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Abstract

In recent years, research on wireless sensor networks(WSNs) has gradually spread from

the traditional applications such as environmental monitoring to more domain-specific ap-

plications which are computation intensive due to large amount of collected physical data

and complexity of the computation, such as structural health monitoring (SHM), volcano

tomography, smart grid. However, for these applications, due to severe limitations of energy

and bandwidth, it is necessary to utilize the computation capability of sensors and allow

them to process raw signals within the network, and only transmit processed information.

This implies a new revolution of designing energy-efficient distributed computing architec-

ture for computation-intensive applications in WSNs. The distributed computing systems

are scalable in the sense that all the computational and networking capacities scattered

across the network could be utilized in a cooperative and distributed (not master-to-slave)

manner.

Considering the data-intensive and computation-intensive properties for some domain-

specific applications, several unique challenging issues arise. Firstly, those algorithms de-

signed by domain experts usually only consider the design aspects from domains such as

accuracy, and they are usually sophisticated signal processing algorithms. Most algorithms

are associated with complex computations such as large matrix inversion, matrix multipli-

cation in which matrices are constructed by the raw data from different sensors. Therefore,

designing a distributed version to perform matrix operations when considering the severe

constraint of wireless network resources (bandwidth, energy, computing capability, memory,

etc) is difficult.

In this research, we propose a framework focusing on how to implement sophisticated

processing of intensive physical information within a network. We focus on the design of

distributed estimation algorithms for least squares estimation. Recent years, researchers

have proposed a wide range of strategies for distributed least squares estimation. However,
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each strategy has its own design objectives and applications scenarios. No guided schemes

exists for current practical usage, making it difficult to evaluate their relative effectiveness

and performance. Thus, we propose a 3 dimensional framework which provides a basis for

designing, analyzing and evaluating strategies to address parameters estimation issues using

least squares estimation algorithms in wireless sensor networks. In the 3D framework, we

propose three design aspects of designing distributed least squares estimation, and then we

study the existing works from the design aspects and then discuss their advantages and

disadvantages, respectively.

Finally, based on our proposed framework, we wish to conserve energy by minimizing

communication with our new design, constraints on communication delays will also need

to be satisfied. Thus, we propose E3, a new distributed algorithm specifically designed to

guarantee the precision of least squares estimation in sensor networks, with the objective

of minimizing the energy consumption incurred during communication, while observing

constraints on application-specific communication delays. To evaluate the performance of

our proposed framework and algorithms, we conduct simulations and structural damage

detection experiments in a real environment to do test. Compared to previous works, we

show that E3 maintains the same level of estimation precision while incurring much lower

energy costs. Finally, we address that our 3D framework is the first work which can facilitate

the design, classification and evaluation of the current distributed least squares estimation

strategies in sensor networks.
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Chapter 1

Introduction

This research aims to investigate the issues and design novel distributed computation

algorithms for data-intensive and computation-intensive applications in wireless sensor net-

work(WSNs) . In this chapter, we first describe the background knowledge of WSNs and

domain-specific applications with data-intensive and computation-intensive properties in

Section 1.1 and Section 1.2 respectively. Then, we introduce least squaress estimation,

which is one of the most fundamental signal processing algorithms in domain-specific ap-

plications in Section 1.3. After that, we explain the motivation of our work in Section 1.4.

In Section 1.5, we summarize the main contributions of this thesis. Finally, we outline the

organization of this thesis in Section 1.6.

1.1 Wireless Sensor Networks

In the last decade, advances in micro-electro-mechanical systems (MEMS) technology,

digital electronics, and wireless communications have enabled the development of low-cost,

low-power, multi-functional smart sensor nodes. These smart sensors formed Wireless Sen-

sor Networks(WSNs) which consist of sensing, data processing, and communicating com-

ponents, have been used in many science and engineering areas. Different from traditional

network which uses cables to collect data from a number of sensors and a powerful back-end

server to extract information, WSNs represent a new paradigm which relies on massively

distributed collections of smart sensors embedded in the physical world,such as SHM as

Fig. 1.1 shows. These smart sensors work in unattended way to gather data from physical
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Fig. 1.1: Using cables to collect data and centralized processing to wireless data collection
and distributed computation

worlds, exchange information through wireless or wired networks, and implement signal

processing in a collaborative manner. Compared with traditional systems, the advantages

of low cost and ease of maintenance, the scalability, and the ability to take up close look

at phenomena make the WSNs a revolutionary paradigm which is able to help to obtain

a deeper understanding of the environment and, ultimately, enhancing our ability to de-

sign and control these complex systems. WSNs have envisioned to be used in numerous

application domains including environmental monitoring [MCP+02] [KPKK07] [YWM05],

intelligent transportation system, structural health monitoring (SHM) of large buildings

and bridges [BA], state-estimation in smart grid [GEAdlVJGQ11], battle-field surveillance,

biomedical detection [CLW12] and human health monitoring.
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Chapter 1 Introduction

1.2 Data-intensive and Computation-intensive Properties of
Specific Applications

In the last twenty years, the practical usage of WSNs is surprisingly still limited to

a narrow range of application areas such as monitoring fire in a forest, temperature in a

building, etc. [MCP+02] [KPKK07] [YWM05]. These applications are characterized as

having low data rates and with light-weight computations. In particular, each smart sensor

usually samples and transmits data once every few minutes, and only implements (if there

does exist any) very simple in-network processing which is typically limited to spatial or

temporal aggregation of the collected data (such as calculating the average or maximum

sensor value over some region ).

On the contrary, there are a large number of potential application domains of WSNs

which are data-intensive, and require sophisticated processing of the collected physical in-

formation. Among the examples are SHM [LL06], volcano tomography [SSX+], state es-

timation in smart grid [GEAdlVJGQ11], wireless camera networks [MPK08], biomedical

monitoring [CLW12], and fault diagnosis of machines.

An application becomes data-intensive mainly because of its high-fidelity sampling as

well the large number of nodes. Taking SHM for instance, to detect possible structural

damage, each accelerator deployed in a structure needs to sample in the range of 16-24 bit

at 200-1000Hz [DFPS96]. The measurements sampled from each sensor are hence no longer

binary or static data, but highly dynamic time series. With such high-fidelity sampling,

a SHM system including hundreds of sensors generates a large amount of data in a short

period of time. Another example is smart grid. In smart grid, precise real-time estimation

of the state variables is required to maintain the reliable operation. Estimation of these

state variables requires the data from hundreds of thousands sensors and meters distributed

across city-wide areas. The amount of collected data thus becomes huge.
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1.3 Least Squares Estimations

Least squares estimation is a standard approach to compute the approximate solution

of sets of equations in which there are more equations than unknowns. The domain-specific

problems with data-intensive and computation-intensive features can usually be formulated

as a large linear least squares system based on measurements from sensors. These measure-

ments may contain noise, thus redundant measurements that are used to reduce the effects

of error are often sampled to form an over-determined system:

H × ω0 = y (1.1)

where H ∈ R(m×n) (m ≥ n) is the regression matrix, the scalar measurements y ∈ Rm

and the unknown parameters ω0 ∈ Rn.

In wireless sensor networks, the primary objective is to collectively estimate n unknown

parameters which form a n × 1 column vector, denoted by ω0 based on the measurements

(H, y) from all sensors.

Due to the data-intensive nature of the domain-specific applications, the formulated

least square systems are always quasi-over-determined.

We use structure damage detection as our application scenario to illustrate what does

least squares estimation for. In structural health monitoring (SHM) domain, H and y are

composed of pre-processed information of raw vibration data measured in each sensor. The

unknown parameters are used to obtain natural frequencies, damping ratio or mode shapes

of the structure[Avi01].

1.4 Motivations of Our Work

For the data-intensive and computation-intensive applications, existing systems with

data collection and then centralized computation architecture cannot be applied. Due to

severe limitations of energy and bandwidth (particularly for those using wireless) at current,

battery-powered smart sensors, it is virtually impossible to collect raw, real-time data from

a large-scale (e.g., hundreds to thousands), dense sensor network. To solve this problem, it
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Chapter 1 Introduction

is necessary to utilize the computation capability of smart sensors and allow them to process

raw signals within the network, and only transmit processed information. This implies a

new revolution of designing energy-efficient distributed computing architecture for data-

intensive and computation-intensive applications in WSNs. The distributed systems are

scalable in the sense that all the computational and networking capacities scattered across

the network could be utilized in a cooperative and distributed (not master-to-slave) manner.

In this thesis, we will analyze aforementioned problems in details and propose corre-

sponding solutions for them.

1.5 Contributions of the Thesis

The contributions of this thesis mainly lie in designing novel distributed algorithms

for least squares estimation in wireless sensor networks. As illustrated in Fig. 1.2, our

contributions include two parts:

Firstly, we study the least square estimation problem in wireless sensor networks, i.e.

the measurements from sensors main contain noise, thus redundant measurements that are

used to reduce the effects of error are often sampled to form an over-determined system.

The primary objective of the wireless sensor network is to estimate the parameters of in-

terest based on the measurements from all sensors in the network. Due to the very limited

amount of energy and computation power available on sensor nodes, it is imperative to

design new algorithms to perform least squares estimation in a distributed fashion. Recent

years, researchers have proposed a wide range of strategies for distributed least squares es-

timation. However, each strategy has its own design objectives and applications scenarios.

