixel 

ip . 

 

The distance between them is 

2 2( , ) ( ) ( )n i n i n id P p X x Y y                                  (4.8) 

 

2) Coefficients. With respect to the coefficient ( )k nP , it indicates the 

contribution from neighboring coarse pixel nP . The coefficients are determined by 

exploiting the available information in the input proportion images. For each 

observed coarse pixel jP , (4.9) holds 

1

( ) ( ) ( , ), 1,2,...,
N

k j k n n j

n

F P P P P j N 


                            (4.9) 

where ( , )n jP P  is the quantified spatial relation between pixel nP  and pixel jP . It 

is calculated in the same way as that in (4.6). Combining all N equations, we can 

compute the coefficient sets T

1 2[ ( ), ( ),... ( )]k k k NP P P  kλ  by solving the 

following equation 

Φ 
k k
λ F                                                  (4.10) 

in which 

T

1 2[ ( ), ( ),... ( )]k k k NF P F P F PkF                                (4.11) 

The superscript T denotes a matrix transposition, and 

1 1 2 1 1

1 2 2 2 2

1 2
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( , ) ( , ) ...

N

N

N N

P P P P P P

P P P P P P
Φ

P P P P

  

  

 

  

  


   

   ( , )N NP P

 
 
 
 
 

 

                 (4.12) 

As can be seen from (4.12), Φ  is a matrix with N×N elements and the computing 

complexity in (4.10) scales quadratically with N. Moreover, for each mixed pixel, 
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(4.10) is computed once and hence in the whole image the computation time of 

(4.10) is equal to the number of mixed pixels, which is always very large. Last but 

not least, the spatial dependence decreases when the distance between pixels 

increases. For these reasons, it is unrealistic to use a large number of observed 

coarse pixels in RBF interpolation-based SPM, and a neighborhood window is used 

for each sub-pixel. 

The soft class value prediction in RBF interpolation is different from that in the 

existing SPSAM-based SPM method. More precisely, in the latter, the soft class 

value is a weighted linear combination of the class proportions in neighboring 

coarse pixels, and the weights are quantified straightforwardly by the distances. In 

RBF interpolation, however, the soft class value is a weighted linear combination of 

the basis function values. The weights in RBF interpolation (i.e., coefficient sets 
k
λ ) 

are calculated by using not only proportions in neighboring coarse pixels, but also 

the available information about spatial dependence in the neighborhood window: 

When calculating the coefficients, the spatial autocorrelation between coarse pixels 

in the neighborhood window is accounted for, as can be found from (4.10) and 

(4.12). This is the unique advantage of RBF interpolation. 

The pseudocode of RBF interpolation is given below, where ,j ip  denotes any 

sub-pixel that falls within coarse pixel jP . 

 

RBF interpolation for prediction of soft class values at the sub-pixel scale 

Inputs:  ( ) 1,2,..., ; 1,2,...,k jF P j M k K   and S. 

for k = 1: K 

for j = 1: M 

Select a neighborhood window with N coarse pixels 

Computation of coefficient vector k
λ  using (4.10) 

for i = 1: 2S  

Calculation of N basis function values using (4.6) 

Estimation of ,( )k j iF p  using (4.5) 

end 

end 

end 

Outputs:  2

,( ) =1,..., ; 1,..., ; 1,...,k j iF p i S j M k K  . 
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4.3.2. Estimation of hard class values at the sub-pixel scale 

by class allocation 

SPM is essentially an algorithm for hard classification at the sub-pixel scale and 

its outputs are hard attribute values. After the  2( ) =1,2,..., ; 1,2,...,k iF p i MS k K  

are estimated by RBF interpolation, with the constraints in (4.4), they are used to 

predict hard class labels  2( ) =1,2,..., ; 1,2,...,k iB p i MS k K , as defined in (4.3). In 

this chapter, classes are allocated to sub-pixels class-by-class, using a UOC-based 

class allocation method. 

The flowchart of the proposed SPM method is shown in Figure 4.2. 

 

( , )n iP p
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Figure 4.2. Flowchart of the proposed RBF interpolation-based SPM. 

 

4.4. Experiments 

4.4.1. Experimental setup 

Three experiments were carried out for validation of the proposed RBF 

interpolation-based SPM method. The proposed method was compared to SPSAM 

and Kriging-based SPM methods in the experiments. The other two STHSPM 

algorithms, back-propagation neural network and Indicator CoKriging, were not 

compared in experiments because they need prior spatial structure information. As 

suggested by the principle of the proposed SPM method, other image interpolation 
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methods are also expected to have potential in SPM. Hence, two well-known image 

interpolation algorithms, bilinear and bicubic, were also applied to SPM for 

comparison with the RBF interpolation-based SPM method. Specifically, bilinear 

and bicubic interpolation were used to predict the soft class values at each sub-pixel, 

and then UOC-based class allocation method was employed for hard class value 

prediction. In total, five SPM methods were tested: bilinear-, bicubic-, SPSAM-, 

Kriging- and RBF-based SPM algorithms. The accuracy of SPM was evaluated 

quantitatively by the overall accuracy in terms of the percentage of correctly 

classified pixels (PCC). For the proposed SPM method, the parameter a in the basis 

function was set to 10 and the window size N was set to 5. All experiments were run 

on an Intel Core 2 Processor (1.800-GHz Duo central processing unit, 2.00-GB 

random access memory) with MATLAB 7.1 version. 

In the first experiment, three synthetic coarse spatial resolution images were used 

for testing, to avoid the errors from soft classification and solely concentrate on the 

performance of the proposed SPM method. More specifically, land cover maps 

were obtained by hard classification of the remote sensing images and these maps 

were used as reference. The reference maps were then degraded by an S by S mean 

filter (i.e., every S by S fine pixels were degraded to a coarse pixel) to generate the 

coarse proportion images. Finally, SPM methods were implemented to yield land 

cover maps with the same spatial resolution as the reference maps, by zooming in 

the proportion images with a scale factor S. Using synthetic coarse images, the input 

proportions contain no uncertainty and the reference land cover maps are 

completely reliable for accuracy assessment. 

In the second experiment, a hyperspectral image in the first experiment was 

degraded band by band with two scales to generate two coarse spatial resolution 

hyperspectral images. Soft classification was then performed to yield proportion 

images and SPM methods were implemented subsequently. Similarly to the first 

experiment, the hard classification result of the fine spatial resolution hyperspectral 

image was used as reference for SPM evaluation. This experiment was used to 

consider the inherent uncertainty in soft classification (Atkinson, 2009). 

In the last experiment, the five SPM methods were tested with multiple zoom 

factors, in order to further validate the effectiveness and advantages of the proposed 

SPM method and also test the influence of S on its performance. Moreover, the 

influence of parameter a in the basis function (4.6) and window size N were tested 

for the proposed SPM method. 



 

100 

 

4.4.2. Data description 

Three images were used in the experiments in all, including an aerial image and 

two hyperspectral images. Detailed information on the three datasets is now 

provided. 

The Aerial image. An aerial image in Tatem (2002) was used for testing. The 

image covers an area in the city of Bristol, UK and for the purposes of this 

experiment can be considered to contain five land cover classes: grass, road, river, 

soil and tree. The image has 170 by 170 pixels with a pixel size of 4 m by 4 m. 

Figure 4.3(a) shows the image while Figure 4.3(b) shows the reference land cover 

map. The land cover pattern in Figure 4.3(b) is relatively simple and the five classes 

appear mainly as large objects. 

The Reflective Optics System Imaging Spectrometer (ROSIS) dataset. This 

dataset was acquired by the ROSIS sensor during a flight campaign over Pavia, 

northern Italy. The hyperspectral image has a spatial resolution of 1.3 m and 102 

bands. A region with 400 by 400 pixels was studied, which covers six classes of 

interest: shadow, water, road, tree, grass and roof. The three-band color image 

(bands 102, 56, and 31 for RGB) is shown in Figure 4.4(a). The corresponding 

reference land cover map is shown in Figure 4.4(b), which was obtained with the 

tensor discriminative locality alignment-based classification of the hyperspectral 

data in Zhang et al. (2013). 

The QuickBird dataset. The 0.61 m QuickBird image covers an area of the suburb 

of Xuzhou City, China, containing 480 by 480 pixels and three multispectral bands 

(RGB). The image was classified with an algorithm that first integrated spatial 

features of pixel shape feature set, grey level co-occurrence matrix and Gabor 

transform with spectral information and then used a support vector machine for 

classification. The generated land cover map contains seven classes: shadow, water, 

road, tree, grass, roof and bare soil. Figure 4.5(a) shows the RGB image and Figure 

4.5(b) shows the hard classified land cover map. Through visual comparison, one 

can find that the land cover patterns in Figure 4.4(b) and Figure 4.5(b) are more 

complex than those in Figure 4.3(b). 
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(a)                                           (b) 

 Grass  Road  River  Soil  Tree 

Figure 4.3. (a) The aerial image. (b) The reference land cover map. 

 

  

(a)                                           (b) 

 Shadow  Water  Road  Tree  Grass  Roof 

Figure 4.4. (a) The three-band color image of the ROSIS hyperspectral dataset. (b) The reference 

land cover map. 

 

  

(a)                                           (b) 

 Shadow  Water  Road  Tree  Grass  Roof  Bare soil 

Figure 4.5. (a) The QuickBird image. (b) The reference land cover map. 

 

4.4.3. Experiment 1-Synthetic coarse images 

The three maps in Figure 4.3(b), Figure 4.4(b) and Figure 4.5(b) were degraded 

with an 8 by 8 mean filter. Figure 4.6 shows the produced proportion images. The 

sizes of the coarse spatial resolution images in the three lines for the three 

corresponding maps are 21 by 21, 50 by 50 and 60 by 60. As can be seen from the 
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proportion images, the boundaries of classes are blurred, which necessitates SPM 

techniques. For SPM of the three coarse images in this experiment, the zoom factor 

was set to S=8 to restore the fine spatial resolution images. The five SPM methods 

(i.e., bilinear, bicubic, SPSAM, Kriging and RBF-based SPM) were applied to the 

three groups of coarse proportion images. Table 4.1 gives the Moran’s I estimated 

from the class proportion images and the specified visiting order of classes for class 

allocation process. 

 

     

Grass              Road                River               Soil                 Tree 

      

Shadow            Water            Road               Tree                Grass               Roof 

 

Shadow         Water              Road             Tree                Grass           Roof                 Bare soil 

 

0                        1 

Figure 4.6. Proportion images of the classes in the degraded land cover maps of three images. Line 1: 

Aerial image; Line 2: ROSIS image; Line 3: QuickBird image. 

 

Table 4.1 Visiting order of classes for class allocation 

 

Aerial 

image 

Class Grass Road River Soil Trees   

Moran’s I 0.7181 0.3244 0.6083 0.8042 0.5033   

Order 2 5 3 1 4   

 

ROSIS 

image 

Class Shadow Water Road Tree Grass Roof  

Moran’s I 0.3087 0.9212 0.5706 0.7427 0.5540 0.6449  

Order 6 1 4 2 5 3  

 

QuickBird 

image 

Class Shadow Water Road Tree Grass Roof Bare soil 

Moran’s I 0.2540 0.8505 0.4725 0.4728 0.5829 0.6044 0.8908 

Order 7 2 6 5 4 3 1 
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(a)                                          (b)                                         (c) 

   

(d)                                          (e)                                         (f)  

 Grass  Road  River  Soil  Tree 

Figure 4.7. SPM results of the five methods for the degraded land cover map of the aerial image (S=8). 

(a) Bilinear. (b) Bicubic. (c) SPSAM. (d) Kriging. (e) RBF. (f) Reference with marked area. 

 

   

(a)                                          (b)                                         (c) 

   

(d)                                          (e)                                         (f)  

 Shadow  Water  Road  Tree  Grass  Roof 

Figure 4.8. SPM results of the five methods for the degraded land cover map of the ROSIS image 

(S=8). (a) Bilinear. (b) Bicubic. (c) SPSAM. (d) Kriging. (e) RBF. (f) Reference with marked areas. 
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(a)                                          (b)                                         (c)  

   

(d)                                          (e)                                         (f) 

 Shadow  Water  Road  Tree  Grass  Roof  Bare soil 

Figure 4.9. SPM results of the five methods for the degraded land cover map of the QuickBird image 

(S=8). (a) Bilinear. (b) Bicubic. (c) SPSAM. (d) Kriging. (e) RBF. (f) Reference with marked area. 

 

Figure 4.7-Figure 4.9 display the SPM results for three images. Visual 

comparison of the five SPM results in each group in Figure 4.7-Figure 4.9 reveals 

that the proposed method can be usefully applied to the SPM of coarse images. 

Furthermore, the proposed method provides the most satisfactory SPM results 

among the five methods. Specifically, with respect to the results in Figure 4.7(a)-(e) 

for the aerial image, the boundaries of classes are the smoothest in Figure 4.7(e), 

and it is the closest to the reference map in Figure 4.3(b). As an example, the 

boundaries of the road and tree classes in the top right of the image (marked by the 

pink rectangle in Figure 4.7(f)) in the bilinear, bicubic and Kriging results are quite 

rough. For the SPSAM method, the restoration of the tree class in the same site is 

more satisfactory when compared to the bilinear, bicubic and Kriging methods, but 

still less acceptable than that of the proposed method. While examining Figure 

4.8(a)-(d) for the ROSIS image, one can see that there are many linear artifacts and 

the spatial continuity of each class is weak, especially in the bilinear and SPSAM 

results. Using the proposed SPM method, however, the predicted map in Figure 

4.8(e) has less linear artifacts and the distribution of classes is more continuous. 

This is particularly well illustrated by the results of mapping the roof and road 

classes (see the areas marked by the pink rectangles in Figure 4.8(f)). Consistent 
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with the results for the aerial and ROSIS images, for the QuickBird image, RBF 

result in Figure 4.9(e) is found to have more continuous boundaries of classes than 

the other four maps in Figure 4.9(a)-Figure 4.9(d). 

Tables 4.2-4.4 list the classification accuracies of each class as well as the overall 

accuracy in terms of PCC for the SPM results of the three coarse images. To 

illustrate the gain of using SPM technique for land cover mapping, traditional 

pixel-level hard classification (HC) was performed, in which all sub-pixels within a 

coarse pixel are assigned to the dominated class. Note that the pure coarse pixels in 

Figure 4.6 were not considered in the accuracy statistics. Comparison of the PCC 

values of HC and the five SPM methods in Tables 4.2-4.4 reveals that SPM can 

produce obviously greater accuracy than HC method. For the aerial image, the 

accuracy gain of SPM over HC is around 15% and for the other two images, the gain 

is around 5%. As can be seen from Table 4.2, the Kriging method provides the 

greatest accuracy of classification for the river class. For the other four classes, the 

classification accuracy in the RBF result is the highest among the five SPM 

methods. The PCC of the RBF result reaches 92.63%, which is also higher than that 

of the other four SPM methods. In Table 4.3, the proposed RBF interpolation-based 

method achieves the greatest accuracy for all six classes in the ROSIS image. For 

example, the classification accuracy of the road class in the RBF result is 74.64%, 

which is 2.43%, 1.72%, 1.54% and 1.18% more than for the bilinear, bicubic, 

SPSAM and Kriging results; the classification accuracy of the roof class in the RBF 

result is 81.91%, which is greater by 1.53%, 1.04%, 1.15% and 0.86%, respectively. 

The high accuracy for the proposed method may be attributed mainly to the fact that 

the predicted map has fewer linear artifacts and a more continuous distribution of 

classes, as mentioned in the above visual inspection for Figure 4.8. Regarding the 

overall accuracy, the PCC of the proposed method is 74.89%, with gains of 1.99%, 

1.34%, 1.55% and 1.03% over the bilinear, bicubic, SPSAM and Kriging methods. 

Focusing on Table 4.4, for the proposed method based on RBF interpolation, the 

classification of the roof class is less accurate than for the bicubic method, but the 

classification of the other six classes is the most accurate among the five SPM 

methods and the overall accuracy of the RBF method is the highest. More precisely, 

the SPSAM method has the lowest PCC, 71.88%, among the five SPM methods. 

For another three methods, bilinear, bicubic and Kriging, the PCC increased to 

72.10%, 72.67% and 72.38%. However, their accuracies were still lower than that 

of the RBF method which produced a PCC of 73.24%. 



 

106 

 

Table 4.2 Accuracy (%) of the HC and five SPM methods for the aerial image 

 HC Bilinear Bicubic SPSAM Kriging RBF 

Grass 76.59 92.69 92.86 92.83 93.12 93.27 

Road 81.39 86.55 88.93 88.36 88.74 91.13 

River 80.74 95.75 95.75 95.82 96.10 95.89 

Soil 83.29 91.97 91.97 92.50 92.50 92.89 

Trees 72.13 89.68 90.43 90.15 90.48 91.23 

PCC 76.33 91.36 91.91 91.79 92.08 92.63 

 

Table 4.3 Accuracy (%) of the HC and five SPM methods for the ROSIS image 

 HC Bilinear Bicubic SPSAM Kriging RBF 

Shadow 38.77 55.17 56.06 55.18 56.08 57.90 

Water 74.76 86.14 86.11 86.24 86.46 87.29 

Road 67.99 72.21 72.92 73.10 73.46 74.64 

Tree 75.12 74.52 75.19 74.46 75.35 75.92 

Grass 65.75 70.19 71.01 71.01 71.56 72.52 

Roof 80.79 80.38 80.87 80.76 81.05 81.91 

PCC 68.51 72.90 73.55 73.34 73.86 74.89 

 

Table 4.4 Accuracy (%) of the HC and five SPM methods for the QuickBird image 

 HC Bilinear Bicubic SPSAM Kriging RBF 

Shadow 33.18 51.67 52.51 50.92 51.80 53.34 

Water 83.80 91.23 91.46 91.04 90.93 91.62 

Road 73.46 74.19 74.88 74.24 74.77 75.81 

Tree 67.99 71.99 72.79 71.93 72.54 73.52 

Grass 64.36 70.74 71.22 70.76 71.33 72.04 

Roof 68.55 73.67 73.93 72.79 73.25 73.81 

Bare soil 71.09 76.55 77.11 78.17 77.28 78.04 

PCC 67.16 72.10 72.67 71.88 72.38 73.24 

 

4.4.4. Experiment 2-Degraded hyperspectral images 

In this experiment, the ROSIS hyperspectral image used in the first experiment 

was degraded band by band with S=4 and 8. In this way, two coarse hyperspectral 

images with spatial resolutions of 5 m and 10 m were produced. Prior to SPM, soft 

classification was essential to obtain the proportions of land cover classes within 

coarse pixels. Here, linear spectral mixture analysis (LSMA) (Heinz and Chang, 

2001) was employed for soft classification, appreciating its simple physical 

meaning and its convenience in application (Wang and Wang, 2013). The generated 

proportion images for six classes at S=8 are shown in Figure 4.10. Figure 4.11(a)-(e) 
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displays SPM results of the five methods for these coarse proportion images. The 

reference map in Figure 4.4(b) was used for both visual and quantitative assessment 

of the five SPM methods, which has an overall accuracy of 96.42% and hence 

provides a useful reference data set. 

 

      

Shadow            Water            Road               Tree                Grass               Roof 

 

0                       1 

Figure 4.10. Proportion images of the 6 classes in the degraded ROSIS hyperspectral image. 

 

   

(a)                                          (b)                                         (c)  

   

(d)                                          (e)                                         (f)  

 Shadow  Water  Road  Tree  Grass  Roof 

Figure 4.11. SPM results of the five methods for the degraded ROSIS hyperspectral image (S=8). (a) 

Bilinear. (b) Bicubic. (c) SPSAM. (d) Kriging. (e) RBF. (f) Reference. 

 

It is worth noting that some scattering of pixels exists in the resulting maps 

(Figure 4.11). For example, some pixels that should belong to the water class were 

classified as the road class. The reason for this phenomenon is that there were 

inherent errors in the outputs of LSMA and they were propagated to the SPM results 

(Ge, 2013). Similar to the results in the first experiment, the distribution of land 

cover classes in Figure 4.11(e) is the closest to that in the reference map in Figure 
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4.11(f). As an instance, at the right bottom in Figure 4.11(a)-Figure 4.11(d), some 

pixels near the water class should be of the road class, but were misclassified as the 

roof class. In the RBF result, however, these pixels were almost always correctly 

classified and the road class within it seems more continuous than in the other four 

resulting maps. 

The quantitative assessment results for both S=4 and S=8 are listed in Table 4.5. 

Note that in this experiment all coarse pixels in Figure 4.10 were included in the 

accuracy statistics, because errors in soft classification need to be considered. One 

can observe from the table that the bilinear method provides the lowest accuracy at 

both scales. Although bicubic and SPSAM methods can produce a more accurate 

SPM than the bilinear method, the PCC of them is still less than that of the Kriging 

method. For the proposed RBF method, it is able to achieve the highest accuracy for 

each class in nearly all cases. As for the overall accuracy, the RBF obtains a PCC of 

75.08% at S=4 and 70.45% at S=8, both of which are the highest among the five 

methods. 

 

Table 4.5 Accuracy (%) of the five SPM methods for the degraded ROSIS hyperspectral images 

  Bilinear Bicubic SPSAM Kriging RBF 

 

 

 

 

S=4 

Shadow 49.46 49.75 50.15 50.21 50.86 

Water 97.72 97.74 97.66 97.74 97.79 

Road 51.96 52.37 52.70 52.91 53.23 

Tree 82.33 82.50 82.33 82.54 82.62 

Grass 58.21 58.45 59.10 59.04 59.13 

Roof 81.35 81.54 81.28 81.35 81.68 

PCC 74.48 74.67 74.76 74.86 75.08 

 

 

 

 

S=8 

Shadow 33.59 34.08 34.10 34.49 35.18 

Water 96.18 96.21 96.11 96.20 96.29 

Road 49.41 49.64 49.50 49.83 50.11 

Tree 75.45 75.87 75.89 76.14 76.44 

Grass 54.71 54.87 55.62 55.68 55.56 

Roof 76.66 76.90 76.46 76.63 77.20 

PCC 69.80 70.02 69.99 70.18 70.45 

 

4.4.5. Experiment 3-Influences of parameter in the basis 

function, zoom factor and window size 

1) Influence of zoom factor. The five SPM methods were tested with different 
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zoom scale factors using three groups of synthetic coarse images. The coarse 

images were produced by degrading the maps in Figure 4.3(b), Figure 4.4(b) and 

Figure 4.5(b) with four different scales. In detail, the reference map in Figure 4.3(b) 

was degraded with S=5, 8, 10 and 15 while the reference maps in Figure 4.4(b) and 

Figure 4.5(b) were both degraded with S=4, 6, 8 and 12. Figure 4.12(a)-(c) exhibits 

the PCC (pure pixels were excluded for accuracy statistics) of the five SPM 

methods for three groups of coarse images. It is worth noting that as the scale 

increases, the accuracy of all five methods decreases. Precisely, the PCC of the five 

methods decreases by about 10% from S=5 to S=15 for the aerial image, 15% from 

S=4 to S=12 for the ROSIS image and 10% from S=4 to S=12 for the QuickBird 

image. 

 

       

 

(a)                                                                 (b) 

 

 

(c) 

Figure 4.12. Performance of the five SPM methods with four different zoom factors. (a) Aerial image. 

(b) ROSIS image. (c) QuickBird image. 

 

Table 4.6 summarizes the comparison of SPM accuracy between the five 

methods in Figure 4.12. From the results for all 12 cases in the table, we can see that 

the SPSAM and bilinear methods are competent in SPM in general. As for the 

bicubic method, it outperforms both the SPSAM and bilinear methods. While 

comparing the bicubic and Kriging methods, one can observe that the latter tends to 

provide more accurate SPM results. Focusing on the values in the last column, the 
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proposed RBF method is found to be superior to the other four SPM methods in 

nearly all cases. 

 

Table 4.6 Comparison between the five SPM methods for the three groups of images with four zoom 

factors (12 cases in all; A vs B: + means the PCC of A is higher while – means the PCC of A is 

smaller) 

 Bicubic 

vs 

SPSAM 

vs 

Kriging 

vs 

RBF 

vs 

Bilinear 12+ 8+ 4- 12+ 12+ 

Bicubic  1+ 11- 9+ 3- 12+ 

SPSAM   12+ 12+ 

Kriging    11+ 1- 

RBF     

 

2) Influence of parameter a in the basis function. The parameter a in the basis 

function (see (4.6)) affects the non-linear modeling ability of RBF and, thus, plays 

an important role in RBF interpolation. This necessitates the analysis of the 

parameter for the proposed SPM method. The parameter a should take neither too 

large nor too small values. If a is too large, according to the properties of the 

Gaussian function, all elements in the matrix Φ  will be very close to 1. In this case, 

Φ  will be a singular matrix and (4.10) will not be uniquely solvable, which will 

lead to unacceptable SPM results consequently. On the other hand, if a is too small, 

all elements in Φ  will be very close to 0 instead, which will also lead to a singular 

matrix. 

We tested the influence of parameter a with 10 values: 0.1, 0.5, 1, 3, 5, 8, 10, 15, 

20 and 30. The three groups of synthetic coarse images degraded with four different 

scales were used again for testing. Figure 4.13(a)-(c) shows the sensitivity of the 

proposed SPM method in relation to a. As shown in the three sub-figures, when a is 

less than 10, the PCC increases with an increase of a in all 12 cases. When a takes 

values between 10 and 30, the PCC in each case reaches a stable value. 
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(a)                                                                 (b) 

 

 

 

(c) 

Figure 4.13. Influence of parameter a in the basis function of the proposed RBF interpolation-based 

SPM. (a) Aerial image. (b) ROSIS image. (c) QuickBird image. 

 

3) Influence of window size N. Three window sizes, N=3, 5 and 7, were analyzed 

for the RBF-based SPM method. For each window size, parameter a with 10 values 

(i.e., 0.1, 0.5, 1, 3, 5, 8, 10, 15, 20 and 30) were considered and the largest PCC was 

selected from 10 values for comparison of different window sizes. Figure 4.14 

shows the PCC for the three window sizes when the three groups of synthetic coarse 

images degraded with four different scales were tested. It is seen that when N 

increases from 3 to 5, the PCC increases obviously. When N increases to 7, however, 

the accuracy gains are relatively limited. In fact, larger N corresponds to larger size 

of matrix Φ  and heavier computing burden in (4.10). Consequently, N=5 is 

recommended as a suitable window size for RBF-based SPM, when considering 

both SPM accuracy and computing efficiency. 
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(a)                                                                 (b) 

 

(c) 

Figure 4.14. Influence of the window size in the proposed RBF interpolation-based SPM. (a) Aerial 

image. (b) ROSIS image. (c) QuickBird image. 

 

4.5. Discussion 

4.5.1. Computational efficiency 

It is important to consider the computing efficiency of SPM methods, especially 

in real-time applications. The computing time of the five SPM methods at different 

zoom scales is given in Figure 4.15. The time required for the class allocation 

process (see Section 4.3.2) was not considered for each SPM method here. On the 

one hand, this process is very quick (needs less than 3 seconds in all cases in Figure 

4.15), which has been demonstrated in Chapter 2. On the other hand, the class 

allocation process for all five SPM methods is the same, so can be ignored. 

It is seen from the bar charts that the bilinear, bicubic and SPSAM are fast 

methods whereas the Kriging and RBF methods usually require more time. The 

geostatistics-based Kriging method considers the spatial covariance in the whole set 

of prediction data and calculates the contributions from each observed value. For 

the RBF method (N=5), the model in (4.10) is built and computed once for each 

visited mixed pixel. The processes of Kriging and RBF are more complex, thereby, 

consuming more time than the other three methods. As learned from Figure 4.12 

and Table 4.6 previously, Kriging and RBF are capable of producing greater 
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accuracy than the bilinear, bicubic and SPSAM methods. Therefore, the relatively 

long running time is the cost of enhancing SPM accuracy for Kriging and RBF. 

Both the Kriging and RBF methods, however, can still be viewed as real-time 

algorithms, as they took less than 1 minute in the experiments. 

Comparing the values in the bar charts in Figure 4.15, it is found that for the 

aerial image with the smallest size among the three tested images, the computing 

time is the least, whilst for the QuickBird image with the largest size, the time is the 

most. Therefore, consistent with the other four SPM methods, the computation 

efficiency of RBF is related to the size of the study area (i.e., the number of mixed 

pixels). Furthermore, the computation time of RBF is also a function of the zoom 

factor. 

 

       

(a)                                                                 (b) 

 

(c) 

Figure 4.15. Computing time (seconds) of the five SPM methods. (a) Aerial image. (b) ROSIS image. 

(c) QuickBird image. 

 

4.5.2. Characteristics and advantages of RBF-based SPM 

The experimental results shown in Section 4.4.3-4.4.5 indicate that the RBF 

interpolation-based method presented in this chapter displays potential for SPM, 

irrespective of the complexity of land cover pattern in the studied images. In the 

first experiment, for the SPM of three coarse spatial resolution images with 

different types of land cover patterns, the new method provides consistently 

smoother and more continuous SPM results than do the bilinear, bicubic, SPSAM 
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and Kriging methods. The PCC values indicate that the accuracy of the new method 

is higher than that of the bilinear, bicubic, SPSAM and Kriging methods. When 

applied to two degraded ROSIS hyperspectral images with different spatial 

resolutions in the second experiment, where inherent uncertainty exists in soft 

classification (i.e., LSMA), the new method also produces higher accuracy than the 

aforementioned four SPM methods. The good performance of the proposed method 

is also further confirmed by the results in Figure 4.12, where four different scales 

were tested for each image. 

The advantage of the new method in terms of SPM accuracy can be attributed to 

the strong non-linear modeling ability of RBF. The core idea of SPM is to either 

maximize or match prior expectations about spatial dependence. In the proposed 

method, the spatial autocorrelation between any sub-pixel and its neighboring 

coarse pixels is characterized by the basis function in RBF interpolation. 

Meanwhile, the spatial autocorrelation between coarse pixels in the input 

proportion images is exploited fully to adaptively calculate the corresponding 

coefficients of the basis function values. The proposed SPM method, therefore, tries 

to capture and use as much of the available information about spatial dependence. 

As described systematically in the introduction, for the post-processing of a soft 

classification, the STHSPM may be considered advantageous in terms of 

computing efficiency. The proposed SPM algorithm is a newly developed 

STHSPM algorithm. In all the experiments in this study, the proposed SPM method 

took less than 1 minute for each coarse spatial resolution image. Certainly, the 

computation time of RBF is related to the size of the study area and zoom factor. 

Unlike the back-propagation neural network and Indicator CoKriging, the proposed 

method does not require any prior class information on spatial structure. With 

respect to the other two SPM algorithms, SPSAM and Kriging, experimental results 

suggest that the new method is able to obtain more accurate SPM results. The 

proposed RBF interpolation-based method, therefore, provides a promising new 

and real-time SPM method for practical applications. 

The difference between Kriging and the proposed RBF method is that the former 

is a global interpolation approach while the latter is a local interpolation strategy. 

The Kriging method is implemented based on the framework of geostatistical 

theory which takes the spatial configuration in the entire study area into 

consideration and estimates weights for each observed data point based on the 

global spatial covariance. The RBF method, however, builds a non-linear model for 
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each coarse pixel, using proportions as well as the locations of its surrounding 

coarse pixels as observed data. In RBF interpolation, each coarse pixel has its 

unique set of observed data and RBF interpolation is spatially adaptive. 

4.5.3. Influences of several factors on RBF-based SPM 

Similar to the other SPM methods, the proposed SPM method is sensitive to the 

zoom scale factor, as shown in Figure 4.12. Its accuracy decreases when the zoom 

factor increases. One main reason is that the SPM problem increases in complexity 

with larger zoom factors, as for every coarse pixel the locations of more sub-pixels 

need to be predicted and uncertainty increases. Another reason is that in the coarse 

images produced with large degraded resolutions, pixels may be larger than some 

land cover objects, and some objects may fall within isolated coarse pixels. This is 

referred to as the L-resolution case in Atkinson (2009). In the L-resolution case, the 

spatial dependence-based SPM methods, including the proposed method, fail to 

locate objects accurately at fine spatial resolution. 

We can observe further from Figure 4.12 that the PCC values of the proposed 

method decreases from Figure 4.12(a) to Figure 4.12(c). As an example, the PCC in 

Figure 4.12(a) is over 94% for S=5, but in Figure 4.12(b) and Figure 4.12(c) for a 

smaller scale S=4, the PCC declines to be less than 84% and 79%, respectively. This 

is because from Figure 4.12(a) to Figure 4.12(c), in the three groups of coarse 

images, the number of land cover classes increases from five to seven. On the other 

hand, the complexity of the land cover pattern also increases. From the 

corresponding three reference maps in Figure 4.3(b), Figure 4.4(b) and Figure 

4.5(b), one can see that the aerial image is occupied by large and continuous objects, 

which can be well recreated by the new spatial dependence-based SPM method. In 

the ROSIS and QuickBird images, however, many small objects and elongated 

features exist, especially in the latter. 

Comparing the resulting sub-pixel maps for the ROSIS image in the first 

experiment to those in the second experiment, it is seen that the errors from soft 

classification impose a considerably negative effect on the overall accuracy of SPM 

methods. This can be illustrated by the existence of isolated pixels in Figure 

4.11(a)-(e), and the fact that some pixels of the shadow class in the reference map in 

Figure 4.11(f) were incorrectly assigned to the water class in Figure 4.11(a)-(e). 

Regarding the quantitative evaluation of the RBF results for the ROSIS image, the 

PCC (pure pixels were included for accuracy statistics) reached 91.87% and 
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81.99% for S=4 and S=8 in the first experiment, where no error exists in soft 

classification. In the second experiment, however, due to the errors in soft 

classification, the corresponding PCC decreased by around 17% and 12%, 

respectively. 

As for the parameter a in the basis function, the proposed method tends to obtain 

highly accurate SPM results when it is set to values between 10 and 30 (see Figure 

4.13). When a is too large (e.g., 50 in the experiments), it leads to a singular matrix 

Φ and poor SPM results. 

4.5.4. Change of scale in RBF interpolation 

The RBF interpolation is essentially an area-to-point prediction method and its 

outputs are continuous variables (in SPM these outputs are converted to categories 

by class allocation in Section 4.3.2). The challenge with area-to-point prediction is 

to account explicitly for the change of scale (Atkinson, 2013). More specifically, 

when predicting the values at an arbitrary sub-pixel (point), the information within 

any observed coarse pixel (area) needs to be expressed at a finer spatial resolution. 

This is not the case, however, in RBF interpolation as presented in this chapter. 

RBF interpolation deals with change of scale implicitly: Each observed coarse pixel 

is treated as a point at its centroid; when the scale factor S changes, the distance 

calculation in (4.7) and (4.8) changes correspondingly, leading to changes of 

Gaussian function values (see (4.6)) and matrix Φ  (see (4.12)). 

Here, we attempted to consider the change of scale in RBF interpolation in a 

more explicit way, in which the Gaussian function and matrix Φ  are described at 

the sub-pixel scale 
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where mp  denotes any sub-pixel within coarse pixel nP , tp  denotes any sub-pixel 

within coarse pixel vP , ( , )m id p p  is the distance between the centroid of sub-pixel 

ip  and the centroid of any sub-pixel mp  within pixel nP  and ( , )m td p p  is the 

distance between the centroid of any sub-pixel mp  within nP  and the centroid of 

any sub-pixel tp  within vP . 