No uniform scheme exists for current practical usage, making it difficult to evaluate their

relative effectiveness and performance. Thus, we propose a 3 dimensional framework which

provides a basis for designing, analyzing and evaluating strategies to address parameters

estimation issues using least squares estimation algorithms in wireless sensor networks. In

the 3D framework, we propose three design aspects of designing distributed least squares

estimation, and then we study the existing works from the design aspects and then discuss
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their advantages and disadvantages correspondingly.

Then, based on our proposed framework, we focus on design new distributed estimation

algorithm for least squares while we wish to conserve energy by minimizing communication

with our design, constraints on communication delays will also need to be satisfied. Thus,

we propose E3, a new tree-based distributed algorithm specifically designed to guarantee

the precision of least squares estimation in sensor networks, with the objective of minimiz-

ing the energy consumption incurred during communication, while observing constraints

on application-specific communication delays. To realistically evaluate the performance,

we conduct structural damage detection experiments in a real SHM platform to test our

algorithms. Compared to previous works, we show that E3 maintains the same level of esti-

mation precision while incurring much lower energy costs. At last, we address that our 3D

framework can facilitate the design, classification and evaluation of the current distributed

least squares estimation strategies in sensor networks.

These two parts can be integrated for distributed least squares estimation algorithms

design. The first part is a general framework for distributed least squares estimation algo-

rithms design.Our proposed 3D framework contains the existing distributed least squares al-

gorithms which considered three design aspects: aggregation structure, performance metric

and communication pattern. The second part is E3 which is a specific design for applications

with delay constraints and energy consumption optimization requirements. It can achieve a

balance between the estimation delay and total energy consumption in the entire network.

E3 is one of the specific strategies which can guarantee the precision of least squares estima-

tion in sensor networks, with the objective of minimizing the energy consumption incurred

during communication, while observing constraints on application-specific communication

delays.

1.6 Organization of the Thesis

The structure of this thesis is shown in Fig. 1.2. Chapter 1 is the introduction to this

thesis. Chapter 2 reviews related works in the literature. The main body of this thesis is

6



Chapter 1 Introduction

Energy-efficient 
Distributed Least 

Squares Estimation

Background and Literature Review

Introduction

3-Dimensional Framework for 
Distributed Least Squares 

Estimation Algorithms Design
Real Experiments in 

SHM System

Conclusion and 
Future Works

Part 2Part 1

Fig. 1.2: An outline of the contributions in this thesis

divided into two parts from Chapter 3 to Chapter 4. The details are presented as follows.

In the first part, we mainly discuss the general framework of distributed least squares

estimation algorithm design from three design aspects in Chapter 3. They are compu-

tation architecture, optimized performance and communication pattern. In this part, we

investigated the existing distributed algorithms, fit them into our 3D framework and then

discussed their corresponding advantages and disadvantages.
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In the second part, we make full use of our proposed framework to design new strategies

to perform least squares estimation in distributed manner in Chapter 4. We mainly discuss

our specific design, E3 for natural frequency estimation of the civil engineering structures.

To realistically evaluate the performance, structural damage detection experiments in a real

SHM platform are conducted to test our algorithms.

Finally, we conclude the thesis and discuss the directions of future works in Chapter 5.
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Chapter 2

Literature Review

In this chapter, we review existing works about signal-processing algorithms in the

applications of WSNs. As we have discussed, we focus on distributed algorithms design

for computation-intensive applications in this thesis. In Section 2.1, we review the existing

works about applications with data-intensive and computation-intensive features in WSNs.

Then we review the existing works about distributed least squares estimation algorithms in

WSNs in Section 2.2.

2.1 Existing Works on signal-processing algorithms in the
applications of WSNs

According to the time complexity and the level of collaborations among different sensors,

typical signal processing algorithms (SPA) in WSNs can be categorized as (1) lightweight

(2) computationally intensive collaborations of multiple sensors.

2.1.1 Computation Lightweight SPA

Most of the signal-processing algorithms in the applications of WSNs belong to the first

two categories. Algorithms in the first category usually include those whose objective is

to find some statistics (e.g. mean, maximum, minimum) of measurement data of sensor

nodes over some region and/or over a period of time,such as monitoring fire in a forest,

temperature in a building, etc. [MCP+02] [KPKK07] [YWM05]. These applications are

characterized as having low data rates and with light-weight computations. Designing the

9



corresponding distributed version is straightforward. For example, each sensor only needs to

collect data from its children and implements some certain aggregation function (e.g. mean,

maximum, minimum). These studies were focused on how to establish the best routing in

the network.

2.1.2 Computation Intensive SPA

Computation intensive with feature-level or decision level collaborations SPA in the

second category are shown in Fig 2.1(a) and Fig. 2.1(b). Feature-level or decision-level

collaboration allows data from each sensor to be processed first and then the local results,

which uses much fewer bits than the original one, are combined together. Particularly,

in Fig. 2.1(a), data from each sensor is processed individually to obtain a local decision,

and then all the decisions are combined together through decision-fusion. In Fig. 2.1(b),

each sensor extracts a feature and all the features are combined through feature-fusion

techniques. For these algorithms, designing the distributed version is relatively simple:

each sensor can process its own data independently without exchanging information with

others, and then the local results (either local features or local decisions) are transmitted

to a sensor for fusion afterwards. The studies are usually focused on how to decrease the

computation at each sensor, usually via replacing floating-point operations with integer

arithmetic operations without operations or assigning computationally-intensive operations

to the base station.

However, a large amount of algorithms in WSNs belong to data-level collaborations

SPA: they are computationally intensive and with data-level collaboration of multiple sen-

sors. Data-level collaboration prohibits the probability that each sensor can process its own

data independently without exchanging information with others. In addition, in a typical

algorithm with data-level collaboration of multiple sensors, data from different sensors are

tightly coupled in the computation task and cannot be easily decomposed into smaller sub-

tasks. To design a distributed version for the algorithms with architecture shown in Fig.

2.1(c), one commonly adopted approach is to design the computation components as shown

in Fig. 2.1(a) or Fig. 2.1(b) (e.g. feature extraction/fusion, decision making/fusion) such

10



Chapter 2 Literature Review

Fig. 2.1: Algorithms with different levels of collaboration(a)at decision level(b)at feature
level(c)at data level

that the Fig. 2.1(c) can be implemented as in Fig. 2.1(a) or 2.1(b). For example in SHM, to

identify structural vibration characteristics called modal parameters in a distributed way,

a cluster-based approach is proposed in [Abe90] (see Fig.2.1). This approach tries to map

Fig.2.1(c) to Fig.2.1(b): the whole network is divided into a number of clusters. Each

cluster has a cluster head which is responsible for obtaining the local modal parameters

for that cluster, and then all the local modal parameters are stitched together to obtain

the global result. Similarly, the distributed signal detection and data fusion in multi-sensor

systems [XV96] [KZG92] [T+93] also follow this approach. However, existing mechanisms

to design distributed versions of computation intensive signal processing algorithms have

the following disadvantages:

11



Fig. 2.2: Cluster-based modal parameter estimation

1. Resource usage: When designing a distributed algorithm, the problem of how to op-

timally utilize the available resources (energy supply, wireless communication band-

width, computational capability) has not been fully addressed.

2. Quality: Existing works on designing distributed algorithms usually cannot guarantee

that the results of the distributed version have the same accuracy as the centralized

one. For example, in the clustering approach [Abe90], it should be noticed that the

accuracy of the ’stitched results’ cannot be guaranteed to be comparable with the

original centralized one.

At last, it should be noticed that the problem to design a distributed version for the

data-intensive and computation-intensive applications in WSNs is different from what has

been studied extensively in parallel and distributed computing [Zom96] in the following
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aspects:

1. Objective: Parallel and distributed computing generally focuses on how to utilize

the computation power of a given number of computation utilities such that the

time-to-completion of a computation task can be minimized. The computing utilities

generally do not generate data. On the contrary, each sensor node in the network

is not only the computation entity, but also the resource of the data. Considering

the limited energy, energy cost (including communication and computation cost) is

generally more important than time-to-completion. Accordingly, when we decompose

a computation task into smaller ones, it is highly desirable that a computation entity,

when implement its sub-task, use only its own data or data from its one-hop neighbors.

2. Computation constraints: Various parallel algorithms have also been developed to

speed up the execution of these methods . However, designed for high-performance

computers, these approaches need significant amount of computational/memory re-

sources and require the knowledge of global information. As a result, they cannot be

executed by a distributed system.

2.2 Existing Works on distributed least squares estimation
algorithms in WSNs

Sensor networks have found widespread adoption in many domain-specific applications,

such as structural health monitoring (SHM) [Avi01], volcano monitoring [KSS13], etc; most

of which have a data-intensive nature. For example, to detect possible structural damage,

each accelerator deployed in a structure needs to sample in the range of 16-24 bit at 200-

1000Hz [DFPS96]. It is typical that least squares estimation, which is used for estimating

some parameters of interest from a large number of redundant measurements, serves as

a critical component in these applications’ algorithms. Due to the limited capability and

resources of wireless sensor networks and domain specific characteristics, distributed algo-

rithms for least squares estimation in terms of energy and real-time implementation are

required.
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There exist some works over adaptive networks in the literature, including incremental

based strategies [CS11] [LS06] [SL07] [SL06] and diffusion based strategies [BMS11] [LS07]

[LS08] [CLS08], focusing on the estimation performance. The incremental recursive least

squares algorithm (I-RLS)[SL06] is one of the first such schemes, which sequentially ag-

gregate new raw measurements with intermediate results while performing least squares

estimation. The I-RLS can achieve the exact global solution of the least squares system.