A question is whether the scheme in (4.13) and (4.14) will impart benefits for 
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RBF interpolation. For simplicity, we denote the revised RBF that considers the 

change of scale with (4.13) and (4.14) as SRBF. The two interpolation algorithms, 

SRBF and RBF, were tested and compared using the three remote sensing images, 

with four scale factors for each image. The PCC of the SRBF and RBF-based SPM 

is shown in Figure 4.16. Values in the three bar charts indicate SRBF does not 

increase the accuracy of SPM. This suggests that SRBF will decrease the non-linear 

modeling ability of the original RBF. The computational burden of two versions of 

interpolation algorithms is exhibited in Table 4.7. Again, the time needed in class 

allocation is not taken into consideration. It is demonstrated that SRBF needs more 

computing time than RBF for the task of interpolation, due to the more complicated 

calculation process in (4.13) and (4.14). Consequently, SRBF is not an advisable 

scheme for SPM. 

       

(a)                                                                 (b) 

 

(c) 

Figure 4.16. PCC (%) of the SRBF and RBF-based SPM methods. (a) Aerial image. (b) ROSIS 

image. (c) QuickBird image. 

 

Table 4.7 Computing time (seconds) of the SRBF and RBF-based SPM methods 

 Aerial image ROSIS image QuickBird image 

S=5 S=8 S=10 S=15 S=4 S=6 S=8 S=12 S=4 S=6 S=8 S=12 

SRBF 2.2 10.0 22.8 110.7 12.3 18.3 28.5 69.0 20.6 29.7 42.0 86.6 

RBF 0.9 1.4 1.6 2.1 11.6 15.6 19.5 24.0 19.7 26.6 32.0 43.0 
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4.6. Summary 

This chapter presents a new RBF interpolation-based SPM method for remote 

sensing images. The new method first utilizes RBF interpolation to predict the soft 

class values at each sub-pixel. Under the coherence constraint imposed by the 

coarse resolution land cover proportions, a sub-pixel map is then generated by 

hardening the soft class values. Based on the non-linear modeling ability of the RBF, 

the proposed method makes full use of the available spatial information to 

characterize spatial dependence, and does not need any prior information. The new 

method is also free of iteration and involves few parameters. Both visual and 

quantitative assessment on a range of experimental results reveals that the proposed 

method provides greater accuracy in comparison with bilinear-, bicubic-, SPSAM- 

and Kriging-based SPM methods. Moreover, the performance of the proposed SPM 

method is related to the quality of soft classification, the zoom factor, the number of 

classes required and the spatial complexity of the land cover pattern in the studied 

image. 

 



 

119 

 

5. Indicator cokriging-based STHSPM 

without prior spatial structure 

(This chapter is based on Wang et al. (2015a)) 

 

5.1. Introduction 

As introduced in Section 3.1, the ICK-based STHSPM algorithm needs prior 

knowledge from fine spatial resolution training images. It extracts the indicator 

semivariogram from the training image, to calculate conditional probabilities of 

class occurrence at each sub-pixel. In Boucher and Kyriakidis’s (2006) as well as 

Sections 2.1 and 3.1, the geostatistics-based ICK model has been demonstrated to 

be competent for SPM, which is free of iteration and needs few parameters. 

ICK-based SPM is demanding in terms of its requirement for prior spatial structure 

information: 

1) The spatial resolution of the prior structure information needs to be the same 

as the target fine spatial resolution for SPM. 

2) The prior spatial structure information needs to be representative of the study 

area for SPM. 

Jin et al. (2012) presented an interesting work to extract a fine spatial resolution 

indicator semivariogram from a small representative local area rather than the entire 

image for ICK-based SPM. The results demonstrated that ICK produces 

comparable accuracy with those using a globally-derived spatial structure. This 

method is still based on the existence of fine spatial resolution training images. 

Recently, attention has turned to ways to obtain training images, from which prior 

spatial structure information can be extracted for land cover mapping. The training 

images can be obtained by the following approaches (Atkinson, 2013; Ge, 2013). 

1) Fine spatial resolution classified maps from other areas of similar spatial 

structure to the study area. For example, Boucher and Kyriakidis (2008) 

utilized a fine spatial resolution land cover map of a nearby city (Foshan) for 

ICK-based SPM of Guangzhou. 

2) Fine spatial resolution images of the study area that are captured by previous 

airborne or satellite sensor observation. These images are then classified to 
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generate training images. 

3) Manually drawn artificial training images associated with computer 

technology and the user’s expert knowledge on the characteristics of land 

cover. In Ge and Bai (2011), a training image was drawn by hand according to 

the linear characteristics of roads for road extraction. 

4) Other sources, such as land use maps, aerial photographs and Google Earth, 

can also be used to derive training images. 

Uncertainties in the abovementioned approaches are unavoidable. For example, 

due to the differences between two cities, such as economic condition, environment, 

government planning, etc., the characteristics of the land cover in two neighboring 

cities may not be the same. The land cover of the same area in different periods may 

also have different spatial structures, considering human activities (e.g., building 

construction and vegetation harvesting, planting and regrowth) and natural changes 

(e.g., changes of rainfall and vegetation phenology) and so on. More importantly, 

the sources of training images are not always accessible or laborious work is needed 

to acquire training images even if access to them is available. Therefore, it is 

worthwhile to explore if some effective alternative can be provided for ICK-based 

SPM when such prior spatial structure information is unavailable. 

For traditional ICK-based SPM, fine spatial resolution training images are used 

to extract semivariograms for each land cover class, to characterize their spatial 

pattern at the target fine spatial resolution. In this chapter, the fine spatial resolution 

semivariogram for ICK-based SPM was estimated using coarse spatial resolution 

land cover proportion images. This information is automatically available since the 

coarse spatial resolution image of proportions provides the input data for the SPM 

process. Although the proportion images are at a coarse spatial resolution, they 

provide information on the spatial characteristics of the land cover classes. For each 

class, the initially acquired coarse spatial resolution semivariogram was converted 

to the equivalent at the target spatial resolution by deconvolution. 

Deconvolution is a technique for deriving a point support semivariogram from 

the experimental semivariogram of areal data (Journel and Huijbregts, 1978; 

Goovaerts, 2008). It is frequently used in mining, where all areas are considered to 

have the same size and shape of support (Collins and Woodcock, 1999; Truong et 

al., 2014). The technique has been extended to cases where only irregular 

geographical units are available. Kyriakidis (2004) discussed theoretically the 

deconvolution of semivariograms when areal data supports change from 
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place-to-place. Goovaerts (2008) provided an example study to explore its practical 

implementation, by mapping lung cancer mortality rates in Indiana and the Western 

United States using units of different shape and size. This is also one of the few 

studies that present explicitly the deconvolution process. 

In some fields, such as soil survey, disease mapping and population mapping, it is 

common to represent variables on a point support, as observations on quasi-point 

supports are much smaller than the support of interest. However, this is not the case 

for satellite remote sensing. Remote sensing images are normally composed of 

regularly sized pixels that cover a positive finite area, producing a given spatial 

resolution. In this chapter, by deconvolution, we mean the derivation of the fine 

spatial resolution semivariogram (via the point semivariogram) from the coarse 

spatial resolution semivariogram (areal semivariogram). In the deconvolution 

process, the coarse spatial resolution proportions are viewed as the available areal 

data, and the framework is based on regular geographical units. Dconvolution is an 

intermediate step towards ICK-based SPM. After deconvolution, the estimated fine 

spatial resolution semivariogram of each class is used for ICK to predict the 

probability of class occurrence at the sub-pixel levels. SPM is finally realized 

according to the ICK-derived probability and the proportions constraint from the 

input soft classification. 

5.2. Methods 

Suppose Y is the observed coarse spatial resolution image with N pixels and X is 

the sub-pixel map at the fine spatial resolution with M pixels. Here, M/N= 2S  and S 

is the zoom factor. Let mv  (m=1,2,…,M) be a sub-pixel, K be the number of classes 

in the study area, ( )k h  be fine spatial resolution semivariogram of the kth class 

that characterizes the spatial pattern of the kth class, and ( )k nF V  be the kth 

(k=1,2,…,K) class proportion in a coarse pixel nV  (n=1,2,…,N). 

5.2.1. ICK-based STHSPM 

Details on ICK-based STHSPM can be found in Section 3.1.2.1. The 

ICK-derived probabilities are transferred to hard class labels using the UOC-based 

class allocation method proposed in Section 2.1. 
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5.2.2. Estimation of fine spatial resolution semivariogram 

without prior spatial structure 

The critical issue for ICK-based SPM is to obtain the fine spatial resolution 

semivariogram for each class. In the traditional ICK-based SPM model, the 

semivariogram sets 1 2( ), ( ),..., ( )Kh h h    are extracted from fine spatial resolution 

training images. Specifically, the training image of a study area covering K classes 

can be decomposed into K binary land cover maps. The semivariogram ( )k h  can 

be acquired from the binary land cover map of the kth class. In this section, the fine 

spatial resolution semivariogram sets are derived by deconvolution of the coarse 

spatial resolution semivariogram and the whole process does not require any 

training images. 

5.2.2.1. Objective of deconvolution 

Suppose ( )V

k h  is the coarse spatial resolution semivariogram calculated from 

the proportion image of the kth class 

( )
2

1

1
( ) [ ( ) ( )]

2 ( )

N
V

k k n k n

n

h F V F V h
N h




  
h

                          (5.1) 

where N(h) is the number of paired pixels at a specific lag distance h (in coarse 

pixels) from the center pixel nV . In this chapter, the isotropic semivariogram is 

considered and pixels at a specific distance from the center pixel in all directions are 

treated equally. With the scattered points, the continuous semivariogram function is 

fitted by the commonly used exponential model. 

The fine spatial resolution semivariogram ( )k h  can be convolved to the coarse 

spatial resolution semivariogram _ ( )V R

k h , also termed regularized semivariogram, 

by the well-known regularization (Journel and Huijbregts, 1978) 

_ ( ) ( , ) ( , )V R VV VV

k k n n k n nh V V h V V                                 (5.2) 

where ( , )VV

k n nV V h   is the coarse-to-coarse spatial resolution semivariogram and 

( , )VV

k n nV V , a constant for a given zoom factor S, is the average coarse spatial 

resolution semivariogram within a coarse pixel. Both of them are calculated using 

(3.4) in Chapter 3. Deconvolution aims to estimate the optimal fine spatial 

resolution semivariogram (denoted as _ ( )v O

k h ), the regularized semivariogram of 
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which approximates ( )V

k h . The difference D between _ ( )V R

k h  and ( )V

k h  is 

quantified by means of the root mean square error (RMSE) 

_ 2

1

[ ( ) ( )]
L

V R V

k l k l

l

h h

D
L

 







                                   (5.3) 

where L is the number of lag distances. Consequently, the objective of 

deconvolution is specifically to minimize the difference D in (5.3). Strictly, 

deconvolution is an ill-posed problem. Even though one can obtain reassurance 

about regularizations (convolutions) of the fine spatial resolution semivariogram, 

one can never be sure that the estimated semivariogram is exactly the same as the 

true semivariogram of the study area (Atkinson, 2013). Deconvolution is employed 

in this chapter to provide reliable inputs of class probability estimation for 

ICK-based SPM, rather than restoring an ideal fine spatial resolution 

semivariogram. 

5.2.2.2. Implementation of deconvolution 

Deconvolution is an iterative process and contains two stages: initialization and 

update. Define I as an indicator whether update of _ ( )v O

k h  is successful: 1 means 

successful update and 0 vice versa. In the whole process, the isotropic 

semivariogram is considered and the commonly used exponential model is applied 

to fit the continuous semivariogram function. The detailed implementation is given 

as follows. 

Stage 1: Initialization. The task of this stage is to initialize the optimal fine spatial 

resolution semivariogram _ ( )v O

k h , and obtain correspondingly the optimal 

regularized semivariogram _ ( )V RO

k h  and optimal difference OD . 

1) Initialization of _ ( )v O

k h . The starting range of _ ( )v O

k h  was the same as 

for ( )V

k h , the starting sill was double that for ( )V

k h , and the starting 

nugget was an empirical value S/200. 

2) Regularization of _ ( )v O

k h . The fine spatial resolution semivariogram 

_ ( )v O

k h  is convolved to the regularized semivariogram _ ( )V RO

k h , see 

(5.2). 
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3) Calculation of the difference between _ ( )V RO

k h  and ( )V

k h . The optimal 

difference OD  in the initialization stage can be quantified by the RMSE 

between the two coarse spatial resolution semivariograms. 

4) Initialization of indicator I. I is initialized to 1. 

Stage 2: Update. This stage is implemented to update _ ( )v O

k h  and modify it 

iteratively to minimize OD . 

1) Update of _ ( )v O

k h . Each lag of the new fine spatial resolution 

semivariogram, denoted as _ ( )v N

k h , is generated by 

_ _ _( ) ( ) [ ( ) ( )]v N v O V V RO

k l k l l k l k lh h h h                               (5.4) 

where 
l  is an adaptive weight related to the iteration number,  _ ( )v O

k h  

and indicator I. 

If the update of _ ( )v O

k h  in the last iteration is successful (i.e., I=1), l  

is calculated as 

_

1 2

( )

( )

v O

k l
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h

C C i


 


                                            (5.5) 

where 1C  and 2C  are the nugget and sill of _ ( )v O

k h , and i is the number 

of current iteration. Take the first iteration as an example; l  in (5.5) 

ranges from about 0 to 1 as l increases. 

If the last update is unsuccessful (i.e., I=0), l  takes a smaller value 

for small adjustment of _ ( )v O

k h  (Goovaerts, 2008) 

_

1 2

( )

2( )

v O

k l
l

h

C C i


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
                                           (5.6) 

As the deconvolution proceeds iteratively, the weight l  decreases 

gradually by dividing i  and the adjustment of _ ( )v O

k h  decreases. If the 

current optimal regularized semivariogram _ ( )V RO

k h  is smaller than the 

target coarse spatial resolution semivariogram ( )V

k h , which indicates 

that the corresponding fine spatial resolution semivariogram _ ( )v O

k h  is 

underestimated, an increase is produced in (5.4) for adjustment of 

_ ( )v O

k h . In contrast, if _ ( )V RO

k h  is greater than _ ( )v O

k h , it indicates that 

_ ( )v O

k h  is overestimated and a decrease is produced in (5.4) for _ ( )v O

k h . 
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This flexible adjustment in (5.4) makes _ ( )V RO

k h  approach the target 

( )V

k h  gradually. 

2) Regularization of _ ( )v N

k h . The new fine spatial resolution 

semivariogram _ ( )v N

k h  is convolved to the regularized semivariogram 

_ ( )V RN

k h . 

3) Calculation of the difference between _ ( )V RN

k h  and ( )V

k h .The new 

difference ND  is obtained by calculating the RMSE between the two 

semivariograms. 

4) Determination of a new indicator I. OD  and ND  are compared by 

N OD D   . 

If 0  , it means the update of _ ( )v O

k h  is successful. 

Correspondingly, _ ( )v O

k h  is updated by _ ( )v N

k h , _ ( )V RO

k h  is updated 

by _ ( )V RN

k h , and OD  is updated by ND . Meanwhile, I is set to 1. 

If 0  , it means the update of _ ( )v O

k h  is unsuccessful. In this case, 

_ ( )v O

k h , _ ( )V RO

k h  and OD  are not changed, and I is set to 0. 

The new indicator I is used to guide the update of _ ( )v O

k h  in the next 

iteration (i.e., whether (5.5) or (5.6) is applied). By step 4), the optimal 

semivariogram from the initialization to current iteration is retained and 

the difference D is minimized as the deconvolution proceeds. 

5) Termination of deconvolution. The deconvolution process is stopped 

when one of the following two conditions is met: 

i) The number of iterations exceeds the maximum number H. In this 

study, H was set to 20. 

ii) The change in ND  in comparison with OD  is less than a small 

threshold T (e.g., 0.1% in this paper) for a consecutive three times, i.e., 

O
T

D


                                                    (5.7) 

For all K classes, the abovementioned steps are carried out to produce the fine 

spatial resolution semivariogram sets _ _ _

1 2( ), ( ),..., ( )v O v O v O

Kh h h   , which are used 

as inputs to ICK-based SPM. Figure 5.1 summarizes the whole flowchart of 

deconvolution. As seen from the steps and Figure 5.1, the whole process of 

deconvolution needs no prior spatial structure information. The regularization 
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process links the coarse spatial resolution semivariogram with the fine spatial 

resolution semivariogram, by involving the zoom factor S in (3.4). Therefore, the 

deconvolution approach is able to convert the coarse spatial resolution 

semivariogram to the desired target spatial resolution semivariogram. 
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Figure 5.1. Flowchart describing the process of semivariogram deconvolution. 

 

5.3. Experiments 

In the first two experiments, to avoid errors from soft classification and some 

other processes (e.g., registration) (Xu et al., 2013), and focus solely on the 

performance of SPM, the soft classification results were simulated by degrading the 

fine spatial resolution map with a mean filter. In this way, every S by S fine pixels 

were degraded to a coarse pixel. The third experiment was designed to gain a more 

realistic simulation of the coarse spatial resolution image and consider the 

uncertainty in soft classification. Specifically, a 30 m spatial resolution Landsat 

image was degraded band by band with a degradation factor to generate a coarse 

spatial resolution multispectral image. Soft classification (i.e., spectral unmixing) 

was then implemented to obtain proportion images, which were used as inputs to 

SPM (including the deconvolution process in the proposed method). The hard 

classification result of the 30 m Landsat image was considered as reference for SPM 

evaluation (Atkinson, 2009). 

The proposed ICK method that uses the semivariogram obtained by 
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deconvolution was compared to the original ICK method using fine spatial 

resolution training images. For clarity, we call the proposed method naiive ICK 

(NICK). NICK was also compared with two well-known SPM algorithms, that is, 

PSA (Atkinson, 2005; Makido and Shortridge, 2007; Wang et al., 2012a) and 

SPSAM (Mertens et al., 2006), to validate its advantages in SPM. All experiments 

were tested on an Intel Core i7 Processor at 3.40-GHz with the MATLAB 7.1 

version. PSA was implemented based on simulated annealing and the number of 

iterations was set to 3000. For both ICK and NICK, a neighborhood window with 5 

by 5 coarse pixels was considered for each coarse pixel for reasons of 

computational efficiency, as was done in Boucher and Kyriakidis (2006). 

5.3.1. Experiment 1 

In the first experiment, two land cover maps from the National Land Cover 

Database 2001 (NLCD 2001) were tested. The NLCD 2001 is a raster-based 

land-cover classification with a medium spatial resolution of 30 m over all 50 US 

states and Puerto Rico, which was produced using a set of data layers, including 

multi-season Landsat 5 and Landsat 7 images mostly acquired in 2001, digital 

elevation model-based derivatives and other auxiliary datasets (Jin et al., 2012; 

Homer et al., 2004). Both land cover maps have a ground extent of 18 km by 18 km 

and a size of 600 by 600 pixels. Four land cover classes are presented in the two 

maps: water, urban, agriculture and forest. The first map covers an area in South 

Carolina while the second map an area in Ohio, as shown in Figure 5.2. It can be 

observed that the urban class in the two maps appears mainly as elongated features 

whereas the water class appears mainly as large objects. In the South Carolina map, 

the pixels of the water, urban, agriculture and forest classes occupy 9.74%, 16.27%, 

26.76% and 47.23%, respectively, of the entire image and in the Ohio map, the 

corresponding proportions of the four classes are 6.33%, 23.32%, 45.88% and 

24.47%, respectively. 

The two 30 m spatial resolution maps were degraded with five mean filters, 4 by 

4, 6 by 6, 8 by 8, 10 by 10 and 12 by 12, to simulate the 120 m, 180 m, 240 m, 300 m 

and 360 m coarse spatial resolution proportion images of the four classes. The five 

different spatial resolution proportion images were used as the input for SPM and 

the zoom factor S was correspondingly set to 4, 6, 8, 10 and 12, to restore the land 

cover map at 30 m spatial resolution. 
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(a)                                                                (b) 

 Water  Urban  Agriculture  Forest 

Figure 5.2. Reference land cover maps in the first experiment. (a) The South Carolina map. (b) The 

Ohio map. 

 

We first take the 240 m spatial resolution image as an example for illustration 

and analysis. Figure 5.3 gives the 240 m spatial resolution proportion images 

created with a degradation factor of 8. It can be seen that the mixed pixels occur on 

the boundaries between classes and the commonly existing blurry boundaries 

necessitate SPM techniques. The 30 m fine spatial resolution semivariograms of the 

two areas, which are estimated by deconvolving the coarse spatial resolution 

semivariograms extracted from the proportion images, are shown in Figure 5.4. As 

can be observed from the semivariograms of each class in each coarse spatial 

resolution, the regularized coarse spatial resolution semivariogram (in green) and 

target coarse spatial resolution semivariogram (in blue) are highly similar and 

nearly coincide with each other in each case. This indicates the effectiveness of the 

deconvolution approach. It is worth noting that the nuggets of semivariograms at 

coarse spatial resolution (both regularized and target coarse semivariograms in 

Figure 5.4) are smaller than that of the fine spatial resolution semivariogram. 

Moreover, for several classes, there are slight differences between the nuggets of 

the regularized semivariogram and the corresponding target coarse semivariogram. 

This is because deconvolution is an ill-posed problem and the nugget of the fine 

spatial resolution semivariogram cannot be estimated from only the coarse spatial 

resolution semivariogram (Truong et al., 2014). Additional information or expert 

knowledge on the characteristics of land cover may be a feasible source to solve this 

problem. 
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(a) 

    

(b) 

    

 

0                                   100% 

Figure 5.3. Proportion images of the four classes in the simulated 240 m coarse spatial resolution 

images in experiment 1. From left to right: water, urban, agriculture and forest. (a) South Carolina. (b) 

Ohio. 
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Figure 5.4. The fine spatial resolution semivariogram obtained by deconvolution in experiment 1 

(S=8). The red, green and blue curves denote the fine spatial resolution semivariogram from 

deconvolution, regularized coarse spatial resolution semivariogram and coarse spatial resolution 

semivariogram extracted from the proportion image. (a) South Carolina. (b) Ohio. 

 

Using the estimated fine spatial resolution semivariogram, the class probabilities 

for each sub-pixel were then estimated by the ICK method. Figure 5.5 exhibits the 

estimated ICK-derived probability maps of the four classses for the 240 m spatial 

resolution images in Figure 5.3, based on the fine spatial resolution semivariograms 
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in Figure 5.4. Comparing the maps in Figure 5.5 with Figure 5.3, we can observe 

that the boundaries in Figure 5.5 are much clearer than those presented in Figure 5.3, 

suggesting that NICK is able to provide more detailed texture information than the 

proportion images. 

 

(a) 

    

(b) 

    

 

0                                          1 

Figure 5.5. ICK-derived probability maps of the four classes in experiment 1 (S=8). From left to right: 

water, urban, agriculture and forest. (a) South Carolina. (b) Ohio. 

 

The SPM results of the PSA, SPSAM, ICK and NICK methods for the 240 m 

spatial resolution images of two study areas are shown in Figure 5.6. For ICK-based 

SPM of the two areas, the reference land cover maps in Figure 5.2 were used as 

training images to extract the fine spatial resolution semivariogram. As shown in 

Figure 5.6(a) and Figure 5.6(e), although the distribution of land cover in PSA 

results are smooth, there exist many disconnected and hole-shaped patches, 

especially for the elongated urban class. Examining the SPSAM results, we can find 

many patches and linear artifacts in both resulting maps and this phenomenon is 

particularly obvious for the urban class. The results of NICK are highly similar to 

those of ICK. Compared to PSA and SPSAM, both of them produce more 

continuous SPM results, which are more in agreement with the reference maps in 

Figure 5.2. This can be illustrated well by the restoration of the urban class in the 

ICK and NICK results. 
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(a)                                                             (b) 

  
(c)                                                             (d) 

  
(e)                                                             (f) 

  
(g)                                                             (h) 

Figure 5.6. SPM results in experiment 1 (S=8). (a) and (e) PSA results. (b) and (f) SPSAM results. (c) 

and (g) ICK results. (d) and (h) NICK results. (a)-(d) South Carolina results. (e)-(h) Ohio results. 
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The performances of three methods for the 240 m spatial resolution images of 

two areas are also evaluated quantitatively by the classification accuracy of each 

class and the overall accuracy in terms of the percentage of correctly classified 

pixels (PCC), as listed in Table 5.1. Note the non-mixed pixels were not considered 

in the accuracy statistics. Checking the accuracy for each area in Table 5.1, the 

accuracy of two geostatistics-based SPM approaches (i.e., ICK and NICK) is almost 

the same as well as the accuracy for each class and both of them are superior to PSA 

and SPSAM. In the South Carolina area, for NICK, the classification accuracy of 

the urban class is 62.02%, around 3% and 1% greater than that of PSA and SPSAM; 

The classification accuracy of the agriculture class is 63.34%, with gians of around 

1.5% over PSA and SPSAM. With respect to the overall accuracy, PSA produces a 

PCC of 67.54% while SPSAM produces a PCC of 67.77%. NICK increases the 

PCC by 1.2%. Focusing the results for the Ohio area, ICK and the proposed NICK 

again achieve a similar accuracy for each class, which is higher than for PSA and 

SPSAM. The PCC of PSA and SPSAM increases from about 75.5% to76.41% for 

the two geostatistics-based SPM methods. 

 

Table 5.1 Accuracy (%) of SPM methods for the South Carolina and Ohio areas in experiment 1 

(S=8) 

 South Carolina area Ohio area 

 PSA SPSAM ICK NICK PSA SPSAM ICK NICK 

Water 80.16 80.34 81.06 81.07 75.58 76.60 77.22 77.20 

Urban 59.15 61.05 62.02 62.02 72.68 72.84 73.30 73.31 

Agriculture 61.69 61.90 63.30 63.34 79.32 79.52 80.33 80.33 

Forest 72.54 72.19 73.40 73.42 72.14 71.77 72.93 72.94 

PCC 67.54 67.77 68.97 68.99 75.52 75.58 76.41 76.41 

 

In SPM, within each coarse pixel, the class labels of 2S  sub-pixels need to be 

predicted and the performance of NICK is affected by the zoom factor S. Likewise, 

the four SPM methods are tested for the other four zoom factors, 4, 6, 10 and 12. 

The PCC of the four methods for all five zoom factors is shown in the bar chart in 

Figure 5.7. It is worth noting that as S increases, the accuracy of all four methods 

decreases. Consistent with the results in Table 5.1, in ten cases, NICK produces 

almost identical accuracy to ICK and higher PCC than PSA and SPSAM, which 

further validates the effectiveness of deconvolution of coarse spatial resolution 

semivariograms from the proportion images for ICK-based SPM. 
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(a)                                                                             (b) 

Figure 5.7. PCC (%) of the four SPM methods in relation to zoom factor S in two areas. (a) South 

Carolina. (b) Ohio. 

 

5.3.2. Experiment 2 

In the second experiment, two fine spatial resolution (0.61 m) QuickBird images 

were used to test the NICK approach. The two QuickBird images contain 480 by 

480 pixels and three multispectral bands (RGB), and were acquired in August 2005. 

One image covers the suburb of Xuzhou City, China while the other image covers 

the urban center area of that city (Zhang et al., 2014). The two images were 

classified with an algorithm that first integrated spatial features of pixel shape 

feature set, grey level co-occurrence matrix and Gabor transform with spectral 

information and then used a support vector machine for classification. Each 

generated land cover map contains seven classes: shadow, water, road, tree, grass, 

roof and bare soil. Figure 5.8 shows the two original QuickBird images and the 

corresponding classified land cover maps. 

The land cover maps in Figure 5.8 were degraded with an 8 by 8 mean filter, 

producing two 5 m (relatively) coarse spatial resolution images, as shown in Figure 

5.9. The task of SPM in this experiment was to reproduce the two 0.61 m land cover 

maps from the simulated 5 m proportion images of seven classes. Figure 5.10 shows 

the 0.61 m fine spatial resolution semivariograms of the two areas that were 

estimated by deconvolution. Likewise, the regularized coarse spatial resolution 

semivariogram and target coarse spatial resolution semivariogram are very similar 

to each other in each case. Figure 5.11 gives the SPM results of the PSA, SPSAM, 

ICK and NICK methods. The fine spatial resolution semivariograms for ICK were 

extracted from the reference maps in Figure 5.8. As can be observed from both PSA 

results, the land cover is generally over-compact, leading to locally smooth and 

hole-shaped artifacts. With respect to two SPSAM results, some disconnected and 

cone-shaped patches exist, which conflicts with the spatial characteristics in Figure 

5.8. In the ICK and NICK results, this phenomenon is alleviated. As an example, in 
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Figure 5.11(c), Figure 5.11(d), Figure 5.11(g), and Figure 5.11(h), the road class is 

more continuous and the boundary of the roof class is smoother. 

 

(a) 

  
(b) 

  

Shadow  Water  Road  Tree  Grass  Roof  Bare soil 

Figure 5.8. Two QuickBird images used in experiment 2. Left: Original images; Right: Classified 

land cover maps. (a) Xuzhou suburb area. (b) Xuzhou urban center area. 

 

(a) 

 

(b) 

 

 
0                                    100% 

Figure 5.9. Proportion images of the seven classes in the simulated 5 m coarse spatial resolution 

images. From left to right: shadow, water, road, tree, grass, roof and bare soil. (a) Xuzhou suburb area. 

(b) Xuzhou urban center area. 
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Table 5.2 gives the classification accuracy of each class as well as the PCC for the 

four SPM methods. Again, the non-mixed pixels were not considered in the 

accuracy statistics. Regarding PSA, it produces higher accuracy for the shadow, 

road and tree classes and greater PCC than the ICK and NICK methods in the 

Xuzhou suburb area. In the Xuzhou urban center area, although PSA has higher 

accuracy for the water and road classes, the PCC of PSA is lower than for the ICK 

and NICK methods. Checking the values for SPSAM, it has higher accuracy for the 

bare soil class in the Xuzhou suburb area and the grass class in the Xuzhou urban 

center area than ICK and NICK, but the classification of the other six classes is less 

accurate. The overall accuracy of ICK and NICK is greater than that of SPSAM. 

Moreover, ICK and NICK have comparable accuracy for all seven classes. 
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Figure 5.10. The fine spatial resolution semivariogram obtained by deconvolution in experiment 2 

(S=8). The red, green and blue curves denote the fine spatial resolution semivariogram from 

deconvolution, regularized coarse spatial resolution semivariogram and coarse spatial resolution 

semivariogram extracted from the proportion image. (a) Xuzhou suburb area. (b) Xuzhou urban 

center area. 
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(a)                                                             (b) 

  
(c)                                                             (d) 

  
(e)                                                             (f) 

  
(g)                                                             (h) 

Figure 5.11. SPM results in experiment 2 (S=8). (a) and (e) PSA results. (b) and (f) SPSAM results. 

(c) and (g) ICK results. (d) and (h) NICK results. (a)-(d) Xuzhou suburb area results. (e)-(h) Xuzhou 

urban center area results. 
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Table 5.2 Accuracy (%) of SPM methods for the two Xuzhou areas in experiment 2 (S=8) 

 Xuzhou suburb area Xuzhou urban center area 

 PSA SPSAM ICK NICK PSA SPSAM ICK NICK 

Shadow 54.91 50.92 53.26 53.13 36.03 36.30 38.27 37.99 

Water 90.90 91.04 91.20 91.25 85.93 85.34 85.26 85.29 

Road 77.34 74.24 75.73 75.74 64.41 61.98 62.20 62.23 

Tree 73.77 71.93 73.41 73.41 77.70 77.20 77.75 77.80 

Grass 70.63 70.76 71.70 71.71 67.18 69.26 68.75 68.75 

Roof 73.63 72.79 73.84 73.81 80.71 80.64 81.01 80.98 

Bare soil 75.92 78.17 77.52 77.54 59.89 61.71 62.05 62.05 

PCC 73.37 71.88 73.12 73.10 74.09 73.84 74.30 74.28 

 

5.3.3. Experiment 3 

A 30 m spatial resolution multispectral image acquired by the Landsat-7 

enhanced thematic mapper plus (ETM+) sensor in August 2001 was used in this 

experiment. The image covers an area in the Liaoning Province, China and has a 

size of 400 by 400 pixels. Bands 1, 2, 3, 4, 5, and 7 of the Landsat image were used 

in the experiment. Four land cover classes were identified and we denote them as 

C1, C2, C3 and C4. The false color image is shown in Figure 5.12(a). The 30 m hard 

classified land cover map in Figure 5.12(b) was used as reference for SPM 

evaluation, which was generated by a maximum likelihood classification of the 30 

m multispectral image (with an overall accuracy of over 90%). 

 

  

(a)                                                                (b) 

 C1  C2  C3  C4 

Figure 5.12. Landsat images used in experiment 3. (a) Original image (Bands 4, 3 and 2 as RGB). (b) 

Classified land cover map. 
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The 30 m multispectral image was degraded via an 8 by 8 pixel mean filter to 

simulate an image with coarse (240 m) spatial resolution, comparable to the spatial 

resolution of medium spatial resolution systems such as Moderate Resolution 

Imaging Spectroradiometer (MODIS). Fully constrained least squares linear 

spectral mixture analysis (Heinz and Chang, 2001; Wang et al., 2013) was 

employed for spectral unmixing. The predicted proportion images of the four 

classes are shown in Figure 5.13. Figure 5.13 is compared to the reference 

proportions (obtained by degrading Figure 5.12(b) with an 8 by 8 mean filter) by 

means of the RMSE. The values for C1, C2, C3 and C4 are 0.1930, 0.1551, 0.0555 

and 0.1091, respectively, which are relatively small errors. 

 

    

(a)                              (b)                               (c)                              (d) 

 

0                                    100% 

Figure 5.13. Proportion images of the four classes obtained by spectral unmixing of the 240 m coarse 

images in experiment 3. (a) C1. (b) C2. (c) C3. (d) C4. 
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Figure 5.14. The fine spatial resolution semivariogram obtained by deconvolution in experiment 3 

(S=8). The red, green and blue curves denote the fine spatial resolution semivariogram from 

deconvolution, regularized coarse spatial resolution semivariogram and coarse spatial resolution 

semivariogram extracted from the proportion image. 

 

Figure 5.14 exhibits the deconvolved fine spatial resolution (30 m) 

semivariograms, along with the regularized coarse spatial resolution (240 m) 

semivariograms and target coarse semivariograms (240 m) extracted from Figure 

5.13. For each class, the 240 m regularized semivariogram and target coarse 

semivariogram are very similar to each other. For the four classes, the differences 



 

139 

 

between the deconvolved semivariograms and reference fine spatial resolution 

semivariograms extracted from Figure 5.12(b) are quantified by the RMSE, and the 

values are 0.0257, 0.0055, 0.0022 and 0.0046, suggesting that the deconvolved 

semivariograms are highly similar to the reference semivariograms. The high 

similarity is attributed mainly to the good semivariogram reconstruction ability of 

the deconvolution approach as well as the small errors in spectral unmixing in this 

experiment. 

 

  

(a)                                                                (b) 

  

(c)                                                                (d) 

Figure 5.15. SPM results in experiment 3 (S=8). (a) PSA result. (b) SPSAM result. (c) ICK result. (d) 

NICK result. 

 

The SPM results of PSA, SPSAM, ICK and NICK methods (S=8) are provided in 

Figure 5.15. Again, ICK utilized the fine spatial resolution semivariograms 

extracted from the reference map in Figure 5.12(b). Similar to previous experiments, 

the PSA result appears to be locally smooth and the SPSAM result contains 

cone-shaped patches. Generally, the ICK and NICK results are visually more in 

agreement with the reference distribution of land cover in Figure 5.12(b). Table 5.3 
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lists the accuracy of the four SPM methods. Note that due to the inherent 

uncertainty in soft classification, in this experiment, all coarse pixels (including 

both mixed and non-mixed pixels) in Figure 5.13 were included in the accuracy 

statistics. PSA produces the greatest accuracy (i.e., 72.16%) for class C4 while 

SPSAM produces the greatest accuracy (i.e., 80.67%) for class C3. However, the 

overall accuracy in terms of PCC of ICK and NICK is greater than PSA and 

SPSAM. 