However, a Hamilton path across sensors for implementing I-RLS which has been proved a

NP-hard problem is required, and the challenges still remain in large scale wireless sensor

networks. Besides, it also limits the practical usage in real-time applications using large-size

sensor networks because of the long delay incurred by long transmission path.

Another category is based on diffusion strategy. One called diffusion recursive least

squares, which is also based on the recursive scheme, was proposed in[CLS08]. Diffusion

based schemes allow global results to be spread over the entire network. Nevertheless, in

addition to local estimates, each node is required to diffuse its raw measurements to its one-

hop neighbors. Continuous local communication and the presence of the communication

noise incur estimation performance degradation. Only after certain times of iterations can

the final results converge to the global ones. As a consequence, the diffusion methods are

significantly limited in practical use of certain applications in sensor networks in terms of

energy and real-time implementation.

Several distributed estimation algorithms, which are rooted on iterative optimization

methods, have also been investigated. The distributed multisplitting method is one of such

strategies [Ren98]. It is based on stationary iterative methods in which each sensor does the

same routines based on its own measurements. However, each sensor is required to flood

its information to the entire network for cooperation in each iterative round. Continuous

flooding in large-size sensor networks is not practical in terms of energy efficiency. Such

limitation is also shared by other methods in this category.
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Chapter 3

3D Framework for Distributed
Least Squares Estimation
Algorithms Design for Sensor
Networks

In this chapter, we investigate the distributed least squares estimation algorithms in

sensor networks. We propose a 3D framework which is able to provide a basis for designing,

analyzing and evaluating strategies to address parameters estimation issues using least

squares estimation algorithms in wireless sensor networks. This chapter is organized as

follows: Section 3.1 is the overview of this work. Section 3.2 describes the problem and the

network model. Section 3.3 describes the main design aspects for distributed least squares

estimation in sensor networks. The 3D framework is proposed in Section 3.4. Finally,

Section 3.5 concludes this chapter.

3.1 Overview

The trend toward the real-deployment of wireless sensor networks in numerous appli-

cation domains including intelligent transportation system, structural health monitoring

(SHM) of large buildings and bridges, states-estimation in smart grid, etc., is increasingly

demanding for efficient signal processing in wireless sensor networks. However, due to the
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very limited energy and computation capabilities in sensor networks, traditional central-

ized signal processing strategies by no means straightforward to implement. Moreover, the

traditional centralized fashion, where sensor nodes forward their measurements to a cen-

tral server and they are processed to estimate the parameters of interest, results in long

delay especially in large scale wireless sensor networks. These challenges make the tradi-

tional centralized signal processing algorithms are unsuitable in wireless sensor networks,

emphasizing the need for efficient signal processing strategies.

Fortunately, many domain-specific problems can usually be formulated as a large lin-

ear least squares system based on measurements from sensors. These measurements may

contain noise, thus redundant measurements that are used to reduce the effects of error are

often sampled to form an over-determined system. As a result, in many domain-specific

applications, efficient signal processing strategy design is narrowed down to design and im-

plement efficient algorithms to solve such a large linear least squares problem and obtain

the optimal global estimates, where each sensor node has only the partial independent rows

of the least squares system.

An intuitive, and perhaps naive way, is to solve the problem in a centralized fashion:

sensor nodes forward their measurements to a central server, where they are processed to

estimate the parameters of interest. Even if we do not consider the computation power

that may be needed at the central server, such a centralized solution is still not practical in

sensor networks, due to the significant amount of communication cost and the long delays

that are required to deliver the data to the server. A distributed solution that processes

the data within the large sensor network itself is, therefore, a much more favourable choice.

By a distributed solution, it is implied that the least squares computation will be per-

formed in the sensor nodes themselves, and that only the result of such computation and

part of measurements will be transmitted. Though such in-network processing may conserve
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a significant amount of energy due to the reduced amount of data to be transmitted, the

delay of finishing the computation may be longer, and the accuracy of the results may be

sacrificed. Recent years, researchers have proposed a wide range of strategies for distributed

least squares estimation. However, each strategy has its own design objectives and applica-

tions scenarios. No guided scheme exists for current practical usage, making it difficult to

evaluate their relative effectiveness and performance.

In this chapter, we focus on the problem of distributed least squares estimation algo-

rithms design in large-scale sensor networks, which is an important foundation in many

domain-specific sensor network applications. With distributed computation, we stipulate

that each sensor node will process information locally with observations from itself and some

of its immediate neighbours. In this context, we develop a general 3 dimensional model that

captures the main features of distributed least squares estimation schemes and provides a

basis for evaluating existing strategies. As far as we know, our framework is the first one to

demonstrate the distributed least squares estimation within large wireless sensor networks

with guaranteed accuracy and other optimized performance(energy, delay, etc.) in a general

manner.

3.2 System Model

Consider a wireless sensor network with N sensor nodes (or nodes), modeled as an

undirected graph G = (V,E), where V denotes the set of nodes and E denotes the set of

edges representing the communication links between pairs of nodes. Though each node is

only able to communicate with its immediate neighbors directly, messages may be relayed

via multiple hops to a destination node. Without loss of generality, we assume that the

diameter of the network is logN (i.e., any message can be sent from one node to another

through at most logN hops). Also, let’s assume that each link in the network between
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neighboring nodes has unit bandwidth and each node only has one radio. Therefore, the

communication delay of one unit data delivery between direct neighbors (either through a

unicast to one direct neighbor or multicast/broadcast to all direct neighbors) would be one

unit time. Notice that, here we assume the link layer supports broadcast which is often

true in many sensor networks. For simplicity, according to the description in [SSK+], we

also use the term broadcast for local broadcast to one-hop neighbors and flood for network

flooding.

In such a sensor network, the primary objective is to collectively estimate M unknown

parameters which form a M × 1 column vector, denoted by ω0, using the least-squares

estimation method. Each node k ∈ {1, . . . , N} have access to one pair of measurements:

scalar measurements dk ∈ R(trows×1) and a regression matrix uk ∈ R(trows×M), where trows

denotes the number of rows that each matrix uk contains.
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(0.0497,0.3692), 
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(0.2400,0.3377), 
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(0.9027,0.1112), 
       (1.1345) 

Fig. 3.1: A wireless sensor network: an example of our system model.

Let us consider an example, shown in Fig. 3.1. The dashed lines denote the undirected

edges between nodes. The network contains 7 nodes and one of them is the sink node.

According to our system model, we can see that the measurements in sensor 1 in our

example are u1 = (0.1233, 0.4909) and d1 = 1.1089, where M = 2 and trows = 1. The

vector y corresponds to all the measurements from all of the nodes, while the matrix H
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corresponds to all the regression data. Then we can have

y = col{d1, d2, d3, . . . , dN}(trowsN × 1) (3.1)

H = col{u1, u2, u3, . . . , uN}(trowsN ×M) (3.2)

For a system with N nodes, the equation of the entire system would be

H × ω0 = y (3.3)

In our example the least squares system constructed at the sink node, based on 7 pairs

of sensing data, is shown in Eq. (3.4):



0.1233 0.4909

0.1839 0.4893

0.2400 0.3377

0.4173 0.9001

0.0497 0.3692

0.9027 0.1112

0.9448 0.7803



×

 x

y

 =



1.1089

1.1648

0.9194

2.2183

0.7895

1.1345

2.5149



(3.4)

Without loss of the generality, our network model accounts explicitly for non-ideal sensor

to sensor links, which implies that each sensor’s measurements are corrupted by a noise νk,

and νk is assumed as a zero-mean temporally and spatially uncorrelated Gaussian white

noise process with variance σνk . Then we can have

y = H × ω0 + ν (3.5)
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Typically, the centralized and non-iterative least squares estimate of ω0 of Eq. (3.5) can

be calculated as

ω0 = (HTH)−1HT y (3.6)

In our running example in Fig. 3.1, the noise variance of each node σνk = 0.012. The

objective of a centralized computation is to collect the 7 pairs of measurement data from the

sensor nodes to the sink node, where the two unknown parameters (x, y) will be estimated.

With the traditional least squares estimation method, Eq. (3.4) is solved by using Eq. (3.6)

directly.
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(1.0102,1.9996) 

Fig. 3.2: Computing the least squares estimation at the sink node in a centralized man-
ner, while measurement data is being transmitted in a shortest path tree to minimize the
transmission cost.

In order to minimize the data transmission cost when measurement data is being trans-

mitted from the sensor nodes to the sink, we use the shortest path tree rooted at the sink

as the routing strategy, as shown in Fig. 3.2. When we consider the calculation for the

total amount of data to be transmitted, we regard a scalar value in a matrix transmitted

over one hop as a unit. In our example, the data size of measurements over one hop of

transmission at each sensor is 3. There are four nodes whose measurements need to be

transmitted over two hops to the sink node. Thus, the amount of data transmitted in total

is 4 × 2 × 3 + 2 × 1 × 3 = 30. After the transmission completes, the sink node estimates

the parameters by using Eq. (3.6), with the result being (x, y) = (1.0102, 1.9996). The
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estimation error is 3.01% by calculating the square root of the sum of the mean square. If,

in addition to the transmission cost, we consider the maximum number of hops (hop count)

from any sensor node to the sink, it is 2 in our example.