 

Table 5.3 Accuracy (%) of SPM methods in experiment 3 (S=8) 

 PSA SPSAM ICK NICK 

C1 61.85 61.71 62.01 62.00 

C2 86.75 86.62 86.91 86.91 

C3 80.17 80.67 80.43 80.38 

C4 72.16 70.30 71.21 71.18 

PCC 77.17 77.01 77.30 77.29 

 

5.4. Discussion 

5.4.1. Computing efficiency 

The computing efficiency is an important factor for SPM algorithm evaluation. 

Table 5.4 lists the computing time of the four methods in each experiment. The 

computing burden of SPM algorithms is related to the image size and number of 

classes in the image. In the three experiments, SPSAM took the least time, as it is 

non-iterative and is based on simple multiplication. For PSA in each experiment, it 

took several minutes to converge to a satisfactory result. Both ICK and NICK are 

faster than PSA and need less than one minute in each experiment. Compared to 

ICK, NICK requires more time as it involves the extra deconvolution process. 

 

Table 5.4 Computing time of SPM methods in experiments 

 Size of 

coarse image 

Zoom 

factor 

Number 

of classes 

PSA SPSAM ICK NICK 

 Deconvolution ICK Total 

Experiment 1 75×75 8 4 300s 15s 40s 17s 40s 57s 

Experiment 2 60×60 8 7 210s 6s 50s 14s 50s 54s 

Experiment 3 50×50 8 4 130s 2s 27s 16s 27s 43s 
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5.4.2. McNemar’s test 

In this section, McNemar’s test was used to show the statistical significance in 

accuracy for different SPM methods. The McNemar’s test results for the five test 

images are shown in Table 5.5, where 12f  are the number of pixels that are correctly 

classified in result 1 but incorrectly classified in result 2 and 
21f  vice versa.. Using 

the 95% confidence level, the difference between two SPM results is considered to 

be statistically significant if Z >1.96. In each image, all pixels are included in the 

statistics for calculation of the Z values. As can be observed from the values, ICK 

and NICK are generally able to produce more statistically significant SPM results 

than PSA and SPSAM. As for the comparison between the ICK and NICK results, 

their differences are considered to be statistically insignificant in the experiments. 

 

Table 5.5 McNemar’s test for SPM methods in experiments 

 Classifier 

1 

Classifier 

2 

f12 f21 Z12 

 

 

South 

Carolina 

NICK PSA 33309 28705 18.49 

NICK SPSAM 25672 21799 17.78 

NICK ICK 1249 1180 1.40 

ICK PSA 33529 28994 18.14 

ICK SPSAM 25785 21981 17.41 

SPSAM PSA 34049 33318 2.82 

 

 

 

Ohio 

NICK PSA 21487 19133 11.68 

NICK SPSAM 16579 14386 12.46 

NICK ICK 174 168 0.32 

ICK PSA 21496 19148 11.65 

ICK SPSAM 16634 14447 12.41 

SPSAM PSA 21693 21532 0.77 

 

 

Xuzhou 

suburb 

NICK PSA 15164 15653 -2.79 

NICK SPSAM 12841 10561 14.90 

NICK ICK 227 250 -1.05 

ICK PSA 15139 15605 -2.66 

ICK SPSAM 12825 10522 15.07 

SPSAM PSA 15414 18183 -15.11 

 

 

Xuzhou 

urban 

NICK PSA 16929 16569 1.97 

NICK SPSAM 11918 11075 5.56 

NICK ICK 611 655 -1.24 

ICK PSA 16906 16502 2.21 

ICK SPSAM 11923 11036 5.85 

SPSAM PSA 17020 17503 -2.60 

 

 

 

Liaoning 

NICK PSA 9342 9153 1.39 

NICK SPSAM 7217 6777 3.72 

NICK ICK 45 58 -1.28 

ICK PSA 9344 9142 1.49 

ICK SPSAM 7213 6760 3.83 

SPSAM PSA 9651 9902 -1.80 
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5.4.3. Difference between the semivariograms used in 

NICK and ICK 

NICK does not need training images and uses the semivariogram obtained by 

deconvolution, based on the input proportion images for SPM. As mentioned in the 

introduction, the spatial structure information used in ICK-based SPM should be 

defined at the target spatial resolution and be representative of the study area for 

SPM. In Section 5.2.2, it was demonstrated that deconvolution provides a suitable 

means of converting the coarse spatial resolution semivariogram to the desired fine 

spatial resolution semivariogram. Thus, in the example given, the mis-match 

between the desired spatial resolution of the target semivariogram and the coarse 

spatial resolution of the available data was addressed by NICK. This necessitates a 

discussion of how the spatial structure characterized by the deconvolved fine spatial 

resolution semivariogram matches that of the reference fine spatial resolution 

semivariogram. This was investigated by analyzing the differences between the two 

types of semivariograms, measured by the RMSE. In the experiments, the 

deconvolved semivariogram was used in NICK while the reference semivariogram 

was used in ICK. 

The South Carolina and Ohio maps were used for the analysis. The RMSE values 

for five zoom factors (i.e., S=4, 6, 8, 10 and 12) and four classes in the two areas are 

shown in Figure 5.16. The RMSE between the two types of semivariograms 

increases in general as S increases, because the uncertainty in deconvolution 

increases correspondingly. Nevertheless, the RMSE values presented in the figure 

are not very large, and are very small for small zoom factors. For the South Carolina 

map, most of the values are less than 0.05 and for the Ohio map, the values are less 

than 0.02 for the urban, agriculture and forest classes. This indicates a relatively 

high degree of similarity between the two types of semivariograms. Hence, the 

spatial structure of classes characterized by the deconvolved fine spatial resolution 

semivariograms may be considered to be representative of the study area, especially 

for a small zoom factor in the experiment. 

As can be found from the PCC of ICK and NICK, the two methods have similar 

accuracy. The accuracy of the two ICK-based SPM methods is related mainly to 

class probability estimation, which is determined by two parts: proportions and 

weights that are calculated based on the semivariogram. In ICK and NICK, the 

proportions are exactly the same, since they are performed on the same input coarse 
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spatial resolution images. With respect to the two sets of weights in the ICK and 

NICK methods, they are derived from the semivariograms obtained by 

deconvolution and those extracted from the fine spatial resolution training images 

(reference land cover maps in the experiments), respectively. The two types of 

semivariograms used in ICK and NICK are close to each other, as can be found 

from Figure 5.16 and as discussed above. The similar accuracy of the two methods 

in the experiments is, thus, attributed to the same proportions and similar 

semivariograms used. 

 

       

 

(a)                                                                           (b) 

Figure 5.16. RMSE between the fine spatial resolution semivariogram estimated by deconvolution 

and that extracted from fine spatial resolution training images. (a) South Carolina. (b) Ohio. 

 

5.4.4. Characteristics of NICK 

In Section 3.1.1, it was mentioned that the ICK-based SPM method holds several 

advantages. Few parameters are involved in this model and it is non-iterative as the 

probabilities of class occurrence in sub-pixels are predicted by solving a system of 

equations via ICK. NICK has the same probability calculation process as ICK and, 

thus, the same benefits. The experimental results show that NICK consistently 

produces comparable SPM accuracy to ICK, and higher accuracy than the 

well-known SPSAM method. The difference between the original ICK and the 

proposed NICK method is the means of acquiring the required semivariogram. The 

acquisition of the semivariogram for NICK is realized by mining fully the available 

information in the coarse spatial resolution proportion images and does not require 

prior spatial structure information or training images. The deconvolution process in 

NICK is iterative and introduces several parameters, such as the number of 

iterations and threshold for the stopping condition. Therefore, the introduced 

iteration process and parameters are the cost of not using prior spatial structure 
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information for NICK. Nevertheless, we can conclude that NICK inherits the 

advantage of ICK in terms of SPM accuracy, and more importantly, extends ICK to 

cases where the prior spatial structure information is unavailable. For these reasons, 

the newly developed geostatistics-based SPM method has great potential in real 

applications. 

5.5. Summary 

This chapter presents a NICK-based SPM method, in which the semivariogram 

used for ICK-derived probability prediction is obtained by deconvolving the 

semivariogram extracted from the input coarse spatial resolution proportion images, 

rather than additional fine spatial resolution training images as in the original ICK 

method. Experimental results reveal that it is feasible to estimate the fine spatial 

resolution semivariogram by deconvolution for ICK-based SPM. The 

semivariogram observed at a coarse spatial resolution can be converted to the one 

required at the target fine spatial resolution such as to characterize the spatial 

structure of land cover, representative of the study area. Tested with three groups of 

remote sensing images, the results of the new ICK method were found to have 

comparable SPM accuracy to the original ICK method. Thus, the proposed method 

enables the application of ICK in cases where no prior spatial structure information 

exists. 
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6. STHSPM for fast sub-pixel 

resolution change detection 

(This chapter is based on Wang et al. (2015b)) 

 

6.1. Introduction 

Due to rapid changes on the Earth’s surface, it is important to perform CD at a 

fine spatial and fine temporal resolution. However, remote sensing images with 

both fine spatial and temporal resolution are commonly not available or where 

available, may be expensive to obtain. This chapter attempts to achieve fine spatial 

and temporal resolution land cover CD with a new computer technology based on 

SPM. The objective of this chapter was to develop fast SPM algorithms (i.e., 

STHSPM algorithms) for sub-pixel resolution CD. For the first time, five fast 

STHSPM algorithms, including bilinear interpolation-, bicubic interpolation-, 

SPSAM-, Kriging-, and radial basis function (RBF, see Chapter 4) 

interpolation-based SPM methods, are proposed for fine spatial and temporal 

resolution CD. Besides the low computational burden, these five algorithms also 

have the advantage of not requiring prior class information on spatial structure. 

Similar to spatiotemporal fusion, in this chapter, the aforementioned five fast 

STHSPM algorithms for sub-pixel CD are developed based on the availability of 

fine spatial, but coarse temporal resolution information. Unlike spatiotemporal 

fusion, however, the objective of the five STHSPM algorithms was to generate fine 

spatial resolution sub-pixel land cover maps, which were then compared to monitor 

land cover changes at both fine spatial and temporal resolution. We consider 

borrowing information from the thematic land cover map of the known fine spatial 

resolution image, that is, FRM (Ling et al., 2011), to decrease the uncertainty in 

SPM of coarse resolution images and further increase the accuracy of CD.  

The main contributions of this chapter are summarized as follows. 

1) A framework of fast STHSPM algorithms is proposed for sub-pixel resolution 

CD. The fast STHSPM algorithm uses fine spatial resolution thematic 

information from an FRM for SPM of coarse images. 

2) Different from Ling et al. (2011) that only used FRM in the “former FRM and 



 

146 

 

latter coarse image” case, the FRM is also considered in the “former coarse 

image and latter FRM” case and sub-pixel resolution CD between coarse 

images. 

6.2. Methods 

6.2.1. Incorporating an FRM in SPM and sub-pixel 

resolution CD 

As was done in Foody and Doan (2007), the sub-pixel resolution CD can be 

realized straightforwardly by SPM of multitemporal coarse spatial resolution 

images of the same area first and then comparing the generated sub-pixel maps to 

monitor changes. However, the SPM problem is always under-determined, with 

many multiple plausible solutions that can lead to an equally coherent recreation of 

the input coarse proportion image. Applying SPM to CD without any auxiliary 

information will result in many errors in the form of noise. In fact, for SPM of a 

single date image, the accuracy can be enhanced by borrowing information from 

images before it and after it in time (Atkinson, 2013). Such a scheme would be 

helpful to separate real changes from noise. Some studies demonstrated how to 

borrow information from coarse spatial resolution time-series images to enhance 

SPM (Ling et al., 2010; Muad and Foody, 2012b; Wang and Wang, 2013). Those 

studies, however, focused on enhancing SPM and were conducted with the 

assumption that there are no changes between the utilized coarse spatial resolution 

images. 

Ling et al. (2011) presented a method on using FRM to enhance sub-pixel 

resolution CD. In that study, however, only the historical FRM case was considered 

and also the sub-pixel resolution CD was implemented between different spatial 

resolution images (e.g., former Landsat and latter MODIS images). More 

importantly, different from the iterative PSA in Ling et al. (2011), non-iterative and 

fast sub-pixel resolution CD algorithms are proposed in this chapter. 

This chapter extends the utilization of FRM to the following two cases. 

1) The data acquisition date of the FRM is after that of the coarse spatial 

resolution image. Sometimes, users want to detect changes from a date earlier 

than that of the FRM and only a coarse spatial resolution image is available on 

that date. It is, therefore, necessary to develop methods for SPM of former 

coarse spatial resolution images with the aid of a latter FRM. 
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2) Sub-pixel resolution CD is implemented between images with the same coarse 

spatial resolution and the SPM results of both coarse images are obtained with 

the aid of the FRM. For CD during a certain period, on both the start and end 

days, there may be only coarse spatial resolution images. To detect changes at 

fine spatial resolution during that period necessitates the construction of SPM 

methods for those coarse resolution images. 

The core idea of enhancing sub-pixel resolution CD with an FRM is to use the 

spatial distribution of sub-pixel classes in the FRM to modify the SPM results of 

coarse spatial resolution images on other dates. Specifically, the spectral 

unmixing-derived class proportion of each class within each coarse pixel is 

compared to the corresponding one (obtained by degradation) in the available FRM. 

According to the differences in the proportions, some locations at sub-pixel 

resolution are determined to be changed or unchanged for the class and 

correspondingly, some sub-pixels are considered to belong or not belong to the 

class. 

Suppose jP  ( 1,2,...,j M , M is the number of pixels in the coarse image) is a 

coarse pixel, and ( )k jF P  is the coarse proportion of class k ( 1,2,...,k K , K is the 

number of land cover classes in the study area) for pixel jP . Let S (S>1) be the 

spatial resolution ratio between the coarse image and the FRM. The steps of 

incorporating the FRM in SPM are given below. Meanwhile, an example is 

provided in Figure 6.1 to facilitate the illustration. In Figure 6.1, a single coarse 

pixel and land cover information for class k is considered. 

1) The FRM is degraded via an S by S mean filter (i.e., every S by S fine pixels are 

degraded to a coarse pixel) to synthesize the K coarse proportion images and 

the proportion for class k at pixel jP , denoted as _ ( )k H jF P . 

2) The differences in proportions ( )k jP  are calculated 

_( ) ( ) ( )k j k j k H jP F P F P                                       (6.1) 

3) The changed and unchanged sub-pixel locations for each class are determined. 

The following three cases are taken into consideration. 

a) If ( ) 0k jP  , there is no change for class k, and the spatial distribution 

of class k within jP  in the coarse image is the same as that in FRM (e.g., the 

gray area in Figure 6.1). 

b) If ( ) 0k jP  , the locations of fine pixels for class k in the FRM (e.g., the 
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gray area in Figure 6.1) are still assigned to class k in the coarse image, and 

some sub-pixels at the remaining locations are changed to class k. 

c) If ( ) 0k jP  , all sub-pixels for class k in the coarse image are within the 

area for class k in the FRM, and some sub-pixels within that area are changed 

to other classes. 

4) The abovementioned steps are implemented for all M coarse pixels and all K 

classes in the coarse image to generate the SPM result. 

 

Degradation Spectral

unmixing

Proportion 

of class k: 

Fk_H

Proportion 

of class k: 

Fk

?

_k k k HF F  

No 

change 

for 

class k

0k 0k  0k 

Some sub-

pixels outside 

the gray area 

are changed to 

class k

Some sub-

pixels within 

the gray area 

are changed to 

other classes

FRM at t0

(class k in 

gray)

Coarse 

image

at t1

 

Figure 6.1. Illustration of incorporating an FRM in SPM, where a single coarse pixel and class k is 

considered. 

 

As seen from Figure 6.1 and the steps mentioned above, the available FRM can 

be applied to SPM of the coarse image that is acquired either before or after the 

FRM. Moreover, the FRM can be used for SPM of multitemporal coarse images 

(see Figure 6.2). Finally, the generated SPM results can be compared for the 

purpose of fine spatial and temporal resolution CD. 

The critical step in utilizing an FRM in SPM is to determine which sub-pixels at 

the remaining locations are changed to class k ( 1,2,...,k K ) when ( ) 0k jP  , and 

which sub-pixels that are within the area for class k in the FRM are changed to other 

classes when ( ) 0k jP  . In this chapter, those sub-pixels are found using the five 

fast STHSPM algorithms. 
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Figure 6.2. CD between multitemporal coarse images with FRM. 

 

6.2.2. Fast STHSPM algorithms 

The STHSPM algorithm is a type of SPM algorithm that first estimates the soft 

class values and then allocates a hard class to each sub-pixel. This chapter focuses 

on five non-iterative and fast STHSPM algorithms: bilinear interpolation, bicubic 

interpolation, SPSAM, Kriging and RBF interpolation methods. 

Similar to Section 6.2.1, S denotes the zoom factor for SPM (i.e., each coarse 

pixel is divided into S by S sub-pixels). Suppose ,j ip  is the sub-pixel within coarse 

pixel jP , and ,( )k j iF p  ( ,0 ( ) 1k j iF p  ) is the soft class value for class k at 

sub-pixel ,j ip . With the coarse proportion images as input, the task of soft class 

value estimation is to estimate  2

,( ) =1,2,..., ; 1,2,..., ; 1,2,...,k j iF p i S j M k K   at 

the target fine spatial resolution. The soft class values are estimated based on the 

assumption of spatial dependence as described above for the STHSPM algorithms. 

The preliminary soft attribute values obtained by each of the five STHSPM 

algorithms are normalized to fall within [0, 1]. 

Let ,( )k j iB p  be the binary class value 

 ,
,

1, if sub-pixel  belongs to class 
( )

0, otherwise
j i

k j i

p k
B p                      (6.2) 

For a particular coarse pixel, say jP , the number of sub-pixels for class k, ( )k jE P , 
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is calculated by 

2( ) round( ( ) )k j k jE P F P S                                      (6.3) 

where round() is a function that takes the integer nearest to . The sum of the 

numbers of sub-pixels for all K classes is 2S . The hard class allocation step of the 

STHSPM algorithm aims to predict 

 2

,( ) =1,2,..., ; 1,2,..., ; 1,2,...,k j iB p i S j M k K  , according to the soft class values 

and class proportions constraint in (6.3). The UOC approach proposed in Section 

2.1 is employed. 