Even from our simple example, we can clearly see that the routing strategy that we used

to transmit measurement data to the sink leads to a high transmission cost. In addition,

by solving Eq. (3.4), complicated matrix operations such as matrix inversion and matrix

transposition are needed, which is expensive to be performed in a centralized manner in a

large scale sensor network. A distributed algorithm is naturally preferred.

Due to the data-intensive nature of the domain-specific applications, the formulated least

square systems are always quasi-over-determined. Therefore, we need to add some form of

regularization to avoid strong, undesired influence of small singular values dominating the

solutions. This can be achieved by applying a regularization parameter for determining

the least-square solutions. Then the least squares estimation problem can be formulated as

follows according to [CLS08]:

ω = arg min
ω
{λi+1‖ω‖2Π + ‖y −H × ω‖2w} (3.7)

where λ ∈ (0, 1] is a forgetting factor,
∏

> 0 is a regularization matrix and usually∏
= δ−1 · IM (δ > 0) is large, and w ≥ 0 is a weighting matrix which is related to the

sensing noise of each node. We do not focus on the optimization of regularizing parameters

in this chapter.

3.3 Design Aspects of Our 3 Dimensional Framework

The trend toward the real-deployment of sensor networks in more application domains

drives us to propose a general framework for distributed algorithms design. In this section
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and Sec. 3.4, we propose a general 3 dimensional framework as a basis for designing, ana-

lyzing and evaluating distributed estimation algorithms including but not limited to LSE in

WSNs. In this chapter, we use least squares estimation as a case for our general framework.

Essentially, a distributed least squares estimation strategy to solve ω0 in Eq. (3.5) in sensor

networks can focus on three design aspects: aggregation structure, performance metric and

communication pattern.

3.3.1 Aggregation Structure

A distributed algorithm implies to utilize the computation capability of each sensor. In

this sense, we wish to carry out the computation on the route when each node sends its

data to the sink(Hamiltonian path based algorithm [SL06] ) or each sensor has the final

result once the estimation algorithm converged(e.g. Diffusion-based algorithm [CLS08]).

This indicates that each sensor should carry out certain computation task using its own or

received data and communicate local results with its neighbors. To achieve this goal, the

aggregation structure should be determined. Then, based on the aggregation structure and

the graph of the deployed sensors, the optimal routing can be obtained.

We have investigated general aggregation structures for typical sophisticated signal pro-

cessing algorithms including but not limited to LSE. The structures should allow both

computation and associated data are distributed within the network. Accordingly, we can

have a number of aggregation structures shown in Fig. 3.3. For example, Fig. 3.3(a) shows

a cluster-based scheme in which cluster heads collect and process the data from the corre-

sponding cluster members. The local results from different clusters are then combined to

obtain a global result. Besides clustering, another aggregation structure can be a Hamilto-

nian path shown in Fig. 3.3(b). In this structure, the results are updated along the path

and when the results reach one en-route node, they will be updated by the node’s data.

Similarly, Fig. 3.3(c) shows the possibility to update along a backbone path. A backbone
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Fig. 3.3: Different aggregation structures for sophisticated algorithms

path is a path that all the sensor nodes are either on the path or have neighbors on the

path. The nodes on the path are the backbone nodes and the rest the leaf nodes. Using

this structure, leaf nodes transmit their raw data to their corresponding backbone nodes.

The backbone nodes process the received data from both leaf nodes and the preceding back-

bone node(if there is any) and transmit the result to the next backbone node. In this way,

the result is updated when it travels along the backbone path. The fifth possible network

structure is tree shown in Fig. 3.3(d). In this structure, each node in the tree collects data

(either in the form of raw data or intermediate results) from its children, processes it and

sends the result to its parents. Fig. 3.3(e) shows a diffusion-based aggregation structure

in which each node communicates with all or part of its neighbors. At every instant, the

local result is combined with information from the neighboring nodes in order to improve

the result at the local node. In steady-state, after sufficient observations and cooperation,

the nodes would eventually converge to the global results. For clarifity, we classify the

aggregation structures into four categories: path-based(P) Fig. 3.3(b), tree-based(T) 3.3
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(c)(d), cluster-based (C) Fig. 3.3(a) and diffusion-based(D) Fig. 3.3(e).

3.3.2 Performance Metric

The fundamental objective of sensor networks for the domain-specific applications is to

estimate the parameters of interest. To achieve this objective, three performance metrics

need to be considered: accuracy(A), delay(De) and energy consumption(Ec). Firmly, the

estimation accuracy is the most fundamental requirement for a distributed algorithm design.

Ideally, we hope that the distributed strategy can achieve the same accuracy with the cen-

tralized approach. Besides, the time taken for the network to finish an estimation is referred

to as delay, which shall include the consideration of the message size and number of hops the

data packet traversed. In this paper, we focus on the communication delays while ignoring

the computation time in each node. With the Moores law, the computation capability is

increasing faster than the communication capacity of transceivers. The communication de-

lay is typically dominating the computation time. Finally, to solve a least squares problem

of large size, the communication cost is one of the most influential performance metrics.

Here, we refer the energy consumption as the cost involved in the messages exchanged in

the networks during an estimation. For simplicity, we use the total data transmitted in the

entire network for an estimation representing the energy consumption.

To the best of our knowledge, there is no existing general distributed algorithm which

can optimize the three performance metrics simultaneously, while existing algorithms are

designed for certain specific applications. Practically, to design a practical strategy for

solving least squares estimation in sensor networks requires sacrificing some of the perfor-

mances(e.g. delay) to reach other optimization objectives(e.g. energy consumption). For

clarity, we list the performance priority level for each algorithm. As discussion, accuracy is

the basic performance metric needed to be guaranteed. When we refer to AEc strategy, we

mean accuracy guaranteed and energy consumption minimization distributed algorithms,
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while ADe is accuracy guaranteed and delay minimization strategy. For simplicity, some

existing algorithms which have strict accuracy requirements while other performance met-

rics(De and Ec) are not explicitly considered are classified into the accuracy focused (AC)

category.

3.3.3 Communication Pattern

Performing least squares estimation in distributed fashion implies that sensor nodes

will process information locally with observations from itself and some of its immediate

neighbours. Thus, communication among sensor nodes is required. In this paper, we

assume the link layer supports broadcast in network. For simplicity, we consider a one-hop

broadcast as multiple unicasts. Then we can classify the communication pattern in the

sensor networks into three categories: unicast(one-hop unicast or multi-hop unicast), one-

hop broadcast (local broadcast to one-hop neighbor nodes) and network flooding (broadcast

the message to all the nodes in the entire network). Actually, most existing distributed

least squares estimation algorithms use not only one single communication pattern. They

usually are unicast and one-hop broadcast, unicast and flood, .etc. However, each strategy

has one dominate communication pattern which contributes most to the entire network

communication cost. For simplicity and convenience, in the rest of the paper we use the

term unicast(U) for strategies for which unicast is the dominating communication pattern.

Likewise, we use the term broadcast(B) and flood(F) in the rest of the paper.

3.4 3D Design Framework

Figure.3.4 shows a 3D framework that represents each design aspect as one orthogonal

dimension. Because the three dimensions are independent of each another, a wide variety

of distributed least squares estimation strategies can be created by combining properties

from each.
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A XX-YY-ZZ string expresses a strategy in which XX represents the aggregation struc-

ture, i.e., P(path-based), T(tree-based), C(cluster-based), D(diffusion-based), .etc. YY

stands for performance metrics, i.e., ADe, AEc, AC.etc. , and ZZ symbolizes the dominat-

ing communication pattern which contributes most to the communication cost in the entire

network i.e., U(Unicast), F(Flood), B(Broadcast), .etc. A strategy’s overall configuration

has a special value for each parameter. Some XX-YY-ZZ combinations are meaningful in

the domain-specific applications using wireless sensor networks. In fact, all the existing dis-

tributed least squares estimation schemes in the literature have corresponding XX-YY-ZZ

tuples.

Performance Metric 

Aggregation
Structure

Communication
Pattern

Unicast (U)

Broadcast (B)

Flood (F)

Path-
Based (P)

Tree-
Based (T)

Diffusion-
Based (D)

Accuracy-
Energy (AEc)

Accuracy-
Delay (ADe)

Accuracy-
(AC)

Y

X

Z

Cluster-
Based (C)

Fig. 3.4: 3D design framework. Each axis represents one design aspect and contains a range
of properties.

P-AEc-U is identical to the distributed recursive least squares estimation(DR-LSE)

strategy[SL06] in sensor networks. DR-LSE is a scheme which sequentially aggregate new
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raw measurements with intermediate results along a Hamiltonian path which traverses all

of the sensor nodes in the entire network. The computation pattern is unicast. Besides,

DR-LSE can achieve the exact global solution of the least squares system which means that

the estimation accuracy can be guaranteed. The results converge once all of the nodes are

involved in the estimation process. Furthermore, each sensor aggregates the intermediate

results with its raw measurements and transmits the updated results which data amount

is a constant depended on the scale of the network. DR-LS has been shown to outperform

most other existing works in terms of estimation accuracy and energy efficiency. However,

one problem is that building a Hamiltonian path has been proved to be a NP-hard problem,

from which the path does not always exist can be down once one sensor is down.

Diffusion distributed least squares estimation[CLS08] is a kind of D-AC-B strategy that

it is a diffusion-based manner which has no topology constraint and mainly focuses on ac-

curacy. The estimation process is continuous while each sensor is sensing the measurements

till all of the local estimates have converged to a pre-defined accuracy level. Estimation

delay is mainly determined by the converged speed of the estimation algorithm. Diffusion

based schemes allow global results to be spread over the entire network, i.e., there is no

requirement for a sink node to collect and combine the intermediate results. However, each

node is required to communicate with its one hop neighbors continuously in which we called

the computation pattern one-hop broadcast. The advantage is that there is no topology

constraint for dense sensor networks. However, for sparse networks, local raw measure-

ments from itself and its neighbours’ are not enough to make the local sub-least squares

system solvable. It means that, the final results in each node may not able to converge.

Besides, continuous local communication and the presence of the communication noise incur

estimation performance degradation.

Divide and conquer approach breaks down the global least squares system into two
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or more sub-least square(the raw measurements overlap can exist) problems, the solutions

to the sub-problems are then combined to give a solution to the original problem[Abe90].

In [Abe90], the authors only considered the signal processing part, i.e., data division and

intermediate results combination. We slightly modified their approach to be suitable in

sensor networks. Assume that each node contains one row of the coefficient matrix. Based

on the original algorithm, the divide and conquer approach to least square estimation process

in sensor network contains two steps. First, the entire network is divided into clusters, and

then clustering heads collect all of the row measurements from its cluster members so as

to solve a sub least-squares problem, and second, the clustering head transmits its local

estimates to sink node which all of the sub solutions are combined. The communication

pattern of this strategy is unicast (either can be one-hop unicast or multi-hop unicast).

The inconvenience of this approach is that how to divide the entire network into clusters

to achieve the minimum transmission cost and guarantee the accuracy of the final results

simultaneously. Obviously, this approach is one kind of cluster-based schemes which belongs

to C-*-B(in which * represents those situations with nonfixed attributes and can be any

combination of properties along the dimension).

Recently a survey paper [SSK+] has analysed and discussed one category of distributed

strategies–distributed least-squares iterative methods in mesh networks as shown in Fig. 3.4.

We list them in the following. Since all of the distributed iterative methods shown below

are designed based on the existing centralized iterative methods, the estimated results can

be guaranteed especially in ideal network. Besides, they required global information when

calculating some intermediate parameters. For example, D-MS. Thus, network flooding is

necessary when performing distributed iterative methods in sensor networks, which requires

each node to exchange information continuously. As a consequence, this category introduces

large communication costs and a high collision probability due to the large number of nodes
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transmitting simultaneously. The advantage is that there is no limitation in the network

topology. However, the estimation delay is mainly determined by the convergence speed

of the computation algorithm itself and is without topology limitation. This category of

distributed strategies belongs to D-AC-F.

• D-MS Distributed Multisplitting method

• D-MCGLS Distributed Modified Conjugate Gradient Least-Squares method

• D-CARP Distributed Component-Average Row Projection method

• D-CE Distributed Cooperative Estimation methods

• D-LMS Distributed Least Mean Squares method

3.5 Summary

In this chapter, we have proposed a 3 dimensional framework for distributed least squares

estimation algorithms design in sensor networks. Our framework shows that distributed LSE

algorithms design mainly focus on three design aspects: aggregation structure, performance

metric and communication pattern. Based on our proposed framework, we have investigated

existing works on distributed LSE and have analysed their advantages and disadvantages,

respectively.
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Chapter 4

E3: Towards Energy-Efficient
Distributed Least Squares
Estimation in Sensor Networks

In this chapter, we investigate the characteristics of signal processing algorithms in civil

engineering domain. After that, based on our proposed framework in Chapter 3, we propose

a specific design of distributed algorithm, E3, for structural damage detection, from which

it combines the advantages of T-AEc-U and T-ADe-U strategies in sensor networks. This

chapter is organized as follows: Section 4.1 is the overview of this work. Section 4.2 describes

the system model and the formal problem formulation. Following this is the distributed

algorithm design for solving this problem in Section 4.3. Section 4.4 reports the simulation

results and experiments results, respectively, and finally Section 4.5 concludes this chapter.

4.1 Overview

Due to low-cost and ease of deployment, WSNs are emerging as sensing paradigms that

the structural engineering domain has begun to consider as substitutes for traditional wired

SHM systems. The objective of SHM is to monitor the integrity of structures and detect and

pinpoint the locations of any possible damage. In a typical wire-based SHM system as shown

in Fig. 1.1, an array of sensors, usually accelerometers, are deployed on different locations
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of a structure. These nodes collect the structure’s responses in a synchronous manner

and transmit them through cables to a central server where one or more SHM algorithms

are implemented to extract damage-sensitive vibration characteristics. By examining these

characteristics, damage can be detected and located [DFPS96].

Using WSNs as alternatives to traditional wired SHM systems can reduce the cost and

deployment time but introduces many challenges. These challenges are mainly due to two

properties of SHM applications. Firstly, the high sampling frequency of SHM applications

(> hundreds of Hz) generates a large amount of data which can reach thousands or even

tens of thousands for each sensor in a single round of data collection process. Thus the

SHM applications becomes quite data intensive. Secondly, damage detection usually in-

volves intensive computations such as large matrix operations. Consequently, distributed

processing, by which only important information, rather than all raw data, needs to be

transmitted, is highly preferable.

Fortunately, least squares estimation is a foundation for one of damage detection algo-

rithms originally proposed by civil engineers [Gol], from which damage information can be

analyzed. By a distributed solution, it is implied that the least squares computation will

be performed in the sensor nodes themselves, and that only the result of such computation

will be transmitted. Though such in-network processing may conserve a significant amount

of energy due to the reduced amount of data to be transmitted, the delay of finishing the

computation may be longer, and the accuracy of the results may be sacrificed. It is non-

trivial to achieve a similar level of accuracy as the centralized solution, or to work with

constraints in the delays of computing global estimates.

Thus, in this chapter, we focus on the problem of distributed least squares estimation

in sensor networks which can be practically used in SHM applications. With distribut-

ed computation, we stipulate that each sensor node will process information locally, with
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observations from itself and some of its immediate neighbors. In this context, we focus

on accuracy, energy consumption, and delay for completing the computation. Based on

our proposed framework for distributed LSE algorithms design in Chapter 3, we propose a

tree-based strategy which can combine the advantages of T-AEc-U and T-ADe-U strategies.

Inspired by [Abe90], we use fisher information as a gauge of accuracy, with which a quantity

can be estimated from partial observations. Our objective in this chapter is to arbitrate the

conflicts between energy consumption and delays, without sacrificing the accuracy of least

squares estimation.

To achieve this objective, the highlight of our original contribution is E3, a new dis-

tributed algorithm which can guarantee the accuracy of least squares estimation in sensor

networks, with the objective of minimizing the total energy consumption when solving the

over-determined system, subject to a delay constraint. The energy consumption is mea-

sured by the communication cost of the entire network, while the delay is measured by

the longest hop count from the leaf to the sink node during the distributed computation

process. The outcome of our proposed distributed algorithm is the routing strategy for the

distributed estimation process. To validate the efficacy and effectiveness of our algorithm,

we show results from both simulations and a real-world test bed, with data from an actual

structural health monitoring system deployed in a building.

4.2 System Model and Problem Formulation

We first describe the system model used in this work. Then we formulate the problem.

4.2.1 System Model

Consider a wireless sensor network with N sensor nodes (or nodes), modeled as an

undirected graph G = (V,E), where V denotes the set of nodes and E denotes the set of

edges representing the communication links between pairs of nodes. Though each node is
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only able to communicate with its immediate neighbors directly, messages may be relayed

via multiple hops to a destination node.

In such a sensor network, our primary objective is to collectively estimate M unknown

parameters which form a M × 1 column vector, denoted by ω0, using the least-squares

estimation method. Each node k ∈ {1, . . . , N} has access to one pair of measurements:

scalar measurements dk ∈ R(trows×1) and a regression matrix uk ∈ R(trows×M), where trows

denotes the number of rows that each matrix uk contains.

Due to the data-intensive nature of the domain-specific applications, the formulated least

square systems are always Quasi-over-determined. Therefore, we need to add some form

of regularization to avoid strong, undesired influence of small singular values dominating

the solutions. This can be achieved by applying a regularization parameter for determining

the least-square solutions. Then the least squares estimation problem can be formulated as

follows according to [CLS08]:

ω = arg min
ω
{λi+1‖ω‖2Π + ‖y −H × ω‖2w} (4.1)

where λ ∈ (0, 1] is a forgetting factor,
∏

> 0 is a regularization matrix and usually∏
= δ−1 · IM (δ > 0) is large, and w ≥ 0 is a weighting matrix which is related to the

sensing noise of each node. We do not focus on the optimization of regularizing parameters

in this chapter.