6.2.3. STHSPM algorithm-based CD with an FRM 

For the UOC-based class allocation method in the STHSPM algorithm, a 

sub-pixel map of each class is generated in turn and these maps are integrated to 

produce the SPM result. Suppose that the soft class values have already been 

estimated by any of the five STHSPM algorithms. Using an FRM as auxiliary 

information in STHSPM, for class k ( 1,2,...,k K ), the sub-pixel map is predicted 

by comparison of the soft class values at the remaining locations (e.g., outside the 

gray area in Figure 6.1) when ( ) 0k jP  , and the soft class values within the area 

for class k in the FRM (e.g., the gray area in Figure 6.1) when ( ) 0k jP  . 

Sub-pixels with larger soft class values for class k are more likely to be allocated to 

class k. During the process, two constraints imposed inherently by the SPM problem 

need to be satisfied: 

1) Each sub-pixel should be assigned to only one class. 

2) The number of sub-pixels for each class should be consistent with the coarse 

proportion data (see (6.3)). 

To meet the abovementioned constraints, two adjustments, both of which are 

essential for UOC-based class allocation when using an FRM, are presented. 

Adjustment I. Within a coarse pixel, besides ( ) 0k jP  , sometimes there are 

other classes (e.g., class k ) with ( ) 0jk
P


  . Similarly, the corresponding 

locations in the FRM for class k  should still be assigned to this class in the coarse 

image. For the ( ) 0k jP   case, at the remaining locations, the sub-pixels with the 

largest soft class values for class k may be those which should be assigned to class 

k . Figure 6.3 gives an example to illustrate this issue. Let us consider two classes 
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(i.e., red and blue) within a single coarse pixel, and 
4

36
Red   and 0Blue  . The 

red class is assumed to be visited before the blue class. Figure 6.3(a) is the FRM 

map for the two classes. By zooming with S=6, four sub-pixels should be allocated 

to the red class outside the red area when using the FRM. According to the soft class 

values in Figure 6.3(b), the four sub-pixels with the largest values (marked in red) 

are assigned to the red class. As 0Blue  , however, all six blue sub-pixels should 

not change and should still be retained for the blue class during class allocation for 

the red class. In this case, the two sub-pixels with values 0.9 and 0.95 should not be 

assigned to the red class. To avoid such conflict, adjustment I is applied: the soft 

class values for the red class in the blue area need to be suppressed to be a very 

small value (any value less than 0) to ensure that the blue sub-pixels will not be 

allocated to the red class during class allocation. Meanwhile, the soft class values 

for the red class in the red area can also be modified to a very large value (any value 

greater than 1). After the adjustment, as seen in Figure 6.3(c), no blue pixels are 

allocated to the red class, but another two sub-pixels with values 0.65 and 0.6 

(marked in red) are allocated instead. 
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(a)                                              (b)                                              (c) 

Figure 6.3. An example to illustrate the adjustment (adjustment I) of soft class values to avoid class 

allocation conflict between classes. (a) FRM map for the blue and red classes. (b) Class allocation 

result for the red class without adjustment I. (c) Class allocation result for the red class with 

adjustment I. 

 

Adjustment II. Another example is provided in Figure 6.4 to facilitate description. 

Again, the red and blue classes within a single coarse pixel are considered, and 

4

36
Red   and 

1

36
Blue   . Assume that the calculated Moran index of the red 

class is larger than that of the blue class and the red class should be visited before 

the blue class. With S=6, four sub-pixels should be allocated to the red class outside 
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the red area in Figure 6.4(a). Figure 6.4(b) marks the four soft class values of the 

four added sub-pixels for the red class. However, 
1

36
Blue    means that of the six 

blue sub-pixels, five of them should still belong to the blue class. Therefore, at least 

one of the two sub-pixels with values 0.9 and 0.95 should not be assigned to the red 

class. To address this issue, adjustment II is applied: any class (e.g., class k ) with 

( ) 0jk
P


   needs to be visited before the class  (e.g., class k) with ( ) 0k jP  . 

Figure 6.4(c) shows the class allocation result for the red class, where the sub-pixel 

with value 0.95 is assumed not to belong to the blue class (according to the soft 

class values for the blue class) and the four added sub-pixels for the red class are 

marked in red. 
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(a)                                              (b)                                              (c) 

Figure 6.4. An example to illustrate the adjustment (adjustment II) of visiting order of classes. (a) 

FRM map for the blue and red classes. (b) Class allocation result for the red class without adjustment 

I. (c) Class allocation result for the red class with adjustment II. 

 

6.2.4. Implementation of STHSPM algorithm-based CD 

with an FRM 

The implementation steps of the proposed STHSPM-based algorithm for CD 

with an FRM are given here. Let us first take the former FRM (at t0) and latter 

coarse image (at t1) case as an example. 

Step 1) Spectral unmixing is conducted on the coarse image at t1, and the outputs 

are a set of coarse proportion images of classes (i.e., 

 ( ) 1,2,..., ; 1,2,...,k jF P j M k K  ). 

Step 2) The coarse proportion images are downscaled with any of the five 

STHSPM algorithms, and the outputs are soft class values at the target 

fine spatial resolution (i.e., 
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 2

,( ) =1,2,..., ; 1,2,..., ; 1,2,...,k j iF p i S j M k K  ). 

Step 3) Using the available FRM, UOC-based class allocation for the STHSPM 

algorithm is implemented to produce a SPM result at t1, where 

Adjustment I and Adjustment II are essential. 

Step 4) The predicted SPM result at t1 is compared with the FRM at t0 in terms of 

class labels for CD analysis. 

For the former coarse image (at t0) and latter FRM (at t1) case, the steps are the 

same as listed above. With respect to the sup-pixel resolution CD between coarse 

images at, say, t1 and t2, the FRM at another time (e.g., t0) is used for SPM of both 

coarse images independently, according to the abovementioned steps. The 

generated SPM results at t1 and t2 are finally compared for CD, as shown in Figure 

6.2. 

The pseudocode of UOC-based class allocation for STHSPM algorithm with an 

FRM is given below. Figure 6.5 exhibits an example of the whole flowchart of the 

proposed STHSPM algorithm with an FRM. The whole process does not involve 

any iteration. 

 

FRM

3 1

36 36

2 4

36 36

Red Green

Blue Yellow

    

    

Red: add 3 sub-pixels

Green: reduce 1 sub-pixels

Blue: add 2 sub-pixels

Yellow: reduce 4 sub-pixels

Zoom by S=6

Proportion decreased classes 

(Visiting order: Green, Yellow)

Proportion increased classes 

(Visiting order: Red, Blue)

Integration

SPM result

Class allocation (Visiting order: Red, Green, Blue, Yellow)

 

Figure 6.5. An example of the whole flowchart of incorporating an FRM in STHSPM, where the deep 

pink sub-pixels are those not allocated to the green or yellow class. 
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Algorithm: UOC-based class allocation for STHSPM algorithm with an FRM 

Inputs: FRM; Class proportions  ( ) 1,..., ; 1,...,k jF P j M k K  ; 

Soft class values  2

,( ) =1,..., ; 1,..., ; 1,...,k j iF p i S j M k K   

Define a visiting order of K classes 1 2[ , ,..., ]KW W WW  

for j = 1: M 
 

for k = 1: K 

Calculate ( )k jP  using (6.1) 

endfor 

Find the classes with negative proportion differences (i.e., 0  ) and find 

their visiting order from W: 1 2, ,..., mU U U  

Find the classes with non-negative proportion differences (i.e., 0  ) and 

find their visiting order from W: 
1 2, ,..., lV V V  

 

for k = 1: m 

for i = 1: 2S  

if in FRM ,( ) 0
kU j iB p   

,( )
kU j iF p  is modified to be any value less than 0 

endif 

endfor 

Find the ( )
kU jE P  largest values among 

2,1 ,2 ,
( ), ( ),..., ( )

k k kU j U j U j S
F p F p F p  and the corresponding sub-pixels are 

allocated to class 
kU  

endfor 

Sub-pixels that have been allocated to any class of 1 2, ,..., mU U U  are not 

considered for the remaining classes 
 

for k = 1: l 

for i = 1: 2S  

if in FRM ,( ) 1
kV j iB p   

,( )
kV j iF p  is modified to be any value greater than 1 

endif 

if in FRM 
' ,( ) 1

kk
V V j iB p   

' ,( )
kk

V V j iF p  is modified to be any value less than 0 

endif 

endfor 

Find the ( )
kV jE P  largest values among 

2,1 ,2 ,
( ), ( ),..., ( )

k k kV j V j V j S
F p F p F p  and the corresponding sub-pixels are 

allocated to class kV  

Sub-pixels that have been allocated to class kV  are not considered for 

the remaining classes 

endfor 
 

endfor 

Outputs: Binary class values  2

,( ) =1,..., ; 1,..., ; 1,...,k j iB p i S j M k K   
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6.3. Experiments 

Three datasets were used in three experiments for validation of the proposed five 

sub-pixel resolution CD methods. For the SPSAM and Kriging methods, the 

window sizes of the neighborhood were set to 3 and 5, as suggested by the repeated 

test. The parameters of the RBF method were set according to the parameter 

analysis in Chapter 4: the parameter in the basis function was set to 10 and the 

window size of the neighborhood was set to 5. 

6.3.1. Experiment on synthetic coarse proportion images 

1) Dataset 

To control the analysis, a synthetic dataset was used in this experiment to test the 

proposed five STHSPM algorithm-based CD methods with an FRM. Specifically, 

three Landsat images with 30 m spatial resolution acquired on three different days 

were classified to produce three 30 m land cover maps. One of the maps was used as 

the FRM. The coarse proportion images were created by degrading the other two 30 

m classified maps via an S by S mean filter. SPM methods were implemented to 

recreate the 30 m land cover maps, by zooming in the proportion images with a 

zoom factor S. The generated SPM results were compared to the FRM or they were 

compared mutually for CD analysis. The advantages of using synthetic coarse 

images are that the input proportions are error free and represent greater control in 

the test. Although this scheme does not represent a sufficiently real test of SPM and 

CD algorithms, the reference map is known perfectly and can be used to assess the 

accuracy of SPM prediction and CD. The test is directed at the SPM algorithm itself 

which is appropriate at the method development stage (Atkinson, 2009). 

The three 30 m Landsat images cover an area in Shenzhen, China. Registration 

and relative radiometric correction were conducted on the Landsat images. The 

selected study area is a heterogeneous region with 250 by 250 pixels and covers 

mainly four land cover classes: vegetation, forest, urban and water. The three 

images were acquired on 20 Nov 2001 (t0), 7 Nov 2002 (t1) and 23 Nov 2005 (t2), 

respectively. The images were classified with a supervised neural network to 

generate the 30 m reference land cover maps. The classification accuracy for all t0, 

t1 and t2 reference maps was over 90%. Figure 6.6 shows the three images and their 

corresponding classified land cover maps used as reference. The reference change 

maps from t0 to t1 and t1 to t2 are shown in Figure 6.7, in which “CA to CB” means 

that the pixel belongs to class A at the former time but changes to class B at the 
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latter time. 

 

   

   

 Vegetation   Forest   Urban   Water 

Figure 6.6. Three Landsat images in Shenzhen, China on three dates. From left to right: t0 on 20 Nov 

2001, t1 on 7 Nov 2002, t2 on 23 Nov 2005. Line 1: Color image (Bands 3, 2 and 1 as RGB). Line 2: 

Hard classified land cover maps. 

 

 

(a) 

 

(b) 

 C1 to C2   C3 to C1 

 C1 to C3   C3 to C2 

 C1 to C4   C3 to C4 

 C2 to C1   C4 to C1 

 C2 to C3   C4 to C2 

 C2 to C4   C4 to C3 

 Unchanged 

 

C1: Vegetation  C2: Forest 

C3: Urban          C4: Water 

Figure 6.7. Reference change maps. (a) From t0 to t1. (b) From t1 to t2. 

 

2) Benefits of using an FRM in CD 

The changes from t0 to t1 were tested in this subsection. The 30 m reference land 

cover map at t0 was used as an FRM and the reference map at t1 was degraded to 

synthesize coarse proportion images at t1. The 30 m map at t1 was degraded with 

five mean filters, 5 by 5, 8 by 8, 10 by 10, 12 by 12 and 15 by 15 pixels, to simulate 

proportion images with spatial resolutions of 150 m, 240 m, 300 m, 360 m and 450 

m. The five STHSPM algorithms were applied to restore the 30 m land cover map, 

and then compared with the t0 reference map for CD. 



 

157 

 

Figure 6.8 shows the proportion images of four classes at 240 m spatial resolution, 

comparable to the spatial resolution of medium spatial resolution systems such as 

MODIS. As can be observed, the land cover information presented in these 240 m 

images is limited and insufficient for CD analysis. With these images as input and a 

zoom factor S=8, the five STHSPM algorithms were implemented. The results are 

given in Figure 6.9, where results of both the original version (i.e., without an FRM) 

and new version (i.e., with an FRM) algorithms are provided. The CD map for each 

method is also exhibited. For five original STHSPM algorithms without FRM, there 

are many linear artifacts and isolated pixels in the generated 30 m land cover maps, 

especially for the forest and urban classes. Consequently, many pixels are 

incorrectly identified as changed pixels when compared to the 30 m map at t0 time, 

as seen from the CD results in the second column in Figure 6.9. Focusing on the 

maps of the new version STHSPM algorithms in the third column, however, we can 

see with the aid of the FRM, the generated SPM results are much closer to the 

reference map at t1 in Figure 6.6. The elongated features of urban class are well 

restored and the boundaries of each class are smoother than those for the original 

STHSPM algorithms. Correspondingly, while referring to Figure 6.7(a), the CD 

maps of STHSPM algorithms with an FRM in the fourth column are found to be 

very close to the reference CD map (see, for example, the distribution of the 

“vegetation to urban” and “water to vegetation” classes). Visual comparison 

confirms the benefit of using an FRM in STHSPM algorithm-based CD. 

 

    

(a)                              (b)                              (c)                               (d) 

 

0               100% 

Figure 6.8. Proportion images of the four classes at t1. (a) Vegetation. (b) Forest. (c) Urban. (d) 

Water. 

 

 



 

158 

 

B
il

in
ea

r 

    

B
ic

u
b

ic
 

    

S
P

S
A

M
 

    

K
ri

g
in

g
 

    

R
B

F
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Figure 6.9. SPM and CD results of the five STHSPM algorithms (from t0 to t1, with the t0 reference 

map as the FRM (S=8)). 

 

Table 6.1 gives the SPM accuracy of the five STHSPM algorithms for all five 

zoom factors. The pure coarse resolution pixels in Figure 6.8 were ignored in the 

accuracy statistics. As concluded from the table, using an FRM, the SPM accuracy 

increases noticeably. For example, the SPM accuracy of the five STHSPM 

algorithms increases by around 4% for S=5 and around 9% for S=15. 
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Table 6.1 SPM accuracy (%) of t1 image (t0 reference map as FRM) for the five STHSPM 

algorithms 

 S=5 S=8 S=10 S=12 S=15 

Without 

FRM 

With  

FRM 

Without 

FRM 

With  

FRM 

Without 

FRM 

With  

FRM 

Without 

FRM 

With  

FRM 

Without 

FRM 

With  

FRM 

Bilinear 81.99 86.33 80.07 86.49 79.74 86.36 78.39 86.18 76.63 85.90 

Bicubic 82.67 86.50 80.61 86.55 80.02 86.42 78.67 86.26 77.15 86.00 

SPSAM 81.90 86.24 79.37 86.18 78.95 86.10 77.93 85.95 76.02 85.81 

Kriging 82.41 86.65 80.09 86.36 79.82 86.32 78.55 86.30 76.82 85.92 

RBF 83.06 86.76 80.76 86.72 79.83 86.49 78.85 86.38 77.20 85.97 

 

The overall accuracy (OA) of CD was calculated from the full transition error 

matrix and is provided in Figure 6.10. From this figure, three observations can be 

made. First, for all five zoom factors, greater CD accuracy is produced when the 

FRM is incorporated in the STHSPM algorithms. This is attributed to the fact that 

the FRM decreases the inherent uncertainty in SPM, as shown in Table 6.1. Second, 

as S increases, no matter whether the FRM is used or not, the CD accuracy of the 

five STHSPM algorithms decreases. This is because the complexity of the SPM 

task increases when S becomes larger, which propagates to the post CD analysis. 

Third, the accuracy gain of using the FRM increases as S increases. More precisely, 

the accuracy gain increases stably from 2% for S=5 to 8% for S=15. Through the 

above experiments, it was shown that using an FRM can increase SPM accuracy 

and, moreover, the sub-pixel CD accuracy for all five STHSPM algorithms. 
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Figure 6.10. CD accuracy of the five STHSPM algorithms (from t0 to t1, t0 reference map as the 

FRM). 

 

3) CD for a long period 

In this subsection, the changes from t0 to t2 are tested for a longer period (i.e., 

four years) than from t0 to t1. The 30 m t0 reference map was used as the FRM and 

the coarse proportion images at t2 were synthesized by degrading the 30 m t2 

reference map. Again, five zoom factors were analyzed: S= 5, 8, 10, 12 and 15. The 

CD accuracy of the five STHSPM algorithms without an FRM and with an FRM is 

shown in Figure 6.11. Similarly, with an FRM, the STHSPM algorithms were able 
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to produce greater CD accuracy for all zoom factors. The accuracy of all ten 

methods decreases as S increases, but the five methods without an FRM decreases 

more rapidly. The accuracy gain by using an FRM in this experiment was compared 

to that in the last experiment. As shown in Figure 6.12, for each zoom factor, the 

accuracy gains for all five STHSPM algorithms from t0 to t2 are, as expected, 

smaller than for t0 to t1. For example, for S=5, with the aid of the FRM, for CD 

from t0 to t2, the accuracy increases by less than 1% while for CD from t0 to t1, the 

accuracy increases by over 2%. For larger zoom factors, the differences between the 

two periods are even larger, and when S=15, the differences are greater than 2%. As 

changes in land cover can be complicated, the uncertainty in CD increases for 

longer periods correspondingly. The results in this experiment reveal that the FRM 

imparts greater benefits for SPM of coarse images that are acquired on temporally 

proximate days. 
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Figure 6.11. CD accuracy of the five STHSPM algorithms (from t0 to t2, t0 reference map as the 

FRM). 

 

5 10 15
0

2

4

6

8

S

In
c
re

a
s
e
d
 O

A
(%

)

Bilinear

5 10 15
0

2

4

6

8

S

In
c
re

a
s
e
d
 O

A
(%

)

Bicubic

5 10 15
0

2

4

6

8

S

In
c
re

a
s
e
d
 O

A
(%

)

SPSAM

5 10 15
0

2

4

6

8

S

In
c
re

a
s
e
d
 O

A
(%

)

Kriging

5 10 15
0

2

4

6

8

S

In
c
re

a
s
e
d
 O

A
(%

)

RBF

 

 
t0-t1

t0-t2

 

Figure 6.12. The CD accuracy gain by using FRM for t0 to t1 and t0 to t2 cases (t0 reference map as 

the FRM). 

 

4) CD for the former coarse image and latter FRM case 

In the previous two experiments, the acquisition date of the FRM precedes that of 

the coarse images. As mentioned in Section 6.2.1, it is necessary to develop SPM 

methods for a preceding coarse spatial resolution image (i.e., no fine spatial 

resolution images are available at the former time) with the aid of a latter FRM. In 

this experiment, we test the case where the FRM was acquired after the coarse 

images. The changes from t0 to t1 were tested in this experiment, but the 30 m t1 

reference map was used as the FRM. The former coarse proportion images at t0 
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time were synthesized by degrading the 30 m t0 reference map. Five zoom factors, 5, 

8, 10, 12 and 15, were tested. The generated SPM results of the five STHSPM 

algorithms were than compared to the latter 30 m t1 map for CD. 

The CD accuracy for all cases (i.e., two versions of five STHSPM algorithms 

with five zoom factors) is given in Figure 6.13. It can be observed that for all 

STHSPM algorithms with the FRM at a latter time, greater accuracy can still be 

obtained for each zoom factor. This illustrates that the data acquisition date order of 

coarse images and the FRM is not restricted for enhancing sub-pixel resolution CD, 

and the proposed five STHSPM algorithm-based CD methods with an FRM are also 

applicable to an earlier coarse resolution image and latter FRM. 
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Figure 6.13. CD accuracy of the five STHSPM algorithms (from t0 to t1, t1 reference map as the 

FRM). 

 

It is worth noting that the accuracy of all cases with FRM in Figure 6.13 is lower 

than the corresponding cases in Figure 6.10, where the CD accuracy from t0 to t1 is 

also presented. For S=5, with FRM, the accuracy of each STHSPM algorithm in 

Figure 6.13 is around 1.5% lower than that in Figure 6.10 while for S=15, the 

difference is around 2%. The reason for this phenomenon is that SPM of the t0 

coarse images is conducted in Figure 6.13, whereas SPM of the t1 coarse images is 

conducted in Figure 6.10. As can be seen from the 30 m t0 and t1 reference maps in 

Figure 6.6, in some areas (such as the center area), there are small blocky features 

for the forest class in the t0 reference map, but they changed to vegetation pixels in 

the t1 reference map. In the t1 coarse image, coarse pixels in these areas are pure 

pixels, but mixed pixels in the t0 coarse image. Using the t1 map as the FRM for 

SPM of the t0 coarse images, the SPM results for the mixed pixels are still the same 

as those without the FRM. Therefore, pure pixels in the degraded FRM cannot help 

to increase the accuracy of SPM of the corresponding mixed pixels in other coarse 

resolution images. 
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5) CD between coarse images 
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Figure 6.14. CD results of the RBF interpolation-based SPM algorithm (from t1 to t2, t0 reference 

map as the FRM). 

 

From Section 6.3.1 2) to Section 6.3.1 4), CD was carried out between fine and 
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coarse spatial resolution images, for the case where a fine spatial resolution image is 

available on either the start or end day during the studied period. Different from 

those three experiments, the sub-pixel resolution CD in this subsection was 

implemented between coarse resolution images, for the case where there is no fine 

spatial resolution on the start or end day during the studied period. Specifically, the 

30 m t1 and t2 reference maps were degraded to synthesize the coarse proportion 

images at t1 and t2. Five zoom factors (i.e., S=5, 8, 10, 12 and 15) were considered. 

The t0 reference map was used as the FRM for SPM of both the t1 and t2 coarse 

resolution images. Finally, changes between t1 and t2 were detected. 

Figure 6.14 shows the 30 m CD results of one of the five STHSPM algorithms 

(i.e., RBF interpolation-based SPM). Comparing the CD results in Figure 6.14 to 

the reference in Figure 6.7(b), we can observe clearly that without the FRM, the 

results contain many errors propagated from the SPM results of the t1 and t2 coarse 

images. Particularly, for a large zoom factor (e.g., S=12 or 15), many changed pixels 

in the CD result appear incorrectly as circular features. Using an FRM for both the 

t1 and t2 coarse images, the generated CD results seem more accurate while 

referring to Figure 6.7(b), and the advantages become more obvious as S increases. 

A quantitative evaluation for all five STHSPM algorithms is provided in Figure 

6.15. Consistent with visual assessment, the FRM can help to increase the CD 

accuracy, and the increase is also obvious for the other four STHSPM algorithms. 

More precisely, the accuracy gain of using an FRM for the five STHSPM 

algorithms increases from about 2% for S=5 to 8% for S=15. This subsection, thus, 

demonstrates that it is helpful to use an FRM in CD between coarse images. 
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Figure 6.15. CD accuracy of the five STHSPM algorithms (from t1 to t2, t0 reference map as the 

FRM). 

 

6) Comparison with other methods 

The proposed five STHSPM algorithms with an FRM were compared to the 

PSA-based CD with an FRM (Ling et al., 2011) To illustrate the accuracy gain of 

sub-pixel resolution CD, a conventional pixel-based CD method was compared 
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with the proposed algorithms, in which SPM results were produced by a pixel-based 

classification (HC) and CD was performed by comparing the former and latter fine 

spatial resolution maps. In the HC method, all sub-pixels within a coarse pixel were 

assigned to the class with the largest proportion. The changes from t0 to t1 (t0 

reference map as FRM) and t1 to t2 (t0 reference map as FRM) were tested for 

comparison of the total of seven CD methods. 

The CD accuracy of the seven methods is exhibited in Figure 6.16. Obviously, 

the accuracy of six SPM algorithms is higher than for the HC-based CD method. 

Generally, with an FRM, all five STHSPM algorithms were found to have very 

close accuracy for each zoom factor (see the two sub-figures). From the barcharts in 

Figure 6.16(a), it can be seen that PSA tends to achieve a higher accuracy than the 

five STHSPM algorithms for S=5, but for larger zoom factors, there are minor 

differences between the six methods. With respect to the CD accuracy for t1 to t2 in 

Figure 6.16(b), PSA produces slightly lower accuracy than the five STHSPM 

algorithms. 

 

(a) 

 
(b) 

 
 

Figure 6.16. CD accuracy (%) of the six SPM algorithms with an FRM (t0 reference map as the FRM) 

and conventional pixel-based HC approach. (a) From t0 to t1. (b) From t1 to t2. 

 

Figure 6.17 shows the computing time of the six SPM methods. All methods 

were tested on an Intel Core 2 Processor (1.80-GHz Duo central processing unit, 

2.00-GB random access memory) with MATLAB version7.1. For CD from t0 to t1, 
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SPM was conducted only on the t1 coarse images while from t1 to t2, SPM was 

conducted on both the t1 and t2 coarse images. Thus, the computing time in Figure 

6.17(b) doubles that in Figure 6.17(a) in general. Note that the computing time of 

PSA decreases as S increases. This is because PSA swaps sub-pixels within the 

coarse pixel and it is implemented in units of coarse pixels. The computing 

efficiency of PSA is related mainly to the size of coarse image and not affected 

much by the number of sub-pixels within each coarse pixel. For S=5, 8, 10, 12 and 

15 in the experiments, the size of the coarse images (by degradation of the 250 by 

250 pixel reference maps) are 50 by 50, 31 by 31, 25 by 25, 20 by 20, 16 by 16, 

respectively. The decreasing size leads to the decreasing computing time of PSA as 

a result. Examining the results in Figure 6.17, we find that the five STHSPM 

algorithms are faster than PSA, and the bilinear, bicubic and SPSAM methods are 

much faster. All five STHSPM algorithms require less than 10 seconds for CD from 

t0 to t1 and less than 20 seconds for CD from t1 to t2. With respect to the bilinear, 

bicubic and SPSAM methods, less than 5 seconds is required in all cases in Figure 

6.17. The high efficiency of the five STHSPM algorithms is attributed to their 

non-iterative character. This validates that the five STHSPM algorithms with an 

FRM are fast for sub-pixel CD applications. 

 

(a) 

 
(b) 

 
 

Figure 6.17. Computing time (in seconds) of the six SPM algorithms with an FRM (t0 reference map 

as FRM). (a) From t0 to t1. (b) From t1 to t2. 
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6.3.2. Experiment on degraded multispectral images 

1) Dataset 

The data used in this experiment are two 30 m multispectral Landsat images. This 

experiment is designed to consider the inevitable uncertainty in spectral unmixing, 

which can propagate to the post SPM and CD processes. One 30 m multispectral 

Landsat image was degraded band by band via an S by S mean filter to simulate a 

coarse multispectral image. Spectral unmixing was then conducted on the coarse 

images to generate proportion images, which were used as the input of SPM. With 

the zoom factor S, SPM was performed to predict the 30 m fine spatial resolution 

map. The hard classified land cover map of the other 30 m multispectral Landsat 

image was used as the FRM. With respect to the reference change map, it was 

obtained by comparison of the two hard classified maps of the corresponding 30 m 

multispectral images. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 C1 to C2   C3 to C1 

 C1 to C3   C3 to C2 

 C1 to C4   C3 to C4 

 C2 to C1   C4 to C1 

 C2 to C3   C4 to C2 

 C2 to C4   C4 to C3 

 Unchanged 

 

 

Figure 6.18. Two Landsat images covering the same area in Liaoning, China. (a) and (b) are false 

color images (Bands 4, 3 and 2 as RGB) in August 2001 (t0) and August 2002 (t1). (c) and (d) are 

hard classified land cover maps at t0 and t1 time, where blue, red, yellow and green denote classes C1, 

C2, C3 and C4, respectively. (e) CD reference map from t0 to t1. 

 

The two 30 m multispectral images were acquired by the Landsat-7 enhanced 

thematic mapper plus sensor in August 2001 (t0) and August 2002 (t1) in the 

Liaoning Province, China. The t0 image was registered to the t1 image and then the 
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histogram matching method was implemented for the relative radiometric 

correction (Hao et al., 2014). The study area covers 200 by 200 pixels and four land 

cover classes can be identified, which are denoted as C1, C2, C3 and C4. The two 

images are shown in Figure 6.18(a) and Figure 6.18(b), respectively. A supervised 

neural network was applied to the two Landsat images to generate the 30 m 

reference land cover maps. The classification accuracy for the two reference maps 

was over 90%. The t0 and t1 reference maps and the reference change map 

(produced by comparing t0 and t1 reference maps) are shown in Figure 6.18(c)-(e). 

 

2) Results 

The t1 30 m multispectral Landsat image was degraded with a 8 by 8 pixel mean 

filter to produce a 240 m MODIS-like image. Fully constrained least squares linear 

spectral mixture analysis (Heinz and Chang, 2001) was employed for spectral 

unmixing in the experiments. The generated proportion images of the four classes 

are exhibited in Figure 6.19. The five STHSPM algorithms were implemented to 

recreate the 30 m land cover map at t1. In the experiments, the t0 reference map in 

Figure 6.18(c) was used as the FRM. 

 

    

(a)                              (b)                              (c)                               (d)  

 

0               100% 

Figure 6.19. Proportion images of the four classes at t1. (a) C1. (b) C2. (c) C3. (d) C4. 

 

Figure 6.20 gives the SPM and CD results of the RBF method. To illustrate the 

influence of spectral unmixing, the results for the degraded land cover map (the 

experimental procedure is the same as for Section 6.3.1) are also presented in Figure 

6.20 for visual comparison. Checking the results in this figure, we see that due to the 

errors imposed by spectral unmixing, some scattering of pixels exists in the SPM 

results and the corresponding CD maps contain some noise. Using the FRM, for 

both cases, the produced SPM results seem more continuous and more linear 
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features are restored, especially for class C2 (in red) and the CD results are closer to 

Figure 6.18(d). 

 

D
eg

ra
d

ed
 L

an
d

sa
t 

im
ag

e 

    

D
eg

ra
d

ed
 l

an
d

 

co
v

er
 m

ap
 

    

 SPM results at t1 CD maps SPM results at t1 CD maps 

Without FRM With FRM 

Figure 6.20. SPM and CD results of the RBF interpolation-based SPM algorithm. 

 

Table 6.2 lists the OA of CD (calculated from the full transition error matrix) of 

all five STHSPM algorithms for both the degraded multispectral image and 

degraded land cover map cases. As shown in the table, because of the errors from 

spectral unmixing, when compared to the degraded land cover map case, the CD 

accuracy for the degraded multispectral image case decreases by around 15%. 

Nevertheless, for both cases, using the FRM, the proposed five STHSPM 

algorithms are able to produce greater CD accuracy. Particularly, for the degraded 

multispectral image case, the CD accuracy of five STHSPM algorithms increased 

from 77.1% to 78.1%. The experiment in this section suggests that FRM is also 

helpful for the sub-pixel resolution CD case where inherent uncertainty in spectral 

unmixing exists. 

 

Table 6.2 CD accuracy (%) of t1 image (t0 reference map as the FRM) for the five STHSPM 

algorithms 

 Degraded TM Degraded Land cover map 

Without FRM With FRM Without FRM With FRM 

Bilinear 77.06 78.13 91.47 93.01 

Biubic 77.26 78.21 91.73 93.13 

SPSAM 77.18 78.13 91.56 93.16 

Kriging 77.17 78.14 91.75 93.10 

RBF 77.18 78.18 92.21 93.26 
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6.3.3. Experiment on real Landsat-MODIS images 

In this experiment, a set of Landsat-MODIS images, including two Landsat 

images and one MODIS image, were used to test the proposed sub-pixel resolution 

CD algorithms for a real case. The study area is a 67.5 km by 67.5 km tropical forest 

area in Brazil. One Landsat image acquired in July 1988 (t0) was used as the source 

of the FRM, and the other Landsat image acquired in July 2005 (t1) was used as 

reference. The five STHSPM algorithms were implemented on the one single 

eight-day surface reflectance MODIS image acquired in July 2005 to predict the 

SPM result with the Landsat spatial resolution (i.e., 30 m) at t1 time. The SPM 

result at t1 time was compared to the former FRM for CD from t0 to t1. 

 

   

(a)                                         (b)                                         (c) 

Figure 6.21. The Landsat-MODIS images (Bands 4, 3 and 2 as RGB). (a) The Landsat image 

acquired in July 1988. (b) The Landsat image acquired in July 2005. (c) The MODIS image acquired 

in July 2005. 

 

The original MODIS image has a spatial resolution of 463 m and was 

re-projected into the Universal Transverse Mercator coordinate system and then 

resampled to a spatial resolution of 450 m using the nearest-neighbor algorithm (Lu 

et al., 2011). Registration was conducted on the two Landsat images and the errors 

were less than 0.5 pixel. The zoom factor of SPM for the MODIS image was set to 

15 to predict a land cover map at 30 m spatial resolution. The spatial size of the 

MODIS image is 150 by 150 pixels and the Landsat image is 2250 by 2250 pixels. 

Figure 6.21 shows the three images. 

The MODIS image was unmixed with fully constrained least squares linear 

spectral mixture analysis (Heinz and Chang, 2001). For the studied tropical forest 

area, proportion images of two main classes, forest and non-forest, were used as 

input to the SPM. For each 30 m Landsat image, the pixels were supposed to be pure 

materials, and an unsupervised k-means classifier was employed to generate the 30 

m fine spatial resolution thematic map. The 30 m t0 map was used as the FRM in 
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this experiment and the reference change map was produced by comparing the 30 m 

t0 and t1 reference maps. 

Table 6.3 gives the CD accuracy for the five STHSPM algorithms. As seen from 

the table, without FRM, the CD accuracy of each STHSPM algorithm is around 

72.2%. Incorporating FRM in SPM, all five algorithms produce greater accuracy 

and the accuracy gains are around 1.3%. To study the effect of errors from spectral 

unmixing and the reference, the 30 m t1 reference map was degraded with a factor 

of 15 to simulate the spectral unmixing result at 450 m spatial resolution. The CD 

accuracy of the five STHSPM algorithms resulting from such a design is over 95%, 

regardless of the use of FRM. For the test of real Landsat-MODIS images in this 

experiment, due to the uncertainty in spectral unmixing (originating from the point 

spread function of the MODIS sensor and unmixing algorithm itself, etc.) and the 

reference maps (both FRM and t1 reference map), the CD accuracy of the proposed 

algorithms decreases by 23%. 

 

Table 6.3 CD accuracy (%) of the five STHSPM algorithms for the real Landsat-MODIS images 

 Without FRM With FRM 

Bilinear 72.28 73.55 

Bicubic 72.22 73.51 

SPSAM 72.34 73.58 

Kriging 72.27 73.54 

RBF 72.22 73.51 

 

6.4. Discussion 

6.4.1. Differences between the proposed methods and 

spatiotemporal fusion techniques 

As mentioned in the introduction, a major difference between the proposed 

methods and spatiotemporal fusion is that the five STHSPM algorithms yield 

sub-pixel maps, while spatiotemporal fusion yields images in units of reflectance. 