4.2.2 Problem Formulation

With each node performing its local computation based upon the information exchanged

with its immediate neighbors, we wish to achieve the accuracy of a centralized least squares

estimator, as defined in our system model, yet with a distributed algorithm. By perform-

ing local computation on each node and relaying partial computation results to the sink

node, our distributed algorithm should attempt to compute an optimal routing strategy to
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minimize the energy consumed in the entire sensor network to complete the computation,

subject to a delay constraint. The delay is measured by the largest hop count from leaf

nodes to the sink node in the distributed computation process, and the energy consumption

is measured by the total amount of data transmitted during the process.

The essence of our new algorithm is to perform estimation while collecting data within

the sensor network. When the data arrives at the sink, the same approximation result of a

centralized computation should be computed. From this perspective, our problem is similar

to finding an optimal-routing distributed strategy for the traditional data aggregation. In

this case, a shortest path tree may be an option. However, to achieve our objective, only

considering the problem from the perspective of theoretical computer science algorithms is

not enough. The inherent additional characteristics of domain-specific algorithms, which

can impose new constraints on the routing algorithm design, also need to be taken into

consideration.

In a distributed algorithm for solving a least squares system, there are two features

we need to consider. First, no matter what kind of data the sensors received, after being

processed by local computation, the data size of the output is always a constant, which

is determined by the number of parameters of interest, and at most equals to the size of

one unit of raw measurement. From this perspective, the fewer sensors transmitting raw

measurements the better. Second, the accuracy of the results from a centralized compu-

tation can only be guaranteed when the fisher information of each partial result obtained

through local estimation is large enough. This condition is satisfied only when each sub-

least squares system constructed by partial sensor measurements is well-conditioned, such

that the precision of the final result can be guaranteed [Abe90]. That implies that a cer-

tain subset of sensors can sense and transmit raw measurements only and do nothing for

the entire estimation when the condition number of the collected raw measurements is too
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large. Finally, the computation functions that each sensor executed is determined by the

data types being received from its neighbors.

By considering these specific attributes of the least squares system, our objective is

to design an optimal routing strategy in which the number of sensors transmitting raw

measurements only is determined by the fisher information of the raw measurements, and

adhere to the principle that fewer sensor nodes are better, as long as a given delay constraint

is satisfied. Our problem can be formally formulated as follows:

Given:

• Wireless sensor network denoted as an undirected graph G = (V,E), where V denotes

the set of N sensor nodes and E denotes the set of edges representing the communi-

cation links between pairs of sensors.

• Each node k has access to trows scalar measurements dk and a regression matrix

uk ∈ R(trows×M), where k ∈ {1, . . . , N}.

• After local processing, the output data size is a constant which is equal to the number

of parameters M .

Objective:

• To construct an optimal routing strategy for performing least squares estimation, such

that the total amount of data transmitted in the entire network is minimized.

Subject to:

• The maximum number of hops from each nodes to the sink node is minimized, which

is application-specific.
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4.3 E3: Distributed Least Squares Estimation

In this section, we will introduce the design of our new distributed algorithm to perform

least squares estimation, referred to as E3, in a progressive fashion. The goal is to achieve

the performance of the centralized counterpart, but incurring a much lower transmission

cost with a hop-count constraint.

4.3.1 Incremental recursive least squares estimation

Since our algorithm also adopts partial recursive processing, before introducing our new

design, we first present a primer on how recursive strategy of distributed least squares

works [SL06]. With incremental least squares estimation, the proposed algorithm requires

the construction of a so-termed Hamiltonian path across sensors, and each node is allowed

to communicate with its immediate neighbor in order to update the estimation result to a

much better one. Each node only receives one existing estimate from its previous node along

the path, and transmits the new estimates after local processing. The term “incremental”

in [SL06] implies that, the least squares estimation of a “smallsized” regression matrix H is

calculated first, which only involves the data from a few sensor nodes. Then the data from

the remaining ones are incorporated incrementally into H, and each time measurements

from a new sensor are added, the least squares estimation of the updated H is obtained

by using only the previous estimation result and the newly added measurements. However,

a Hamiltonian path across sensors for implementing incremental least squares is required,

which has been proved to be a NP-hard problem. The number of hops in such a Hamiltonian

path is determined by the size of the network, which is not practical in delay-sensitive

applications.

Using the example illustrated in Sec. 3.2, if the Hamiltonian path exists, we can construct

a path that visits each node exactly once as Fig. 4.1 shows. The estimation result using

37



1 

4 

2 

3 

S 

5 6 

(1.0102,1.9996) 

Fig. 4.1: Incremental recursive least squares estimation along a Hamiltonian path [SL06].

such a Hamiltonian path is as accurate as centralized computation, but the number of hops

is equal to 6. When it comes to the worst case as [LCST12] illustrated, if the Hamiltonian

path does not exist, the hop-count can double.

4.3.2 Distributed least squares estimation: a simple strategy as the s-
tarting point

Inspired by the incremental recursive least squares algorithm, we first propose a simple

strategy to perform distributed least squares estimation, as a starting point for designing

E3, which can satisfy the delay constraint of specific applications. In our simple strategy,

the unknown parameters are updated along a shortest path tree. Along each path to the

sink node, a partial incremental procedure which can update the previous results with

the new measurements are implemented. From this perspective, our simple strategy can

be regarded as a parallel version of the incremental recursive least squares algorithm along

multiple paths. As a consequence, our simple strategy leads to a significant delay reduction.

However, our simple strategy is not comparable to the incremental recursive least squares

algorithm in terms of accuracy.

When it comes to updating estimation results using multiple previous estimates and raw
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measurements, recursive updating as shown in Eq. (4.2), which has been derived in [SL06],

is not enough. Here µk denotes the local step size in each node [LS07]. The aggregation for

multiple partial estimates is needed as shown in Eq. (4.3). For Eq. (4.3), [Abe90] clearly

shows that the unknown parameters estimated are unbiased only when one of the following

two conditions is satisfied: (1) each intermediate result has sufficient fisher information; or

(2) the rows of initial values u must be no less than the number of parameters of interest.

To a certain extent, these two unbiased conditions are equivalent. Thus, utilizing Eq. (4.2)

and Eq. (4.3) to perform least squares estimation in a distributed manner can guarantee

that the final results are able to converge to the global results once these conditions are

satisfied.

ω0
k = ω0

k−1 + µk × uk(dk − uk × ω0
k−1) (4.2)

ω0
k = Σw × ω0 (4.3)

The estimation procedure is as follows: each node stores a pair of initial values, i.e, dk

and regression matrix uk, k ∈ {1, . . . , N} which has been illustrated in Fig. 3.1. Unlike

incremental recursive least squares, each node can receive initial measurement values or

partial estimations from its neighboring nodes. Based on the data received, each sensor

uses two different computation functions to compute a new estimate: Eq. (4.2) and Eq.

(4.3). In our running example, the result of such computation is shown in Fig. 4.2.

However, the transmission cost is still not optimum because of the unbiased condition.

This is especially the case when our simple strategy is used in some of domain-specific

applications, such as damage detection in structural health monitoring. For practical use,

we will need to design a better strategy for performing least squares estimation, taking into

account specific requirements based on a specific global least squares estimation algorithm
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Fig. 4.2: Distributed least squares estimation: a simple strategy.

widely used in civil engineering [Avi01].

According to [Avi01], there is one fundamental requirement imposed by applications

in the civil engineering domain that the rows of initial values included in each nodes are

always smaller than the number of parameters needed to be estimated. However, according

to [Avi01], the parameters of the civil structure need to be estimated M = 5, so here we

can set the rows of initial values trows = 4 for simplicity. To ensure the convergence of our

algorithm based on the unbiased estimation conditions as discussed above, the number of

nodes has certain requirements that need to be included in the initial values of the regression

matrix uk, before the updating process can be started. In the context of civil engineering,

we require that the number of sensor nodes included in the initial u should be no less than

2. This makes the size of the initial rows of u be no less than the number of parameters,

leaving enough margin to ensure the fisher information of the initial estimation meets the

unbiased requirement.
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4.3.3 E3: Our distributed algorithm

Before we introduce E3, we first summarize the two existing strategies of distributed

least squares estimation. The incremental recursive least squares estimation algorithm

updates estimates along a Hamiltonian path, and each node computes its estimates using

Eq. (4.2). Even though incremental least squares estimation can achieve the best possible

accuracy and transmission cost, the delay is determined by the network size, rendering it less

desirable in practical use with large sensor networks. In contrast, as a starting point, our

simple strategy is to update the estimates along the shortest path tree, and the final result

converges to the result of centralized computation. Even though the delay is minimized

with the use of the shortest path tree, the transmission cost is not the optimum in the

context of domain-specific applications in civil engineering.

Using our running example, as shown in Fig. 4.2, the computation of least squares

estimation is updated along the shortest path tree. The total energy consumed is therefore

equal to 3 × 4 + 2 × 2 = 16, which has a 46% cost saving as compared to the centralized

approach, even though the delay is still unchanged. We can see that our existing strategies

are two extreme solutions to our problem. The first strategy based on the Hamiltonian path

incurs the minimum transmission cost with the largest delay, while our simple strategy can

achieve the minimum delay, though the transmission cost is not the optimum.