The objective of spatiotemporal fusion is to produce new multispectral images, 

which can be used for various goals, including monitoring changes in 

environmental variables and vegetation phenology, etc.. Some spatiotemporal 

fusion approaches were developed based on the strict assumption that there are no 

land cover changes during the studied period (Zurita-Milla et al., 2009). 



 

171 

 

Specifically, all coarse images (e.g., MERIS images) in the studied period are 

assumed to have the same land cover distribution, which can be obtained from an 

FRM (e.g., LGN5 or classified Landsat image). The FRM is degraded to provide the 

coarse proportions, and the ultimate task is to estimate the reflectance for each fine 

pixel, given the input MERIS reflectance. The reflectance of the fine spatial 

resolution, time-series images can be compared to monitor the vegetation dynamics, 

surface temperature and surface soil moisture, and other environmental variables. 

Some other spatiotemporal fusion approaches relax the strong assumption that there 

are zero land cover changes during the studied period. Alternatively, they extract 

correspondence between the known fine and the coarse spatial resolution images, to 

guide the prediction of fine spatial resolution images on other dates. It would be 

very promising to apply standard land cover CD techniques to the outputs of this 

type of spatiotemporal fusion, even though very few studies (to the best of our 

knowledge) have been directed at this problem. For simplicity, we denote the latter 

spatiotemporal fusion as image pair-based spatiotemporal fusion. Consequently, the 

proposed methods are constructed to detect land cover changes, while 

spatiotemporal fusion techniques (e.g., image pair-based spatiotemporal fusion) are 

capable of detecting changes of both land cover and reflectance of fine pixels. 

The image pair-based spatiotemporal fusion has potential in sub-pixel resolution 

CD. This necessitates a discussion about the differences between it and the 

proposed methods. An important difference is the restriction on the acquisition date 

of the known fine spatial resolution image, as shown in Figure 6.22. For image 

pair-based spatiotemporal fusion, at least one pair of fine-coarse spatial resolution 

(e.g., Landsat-MODIS) images of the same area is required. They have to be 

acquired on very close dates to ensure that there are almost zero changes between 

the scene covered by the two different spatial resolution images. This is because 

image pair-based spatiotemporal fusion techniques need to exploit the 

correspondence between the known fine and the coarse spatial resolution images. 

For example, in the experiment in Section 6.3.3, if implementing image pair-based 

spatiotemporal fusion, the MODIS image acquired on a date closer to that of Figure 

6.21(a) is required. However, due to cloud contamination, time inconsistency of 

image acquisitions and some other reasons (Song and Huang, 2013), high quality 

image pairs cannot always be guaranteed. By contrast, it is not the case for the five 

STHSPM algorithms using an FRM, as they do not necessarily need a pair of 

fine-coarse spatial resolution images. 
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Figure 6.22. Differences between the proposed methods and image pair-based spatiotemporal fusion, 

where “coarse” and “fine” mean coarse and fine spatial resolution, respectively. 

 

6.4.2. Uncertainties in FRM 

An FRM is required in the proposed method to aid the SPM process applied to 

coarse resolution images and increase CD accuracy. It is necessary to consider the 

reliability of the FRM. In this study, the FRMs were obtained by hard classification 

of the fine spatial resolution multispectral image (i.e., Landsat images in the 

experiments). It is known that mixed pixels exist inevitably in remote sensing 

images (Fisher, 1997) and such a means of producing the FRM involves inherent 

uncertainties. Nevertheless, it should be noted that the source of FRM (i.e., fine 

spatial resolution multispectral image) is generally selected according to the desired 

spatial resolution (defined by investigators) for SPM and CD. For example, given a 

250 m spatial resolution MODIS image at t1, if the desired spatial resolution of 

SPM and sub-pixel CD is 30 m (zoom factor S=8), we can seek a 30 m Landsat 

image for the source of FRM at t0; if the desired spatial resolution is 10 m (S=25), a 

10 m SPOT image can be considered as the source of FRM at t0. 

When defining 30 m as the desired target spatial resolution for SPM of a 250 m 

MODIS image at t1, if there are no 30 m Landsat images at t0, a finer spatial 

resolution image (if available), such as WorldView or QuickBird image, would be 

an effective alternative for the source of FRM at t0. In this case, the approximate 1 

m FRM needs to be upscaled to 30 m to meet the required spatial resolution of SPM 

at t1. Since a 1 m FRM is available, an arising question is whether it is feasible to 

conduct SPM and sub-pixel resolution CD directly at a 1 m spatial resolution to 

obtain more detailed land cover information. For this issue, two factors are worth 

consideration: the zoom factor for SPM and the reliability of the FRM. First, it is 
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suggested that the zoom factor S for SPM should not be too large, as within each 

coarse pixel the number of variables for SPM is S
2
 and the uncertainty in SPM 

increases with increasing S. Second, classification accuracy often decreases with 

increasing spatial resolution, because smaller pixels may resolve within-class 

variation that leads to confusion between classes (Atkinson, 2006). For example, 

for soil patches within a field of cereals, investigators may wish the whole field to 

be classified as cereals (Atkinson, 2006). Therefore, by hard classification of very 

high spatial resolution (e.g., 1 m) images, the derived FRM at t0 may contain some 

scattering of pixels within large objects and result in a SPM result at t1 with 

significant noise. 

In the proposed method, the FRM at t0 is upscaled to the same spatial resolution 

as for the coarse image at t1, and then the simulated proportions of the FRM need to 

be compared with the spectral unmixing-derived proportions (see expression (6.1) 

and Figure 6.1). Normally, due to the inconsistency of image acquisitions, the two 

types of proportion are not completely identical, even though there are strictly zero 

changes from t0 to t1. If the coarse image at t0 (acquired by the same sensor for the 

coarse image at t1) is available, it would be promising to use the spectral 

unmixing-derived proportions of the t0 coarse image directly to calculate the 

differences in proportions in expression (6.1). Such a scheme, however, may 

introduce additional uncertainties, which exist in spectral unmixing of the t0 coarse 

image. 

6.4.3. Limitations to the method of using an FRM 

There are several limitations to the method of using an FRM in this study. First, 

as indicated in Section 6.3.1 4), for SPM of the mixed pixels in coarse resolution 

images, the corresponding pure pixels in the degraded FRM cannot provide useful 

additional information. This case can occur where, for example, from the time of 

FRM to the time of the coarse image for SPM, there are new classes in those coarse 

pixels or even the whole study area. For example, we suppose there are four classes 

(i.e., vegetation, forest, urban and water) in the FRM at t0, and five classes (i.e., soil, 

vegetation, forest, urban and water) in the coarse image for SPM at t1. That is, the 

new class soil is produced from t0 to t1. As seen from Figure 6.1, no information 

can be borrowed from the FRM for SPM of the new class soil, because all coarse 

soil proportions in the FRM are zero (i.e., no “gray area” for the soil class in the 

FRM). Therefore, the proposed method of using an FRM cannot enhance SPM of 
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the new classes during the studied period of CD, but can enhance SPM of the other 

classes. 

Second, the results in Section 6.3.1 3) show that the FRM tends to be more 

helpful for CD during a short period. This is explained by an example in Figure 6.23. 

Suppose that in a coarse pixel, the proportion of the blue class during a long period 

from t0 to tn does not change (i.e., =0), but in the real world case the distribution 

of fine spatial resolution blue pixels evolves gradually. Eventually, at tn time, the 

distribution of those fine pixels is quite different from that at the beginning t0 time. 

This conflicts with the assumption that if for the blue class  =0, there is no change 

for blue fine pixels and the spatial distribution of the blue class in the FRM can be 

copied directly to the coarse pixel at other times. Nevertheless, as observed from the 

changes (deep pink pixels) in Figure 6.23, for a time close to t0 (such as t1), the 

changes are very small when compared to t0. Therefore, we can conclude that the 

rules in Figure 6.1 and Section 6.2.1 of using FRM may be more appropriate for 

coarse images acquired on dates that are sufficiently close to that for the FRM. The 

sufficiently close dates can also ensure fewer new classes, as discussed above. 

...

...

t0 map t1 map tn map

t0-t1 change map t0-tn change map  

Figure 6.23. An example for illustration of the land cover changes (deep pink pixels) during a long 

period (t0 to tn), where the land cover proportion of the blue class is fixed from t0 to tn. 

 

6.5. Summary 

In this chapter, based on the availability of a land cover map obtained from an 

available fine spatial resolution image (i.e., the FRM), five non-iterative and fast 

STHSPM algorithms (i.e., bilinear-, bicubic-, SPSAM-, Kriging- and RBF-based 

SPM methods) were proposed for sub-pixel resolution land cover CD. The FRM 

was taken into account not only in the case of a former FRM and latter coarse image, 

but also the case of a former coarse image and latter FRM, as well as the case of CD 
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between coarse images. The STHSPM algorithms determined the sub-pixels for 

each class by comparing the soft class values and referring to the hard class values 

(at the sub-pixel level) in the FRM. The FRM can help to reduce the solution space 

of SPM, and thus, decrease the uncertainty in SPM and increase the sub-pixel 

resolution CD accuracy. The proposed methods provide a promising avenue for fine 

spatial and temporal resolution CD. Experimental results demonstrated the five 

STHSPM algorithms to be effective in sub-pixel resolution CD, and with the 

information from the FRM, they can increase CD accuracy. Compared to the 

PSA-based sub-pixel resolution CD with an FRM, the proposed methods are able to 

achieve at least comparable CD accuracy, but need much less computing time, and 

hence provide new options for real-time applications. 
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7. Conclusion 

Mixed pixels are a common phenomenon in remote sensing images. Sub-pixel 

mapping (SPM) is a technique for predicting the spatial distribution of land cover 

classes within mixed pixels at a finer spatial resolution level than that of the input 

coarse spatial resolution images. This thesis has been carried out on a typical SPM 

algorithm summarized in Section 1.3 for the first time: the soft-then-hard SPM 

(STHSPM) algorithm. STHSPM first estimates the soft class value at fine spatial 

resolution and then allocates hard class value for sub-pixels. The main works of this 

thesis and future research are summarized as follows. 

7.1. Summary 

In Chapter 2, a new class allocation approach UOC is proposed for the STHSPM 

algorithm in Section 2.1. Specifically, a visiting order for all classes is 

pre-determined and the number of sub-pixels belonging to each class is calculated 

using coarse fraction data. According to the visiting order, the sub-pixels belonging 

to the being visited class are determined by comparing the soft attribute values of 

this class and the remaining sub-pixels are used for the allocation of the next class. 

UOC was tested on three remote sensing images with five STHSPM algorithms: 

BPNN, HNN, SPSAM, Kriging and ICK. UOC was also compared to three existing 

allocation methods: LOT, UOS and HAVF. Results show that for all STHSPM 

algorithms, UOC is able to produce higher SPM accuracy than UOS and HAVF; 

compared to LOT, UOC is able to achieve at least comparable accuracy but needs 

much less computing time. Hence UOC provides an effective and a real-time class 

allocation method for STHSPM algorithms. Furthermore, in Section 2.2, UOC is 

extended with another new class allocation approach, named AUOC. In AUOC, the 

visiting order of classes within each coarse pixel is determined based on the local 

structure, rather than the global structure in UOC. Experiments on three remote 

sensing images show that AUOC is able to improve UOC in terms of SPM accuracy, 

especially for SPM with small zoom factors. 

In Chapter 3, STHSPM is enhanced with additional information in terms of 

multiple shifted images (MSI). Each shifted image is downscaled to the target fine 

spatial resolution using the STHSPM algorithms, including ICK in Section 3.1 and 

image interpolation (i.e., bilinear and bicubic) methods in Section 3.2. ICK requires 
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prior class information, while bilinear and bicubic do not require that. As a result, a 

set of sharpened (continuous) images for all classes are generated for each shifted 

image. According to the estimated sub-pixel shifts of MSI, the sharpened images 

for the same class are integrated, followed by the class allocation step finally. The 

experimental results showed that more accurate SPM results can be generated with 

MSI than with a single observed coarse image in the STHSPM algorithms. 

In Chapter 4, a new STHSPM algorithm based on radial basis function (RBF) 

interpolation is proposed. In this STHSPM algorithm, the sub-pixel soft class 

values are calculated by RBF interpolation. Taking the coarse proportion images as 

input, an interpolation model is built for each visited coarse pixel. Three remote 

sensing images were tested and the new method was compared to bilinear-, bicubic-, 

sub-pixel/pixel spatial attraction model- and Kriging-based SPM methods. Results 

show that the proposed RBF interpolation-based SPM is more accurate. Hence the 

proposed method provides an effective new option for SPM. 

In Chapter 5, in view of the limitation of ICK-based STHSPM that requires the 

semivariogram of land cover classes from prior information, a NICK-based 

STHSPM is proposed. In NICK, the fine spatial resolution semivariogram of each 

class is estimated by the deconvolution process, taking the coarse spatial resolution 

semivariogram extracted from the class proportion image as input. Experiments 

demonstrated the feasibility of the proposed NICK. It obtains comparable SPM 

accuracy to ICK that requires semivariogram estimated from fine spatial resolution 

training images. The proposed method extends ICK to cases where the prior spatial 

structure information is unavailable. 

In Chapter 6, the STHSPM algorithms are proposed to achieve fast sub-pixel 

resolution CD. The fine spatial resolution land cover maps are first predicted 

through SPM of the coarse spatial but fine temporal resolution images, and then 

sub-pixel resolution CD is performed by comparison of class labels in the SPM 

results. For the first time, five fast SPM algorithms, including bilinear interpolation, 

bicubic interpolation, SPSAM, Kriging and RBF interpolation methods, are 

proposed for sub-pixel resolution CD. The auxiliary information from the known 

fine spatial resolution land cover map on one date, called the FRM, is incorporated 

in SPM of coarse images on other dates to increase the CD accuracy. Based on the 

five fast SPM algorithms and availability of the FRM, sub-pixels for each class are 

predicted by comparison of the estimated soft class values at the target fine spatial 

resolution and borrowing information from the FRM. Experiments demonstrate the 
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feasibility of the five SPM algorithms using FRM in sub-pixel resolution CD. They 

are fast methods to achieve sub-pixel resolution CD. 

7.2. Future research 

Future research can be directed at the following aspects. 

In the fields of image and signal processing, there are many available 

super-resolution algorithms, such as image interpolation, maximum a posteriori, 

iterative backward projection, projection onto convex sets, etc. These algorithms 

can potentially be developed to STHSPM algorithms, by employing them to 

downscale the available coarse proportion images first and then using the proposed 

UOC approach to transfer the downscaled proportion images to thematic maps (i.e., 

SPM results). UOC, therefore, builds a bridge between super-resolution 

reconstruction and SPM. The concept of STHSPM proposed in this thesis provides 

new insight into SPM and leaves the doors open to more potential options for SPM 

in future research. In this thesis, RBF interpolation and NICK have been proposed 

as new STHSPM algorithms following this framework. It is considerably promising 

to study the potential of other super-resolution reconstruction algorithms in SPM. 

In this thesis, MSI were used as the additional information for the STHSPM 

algorithm. Additional information from other source images might also be applied. 

As presented in Section 1.5, various auxiliary information has been applied to 

enhance SPM in recent years, such as LIDAR data (Nguyen et al., 2005), 

panchromatic images (Atkinson, 2008; Ardila et al., 2011; Nguyen et al., 2011; Li et 

al., 2014a), high resolution color images (Mahmood et al., 2013) and shape 

information (Thornton et al., 2007; Ling et al., 2012b). It is expected that such 

auxiliary information will enable further improvement of STHSPM, particularly for 

reproduction of small objects in the L-resolution case. In the L-resolution case, 

many objects of interest fall within isolated, coarse pixels and the STHSPM 

algorithms may not be able to satisfactorily reproduce their spatial distribution due 

to the limited support from neighboring coarse pixels. Designing the appropriate 

way to incorporate the supplementary information to STHSPM would be an 

interesting challenge for the future. 

STHSPM provides a promising new option for downscaling continua. It can 

predict continuous variables at a fine spatial resolution, given the input coarse 

spatial resolution image. Downscaling continua (Atkinson, 2013), such as 

downscaling surface temperature (Kallel et al., 2013) or surface soil moisture (Song 
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et al., 2014), has gained increasing attention recently. Therefore, the STHSPM 

algorithm may be a promising choice for these applications. Furthermore, as 

illustrated in Li et al. (2009), there are other links between SPM and 

super-resolution reconstruction: after super-resolution reconstruction of a coarse 

multi-/hyperspectral remote sensing image, the finer spatial resolution image could 

then be classified by a standard hard classifier to achieve SPM. The STHSPM 

algorithm can also be employed for the purpose of super-resolution reconstruction. 

As seen from Section 6.2.3, any STHSPM algorithm has potential for sub-pixel 

resolution CD by incorporating an FRM. It would be an interesting topic to develop 

new STHSPM algorithms for sub-pixel resolution CD. The FRM information can 

not only be derived directly from a multispectral image, but also from some other 

data. Aplin and Atkinson (2001) used Land-Line digital vector data to develop two 

per-field classification-based SPM approaches. One was designed to fill each 

polygon with the class within it that has the largest area in pixel-level hard 

classification, and the other was constructed to assign the class with the largest 

proportion inside a coarse pixel to the polygon occupying the largest area in the 

coarse pixel. Recently, Mahmood et al. (2013) developed another per-field 

classification-based SPM method, where a segmentation map generated from a fine 

spatial resolution color image was employed in the same way as the Land-Line 

digital vector data in Aplin and Atkinson (2001). However, in Mahmood et al. 

(2013), each polygon (i.e., parcel or object) was filled with the class within it that 

has the largest area in the pre-processing SPM result, rather than the pixel-level 

hard classification result in Aplin and Atkinson (2001). Robin et al. (2008) also 

utilized ancillary fine spatial resolution structural information in the form of a 

segmentation map for SPM, based on Bayes’ rule and the maximum a posteriori 

criterion. All these types of fine spatial resolution boundary information associated 

with the coarse image are probably able to produce a reliable FRM for CD. How to 

acquire such information and convert it to a reliable FRM seems to be a promising 

avenue for future research. 
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