Can we achieve a balanced tradeoff between these two approaches so that the transmis-

sion cost is minimized with a delay constraint? The answer is affirmative. As discussed

above, when performing partial estimation, the number of sensor nodes included in the

initial u should be no less than 2. That means, when performing distributed least squares

estimation in the shortest path tree, the leaf nodes only transmit the initial measuremen-

t values without any computation, while non-leaf nodes implement the two computation

functions and transmit local estimates. The data size of the initial measurement values in
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each node is trows× (M + 1), and the size of local estimates is M . If we assume the number

of leaves in the shortest path tree is NumLeaf, the total transmission cost in the entire

network is, therefore, shown in Eq. (4.4):

E = NumLeaf× trows × (M + 1) + (N −NumLeaf)×M (4.4)

minE = NumLeaf× trows × (M + 1) + (N −NumLeaf)×M (4.5)

We wish to minimize such a total transmission cost, represented by Eq. (4.5). We can

clearly see that if we can minimize the NumLeaf of the estimation tree, then we can find

the optimum solution to our problem. Thus, our problem can be transformed to finding a

spanning tree with a minimum number of leaf nodes, while the maximum hop count is no

less than the constraint h. Our new distributed algorithm, E3, is proposed to solve this

problem by modifying the tree topology from the initial shortest path tree. The key idea is

that, for each leaf node, only when it has sibling nodes and leaf neighbor nodes, its parent

can be turned into its neighbor leaf node. Thus, the number of leave nodes can be reduced

further. As such, E3 utilizes a minimum-leaves spanning tree with a hop count constraint,

which is shown in Algorithm 1.

Once the minimum leaves spanning tree is constructed, each leaf node only needs to

transmit its initial values to its parent while non-leaf nodes implement Eq. (4.2) and Eq.

(4.3) to update the intermediate results. The estimations are updated along the minimum

leaves spanning tree. Using our algorithm to perform the estimation in a distributed manner

in our running example, the routing strategy is shown in Fig. 4.3, with a total transmission

cost of 3 × 3 + 3 × 2 = 15, which leads to a 50% cost reduction in comparison to the
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Algorithm 1 E3: minimum leaves spanning tree with a hop count constraint.

Input: G(V,E), the number of nodes N , the root node R, maximum hop count h
Output: Minimum leaves spanning tree with a hop count constraint
1: Construct a shortest path tree rooted in R
2: for each leaf node with a sibling k do
3: for k’s neighbor nodes m do
4: if m is also a leaf node then
5: Save m’s ID and its hop count to the sink node
6: end if
7: end for
8: if k has a neighbor which is also leaf node i then
9: if hop < h after connecting k to i then

10: update k’s parent to i and then number of leaves is reduced
11: end if
12: end if
13: end for
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Fig. 4.3: Distributed least squares estimation using E3.

centralized computation, and a 6% reduction from our simple strategy. The maximum hop

count is 3 in our running example. In terms of accuracy, our algorithm has an estimation

error of only 0.78%.
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4.4 Performance Evaluation

4.4.1 Simulation

First, we use simulation to demonstrate the advantage of distributed least squares esti-

mation in terms of transmission cost and estimation delay in sensor networks. We consider

three different strategies of performing least squares estimation in a distributed manner.

1. Strategy 1 : all the measurements are transmitted to the sink node through the

shortest path tree (i.e. centralized least squares estimation).

2. Strategy 2 : the incremental recursive least squares estimation along a Hamiltonian

path [SL06].

3. Strategy 3 : our simple strategy described in section. 4.3.2, in which the unknown

parameters are updated along the shortest path tree.

4. Strategy 4 : E3, where the unknown parameters are updated along the path in the

spanning tree with a minimum number of leaf nodes.

As discussed in Sec. 4.3, strategy 2 is required to find a Hamiltonian path to update the

estimates. However, the Hamiltonian path may not exist. The best case of using strategy

2 is the case when the Hamiltonian path exists, then the total consumed energy can be

calculated as (N − 1)×M and its hop-count equals to (N − 1), both of which may become

exceedingly high as the number of sensor nodes increases. However, if it does not exist, the

total transmission cost can reach up to 2× (N − 1)×M . Since the efficiency of strategy 2

is quite obvious, we do not consider it in our simulation.

In our simulation, two scenarios are created to evaluate their performance in different

network densities and network sizes. Assume that N sensor nodes with the same commu-

nication range R are randomly deployed within a square area. We first fix the number of
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nodes N = 100, but gradually decrease the network density by decreasing R from 70 to

35. The area in this scenario is fixed to be 100× 100. The maximum hop-count is fixed to

be 25, which is the delay constraint. Then we maintain the network density at a certain

level but gradually increase the network size by increasing N from 100 to 500. Note that

to maintain the network density, when increasing N , the size of the deployment area also

needs to be increased. In both scenarios, a total number of 100 simulations is performed

and the average value of each strategy is calculated.

The results of the first scenario are illustrated in Fig. 4.4. First, it is easy to see that,

the amount of data transmitted for the centralized least squares estimation is increasing

with the decrease of R, when the number of nodes is fixed. Because much more relaying,

for forwarding the raw measurements to the sink node, is required with the decrease of the

communication range (note that this figure shows on the reverse x-axis). Different from

strategy 1, Fig. 4.4 also shows that our approaches in strategy 3 and strategy 4 lead to a

significant reduction in terms of communication cost with the decrease of R. There is no

need to relay raw measurements in our approaches. Based on the discussions in Sec. 4.3,

the leaf nodes only transmit raw measurements, while non-leaf nodes transmit partially

estimated parameters whose data size is much smaller than that of raw measurements.

E3 is such a strategy where the unknown parameters are updated along the path in the

minimum-leaves spanning tree with a hop-count constraint. Thus, it can save a significant

amount of transmission cost by comparing with the shortest path tree approach (Strategy 3).

Moreover, we can see from Fig. 4.4 that the more sparse the network, the more significant

the advantage of E3 in wireless communication.

Likewise, Fig. 4.5 compares the data to be transmitted in different strategies under

various network sizes. It can be seen that the amount of data to be transmitted within

strategy 3 and strategy 4 is much smaller than the centralized one (Strategy 1), and the
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Fig. 4.4: The transmission cost with various network densities.

more sensor nodes in the network, this advantage becomes more remarkable. Due to the

huge amount of data collection, strategy 1 is hard to put into practical use in some delay-

sensitive applications in the context of wireless sensor networks. An important property

that can be seen from Fig. 4.5 is that the advantage of our proposed method becomes

more significant in a sparse network with a large number of sensor nodes, by comparison

with the shortest path tree approach. This property is very favorable for structural health

monitoring, since this matches the real condition when wireless sensor nodes are deployed

to monitor the condition of large civil infrastructures.
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Fig. 4.5: The transmission cost with various network sizes.

4.4.2 Experiments in a building

To realistically evaluate the performance of our algorithms, we conduct structural dam-

age detection experiments in a real environment to test the three strategies described in

Sec. 4.4.1 (i.e. Strategy 1, Strategy 3, and Strategy 4). We deployed numbers of Struc-

tural Health Monitoring (SHM) motes in a building to measure the vibration data (see Fig.

4.6(a)). Then, we applied the least squares estimation method to estimate the natural fre-

quencies, which can be used to analyze the health condition of the structure. The motes are

specially designed by ourselves for the damage detection. The structural health monitor-

ing motes, which contain a fairly powerful floating point digital signal processing processor
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TMS320F2812 running at 150MHz, have the capability to implement sophisticated SHM

computations, and are much faster than most off-the-shelf wireless sensor nodes.

The placement locations of the SHM motes and their numbering are shown in Fig.

4.6(b). The experiment system which is set up on No. 17 is shown in Fig. 4.7a. As illustrat-

ed in Fig. 4.7a, we use three highly sensitive external nodes KD1300 at each measurement

location, to measure and record the vibration data of the building in three directions. The

vibration signal recorded at KD1300 will be amplified, and then fed into a corresponding

SHM mote where it is stored as 8-byte single-precision floating point format. For simplic-

ity, we call the SHM motes connecting to the corresponding external nodes KD1300 the

sampling motes.

In our experiment, the sampling motes at different locations do not communicate with

each other directly, because they are not able to communicate directly when located in

different rooms. To solve this problem, we use a particular SHM mote near the window of

each location to act as a data collector as shown in the top figure of Fig. 4.7b. Once the

sampling motes sample the vibrational data, the data will be transmitted to this collector

first. In our context, we regarded the 20 collectors as independent wireless sensor nodes in

the sensor network. With the objective of minimizing the communication cost in the entire

network, we assume that the collectors have the local vibrational data already and only

consider the wireless communication among collectors when we calculate the transmission

cost.

To test our strategies, we find out the sensor network topology of the 20 collector nodes

based on the deployment using the collecting tree protocol (CTP) [GFJ+09]. Then the

topology information is transmitted to a gateway node which is connected to a laptop

as shown in the bottom figure of Fig. 4.7b. The network topology constructed by the

20 collector nodes is illustrated in Fig. 4.8. By using the network topology, the laptop
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(a) (b)

(a)

(a) (b)

(b)

Fig. 4.6: The building and measurement locations (a) The building (b) 20 measurement locations.
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Fig. 4.7: Experiment setup (a) Wired and wireless systems deployed at location 17 in the building (b)
Top: a SHM mote deployed near the window as the collector node; Bottom: a gateway mote connected to
a laptop computer.

constructs the shortest path tree rooted in No. 20 (for Strategy 1 and Strategy 3), or the

spanning tree with minimum number of leaves also rooted in node No. 20 (for Strategy 4).

For each node in the sensor network, its parent and children are then determined. And the

relationship among collector nodes is then broadcast to the nodes by the laptop.

Then by utilizing the modified flooding time synchronization protocol (FTSP) [MKSL04],

all of the sampling motes are synchronized. At a certain global time, all of the sampling

motes start to sense with sampling rate of 1024Hz. The sampling procedure lasts for 50

seconds.

As discussed above, both Strategy 1 and Strategy 3 adopt the shortest path tree rooted at

collector node 20 and, thus, they share the same routing strategy as illustrated in Fig. 4.8b.

The difference between these two strategies is that in the former, the raw measurements

are transmitted and collected along the tree to node 20, while in the latter the estimated

parameters of least squares are updated along the shortest path tree. The routing strategy

used by strategy 4 is shown in Fig. 4.8c. Along this routing, the parameters of interest are
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updated. In this figure, the estimation results will finally reach node 20, where the natural

frequencies are calculated.

The theoretical amount of data transmitted in these three strategies are shown in Table

4.1. Updating the estimated parameters along the shortest path tree (Strategy 3) and along

minimum-leaves tree (Strategy 4) are significantly better than delivering the measurements

directly to the sink node (Strategy 1). Even though strategy 2 can lead to a minimum

transmission cost, the Hamiltonian path does not always exist as discussed and it costs the

maximum hop-count to reach the global results, which is 19 in the best case.

Strategies # 1 3 4

Theoretical data amount 40960 12323 7228

Maximum hop count 4 4 5

Table 4.1: Theoretical data amount and the actual maximum hop count in different strategies.

To satisfy the hop-count constraint, we also compare the maximum hop-count it takes

with different strategies. With strategy 1, the hop-count it takes to finish the transmission of

data is 4. While the number of hops it takes for updating the parameters in the shortest path

tree (Strategy 3) and the minimum leaves tree (Strategy 4) are 4 and 5, respectively. With

strategy 2, the hop-count it takes to update the unknown parameters in the Hamiltonian

path is 19, and it is the longest one as compared to the other strategies.

What’s more, we illustrate that strategy 4 is able to achieve extremely accurate natural

frequencies as was in the traditional centralized method. Natural frequencies calculated by

using E3 (Strategy 4) are compared with those calculated by using the traditional centralized

method on the laptop computer connected with the gateway. The comparison results are

shown in Table 4.2. The error in the frequency is calculated as the difference between the

estimates on the SHM Mote and the PC. As shown in Table 4.2, the natural frequencies

estimated in the SHM Mote and those on the PC are almost identical.
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Fig. 4.8: (a) The network topology of collector nodes (b) The shortest path tree (with root 20) and (c)
The minimum leaves tree (with root 20).

Mode # 1 2 3 4 5

The Centralized LSE 0.753 0.954 1.325 6.777 15.88

The Distributed LSE: E3 0.752 0.961 1.333 6.805 15.79

Relative Error(%) -0.133 0.734 0.604 0.413 -0.567

Table 4.2: Comparing accuracy of our approach to the centralized LSE. It can be seen that the identified
natural frequencies of our approach have less than 1% identification error.
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4.5 Summary

In this chapter, we study the problem of distributed least squares estimation in wireless

sensor networks and propose a distributed approach, E3, from a simple estimation strategy.

By comparing with a simple strategy that updates the estimates along the shortest path

tree, our approach is able to achieve the approximation quality of the centralized approach,

yet using much lower wireless transmission costs and can satisfy the delay constraint. Cor-

responding to our proposed design framework, our strategy combines the advantages of

T-AEc-U and T-ADe-U strategies. With simulation and a real experiment at test bed, the

efficiency of E3 in terms of transmission cost and delay has been demonstrated.
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Chapter 5

Conclusions and Suggestions for
Future Research

In this chapter, we conclude this thesis in Section 5.1 and outline some possible future

works in Section 5.2.

5.1 Conclusions

Recent years, domain-specific applications, such as structural health monitoring, have

been one of the main drivers that motivates the real-world deployment of wireless sensor

networks. Due to their data-intensive and computation intensive nature, several unique

challenging issues arise. It is typical for these applications to make heavy uses of least

squares estimation as a foundation for their algorithms, which is a standard approach to

compute the approximate solution of sets of equations in which there are more equations

than unknowns. Due to the very limited amount of energy and computation power available

on the sensors, it is imperative to design new algorithms to perform least squares estimation

in a distributed fashion.

In this research, We mainly focus on algorithms design to solve least squares systems

in wireless sensor networks. The distributed version should be able to achieve the same

accuracy of the centralized counterpart under resource constraints (e.g. bandwidth, energy,
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computing capability, memory, etc).

Firstly, we proposed a 3 dimensional framework for general distributed least squares

estimation algorithm design. Our framework can provide a basis for designing, analyzing

and evaluating strategies to address parameters estimation issues using least squares esti-

mation algorithms in wireless sensor networks. In the 3D framework, we proposed three

design aspects(aggregation structure, performance metric and communication pattern) of

designing distributed least squares estimation, and then we study the existing works from

the design aspects and then discuss advantages and disadvantages correspondingly.

Secondly, we proposed E3, a tree-based distributed algorithm for least squares estima-

tion, which can reach the objective of minimizing the energy consumption incurred during

communication, while observing constraints on application-specific communication delays.

And then we conduct simulations and real experiments for structural damage detection in

a real environment to test the performance of our algorithms. Compared to previous works,

we show that E3 maintains the same level of estimation precision while incurring much

lower energy costs.

At last, we address that our 3D framework can facilitate the design, classification and

evaluation of the current distributed least squares estimation strategies in sensor networks

by utilizing our tree-based strategy.

5.2 Suggestions for Future Research

We close this thesis by providing some suggestions for future research. Specifically, we

mainly focus on least squares estimation in this thesis. However, least square estimation

is only one kind of computing methodology. We believe that the following aspects which

consider a general distributed computing architecture are worth further investigations.
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Chapter 5 Conclusions and Suggestions for Future Research

5.2.1 Distributed Computing Architecture

Given a sophisticated signal processing algorithm T (D) which applies computation T

on data D consisting data from sensors across the whole network, to design the distributed

version of T (D) must utilize the computation capability of each sensor. In addition, we

wish to carry out the computation on the route when each node sends its data to the sink.

This indicates that each sensor should carry out a sub-computation task Ti(Di) using its

own or received data and transmit the result to its parent. When the data flow reaches the

sink, the obtained result is the same with that of T (D) but with much less cost compared

to the existing ’data collection then centralized computation’. To achieve this goal, we first

investigate some general computation architectures. Then given a certain T (D), we try to

find some types of key computation functions by whichT (D) can be decomposed and choose

the appropriate computation architecture accordingly. At last, based on the computation

architecture and the graph of the deployed sensors, the optimal routing is then obtained.

In particular, for any data sets {Di} ⊆ D and Si obtained by T ({Di}) = Si, B1 and B2

should satisfy that:

B1(Si, {Dj}) = T ({Di}
⋃
{Dj}) (5.1)

B2(Si, Sj , . . .) = T ({Di}
⋃
{Dj}

⋃
. . .) (5.2)

Task 1.1: Firstly, for a given centralized signal processing algorithm T (D) which applies

computation T on data D, we will find out some types of building-block sub-tasks by which

T (D) can be constructed and from which, choose the best computation architecture shown

in Fig. 3.3.A sensor node can receive two types of data: raw data and intermediate results.

For T (D) to be decomposed within a network, we must construct one or two types of

building-block sub-tasks: (1)B1(Si, {Dj}) = Sk, and (2)B2(Si, Sj . . .) = Sp. Where {Di}

is raw data set from a set of sensors,Si, Sj , Sk . . . are the intermediate results which can
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be obtained either by applying T on data from part of the sensors (i.e.T ({Di}) = Si), or

from the output of and B2(Si, Sj . . .). It can be seen that B1 is designed to update an

intermediate result by incorporating raw data, and B2 is used to fuse a set of intermediate

results.

Task 1.2: Secondly, given T (D) and the building-block sub-tasks B1, B2, we will find

out extra conditions (if there is any) that the results of the distributed version using B1

and B2 is the same with the centralized counterpart. It should be noted that, it is quite

possible that B1/B2 can only satisfy Eq.5.1/ Eq.5.2 at certain conditions. For example,

to use the DAC method to combine two intermediate results xi and xj respectively from

Ai ∗xi = bi andAj ∗xj = bj , both xi and xj must have large enough Fisher information (i.e.

B2(Si, Sj) = T ({Di}
⋃
{Dj} only when both Si and Sj have enough Fisher information).

These requirements must be considered when we are using a computation architecture shown

in Fig. 3.3.

Task 1.3: Thirdly, we should design the optimal routing according to the objective

functions and constraints. Given a computation task T (D), the chosen computation archi-

tecture, and the graph of deployed sensors G = (V,E), we need to find out the optimal

routing for the sensor node in the network. The routing is optimal mainly in the sense that

the energy consumption and delay should be minimized.
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